
Bull
AIX 5L Files Reference

AIX

86 A2 46EF 01
ORDER REFERENCE

Bull
AIX 5L Files Reference

AIX

Software

September 2002

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

86 A2 46EF 01
ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright Bull S.A. 1992, 2002

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Contents

About This Book . xi
Who Should Use This Book . xi
How to Use This Book . xi
Highlighting . xi
Case-Sensitivity in AIX . xi
ISO 9000 . xi
Related Publications. xi

Chapter 1. System Files . 1
Types of Files . 1
File-Naming Conventions . 2
System Files. 2
Related Information . 2
acct.cfg File . 2
admin File . 4
aliases File for Mail . 5
audit File for BNU . 6
backup File . 7
bincmds File . 9
BOOTP Relay Agent Configuration File . 10
bootparams File for NFS . 12
ca.cfg File . 12
cdromd.conf File Format . 14
ClientHostName.info File . 15
clsnmp.conf File . 17
Command (C.*) Files for BNU . 19
compver File . 22
config File . 22
consdef File . 26
copyright File . 27
Data (D.*) Files for BNU . 28
/dev/hty File . 29
/dev/rhp File . 29
DHCP Client Configuration File . 30
DHCP Server Configuration File . 33
depend File . 44
dir File . 45
dsinfo File . 46
dumpdates File . 49
e789_ctbl File for HCON . 49
e789_ktbl File for HCON . 50
environ File. 50
environment File . 52
errors File for BNU . 56
ethers File for NIS . 56
events File . 57
Execute (X.*) Files for BNU. 59
exports File for NFS . 61
.fig File . 63
filesystems File . 63
Foreign File for BNU . 66
.forward File . 66
ftpaccess.ctl File . 67

© Copyright IBM Corp. 1997, 2002 iii

/etc/group File. 68
/etc/security/group File . 70
Workload Manager groupings File . 72
hostmibd.conf File . 73
image.data File . 74
INed Files . 78
.info File . 79
inittab File . 80
irs.conf File. 83
ispaths File . 87
isprime File. 90
.kshrc File . 90
limits File . 92
login.cfg File . 95
.maildelivery File for MH . 98
/usr/lib/security/methods.cfg File . 102
mhl.format File . 104
.mh_profile File . 106
mibII.my File . 110
mkuser.default File . 113
mtstailor File for MH . 114
mrouted.conf File . 115
netgroup File for NIS . 117
netmasks File for NIS . 118
netsvc.conf File . 119
networks File for NFS . 120
NLSvec File . 121
ntp.conf File . 123
ntp.keys File . 132
objects File . 133
/etc/passwd File . 134
/etc/security/passwd File . 136
pcnfsd.conf Configuration File . 138
pkginfo File . 141
pkgmap File . 143
policy.cfg File . 146
portlog File . 148
/proc File . 149
pwdhist File . 164
publickey File for NIS . 165
qconfig File . 166
rc.boot File . 169
rc.tcpip File for TCP/IP . 169
remote.unknown File for BNU . 170
Resource Data Input File . 171
roles File . 174
rmccli General Information File . 175
rpc File for NFS . 179
sendmail.cf File. 179
setinfo File . 222
setup.csh File . 223
setup.sh File . 224
smi.my File . 225
smitacl.group File . 226
smitacl.user File . 227
snmpd.conf File . 228

iv Files Reference

snmpd.boots File . 236
snmpdv3.conf File . 238
snmpmibd.conf File . 249
socks5c.conf File . 250
space File. 252
.srf File . 252
streamcmds File . 252
sysck.cfg File . 253
Temporary (TM.*) Files for BNU. 255
Workload Manager .times File . 256
updaters File for NIS . 257
user File . 258
user.roles File . 264
vfs File . 265
Workload Manager classes File . 266
Workload Manager limits File. 268
Workload Manager rules File . 270
Workload Manager shares File . 273
xferstats File for BNU . 275
xtab File for NFS . 276

Chapter 2. File Formats . 277
Asynchronous Terminal Emulation (ATE) File Formats 278
Basic Networking Utilities (BNU) File Formats . 278
tip File Formats. 278
TCP/IP System Management File Formats . 278
.3270keys File Format for TCP/IP . 279
acct File Format . 281
ar File Format (Big) . 282
ar File Format (Small) . 284
ate.def File Format . 287
audit File Format . 291
bootptab File Format . 293
Character Set Description (charmap) Source File Format 294
core File Format . 299
core File Format (AIX 4.2) . 301
core File Format (AIX 4.3) . 302
cpio File Format . 305
Devices File Format for BNU . 306
Dialcodes File Format for BNU . 310
Dialers File Format for BNU . 312
Dialing Directory File Format for ATE . 316
DOMAIN Cache File Format for TCP/IP . 317
DOMAIN Data File Format for TCP/IP . 318
DOMAIN Local Data File Format for TCP/IP . 321
DOMAIN Reverse Data File Format for TCP/IP . 323
eqnchar File Format . 325
ftpusers File Format for TCP/IP . 326
gated.conf File Format for TCP/IP . 327
gateways File Format for TCP/IP . 369
hosts File Format for TCP/IP . 371
hosts.equiv File Format for TCP/IP . 373
hosts.lpd File Format for TCP/IP . 376
hty_config File Format . 377
inetd.conf File Format for TCP/IP . 378
lastlog File Format . 380

Contents v

ldap.cfg File Format . 381
LDAP Attribute Mapping File Format . 383
Locale Definition Source File Format . 384
LC_COLLATE Category for the Locale Definition Source File Format 386
LC_CTYPE Category for the Locale Definition Source File Format 389
LC_MESSAGES Category for the Locale Definition Source File Format 392
LC_MONETARY Category for the Locale Definition Source File Format 393
LC_NUMERIC Category for the Locale Definition Source File Format 397
LC_TIME Category for the Locale Definition Source File Format 398
Locale Method Source File Format . 402
magic File Format . 408
.mailrc File Format . 409
map3270 File Format for TCP/IP . 412
Maxuuscheds File Format for BNU . 417
Maxuuxqts File Format for BNU. 417
.mh_alias File Format . 418
mib.defs File Format . 420
named.conf File Format for TCP/IP . 422
.netrc File Format for TCP/IP . 478
networks File Format for TCP/IP . 479
nroff or troff Input File Format . 480
nterm File Format . 481
Permissions File Format for BNU . 484
phones File Format for tip . 493
Poll File Format for BNU . 494
profile File Format . 495
protocols File Format for TCP/IP . 496
queuedefs File Format . 497
rc.net File Format for TCP/IP . 498
rc.ntx File Format . 501
remote File Format for tip . 502
resolv.conf File Format for TCP/IP . 506
resolv.ldap File Format for TCP/IP . 508
.rhosts File Format for TCP/IP . 509
sccsfile File Format . 511
services File Format for TCP/IP . 514
setmaps File Format . 515
simprof File Format . 517
Standard Resource Record Format for TCP/IP . 519
Sysfiles File Format for BNU . 527
Systems File Format for BNU . 528
telnet.conf File Format for TCP/IP . 534
terminfo Directory . 535
.tiprc File Format for tip . 577
trcfmt File Format . 578
troff File Format . 583
troff Font File Format. 585
tunables File Format . 588
uconvdef Source File Format. 590
UIL File Format . 592
utmp, wtmp, failedlogin File Format . 612
vgrindefs File Format. 613
WML File Format . 615
XCOFF Object File Format . 621

Chapter 3. Special Files . 675

vi Files Reference

Related Information . 676
3270cn Special File . 676
bus Special File . 682
cd Special File . 683
console Special File . 684
dials Special File . 687
dump Special File . 688
entn Special File . 689
Error Logging Special Files . 690
fd Special File . 691
fddin Special File . 693
GIO Special File . 695
ide Special File . 696
kbd Special File . 696
lft Special File . 698
lp Special File . 699
lpfk Special File . 702
lvdd Special File . 703
mem or kmem Special File . 707
mouse Special File . 709
mpcn Special File . 710
mpqi Special File . 712
mpqn Special File . 713
null Special File . 715
nvram Special File . 715
random and urandom Devices . 717
omd Special File . 718
opn Special File . 720
ops0 Special File . 720
pty Special File . 722
rcm Special File . 724
rhdisk Special File. 725
rmt Special File. 726
scsi Special File . 730
serdasda Special File . 730
serdasdc Special File . 731
tablet Special File . 731
tmscsi Special File . 732
tokn Special File . 733
trace Special File . 735
tty Special File . 735
urandom and random Devices . 736
x25sn Special File. 737

Chapter 4. Header Files . 741
3270 Host Connection Program (HCON) Header Files 742
Related Information . 742
List of Major Control Block Header Files . 742
Options and Flags for HCON File Transfer Header Files. 744
dirent.h File . 746
dlfcn.h File . 746
eucioctl.h File . 747
fcntl.h File. 748
filsys.h File . 749
flock.h File . 753
fullstat.h File . 755

Contents vii

fxconst.inc File . 756
fxfer.h File. 756
fxfer.inc File . 758
fxhfile.inc File . 759
g32_api.h File . 759
g32const.inc File . 761
g32hfile.inc File. 762
g32_keys.h File. 763
g32keys.inc File . 764
g32types.inc File . 765
grp.h File . 767
iconv.h File . 767
inode.h File . 768
inttypes.h File . 772
ipc.h File . 772
iso646.h File . 773
ldr.h File . 773
limits.h File . 775
libperfstat.h File . 777
math.h File . 785
mode.h File . 786
msg.h File. 788
param.h File . 790
pmapi.h File . 790
poll.h File . 793
pthread.h File . 795
pwd.h File. 797
rset.h File . 797
sem.h File. 798
sgtty.h File . 801
shm.h File. 806
spc.h File . 807
srcobj.h File . 811
stat.h File . 812
statfs.h File . 814
statvfs.h File . 816
syslog.conf File . 817
systemcfg.h File . 819
tar.h File . 821
termio.h File . 824
termios.h File . 832
termiox.h File . 843
types.h File . 845
unistd.h File . 846
utmp.h File . 847
values.h File . 849
vmount.h File . 850
wctype.h File. 851
wlm.h File . 852
x25sdefs.h File for X.25. 860
cb_call_struct Structure for X.25 . 861
cb_circuit_info_struct Structure for X.25 . 861
cb_clear_struct Structure for X.25 . 862
cb_data_struct Structure for X.25 . 863
cb_dev_info_struct Structure for X.25. 864
cb_fac_struct Structure for X.25. 865

viii Files Reference

cb_int_data_struct Structure for X.25 . 870
cb_link_name_struct Structure for X.25 . 870
cb_link_stats_struct, x25_query_data, or x25_stats Structure for X.25 871
cb_msg_struct Structure for X.25 . 875
cb_pvc_alloc_struct Structure for X.25 . 876
cb_res_struct Structure for X.25. 877
ctr_array_struct Structure for X.25 . 877

Chapter 5. Directories . 879
Understanding Types of Directories . 879
Related Information . 880
/etc/locks Directory . 880
/usr/lib/hcon Directory . 881
/var/spool/mqueue Directory for Mail . 882
/var/spool/uucp Directory for BNU . 883
/var/spool/uucp/.Admin Directory for BNU . 884
/var/spool/uucp/.Corrupt Directory for BNU . 884
/var/spool/uucp/.Log Directories for BNU . 884
/var/spool/uucp/.Old Directory for BNU . 886
/var/spool/uucp/.Status Directory for BNU . 886
/var/spool/uucp/SystemName Directories for BNU . 887
/var/spool/uucp/.Workspace Directory for BNU . 888
/var/spool/uucp/.Xqtdir Directory for BNU . 888
/var/spool/uucppublic Directory for BNU . 888

Appendix. Notices . 891
Trademarks . 892

Index . 893

Contents ix

x Files Reference

About This Book

This book, AIX 5L Version 5.2 Files Reference, describes the files used by the operating system. The
various system files, file formats, special files, header files, and directories used by the operating system,
its subsystems, and certain optional program products are covered in this book.

Who Should Use This Book
This book is intended for experienced C programmers. To use the book effectively, you should be familiar
with UNIX System V commands, system calls, subroutines, file formats, and special files.

How to Use This Book
This book contains sections on the system files, special files, header files, and directories that are
provided with the operating system and optional program products. File formats required for certain files
that are generated by the system or an optional program are also presented in a section of this book.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose
names are predefined by the system. Also identifies graphical objects such as buttons, labels, and
icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.
Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a programmer,
messages from the system, or information you should actually type.

Case-Sensitivity in AIX
Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications
The following books contain information about or related to the operating system files:

v AIX 5L Version 5.2 System User’s Guide: Operating System and Devices

v AIX 5L Version 5.2 System User’s Guide: Communications and Networks

v AIX 5L Version 5.2 System Management Guide: Operating System and Devices

v AIX 5L Version 5.2 System Management Guide: Communications and Networks

v AIX 5L Version 5.2 Commands Reference (six volumes)

v AIX 5L Version 5.2 Technical Reference (six volumes)

v AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programs

v AIX 5L Version 5.2 Communications Programming Concepts

© Copyright IBM Corp. 1997, 2002 xi

v GL3.2 Version 4.1 for AIX: Programming Concepts

xii Files Reference

Chapter 1. System Files

A file is a collection of data that can be read from or written to. A file can be a program you create, text
you write, data you acquire, or a device you use. Commands, printers, terminals, and application programs
are all stored in files. This allows users to access diverse elements of the system in a uniform way and
gives the operating system great flexibility. No format is implied when a file is created.

Files are used for all input and output (I/O) of information in this operating system. This standardizes
access to both software and hardware. Input occurs when the content of a file is modified or written to.
Output occurs when the content of one file is read or transferred to another file. For example, to create a
hardcopy printout of a text file, the system reads the information from the text file and writes the data to
the file representing the printer.

Collections of files are stored in directories. These collections of files are often related to each other, and
storing them in a structure of directories keeps them organized.

There are many ways to create, use, and manipulate files. ″Files Overview″ in AIX 5L Version 5.2 System
User’s Guide: Operating System and Devices introduces the commands that control files.

Types of Files
There are three basic types of files:

File Type Description
regular Stores data (text, binary, and executable).
directory Contains information used to access other files.
special Defines a FIFO (first-in, first-out) file or a physical device.

All file types recognized by the system fall into one of these categories. However, the operating system
uses many variations of these basic types.

Regular files are the most common. When a word processing program is used to create a document, both
the program and the document are contained in regular files.

Regular files contain either text or binary information. Text files are readable by the user. Binary files are
readable by the computer. Binary files can be executable files that instruct the system to accomplish a job.
Commands, shell scripts, and other programs are stored in executable files.

Directories contain information the system needs to access all types of files, but they do not contain the
actual file data. As a result, directories occupy less space than a regular file and give the file-system
structure flexibility and depth. Each directory entry represents either a file or subdirectory and contains the
name of a file and the file’s i-node (index node reference) number. The i-node number represents the
unique i-node that describes the location of the data associated with the file. Directories are created and
controlled by a separate set of commands. See ″Directories″ in AIX 5L Version 5.2 System User’s Guide:
Operating System and Devices for more information.

Special files define devices for the system or temporary files created by processes. There are three basic
types of special files: FIFO (first-in, first-out), block, and character. FIFO files are also called pipes. Pipes
are created by one process to temporarily allow communication with another process. These files cease to
exist when the first process finishes. Block and character files define devices.

Every file has a set of permissions (called access modes) that determine who can read, modify, or execute
the file. To learn more about file access modes, see ″File Ownership and User Groups″ in AIX 5L Version
5.2 System Management Guide: Operating System and Devices.

© Copyright IBM Corp. 1997, 2002 1

File-Naming Conventions
The name of each file must be unique within the directory where it is stored. This insures that the file also
has a unique path name in the file system. File-naming guidelines are:

v A file name can be up to 255 characters long and can contain letters, numbers, and underscores.

v The operating system is case-sensitive which means it distinguishes between uppercase and lowercase
letters in file names. Therefore, FILEA, FiLea, and filea are three distinct file names, even if they reside
in the same directory.

v File names should be as descriptive as possible.

v Directories follow the same naming conventions as files.

v Certain characters have special meaning to the operating system, and should be avoided when naming
files. These characters include the following:
/ \ " ’ * ; - ? [] () ~ ! $ { } < > # @ & |

v A file name is hidden from a normal directory listing if it begins with a . (dot). When the ls command is
entered with the -a flag, the hidden files are listed along with regular files and directories.

The path name of a file consists of the name of every directory that precedes it in the file tree structure.
Only the final component of a path name can contain the name of a regular file. All other components in a
path name must be directories. Path names can be absolute or relative. See ″File Path Names″ in AIX 5L
Version 5.2 System User’s Guide: Operating System and Devices to learn more about the complete name
of a file within the file system.

System Files
The files in the following chapter are system files. These files are created and maintained by the operating
system and are necessary for the system to perform its many functions. System files are used by many
commands and subroutines to perform operations. These files can only be changed by a user with root
authority.

Related Information
Files Overview in AIX 5L Version 5.2 System User’s Guide: Operating System and Devices introduces the
basic concepts of files and directories and the commands that control them.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs introduces i-nodes, file space allocation, and the file,
directory, and file system subroutines.

acct.cfg File

Purpose
The acct.cfg file consists of CA stanzas and LDAP stanzas. The CA stanzas contain private CA
information not suitable for the publicly readable ca.cfg file. LDAP stanzas contain LDAP information such
as LDAP administrative names and passwords.

Description
For every CA stanza in the ca.cfg file, the acct.cfg file should contain an equivalently named CA stanza,
and all CA stanzas must be uniquely named. On the other hand, all LDAP stanzas are named ldap. For
this reason, a CA stanza cannot be named ldap. Also, no stanza can be named default. An LDAP stanza
must exist and at least one CA stanza, named local must exist.

2 Files Reference

Examples

* CA Stanzas:
*

* carefnum Specifies the CA’s reference number used while communicating
* with the CA through CMP. This value must be the same value as
* the one that is specified while configuring the CA. (Required)
*
* capasswd Specifies the CA’s password used while commuinicating with
* the CA. The length of the password must be at least 12
* characters long. This value must be the same value as the one
* that is specified while configuring the CA.(Required)
*
* rvrefnum Specifies the revocation reference number used for revoking
* a certificate
*
* rvpasswd Specifies the revocation password used for CMP. The length of
* the password must be at least 12 character long.
*
* keylabel Defines the name of the key label in the trusted keystore.
* (Required)
*
* keypasswd Defines the password of the trusted keystore. (Required)
*

* ldap Stanzas:
*
* ldappkiadmin Specifies the PKI LDAP administrator account name.
*
* ldappkiadmpwd Specifies the PKI LDAP administrator account password.
*
* ldapservers Specifies the LDAP server machine name or IP address.
*
* ldapsuffix Specifies the LDAP DN suffix for the root of the LDAP branch
* where the PKI data resides.
*

local:
carefnum = 12345678
capasswd = password1234
rvrefnum = 9999997
rvpasswd = password
keylabel = "Trusted Key"
keypasswd = somepassword

ldap:
ldappkiadmin = "cn=admin"
ldappkiadmpwd = password
ldapservers = myserver.mydomain.com
ldapsuffix = "ou=cert,cn=aixsecdb"

File
/usr/lib/security/pki/acct.cfg

Related Information
The certcreate command.

The certrevoke command.

The /usr/lib/security/pki/ca.cfg file.

Chapter 1. System Files 3

admin File

Purpose
Describes the format of an installation defaults file.

Description
admin is a generic name for an ASCII file that defines default installation actions by assigning values to
installation parameters. For example, it allows administrators to define how to proceed when the package
being installed already exists on the system.

/var/sadm/install/admin/default is the default admin file delivered with your system. The default file is not
writable, so to assign values different from this file, create a new admin file. There are no naming
restrictions for admin files. Name the file when installing a package with the -a flag of the pkgadd
command. If the -a flag is not used, the default admin file is used.

Each entry in the admin file is a line that establishes the value of a parameter in the following form:
param=value

Eleven parameters can be defined in an admin file. A file is not required to assign values to all eleven
parameters. If a value is not assigned, pkgadd asks the installer how to proceed.

The eleven parameters and their possible values are shown below except as noted. They may be
specified in any order. Any of these parameters can be assigned the value ask, which means that, if the
situation occurs, the installer is notified and asked to supply instructions at that time.

Parameter Description
basedir Indicates the base directory where relocatable packages are to be installed. The value may contain

$PKGINST to indicate a base directory that is to be a function of the package instance.
mail Defines a list of users to whom mail should be sent following installation of a package. If the list is

empty or if the parameter is not present in the admin file, the default value of root is used. The ask
value cannot be used with this parameter.

runlevel Indicates resolution if the run level (system state) is not correct for the installation or removal of a
package. Options are:

nocheck
Do not check for run level (system state).

quit Abort installation if run level (system state) is not met.
conflict Specifies what to do if an installation expects to overwrite a previously installed file, thus creating a

conflict between packages. Options are:

nocheck
Do not check for conflict; files in conflict are overwritten.

quit Abort installation if conflict is detected.

nochange
Override installation of conflicting files; conflicting files are not installed.

setuid Checks for executables that have setuid or setgid bits enabled after installation. Options are:

nocheck
Do not check for setuid executables.

quit Abort installation if setuid processes are detected.

nochange
Override installation of setuid processes; processes are installed without setuid bits enabled.

4 Files Reference

Parameter Description
action Determines if action scripts provided by package developers contain possible security impact.

Options are:

nocheck
Ignore security impact of action scripts.

quit Abort installation if action scripts may have a negative security impact.
partial Checks to see if a version of the package is already partially installed on the system. Options are:

nocheck
Do not check for a partially installed package.

quit Abort installation if a partially installed package exists.
idepend Controls resolution if other packages depend on the one to be installed. Options are:

nocheck
Do not check package dependencies.

quit Abort installation if package dependencies are not met.
rdepend Controls resolution if other packages depend on the one to be removed. Options are:

nocheck
Do not check package dependencies.

quit Abort removal if package dependencies are not met.
space Controls resolution if disk space requirements for package are not met. Options are:

nocheck
Do not check space requirements (installation fails if it runs out of space).

quit Abort installation if space requirements are not met.

The value ask cannot be defined in an admin file that is used for non-interactive installation (since by
definition, there is no installer interaction). Doing so causes installation to fail when input is needed.

Related Information
The pkgadd command.

aliases File for Mail

Purpose
Contains alias definitions for the sendmail command.

Description
The /etc/mail/aliases file contains the required aliases for the sendmail command. Do not change these
defaults, as they are required by the system. The file is formatted as a series of lines in the form:
name: name_1, name_2, name_3,...

The name: is the name of the alias, and the name_n are the aliases for that name. Lines beginning with
white space are continuation lines. Lines beginning with a # (pound sign) are comments.

Aliasing occurs only on local names. System-wide aliases are used to redirect mail. For example, if you
receive mail at three different systems, you can use the /etc/mail/aliases file to redirect your mail to one
of the systems. As an individual user, you can also specify aliases in your .mailrc file.

Aliases can be defined to send mail to a distribution list. For example, you can send mail to all of the
members of a project by sending mail to a single name.

Chapter 1. System Files 5

The sender of a message is not included when the sendmail command expands an alias address. For
example, if amy sends a message to alias D998 and she is defined as a member of that alias, the sendmail
command does not send a copy of the message to amy.

The /etc/mail/aliases file is a raw data file. The sendmail command uses a database version of this file.
You must build a new alias database by running the sendmail -bi command or the newaliases command
before any changes made to the /etc/mail/aliases file become effective.

Berkeley DB support is now available on AIX 5.1for Sendmail 8.11.0. As long as you do not rebuild the
aliases database, sendmail will continue to read it in its old DBM format. This consists of two files:
/etc/mail/aliases.dir and /etc/mail/aliases.pag. However, the moment you rebuild the aliases database,
sendmail will change this format to Berkeley DB. This file will be stored in /etc/mail/aliases.db.

Note: Upper case characters on the left hand side of the alias are converted to lowercase before being
stored in the aliases database. In the following example, mail sent to the testalias user alias fails,
since TEST is converted to test when the second line is stored.

TEST: user@machine
testalias: TEST

To preserve uppercase in user names and alias names, add the u flag to the local mailer description in the
/etc/mail/sendmail.cf file. Thus, in the example above, mail to the testalias user alias would succeed.

Files

/etc/mail/aliases Contains systemwide aliases.
/etc/mail/aliasesDB directory Contains the binary files created by the newaliases command,

including the DB.dir and DB.pag files.
/etc/mail/aliases.db Contains the binary file storing the aliases database in Berkeley DB

format, created by the newaliases command

Related Information
The newaliases command, sendmail command.

The .mailrc file.

Building the Alias Database, Creating Local System Aliases for Mail, Managing Mail Aliases in AIX 5L
Version 5.2 System Management Guide: Communications and Networks.

audit File for BNU

Purpose
Contains debug messages from the uucico daemon.

Description
The /var/spool/uucp/.Admin/audit file contains debug messages from the uucico daemon when it is
invoked as a result of a call from another system. If the uucico daemon is invoked from the local system,
the debug messages are sent to either the /var/spool/uucp/.Admin/errors file or to standard output.

Files

/var/spool/uucp/.Admin/audit Specifies the path of the audit file.
/var/spool/uucp/.Admin/errors Contains a record of uucico daemon errors.

6 Files Reference

Related Information
The uudemon.cleanu command.

The cron daemon, uucico daemon.

Working with BNU Log Files, BNU Daemons, BNU File and Directory Structure in AIX 5L Version 5.2
System Management Guide: Communications and Networks.

backup File

Purpose
Copies the file system onto temporary storage media.

Description
A backup of the file system provides protection against substantial data loss due to accidents or error. The
backup command writes file system backups in the backup file format, and conversely, the restore
command reads file system backups. The backup file contains several different types of header records
along with the data in each file that is backed up.

Header Records
The different types of header records for by-name backups are:

Header Record Description
FS_VOLUME Exists on every volume and holds the volume label.
FS_NAME_X Holds a description of a file backed up by name.
FS_END Indicates the end of the backup. This header appears at the end of the last volume.

The different types of header records for by-inode and name backups are:

Header
Record

Description

TS_TAPE Exists on every volume and holds the volume label.
TS_BITS Describes the directory structure.
TS_CLRI Describes the unused i-node numbers on the backup system.
TS_INODE Describes the file.
TS_ADDR Indicates a continuation of the preceding file.
TS_END Indicates the end of the backup.

The descriptions of the fields of the header structure for by-inode backups are:

Header Record Description
c_type The header type.
c_date The current dump date.
c_ddate The file system dump date.
c_volume The volume number.
c_tapea The number of the current header record.
c_inumber The i-node number on this record.
c_magic The magic number.
c_checksum The value that would make the record sum to the CHECKSUM value.
bsd_c_dinode A copy of the BSD i-node as it appears on the BSD file system.
c_count The number of characters in the c_addr field.
c_addr A character array that describes the blocks being dumped for the file.

Chapter 1. System Files 7

Header Record Description
xix_flag Set to the XIX_MAGIC value if doing the backup of a file system.
xix_dinode The real di-node from the file system.

Each volume except the last ends with a tape mark (read as an end of file). The last volume ends with a
TS_END record and then the tape mark.

By-Name Format
The format of a by-name backup is:

FS_VOLUME

FS_NAME_X (before each file)

File Data

FS_END

By-Inode Format
The format of a by-inode backup follows:

TS_VOLUME

TS_BITS

TS_CLRI

TS_INODE

TS_END

A detailed description of the by-inode header file follows:
union u_spcl {

char dummy[TP_BSIZE];
struct s_spcl {

int c_type; /* 4 */
time_t c_date; /* 8 * /
time_t c_ddate; /* 12 */
int c_volume; /* 16 */
daddr_t c_tapea; /* 20 */
ino_t c_inumber; /* 24 */
int c_magic; /* 28 */
int c_checksum; /* 32 */
struct bsd_dinode bsd_c_dinode; /* 160 */
int c_count; /* 164 */
char c_addr[TP_NINDIR]; /* 676 */
int xix_flag; /* 680 */
struct dinode xix_dinode; /* 800 */

} s_spcl;
} u_spcl;

Constants
Constants used to distinguish these different types of headers and define other variables are:
#define OSF_MAGIC (int)60011
#define NFS_MAGIC (int)60012 /* New File System Magic */
#define XIX_MAGIC (int)60013 /* Magic number for v3 */

8 Files Reference

#define BYNAME_MAGIC (int)60011 /* 2.x magic number */
#define PACKED_MAGIC (int)60012 /* 2.x magic number for */

/* Huffman packed format */
#define CHECKSUM (int)84446 /* checksum magic number */
#define TP_BSIZE 1024 /* tape block size */
#define TP_NINDIR (TP_BSIZE/2) /* num of indirect pointers */

/* in an inode record */
#define FS_VOLUME 0 /* denotes a volume header */
#define FS_END 7 /* denotes an end of backup */
#define FS_NAME_X 10 /* denotes file header */
#define SIZSTR 16 /* string size in vol header*/
#define DUMNAME 4 /* dummy name length for */

/* FS_NAME_X */
#define FXLEN 80 /* length of file index */

Related Information
The backup command, pack command, restore command.

The filesystems file.

File Systems Overview and Backup Overview in AIX 5L Version 5.2 System Management Concepts:
Operating System and Devices.

bincmds File

Purpose
Contains the shell commands that process audit bin data.

Description
The /etc/security/audit/bincmds file is an ASCII template file that contains the backend commands that
process audit binfile records. The path name of this file is defined in the bin stanza of the
/etc/security/audit/config file.

This file contains command lines each composed of one or more commands with input and output that can
be piped together or redirected. Although the commands usually are one or more of the audit system
commands (the auditcat command, the auditpr command, the auditselect command), this is not a
requirement.

As each bin file is filled by the kernel, the auditbin daemon invokes each command to process the bin
records, substituting the names of the current bin file and the audit trail file for any $trail and $bin strings
in the commands. Upon startup, if the auditbin daemon detects that the bin files require a recovery
procedure, the command will prepend a -r to the bin file’s name in $bin.

Note: The commands are executed by the trusted shell (TSH) when on the trusted path. This means that
the path names in the commands must be absolute, and that environment variable substitution may
be limited. See the discussion of the tsh command for more information.

Security
Access Control: This file should grant read (r) access to the root user and members of the audit group and
grant write (w) access only to the root user.

Examples
1. To compress audit bin records and append them to the system audit trail file, include the following line

in the /etc/security/audit/bincmds file:
/usr/sbin/auditcat -p -o $trail $bin

Chapter 1. System Files 9

When the command runs, the names of the current bin file and the system audit-trail file are
substituted for the $bin and $trail strings. Records are compressed and appended to the /audit/trail
file.

2. To select the audit events from each bin file that are unsuccessful because of authentication or
privilege reasons and append the events to the /audit/trail.violations file, you must include the
following line in the /etc/security/audit/bincmds file:
/usr/sbin/auditselect -e "result == FAIL_AUTH || \
result == FAIL_PRIV" $bin >> /audit/trail.violations

3. To create a hard-copy audit log of all local user authentication audit events, include the following line in
the /etc/security/audit/bincmds file:
/usr/sbin/auditselect -e "event == USER_Login || \
event == USER_SU" $bin | \
/usr/sbin/auditpr -t2 -v >/dev/lpr3

Adjust the printer name to fit your requirements.

Files

/etc/security/audit/bincmds Specifies the path to the file.
/etc/security/audit/config Contains audit-system configuration information.
/etc/security/audit/events Contains the audit events of the system.
/etc/security/audit/objects Contains audit events for audited objects (files).
/etc/security/audit/streamcmds Contains auditstream commands.

Related Information
The audit command, auditcat command, auditpr command, auditselect command, tsh command.

The auditbin daemon.

Setting Up Auditing in AIX 5L Version 5.2 System Management Guide: Operating System and Devices.

Security Administration, Auditing Overview in AIX 5L Version 5.2 System Management Concepts:
Operating System and Devices.

BOOTP Relay Agent Configuration File

Purpose
Default configuration information for the BOOTP (boot protocol) relay agent program (dhcprd).

Description
The dhcprd configuration file contains entries for logging information and servers to receive BOOTP
packets.

This file is part of TCP/IP in Network Support Facilities in Base Operating System (BOS) Runtime.

Following are the formats for the data in the configuration file.

Format Meaning
Comment line The # character means that there is a comment from that point to the

end of the line.

10 Files Reference

Format Meaning
numLogFiles n Specifies the number of log files. If 0 is specified, no log file will be

maintained, and no log message is displayed anywhere. n is the
maximum number of log files maintained as the size of the most
recent log file reaches its maximum size and a new log file is created.

logFileSize n Maximum size of a log file. When the size of the most recent log file
reaches this value, it is renamed and a new log file is created. n is
measured in kilobytes(KB).

logFileName filename Name and path of the most recent log file. Less recent log files have
the number 1 to (n - 1) appended to their names; the larger the
number, the older the file.

logItem <option name> One item that will be logged. Multiple of these lines are allowed. This
allows for the specified logging level to be turned on. The following
are option names:

SYSERR
System error, at the interface to the platform

OBJERR
Object error, in between objects in the process

PROTERR
Protocol error, between client and server

WARNING
Warning, worth attention from the user

EVENT Event occurred to the process

ACTION
Action taken by the process

INFO Information that might be useful

ACNTING
Who was served, and when

TRACE
Code flow, for debugging.

server <ip address> The address of a server to receive the DHCP or BOOTP packet.
Multiple servers may be specified, and all will receive the packet.

Example
The following example sets the logging parameters and configures two servers to receive BOOTP and
DHCP packets. The servers are specified singly and with their ip addresses. The logging statements below
tell the daemon to use at most four logfiles, rotate the log files after their size is 100 kilobytes of data, and
place the files in the local directory and use dhcpsd.log as the base name. On rotation, the old file will be
moved to dhcpsd.log1, and the daemon will start logging to an empty dhcpsd.log.
numLogFiles 4
logFileSize 100
logFileName dhcpsd.log
logItem SYSERR
logItem OBJERR
logItem PROTERR
logItem WARNING
logItem EVENT
logItem ACTION
logItem INFO
logItem ACNTING
logItem TRACE

Chapter 1. System Files 11

server 129.35.128.43
server 9.3.145.5

Related Information
The dhcprd Daemon, the bootpd Daemon

TCP/IP Address and Parameter Assignment - Dynamic Host Configuration Protocol (DHCP) in AIX 5L
Version 5.2 System Management Guide: Communications and Networks.

Problems with Dynamic Host Configuration Protocol (DHCP) in AIX 5L Version 5.2 System Management
Guide: Communications and Networks.

bootparams File for NFS

Purpose
Contains the list of client entries that diskless clients use for booting.

Description
The /etc/bootparams file for Network File System (NFS) contains a list of client entries that diskless
clients use for booting. The first item of each entry is the name of the diskless client. Each entry should
contain the following information:

v Name of client

v List of keys, names of servers, and path names

Items are separated by tab characters.

Examples
The following is an example of a /etc/bootparams file:
myclient root=myserver:/nfsroot/myclient \

swap=myserver:/nfsswar/myclient \
dump=myserver:/nfsdump/myclient

Files

/etc/bootparams Specifies the path of the bootparams file.

Related Information
Network File System Overview in AIX 5L Version 5.2 System Management Guide: Communications and
Networks.

ca.cfg File

Purpose
The ca.cfg file consists of CA stanzas. The CA stanzas contain public CA information used by the
Certificate Authentication Services for generating certificate requests and certificate revocation requests.

12 Files Reference

Description
For every CA stanza in the ca.cfg file, the acct.cfg file should contain an equivalently named CA stanza.
Each CA stanza name in the ca.cfg file must be unique. At least one stanza named local must exist. No
stanza should be named ldap or default.

Examples
* Multiple components of the PKI implementation use this file for configuration
* information.
*
* algorithm Defines the encryption algorithm used for CMP requests.
* Supported values are RSA and DSA. The default is RSA.
*
* crl Specifies the CA’s root certificate file.
*
* dn Defines the default Distinguished Name value for newly
* created certificates. (Optional) Example:
* dn = "c=US, o=ZZZ Corp., ou=Sales OEM, sp=Texas, l=Austin"
*
* keysize Defines the minimum number of bits required when generating
* an encryption/signing key. The default is 1024.
*
* program Specifies the PKI service module file name.
* (Required)
*
* retries Defines the number of retry attempts when contacting a CA.
* The default is 5.
*
* server Defines the URL address of the CA server. Example:
* "cmp:://9.53.149.39:1077".

* signinghash Specifies the hash algorithm used to verify keys and to
* perform trusted certificate signing when validating users.
* Supported values are MD2, MD5, and SHA1. The default is MD5.
*
* trustedkey Defines the keystore location containing the system-wide
* trusted signing key used to sign/verify user certificates.
*
* url Defines the default subject alternate name URI value to be
* added to new certificates.
*
local:

program = /usr/lib/security/pki/JSML
trustedkey = file:/usr/lib/security/pki/trusted.p15
server = "cmp://9.53.149.39:1077"
crl = ldap://9.53.149.39/o=XYZ, c=us
dn = "c=US, o=XYZ"
url = "http://www.ibm.com/"
algorithm = RSA
keysize = 512
retries = 5
signinghash = MD5

File
/usr/lib/security/pki/ca.cfg

Related Information
The certcreate command.

The /usr/lib/security/pki/acct.cfg file.

Chapter 1. System Files 13

cdromd.conf File Format

Purpose
Defines for the cdromd daemon the managed devices and supported file system types.

Description
The /etc/cdromd.conf is the configuration file for the cdromd daemon. This file enables you to specify the
devices to manage and the file system types to handle.

If you change the /etc/cdromd.conf file, run refresh -s cdromd or kill -1 CdromdPID command to inform
the daemon of the changes to its configuration file.

The cdromd daemon reads its configuration file only when it starts, when the cdromd daemon receives a
SIGHUP signal, or when the SRC refresh -s cdromd command is entered.

An information line in the cdromd configuration file defines either a device to manage or a file system type
to handle. Lines starting with the pound sign (#) are comment lines. Fields in information lines must be
separated by spaces or tabs. A device information line starts with <device> keyword and is of the form:
device device_name mount_point

device_name Contains a valid device name, as printed by the lsdev command, such as:

lsdev -Cc cdrom -F name

mount_point Contains the path of the directory for the mount operation. It must begin with a /

If there is no line in the configuration file beginning with the device keyword, all the CD-ROM and DVD
devices available on the system will be managed by cdromd, and a media inserted in the cd<x> drive will
be automatically mounted on /cdrom/cd<x> directory.

A file system type information line starts with the fstype keyword and is of the form:
fstype VfsName fs_options

VfsName Contains the VFS type used with the -V flag of the mount command.Only cdrfs and udfs
types can be used.

fs_options Contains the comma separated list of options used with the -o flag of the mount command
(see mount command man page).

If there is no line beginning with the fstype keyword in the configuration file, the mount command will be
called with one of the following options:
-V cdrfs -o ro

or
-V udfs -o ro

If you want the UDFS file system to be mounted in read/write mode by default, add the following line to
the cdromd.conf file:
fstype udfs rw

Examples
The following example of cdromd.conf file is for a cdromd daemon that:

v Manages cdrom cd0 with inserted media mounted on /mnt with either -V cdrfs -o ro or -V udfs -o ro
options.

14 Files Reference

v Manages cdrom cd1 with inserted media mounted on /install with either -V cdrfs -o ro or -V udfs -o
ro options.

device cd0 /mnt
device cd1 /install
fstype cdrfs ro
fstype udfs ro

Related Information
The cdmount, cdutil, cdeject, cdumount, cdcheck, mount commands.

The cdromd daemon.

ClientHostName.info File

Purpose
Created by the Network Installation Management (NIM) software to deliver information to the boot
environment of NIM client machines.

Note: In AIX Version 4, this is an internal file to the Network Installation Management software and should
not be modified manually.

Description
The NIM software creates the ClientHostName.info file to deliver information to the boot environment of
NIM client machines. The file resides in the /tftpboot directory on the server of the NIM Shared Product
Object Tree (SPOT), with a format of ClientHostName.info where ClientHostName is the hostname of the
client machine.

After the client machine performs a network boot, it retrieves a copy of the ClientHostName.info file from
the boot server using tftp. The client machine then uses the contents of the ClientHostName.info file to
define environment variables for further processing in the boot process.

The ClientHostName.info file is used to support network boot for the followng NIM operations:

v Installing the Base Operating System onto standalone machines

v Initializing diskless/dataless machines

v Diagnostics boot

Some of the variables defined in the ClientHostName.info file are common to all operations while others
are operation-specific.

The following variables may be defined in the ClientHostName.info file:

Note: These variables are managed by the nim command and should not be modified by other means.

Variable Description
NIM_NAME Identifies the client machine in the NIM environment.
NIM_HOSTNAME Identifies hostname of the client machine.
NIM_CONFIGURATION Describes the configuration of the client’s resource requirements. Possible

values are standalone, diskless, and dataless.
NIM_MASTER_HOSTNAME Identifies the hostname of the NIM master in the network.
NIM_MASTER_PORT Specifies the port number on the NIM master that should be used for NIM

communications.
RC_CONFIG Specifies the file that defines the configuration procedures the client machine

should follow as it boots. Possible values are rc.bos_inst, rc.dd_boot, and
rc.diag.

Chapter 1. System Files 15

Variable Description
NIM_BOSINST_RECOVER Specifies the script that initializes the BOS installation environment for NIM.
SPOT Specifies the location of the Shared Product Object Tree resource that will be

used during the boot process.
ROOT Specifies the location of the root filesystem that will be mounted by

diskless/dataless machines.
DUMP Specifies the location of the dump resource that will be mounted by

diskless/dataless machines.
NIM_CUSTOM Names the command to execute a NIM script during post-installation

processing.
NIM_BOS_IMAGE Specifies the image from which the Base Operating System will be installed.
NIM_BOS_FORMAT Specifies the format of the image that will be used to install the Base Operating

System.
NIM_HOSTS Specifies the IP addresses and hostnames of the NIM machines that will

participate in the operation.
NIM_MOUNTS Specifies the filesystems that will be mounted during the operation.
ROUTES Specifies the routes from the client machine to other networks in the NIM

environment. The format of each value is a colon-separated list of the network
IP address, the network subnet mask, and the IP address of the gateway to the
network.

Example
This example shows the contents of the file /tftpboot/devon.austin.ibm.com.info after a bos installation
has been enabled via the following command:

nim -o bos_inst -a source=rte devon

export NIM_NAME=devon
export NIM_HOSTNAME=devon.austin.ibm.com
export NIM_CONFIGURATION=standalone
export NIM_MASTER_HOSTNAME=redfish.austin.ibm.com
export NIM_MASTER_PORT=1058
export RC_CONFIG=rc.bos_inst
export
NIM_BOSINST_RECOVER="/../SPOT/usr/lpp/bos.sysmgt/nim/methods/

c_bosinst_env -a
hostname=devon.austin.ibm.com"
export SPOT=redfish.austin.ibm.com:/spot/myspot/usr
export
NIM_CUSTOM="/../SPOT/usr/lpp/bos.sysmgt/nim/methods/c_script -a
location=redfish.austin.ibm.com:/export/nim/scripts/devon.script"
export NIM_BOS_IMAGE=/SPOT/usr/sys/inst.images/bos
export NIM_BOS_FORMAT=rte
export NIM_HOSTS=" 129.35.134.9:devon.austin.ibm.com
9.3.84.202:redfish.austin.ibm.com "
export NIM_MOUNTS="
redfish.austin.ibm.com:/lppsource/imagedir:/SPOT/usr/sys/inst.images:dir "
export ROUTES=" 9.3.84.128:255.255.255.128:129.35.128.201 "

Files

/tftpboot/ClientHostName.info Default location of the ClientHostName.info file.

Related Information
Network Installation Management Concepts in AIX 5L Version 5.2 Network Installation Management Guide
and Reference.

The nim command.

16 Files Reference

clsnmp.conf File

Purpose
Contents are used by the clsnmp command to identify a host on which an SNMP agent is running.

Description
The contents of the clsnmp.conf file used by the clsnmp command are as follows. Each entry identifies:

v a host on which an SNMP agent is running,

v the administrative model used to communicate with the host at that agent,

v and the security parameters to be used in the communication.

An entry in the clsnmp.conf file has the following syntax:
winSnmpName targetAgent admin secName password context secLevel authProto
authKey privProto privKey

where:

winSnmpName
An administrative name by which the winSNMP code used by clsnmp can locate an entry in this
configuration file. This value is to be specified on the -h keyword for the clsnmp command. Valid
values are: A character string of 1 to 32 characters. There is no default value.

targetAgent
Identification of the target SNMP agent. By default, the port at which the agent is to receive
requests is 161. To specify a port other than 161, use the syntax of:
host:port_number (host colon port_number)

Valid values are a host name of 1 to 80 characters. An IP address Port number, if specified, must
be between 1 and 65535 There is no default value.

admin Specifies the administrative model supported by the targetAgent. Valid values are:

snmpv1
Indicates community based security with SNMPv1 message protocol data units.

snmpv2c
Indicates community based security with SNMPv2 message protocol data units.

snmpv3
Indicates user based security (USM) with SNMPv3 message protocol data units.

There is no default value.

secName
Specifies the security name of the principal using this configuration file entry. For user-based
security, this is the userName. The user must be defined at the targetAgent. This field is ignored
unless snmpv3 is specified for the admin keyword. Valid values are: A user name of 1 to 32
characters. There is no default value.

password
Specifies the password to be used in generating the authentication and privacy keys for this user.
If a password is specified, the values of the authKey and privKey fields will be ignored.

Note: the use of password instead of keys in this configuration file is not recommended, as
storing passwords in this file is less secure than using keys.

Chapter 1. System Files 17

This field is ignored unless snmpv3 is specified for the admin keyword. Valid values are: A
password of 8 to 64 characters. A ’-’ (dash) indicates the default. The default value is no
password.

context
Specifies the SNMP contextName to be used at the target agent. Note, the contextName is
needed only at agents that support multiple contexts. Otherwise, the only context supported is the
null context, which is the default value of this keyword. The CS for OS/390 SNMP agent does not
support multiple contexts. This field is ignored unless snmpv3 is specified for the admin keyword.
Valid values are: A contextName of 1 to 40 32 characters. A ’-’ (dash) indicates the default. The
default value is the null context (″″).

secLevel
Specifies the security level to be used in communicating with the target SNMP agent when this
entry is used. This field is ingored unless snmpv3 is specified for the admin keyword.

Note: Privacy will be supported on CS for OS/390 V2R7 only in a separately orderable FMID. It
will not be supported in the base FMID.

Valid values are: noAuthNoPriv or none which indicates no authentication or privacy requested.
AuthNoPriv or auth indicates authentication is requested, but privacy is not requested. AuthPriv
or priv indicates both authentication and privacy are requested (only supported in the additional
encryption product) . A ’-’ (dash) indicates the default. The default value is none (noAuthNoPriv).

authProto
Specifies the SNMP authentication protocol to be used in communicating with the target SNMP
agent when this entry is used. This field is ignored unless snmpv3 is specified for the admin
keyword. Valid values are:

HMAC-MD5
Indicates HMAC mode MD5.

HMAC-SHA
Indicates HMAC mode SHA.

A ’-’ (dash) indicates the default. The default value is no authentication.

authKey
Specifies the SNMP authentication key to be used in communicating with the target SNMP agent
when this entry is used. This key must be the non-localized key. This field is ignored if the
password keyword is used. This field is ignored unless snmpv3 is specified for the admin keyword
and a non-default value is specified for authProto. Valid values are:

v A key of 16 bytes (32 hex digits) when authProto is HMAC-MD5

v A key of 20 bytes (40 hex digits) when authProto is HMAC-SHA

A ’-’ (dash) indicates the default. The default value is no key.

privProto
Specifies the SNMP privacy protocol to be used in communicating with the target SNMP agent
when this entry is used.

Note: Privacy will be supported on CS for OS/390 V2R7 only in a separately orderable FMID. It
will not be supported in the base FMID.

If privacy is not supported, this keyword will be ignored. This field is ignored unless snmpv3 is
specified for the admin keyword. Valid values are:

v DES - for CBC-DES (only supported in the additional encryption product)

A ’-’ (dash) indicates the default. The default value is no privacy.

privKey
Specifies the SNMP privacy key to be used in communicating with the target SNMP agent when

18 Files Reference

this entry is used. This key must be the non-localized key. This field is ignored if the password
keyword is used. If privacy is not supported, this keyword will be ignored. The privacy and
authentication keys are assumed to have been generated using the same authentication protocol
(e.g., both with HMAC-MD5 or both with HMAC-SHA). This field is ignored unless snmpv3 is
specified for the admin keyword and a non-default value is specified for privProto. Valid values
are:

v A key of 16 bytes (32 hex digits) when authProto is HMAC-MD5

v A key of 20 bytes (40 hex digits) when authProto is HMAC-SHA

A ’-’ (dash) indicates the default. The default value is no key.

General Usage Rules
v All parameters for an entry must be contained on one line in the # configuration file.

v A ″-″ (dash) is used to indicate the default value for a keyword.

v Sequence numbers are not allowed on the statements.

v Comments may be included in the file beginning with a pound sign (#) in column 1.

v The secName and password parameters are case-sensitive.

As the clsnmp command supports both issuance of SNMP requests and receipt of SNMP traps, the
entries in the clsnmp.conf file must be defined for both uses. Multiple entries for the same USM user are
allowed within the file. This may be useful to define different security levels for the same user. If multiple
entries for the same USM user are defined, be aware that only the first one in the file can be used for
receiving notifications. If multiple entries for the same USM user are defined and the user will be used for
receiving notifications, the definition with the highest (most stringent) securityLevel should be defined first.
Doing so will allow the user to be used for any level of security equal to or lower (less stringent) than the
securityLevel defined.

Related Information
The snmpdv3, clsnmp, pwtokey, and pwchange commands.

The /etc/clsnmp.conf file.

The snmpdv3.conf file.

Problem Determination for the SNMP Daemon, Trap Processing, Understanding the SNMP Daemon
Logging Facility in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

Understanding the SNMP Daemon in AIX 5L Version 5.2 System Management Guide: Communications
and Networks.

Command (C.*) Files for BNU

Purpose
Contains file transfer directions for the uucico daemon.

Description
Command (C.*) files contain the directions that the Basic Networking Utilities (BNU) uucico daemon
follows when transferring files. The full path name of a command file is a form of the following:

/var/spool/uucp/SystemName/C.SystemNameNxxxx

Chapter 1. System Files 19

The SystemName variable indicates the name of the remote system. The N character represents the
grade of the work. The xxxx notation is the four-digit hexadecimal transfer-sequence number; for example,
C.merlinC3119.

The grade of the work specifies when the file is to be transmitted during a particular connection. The grade
notation characteristics are:

v A single number (0-9) or letter (A-Z, a-z)

v Lower sequence characters cause the file to be transmitted earlier in the connection than do higher
sequence characters. Sequence is established using ASCII order, beginning with 0 and ending with z.

v The number 0 is the highest grade (that is, the lowest character in the sequence), signifying the earliest
transmittal; z is the lowest grade, specifying the latest transmittal.

v The default grade is N.

A command file consists of a single line that includes the following kinds of information in the following
order:

1. An S (send) or R (receive) notation.

Note: A send command file is created by the uucp or uuto commands; a receive command file is
created by the uux command.

2. The full path name of the source file being transferred. A receive command file does not include this
entry.

3. The full path name of the destination file, or a path name preceded by ~user, where user is a login
name on the specified system. Here, the ~ (tilde) is shorthand for the name of the user’s home
directory.

4. The sender’s login name.

5. A list of the options, if any, included with the uucp, uuto, or uux command.

6. The name of the data file associated with the command file in the spooling directory. This field must
contain an entry. If one of the data-transfer commands (such as the uucp command with the default -c
flag) does not create a data file, the BNU program instead creates a placeholder with the name D.0 for
send files or the name dummy for receive files.

7. The source file permissions code, specified as a three-digit octal number (for example, 777).

8. The login name of the user on the remote system who is to be notified when the transfer is complete.

Examples
The following are two examples of using the command (C.*) files.

Two Send Command Files
1. The send command file /var/spool/uucp/venus/C.heraN1133, created with the uucp command,

contains the following fields:
S /home/amy/f1 /var/spool/uucppublic/f2 amy -dC D.herale73655 777 lgh

where:

a. S denotes that the uucp command is sending the file.

b. The full path name of the source file is /home/amy/f1.

c. The full path name of the destination is /var/spool/uucppublic/f2, where /var/spool/uucppublic
is the name of the BNU public spooling directory on the remote computer and f2 is the new name
of the file.

Note: The destination name may be abbreviated as ~/f2. Here, the ~ (tilde) is a shorthand way of
designating the public directory.

d. The person sending the file is amy.

20 Files Reference

e. The sender entered the uucp command with the -C flag, specifying that the uucp command
program should transfer the file to the local spooling directory and create a data file for it. (The -d
flag, which specifies that the command should create any intermediate directories needed to copy
the source file to the destination, is a default.)

f. The name of the data (D.*) file is D.herale73655, which the uucp command assigns.

g. The octal permissions code is 777.

h. The lgh login name of the user on system hera, who is to be notified of the file arrival.

2. The /var/spool/uucp/hera/C.zeusN3130 send command file, produced by the uuto command, is as
follows:
S /home/amy/out ~/receive/msg/zeus amy -dcn D.0 777 msg

The S denotes that the /home/amy/out source file was sent to the receive/msg subdirectory in the
public spooling directory on system zeus by user amy.

Note: The uuto command creates the receive/msg directory if it does not already exist.

The uuto command used the default flags -d (create directories), -c (transfer directly, no spooling
directory or data file), and -n (notify recipient). The D.0 notation is a placeholder, 777 is the permissions
code, and msg is the recipient.

Receive Command File
The format of a receive command file is somewhat different from that of a send command file. When files
required to run a specified command on a remote system are not present on that system, the uux
command creates a receive command file.

For example, the following command:
uux - "diff /home/amy/out hera!/home/amy/out2 > ~/DF"

produces the /var/spool/uucp/zeus/C.heraR1e94 receive command file.

Note: The command in this example invokes the uux command to run a diff command on the local
system, comparing file /home/amy/out with file /home/amy/out2, which is stored on the remote
system hera. The output of the comparison is placed in the DF file in the public directory on the
local system.

The actual receive command file looks like this:
R /home/amy/out2 D.hera1e954fd amy - dummy 0666 amy

The R denotes a receive file. The uucico daemon, called by the uux command, gets the /home/amy/out2
file from system hera and places it in a data file called D.hera1e954fd for the transfer. Once the files are
transferred, the uuxqt daemon executes the command on the specified system.

User amy issued the uux command with the - (minus sign) flag, which makes the standard input to the uux
command the standard input to the actual command string. No data file was created in the local spooling
directory, so the BNU program uses dummy as a placeholder. The permissions code is 666 (the BNU
program prefixes the three-digit octal code with a 0), and user amy is to be notified when the command has
finished executing.

Files

/etc/uucp/Permissions Describes access permissions for remote
systems.

/etc/uucp/Systems Describes accessible remote systems.

Chapter 1. System Files 21

/etc/uucp/Sysfiles file Specifies possible alternative files for
/etc/uucp/Systems.

/var/spool/uucp/SystemName/D.* Contains data to be transferred.
/var/spool/uucp/SystemName directory Contains BNU command, data, and execute

files.
/var/spool/uucppublic/* directory Contains transferred files.

Related Information
The uucp command, uudemon.cleanu command, uupick command, uuto command, uux command.

The cron daemon, uucico daemon, uusched daemon, uuxqt daemon.

BNU File and Directory Structure, BNU Daemons, BNU Maintenance Commands in AIX 5L Version 5.2
System Management Guide: Communications and Networks.

compver File

Purpose
Describes the format of a compatible versions file.

Description
The compver file is an ASCII file used to specify previous versions of the associated package which are
upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with which the current version
is backward compatible.

Since some packages may require installation of a specific version of another software package,
compatibility information is extremely crucial. Consider, for example, a package called ″A″ which requires
version ″1.0″ of application ″B″ as a prerequisite for installation. If the customer installing ″A″ has a newer
version of ″B″ (1.3), the compver file for ″B″ must indicate that ″1.3″ is compatible with version ″1.0″ in
order for the customer to install package ″A.″

The comparison of the version string disregards white space and tabs. It is performed on a word-by-word
basis. Thus Version 1.3 and Version 1.3 would be considered the same.

Examples
An example of a compver file is shown below.

Version 1.3
Version 1.0

Related Information
The depend file format.

config File

Purpose
Contains audit system configuration information.

22 Files Reference

Description
The /etc/security/audit/config file is an ASCII stanza file that contains audit system configuration
information. This file contains five stanzas: start, bin, stream, classes, and users.

start Stanza
The start stanza contains the attributes used by the audit start command to initialize the audit system.
The format follows:
start:
binmode = off | on | panic
streammode = off | on

The attributes are defined as follows:

Attribute Definition
binmode Controls whether bin collection, as defined in the bin stanza, is used.

off Bin collection is not used. This is the default value.

on Bin collection is used. This value starts the auditbin daemon.

panic Bin collection is used. This value starts the auditbin daemon. If an audit record cannot
be written to a bin, the kernel shuts down the operating system. This mode should be
specified for conditions during which the system must be working properly.

streammode Controls whether stream data collection, as defined in the file specified in the stream stanza
(normally the /etc/security/audit/streamcmds file), is configured at the start up of the audit
system.

off Stream data collection is not enabled. This is the default value.

on Stream data collection is enabled.

Note: If neither collection mode is defined or if both modes are in the off state, only subsystem
configuration is done.

bin Stanza
The bin stanza contains the attributes used by the auditbin daemon to set up bin mode auditing. The
format follows:
bin:

trail = PathName
bin1 = PathName
bin2 = PathName
binsize = DecimalString
cmds = PathName
bytethreshold = DecimalString
eventthreshold = DecimalString
freespace = DecimalString

Bin mode parameters are defined as follows:

Parameter Definition
trail Specifies the path name of the audit trail file. When this is defined, the auditbin daemon

can substitute the path name of the audit trail file for the $trail string in the backend
commands that it calls.

bin1 Specifies the path name that the auditbin daemon uses for its primary bin file. If the $bin
string is the parameter value, the auditbin daemon substitutes the name of the current
bin file.

bin2 Specifies the path name that the auditbin daemon uses for its secondary bin file. If the
$bin string is the parameter value, the auditbin daemon substitutes the name of the
current bin file.

Chapter 1. System Files 23

Parameter Definition
binsize Specifies a decimal integer string that defines the threshold size (in bytes) of each audit

bin. If the binsize parameter is set to 0, no bin switching will occur, and all bin collection
will go to bin1.

cmds Specifies the path name of the file that contains the audit backend commands called by
the auditbin daemon. The file contains command lines, each composed of one or more
backend commands with input and output that can be piped together or redirected. See
the description of the /etc/security/audit/bincmds file for more information.

bytethreshold Specifies the decimal integer string that defines the approximate number of bytes written
to an audit bin before a synchronous update is performed. If the bytethreshold is set to
0, this function is disabled. Both bytethreshold and eventthreshold can be used
simultaneously.

eventthreshold Specifies a decimal integer string that defines the maximum number of events written to
an audit bin before a synchronous update is performed. If the eventthreshold is set to 0,
this function is disabled. Both eventthreshold and bytethreshold can be used
simultaneously.

freespace Specifies a decimal integer string that defines the recommended number of 512-byte free
blocks in the file system where the audit trail file is located. If the free space of file
system is below this value, audit generates a warning message throught the syslog
subsystem every time that the audit bin is switched. The default value is 65536 blocks
(64 megabytes). The maximum possible value is 4194303 (about 2GB of free disk
space). If this value is set to 0, no warning message is generated.

stream Stanza
The stream stanza contains the attributes that the audit start command uses to set up initial stream
mode auditing. The format follows:
cmds = PathName

The PathName parameter identifies the file that contains the stream commands that are executed at the
initialization of the audit system. These commands can use shell piping and redirection, but no substitution
of path names is performed on $trail or $bin strings.

classes Stanza

The classes stanza defines audit classes (sets of audit events) to the system.

Each audit class name must be less than 16 characters and be unique on the system. Each class
definition must be contained in a single line, with a new line acting as a delimiter between classes. The
system supports up to 32 audit classes, with ALL as the last class. The audit events in the class must be
defined in the /etc/security/audit/events file.
classes:

auditclass = auditevent, ...auditevent

users Stanza

The users stanza defines audit classes (sets of events) for each user. The classes are defined to the
operating system kernel.

The format is as follows:
users:

UserName = auditclass, ... auditclass

Each UserName attribute must be the login name of a system user or the string default, and each
auditclass parameter should be defined in the classes stanza.

To establish the audit activities for a user, use the chuser command with the auditclasses attribute.

24 Files Reference

Security
Access Control: This file should grant read (r) access to the root user and members of the audit group and
write (w) access only to the root user.

Event Information
AUD_CONFIG_WR file name

Examples
1. To define audit classes, add a line to the classes stanza of the /etc/security/audit/config file for each

set of events that you want to assign to a class:
classes:

general = USER_SU,PASSWORD_Change,FILE_Unlink,
FILE_Link,FILE_Remove

system = USER_Change,GROUP_Change,USER_Create,
GROUP_Create

init = USER_Login, USER_Logout

These specific audit events and audit classes are described in ″Setting Up Auditing″ in AIX 5L Version
5.2 System Management Guide: Operating System and Devices.

2. To establish the audit activities for each user, use the chuser command with the auditclasses attribute
for each user for whom you want to define audit classes (sets of audit events):
chuser "auditclasses=general,init,system" dave
chuser "auditclasses=general,init" mary

These chuser commands create the following lines in the users stanza of the
/etc/security/audit/config file:
users:
dave=general,init,system
mary=general,init

This configuration includes dave, the administrator of the system, and mary, an employee who updates
information.

3. To enable the auditing system, turn on bin data collection, and turn off initial stream data collection,
add the following to the start stanza of the /etc/security/audit/config file:
start:

binmode = on
streammode = off

4. To enable the auditbin daemon to set up bin collection, add attributes to the bin stanza of the
/etc/security/audit/config file:
bin:

trail = /audit/trail
bin1 = /audit/bin1
bin2 = /audit/bin2
binsize = 25000
cmds = /etc/security/audit/bincmds

The attribute values in the preceding stanza enable the audit system to collect bin files of data and
store the records in a long-term audit trail.

5. To enable the auditbin daemon to set up stream collection, add lines to the start and stream stanzas
of the /etc/security/audit/config file:
start:

streammode = on
stream:

cmds = /etc/security/audit/streamcmds

Chapter 1. System Files 25

Files

/etc/security/audit/config Specifies the path to the file.
/etc/security/audit/objects Contains audit events for audited objects.
/etc/security/audit/events Contains the audit events of the system.
/etc/security/audit/bincmds Contains auditbin backend commands.
/etc/security/audit/streamcmds Contains auditstream commands.

Related Information
The audit command, auditbin daemon, chuser command.

The auditproc subroutine.

Setting Up Auditing in AIX 5L Version 5.2 System Management Guide: Operating System and Devices.

Security Administration, Auditing Overview in AIX 5L Version 5.2 System Management Concepts:
Operating System and Devices.

consdef File

Purpose
Enables asynchronous tty devices to be console candidates at system boot when no console device is
defined or available.

Description
The /etc/consdef file enables tty devices such as terminals and modems to be chosen as the console
device. When the console device is undefined, the system displays a message on all natively attached
graphics displays and the tty on native serial port S1. The console device is undefined when:

v The system is first installed and started.

v The console definition has been deleted from the ODM database.

v The console device has been physically removed from the system.

If any of these conditions occur, the system displays the following message:
******* Please define the System Console. *******
Type a Number and press <Enter> to use this terminal as the system console.

For high function terminals (HFTs)graphics displays, the Number variable refers to a function key. For
asynchronous ttys, this variable is a number.

The selected item becomes the system console. To choose a non-default tty device as the system
console, you must first configure the /etc/consdef file. This file contains stanzas that define various
console attributes. Each line, or entry, in a stanza must take the form of Attribute=Value, and the line must
not exceed 80 characters. The following attributes must be defined for each terminal device:

Attribute Definition
connection Identifies the type of tty interface. Valid values are rs232 and rs422.
location Specifies the location code of the terminal. Location codes of 00-00-S1-00 or 00-00-S2-00

indicate that the tty device is attached to the S1 or S2 serial port, respectively. Any other location
code indicates the tty device is attached to an adapter card other than the standard I/O planar.
You can display valid location values with the lsdev -C | grep tty command.

26 Files Reference

You can also specify other terminal attributes such as speed, bpc, stops, parity, and term. If you do not
define these attributes, the system uses the default values stored in the ODM database. The consdef file
contains a sample stanza for the S1 port. To enable this stanza, or parts of it, remove the comment
delimiters (#) from each applicable line.

Examples
To display the console selection message on the ttys attached to the S1 and S2 ports:
ALTTTY:

connection=rs232
location=00-00-S1-00
speed=9600
bpc=8
stops=1
parity=none
term=ibm3163

ALTTTY:
connection=rs232
location=00-00-S2-00
speed=9600
bpc=8
stops=1
parity=none
term=ibm3163

Note: For backward compatibility, the ALTTTY: keyword is not required for the first entry.

Files

/etc/consdef Specifies the path of the consdef file.
/dev/console Provides access to the system console.

Related Information
The chcons command.

The lsdev command.

The console special file.

Location Codes in AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

copyright File

Purpose
Describes the format of a copyright information file.

Description
The copyright file is an ASCII file used to provide a copyright notice for a package. The text may be in
any format. The full file contents (including comment lines) is displayed on the terminal at the time of
package installation.

Chapter 1. System Files 27

Data (D.*) Files for BNU

Purpose
Contain data to be sent to remote systems.

Description
Data (D.*) files contain the data to be sent to remote systems by the Basic Networking Utilities (BNU)
uucico daemon. The full path name of a data file is a form of the following:

/var/spool/uucp/SystemName/D.SystemNamexxxx###

where the SystemName directory and the SystemName portion of the file name indicate the name of the
remote system. The xxxx### notation is the hexadecimal sequence number of the command (C.*) file
associated with that data file, for example: D.venus471afd8.

After a set period of time (specified by the uusched daemon), the uucico daemon transfers the data file
to the designated system. It places the original data file in a subdirectory of the BNU spooling directory
named /var/spool/uucp/SystemName, where the SystemName directory is named for the computer that is
transmitting the file, and creates a temporary (TM.*) file to hold the original data file.

After receiving the entire file, the BNU program takes one of the three following actions:

v If the file was sent with the uucp command and there were no transfer problems, the program
immediately renames the TM.* file with the appropriate data file name, such as D.venus471afd8, and
sends it to the specified destination.

v If the file was sent with the uuto command, the BNU program also renames the temporary data file with
the appropriate D.* file name. The program then places the data file in the /var/spool/uucppublic
public directory, where the user receives the data file and handles it with one of the uupick command
options.

v If there were transfer problems (such as a failed login or an unavailable device), the temporary data file
remains in the spooling subdirectory. The uudemon.cleanu command, a shell procedure, removes
these files automatically at specified intervals. They can also be removed manually.

Files

/etc/uucp/Systems Describes accessible remote systems.
/var/spool/uucp/SystemName directory Contains BNU command, data, and execute

files.
/var/spool/uucp/SystemName/C.* Contains instructions for file transfers.
/var/spool/uucp/SystemName/TM.* Stores data files temporarily after they have

been transferred to a remote system.
/var/spool/uucppublic/* directory Contains files that the BNU program has

transferred.

Related Information
The uucp command, uudemon.cleanu command, uupick command, uuto command, uux command.

The uucico daemon, uusched daemon, uuxqt daemon.

BNU File and Directory Structure, BNU Daemons, BNU Maintenance Commands in AIX 5L Version 5.2
System Management Guide: Communications and Networks.

28 Files Reference

/dev/hty File

Purpose
Defines the Network Terminal Accelerator adapter tty interface.

Description
The /dev/hty* device files define, for the host computer, the interface-to-host adapter communication
channels. For each I/O device connected to the host computer through a host adapter, there must be a
/dev/hty* device file created to allow communication between the host computer and the I/O device.

To allow for future expansion, there may be more /dev/hty* files than actual physical devices connected
through the host adapter.

The hty ports are functionally equivalent to /dev/tty* device files. The minor number corresponds to the
channel number, as defined in the hty_config file.

Files

/dev/hty Specifies the path to the file.
/dev/rhp* Adapter raw device.

Related Information
The /dev/rhp file.

/dev/rhp File

Purpose
Defines the Network Terminal Accelerator adapter raw interface.

Description
The /dev/rhp* device files define, for the host computer, the interface to the host adapters. For each host
adapter installed in the host computer, there must be a /dev/rhp* device file created in order to allow
communication between the host computer and the host adapter board.

The /dev/rhp* device file corresponding to a respective host adapter is used as an argument in many of
the utility programs.

Files

/dev/rhp Specifies the path to the file
/dev/hty Defines the Network Terminal Accelerator adapter tty interface.

Related Information
The /dev/hty file.

Chapter 1. System Files 29

DHCP Client Configuration File

Purpose
Default configuration information for the Dynamic Host Configuration Protocol (DHCP) client program
(dhcpcd).

Description
The dhcpcd configuration file contains entries for logging information, requested options, interfaces to
configure, and other items.

Following are the formats for the data in the configuration file.

Comment line
The # character means that there is a comment from that point to the end of the line.

numLogFiles n
Specifies the number of log files. If 0 is specified, no log file will be maintained and no log
message is displayed anywhere. n is the maximum number of log files maintained as the size of
the most recent log file reaches its maximum size and a new log file is created.

logFileSize n
Maximum size of a log file. When the size of the most recent log file reaches this value, it is
renamed and a new log file is created. n is measured in kilobytes(KB).

logFileName filename
Name and path of the most recent log file. Less recent log files have the number 1 to (n - 1)
appended to their names; the larger the number, the older the file.

logItem <option name>
One item that will be logged. Multiple of these lines are allowed. This allows for the specified
logging level to be turned on. The following are option names:

SYSERR
System error, at the interface to the platform

OBJERR
Object error, in between objects in the process

PROTERR
Protocol error, between client and server

WARNING
Warning, worth attention from the user

EVENT
Event occurred to the process

ACTION
Action taken by the process

INFO Information that might be useful

ACNTING
Who was served, and when

TRACE
Code flow, for debugging.

interface <ifName>
The interface to configure DHCP on. This may be the interface that is to be configured. Multiples
of these are allowed. There is a special entry, any. This tells the DHCP client to configure the first
one it finds and completes successfully. If the any option is used, there should not be any other

30 Files Reference

interface specified. The interface statement may be immediately followed by a pair of curly braces,
in which the options requested for this interface can be specified. Options requested within
interface curly braces apply only to this interface. See DHCP Server Configuration File for a list of
options and formats.

clientid <MAC | HOSTNAME>
Specifies the client id to use in all communication with the server. MAC denotes that the hardware
address for the particular interface should be used as the client id. HOSTNAME denotes that the
domain host name should be used as the client id. The default is MAC.

sniffer <exec string>
Specifies a string enclosed in quotes, indicating a program to execute to detect hardware
failure/recovery for an interface. The dhcp client will look for signal 23(SIGIO) to indicate that the
network interface is up and signal 16(SIGURG) to indicate that the network interface is down.

option <code> [<value>] [exec <string>]
Specifies an option requested by this client. Its scope is determined by whether it is inside a set of
curly braces for a particular interface, or if it is outside all curly braces. If outside, it applies to all
interfaces. code is the option code of the option requested. value is the requested value for that
option. This value is passed to the server with the option. The value is not required. The keyword
exec denotes a string following which should be executed if this option is returned by the server.
This string is expected to be an executable shell script or program. An ″%s″ may be included in
the string. If present, the value returned by the server will be provided in ascii.

vendor Specifies the special syntax for the specification of the vendor extensions field. It is followed by a
set of curly braces. Inside the curly braces, the options and values for the vendor extensions field
are specified. The exec string on an option inside the vendor extensions options is not valid. It is
ignored.

reject <code>
Specifies that if this option code is returned by the server, this option should be ignored by the
client. Its value should not be used.

otherOptions <accept | reject>
Specifies how all other options should be handled by the client. This refers to any options not
specifically requested with an ″option″ statement or rejected with a ″reject″ statement. The default
is that all options are accepted.

updateDNS <string>
A string enclosed in quotes, indicating a program to execute to update the DNS server with the
new inverse mapping for the IP address and names served by dhcp. This string should include
four %s’s to indicate the placement of the following information from the dhcp client:

hostname
Value of option 12. The value returned by the dhcp server is used, if one is supplied. Else,
if the client specified a value in this file, the client-requested value is used. If neither the
client specified a requested hostname nor the server supplied one, this exec string will not
be executed.

domainname
Value of option 15. The value returned by the dhcp server is used, if one is supplied. Else,
if the client specified a value in this file, the client-requested value is used. If neither the
client specified a requested hostname nor the server supplied one, a null string (″ ″) will
be supplied by dhcp. Therefore, this value is optional.

Ip Address
IP address leased to this client by the server. The string is supplied in dotted notation, for
example, 9.2.23.43.

Chapter 1. System Files 31

leasetime
Lease time granted by the server. This string is a decimal number representing the
number of seconds of the lease.

These values are output by dhcp in this order:
hostname domainname Ip Address leasetime

A script /usr/sbin/dhcpaction has been provided with this function, as well as actions to help NIM
interact with DHCP clients. Run the script as follows:
/usr/sbin/dhcpaction hostname domainname ipaddress
leasetime < A | PTR | BOTH | NONE > NONIM

The first four parameters are what will be used to update the DNS server. The fifth parameter tells
dhcpaction to update the A record, the PTR record, or both, or none. The options are A, PTR,
BOTH, NONE. The sixth parameter is used to tell servers that NIM is being used, and processing
needs to be done when a client changes address. The options for this are NIM and NONIM. On
clients, this must be set to NONIM.

An example follows:
updateDNS "/usr/sbin/dhcpaction %s %s %s %s PTR
NONIM 2>&1 >>/tmp/updns.out"

This file is part of TCP/IP in Network Support Facilities in Base Operating System (BOS) Runtime.

Example
This example tells the dhcpcd daemon to use log files of a maximum of 100Kb in size and at most four of
them.

The base name for the log files is /usr/tmp/dhcpsd.log. The user also would like to only log four of the
nine possible log entry types. The user also specified a string to use for updating the Dynamic Domain
Name Server. The user also specified that the clientid to the server should be based on the
mac-address of the interface adapter that is trying to be configured. The user also specified that all options
should be accepted and instantiated (otheroptions accept), except for option 9 (reject 9).

The options the user specified were the domain (option 15), but since this option is global to the interface
keywords, it applies to both interfaces.

Inside each interface, the hostname is specified with option 12.
numLogFiles 4
logFileSize 100
logFileName /usr/tmp/dhcpsd.log
logItem SYSERR
logItem OBJERR
logItem PROTERR
logItem TRACE

updateDNS "nsupdate -h%s -d%s -i% %s"

clientid MAC
otheroptions accept
reject 9

option 15 "austin.ibm.com"

interface en0
{

option 12 "e-chisos"
}

32 Files Reference

interface tr0
{

option 12 "t-chisos"
}

Related Information
The dhcpcd Daemon

The DHCP Server Configuration File

TCP/IP Address and Parameter Assignment - Dynamic Host Configuration Protocol (DHCP) in AIX 5L
Version 5.2 System Management Guide: Communications and Networks.

Problems with Dynamic Host Configuration Protocol (DHCP) in AIX 5L Version 5.2 System Management
Guide: Communications and Networks.

DHCP Server Configuration File

Purpose
Defines default configuration information for the Dynamic Host Configuration Protocol (DHCP) server
program (dhcpsd).

Description
The dhcpsd configuration file contains entries for logging information, options to return, machines to
configure, and other items.

Following are the formats for the data in the configuration file.

Comment line
The # character means that there is a comment from that point to the end of the line.

″Name of Resource″ ″<Keyword> <value> <value> ...″
The ## characters denote a named resource. This is used by the dhcpsconf program to allow the
user to create specific resources. The data is stored in the server file so that it can be read in with
the configuration file and displayed as the name and not the value in the viewing window of
dhcpsconf.

The format of the ## line is a quoted string that is the name of the resource followed by a
double-quoted string representing a valid possible line for a configuration file. The second quoted
string should be syntactically correct for a line in a DHCP server configuration file. The keyword
can only be option, network, subnet, class, and client.

″DHCP Server″ ″Any line from a server file″
The ### characters denote a server configuration file. This allows for multiple server files to be
saved in one file. The dhcpsconf program uses this to present multiple server datasets in a
master. This would be useful, if you were to define a network with 10 servers and wanted to save
all the server information in one file and maintain a default server. The default server would go into
the master file, and the servers would be saved in the master file with the ### characters. The
dhcpsconf program has a function that allows you to create a specific server configuration out of
the master file.

numLogFiles n
Specifies the number of log files. If 0 is specified, no log file will be maintained and no log
message is displayed anywhere. n is the maximum number of log files maintained as the size of
the most recent log file reaches its maximum size and a new log file is created.

Chapter 1. System Files 33

logFileSize n
Maximum size of a log file. When the size of the most recent log file reaches this value, it is
renamed and a new log file is created. n is measured in kilobytes(KB).

logFileName filename
Name and path of the most recent log file. Less recent log files have the number 1 to (n - 1)
appended to their names; the larger the number, the older the file.

logItem <option name>
One item that will be logged. Multiple of these lines are allowed. This allows for the specified
logging level to be turned on. The following are option names:

SYSERR
System error, at the interface to the platform

OBJERR
Object error, in between objects in the process

PROTERR
Protocol error, between client and server

WARNING
Warning, worth attention from the user

EVENT
Event occurred to the process

ACTION
Action taken by the process

INFO Information that might be useful

ACNTING
Who was served, and when

TRACE
Code flow, for debugging.

clientrecorddb <filename>
This is the path to a file to substitute for /etc/dhcps.cr. Configurations that support a large number
of addresses should set clientrecorddb and addressrecorddb database files in a file system with
substantial free space.

addressrecorddb <filename>
This is the path to a file to substitute for /etc/dhcps.ar.

network <Network address> [<Subnet Mask>|<range>]
Specifies one network administered by this server. Network address is the address of this network.
This address is specified in the dotted notation (for example, 9.0.0.0, 128.81.0.0, or 192.81.20.0).
Full four-byte value should be specified (for example, 9, 128.81, or 192.81.20 is not legal).

Network address may optionally be followed by the subnet mask, a range, or nothing.

If a subnet mask is specified, one or more subnet statements should appear in the succeeding
lines within a pair of curly braces. The subnet mask may be specified either in the dotted notation
(for example, 255.255.255.128) or as a number indicating the number of 1 bits in the mask (for
example, 25, which is equivalent to 255.255.255.128). The means that a network is not a
collection of all subnet for a network, but all subnets with the same length subnet for that network
″prefix.″

If a range is specified, it determines, within the network, the range of hosts that are administered
by this server, and it implies that there is no subnetting. A range is specified by the host
addresses, in the dotted notation, at the lower end and the higher end of the range, respectively,

34 Files Reference

separated by a hyphen with no spaces before or after it (for example, 192.81.20.1-129.81.20.128).
A range must encompass all addresses to be administered because multiple network statements
to define the same network are not allowed. Use the ″client″ statement to exclude any addresses
in the range that the server should not administer.

If nothing is specified after Network address, all hosts in that network are administered by this
server.

A network statement may be immediately followed by a pair of curly braces, in which parameters
(for example, options) particular to this network can be specified.

subnet <Subnet address> [<range>]
One or more subnet statements are enclosed by a pair of curly braces that immediately follows a
network statement with subnet mask. A subnet statement specifies one subnet within that network.

Subnet address is the address of this subnet. This address is specified in the dotted notation (for
example, 9.17.32.0 or 128.81.22.0).

Subnet address may be followed by a range or nothing.

If a range is specified, it determines, within the subnet, the range of hosts that are administered by
this server. A range is specified by the host addresses, in the dotted notation, at the lower end and
the higher end of the range, respectively, separated by a hyphen with no spaces before or after it.
A range must encompass all addresses to be administered since multiple subnet statements to
define the same subnet are not allowed. Use the ″client″ statement to exclude any addresses in
the range which the server should not administer.

If nothing is specified after Subnet address, all hosts in that subnet are administered by this
server.

The ranges in two servers administering the same subnet cannot overlap. Otherwise, two hosts
may be assigned the same address.

A subnet statement may be immediately followed by a pair of curly braces, in which parameters
(for example, options) particular to this subnet can be specified.

class <class_name> [<range>]
Specifies a class. The class name is a simple ascii string. A class’s scope is determined by the
curly braces in which it is enclosed. If it is outside all curly braces, then its scope is the entire file.

A class name may be followed by a range or nothing. If a range of Ip Addresses is specified, then
only addresses in that range will be assigned to clients who request this class. Note that clients
who request this class, for which the subnet does not match the range, will not be processed. Bad
addresses will not be given out by the server. If an address range is not specified, then addresses
will be given to clients using the usual rules of assignment (by network clauses).

The class statement may be immediately followed by a pair of curly braces, in which the options
particular to this class can be specified. A class may be defined within the curly braces of a
subnet, but a subnet may not be defined within the curly braces of a class.

Options set up in the network or subnet containing a class definition will also apply to the class.

client <id_type> <id_value> <address>
Specifies a definition of client/address processing.

<id_type> is 0 for a string, otherwise it is one of the hardware types defined in RFC 1340 (for
example, 6 for IEEE 802 networks.)

<id_value> is a character string for <id_type>=0. Typically, this would be a domain name. For a
non-zero <id_type>, the <id_value> is a hexadecimal string representing the hardware address of
the client.

Note: An <id_type> of 0 and an <id_value> of 0 indicates that the <address> specified should not
be distributed by this server.

Chapter 1. System Files 35

The <address> can be the string ″none″ to indicate that the client with <id_type> and <id_value>
should not be serviced by this server. The <address> can be the string ″any″ to indicate that the
server should choose an appropriate address for this client. The <address> can be an internet
address in dotted notation (for example, 9.2.15.82). This will be the Ip address given to the
particular client specified by <id_type> and <id_value>. As mentioned above, an <id_type> of 0
and an <id_value> of 0 indicates that the <address> specified should not be distributed by this
server.

Note: If a client is configured in this way on the server, then any class information requested by
the client will be ignored. No class-specific information will be processed for these clients.

The client statement may be immediately followed by a pair of curly braces, in which the options
particular to this client can be specified.

A client statement with an address specified that is not part of the address pool specified in a
network/subnet elsewhere in this file must contain the subnet mask option(1). For all other clients,
the server will compute the subnet mask option to send the client based on the network/subnet
definitions.

Note: All clients inherit all globally defined options. A client defined in a network scope will inherit
options defined for that network. A client defined in a subnet scope, will inherit options
defined for that subnet and encompassing network.

A class definition inside a client scope is not allowed.

The client statement may be used to configure bootp clients. To do this, specify all the bootp
options using the option syntax defined below. In addition, specify an infinite lease time in the
client scope with ″option 51 0xffffffff″. DHCP options will not be served to the bootp client.

option <code> <value>
This parameter specifies the value of an option defined in ″DHCP Options and BOOTP Vendor
Extensions″ (RFC 1533) and supported by this server.

An option is specified by the ″option″ keyword followed by the option code of this option and its
data field, in a single line. One or more of this parameter may be specified.

The scope within which an option applies is delimited by a pair of curly braces ({, }) surrounding
this parameter.

Two or more options with the same option code may be specified. Their data fields are
concatenated in a single option in a packet generated by the server if the options have the same
scope or one’s scope includes that of another.

Some of the defined options do not need to be specified by this parameter. These options are
either mandated by the protocol or this implementation to be present in proper packets, or only
generated by a client. These options are:

Table 1.

Option Code Name

0 Pad Option

255 End Option

1 Subnet Mask

50 Request IP Address

51 IP Address Lease Time

52 Option Overload

53 DHCP Message Type

36 Files Reference

Table 1. (continued)

Option Code Name

54 Server Identifier

55 Parameter Request List

57 Maximum DHCP Message Size

58 Renewal (T1) Time Value

59 Rebinding (T2) Time Value

60 Class identifier of client

61 Client identifier

The other options may be specified by this parameter.

When specifying an option, its data field takes one of the following formats:

IP Address
xxx.xxx.xxx.xxx

IP Addresses
[xxx.xxx.xxx.xxx ...]

IP Address Pair
[ip address:ip address]

IP Address Pairs
[[ip address:ip address] ...]

Boolean
[0, 1]

Byte [-128, 127]

Unsigned Byte
[0, 255]

Unsigned Bytes
[[0, 255] [0, 255] ...]

Short [-32768, 32767]

Unsigned Short
[0, 65535]

Unsigned Shorts
[[0, 65535] [0, 65536]

Long [-2147483648, 2147483647]

Unsigned Long
[0, 4294967295]

String ″Value Here″

Note: All IP addresses are specified in dotted-decimal form.

Each of the defined options is listed below by its code and name, followed by the format of its data
field. These are specified in latest Vendor Extensions RFC.

Code Name Data Field Format and Notes

0 Pad Option No need to specify

Chapter 1. System Files 37

Code Name Data Field Format and Notes

255 End Option No need to specify

1 Subnet Mask Unsigned Long

2 Time Offset Long

3 Router Option IP Addresses

4 Timer Server Option IP Addresses

5 Name Server Option IP Addresses

6 Domain Name Server Option IP Addresses

7 Log Server Option IP Addresses

8 Cookie Server Option IP Addresses

9 LPR Server Option IP Addresses

10 Impress Server Option IP Addresses

11 Resource Location Server Option IP Addresses

12 Host Name Option String

13 Boot File Size Option Unsigned Short

14 Merit Dump File String

15 Domain Name String

16 Swap Server IP Address

17 Root Path String

18 Extensions Path String

IP Layer Parameters per Host

Code Name Data Field Format and Notes

19 IP Forwarding Enable/Disable Option Boolean

20 Non-local Source Routing
Enable/Disable Option

Boolean

21 Policy Filter Option IP Address Pairs

22 Maximum Datagram Reassembly
Size

Unsigned Short

23 Default IP Time-to-live Unsigned Byte

24 Path MTU Aging Timeout Option Unsigned Long

25 Path MTU Plateau Table Unsigned Shorts

IP Layer Parameters per Interface

Code Name Data Field Format and Notes

26 Interface MTU Option Unsigned Short

27 All Subnets are Local Option Boolean

28 Broadcast Address Option IP Address

29 Perform Mask Discovery Option Boolean

30 Mask Supplier Option Boolean

31 Perform Router Discovery Option Boolean

32 Router Solicitation Address Option IP Address

38 Files Reference

Code Name Data Field Format and Notes

33 Static Route Option IP Address Pairs

Link Layer Parameters per Interface

Code Name Data Field Format and Notes

34 Trailer Encapsulation Option Boolean

35 ARP Cache Timeout Option Unsigned Long

36 Ethernet Encapsulation Option Boolean

TCP Parameters

Code Name Data Field Format and Notes

37 TCP Default TTL Option Unsigned Byte

38 TCP Keepalive Interval Option Unsigned Long

39 TCP Keepalive Garbage Option Boolean

Application and Service Parameters

Code Name Data Field Format and Notes

40 NIS Domain Option String

41 NIS Option IP Addresses

42 Network Time Protocol Servers
Option

IP Addresses

43 Vendor Specific Information Unsigned Bytes

44 NetBIOS over TCP/IP Name Server
Option

IP Addresses

45 NetBIOS over TCP/IP Datagram
Distribution Server

IP Addresses

46 NetBIOS over TCP/IP Node Type
Option

Unsigned Byte

47 NetBIOS over TCP/IP Scope Option Unsigned Bytes

48 X Window System Font Server Option IP Addresses

49 X Window System Display Manager
Option

IP Addresses

DHCP Extensions

Code Name Data Field Format and Notes

50 Request IP Address No need to specify

51 IP Address Lease Time Unsigned Long

52 Option Overload No need to specify

53 DHCP Message Type No need to specify

54 Server Identifier No need to specify

55 Parameter Request List No need to specify

56 Message String

Chapter 1. System Files 39

Code Name Data Field Format and Notes

57 Maximum DHCP Message Size No need to specify

58 Renewal (T1) Time Value No need to specify

59 Rebinding (T2) Time Value No need to specify

60 Class Identifier of Client Generated by client

61 Client Identifier Generated by client

BOOTP Specific Options

Code Name Data Field Format and Notes

sa Server Address for the BOOTP client
to use

IP Address

bf Bootfile for the BOOTP client to use String

hd Home Directory for the BOOTP client
to search for the bootfile

String

Following is an example of BOOTP specific options:
option sa 1.1.2.2
option hd "/vikings/native"
option bf "bootfile.asdg"

Other option numbers may be specified, up to a maximum of 255. The options not listed above must be
specified with the unsigned byte list type. Following is an example:
option 178 01 34 53 # Means place tag 178 with value
0x013553

leaseTimeDefault <amount>[<unit>]
Specifies the default lease duration for the leases issued by this server. In the absence of any
more specific lease duration (for example, lease duration for specific client(s) or class of clients),
the lease duration specified by this parameter takes effect.

The amount is specified by a decimal number. The unit is one of the following (plural is accepted):

v year

v month

v week

v day

v hour

v minute (default if unit is absent)

v second

There is at least one white space in between the amount and unit. Only the first amount following
the keyword has effect.

If this parameter is not specified, the default lease duration is one (1) hour.

This parameter should appear outside of any pair of curly braces, for example, it applies to all
leases issued by this server.

Note: This keyword only applies to the default for all addresses. To specify a specific lease time
for a subnet, network, class or client, use the usual ″option 51 value″ to specify that lease
time (in seconds).

40 Files Reference

leaseExpireInterval <amount> [<unit>]
Specifies the time interval at which the lease expiration condition is examined, and if a running
lease meets such condition, it is expired. The value of this parameter applies to all leases
administered by this server.

The amount is specified by a decimal number. The unit is one of the following (plural is accepted):

v year

v month

v week

v day

v hour

v minute (default if unit is absent)

v second

There is at least one white space in between the amount and unit. Only the first amount following
the keyword has effect.

If this parameter is not specified, the default interval is one (1) minute.

This parameter should appear outside of any pair of curly braces, for example it applies to all
leases issued by this server.

The value of this parameter should be in proportion with that of parameter leaseTimeDefault so
that the expirations of leases are recognized in time.

supportBOOTP [yes | no]
Indicates to the server whether or not to support requests from BOOTP clients.

If yes is specified, the server will support BOOTP clients.

If the value field is not a yes, or the keyword is omitted, the server will not support BOOTP clients.

The scope of this parameter covers all the networks and subnets administered by this server.

If the server previously supported BOOTP clients and has been reconfigured not to support
BOOTP clients, the address binding for a BOOTP client established before the reconfiguration, if
any, will still be maintained until the time when that BOOTP client sends a request again (when it
is rebooting.) At that time, the server will not respond, and the binding will be removed.

supportunlistedClients [yes | no]
Indicates to the server whether or not to support requests from clients that are not specifically
configured with their own individual client statements in the server.

If yes is specified, the server will support unlisted clients.

If the value field is anything other than yes, the server will not support unlisted clients.

If this keyword is not found in the file, the server will support clients not specifically configured with
a client statement.

updateDNS <string>
A string enclosed in quotes, indicating a program to execute to update the DNS server with the
new inverse mapping for the IP address and names served by dhcp. This string should include
four %s’s to indicate the placement of the following information from the dhcp client:

hostname
Value of option 12. The value returned by the dhcp server is used, if one is supplied. Else,
if the client specified a value in this file, the client-requested value is used. If neither the
client specified a requested hostname nor the server supplied one, this exec string will not
be executed.

Chapter 1. System Files 41

domainname
Value of option 15. The value returned by the dhcp server is used, if one is supplied. Else,
if the client specified a value in this file, the client-requested value is used. If neither the
client specified a requested hostname nor the server supplied one, a null string (″ ″) is
supplied by dhcp. This may cause the update of address records to fail.

Ip Address
IP address leased to this client by the server. The string is supplied in dotted notation, for
example, 9.2.23.43.

leasetime
Lease time granted by the server. This string is a decimal number representing the
number of seconds of the lease.

These values are output by dhcp in this order:
hostname domainname Ip Address leasetime

A script /usr/sbin/dhcpaction has been provided with this function, as well as actions to help NIM
interact with DHCP clients. Run the script as follows:
/usr/sbin/dhcpaction hostname domainname ipaddress
leasetime < A | PTR | BOTH | NONE > < NONIM | NIM >

The first four parameters are what will be used to update the DNS server. The fifth parameter tells
dhcpaction to update the A record, the PTR record, or both, or none. The options are A, PTR,
BOTH, NONE. The sixth parameter is used to tell servers that NIM is being used, and processing
needs to be done when a client changes address. The options for this are NIM and NONIM.

An example follows:
updateDNS "/usr/sbin/dhcpaction %s %s %s %s PTR
NONIM 2>&1 >>/tmp/updns.out"

Examples
1. In this example, we are setting up a server with a default lease time of 30 minutes. This means that

any address that doesn’t explicitly have a lease time set in a network, class, client, or subnet scope,
will get 30 minutes. We are also setting the time between server address expiration checks to 3
minutes. This means that every 3 minutes, the server will check to see if an address has expired and
mark it as expired. We are also saying the server should accept BOOTP requests and accept any
client that matches the normal address assignment scheme. The normal address assignment scheme
means that an address and options are assigned based on the network/subnet that the client is on.

We are also setting up two global options that should apply to all clients we serve. We are saying that
there is a printer at 10.11.12.13 for everyone to use and the global domain name is dreampark. We are
defining one network that has subnetting on the first 24 bits.

Thus, the network we are defining has some number of subnets and all the subnets we are specifying
in this network scope have netmask of 255.255.255.0. Under that network, we are defining some
options for that network and some subnets. The subnets define the actual addresses available for
distribution. There are two subnets. Inside the second subnet, there is a class. The class information
only applies to hosts on the second subnet that request that class. If that class is asked for the host, it
will get two netbios options. If the address is in the first subnet, it will get the options in the subnet
clause, which are nothing. If the host is in the second subnet, it will get all the options in the clause for
the second subnet. If it also has the class, it will get the class options. If options are repeated with the
same scope or a sub-scope, these options are concatenated together and set as one option. All hosts
given an address from one of the two subnets will receive the options that are in the network scope.
leaseTimeDefault 30 minutes
leaseExpireInterval 3 minutes
supportBOOTP yes
supportUnlistedClients yes

42 Files Reference

option 9 10.11.12.13 # printer for all
option 15 dreampark # domain
name

network 9.0.0.0 24
{

subnet 9.2.218.0 9.2.218.1-9.2.218.128
subnet 9.67.112.0 9.67.112.1-9.67.112.64
{

option 28 9.67.112.127 # broadcast address
option 9 9.67.112.1 # printer 1
option 9 9.67.112.2 # printer 2
option 15 sandbox. # domain name
class netbios_host
{

#Netbi ov tcp/ip name server
option 44 9.67.112.125
Netbi over tcp/ip node type
option 46 2

}
}

option 15 toyland # domain name
option 9 9.68.111.128 # printer 3
option 33 1.2.3.4:9.8.7.1 # route to the moon
option 33 5.6.7.8:9.8.7.2 # route to the mars
routes to black holes
option 3 11.22.33.44 55.66.77.88

}

2. In this example, we see the output of the dhcpsconf command. This format is more used by the
dhcpsconf GUI to store information. This format allows for multiple configurations. The dhcpsconf
GUI can in turn generate the specific server files for an individual server. The file specifies two of
DHCP Servers, Greg and Fred. Each contain the definitions for the two servers. The dhcpsconf
command can generate files specifically for Greg or Fred. The dhcpsconf command will also use the
named resources (## sections) to display network pieces that have been named by the administrator.

The DHCP server Greg is responsible for network 9.3.145.0, subnet mask 255.255.255.192. The DHCP
server Fred is responsible for network 9.3.146.128, subnet mask 255.255.255.240. Each server
provides its own domain name. Other options named and unnamed may be placed in the server’s
configuration section.

Note: This format is used by dhcpsconf, which generateS the appropriate configuration files for
DHCP servers Greg and Fred.

Named resources Section
"Network 1 Subnet Netmask" "option 1 255.255.255.192"
"Network 2 Subnet Netmask" "option 1 255.255.255.240"
"Network 1 Domain Name" "option 15 "bizarro.austin.ibm.com""
"Network 2 Domain Name" "option 15 "superman.austin.ibm.com""
"Network 1 Network" "network 9.3.145.0 26"
"Network 2 Network" "network 9.3.146.128 27"

"DHCP Server Greg" "logItem SYSERR"
"DHCP Server Greg" "numlogfiles 6"
"DHCP Server Greg" "logfilesize 100"
"DHCP Server Greg" "logfilename /usr/tmp/dhcpgreg.log"
"DHCP Server Greg" "network 9.3.145.0 26"
"DHCP Server Greg" "{"
"DHCP Server Greg" "option 15 "bizarro.austin.ibm.com""
"DHCP Server Greg" "}"
"DHCP Server Fred" "logItem SYSERR"
"DHCP Server Fred" "logItem OBJERR"
"DHCP Server Fred" "numlogfiles 3"
"DHCP Server Fred" "logfilesize 50"
"DHCP Server Fred" "logfilename /usr/tmp/dhcpfred.log"

Chapter 1. System Files 43

"DHCP Server Fred" "network 9.3.146.128 27"
"DHCP Server Fred" "{"
"DHCP Server Fred" "option 15 "superman.austin.ibm.com""
"DHCP Server Fred" "}"

Related Information
The dhcpsd daemon, the dhcpsconf command

The DHCP Client Configuration File

TCP/IP Address and Parameter Assignment - Dynamic Host Configuration Protocol (DHCP) in AIX 5L
Version 5.2 System Management Guide: Communications and Networks.

Problems with Dynamic Host Configuration Protocol (DHCP) in AIX 5L Version 5.2 System Management
Guide: Communications and Networks.

depend File

Purpose
Describes the format of a software dependencies file.

Description
The depend file is an ASCII file used to specify information concerning software dependencies for a
particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of the package is
described after the entry line by giving the package architecture and/or version. The format of each entry
and subsequent instance definition is:

type pkg name

The fields are:

Entry Definition
type Defines the dependency type. This must be one of the following:

P Indicates a prerequisite for installation, for example, the referenced package or versions must be
installed.

I Implies that the existence of the indicated package or version is incompatible. See also the X tag.

X Implies that the existence of the indicated package or version is incompatible. This tag should be
used instead of the I tag.

R Indicates a reverse dependency. Instead of defining the packages own dependencies, this
designates that another package depends on this one. This type should be used only when an old
package does not have a depend file but it relies on the newer package nonetheless. Therefore, the
present package should not be removed if the designated old package is still on the system since, if
it is removed, the old package will no longer work.

S Indicates a superseding dependency. It should be used when an earlier package has been
superseded by the current package.

pkg Indicates the package abbreviation.
name Specifies the full package name.

Dependency checks may be disabled using the admin file.

44 Files Reference

Examples
Shown below is an example of a depend file (for the NFS package):

P base Base System
P nsu Networking Support Utilities
P inet Internet Utilities
P rpc Remote Procedure Call Utilities
P dfs Distributed File System Utilities

Related Information
The admin file format, compver file format.

dir File

Purpose
Describes the format of a directory.

Syntax
#include <sys/dir.h>

Description
A directory is a file that contains information and structures necessary to define a file hierarchy. A file is
interpreted as a directory by the system if it has the S_IFDIR file mode. All modifications to the structure of
a directory must be performed under the control of the operating system.

The directory file format accommodates component names of up to 256 characters. This is accomplished
through the use of a variable-length structure to describe individual directory entries. The structure of a
directory entry follows.

Note: This structure is a file system-specific data structure. It is recommended that file
system-independent application programs use the file system-independent direct structure and its
associated library support routines.

struct direct {
ino_t d_ino;
ushort d_reclen;
ushort d_namelen;
char d_name[256];

};

By convention, the first two entries in each directory are . (dot) and .. (dot dot). The . (dot) is an entry for
the directory itself. The .. (dot dot) entry is for the parent directory. Within the root (/) directory the
meaning of .. (dot dot) is modified; because there is no parent directory, the .. (dot dot) entry has the same
meaning as the . (dot) entry.

The DIRSIZ (dp) macro gives the amount of space required to represent a directory entry. The dp
argument is a pointer to a direct structure.

Related Information
The dirent.h file, filsys.h file, inode file.

The opendir, readdir, telldir, seekdir, rewindir, or closedir subroutine.

File Systems Overview in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices.

Chapter 1. System Files 45

Directory Overview in AIX 5L Version 5.2 System User’s Guide: Operating System and Devices.

Files Overview in AIX 5L Version 5.2 System User’s Guide: Operating System and Devices.

dsinfo File

Purpose
Contains the terminal descriptions for the Dynamic Screen utility.

Description
The dsinfo file is a database of terminal descriptions used by the Dynamic Screen utility. A terminal
description typically contains the following configuration information:

v Keys defined for specific use with the Dynamic Screen utility and their function

v Number of pages of screen memory available to the terminal

v Code sequences that must be sent or received to access and use Dynamic Screen features

The dscreen command reads the appropriate configuration information from the dsinfo file to start the
Dynamic Screen utility.

Entry Format
Line entries in the dsinfo file consist of a number of definition fields separated by commas. The first-line
field entries are alternate screen names for the terminal. The screen name fields are separated by a | (
pipe symbol).

Other line fields are strings describing the capabilities of the terminal definition to the Dynamic Screen
utility. The following escape codes are recognized within these strings:

Escape Code Meaning
\E,\e Escape
\n,\l New line
\r Carriage return
\t Tab
\b Backspace
\f Form feed
\s Space
\nnn Character with octal value nnn
^x Ctrl-x for any appropriate x.

Any other character preceded by a \ (backslash) yields the character itself.

Strings must be entered as the type=string parameter, where type is the string type and string is the string
value.

If information is not entered into a string field, a comma is still used to designate the existence of the field.

String Types and String Values
The following string types are available:

String
Type

Meaning

dskx Describes the action assigned to a key. This string type contains 4 characters. The 4th character indicates
the action to be taken when the keystroke is received by the screen:

46 Files Reference

Key Type Action
dskb Block input and output.
dskc Start a new screen.
dske End the Dynamic Screen utility (exit code 0).
dskl List keys and actions.
dskp Switch to previous screen.
dskq Quit Dynamic Screen utility (exit code 1).
dsks Select a specific screen.

Currently, the only valid dsk string type endings are b, c, e, l, p, q, and s. Any other key
definitions used at this time are interpreted as null values and cause no internal Dynamic
Screen action for the terminal definition. Other keys may be assigned values within the
Dynamic Screen utility at a later time.
Note: The dskn string type (n for null or no operation) is guaranteed not to be used for
any function assignments in future versions. It is recommended that the dskn string type be
used instead of other null characters when no internal Dynamic Screen action is desired for
a terminal definition.

The value string for each dskx string type has three substrings, separated by a | (pipe
symbol). (To include a | in one of the substrings, use \| [backslash, pipe symbol].)

The first substring is the sequence of characters the terminal sends when the key is
pressed. The second substring is a label for the key as displayed in the key listing (for
example, the Shift-F1 key sequence). The third substring is a sequence of characters the
Dynamic Screen utility sends to the terminal when the key is pressed, before performing
the requested action.

dsp Describes a physical screen in the terminal. A dsp string type must be present for each
physical screen in the terminal.

The value string for each physical screen has two substrings, separated by a | (pipe
symbol). (To include a | in one of the substrings, use \| [backslash, pipe symbol].)

The first substring is the sequence of characters to send to the terminal to display and
output to the particular named physical page on the terminal. The second substring is
usually set to clear the screen sequence. It is sent under the following two conditions:

v The creation of new terminal session

v More terminals are running than there are physical screens.

If your selection of a terminal causes the Dynamic Screen utility to reuse one of the
physical screens, the clear-the-screen sequence is sent to the screen to indicate that the
screen content does not match the output of the terminal connected to it.
Note: Running with more terminals than there are physical screens is not
recommended. Avoid this situation by defining no more screen selection keys (dsks=...)
than physical screens (dsp=...).

dst Adjusts the Dynamic Screen utility’s input timeout. The value of the string must be a
decimal number. The timeout value is in tenths of a second and has a maximum value of
255. The default timeout value is 1, or one tenth of a second.

When the Dynamic Screen utility recognizes a prefix of an input sequence but has not yet
received all the characters in the sequence, it waits for more characters. If the timeout
occurs before more characters are received, the received characters are sent to the screen,
and the Dynamic Screen utility does not consider these characters as part of an input key
sequence. Consider increasing the value of the dsp string if one or more of the keys to
which the utility has to respond is actually a number of key combinations (for example,
<Ctrl-Z> 1, <Ctrl-Z> 2, <Ctrl-Z> 3, and so on, for screen selection, or <Ctrl-Z> N, for new
screen).

Examples
1. The following dsinfo entry describes a WYSE 60 terminal with three screens:

Chapter 1. System Files 47

wy60|wyse60|wyse model 60,
dsks=^A`^M|Shift-F1|,
dsks=^Aa^M|Shift-F2|,
dsks=^Ab^M|Shift-F3|,
dskc=\200|Ctrl-F1|,
dske=\201|Ctrl-F2|\Ew0\E+,
dskl=\202|Ctrl-F3|,
dsp=\Ew0|\E+,
dsp=\Ew1|\E+,
dsp=\Ew2|\E+,

The <Shift-F1> through <Shift-F3> key combinations are used for selecting screens 1 through 3.
<Ctrl-F1> creates a new screen. <Ctrl-F2> sends the key sequence <Esc> w 0 <Esc> + to the
screen. As a result, the terminal switches to window 0, the screen is cleared, and the Dynamic Screen
utility ends. <Ctrl-F3> lists the keys and their functions. The three physical screens are displayed by
sending the key sequences <Esc> w 0 , <Esc> w 1, and <Esc > w 2, respectively. Each time a
physical screen is used for a new screen the <Esc> + key sequence is sent to the terminal to clear the
screen.

2. The following dsinfo entry describes a WYSE 60 terminal with three screens, one of which is on a
second computer communicating through the second serial port on the terminal. The Dynamic Screen
utility must be run on both computers, with terminal type WY60-1 on the first computer and terminal
type WY60-2 on the second computer (to do so specify the -t flag in the dscreen command).
wy60-1|wyse60-1|wyse model 60 - first
serial port

dsks=^A`^M|Shift-F1|,
dsks=^Aa^M|Shift-F2|,
dskb=^Ab^M|Shift-F3|\Ed#^Ab\r^T\Ee9,
dskc=\200|Ctrl-F1|,
dske=\201|Ctrl-F2|\Ed#\201^T\Ew0\E+,
dskl=\202|Ctrl-F3|,
dsp=\Ew0|\E+,dsp=\Ew1|\E+,

wy60-2|wyse60-2|wyse model 60 - second
serial port

dskb=^A`^M|Shift-F1|\Ed#^A`\r^T\Ee8,
dskb=^Aa^M|Shift-F2|\Ed#^Aa\r^T\Ee8,
dsks=^Ab^M|Shift-F3|
dskc=\200|Ctrl-F1|,
dske=\201|Ctrl-F2|\Ed#\201^T\Ew0\E+,
dskl=\202|Ctrl-F3|,
dsp=\Ew2|\E+,

The first two key entries for terminal type WY60-1 are identical to the entry in example 1. The third key
entry, of type dskb, specifies that input and output are blocked when the <Esc> d # <Ctrl-A> b <CR>
<Ctrl-T> <Esc> e 9 key sequence is sent to the terminal. As a result, output is blocked, and the
Dynamic Screen utility continues to scan input for key sequences but discards

all other input. The <Esc> d # sequence puts the terminal in transparent print mode, which echoes all
keystrokes up to <Ctrl-T> out the other serial port. The <Ctrtl-A> b <CR> key sequence is sent out to
the other serial port, informing the Dynamic Screen utility on the second computer that it should
activate the window associated with the <Shift-F3> key. The <Ctrl-T> key sequence takes the terminal
out of transparent print mode, and the <Esc> e 9 key sequence informs the terminal to switch to the
other serial port for data communications.

The other computer takes over and sends the <Esc> w 2 key sequence to switch to the third physical
screen and then resumes normal communication.

The WY60-2 entry follows the same general pattern for the <Shift-F1> and <Shift-F2> key
combinations, which switch to transparent print mode, send a function key string to the other computer,
switch transparent print off, and switch to the other serial port.

48 Files Reference

The end key <Ctrl-F2> works the same for both computers. It sends the end key sequence to the other
computer through the transparent print mechanism, switches the terminal to window 0, clears the
screen, and exits.

Files

/etc/dsinfo Contains the terminal descriptions for the Dynamic Screen utility.

Related Information
The dscreen command.

Dynamic Screen Utility in AIX 5L Version 5.2 Asynchronous Communications Guide.

dumpdates File

Purpose
Describes the format of the dumpdates file.

Description
The /etc/dumpdates file holds filesystem backup information for the backup and rdump commands. The
dumpdates file is maintained by using the -u option when performing file system backups. The following is
the dumpdates data structure:
struct idates {

char id_name[MAXNAMLEN+3];
char id_incno;
time_t id_ddate;

}

The struct idates describes an entry in the /etc/dumpdates file where the backup history is kept. The
fields of the structure are:

id_name The name of the file system.
id_incno The level number of the last backup.
id_ddate The date of the incremental backup in system format.
MAXNAMLEN The maximum value of this variable is 255.

Files

/etc/dumpdates Specifies the path name of the symbolic link to the dumpdates file.

Related Information
The backup command, rdump command.

Backup Overview in AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

e789_ctbl File for HCON

Purpose
Contains the default binary color definition table for HCON.

Chapter 1. System Files 49

Description
The /usr/lib/hcon/e789_ctbl file contains the default color definition table for the Host Connection
Program (HCON) in binary form.

Instances of the e789_ctbl file can also occur in user $HOME directories. The color definition table can be
customized using the hconutil command. If the user issuing the hconutil command does not specify a
name for the new table, the command names the e789_ctbl table and places it in the user $HOME
directory. To use a customized table, an HCON user must specify the file name of the table in an HCON
session profile.

Files

/usr/lib/hcon/e789_ctbl Specifies the path of the e789_ctbl file.

Related Information
The chhconscommand.

e789_ktbl File for HCON

Purpose
Contains the default binary keyboard definition table used by HCON.

Description
The /usr/lib/hcon/e789_ktbl file contains the default keyboard definition table used by the Host
Connection Program (HCON) in binary form.

HCON key names are mapped to specific keys on each supported keyboard. The HCON emulator
program uses these key mappings to generate the correct key function on all the supported keyboards.
HCON key mappings can be customized using the hconutil command.

Instances of the e789_ktbl file can also occur in user $HOME directories. The keyboard definition table
can be customized using the hconutil command. If the user issuing the hconutil command does not
specify a name for the new table, the command names the e789_ktbl table and places it in the user
$HOME directory. To use a customized table, an HCON user must specify the file name of the table in an
HCON session profile.

Files

/usr/lib/hcon/e789_ktbl Specifies the path of the e789_ktbl file.

Related Information
The chhcons command.

environ File

Purpose
Defines the environment attributes for users.

50 Files Reference

Description
The /etc/security/environ file is an ASCII file that contains stanzas with the environment attributes for
users. Each stanza is identified by a user name and contains attributes in the Attribute=Value form, with a
comma separating the attributes. Each attribute is ended by a new-line character, and each stanza is
ended by an additional new-line character.

If environment attributes are not defined, the system uses default values. Each user stanza can have the
following attributes:

Attribute Definition
usrenv Defines variables to be placed in the user environment when the initial login command is given

or when the su command resets the environment. The value is a list of comma-separated
attributes. The default value is an empty string.

sysenv Defines variables to be placed in the user protected state environment when the initial login
command is given or when the su command resets the environment. These variables are
protected from access by unprivileged programs so other programs can depend on their
values. The default value is an empty string.

For a description of environment variables, refer to the /etc/environment file.

Access to all the user database files should be through the system commands and subroutines defined for
this purpose. Access through other commands or subroutines may not be supported in future releases.

The mkuser command creates a user stanza in this file. The initialization of the attributes depends upon
their values in the /usr/lib/security/mkuser.default file. The chuser command can change these
attributes, and the lsuser command can display them. The rmuser command removes the entire record
for a user.

Security
Access Control:

This command should grant read (r) access to the root user, members of the security group, and others
consistent with the security policy for the system. Only the root user should have write (w) access.

Auditing Events:

Event Information
S_ENVIRON_WRITE file name

Examples
A typical stanza looks like the following example for user dhs:
dhs:

usrenv = "MAIL=/home/spool/mail/dhs,MAILCHECK=600"
sysenv = "NAME=dhs@delos"

Files

/etc/security/environ Specifies the path to the file.
/etc/environment Specifies the basic environment for all processes.
/etc/group Contains the basic attributes of groups.
/etc/security/group Contains the extended attributes of groups.
/etc/passwd Contains the basic attributes of users.
/etc/security/passwd Contains password information.

Chapter 1. System Files 51

/etc/security/user Contains the extended attributes of users.
/etc/security/limits Contains the process resource limits of users.
/usr/lib/security/mkuser.default Contains the default values for user accounts.
/etc/security/lastlog Contains last login information.

Related Information
The chuser command, login command, lsuser command, mkuser command, rmuser command, setsenv
command, su command.

The getpenv subroutine, getuserattr subroutine, putuserattr subroutine, setpenv subroutine.

File and System Security Overview in AIX 5L Version 5.2 System Management Guide: Operating System
and Devices.

environment File

Purpose
Sets up the user environment.

Description
The /etc/environment file contains variables specifying the basic environment for all processes. When a
new process begins, the exec subroutine makes an array of strings available that have the form
Name=Value. This array of strings is called the environment. Each name defined by one of the strings is
called an environment variable or shell variable. The exec subroutine allows the entire environment to be
set at one time.

Environment variables are examined when a command starts running. The environment of a process is not
changed by altering the /etc/environment file. Any processes that were started prior to the change to the
/etc/environment file must be restarted if the change is to take effect for those processes. If the TZ
variable is changed, the cron daemon must be restarted, because this variable is used to determine the
current local time.

The following restrictions apply, when modifying the environment file:

v Ensure that newly created environment variables do not conflict with standard variables such as MAIL,
PS1, PS2, and IFS.

v Ensure that the information in the environment file is in the Name=Value format. Unlike profile scripts,
the environment file is not a shell script and does not accept data in any format other than the
Name=Value format.

The Basic Environment
When you log in, the system sets environment variables from the environment file before reading your
login profile, .profile.

The following variables make up the basic environment:

Variable Description
HOME The full path name of the user login or HOME directory. The login program sets this to the name

specified in the /etc/passwd file.
LANG The locale name currently in effect. The LANG variable is set in the /etc/environment file at

installation time.

52 Files Reference

Variable Description
NLSPATH The full path name for message catalogs. The default is:

/usr/lib/nls/msg/%L/%N:

/usr/lib/nls/msg/%L/%N.cat:

where %L is the value of the LC_MESSAGES category and %N is the catalog file name.
Note: See the chlang command for more information about changing message catalogs.

LC__FASTMSGIf LC_FASTMEG is set to false, POSIX-compliant message handling is performed. If LC__FASTMSG
is set to true, it specifies that default messages should be used for the C and POSIX locales and that
NLSPATH is ignored. If this variable is set to anything other than false or unset, it is considered the
same as being set to true. The default value is LC__FASTMSG=true in the /etc/environment file.

LOCPATH The full path name of the location of National Language Support tables. The default is /usr/lib/nls/loc
and is set in the /etc/profile file. If the LOCPATH variable is a null value, it assumes that the current
directory contains the locale files.
Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

PATH The sequence of directories that commands such as the sh, time, nice and nohup commands search
when looking for a command whose path name is incomplete. The directory names are separated by
colons.

TZ The time-zone information. The TZ environment variable is set by the /etc/environment file. The TZ
environment variable has the following format (spaces inserted for readability):

std offset dst offset , rule

The fields within the TZ environment variable are defined as follows:

std and dst
Designate the standard (std) and summer (dst) time zones. Only the std value along with the
appropriate offset value is required. If the dst value is not specified, summer time does not
apply. The values specified may be no less than three and no more than TZNAME_MAX
bytes in length. The length of the variables corresponds to the %Z field of the date command;
for libc and libbsd, TZNAME_MAX equals three characters. Any nonnumeric ASCII
characters except the following may be entered into each field: a leading : (colon), a ,
(comma), a - (minus sign), a + (plus sign), or the ASCII null character.
Note: POSIX 1.0 reserves the leading : (colon) for an implementation-defined TZ
specification. The operating system disallows the leading colon, selecting CUT0 and setting
the %Z field to a null string.

An example of std and dst format is as follows:

EST5EDT

EST Specifies Eastern U.S. standard time.
5 Specifies the offset, which is 5 hours behind Coordinated Universal Time (CUT).

EDT Specifies the corresponding summer time zone abbreviation.

Note: See ″Time Zones″ for a list of time zone names defined for the system.

offset Denotes the value added to local time to equal Coordinated Universal Time (CUT). CUT is the
international time standard that has largely replaced Greenwich Mean Time. The offset
variable has the following format:

hh:mm:ss

The fields within the offset variable are defined as follows:
hh Specifies the dst offset in hours. This field is required. The hh value can range between the integers

-12 and +11. A negative value indicates the time zone is east of the prime meridian; a positive value or
no value indicates the time zone is west of the prime meridian.

Chapter 1. System Files 53

Variable Description
mm Specifies the dst offset detailed to the minute. This field is optional. If the mm value is present, it must

be specified between 0 and 59 and preceded by a : (colon).

ss Specifies the dst offset detailed to the second. The ss field is optional. If the ss value is
present, it must be specified between 0 and 59 and preceded by a : (colon).

An offset variable must be specified with the std variable. An offset variable for the dst variable is
optional. If no offset is specified with the dst variable, the system assumes that summer time is one
hour ahead of standard time.

As an example of offset syntax, Zurich is one hour ahead of CUT, so its offset is -1. Newfoundland is
1.5 hours ahead of eastern U.S. standard time zones. Its syntax can be stated as any of the following:
3:30, 03:30, +3:30, or 3:30:00.

rule The rule variable indicates when to change to and back from summer time. The rule variable
has the following format:

start/time,end/time

The fields within the rule variable are defined as follows:
start Specifies the change from standard to summer time.
end Specifies the return to standard time from summer time.
time Specifies when the time changes occur within the time zone. For example, if the time variable is

encoded for 2 a.m. then the time changes when the time zone reaches 2 a.m. on the date specified in
the start variable.

/ Delimits the start date, end date, and time variables.

, (Comma) Delimits two date and time pairs.

The start and end variables support a syntax for Julian time (J) and a syntax for leap years (M):

Jn
Mm.n.d

In the J syntax, the n variable has the value of 1 through 365. Leap days are not counted. In the M
syntax, m is the month, n the week, and d the day of the week starting from day 0 (Sunday).

The rule variable has the same format as the offset variable except no leading - (minus sign) or +
(plus sign) is allowed. The default of the start variable is 02:00:00 (2 a.m.).
Note: The time zone offsets and time change points are interrelated and context-dependent. The rule
variable’s runtime execution semantics change as a function of the offsets. For example, if the summer
time zone changes one hour, as in CST6CDT5, (the default 2 a.m.) summer time changes
instantaneously from 2 a.m. to 3 a.m. CDT. The fall change is from 2 a.m. CDT to 1 a.m. CST. The
respective changes for a time zone of CST6CDT4 are 2 a.m. CST to 4 a.m. CDT and 2 a.m. CDT to 12
a.m. CST.

In an example of the rule variable, if the law changed so that the Central United States experienced
summer time between Julian 129 and Julian 131, the TZ variable would be stated as follows:

TZ=CST6CDT5,J129,J131

In this example, the dates indicated are May 09 and May 11,1993, respectively. (Use the date +%j
command to get the Julian date number.)

In another example, if the time changes were to occur at 2 a.m. CST and 19:30 CDT, respectively, the
variables would be stated as follows:

TZ=CST6CDT5,J129,J131/19:30

In nonleap years, the fallback time change would be from 19:30 CDT to 18:30 CST on May 11 (1993).

For the leap year (M) syntax, the spring ahead date would be 2 May and the fallback date is 9 May.
The variables are stated as follows:

TZ=CST6CDT5,M5.1.0,M5.2.0

54 Files Reference

Time Zones
The system defines the following time zones and time zone names:

Note: Coordinated Universal Time (CUT) is the international time standard.

Table 2. Time Zones Defined on the System

Name Time Zone CUT Offset

CUT0GDT Coordinated Universal Time CUT

GMT0BST United Kingdom CUT

AZOREST1AZOREDT Azores, Cape Verde CUT -1

FALKST2FALKDT Falkland Islands CUT -2

GRNLNDST3GRNLNDDT Greenland, East Brazil CUT -3

AST4ADT Central Brazil CUT -4

EST5EDT Eastern United States, Colombia CUT -5

CST6CDT Central United States, Honduras CUT -6

MST7MDT Mountain United States CUT -7

PST8PDT Pacific United States, Yukon CUT -8

AST9ADT Alaska CUT -9

HST10HDT Hawaii, Aleutian Islands CUT -10

BST11BDT Bering Strait CUT -11

NZST-12NZDT New Zealand CUT +12

MET-11METDT Solomon Islands CUT +11

EET-10EETDT Eastern Australia CUT +10

JST-9JSTDT Japan CUT +9

KORST-9KORDT Korea CUT +9

WAUST-8WAUDT Western Australia CUT +8

TAIST-8TAIDT Taiwan CUT +8

THAIST-7THAIDT Thailand CUT +7

TASHST-6TASHDT Central Asia CUT +6

PAKST-5PAKDT Pakistan CUT +5

WST-4WDT Gorki, Central Asia, Oman CUT +4

MEST-3MEDT Turkey CUT +3

SAUST-3SAUDT Saudi Arabia CUT +3

WET-2WET Finland CUT +2

USAST-2USADT South Africa CUT +2

NFT-1DFT Norway CUT +1

Files

/etc/profile Specifies variables to be added to the environment by the shell.
/etc/environment Specifies the basic environment for all processes.
$HOME/.profile Specifies the environment for specific user needs.
/etc/passwd Specifies user IDs.

Chapter 1. System Files 55

Related Information
The at command, chlang command, env command, getty command, login command, sh command.

The exec subroutine, getenv subroutine.

errors File for BNU

Purpose
Contains a record of uucico daemon errors.

Description
The /var/spool/uucp/.Admin/errors file contains a record of uucico daemon errors that the Basic
Networking Utilities (BNU) program cannot correct. For example, if the uucico daemon is unable to access
a directory that is needed for a file transfer, the BNU program records this in the errors file.

If debugging is enabled for the uucico daemon, the BNU program sends the error messages to standard
output instead of to the errors file.

Examples
The text of an error which might appear in the errors file is:
ASSERT ERROR (uucico) pid: 303 (7/18-8:25:09) SYSTAT OPEN FAIL /v
ar/spool/uucp/.Status/ (21) [SCCSID: @(#)systat.c 7.2 87/07/08
16:43:37, FILE: systat.c, LINE:100]

This error occurred on July 18 at 8:25:09 a.m. [(7/18-8:25:09)] when the uucico daemon, running as
process 303 [(uucico) pid: 303], could not open the /var/spool/uucp/.Status directory [SYSTAT OPEN FAIL
/var/spool/uucp/.Status/]. To prevent this error from occurring again, you should make sure the
permissions for the .Status directory are correct. It should be owned by the uucp login ID and group
uucp, with permissions of 777 (read, write, and execute for owner, group, and all others).

Files

/var/spool/uucp/.Admin directory Contains the errors file and other BNU
administrative files.

/var/spool/uucp/.Status/SystemName Lists the last time a remote system was contacted
and the minimum time until the next retry.

/var/spool/uucp/.Admin/errors Specifies the path of the errors file.

Related Information
The uudemon.cleanu command.

The uucico daemon.

BNU File and Directory Structure and Maintaining BNU in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

ethers File for NIS

Purpose
Contains the Ethernet addresses of hosts on the Internet network.

56 Files Reference

Description
The /etc/ethers file contains information regarding the known (48-bit) Ethernet addresses of hosts on the
Internet. The file contains an entry for each host. Each entry consists of the following information:

v Ethernet address

v Official host name

Items are separated by any number of blanks or tab characters. A # (pound sign) indicates the beginning
of a comment that extends to the end of the line.

The standard form for Ethernet addresses is x:x:x:x:x:x: where x is a hexadecimal number between 0
and ff, representing one byte. The address bytes are always in network order. Host names may contain
any printable character other than a space, tab, new line, or comment character. It is intended that host
names in the /etc/ethers file correspond to the host names in the /etc/hosts file.

This file is part of NFS in Network Support Facilities.

Files

/etc/ethers Specifies the path of the ethers file.
/etc/hosts Contains Internet addresses.

Related Information
The /etc/hosts file.

NFS Services in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

Network Information Service Overview in AIX 5L Version 5.2 System Management Guide: Communications
and Networks.

events File

Purpose
Contains information about system audit events.

Description
The /etc/security/audit/events file is an ASCII stanza file that contains information about audit events.
The file contains just one stanza, auditpr, which lists all the audit events in the system. The stanza also
contains formatting information that the auditpr command needs to write an audit tail for each event.

Each attribute in the stanza is the name of an audit event, with the following format:

AuditEvent = FormatCommand

The format command can have the following parameters:

Parameter Description
(empty) The event has no tail.
printf Format The tail is formatted according to the string supplied for the Format

parameter. The %x symbols within the string indicate places for the audit trail
to supply data.

Chapter 1. System Files 57

Parameter Description
Program -i n Arg ... The tail is formatted by the program specified by the Program parameter. The

-i n parameter is passed to the program as its first parameter, indicating that
the output is to be indented by n spaces. Other formatting information can be
specified with the Arg parameter. The audit event name is passed as the last
parameter. The tail is written to the standard input of the program.

Audit Event Formatting Information

Format Description

%A Formatted output is similar to the aclget command.

%d Formatted as a 32-bit signed decimal integer

%G Formatted as a comma-separated list of group names or
numerical identifiers.

%o Formatted as 32-bit octal integer.

%P Formatted output is similar to the pclget command.

%s Formatted as a text string.

%T Formatted as a text string giving include date and time
with 6 significant digits for the seconds DD Mmm YYYY
HH:MM:SS:mmmuuu).

%u Formatted as a 32-bit unsigned integer.

%x Formatted as a 32-bit hexidecimal integer.

%X Formatted as a 32-bit hexidecimal integer with upper
case letters.

Security
Access Control: This file should grant read (r) access to the root user and members of the audit group,
and grant write (w) access only to the root user.

Examples
To format the tail of an audit record for new audit events, such as FILE_Open and PROC_Create, add format
specifications like the following to the auditpr stanza in the /etc/security/audit/events file:
auditpr:

FILE_Open = printf "flags: %d mode: %o \
fd: %d filename: %s"
PROC_Create = printf "forked child process %d"

Files

/etc/security/audit/events Specifies the path to the file.
/etc/security/audit/config Contains audit system configuration information.
/etc/security/audit/objects Contains information about audited objects.
/etc/security/audit/bincmds Contains auditbin backend commands.
/etc/security/audit/streamcmds Contains auditstream commands.

Related Information
The audit command, auditpr command.

Setting Up Auditing in AIX 5L Version 5.2 System Management Guide: Operating System and Devices.

58 Files Reference

Auditing Overview and Security Administration in AIX 5L Version 5.2 System Management Concepts:
Operating System and Devices.

Execute (X.*) Files for BNU

Purpose
Contains instructions for running commands that require the resources of a remote system.

Description
The execute (X.*) files of the Basic Networking Utilities (BNU) contain instructions for running commands
that require the resources of a remote system. They are created by the uux command.

The full path name of a uux command execute file is a form of the following:

/var/spool/uucp/SystemName/X.RemoteSystemNxxxx

where the SystemName directory is named for the local computer and the RemoteSystem directory is
named for the remote system. The N character represents the grade of the work, and the xxxx notation is
the four-digit hexadecimal transfer-sequence number; for example, X.zeusN2121.

Note: The grade of the work specifies when the file is to be transmitted during a particular connection.
The grade notation is a single number (0-9) or letter (A-Z, a-z). Lower sequence characters cause
the file to be transmitted earlier in the connection than do higher sequence characters. The number
0 is the highest grade, signifying the earliest transmittal; z is the lowest grade, specifying the latest
transmittal. The default grade is N.

Standard Entries in an Execute File
An execute file consists of several lines, each with an identification character and one or more entries:

User Line:

Identification Character Description
U UserName SystemName Specifies the login name of the user issuing the uux command and the

name of the system that issued the command.

Error Status Line:

Identification
Character

Description

N or Z Indicates the error status.
N Indicates that a failure message is not sent to the user issuing the uux command if the specified

command does not execute successfully on the remote system.
Z Indicates that a failure message is sent to the user issuing the uux command if the specified command

does not execute successfully on the remote system.

Requester Name:

Identification
Character

Description

R UserName Specifies the login ID of the user requesting the remote command execution.

Chapter 1. System Files 59

Required File Line:

Identification
Character

Description

F FileName Contains the names of the files required to execute the specified command on the remote
system. The FileName parameter can be either the complete path name of the file, including the
unique transmission name assigned by the BNU program, or simply the transmission name
without any path information.

The required file line can contain zero or more file names. The uuxqt daemon checks for the
existence of all listed files before running the specified command.

Standard Input Line:

Identification
Character

Description

I FileName Specifies the standard input to be used.

The standard input is either specified by a < (less than) symbol in the command string or
inherited from the standard input of the uux command if that command was issued with the -
(minus sign) flag.

If standard input is specified, the input source is also listed in an F (Required File) line. If
standard input is not specified, the BNU program uses the /dev/null device file.

Standard Output Line:

Identification Character Description
O FileName SystemName Specifies the names of the file and system that are to receive standard

output from the command execution. Standard output is specified by a >
(greater than) symbol within the command string. (The >> sequence is not
valid in uux commands.) As is the case with standard input, if standard
output is not specified, the BNU program uses the /dev/null device file.

Command Line:

Identification Character Description
C CommandString Gives the command string that the user requests to be run on the specified system.

The BNU program checks the /etc/uucp/Permissions file on the designated computer
to see whether the login ID can run the command on that system.

All required files go to the execute file directory, usually /var/spool/uucp/.Xqtdir. After
execution, the standard output is sent to the requested location.

Examples
1. User amy on local system zeus issued the following command:

uux - "diff /home/amy/out hera!/home/amy/out2 > ~/DF"

The command in this example invokes the uux command to run a diff command on the local system,
comparing the /home/amy/out file with the /home/amy/out2 file, which is stored on remote system hera.
The output of the comparison is placed in the DF file in the public directory on the local system.

The preceding command produces the /var/spool/uucp/hera/X.zeusN212F execute file, which contains
the following information:

60 Files Reference

The user line identifies the user amy on the system zeus. The error-status line indicates that amy will
receive a failure status message if the diff command fails to execute. The requestor is amy, and the file
required to execute the command is the following data file:
U amy zeus
return status on failure
Z
return address for status or input return
R amy
F /var/spool/uucp/hera/D.herale954fd out2
O ~/DF zeus
C diff /home/amy/out out2
/var/spool/uucp/hera/D.herale954fd out2

The output of the command is to be written to the public directory on the system zeus with the file
name DF. (The ~ (tilde) is the shorthand way of specifying the public directory.) The final line is the
command string that the user amy entered with the uux command.

2. The following is another example of an execute file:
U uucp hera
don’t return status on failure
N
return address for status or input return
R uucp
F D.hera5eb7f7b
I D.hera5eb7f7b
C rmail amy

This indicates that user uucp on system hera is sending mail to user amy, who is also working on
system hera.

Files

/etc/uucp/Permissions Describes access permissions for remote
systems.

/etc/uucp/Systems Describes accessible remote systems.
/var/spool/uucp/SystemName directory Contains BNU command, data, and execute

files.
/var/spool/uucp/SystemName/C.* Contains instructions for transfers.
/var/spool/uucp/.Xqtdir directory Contains lists of commands that remote

systems are permitted to execute.
/var/spool/uucppublic/* directory Contains transferred files.

Related Information
The diff command, uux command.

The uuxqt daemon.

BNU File and Directory Structure, BNU Daemons, and BNU Maintenance Commands in AIX 5L Version
5.2 System Management Guide: Communications and Networks.

exports File for NFS

Purpose
Contains a list of directories that can be exported to Network File System (NFS) clients.

Chapter 1. System Files 61

Description
The /etc/exports file contains an entry for each directory that can be exported to NFS clients. This file is
read automatically by the exportfs command. If you change this file, you must run the exportfs command
before the changes can affect the way the daemon operates.

Only when this file is present during system startup does the rc.nfs script execute the exportfs command
and start the nfsd and mountd daemons.

Note: You cannot export either a parent directory or a subdirectory of an exported directory within the
same file system.

Entries in the file are formatted as follows:

Directory -Option [, Option] ...

These entries are defined as follows:

Entry Definition
Directory Specifies the directory name.
Option Specifies optional characteristics for the directory being exported. You can enter more than one

variable by separating them with commas. Choose from the following options:

ro Exports the directory with read-only permission. Otherwise, if not specified, the directory
is exported with read-write permission.

rw = Client [:Client]
Exports the directory with read-write permission to the machines specified by the Client
parameter and read-only to all others. The Client parameter can be either the host name
or the network name. If a rw host name is not specified, the directory is exported with
read-write permission to all.

access = Client[:Client,...]
Gives mount access to each client listed. A client can be either a host name or a
netgroup name. Each client in the list is first checked in the /etc/netgroup database and
then in the /etc/hosts database. The default value allows any machine to mount the
given directory.

anon= UID
If a request comes from a root user, use the user identification (UID) value as the
effective user ID.

The default value for this option is -2. Setting the value of the anon option to -1 disables
anonymous access. Note that, by default, secure NFS accepts nonsecure requests as
anonymous, and users who want more security can disable this feature by setting anon
to a value of -1.

root = HostName[:HostName,...]

Gives root access only to the root users from the specified HostName. The default is for
no hosts to be granted root access.

secure Requires clients to use a more secure protocol when accessing the directory.

A # (pound sign) anywhere in the file indicates a comment that extends to the end of the
line.

Examples
1. To export to netgroup clients, enter:

/usr -access=clients

2. To export to the world, enter:

62 Files Reference

/usr/local

3. To export to only these systems, enter:
/usr2 -access=hermes:zip:tutorial

4. To give root access only to these systems, enter:
/usr/tps -root=hermes:zip

5. To convert client root users to guest UID=100, enter:
/usr/new -anon=100

6. To export read-only to everyone, enter:
/usr/bin -ro

7. To allow several options on one line, enter:
/usr/stuff -access=zip,anon=-3,ro

Files

/etc/xtab Lists currently exported directories.
/etc/hosts Contains an entry for each host on the network.
/etc/netgroup Contains information about each user group on the network.

Related Information
The exportfs command.

The nfsd daemon.

List of NFS Files.

NFS Services in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

.fig File

Purpose
Contains a list of F file names.

Description
The .fig file is one of several intermediate files produced for each document by InfoCrafter. The .fig file is
an ASCII file that contains a list of F file names created for the document. F files are files containing
artwork.

Files

.fig Contains a list of F file names.

Related Information
The .srf file.

filesystems File

Purpose
Centralizes file system characteristics.

Chapter 1. System Files 63

Description
A file system is a complete directory structure, including a root (/) directory and any directories and files
beneath it. A file system is confined to a logical volume. All of the information about the file system is
centralized in the /etc/filesystems file. Most of the file system maintenance commands take their defaults
from this file. The file is organized into stanza names that are file system names and contents that are
attribute-value pairs specifying characteristics of the file system.

The filesystems file serves two purposes:

v It documents the layout characteristics of the file systems.

v It frees the person who sets up the file system from having to enter and remember items such as the
device where the file system resides, because this information is defined in the file.

File System Attributes
Each stanza names the directory where the file system is normally mounted. The file system attributes
specify all the parameters of the file system. The attributes currently used are:

Attribute Description
account Used by the dodisk command to determine the file systems to be processed by the accounting

system. This value can be either the True or False value.
boot Used by the mkfs command to initialize the boot block of a new file system. This specifies the name of

the load module to be placed into the first block of the file system.
check Used by the fsck command to determine the default file systems to be checked. The True value

enables checking while the False value disables checking. If a number, rather than the True value is
specified, the file system is checked in the specified pass of checking. Multiple pass checking,
described in the fsck command, permits file systems on different drives to be checked in parallel.

dev Identifies, for local mounts, either the block special file where the file system resides or the file or
directory to be mounted. System management utilities use this attribute to map file system names to
the corresponding device names. For remote mounts, it identifies the file or directory to be mounted.

free This value can be either True or False.
Obsolete and ignored.

mount Used by the mount command to determine whether this file system should be mounted by default. The
possible values of the mount attribute are:

automatic
Automatically mounts a file system when the system is started. For example, in the sample
file, the root file system line is the mount=automatic attribute. This means that the root file
system mounts automatically when the system is started. The True value is not used so that
mount all does not try to mount it, and umount all doesn’t try to unmount it. Also, it is not the
False value because certain utilities, such as the ncheck command, normally avoid file
systems with a value of the mount=False attribute.

False This file system is not mounted by default.

readonly
This file system is mounted as read-only.

True This file system is mounted by the mount all command. It is unmounted by the umount all
command. The mount all command is issued during system initialization to mount
automatically all such file systems.

nodename
Used by the mount command to determine which node contains the remote file system. If this
attribute is not present, the mount is a local mount. The value of the nodename attribute
should be a valid node nickname. This value can be overridden with the mount -n command.

size Used by the mkfs command for reference and to build the file system. The value is the number of
512-byte blocks in the file system.

type Used to group related mounts. When the mount -t String command is issued, all of the currently
unmounted file systems with a type attribute equal to the String parameter are mounted.

vfs Specifies the type of mount. For example, vfs=nfs specifies the virtual file system being mounted is an
NFS file system.

64 Files Reference

Attribute Description
vol Used by the mkfs command when initializing the label on a new file system. The value is a volume or

pack label using a maximum of 6 characters.
log The LVName must be the full path name of the filesystem logging logical volume name to which log

data is written as this file system is modified. This is only valid for journaled file systems.

Examples
The following is an example of a typical /etc/filesystems file:

Note: Modifying this file can cause several effects to file systems.
*
* File system information
*
default:

vol = "OS"
mount = false
check = false

/:
dev = /dev/hd4
vol = "root"
mount = automatic
check = true
log = /dev/hd8

/home:
dev = /dev/hd1
vol = "u"
mount = true
check = true
log = /dev/hd8

/home/joe/1:
dev = /home/joe/1
nodename = vance
vfs = nfs

/usr:
dev = /dev/hd2
vol = "usr"
mount = true
check = true
log = /dev/hd8

/tmp:
dev = /dev/hd3
vol = "tmp"
mount = true
check = true
log = dev/hd8

Note: The asterisk (*) is the comment character used in the /etc/filesystems file.

Files

/etc/filesystems Lists the known file systems and defines their characteristics.
/etc/vfs Contains descriptions of virtual file system types.

Chapter 1. System Files 65

Related Information
The backup command, df command, dodisk command, fsck command, mkfs command, mount
command, restore command, umount command.

The filesys.h file.

Directory Overview and Logical Volume Storage Overview in AIX 5L Version 5.2 System Management
Concepts: Operating System and Devices.

Foreign File for BNU

Purpose
Logs contact attempts from unknown systems.

Description
The /var/spool/uucp/.Admin/Foreign file lists access attempts by unknown systems. The
/usr/sbin/uucp/remote.unknown shell script appends an entry to the Foreign file each time a remote
computer that is not listed in the local /etc/uucp/Systems file attempts to communicate with that local
system.

Someone with root user authority can customize entries in the Foreign file to fit the needs of a specific
site by modifying the remote.unknown shell script.

Examples
This is a sample entry in the Foreign file:
Wed Sep 20 20:38:22 CDT 1989: call from the system merlin

System merlin, which is not listed in the /etc/uucp/Systems file, attempted to log in September 20 at
20:38 hours (10:38 p.m.). BNU did not allow the unknown system to log in.

Files

/var/spool/uucp/.Admin/Foreign Specifies the path of the Foreign file.
/etc/uucp/Permissions Describes access permissions for remote systems.
/etc/uucp/Systems Describes accessible remote systems.
/usr/sbin/uucp/remote.unknown Records contacts from unknown systems in the

Foreign file.
/var/spool/uucp/.Admin directory Contains BNU administrative files.

Related Information
The uucp command, uudemon.cleanu command, uux command.

The cron daemon, uucico daemon, uuxqt daemon.

BNU File and Directory Structure and Maintaining BNU in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

.forward File

Purpose
Automatically forwards mail as it is received.

66 Files Reference

Description
When mail is sent to a local user, the sendmail command checks for the $HOME/.forward file. The
$HOME/.forward file can contain one or more addresses or aliases. If the file exists, the message is not
sent to the user. The message is sent to the addresses or aliases in the .forward file. For example, if user
mickey’s .forward file on host disney contains:
donald@wonderful.world.disney
pluto

Copies of messages sent to mickey are forwarded to user donald on host wonderful.world.disney, and to
pluto on the local system.

Notes:

1. The addresses listed in the .forward file can be a comma-separated list of addresses; for example:
donald@wonderful.world.disney, pluto

2. Addresses can specify programs. The following example forwards a message to the vacation
command:
mickey, "|/usr/bin/vacation mickey"

This example sends a message to user mickey and to the vacation program.

3. This file must be created by the user in the $HOME directory.

To stop forwarding mail, use the rm command to remove the .forward file from your home directory:
rm .forward

The .forward file is deleted. Incoming mail is delivered to the user’s system mailbox.

Files

$HOME/.forward Specifies the path of the file.

Related Information
The mail command, vacation command.

Creating an Alias or Distribution List, Forwarding Mail, Sending a Vacation Message Notice, Customizing
the Mail Program in AIX 5L Version 5.2 System User’s Guide: Communications and Networks.

ftpaccess.ctl File

Purpose
Specifies FTP host access parameters.

Description
The /etc/ftpaccess.ctl file is searched for lines that start with allow:, deny:, readonly:, writeonly:,
readwrite:, useronly:, grouponly:, herald: and/or motd:. Other lines are ignored. If the file doesn’t exist,
then ftp access is allowed for all hosts. The allow: and deny: lines are for restricting host access. The
readonly:, writeonly: and readwrite: lines are for restricting ftp reads (get) and writes (put). The
useronly: and grouponly: lines are for defining anonymous users. The herald: and motd: lines are for
multiline messages before and after login.

Chapter 1. System Files 67

Syntax
The syntax for all lines in /etc/ftpaccess.ctl are in the form:
keyword: value, value, ...

where one can specify one or more values for every keyword. One can have multiple lines with the same
keyword. The lines in /etc/ftpaccess.ctl are limited to 1024 characters and anything greater than 1024
characters will be ignored. The syntax for the allow: and deny: lines are:
allow: host, host, ... dent: host, host, ...

If an allow: line is specified, than only the hosts listed in all the allow: lines are allowed ftp access. All
other hosts will be refused ftp access. If there are no allow: line(s), then all hosts will be given ftp access
except those hosts specified in the deny: line(s). The host can be specified as either a hostname or IP
address.

The syntax for the readonly:, writeonly: and readwrite: lines are:
readonly: dirname, dirname, ... writeonly: dirname, dirname, ... readwrite: dirname, dirname, ...

The readonly: lines list the readonly directories and the writeonly: lines list the writeonly directories. If
one wants read access in a writeonly directory or if one wants write access in a readonly directory, then
access is denied. All other directories are granted access except when a readwrite: line(s) is specified. If
a readwrite: line(s) is specified, only directories listed in the readwrite: line and/or listed in the readonly:
line are granted access for reading, and only directories listed in the readwrite: line and/or listed in the
writeonly: line are granted access for writing. Also, these lines can have a value of ALL or NONE.

The syntax for the useronly: and grouponly: lines are:
useronly: username, username, ... grouponly: groupname, groupname, ...

The username is from /etc/passwd and the groupname is from /etc/group. The useronly: line defines an
anonymous user. The grouponly: line defines a group of anonymous users. These anonymous users are
similar to the user anonymous in that ftp activity is restricted to their home directories.

The syntax for the herald: and motd: lines are:
herald: path motd: on|off

The path is the full path name of the file that contains the multiline herald that will be displayed before
login. When the motd: line has a value of ON, then the $HOME/motd file contains the multiline message
that will displayed after login. If the user is a defined anonymous user, then the /etc/motd file contains the
multiline message that will displayed after login. (Note that /etc/motd is in the anonymous user’s chroot’ed
home directory). The default for the motd: line is OFF.

/etc/group File

Purpose
Contains basic group attributes.

Description
The /etc/group file contains basic group attributes. This is an ASCII file that contains records for system
groups. Each record appears on a single line and is the following format:

Name:Password:ID:User1,User2,...,Usern

You must separate each attribute with a colon. Records are separated by new-line characters. The
attributes in a record have the following values:

68 Files Reference

Attribute Description
Name Specifies a group name that is unique on the system. The name is a string

of 8 bytes or less. See the mkgroup command for information on the
restrictions for naming groups.

Password Not used. Group administrators are provided instead of group passwords.
See the /etc/security/group file for more information.

ID Specifies the group ID. The value is a unique decimal integer string.
User1,User2,...,Usern

Identifies a list of one or more users. Separate group member names with
commas. Each user must already be defined in the local database
configuration files.

Do not use a : (colon) in any of the attribute fields. For an example of a record, see the ″Examples″
section . Additional attributes are defined in the /etc/security/group file.

Note: Certain system-defined group and user names are required for proper installation and update of the
system software. Exercise care before replacing the /etc/group file to ensure that no
system-supplied groups or users are removed.

You should access the /etc/group file through the system commands and subroutines defined for this
purpose. You can use the following commands to manage groups:

v chgroup

v chgrpmem

v chuser

v lsgroup

v mkgroup

v mkuser

v rmgroup

To change the Name parameter, you first use the mkgroup command to add a new entry. Then, you use
the rmgroup command to remove the old group. To display all the attributes in the file, use the lsgroup
command.

You can use the chgroup, chgrpmem, or chuser command to change all user and group attributes. The
mkuser command adds a user whose primary group is defined in the /usr/lib/security/mkuser.default file
and the rmuser command removes a user. Although you can change the group ID with the chgroup
command, this is not recommended.

Security
Access Control: This file should grant read (r) access to all users and grant write (w) access only to the
root user and members of the security group.

Examples
A typical record looks like the following example for the staff group:
staff:!:1:shadow,cjf

In this example, the GroupID parameter is 1 and the users are defined to be shadow and cjf.

Files

/etc/group Contains basic group attributes.
/etc/security/group Contains the extended attributes of groups.

Chapter 1. System Files 69

/etc/passwd Contains the basic attributes of users.
/etc/security/passwd Contains password information.
/etc/security/user Contains the extended attributes of users.
/etc/security/environ Contains the environment attributes of users.
/etc/security/limits Contains the process resource limits of users.
/etc/security/audit/config Contains audit system configuration information.

Related Information
The chgroup command, chgrpmem command, lsgroup command, mkgroup command, rmgroup
command, setgroups command, setsenv command.

The enduserdb subroutine, getgroupattr subroutine, IDtogroup subroutine, nextgroup subroutine,
putgroupattr subroutine, setuserdb subroutine.

File and System Security Overview in AIX 5L Version 5.2 System User’s Guide: Operating System and
Devices.

/etc/security/group File

Purpose
Contains extended group attributes.

Description
The /etc/security/group file contains extended group attributes. This is an ASCII file that contains a
stanza for each system group. Each stanza is identified by a group name from the /etc/group file followed
by a : (colon) and contains attributes in the form Attribute=Value. Each attribute pair ends with a new-line
character as does each stanza. You can have multiple default stanzas in the /etc/security/group file. A
default stanza applies to all of the stanzas that follow, but does not apply to the stanzas preceding it.

A stanza can have either or both of the following attributes:

Attribute Description
adms Defines the group administrators. Administrators are users who can perform administrative tasks

for the group, such as setting the members and administrators of the group. This attribute is
ignored if admin = true, since only the root user can alter a group defined as administrative. The
value is a list of comma-separated user login-names. The default value is an empty string.

admin Defines the administrative status of the group. Possible values are:

true Defines the group as administrative. Only the root user can change the attributes of
groups defined as administrative.

false Defines a standard group. The attributes of these groups can be changed by the root
user or a member of the security group. This is the default value.

dce_export Allows the DCE registry to overwrite the local group information with the DCE group information
during a DCE export operation. Possible values are:

true Local group information will be overwritten.

false Local group information will not be overwritten.

For a typical stanza, see the ″Examples″ section .

You should access the /etc/security/group file through the system commands and subroutines defined for
this purpose. You can use the following commands to manage groups:

v mkgroup

70 Files Reference

v chgroup

v chgrpmem

v lsgroup

v rmgroup

The mkgroup command adds new groups to the /etc/group file and the /etc/security/group file. Use this
command to create an administrative group. You can also use the mkgroup to set the group administrator.

Use the chgroup command to change all the attributes. If you are an administrator of a standard group,
you can change the adms attribute for that group with the chgrpmem command.

The lsgroup command displays both the adms and the admin attributes. The rmgroup command
removes the entry from both the /etc/group file and the /etc/security/group file.

To write programs that affect attributes in the /etc/security/group file, use the subroutines listed in Related
Information.

Security
Access Control: This file should grant read (r) access to the root user and members of the security group,
and to others as permitted by the security policy for the system. Only the root user should have write (w)
access.

Auditing Events:

Event Information
S_GROUP_WRITE file name

Examples
A typical stanza looks like the following example for the finance group:
finance:

admin = false
adms = cjf, scott, sah

Files

/etc/security/group Specifies the path to the file.
/etc/group Contains the basic attributes of groups.
/etc/passwd Contains the basic attributes of users.
/etc/security/passwd Contains password information.
/etc/security/user Contains the extended attributes of users.
/etc/security/environ Contains the environment attributes of users.
/etc/security/limits Contains the process resource limits of users.
/etc/security/audit/config Contains audit system configuration information.
/etc/security/lastlog Contains last login information.

Related Information
The chgroup command, chgrpmem command, lsgroup command, mkgroup command, rmgroup
command, setgroups command.

The enduserdb subroutine, getgroupattr subroutine, IDtogroup subroutine, nextgroup subroutine,
putgroupattr subroutine, setuserdb subroutine.

Chapter 1. System Files 71

File and System Security Overview in AIX 5L Version 5.2 System Management Guide: Operating System
and Devices.

Workload Manager groupings File

Purpose
Defines attribute value groupings along with their associated values.

Description
The attribute value groupings file is in the configuration directory. It resides along with the rules file in the
SuperConf and SubConf directories.

The attribute value groupings file is formatted as a flat ASCII file list with attribute grouping names
followed by an equal (=) sign and the list of all attribute values in the group, separated by commas. The
list of attribute values will be terminated by a carriage return. The list of attribute values can be continued
onto multiple lines by preceding carriage returns with a backslash. The only whitespace that is significant
in the groupings file is a carriage return. Other whitespace characters are removed during file parsing.
Comments are lines preceded by an asterisk.

Each attribute grouping definition is limited to WLM_GROUPING_LEN characters. The attribute grouping
name and the list of attribute values cannot be an empty string.

Use of Attribute Groupings
Attribute groupings can be used as element of a selection criteria in the rules file for superclasses or
subclasses. The attribute grouping name must be preceded by a dollar sign ($) and will be replaced by the
list of all attribute values associated with itself. No special character (*,[,],-,?) except exclusion character ’!’
can be applied to an attribute grouping name. Attribute groupings cannot been used in the class field.
"rules" files:
* class resvd user group application type tag
classA - $trusted,!$nottrusted - - - -
classB - - - $shell,!/bin/zsh - -
classC - - $rootgroup -

Syntax
The syntax of the attribute values is the same as in the rules file, including potential wildcards ([,],*,-,?,+).
The use of the exclusion character ’!’ in the attribute values list is not allowed. This restriction is necessary
to avoid a confusing interpretation of an attribute value grouping used in the class assignement file
preceded by an exclusion character. Syntax is checked only when attribute groupings are used (rules
processing during a configuration load or explicit check with wlmcheck command). The groupings file is
not mandatory. By default, no attribute grouping is defined. Attribute value groupings of a groupings file
are defined and usable only in the scope of their configuration directory (SuperConfDir or SubConfDir
level). If it exists, the groupings file is copied in the .running directory when the configuration is loaded
into the kernel as it is done with other configuration files. No command interface is provided to update the
attribute groupings file.

Example
"groupings" file:
* attribute groupings definition
* will be used in the rules file
trusted = user[0-9][0-9],admin*
nottrusted = user23, user45
shell=/bin/?sh,\

/bin/sh,\
/bin/tcsh

rootgroup=system,bin,sys,security,cron,audit

72 Files Reference

Files

$HOME/.groupings Defines attribute value groupings along with their associated values.

Related Information
The rules file.

hostmibd.conf File

Purpose
Defines the configuration parameters for hostmibd dpi2 sub-agent.

Description
The hostmibd.conf file provides the configuration information for the hostmibd dpi2 sub-agent. This file
can be changed while the hostmibd dpi2 sub-agent is running. If the refresh command is issued, the
hostmibd dpi2 sub-agent will reread this configuration file. The hostmibd dpi2 sub-agent must be under
System Resource Control (SRC) for the refresh command to force the reread. To accomplish the reread,
as root user, run:
refresh -s hostmibd

Keywords
The directives are specified in the form of <keyword>=<value>. The keyword is case-insensitive. The value
passed is also case-sensitive.

LogFilename
The name of the most recent log file. Less recent log files have the number 1 to (n - 1) appended
to their names. The larger the number, the less recent the file.

logFileSize
The Size of log files in K bytes. Maximum size of a log file. When the size of the most recent log
file reaches this value, it is renamed and a new log file is created.

numLogFiles
The number of log files desired. The maximum value for numLogFiles is 4. A new file is created
when the size of the log file is equal or more than the size specified by the keyword logFileSize.
When the number of log files reaches the numLogFiles the log files start rotating.

tracelevel
The tracing/debug level to do.

8 = DPI level 1
16 = DPI level 2
32 = Internal level 1
64 = Internal level 2
128 = Internal level 3

Add the numbers for multiple trace levels.

Example
logFileName=/usr/tmp/hostmibd.log
logFileSize=0
numLogFiles=0
tracelevel=0

Chapter 1. System Files 73

Files

/etc/hostmibd.conf Defines the configuration parameters for hostmibd dpi2 sub-agent.

Related Information
The hostmibd, snmpd, and refresh commands.

image.data File

Purpose
Contains information on the image installed during the Base Operating System installation process.

Description
The image.data file contains information describing the image installed during the BOS installation
process. This information includes the sizes, names, maps, and mount points of logical volumes and file
systems in the root volume group. The mkszfile command generates the image.data file. It is not
recommended that the user modify the file. Changing the value of one field without correctly modifying any
related fields can result in a failed installation and a corrupted backup image. The only exception to this
recommendation is the SHRINK field, which the user may modify to instruct the BOS installation routines to
create the file systems as specified in the image.data file or to create the file systems only as large as is
required to contain all the data in the file system.

The BOS installation process also takes input from the image.data file regarding defaults for the machine
being installed. Any default values in the image.data file will override values obtained when the BOS
installation queries the hardware topology and existing root volume group. The image.data file resides in
the / directory.

This file is part of System Backup and BOS Install Utilities.

The image.data file is arranged in stanza format. Each stanza contains one or more fields. These stanzas
include the following:

v image_data

v logical_volume_policy

v ils_data

v vg_data

v source_disk_data

v lv_data

v fs_data

v post_install_data

v post_restvg

image_data Stanza

Field Description
IMAGE_TYPE Identifies the format of the image. Examples include backup file format (bff) and tar format.
DATE_TIME Contains the date and time that the image was taken.
UNAME_INFO Identifies the system and system level data associated with the image.
PRODUCT_TAPE Specifies whether the image is a product image or a mksysb image. The possible field

values are yes or no.
USERVG_LIST Lists the user volume groups defined in the system.

74 Files Reference

Field Description
OSLEVEL Identifies the version.release.maintenance.fix level of the system at the time the image was

taken

Note: The PRODUCT_TAPE and USERVG_LIST fields are only present for the ROOTVG volume group.

logical_volume_policy Stanza

Field Description
SHRINK Instructs BOS install routines to create the file systems as they are specified in the image.data file

or create the smallest file systems required to contain all the data in the file system. The field value
specified can be yes (shrink file systems) or no (use image.data file specifications).

EXACT_FIT The field value specified can be yes or no. If yes is specified, the disk information listed in the
source_disk_data stanza must match the actual disks found on the target machine during
installation.

ils_data Stanza

Field Description
LANG Sets the language used by the BOS Install program.

vg_data Stanza
Notes:

1. The image.data file can contain only one vg_data stanza.

2. Starting with AIX 4.3.3, two new fields (BIGVG and TFACTOR) have been added to the vg_data
Stanza

Field Description
VGNAME Specifies the volume group name.
PPSIZE Specifies the size of the physical partition for the volume group.
VARYON Activates the volume group and all associated logical volumes so that the

volume group is available for use. The field value can be yes or no.
VG_SOURCE_DISK_LIST Lists the disks in the volume group.
QUORUM If set to 1, indicates the volume group is to be automatically varied off after

losing its quorum of physical volumes.
CONC_CAPABLE Indicates a volume group is concurrent capable.
CONC_AUTO Indicates a volume group is to be varied on automatically in concurrent mode.
BIGVG Indicates a volume group is to be created as a big vg format volume group.

This can accommodate up to 128 physical volumes and 512 logical volumes.
TFACTOR Indicates a change in the limit of the number of physical partitions per physical

volume.
ENH_CONC_CAPABLE Indicates a volume group is enhanced concurrent capable.

source_disk_data Stanza

Note: The image.data file contains one source_disk_data stanza for each disk in the root volume group.

Field Description
PVID Specifies the 16 digit physical volume identifier for the disk.
CONNECTION Specifies the combination of the parent and the connwhere attribute associated with a disk. The

format for this field is: parent attribute//connwhere attribute.
LOCATION Specifies the locations of the disks in the root volume group.
SIZE_MB Specifies the size, in MB, of the disks in the root volume group.
HDISKNAME Specifies the names of the disks in the root volume group.

Chapter 1. System Files 75

lv_data Stanza

Note: The image.data file contains one lv_data stanza for each logical volume created on the system.

Field Description
VOLUME_GROUP Specifies the logical volume group name. Volume group names must

be unique, system wide, and can range from 1 to 15 characters.
LV_SOURCE_DISK_LIST Lists the disks in the logical volume.
LV_IDENTIFIER Contains the identifier of the logical volume.
LOGICAL_VOLUME Contains the name of the logical volume.
PERMISSION Sets the access permissions. The field value can be read/write or

read only.
VG_STAT Indicates the state of the volume group. If the volume group is

activated with the varyonvg command, the value of the VG_STAT field
is either active/complete or active/partial. An active/complete
field value indicates that all physical volumes are active, while an
active/partial field value indicates that all physical volumes are not
active. If the volume group is not activated with the varonvg
command, the VG_STAT field value is inactive.

TYPE Describes the logical volume type.
MAX_LPS Sets the maximum number of logical partitions within the logical

volume.
COPIES Specifies the number of physical partitions created for each logical

partition during the allocation process.
LPS Specifies the number of logical partitions currently in the logical

volume.
STALE_PPs Specifies the number of physical partitions in the logical volume that

are not current.
INTER_POLICY Specifies the inter-physical allocation policy. The field value can be

minimum or maximum.
INTRA_POLICY Specifies the intra-physical allocation policy. The possible field values

are either middle, center, or edge.
MOUNT_POINT Specifies the file-system mount point for the logical volume, if

applicable.
MIRROR_WRITE_CONSISTENCY Specifies mirror-write consistency state. The field value can be off or

on.
LV_SEPARATE_PV Specifies a yes, no, or super field value for strict allocation. A yes

value for strict allocation states that no copies for a logical partition
are allocated on the same physical volume. A no value for strict
allocation (non-strict) states that at least one occurrence of two
physical partitions belong to the same logical partition. A super value
for strict allocation (super strictness) states that no partition from one
mirror copy may reside on the same disk as another mirror copy.

LV_STATE Describes the state of the logical volume. An Opened/stale value
indicates the logical volume is open but contains physical partitions
that are not current. An Open/syncd value indicates the logical volume
is open and its physical partitions are current, or synchronized. A
Closed value indicates the logical volume has not been opened.

WRITE_VERIFY Specifies the field value of the write verify state as on or off.
PP_SIZE Provides the size physical partition.
SCHED_POLICY Specifies a sequential or parallel scheduling policy.
PP Specifies the number of physical partitions currently in the logical

volume.
BB_POLICY Specifies the bad block relocation policy.
RELOCATABLE Indicates whether the partitions can be relocated if a reorganization of

partition allocation takes place. The field value can be yes or no.
UPPER_BOUND Specifies the maximum number of physical volumes for allocation.

76 Files Reference

Field Description
LABEL Specifies the label field for the logical volume.
MAPFILE Provides the full path name to a map file to be used in creating the

logical volume.
LV_MIN_LPS Specifies the minimum size of the logical volume to use when

shrinking the logical volume.
STRIPE_WIDTH Specifies the number of physical volumes being striped across.
STRIPE_SIZE Specifies the number of bytes per stripe. The field value must be a

power of two, between 4K and 128K; for example, 4K, 8K, 16K, 32K, 64K,
or 128K.

SERIALIZE_IO Turns on/off serialization of overlapping IOs. If serialization is turned
on, then overlapping IOs are not allowed on a block range and only a
single IO in a block range is proccessed at any one time. Most
applications (file systems and databases) do serialization, so
serialization should be turned off.

fs_data Stanza

Field Description
FS_NAME Specifies the mount point of the file system.
FS_SIZE Specifies the size, in 512-byte blocks, of the file system.
FS_MIN_SIZE Specifies the minimum size required to contain the files of the file system. This size is used

when the SHRINK field in the logical_volume_policy stanza has a field value of yes.
FS_LV Provides the logical volume name. The name must contain the /dev/ prefix. An example of an

appropriate name is /dev/hd4.
FS_FS Specifies the fragmentation size of the system. This value is optional.
FS_NBPI Specifies the number of bytes per inode. This value is optional.
FS_COMPRESS Designates whether the file system should be compressed or not. The field value can be LZ,

which compresses the file system, or the no field value.
FS_BF Enables the file system for files greater than 2 GB. The possible values are true or false.
FS_AGSIZE Specifies the allocation group size. The possible values are 8, 16, 32, or 64. The allocation

group size is specified in units of megabytes.
FS_JFS2_BS Specifies the file system block size in bytes, 512, 1024, 2048, or 4096 bytes.
FS_JFS2_SPARSE Specifies when files are created with holes. The enhanced journaled file system (JFS2)

allocates disk blocks for those holes and fills the holes with 0s.
FS_JFS2_INLINELOG Specifies that the journal log for the enhanced journaled file system (JFS2) is within the file

system.
FS_JFS2_SIZEINLINELOGSpecifies the size, in megabytes, for the optional inline journal log. The default is the size of the

enhanced journaled file system (JFS2) divided by 256.

post_install_data Stanza

Field Description
BOSINST_FILE Provides the full path name of a file or command to execute after BOS install completes.

post_restvg Stanza

Field Description
RESTVG_FILE Specifies the full path name of the file or command to execute after the restvg process

completes.

Note: The post_install_data stanza exists for the ROOTVG volume group and the post_restvg stanza is
present for other volume groups.

Chapter 1. System Files 77

Related Information
The mkszfile command, mkfs command, mklv command, and lslv command.

INed Files

Purpose
Contains programs and data used by the INed program.

Description
The /usr/lib/INed directory contains a number of files and subdirectories used internally by the INed
program. The /usr/lib/nls/msg/$LANG directory contains files of translatable text. This directory also
contains other files that are not used by INed.

In the following file names, $LANG is the value of the lib/Languageenvironment variable, which indicates
the national language currently being used.

bin Directory containing programs called by the editor to
perform various functions. Do not run these programs
from the command line.

FATAL.LOG Log of error messages the editor records when it
encounters a system problem.

helpers Directory containing programs called by the editor to
help work on certain kinds of data. Files ending in .x or
named x use the helper named x.help. Helpers typically
supply the functions listed on the INed local menus.

forms Directory containing forms used by the INed program.
Files ending in .x or named x use the x.ofm form. The
forms are binary files used directly by the editor in
generating displays for structured files.

/usr/lib/nls/msg/$LANG/keys.map File displayed when the Help command key (F1) is
pressed and the keymap option is selected.

termcap Directory containing the files used by the editor to read
input from the terminals and write output to the
terminals. The def.trm file is the readable structured file,
and the terms.bin file is the compressed version.

/usr/lib/nls/msg/$LANG Directory containing help message files and other files
containing translated text used by the INed editor. This
directory also contains other files not used by INed.

Files

/usr/lib/INed directory Contains files and subdirectories used by the INed
program.

/usr/lib/nls/msg/$LANG directory Contains files of translatable text.

Related Information
The at command, cat command, format command, nl command, piobe command, qprt command, sort
command, stty command, trbsd command, untab command.

78 Files Reference

.info File

Purpose
Stores configuration information used by the Network Install Manager (NIM).

Description
The .info file contains a series of Korn shell variable assignments used by NIM. The .info file is created
by NIM for each client. During network boot, the rc.boot program uses several of these variables to
control processing.

If a client is initialized by NIM, the .info file is copied into that client’s /etc directory as the /etc/niminfo
file. The nimclient command uses the /etc/niminfo file to communicate with the NIM master server.

Note: The following variable groups are based upon the function of the variables that they contain. The
.info file itself is not divided into categories.

Variables used directly by the rc.boot program

Variable Description
ROUTES Contains all the routing information the client needs in order to access any allocated NIM resource.

This information is presented as a series of space-separated stanzas, each in the following format:

DestinationIPAddress:DestinationSubnet :GatewayIPAddress
SPOT Specifies the location of the shared product object tree (SPOT) to be used during the boot process.

This variable contains the host and pathname of the client’s SPOT in the following format:

HostName:SPOTDirectory
RC_CONFIG Specifies the file name of the rc.config script to use.
NIM_HOSTS Provides information used to construct an /etc/hosts file for the client. The value is formatted as

follows:

IPAddress:HostName IPAddress:HostName ...

Variables used by any rc.config script

Variable Description
ROOT Specifies the host and path name of the client’s root directory in the following format:

HostName:RootDirectory
MOUNTS Contains a series of space-separated stanzas, each composed of a remote directory specification and

the point where it should be mounted. The stanzas are in the following format:

HostName:RemoteDirectory:LocalDirectory

Variables used by the nim commands

Variable Description
NIM_NAME Designates the name of the client’s NIM machines object.
NIM_CONFIGURATION Specifies the client’s NIM configuration machine type.
NIM_MASTER Specifies the IP address of the NIM master server.
NIM_MASTER_PORT Specifies the port number to use for client communications.
NIM_REGISTRATION_PORT Specifies the port number to use for client registration.
NIM_MAX_RETRIES Specifies the maximum number of retries for communication attempts with

the nimesis daemon.
NIM_MAX_DELAY Sets the amount of time to wait between retries for communication with the

nimesis daemon.

Chapter 1. System Files 79

Variables used by BOS Install
The following variables are used by NIM to control Base Operating System (BOS) installation operation:

Variable Description
NIM_BOSINST_DATA Specifies the RAM file system path name to the bosinst.data file to be used. This

variable has the following format:

Pathname
NIM_BOS_IMAGE Specifies the RAM file system path name to the BOS image.
NIM_CUSTOM Specifies the path name of the customization script to execute after BOS installation.

Variables used by the rc.dd_boot Script
The rc.dd script uses the following variables to perform boot specific processing to create certain NIM
resources.

Variable Description
DTLS_PAGING_SIZE Contains the paging-space size that you specify. If you have not set the paging

space, the value is NULL and the rc.dd_boot script defaults to a paging space twice
that of the client’s RAM space.

DTLS_LOCAL_FS Contains a list of acronyms specifying the filesystems to be created locally on the
client. The possible values are tmp and home.

Examples
The following is an example of a .info file:
#----------------Network Install
Manager---------
warning - this file contains NIM configuration information
and should only be updated by NIM
export NIM_NAME=dua
export NIM_CONFIGURATION=standalone
export NIM_MASTER_HOSTNAME=satu
export NIM_MASTER_PORT=1058
export NIM_REGISTRATION_PORT=1059
export RC_CONFIG=rc.bos_inst
export SPOT=tiga:/usr
export NIM_CUSTOM=/tmp/dua.script
export NIM_BOS_IMAGE=/SPOT
export NIM_BOS_FORMAT=master
export NIM_HOSTS=" 130.35.130.1:satu 130.35.130.3:tiga "
export MOUNTS=" tiga:/export/logs/dua:/var/adm/ras:dir
tiga:/export/nim/simages
:/SPOT/usr/sys/inst.images:dir
satu:/export/nim/scripts/dua.script:tmp/dua.script:file "

Related Information
The lsnim command, nim command, nimclient command, nimconfig command, niminit command.

inittab File

Purpose
Controls the initialization process.

80 Files Reference

Description
The /etc/inittab file supplies the script to the init command’s role as a general process dispatcher. The
process that constitutes the majority of the init command’s process dispatching activities is the /etc/getty
line process, which initiates individual terminal lines. Other processes typically dispatched by the init
command are daemons and the shell.

The /etc/inittab file is composed of entries that are position-dependent and have the following format:
Identifier:RunLevel:Action:Command

Note: The colon character (:) is used as a delimiter as well as a comment character. To comment out an
inittab entry, add : at the beginning of the entry. For example:
:Identifier:RunLevel:Action:Command

Each entry is delimited by a newline character. A backslash (\) preceding a newline character indicates the
continuation of an entry. There are no limits (other than maximum entry size) on the number of entries in
the /etc/inittab file. The maximum entry size is 1024 characters. The entry fields are:

Identifier
A string (one or more than one character) that uniquely identifies an object.

RunLevel
The run level in which this entry can be processed. Run levels effectively correspond to a
configuration of processes in the system. Each process started by the init command is assigned
one or more run levels in which it can exist. Run levels are represented by the numbers 0 through
9. For example, if the system is in run level 1, only those entries with a 1 in the runlevel field are
started. When you request the init command to change run levels, all processes without an entry
in the runlevel field for the target run level receive a warning signal (SIGTERM). There is a
20-second grace period before processes are forcibly terminated by the kill signal (SIGKILL). The
runlevel field can define multiple run levels for a process by selecting more than one run level in
any combination from 0 through 9. If no run level is specified, the process is assumed to be valid
at all run levels.

There are three other values that appear in the runlevel field, even though they are not true run
levels: a, b, and c. Entries that have these characters in the runlevel field are processed only
when the telinit command requests them to be run (regardless of the current run level of the
system). They differ from run levels in that the init command can never enter run level a, b, or c.
Also, a request for the execution of any of these processes does not change the current run level.
Furthermore, a process started by an a, b, or c command is not killed when the init command
changes levels. They are only killed if their line in the /etc/inittab file is marked off in the action
field, their line is deleted entirely from /etc/inittab, or the init command goes into single-user
mode.

Action Tells the init command how to treat the process specified in the process field. The following
actions are recognized by the init command:

respawn
If the process does not exist, start the process. Do not wait for its termination (continue
scanning the /etc/inittab file). Restart the process when it dies. If the process exists, do
nothing and continue scanning the /etc/inittab file.

wait When the init command enters the run level that matches the entry’s run level, start the
process and wait for its termination. All subsequent reads of the /etc/inittab file while the
init command is in the same run level will cause the init command to ignore this entry.

once When the init command enters a run level that matches the entry’s run level, start the
process, and do not wait for its termination. When it dies, do not restart the process. When
the system enters a new run level, and the process is still running from a previous run

Chapter 1. System Files 81

level change, the program will not be restarted. All subsequent reads of the /etc/inittab file
while the init command is in the same run level will cause the init command to ignore this
entry.

boot Process the entry only during system boot, which is when the init command reads the
/etc/inittab file during system startup. Start the process, do not wait for its termination,
and when it dies, do not restart the process. In order for the instruction to be meaningful,
the run level should be the default or it must match the init command’s run level at boot
time. This action is useful for an initialization function following a hardware reboot of the
system.

bootwait
Process the entry the first time that the init command goes from single-user to multi-user
state after the system is booted. Start the process, wait for its termination, and when it
dies, do not restart the process. If the initdefault is 2, run the process right after boot.

powerfail
Execute the process associated with this entry only when the init command receives a
power fail signal (SIGPWR).

powerwait
Execute the process associated with this entry only when the init command receives a
power fail signal (SIGTERM), and wait until it terminates before continuing to process the
/etc/inittab file.

off If the process associated with this entry is currently running, send the warning signal
(SIGTERM), and wait 20 seconds before terminating the process with the kill signal
(SIGKILL). If the process is not running, ignore this entry.

ondemand
Functionally identical to respawn, except this action applies to the a, b, or c values, not to
run levels.

initdefault
An entry with this action is only scanned when the init command is initially invoked. The
init command uses this entry, if it exists, to determine which run level to enter initially. It
does this by taking the highest run level specified in the runlevel field and using that as its
initial state. If the runlevel field is empty, this is interpreted as 0123456789; therefore, the
init command enters run level 9. Additionally, if the init command does not find an
initdefault entry in the /etc/inittab file, it requests an initial run level from the user at boot
time.

sysinit
Entries of this type are executed before the init command tries to access the console
before login. It is expected that this entry will only be used to initialize devices on which
the init command might try to ask the run level question. These entries are executed and
waited for before continuing.

Command
A shell command to execute. The entire command field is prefixed with exec and passed to a
forked sh as sh -c exec command. Any legal sh syntax can appear in this field. Comments can be
inserted with the # comment syntax.

The getty command writes over the output of any commands that appear before it in the inittab
file. To record the output of these commands to the boot log, pipe their output to the alog -tboot
command.

The stdin, stdout and stdferr file descriptors may not be available while init is processing inittab
entries. Any entries writing to stdout or stderr may not work predictably unless they redirect their
output to a file or to /dev/console.

82 Files Reference

The following commands are the only supported method for modifying the records in the /etc/inittab file:

Command Purpose
chitab Changes records in the /etc/inittab file.
lsitab Lists records in the /etc/inittab file.
mkitab Adds records to the /etc/inittab file.
rmitab Removes records from the /etc/inittab file.

Examples
1. To start the ident process at all run levels, enter:

ident:0123456789:Action:Command

2. To start the ident process only at run level 2, enter:
ident:2:Action:Command

3. To disable run levels 0, 3, 6-9 for the ident process, enter:
ident:1245:Action:Command

4. To start the rc command at run level 2 and send its output to the boot log, enter:
rc:2:wait:/etc/rc 2>&1 | alog -tboot >
/dev/console

Files

/etc/inittab Specifies the path of the inittab file.
/usr/sbin/getty Indicates terminal lines.

Related Information
The chitabcommand, init command, lsitab command, mkitab command, rmitab command, telinit
command.

irs.conf File

Purpose
Specifies the ordering of certain name resolution services.

Description
The /etc/irs.conf file is used to control the order of mechanisms that the resolver libraries use in searching
for network-related data. The following subroutines resolve host names, networks, services, protocols, and
netgroups:

Network Data Subroutines
host names gethostbyname, gethostaddr, gethostent
networks getnetbyname, getnetbyaddr, getnetent
services getservbyname, getservbyaddr, getservent
protocols getprotobyname, getprotobyaddr, getprotoent
netgroups getnetgrent

Because these subroutines are commonly used in many TCP/IP applications, using the irs.conf file can
control the directions of the queries made by these applications as well.

By default, the subroutines use the lookup mechanisms to resolve host names in this order:

1. Domain Name Server (DNS)

Chapter 1. System Files 83

2. Network Information Service (NIS), if active

3. local files

By default, the subroutines use the lookup mechanisms to resolve networks in this order:

1. DNS

2. NIS, if active

3. local files

By default, the subroutines use the lookup mechanisms to resolve other maps in this order:

1. NIS, if active

2. local files

You can override the default order by modifying the /etc/irs.conf configuration file and specifying the
desired ordering.

The settings in the /etc/netsvc.conf configuration file override the settings in the /etc/irs.conf file. The
NSORDER environment variable overrides the settings in the /etc/irs.conf and the /etc/netsvc.conf files.

To use DNS to obtain information concerning netgroups, protocols, and services, you must create and use
a Hesiod DNS Zone in the following format:

map mechanism [option]

The following values are available for the map parameter:

Value Description
services Lists the port numbers, transport protocols, and names of well-known services
protocols Retrieves official names and protocol numbers of protocol aliases
hosts Defines the mappings between host names and their IP addresses
networks Retrieves network names and addresses
netgroup Retrieves groups of hosts, networks, and users in this group

The following values are available for the mechanism parameter:

Value Description
local Examines local configuration files (/etc/hosts, /etc/protocols, /etc/services, /etc/netgroup, and

/etc/networks files)
dns Queries DNS; the /etc/resolv.conf file must be configured for this mechanism to work.
nis Queries NIS; the NIS client must be active on the system for this mechanism to work.
nis+ Queries NIS+; The NIS+ client must be active on the system for this mechanism to work.
ldap Queries the LDAP server; the resolv.ldap file must be configured for this mechanism to work.

Note: You can only assign the value hosts to the map parameter for ldap. Although still supported, the
use of the ldap mechanism is deprecated. Use of the nis_ldap mechanism is recommended.

nis_ldap Queries the LDAP server configured in the ldap.cfg file. The LDAP client should be set up on the system
using mksecldap command, to use this mechanism. All map types are supported by nis_ldap.

local4 Examines local configuration files for IPv4 addresses.
local6 Examines local configuration files for IPv6 addresses.
dns4 Queries DNS for A records (IPv4 addresses); the /etc/resolv.conf file must be configured for this

mechanism to work.
dns6 Queries DNS for AAAA records (IPv6 addresses); the /etc/resolv.conf file must be configured for this

mechanism to work.
nis4 Queries NIS for information about IPv4 addresses; the NIS client must be active on the system to use

this mechanism.

84 Files Reference

Value Description
nis6 Queries NIS for information about IPv6 addresses; the NIS client must be active on the system to use

this mechanism.
ldap4 Queries the LDAP server for information about IPv4 addresses.
ldap6 Queries the LDAP server for information about IPv6 addresses.

The following values are available for the option parameter:

Value Description
continue If the information is not found in the specified mechanism, then instructs the resolver to continue to

the next line, which should list another mechanism for the same map
merge Merges all responses from multiple mechanism parameters into one response

Examples
1. To use only the local /etc/hosts file for host name resolution, enter:

hosts local

2. To use the LDAP server to resolve a host name that cannot be found in the the /etc/hosts file, enter:
hosts local continue
hosts ldap

3. To use only DNS to resolve host names and to use NIS to resolve protocols, enter:
hosts dns
protocols nis

4. To use only NIS to resolve host name addresses and netgroups and to use the local files to resolve
services and networks, enter:
hosts nis
services local
netgroup nis
networks local

5. To try to resolve host names from the local /etc/hosts file and, after not finding them, try to resolve
from DNS, then NIS, enter:
hosts local continue
hosts dns continue
hosts nis continue

6. To try to resolve host names from the local /etc/hosts file, merge any information found with any
DNS information found, and then merge this information to any NIS information found, enter:
hosts local merge
hosts dns merge
hosts nis

If the resolver finds no information, it returns none. If it finds information from more than one source,
it returns that information as a merged response from all of the available sources.

7. To examine the local /etc/services file for port numbers before querying NIS, enter:
services local continue
services nis

This entry in the /etc/irs.conf file could speed up the request; normally, querying NIS takes more time
than querying the local file. If the resolver does not find the information in the local file, it searches
NIS.

8. To query for IPv4 network addresses only from DNS and to query IPv6 host addresses only from the
local file, enter:
networks dns4
hosts local6

Chapter 1. System Files 85

9. In this example, assume the following presuppositions:

v The /etc/hosts file contains the following information:
1.2.3.4 host4
1.2.3.5 host5
1.2.3.6 host6

v The information in DNS is the following:
1.2.3.2 host2
1.2.3.3 host3

v The information in NIS is the following:
1.2.3.1 host1

To instruct the gethostbyname subroutine to look for the host name first in the local configuration
files, then to continue to search in DNS if the host name is not found, and finally to continue
searching in NIS if the host name is not found, create the following entry in the /etc/irs.conf file:
hosts local continue
hosts dns continue
hosts nis

In this example, the gethostbyname subroutine cannot find the host name in the /etc/hosts file and
continues to search for the host name in DNS. After not finding it in DNS, it continues to search in
NIS. After finding the address in NIS, it returns 1.2.3.1.

10. In this example, assume the following presuppositions:

v The /etc/hosts file contains the following information:
1.1.1.1 hostname

v The information in DNS is the following:
1.1.1.2 hostname

To instruct the gethostbyname subroutine to merge all the answers from the specified mechanisms
into one reply, create the following entry in the /etc/irs.conf file:
hosts local merge
hosts dns

The gethostbyname subroutine returns 1.1.1.1 1.1.1.2.

Files

/etc/hosts Contains the Internet Protocol (IP) name and addresses of hosts on the local network
/etc/protocols Contains official names and protocol numbers of protocol aliases
/etc/services Contains lists of the port numbers, transport protocols, and names of well-known

services
/etc/netgroup Contains a list of groups of hosts, networks, and users in these groups
/etc/networks Contains a list of network names and addresses
/etc/resolv.conf Contains Domain Name Protocol (DOMAIN) name-server information for local

resolver subroutines
/etc/netsvc.conf Specifies the ordering of certain name resolution services
/etc/resolv.ldap Contains the IP address of the LDAP server

Related Information
The hosts file format for TCP/IP, netgroup file for NIS, netsvc.conf file, networks file format for TCP/IP,
protocols file format for TCP/IP, resolv.conf file format for TCP/IP, resolv.ldap file format for TCP/IP,
services file format for TCP/IP.

The ldap.cfg file.

86 Files Reference

The mksecldap command.

The ypbind daemon.

The gethostbyname, gethostbyaddr, and gethostent subroutines for host names.

The getnetbyname, getnetbyaddr, getnetent subroutines for networks.

The getservbyname, getservbyport, getservent subroutines for services.

The getprotobyname, getprotobynumber, getprotoent subroutines for protocols.

The getnetgrent subroutine for netgroups.

ispaths File

Purpose
Defines the location of all databases in a library.

Description
The ispaths file contains a block of information (a stanza) for each database in a library. A library consists
of up to 63 standalone or cross-linked databases. The ispaths file for the default database library resides
in the /usr/lpp/info/data directory. The ispaths files for other public libraries may reside in the
/usr/lpp/info/data/LibraryName directory, and contain a stanza of information for each database in the
library.

Each stanza must have the following format:

Line Explanation of Content
id DatabaseNumber Represents the number of the database. This

number can be between 0 and 1462, with a
maximum of 1563 databases in a library. (Database
number 1563 is reserved for the help database.)
Note: The order of databases in the ispaths file
must match the order of databases in the dbnames
file used during the build process.

primnav TRUE (Optional.) Indicates whether the database contains
any of the primary navigation articles. The primnav
line can be set to TRUE for only one database in
the library. Omit this line unless its value is TRUE.

browseTRUE (Optional.) Indicates whether the entire library is
browse enabled with the browse button displayed in
the reading window. Omit this line if its value is not
TRUE.

glossary TRUE (Optional.) Indicates whether the database contains
glossary entries. The glossary line can be set to
TRUE for only one database in the library. Omit this
line unless its value is TRUE.

name Database Specifies the name of the database.
title DatabaseTitle Specifies the title that is assigned to the database.

This title is displayed in the search results window
(the Match Lists window) and the Database
selection window helps users narrow their searches.

key DatabasePath/DatabaseName.key Specifies the full path name of the database .key
file.

Chapter 1. System Files 87

Line Explanation of Content
romDatabasePath /DatabaseName.rom Specifies the full path name of the database .rom

file.

The optional field browse can be specified in any of the stanzas, and its value will be applied to the entire
library. The browse field does not need to be specified in each stanza for each library that has browse
capability.

Examples
The following is an example of an ispaths file for a sample database.

The isprime file for this database specifies these primary navigation articles:

v Commands

v System Calls

v Subroutines

v Special Files

v File Formats

v List of Tasks

v List of Books

v Education

All the top-level lists reside in the navigation database.
###
info Navigation Database
###
id 0
primenav TRUE
browse TRUE
name nav
title Navigation
key /usr/lpp/info/%L/nav/nav.key
rom /usr/lpp/info/%L/nav/nav.rom

###
info System Calls Database
###
id 1
name calls
title System Calls
key /usr/lpp/info/%L/calls/calls.key
rom /usr/lpp/info/%L/calls/calls.rom

###
info Subroutines Database
###
id 2
name subs
title Subroutines
key /usr/lpp/info/%L/subs/subs.key
rom /usr/lpp/info/%L/subs/subs.rom

###
info Special Files Database
###
id 3

88 Files Reference

name file
title Special Files
key /usr/lpp/info/%L/file/file.key
rom /usr/lpp/info/%L/file/file.rom

###
info File Formats Database
###
id 4
name fls
title File Formats
key /usr/lpp/info/%L/fls/fls.key
rom /usr/lpp/info/%L/fls/fls.rom

###
info Commands Database
###
id 5
name cmds
title Commands
key /usr/lpp/info/%L/cmds/cmds.key
rom /usr/lpp/info/%L/cmds/cmds.rom

###
info Book Contents Database
###
id 6
name books
title Content Lists
key /usr/lpp/info/%L/books/books.key
rom /usr/lpp/info/%L/books/books.rom

###
info Education Database
###
id 7
name educ
title Education
key /usr/lpp/info/%L/educ/educ.key
rom /usr/lpp/info/%L/educ/educ.rom

Files

/usr/lpp/info/data/ispaths Contains the ispaths file for the operating
system library.

/usr/lpp/info/data/LibraryName/ispaths Contains the ispaths file for the
LibraryName library.

/usr/lpp/info/data/LibraryName/isprime Contains the names and numbers of
button labels for the primary navigation
articles in LibraryName.

Related Information
The isprime file.

Chapter 1. System Files 89

isprime File

Purpose
Specifies the labels for links to primary navigation articles.

Description
The isprime file specifies labels for buttons located at the bottom of a navigation window. These button
labels or menu options serve as links to the primary navigation articles. Labels for up to eight primary
navigation articles can be defined in the isprime file. The text string that serves as the label or options can
consist of any alphanumeric combination, including spaces.

The format for the isprime file is as follows:
1 TextForFirstLink
2 TextForSecondLink
3 TextForThirdLink
4 TextForFourthLink
5 TextForFifthLink
6 TextForSixthLink
7 TextForSeventhLink
8 TextForEighthLink

Examples
An isprime file for a sample database might look as follows:
1 Commands
2 System Calls
3 Subroutines
4 Special Files
5 File Formats
6 List of Tasks
7 List of Books
8 Education

Files

/usr/lpp/info/data/LibraryName/isprime Contains labels for links to primary
navigation articles.

Related Information
The ispaths file.

.kshrc File

Purpose
Contains a shell script that customizes the Korn shell environment.

Description
The $HOME/.kshrc file is a shell script that customizes the Korn-shell environment. This .kshrc script
often contains a list of environment variables, command aliases, and function definitions that customize the
Korn-shell environment.

Each time you start a new instance of the Korn shell, the ksh command examines the value of the ENV
environment variable set in the $HOME/.profile file. If the ENV environment variable contains the name of

90 Files Reference

an existing, readable file, the ksh command runs this file as a shell script. By convention, this file is
named $HOME/.kshrc. You can use another name, but you must set the ENV environment variable to
point to it.

Note: .kshrc should never output (echo, print, or call any program that echos or prints) anything.

Examples
The following is a sample of a .kshrc script on one specific system. The contents of your .kshrc file can
be significantly different.
@(#).kshrc 1.0

Base Korn Shell environment

Approach:

shell initializations go in ~/.kshrc
user initializations go in ~/.profile
host / all_user initializations go in /etc/profile
hard / software initializations go in /etc/environment

DEBUG=y # uncomment to report

["$DEBUG"] && echo "Entering .kshrc"

set -o allexport

options for all shells --------------------------------

LIBPATH must be here because ksh is setuid, and LIBPATH is
cleared when setuid programs are started, due to security hole.

LIBPATH=.:/local/lib:/lib:/usr/lib

options for interactive shells follow-------------------------

TTY=$(tty|cut -f3-4 -d/)
HISTFILE=$HOME/.sh_hist$(echo ${TTY} | tr -d ’/’)
PWD=$(pwd)
PS1=’
${LOGNAME}@${HOSTNAME} on ${TTY}
[${PWD}] ’

aliases

["$DEBUG"] && echo "Setting aliases"

alias man="/afs/austin/local/bin/man -e less"
alias pg="pg -n -p’:Page %d: ’"
alias more="pg -n -p’:Page %d: ’"
alias cls="tput clear"
alias sane="stty sane"
alias rsz=’eval $(resize)’

mail check

if [-s "$MAIL"] # This is at Shell startup. In
then echo"$MAILMSG" # normal operation, the Shell checks
fi # periodically.

aixterm window title

[["$TERM" = "aixterm"]] && echo
"\033]0;$USER@${HOSTNAME%t1}\007"

functions

["$DEBUG"] && echo "Setting functions"

function pid { ps -e | grep $@ | cut -d" " -f1; }

function df {
/bin/df $* | grep -v afs;
echo "\nAFS:";
/usr/afs/bin/fs listquota /afs;

}

Chapter 1. System Files 91

function term {
if [$# -eq 1]
then

echo $TERM
TERM=$1
export TERM

fi
echo $TERM

}

function back {

cd $OLDPWD
echo $CWD $OLDPWD

}

["$DEBUG"] && echo "Exiting .kshrc"

set +o allexport

Files

/etc/environment Contains system-wide environment variable definitions.
/etc/profile Contains system-wide environment customization.
$HOME/.kshrc Sets the user environment for each start of the Korn shell.
$HOME/.profile Contains user-specific logon initialization.

Related Information
The ksh command.

The Shells Overview and the Files Overview in AIX 5L Version 5.2 System User’s Guide: Operating
System and Devices.

limits File

Purpose
Defines process resource limits for users.

Description

Note: Changing the limit does not affect those processes that were started by init. Alternatively, ulimits
are only used by those processes that go through the login processes.

The /etc/security/limits file defines process resource limits for users. This file is an ASCII file that
contains stanzas that specify the process resource limits for each user. These limits are set by individual
attributes within a stanza.

Each stanza is identified by a user name followed by a colon, and contains attributes in the
Attribute=Value form. Each attribute is ended by a new-line character, and each stanza is ended by an
additional new-line character. If you do not define an attribute for a user, the system applies default values.

If the hard values are not explicitly defined in the /etc/security/limits file but the soft values are, the
system substitutes the following values for the hard limits:

Resource Hard Value
Core Size unlimited
CPU Time cpu
Data Size unlimited

92 Files Reference

Resource Hard Value
File Size fsize
Memory Size unlimited
Stack Size unlimited
File Descriptors unlimited

Note: Use a value of -1 to set a resource to unlimited.

If the hard values are explicitly defined but the soft values are not, the system sets the soft values equal to
the hard values.

You can set the following limits on a user:

Limit Description
fsize Identifies the soft limit for the largest file a user’s process can create or extend.
core Specifies the soft limit for the largest core file a user’s process can create.
cpu Sets the soft limit for the largest amount of system unit time (in seconds) that a user’s

process can use.
data Identifies the soft limit for the largest process data segment for a user’s process.
stack Specifies the soft limit for the largest process stack segment for a user’s process.
rss Sets the soft limit for the largest amount of physical memory a user’s process can allocate.

This limit is not enforced by the system.
nofiles Sets the soft limit for the number of file descriptors a user process may have open at one

time.
core_hard Specifies the largest core file a user’s process can create.
cpu_hard Sets the largest amount of system unit time (in seconds) that a user’s process can use.
data_hard Identifies the largest process data segment for a user’s process.
fsize_hard Identifies the largest file a user’s process can create or extend.
rss_hard Sets the largest amount of physical memory a user’s process can allocate. This limit is not

enforced by the system.
stack_hard Specifies the largest process stack segment for a user’s process.
nofiles_hard Sets the soft limit for the number of file descriptors a user process may have open at one

time.
totalCPU The total amount of CPU time allowed for each process in the class. This is specified as an

integer with the units intended (s for seconds, m for minutes, h for hours, d for days, and w
for weeks).

totalDiskIO The total amount of DiskIO allowed for each process in the class. This is specified as an
integer with the units intended (KB for kilobytes, MB for megabytes, TB for terabytes, PB for
petabytes, and EB for exabytes).

totalProcesses The maximum number of processes allowed in the class. If an operation would result in a
new process entering the class when the class has this many processes in it, the operation
will fail.

totalThreads The maximum number of threads allowed in the class. If an operation would result in a new
thread entering the class when the class has this many threads in it, the operation will fail.
The total thread limit must be at least as large as the total process limit for a class. If a class
has a total thread limit but no total process limit specified, the total process limit will be set to
the total thread limit.

totalLogins The total number of login sessions simultaneously available in the class. If a user tries to log
onto the system and the login shell would end up in a class that has reached the totalLogins
limit, the login operation will fail. Also, if an operation would cause a login shell to be moved
into a class that has reached the totalLogins limit, the operation will also fail.

totalConnectTime The maximum amount of time a login session in the class can stay active. This is specified
as an integer with the units intended (s for seconds, m for minutes, h for hours, d for days,
and w for weeks). As a user approaches this connection time limit, WLM will send warning
messages. When the limit is reached, the user will be notified and the login session will be
terminated.

Chapter 1. System Files 93

Except for the cpu attribute, each attribute must be a decimal integer string representing the number of
512-byte blocks allotted to the user. The cpu attribute is a decimal integer string representing the amount
of system unit time in seconds. For an example of a limits file stanza, see the ″Examples″ section .

When you create a user with the mkuser command, the system adds a stanza for the user to the limits
file. Once the stanza exists, you can use the chuser command to change the user’s limits. To display the
current limits for a user, use the lsuser command. To remove users and their stanzas, use the rmuser
command.

Note: Access to the user database files should be through the system commands and subroutines
defined for this purpose. Access through other commands or subroutines may not be supported in
future releases.

Security
Access Control: This file should grant read (r) access to the root user and members of the security group,
and write (w) access only to the root user. Access for other users and groups depends upon the security
policy for the system.

Auditing Events:

Event Information
S_LIMITS_WRITE file name

Examples
A typical record looks like the following example for user dhs:
dhs:

fsize = 8192
core = 4096
cpu = 3600
data = 1272
stack = 1024
rss = 1024
nofiles = 2000

Files

/etc/security/limits Specifies the path to the file.
/etc/group Contains the basic group attributes.
/etc/security/group Contains the extended attributes of groups.
/etc/passwd Contains the basic user attributes.
/etc/security/passwd Contains password information.
/etc/security/user Contains the extended attributes of users.
/etc/security/environ Contains the environment attributes of users.
/etc/security/audit/config Contains audit-system configuration information.
/usr/lib/security/mkuser.default Contains the default values for user accounts.
/etc/security/lastlog Contains last login information.

Related Information
The chuser command, lsuser command, mkuser command, rmuser command.

The enduserdb subroutine, getuserattr subroutine, IDtouser subroutine, nextuser subroutine,
putuserattr subroutine, setuserdb subroutine.

94 Files Reference

File and System Security Overview in AIX 5L Version 5.2 System User’s Guide: Operating System and
Devices.

login.cfg File

Purpose
Contains configuration information for login and user authentication.

Description
The /etc/security/login.cfg file is an ASCII file that contains stanzas of configuration information for login
and user authentication. Each stanza has a name, followed by a colon (:), that defines its purpose.
Attributes are in the form Attribute=Value. Each attribute ends with a new-line character, and each stanza
ends with an additional new-line character. For an example of a stanza, see the ″Examples″ section.

There are two types of stanzas:

Stanzas Definition
port Defines the login characteristics of ports.
user configuration Defines programs that change user attributes.

Port Stanzas
Port stanzas define the login characteristics of ports and are named with the full path name of the port.
Each port should have its own separate stanza. Each stanza has the following attributes:

Attribute Definition
herald Defines the login message printed when the getty process opens the port. The default

herald is the login prompt. The value is a character string.
herald2 Defines the login message printed after a failed login attempt. The default herald is the

login prompt. The value is a character string.
logindelay Defines the delay factor (in seconds) between unsuccessful login attempts. The value is a

decimal integer string. The default value is 0, indicating no delay between unsuccessful
login attempts.

logindisable Defines the number of unsuccessful login attempts allowed before the port is locked. The
value is a decimal integer string. The default value is 0, indicating that the port cannot lock
as a result of unsuccessful login attempts.

logininterval Defines the time interval (in seconds) in which the specified unsuccessful login attempts
must occur before the port is locked. The value is a decimal integer string. The default
value is 0.

loginreenable Defines the time interval (in minutes) a port is unlocked after a system lock. The value is a
decimal integer string. The default value is 0, indicating that the port is not automatically
unlocked.

Chapter 1. System Files 95

Attribute Definition
logintimes Specifies the times, days, or both, the user is allowed to access the system. The value is a

comma-separated list of entries of the following form:

[!]:time-time
-or-

[!]day[-day][:time-time]
-or-

[!]date[-date][:time-time]

The day variable must be one digit between 0 and 6 that represents one of the days of the
week. A 0 (zero) indicates Sunday and a 6 indicates Saturday.

The time variable is 24-hour military time (1700 is 5:00 p.m.). Leading zeroes are required.
For example, you must enter 0800, not 800. The time variable must be four characters in
length, and there must be a leading colon (:). An entry consisting of only a time
specification applies to every day. The start hour of a time value must be less than the end
hour.

The date variable is a four digit string in the form mmdd. mm represents the calendar
month and dd represents the day number. For example 0001 represents January 1. dd may
be 00 to indicate the entire month, if the entry is not a range, or indicating the first or last
day of the month depending on whether it appears as part of the start or end of a range.
For example, 0000 indicates the entire month of January. 0600 indicates the entire month of
June. 0311-0500 indicates April 11 through the last day of June.

Entries in this list specify times that a user is allowed or denied access to the system.
Entries not preceded by an exclamation point (!) allow access and are called ALLOW
entries. Entries prefixed with an exclamation point (!) deny access to the system and are
called DENY entries. The ! operator applies to only one entry, not the whole restriction list.
It must appear at the beginning of an entry.

pwdprompt Defines the message that is displayed at a password prompt. The message value is a
character string. Format specifiers will not be interpreted. If the attribute is undefined, a
default prompt from the message catalog will be used .

sak_enabled Defines whether the secure attention key (SAK) is enabled for the port. The SAK key is the
Ctrl-X, Ctrl-R key sequence. Possible values for the sak_enabled attribute are:

true SAK processing is enabled, so the key sequence establishes a trusted path for the
port.

false SAK processing is not enabled, so a trusted path cannot be established. This is
the default value.

The sak_enabled stanza can also be modified to close a potential security exposure that
exists when tty login devices are writable by others; for example, when the tty mode is
0622. If the sak_enabled stanza is set to True, the tty mode is set to a more restrictive
0600 at login. If the sak_enabled stanza is set to False (or absent), the tty mode is set to
0622.

synonym Defines other path names for the terminal. This attribute revokes access to the port and is
used only for trusted path processing. The path names should be device special files with
the same major and minor number and should not include hard or symbolic links. The value
is a list of comma-separated path names.

Synonyms are not associative. For example, if you specify synonym=/dev/tty0 in the stanza
for the /dev/console path name, then the /dev/tty0 path name is a synonym for the
/dev/console path name. However, the /dev/console path name is not a synonym for the
/dev/tty0 path name unless you specify synonym=/dev/console in the stanza for the
/dev/tty0 path name.

96 Files Reference

Attribute Definition
usernameecho Defines whether the user name is echoed on a port. Possible values for the usernameecho

attribute are:

true User name echo is enabled. The user name will be displayed. This is the default
value.

false User name echo is disabled. The user name will not be echoed at the login
prompt and will be masked out of security related messages that contain the user
name.

User-Configuration Stanzas
User-configuration stanzas provide configuration information for programs that change user attributes.
There is one user-configuration stanza: usw.

Note: Password restrictions have no effect if you are on a network using Network Information Services
(NIS). See ″Network Information Service (NIS) Overview for System Management″ in AIX 5L
Version 5.2 System Management Guide: Communications and Networks for a description of NIS.

The usw stanza defines the configuration of miscellaneous facilities. The following attributes can be
included:

Attribute Definition
logintimeout Defines the time (in seconds) the user is given to type the password. The value is a

decimal integer string. The default is a value of 60.
maxlogins Defines the maximum number of simultaneous logins to the system. The format is a

decimal integer string. The default value varies depending on the specific machine license.
A value of 0 indicates no limit on simultaneous login attempts.
Note: Login sessions include rlogins and telnets. These are counted against the
maximum allowable number of simultaneous logins by the maxlogins attribute.

shells Defines the valid shells on the system. This attribute is used by the chsh command to
determine which shells a user can select. The value is a list of comma-separated full path
names. The default is /usr/bin/sh, /usr/bin/bsh, /usr/bin/csh, /usr/bin/ksh, or
/usr/bin/tsh.

Security

Access Control
This command should grant read (r) and write (w) access to the root user and members of the security
group.

Auditing Events

Event Information
S_LOGIN_WRITE File name

Examples
A typical port stanza looks like the following:
/dev/tty0:

sak_enabled = true
herald = "login to tty0:"

Files

/etc/security/login.cfg Specifies the path to the file.
/etc/group Contains the basic attributes of groups.

Chapter 1. System Files 97

/etc/security/group Contains the extended attributes of groups.
/etc/passwd Contains the basic attributes of users.
/etc/security/passwd Contains password information.
/etc/security/user Contains the extended attributes of users.
/etc/security/environ Contains the environment attributes of users.
/etc/security/limits Contains the process resource limits of users.
/etc/security/audit/config Contains audit system configuration information.
/etc/security/lastlog Contains last login information.

Related Information
The chfn command, chsec command, chsh command, login command, passwd command, pwdadm
command, and su command.

The newpass subroutine.

Security Administration in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices.

.maildelivery File for MH

Purpose
Specifies actions to be taken when mail is received.

Description
The $HOME/.maildelivery file contains a list of actions the slocal command performs on received mail.
The slocal command reads the $HOME/.maildelivery file and performs the specified actions when you
activate it.

Specify your own mail delivery instructions in the $HOME/.maildelivery file. Each line in the
$HOME/.maildelivery file describes an action and the conditions under which the action should be
performed. The following five parameters must be present in each line of the file. These parameters are
separated by either commas or space characters:

Blank lines in the .maildelivery file are ignored. A # (pound sign) in the first column indicates a comment.
The file is read from beginning to end, so several matches can be made with several actions. The
.maildelivery file should be owned by the user, and the owner can be the only one with write access.

If the $HOME/.maildelivery file cannot be found or does not deliver the message, the
/etc/mh/maildelivery file is used in the same manner. If the message has still not been delivered, it is put
in the user’s mail drop. The default mail drop is the /usr/mail/$USER file.

The MH package contains four standard programs that can be run as receive-mail hooks: the rcvdist,
rcvpack, rcvstore, and rcvtty commands.

98 Files Reference

Parameters

Field Specifies a header component to be searched for a pattern to match the Pattern parameter. Specify
one of the following values for the Field parameter:

Component
Specify the header component you want to be searched; for example, From or cc.

* Matches everything.

addr Searches whatever field was used to deliver the message to you.

default Matches only if the message has not been delivered yet.

Source
Specifies the out-of-band sender information.

Pattern Specifies the character string to search for in the header component given by the Field parameter.
For example, if you specified From in the Field parameter, the Pattern parameter might contain an
address like sarah@mephisto.

The Pattern parameter is not case-sensitive. The character string matches any combination of
uppercase and lowercase characters. Specify a dummy pattern if you use an * (asterisk) or specify
default in the Field parameter.

Chapter 1. System Files 99

Action Specifies an action to take with the message if it contains the pattern specified in the Pattern
parameter. Specify the following values:

file or >
Appends the message to the file specified with the ″String″ parameter. If the message can
be written to the file, the action is considered successful. The Delivery-Date: header
component is added to the message to indicate when the message was appended to the
file.

pipe or |
Pipes the message as standard input to the command specified with the ″String″ parameter.
The shell interprets the string. If the exit status from the command is 0, the action is
considered successful. Prior to being given to the shell, the string is expanded with the
following built-in variables:

$(Address)
Address used to deliver the message.

$(Size) Size of the message in bytes.

$(reply-to)
Either the Reply-To: or From: header component of the message.

When a process is started with the pipe mechanism, the environment of the process is set
as follows:

v User and group IDs are set to the recipient’s IDs.

v Working directory is the recipient’s directory.

v The value of the umask variable is 0077.

v Process has no /dev/tty special file.

v Standard input is set to the message.

v Standard output and diagnostic output are set to the /dev/NULL special file. All other file
descriptors are closed. The $USER, $HOME, and $SHELL environmental variables are
set appropriately; no other environment variables exist.

The formula for determining the amount of time the process is given to execute is:

bytes in message x 60 + 300 seconds.

After that time, the process is terminated.

If the exit status of the program is 0, it is assumed that the action succeeded. Otherwise, the
action is assumed unsuccessful.

qpipe or ^
Acts similarly to pipe, but executes the command directly after built-in variable expansion
without assistance from the shell. If the exit status from the command is 0, the action is
successful.

destroy
Destroys the message. This action always succeeds.

Result Indicates how the action should be performed. You can specify one of the following values for this
parameter:

A Performs the action. If the action succeeds, the message is considered delivered.

R Performs the action. Even if the action succeeds, the message is not considered delivered.

? Performs the action only if the message has not been delivered. If the action succeeds, the
message is considered delivered.

100 Files Reference

″String″ Specifies the file to which the message can be appended if you use the file value for the Action
parameter.

If you use the pipe or the qpipe value, the ″String″ parameter specifies the command to execute.

If you use the destroy value as the Action parameter, the ″String″ parameter is not used, but you
must still include a dummy ″String″ parameter.

Note: To be notified that you have mail, you must specify the rcvtty command in the .maildelivery file.

Examples
1. To save a message in a particular file, enter:

From george file A george.mail

This example directs the slocal command to search the From header line in messages. When the
slocal command finds a message from george, it files the message in a file called george.mail.

2. To save a copy of a message in a file, enter:
addr manager > R proj_X/statlog

This example directs the slocal command to search the address fields in messages. When it finds a
message for the project manager, the slocal command files a copy of the message in a file called
proj_X/statlog. The original message is not considered delivered (the R value), so the message is still
treated as mail and you will be notified as usual.

3. To be notified that you have received mail, enter:
* - | R "/usr/lib/mh/rcvtty /home/sarah/allmail"

In this example, the /home/sarah/allmail file contains the line:
echo "You have mail\n"

The /home/sarah/allmail file must have execute permission. When you have mail, the words You have
mail are displayed on your console.

4. To forward a copy of a message, enter:
addr manager | A "/usr/lib/mh/rcvdist amy"

This example directs the slocal command to search the address fields in messages. When it finds a
message to the project manager, the slocal command sends a copy of the message to amy. The
original message is not affected. The action is always performed (the A value). The command that the
slocal command reads to distribute the copy to another user is the rcvdist command.

5. To save any undelivered messages, enter:
default - > ? mailbox

This example directs the slocal command to find all undelivered messages. The - (dash) is a
placeholder for the Pattern parameter. The > (greater than sign) instructs the slocal command to file
the messages it finds. The ? (question mark) instructs the slocal command to respond only to
undelivered messages. The name of the file to store undelivered messages is mailbox.

Files

$HOME/.forward Searched by the sendmail command when mail is received, contains either
the path of a machine to which to forward mail or a line to start the slocal
command.

/usr/mail/$USER Provides the default mail drop.
/usr/lib/mh/slocal Contains the slocal command that reads the .maildelivery file.

Chapter 1. System Files 101

/etc/mh/maildelivery Contains the mail delivery instructions that the slocal command reads if none
are specified in the $HOME/.maildelivery file.

$HOME/.maildelivery Specifies mail-related actions for the slocal command to perform.

Related Information
The rcvdist command, rcvpack command, rcvstore command, rcvtty command, sendmail command,
slocal command.

The mtstailor file.

/usr/lib/security/methods.cfg File

Purpose
Contains the information for loadable authentication module configuration.

Description
The /usr/lib/security/methods.cfg file is an ASCII file that contains stanzas with loadable authentication
module information. Each stanza is identified by a module name followed by a colon (:) and contains
attributes in the form Attribute=Value. Each attribute ends with a new-line character and each stanza ends
with an additional new-line character.

Each stanza can have the following attributes:

Attribute Description
domain Specifies a free-format ASCII text string that is used by the loadable authentication module to

select a data repository. This attribute is optional.
program Names the load module containing the executable code that implements the loadable

authentication method.
program_64 Names the load module containing the executable code that implements the loadable

authentication method for 64-bit processes.

102 Files Reference

Attribute Description
options Specifies an ASCII text string containing optional values that are passed to the loadable

authentication module upon initialization. The supported values for each module are described by
the product documentation for that loadable authentication module.

The options attribute takes the following pre-defined values:

auth=module
Specifies the module to be used to perform authentication functions for the current
loadable authentication module

authonly
Indicates that the loadable authentication module only performs authentication
operations. User and group information must be provided by a different module,
specified by the db= option. If not by a module, then user and group information must
be provided by the local files database.

db=module
Specifies the module to be used for providing user and group information for the current
loadable authentication module

dbonly Indicates that the loadable authentication module only provides user and group
information and does not perform authentication functions. Authentication operations
must be performed by a different load module, specified by the auth= option. If the
auth= option is not specified, all authentication operations fail.

noprompt
The initial password prompt for authentication operations is suppressed. The loadable
authentication module would then control all password prompting.

You can only use the auth=module and db=module value strings for complex loadable
authentication modules, which may require or be used with another loadable authentication
module to provide new functionality.

The authonly and dbonly values are invalid for complex modules.

You can use the noprompt value for any kind of module.

Security
Access Control: This file should grant read (r) and write (w) access to the root user only and read (r)
access to the security group and all other users.

Examples
1. To indicate that the loadable authentication module is located in the file /usr/lib/security/DCE, enter:

program = /usr/lib/security/DCE

2. To indicate that the loadable authentication module only should provide authentication functions, enter:
options = authonly

3. The following example contains configuration information for the LDAP simple loadable authentication
module:
LDAP:

program = /usr/lib/security/LDAP
program_64 = /usr/lib/security/LDAP64

The ″LDAP″ stanza gives the name of the module, used by the SYSTEM and registry attributes for a
user. The name does not have to be the same as the file name given for the program attribute.

4. The following example contains configuration information for the KERBEROS complex loadable
authentication module:

Chapter 1. System Files 103

KERBEROS:
program = /usr/lib/security/KERBEROS
program_64 = /usr/lib/security/KERBEROS64
options = authonly,db=LDAP

The ″KERBEROS″ stanza gives the name of the module as used by the SYSTEM and registry
attributes for a user. This name does not have to be the same as the name of the file given for the
program attribute. The options attribute indicates that the user and group information functions are to
be performed by the module described by the ″LDAP″ stanza (in example 3).

Files
/usr/lib/security/methods.cfg

Specifies the path to the file.

/etc/passwd
Contains basic user attributes.

/etc/security/user
Contains the extended attributes of users.

Related Information
The chuser command, login command, lsuser command, passwd command, su command.

The getauthdb subroutine, setauthdb subroutine.

Chapter 18. Loadable Authentication Module Programming Interface in AIX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts

mhl.format File

Purpose
Controls the output format of the mhl command.

Description
The /etc/mh/mhl.format file controls the output format of the mhl command when the mhl command
functions as the message listing program. The /etc/mh/mhl.format file is the default attributes file. The
mhl.digest, mhl.forward, and mhl.reply files must be specified before use.

Each line of the mhl.format file must have one of the following forms:

Form Definition
;Comment Contains the comments specified by the Comment field that are

ignored.
:ClearText Contains text for output (ClearText). A line that contains a : (colon)

only produces a blank output line.
Component:[Variable,...] Defines the format of the specified Component.
Variable[Variable,...] Applies the value specified by the Variable field only to the preceding

component if the value follows that component. Lines having other
formats define the global environment.

The entire mhl.format file is parsed before output processing begins.
Therefore, if the global setting of a variable is defined in multiple
places, the last global definition for that variable describes the current
global setting.

104 Files Reference

The following table lists the mhl.format file variables and parameters.

Table 3. File Variables for the mhl.format File

Parameter Variable Description

Width integer Sets the screen width or component
width.

Length integer Sets the screen length or component
length.

OffSet integer Indents the Component parameter the
specified number of columns.

OverflowText string Outputs the String parameter at the
beginning of each overflow line.

OverflowOffset integer Indents overflow lines the specified
number of columns.

CompWidth integer Indents component text the specified
number of columns after the first line
of output.

Uppercase flag Outputs text of the Component
parameter in all uppercase
characters.

NoUppercase flag Outputs text of the Component
parameter in the case entered.

ClearScreen flag/G Clears the screen before each page.

NoClearScreen flag/G Does not clear the screen before
each page.

Bell flag/G Produces an audible indicator at the
end of each page.

NoBell flag/G Does not produce an audible indicator
at the end of each page.

Component string/L Uses the String parameter as the
name for the specified the
Component parameter instead of the
string Component.

NoComponent flag Does not output the string
Component for the specified
Component parameter.

Center flag Centers the Component parameter on
line. This variable works for one-line
components only.

NoCenter flag Does not center the Component
parameter.

LeftAdjust flag Strips off the leading white space
characters from each line of text.

NoLeftAdjust flag Does not strip off the leading white
space characters from each line of
text.

Compress flag Changes new-line characters in text
to space characters.

NoCompress flag Does not change new-line characters
in text to space characters.

Chapter 1. System Files 105

Table 3. File Variables for the mhl.format File (continued)

Parameter Variable Description

FormatField string Uses String as the format string for
the specified component.

AddrField flag The specified Component parameter
contains addresses.

DateField flag The specified Component parameter
contains dates.

Ignore unquoted string Does not output component specified
by String.

Variables that have integer or string values as parameters must be followed by an = (equal sign) and the
integer or string value (for example, overflowoffset=5). String values must also be enclosed in double
quotation marks (for example, overflowtext=″***″). A parameter specified with the /G suffix has global
scope. A parameter specified with the /L suffix has local scope.

Examples
The following is an example of a line that could be displayed in the mhl.format file:
width=80,length=40,clearscreen,overflowtext="***".,overflowoffset=5

This format line defines the screen size to be 80 columns by 40 rows, and specifies the screen should be
cleared before each page (clearscreen). The overflow text should be flagged with the *** string, and the
overflow indentation should be 5 columns.

Files

/etc/mh/mhl.format Specifies the path of the mhl.format file.

Related Information
The ap command, dp command, mhl command, scan command.

.mh_profile File

Purpose
Customizes the Message Handler (MH) package.

Description
Each user of the MH package is expected to have a $HOME/.mh_profile file in the home directory. This
file contains a set of user parameters used by some or all of the MH programs. Each line of the file has
the following format:
Profile-Entry: Value

Profile Entries
This table describes the profile entry options for the .mh_profile file. Only Path: is required. Each profile
entry is stored in either the .mh_profile file or the UserMHDirectory/context file.

106 Files Reference

Table 4. Profile Entry Options for the .mh_profile File

Profile Entry Description Storage File Default Value

Path: The path for
theUserMHDirectory
directory. The usual location
is $HOME/Mail.

mh_profile None

context: The location of the MH
context file.

mh_profile UserMHDirectory /context

Current- Folder: Tracks the current open
folder.

context inbox

Previous- Sequence: The Messages or Message
sequences parameter given
to the program. For each
name given, the sequence
is set to 0. Each message
is added to the sequence. If
not present or empty, no
sequences are defined.

mh_profile None

Sequence- Negation: The string negating a
sequence when prefixed to
the name of that sequence.
For example, if set to not,
not seen refers to all the
messages that are not a
member of the sequence
seen.

mh_profile None

Unseen- Sequence: The sequences defined as
messages recently
incorporated by the inc
command. For each name
given, the sequence is set
to 0. If not present, or
empty, no sequences are
defined.
Note: The show command
removes messages from
this sequence after viewing.

mh_profile None

.mh_sequences: The file, in each folder,
defining public sequences.
To disable the use of public
sequences, leave the value
of this entry blank.

mh_profile .mh_sequences

atr- SequenceFolder: Tracks the specified
sequence in the specified
folder.

context None

Editor: The editor to be used by
the comp, dist, forw, and
repl commands.

mh_profile prompter

Msg-Protect: Defines octal protection bits
for message files. The
chmod command explains
the default values.

mh_profile 0644

Chapter 1. System Files 107

Table 4. Profile Entry Options for the .mh_profile File (continued)

Profile Entry Description Storage File Default Value

Folder- Protect: Defines protection bits for
folder directories. The
chmod command explains
the default values.

mh_profile 0711

Program: Sets default flags to be
used when the MH program
specified by the MH
program field is started. For
example, override the
Editor: profile entry when
replying to messages by
entering: repl: -editor
/usr/bin/ed

mh_profile None

LastEditor-next: The default editor after the
editor specified by the
Editor: field has been
used. This takes effect at
the What now? field of the
comp, dist, forw, and repl
commands. If you enter the
editor command without a
parameter to the What now?
field, the editor specified by
the LastEditor-next: field is
used.

mh_profile None

Folder-Stack: The contents of the folder
stack of the folder
command.

context None

Alternate- Mailboxes: Indicates your address to
the repl and scan
commands. The repl
command is given the
addresses to include in the
reply. The scan command
is informed the message
originated from you. Host
names should be the official
host names for the
mailboxes you indicate.
Local nicknames for hosts
are not replaced with their
official site names. If a host
is not given for a particular
address, that address on
any host is considered to
be your current address.
Enter an * (asterisk) at
either end or both ends of
the host mailbox to indicate
pattern matching.
Note: Addresses must be
separated by a comma.

mh_profile $LOGNAME

Draft-Folder: Indicates a default draft
folder for the comp, dist,
forw, and repl commands.

mh_profile None

108 Files Reference

Table 4. Profile Entry Options for the .mh_profile File (continued)

Profile Entry Description Storage File Default Value

digest- issue- List: Indicates to the forw
command the last issue of
the last volume sent for the
digest List.

context None

digest- volume- List: Indicates to the forw
command the last volume
sent for the digest List.

context None

MailDrop: Indicates to the inc
command your mail drop, if
different from the default.
This is superseded by the
$MAILDROP environment
variable.

mh_profile /usr/mail/$USER

Signature: Indicates to the send
command your mail
signature. This is
superseded by the
$SIGNATURE environment
variable.

mh_profile None

Profile Elements
The following profile elements are used whenever an MH program starts another program. You can use
the .mh_profile file to select alternate programs.

Profile Element Path
fileproc: /usr/bin/refile
incproc: /usr/bin/inc
installproc: /usr/lib/mh/install-mh
lproc: /usr/bin/more
mailproc: /usr/bin/mhmail
mhlproc: /usr/lib/mh/mhl
moreproc: /usr/bin/more
mshproc: /usr/bin/msh
packproc: /usr/bin/packf
postproc: /usr/lib/mh/spost
rmmproc: None
rmfproc: /usr/bin/rmf
sendproc: /usr/bin/send
showproc: /usr/bin/more
whatnowproc: /usr/bin/whatnow
whomproc: /usr/bin/whom

Environment Variables

Variable Description
$MH Specifies a profile for an MH program to read. When you start an MH program, it reads the

.mh_profile file by default. Use the $MH environment variable to specify a different profile.

If the file of the $MH environment variable does not begin with a / (slash), it is presumed to start
in the current directory. The / indicates the file is absolute.

Chapter 1. System Files 109

Variable Description
$MHCONTEXT Specifies a context file that is different from the normal context file specified in the MH profile. If

the value of the $MHCONTEXT environment variable is not absolute, it is presumed to start from
your MH directory.

$MAILDROP Indicates to the inc command the default mail drop. This supersedes the MailDrop: profile entry.
$SIGNATURE Specifies your mail signature to the send and post commands. This supersedes the Signature:

profile entry.
$HOME Specifies your home directory to all MH programs.
$TERM Specifies your terminal type to the MH package. In particular, these environment variables tell the

scan and mhl commands how to clear your terminal, and give the width and length of your
terminal in columns and lines, respectively.

$editalt Specifies an alternate message. This is set by the dist and repl commands during edit sessions
so you can read the distributed message or the answered message. This message is also
available through a link called @ (at sign) in the current directory, if your current directory and the
message folder are on the same file system.

$mhdraft Specifies the path name of the working draft.
$mhfolder Specifies the folder containing the alternate message. This is set by the dist and repl commands

during edit sessions, so you can read other messages in the current folder besides the one being
distributed. The $mhfolder environment variable is also set by the show, prev, and next
commands for use by the mhl command.

Examples
The following example has the mandatory entry for the Path:field. The option -alias aliases is used
when both the send and ali commands are started. The aliases file resides in the mail directory. The
message protection is set to 600, which means that only the user has permission to read the message
files. The signature is set to Dan Carpenter, and the default editor is vi.
Path: Mail
send: -alias aliases
ali: -alias aliases
Msg-Protect: 600
Signature: Dan Carpenter
Editor: /usr/bin/vi

Files

$HOME/.mh_profile Contains the user profile.
UserMHDirectory/context Contains the user context file.
Folder/.mh_sequences Contains the public sequences for the folder specified by the Folder

variable.

Related Information
The chmod command, comp command, dist command, env command, folder command, forw
command, inc command, install_mh command, mhl command, next command, post command, prev
command, repl command, scan command, send command, show command, whatnow command.

mibII.my File

Purpose
Provides sample input to the mosy command.

Description
The /usr/samples/snmpd/mibII.my file is a sample input file to the mosy command, which creates an
objects definition file for use by the snmpinfo command. This file is part of Simple Network Management

110 Files Reference

Protocol Agent Applications in Network Support Facilities. The mosy compiler requires its input file to
contain the ASN.1 definitions as described in the Structure and Identification of Management Information
(SMI) RFC 1155 and the Management Information Base (MIB) RFC 1213. The mibII.my file contains the
ASN.1 definitions from the MIB RFC 1213 (MIB II). RFC is the abbreviation for Request for Comments.

Comments are specified by - - (two dashes). A comment can begin at any location after the comment sign
and extend to the end of the line.

The mibII.my file begins with a definition of the SNMP subtree of the MIB, as assigned by the Internet
Activities Board (IAB). This definition contains the name of the RFCs from which the ASN.1 definitions are
obtained.

RFC1213-MIB {iso org(3) dod(6) internet(1) mgmt(2) 1 }

DEFINITIONS ::= BEGIN

IMPORTS
mgmt, NetworkAddress, IpAddress,
Counter, Gauge, TimeTicks
FROM RFC1155-SMI
OBJECT-TYPE
from RFC-1213;

mib-2 OBJECT IDENTIFIER ::= { mgmt 1 }-- MIB-II

system OBJECT IDENTIFIER ::= { mib-2 1 }
interfaces OBJECT IDENTIFIER ::= { mib-2 2 }
at OBJECT IDENTIFIER ::= { mib-2 3 }
ip OBJECT IDENTIFIER ::= { mib-2 4 }
icmp OBJECT IDENTIFIER ::= { mib-2 5 }
tcp OBJECT IDENTIFIER ::= { mib-2 6 }
udp OBJECT IDENTIFIER ::= { mib-2 7 }
egp OBJECT IDENTIFIER ::= { mib-2 8 }
-- cmot OBJECT IDENTIFIER ::= { mib-2 9 }
transmission OBJECT IDENTIFIER ::= { mib-2 10}
snmp OBJECT IDENTIFIER ::= { mib-2 11}

The file must contain the ASN.1 definition for each MIB variable. The ASN.1 definition is presented in an
OBJECT-TYPE macro.

Following is the format of an OBJECT-TYPE macro:
ObjectDescriptor OBJECT-TYPE

SYNTAX ObjectSyntax
ACCESS AccessMode
STATUS StatusType
DESCRIPTION Description
::= {ObjectGroup Entry}

The following definitions describe the pieces of the macro:

Macro Description
ObjectDescriptor Indicates the textual name assigned to the MIB variable being defined. See RFC

1155 for the definition of the ObjectDescriptor variable.

Chapter 1. System Files 111

Macro Description
ObjectSyntax Indicates the abstract syntax for the object type. It must be one of:

v INTEGER

v OCTET STRING or DisplayString

v OBJECT IDENTIFIER

v NULL

v Network Address

v Counter

v Gauge

v TimeTicks

v Opaque

See RFC 1155 for definitions of each ObjectSyntax variable.
AccessMode Specifies the permissions of the object, which can be either:

v read-only

v read-write

v write-only

v not-accessible

See RFC 1155 for definitions of each AccessMode variable.
StatusType Specifies the status of the object, which can be either:

v mandatory

v optional

v deprecated

v obsolete

See RFC 1155 for definitions of each StatusType variable.
Description Specifies a textual description of the purpose of the MIB variable being defined.
ObjectGroup Defines the object group for this MIB variable. The ObjectGroup variable identifies the

subtree for the MIB variable. See RFC 1213 for information on object groups.
Entry Defines the unique location of the MIB variable in the ObjectGroup variable.

The ObjectGroup and Entry variables are used to specify the unique numerical object identifier for each
MIB variable. See RFC 1155 for an explanation of the object identifier.

See RFC 1155 for further information on the OBJECT-TYPE macro.

This sample mibII.my file was created by extracting the definitions from Chapter 6, ″Definitions,″ of RFC
1213. This file is shipped as /usr/samples/snmpd/mibII.my.

Examples
The following example of an OBJECT-TYPE macro describes the sysDescr managed object:

sysDescr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION A textual description of the entity.

This value should include the full name and
version identification of system’s hardware
type,software operating-system, and networking
software. It is mandatory that this only
contain printable ASCII characters.

::= { system 1 }

112 Files Reference

Files

/usr/samples/snmpd/mibII.my Specifies the path of the mibII.my file.
/usr/samples/snmpd/smi.my Defines the ASN.1 definitions by which the SMI is defined in

RFC 1155.
/etc/mib.defs Defines the Management Information Base (MIB) variables the

snmpd agent should recognize and handle. This file is in the
format which the snmpinfo command requires.

Related Information
The mosy command, snmpinfo command.

The smi.my file.

Management Information Base (MIB) and Terminology Related to Management Information Base (MIB)
Variables in AIX 5L Version 5.2 Communications Programming Concepts.

RFC 1155, RFC 1213.

Rose, Marshall T. The Simple Book, An Introduction to Internet Management. Englewood Cliffs, NJ,
Prentice Hall, 1994.

mkuser.default File

Purpose
Contains the default attributes for new users.

Description
The /usr/lib/security/mkuser.default file contains the default attributes for new users. This file is an ASCII
file that contains user stanzas. These stanzas have attribute default values for users created by the
mkuser command. Each attribute has the Attribute=Value form. If an attribute has a value of $USER, the
mkuser command substitutes the name of the user. The end of each attribute pair and stanza is marked
by a new-line character.

There are two stanzas, user and admin, that can contain all defined attributes except the id and admin
attributes. The mkuser command generates a unique id attribute. The admin attribute depends on
whether the -a flag is used with the mkuser command.

For a list of the possible user attributes, see the chuser command.

Security
Access Control: If read (r) access is not granted to all users, members of the security group should be
given read (r) access. This command should grant write (w) access only to the root user.

Examples
A typical user stanza looks like the following:
user:

pgroup = staff
groups = staff
shell = /usr/bin/ksh
home = /home/$USER
auth1 = SYSTEM

Chapter 1. System Files 113

Files

/usr/lib/security/mkuser.default Specifies the path to the file.

Related Information
The chuser command, mkuser command.

Security Administration in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices.

mtstailor File for MH

Purpose
Tailors the Message Handler (MH) environment to the local environment.

Description
The entries located in the /etc/mh/mtstailor file specify how MH commands work. The following list
describes the file entries and their default values. All of the file entries are optional.

Entry Description
localname: Specifies the host name of the local system. If this entry is not defined, MH queries the

system for the default value.
systemname: Specifies the host name of the local system in the UUCP domain. If this entry is not

defined, MH queries the system for the default value.
mmdfldir: Specifies the location of mail drops. If this entry is present and empty, mail drops are

located in the user’s $HOME directory. If this entry does not exist, mail drops are located in
the /usr/mail directory.

mmdflfil: Specifies the name of the file used as the mail drop. If this entry is not defined, the default
file name is the same as the user name.

mmdelim1: Specifies the beginning-of-message delimiter for mail drops. The default value is four Ctrl +
A key sequences followed by a new-line character (. 001. 001. 001. 001. 012). A Ctrl + A
key sequence is a nonprintable character not displayed on the screen.

mmdelim2: Specifies the end-of-message delimiter for mail drops. The default value is four Ctrl + A key
sequences followed by a new-line character (. 001. 001. 001. 001. 012). A Ctrl + A key
sequence is a nonprintable character not displayed on the screen.

mmailid: Specifies whether support for the MMailID variable in the /etc/passwd file is enabled. If the
mmailid: entry is set to a nonzero value, support is enabled. The pw_gecos: field in the
/etc/passwd file has the following form:

My Full Name MailID

When support for the MMailID variable is enabled, the internal MH routines that deal with
user and full names return the MailID variable and the My Full Name, respectively. The
default value is 0.

lockstyle: Specifies the locking discipline. A value of 0 (zero) uses the lockf system call to perform
locks. A value of 1 creates lock names by appending .lock to the name of the file being
locked. The default is 0 (zero).

lockldir: Specifies the directory for locked files. The default value is the /etc/locks file.
sendmail: Specifies the path name of the sendmail command. The default value is the

/usr/lib/sendmail file.
maildelivery: Specifies the path name of the file containing the system default mail delivery instructions.

The default value is the /etc/mh/maildelivery file.
everyone: Specifies the users to receive messages addressed to everyone. All users having UIDs

greater than the specified number (not inclusive) receive messages addressed to everyone.
The default value is 200.

114 Files Reference

Files

/etc/mh/mtstailor Contains MH command definitions.

Related Information
The sendmail command.

The .maildelivery File for MH file, /etc/passwd file.

mrouted.conf File

Purpose
Default configuration information for the multicast routing daemon mrouted.

Description
The /etc/mrouted.conf configuration file contains entries that provide configuration information used by
mrouted. You can specify any combination of these entries in this file.

The file format is free-form; white space and newline characters are not significant. The phyint, tunnel,
and name entries can be specified more than once. The boundary and altnet values can be specified as
many times as necessary.

The following entries and their options can be used in the mrouted.conf file:

phyint local_addr [disable] [metric m] [threshold t] [rate_limit b] [boundary

(boundary_name | scoped_addr/mask_len)] [altnet network/mask_len]
The phyint entry can be used to disable multicast routing on the physical interface identified by
the local IP address local_addr, or to associate a non-default metric or threshold with the specified
physical interface. The local IP address can be replaced by the interface name (for example, le0).
If a physical interface is attached to multiple IP subnets, describe each additional subnet with the
altnet option. Phyint entries must precede tunnel entries.

The options for the phyint entry and the actions they generate are as follows:

local_addr
Specifies the local address, using either an IP address or an interface name, such as en0.

disable
Disables multicast routing on the physical interface identified by local_addr.

metric m
Specifies the ″cost″ associated with sending a datagram on the given interface or tunnel.
This option can be used to influence the choice of routes. The default value of m is 1.
Metrics should be kept as small as possible, because mrouted cannot route along paths
with a sum of metrics greater than 31.

threshold t
Specifies the minimum IP time-to-live (TTL) required for a multicast datagram to be
forwarded to the given interface or tunnel. This option controls the scope of multicast
datagrams. (The TTL of forwarded packets is compared only to the threshold, it is not
decremented by the threshold.) The default value of t is 1. In general, all mrouted
daemons connected to a particular subnet or tunnel should use the same metric and
threshold for that subnet or tunnel.

Chapter 1. System Files 115

rate_limit b
Specifies a bandwidth in Kilobits/second, which is allocated to multicast traffic. The default
value of b is 500 Kbps on tunnels, and 0 (unlimited) on physical interfaces.

boundary boundary_name|scoped_addr/mask_len
Configures an interface as an administrative boundary for the specified scoped address.
Packets belonging to this address are not forwarded on a scoped interface. The boundary
option accepts either a boundary name or a scoped address and mask length. The
boundary_name is the name assigned to a boundary with the name entry. The
scoped_addr value is a multicast address. The mask_len value is the length of the
network mask.

altnet network/mask_len
Specifies an additional subnet (network) attached to the physical interface described in the
phyint entry. mask_len is the length of the network mask.

tunnel local_addr remote_addr [metric m] [threshold t] [rate_limit b] [boundary {boundary_name |
scoped_addr/mask_len}] [altnet network/mask_len]

The tunnel entry can be used to establish a tunnel link between the local IP address (local_addr)
and the remote IP address (remote_addr), and to associate a non-default metric or threshold with
that tunnel. The local IP address can be replaced by the interface name (for example, le0). The
remote IP address can be replaced by a host name, if and only if the host name has a single IP
address associated with it. The tunnel must be set up in the mrouted.conf files of both routers
before it can be used. The phyint entry can be used to disable multicast routing on the physical
address interface identified by the local IP address local_addr , or to associate a non-default
metric or threshold with the specified physical interface. The local IP address can be replaced by
the interface name (for example, le0). If a physical interface is attached to multiple IP subnets,
describe each additional subnet with the altnet option. Phyint entries must precede tunnel
entries.

For a description of the options used with the tunnel entry, see the preceding option descriptions
in the phyint entry.

cache_lifetime ct
The cache_lifetime entry determines the amount of time that a cached multicast route stays in the
kernel before timing out. The value of ct is in seconds, and should lie between 300 (five minutes)
and 86400 (one day). The default value is 300 seconds .

pruning state
The pruning entry enables mrouted to act as a non-pruning router. The value of state can be
either on or off . You should configure your router as a non-pruning router for test purposes only.
The default mode is on , which enables pruning.

name boundary_name scoped_addr/mask-len
The name entry lets you assign names to boundaries to make it easier to configure. The
boundary option on the phyint and tunnel entries accepts either a boundary name or a scoped
address. The boundary_name is the name you want to give to the boundary. The scoped_addr
value is a multicast address. The mask_len value is the length of the network mask.

Example
This example shows a configuration for a multicast router at a large school.
#
mrouted.conf
#
Name our boundaries to make it easier
name LOCAL 239.255.0.0/16 name EE 239.254.0.0/16
#
le1 is our gateway to compsci, don’t forward our
local groups to them
phyint le1 boundary LOCAL

116 Files Reference

#
le2 is our interface on the classroom network,
it has four different length subnets on it.
Note that you can use either an IP address or an
interface name
phyint 172.16.12.38 boundary EE altnet 172.16.15.0/26

altnet 172.16.15.128/26 altnet 172.16.48.0/24
#
atm0 is our ATM interface, which doesn’t properly
support multicasting
phyint atm0 disable
#
This is an internal tunnel to another EE subnet.
Remove the default tunnel rate limit, since this tunnel
is over ethernets
tunnel 192.168.5.4 192.168.55.101 metric 1 threshold 1

rate_limit 0
This is our tunnel to the outside world.
tunnel 192.168.5.4 10.11.12.13 metric 1 threshold 32

boundary LOCAL boundary EE

netgroup File for NIS

Purpose
Lists the groups of users on the network.

Description
The /etc/netgroup file defines network-wide groups. This file is used for checking permissions when doing
remote mounts, remote logins, and remote shells. For remote mounts, the information in the netgroup file
is used to classify machines. For remote logins and remote shells, the file is used to classify users. Each
line of the netgroup file defines a group and is formatted as follows:

Groupname Member1 Member2 ...

where Member is either another group name or consists of three entries as follows:

hostname, username, domainname

Any of these three fields can be empty, in which case it signifies a wild card. The universal (, ,) field
defines a group to which everyone belongs.

Field names that begin with something other than a letter, digit or underscore (such as -) work in precisely
the opposite fashion. For example, consider the following entries:
justmachines (analytica,-,ibm)

justpeople (-,babbage,ibm)

The machine analytica belongs to the group justmachines in the domain ibm, but no users belong to it.
Similarly, the user babbage belongs to the group justpeople in the domain ibm, but no machines belong to
it.

A gateway machine should be listed under all possible host names by which it may be recognized:

wan (gateway , ,) (gateway-ebb, ,)

The domainname field refers to the domain n in which the triple is valid, not the name containing the
trusted host.

Chapter 1. System Files 117

Examples
The following is an excerpt from a netgroup file:
machines (venus, -, star)
people
(-, bob, star)

In this example, the machine named venus belongs to the group machines in the star domain. Similarly,
the user bob belongs to the group people in the star domain.

Files

/etc/netgroup Specifies the path of the file.

Related Information
The makedbm command.

The ypserv daemon.

Mounting an NFS File System Explicitly, Network File System Overview, and Network Information Service
Overview in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

List of NIS Programming References in AIX 5L Version 5.2 System Management Guide: Communications
and Networks.

netmasks File for NIS

Purpose
Contains network masks used to implement Internet Protocol (IP) standard subnetting.

Description
The /etc/netmasks file contains network masks used to implement IP standard subnetting.This file
contains a line for each network that is subnetted. Each line consists of the network number, any number
of spaces or tabs, and the network mask to use on that network. Network numbers and masks may be
specified in the conventional IP . (dot) notation (similar to IP host addresses, but with zeroes for the host
part). The following number is a line from a netmask file:
128.32.0.0 255.255.255.0

This number specifies that the Class B network 128.32.0.0 has 8 bits of subnet field and 8 bits of host
field, in addition to the standard 16 bits in the network field. When running network information service, this
file on the master is used for the netmasks.byaddr map.

Files

/etc/netmasks Specifies the path of the file.

Related Information
Network File System Overview in AIX 5L Version 5.2 System Management Guide: Communications and
Networks.

Network Information Service Overview in AIX 5L Version 5.2 System Management Guide: Communications
and Networks.

118 Files Reference

netsvc.conf File

Purpose
Specifies the ordering of certain name resolution services.

Description
The /etc/netsvc.conf file is used to specify the ordering of name resolution for the sendmail command,
gethostbyname subroutine, gethostaddr subroutine, and gethostent subroutine and alias resolution for
the sendmail command.

Several mechanisms for resolving host names and aliases are available. The gethostbyname,
gethostbyaddr, and gethostent subroutines use these mechanisms for resolving names. A default order
exists in which the resolver subroutines try the mechanisms for resolving host names and Internet Protocol
(IP) addresses.

Resolving Host Names
You can override the default order and the order given in the /etc/irs.conf file by creating the
/etc/netsvc.conf configuration file and specifying the desired ordering. To specify this host ordering, create
an entry in the following format:
hosts = value [, value]

Use one or more of the following values for the hosts keyword:

Value Description
auth Designates the specified server as authoritative. A resolver does not continue searching for host names

further than an authoritative server. For example, when two services are given as values for the host
keyword and the first service is made authoritative, and if the resolver cannot find the host name in the
authoritative service, then the resolver terminates its search. However, the auth option has no effect if
the resolver is unable to contact the authoritative server; in this case, the resolver continues to search
the next service given in the same entry.

Indicate that the specified service is authoritative by following it by an = and then auth.
Note: The auth option is only valid when used in conjunction with a service value for the host keyword.

bind Uses BIND/DNS services for resolving names
local Searches the local /etc/hosts file for resolving names
nis Uses NIS services for resolving names. NIS must be running if you specify this option
ldap Uses LDAP services for resolving names. This option works if LDAP server schema is IBM Secureway

Directory compliant.
Note: Although still supported, the use of ldap mechanism is deprecated. Use of nis_ldap mechanism
instead is recommended.

nis_ldap Uses LDAP services for resolving names. This option works if LDAP server schema is RFC 2307
compliant.

bind4 Uses BIND/DNS services for resolving only IPv4 addresses
bind6 Uses BIND/DNS services for resolving only IPv6 addresses
local4 Searches the local /etc/hosts file for resolving only IPv4 addresses
local6 Searches the local /etc/hosts file for resolving only IPv6 addresses
nis4 Uses NIS services for resolving only IPv4 addresses
nis6 Uses NIS services for resolving only IPv6 addresses
ldap4 Uses LDAP services for resolving only IPv4 addresses
ldap6 Uses LDAP services for resolving only IPv6 addresses

The environment variable NSORDER overrides the host settings in the /etc/netsvc.conf file, which in turn
overrides the host settings in the /etc/irs.conf file.

Chapter 1. System Files 119

Resolving Aliases
The sendmail command searches the local /etc/aliases file, or uses NIS if specified for resolving aliases.
You can override the default by specifying how to resolve aliases in the /etc/netsvc.conf file. To specify
alias ordering to the sendmail command, enter the following:
alias = value [, value]

Use one or more of the following values for the alias keyword:

Value Description
files Searches the local /etc/aliases file for the alias
nis Uses NIS services for resolving alias

The order is specified on one line with values separated by commas. White spaces are permitted around
the commas and the equal sign. The values specified and their ordering are dependent on the network
configuration.

Examples
1. To use only the /etc/hosts file for resolving names, enter:

hosts = local

2. If the resolver cannot find the name in the /etc/hosts file and you want to the resolver to use NIS,
enter:
hosts = local , nis

3. To use the LDAP server for resolving names, indicate that it is authoritative, and to also use the BIND
service, enter:
hosts = ldap = auth , bind

In this example, if the resolver cannot contact the LDAP server, then it searches the BIND service.

4. To override the default order and use only NIS for resolving aliases by the sendmail command, enter:
aliases = nis

Files

/etc/netsvc.conf Specifies the path to the file.

Related Information
The aliases file for mail, irs.conf file, hosts file format for TCP/IP.

The sendmail command.

The gethostbyname subroutine, gethostbyaddr subroutine, and gethostent subroutine.

TCP/IP Name Resolution in AIX 5L Version 5.2 System Management Guide: Communications and
Networks

networks File for NFS

Purpose
Contains information about networks on the NFS Internet network.

120 Files Reference

Description
The /etc/networks file contains information regarding the known networks that make up the Internet
network. The file has an entry for each network. Each entry consists of a single line with the following
information:

v Official network name

v Network number

v Aliases

Items are separated by any number of blanks or tab characters. A # (pound sign) indicates the beginning
of a comment; characters up to the end of the line are not interpreted by routines that search the file.

Note: This file is not supported by the operating system. However, if this file resides on your system,
Network Information Services (NIS) software will create a map for it.

Files

/etc/networks Specifies the path of the file.

Related Information
NFS Services in the AIX 5L Version 5.2 System Management Guide: Communications and Networks.

List of NFS Files. in the AIX 5L Version 5.2 System Management Guide: Communications and Networks.

NLSvec File

Purpose
Encodes PostScript fonts for the ISO8859-1 codeset characters that have code points of more than 127
decimal.

Description
The /usr/lib/ps/NLSvec file can contain optional comments, optional code sets, and optional character
encodings.

If a line begins with an * (asterisk), it is treated as a comment.

If a specified codeset is used, it must precede all character encodings. If a code set is not specified, the
default is ISO8859-1. A specified code set uses the following syntax:

x codeset CodeSetName

x Use a lowercase letter.

codeset
Use all lowercase letters.

CodeSetName
Use any valid code set name available for use with the iconv command.

A character encoding uses the following syntax:

CodePoint PostscriptFontPosition PostscriptCharacterName

CodePoint
Displays the decimal code point for the character.

Chapter 1. System Files 121

PostScriptFontPosition
Displays the new encoding for that character within the PostScript fonts. The encoding can be
octal or decimal.

PostScriptCharacterName
Displays the PostScript character name.

The PostScript assigned character encodings as well as the character names can be found in the following
book:

Adobe Systems Incorporated. PostScript Language Reference Manual, Second Edition. Reading, MA:
Addison-Wesley.

Examples
Notes:

1. Following is an example of a specified codeset:
x codeset ISO8859-1

2. Following is an example of a character encoding:
161 0241 exclamdown

International Character Support
By default, the output code set for the TranScript commands is ISO8859-1. The output code set can be
specified with the NLSvec file. For the enscript, ps4014, ps630, and psplot TranScript commands, the
input codeset is determined from the current locale. The mapping of characters outside the ASCII range is
determined through the iconv subroutine using the input and output code sets. If there is no
corresponding iconv converter, the commands treat the input data as if it were produced in ISO8859-1.
This means that ASCII data is output correctly for all locales and codesets. For multibyte locales with no
iconv converters to ISO8859-1 each byte of a multibyte character is treated as individual characters of the
ISO8859-1 form. The only exception to this is the enscript command, which translates characters rather
then bytes in the current locale through the mapping in the NLSvec file.

The following table lists the characters from the IBM-850 code set, which does not map directly to the
ISO8859-1 code set through the iconv subroutine. The following characters would be mapped to 26
(0x1A) by the iconv subroutine and thus be discarded on output. It is possible to define an alternative
NLSvec file for the IBM-850 code set so that more of the characters can be output on a PostScript device.
The characters marked with an * (asterisk) before the character name are normally available in a
PostScript font.

Code Point Character Name
159 (0x9F) * Florin sign, PostScript name: florin
176 (0xB0) Quarter hashed
177 (0xB1) Half hashed
178 (0xB2) Full hashed
179 (0xB3) Vertical bar
180 (0xB4) Right-side middle
185 (0xB9) Double right-side middle
186 (0xBA) Double vertical bar
187 (0xBB) Double upper-right corner bar
188 (0xBC) Double lower-right corner bar
191 (0xBF) Upper-right corner box
192 (0xC0) Lower-left corner box
193 (0xC1) Bottom-side middle
194 (0xC2) Top-side middle
195 (0xC3) Left-side middle

122 Files Reference

Code Point Character Name
196 (0xC4) Center box bar
197 (0xC5) Intersection
200 (0xC8) Double lower-left corner bar
201 (0xC9) Double upper-left corner bar
202 (0xCA) Double bottom-side middle
203 (0xCB) Double top-side middle
204 (0xCC) Double left-side middle
205 (0xCD) Double center box bar
206 (0xCE) Double intersection
213 (0xD5) * Small dotless i, PostScript name: dotless i
217 (0xD9) Lower-right corner box
218 (0xDA) Upper-left corner box
219 (0xDB) Bright character cell
220 (0xDC) Bright character cell lower half
223 (0xDF) Bright character cell upper half
242 (0xF2) Double underscore
254 (0xFE) Vertical solid rectangle

Files

XPSLIBDIRX Specifies the /usr/lib/ps directory.
/usr/lib/ps/NLSvec Contains Adobe TranScript character encodings for the ISO8859-1 code set. This

file is the default.
PSVECFILE Used as an environment variable to define an NLSvec file other than the default

file.

Related Information
The enscript command, iconv command, ps630 command, ps4014 command, psplot command.

ntp.conf File

Purpose
Controls how the Network Time Protocol (NTP) daemon xntpd operates and behaves.

Description
The ntp.conf file is a basic configuration file controlling the xntpd daemon.

The following options are discussed in this article:

v Configuration Options

v Configuration Authentication Options

v Configuration Access Control Options

v Configuration Monitoring Options

v Miscellaneous Configuration Options

Configuration Options
In the ntp.conf file, comments begin with a # character and extend to the end of the line. Blank lines are
ignored. Options consist of an initial keyword followed by a list of arguments, which may be optional,
separated by whitespace. These options may not be continued over multiple lines. Arguments may be host
names, host addresses written in numeric (dotted decimal) form, integers, floating point numbers (when

Chapter 1. System Files 123

specifying times in seconds) and text strings.

Option Description
peer [HostAddress] [key Number] [version Number] [prefer]

Specifies that the local server operate in symmetric active
mode with the remote server specified by HostAddress. In
this mode, the local server can be synchronized to the
remote server, or the remote server can be synchronized
to the local server. Use this method in a network of
servers where, depending on various failure scenarios,
either the local or remote server host may be the better
source of time.

The key Number specifies that all packets sent to
HostAddress include authentication fields encrypted using
the specified key number. The value of KeyNumber is the
range of an unsigned 32 bit integer.

The version Number specifies the version number to use
for outgoing NTP packets. The values for Version can be
1 or 2. The default is NTP version 3 implementation.

The prefer option marks the host as a preferred host. This
host is not subject to preliminary filtering.

server [HostAddress] [key Number] [version Number] [prefer] [mode Number]
Specifies that the local server operate in client mode with
the remote server specified by HostAddress. In this mode,
the local server can be synchronized to the remote server,
but the remote server can never be synchronized to the
local server.

The key Number specifies that all packets sent to
HostAddress include authentication fields encrypted using
the specified key number. The value of KeyNumber is the
range of an unsigned 32 bit integer.

The version Number specifies the version number to use
for outgoing NTP packets. The values for Version can be
1 or 2. The default is NTP version 3 implementation.

The prefer argument marks the host as a preferred host.
This host is not subject to preliminary filtering.
broadcast [HostAddress] [key Number] [version Number] [ttl Number]

124 Files Reference

Option Description
Specifies that the local server operate in broadcast mode
where the local server sends periodic broadcast
messages to a client population at the broadcast/multicast
address specified by HostAddress. Ordinarily, this
specification applies only to the local server operating as a
transmitter. In this mode, HostAddress is usually the
broadcast address on [one of] the local network[s] or a
multicast address. The address assigned to NTP is
224.0.1.1; presently, this is the only number that should be
used.

The key Number specifies that all packets sent to
HostAddress include authentication fields encrypted using
the specified key number. The value of Number is the
range of an unsigned 32 bit integer.

The version Number specifies the version number to use
for outgoing NTP packets. The values for Version can be
1 or 2. The default is NTP version 3 implementation.

The ttl Number is used only with the broadcast mode. It
specifies the time-to-live (TTL) to use on multicast
packets. This value defaults to 127.

broadcastclient Specifies that the local server listen for broadcast
messages on the local network in order to discover other
servers on the same subnet. When the local server hears
a broadcast message for the first time, it measures the
nominal network delay using a brief client/server exchange
with the remote server, then enters the broadcastclient
mode, where it listens for and synchronizes to succeeding
broadcast messages.

multicastclient [IPAddress ...] Works like broadcastclient configuration option, but
operates using IP multicasting. If you give one or more IP
addresses, the server joins the respective multicast
group(s). If you do not give an IP address, the IP address
assumed is the one assigned to NTP (224.0.1.1).

driftfile Filename Specifies the name of the file used to record the
frequency offset of the local clock oscillator. The xntpd
daemon reads this file at startup, if it exists, in order to set
the initial frequency offset and then updates it once per
hour with the current offset computed by the daemon. If
the file does not exist or you do not give this option, the
initial frequency offset assumed is zero. In this case, it
may take some hours for the frequency to stabilize and
the residual timing errors to subside. The file contains a
single floating point value equal to the offset in
parts-per-million (ppm).
Note: The update of the file occurs by first writing the
current drift value into a temporary file and then using
rename??? to replace the old version. The xntpd
daemon must have write permission in the directory of the
drift file, and you should avoid file system links, symbolic
or otherwise.

enable auth | bclient | pll | monitor | stats [...]

Chapter 1. System Files 125

Option Description
Enables various server options. Does not affect arguments
not mentioned.

The auth option causes the server to synchronize with
unconfigured peers only if the peer has been correctly
authenticated using a trusted key and key identifier. The
default for this argument is disable (off).

The bclient option causes the server to listen for a
message from a broadcast or multicast server, following
which an association is automatically instantiated for that
server. The default for this argument is disable (off).

The pll option enables the server to adjust its local clock,
with default enable (on). If not set, the local clock
free-runs at its intrinsic time and frequency offset. This
option is useful when the local clock is controlled by some
other device or protocol and NTP is used only to provide
synchronization to other clients.

The monitor option enables the monitoring facility, with
default enable (on).

The stats option enables statistics facility filegen, with
default enable (on).

disable auth | bclient | pll | monitor | stats [...]
Disables various server options. Does not affect
arguments not mentioned. The options are described
under the enable subcommand.

Configuration Authentication Options

Option Description
keys Filename Specifies the name of a file which contains the

encryption keys and key identifiers used by the xntpd
daemon when operating in authenticated mode.

trustedkey Number [Number ...] Specifies the encryption key identifiers which are
trusted for the purposes of authenticating peers
suitable for synchronization. The authentication
procedures require that both the local and remote
servers share the same key and key identifier for this
purpose, although you can use different keys with
different servers. Each Number is a 32 bit unsigned
integer.
Note: The NTP key 0 is fixed and globally known. To
perform meaningful authentication, the 0 key should
not be trusted.

126 Files Reference

Option Description
requestkey Number Specifies the key identifier to use with the xntpdc

query/control program that diagnoses and repairs
problems that affect the operation of the xntpd
daemon. The operation of the xntpdc query/control
program is specific to this particular implementation of
the xntpd daemon and can be expected to work only
with this and previous versions of the daemon.
Requests from a remote xntpdc program which affect
the state of the local server must be authenticated,
which requires both the remote program and local
server share a common key and key identifier. The
value of Number is a 32 bit unsigned integer. If you do
not include requestkey in the configuration file, or if
the keys do not match, such requests are ignored.

controlkey Number Specifies the key identifier to use with the ntpq query
program, that diagnoses problems that affect the
operation of the xntpd daemon. The operation of the
ntpq query program and the xntpd daemon conform
to those specified in RFC 1305. Requests from a
remote ntpq program which affect the state of the
local server must be authenticated, which requires
both the remote program and local server share a
common key and key identifier. The value of Number
is a 32 bit unsigned integer. If you do not include
controlkey in the configuration file, or if the keys do
not match, such requests are ignored.

authdelay Seconds Specifies the amount of time it takes to encrypt an
NTP authentication field on the local computer. This
value corrects transmit timestamps when using
authentication on outgoing packets. The value usually
lies somewhere in the range 0.0001 seconds to 0.003
seconds, though it is very dependent on the CPU
speed of the host computer.

Configuration Access Control Options
The xntpd daemon inserts default restriction list entries, with the parameters ignore and ntpport, for each
of the local host’s interface addresses into the table at startup to prevent the server from attempting to
synchronize to its own time. A default entry is also always present, though if it is otherwise unconfigured it
does not associate parameters with the default entry (everything besides your own NTP server is
unrestricted).

While this facility may be useful for keeping unwanted or broken remote time servers from affecting your
own, do not consider it an alternative to the standard NTP authentication facility.

restrict Address [mask Number | default] [Parameter ...]
Specifies the restrictions to use on the given address. The xntpd daemon implements a general
purpose address-and-mask based restriction list. The xntpd daemon sorts this list by address and
by mask, and searches the list in this order for matches, with the last match found defining the
restriction flags associated with the incoming packets. The xntpd daemon uses the source
address of incoming packets for the match, doing a logical and operation with the 32 bit address
and the mask associated with the restriction entry. It then compares it with the entry’s address
(which has also been and’ed with the mask) to look for a match. The mask option defaults to
255.255.255.255, meaning that Address is treated as the address of an individual host. A default
entry (address 0.0.0.0, mask 0.0.0.0) is always included and is always the first entry in the list.
The text string default, with no mask option, may be used to indicate the default entry.

Chapter 1. System Files 127

In the current implementation, Parameter always restricts access. An entry with no Parameter
gives free access to the server. More restrictive Parameters will often make less restrictive ones
redundant. The Parameters generally restrict time service or restrict informational queries and
attempts to do run time reconfiguration of the server. You can specify one or more of the following
value for Parameter:

ignore
Specifies to ignore all packets from hosts which match this entry. Does not respond to
queries nor time server polls.

limited
Specifies that these hosts are subject to limitation of number of clients from the same net.
Net in this context refers to the IP notion of net (class A, class B, class C, and so on).
Only accepts the first client_limit hosts that have shown up at the server and that have
been active during the last client_limit_period seconds. Rejects requests from other
clients from the same net. Only takes into account time request packets. Private, control,
and broadcast packets are not subject to client limitation and therefore do not contribute to
client count. The monitoring capability of the xntpd daemon keeps a history of clients.
When you use this option, monitoring remains active. The default value for client_limit is
3. The default value for client_limit_period is 3600 seconds.

lowpriotrap
Specifies to declare traps set by matching hosts to low-priority status. The server can
maintain a limited number of traps (the current limit is 3), assigned on a first come, first
served basis, and denies service to later trap requestors. This parameter modifies the
assignment algorithm by allowing later requests for normal priority traps to override
low-priority traps.

nomodify
Specifies to ignore all NTP mode 6 and 7 packets which attempt to modify the state of the
server (run time reconfiguration). Permits queries which return information.

nopeer
Specifies to provide stateless time service to polling hosts, but not to allocate peer
memory resources to these hosts.

noquery
Specifies to ignore all NTP mode 6 and 7 packets (information queries and configuration
requests) from the source. Does not affect time service.

noserve
Specifies to ignore NTP packets whose mode is not 6 or 7. This denies time service, but
permits queries.

notrap
Specifies to decline to provide mode 6 control message trap service to matching hosts.
The trap service is a subsystem of the mode 6 control message protocol intended for use
by remote event-logging programs.

notrust
Specifies to treat these hosts normally in other respects, but never use them as
synchronization sources.

ntpport
Specifies to match the restriction entry only if the source port in the packet is the standard
NTP UDP port (123).

clientlimit Number
Sets client_limit. Specifies the number of clients from the same network allowed to use the
server. Allows the configuration of client limitation policy.

128 Files Reference

clientperiod Seconds
Sets client_limit_period. Specifies the number of seconds to before considering if a client is
inactive and no longer counted for client limit restriction. Allows the configuration of client limitation
policy.

Configuration Monitoring Options
File generation sets manage statistical files. The information obtained by enabling statistical recording
allows analysis of temporal properties of a server running the xntpd daemon. It is usually only useful to
primary servers.

statsdir DirectoryPath
Specifies the full path of the directory in which to create statistical files. Allows modification of the
otherwise constant filegen filename prefix for file generation sets used for handling statistical logs.

statistics Type...
Enables writing of statistical records. The following are the types of statistics supported:

loopstats
Enables recording of loop filter statistical information. Each update of the local clock
outputs a line of the following format to the file generation set named loopstats:
48773 10847.650 0.0001307 17.3478 2

The first two fields show the date (Modified Julian Day) and time (seconds and fraction
past UTC midnight). The next three fields show time offset in seconds, frequency offset in
parts-per-million and time constant of the clock-discipline algorithm at each update of the
clock.

peerstats
Enables recording of peer statistical information. This includes statistical records of all
peers of an NTP server and of the 1-pps signal, where present and configured. Each valid
update appends a line of the following format to the current element of a file generation
set named peerstats:
48773 10847.650 127.127.4.1 9714 -0.001605
0.00000 0.00142

The first two fields show the date (Modified Julian Day) and time (seconds and fraction
past UTC midnight). The next two fields show the peer address in dotted-quad notation
and status, respectively. The status field is encoded in hex in the format described in
Appendix A of the NTP specification RFC 1305. The final three fields show the offset,
delay and dispersion, all in seconds.

clockstats
Enables recording of clock driver statistical information. Each update received from a clock
driver outputs a line of the following form to the file generation set named clockstats:
49213 525.624 127.127.4.1 93 226
00:08:29.606 D

The first two fields show the date (Modified Julian Day) and time (seconds and fraction
past UTC midnight). The next field shows the clock address in dotted-quad notation, The
final field shows the last timecode received from the clock in decoded ASCII format, where
meaningful. You can gather and display a good deal of additional information in some
clock drivers.

filegen Name [file FileName] [type TypeName] [flag flagval] [link] [nolink] [enable] [disabled
] Configures setting of generation fileset name. Generation filesets provide a means for handling

files that are continuously growing during the lifetime of a server. Server statistics are a typical
example for such files. Generation filesets provide access to a set of files used to store the actual

Chapter 1. System Files 129

data. A file generation set is characterized by its type. At any time, at most one element of the set
is being written to. Filenames of set members are built from three elements:

Prefix This is a constant filename path. It is not subject to modifications with the filegen option. It
is defined by the server, usually specified as a compile time constant. You can, however,
configure it for individual file generation sets with other commands. For example, you can
configure the prefix used with loopstats and peerstats filegens using the statsdir option.

file FileName
The string FileName is directly concatenated to the prefix with no intervening slash (/). You
can modify this by using the file argument to the filegen option. To prevent filenames
referring to parts outside the filesystem hierarchy denoted by prefix, ″..″ elements are not
allowed in this component

Suffix This part reflects individual elements of a fileset. It is generated according to the type of a
fileset.

type TypeName
Specifies when and how to direct data to a new element of the set. This way, information
stored in elements of a fileset that are currently unused are available for administrational
operations without the risk of disturbing the operation of the xntpd daemon. Most
important, you can remove them to free space for new data produced. The following types
are supported:

none Specifies that the fileset is actually a single plain file.

pid Specifies the use of one element of fileset per server running the xntpd daemon.
This type does not perform any changes to fileset members during runtime;
however, it provides an easy way of separating files belonging to different servers
running the xntpd daemon. The set member filename is built by appending a dot
(.) to concatenated prefix and strings denoted in file Name, and appending the
decimal representation of the process id of the xntpd server process.

day Specifies the creation of one file generation set element per day. The term day is
based on UTC. A day is the period between 00:00 and 24:00 UTC. The fileset
member suffix consists of a dot (.) and a day specification in the form
YYYYMMDD. where YYYY is a 4 digit year number, MM is a two digit month
number, and, DD is a two digit day number. For example, all information written at
January 10th, 1992 would end up in a file named PrefixFileName.19920110.

week Specifies the creation of one file generation set element per week. A week is
computed as day-of-year modulo 7. The fileset member suffix consists of a dot (.),
a four digit year number, the letter W, and a two digit week number. For example,
all information written at January, 10th 1992 would end up in a file named
PrefixFileName.1992W1.

month
Specifies the creation of one file generation set element per month. The fileset
member suffix consists of a dot (.), a four digit year number, and a two digit month
number. For example, all information written at January, 1992 would end up in a
file named PrefixFileName.199201.

year Specifies the creation of one file generation set element per year. The fileset
member suffix consists of a dot (.) and a four digit year number. For example, all
information written at January, 1992 would end up in a file named
PrefixFileName.1992.

age Specifies the creation of one file generation set element every 24 hours of server
operation. The fileset member suffix consists of a dot (.), the letter a, and an eight
digit number. This number is the number of seconds of run-time of the server
since the start of the corresponding 24 hour period.

130 Files Reference

enable
Enables the writing of information to a file generation set.

disabled
Disables the writing of information to a file generation set.

link Enables the access of the current element of a file generation set by a fixed name by creating a
hard link from the current fileset element to a file without Suffix. If a file with this name already
exists and the number of links of this file is one, it is renamed by appending a dot (.), the letter C,
and the pid of the xntpd server process. If the number of links is greater than one, the file is
unlinked. This allows access of the current file by a constant name.

nolink Disables access the current element of a file generation set by a fixed name.

Miscellaneous Configuration Options

Option Description
precision Number Specifies the nominal precision of the local clock. The Number is an integer

approximately equal to the base 2 logarithm of the local timekeeping precision
in seconds. Normally, the xntpd daemon determines the precision
automatically at startup, so use this option when the xntpd daemon cannot
determine the precision automatically.

broadcastdelay Seconds Specifies the default delay to use when in broadcast or multicast modes.
These modes require a special calibration to determine the network delay
between the local and remote servers. Normally, this is done automatically by
the initial protocol exchanges between the local and remote servers. In some
cases, the calibration procedure may fail due to network or server access
controls, for example.

Typically for Ethernet, a number between 0.003 and 0.007 seconds is
appropriate. The default is 0.004 seconds.

trap HostAddress [port Number] [interface Addess]
Configures a trap receiver at the given
host address and port number for
sending messages with the specified
local interface address. If you do not
specify the port number, the value
defaults to 18447. If you do not specify
the interface address, the value
defaults to the source address of the
local interface.
Note: On a multihomed host, the
interface used may vary from time to
time with routing changes.

Normally, the trap receiver logs event
messages and other information from
the server in a log file. While such
monitor programs may also request
their own trap dynamically, configuring
a trap receiver ensures that when the
server starts, no messages are lost.

Chapter 1. System Files 131

Option Description
setvar Variable [default] Specifies to add an additional system variable. You can use these variables to

distribute additional information such as the access policy. If default follows a
variable of the from Name=Value , then the variable becomes part of the
default system variables, as if you used the ntpq rv command. These
additional variables serve informational purposes only; they are not related to
the protocol variables. The known protocol variables always override any
variables defined with setvar.

There are three special variables that contain the names of all variables of the
same group. The sys_var_list holds the names of all system variables, the
peer_var_list holds the names of all peer variables, and the clock_var_list
holds the names of the reference clock variables.

logconfig Key Controls the amount of output written to syslog or the logfile. By default all
output is turned on. You can prefix all KeyWords with = (equal), + (plus) and -
(dash). You can control four classes of messages: sys, peer, clock, and sync.
Within these classes, you can control four types of messages:

info Outputs informational messages that control configuration
information.

events Outputs event messages that control logging of events (reachability,
synchronization, alarm conditions).

status Outputs statistical messages that describe mainly the
synchronization status.

all Outputs all messages having to do with the specified class and
suppresses all other events and messages of the classes not
specified.

You form the KeyWord by concatenating the message class with the event
class. To just list the synchronization state of xntp and the major system
events, enter:

logconfig =syncstatus +sysevents

To list all clock information and synchronization information and have all other
events and messages about peers, system events and so on suppressed,
enter:

logconfig =syncall +clockall

Files

/etc/ntp.conf Specifies the path to the file.

Related Information
The xntpdc command, the xntpd daemon.

The ntp.keys file.

ntp.keys File

Purpose
Contains key identifiers and keys controlling authentication of Network Time Protocol (NTP) transactions.

132 Files Reference

Description
The ntp.keys file contains key identifiers and keys for encryption and decryption of authentication of NTP
transactions.

Authentication Key File Format
The NTP standard specifies an extension allowing verification of the authenticity of received NTP packets,
and to provide an indication of authenticity in outgoing packets. The xntpd daemon implements this by
using the MD5 algorithm to compute a message-digest. The specification allows any one of possibly 4
billion keys, numbered with 32 bit key identifiers, to be used to authenticate an association. The servers
involved in an association must agree on the key and key identifier used to authenticate their data,
although they must each learn the key and key identifier independently.

The xntpd daemon reads its keys from a file specified with the -k flag or the keys statement in the
configuration file. You cannot change key number 0 because the NTP standard fixes it as 64 zero bits.

The ntp.keys file uses the same comment conventions as the configuration file, ntp.conf. Key entries use
the following format:

KeyNumber M Key

where,

Entry Description
KeyNumber A positive integer
M Specifies that Key is a 1-to-8 character ASCII string, using the MD5 authentication scheme.
Key The key itself.

One of the keys may be chosen, by way of the ntp.conf configuration file requestkey statement, to
authenticate run-time configuration requests made using the xntpdc command. The xntpdc command
obtains the key from the terminal as a password, so it is generally appropriate to specify the key in ASCII
format.

Files

/etc/ntp.keys Specifies the path to the file.

Related Information
The xntpdc command, the xntpd daemon.

objects File

Purpose
Contains the audit events for audited objects (files).

Description
The /etc/security/audit/objects file is an ASCII stanza file that contains information about audited objects
(files). This file contains one stanza for each audited file. The stanza has a name equal to the path name
of the file.

Each file attribute has the following format:

Chapter 1. System Files 133

access_mode = ″audit_event ″

An audit-event name can be up to 15 bytes long; longer names are rejected. Valid access modes are read
(r), write (w), and execute (x) modes. For directories, search mode is substituted for execute mode.

Security
Access Control: This file should grant read (r) access to the root user and members of the audit group and
grant write (w) access only to the root user.

Examples
To define the audit events for the /etc/security/passwd file, add a stanza to the
/etc/security/audit/objects file. For example:
/etc/security/passwd:

r = "S_PASSWD_READ"
w = "S_PASSWD_WRITE"

These attributes generate a S_PASSWD_READ audit event each time the passwd file is read, and a
S_PASSWD_WRITE audit event each time the file is opened for writing.

Files

/etc/security/audit/objects Specifies the path to the file.
/etc/security/audit/config Contains audit system configuration information.
/etc/security/audit/events Contains the audit events of the system.
/etc/security/audit/bincmds Contains auditbin backend commands.
/etc/security/audit/streamcmds Contains auditstream commands.

Related Information
The audit command.

The auditobj subroutine.

Setting Up Auditing in AIX 5L Version 5.2 System Management Guide: Operating System and Devices.

Auditing Overview, Security Administration in AIX 5L Version 5.2 System Management Concepts:
Operating System and Devices.

/etc/passwd File

Purpose
Contains basic user attributes.

Description
The /etc/passwd file contains basic user attributes. This is an ASCII file that contains an entry for each
user. Each entry defines the basic attributes applied to a user. When you use the mkuser command to
add a user to your system, the command updates the /etc/passwd file.

Note: Certain system-defined group and user names are required for proper installation and update of the
system software. Use care before replacing this file to ensure that no system-supplied groups or
users are removed.

An entry in the /etc/passwd file has the following form:

134 Files Reference

Name:Password: UserID:PrincipleGroup:Gecos: HomeDirectory:Shell

Attributes in an entry are separated by a : (colon). For this reason, you should not use a : (colon) in any
attribute. The attributes are defined as follows:

Attribute Definition
Name Specifies the user’s login name. The user name must be a unique string of 8 bytes or

less. There are a number of restrictions on naming users. See the mkuser command for
more information.

Password Contains an * (asterisk) indicating an invalid password or an ! (exclamation point)
indicating that the password is in the /etc/security/passwd file. Under normal conditions,
the field contains an !. If the field has an * and a password is required for user
authentication, the user cannot log in.

UserID Specifies the user’s unique numeric ID. This ID is used for discretionary access control.
The value is a unique decimal integer.

PrincipleGroup Specifies the user’s principal group ID. This must be the numeric ID of a group in the
user database or a group defined by a network information service. The value is a unique
decimal integer.

Gecos Specifies general information about the user that is not needed by the system, such as
an office or phone number. The value is a character string. The Gecos field cannot
contain a colon.

HomeDirectory Specifies the full path name of the user’s home directory. If the user does not have a
defined home directory, the home directory of the guest user is used. The value is a
character string.

Shell Specifies the initial program or shell that is executed after a user invokes the login
command or su command. If a user does not have a defined shell, /usr/bin/sh, the
system shell, is used. The value is a character string that may contain arguments to pass
to the initial program.

Users can have additional attributes in other system files. See the ″Files″ section for additional information.

Changing the User File
You should access the user database files through the system commands and subroutines defined for this
purpose. Access through other commands or subroutines may not be supported in future releases. Use
the following commands to access user database files:

v chfn

v chsh

v chuser

v lsuser

v mkuser

v rmuser

The mkuser command adds new entries to the /etc/passwd file and fills in the attribute values as defined
in the /usr/lib/security/mkuser.default file.

The Password attribute is always initialized to an * (asterisk), an invalid password. You can set the
password with the passwd or pwdadm command. When the password is changed, an ! (exclamation
point) is added to the /etc/passwd file, indicating that the encrypted password is in the
/etc/security/passwd file.

Use the chuser command to change all user attributes except Password. The chfn command and the
chsh command change the Gecos attribute and Shell attribute, respectively. To display all the attributes in
this file, use the lsuser command. To remove a user and all the user’s attributes, use the rmuser
command.

Chapter 1. System Files 135

To write programs that affect attributes in the /etc/passwd file, use the subroutines listed in Related
Information.

Security
Access Control: This file should grant read (r) access to all users and write (w) access only to the root
user and members of the security group.

Examples
1. Typical records that show an invalid password for smith and guest follow:

smith:*:100:100:8A-74(office):/home/smith:/usr/bin/sh
guest:*:200:0::/home/guest:/usr/bin/sh

The fields are in the following order: user name, password, user ID, primary group, general (gecos)
information, home directory, and initial program (login shell). The * (asterisk) in the password field
indicates that the password is invalid. Each attribute is separated by a : (colon).

2. If the password for smith in the previous example is changed to a valid password, the record will
change to the following:
smith:!:100:100:8A-74(office):/home/smith:/usr/bin/sh

The ! (exclamation point) indicates that an encrypted password is stored in the /etc/security/passwd
file.

Files

/etc/passwd Contains basic user attributes.
/usr/lib/security/mkuser.default Contains default attributes for new users.
/etc/group Contains the basic attributes of groups.
/etc/security/group Contains the extended attributes of groups.
/etc/security/passwd Contains password information.
/etc/security/user Contains the extended attributes of users.
/etc/security/environ Contains the environment attributes of users.
/etc/security/limits Contains the process resource limits of users.

Related Information
The chfn command, chsh command, chuser command, lsuser mkuser command, passwd command,
pwdadm command, pwdck command, rmuser command.

The endpwent subroutine, enduserdb subroutine, getpwent subroutine, getpwnam subroutine, getpwuid
subroutine, getuserattr subroutine, IDtouser subroutine, nextuser subroutine, putpwent subroutine,
putuserattr subroutine, setuserdb subroutine.

Security Administration in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices.

/etc/security/passwd File

Purpose
Contains password information.

136 Files Reference

Description
The /etc/security/passwd file is an ASCII file that contains stanzas with password information. Each
stanza is identified by a user name followed by a : (colon) and contains attributes in the form
Attribute=Value. Each attribute is ended with a new line character, and each stanza is ended with an
additional new line character.

Each stanza can have the following attributes:

Attribute Definition
password Specifies the encrypted password. The system encrypts the password created with the passwd

command or the pwdadm command. If the password is empty, the user does not have a
password. If the password is an * (asterisk), the user cannot log in. The value is a character
string. The default value is *.

lastupdate Specifies the time (in seconds) since the epoch (00:00:00 GMT, January 1, 1970) when the
password was last changed. If password aging (the minage attribute or the maxage attribute) is
in effect, the lastupdate attribute forces a password change when the time limit expires. (See the
/etc/security/user file for information on password aging.) The passwd and pwdadm commands
normally set this attribute when a password is changed. The value is a decimal integer that can
be converted to a text string using the ctime subroutine.

flags Specifies the restrictions applied by the login, passwd, and su commands. The value is a list of
comma-separated attributes. The flags attribute can be left blank or can be one or more of the
following values:

ADMIN Defines the administrative status of the password information. If the ADMIN attribute is
set, only the root user can change this password information.

ADMCHG
Indicates that the password was last changed by a member of the security group or the
root user. Normally this flag is set implicitly when the pwdadm command changes
another user’s password. When this flag is set explicitly, it forces the password to be
updated the next time a user gives the login command or the su command.

NOCHECK
None of the system password restrictions defined in the /etc/security/user file are
enforced for this password.

When the passwd or pwdadm command updates a password, the command adds values for the
password and lastupdate attributes and, if used to change another user’s password, for the flags
ADMCHG attribute.

Access to this file should be through the system commands and subroutines defined for this purpose.
Other accesses may not be supported in future releases. Users can update their own passwords with the
passwd command, administrators can set passwords and password flags with the pwdadm command,
and the root user is able to use the passwd command to set the passwords of other users.

Refer to the ″Files″ section for information on where attributes and other information on users and groups
are stored.

Although each user name must be in the /etc/passwd file, it is not necessary to have each user name
listed in the /etc/security/passwd file. If the authentication attributes auth1 and auth2 are so defined in
the /etc/security/user file, a user may use the authentication name of another user. For example, the
authentication attributes for user tom can allow that user to use the entry in the /etc/security/passwd file
for user carol for authentication.

Security
Access Control: This file should grant read (r) and write (w) access only to the root user.

Chapter 1. System Files 137

Auditing Events:

Event Information
S_PASSWD_READ file name
S_PASSWD_WRITE file name

Examples
The following line indicates that the password information in the /etc/security/passwd file is available only
to the root user, who has no restrictions on updating a password for the specified user:
flags = ADMIN,NOCHECK

An example of this line in a typical stanza for user smith follows:
smith:

password = MGURSj.F056Dj
lastupdate = 623078865
flags = ADMIN,NOCHECK

The password line shows an encrypted password. The lastupdate line shows the number of seconds since
the epoch that the password was last changed. The flags line shows two flags: the ADMIN flag indicates
that the information is available only to the root user, and the NOCHECK flag indicates that the root user
has no restrictions on updating a password for the specified user.

Files

/etc/security/passwd Specifies the path to the file.
/etc/passwd Contains basic user attributes.
/etc/security/user Contains the extended attributes of users.
/etc/security/login.cfg Contains configuration information for login and user authentication.

Related Information
The login command, passwd command, pwdadm command, su command.

The ftpd daemon, rlogind daemon.

The ctime subroutine, endpwdb subroutine, getuserpw subroutine, putuserpw subroutine, setpwdb
subroutine.

List of Time Data Manipulation Services, Security Administration in AIX 5L Version 5.2 System
Management Concepts: Operating System and Devices.

pcnfsd.conf Configuration File

Purpose
Provides configuration options for the rpc.pcnfsd daemon.

Description
The /etc/pcnfsd.conf file is an ASCII file written by users to add options to the operation of the
rpc.pcnfsd daemon, which takes no command-line flags. This file is part of Network Support Facilities.

When started, the rpc.pcnfsd daemon checks for the presence of the pcnfsd.conf configuration file and
conforms its performance to the specified arguments. The following options can be entered in the
pcnfsd.conf file:

138 Files Reference

Option Description
aixargs -BCharacterPair Controls the printing of burst pages according to the value

of the CharacterPair variable, as listed below. The first
character applies to the header and the second character to
the trailer. Possible values are n (never), a (always), and g
(group).

HT Description

nn No headers, no trailers

na No headers, trailer on every file

ng No header, trailer at the end of the job

an Header on every file, no trailers

aa Headers and trailers on every file in the job

ag Header on every file, trailer after job

gn Header at beginning of job, no trailer

ga Header at beginning of job, trailer after every file

gg Header at beginning of job, trailer at end of job

The header and trailer stanzas in the /etc/qconfig file
define the default treatment of burst pages.
Note: The -B flag works exactly like the -B flag in the enq
command. Unlike the enq command, however, the
rpc.pcnfsd daemon does not allow spaces between the -B
flag and the CharacterPair variable.

getjobnum off Disables the rpc.pcnfsd daemon feature that returns job
numbers when print jobs are submitted.

Chapter 1. System Files 139

Option Description
printer Name AliasFor Command Defines a PC-NFS virtual printer, recognized only by

rpc.pcnfsd daemon clients. Each virtual printer is defined
on a separate line in the pcnfsd.conf file. The following
variables are specified with this option.

Name Specifies the name of the PC-NFS virtual printer to
be defined.

AliasFor
Specifies the name of an existing printer that
performs the print job.
Note: To define a PC-NFS virtual printer
associated with no existing printer, use a single -
(minus sign) instead of the AliasFor variable.

Command
Specifies the command that is run when a file is
printed on the Name printer. This command is
executed by the Bourne shell, using the -c option.
For complex operations, replace the Command
variable with an executable shell script.

The following list of tokens and substitution values
can be used in the Command variable:

Token Substitution Value

$FILE The full path name of the print data file.
After the command has executed, the file
will be unlinked.

$USER The user name of the user logged in to
the client.

$HOST The host name of the client system.

spooldir PathName Designates a new parent directory, PathName, where the
rpc.pcnfsd daemon stores the subdirectories it creates for
each of its clients. The default parent directory is
/var/spool/pcnfs.

uidrange Specifies the valid UID (user number) range that the
rpc.pcnfsd daemon accepts. The default UID range is
101-4294967295.

wtmp off Disables the login record-keeping feature of the rpc.pcnfsd
daemon. By default, the daemon appends to the
/var/adm/wtmp file a record of user logins.

Examples
1. The following sample pcnfsd.conf configuration file demonstrates the effects some options have on

the operation of the rpc.pcnfsd daemon:
printer test - /usr/bin/cp $FILE
/usr/tmp/$HOST-$USER
printer sandman san ls -l $FILE
wtmp off

The first line establishes a printer test. Files sent to the test printer will be copied into the /usr/tmp
directory. Requests to the test PC-NFS virtual printer to list the queue, check the status, or do similar
printer operations, will be rejected because a - (minus sign) has been given for the Alias-For
parameter.

140 Files Reference

The second line establishes a PC-NFS virtual printer called sandman that lists, in long form, the file
specifications for the print data file.

The third line turns off the rpc.pcnfsd daemon feature that records user logins.

2. To set a UID range enter:
uidrange 1-100,200-50000

This entry means that only numbers from 101-199 and over 50000 are invalid UID numbers.

Files

/etc/pcnfsd.conf Specifies the path of the configuration file.
/var/spool/pcnfs directory Contains subdirectories for clients of the pcnfsd daemon.
/etc/qconfig Configures a printer queuing system.
/var/adm/wtmp Describes formats for user and accounting information.

Related Information
The enq command.

The rpc.pcnfsd daemon.

Bourne Shell in the AIX 5L Version 5.2 System User’s Guide: Operating System and Devices.

Network File System Overview and List of NFS Files in the AIX 5L Version 5.2 System Management
Guide: Communications and Networks.

pkginfo File

Purpose
Describes the format of a package characteristics file.

Description
The pkginfo file is an ASCII file that describes the characteristics of the package along with information
that helps control the flow of installation. It is created by the software package developer.

Each entry in the pkginfo file is a line that establishes the value of a parameter in the following form:
PARAM="value"

There is no required order in which the parameters must be specified within the file. Each parameter is
described below. Only fields marked with an asterisk are mandatory.

Parameter Description
PKG* PKG is the parameter to which you assign an abbreviation for the name of the package being

installed. The abbreviation must be a short string (no more than nine characters long) and it
must conform to file naming rules. All characters in the abbreviation must be alphanumeric and
the first cannot be numeric. install, new, and all are reserved abbreviations.

NAME* Text that specifies the package name (maximum length of 256 ASCII characters).
ARCH* A comma-separated list of alphanumeric tokens that indicate the architecture (for example,

ARCH=m68k,i386) associated with the package. The pkgmk(1M) tool can be used to create or
modify this value when actually building the package. The maximum length of a token is 16
characters and it cannot include a comma.

Chapter 1. System Files 141

Parameter Description
VERSION* Text that specifies the current version associated with the software package. The maximum

length is 256 ASCII characters and the first character cannot be a left parenthesis. The pkgmk
tool can be used to create or modify this value when actually building the package.

CATEGORY* A comma-separated list of categories under which a package can be displayed. There are six
categories: ″application,″ ″graphics,″ ″system,″ ″utilities,″ ″set,″ and ″patch.″ If you choose, you
can also assign a package to one or more categories that you define. Categories are
case-insensitive and can contain only alphanumerics. Each category is limited in length to 16
characters.

For a Set Installation Package (SIP), this field must have the value ″set.″ A SIP is a special
purpose package that controls the installation of a set of packages.

DESC Text that describes the package (maximum length of 256 ASCII characters).
VENDOR Used to identify the vendor that holds the software copyright (maximum length of 256 ASCII

characters).
HOTLINE Phone number and/or mailing address where further information can be received or bugs can

be reported (maximum length of 256 ASCII characters).
EMAIL An electronic address where further information is available or bugs can be reported (maximum

length of 256 ASCII characters).
VSTOCK The vendor stock number, if any, that identifies this product (maximum length of 256 ASCII

characters).
CLASSES A space-separated list of classes defined for a package. The order of the list determines the

order in which the classes are installed. Classes listed first are installed first (on a
medium-by-medium basis). This parameter can be modified by the request script. In this way,
the request script can be used to select which classes in the package get installed on the
system.

ISTATES A list of allowable run states for package installation (for example, ″″S s 1″″).
RSTATES A list of allowable run states for package removal (for example, ″″S s 1″″).
BASEDIR The pathname to a default directory where ″relocatable″ files can be installed. If BASEDIR is

not specified and basedir in the admin file (/var/sadm/install/admin/default) is set to default,
then BASEDIR is set to / by default. An administrator can override the value of BASEDIR by
setting basedir in the admin file.

ULIMIT If set, this parameter is passed as an argument to the ulimit command, which establishes the
maximum size of a file during installation.

ORDER A list of classes defining the order in which they should be put on the medium. Used by
pkgmk(1) in creating the package. Classes not defined in this field are placed on the medium
using the standard ordering procedures.

PSTAMP Production stamp used to mark the pkgmap(4) file on the output volumes. Provides a means
for distinguishing between production copies of a version if more than one is in use at a time. If
PSTAMP is not defined, the default is used. The default consists of the UNIX system machine
name followed by the string ″″″YYMMDDHHmm″″″ (year, month, date, hour, minutes).

INTONLY Indicates that the package should be installed interactively only when set to any non-NULL
value.

PREDEPEND Used to maintain compatibility with dependency checking on packages delivered earlier than
System V Release 4. Pre-Release 4 dependency checks were based on whether or not the
name file for the required package existed in the /usr/options directory. This directory is not
maintained for Release 4 and later packages because the depend file is used for checking
dependencies. However, entries can be created in this directory to maintain compatibility. This
is done automatically by pkgmk. This field is to be assigned the package instance name of the
package.

SERIALNUM A serial number, if any, that uniquely identifies this copy of the package (maximum length of
256 ASCII characters).

ACTKEY Activation key indicator. Set to YES indicates that an activation key is required to install the
package.

PRODUCTNAME A list of the products to which each package belongs. The format of this variable is:

PRODUCTNAME="<product>[|<product>| . . .]"

142 Files Reference

Developers can define their own installation parameters by adding a definition to this file. A
developer-defined parameter should begin with a capital letter.

Restrictions placed on a package installation by certain variables in the pkginfo file can be overridden by
instructions in the admin file. For example, the restriction of allowable run states set by the ISTATES
variable can be overridden by having

runlevel=nocheck

in the admin file being used for installation. (Default is ″default″.) See the admin file for further
information.

Examples
Here is a sample pkginfo file:

PKG="oam"
NAME="OAM Installation Utilities"
VERSION="3"
VENDOR="AT&T"
HOTLINE="1-800-ATT-BUGS"
EMAIL="attunix!olsen"
VSTOCK="0122c3f5566"
CATEGORY="system.essential"
ISTATES="S 2"
RSTATES="S 2"

Related Information
The admin file format.

pkgmap File

Purpose
Describes the format of a package contents description file.

Description
The pkgmap file is an ASCII file that provides a complete listing of the package contents. Each entry in
pkgmap describes a single ″deliverable object file.″ A deliverable object file includes shell scripts,
executable objects, data files, and directories. The entry consists of several fields of information, each field
separated by a space. The fields are described below and must appear in the order shown.

Field Description
part A field designating the part number in which the object resides. A part is a collection of files, and is

the atomic unit by which a package is processed. A developer can choose the criteria for grouping
files into a part (for example, based on class). If no value is defined in this field, part 1 is assumed.

Chapter 1. System Files 143

Field Description
ftype A one-character field that indicates the file type. Valid values are:

f a standard executable or data file

e a file to be edited upon installation or removal

v volatile file (one whose contents are expected to change)

d directory

x an exclusive directory

l linked file

p named pipe

c character special device

b block special device

i installation script or information file

s symbolic link

Once a file has the file type attribute v, it will always be volatile. For example, if a file being installed
already exists and has the file type attribute v, then even if the version of the file being installed is
not specified as volatile, the file type attribute remains volatile.

class The installation class to which the file belongs. This name must contain only alphanumeric characters
and be no longer than 12 characters. It is not specified if the ftype is i (information file).

pathname The pathname where the object resides on the target machine, such as /usr/bin/mail. Relative
pathnames (those that do not begin with a slash) indicate that the file is relocatable.

For linked files (ftype is either l or s), pathname must be in the form of path1=path2, with path1
specifying the destination of the link and path2 specifying the source of the link.

For symbolically linked files, when path2 is a relative pathname starting with ./ or ../, path2 is not
considered relocatable. For example, if you enter a line such as

s /foo/bar/etc/mount=../usr/sbin/mount

path1 (/foo/bar/etc/mount) is a symbolic link to ../usr/sbin/mount.

pathname can contain variables which support relocation of the file. A ″$″parameter can be
embedded in the pathname structure. $BASEDIR can be used to identify the parent directories of the
path hierarchy, making the entire package easily relocatable. Default values for parameter and
BASEDIR must be supplied in the pkginfo file and can be overridden at installation.

Special characters, such as an equal sign (″=″), are included in pathnames by surrounding the entire
pathname in single quotes (as in, for example, ’/usr/lib/~=’).

major The major device number. The field is only specified for block or character special devices.
minor The minor device number. The field is only specified for block or character special devices.
mode The octal mode of the file (for example, 0664). A question mark (″?″) indicates that the mode is left

unchanged, implying that the file already exists on the target machine. This field is not used for linked
files, packaging information files or non-installable files.

owner The owner of the file (for example, bin or root). The field is limited to 14 characters in length. A
question mark (″?″) indicates that the owner is left unchanged, implying that the file already exists on
the target machine. This field is not used for linked files or non-installable files. It is used optionally
with a package information file. If used, it indicates with what owner an installation script is executed.

The owner can be a variable specification in the form of $[A-Z] and is resolved at installation time.

144 Files Reference

Field Description
group The group to which the file belongs (for example, bin or sys). The field is limited to 14 characters in

length. A question mark (″?″) indicates that the group is left unchanged, implying that the file already
exists on the target machine. This field is not used for linked files or non-installable files. It is used
optionally with a package information file. If used, it indicates with what group an installation script is
executed.

Can be a variable assignment in the form of $[A-Z] and is resolved at installation time.
size The actual size of the file in bytes. This field is not specified for named pipes, special devices,

directories, or linked files.
cksum The checksum of the file contents. This field is not specified for named pipes, special devices,

directories, or linked files.
modtime The time of last modification. This field is not specified for named pipes, special devices, directories,

or linked files.

The following three optional fields must be used as a group. That is, all three must be specified if any is
specified.

Field Description
mac The Mandatory Access Control (MAC) Level Identifier (LID), an integer value that specifies a

combination of a hierarchical classification and zero or more non-hierarchical categories. A question
mark (″?″) indicates that the mac field is to be left unchanged, implying that the file already exists
on the target machine. This field can only be applied to a file on a sfs filesystem and is not used for
linked files or packaging information files.
Note: Mandatory Access Control is not supported in this release; this field is present for
compatibility with earlier release only. A value of 0 should be used if you must specify this field.

fixed A comma-separated list of valid mnemonic fixed privilege names as defined for the
fileprivcommand. The string NULL is used in place of the comma-separated list when fixed
privileges are not to be specified. A question mark (″?″) indicates that the fixed field is to be left
unchanged, implying that the file already exists on the target machine. If the fixed attribute is not
supplied, then files are installed with no fixed privileges. This field is not used for linked files or
packaging information files.
Note: Fixed privileges have no effect in the current release. This capability is maintained solely for
compatibility with earlier releases.

inherited A comma-separated list of valid mnemonic inherited privilege names as defined for the filepriv
command. The string NULL is used in place of the comma separated list when privilege is not to
be specified. A question mark (″?″) indicates that the inherited field is to be left unchanged,
implying that the file already exists on the target machine. If the inherited attribute is not supplied,
then files are installed with no inheritable privileges. This field is not used for linked files or
packaging information files.
Note: Inheritable privileges have no effect in the current release. This capability is maintained
solely for compatibility with earlier releases.

Each pkgmap must have one line that provides information about the number and maximum size (in
512-byte blocks) of parts that make up the package. This line is in the following format:

:number_of_parts maximum_part_size

Lines that begin with ″″#″″ are comment lines and are ignored.

When files are saved during installation before they are overwritten, they are normally just copied to a
temporary pathname. However, for files whose mode includes execute permission (but which are not
editable), the existing version is linked to a temporary pathname and the original file is removed. This
allows processes which are executing during installation to be overwritten.

The pkgmap file can contain only one entry per unique pathname.

Chapter 1. System Files 145

An exclusive directory type (file) type x specifies directories that are constrained to contain only files that
appear in the installation software database (/var/sadm/install/contents). If there are other files in the
directory, they are removed by pkgchk -fx as described on the manual page for the pkgchk command.

Variable specifications for the owner and group fields are defined in the pkginfo file. For example, owner
could be $OWNER in the pkgmap file; if OWNER is defined as root in the pkginfo file, $OWNER gets the
value root when the file is installed.

Examples
The following is an example pkgmap file.

:2 500
1 i pkginfo 237 1179 541296672
1 b class1 /dev/diskette 17 134 0644 root other
1 c class1 /dev/rdiskette 17 134 0644 root other
1 d none bin 0755 root bin
1 f none bin/INSTALL 0755 root bin 11103 17954 541295535
1 f none bin/REMOVE 0755 root bin 3214 50237 541295541
1 l none bin/UNINSTALL=bin/REMOVE
1 f none bin/cmda 0755 root bin 3580 60325 541295567 0 NULL
macread,macwrite
1 f none bin/cmdb 0755 root bin 49107 51255 541438368
1 f class1 bin/cmdc 0755 root bin 45599 26048 541295599
1 f class1 bin/cmdd 0755 root bin 4648 8473 541461238
1 f none bin/cmde 0755 root bin 40501 1264 541295622
1 f class2 bin/cmdf 0755 root bin 2345 35889 541295574
1 f none bin/cmdg 0755 root bin 41185 47653 541461242
2 d class2 data 0755 root bin
2 p class1 data/apipe 0755 root other
2 d none log 0755 root bin 0 NULL NULL
2 v none log/logfile 0755 root bin 41815 47563 541461333
2 d none save 0755 root bin
2 d none spool 0755 root bin
2 d none tmp 0755 root bin

Related Information
The pkgchk command.

policy.cfg File

Purpose
The policy.cfg file contains attributes that are used while creating certificates when creating users or
adding certificates to the local LDAP repository.

Description
The policy.cfg file consists of four stanzas: newuser, storage, crl and comm. These stanzas modify the
behavior of some system administration commands. The mkuser command uses the newuser stanza.
The certlink command uses the storage stanza. The certadd and certlink command use the comm and
crl stanzas.

Examples

* Example policy.cfg file

* newuser Stanza:
*
* cert Specifies whether the mkuser command generates a certificate (new) or
* not (get) by default.

146 Files Reference

* ca Specifies the CA used by the mkuser command when generating
* a certificate.
* version Specifies the version number of the certificate to be created.
* The value 3 is the only supported value.
* tag Specifies the auth_cert tag value used by the mkuser command when
* creating a user when cert = new.
* label Specifies the private key label used by the mkuser command when
* generating a certificate.
* keystore Specifies the keystore URI used by the mkuser command when generating
* a certificate.
* passwd Specifies the keystore’s password used by the mkuser command when
* generating a certificate.
* domain Specifies the domain part of the certificate’s subject alternate name
* email value used by the mkuser command when generating a
* certificate.
* validity Specifies the certificate’s validity period value used by the mkuser
* command when generating a certificate.
* algorithm Specifies the public key algorithm used by the mkuser command when
* generating a certificate.
* keysize Specifies the minimum encryption key size in bits used by the mkuser
* command when generating a certificate.
* keyusage Specifies the certificate’s key usage value used by the mkuser
*
* subalturi Specifies the certificate’s subject alternate name URI value
* used by the mkuser command when generating a certificate.
*
* storage Stanza:
*
* command when generating a certificate.
* replicate Specifies whether the certlink command saves a copy of the certificate
* (yes) or just the link (no).
*
* crl Stanza
*
* check Specifies whether the certadd and certlink commands should check the
* CRL (yes) or not (no).
*
* comm Stanza
*
* timeout Specifies the timeout period in seconds when requesting certificate
* information using HTTP (e.g., retrieving CRLs).

newuser:
cert = new
ca = local
passwd = pki
version = "3"
keysize = 1024
keystore = test
validity = 60

storage:
replicate = no

crl:
check = yes

comm:
timeout = 10

* end of policy.cfg

File
/usr/lib/security/pki/policy.cfg

Chapter 1. System Files 147

Related Information
The mkuser, certcreate, certrevoke, certadd, and certlink commands.

The /usr/lib/security/pki/acct.cfg and /usr/lib/security/pki/ca.cfg files.

portlog File

Purpose
Contains per-port unsuccessful login attempt information and port locks.

Description
The /etc/security/portlog file is an ASCII file that contains stanzas of per port unsuccessful login attempt
information and port locks. Each stanza has a name followed by a : (colon) that defines the port name.
Attributes are in the form Attribute=Value. Each attribute ends with a new line character and each stanza
ends with an additional new line character.

The attributes in the stanzas are as follows:

Attribute Definition
locktime Defines the time the port was locked in seconds since the epoch

(zero time, January 1, 1970). This value is a decimal integer string.
unsuccessful_login_times Lists the times of unsuccessful login attempts in seconds since the

epoch. The list contains decimal integer strings separated by
commas.

These attributes do not have default values. If a value is not specified, the attribute is ignored.

Security
Access Control: This file grants read access to the root user and members of the security group, and write
access only to the root user. Access for other users and groups depends upon the security policy of the
operating system.

Examples
A typical record looks like the following example for the /dev/tty0 port:
/dev/tty0:

locktime = 723848478
unsuccessful_login_times =

723848430,723848450,723848478

Files

/etc/security/portlog Specifies the path to the file.
/etc/security/login.cfg Contains configuration information for login and user authentication.

Related Information
The chsec command, login command, su command.

The loginfailed subroutine, loginrestrictions subroutine.

Security Administration in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices.

148 Files Reference

/proc File

Purpose
Contains state information about processes and threads in the system.

Syntax
#include <sys/procfs.h>

Description
The /proc file system provides access to the state of each active process and thread in the system. The
name of each entry in the /proc file system is a decimal number corresponding to the process ID. These
entries are subdirectories and the owner of each is determined by the user ID of the process. Access to
the process state is provided by additional files contained within each subdirectory. Except where
otherwise specified, the term /proc file is meant to refer to a non-directory file within the hierarchy rooted at
/proc. The owner of each file is determined by the user ID of the process.

The various /proc directory, file, and field names contain the term lwp (light weight process). This term
refers to a kernel thread. The /proc files do not refer to user space pthreads. While the operating system
does not use the term lwp to describe its threads, it is used in the /proc file system for compatibility with
other UNIX operating systems.

The following standard subroutine interfaces are used to access the /proc files:

v open subroutine

v close subroutine

v read subroutine

v write subroutine

Most files describe process state and are intended to be read-only. The ctl (control) and lwpctl (thread
control) files permit manipulation of process state and can only be opened for writing. The as (address
space) file contains the image of the running process and can be opened for both reading and writing. A
write open allows process control while a read-only open allows inspection but not process control. Thus,
a process is described as open for reading or writing if any of its associated /proc files is opened for
reading or writing, respectively.

In general, more than one process can open the same /proc file at the same time. Exclusive open is
intended to allow process control without another process attempting to open the file at the same time. A
process can obtain exclusive control of a target process if it successfully opens any /proc file in the target
process for writing (the as or ctl files, or the lwpctl file of any kernel thread) while specifying the O_EXCL
flag in the open subroutine. Such a call of the open subroutine fails if the target process is already open
for writing (that is, if a ctl, as, or lwpctl file is open for writing). Multiple concurrent read-only instances of
the open subroutine can exist; the O_EXCL flag is ignored on the open subroutine for reading. The first
open for writing by a controlling process should use the O_EXCL flag. Multiple processes trying to control
the same target process usually results in errors.

Data may be transferred from or to any locations in the address space of the traced process by calling the
lseek subroutine to position the as file at the virtual address of interest, followed by a call to the read or
write subroutine. An I/O request extending into an unmapped area is truncated at the boundary. A read or
write request beginning at an unmapped virtual address fails with errno set to EFAULT.

Information and control operations are provided through additional files. The <sys/procfs.h> file contains
definitions of data structures and message formats used with these files. Some of these definitions use
sets of flags. The set types pr_sigset_t, fltset_t, and sysset_t correspond to signal, fault, and system call
enumerations, respectively. These enumerations are defined in the <sys/procfs.h> files. The pr_sigset_t

Chapter 1. System Files 149

and fltset_t types are large enough to hold flags for its own enumeration. Although they are of different
sizes, they have a common structure and can be manipulated by the following macros:

prfillset(&set); /* turn on all flags in set */
premptyset(&set); /* turn off all flags in set */
praddset(&set, flag); /* turn on the specified flag */
prdelset(&set, flag); /* turn off the specified flag */
r = prismember(&set, flag); /* != 0 if flag is turned on */

Either the prfillset or premptyset macro must be used to initialize the pr_sigset_t or fltset_t type before
it is used in any other operation. The flag parameter must be a member of the enumeration that
corresponds to the appropriate set.

The sysset_t set type has a different format, set of macros, and a variable length structure to
accommodate the varying number of available system calls. You can determine the total number of system
calls, their names, and number of each individual call by reading the sysent file. You can then allocate
memory for the appropriately sized sysset_t structure, initialize its pr_size field, and then use the
following macros to manipulate the system call set:

prfillsysset(&set) /* set all syscalls in the sysset */
premptysysset(&set) /* clear all syscalls in the sysset */
praddsysset(&set, num) /* set specified syscall in the sysset */
prdelsysset(&set, num) /* clear specified syscall in the sysset */
prissyssetmember(&set, num) /* !=0 if specified syscall is set */

See the description of the sysent file for more information about system calls.

Every active process contains at least one kernel thread. Every kernel thread represents a flow of
execution that is independently scheduled by the operating system. All kernel threads in a process share
address space as well as many other attributes. Using the ctl and lwpctl files, you can manipulate
individual kernel threads in a process or manipulate all of them at once, depending on the operation.

When a process has more than one kernel thread, a representative thread is chosen by the system for
certain process status file and control operations. The representative thread is stopped only if all the
process’s threads are stopped. The representative thread may be stopped on an event of interest only if
all threads are stopped, or it may be stopped by a PR_REQUESTED stop only if no other events of
interest exist.

The representative thread remains fixed as long as all the threads are stopped on events of interest or are
in PR_SUSPENDED stop and the PCRUN operand is not applied to any of them.

When applied to the process control file (ctl), every /proc control operation that affects a kernel thread
uses the same algorithm to choose which kernel thread to act on. With synchronous stopping (see
PCSET), this behavior enables an application to control a multiple thread process using only the process
level status and control files. For more control, use the thread-specific lwpctl files.

The /proc file system can be used by both 32-bit and 64-bit control processes to get information about
both 32-bit and 64-bit target processes. The /proc files provide 64-bit enabled mode invariant files to all
observers. The mode of the controlling process does not affect the format of the /proc data. Data is
returned in the same format to both 32-bit and 64-bit control processes. Addresses and applicable length
and offset fields in the /proc files are 8 bytes long.

Directory Structure
At the top level, the /proc directory contains entries, each of which names an existing process in the
system. The names of entries in this directory are process ID (pid) numbers. These entries are directories.
Except where otherwise noted, the files described below are read-only. In addition, if a process becomes a
zombie (one that has been terminated by its parent with an exit call but has not been suspended by a

150 Files Reference

wait call), most of its associated /proc files disappear from the directory structure. Normally, later attempts
to open or to read or write to files that are opened before the process is terminated elicit the ENOENT
message. Exceptions are noted.

The /proc files contain data that presents the state of processes and threads in the system. This state is
constantly changing while the system is operating. To lessen the load on system performance caused by
reading /proc files, the /proc file system does not stop system activity while gathering the data for those
files. A single read of a /proc file generally returns a coherent and fairly accurate representation of process
or thread state. However, because the state changes as the process or thread runs, multiple reads of
/proc files may return representations that show different data and therefore appear to be inconsistent with
each other.

An atomic representation is a representation of the process or thread at a single and discrete point in time.
If you want an atomic snapshot of process or thread state, stop the process and thread before reading the
state. There is no guarantee that the data is an atomic snapshot for successive reads of /proc files for a
running process. In addition, a representation is not guaranteed to be atomic for any I/O applied to the as
(address space) file. The contents of any process address space might be simultaneously modified by a
thread of that process or any other process in the system.

Note: Multiple structure definitions are used to describe the /proc files. A /proc file may contain additional
information other than the definitions presented here. In future releases of the operating system,
these structures may grow by the addition of fields at the end of the structures.

The /proc/pid File Structure
The /proc/pid directory contains (but is not limited to) the following entries:

as Contains the address space image of the process. The as file can be opened for both reading and
writing. The lseek subroutine is used to position the file at the virtual address of interest.
Afterwards, you can view and modify the address space with the read and write subroutines,
respectively.

ctl A write-only file to which structured messages are written directing the system to change some
aspect of the process’s state or control its behavior in some way. The seek offset is not relevant
when writing to this file, see types of control messages for more information. Individual threads
also have associated lwpctl files. A control message may be written either to the ctl file of the
process or to a specific lwpctl file with operation-specific effects as described. The effect of a
control message is immediately reflected in the state of the process visible through appropriate
status and information files.

status
Contains state information about the process and one of its representative thread. The file is
formatted as a struct pstatus type containing the following members:

uint32_t pr_flag; /* process flags from proc struct p_flag */
uint32_t pr_flag2; /* process flags from proc struct p_flag2 */
uint32_t pr_flags; /* /proc flags */
uint32_t pr_nlwp; /* number of threads in the process */
char pr_stat; /* process state from proc p_stat */
char pr_dmodel; /* data model for the process */
char pr__pad1[6]; /* reserved for future use */
pr_sigset_t pr_sigpend; /* set of process pending signals */
prptr64_t pr_brkbase; /* address of the process heap */
uint64_t pr_brksize; /* size of the process heap, in bytes */
prptr64_t pr_stkbase; /* address of the process stack */
uint64_t pr_stksize; /* size of the process stack, in bytes */
pid64_t pr_pid; /* process id */
pid64_t pr_ppid; /* parent process id */
pid64_t pr_pgid; /* process group id */
pid64_t pr_sid; /* session id */
struct pr_timestruc64_t pr_utime; /* process user cpu time */

Chapter 1. System Files 151

struct pr_timestruc64_t pr_stime; /* process system cpu time */
struct pr_timestruc64_t pr_cutime; /* sum of children’s user times */
struct pr_timestruc64_t pr_cstime; /* sum of children’s system times */
pr_sigset_t pr_sigtrace; /* mask of traced signals */
fltset_t pr_flttrace; /* mask of traced hardware faults */
uint32_t pr_sysentry_offset; /* offset into pstatus file of sysset_t

* identifying system calls traced on
* entry. If 0, then no entry syscalls
* are being traced. */

uint32_t pr_sysexit_offset; /* offset into pstatus file of sysset_t
* identifying system calls traced on
* exit. If 0, then no exit syscalls
* are being traced. */

uint64_t pr__pad[8]; /* reserved for future use */
lwpstatus_t pr_lwp; /* "representative" thread status */

The members of the status file are described below:

pr_flags
Specifies a bit-mask holding these flags:

PR_ISSYS
Process is a kernel process (see PCSTOP)

PR_FORK
Process has its inherit-on-fork flag set (see PCSET)

PR_RLC
Process has its run-on-last-close flag set (see PCSET)

PR_KLC
Process has its kill-on-last-close flag set (see PCSET)

PR_ASYNC
Process has its asynchronous-stop flag set (see PCSET)

PR_PTRACE
Process is controlled by the ptrace subroutine

pr_nlwp
Specifies the total number of threads in the process

pr_brkbase
Specifies the virtual address of the process heap

pr_brksize
Specifies the size, in bytes, of the process heap

Note: The address formed by the sum of the pr_brkbase and pr_brksize is the process
break (see the brk subroutine).

pr_stkbase
Specifies the virtual address of the process stack

pr_stksize
Specifies the size, in bytes, of the process stack

Note: Each thread runs on a separate stack. The operating system grows the process
stack as necessary.

pr_pid
Specifies the process ID

152 Files Reference

pr_ppid
Specifies the parent process ID

pr_pgid
Specifies the process group ID

pr_sid Specifies the session ID of the process

pr_utime
Specifies the user CPU time consumed by the process

pr_stime
Specifies the system CPU process time consumed by the process

pr_cutime
Specifies the cumulative user CPU time consumed by the children of the process,
expressed in seconds and nanoseconds

pr_cstime
Specifies the cumulative system CPU time, in seconds and nanoseconds, consumed by
the process’s children

pr_sigtrace
Specifies the set of signals that are being traced (see the PCSTRACE signal)

pr_flttrace
Specifies the set of hardware faults that are being traced (see the PCSFAULT signal)

pr_sysentry_offset
If non-zero, contains offsets into the status file to the sysset_t sets of system calls being
traced on system call entry (see the PCSENTRY signal). This flag is zero if system call
tracing is not active for the process.

pr_sysexit_offset
If non-zero, contains offsets into the status file to the sysset_t sets of system calls being
traced on system call exit (see the PCSEXIT signal). This field is zero if system call
tracing is not active for the process.

pr_lwp
If the process is not a zombie, contains an lwpstatus_t structure describing a
representative thread. The contents of this structure have the same meaning as if it was
read from a lwpstatus file.

psinfo Contains information about the process needed by the ps command. If the process contains more
than one thread, a representative thread is used to derive the lwpsinfo information. The file is
formatted as a struct psinfo type and contains the following members:

uint32_t pr_flag; /* process flags from proc struct p_flag */
uint32_t pr_flag2; /* process flags from proc struct p_flag2 */
uint32_t pr_nlwp; /* number of threads in process */
uid_t pr_uid; /* real user id */
uid_t pr_euid; /* effective user id */
gid_t pr_gid; /* real group id */
gid_t pr_egid; /* effective group id */
uint32_t pr_argc; /* initial argument count */
pid64_t pr_pid; /* unique process id */
pid64_t pr_ppid; /* process id of parent */
pid64_t pr_pgid; /* pid of process group leader */
pid64_t pr_sid; /* session id */
dev64_t pr_ttydev; /* controlling tty device */
prptr64_t pr_addr; /* internal address of proc struct */
uint64_t pr_size; /* size of process image in KB (1024) units */
uint64_t pr_rssize; /* resident set size in KB (1024) units */
struct pr_timestruc64_t pr_start; /* process start time, time since epoch */

Chapter 1. System Files 153

struct pr_timestruc64_t pr_time; /* usr+sys cpu time for this process */
prptr64_t pr_argv; /* address of initial argument vector in

user process */
prptr64_t pr_envp; /* address of initial environment vector

in user process */
char pr_fname[PRFNSZ]; /* last component of exec()ed pathname*/
char pr_psargs[PRARGSZ]; /* initial characters of arg list */
uint64_t pr__pad[8]; /* reserved for future use */
struct lwpsinfo pr_lwp; /* "representative" thread info */

Note: Some of the entries in the psinfo file, such as pr_flag, pr_flag2, and pr_addr, refer to
internal kernel data structures and might not retain their meanings across different versions
of the operating system. They mean nothing to a program and are only useful for manual
interpretation by a user aware of the implementation details.

The psinfo file is accessible after a process becomes a zombie.

The pr_lwp flag describes the representative thread chosen. If the process is a zombie, the
pr_nlwp and pr_lwp.pr_lwpid flags are zero and the other fields of pr_lwp are undefined.

map Contains information about the virtual address map of the process. The file contains an array of
prmap structures, each of which describes a contiguous virtual address region in the address
space of the traced process.

Note: In AIX 5.1, there may be a limited number of array entries in this file. The map file may only
contain entries for virtual address regions in the process that contain objects loaded into the
process. This file may not contain array entries for other regions in the process such as the
stack, heap, or shared memory segments.

The prmap structure contains the following members:

uint64_t pr_size; /* size of mapping in bytes */
prptr64_t pr_vaddr; /* virtual address base */
char pr_mapname[PRMAPSZ]; /* name in /proc/pid/object */
uint64_t pr_off; /* offset into mapped object, if any */
uint32_t pr_mflags; /* protection and attribute flags */
uint32_t pr_pathoff; /* if map entry is for a loaded object,

* offset into the map file to a
* null-terminated path name followed
* by a null-terminated member name.
* If file is not an archive file, the
* member name is null.
* The offset is 0 if map entry is
* not for a loaded object. */

The members are described below:

pr_vaddr
Specifies the virtual address of the mapping within the traced process

pr_size
Specifies the size of the mapping within the traced process

pr_mapname
If not an empty string, contains the name of a file that resides in the object directory and
contains a file descriptor for the object to which the virtual address is mapped. The file is
opened with the open subroutine.

pr_off Contains the offset within the mapped object (if any) to which the virtual address is
mapped

154 Files Reference

pr_pathoff
If non-zero, contains an offset into the map file to the path name and archive member
name of a loaded object

pr_mflags
Specifies a bit-mask of protection and the following attribute flags:

MA_MAINEXEC
Indicates that mapping applies to the main executable in the process

MA_READ
Indicates that mapping is readable by the traced process

MA_WRITE
Indicates that mapping is writable by the traced process

MA_EXEC
Indicates that mapping is executable by the traced process

MA_SHARED
Indicates that mapping changes are shared by the mapped object

A contiguous area of the address space having the same underlying mapped object may appear
as multiple mappings because of varying read, write, execute, and shared attributes. The
underlying mapped object does not change over the range of a single mapping. An I/O operation
to a mapping marked MA_SHARED fails if applied at a virtual address not corresponding to a
valid page in the underlying mapped object. Read and write operations to private mappings always
succeed. Read and write operations to unmapped addresses always fail.

cred Contains a description of the credentials associated with the process. The file is formatted as a
struct prcred type and contains the following members:

uid_t pr_euid; /* effective user id */
uid_t pr_ruid; /* real user id */
uid_t pr_suid; /* saved user id (from exec) */
gid_t pr_egid; /* effective group id */
gid_t pr_rgid; /* real group id */
gid_t pr_sgid; /* saved group id (from exec) */
uint32_t pr_ngroups; /* number of supplementary groups */
gid_t pr_groups[1]; /* array of supplementary groups */

sysent
Contains information about the system calls available to the process. The file can be used to find
the number of a specific system call to trace. It can be used to find the name of a system call
associated with a system call number returned in a lwpstatus file.

The file consists of a header section followed by an array of entries, each of which corresponds to
a system call provided to the process. Each array entry contains the system call number and an
offset into the sysent file to that system call’s null-terminated name.

The sysent file is characterized by the following attributes:

v The system call names are the actual kernel name of the exported system call.

v The entries in the array do not have any specific ordering.

v There may be gaps in the system call numbers.

v Different processes may have different system call names and numbers, especially between a
32-bit process and a 64-bit process. Do not assume that the same names or numbers cross
different processes.

v The set of system calls may change during while the operating system is running. You can add
system calls while the operating system is running.

v The names and numbers of the system calls may change within different releases or when
service is applied to the system.

Chapter 1. System Files 155

cwd A link that provides access to the current working directory of the process. Any process can
access the current working directory of the process through this link, provided it has the necessary
permissions.

fd Contains files for all open file descriptors of the process. Each entry is a decimal number
corresponding to an open file descriptor in the process. If an enty refers to a regular file, it can be
opened with normal file semantics. To ensure that the contolling process cannot gain greater
access, there are no file access modes other than its own read/write open modes in the controlled
process. Directories will be displayed as links. An attempt to open any other type of entry will fail
(hence it will display 0 permission when listed).

object
A directory containing read-only files with names as they appear in the entries of the map file,
corresponding to objects mapped into the address space of the target process. Opening such a
file yields a descriptor for the mapped file associated with a particular address-space region. The
name a.out also appears in the directory as a synonym for the executable file associated with the
text of the running process.

The object directory makes it possible for a controlling process to get access to the object file and
any shared libraries (and consequently the symbol tables), without the process first obtaining the
specific path names of those files.

lwp A directory containing entries each of which names a kernel thread within the containing process.
The names of entries in this directory are thread ID (tid) numbers. These entries are directories
containing additional files described below.

The /proc/pid/lwp/tid Structure
The directory /proc/pid/lwp/tid contains the following entries:

lwpctl
This is a write-only control file. The messages written to this file affect only the associated thread
rather than the process as a whole (where appropriate).

lwpstatus
Contains thread-specific state information. This information is also present in the status file of the
process for its representative thread. The file is formatted as a struct lwpstatus and contains the
following members:

uint64_t pr_lwpid; /* specific thread id */
uint32_t pr_flags; /* thread status flags */
char pr_state; /* thread state - from thread.h t_state */
uint16_t pr_cursig; /* current signal */
uint16_t pr_why; /* reason for stop (if stopped) */
uint16_t pr_what; /* more detailed reason */
uint32_t pr_policy; /* scheduling policy */
char pr_clname[PRCLSZ]; /* printable character representing pr_policy */
pr_sigset_t pr_lwppend; /* set of signals pending to the thread */
pr_sigset_t pr_lwphold; /* set of signals blocked by the thread */
pr_siginfo64_t pr_info; /* info associated with signal or fault */
pr_stack64_t pr_altstack; /* alternate signal stack info */
struct pr_sigaction64 pr_action; /* signal action for current signal */
uint16_t pr_syscall; /* system call number (if in syscall) */
uint16_t pr_nsysarg; /* number of arguments to this syscall */
uint64_t pr_sysarg[PRSYSARGS]; /* arguments to this syscall */
prgregset_t pr_reg; /* general and special registers */
prfpregset_t pr_fpreg; /* floating point registers */
pfamily_t pr_family; /* hardware platform specific information */

The members of the lwpstatus file are described below:

pr_flags
Specifies a bit-mask holding these flags:

156 Files Reference

PR_STOPPED
Indicates that the thread is stopped

PR_ISTOP
Indicates that the thread is stopped on an event of interest (see the PCSTOP
signal)

PR_DSTOP
Indicates that the thread has a stop directive in effect (see the PCSTOP signal)

PR_ASLEEP
Thread is in an interruptible sleep within a system call

PR_NOREGS
No register state was provided for the thread

pr_why and pr_what
Provides the reason for why a thread was stopped. The following are possible values of
the pr_why member:

PR_REQUESTED
Shows that the thread was stopped in response to a stop directive, normally
because the PCSTOP signal was applied or because another thread stopped on
an event of interest and the asynchronous-stop flag (see the PCSET signal) was
not set for the process. The pr_what member is unused in this case.

PR_SIGNALLED
Shows that the thread stopped on receipt of a signal (see the PCSTRACE signal).
The pr_what signal holds the signal number that caused the stop (for a
newly-stopped thread, the same value is given with the pr_cursig member).

PR_FAULTED
Shows that the thread stopped upon incurring a hardware fault (see the
PCSFAULT signal). The pr_what member contains the fault number that caused
the stop.

PR_SYSENTRY
Shows a stop on entry to a system call (see the PCSENTRY signal). The pr_what
member contains the system call number.

PR_SYSEXIT
Shows a stop on exit from a system call (see the PCSEXIT signal). The pr_what
contains the system call number.

PR_JOBCONTROL
Shows that the thread stopped because of the default action of a job control stop
signal (see the sigaction subroutine). The pr_what member contains the stopping
signal number.

pr_lwpid
Names the specific thread I/O

pr_cursig
Names the current signal, which is the next signal to be delivered to the thread. When the
thread is stopped by the PR_SIGNALLED or PR_FAULTED signal, the pr_info member
contains additional information pertinent to the particular signal or fault. The amount of
data contained in the pr_info member depends on the stop type and whether on not the
application specified the SA_SIGINFO flag when the signal handler was established. For
PR_FAULTED stops and PR_SIGNALLED stops when the SA_SIGINFO flag was not
specified, only the si_signo, si_code, and si_addr pr_info fields contain data. For
PR_SIGNALLED stops when the SA_SIGINFO flag is specified, the other pr_info fields
contain data as well.

Chapter 1. System Files 157

pr_action
Contains the signal action information about the current signal. This member is undefined
if the pr_cursig member is zero. See the sigaction subroutine.

pr_lwppend
Identifies any synchronously generated or thread-directed signals pending for the thread. It
does not include signals pending at the process level.

pr_altstack
Contains the alternate signal stack information for the thread. See the sigaltstack
subroutine.

pr_syscall
Specifies the number of the system call, if any, that is being executed by the thread. It is
non-zero if and only if the thread is stopped on PR_SYSENTRY or PR_SYSEXIT.

If the pr_syscall member is non-zero, the pr_nsysarg member is the number of
arguments to the system call and the pr_sysarg array contains the arguments. In AIX 5.1,
the pr_nsysarg member is always set to 8, the maximum number of system call
parameters. The pr_sysarg member always contain eight arguments.

pr_clname
Contains the name of the scheduling class of the thread

pr_reg
Structure containing the threads general and special registers. The size and field names of
this structure are machine dependent. See the <sys/m_procfs.h> header file for description
of this structure for your particular machine. The contents of this structure are undefined if
the thread is not stopped.

pr_fpreg
Structure containing the threads floating point registers. The size and field names of this
structure are machine dependent. The contents of this structure are undefined if the thread
is not stopped.

pr_family
Contains the machine-specific information about the thread. Use of this field is not portable
across different architectures.

lwpsinfo
Contains information about the thread needed by the ps command. This information is also
present in the psinfo file of the process for its representative thread if it has one. The file is
formatted as a struct lwpsinfo type containing the following members:

uint64_t pr_lwpid; /* thread id */
prptr64_t pr_addr; /* internal address of thread */
prptr64_t pr_wchan; /* wait addr for sleeping thread */
uint32_t pr_flag; /* thread flags */
uchar_t pr_wtype; /* type of thread wait */
uchar_t pr_state; /* numeric scheduling state */
char pr_sname; /* printable character representing pr_state */
uchar_t pr_nice; /* nice for cpu usage */
int pr_pri; /* priority, high value = high priority*/
uint32_t pr_policy; /* scheduling policy */
char pr_clname[PRCLSZ]; /* printable character representing pr_policy */
cpu_t pr_onpro; /* processor on which thread last ran */
cpu_t pr_bindpro; /* processor to which thread is bound */

Some of the entries in the lwpsinfo file, such as pr_flag, pr_addr, pr_state, pr_wtype, and
pr_wchan, refer to internal kernel data structures and should not be expected to retain their
meanings across different versions of the operating system. They have no meaning to a program
and are only useful for manual interpretation by a user aware of the implementation details.

158 Files Reference

Control Messages
Process state changes are effected through messages written to the ctl file of the process or to the lwpctl
file of an individual thread. All control messages consist of an int operation code identifying the specific
operation followed by additional data containing operands (if any). Multiple control messages can be
combined in a single write subroutine to a control file, but no partial writes are permitted. Each control
message (operation code plus operands) must be presented in its entirety to the write subroutine, not in
pieces through several system calls.

The following are allowed control messages:

Note: Writing a message to a control file for a process or thread that has already exited elicits the error
ENOENT.

PCSTOP, PCDSTOP, PCWSTOP
When applied to the process control file,

v PCSTOP directs all threads to stop and waits for them to stop;

v PCDSTOP directs all threads to stop without waiting for them to stop;

v PCWSTOP simply waits for all threads to stop.

When applied to a thread control file,

v PCSTOP directs the specific thread to stop and waits until it has stopped;

v PCDSTOP directs the specific thread to stop without waiting for it to stop;

v PCWSTOP simply waits for the thread to stop.

When applied to a thread control file, PCSTOP and PCWSTOP complete when the thread stops
on an event of interest and immediately if the thread is already stopped.

When applied to the process control file, PCSTOP and PCWSTOP complete when every thread
has stopped on an event of interest.

An event of interest is either a PR_REQUESTED stop or a stop that has been specified in the
process’s tracing flags (set by PCSTRACE, PCSFAULT, PCSENTRY, and PCSEXIT).
PR_JOBCONTROL and PR_SUSPENDED stops are not events of interest. (A thread may stop
twice because of a stop signal; first showing PR_SIGNALLED if the signal is traced and again
showing PR_JOBCONTROL if the thread is set running without clearing the signal.) If PCSTOP or
PCDSTOP is applied to a thread that is stopped, but not because of an event of interest, the stop
directive takes effect when the thread is restarted by the competing mechanism; at that time the
thread enters a PR_REQUESTED stop before executing any user-level code.

A write operation of a control message that blocks is interruptible by a signal so that, for example,
an alarm subroutine can be set to avoid waiting for a process or thread that may never stop on an
event of interest. If PCSTOP is interrupted, the thread stop directives remain in effect even though
the write subroutine returns an error.

A kernel process (indicated by the PR_ISSYS flag) is never executed at user level and cannot be
stopped. It has no user-level address space visible through the /proc file system. Applying
PCSTOP, PCDSTOP, or PCWSTOP to a system process or any of its threads elicits the error
EBUSY.

PCRUN
Executes a thread again after it was stopped. The operand is a set of flags, contained in an int
operand, describing optional additional actions.

The allowed flags for PCRUN are described below:

Chapter 1. System Files 159

PRCSIG
Clears the current signal, if any. See PCSSIG.

PRCFAULT
Clears the current fault, if any. See PCCFAULT.

PRSTEP
Directs the thread to execute a single machine instruction. On completion of the
instruction, a trace trap occurs. If FLTTRACE is being traced, the thread stops, otherwise
it is sent SIGTRAP. If SIGTRAP is being traced and not held, the thread stops. When the
thread stops on an event of interest the single-step directive is cancelled, even if the stop
occurs before the instruction is executed.

PRSABORT
Instructs the thread to abort execution of the system call. See PCSENTRY, and PCSEXIT.
It is significant only if the thread is in a PR_SYSENTRY stop or is marked PR_ASLEEP.

PRSTOP
Directs the thread to stop again as soon as possible after resuming execution. See
PCSTOP. In particular, if the thread is stopped on PR_SIGNALLED or PR_FAULTED, the
next stop shows PR_REQUESTED, no other stop intervenes, and the thread does not
execute any user-level code.

When applied to a thread control file, PCRUN makes the specific thread runnable. The operation
fails and returns the error EBUSY if the specific thread is not stopped on an event of interest.

When applied to the process control file, a representative thread is chosen for the operation as
described for the /proc/pid/status file. The operation fails and returns the error EBUSY if the
representative thread is not stopped on an event of interest. If PRSTEP or PRSTOP were
requested, PCRUN makes the representative thread runnable. Otherwise, the chosen thread is
marked PR_REQUESTED. If as a result all threads are in the PR_REQUESTED stop state, they
all become runnable.

Once PCRUN makes a thread runnable, it is no longer stopped on an event of interest, even if it
remains stopped because of a competing mechanism.

PCSTRACE
Defines a set of signals to be traced in the process. Upon receipt of one of these signals, the
thread stops. The set of signals is defined using an operand pr_sigset_t contained in the control
message. Receipt of SIGKILL cannot be traced. If you specify SIGKILL, the thread ignores it.

If a signal that is included in a thread’s held signal set is sent to that thread, the signal is not
received and does not cause a stop until it is removed from the held signal set. Either the thread
itself removes it or you remove it by setting the held signal set with PCSHOLD or the PRSHOLD
option of PCRUN.

PCSSIG
Specifies the current signal and its associated signal information for the specific thread or
representative thread. This information is set according with the operand pr_siginfo64 structure. If
the specified signal number is zero, the current signal is cleared. The error EBUSY is returned if
the thread is not stopped on an event of interest.

The syntax of this operation are different from those of the kill subroutine, pthread__kill
subroutine, or PCKILL. With PCSSIG, the signal is delivered to the thread immediately after
execution is resumed (even if the signal is being held) and an additional PR_SIGNALLED stop
does not intervene even if the signal is being traced. Setting the current signal to SIGKILL ends
the process immediately.

PCKILL
If applied to the process control file, a signal is sent to the process with syntax identical to those of

160 Files Reference

the kill subroutine. If applied to a thread control file, a signal is sent to the thread with syntax
identical to those of the pthread__kill subroutine. The signal is named in an operand int
contained in the message. Sending SIGKILL ends the process or thread immediately.

PCUNKILL
Specifies a signal to be removed from the set of pending signals. If applied to the process control
file, the signal is deleted from the process’s pending signals. If applied to a thread control file, the
signal is deleted from the thread’s pending signals. The current signal (if any) is unaffected. The
signal is named in an operand int in the control message. An attempt to delete SIGKILL results in
the error EINVAL.

PCSHOLD
Sets the set of held signals for the specific or representative thread according to the operand
sigset_t structure. Held signals are those whose delivery is delayed if sent to the thread. SIGKILL
or SIGSTOP cannot be held. If specified, they are silently ignored.

PCSFAULT
Defines a set of hardware faults to be traced in the process. When incurring one of these faults, a
thread stops. The set is defined via the operand fltset_t structure. Fault names are defined in the
<sys/procfs.h> file and include the following:

Note: Some of these may not occur on all processors; other processor-specific faults may exist in
addition to those described here.

FLTILL
Illegal instruction

FLTPRIV
Privileged instruction

FLTBPT
Breakpoint trap

FLTTRACE
Trace trap

FLTACCESS
Memory access fault (bus error)

FLTBOUNDS
Memory bounds violation

FLTIOVF
Integer overflow

FLTIZDIV
Integer zero divide

FLTFPE
Floating-point exception

FLTSTACK
Unrecoverable stack fault

When not traced, a fault normally results in the posting of a signal to the thread that incurred the
fault. If a thread stops on a fault, the signal is posted to the thread when execution is resumed
unless the fault is cleared by PCCFAULT or by the PRCFAULT option of PCRUN. The pr_info
field in /proc/pid/status or in /proc/pid/lwp/tid/lwpstatus identifies the signal to be sent and
contains machine-specific information about the fault.

PCCFAULT
Specifies the current fault, if any, to be cleared. The associated signal is not sent to the specified
thread or representative thread.

Chapter 1. System Files 161

PCSENTRY
Instructs the process’s threads to stop on entry to specified system calls. The set of system calls
to be traced is defined via an operand sysset_t structure. When entry to a system call is being
traced, a thread stops after having begun the call to the system but before the system call
arguments have been fetched from the thread.

If a thread is stopped on entry to a system call (PR_SYSENTRY) or when sleeping in an
interruptible system call (PR_ASLEEP is set), it may be instructed to go directly to system call exit
by specifying the PRSABORT flag in a PCRUN control message. Unless exit from the system call
is being traced, the thread returns to user level showing error EINTR.

PCSEXIT
Instructs the process’s threads to stop on exit from specified system calls. The set of system calls
to be traced is defined via an operand sysset_t structure. When exit from a system call is being
traced, a thread stops on completion of the system call just before checking for signals and
returning to user level. At this point, all return values have been stored into the threads’s registers.

PCSET, PCRESET, PCUNSET
PCSET sets one or more modes of operation for the traced process. PCRESET or PCUNSET
resets these modes. The modes to be set or reset are specified by flags in an operand int in the
control message:

PR_FORK (inherit-on-fork)
When set, the tracing flags of the process are inherited by the child of a fork or vfork
subroutine. When reset, child processes start with all tracing flags cleared.

PR_RLC (run-on-last-close)
When set and the last writable /proc file descriptor referring to the traced process or any
of its thread is closed, all the tracing flags of the process are cleared, any outstanding stop
directives are cancelled, and if any threads are stopped on events of interest, they are set
running as though PCRUN had been applied to them. When reset, the process’s tracing
flags are retained and threads are not set running on last close.

PR_KLC (kill-on-last-close)
When set and the last writable /proc file descriptor referring to the traced process or any
of its threads is closed, the process is exited with SIGKILL.

PR_ASYNC (asynchronous-stop)
When set, a stop on an event of interest by one thread does not directly affect other
threads in the process. When reset and a thread stops on an event of interest other than
PR_REQUESTED, all other threads in the process are directed to stop.

The error EINVAL is returned if you specify flags other than those described above or to apply
these operations to a system process. The current modes are reported in the pr_flags field of the
/proc/pid/status file.

PCSREG
Sets the general and special registers for the specific or representative thread according to the
operand prgregset_t structure. There may be machine-specific restrictions on the allowable set of
changes. PCSREG fails and returns the error EBUSY if the thread is not stopped on an event of
interest or is stopped in the kernel.

PCSFPREG
Sets the floating point registers for the specific or representative thread according to the operand
fpregset_t structure. The error EINVAL is returned if the system does not support floating-point
operations (no floating-point hardware and the system does not emulate floating-point machine
instructions). PCSFPREG fails and returns the error EBUSY if the thread is not stopped on an
event of interest or is stopped in the kernel.

PCNICE
The traced process’s nice priority is incremented by the amount contained in the operand int.

162 Files Reference

Only the superuser may better a process’s priority in this way, but any user may make the priority
worse. This operation is significant only when applied to a process in the time-sharing scheduling
class.

Files

/proc Directory (list of processes)
/proc/pid Directory for the process pid
/proc/pid/status Status of process pid
/proc/pid/ctl Control file for process pid
/proc/pid/psinfo ps info for process pid
/proc/pid/as Address space of process pid
/proc/pid/map as map info for process pid
/proc/pid/object Directory for objects for process pid
/proc/pid/sigact Signal actions for process pid
/proc/pid/sysent System call information for process pid
/proc/pid/lwp/tid Directory for thread tid
proc/pid/lwp/tid/lwpstatus Status of thread tid
/proc/pid/lwp/tid/lwpctl Control file for thread tid
/proc/pid/lwp/tid/lwpsinfo ps info for thread tid

Error Codes
Other errors can occur in addition to the errors normally associated with file system access:

Error Code Description
ENOENT The traced process or thread has exited after being

opened.
EFAULT A read or write request was begun at an invalid virtual

address.
EIO A write subroutine was attempted at an illegal address in

the traced process.
EBUSY This error is returned because of one of the following

reasons:

v PCSTOP, PCDSTOP or PCWSTOP was applied to a
system process.

v An exclusive open subroutine was attempted on a
process file already open for writing.

v PCRUN, PCSSIG, PCSREG or PCSFPREG was
applied to a process or thread that was not stopped on
an event of interest.

v An attempt was made to mount the /proc file system
when it is already mounted.

EPERM Someone other than the privileged user attempted to
better a process’s priority by issuing PCNICE.

ENOSYS An attempt was made to do an unsupported operation
(such as create, remove, link, or unlink) on an entry in the
/proc file system.

Chapter 1. System Files 163

Error Code Description
EINVAL An invalid argument was supplied to a system call. The

following are some—but not all—possible conditions that
can elicit this error:

v A control message operation code is undefined.

v A control message is ill-formed.

v The PRSTEP option of the PCRUN operation was used
on an implementation that does not support
single-stepping.

v An out of range signal number was specified with
PCSSIG, PCKILL, or PCUNKILL.

v SIGKILL was specified with PCUNKILL.

v PCSFPREG was applied on a machine without
floating-point support.

EINTR A signal was received by the controlling process while
waiting for the traced process or thread to stop via
PCSTOP or PCWSTOP.

EBADF The traced process performed an exec subroutine on a
setuid/setgid object file or on an object file that is not
readable for the process. All further operations on the
process or thread file descriptor (except the close
subroutine) elicit this error.

Security
The effect of a control message is guaranteed to be atomic with respect to the traced process.

For security reasons, except for the privileged user, an open subroutine of a /proc file fails unless both the
effective user ID and effective group ID of the caller match those of the traced process and the process’s
object file is readable by the caller. Files corresponding to setuid and setgid processes can be opened
only by the privileged user. Even if held by the privileged user, an open process or thread file descriptor
becomes invalid if the traced process performs an exec subroutine on a setuid/setgid object file or on an
object file that it cannot read. Any operation performed on an invalid file descriptor, except for the close
subroutine, fails with EBADF. In this case, if any tracing flags are set and the process or any thread file is
open for writing, the process is directed to stop and its run-on-last-close flag is set (see PCSET).

This feature enables a controlling process (that has the necessary permission) to reopen the process file
to obtain new valid file descriptors, close the invalid file descriptors, and proceed. Just closing the invalid
file descriptors causes the traced process to resume execution with no tracing flags set. Any process that
is not currently open for writing with tracing flags left over from a previous open subroutine and that
performs an exec subroutine on a setuid/setgid or unreadable object file is not stopped. However, that
process does not have all its tracing flags cleared.

pwdhist File

Purpose
Contains password history information.

Description
The /etc/security/pwdhist.dir and /etc/security/pwdhist.pag files are database files created and
maintained by Database Manager (DBM) subroutines. The files maintain a list of previous user passwords.

The pwdhist files store information by user name. User names are the keys of the DBM subroutines. The
password list contains multiple pairs of a lastupdate value and an encrypted, null-terminated password.

164 Files Reference

This password list is a key’s associated content and the lastupdate value is a 4-byte, unsigned long. The
encrypted password is the size of the PW_CRYPTLEN value. Thus, an entry in the database file is of the
following format:
lastupdatepasswordlastupdatepasswordlastupdatepasswor
d...

The password list is in descending chronological order, with the most recent password appearing first in
the list.

To retrieve a user’s password history, use the dbm_fetch subroutine. To delete a user’s password history,
use the dbm_delete subroutine.

Security
Access Control: The files grant read and write access only to the root user.

Examples
If user sally has the following previous passwords:
password = 6PugcayXL.1Rw ; lastupdate =
737161212

password = r5MZvr69mGeLE ;
lastupdate = 746458629

the dbm_fetch subroutine returns the following entry for the key sally:
746458629r5MZvr69mGeLE7371612126PugcayXL.1Rw

Related Information
The /etc/security/passwd file, /etc/security/user file.

The passwd command.

For lists of DBM and NDBM Subroutines, see List of NDBM and DBM Programming References in AIX 5L
Version 5.2 Communications Programming Concepts.

publickey File for NIS

Purpose
Contains public or secret keys for maps.

Description
The /etc/publickey file is the public key file used for secure networking. Each entry in the file consists of a
network user name (which may refer to either a user or a host name), followed by the user’s public key (in
hex notation), a colon, and then the user’s secret key encrypted with its login password (also in hex
notation). This file is part of the Network Support Facilities.

This file is altered either by the user through the chkey command or by the person who administers the
system through the newkey command. The publickey file should only contain data on the master server,
where it is converted into the publickey.byname NIS map.

Related Information
The chkey command, keylogin command, newkey command.

The keyserv daemon, ypupdated daemon.

Chapter 1. System Files 165

Exporting a File System Using Secure NFS, Mounting a File System Using Secure NFS, Network File
System Overview, Network Information Service Overview in AIX 5L Version 5.2 System Management
Guide: Communications and Networks.

qconfig File

Purpose
Configures a printer queuing system.

Description
The /etc/qconfig file describes the queues and devices available for use by both the enq command,
which places requests on a queue, and the qdaemon command, which removes requests from the queue
and processes them. The qconfig file is an attribute file.

Some stanzas in this file describe queues, and other stanzas describe devices. Every queue stanza
requires that one or more device stanzas immediately follow it in the file. The first queue stanza describes
the default queue. Unless the LPDEST or PRINTER environment variable is set, the enq command uses
this queue when it receives no queue parameter. If LPDEST contains a value, that value takes
precedence over the PRINTER environment variable. Destination command-line options always override
both variables.

The name of a queue stanza can be from 1 to 20 characters long. Some of the fields and their possible
values that can appear in this file are:

Field Definition
acctfile Identifies the file used to save print accounting information. FALSE, the default value, indicates

suppress accounting. If the named file does not exist, no accounting is done.
device Identifies the symbolic name that refers to the device stanza.
discipline Defines the queue serving algorithm. The default value, fcfs, means first-come-first-served. sjn

means shortest job next.
up Defines the state of the queue. TRUE, the default value, indicates that the queue is running.

FALSE indicates that it is not running.

Note: lp is a BSD standard reserved queue name and should not be used as a queue name in the
qconfig file.

The following list shows some of the fields and their possible values that appear in the qconfig file for
remote queues:

host Indicates the remote host where the remote queue is found.
s_statfilter Specifies the short version filter used to translate remote queue status format. The following

are possible values:

/usr/lib/lpd/bsdshort
BSD remote system

/usr/lib/lpd/aixv2short
RT remote system

/usr/lib/lpd/attshort
AT&T remote system

166 Files Reference

l_statfilter Specifies the long version filter used to translate remote queue status format. The following
are possible values:

/usr/lib/lpd/bsdlong
BSD remote system

/usr/lib/lpd/aixv2long
RT remote system

/usr/lib/lpd/attlong
AT&T remote system

rq Specifies the remote queue name. In a remote print environment, the client configuration
should specify the remote queue name or the server. Using the default remote queue name
may cause unpredictable results.

If a field is omitted, its default value is assumed. The default values for a queue stanza are:
discipline = fcfs
up = TRUE
acctfile = FALSE

The device field cannot be omitted.

The name of a device stanza is arbitrary and can be from 1 to 20 characters long. The fields that can
appear in the stanza are:

Field Definition
access Specifies the type of access the backend has to the file specified by the file field. The value of access

is write if the backend has write access to the file or both if it has both read and write access. This field
is ignored if the file field has the value FALSE.

align Specifies whether the backend sends a form-feed control before starting the job if the printer was idle.
The default value is TRUE.

backend Specifies the full path name of the backend, optionally followed by the flags and parameters to be
passed to it. The path names most commonly used are /usr/lib/lpd/piobe for local print and
/usr/lib/lpd/rembak for remote print.

feed Specifies either the number of separator pages to print when the device becomes idle or the value
never, the default, which indicates that the backend is not to print separator pages.

file Identifies the special file where the output of backend is to be redirected. FALSE, the default value,
indicates no redirection and that the file name is /dev/null. In this case, the backend opens the output
file.

header Specifies whether a header page prints before each job or group of jobs. A value of never, the default
value, indicates no header page at all. always means a header page before each job. group means a
header before each group of jobs for the same user. In a remote print environment, the default action is
to print a header page and not to print a trailer page.

trailer Specifies whether a trailer page prints after each job or group of jobs. A value of never, the default,
means no trailer page at all. always means a trailer page after each job. group means a trailer page
after each group of jobs for the same user. In a remote print environment, the default action is to print
a header page and not to print a trailer page.

The qdaemon process places the information contained in the feed, header, trailer, and align fields into
a status file that is sent to the backend. Backends that do not update the status file do not use the
information it contains.

If a field is omitted, its default value is assumed. The backend field cannot be omitted. The default values
in a device stanza are:

Chapter 1. System Files 167

file = FALSE
access = write
feed = never
header = never
trailer = never
align = TRUE

The enq command automatically converts the ASCII qconfig file to binary format when the binary version
is missing or older than the ASCII version. The binary version is found in the /etc/qconfig.bin file.

Note: The qconfig file should not be edited while there are active jobs in any queue. Any time the
qconfig file is changed, jobs submitted prior to the change will be processed before jobs submitted
after the change.

Editing includes both manual editing and use of the mkque, rmque, chque, mkquedev, rmquedev, or
chquedev command. It is recommended that all changes to the qconfig file be made using these
commands. However, if manual editing is desired, first issue the enq -G command to bring the queuing
system and the qdaemon to a halt after all jobs are processed. Then edit the qconfig file and restart the
qdaemon with the new configuration.

Examples
1. The batch queue supplied with the system might contain these stanzas:

bsh:
discipline = fcfs
device = bshdev

bshdev:
backend = /usr/bin/ksh

To run a shell procedure called myproc using this batch queue, enter:
qprt -Pbsh myproc

The queuing system runs the files one at a time, in the order submitted. The qdaemon process
redirects standard input, standard output, and standard error to the /dev/null file.

2. To allow two batch jobs to run at once, enter:
bsh:

discipline = fcfs
device = bsh1,bsh2

bsh1:
backend = /usr/bin/ksh

bsh2:
backend = /usr/bin/ksh

3. To set up a remote queue, bsh, enter:
remh:

device = rd0
host = pluto
rq = bsh

rd0:
backend = /usr/lib/lpd/rembak

Files

/etc/qconfig Contains the configuration file.
/etc/qconfig.bin Contains the digested, binary version of the /etc/qconfig file.
/dev/null Provides access to the null device.
/usr/lib/lpd/piobe Specifies the path of the local printer backend.
/usr/lib/lpd/rembak Specifies the path of the remote printer backend.
/usr/lib/lpd/digest Contains the program that converts the /etc/qconfig file to binary format.

168 Files Reference

Related Information
The enq command, lp command, qdaemon command.

Understanding the Interaction between qdaemon and the Backend in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

Printer Overview and Spooler Overview in AIX 5L Version 5.2 Guide to Printers and Printing.

rc.boot File

Purpose
Controls the machine boot process.

Description
Attention: Executing the rc.boot script on a system that is already running may cause unpredictable
results.

The /sbin/rc.boot file is a shell script that is called by the simple shell init and the standard init command
to bring up a system. Depending upon the type of boot device, the rc.boot file configures devices and also
calls the appropriate applications. Appropriate applications include:

v Booting from disk

v Varying on a root volume group

v Enabling file systems

v Calling the BOS installation programs or diagnostics

The rc.boot program is only called by an init process.

Files

/etc/inittab Controls the initialization process.
/usr/lib/boot/ssh Calls the rc.boot file.

Related Information
Accessing a System That Will Not Boot in the AIX 5L Version 5.2 System Management Guide: Operating
System and Devices.

Logical Volume Storage Overview in the AIX 5L Version 5.2 System Management Concepts: Operating
System and Devices.

rc.tcpip File for TCP/IP

Purpose
Initializes daemons at each system restart.

Description
The /etc/rc.tcpip file is a shell script that, when executed, uses SRC commands to initialize selected
daemons. The rc.tcpip shell script is automatically executed with each system restart. It can also be
executed at any time from the command line.

Most of the daemons that can be initialized by the rc.tcpip file are specific to TCP/IP. These daemons are:

Chapter 1. System Files 169

v inetd (started by default)

v gated

v routed

v named

v timed

v rwhod

Note: Running the gated and routed daemons at the same time on a host may cause unpredictable
results.

There are also daemons specific to the base operating system or to other applications that can be started
through the rc.tcpip file. These daemons are:

v lpd

v portmap

v sendmail

v syslogd

The syslogd daemon is started by default.

Examples
1. The following stanza starts the syslogd daemon:

#Start up syslog daemon (for err
or and event logging)
start /usr/sbin/syslogd "$src_running"

2. The following stanza starts the lpd daemon:
#Start up print daemon
start /usr/sbin/lpd "$src_running"

3. The following stanza starts the routed daemon, but not the gated daemon:
#Start up routing daemon (only s
tart ONE)
start /usr/sbin/routed "$src_running" -g
#start /usr/sbin/gated "$src_running"

Related Information
The startsrc command, stopsrc command.

The gated daemon, inetd daemon, lpd daemon, named daemon, portmap daemon, routed daemon,
rwhod daemon, sendmail daemon, syslogd daemon, timed daemon.

Naming in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

Installation and Configuration for TCP/IP in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

remote.unknown File for BNU

Purpose
Logs access attempts by unknown remote systems.

170 Files Reference

Description
The /usr/sbin/uucp/remote.unknown file is a shell script. It is executed by the Basic Networking Utilities
(BNU) program when a remote computer that is not listed in the local /etc/uucp/Permissions file attempts
to communicate with that local system. The BNU program does not permit the unknown remote system to
connect with the local system. Instead, the remote.unknown shell procedure appends an entry to the
/var/spool/uucp/.Admin/Foreign file.

Modify the remote.unknown file to fit the needs of your site. For example, to allow unknown systems to
contact your system, remove the execute permissions for the remote.unknown file. You can also modify
the shell script to send mail to the BNU administrator or to recognize certain systems and reject others.

Note: Only someone with root user authority can edit the remote.unknown file, which is owned by the
uucp program login ID.

Files

/usr/sbin/uucp/remote.unknown Contains the remote.unknown shell script.
/etc/sbin/Permissions Describes access permissions for remote systems.
/var/spool/uucp/.Admin/Foreign Lists access attempts by unknown systems.

Related Information
BNU Overview in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

Resource Data Input File

Purpose
Input file for passing both resource class and resource attribute names and values to the Resource
Monitoring and Control command-line interface (CLI). The data in this file is used for defining resources or
for changing persistent attribute values of a resource or resource class.

Description
The Resource Data Input File is used in conjunction with the -f command line flag to pass resource
persistent attribute values to the RMC CLI in cases where using the command line directly would be too
cumbersome or too prone to typographical errors. This file has no set location. It can be a temporary or
permanent file, depending on requirements.

The mkrsrc and chrsrc commands read this file when they are issued with the -f flag. The lsrsrcdef and
lsactdef commands generate a file with this format when issued with the -i flag.

PersistentResourceAttributes
Persistent attribute names and values for one or more resources for a specific resource class used
to define a new resource or change attribute values for an existing resource. The persistent
resource attributes are read in by the commands mkrsrc and chrsrc. These attributes are ignored
if the input file is read by the chrsrc command that has been specified with the -c flag.

PersistentResourceClassAttributes
Persistent attribute names and values for a resource class used to change the attribute values of
an existing resource class. The persistent resource class attributes are read in by the command
chrsrc only when the -c flag is specified.

In general, the Resource Data Input File is a flat text file with a format as follows (bold words are literal).
Note that text preceding any single colon is an arbitrary label and may be any alphanumeric text.

Chapter 1. System Files 171

PersistentResourceAttributes::
This is a comment

label:
AttrName1 = value
AttrName2 = value
AttrName3 = value

another label:
Name = name
NodeNumber = 1

...
::

PersistentResourceClassAttributes::
label:

SomeSettableAttrName = value
SomeOtherSettableAttrName = value

::
...

See the Examples section for more details.

Format points:

v The keywords: PersistentResourceAttributes and PersistentResourceClassAttributes are all
followed by a double colon (::).

v The order of the keyword stanzas is not significant in the file. For example,
PersistentResourceClassAttributes could precede PersistentResourceClass. It does not affect the
portion of the data that is read in by the calling CLI.

v Individual stanza headings (beneath the keywords) are followed by a single colon (:). Example: c175n05
resource info:

v White space at the beginning of lines is not significant. Tabs or spaces are suggested for readability.

v Any line whose first printable character is a pound sign (#) is a comment.

v Each entry on an individual line is separated by white space (spaces or tabs).

v Blank lines in the file are not significant and are suggested for readability.

v There is no limit to the number of resource attribute stanzas included in a particular
PersistentResourceAttributes section.

v There is no limit to the number of resource class attribute stanzas included in a particular
PersistentResourceClassAttributes section. Typically, there is only one instance of a resource class.
In this case, only one stanza is expected.

v If only one resource attribute stanza is included in a particular PersistentResourceAttributes section,
the label: keyword can be omitted.

v If only one resource class attribute stanza is included in a particular
PersistentResourceClassAttributes section, the label: keyword can be omitted.

v Values that contain spaces must be enclosed in double quotation marks or single quotation marks.

v A double colon (::) indicates the end of a section. If a terminating double colon is not found, the next
Reserved Keyword or end of file signals the end of a section.

v Double quotation marks included within a string that is surrounded by double quotation marks must be
escaped. (\″).

Note: Double quotation marks can be nested within single quotation marks.
These are examples:

– "Name == \"testing\""

– ’Name == "testing"’

This syntax is preferred if your string is a selection string and you are going to cut and paste to the
command line.

172 Files Reference

v Single quotation marks included within a string that is surrounded by single quotation marks must be
escaped. (\″).

Note: Single quotation marks can be nested within double quotation marks.
These are examples:

– ’Isn\’t that true’

– "Isn’t that true"

This syntax is preferred if you are going to cut and paste to the command line.

v The format you use to enter data in the Resource Data Input file may not be the same format used on
the command line. The shell you choose to run the commands in has its own rules with regard to
quotation marks. Refer to the documentation for your shell for these rules, which determine how to enter
data on the command line.

Examples
1. Example of input file for IBM.Foo resource used by the following sample mkrsrc command. Comments

are arbitrary:
mkrsrc -f /tmp/my_resource_data_input_file IBM.Foo

The file consists of:

PersistentResourceAttributes::
Resource 1 - only set required attributes
resource 1:

Name="c175n04"
NodeList = {1}

Resource 2 - setting both required and optional attributes
mkrsrc -e2 IBM.Foo displays required and optional
persistent attributes
resource 2:

Name="c175n05"
NodeList = {1}
Int32 = -99
Uint32 = 99
Int64 = -123456789123456789
Uint64 = 123456789123456789
Float32 = -9.89
Float64 = 123456789.123456789
String = "testing 123"
Binary = 0xaabbccddeeff
RH = "0x0000 0x0000 0x00000000 0x00000000 0x00000000 0x00000000"
SD = [hello,1,{2,4,6,8}]
Int32Array = {-4, -3, -2, -1, 0, 1, 2, 3, 4}
Int64Array = {-4,-3,-2,-1,0,1,2,3,4}
Uint32Array = {0,1,2,3,4,5,6}
Uint64Array = {0,1,2,3,4,5,6}
Float32Array = {-3.3, -2.2, -1.2, 0, 1, 2.2, 3.3}
Float64Array = {-3.3, -2.2, -1.2, 0, 1, 2.2, 3.3}
StringArray = {abc,"do re mi", 123}
BinaryArray = {"0x01", "0x02", "0x0304"}
RHArray = {"0x0000 0x0000 0x00000000 0x00000000 0x00000000 0x00000000",

"0xaaaa 0xaaaa 0xbbbbbbbb 0xcccccccc 0xdddddddd 0xeeeeeeee"}
SDArray = {[hello,1,{0,1,2,3}],[hello2,2,{2,4,6,8}]}

2. Example of an input file for changing the attribute values of existing IBM.Foo resources.
chrsrc -f /tmp/Foo/ch_resources -s ’Name == "c175n05"’ IBM.Foo

The file consists of:

Chapter 1. System Files 173

PersistentResourceAttributes::
Changing resources that match the selection string entered
when running chrsrc command.
resource 1:

String = "this is a string test"
Int32Array = {10,-20,30,-40,50,-60}

Related Information
The chrsrc command , lsactdef command, lsrsrcdef command, and mkrsrc command.

The rmccli General Information file.

roles File

Purpose
Contains the list of valid roles. This system file only applies to AIX 4.2.1 and later.

Description
The /etc/security/roles file contains the list of valid roles. This is an ASCII file that contains a stanza for
each system role. Each stanza is identified by a role name followed by a : (colon) and contains attributes
in the form Attribute=Value. Each attribute pair ends with a newline character as does each stanza.

The file supports a default stanza. If an attribute is not defined, the default value for the attribute is used.

A stanza contains the following attributes:

Attribute Description
rolelist Contains a list of roles implied by this role and allows a

role to function as a super-role. If the rolelist attribute
contains the value of ″role1,role2″, assigning the role to a
user also assigns the roles of role1 and role2 to that user.

authorizations Contains the list of additional authorizations acquired by
the user for this specific role.

groups Contains the list of groups that a user should belong to in
order to effectively use this role. The user must be added
to each group in this list for this role to be effective.

screens Contains a list of SMIT screen identifiers that allow a role
to be mapped to various SMIT screens. The default value
for this attribute is * (all screens).

msgcat Contains the file name of the message catalog that
contains the one-line descriptions of system roles.

msgnum Contains the message ID that retrieves this role
description from the message catalog.

For a typical stanza, see the ″Examples″ stanza.

Changing the roles File
You should access this file through the commands and subroutines defined for this purpose. You can use
the following commands to change the roles file:

v chrole

v lsrole

v mkrole

v rmrole

174 Files Reference

The mkrole command creates an entry for each new role in the /etc/security/roles file. To change the
attribute values, use the chrole command. To display the attributes and their values, use the lsrole
command. To remove a role, use the rmrole command.

To write programs that affect attributes in the /etc/security/roles file, use the subroutines listed in Related
Information.

Security
Access Control: This file grants read and write access to the root user, and read access to members of the
security group.

Examples
A typical stanza looks like the following example for the ManageAllUsers role:
ManageAllUsers:

rolelist = ManageBasicUsers
authorizations = UserAdmin,RoleAdmin,PasswdAdmin,GroupAdmin
groups = security
screens = mkuser,rmuser,!tcpip

Files

/etc/security/roles Contains the list of valid roles.
/etc/security/user.roles Contains the list of roles for each user.
/etc/security/smitacl.group Contains the group ACL definitions.
/etc/security/smitacl.user Contains the user ACL definitions.

Related Information
The chrole command, lsrole command, mkrole command, rmrole command.

The getroleattr subroutine, nextrole subroutine, putroleattr subroutine, setroledb subroutine, endroledb
subroutine.

rmccli General Information File

Purpose
Contains information global to the Resource Monitoring and Control (RMC) command-line interface (CLI).

Description
This man page provides global information for the Resource Monitoring and Control command-line
interface, including data types, terminology and references to other related material.

Terminology
Common terminology used in the RMC CLI man pages:

Attribute
Attributes are either persistent or dynamic. A resource class is defined by a set of
persistent and dynamic attributes. A resource is also defined by a set of persistent and
dynamic attributes. Persistent attributes define the configuration of the resource class and
resource. Dynamic attributes define a state or performance-related aspect of the resource
class and resource. In the same resource class or resource, a given attribute name can be
specified as either persistent or dynamic, but not both.

Resource
A resource is an instance of a resource class. Therefore, a resource contains instances of

Chapter 1. System Files 175

the persistent and dynamic attributes for the resource class. A resource of the class
IBM.FileSystem contains the persistent and dynamic attributes that describe a particular
file system.

Resource_class
A resource class is a collection of attributes that describe similar hardware or software
entities. The IBM.FileSystem resource class, for example, consists of persistent and
dynamic attributes that define existing file systems in a host. To see all of the resource
classes defined in the system, issue the command lsrsrc without any flags or parameters.
To see all of the IBM.FileSystem resources defined in the system, issue the command:
lsrsrc IBM.FileSystem.

Selection_string
Specifies a selection string. All selection strings must be enclosed within either double or
single quotation marks. If the selection string contains double quotation marks, enclose the
entire selection string in single quotation marks. For example:
-s ’Name == "testing"’

-s ’Name ?= "test*"’

Only persistent attributes may be listed in a selection string. For information on how to
specify selection strings, see ″Using Expressions″ in the chapter ″Using the Monitoring
Application″ of the RSCT 2.2 Resource Monitoring and Control Guide and Reference.

Data display information
The flags that control the display function for the RMC CLI routines, in order of precedence, are:

1. -l for long display. This is the default display format.

For example, the command:
lsrsrc -s ’Name == "c175n05"’ IBM.Foo Name NodeList SD Binary RH Int32Array

produces output similar to:
Persistent Attributes for Resource: IBM.Foo
resource 1:

Name = "c175n05"
NodeList = {1}
SD = ["testing 1 2 3",1,{0,1,2}]
Binary = "0xaabbcc00 0xeeff"
RH = "0x0000 0x0000 0x00000000 0x00000000 0x00000000 0x00000000"
Int32Array = {1,5,-10,1000000}

2. -t for tabular display.

For example, the command:
lsrsrc -s ’Name ?= "Page"’ -t IBM.Condition Name EventExpression

produces output similar to:
Persistent Attributes for Resource: IBM.Condition

Name EventExpression
"Page space out rate" "VMPgSpOutRate > 500"
"Page fault rate" "VMPgFaultRate > 500"
"Page out rate" "VMPgOutRate > 500"
"Page in rate" "VMPgInRate > 500"
"Page space in rate" "VMPgSpInRate > 500"

3. -x for suppressing headers when printing.

4. -d for colon (:) delimited display.

For example, the command:
lsrsrc -xd -s ’Name == "c175n05"’ IBM.Foo Name Int32 Uint32Array SD Binary

produces output similar to:

176 Files Reference

c175n05:-100:{}:["hel lo1",1,{0,1,2}]:"0xaabbcc00 0xeeff":

Note the use of the -x flag along with the -d flag.

5. -D Delimiter for string-delimited display.

For example, the command:
lsrsrc -xD:: -s ’Name == "c175n05"’ IBM.Foo Name Int32 Uint32Array SD Binary

produces output similar to:
c175n05::-100::{}::["hel lo1",1,{0,1,2}]::"0xaabbcc00 0xeeff"::

Note the use of the -x flag along with the -D Delimiter flag.

When output of any list command (lsrsrc, lsrsrcdef) is displayed in the tabular output format, the
printing column width may be truncated. If more characters need to be displayed (as in the case of
strings) use the -l flag to display the entire field.

Data input formatting
Binary data may be input in the following formats:

v ″0x######## 0x######## 0x####...″

v ″0x###################...″

v 0x################...

Be careful when you specify strings as input data:

v Strings that contain no white space or non-alphanumeric characters may be supplied as input
without enclosing quotation marks.

v Strings that contain white space or other alphanumeric characters must be enclosed in double
quotation marks.

v Strings that contain single quotation marks (’) must be enclosed by double quotation marks (″),
as shown in this example: "this is a string with ’single quotations marks’"

Selection strings must be input in double quotation marks, unless the selection string itself
contains double quotation marks, in which case the selection string must be enclosed in single
quotation marks. For information on how to specify selection strings, see ″Using Expressions″ in
the chapter ″Using the Monitoring Application″ of the RSCT 2.2 Resource Monitoring and Control
Guide and Reference.

v Typical selection string input: "NodeNumber == 1".

v Selection string input where double quotation marks are part of the selection string: ’Name ==
"c175n05"’.

Structured data (SD) types must be enclosed in square brackets: [hello,1,{2,4,6,8}]

When supplying structured data (SD) as command-line input to the RMC commands, enclose the
SD in single quotation marks: SD=’[hello,1,{2,4,6,8}]’

Arrays of any type must be enclosed in braces {}:

v Array of integers: {-4, -3, -2, -1, 0, 1, 2, 3, 4}

v Array of strings: {abc, "do re mi", 123}

v Array of structured data: {[hello,1,{0,1,2,3}],[hello2,2,{2,4,6,8}]}

When supplying arrays of structured data or arrays containing strings enclosed in quotation marks
as command-line input to the RMC commands, enclose the entire array in single quotation marks:

v Array of strings: mkrsrc IBM.Foo Name="c175n05" NodeList={1} StringArray=’{"a string","a
different string"}’

Chapter 1. System Files 177

v Array of structured data: mkrsrc IBM.Foo Name="c175n05" NodeList={1} SDArray=’{["string
1",1,{1,1}],["string 2",2,{1,2,3}]}’

For more examples, refer to the Resource Data Input file.

Data output formatting
String data is always displayed in either double or single quotation marks, as shown below:

v A description attribute that equals the string ″This is a string that contains white space″ is
displayed using long format as:
Description = "This is a string that contains white space"

v A description attribute value that equals an empty string ″″ is displayed in long format as:
Description = ""

v A description attribute value that equals a string that contains a new-line character at the end of
the string is displayed in long format as:
Description = "This string ends with a new - line character...

"

v A selection string containing double quotation marks is displayed in long format as:
SelectionString = ’Name == "c175n05"’

v A name attribute value that equals the string ″c175n05″ is displayed in long format as:
Name = "c175n05"

Binary data is displayed as follows:
"0x######## 0x######## 0x######## 0x###..."

Naming and numbering conventions
The following keywords are used throughout the RMC command man pages:

Attr The name of a resource class or resource attribute.

Resource_class
The name of a resource class.

Command structure and use
The RMC commands may be grouped into categories representing the different operations that
can be performed on resource classes and resources:

v Creating and removing: mkrsrc, rmrsrc

v Modifying: chrsrc, refrsrc

v Viewing definitions and data: lsrsrc, lsrsrcdef

v Viewing actions: lsactdef

The RMC commands can be run directly from the command line or called by user-written scripts.
In addition, the RMC commands are used as the basis for higher-level commands, such as the
Event Response Resource Manager (ERRM) command line interface.

Flags
−h Writes the command’s usage statement to standard output.

−T Writes this command’s trace messages to standard error. For your software-service organization’s
use only.

−V Writes this command’s verbose messages to standard output.

All RMC commands support a -V and -T flag. The -V flag is used to see additional information (verbose
mode) regarding the command. Verbose messages are contained in message catalogs and are translated
based on the locale in which you are running and other criteria.

178 Files Reference

Run a command with the -T flag only when the your software-service organization instructs you to turn on
trace. Trace messages are not translated. The -T flag shows the calls and returns to and from the
underlying Perl to C Extensions.

Related Information
The Resource Data Input file.

The RSCT 2.2 Resource Monitoring and Control Guide and Reference contains more information
regarding RMC operations.

rpc File for NFS

Purpose
Contains the database for Remote Procedure Calls (RPC) program numbers using NFS.

Description
The /etc/rpc file, part the Network Support Facilities, contains names that are used in place of RPC
program numbers. These names can be read by users. Each line of the file contains the following entries:

Entry Description
Name of Server for the RPC Program Specifies the name of the server daemon that

provides the RPC program.
RPC Program Number Specifies the number assigned to the program by

the RPC protocol.
Aliases Specifies alternate names by which the service

can be requested.

The three entries for each line are entered in the order listed here. Entries can be separated by any
number of blanks or tab characters, provided the line does not wrap. Commented lines in the file must
begin with a # (pound sign). Characters in a commented line are not interpreted by routines that search
the file.

Examples
A sample /etc/rpc file follows:
portmapper 100000 portmap sunrpc
rstatd 100001 rstat rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount

Related Information
File Systems Overview in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices.

sendmail.cf File

Purpose
Contains the configuration information for the sendmail command.

Chapter 1. System Files 179

Description
The /etc/mail/sendmail.cf configuration file contains the configuration information for the sendmail
command. Information contained in this file includes such items as the host name and domain, and the
sendmail rule sets.

The /etc/mail/sendmail.cf file:

v Stores information about the type of mailer programs running.

v Defines how the sendmail command rewrites addresses in messages.

v Defines how the sendmail command operates in the following environments:

– Local mail delivery

– Local area network delivery using TCP/IP

– Remote delivery using Basic Utilities Network (BNU).

If your environment includes only these types of mail delivery, you can use the supplied
/etc/mail/sendmail.cf file with few, if any, changes.

Control Lines
The /etc/mail/sendmail.cf file consists of a series of control lines, each of which begins with a single
character defining how the rest of the line is used. Lines beginning with a space or a tab are continuation
lines. Blank lines and lines beginning with a # (pound sign) are comments. Control lines are used for
defining:

v Macros and classes for use within the configuration file

v Message headings

v Mailers

v Options for the sendmail command

Each of these control line types are discussed in detail below.

Rewrite Rules
The sendmail command receives addresses in a number of different formats because different mailers
use different formats to deliver mail messages. The sendmail command changes the addresses to the
format needed to route the message for the mailer program being used. To perform this translation, the
sendmail command uses a set of rewrite rules, or rule sets, that are defined in the /etc/mail/sendmail.cf
configuration file. Rewrite rules have the following format:
Snumber
Rbefore after

where number is a integer greater than or equal to zero indicating which rule set this is, and before and
after are symbolic expressions representing a particular pattern of characters. The line beginning with R
means rewrite the expression before so that it has the same format as the expression after. Sendmail
scans through the set of rewrite rules looking for a match on the left-hand side (LHS) of the rule. When a
rule matches, the address is replaced by the right-hand side (RHS) of the rule.

Note: There must be at least one TAB character (ASCII code 0x09) between the before and after
sections of the /etc/mail/sendmail.cf file. For this reason, any editor that translates TAB characters
into a series of spaces (ASCII code 0x20) may not be used to edit the /etc/mail/sendmail.cf file.
For example, the GNU eMacs editor can corrupt the sendmail.cf file, but the vi editor does not.

The /etc/mail/sendmail.cf file installed with the sendmail command contains enough rules to perform the
translation for BNU and TCP/IP networks using a domain address structure. You should not have to
change these rules unless connecting to a system that uses a different addressing scheme.

180 Files Reference

Macro expansions of the form $x are performed when the configuration file is read. Expansions of the form
$&x are performed at run time, using a somewhat less general algorithm. This form is intended only for
referencing internally defined macros such as $h that are changed at runtime.

Left-Hand Side (LHS) of Rewrite Rules: The left-hand side of rewrite rules contains a pattern. Normal
words are simply matched directly. Metasyntax is introduced using a dollar sign. The metasymbols are:

Metasymbol Meaning
$* Match zero or more tokens
$+ Match one or more tokens
$- Match exactly one token
$=x Match any phrase in class x
$~x Match any word not in class x

If any of these match, they are assigned to the symbol $n for replacement on the right-hand side, where n
is the index in the LHS. For example, if the LHS:
$-:$+

is applied to the input:
UCBARPA:linda

the rule will match, and the values passed to the RHS will be:
$1 UCBARPA
$2 linda

Right-Hand Side (RHS) of Rewrite Rules: When the left-hand side of a rewrite rule matches, the input
is deleted and replaced by the right-hand side. Tokens are copied directly from the RHS unless they begin
with a dollar sign. Metasymbols are:

Metasymbol Meaning
$n Substitute indefinite token n from LHS
$[name$] Canonicalize name
$(map key$@arguments $:default $) Generalized keyed mapping function
$>n ″Call″ ruleset n
$#mailer Resolve to mailer
$@host Specify host
$:user Specify user

The $n syntax substitutes the corresponding value from a $+, $-, $*, $=, or $~ match on the LHS. It may
be used anywhere.

A host name enclosed between $[and $] is looked up in the host database(s) and replaced by the
canonical name. For example, $[merlin] might become merlin.magician and $[[128.32.130.2]$] would
become king.arthur.

The $(... $) syntax is a more general form of lookup; it uses a named map instead of an implicit map.
If no lookup is found, the indicated default is inserted; if no default is specified and no lookup matches, the
value is left unchanged. The arguments are passed to the map for possible use.

The $>n syntax causes the remainder of the line to be substituted as usual and then passed as the
argument to ruleset n. The final value of ruleset n then becomes the substitution for this rule. The $>
syntax can only be used at the beginning of the right hand side; it can be only be preceded by $@ or $:.

Chapter 1. System Files 181

The $# syntax should only be used in ruleset zero or a subroutine of ruleset zero. It causes evaluation of
the ruleset to terminate immediately, and signals to sendmail that the address has completely resolved.
The complete syntax is:
$#mailer $@host $:user

This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer. If the mailer is local, the host
part may be omitted. The mailer must be a single word, but the host and user may be multi-part. If the
mailer is the built-in IPC mailer, the host may be a colon-separated list of hosts that are searched in order
for the first working address, exactly like MX (machine exchange) records. The user is later rewritten by
the mailer-specific envelope rewrite set and assigned to the $u macro. As a special case, if the value to $#
is ″local″ and the first character of the $: value is ″@″, the ″@″ is stripped off, and a flag is set in the
address descriptor that causes sendmail to not do ruleset 5 processing.

Normally, a rule that matches is retried, that is, the rule loops until it fails. An RHS may also be preceded
by a $@ or a $: to change this behavior. A $@ prefix causes the ruleset to return with the remainder of the
RHS as the value. A $: prefix causes the rule to terminate immediately, but the ruleset to continue; this can
be used to avoid continued application of a rule. The prefix is stripped before continuing.

The $@ and $: prefixes may precede a $> spec. For example:
R$+ $: $>7 $1

matches anything, passes that to ruleset seven, and continues; the $: is necessary to avoid an infinite
loop.

Substitution occurs in the order described; that is, parameters from the LHS are substituted, host names
are canonicalized, ″subroutines″ are called, and finally $#, $@, and $: are processed.

Semantics of Rewrite Rule Sets: There are five rewrite sets that have specific semantics.

Ruleset three should turn the address into ″canonical form.″ This form should have the basic syntax:
local-part@host-domain-spec

Ruleset three is applied by sendmail before doing anything with any address.

If no ″@″ sign is specified, then the host-domain-spec may be appended (box ″D″ in ″Rewrite Set
Semantics″) from the sender address (if the C flag is set in the mailer definition corresponding to the
sending mailer).

Ruleset zero is applied after ruleset three to addresses that are going to actually specify recipients. It must
resolve to a {mailer, host, user} triple. The mailer must be defined in the mailer definitions from the
configuration file. The host is defined into the $h macro for use in the argv expansion of the specified
mailer.

IPC Mailers: Some special processing occurs if the ruleset zero resolves to an IPC mailer (that is, a
mailer that has ″[IPC]″ listed as the Path in the M configuration line. The host name passed after ″$@″
has MX expansion performed; this looks the name up in DNS to find alternate delivery sites.

The host name can also be provided as a dotted quad in square brackets; for example:
[128.32.149.78]

This causes direct conversion of the numeric value to a TCP/IP host address.

The host name passed in after the ″$@″ may also be a colon-separated list of hosts. Each is separately
MX expanded and the results are concatenated to make (essentially) one long MX list. The intent here is
to create ″fake″ MX records that are not published in DNS for private internal networks.

182 Files Reference

As a final special case, the host name can be passed in as a text string in square brackets:
[any.internet.addr]

This form avoids the MX mapping if the F=0 flag is set for the selected delivery agent.

Note: This is intended only for situations where you have a network firewall (a system or machine that
controls the access between outside networks and private networks) or other host that will do
special processing for all your mail, so that your MX record points to a gateway machine. This
machine could then do direct delivery to machines within your local domain. Use of this feature
directly violates RFC 1123 section 5.3.5: it should not be used lightly.

Macros in the sendmail.cf File
Macros in the /etc/mail/sendmail.cf file are interpreted by the sendmail command. A macro is a symbol
that represents a value or string. A macro is defined by a D command in the /etc/mail/sendmail.cf file.

D — Define Macro: Macros are named with a single character or with a word in {braces}.
Single-character names may be selected from the entire ASCII set, but user-defined macros should be
selected from the set of uppercase letters only. Lowercase letters and special symbols are used internally.
Long names beginning with a lowercase letter or a punctuation character are reserved for use by
sendmail, so user-defined long macro names should begin with an uppercase letter.

The syntax for macro definitions is:
Dxval

where x is the name of the macro (which may be a single character or a word in braces) and val is the
value it should have. There should be no spaces given that do not actually belong in the macro value.

Macros are interpolated using the construct $x, where x is the name of the macro to be interpolated. This
interpolation is done when the configuration file is read, except in M lines. The special construct $&x can
be used in R lines to get deferred interpolation.

Conditionals can be specified using the syntax:
$?x text1 $| text2 $.

This interpolates text1 if the macro $x is set, and text2 otherwise. The ″else″ ($|) clause may be omitted.

Lowercase macro names are reserved to have special semantics, used to pass information in or out of
sendmail, and special characters are reserved to provide conditionals, and so on. Uppercase names (that
is, $A through $Z) are specifically reserved for configuration file authors.

The following macros are defined and/or used internally by sendmail for interpolation into argv’s for
mailers or for other contexts. The ones marked - are information passed into sendmail, the ones marked
= are information passed both in and out of sendmail, and the unmarked macros are passed out of
sendmail but are not otherwise used internally:

Macro Definition
$_ RFC1413-validation & IP source route (V8.1 and above).
$a The origin date in RFC822 format.
$b The current date in RFC822 format.
$(bodytype) The ESMTP BODY parameter.
$B The BITNET relay.
$c The hop count.
$(client_addr) The connecting host’s IP address.
$(client_name) The connecting host’s canonical name.
$(client_port) The connecting host’s port name.
$(client_resolve) Holds the result of the resolve call for $(client_name).

Chapter 1. System Files 183

Macro Definition
$(currHeader) Header value as quoted string
$C The hostname of the DECnet relay (m4 technique).
$d The current date in UNIX (ctime)(3) format.
$(daemon_addr) The IP address on which the daemon is listening for connections. Unless

DaemonPortOptions is set, this will be 0.0.0.0.
$(daemon_family) If the daemon is accepting network connections, this is the network family.
$(daemon_flags) The flags for the daemon as specified by the Modifiers= part of DaemonPortOptions

where the flags are separated from each other by spaces and upper case flags are
doubled.

$(daemon_info) Information about a daemon as a text string. For example, SMTP+queueing@00.
$(daemon_name) The name of the daemon from DaemonPortOptions Name= suboption. If this suboption

is not used, the default will be set to Daemon#, where # is the daemon number.
$(daemon_port) The port on which the daemon is accepting connections. Unless DaemonPort Options is

set, this will most likely be set to the default of 25.
$(deliveryMode) The current delivery mode used by sendmail.
$e Obsolete. Used SmtpGreetingMessage option instead.
$(envid) The original DSN envelope ID.
$E X400 relay (unused) (m4 technique).
$f The sender’s address.
$F FAX relay (m4 technique).
$g The sender’s address relative to the recipient.
$h Host part of the recipient address.
$H The mail hub (m4 technique).
$(hdrlen) The length of the header value, which is stored in $(currHeader).
$(hdr_name) The name of the header field for which the current header check ruleset has been called.
$i The queue identifier.
$(if_addr) The IP address of an incoming connection interface unless it is in the loopback net.
$(if_name) The name of an incoming connection interface.
$j= The official canonical name.
$k The UUCP node name (V8.1 and above).
$l Obsolete. Use UnixFromLine option instead.
$L Local user relay (m4 technique).
$m The DNS domain name (V8.1 and above).
$M Who we are masquerading as (m4 technique).
$(mail_addr) The address part of the resolved triple of the address given for the SMTP MAIL

command.
$(mail_host) The host from the resolved triple of the address given for the SMTP MAIL command.
$(mail_mailer) The mailer from the resolved triple of the address given for the SMTP MAIL command.
$n The error messages sender.
$(ntries) The number of delivery attempts.
$o Obsolete. Use OperatorChars option instead.
$opMode The startup operating mode (V8.7 and above).
$p The sendmail process ID.
$q- Default form of the sender address.
$(queue_interval) The queue run interval as defined in the -q flag.
$r The protocol used.
$R The relay for unqualified names (m4 technique).
$(rcpt_addr) The address part of the resolved triple of the address given for the SMTP RCPT

command.
$(rcpt_host) The host from the resolved triple of the address given for the SMTP RCPT command.
$(rcpt_mailer) The mailer from the resolved triple of the address given for the SMTP RCPT command.
$s The sender’s host name.
$S The Smart host (m4 technique).
$(server_addr) The address of the server of the current outgoing SMTP connection.
$(server_name) The name of the server of the current outgoing SMTP connection.

184 Files Reference

Macro Definition
$t Current time in seconds.
$u The recipient’s user name.
$U The UUCP name to override $k.
$v The sendmail program’s version.
$V The UUCP relay (for class $=V) (m4 technique).
$w The short name of this host.
$W The UUCP relay (for class $=W) (m4 technique).
$x The full name of the sender.
$X The UUCP relay (for class $=X) (m4 technique).
$y The home directory of the recipient.
$z The name of the controlling TTY.
$Y The UUCP relay for unclassified hosts.
$z The recipient’s home directory.
$Z The version of this m4 configuration (m4 technique).

There are three types of dates that can be used. The $a and $b macros are in RFC 822 format; $a is the
time as extracted from the ″Date:″ line of the message (if there was one), and $b is the current date and
time (used for postmarks). If no ″Date:″ line is found in the incoming message, $a is set to the current time
also. The $d macro is equivalent to the $b macro in UNIX (ctime) format. The $t macro is the current time
in seconds.

The macros $w, $j, and $m are set to the identity of this host. Sendmail tries to find the fully qualified
name of the host if at all possible; it does this by calling gethostname(2) to get the current hostname and
then passing that to gethostbyname(3) which is supposed to return the canonical version of that host
name. Assuming this is successful, $j is set to the fully qualified name, and $m is set to the domain part of
the name (everything after the first dot). The $w macro is set to the first word (everything before the first
dot) if you have a level 5 or higher configuration file; otherwise, it is set to the same value as $j. If the
canonicalization is not successful, it is imperative that the config file set $j to the fully qualified domain
name.

The $f macro is the ID of the sender as originally determined; when mailing to a specific host, the $g
macro is set to the address of the sender relative to the recipient. For example, if a user sends to
king@castle.com from the machine vangogh.painter.com, the $f macro will be vincent and the $g macro
will be vincent@vangogh.painter.com.

The $x macro is set to the full name of the sender. This can be determined in several ways. It can be
passed as flag to sendmail. It can be defined in the NAME environment variable. The third choice is the
value of the ″Full-Name:″ line in the header if it exists, and the fourth choice is the comment field of a
″From:″ line. If all of these fail, and if the message is being originated locally, the full name is looked up in
the /etc/passwd file.

When sending, the $h, $u, and $z macros get set to the host, user, and home directory (if local) of the
recipient. The first two are set from the $@ and $: part of the rewrite rules, respectively.

The $p and $t macros are used to create unique strings (for example, for the ″Message-Id:″ field). The $i
macro is set to the queue ID on this host; if put into the timestamp line, it can be useful for tracking
messages. The $v macro is set to be the version number of sendmail; this is normally put in timestamps
and has been proven useful for debugging.

The $c field is set to the ″hop count,″ that is, the number of times this message has been processed. This
can be determined by the -h flag on the command line or by counting the timestamps in the message.

Chapter 1. System Files 185

The $r and $s fields are set to the protocol used to communicate with sendmail and the sending
hostname. They can be set together using the -p command line flag or separately using the -M or -oM
flags.

The $_ is set to a validated sender host name. If the sender is running an RFC 1413 compliant IDENT
server and the receiver has the IDENT protocol turned on, it will include the user name on that host.

The $(client_name), $(client_addr), and $(client_port) macros are set to the name, address, and port
number of the connecting host who is invoking sendmail as a server. These can be used in the check_*
rulesets (using the $& deferred evaluation form).

Changing the Domain Name Macro:

Note: This function is available in AIX 4.1 only.

The domain name macro, DD, specifies the full domain name of your local group of hosts. The format of
the domain name macro is DD followed by, at most, four period-separated names, for example:
DDname1.name2.name3.name4

This macro can be set automatically through the hostname command. The sendmail command reads
what has been set with the hostname command and uses it to initialize the host and domain macros and
classes. The configuration file macros only need to be changed if you want the sendmail host and domain
names to be different from those set by the hostname command.

To change the domain name macro:

1. Enter the command:
vi /etc/mail/sendmail.cf

2. Find the line beginning with DD.

3. Replace what follows DD with your domain name. For example, if your domain name is
newyork.abc.com, enter:
DDnewyork.abc.com

4. Save the file and exit the editor.

Changing the Host Name Macro: The host name macro, Dw, specifies the name of your host system
used in the return address of all messages you generate. The format of the host name macro is Dw
followed by the hostname of this machine, for example:
Dwhostname

By default, the sendmail command reads what has been set with the hostname command and uses it to
initialize the host and domain name macros and classes. Change the configuration file macros only if you
want the sendmail command host and domain names to be different from those set by the hostname
command.

To change the host name macro:

1. Enter the command:
vi /etc/mail/sendmail.cf

2. Find the line beginning with Dw.

3. Replace what follows Dw with your hostname. For example, if your hostname is brown, enter:
Dwbrown

4. Save the file and exit the editor.

Note: If the Dw macro is defined, you must also define the CW (hostname) class.

186 Files Reference

Modifying the sendmail.cf File
Before you modify the /etc/mail/sendmail.cf file, make a backup copy. Do this by executing the following
command:
cp /etc/mail/sendmail.cf /etc/mail/sendmail.cf.working

If the changes you make cause the mail system not to work properly, you can return to using a copy of the
/etc/mail/sendmail.cf file that you know works.

You can modify the /etc/mail/sendmail.cf file by using your favorite text editor. However, some editors
store tabs as the number of spaces they represent, not the tab character itself. This can cause unexpected
results if the tab character is defined as the field-separator character in rule sets. Use the vi editor to avoid
this problem, or change the field-separator character with the J option. (For ease of reference, this
discussion assumes you use the vi editor to modify the /etc/mail/sendmail.cf file.)

After changing any information in the /etc/mail/sendmail.cf file, you must instruct the daemon to reread
the file. See section, “Making the sendmail Daemon Reread the Configuration Information” for those
instructions.

Making the sendmail Daemon Reread the Configuration Information: After you have made changes
to the sendmail.cf file, instruct the daemon to reread the file. If you started the sendmail command using
the startsrc command, enter the command:
refresh -s sendmail

Or, if you started the sendmail daemon using the /usr/sbin/sendmail command, enter the command:
kill -1 `cat /etc/mail/sendmail.pid`

Both of these commands cause the daemon to reread the /etc/mail/sendmail.cf file, the /etc/mail/aliases
file, and the /etc/sendmail.nl file.

Alias Database
The alias database exists in two forms. One is a text form, maintained in the file /etc/mail/aliases. The
aliases are of the form:
name: name1, name2, ...

Only local names may be aliased. For example:
linda@cloud.ai.acme.org: linda@CS.

has the desired effect. Aliases may be continued by starting any continuation lines with a space or a tab.
Blank lines and lines beginning with a pound sign (#) are comments.

The second form is processed by the new database manager (NDBM) or Berkeley DB library. This form is
in the file /etc/mail/aliases.db (if using NEWDB) or /etc/mail/aliases.dir and /etc/mail/aliases.pag (if
using NDBM). This is the form that sendmail actually uses to resolve aliases. This technique is used to
improve performance.

The service switch sets the control of search order. The following entry
AliasFile=switch:aliases

is always added as the first alias entry. The first alias file name without a class (for example, without nis
on the front) will be used as the name of the file for a ″files″ entry in the aliases switch. For example, if the
configuration file contains
AliasFile=/etc/mail/aliases

and the service switch contains
aliases nis files nisplus

Chapter 1. System Files 187

then aliases will first be searched in the NIS database, then in /etc/mail/aliases, and finally in the NIS+
database.

Rebuilding the Alias Database: The DB or DBM version of the database may be rebuilt explicitly by
executing the command:
newaliases

This is equivalent to giving sendmail the -bi flag:
/usr/sbin/sendmail -bi

If the RebuildAliases option is specified in the configuration, sendmail will rebuild the alias database
automatically if possible when it is out of date. Auto-rebuild can be dangerous on heavily loaded machines
with large alias files. If it might take more than the rebuild time-out (option AliasWait, which is normally
five minutes) to rebuild the database, there is a chance that several processes will start the rebuild
process simultaneously.

If you have multiple aliases databases specified, the -bi flag rebuilds all the database types. II
understands, for example, it can rebuild NDBM databases, but not NIS databases.

Potential Problems with the Alias Database: There are a number of problems that can occur with the
alias database. They all result from a sendmail process accessing the DBM version while it is only
partially built. This can happen under two circumstances: One process accesses the database while
another process is rebuilding it, or the process rebuilding the database dies (due to being killed or a
system crash) before completing the rebuild.

Sendmail has three techniques to try to relieve these problems. First, it ignores interrupts while rebuilding
the database; this avoids the problem of someone aborting the process leaving a partially rebuilt database.
Second, it locks the database source file during the rebuild, but that may not work over NFS or if the file is
not writable. Third, at the end of the rebuild, it adds an alias of the form:
@: @

(which is not normally legal). Before sendmail will access the database, it checks to ensure that this entry
exists.

List Owners: If an error occurs on sending to a certain address, x, sendmail will look for an alias of the
form owner-x to receive the errors. This is typically useful for a mailing list where the submitter of the list
has no control over the maintenance of the list itself. In this case, the list maintainer would be the owner of
the list. For example:
unix-wizards: linda@paintbox, wnj@monet, nosuchuser,
sam@matisse

owner-unix-wizards: unix-wizards-request
unix-wizards-request: linda@paintbox

would cause linda@paintbox to get the error that will occur when someone sends to unix-wizards due to
the inclusion of nosuchuser on the list.

List owners also cause the envelope sender address to be modified. The contents of the owner alias are
used if they point to a single user. Otherwise, the name of the alias itself is used. For this reason, and to
conform to Internet conventions, the ″owner-″ address normally points at the ″-request″ address; this
causes messages to go out with the typical Internet convention of using ″list-request″ as the return
address.

Per-User Forwarding (.forward Files)
As an alternative to the alias database, users may put a file with the name ″.forward″ in their home
directory. If this file exists, sendmail redirects mail for that user to the list of addresses listed in the
.forward file. For example, if the home directory for user ″kenly″ has a .forward file with contents:

188 Files Reference

kenly@ernie
joel@renoir

then any mail arriving for ″kenly″ will be redirected to the specified accounts.

The configuration file defines a sequence of file names to check. By default, this is the user’s .forward file,
but can be defined to be more general using the ForwardPath (J) option. If you change this option, you
must inform your user base of the change.

IDENT Protocol Support
UCB sendmail supports the IDENT protocol as defined in RFC 1413. Although this enhances identification
of the author of an e-mail message by doing a ″callback″ to the originating system to include the owner of
a particular TCP connection in the audit trail, it is in no sense perfect; a determined forger can easily
violate the security of the IDENT protocol.

Note: The operating system does not support the IDENT protocol. The IDENT time-out is set to zero (0)
in the /etc/mail/sendmail.cf file to disable IDENT. Modify your sendmail.cf file and set IDENT
time-out if you wish to enable IDENT.

The following description is excerpted from RFC 1413:

6. Security Considerations

The information returned by this protocol is at most as trustworthy as the host providing it OR the
organization operating the host. For example, a PC in an open lab has few if any controls on it to prevent
a user from having this protocol return any identifier the user wants. Likewise, if the host has been
compromised the information returned may be completely erroneous and misleading.

The Identification Protocol is not intended as an authorization or access control protocol. At best, it
provides some additional auditing information with respect to TCP connections. At worst, it can provide
misleading, incorrect, or maliciously incorrect information.

The use of the information returned by this protocol for other than auditing is strongly discouraged.
Specifically, using Identification Protocol information to make access control decisions, either as the
primary method (that is, no other checks) or as an adjunct to other methods may result in a weakening of
normal host security.

An Identification server may reveal information about users, entities, objects or processes which might
normally be considered private. An Identification server provides service which is a rough analog of the
CallerID services provided by some phone companies and many of the same privacy considerations and
arguments that apply to the CallerID service apply to Identification. If you would not run a ″finger″ server
due to privacy considerations you may not want to run this protocol.

Tuning
There are a number of configuration parameters you may want to change, depending on the requirements
of your site. Most of these are set using an option in sendmail.cf. For example, the line ″O
Time-out.queuereturn=5d″ sets option ″Timeout.queuereturn″ to the value ″5d″ (five days).

Most of these options have appropriate defaults for most sites. However, sites having very high mail loads
may find they need to tune them as appropriate for their mail load. In particular, sites experiencing a large
number of small messages, many of which are delivered to many recipients, may find that they need to
adjust the parameters dealing with queue priorities.

All prior versions of sendmail had single-character option names. Although old short names are still
accepted, most new options do not have short equivalents.

Chapter 1. System Files 189

Timeouts: All time intervals are set using a scaled syntax. For example, ″10m″ represents ten minutes,
whereas ″2h30m″ represents two and a half hours. The full set of scales is:

s seconds

m minutes

h hours

d days

w weeks

Read Timeouts: Timeouts all have option names ″Time-out.suboption″. The recognized suboptions, their
default values, and the minimum values allowed by RFC 1123 section 5.3.2 are:

Suboption Description
command- In server SMTP, the time to wait for another command. [1h, 5m].
connect The time to wait for an SMTP connection to open (the connect(2) system call) [0,

unspecified]. If zero, uses the kernel default. In no case can this option extend the
time-out longer than the kernel provides, but it can shorten it. This is to get around
kernels that provide an extremely long connection time-out (90 minutes in one case).

control The time-out for a complete control socket transaction to complete [2m, none].
datablock- The wait for reading a data block (that is, the body of the message). [1h, 3m]. This

should be long because it also applies to programs piping input to sendmail which
have no guarantee of promptness.

datafinal- The wait for a reply from the dot terminating a message. [1h,10m]. If this is shorter
than the time actually needed for the receiver to deliver the message, duplicates will
be generated. This is discussed in RFC1047.

datainit- The wait for a reply from a DATA command [5m, 2m].
fileopen The time-out for opening .forward and :include:files [60s, none].
iconnect The same as connect, except it applies only to the initial attempt to connect to a

host for a given message [0, unspecified]. This period should be very short (a few
seconds). Hosts that are well-connected and responsive will be serviced immediately.
Hosts that are slow do not detain other deliveries in the initial delivery attempt.

ident- The time-out waiting for a reply to an IDENT query [30s11, unspecified].
initial The wait for the initial 220 greeting message [5m, 5m].
helo The wait for a reply from a HELO or EHLO command [5m, unspecified]. This may

require a host name lookup, so five minutes is probably a reasonable minimum.
hoststatus The time that long status information about a host (for example, host down) will be

cached before it is considered stale [30m, unspecified].
mail- The wait for a reply from a MAIL command [10m, 5m].
misc The wait for a reply from miscellaneous (but short) commands such as NOOP

(no-operation) and VERB (go into verbose mode). [2m, unspecified].
quit The wait for a reply from a QUIT command [2m, unspecified].
rcpt- The wait for a reply from a RCPT command [1h, 5m]. This should be long because it

could be pointing at a list that takes a long time to expand (see below).
rset The wait for a reply from a RSET command [5m, unspecified].
resolver.retrans Sets resolver retransmission time interval in seconds. Sets both the

Timeout.resolver.retrans.first and Timeout.resolver.retrans.normal.
resolver.retrans.first Sets resolver retransmission time interval in seconds for the first attempt to deliver a

message.
resolver.retrans.normal Sets the retransmission time interval in seconds for all resolver lookups except for

the first delivery attempt.
resolver.retry Sets the number of attempts to retransmit a resolver query. Sets both

Timeout.resolver.retry.first and Timeout.resolver.retry.normal.
resolver.retry.first Sets the number of attempts to retransmit a resolver query for the first delivery

attempt.
resolver.retry.normal Sets the number of attempts to retransmit a resolver query for all resolver lookups

except the first delivery attempt.

190 Files Reference

For compatibility with old configuration files, if no suboption is specified, all the timeouts marked with - are
set to the indicated value.

Message Timeouts: After sitting in the queue for a few days, a message will time out. This is to ensure
that at least the sender is aware of the inability to send a message. The time-out is typically set to five
days. It is sometimes considered convenient to also send a warning message if the message is in the
queue longer than a few hours (assuming you normally have good connectivity; if your messages normally
took several hours to send, you would not want to do this because it would not be an unusual event).
These timeouts are set using the Timeout.queuereturn and Timeout.queuewarn options in the configuration
file (previously both were set using the T option).

Because these options are global and you cannot know how long another host outside your domain will be
down, a five-day time-out is recommended. This allows a recipient to fix the problem even if it occurs at
the beginning of a long weekend. RFC 1123 section 5.3.1.1 says that this parameter should be ″at least
4-5 days″.

The Timeout.queuewarn value can be piggybacked on the T option by indicating a time after which a
warning message should be sent; the two timeouts are separated by a slash. For example, the line:
OT5d/4h

causes e-mail to fail after five days, but a warning message will be sent after four hours. This should be
large enough that the message will have been tried several times.

Queue interval: The argument to the -q flag specifies how often a subdaemon will run the queue. This is
typically set to between fifteen minutes and one hour. RFC 1123, section 5.3.1.1 recommends this be at
least 30 minutes.

Forking During Queue Runs: By setting the ForkEachJob (Y) option, sendmail will fork before each
individual message while running the queue. This will prevent sendmail from consuming large amounts of
memory, so it may be useful in memory-poor environments. However, if the ForkEachJob option is not set,
sendmail will keep track of hosts that are down during a queue run, which can improve performance
dramatically.

If the ForkEachJob option is set, sendmail cannot use connection caching.

Queue Priorities: Every message is assigned a priority when it is first instantiated, consisting of the
message size (in bytes) offset by the message class (which is determined from the Precedence: header)
times the ″work class factor″ and the number of recipients times the ″work recipient factor.″ The priority is
used to order the queue. Higher numbers for the priority mean that the message will be processed later
when running the queue.

The message size is included so that large messages are penalized relative to small messages. The
message class allows users to send ″high priority″ messages by including a ″Precedence:″ field in their
message; the value of this field is looked up in the P lines of the configuration file. Because the number of
recipients affects the amount of load a message presents to the system, this is also included into the
priority.

The recipient and class factors can be set in the configuration file using the RecipientFactor (y) and
ClassFactor (z) options respectively. They default to 30000 (for the recipient factor) and 1800 (for the class
factor). The initial priority is:
pri = msgsize - (class times bold ClassFactor) + (nrcpt times bold
RecipientFactor)

(Remember that higher values for this parameter actually mean that the job will be treated with lower
priority.)

Chapter 1. System Files 191

The priority of a job can also be adjusted each time it is processed (that is, each time an attempt is made
to deliver it) using the ″work time factor,″ set by the RetryFactor(Z) option. This is added to the priority, so
it normally decreases the precedence of the job, on the grounds that jobs that have failed many times will
tend to fail again in the future. The RetryFactor option defaults to 90000.

Load Limiting: Sendmail can be asked to queue (but not deliver) mail if the system load average gets
too high using the QueueLA (x) option. When the load average exceeds the value of the QueueLA option,
the delivery mode is set to q (queue only) if the QueueFactor (q) option divided by the difference in the
current load average and the QueueLA option plus one exceeds the priority of the message; that is, the
message is queued if:
pri > { bold QueueFactor } over { LA - { bold QueueLA } + 1 }

The QueueFactor option defaults to 600000, so each point of load average is worth 600000 priority points
(as described above).

For drastic cases, the RefuseLA (X) option defines a load average at which sendmail will refuse to accept
network connections. Locally generated mail (including incoming UUCP mail) is still accepted.

Delivery Mode: There are a number of delivery modes that sendmail can operate in, set by the
DeliveryMode (d) configuration option. These modes specify how quickly mail will be delivered. Legal
modes are:

Delivery Mode Definition
i Deliver interactively (synchronously)
b Deliver in background (asynchronously)
q Queue only (do not deliver)
d Defer delivery attempts (do not deliver).

There are trade-offs. Mode i gives the sender the quickest feedback, but may slow down some mailers
and is hardly ever necessary. Mode b delivers promptly, but can cause large numbers of processes if you
have a mailer that takes a long time to deliver a message. Mode q minimizes the load on your machine,
but means that delivery may be delayed for up to the queue interval. Mode d is identical to mode q except
that it also prevents all the early map lookups from working; it is intended for ″dial on demand″ sites where
DNS lookups might be very expensive. Some simple error messages (for example, host unknown during
the SMTP protocol) will be delayed using this mode. Mode b is the default.

If you run in mode q (queue only), d (defer), or b (deliver in background), sendmail will not expand
aliases and follow .forward files upon initial receipt of the mail. This speeds up the response to RCPT
commands. Mode i cannot be used by the SMTP server.

Log Level: The level of logging can be set for sendmail. The default using a standard configuration
table is level 9. The levels are as follows:

Log Level Definition
0 Minimum logging.
1 Serious system failures and potential security problems.
2 Lost communications (network problems) and protocol failures.
3 Other serious failures.
4 Minor failures.
5 Message collection statistics.
6 Creation of error messages, VRFY and EXPN commands.
7 Delivery failures (for example, host or user unknown).
8 Successful deliveries and alias database rebuilds.
9 Messages being deferred (for example, due to a host being down).
10 Database expansion (alias, forward, and userdb lookups).

192 Files Reference

Log Level Definition
11 NIS errors and end-of-job processing.
12 Logs all SMTP connections.
13 Logs bad user shells, files with improper permissions, and other questionable situations.
14 Logs refused connections.
15 Log all incoming and outgoing SMTP commands.
20 Logs attempts to run locked queue files. These are not errors, but can be useful to note if your

queue appears to be clogged.
30 Lost locks (only if using lockf instead of flock).

File Modes: The modes used for files depend on what functionality you want and the level of security
you require.

The database that sendmail actually uses is represented by the following file:

/etc/mail/aliases.db
Berkeley DB database

The mode on these files should match the mode of /etc/mail/aliases. If aliases is writable and the files
are not, users will be unable to reflect their desired changes through to the actual database. However, if
aliases is read-only and DBM files are writable, a slightly sophisticated user can arrange to steal mail
anyway.

If your DBM files are not writable, or you do not have auto-rebuild enabled (with the AutoRebuildAliases
option), then you must be careful to reconstruct the alias database each time you change the text version:
newaliases

If this step is ignored or forgotten, any intended changes will be lost.

Connection Caching: When processing the queue, sendmail will try to keep the last few open
connections open to avoid startup and shutdown costs. This only applies to IPC connections.

When trying to open a connection, the cache is first searched. If an open connection is found, it is probed
to see if it is still active by sending a RSET command. It is not an error if this fails; instead, the connection
is closed and reopened.

Two parameters control the connection cache. The ConnectionCacheSize (k) option defines the number
of simultaneous open connections that will be permitted. If it is set to zero, connections will be closed as
quickly as possible. The default is one. This should be set as appropriate for your system size; it will limit
the amount of system resources that sendmail will use during queue runs. Never set this higher than 4.

The ConnectionCacheTimeout (K) option specifies the maximum time that any cached connection will be
permitted to idle. When the idle time exceeds this value, the connection is closed. This number should be
small (under ten minutes) to prevent you from grabbing too many resources from other hosts. The default
is five minutes.

Name Server Access: If you want machine exchange (MX) support, you must be using Domain Name
Services (DNS).

The ResolverOptions(I) option allows you to tweak name server options. The command line takes a series
of flags as documented inresolver(3) (with the leading ″RES_″ deleted). Each can be preceded by an
optional `+’ or `-’. For example, the line:
O ResolverOptions=+AAONLY -DNSRCH

Chapter 1. System Files 193

turns on the AAONLY (Accept Authoritative Answers only) and turns off the DNSRCH (search the domain
path) options. Most resolver libraries default DNSRCH, DEFNAMES, and RECURSE flags on and all
others off. You can also include ″HasWildcardMX″ to specify that there is a wildcard MX record matching
your domain; this turns off MX matching when canonicalizing names, which can lead to inappropriate
canonicalizations.

Moving the Per-User Forward Files: Some sites mount each user’s home directory from a local disk on
their workstation, so that local access is fast. However, the result is that .forward file lookups are slow. In
some cases, mail can even be delivered on machines inappropriately because of a file server being down.
The performance can be especially bad if you run the automounter.

The ForwardPath (J) option allows you to set a path of forward files. For example, the config file line:
O ForwardPath=/var/forward/$u:$z/.forward.$w

would first look for a file with the same name as the user’s login in /var/forward. If that is not found (or is
inaccessible), the file ″.forward.machinename″ in the user’s home directory is searched.

If you create a directory such as /var/forward, it should be mode 1777 (that is, the sticky bit should be
set). Users should create the files mode 644.

Free Space: On systems that have one of the system calls in the statfs(2) family (including statvfs and
ustat), you can specify a minimum number of free blocks on the queue file system using the
MinFreeBlocks (b) option. If there are fewer than the indicated number of blocks free on the filesystem on
which the queue is mounted, the SMTP server will reject mail with the 452 error code. This invites the
SMTP client to try again later.

Attention: Be careful not to set this option too high; it can cause rejection of e-mail when that mail
would be processed without difficulty.

Maximum Message Size: To avoid overflowing your system with a large message, the MaxMessageSize
option can set an absolute limit on the size of any one message. This will be advertised in the ESMTP
dialogue and checked during message collection.

Privacy Flags: The PrivacyOptions (p) option allows you to set certain ″privacy″ flags. Actually, many of
them do not give you any extra privacy, rather just insisting that client SMTP servers use the HELO
command before using certain commands or adding extra headers to indicate possible security violations.

The option takes a series of flag names; the final privacy is the inclusive or of those flags. For example:
O PrivacyOptions=needmailhelo, noexpn

insists that the HELO or EHLO command be used before a MAIL command is accepted and disables the
EXPN command.

The flags are detailed in RFC 1123 S 5.1.6.

Send to Me Too: Normally, sendmail deletes the (envelope) sender from any list expansions. For
example, if ″linda″ sends to a list that contains ″linda″ as one of the members, she will not get a copy of
the message. If the -m (me too) command line flag, or if the MeToo (m) option is set in the configuration
file, this behavior is suppressed.

C and F — Define Classes: Classes of phrases may be defined to match on the left hand side of rewrite
rules, where a ″phrase″ is a sequence of characters that do not contain space characters. For example, a
class of all local names for this site might be created so that attempts to send to oneself can be
eliminated. These can either be defined directly in the configuration file or read in from another file.
Classes are named as a single letter or a word in {braces}. Class names beginning with lowercase letters

194 Files Reference

and special characters are reserved for system use. Classes defined in config files may be given names
from the set of uppercase letters for short names or beginning with an uppercase letter for long names.
Ccphrase1 phrase2...
Fcfile

The first form defines the class c to match any of the named words. It is permissible to split them among
multiple lines; for example, the two forms:
CHmonet ucbmonet

and
CHmonet
CHucbmonet

are equivalent. The ″F″ form reads the elements of the class c from the named file.

Elements of classes can be accessed in rules using $= or $~. The $~ (match entries not in class) only
matches a single word; multi-word entries in the class are ignored in this context.

The class $=w is set to be the set of all names this host is known by. This can be used to match local host
names.

The class $=k is set to be the same as $k, that is, the UUCP node name.

The class $=m is set to the set of domains by which this host is known, initially just $m.

The class $=t is set to the set of trusted users by the T configuration line. If you want to read trusted users
from a file, use Ft/file/name.

The class $=n can be set to the set of MIME body types that can never be eight to seven bit encoded. It
defaults to ″multipart/signed″. Message types ″message/*″ and ″multipart/*″ are never encoded directly.
Multipart messages are always handled recursively. The handling of message/* messages are controlled
by class $=s. The class $=e contains the Content-Transfer-Encodings that can be 8->7 bit encoded. It is
predefined to contain ″7bit″, ″8bit″, and ″binary″. The class $=s contains the set of subtypes of message
that can be treated recursively. By default it contains only ″rfc822″. Other ″message/*″ types cannot be
8->7 bit encoded. If a message containing eight-bit data is sent to a seven-bit host, and that message
cannot be encoded into seven bits, it will be stripped to 7 bits.

The three classes $=U, $=Y, and $=Z are defined to describe the hosts requiring the use of a uucp mailer.
Specifically, $=U should contain all hosts requiring the uucp-old mailer. $=Y should contain all hosts
requiring the uucp-new mailer. Finally, $=Z should contain all hosts requiring the uucp-uudom mailer. Each
uucp host should belong to one of these classes.

Sendmail can be compiled to allow a scanf(3) string on the F line. This lets you do simplistic parsing of
text files. For example, to read all the user names in your system /etc/passwd file into a class, use:
FL/etc/passwd %[^:]

which reads every line up to the first colon.

Changing the Host Name: Cw contains all the possible names for the local host. It defines aliases. Cw
specifies the name and all aliases for your host system. If your system uses different names for two
different network connections, enter both names as part of the host name class. If you do not define both
names, mail sent to the undefined name is returned to the sender.
CwCw alias aliasn...

Chapter 1. System Files 195

By default, the sendmail command reads what has been set with the hostname command and uses it to
initialize the host and domain name macros and classes. Change the configuration file macros only if you
want the sendmail host and domain names to be different from those set by the hostname command.

To change the host name:

1. Enter the command:

vi /etc/mail/sendmail.cf

2. Find the lines beginning with Dj and Dw. Dj and Dw override the host and domain names set with
″hostname″.

3. Replace Dj and Dw with the new hostname information. For example, if your hostname is
brown.newyork.abc.com, and you have one alias, brown2, enter:

4. Save the file and exit the editor.

Creating a Class Using a File: To define a class whose members are listed in an external file (one
member per line), use a control line that begins with the letter F. The syntax for the F class definition is:
FClass FileName [Format]

Class is the name of the class that matches any of the words listed in FileName. Filename is the full path
name of file (for convenience, you may wish to put the file in the /etc/mail directory). Format is an optional
scanf subroutine format specifier that indicates the format of the elements of the class in FileName. The
Format specifier can contain only one conversion specification.

M — Define Mailer: Programs and interfaces to mailers are defined in this line. The format is:
Mname, {field=value}*

where name is the name of the mailer (used internally only) and the ″field=name″ pairs define attributes of
the mailer. Fields are:

Field Description
Path The path name of the mailer
Flags Special flags for this mailer
Sender Rewrite set(s) for sender addresses
Recipient Rewrite set(s) for recipient addresses
Argv An argument vector to pass to this mailer
Eol The end-of-line string for this mail
Maxsize The maximum message length to this mailer
maxmessages The maximum message delivers per connection
Linelimit The maximum line length in the message body
Directory The working directory for the mailer
Userid The default user and group ID to run
Nice The nice(2) increment for the mailer
Charset The default character set for 8-bit characters
Type The MTS type information (used for error messages)
Wait The maximum time to wait for the mailer
/ The root directory for the mailer

Only the first character of the field name is checked.

The flags in the following list may be set in the mailer description. Any other flags may be used freely to
conditionally assign headers to messages destined for particular mailers. Flags marked with - are not
interpreted by the sendmail binary; these are conventionally used to correlate to the flags portion of the H
line. Flags marked with = apply to the mailers for the sender address rather than the usual recipient
mailers.

196 Files Reference

Flag Description
a Run Extended SMTP (ESMTP) protocol (defined in RFCs 1651, 1652, and 1653). This flag defaults on if

the SMTP greeting message includes the word ″ESMTP″.
A Look up the user part of the address in the alias database. Normally this is only set for local mailers.
b Force a blank line on the end of a message. This is intended to work around some versions of /bin/mail

that require a blank line, but do not provide it themselves. It would not normally be used on network
mail.

c Do not include comments in addresses. This should only be used if you have to work around a remote
mailer that gets confused by comments. This strips addresses of the form ″Phrase <address>″ or
″address (Comment)″ down to just ″address″.

C= If mail is received from a mailer with this flag set, any addresses in the header that do not have an at
sign (″@″) after being rewritten by ruleset three will have the ″@domain″ clause from the sender
envelope address tacked on. This allows mail with headers of the form:

From: usera@hosta
To: userb@hostb, userc

to be rewritten automatically (although not reliably) as:

From: usera@hosta
To: userb@hostb, userc@hosta

d Do not include angle brackets around route-address syntax addresses. This is useful on mailers that are
going to pass addresses to a shell that might interpret angle brackets as I/O redirection.

D- This mailer wants a ″Date:″ header line.
e This mailer is expensive to connect to, so try to avoid connecting normally. Any necessary connection

will occur during a queue run.
E Escape lines beginning with ″From″ in the message with a `>’ sign.
f The mailer wants a -f from flag, but only if this is a network forward operation (that is, the mailer will

give an error if the executing user does not have special permissions).
F- This mailer wants a ″From:″ header line.
g Normally, sendmail sends internally generated error messages using the null return address as

required by RFC 1123. However, some mailers do not accept a null return address. If necessary, you
can set the g flag to prevent sendmail from obeying the standards; error messages will be sent as from
the MAILER-DAEMON (actually, the value of the $n macro).

h Uppercase should be preserved in host names for this mailer.
i Do User Database rewriting on envelope sender address.
I This mailer will be speaking SMTP to another sendmail, as such it can use special protocol features.

This option is not required (that is, if this option is omitted the transmission will still operate successfully,
although perhaps not as efficiently as possible).

j Do User Database rewriting on recipients as well as senders.
k Normally when sendmail connects to a host via SMTP, it checks to make sure that this is not

accidentally the same host name as might happen if sendmail is misconfigured or if a long-haul
network interface is set in loopback mode. This flag disables the loopback check. It should only be used
under very unusual circumstances.

K Currently unimplemented. Reserved for chunking.
l This mailer is local (that is, final delivery will be performed).
L Limit the line lengths as specified in RFC821. This deprecated option should be replaced by the L= mail

declaration. For historic reasons, the L flag also sets the 7 flag.
m This mailer can send to multiple users on the same host in one transaction. When a $u macro occurs in

the argv part of the mailer definition, that field will be repeated as necessary for all qualifying users.
M- This mailer wants a ″Message-Id:″ header line.
n Do not insert a UNIX-style ″From″ line on the front of the message.
o Always run as the owner of the recipient mailbox. Normally sendmail runs as the sender for locally

generated mail or as ″daemon″ (actually, the user specified in the u option) when delivering network
mail. The normal behavior is required by most local mailers, which will not allow the envelope sender
address to be set unless the mailer is running as daemon. This flag is ignored if the S flag is set.

p Use the route-addr style reverse-path in the SMTP ″MAIL FROM:″ command rather than just the return
address; although this is required in RFC821 section 3.1, many hosts do not process reverse-paths
properly. Reverse-paths are officially discouraged by RFC 1123.

P- This mailer wants a ″Return-Path:″ line.

Chapter 1. System Files 197

Flag Description
q When an address that resolves to this mailer is verified (SMTP VRFY command), generate 250

responses instead of 252 responses. This will imply that the address is local.
r Same as f, but sends an -r flag.
R Open SMTP connections from a ″secure″ port. Secure ports are not secure except on UNIX machines,

so it is unclear that this adds anything.
s Strip quote characters (″ and \) off the address before calling the mailer.
S Do not reset the userid before calling the mailer. This would be used in a secure environment where

sendmail ran as root. This could be used to avoid forged addresses. If the U= field is also specified,
this flag causes the userid to always be set to that user and group (instead of leaving it as root).

u Uppercase should be preserved in user names for this mailer.
U This mailer wants UUCP-style ″From″ lines with the ″remote from <host>″ on the end.
w The user must have a valid account on this machine (getpwnam must succeed). If not, the mail is

bounced. This is required to get ″.forward″ capability.
x- This mailer wants a ″Full-Name:″ header line.
X This mailer wants to use the hidden dot algorithm as specified in RFC821; basically, any line beginning

with a dot will have an extra dot prepended (to be stripped at the other end). This ensures that lines in
the message containing a dot will not terminate the message prematurely.

z Run Local Mail Transfer Protocol (LMTP) between sendmail and the local mailer. This is a variant on
SMTP defined in RFC 2033 that is specially designed for delivery to a local mailbox.

0 Do not look up Mx records for hosts via SMTP.
3 Extend the list of characters converted to =XX notation when converting to Quoted-Printable to include

those that do not map cleanly between ASCII and EBCDIC. Useful if you have IBM mainframes on site.
5 If no aliases are found for this address, pass the address through ruleset 5 for possible alternate

resolution. This is intended to forward the mail to an alternate delivery spot.
6 Strip headers to seven bits.
7 Strip all output to seven bits. This is the default if the L flag is set. Note that clearing this option is not

sufficient to get full eight-bit data passed through sendmail. If the 7 option is set, this is essentially
always set, because the eighth bit was stripped on input. Note that this option will only impact
messages that did not have 8->7 bit MIME conversions performed.

8 If set, it is acceptable to send eight bit data to this mailer; the usual attempt to do 8->7 bit MIME
conversions will be bypassed.

9 If set, do limited 7->8 bit MIME conversions. These conversions are limited to text/plain data.
: Check addresses to see if they begin ″:include:″. If they do, convert them to the ″*include*″ mailer.
| Check addresses to see if they begin with a `|’. If they do, convert them to the ″prog″ mailer.
/ Check addresses to see if they begin with a `/’. If they do, convert them to the ″*file*″ mailer.
@ Look up addresses in the user database.
% Do not attempt delivery on initial recipient of a message or on queue runs unless the queued message

is selected using one of the -qI/-qR/-qS queue run modifiers or an ETRN request.

Note: Configuration files prior to level 6 assume the `A’, `w’, `5’, `:’, `|’, `/’, and `@’ options on the mailer
named ″local″.

The mailer with the special name ″error″ can be used to generate a user error. The (optional) host field is
an exit status to be returned, and the user field is a message to be printed. The exit status may be
numeric or one of the values USAGE, NOUSER, NOHOST, UNAVAILABLE, SOFTWARE, TEMPFAIL,
PROTOCOL, or CONFIG to return the corresponding EX_ exit code. For example, the entry:
$#error $@ NOHOST $: Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated and the ″Host unknown″ exit status to
be returned if the LHS matches. It is always available for use in O, S, and check_ ... rulesets and it cannot
be defined with M commands.

198 Files Reference

The mailer named ″local″ must be defined in every configuration file. This is used to deliver local mail, and
is treated specially in several ways. Additionally, three other mailers named ″prog″, ″*file*″, and ″*include*″
may be defined to tune the delivery of messages to programs, files, and :include: lists respectively. They
default to:
Mprog, P=/bin/sh, F=lsoDq9, T=DNS/RFC822/X-Unix, A=sh -c $u
M*file*, P=[FILE], F=lsDFMPEuq9, T=DNS/RFC822/X-Unix, A=FILE $u
M*include*, P=/dev/null, F=su, A=INCLUDE $u

The Sender and Recipient rewrite sets may either be a simple ruleset ID or may be two IDs separated by
a slash If so, the first rewrite set is applied to envelope addresses, and the second is applied to headers.
Setting any value to zero disables the corresponding mailer-specific rewriting.

The Directory field is a path of directories to try. For example, the definition D=$z:/ tries to execute the
recipient’s home directory, but if that is not available, it tries to execute in the root of the filesystem. Use
this on the prog mailer only, because some shells (e.g., csh) do not execute if they cannot read the home
directory. Because the queue directory usually cannot be read by unauthorized users, csh scripts can fail
if they are used as recipients.

The Userid field specifies the default user and group ID to run. It overrides the DefaultUser option q.v. If
the S mailer flag is also specified, the user and group ID will run in all circumstances. Use the form
user:group to set both the user and group ID. Either of these variables may be an integer or a symbolic
name that is looked up in the passwd and group files respectively.

The Charset field is used when converting a message to MIME. It is the character set used in the
Content-Type: header. If it is not set, the DefaultCharset option is used. If the DefaultCharset is not set,
the value unknown-8bit is used. The Charset field applies to the sender’s mailer; not the recipient’s mailer.
For example: if the envelope sender address is on the local network and the recipient is on an external
network, the character set is set from the Charset= field for the local network mailer, not the external
network mailer.

The Type field sets the type of information used in MIME error messages (as defined by RFC 1984). It
contains three values that are separated by slashes: the MTA type (a description of how hosts are named),
address type (a description of e-mail addresses), and diagnostic type (a description of error diagnostic
codes). Each must be a registered value or begin with X-. The default is dns/rfc822/smtp.

Mailer Specifications Examples:

1. To specify a local delivery mailer enter:
Mlocal, P=/usr/bin/bellmail, F=lsDFMmn, S=10, R=20, A=mail $u

The mailer is called local. Its path name is /usr/bin/bellmail. The mailer uses the following flags:

l Specifies local delivery.
s Strips quotation marks from addresses.
DFM Requires Date:, From:, and Message-ID: fields.
m Delivers to multiple users.
n Does not need an operating system From line at the start of the message.

Rule set 10 should be applied to sender addresses in the message. Rule set 20 should be applied to
recipient addresses. Additional information sent to the mailer in the A field is the word mail and words
containing the recipient’s name.

H — Define Header: The format of the header lines that sendmail inserts into the message are defined
by the H line. The syntax of this line is one of the following:

Chapter 1. System Files 199

Hhname:htemplate

H[?mflags?]hname: htemplate

H[?${macro}?hname:htemplate

Continuation lines in this spec are reflected directly into the outgoing message. The htemplate is macro
expanded before insertion into the message. If the mflags (surrounded by question marks) are specified, at
least one of the specified flags must be stated in the mailer definition for this header to be automatically
output. If one of these headers is in the input, it is reflected to the output regardless of these flags.

Some headers have special semantics that will be described later.

A secondary syntax allows validation of headers as they being read. To enable validation, use:
HHeader: $>Ruleset
HHeader: $>+Ruleset

The indicated Ruleset is called for the specified Header. Like other check_* rulesets, it can return $#error
to reject the message or $#discard to discard the message. The header is treated as a structured field, so
comments (in parentheses) are deleted before processing, unless the second form $>+ is used.

For example, the following configuration lines:
HMessage-Id: $>CheckMessageId

SCheckMessageId
R<$+@$+> $@OK
R$* $#error $: Illegal Message-Id header

would refuse any message header that had a Message-Id: header of any of the following forms:
Message-Id: <>
Message-Id: some text
Message-Id: <legal test@domain> extra text

Message Headings in the sendmail.cf File: Lines in the configuration file that begin with a capital letter
H, define the format of the headers used in messages. The format of the H command is:

Lines in the configuration file that begin with a capital letter H, define the format of the headers used in
messages. The format of the H control line is:
H[?MailerFlags?]FieldName: Content

The variable parameters are defined as:

Parameter Definition
MailerFlags Determines whether the H line is used. This parameter is optional. If you supply this parameter,

surround it with ? (question marks). If the mailer requires the field defined by this control line
(as indicated in the mailer definition’s flags field), then the H control line is included when
formatting the heading. Otherwise, the H control line is ignored.

FieldName Contains the text displayed as the name of the field in the heading information. Typical field
names include From:, To:, and Subject:.

Content Defines the information that is displayed following the field name. Usually macros specify this
information.

200 Files Reference

These example lines are from a typical /etc/mail/sendmail.cf file:

Example Meaning

H?P?Return-Path: <$g> Defines a field called Return-Path that displays the content
of the $g macro (sender address relative to the recipient).
The ?P? portion indicates this line is only used if the mailer
uses the P flag (the mailer requires a Return-Path line). The
header is generated only if the mailer has the indicated flag.
If the header appears in the input message, it is passed
through unchanged.

HReceived: $?sfrom $s
$.by $j ($v/$Z)
id $i; $b

Defines a field called Received. This field includes:

$?sfrom $s $.
Displays the text from followed by the content of
the $s macro if an s macro is defined (sender’s
host name).

by $j Displays the text by followed by the content of the
$j macro (official name for a specific location).

($v/$Z) Displays the version of the sendmail command
($v) and the version of the /etc/mail/sendmail.cf
file ($Z), set off by parentheses and separated by a
slash.

id $i; Displays the text id followed by the content of the
$i macro (mail-queue ID of the message) and a ;
(semicolon).

$b Displays the current date.

O — Set Option: There are several global options that can be set from a configuration file. The syntax of
this line is:
O option=value

This sets option equal to value. The options supported are listed in the following table.

Option Description

AliasFile=spec, spec, ... Specify possible alias file(s). Each spec should be in the format class:: file where
class:: is optional and defaults to implicit if not included. Depending on how sendmail
is compiled, valid classes are:

implicit
search through a compiled-in list of alias file types, for back compatibility

hash if NEWDB is specified

dbm if NDBM is specified

stab Internal symbol table. Not normally used unless there is no other database
lookup

nis if NIS is specified

If a list of specs are provided, sendmail searches them in order.

AliasWait=time-out Waits up to time-out (units default to minutes) for an @:@ entry to exist in the alias
database before starting up. If it does not appear in the time-out interval and the
AutoRebuildAliases option is also set, rebuild the database. Otherwise, issue a
warning.

AllowBogusHELO Allows HELO SMTP commands that do not include a host name. Setting this violates
RFC 1123 section 5.2.5, but is necessary to interoperate with several SMTP clients. If
there is a value, it is still checked for legitimacy.

Chapter 1. System Files 201

Option Description

BlankSub=c Sets the blank substitution character to c. Unquoted spaces in addresses are replaced
by this character. If not defined, it defaults to a space and no replacement is made.

CACERTPath Path to directory with certificates of CAs.

CACERTFile File containing one CA certificate.

CheckAliases Validate the RHS of aliases when rebuilding the alias database.

CheckpointInterval=N Defines the queue checkpoint interval to every N addresses sent. If not specified, the
default is 10. If your system crashes during delivery to a large list, this prevents
retransmission to any but the last recipients.

ClassFactor=fact The indicated factor is multiplied by the message class and subtracted from the
priority. The message class is determined by the Precedence: field in the user header
and the P lines in the configuration file. Messages with a higher Priority: will be
favored. If not specified, the defaults is 1800.

ClientCertFile The file containing the certificate of the client. This certificate is used when sendmail
acts as client.

ClientPortOptions=options Sets client SMTP options. The options are key=value pairs separated by commas.
Known keys are:

Port Name/number of source port for connection. Default is any free port.

Addr Address mask. Default is INADDR_ANY. Can be a numeric address in dot
notation or a network name.

Family Address family. Default is INET.

SndBufSize
Size of TCP send buffer.

RcvBufSize
Size of TCP receive buffer.

Modifier
Flags for the daemon. Can be the following character:

h Use name of interface for HELO command

If h is set, the name corresponding to the outgoing interface address
(whether chosen via the Connection parameter or the default) is used for the
HELO/EHLO command.

ClientKeyFile The file containing the private key belonging to the client certificate.

ColonOkInAddr If set, colons are acceptable in e-mail addresses, for example:

host:user

If not set, colons indicate the beginning of a RFC 822 group construct, illustrated
below:

groupname: member1, member2, ... memberN;

Doubled colons are always acceptable, such as in

nodename::user

and proper routeaddr nesting is understood, for example:

<@relay:user@host>

This option defaults to on if the configuration version level is less than 6, for backward
compatibility. However, it must be set to off for full compatibility with RFC 822.

202 Files Reference

Option Description

ConnectionCacheSize=N N is the maximum number of open connections that will be cached at a time. If not
specified, the default is 1. This delays closing the current connection until either this
invocation of sendmail connects to another host or it terminates. Setting it to 0 causes
connections to closed immediately. Because this consumes file descriptors, the
connection cache should be kept small: 4 is a practical maximum.

ConnectionCacheTimeout
=time-out

Timeout is the maximum amount of time a cached connection will be permitted to be
idle. If this time is exceeded, the connection is immediately closed. This value should
be small: 10 minutes is a practical maximum; the default is 5 minutes. Before
sendmail uses a cached connection, it always sends a RSET command to check the
connection. If this fails, it reopens the connection. This keeps your end from failing if
the other end times out.

ConnectOnlyTo=address Can be used to override the connection address for testing purposes.

ConnectionRateThrottle=N If set, allows no more than N incoming daemon connections in a one second period.
This is intended to flatten peaks and allow the load-average checking to cut in. If not
specified, the default is 0 (no limits).

ControlSocketName=name Defines the name of the control socket for daemon management. A running sendmail
daemon can be controlled through this named socket. Available commands are: help,
restart, shutdown, and status. The status command returns the current number of
daemon children, the maximum number of daemon children, free disk space blocks of
the queue directory, and the load average of the machine expressed as an integer. If
not set, no control socket will be available.

Chapter 1. System Files 203

Option Description

DaemonPortOptions=options Set server SMTP options. Each instance of DaemonPortOptions leads to an
additional incoming socket. The options are key=value pairs. Known keys are:

Name User-definable name for the daemon. Default is Daemon#. Is used for error
messages and logging.

Port Name/number of listening port. Default is smtp.

Addr Address mask. Default is INADDR_ANY. This may be a numeric address in dot
notation or a network name.

Family Address family. Default is INET (IPv4). IPv6 systems that need to accept IPv6
connections, should add additional Family=inet6 DaemonPort Options lines.

Listen Size of listen queue. Default is 10.

Modifier
Flags for the daemon. Can be a sequence, without delimiters, of the following
characters:

a Always require authentication.

b Bind to interface through which mail has been received for the
outgoing connection.
Note: Use the b flag only if outgoing mail can be routed through the
incoming connection’s interface to its destination. No attempt is
made to catch problems that result from incorrectly configuring this
parameter. It should only be used for virtual hosting where each
virtual interface can connect to every possible location. The b flag
can override the settings through ClientPort Options. In addition,
sendmail will listen on a new socket for each occurrence of the
DaemonPortOptions subcommand in a configuration file.

c Perform hostname canonicalization (.cf). Can change the default for
hostname canonicalization in the sendmail.cf file. See the
documentation for FEATURE(nocanonify) in
the/user/samples/tcpip/sendmail/README file.

f Require fully qualified hostname (.cf). Cannot use addresses in the
form user@host unless they are directly submitted.

u Allow unqualified addresses (.cf) (including sender addresses).

C Do not perform hostname canonicalization. Can change the default
for hostname canonicalization in the sendmail.cf file. See the
documentation for FEATURE(nocanonify) in
the/user/samples/tcpip/sendmail/README file.

E Do not allow ETRN (see RFC 2476).

One way to specify a message submission agent (MSA) that always require
authentication is:

O DeamonPortOptions=Name=MSA,Port=587,M=Ea

Modifiers marked with (.cf) are effective only when used in the standard
configuration file (available through ${daemon_flags}) and cannot be used
from the command line.

SndBufSize
Size of TCP send buffer.

RcvBufSize
Size of TCP receive buffer

204 Files Reference

Option Description

DefaultAuthInfo Filename that contains default authentication information for outgoing connections.
This file must contain the user ID, authorization ID, password (plain text), and the
realm to use on separate lines and must be readable only by root (or the trusted
user). If no realm is specified, $j is used.

DefaultCharSet=charset When a message that has 8-bit characters, but is not in MIME format, is converted to
MIME (see the EightBitMode option) a character set must be included in the
Content-Type: header. This character set is normally set from the Charset= field of
the mailer descriptor. If that is not set, the value of this option is used. If this option is
not set, the value unknown-8bit is used.

DataFileBufferSize=threshold Sets threshold in bytes before a memory-based queue data file becomes disk-based.
The default is 4096 bytes.

DeadLetterDrop=file Defines the location of the systemwide dead.letter file, formerly hardcoded to
/usr/tmp/dead.letter. If this option is not set, sendmail will not attempt to save to a
systemwide dead.letter file in the event it cannot bounce the mail to the user or
postmaster. Instead, it will rename the qf file.

DefaultUser=user:group Set the default user ID for mailers to user:group. If group is omitted and user is a user
name (as opposed to a numeric user ID) the default group listed in the /etc/passwd
file for that user is used as the default group. Both user and group may be numeric.
Mailers without the S flag in the mailer definition will run as this user. When not
specified, the default is 1:1. The value can also be given as a symbolic user name.

DeliveryMode=x Deliver in mode x. Legal modes are:

i Deliver interactively (synchronously).

b Deliver in background (asynchronously).

q Just queue the message (deliver during queue run).

d Defer delivery and all map lookups (deliver during queue run).

Defaults to b if no option is specified, i if it is specified but given no argument (for
example, Od is equivalent to Odi). The -v command line flag sets this to i.

DialDelay=sleeptime Dial-on-demand network connections can see time-outs if a connection is opened
before the call is set up. If this is set to an interval and a connection times out on the
first connection being attempted, sendmail will sleep for this amount of time and try
again. This should give your system time to establish the connection to your service
provider. Units default to seconds, so DialDelay=5 would use a five second delay. If
not specified, the default is 0 (no retry).

Chapter 1. System Files 205

Option Description

DontBlameSendmail
=option,option,...

In order to avoid possible cracking attempts caused by world- and group-writable files
and directories, sendmail does paranoid checking when opening most of its support
files. However, if a system must run with a group-writable /etc directory, then this
checking must be turned off. Note that turning off this checking will make your system
more vulnerable to attack. The arguments are individual options that turn off checking:

Safe No special handling.

AssumeSafeChown
Assume that the chown call is restricted to root. Because some systems are
set up to permit regular users to give away their files to other users on some
file systems, sendmail often cannot assume that a given file was created by
the owner, particularly when it is in a writable directory. You can set this flag if
you know that file giveaway is restricted on your system.

ClassFileInUnsafeDirPath
When reading class files (using the F line in the configuration file), allow files
that are in unsafe directories.

DontWarnForwardFileInUnsafeDirPath
Prevent logging of unsafe directory path warnings for nonexistent forward
files.

ErrorHeaderInUnsafeDirPath
Allow the file named in the ErrorHeader option to be in an unsafe directory.

FileDeliveryToHardLink
Allow delivery to files that are hard links.

FileDeliveryToSymLink
Allow delivery to files that are symbolic links.

ForwardFileInUnsafeDirPath
Allow .forward files in unsafe directories.

ForwardFileInUnsafeDirPathSafe
Allow .forward files that are in an unsafe directory to include references to
program and files.

ForwardFileIngroupWritableDirPath
Allow .forward files in group writable directories.

GroupWritableAliasFile
Allow group-writable alias files.

GroupWritableDirPathSafe
Change the definition of unsafe directory to consider group-writable
directories to be safe. World-writable directories are always unsafe.

GroupWritableForwardFileSafe
Accept group-writable .forward files.

GroupWritableIncludeFileSafe
Accept group-writable :include: files.

HelpFileinUnsafeDirPath
Allow the file named in the HelpFile option to be in an unsafe directory.

IncludeFileInUnsafeDirPath
Allow :include: files in unsafe directories.

206 Files Reference

Option Description

IncludeFileInUnsafeDirPathSafe
Allow .forward files that are in an unsafe directory to include references to
program and files.

IncludeFileIngroupWritableDirPath
Allow :include: files in group writable directories.

InsufficientEntropy
Try to use STARTTLS even if the PRGN for OpenSSL is not properly seeded
despite the security problems.

LinkedAliasFileInWritableDir
Allow alias files that are links in a writable directory.

LinkedClassFileInWritableDir
Allow class files that are links in writable directories.

LinkedForwardFileInWritableDir
Allow .forward files that are links in writable directories.

LinkedIncludeFileInWritableDir
Allow :include: files that are links in writable directories.

LinkedMapInWritableDir
Allow map files that are links in writable directories.

LinkedServiceSwitchFileInWritableDir
Allow the service switch file to be a link even if the directory is writable.

MapInUnsafeDirPath
Allow maps (such as hash, btree, and dbm files) in unsafe directories.

NonRootSafeAddr
Do not mark file and program deliveries as unsafe if sendmail is not running.

RunProgramInUnsafeDirPath
Run programs that are in writable directories.

RunWritableProgram
Run programs that are group- or world-writable.

TrustStickyBit
Allow group- or world-writable directories if the sticky bit is set on the
directory. Do not set this on systems which do not honor the sticky bit on
directories.

WorldWritableAliasFile
Accept world-writable alias files.

WriteMapToHardLink
Allow writes to maps that are hard links.

WriteMapToSymLink
Allow writes to maps that are symbolic links.

WriteStatsToHardLink
Allow the status file to be a hard link.

WriteStatsToSymLink
Allow the status file to be a symbolic link.

Safe is the default. The details of these flags are described above. Use of this option
is not recommended.

Chapter 1. System Files 207

Option Description

DontExpandCnames The standards say that all host addresses used in a mail message must be fully
canonical. For example, if your host is named Cruft.Foo.ORG and also has an alias
of FTP.Foo.ORG, the name Cruft.Foo.ORG must be used at all times. This is
enforced during host name canonicalization ($[... $] lookups). If this option is set, the
protocols will be ignored and the wrong name will be used. However, the IETF is
moving toward changing this standard, so the behavior may become acceptable.
Please note that hosts downstream may still rewrite the address to be the true
canonical name.

DontInitGroups If set, sendmail will avoid using the initgroups(3) call. If you are running NIS, this
causes a sequential scan of the groups.byname map, which can cause your NIS
server to be badly overloaded in a large domain. The cost of this is that the only group
found for users will be their primary group (the one in the password file), which will
make file access permissions somewhat more restrictive. Has no effect on systems
that do not have group lists.

DontProbeInterfaces Sendmail normally finds the names of all interfaces active on your machine when it
starts up and adds their name to the $=w class of known host aliases. If you have a
large number of virtual interfaces or if your DNS inverse lookups are slow this can be
time consuming. This option turns off that probing. However, you will need to be
certain to include all variant names in the $=w class by some other mechanism.

DontPruneRoutes Sendmail tries to eliminate any unnecessary explicit routes when sending an error
message (as discussed in RFC 1123 S 5.2.6). For example, when sending an error
message to <@known1,@known2,@known3:user@unknown>, sendmail will strip off the
@known1,@known2 in order to make the route as direct as possible. However, if the RR
option is set, this will be disabled, and the mail will be sent to the first address in the
route, even if later addresses are known. This may be useful if you are caught behind
a firewall.

DoubleBounceAddress
=error-address

If an error occurs when sending an error message, send the error report to the
indicated address. This is termed a double bounce because it is an error bounce that
occurs when trying to send another error bounce. The address is macro expanded at
the time of delivery. If not set, it defaults to postmaster.

EightBitMode=action Set handling of eight-bit data. There are two kinds of eight-bit data:

v Data declared as eight-bit using the BODY=8BITMIME ESMTP declaration or the
-B8BITMIME command line flag

v Undeclared 8-bit data, which is input that just happens to be eight bits.

There are three basic operations that can happen:

v Undeclared 8-bit data can be automatically converted to 8BITMIME.

v Undeclared 8-bit data can be passed as-is, without conversion to MIME.

v Declared 8-bit data can be converted to 7-bits for transmission to a non-8BITMIME
mailer.

Possible actions are:

s Reject undeclared 8-bit data (strict).

m Convert undeclared 8-bit data to MIME (mime).

p Pass undeclared 8-bit data (pass).

In all cases properly declared 8BITMIME data will be converted to 7BIT as needed.

ErrorHeader=file-or-message Prepend error messages with the indicated message. If it begins with a slash (/), it is
assumed to be the pathname of a file containing a message, which is the
recommended setting. Otherwise, it is a literal message. The error file might contain
the name, e-mail address, and/or phone number of a local postmaster who could
provide assistance to end users. If the option is missing or null, or if it names a file
which does not exist or are not readable, no message is printed.

208 Files Reference

Option Description

ErrorMode=x Dispose of errors using mode x. The values for x are:

p Print error messages (default).

q No messages, just give exit status.

m Mail back errors.

w Write back errors (mail if user not logged in).

e Mail back errors and give zero exit status always.

.llbackMXhost=fallbackhost If specified, the fallbackhost acts like a very low priority MX on every host. This is
intended to be used by sites with poor network connectivity. Messages which are
undeliverable due to temporary address failures, such as in a DNS failure, also go to
the FallBackMX host.

ForkEachJob If set, deliver each job that is run from the queue in a separate process. Use this
option if you are short of memory, because the default tends to consume considerable
amounts of memory while the queue is being processed.

ForwardPath=path Sets the path for searching for users’ .forward files. The default is $z/.forward. Some
sites that use the automounter may prefer to change this to /var/forward/$u to
search a file with the same name as the user in a system directory. It can also be set
to a sequence of paths separated by colons. Sendmail stops at the first file it can
successfully and safely open. For example,

/var/forward/$u:$z/.forward

will search first in /var/forward/username and then in ~username/.forward, but only
if the first file does not exist.

HelpFile=file Specifies the help file for SMTP. If no file name is specified, helpfile is used.

HoldExpensive If an outgoing mailer is marked as being expensive, do not connect immediately. This
requires that queueing be compiled in, because it will depend on a queue run process
to actually send the mail.

HostsFile=path Specifies the path to the hosts database, normally /etc/hosts. This option is only
consulted when sendmail is canonicalizing addresses, and then only when files is in
the hosts service switch entry. In particular, this file is never used when looking up
host addresses; that is under the control of the system gethostbyname(3) routine.

HostStatusDirectory=path Sets the location of the long term host status information. When set, information about
the status of hosts (such as if the host down or not accepting connections) will be
shared between all sendmail processes. Normally, this information is only held within
a single queue run. This option requires a connection cache of at least 1 to function. If
the option begins with a leading /, it is an absolute pathname; otherwise, it is relative
to the mail queue directory. A suggested value for sites desiring persistent host status
is .hoststat, which is a subdirectory of the queue directory.

IgnoreDots Ignore dots in incoming messages. This is always disabled when reading SMTP mail,
and as a result, dots are always accepted.

LDAPDefaultSpec=spec Sets a default map specification for LDAP maps. The value should only contain LDAP
specific settings such as -h host -p port -d bindDN. The settings will be used for all
LDAP maps unless the individual map specification overrides a setting. This option
should be set before any LDAP maps are defined.

LogLevel=n Set the log level to n. Defaults to 9.

Mxvalue Set the macro x to value. This is intended only for use from the command line. The -M
flag is preferred.

Chapter 1. System Files 209

Option Description

MatchGECOS Allow fuzzy matching on the GECOS field. If this flag is set, and the usual user name
lookups fail (that is, there is no alias with this name and a getpwnam fails),
sequentially search the password file for a matching entry in the GECOS field. This
also requires that MATCHGECOS be turned on during compilation. This option is not
recommended.

MaxAliasRecursion=N N is the maximum depth of alias recursion. Default is 10.

MaxDaemonChildren=N If set, sendmail will refuse connections when it has more than N children processing
incoming mail or automatic queue runs. This does not limit the number of outgoing
connections. If not set, there is no limit to the number of children; the system load
averaging will controls this.

MaxHeadersLength=N N is the maximum length of the sum of all headers. This can be used to prevent a
denial of service attack. The default is no limit.

MaxHopCount=N The maximum hop count. Messages that have been processed more than N times are
assumed to be in a loop and are rejected. Default is 25.

MaxMessageSize=N Specify the maximum message size to be advertised in the ESMTP EHLO response.
Messages larger than N will be rejected.

MaxMimeHeaderLength
=N[/M]

Sets the maximum length of certain MIME header field values to N characters. If M is
specified, certain headers that take parameters will use M instead of N. If M is not
specified, these headers will use one half of N. By default, these values are 0, which
indicates no checks are done.

MaxQueueRunSize=N N is the maximum number of jobs that will be processed in a single queue run. If not
set, there is no limit on the size. If you have very large queues or a very short queue
run interval this could be unstable. However, because the first N jobs in queue
directory order are run (rather than the N highest priority jobs) this should be set as
high as possible to avoid losing jobs that happen to fall late in the queue directory.

MaxRecipientsPerMessage
=N

The maximum number of recipients that will be accepted per message in an SMTP
transaction. If not set, there is no limit on the number of recipients per envelope.
Note: Setting this too low can interfere with sending mail from MUAs that use SMTP
for initial submission.

MeToo Send to me too, even if I am in an alias expansion. This option is deprecated and will
be removed from a future version.

MinFreeBlocks=N Sets at least N blocks free on the file system that holds the queue files before
accepting e-mail via SMTP. If there is insufficient space, sendmail gives a 452
response to the MAIL command and invites the sender to try again later.

MinQueueAge=age Do not process any queued jobs that have been in the queue less than the indicated
time interval. This promotes system responsiveness by processing the queue
frequently without taxing the system by trying jobs too often. The default units are
minutes.

MustQuoteChars=s Sets the list of characters that must be quoted if used in a full name that is in the
phrase part of a phrase <address> syntax. The default is ’.. The characters @,;:\()[]
are always added to this list.

210 Files Reference

Option Description

NoRecipientAction The action to take when you receive a message that has no valid recipient headers,
such as To:, Cc:, or Bcc:. It can be:

None Passes the message on unmodified, which violates the protocol.

Add-To
Adds a To: header with any recipients it can find in the envelope (which
might expose Bcc: recipients).

Add-To-Undisclosed
Adds a header To: undisclosed-recipients:; to make the header legal
without disclosing anything.

Add-Bcc
Adds an empty Bcc: header.

OldStyleHeaders Assume that the headers may be in old format with spaces delimit names. This
actually turns on an adaptive algorithm: if any recipient address contains a comma,
parenthesis, or angle bracket, it will be assumed that commas already exist. If this flag
is not on, only commas delimit names. Headers are always output with commas
between the names. Defaults to off.

OperatorChars=charlist The list of characters that are considered to be operators, that is, characters that
delimit tokens. All operator characters are tokens by themselves; sequences of
non-operator characters are also tokens. White space characters separate tokens but
are not tokens themselves. For example, AAA.BBB has three tokens, but AAA BBB has
two. If not set, OperatorChars defaults to .:@[]". In addition, the characters "()<>,;"
are always operators. Note that OperatorChars must be set in the configuration file
before any rulesets.

PidFile=filename Sets the filename of the pid file. Default is PATHSENDMAILPID. The filename is
macro-expanded before it is opened.

PostmasterCopy=postmaster If set, copies of error messages will be sent to the named postmaster. Only the
header of the failed message is sent. Errors resulting from messages with a negative
precedence will not be sent. Because most errors are user problems, this is not a
good idea on large sites, and may contain privacy violations. The address is macro
expanded at the time of delivery. Defaults to no postmaster copies.

Chapter 1. System Files 211

Option Description

PrivacyOptions=opt,opt,... Sets privacy options. These are a way of insisting on stricter adherence to the SMTP
protocol. The options can be one of the following:

public Allow open access.

needmailhelo
Insist on HELO or EHLO command before MAIL.

needexpnhelo
Insist on HELO or EHLO command before EXPN.

noexpn
Do not allow EXPN, implies noverb.

needvrfyhelo
Insist on HELO or EHLO command before VRFY.

novrfy Do not allow VRFY.

noetrn Do not allow ETRN.

noverb Do not allow VERB.

restrictmailq
Restrict mailq command. If mailq is restricted, only people in the same group
as the queue directory can print the queue.

restrictqrun
Restrict -q command line flag. If queue runs are restricted, only root and the
owner of the queue directory can run the queue.

noreceipts
Do not return success DSNs.

nobodyreturn
Do not return the body of a message with DSNs.

goaway
Do not allow SMTP status queries. Sets all flags except noreceipts,
restrictmailq, restrictqrun, noetrn, and nobodyreturn.

authwarnings
Put X-Authentication-Warning: headers in messages. Authentication
Warnings add warnings about various conditions that may indicate attempts
to spoof the mail system, such as using an nonstandard queue directory.

ProcessTitlePrefix=string Prefix the process title shown on ps listings with string. The string will be macro
processed.

QueueDirectory=dir Use the named dir as the queue directory. To use multiple queues, supply a value
ending with an asterisk. For example, entering /var/spool/mqueue/q* will use all of
the directories or symbolic links to directories beginning with q in /var/spool/mqueue
as queue directories. Do not change the queue directory structure while sendmail is
running.

QueueFactor=factor Use factor as the multiplier in the map function to decide when to just queue up jobs
rather than run them. This value is divided by the difference between the current load
average and the load average limit (QueueLA option) to determine the maximum
message priority that will be sent. Default is 600000.

QueueLA=LA When the system load average exceeds LA, just queue messages, do not try to send
them. Defaults to 8 multiplied by the number of processors online on the system, if
that can be determined.

212 Files Reference

Option Description

QueueSortOrder=algorithm Sets the algorithm used for sorting the queue. Only the first character of the value is
used. Legal values are:

host Orders by the name of the first host name of the first recipient. Makes better
use of the connection cache, but may tend to process low priority messages
that go to a single host over high priority messages that go to several hosts;
it probably should not be used on slow network links.

filename
Orders by the name of the queue file name. Saves the overhead of reading
all of the queued items before starting the queue run.

time Orders by the submission time. Should not be used because it allows large,
bulk mail to go out before smaller, personal mail. May be appropriate on
certain hosts with very fast connections.

priority
Orders by message priority. Is the default.

QueueTimeout=time-out Do not use. Use Timeout.queuereturn.

RandFile Name of file containing random data or the name of the socket if EGD is used. A
required prefix egd: or file: specifies the type. STARTTLS requires this filename if
the compile flag HASURANDOM is not set (see
/user/samples/tcpip/sendmail/README).

ResolverOptions=options Set resolver options. Values can be set using +flag and cleared using -flag. Available
flags are:

v debug

v aaonly

v usevc

v primary

v igntc

v recurse

v defnames

v stayopen

v dnsrch

The string HasWildcardMX (without a + or -) can be specified to turn off matching
against MX records when doing name canonicalizations.
Note: In previous releases, this option indicated that the name server be responding
in order to accept addresses. This has been replaced by checking to see if the DNS
method is listed in the service switch entry for the hosts service.

RrtImpliesDsn If this option is set, a ReturnReceipt-To: header causes the request of a DSN to be
sent to the envelope sender as required by RFC1891, not to the address given in the
header.

RunAsUser=user The user parameter may be a user name (looked up in /etc/passwd) or a numeric
user ID. Either form can have :group attached, group can be numeric or symbolic. If
set to a non-zero/non-root value, sendmail will change to this user ID shortly after
startup. This avoids a certain class of security problems. However, this means that all
.forward and :include: files must be readable by the indicated user and all files to be
written must be writable by user. Also, all file and program deliveries will be marked
unsafe unless the option DontBlameSendmail=NonRootAddrSafe is set, in which
case the delivery will be done as user. It is also incompatible with the
SafeFileEnvironment option. It may not actually add much to security on an average
system, and may in fact detract from security, because other file permissions must be
loosened. However, it may be useful on firewalls and other places where users do not
have accounts and the aliases file is well constrained.

Chapter 1. System Files 213

Option Description

RecipientFactor=fact The indicated factor is added to the priority for each recipient, thus lowering the
priority of the job. This value penalizes jobs with large numbers of recipients. Defaults
to 30000.

RefuseLA=LA When the system load average exceeds LA, refuse incoming SMTP connections.
Defaults to 12 multiplied by the number of processors online on the system, if that can
be determined.

RetryFactor=fact The factor is added to the priority every time a job is processed. Each time a job is
processed, its priority will be decreased by the indicated value. In most environments
this should be positive, because hosts that are down may be down for a long time.
Default is 90000.

SafeFileEnvironment=dir If this option is set, sendmail will do a chroot(2) call into the indicated directory
before doing any file writes. If the file name specified by the user begins with dir, that
partial path name will be stripped off before writing. For example, if the
SafeFileEnvironment variable is set to /safe then aliases of /safe/logs/file and
/logs/file actually indicate the same file. Additionally, if this option is set, sendmail
will refuse to deliver to symbolic links.

SaveFromLine Save From lines at the front of headers. They are assumed to be redundant and are
discarded.

SendMimeErrors If set, send error messages in MIME format (see RFC2045 and RFC1344 for details).
If disabled, sendmail will not return the DSN keyword in response to an EHLO and
will not do Delivery Status Notification processing as described in RFC1891.

ServerCertFile File containing the certificate of the server. This certificate is used when sendmail
acts as server.

ServerKeyFile File containing the private key belonging to the server certificate.

ServiceSwitchFile=filename If your host operating system has a service switch abstraction, that service will be
consulted and this option is ignored. Otherwise, this is the name of a file that provides
the list of methods used to implement particular services. The syntax is a series of
lines, each of which is a sequence of words. The first word is the service name, and
following words are service types. The services that sendmail consults directly are
aliases and hosts. Service types can be dns, nis, nisplus, or files. The appropriate
support must be compiled in before the service can be referenced. If
ServiceSwitchFile is not specified, it defaults to /etc/mail/service.switch. If that file
does not exist, the default switch is

aliases files
hosts dns nis files

The default file is /etc/mail/service.switch.

SevenBitInput Strip input to seven bits for compatibility with old systems. This should not be
necessary.

SingleLineFromHeader If set, From: lines that have embedded newlines are unwrapped onto one line. This is
to get around a bug in Lotus Notes that apparently cannot understand legally wrapped
RFC822 headers.

SingleThreadDelivery If set, a client machine will never try to open two SMTP connections to a single server
machine at the same time, even in different processes. That is, if another sendmail is
already talking to some host, a new sendmail will not open another connection.
Although this reduces the load on the other machine, it can cause mail to be delayed.
For example, if one sendmail is delivering a huge message, other sendmail
processes will not be able to send even small messages. Also, it requires another file
descriptor (for the lock file) per connection, so you may have to reduce the
ConnectionCacheSize option to avoid running out of per-process file descriptors.
Requires the HostStatusDirectory option.

SmtpGreetingMessage
=message

Specifies the message to print when the SMTP server starts up. Defaults to $j
Sendmail $v ready at $b.

214 Files Reference

Option Description

StatusFile=file Log summary statistics in the named file. If no file name is specified, statistics is
used. If not set, no summary statistics will be saved. This file does not grow in size. It
can be printed using the mailstats(8) program.

SuperSafe Always instantiate the queue file, even if you are going to attempt immediate delivery.
Sendmail always instantiates the queue file before returning control to the client under
any circumstances. This should always be set.

TempFileMode=mode Specifies the file mode for queue files. It is interpreted in octal by default. Default is
0600.

Timeout.type=time-out Sets time-out values. For more information, see “Read Timeouts” on page 190.

TimeZoneSpec=tzinfo Set the local time zone info to tzinfo. If this is not set, the TZ environment variable is
cleared and the system default is used. If set but null, the user’s TZ variable is used. If
set and non-null, the TZ variable is set to this value.

TrustedUser=user The user parameter can be a user name (looked up in /etc/passwd) or a numeric
user ID. Trusted user for file ownership and starting the daemon. If set, generated
alias databases and the control socket (if configured) will automatically be owned by
this user.

TryNullMXList If this system is the best (that is, lowest preference) MX for a given host, its
configuration rules should detect this situation and treat that condition specially by
forwarding the mail to a UUCP feed, treating it as local, and so on. However, in some
cases, such as in the case with Internet firewalls, you may want to try to connect
directly to that host as though it had no MX records at all. Setting this option causes
sendmail to try this. Unfortunately, errors in your configuration are likely to be
diagnosed as ″host unknown″ or ″message timed out″ instead of something more
meaningful. This option is not recommended.

UnixFromLine=fromline Defines the format used when sendmail must add a UNIX-style From line, such as a
line beginning From<space>user). Defaults to From $g $d. Do not change this unless
your system uses a different mailbox format.

UnsafeGroupWrites If set, :include: and .forward files that are group writable are considered unsafe, and
they will not be able to reference programs or write directly to files. World writable
:include: and .forward files are always unsafe.

UserDatabaseSpec
=udbspec

The user database specification.

Verbose Run in Verbose mode. If this is set, sendmail adjusts options HoldExpensive and
DeliveryMode so that all mail is delivered completely in a single job so that you can
see the entire delivery process. The Verbose option should never be set in the
configuration file; it is intended for command line use only.

XscriptFileBufferSize
=threshold

Defines the threshold in bytes, before a memory-based queue transcript file becomes
disk-based. The default is 4096 bytes.

All options can be specified on the command line using the -O or -o flag, but most will cause sendmail to
relinquish its setuid permissions. The options that will not cause this are SevenBitInput, EightBitMode,
MinFreeBlocks, CheckpointInterval, DeliveryMode, ErrorMode, IgnoreDots, SendMimeErrors,
LogLevel, OldStyleHeaders, PrivacyOptions, SuperSafe, Verbose, QueueSortOrder, MinQueueAge,
DefaultCharSet, DialDelay, NoRecipientAction, ColonOkInAddr, MaxQueueRunSize,
SingleLineFromHeader, and AllowBogusHELO. Actually, PrivacyOptions given on the command line
are added to those already specified in the sendmail.cf file and cannot be reset. Also, M (define macro)
when defining the r or s macros is also considered safe.

P — Precedence Definitions: Values for the ″Precedence:″ field may be defined using the P control line.
The syntax of this field is:
Pname=num

Chapter 1. System Files 215

When the name is found in a ″Precedence:″ field, the message class is set to num. Higher numbers mean
higher precedence. Numbers less than zero have the special property that if an error occurs during
processing, the body of the message will not be returned; this is expected to be used for ″bulk″ mail such
as through mailing lists. The default precedence is zero. For example, the list of default precedences is:

v Pfirst-class=0

v Pspecial-delivery=100

v Plist=-30

v Pbulk=-60

v Pjunk=-100

V — Configuration Version Level: To provide compatibility with old configuration files, the V line has
been added to define basic semantics of the configuration file. This is not intended as long term support.
These compatibility features may be removed in future releases.

Note: Configuration version levels are independent of configuration file version numbers. For example,
version number 8.9 configuration files use version level 8 configurations.

″Old″ configuration files are defined as version level one.

Version level two files make the following changes:

1. Host name canonicalization ($[... $]) appends a dot if the name is recognized. This gives the
configuration file a way to determine if a match occurred. This initializes the host map with the -a. flag.
You can reset it to anything else by declaring the map explicitly.

2. Default host name extension is consistent throughout processing. Version level one configurations
turned off domain extension during certain points in processing by adding the local domain name.
Version level two configurations include a trailing dot to indicate that the name is already canonical.

3. Local names that are not aliases are passed through a new distinguished ruleset five. This can be
used to append a local relay. This can be prevented by resolving the local name by using the @
symbol as a prefix (for example, @vikki). Something that resolves to a local mailer and a user name of
vikki will be passed through ruleset five, but a user name of @vikki will have the @ prefix stripped,
will not be passed through to ruleset five, but will otherwise be treated the same as the prior example.
The exception is that this might be used to implement a policy where mail sent to vikki is handled by a
central hub but mail sent to vikki@localhost is delivered directly.

Version level three files allow # initiated comments on all lines. Exceptions are backslash escaped # marks
and the $# syntax.

Version level four files are equivalent to level three files.

Version level five files change the default definition of $w to be the first component of the hostname.

Version level six configuration files change many of the local processing options (i.e., aliasing and
matching the address beginning for the | character) to mailer flags. This allows fine grained control over
the special local processing. Version level six files may also use long option names. The ColonOkInAddr
option (which allows colons in the local part of the address) defaults to on in configuration files with lower
version numbers. The configuration file requires additional ″intelligence″ to properly handle the RFC 822
group construct.

Version level seven configuration files use new option names to replace old macros.

Option Old Macro
$e became SmtpGreetingMessage
$1 became UnixFromLine
$o became OperatorChars

216 Files Reference

Prior to version seven, the F=q flag (use the return value 250 instead of 252 for SMTP VRFY commands)
was assumed.

Version level eight configuration files allow $# on the left side of ruleset lines.

Version level nine configuration files allow parentheses in rulesets, which means they are not treated as
comments and are removed.

The V line may have an optional /vendor variable to indicate that the configuration file uses vendor specific
modifications. You may use /Berkeley to indicate that the file uses the Berkeley sendmail dialect.

K — Key File Declaration: Special maps can be defined using the line:
Kmapname mapclass arguments

The mapname is the name by which this map is referenced in the rewrite rules. The mapclass is the name
of a type of map; these are compiled in to sendmail. The arguments are interpreted depending on the
class; typically, there would be a single argument naming the file containing the map.

Maps are referenced using the syntax:
$(map key $@ arguments $: default $)

where either or both of the arguments or default portion may be omitted. The $@ arguments may appear
more than once. The indicated key and arguments are passed to the appropriate mapping function. If it
returns a value, it replaces the input. If it does not return a value and the default is specified, the default
replaces the input. Otherwise, the input is unchanged.

During replacement of either a map value or default, the string ″%n″ (where n is a digit) is replaced by the
corresponding argument. Argument zero is always the database key. For example, the rule:
R$- ! $+ $: $(uucp $1 $@ $2 $: %1 @ %0 . UUCP $)

looks up the UUCP name in a (user-defined) UUCP map. If not found, it turns it into ″.UUCP″ form. The
database might contain records like:
decvax %1@ %0.DEC.COM
research %1@%0.ATT.COM

Note: The default clauses never perform this mapping.

The built-in map with both name and class ″host″ is the host name canonicalization lookup. Thus, the
syntax:
$(host hostname$)

is equivalent to:
$[hostname$]

There are many defined classes.

Class Description
dbm Database lookups using the ndbm(3) library. Sendmail must be compiled with NDBM

defined.
btree Database lookups using the btree interface to the Berkeley DB library. Sendmail must be

compiled with NEWDB defined.
hash Database lookups using the hash interface to the Berkeley DB library. Sendmail must be

compiled with NEWDB defined.

Chapter 1. System Files 217

Class Description
nis NIS lookups. Sendmail must be compiled with NEWDB defined.
nisplus NIS+ lookups. Sendmail must be compiled with NISPLUS defined. The argument is the

name of the table to use for lookups, and the -k and -v flags may be used to set the key and
value columns respectively.

ldap LDAP X500 directory lookups. Sendmail must be compiled with LDAPMAP defined. The map
supports most of the standard arguments and command line arguments of the ldapsearch
program. By default, if a single query matches multiple values, only the first value will be
returned unless the -z (value separator) map flag is set. Also, the -1 map flag will treat a
multiple value return as if there were no matches.

ldapx LDAP X500 directory lookups. Sendmail must be compiled with LDAPMAP defined. The map
supports most of the standard arguments and command line arguments of the ldapsearch
program.

text Text file lookups. The format of the text file is defined by the -k (key field number), -v (value
field number), and -z (field delimiter) flags.

stab Internal symbol table lookups. Used internally for aliasing.
implicit Really should be called ″alias.″ This is used to get the default lookups for alias files, and is

the default if no class is specified for alias files.
user Looks up users using getpwnam(3). The -v flag can be used to specify the name of the field

to return (although this is normally used only to check the existence of a user).
host Canonicalizes host domain names. Given a host name, it calls the name server to find the

canonical name for that host.
bestmx Returns the best MX record for a host name given as the key. The current machine is always

preferred. For example, if the current machine is one of the hosts listed as the lowest
preference MX record, it will be guaranteed to be returned. This can be used to find out if this
machine is the target for an MX record and mail can be accepted on that basis. If the -z flag
is given, all MX names are returned (separated by the given delimiter).

sequence The arguments on the `K’ line are a list of maps; the resulting map searches the argument
maps in order until it finds a match for the indicated key. For example, if the key definition is:

Kmap1 ...
Kmap1 ...
Kseqmap sequence map1 map2

then a lookup against ″seqmap″ first does a lookup in map1. If that is found, it returns
immediately. Otherwise, the same key is used for map2.

syslog The key is logged via syslogd(8). The lookup returns the empty string.
switch Much like the ″sequence″ map except that the order of maps is determined by the service

switch. The argument is the name of the service to be looked up; the values from the service
switch are appended to the map name to create new map names. For example, consider the
key definition:

Kali switch aliases

together with the service switch entry:

aliases nis files

This causes a query against the map ″ali″ to search maps named ″ali.nis″ and ″ali.files″ in
that order.

218 Files Reference

Class Description
dequote Strip double quotes (″) from a name. It does not strip back slashes, and will not strip quotes if

the resulting string would contain unscannable syntax (that is, basic errors like unbalanced
angle brackets; more sophisticated errors such as unknown hosts are not checked). The
intent is for use when trying to accept mail from systems such as DECnet that routinely quote
odd syntax such as:

"49ers::ubell"

A typical use is probably something like:

Kdequote dequote
...
R$- $: $(dequote $1 $)
R$- $+ $: $>3 $1 $2

Care must be taken to prevent unexpected results; for example,

"|someprogram < input > output"

will have quotes stripped, but the result is probably not what you had intended. Fortunately,
these cases are rare.

regex The map definition on the K line contains a regular expression. Any key input is compared to
that expression using the POSIX regular expressions routines regcomp(), regerr(), and
regexec(). Refer to the documentation for those routines for more information about regular
expression matching. No rewriting of the key is done if the -m flag is used. Without it, the key
is discarded, or if -s is used, it is substituted by the substring matches, delimited by the $| or
the string specified with the -d flag. The flags available for the map are:

-n not

-f case sensitive

-b basic regular expressions (default is extended)

-s substring match

-d set the delimiter used for -s

-a append string to key

-m match only, do not replace/discard value

The -s flag can include an optional parameter which can be used to select the substrings in
the result of the lookup. For example, -s1,3,4.

program The arguments on the K line are the pathname to a program and any initial parameters to be
passed. When the map is called, the key is added to the initial parameters and the program
is invoked as the default user/group ID. The first line of standard output is returned as the
value of the lookup. This has many potential security problems and terrible performance. It
should be used only when absolutely necessary.

macro Set or clear a macro value. To set a macro, pass the value as the first argument in the map
lookup. To clear a macro, do not pass an argument in the map lookup. The map always
returns the empty string. Examples of typical usage includes:

Kstorage macro

...

set macro ${MyMacro{ to the ruleset match
R$+ $:$(storage {MyMacro} $@ $1 $) $1
set macro ${MyMacro} to an empty string
R$* $:$(storage {MyMacro} $@ $) $1
set macro ${MyMacro}
R$- $:$(storage {MyMacro} $) $1

Chapter 1. System Files 219

Class Description
arith Perform simple arithmetic operations. The operation is given as key, currently +, -, *, /, l

(for less than), and = are supported. The two operands are given as arguments. The lookup
returns the result of the computation (True or False) for comparisons, integer values
otherwise. All options that are possible for maps are ignored. A simple example is:

Kcomp arith

...

Scheck_etrn
R$* $: $(comp l $@ $&{load_avg} $@ 7 $) $1
RFALSE $# error ...

Most of these accept as arguments the same optional flags and a filename (or a mapname for NIS; the
filename is the root of the database path, so that ″.db″ or some other extension appropriate for the
database type will be added to get the actual database name). Known flags are:

Flag Description
-o Indicates that this map is optional. That is, if it cannot be opened, no error is produced, and

sendmail will behave as if the map existed but was empty.
-N, -O If neither -N or -O are specified, sendmail uses an adaptive algorithm to decide whether or not

to look for null bytes on the end of keys. It starts by trying both; if it finds any key with a null
byte, it never tries again without a null byte and vice versa. If -N is specified, it never tries
without a null byte and if -O is specified, it never tries with a null byte. Setting one of these can
speed matches but are never necessary. If both -N and -O are specified, sendmail will never try
any matches at all. That is, everything will appear to fail.

-ax Append the string x on successful matches. For example, the default host map appends a dot on
successful matches.

-Tx Append the string x on temporary failures. For example, x would be appended if a DNS lookup
returned server failed or an NIS lookup could not locate a server. See the -t flag for additional
information.

-f Do not fold upper to lower case before looking up the key.
-m Match only (without replacing the value). If you only care about the existence of a key and not

the value (as you might when searching the NIS map ″hosts.byname″ for example), this flag
prevents the map from substituting the value. However, The -a argument is still appended on a
match, and the default is still taken if the match fails.

-kkeycol The key column name (for NIS+) or number (for text lookups).
-vvalcol The value column name (for NIS+) or number (for text lookups).
-zdelim The column delimiter (for text lookups). It can be a single character or one of the special strings

″\n″ or ″\t″ to indicate newline or tab respectively. If omitted entirely, the column separator is any
sequence of whitespace.

-t Normally, when a map attempts to do a lookup and the server fails (e.g., sendmail could not
contact any name server — this is not the same as an entry not being found in the map), the
message being processed is queued for future processing. The -t flag turns off this behavior,
letting the temporary failure (server down) act as though it were a permanent failure (entry not
found). It is particularly useful for DNS lookups, where another’s misconfigured name server can
cause problems on your machine. Care must be taken to avoid ″bouncing″ mail that would be
resolved correctly if another attempt were made. A common strategy is to forward such mail to
another mail server.

-D Perform no lookup in deferred delivery mode. This flag is set by default for the host map.
-Sspacesub The character to use to replace space characters after a successful map lookup. This is

especially useful for regex and syslog maps.
-q Do not dequote the key before lookup.

220 Files Reference

Flag Description
-A When rebuilding an alias file, the -A flag causes duplicate entries in the text version to be

merged. For example, the following two entries:

list: user1,user2
list: user3

would be treated as if they were the following single entry:

list: user1,user2,user3

The following additional flags are present in the LDAP map only:

Flag Description

-R Do not auto chase referrals. Sendmail must be compiled with -DLAP_REFERRALS to use
this flag.

-n Retrieve attribute names only.

-rderef Set the alias dereference option to one of the following: never, always, search, or find.

-sscope Set search scope to one of the following: base, one (one level), or sub (subtree).

-hhost LDAP server host name.

-bbase LDAP search base.

-pport LDAP service port.

-ltimelimit Time limit for LDAP queries.

-Zsizelimit Size (number of matches) limit for LDAP queries.

-ddistinguished_name The distinguished name to use to log in to the LDAP server.

-Mmethod The method to authenticate to the LDAP server. Should be one of the following:
LDAP_AUTH_NONE, LDAP_AUTH_SIMPLE, OR LDAP_AUTH_KRBV4.

-Ppasswordfile The file containing the secret key for the LDAP_AUTH_SIMPLE authentication method or
the name of the Kerberos ticket file for LDAP_AUTH_KRBV4.

-1 Force LDAP searches to succeed only if a single match is found. If multiple values are
found, the search will be treated as if no match was found.

The dbm map appends the strings ″.pag″ and ″.dir″ to the given filename; the two db-based maps append
″.db″. For example, the map specification
Kuucp dbm -o -N /usr/lib/uucpmap

specifies an optional map named ″uucp″ of class ″dbm″; it always has null bytes at the end of every string,
and the data is located in /usr/lib/uucpmap.{dir,pag}.

Commands and Operands

Command and Operand Description
CXWord1 Word2... Defines the class of words that can be used to match the left-hand side of rewrite

rules. Class specifiers (X) may be any of the uppercase letters from the ASCII
character set. Lowercase letters and special characters are reserved for system use.

DXValue Defines a macro (X) and its associated Value. Macro specifiers may be any of the
uppercase letters from the ASCII character set. Lowercase letters and special
characters are reserved for system use.

FXFileName [Format] Reads the elements of the class (X) from the FileName variable, using an optional
scanf format specifier. The format specifier contains only one conversion specification.
One class number is read for each line in the FileName variable.

Chapter 1. System Files 221

Command and Operand Description
H[?MFlags?]HeaderName:
HeaderTemplate

Defines the header format the sendmail command inserts into a message.
Continuation lines are a part of the definition. The HeaderTemplate is macro-expanded
before insertion into the message. If the MFlags are specified and at least one of the
specified flags is included in the mailer definition, this header is automatically written to
the output message. If the header appears in the input message, it is written to the
output message regardless of the MFlags variable.

MName, [Field=Value] Defines a Mail program where the Name variable is the name of the Mail program and
Field=Value pair defines the attributes of the mailer.

Ox[Value] Sets the option to the value of x. If the option is a valued option, you must also specify
the Value variable. Options may also be selected from the command line.
Note: For valid values, see “O — Set Option” on page 201.

PName=Number Defines values for the Precedence: header field. When the Name variables found in a
message’s Precedence: field, the message’s precedence is set to the Number variable.
Higher numbers indicate higher precedences. Negative numbers indicate that error
messages are not returned. The default Number is 0.

RLeftHandSide
RightHandSide Comments

Defines a rewrite rule. One or more tab characters separate the three fields of this
command. If space characters are used as field separators, option J must be set. The
J option allows spaces as well as tabs to separate the left- and right-hand sides of
rewrite rules. The J option allows rewrite rules to be modified using an editor that
replaces tabs with spaces.

Sx Sets the rule set currently defined to the specified number(x). If a rule set definition is
started more than once, the new definition overwrites the old.

TUser1 User2 ... Defines user IDs for the system administrators. These IDs have permission to override
the sender address using the -f flag. More than one ID can be specified per line.

Files

/etc/mail/sendmail.cf Specifies the path of the sendmail.cf file.
/etc/passwd Contains basic user attributes.
/etc/mail/aliases Contains alias definitions for the sendmail command.

Related Information
The sendmail command.

The /etc/passwd file.

setinfo File

Purpose
Describes the format of a set characteristics file.

Description
The setinfo file is an ASCII file that describes the characteristics of the set along with information that
helps control the flow of installation. It is created by the software set developer and is included in the Set
Installation Package (SIP). A SIP is a special purpose package that controls the installation and removal of
a set of packages.

Each entry in the setinfo file is a line that consists of predefined fields. Each entry corresponds to a
package belonging to the set and must contain the following <tab>-separated fields:

1. Package Abbr
This field contains the abbreviated name of the package. The abbreviation must be a short string

222 Files Reference

(no more than nine characters long) and must conform to the file naming rules. All characters in
the abbreviation must be alphanumeric and the first character cannot be numeric. install, new,
and all are reserved.

This abbreviated name must be the same as the one used in pkginfo.

2. Parts
This field specifies the number of parts this package consists of.

3. Default
This field contains the character ’y’ indicating that the package is to be installed as a default.
Conversely, an ’n’ indicates that the package will not be installed.

4. Category
The category under which the package belongs. Release 4 defines four categories: ″application,″
″graphics,″ ″system″ and ″utilities.″ All packages must be assigned to one of these categories. If
you choose, you can also assign a package to a category you defined. Categories are
case-insensitive and may contain only alphanumerics. Each category is limited to 16 characters.

5. Package Full-Name
Text that specifies the package name (maximum length of 256 ASCII characters). This field must
be the same as NAME in the pkginfo file.

The order of the packages listed in the setinfo file must reflect any package dependencies (if any) and
must represent the order in which packages occur on the media (in the case of datastream). Any package
for which there exists a dependency must be listed prior to the package(s) that depends on it.

Examples
Shown below is a setinfo file for set admin:

#ident "@(#)set:cmn/set/admin/setinfo 1.2"
#ident "$Header: $"

Format for the setinfo file. Field separator is: <tab>
pkg parts default category pkg full-name
abbr y/n

oam 4 y application OA&M
bkrs 1 y system Extended Backup and Restore
face 1 y application FACE

Related Information
The pkginfo file format.

setup.csh File

Purpose
Sets the C-shell environment variables needed to build an InfoCrafter database.

Description
The setup.csh file defines C-shell environment variables necessary to build an InfoCrafter database from
the command line. The setup.csh file contains the definition of the TOOLSDIR and
TOPLEVEL_BUILDDIR variables; if there are relative path names of source files in your input list, it also
sets the TOPLEVEL_SOURCEDIR variable. The TOOLSDIR variable is added to your path environment
variable so you can use the icft command without specifying the full path name.

The default value for the TOOLSDIR environment variable is /usr/lpp/icraft/bin. The
TOPLEVEL_SOURCEDIR and TOPLEVEL_BUILDDIR variables have no default values.

Chapter 1. System Files 223

You must copy the setup.csh file from /usr/lpp/icraft/bin to another location (such as your home
directory) and edit it to define the variables. Then, use the source setup.csh command to assign the new
definitions to the variables.

Examples
A sample setup.csh file appears as follows:
setenv TOPLEVEL_SOURCEDIR $HOME/desktop
setenv TOOLSDIR /usr/lpp/icraft/bin
setenv TOPLEVEL_BUILDDIR $TOOLSDIR/master

To set the C-shell environment variables, enter the following:
source setup.csh

The following message is displayed:
setup.csh: assigning environment variables

for InfoCrafter. . .

Files

/usr/lpp/icraft/bin/setup.csh Contains the definitions of C-shell environment variables.

Related Information
The setup.sh file.

setup.sh File

Purpose
Defines the Bourne or Korn shell environment variables needed to build an InfoCrafter database.

Description
The setup.sh file defines Bourne or Korn shell environment variables necessary to build an InfoCrafter
database from the command line using the icft command. The setup.sh file sets the TOOLSDIR and
TOPLEVEL_BUILDDIR variables. If there are relative path names of source files in your input list, it also
sets the TOPLEVEL_SOURCEDIR variable. The TOOLSDIR variable is added to your path environment
variable so you can enter the icft command without specifying the full path name.

Default value for the TOOLSDIR environment path variable is /usr/lpp/icraft/bin.
TOPLEVEL_SOURCEDIR and TOPLEVEL_BUILDDIR have no default values.

You must copy the setup.sh file from /usr/lpp/icraft/bin to another location (such as your home directory)
and edit it to define the variables. Then, use the . setup.sh command to set the variables to the defined
values.

Examples
A sample setup.sh file appears as follows:
TOPLEVEL_SOURCEDIR = $HOME/desktop
TOOLSDIR = /usr/lpp/icraft/bin
TOPLEVEL_BUILDDIR = $TOOLSDIR/master

To set Bourne or Korn shell environment variables, enter the following:
. setup.sh

224 Files Reference

The following message is given:
setup.sh: assigning environment variables for InfoCrafter

Files

/usr/lpp/icraft/bin/setup.sh Contains definitions for Bourne and Korn shell environment
variables.

Related Information
The setup.csh file.

smi.my File

Purpose
Provides sample SMI input to the mosy command.

Description
The /usr/samples/snmpd/smi.my file is a sample input file to the mosy command, which creates an
objects definition file for use by the snmpinfo command. The mosy compiler requires its input file to
contain the ASN.1 definitions described in the Structure and Identification of Management Information
(SMI) RFC 1155 and the Management Information Base (MIB) RFC 1213. The smi.my file contains the
syntax descriptions from the SMI RFC 1155.

The smi.my file begins with a definition of the SNMP subtree of the MIB as assigned by the Internet
Activities Board (IAB). It then contains the syntax definitions defined in RFC 1155.

Comments are specified by - - (two dashes). A comment can begin at any location and extends to the end
of the line.

The smi.my file was created by extracting the definitions from Chapter 6 of RFC 1155. This file is shipped
as /usr/samples/snmpd/smi.my. The file is part of Simple Network Management Protocol Agent
Applications in Network Support Facilities.

Files

/usr/samples/snmpd/mibII.my Contains the ASN.1 definitions for the MIB II variables defined in
RFC 1213.

/etc/mib.defs Defines the Management Information Base (MIB) variables the
snmpd agent should recognize and handle. This file is in the
format that the snmpinfo command requires.

Related Information
The mosy command, snmpinfo command.

The mibII.my file.

RFC 1155, RFC 1213.

The Simple Book, An Introduction to Management of TCP/IP-Based Internets by Marshall T. Rose, 1994,
Prentice Hall.

Chapter 1. System Files 225

smitacl.group File

Purpose
Contains the group access control list (ACL) definitions for the System Management Interface Tool (SMIT).
This system file only applies to AIX 4.2.1 and later.

Description
The /etc/security/smitacl.group file contains the group ACL definitions for SMIT. This is an ASCII file that
contains a stanza for each system group. Each stanza is identified by a group name followed by a :
(colon) and contains attributes in the form Attribute=Value. Each attribute pair ends with a newline
character as does each stanza.

The file supports a default stanza. If an attribute is not defined, either the default stanza or the default
value for the attribute is used.

A stanza contains the following attribute:

screens Describes the list of SMIT screens for this group. (It is of the type SEC_LIST.) Examples include:

screens = * # Permit all screen access.
screens = !* # Deny all screen access.
screens = # Allows no specific screens

(screens can be added on a per user basis)
screens = user,group,!tcpip # Allow user & group

screens, but not
tcpip screen

For a typical stanza, see the ″Examples″ section.

Security
Access Control: This file grants read and write access to the root user, and read access to members of the
security group.

Examples
1. A typical stanza looks like the following example for the group called group:

group:
screens = *

2. To allow the mksysb screen only for a member of group called group, add the following stanza:
default:

screens =
group:

screens = mksysb

Files

/etc/security/roles Contains the list of valid roles.
/etc/security/user.roles Contains the list of roles for each user.
/etc/security/smitacl.group Contains the group ACL definitions.
/etc/security/smitacl.user Contains the user ACL definitions.

Related Information
The getgrpaclattr subroutine, nextgrpacl subroutine, putgrpaclattr subroutine.

226 Files Reference

smitacl.user File

Purpose
Contains the user access control list (ACL) definitions for the System Manamgement Interface Tool (SMIT).
This system file only applies to AIX 4.2.1 and later.

Description
The /etc/security/smitacl.user file contains the ACL definitions for SMIT. This is an ASCII file that
contains a stanza for each system user. Each stanza is identified by a user name followed by a : (colon)
and contains attributes in the form Attribute=Value. Each attribute pair ends with a newline character as
does each stanza.

The file supports a default stanza. If an attribute is not defined, either the default stanza or the default
value for the attribute is used.

A stanza contains the following attributes:

Attribute Description
screens Describes the list of SMIT screens for the user. (It is of the type SEC_LIST.) Examples include:

screens = * # Permit all screen access.
screens = !* # Deny all screen access.
screens = # Allows no specific screens

(screens can be added on a per user basis)
screens = user,group,!tcpip # Allow user & group

screens, but not
tcpip screen

funcmode Describes if the role database and/or SMIT ACL database should be used to determine
accessibility. It also describes how to combine the screens data from the two databases. (It is
of the type SEC_CHAR.) Examples include:

funcmode = roles+acl # Use both roles and SMIT ACL # databases.
funcmode = roles # Use only the roles database.
funcmode = acl # Use only the SMIT ACL # database.

The defined values for funcmode are:

roles Only the screen values from the roles database are used.

acl Only the screen values from the SMIT ACL database are used.

roles+acl
The screen values from both the roles and the SMIT ACL databases are used.

For a typical stanza, see the ″Examples″ section .

Security
Access Control: This file grants read and write access to the root user, and read access to members of the
security group.

Examples
1. A typical stanza looks like the following example for the username user:

username:
screens = *
funcmode = roles+acl

2. To allow the mksysb screen only for user groupuser, add the following stanza:

Chapter 1. System Files 227

default:
screen = *
screens = mksysb

Files

/etc/security/roles Contains the list of valid roles.
/etc/security/user.roles Contains the list of roles for each user.
/etc/security/smitacl.group Contains the group ACL definitions.
/etc/security/smitacl.user Contains the user ACL definitions.

Related Information
The getusraclattr subroutine, nextusracl subroutine, putusraclattr subroutine.

snmpd.conf File

Purpose
Defines a sample configuration file for the snmpdv1 agent.

Description
The snmpd.conf file provides the configuration information for the snmpdv1 agent. This file can be
changed while the snmpdv1 agent is running. If the refresh or kill -1 command is issued, the snmpdv1
agent will reread this configuration file. The snmpdv1 agent must be under System Resource Control
(SRC) for the refresh command to force the reread. This file is part of Simple Network Management
Protocol Agent Applications in Network Support Facilities.

This configuration file contains:

v Entries for Community names

v Access privileges and view definitions for incoming Simple Network Management Protocol (SNMP)
request packets

v Entries for host destinations for trap notification

v Entries for log file characteristics

v Entries for snmpd-specific parameters

v Entries for SNMP Multiplexing Protocol (SMUX) association configurations

v Entries for the sysLocation and sysContact variables.

The snmpd.conf file must be owned by the root user. If the snmpd.conf file is not owned by root, or if the
snmpdv1 daemon cannot open the configuration file, the snmpdv1 daemon issues a FATAL message to
the logfile if logging is enabled and snmpdv1 terminates.

Certain rules apply for specifying particular parameters in entries in the snmpd.conf configuration file.
Some entries require the specification of object identifiers or object names or both. The following rules
apply:

1. An object identifier is specified in dotted numeric notation and must consist of at least three elements.
The maximum number of elements in the object identifier is 50. Elements are separated by a . (dot).
The first element must be a single digit in the range of 0 to 2. The second element must be an integer
in the range of 1 to 40. The third and subsequent elements must be integers in the range of 1 to the
size of an unsigned integer.

2. An object name consists of a textual name with an optional numeric instance. The object name must
be known to the snmpdv1 agent. Object names typically are names of nodes in the Management

228 Files Reference

Information Base (MIB) tree. If the root of the MIB tree, iso, is specified as an object name, the
numeric instance is absolutely required. A . (dot) separates the textual name from the numeric
instance.

Community Entry
The community entry specifies the communities, associated access privileges and MIB views the
snmpdv1 agent allows. See example 1 for a sample entry. A community entry must be in the following
format:
community CommunityName IPAddress NetMask Permissions ViewName

The following definitions apply to the variables in a community entry:

CommunityName The community name.
IPAddress The host name or IP address in dotted-decimal format for the specified community name.
NetMask A network mask in dotted-decimal format for the specified hostname or IP address.
Permissions Specifies one of:

v readOnly

v writeOnly

v readWrite

v none.

The Permissions string is case-insensitive.
ViewName A unique object identifier in dotted numeric notation that is associated with a portion of the

MIB tree to which the specified community name allows access. The ViewName value is
the same as that specified in the view entry.

The minimum specification required for a community entry is:
community CommunityName

The default values for this minimum community entry are:

IPAddress 0.0.0.0
NetMask 0.0.0.0
Permissions readOnly
View iso.3

Fields to the right of the minimum entry are optional, with the limitation that no fields to the left of a
specified field are omitted. Any information to the right of the ViewName variable is ignored. If an
IPAddress of 0.0.0.0 is specified, the default NetMask is 0.0.0.0. If an IPAddress other than 0.0.0.0 is
specified, the default NetMask is 255.255.255.255.

The Permissions default is readOnly. If the ViewName is not specified, the view for this community
defaults to ISO, the entire MIB tree. For example:
community public 192.100.154.1

is a valid entry with the default values:

NetMask 255.255.255.255
Permissions readOnly
View iso.3

The following entry is not valid because the required NetMask variable to the left of the Permissions
variable is not specified:

Chapter 1. System Files 229

community public 192.100.154.1
readWrite

In this case, the value in the Permissions variable is accepted as the NetMask value. Since the value in
thePermissions variable is not in the format required for the NetMask variable, an error will occur. The
snmpdv1 agent logs an EXCEPTIONS message if logging is enabled. In the case of an invalid community
entry, the snmpdv1 agent ignores the entry.

View Entry
The view entry specifies the MIB subtrees to which a particular community has access. See example 3 for
a sample entry. A view entry must be in the following format:
view ViewName MibSubtree...

The following definitions apply to the variables in the view entry:

ViewName Specifies a unique object identifier in dotted-numeric notation that is associated with a portion of
the MIB tree. This ViewName value is the same as that in the community entry and must be
formatted as described there.

MibSubtree A list of MIB subtrees, or MIB groups, specified as either an object name or an object identifier,
that is associated with the ViewName variable. If the MIBSubtree list is not specified, the view
defaults to iso, the entire MIB tree.

Together, the view entry and its associated community entry define an access privilege or MIB view
allowed by the snmpdv1 agent.

In the case of an invalid view entry, the snmpdv1 agent logs an EXCEPTIONS message, if logging is
enabled, and ignores the view entry.

If a ViewName is specified in the community entry, but there is no view entry to describe that ViewName,
snmpdv1 agent logs an EXCEPTIONS message stating that there is no such view for the community. The
snmpdv1 agent will allow no access for that community and view association.

Trap Entry
The trap entry specifies the hosts the snmpdv1 agent notifies in the event a trap is generated. See
Example 2 for a sample entry. A trap entry must be in the following format:
trap CommunityName IPAddress ViewName TrapMask

In this format, the variable definitions are as follows:

CommunityName The community name to be encoded in the SNMP trap packet.
IPAddress The host name or IP Address in dotted-decimal format for the specifiedCommunityName.
ViewName The snmpdv1 agent only checks the ViewName to verify that the format is valid and that

there are no duplicate ViewName variables specified.

230 Files Reference

TrapMask The trap mask in hexadecimal format. The bits from left to right stand for coldStart trap,
warmStart trap, linkDown trap, linkUp trap, authenticationFailure trap, egpNeighborLoss
trap, and enterpriseSpecific trap. The rightmost bit does not have any meaning. A value of
1 will enable the corresponding trap to be sent. Otherwise, the trap is blocked.

For example:

hexadecimal bits meaningh
fe 1111 1110 block no traps
7e 0111 1110 block coldStart trap
be 1011 1110 block warmStart trap
3e 0011 1110 block coldStart trap and warmStart trap

The minimum specification required for a trap entry is:

trap CommunityName IPAddress

The default value of TrapMask for this minimum trap entry is fe. There is no trap blocked
for this case.

Fields to the right of the minimum entry are optional, with the limitation that no fields to the
left of a specified field are omitted. There should be no information to the right of the
TrapMask variable.

In the case of an invalid trap entry, the snmpdv1 agent places an EXCEPTIONS message
in the log file if logging is enabled and ignores the trap entry.

It is assumed that all hosts listed in the trap entries are listening on well-known UDP port
162 for SNMP traps. Because community views for traps are not supported, the snmpdv1
agent will send trap messages for all traps generated as indicated by the TrapMask
variable to the hosts listed in the trap entries. If no trap entry appears in the snmpd.conf
file, the snmpdv1 agent will not send out trap messages upon the generation of a trap.

Logging Entry
The logging entry specifies the characteristics for the snmpdv1 agent logging activities if logging is not
directed from the snmpd command with the -f option. See example 4 for a sample entry. A logging entry
must be in the following format:
logging FileName Enablement
logging size=Limit level=DebugLevel

The following definitions apply to the fields in the logging entries:

FileName Specifies the complete path and file name of the log file.
Limit Specifies the maximum size in bytes of the specified log file. If the limit is specified as 0, the file

size is unlimited.
DebugLevel Specifies the level of logging, which can be one of the following:

0 All NOTICES, EXCEPTIONS, and FATAL messages

1 Level 0 plus DEBUG messages

2 Level 1 plus a hexadecimal dump of incoming and outgoing packets

3 Level 2 plus an English version of the request and response packets
Enablement Specifies whether logging is active. The following options are available:

enabled
Turns logging on.

disabled
Turns logging off.

Chapter 1. System Files 231

There is no default log file. The Enablement default is disabled. The log file size Limit default is 0, which
means unlimited. The DebugLevel default is 0 if the snmpd command is invoked without the -d option. If
the -d option is specified, the default DebugLevel is the value specified by the -d option on the snmpd
command line.

The size= and level= entries are absolutely required if a size or debug level are specified. There can be
no spaces around the = (equal sign).

There are no restrictions regarding the order in which the variables are entered in the logging entries. A
logging entry can contain single or multiple variables.

If the value for the size= field or DebugLevel variable cannot be converted into an integer, the default size
and debug level are used. Because the snmpd command sets the log file configuration parameters
immediately upon reading them, the parameters in the logging entry are not necessarily ignored if the
snmpd command determines there is an invalid field in that entry. For example, in the following invalid
logging entry:
logging size=100000 garbagestuff enabled

The snmpd command will set the size parameter, but will discard all information from the field value of
garbagestuff to the end of the line. In addition, an EXCEPTIONS message will be logged if logging is
enabled.

snmpd Entry
The snmpd entry specifies configuration parameters for the snmpdv1 agent. See example 5 for a sample
entry. An snmpd entry must be in the following format:
snmpd Variable=Value

The = (equal sign) is absolutely required; there can be no spaces around it.

The following definitions apply to the snmpd entry:

Variable Specifies the specific configuration parameter. Variable can be one of the following values:

v maxpacket

v querytimeout.
Value Specifies the value of the specific variable.

The configurable variables and allowable values are:

maxpacket The maximum packet size, in bytes, that the snmpdv1 agent will transmit. The minimum to
which this variable can be set is 300 bytes. The maximum value to which this variable can be
set is 56KB. If there is no snmpd entry for maxpacket, the system socket default levels will
be used.

querytimeout The time interval in seconds at which the snmpdv1 agent will query the interfaces to check
for interface status changes. The minimum value to which querytimeout can be set is 30
seconds. If 0 is specified, the snmpdv1 agent will not query the interfaces for status
changes. If there is no snmpd entry for querytimeout, the default value of 60 seconds is
used.

The = (equal sign) is absolutely required; there can be no white space around it. There are no restrictions
on the order in which the variables are entered in the snmpd entry. An snmpd entry can contain single or
multiple variables.

232 Files Reference

The snmpdv1 agent sets the snmpd specific parameters immediately upon reading them. If the values
are invalid, the snmpdv1 agent ignores them. If the snmpdv1 agent encounters an invalid field in the
entry, processing is terminated for that entry and the snmpdv1 agent logs an EXCEPTIONS message if
logging is enabled.

smux Entry
The smux entry specifies configuration information for SMUX associations between the snmpdv1 agent
and SMUX peer clients. See example 6 for a sample entry. A smux entry must be in the following format:
smux ClientOID Password IPAddress NetMask

The following definitions apply to the smux entry:

ClientOID Specifies the unique object identifier in dotted numeric notation of the SMUX peer client. The
ClientOID must match the ObjectID specified in the /etc/snmpd.peers file.

Password Specifies the password that the snmpdv1 agent requires from the SMUX peer client to
authenticate the SMUX association. The Password must match the Password in the
/etc/snmpd.peers file.

IPAddress The hostname or IP address in dotted notation of the host on which the SMUX peer client is
executing.

NetMask Specifies a network mask in dotted decimal notation for the specified hostname or IP address.

The minimum specification for the smux entry is:
smux ClientOID Password

The default values for this minimum smux entry are:

IPAddress 127.0.0.1
NetMask 255.255.255.255

Fields to the right of the minimum entry are optional, with the limitation that no fields to the left of a
specified field are omitted. Any information to the right of NetMask is ignored. If no password is specified,
there is no confirmation for the SMUX association. If neither theIPAddress nor NetMask are specified, the
SMUX association is limited to the local host.

In the case of an invalid smux entry, the snmpdv1 agent logs an EXCEPTIONS message if logging is
enabled and the snmpdv1 agent ignores that smux entry.

sysLocation and sysContact Entry
The sysLocation and sysContact entries specify the values of the sysLocation and sysContact variables.
The entry is specified in the following format:
sysLocation "Austin, Texas, USA, XYZ, Bld 905, 5C-11"
sysContact "Bill Roth, Amber Services, 1-512-849-3999"

The first part of the entry specifies the variable to be set, sysLocation or sysContact. The second part is
a quoted character string representing the variable’s value. The length of this string should not exceed 256
characters. If more than one entry is in the file, the last entry is used to define the variable. If there is not
an entry for a particular variable, the value is defined to be the NULL string. If there is not a quoted string
after the variable name, the first word on the line is used as the value. If there is nothing after the variable
name, the NULL string is assumed.

The snmpdv1 daemon uses the defined configuration file, whether it is the default file or specified from
the command line, to save and read variables. The daemon does not need to be refreshed to get these
new variables.

Chapter 1. System Files 233

Note: Since these variables are settable, the snmpdv1 daemon writes to the configuration file to update
these variables on a set request. If you are editing the file and a set request changes the variables,
the set request could be lost when the edited file is saved. This can be avoided by shutting down
the daemon to change the configuration file, or by using the snmpinfo command to set the variable
through normal methods.

Comments are specified by a # (pound sign) character and can be located anywhere in the snmpd.conf
file. A comment begins at the # character and continues to the end of the line.

Note: It does not matter in which order the specific configuration entries for community, traps, views,
logging, snmpd, and smux are placed in the snmpd.conf file. There is no order dependency for
the various entries.

Examples
1. Example of community entries in the snmpd.conf file:

Community specifications
community public
community private 192.100.154.7 255.255.255.255 readWrite 1.17.2
community monitor 192.100.154.1 255.255.255.0 readWrite 1.17.2
community private oilers
community simple giants
community test 0.0.0.0 0.0.0.0 none
community nobody 0.0.0.0 255.255.255.255 readWrite 1.17.35

The first entry exemplifies the minimum required specification for a community entry. The IP address
defaults to 0.0.0.0. The network mask defaults to 0.0.0.0. The permissions default to readOnly. The
view defaults to the entire MIB tree. This configuration enables the snmpdv1 agent to accept all
readOnly requests under the community name public regardless of the IP address. Write or set
requests are rejected.

The second entry limits the snmpdv1 agent to accept readWrite requests under the community name
private only from IP address 192.100.154.7 for MIB variables that are associated with the view name
1.17.2.

The third entry enables the snmpdv1 agent to accept readWrite requests under the community name
monitor from all IP addresses that start with 192.100.154, as indicated by the network mask, for all
MIB variables that are associated with the view name 1.17.2.

The fourth entry sets the network mask to the default 255.255.255.255 and the permissions to the
default, readOnly. This configuration enables the snmpdv1 agent to accept readOnly requests under
the community name private from the host named oilers for the entire MIB tree. The reuse of the
community name private is independent of the usage in the second example entry.

The fifth entry sets the network mask to the default 255.255.255.255 and the default permissions to
readOnly. This configuration enables the snmpdv1 agent to accept readOnly requests for the entire
MIB tree under the community name simple only from the host giants. Write or set requests are
rejected.

The sixth entry causes the snmpdv1 agent to reject all requests under the community name test,
regardless of the IP address, because of the permission restriction of none.

The seventh entry causes the snmpdv1 agent to reject all requests under the community name nobody
because the network mask limits the IP address to entry 0.0.0.0, which is reserved and not available
for a host.

2. Example of trap entries in the snmpd.conf file:

234 Files Reference

Trap host notification specifications
trap traps 192.100.154.7
trap traps 129.35.39.233
trap events giants
trap public oilers 1.2.3 be
trap private 129.35.42.2101.2.4 7e

The first entry specifies that the snmpdv1 agent is to notify the host with IP address 192.100.154.7 of
all traps generated. The community name embedded in the trap packet will be traps.

The second entry specifies that the snmpdv1 agent is to notify the host with IP address 129.35.39.233
of all traps generated. The community name embedded in the trap packet will be traps.

The third entry specifies that the snmpdv1 agent is to notify the host giants of all traps generated.
The community name embedded in the trap packet will be events.

The fourth entry specifies that the snmpdv1 agent is to notify the host oilers of all traps generated
except for the warmStart trap. The community name embedded in the trap packet will be public. The
ViewName,1.2.3, is ignored.

The fifth entry specifies that the snmpdv1 agent is to notify the host 129.35.42.210 of all traps
generated except the coldStart trap. The community name embedded in the trap packet will be
private. The ViewName, 1.2.4, is ignored.

3. Examples of view entries in the snmpd.conf file:
View specifications
view 1.17.2 system enterprises view
view 1.17.35
view 2.10.1 iso.3

The first entry associates the view name 1.17.2 with the system, enterprises, and view MIB groups. A
community name that is associated with view 1.17.2 will only be associated with the MIB variables in
these three groups. Thus, a host that has read permissions with this community name association can
only get values for MIB variables in these specified groups.

The second and third entries configure the snmpdv1 agent to allow access to the entire MIB tree for
hosts that have access privileges associated with these specified view names.

4. Examples of logging entries in the snmpd.conf file:
Logging specifications
logging /tmp/snmpdlog enabled
logging level=2 size=100000

These logging entries configure the snmpdv1 agent to log messages at debug level 2 and below to
the file named /tmp/snmpdlog. The size parameter limits the file size of the /tmp/snmpd log file to
100,000 bytes. When the log file reaches 100,000 bytes, the log file is rotated such that the full file is
renamed to /tmp/snmpdlog.0 and the new log file is named /tmp/snmpdlog.

5. Example of snmpd entries in the snmpd.conf file:
snmpd parameter specifications
snmpd maxpacket=2048
snmpd querytimeout=120

The first snmpd entry limits the size of packets transmitted by the snmpdv1 agent to 2048 bytes.

The second entry sets the querytimeout parameter to 120 seconds. This configures the snmpdv1
agent to query all the interfaces known to the TCP/IP kernel every two minutes for status changes.

6. Examples of smux entries in the snmpd.conf file:
smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 #gated

Chapter 1. System Files 235

This smux entry configures the snmpdv1 agent to allow the SMUX association only the gated SMUX
peer client with no authentication. The SMUX peer must be running on the local host.
smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 private #gated

This smux entry configures the snmpdv1 agent to allow the SMUX association only the gated SMUX
peer client having the passwordprivate. The SMUX peer must be running on the local host.
smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 private 0.0.0.0 0.0.0.0

This smux entry configures the snmpdv1 agent to allow the SMUX association only the gated SMUX
peer client having the passwordprivate. The SMUX peer can be running on any host.
smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 private 192.100.154.7 255.255.255.255

This smux entry configures the snmpdv1 agent to allow the SMUX association only the gated SMUX
peer client having the passwordprivate. The gated SMUX peer must be running on the host with IP
address 192.100.154.7

smux configuration
smux 1.3.6.1.4.1.2.3.1.2.2 private 192.100.154.1 255.255.255.0

This entry configures the snmpdv1 agent to allow the SMUX association only the gated SMUX peer
client having the password private. The gated SMUX peer can be running on any host in the network
defined by 192.100.154.

Note: The SMUX peer client object identifier must be unique. Only one form of the preceding
examples of smux entries for the gated SMUX peer client can be in the snmpd.conf file.

7. Example of sysLocation and sysContact entries in the snmpd.conf file:
Definitions for sysLocation and sysContact
sysLocation "Austin, Texas, USA, XYZ, Bld 905, 5C-11"
sysContact "Bill Roth, Amber Services, 1-512-849-3999"

These entries set the value for the sysLocation and sysContact variables.

Related Information
The snmpdv1 command.

The gated daemon.

Problem Determination for the SNMP Daemon, Trap Processing, Understanding the SNMP Daemon
Logging Facility in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

Understanding the SNMP Daemon in AIX 5L Version 5.2 System Management Guide: Communications
and Networks.

snmpd.boots File

Purpose
Provides the boot and engine ID information for the snmpdv3 agent.

Description
The snmpt.boots file provides the boot and engine ID information for the snmpdv3 agent. The file
contains two elements: an engineID, and, engineBoots, the number of times that the snmpv3 daemon
has been started.

236 Files Reference

Syntax
engineID engineBoots

Where:

engineID
A string of 2 to 64 (must be an even number) hexadecimal digits. The engine identifier uniquely
identifies the agent within an administrative domain. By default, the engine identifier is created
using a vendor-specific formula and incorporates the IP address of the agent. However, a
customer can choose to use any engine identifer that is consistent with the snmpEngineID
definition in RFC 2271 and that is also unique within the administrative domain.

The first 8 hex digits represent a vendor enterprise ID obtained from the Internet Assigned
Numbers Authority (IANA). For IBM, this is 00000002. The last 16 hex digits are determined by
vendor formula. For IBM, this is:

v The first two hex digits indicate the content of the next fourteen hex digits.

v 00 indicates the next six hex digits are zeros, followed by the IP address of the agent in the last
eight hex digits.

v 01 indicates the next six hex digits contain a timestamp, followed by the IP address of the agent
in the last eight hex digits.

For the agent, we always use the one without a timestamp, so the engineID for an SNMP agent at
IP address 9.67.113.10 would be:
00000002 00000000 09 43 71 0A

(Spaces added to improve readability)

engineBoots
The number of times (in decimal) the agent has been restarted since the engineID was last
changed.

Notes:

1. engineID and engineBoots must be specified in order and on the same line.

2. Comments are specified in the file by starting the line with either an asterisk (*) or a pound sign (#).

3. No comments are allowed between engineID and engineBoots values.

4. Only the first non-comment line is read. Subsequent lines are ignored.

Example
The first string of numbers is the engineID, the second string is the number of times the snmpv3 daemon
has been started.
00000002000000000903E65F 0000000003

Files

etc/snmpd.boots Provides boot and engineID information.

Related Information
The snmpdv3 command.

Problem Determination for the SNMP Daemon, Trap Processing, Understanding the SNMP Daemon
Logging Facility in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

Understanding the SNMP Daemon in AIX 5L Version 5.2 System Management Guide: Communications
and Networks.

Chapter 1. System Files 237

snmpdv3.conf File

Purpose
Defines a sample configuration file for the snmpdv3 agent.

Description
An entry must be contained on one line (i.e., the newline character will be treated as the end of an entry)
All of the entry definitions require that all fields on the entry are specified, either with a specific value or a
dash (-) to denote the default value. If an error is detected processing an entry and no appropriate default
value can be assumed, the entry will be discarded. Statements in the file are not order-dependent.
However, if more than one DEFAULT_SECURITY statement is found, the last one in the file is the one that
is used.

General Usage Rules
v All values for an entry must be on the same line.

v All keys need to be regenerated using the pwtokey command in order for these sample entries to
actually be used.

v In this sample: Keys are generated for use with engineID 00000002000000000943714F.

v Authentication keys were generated with password of username + password, such as u1password.

v Privacy keys were generated with password of username + privpass, such as u1privpass.

v Entries defined to use encryption support, which is available only as a separately orderable feature on
the base AIX product, are included below but commented out.

Comments may be entered in the snmpdv3.conf file, with the following restrictions:

v Comments must begin with the pound sign (#) or asterisk (*).

v Comments must begin in column 1. This allows the pound sign and asterisk to be used in names of
users, views, etc.

USM_USER entries
Defines a user for the User-based Security Model (USM). Format is:
userName engineID authProto authKey privProto privKey keyType storageType

where

userName
Indicates the name of the user for the User-based Security Model (USM) and must be
unique to the SNMP agent. The userName is used as the security name for the
User-based Security Model. The contents of this field will be used as the securityName
value for other entries (such as the VACM_GROUP entry) when the securityModel is USM.
Valid value is:

v An octet string of 1 to 32 octets (characters).

There is no default value.

engineID
Indicates the engineID of the authoritative side of the message. The engineID for the AIX
SNMP agent is determined at agent initialization. It is either read in from the
SNMPD.BOOTS file or it is generated automatically and stored in the SNMPD.BOOTS file.
It can be retrieved dynamically by issuing a get request for object snmpEngineID. For
get, getbulk, set, response, and trap messages, the authoritative side is the SNMP
agent. For inform messages, the authoritative side is the notification receiver.

Note: AIX will not support informs. engineID is defined in RFC 2271.
Valid values are:

238 Files Reference

v An octet string of 1 to 32 octets (2 to 64 hex digits).

v A ’-’ (dash) indicates the default value.

The default value is the local SNMP agent’s engineID.

authProto
Indicates the authentication protocol to be used on authenticated messages on behalf of
this user. Valid values are:

v HMAC-MD5 - indicates HMAC-MD5.

v HMAC-SHA - indicates HMAC-SHA.

v none - indicates no authentication is to be done.

v ’-’ (dash) - indicates the default value.

A The default value is HMAC-MD5 (if an authentication key is specified; if no
authentication key is specified, no authentication can be done for messages to/from this
user).

authKey
Indicates the authentication key to be used in authenticating messages on behalf of this
user. This field will be ignored when authProto is specified as none. The keyType field will
indicate whether the key is localized or non-localized. Valid values are:

v An octet string of 16 bytes (32 hex digits) when authProto is HMAC-MD5.

v An octet string of 20 bytes (40 hex digits) when authProto is HMAC-SHA.

v A ’-’ (dash) indicates the default.

The default value is no key, indicating no authentication.

privProto
Indicates the privacy protocol to be used on encrypted messages on behalf of this user.
Privacy can be requested only if authentication is also requested. If authentication is not
requested, this field is ignored. Valid values are:

v DES - indicates CBC-DES (only with the additional encryption product).

v none - indicates no privacy.

v A ’-’ (dash) indicates default.

The default value is no privacy. No encryption will be done on messages to/from this user.

privKey
The privacy key to be used in authenticating messages to and from this user. This field will
be ignored when privProto is specified or defaulted as none. The keyType field will
indicate whether the key is localized or non-localized. Privacy can be requested only if
authentication is also requested. If authentication is not requested, this field is ignored.
The privacy key and the authentication key are assumed to have been generated using
the same authentication protocol (HMAC-MD5 or HMAC-SHA). Valid values are:

v An octet string of 16 bytes (32 hex digits) if the key is localized or if the key is
non-localized and the authProto is HMAC-MD5.

v An octet string of 20 bytes (40 hex digits) if the key is non-localized and the authProto
is HMAC-SHA.

v The ’-’ (dash) indicates default.

Default value is no key, indicating no encryption.

keyType
Indicates whether the keys defined by authKey and privKey are localized or non-localized.
Localized indicates that they have been generated with the appropriate engineID making
the key usable only at one snmpEngine. Non-localized indicates the key may be used at

Chapter 1. System Files 239

different snmpEngines. The authKey and privKey, if both are specified, must both be
localized or both be non-localized. This field is ignored if no authentication or privacy is
requested. Valid values are:

v L - indicates keys are localized.

v N - indicates keys are non-localized.

v ’-’ (dash) indicates default Default value is localized.

storageType
Indicates the type of storage in which this definition is to be maintained. StorageTypes
are defined in RFC1903. Valid values are:

v nonVolatile - indicates the entry definition will persist across reboots of the SNMP
agent, but it can, however, be changed or even deleted by dynamic configuration
requests.

v permanent - indicates the entry definition will persist across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration requests

v readonly - indicates the entry definition will persist across reboots of the SNMP agent;
it cannot be changed or deleted by dynamic configuration requests. readOnly is not
permitted if the authentication protocol is not ’none’ (because keys must be changeable
per RFC 2274 definition of usmUserStorageType) .

v ’-’ (dash) - indicates default.

Default value is non-volatile.

VACM_GROUP entries
Defines a security group (made up of users or communities) for the View-based Access Control
Model (VACM). Format is:
groupName securityModel securityName storageType

where:

groupName
Indicates the group name for the View-based Access Control Model (VACM) and must be
unique to the SNMP agent. Valid value is:

v An octet string of 1 to 32 octets (characters).

There is no default value.

securityModel
Indicates the SNMP security model for this entry. When an SNMP message comes in, the
securityModel together with the securityName are used to determine to which group the
user (or community) represented by the securityName belongs. Valid values are:
’SNMPv1’ - indicates community-based security using SNMPv1 message processing.
’SNMPv2c’ - indicates community-based security using SNMPv2c message processing.
’USM’ - indicates User-based Security Model. A ’-’ (dash) - indicates default. Default value
is ’USM’.

securityName
Indicates a member of this group. For community-based security, it will be a community
name. For the User-based Security Model, it will be a user name. Valid values are:

v An octet string of 1 to 32 octets (characters) indicating a USM userName when
securityModel is USM.

v An octet string of 1 to 32 octets (characters) indicating a community Name when
securityModel is ’SNMPv1’ or ’SNMPv2c’.

There is no default value.

StorageType
As defined above on the USM_USER definition.

240 Files Reference

VACM_VIEW entries
Defines a particular set of MIB data, called a view, for the View-based Access Control Model.
Format is:
viewName viewSubtree viewMask viewType storageType

where:

viewName
Indicates the textual name of the view for the View-based Access Control Model. View
names do not need to be unique. Multiple entries with the same name together define one
view. However, the viewname, together with the subtree object ID, must be unique to an
SNMP engine. Valid values are:

v An octet string of 1 to 32 octets (characters).

There is no default value.

viewSubtree
Indicates the MIB object prefix of the MIB objects in the view. Valid values are:

v An object id of up to 128 sub-OIDs.

v A textual object name (or object prefix).

v A combination of textual object name followed by numeric sub-OIDs. The name must be
found within the compiled MIB or in the logical extension to the MIB, the MIBS.DATA
file.

There is no default value.

viewMask
Indicates a mask that specifies which of the sub-OIDs in the subtree are relevant. See
RFC2275 for a definition of the viewMask. Valid values are:

v A hex string of up to 16 octets (up to 128 bits) where each bit indicates whether or not
the corresponding sub-OID in the subtree is relevant.

v A ’-’ (dash) - indicates default.

The default value is a mask of all (meaning all sub-OIDs are relevant).

viewType
Indicates the type of the view definition. Valid values are:

v included - indicating the MIB objects identified by this view definition are within the
view.

v excluded - indicating the MIB objects identified by this view definition are excluded from
the view.

v A ’-’ (dash) - indicates default.

The default value is included.

storageType
As defined above on the USM_USER definition.

VACM_ACCESS entries
Identifies the access permitted to different security groups for the View-based Access Control
Model.Format is:
groupName contextPrefix contextMatch securityLevel, securityModel
readView writeView notifyView storageType

where:

groupName
Indicates the group name for the View-based Access Control Model (VACM) for which
access is being defined. Valid values are:

Chapter 1. System Files 241

v An octet string of 1 to 32 octets (characters).

There is no default value.

contextPrefix
Indicates an octet string to be compared with the incoming contextName if the value
specified for the contextMatch field is prefix. Note, however, that the SNMP agent in AIX
supports MIB objects in only the local (null) context. Valid values are:

v An octet string of 1 to 32 octets (characters).

v A ’-’ (dash) - indicates default.

The default value is the null context (″″).

contextMatch
Indicates whether the incoming contextName must be compared with (and match exactly)
the entire contextName or whether only the first part of the contextName (up to the
length of the indicated value of the contextPrefix) must match. Valid values are:

v exact - indicates entire contextName must match.

v prefix - indicates only the prefix of the contextName must match.

v A ’-’ (dash) - indicates the default.

The default value is exact.

securityLevel
Indicates the securityLevel for this entry. Used in determining which access table entry to
use. Valid values are:

v noAuthNoPriv or ’none’ - indicates no authentication or privacy protocols applied.

v AuthNoPriv or ’auth’ - indicates authentication protocols applied but no privacy
protocol is applied.

v AuthPriv or ’priv’ - indicates both authentication and privacy protocols applied (If the
additional encryption pack is not applied, this level can be configured but cannot
actually be used).

v A ’-’ (dash) - indicates default.

The default value is noAuthNoPriv.

securityModel
Indicates the SNMP security model for this entry. Used in determining which access table
entry to use. Valid values are:

v SNMPv1 - indicates community-based security using SNMPv1 message processing.

v SNMPv2c - indicates community-based security using SNMPv2c message processing.

v USM - indicates User-based Security Model.

v A ’-’ (dash) - indicates default.

The default value is USM.

readView
Indicates the name of the view to be applied when read operations (get, getnext,
getbulk) are performed under control of this entry in the access table. Valid values are:

v An octet string of 1 to 32 octets (characters) identifying a view defined by a
VACM_VIEW definition.

v A ’-’ (dash) - indicates default.

The default value is no view; no readView defined for members of this group.

writeView
Indicates the name of the view to be applied when write operations (set) are performed
under control of this entry in the access table. Valid values are:

242 Files Reference

v An octet string of 1 to 32 octets (characters) identifying a view defined by a
VACM_VIEW definition.

v A ’-’ (dash) - indicates default.

The default value is no view; no writeView defined for members of this group.

notifyView
Indicates the name of the view to be applied when notify operations (traps or informs)
are performed under control of this entry in the access table. Valid values are:

v An octet string of 1 to 32 octets (characters) identifying a view defined by a
VACM_VIEW definition.

v A ’-’ (dash) - indicates default.

Default value is no view; no notifyView defined for members of this group

NOTIFY entries
Identifies management targets to receive notifications. Format is:
notifyName tag type storageType

where:

notifyName
Is a locally unique identifier for this notify definition. Valid values are:

v An octet string of 1 to 32 octets (characters)

There is no default value.

tag Indicates a tag value to be compared with the values in the tagLists defined in the
snmpTargetAddrTable (either on TARGET_ADDRESS entries or via dynamic
configuration). For each match of this tag with a value in the tagLists defined in the
snmpTargetAddrTable), a notification may be sent. See RFC2273 for a definition of
SnmpTagValue. Valid values are:

v An octet string of 1 to 255 octets (characters). No delimiters are allowed.

v A ’-’ indicates the default.

Default value is no tag value.

type Indicates which type of notification should be generated. Valid values are:

v trap - an unconfirmed notification; notification sent with trap PDUs.

v A ’-’ (dash) - indicates the default.

Default value is trap. inform type traps are not supported on AIX

TARGET_ADDRESS
Defines a management application’s address and parameters to be used in sending notifications.
Format is:
targetAddrName tDomain tAddress tagList targetParams timeout retryCount storageType

where:

targetAddrName
Indicates a locally unique identifier for this target address definition. Valid values are:

v An octet string of 1 to 32 octets (characters).

There is no default value.

tDomain
Indicates the transport type of the address indicated by tAddress. Valid values are:

v UDP - for UDP datagrams.

Chapter 1. System Files 243

v A ’-’ (dash) - for the default value.

Default value is UDP.

tAddress
Indicates the transport address to which notifications are sent. Valid values are:

v A 1- to 21- octet string indicating the IP address and optionally the UDP port.

Form is
ip_address:port

IP address must be specified as a.b.c.d where a, b, c and d are in the range of 0 to 255.
The port, if specified, must be in the range of 1 to 65535. Example:
9.37.84.48:162

The IP address may not be defaulted, but the port, if not specified, will default to 162.

tagList
Indicates a list of tag values which are used to select target addresses for a notification
operation. The AIX implementation will support, via the configuration file, only one tag in a
tagList. Because informs are not supported, there is no particular value in supporting
multi-tag tagLists. RFC2273 contains the complete definition of SnmpTagList and
SnmpTagValue. The AIX implementation accepts as valid values:

v An octet string of 1 to 255 octets (characters). No delimiters are allowed.

v ’-’ indicates the default.

The default value is an empty list.

targetParams
Indicates a TARGET_PARAMETERS paramsName value that indicates which security
and message processing is to be used in sending notifications to this target. Valid values
are:

v An octet string of 1 to 32 octets (characters)

There is no default value.

timeout
Indicates the expected maximum round trip time for communicating with this target
address (in 1/100ths of a second). timeout is used only for inform type notifications; it is
not used for traps. Since only traps are supported on AIX, only the default value is
accepted. Valid values are:

v An integer in the range of (0..2147483647) specifying the number of hundredths of a
second for the timeout. Note, however, that this value is not used for notifications of
type trap.

v ’-’ (dash) indicating the default.

Default value is 0, meaning no timeout value.

retryCount
Indicates the number of retries to be attempted when a response is not received for a
generated message. retryCount is used only for inform type notifications; it is not used for
traps. Since only traps are supported on AIX, only the default value is accepted. Valid
values are:

v An interger in the range of (0 to 255), indicating the number of retries to be attempted.
Note, however, that this value is not used for notifications of type trap.

v A ’-’ (dash) indicating the default.

Default value is 0, meaning no retry.

244 Files Reference

TARGET_PARAMETERS
Defines the message processing and security parameters to be used in sending notifications to a
particular management target. Format is:
paramsName mpModel securityModel securityName securityLevel storageType

where:

paramsName
A locally unique identifier for this target parameters definition. Valid values are:

v An octet string of 1 to 32 octets (characters).

There is no default value.

mpModel
The message processing model to be used in sending notifications to targets with this
parameter definition. Valid values are:

v SNMPv1 - indicates SNMPv1.

v SNMPv2c - indicates SNMPv2c.

v SNMPv3 - indicates SNMPv3.

There is no default value.

securityModel
Indicates the security model to be used in sending notifications to targets with this
parameter definition. Valid values are:

v SNMPv1 indicates SNMPv1.

v SNMPv2c Indicates SNMPv2c.

v USM indicates User-based Security Model.

There is no default value.

securityName
Ientifies the principal (user or community) on whose behalf SNMP messages will be
generated using this parameter definition. For community based security, this would be a
community name. For USM, this would be a user name. Valid values are:

v An octet string of 1 to 32 octets (characters).

There is no default value.

securityLevel
Idicates the security level to be used in sending notifications to targets with this parameter
definition. Valid values are:

v noAuthNoPriv or none - indicates no authentication or privacy. protocols applied.

v AuthNoPriv or auth - indicates authentication protocols applied but no privacy protocol
is applied.

v AuthPriv or priv - indicates both authentication and privacy protocols applied. (If the
additional encryption pack is not applied, this level can be configured, but not actually
used.)

v ’-’ (dash) - indicates default.

Default value is noAuthNoPriv.

COMMUNITY
Defines a community for community-based security. Format is:
communityName securityName securityLevel netAddr netMask storageType

where:

Chapter 1. System Files 245

communityName
Indicates a community name for community-based security (SNMPv1 or # SNMPv2c).
Valid values are:

v An octet string of 1 to 32 octets (characters).

There is no default value.

securityName
Indicates a securityName defined for this communityName. The securityName is the
more generic term for the principal (user or community) for which other entries, such as
VACM_GROUP and TARGET_PARAMETERS, are defined. Typically, the securityName
would match communityName or, at least, there would be a one-to-one correspondence
between securityName and communityName. (Until the community MIB support is
implemented, the community name must match the securityName exactly.) Valid values
are:

v An octet string of 1 to 32 octets (characters).

v ’-’ (dash) - indicates default.

The default value is securityName equal to the specified communityName.

securityLevel
Indicates the security level to be applied when processing incoming or outgoing messages
with this community name.

Note: When the communityMIB is implemented, authNoPriv will also be a valid level of
security, but at the moment, it will be rejected because there is no way to store a
securityLevel to be associated with a communityName. When that happens, the
following will be added to the list of valid values below:

v authNoPriv or auth - indicates authentication protocols applied.

Note that no additional authentication checking is done by specifying auth.
Authentication still involves verifying that the community name is being used by an
IP address for which it has been defined and using the views defined for that entry.
However, allowing the specification of auth here does allow the system
administrator to define a different set of views to be used if the same community
name is defined with two different securityNames (each with a different
securityLevel)

Valid values are:

v noAuthNoPriv or none - indicates no authentication or privacy protocols applied.

v ’-’ (dash) - indicates default.

Default value is noAuthNoPriv. Encryption is not supported on SNMPv1/SNMPv2c
messages.

netAddr
A network IP address in dotted decimal notation indicating the range of addresses for
which this community name may be used. Valid values are:

v A network address in the form of a.b.c.d, where a, b, c and d are in the range of 0 to
255. (Note, not all four octets are required. Also, 255.255.255.255 is not a valid network
address.)

There is no default value.

netMask
An IP address mask to be logically ANDed with the origin address of the incoming SNMP
message. If the resulting value equals the value specified for netAddr, the incoming
message is accepted. Valid values are:

246 Files Reference

v A network address in the form of a.b.c.d, where a, b, c and d are in the range of 0 to
255. (Not all four octets are required.)

There is no default value.

storageType
As defined above on the USM_USER definition (Note, until the community MIB is
implemented, storage type values other than readOnly will be treated as readOnly; i.e.,
they cannot be changed dynamically.)

DEFAULT_SECURITY
Identifies the default security posture to be configured for the SNMP agent; additional security
definitions defined by the use of the preceding eight entry definition types augment any default
security configurations defined as a result of the DEFAULT_SECURITY statement. Format is:
securityPosture password privacy

where:

securityPosture
Indicates the default security posture to be configured for the SNMP agent, as defined by
Appendix A of RFC 2275 (and outlined below). Valid values are:

v minimum-secure - indicates the SNMP agent will be configured with the least secure
default configurations

v semi-secure- indicates the SNMP agent will be configured with moderately secure
default configurations.

v no-access - indicates the SNMP agent will be configured with no default configurations.

The default value is no-access.

password
Indicates the password to be used to generate authentication and privacy keys for user
’initial’ In the case that no-access is specified as the securityPosture, this keyword is
ignored. Valid values are:

v An octet string of 8 to 255 octets (characters).

v ’-’ (dash) - indicating the default.

Default value is no password. Default only accepted if securityPosture is no-access.

privacy
Indicates whether or not encryption is to be supported for messages on behalf of user
’initial’. Valid values are:

v Yes - indicates privacy is supported for user ’initial’ (only with the additional encryption
product).

v No - indicates privacy is not supported for user initial.

v ’-’ (dash) - indicates default value.

Default value is no. If no-access is selected as the security posture, this value will be
ignored.

Default security definitions based on the selected security posture:

no-access
No initial configurations are done.

semi-secure
The default (null) context is configured. If privacy is not requested, a default user is configured as
if the following USM_USER entry had been specified. USM_USER initial- HMAC-MD5 none - N
permanent where ### indicates the key generated from the password specified on the
DEFAULT_SECURITY entry. If privacy is requested (and available with the additional encryption

Chapter 1. System Files 247

product), a default user is configured as if the following USM_USER entry had been specified:
USM_USER initial - HMAC-MD5 ### DES ### N permanent where ### indicates the key
generated from the password specified on the DEFAULT_SECURITY entry.

A default group is configured as if the following VACM_GROUP entry had been specified:

VACM_GROUP initial USM initial readOnly. Three default access entries are configured as if the following
VACM_ACCESS entries had been specified:

VACM_ACCESS initial - exact none. USM restricted - restricted readOnly.
VACM_ACCESS initial - exact auth. USM internet internet internet readOnly
VACM_ACCESS initial - exact priv USM internet internet internet readOnly
Two default MIB views are configured as if the following
VACM_VIEW entries .had been specified:
VACM_VIEW internet internet - included readOnly
VACM_VIEW restricted system - included readOnly
VACM_VIEW restricted snmp - included readOnly
VACM_VIEW restricted snmpEngine - included readOnly
VACM_VIEW restricted snmpMPDStats - included readOnly
VACM_VIEW restricted usmStats - included readOnly

minimum-secure
The default (null) context is configured. If privacy is not requested, a default user is configured as
if the following USM_USER entry had been specified. : USM_USER initial - HMAC-MD5 ### none
- N permanent where ### indicates the key generated from the password specified on the
DEFAULT_SECURITY entry.

If privacy is requested (and available with the additional encryption product) , a default user is configured
as if the following USM_USER entry had been specified: USM_USER initial - HMAC-MD5 ### DES ### N
permanent where ### indicates the key generated from the password specified on the
DEFAULT_SECURITY entry.

A default group is configured as if the following VACM_GROUP entry had been specified: VACM_GROUP
initial USM initial readOnly.

Three default access entries are configured as if the following VACM_ACCESS entries had been specified:
VACM_ACCESS initial - exact none USM restricted - restricted readOnly
VACM_ACCESS initial - exact auth USM internet internet internet readOnly
VACM_ACCESS initial - exact priv USM internet internet internet

readOnly
Two default MIB views are configured as if the following VACM_VIEW entries had been specified:
VACM_VIEW internet internet - included readOnly
VACM_VIEW restricted internet - included readOnly

logging
Directs logging from the configuration file. Format is:
logging file=</path/filename> enabled|disabled
logging size=<limit> level=<debug level>

There can be no white spaces around the ″=″ in the file, size and level fields where
</path/filename> specifies the complete path and filename of the log file. Valid values are: An octet
string of 1 to 255 octets (characters). Default value is /var/tmp/snmpdv3.log enabled|disabled.
Valid values are: ’enabled’ - turns logging on; ’disabled’ - turns logging off. Default value is
’enabled’.

<limit>
Specifies the maximum size in bytes of the specified logfile Valid values are: ’0’ - meaning
unlimited. An unsigned integer number in the unit of byte. Default value is 0.

248 Files Reference

<debug level>
specifies the logging level. Valid values are: # 0, 1, 2, 3, or 4 Default value is 0.
logging file=/usr/tmp/snmpdv3.log enabled
logging size=0 level=0

smux entry
Sets the smux peer configuration parameters # Format is:
smux <client OIdentifier> <password> <address> <netmask>

Fields to the right of <client OIdentifier> are optional, with the limitation that no fields to the left of
a specified field are omitted. Where <client OIdentifier> defines the unique object identifer in
dotted decimal notation of the SMUX peer client. Valid values are: An unique object identifer in
dotted decimal notation up to 128 sub-OIDs of that SMUX peer. There is no default value.

<password>
Specifies the password that snmpd requires from the SMUX peer client to authenticate the SMUX
association. If no password is specified, there is no authentication for the SMUX association. Valid
values are: An octet string of 8 to 255 octets (characters). Default value is null string

<address>
Identifies the host on which the smux peer client is executing. Valid values are: A host name of 1
to 80 characters or IPv4 address. IP address must be specified as a.b.c.d where a, b, c and d are
in the range of 0 to 255. Default value is 127.0.0.1

<netmask>
Specifies the network mask. Valid values are: network mask must be specified as a.b.c.d where a,
b, c and d are in the range of 0 to 255. Default value is 255.255.255.255.
smux 1.3.6.1.4.1.2.3.1.2.1.2 gated_password # gated

Any SNMP agent configuration entries added by dynamic configuration (SET) requests get added to the
end of the snmpdv3.conf file.

Related Information
The snmpdv3, clsnmp, pwtokey, and pwchange commands.

The /etc/clsnmp.conf file.

Problem Determination for the SNMP Daemon, Trap Processing, Understanding the SNMP Daemon
Logging Facility in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

Understanding the SNMP Daemon in AIX 5L Version 5.2 System Management Guide: Communications
and Networks.

snmpmibd.conf File

Purpose
Defines the configuration parameters for snmpmibd dpi2 sub-agent.

Description
The snmpmibd.conf file provides the configuration information for the snmpmibd dpi2 sub-agent. This
file can be changed while the snmpmibd dpi2 sub-agent is running. If the refresh command is issued,
the snmpmibd dpi2 sub-agent will reread this configuration file. The snmpmibd dpi2 sub-agent must be
under System Resource Control (SRC) for the refresh command to force the reread. To perform a reread,
as root user, run:
refresh -s snmpmibd

Chapter 1. System Files 249

Keywords
The directives are specified in the form of <keyword>=<value>. The keyword is case-insensitive. The value
passed is also case-sensitive.

logFilename
The name of the most recent log file. Less recent log files have the number 1 to (n - 1) appended
to their names. The larger the number, the less recent the file.

logFileSize
The size of log files in K bytes. Maximum size of a log file. When the size of the most recent log
file reaches this value, it is renamed and a new log file is created.

numLogFiles
The number of log files desired. The maximum value for numLogFiles is 4. A new file is created
when the size of the log file is equal or more than the size specified by the keyword logFileSize.
When the number of log files reaches the numLogFiles the log files start rotating.

tracelevel
The tracing/debug level.

8 = DPI level 1
16 = DPI level 2
32 = Internal level 1
64 = Internal level 2
128 = Internal level 3

Add the numbers for multiple trace levels

Example
logFileName=/usr/tmp/snmpmibd.log
logFileSize=0
numLogFiles=0
tracelevel=0

File

/etc/snmpmibd.conf Defines the configuration parameters for snmpmibd dpi2 sub-agent.

Related Information
The snmpmibd and refresh commands.

The snmpdv3.conf file documentation.

socks5c.conf File

Purpose
Contains mappings between network destinations and SOCKSv5 servers.

Description
The /etc/socks5c.conf file contains basic mappings (between network destinations, hosts or networks,
and SOCKSv5 servers) to use when accessing network destinations. It is an ASCII file that contains
records for server mappings. Text that follows a pound character (#) is ignored until the end of the line.
Each record is on a single line in the following format:

destination [/prefixlength] server [:port]

250 Files Reference

You must separate the fields with whitespace. Records are separated by new line characters. The fields
and modifiers in a record have the following values:

destination Specifies a network destination. The destination variable may be either a name fragment or a
numeric address (with optional prefixlength). If destination is an address, it may be either
IPv4 or IPv6.

prefixlength If specified, indicates the number of leftmost (network order) bits of an address to use when
comparing to this record. It is valid only if destination is an address. If not specified, all bits
are used in comparisons.

server Specifies the SOCKSv5 server associated with destination. If server is NONE (must be all
uppercase), this record indicates that target addresses matching destination should not use
any SOCKSv5 server; instead, it should be contacted directly.

port If specified, indicates the port to use when contacting server.

If a name fragment destination is present in /etc/socks5c.conf, all target addresses in SOCKSv5
operations will be converted into hostnames for name comparison (in addition to numeric comparisons with
numeric records). The resulting hostname is considered to match if the last characters in the hostname
match the specified name fragment.

When using this configuration information to determine the address of the appropriate SOCKSv5 server for
a target destination, the best match is used. The best match is defined as follows:

v If destination is numeric, the most bits in the comparison (i.e., largest prefixlength) are used.

v If destination is a name fragment, the most characters in the name fragment are.

When both name fragment and numeric addresses are present, all name fragment entries are better than
numeric address entries.

The following two implicit records are assumed as defaults for all destinations not specified in
/etc/socks5c.conf.:
0.0.0.0/0 NONE #All IPv4 destinations; no associated server.

::/0 NONE #All IPv6 destinations; no associated server.

SOCKS5C_CONFIG Environment Variable
The SOCKS5C_CONFIG environment variable enables the SOCKS library. To enable the library and to
indicate that it use the socks5c.conf file, you must set and export the variable to the pathname of the file.
The default value of the variable is /etc/socks5c.conf. However, you can use a different configuration file
by setting SOCKS5C_CONFIG to the pathname of that file. If you do not set this variable, then SOCKS is
not used and traditional network operations occur instead.

Security
Access Control: This file should grant read (r) access to all users and grant write (w) access only to the
root user.

Examples
#Sample socks5c.conf file

9.0.0.0/8 NONE #Direct communication with all hosts in the 9 network.

129.35.0.0/16 sox1.austin.ibm.com

ibm.com NONE #Direct communication will all hosts matching "ibm.com" (e.g. "aguila.austin.ibm.com")

Related Information
The socks5tcp_connect subroutine.

Chapter 1. System Files 251

space File

Purpose
Describes the format of a disk space requirements file.

Description
The space file is an ASCII file that gives information about disk space requirements for the target
environment. It defines the maximum additional space a package requires (for example, for files that are
installed with the installf command).

The generic format of a line in this file is:
pathname blocks inodes

Definitions for the fields are as follows:

pathname Specifies a directory name which may or may not be the mount point for a filesystem. Names that do
not begin with a slash (/) indicate relocatable directories.

blocks Defines the number of disk blocks required for installation of the files and directory entries contained
in the pathname (using a 512-byte block size).

inodes Defines the number of inodes required for installation of the files and directory entries contained in
the pathname.

Examples
extra space required by config data which is
dynamically loaded onto the system
data 500 1

.srf File

Purpose
Contains all the text components with hypertext information embedded.

Description

The .srf file is one of several intermediate files produced for each document by InfoCrafter. The .srf file is
a binary file that contains all the text components with hypertext link information embedded.

Files

.srf Contains text components with embedded linking information.

Related Information
The .fig file.

streamcmds File

Purpose
Contains auditstream commands.

252 Files Reference

Description
The /etc/security/audit/streamcmds file is an ASCII template file that contains the stream mode
commands that are invoked when the audit system is initialized. The path name of this file is defined in the
stream stanza of the /etc/security/audit/config file.

This file contains command lines, each of which is composed of one or more commands with input and
output that may be piped together or redirected. Although the commands usually are one or more of the
audit system commands (auditcat, auditpr, and, auditselect), this is not a requirement. The first
command, however, should be the auditstream command.

When the audit system is initialized, the audit start command runs each command. No path name
substitution is performed on $trail or $bin strings in the commands.

Security
Access Control: This file should grant read (r) access to the root user and members of the audit group,
and write (w) access to the root user only.

Examples
1. To read all records from the audit device, select and format those that involve unsuccessful events,

and print them on a line printer, include the following in the /etc/security/audit/streamcmds file:
/usr/sbin/auditstream | /usr/sbin/auditselect -e \
"result == FAIL" |/usr/sbin/auditpr -v > /dev/lpr0

This command is useful for creating a hard-copy trail of system security violations.

2. To read all records from the audit device that have audit events in the authentication class, format
them, and display them on the system console. Include the following in the
/etc/security/audit/streamcmds file:
/usr/sbin/auditstream -c authentication | \
/usr/sbin/auditpr -t0 -v > /dev/console

This command allows timely auditing of user authentication events.

Files

/etc/security/audit/streamcmds Specifies the path to the file.
/etc/security/audit/config Contains audit system configuration information.
/etc/security/audit/events Contains the audit events of the system.
/etc/security/audit/objects Contains audit events for audited objects (files).
/etc/security/audit/bincmds Contains auditbin backend commands.

Related Information
The audit command, auditcat command, auditpr command, auditselect command.

Setting Up Auditing in AIX 5L Version 5.2 System Management Guide: Operating System and Devices.

Auditing Overview, Security Administration in AIX 5L Version 5.2 System Management Concepts:
Operating System and Devices.

sysck.cfg File

Purpose
Contains file definitions for the trusted computing base.

Chapter 1. System Files 253

Description

Note: The sysck command does not update this file. It is only updated by the tcbck command.

The /etc/security/sysck.cfg file is a stanza file that contains definitions of file attributes for the trusted
computing base. The name of each stanza is the pathname of a file, followed by a : (colon). Attributes are
in the form Attribute=Value. Each attribute is ended with a new-line character, and each stanza is ended
with an additional new-line character.

Each stanza can have one or more of the following attributes, and must have the type attribute:

acl Defines the access control list of the file, including the SUID, SGID, and SVTX bits. The value is the
Access Control List, in the format described in Access Control Lists in AIX 5L Version 5.2 System
User’s Guide: Operating System and Devices

class Defines a group of files for checking, deleting, or updating. A file can be in more than one class. The
value is the ClassName [ClassName]parameter.

checksum Defines the checksum, as computed with the sysck checksum program. This attribute is valid only
for regular files. The value is the output of the sum -r command, including spaces.

group Defines the group name or numeric group ID, expressed as the GroupName or GroupID parameter.
links Defines the absolute paths that have hard links to this object. The value must be an absolute

pathname, expressed as the Path, [Path ...] parameter.
mode Defines the file mode, expressed as the Flag, Flag ..., PBits parameters. The Flag parameter can

contain the SUID, SGID, SVTX, and tcb mode attributes. The Pbits parameter contains the base file
permissions, expressed either in octal form, such as 640, or symbolic form, such as rw-,r—, r—. The
order of the attributes in the Flag parameter is not important, but base permissions must be the last
entry in the list. The symbolic form may include only read (r), write (w), and execute (x) access. If the
acl attribute is defined in the stanza, the SUID, SGID, and SVTX mode attributes are ignored. For a
typical mode specification, see the Examples section.

owner Defines the name or numeric ID of the file owner, expressed as the OwnerName or the OwnerID
parameter.

size Defines the size of the file in bytes. This attribute is valid only for regular files. The value is a decimal
number.

type The type of object. Select one of the following keywords: FILE, DIRECTORY, FIFO, BLK_DEV,
CHAR_DEV, or MPX_DE.

Stanzas in this file can be created and altered with the sysck command. Direct alteration by other means
should be avoided, since other accesses may not be supported in future releases.

Attributes that span multiple lines must be enclosed in double quotes and have new line characters
entered as \n.

Since device configuration and the sysck.cfg database are independent and are not integrated, there is
no automatic addition of syck.cfg entries when a device is added. Hence, given the automatic
configuration of devices at boot time, it is the responsibility of the administrator to maintain
/etc/security/sysck.cfg. This is also true in the case of mirrored rootvg, since /dev/ipldevice gets relinked
dynamically to the other disk when the system is rebooted off the mirrored disk.

Security
Access Control: This file should grant read (r) access to the root user and members of the security group,
and write (w) access to the root user only. General users do not need read (r) access.

Examples
1. A typical stanza looks like the following example for the /etc/passwd file:

254 Files Reference

/etc/passwd:
type = file
owner = root
group = passwd
mode = TCB,640

2. A typical mode specification looks like the following example for a program that is part of the trusted
computing base, that is a trusted process, and that has the setuid attribute enabled:
mode = SUID,TP,TCB,rwxr-x---

OR
mode = SUID,TP,TCB,750

Files

/etc/security/sysck.cfg Specifies the path to the system configuration data base.

Related Information
The grpck command, installp command, pwdck command, sum command, tcbck command, usrck
command.

Access Control Lists in AIX 5L Version 5.2 System User’s Guide: Operating System and Devices

Security Administration in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices.

Temporary (TM.*) Files for BNU

Purpose
Store data files during transfers to remote systems.

Description
The Basic Networking Utilities (BNU) temporary (TM.*) files store data files during transfers to remote
systems.

After a data (D.*) file is transferred to a remote system by the uucico daemon, the BNU program places
the file in a subdirectory of the BNU spooling directory named /var/spool/uucp/SystemName. The
SystemName directory is named for the computer transmitting the file. The BNU program creates a
temporary data file to hold the original data file.

The full path name of the temporary data file is a form of the following:

/var/spool/uucp/SystemName/TM.xxPID.000

where the SystemName directory is named for the computer sending the file, and TM.xxPID.000 is the
name of the file; for example, TM.00451.000. The PID variable is the process ID of the job.

The uucico daemon normally deletes all temporary files when they are no longer needed. However,
temporary files can also be removed using the uucleanup command with the -T flag.

Files

/etc/uucp/Systems file Describes accessible remote systems.

Chapter 1. System Files 255

/var/spool/uucp/SystemName directory Contains BNU command, data, and execute
files.

/var/spool/uucppublic/* directories Contain files that BNU has transferred.
/var/spool/uucp/SystemName/D.* files Contain data to be transferred.

Related Information
The uucp command, uucleanup command, uudemon.cleanu command, uupick command, uuto
command, uux command.

The uucico daemon.

Understanding the BNU Daemons, Understanding the BNU File and Directory Structure, Using BNU
Maintenance Commands in AIX 5L Version 5.2 System Management Guide: Communications and
Networks.

Workload Manager .times File

Purpose
Defines time ranges for configurations in a configuration set.

Description
Time ranges will appear in the configuration set files. These files are attribute files where the stanzas are
the configuration names, and the only attribute is the time range. No default record is allowed (useless and
confusing). A missing time range attribute stands for the default time range, which means always outside
the other defined time ranges if any.

Time Coherency Checks
It is mandatory that the time ranges do not overlap within a single file. In doing so, it would not be possible
to find which is the right config to use. The union of all time ranges must cover all times. The default time
range will help for ensuring this.

Note: It might not be possible to make changes to a correct file that result in another correct file without
having intermediate incorrect file contents from this coherency point of view, due to commands or
SMIT making one change at a time. For this reason, the content of the file is copied to .running at
Workload Manager explicit update time.

Syntax
This syntax applies to configuration set files and to confsetcntrl, a new command in AIX 5.2, wherever a
time range is given. SMIT and Web-based System Manager provide a more convenient way to select or
enter a time range. A time range is specified as a range of days with 0 representing Sunday and 6
representing Saturday, and in 24 hour format, with hours and minutes specified. A default time range,
which will include all time ranges not otherwise specified, is indicated by a single minus sign (-).
Specification:

<time-range>: -
<time-range>: <weekday-range>,<time-of-the-day-range>
<time-range>: <weekday-range>
<time-range>: <time-of-the-day-range>
<weekday-range>: <weekday>-<weekday>
<weekday-range>: <weekday>
<weekday>: 0 through 6 for Sunday through Saturday

256 Files Reference

<time-of-the-day-range>: <time-of-the-day>-<time-of-the-day>
<time-of-the-day>: <hour>.<minute>
<hour>: 0 through 23
<minute>: 0 through 59

Notes:

1. A colon is accepted to seperate hours and minutes instead of dot, provided that the field is quoted
(colon has a special meaning in attributes file format).

2. Value 24 is correct for ending <hour> if <minute> is null.

3. For convenience and for command parameters only, <weekday> may be specified with the name or
the abbreviation of the day of the week as they appear in the output of locale day or locale abday
commands, taking into account the current user locale (LC_TIME). This is not appropriate for attribute
files which do not have a defined locale.

Example
conf1: time = -

conf2: time = "1-5,8:00-17:00"
conf2: time = "6-0,14:00-17:00"
conf3: time = "22:00-6:00"

Files

$HOME/.time Specifies the complete path name of the .time file.

Related Information
The confsetcntrl and lswlmconf commands.

updaters File for NIS

Purpose
Updates NIS maps.

Description
The /var/yp/updaters file is a makefile used for updating NIS maps. NIS maps can only be updated in a
secure network; that is, one that has a publickey file. Each entry in the file is a make target for a
particular NIS map. For example, if there is an NIS map named passwd.byname that can be updated, there
should be a make target named passwd.byname in the updaters file with the command to update the file.

The information necessary to make the update is passed to the update command through standard input.
All items are followed by a new line except for actual bytes of key and actual bytes of data. The
information passed is described below:

v Network name of client wishing to make the update (a string)

v Kind of update (an integer)

v Number of bytes in key (an integer)

v Actual bytes of key

v Number of bytes in data (an integer)

v Actual bytes of data

After getting this information through standard input, the command to update the map determines whether
the user is allowed to make the change. If the user is not allowed, the update command exits with the
YPERR_ACCESS status. If the user is allowed to make the change, the command should make the

Chapter 1. System Files 257

change and exit with a status of 0. If any errors exist that may prevent the updaters file from making the
change, the command should exit with the status that matches a valid NIS error code described in the
rpcsvc/ypclnt.h file.

Related Information
The publickey file.

The update command.

The ypupdated daemon.

Checklist for Administering Secure NFS, Network File System (NFS) Overview for System Management,
Network Information Service (NIS) Overview for System Management in AIX 5L Version 5.2 System
Management Guide: Communications and Networks.

user File

Purpose
Contains extended user attributes.

Description
The /etc/security/user file contains extended user attributes. This is an ASCII file that contains attribute
stanzas for users. The mkuser command creates a stanza in this file for each new user and initializes its
attributes with the default attributes defined in the /usr/lib/security/mkuser.default file.

Each stanza in the /etc/security/user file is identified by a user name, followed by a : (colon), and
contains comma-separated attributes in the Attribute=Value form. If an attribute is not defined for a user,
either the default stanza or the default value for the attribute is used. You can have multiple default
stanzas in the /etc/security/group file. A default stanza applies to all of the stanzas that follow, but does
not apply to the stanzas preceding it.

Each attribute is ended by a new-line character, and each stanza is ended by an additional new-line
character. For an example of a stanza, see the Examples section.

Attributes
If you have the proper authority, you can set the following user attributes:

account_locked Indicates if the user account is locked. Possible values include:

true The user’s account is locked. The values yes, true, and always are equivalent.
The user is denied access to the system.

false The user’s account is not locked. The values no, false, and never are
equivalent. The user is allowed access to the system. This is the default value.

admin Defines the administrative status of the user. Possible values are:

true The user is an administrator. Only the root user can change the attributes of
users defined as administrators.

false The user is not an administrator. This is the default value.
admgroups Lists the groups the user administrates. The Value parameter is a comma-separated list

of group names.
auditclasses Lists the user’s audit classes. The Value parameter is a list of comma-separated

classes, or a value of ALL to indicate all audit classes.

258 Files Reference

auth1 Lists additional mandatory methods for authenticating the user. The auth1 attribute has
been deprecated and may not be supported in a future release. The SYSTEM attribute
should be used instead. The authentication process will fail if any of the methods
specified by the auth1 attribute fail.

The Value parameter is a comma-separated list of Method;Name pairs. The Method
parameter is the name of the authentication method. The Name parameter is the user
to authenticate. If you do not specify a Name parameter, the name of the user being
authenticated is used.

Valid authentication methods for the auth1 and auth2 attributes are defined in the
/etc/security/login.cfg file.

auth2 Lists additional optional methods for authenticating the user. The auth2 attribute has
been deprecated and may not be supported in a future release. The SYSTEM attribute
should be used instead. The authentication process will not fail if any of the methods
specified by the auth2 attribute fail.

The Value parameter is a comma-separated list of Method;Name pairs. The Method
parameter is the name of the authentication method. The Name parameter is the user
to authenticate. If you do not specify a Name parameter, the name of the user being
authenticated is used.

daemon Indicates whether the user specified by the Name parameter can execute programs
using the src (system resource controller) daemon. Possible values are:

true The user can initiate src sessions. This is the default.

false The user cannot initiate src sessions.
dce_export Allows the DCE registry to overwrite the local user information with the DCE user

information during a DCE export operation. Possible values are:

true Local user information will be overwritten.

false Local user information will not be overwritten.
dictionlist Defines the password dictionaries used by the composition restrictions when checking

new passwords.

The password dictionaries are a list of comma-separated, absolute path names that are
evaluated from left to right. All dictionary files and directories must be write-protected
from all users except root. The dictionary files are formatted one word per line. The
word begins in the first column and terminates with a new-line character. Only 7-bit
ASCII words are supported for passwords. If text processing is installed on your
system, the recommended dictionary file is the /usr/share/dict/words file.

expires Identifies the expiration date of the account. The Value parameter is a 10-character
string in the MMDDhhmmyy form, where MM = month, DD = day, hh = hour, mm =
minute, and yy = last 2 digits of the years 1939 through 2038. All characters are
numeric. If the Value parameter is 0, the account does not expire. The default is 0. See
the date command for more information.

histexpire Designates the period of time (in weeks) that a user cannot reuse a password. The
value is a decimal integer string. The default is 0, indicating that no time limit is set.

histsize Designates the number of previous passwords a user cannot reuse. The value is a
decimal integer string. The default is 0.

login Indicates whether the user can log in to the system with the login command. Possible
values are:

true The user can log in to the system. This is the default.

false The user cannot log in to the system.

Chapter 1. System Files 259

logintimes Specifies the times, days, or both, the user is allowed to access the system. The value
is a comma-separated list of entries of the following form:

[!]:time-time
-or-

[!]day[-day][:time-time]
-or-

[!]date[-date][:time-time]

The day variable must be one digit between 0 and 6 that represents one of the days of
the week. A 0 (zero) indicates Sunday and a 6 indicates Saturday.

The time variable is 24-hour military time (1700 is 5:00 p.m.). Leading zeroes are
required. For example, you must enter 0800, not 800. The time variable must be four
characters in length, and there must be a leading colon (:). An entry consisting of only a
time specification applies to every day. The start hour of a time value must be less than
the end hour.

The date variable is a four digit string in the form mmdd. mm represents the calendar
month and dd represents the day number. For example 0001 represents January 1. dd
may be 00 to indicate the entire month, if the entry is not a range, or indicating the first
or last day of the month depending on whether it appears as part of the start or end of
a range. For example, 0000 indicates the entire month of January. 0600 indicates the
entire month of June. 0311-0500 indicates April 11 through the last day of June.

Entries in this list specify times that a user is allowed or denied access to the system.
Entries not preceded by an ! (exclamation point) allow access and are called ALLOW
entries. Entries prefixed with an ! (exclamation point) deny access to the system and
are called DENY entries. The ! operator applies to only one entry, not the whole
restriction list. It must appear at the beginning of each entry.

loginretries Defines the number of unsuccessful login attempts allowed after the last successful
login before the system locks the account. The value is a decimal integer string. A zero
or negative value indicates that no limit exists. Once the user’s account is locked, the
user will not be able to log in until the system administrator resets the user’s
unsuccessful_login_count attribute in the /etc/security/lastlog file to be less than the
value of loginretries. To do this, enter the following:

chsec -f /etc/security/lastlog -s username -a \
unsuccessful_login_count=0

maxage Defines the maximum age (in weeks) of a password. The password must be changed
by this time. The value is a decimal integer string. The default is a value of 0, indicating
no maximum age.

maxexpired Defines the maximum time (in weeks) beyond the maxage value that a user can
change an expired password. After this defined time, only an administrative user can
change the password. The value is a decimal integer string. The default is -1, indicating
no restriction is set. If the maxexpired attribute is 0, the password expires when the
maxage value is met. If the maxage attribute is 0, the maxexpired attribute is ignored.

maxrepeats Defines the maximum number of times a character can be repeated in a new password.
Since a value of 0 is meaningless, the default value of 8 indicates that there is no
maximum number. The value is a decimal integer string.

minage Defines the minimum age (in weeks) a password must be before it can be changed.
The value is a decimal integer string. The default is a value of 0, indicating no minimum
age.

minalpha Defines the minimum number of alphabetic characters that must be in a new password.
The value is a decimal integer string. The default is a value of 0, indicating no minimum
number.

mindiff Defines the minimum number of characters required in a new password that were not in
the old password. The value is a decimal integer string. The default is a value of 0,
indicating no minimum number.

260 Files Reference

minlen Defines the minimum length of a password. The value is a decimal integer string. The
default is a value of 0, indicating no minimum length. The maximum value allowed is 8.
This attribute is determined by the minalpha attribute value added to the minother
attribute value. If the sum of these values is greater than the minlen attribute value, the
minimum length is set to the result.

minother Defines the minimum number of non-alphabetic characters that must be in a new
password. The value is a decimal integer string. The default is a value of 0, indicating
no minimum number.

pwdchecks Defines the password restriction methods enforced on new passwords. The value is a
list of comma-separated method names and is evaluated from left to right. A method
name is either an absolute path name or a path name relative to /usr/lib of an
executable load module.

pwdwarntime Defines the number of days before the system issues a warning that a password
change is required. The value is a decimal integer string. A zero or negative value
indicates that no message is issued. The value must be less than the difference of the
maxage and minage attributes. Values greater than this difference are ignored, and a
message is issued when the minage value is reached.

registry Defines the authentication registry where the user is administered. It is used to resolve
a remotely administered user to the local administered domain. This situation may
occur when network services unexpectedly fail or network databases are replicated
locally. Example values are files or NIS or DCE.

rlogin Permits access to the account from a remote location with the telnet or rlogin
commands. Possible values are:

true The user account can be accessed remotely. This is the default rlogin value.

false The user account cannot be accessed remotely.
su Indicates whether another user can switch to the specified user account with the su

command. Possible values are:

true Another user can switch to the specified account. This is the default.

false Another user cannot switch to the specified account.
sugroups Lists the groups that can use the su command to switch to the specified user account.

The Value parameter is a comma-separated list of group names, or a value of ALL to
indicate all groups. An ! (exclamation point) in front of a group name excludes that
group. If this attribute is not specified, all groups can switch to this user account with
the su command.

Chapter 1. System Files 261

SYSTEM Defines the system authentication mechanism for the user. The value may be an
expression describing which authentication methods are to be used or it may be the
keyword NONE.

The SYSTEM mechanism is always used to authenticate the user, regardless of the
value of the auth1 and auth2 attributes. If the SYSTEM attribute is set to NONE,
authentication is only performed using the auth1 and auth2 attributes. If the auth1 and
auth2 attributes are blank or ignored, as with the TCP socket daemons (ftpd, rexecd
and rshd), no authentication will be performed.

The method names compat, files and NIS are provided by the security library.
Additional methods may be defined in the file /usr/lib/security/methods.cfg.

Specify the value for SYSTEM using the following grammar:

"SYSTEM" ::= EXPRESSION
EXPRESSION ::= PRIMITIVE |

"("EXPRESSION")" |
EXPRESSION OPERATOR EXPRESSION

PRIMITIVE ::= METHOD |
METHOD "["RESULT"]"

RESULT ::= "SUCCESS" | "FAILURE" | "NOTFOUND" |
"UNAVAIL" | "*"

OPERATOR ::= "AND" | "OR"
METHOD ::= "compat" | "files" | "NONE" |

[a-z,A-Z,0-9]*

An example of the syntax is:

SYSTEM = "DCE OR DCE[UNAVAIL] AND
compat"

tpath Indicates the user’s trusted path status. The possible values are:

always The user can only execute trusted processes. This implies that the user’s initial
program is in the trusted shell or some other trusted process.

notsh The user cannot invoke the trusted shell on a trusted path. If the user enters
the secure attention key (SAK) after logging in, the login session ends.

nosak The secure attention key (SAK) is disabled for all processes run by the user.
Use this value if the user transfers binary data that may contain the SAK
sequence. This is the default value.

on The user has normal trusted path characteristics and can invoke a trusted path
(enter a trusted shell) with the secure attention key (SAK).

ttys Lists the terminals that can access the account specified by the Name parameter. The
Value parameter is a comma-separated list of full path names, or a value of ALL to
indicate all terminals. The values of RSH and REXEC also can be used as terminal names.
An ! (exclamation point) in front of a terminal name excludes that terminal. If this
attribute is not specified, all terminals can access the user account. If the Value
parameter is not ALL, then /dev/pts must be specified for network logins to work.

umask Determines file permissions. This value, along with the permissions of the creating
process, determines a file’s permissions when the file is created. The default is 022.

Changing the user File
You should access this file through the commands and subroutines defined for this purpose. You can use
the following commands to change the user file:

v chuser

v lsuser

v mkuser

v rmuser

262 Files Reference

The mkuser command creates an entry for each new user in the /etc/security/user file and initializes its
attributes with the attributes defined in the /usr/lib/security/mkuser.default file. To change attribute
values, use the chuser command. To display the attributes and their values, use the lsuser command. To
remove a user, use the rmuser command.

To write programs that affect attributes in the /etc/security/user file, use the subroutines listed in Related
Information.

Security

Access Control
This file should grant read (r) access only to the root user and members of the security group. Access for
other users and groups depends upon the security policy for the system. Only the root user should have
write (w) access.

Auditing Events:

Event Information
S_USER_WRITE file name

Examples
1. A typical stanza looks like the following example for user dhs:

dhs:
login = true
rlogin = false
ttys = /dev/console
sugroups = security,!staff
expires = 0531010090
tpath = on
admin = true
auth1 = SYSTEM,METH2;dhs

2. To allow all ttys except /dev/tty0 to access the user account, change the ttys entry so that it reads as
follows:
ttys = !/dev/tty0,ALL

Files

/etc/group Contains the basic group attributes.
/etc/passwd Contains the basic user attributes.
/etc/security/audit/config Contains audit system configuration information.
/etc/security/environ Contains the environment attributes of users.
/etc/security/group Contains the extended attributes of groups.
/etc/security/limits Contains the process resource limits of users.
/etc/security/login.cfg Contains configuration information for user log in and

authentication.
/etc/security/passwd Contains password information.
/usr/lib/security/mkuser.default Contains default user configurations.
/etc/security/user Contains extended user attributes.
/etc/security/lastlog Contains last login information.

Related Information
The chuser command, lsuser command, mkuser command, rmuser command.

The enduserdb subroutine, getuserattr subroutine, putuserattr subroutine, setuserdb subroutine.

Chapter 1. System Files 263

For more information about the identification and authentication of users, discretionary access control, the
trusted computing base, and auditing, refer to Security Administration and Users, Roles, and Passwords in
AIX 5L Version 5.2 Security Guide.

user.roles File

Purpose
Contains the list of roles for each user. This system file only applies to AIX 4.2.1 and later.

Description
The /etc/security/user.roles file contains the list of roles for each user. This is an ASCII file that contains
a stanza for system users. Each stanza is identified by a user name followed by a : (colon) and contains
attributes in the form Attribute=Value. Each attribute pair ends with a newline character as does each
stanza.

This file supports a default stanza. If an attribute is not defined, either the default stanza or the default
value for the attribute is used.

A stanza contains the following attribute:

roles Contains the list of roles for each user.

For a typical stanza, see the ″Examples″ section.

Typically, the /etc/security/user.roles stanza contains an entry for every user and a list of data associated
with that user. The roles database does not require an entry per user. The size of each entry is one line.

The user.roles file is kept separately from the /etc/security/user file for performance reasons. Several
commands scan this database, so system performance increases with smaller files to scan (especially on
systems with large numbers of users).

Changing the user.roles File
You should access this file through the commands and subroutines defined for this purpose. You can use
the following commands to change the user.roles file:

v chuser

v lsuser

v mkuser

The mkuser command creates an entry in the /etc/security/user.roles file for each new user when the
roles attribute is used. To change the attribute values, use the chuser command with the roles attribute.
To display the attributes and their values, use the lsuser command with the roles attribute.

To write programs that affect attributes in the /etc/security/user.roles file, use the subroutines listed in
Related Information.

Security
Access Control: This file grants read and write access to the root user, and read access to members of the
security group.

Examples
A typical stanza looks like the following example for the username role:

264 Files Reference

username:
roles = role1,role2

Files

/etc/security/roles Contains the list of valid roles.
/etc/security/user.roles Contains the list of roles for each user.
/etc/security/smitacl.group Contains the group ACL definitions.
/etc/security/smitacl.user Contains the user ACL definitions.

Related Information
The chuser command, lsuser command, mkuser command.

The getuserattr subroutine, putuserattr subroutine.

vfs File

Purpose
Describes the virtual file systems (VFS) installed on the system.

Description
The /etc/vfs file describes the virtual file systems installed on the system. The name, type number, and
file-system helper program are among the types of information listed in the file. Commands, such as the
mount command, the fsck command (file system check), and the mkfs command (make file system), use
this information.

The vfs file is an ASCII file, with one record per line. The following are examples of the three types of
lines in the vfs file:

v Comments
This is a comment.
Comments begin with a # (pound sign).
Blank lines are ignored.
The following example only locally defines the default vfs file.

v General control
%defaultvfs jfs nfs

The fields for the %defaultvfs control line are:

%defaultvfs Identifies the control line.
jfs Indicates the default local virtual file system.
nfs Indicates the remote virtual file system (optional).

v Entries
#Name Type Mount Helper Fs. helper
jfs 3 none /sbin/helpers/v3fshelper
nfs 2 /etc/nfsmnthelp none
cdrfs 5 none none

The comments are in text for explanatory purposes. The general control lines, which are designated by a
% (percent) character, configure the actions of the following commands:

v mount

v umount

v mkfs

Chapter 1. System Files 265

v fsck

v fsdb

v df

v ff

For example, a line like %defaultvfs indicates the default local virtual file system is used if no VFS is
specified by the mount command or in the /etc/filesystems file. The entry is the name of the VFS as
indicated in the file. If a second entry is listed on the same line, it is taken to be the default remote VFS.
The %defaultvfs control line may leave off the remote VFS specification.

The VFS entries take the following form:

name Canonical name of this type of virtual file system.
type Decimal representation of the virtual file system type number for the VFS.
mnt_helper Path name of the mount helper program of this VFS. If a mount helper is not required, the entry

should be displayed as none. If this path name does not begin with a slash, it is relative to the
/sbin/helpers directory.

fs_helper Path name of the file system helper program of this VFS. If a file system helper is not required,
the entry should be none. If this path name does not begin with a slash, it is relative to the
/sbin/helpers directory.

Files

/etc/filesystems Lists the known file systems and defines their characteristics.

Related Information
The chvfs command, crvfs command, df command, ff command, fsck command, fsdb command, lsvfs
command, mkfs command, mount command, rmvfs command, umount command.

The File Systems Overview for System Management in AIX 5L Version 5.2 System Management
Concepts: Operating System and Devices explains file system types, management, structure, and
maintenance.

Workload Manager classes File

Purpose
Contains the definition of Workload Manager (WLM) superclasses or subclasses for a given configuration.

Description
The classes file in the /etc/wlm/Config directory describes the superclasses of the WLM configuration,
Config. If the superclass Super of this configuration has subclasses defined, these subclasses are defined
in the file /etc/wlm/Config/Super/classes.

Some attributes apply to only superclasses or to only subclasses. The description of the classes file uses
the terms class or classes when a statement applies to both superclasses and subclasses.

The classes file is organized into stanzas. Each stanza names a WLM class and contains attribute-value
pairs that describe characteristics of the class.

Attributes
Each stanza names a WLM class. Class names can contain only upper- and lowercase letters, numbers,
and underscores. They are limited to 16 characters in length. The only names that have special meaning

266 Files Reference

to the system are Default, Shared, Unclassified, Unmanaged, and System. You cannot use Unclassified
and Unmanaged as class names. The superclasses Default, Shared, and System are always defined. The
subclasses Default and Shared are always defined.

The following attributes are defined in the classes file:

tier Specifies the position of the class in the hierarchy of resource limitation desirability for all
classes. A class with a lower tier value will be more favored than a class with a higher tier
value. The tier value is a number from 0 to 9. If this attribute is not defined, it defaults to 0.

inheritance If the inheritance attribute is given the value Yes, the children of processes in this class
remain in the class upon execution, regardless of the automatic assignment rules in effect. If
this attribute is given No, the normal assignment rules apply. If not defined, the attribute
defaults to No.

localshm Indicates whether memory segments accessed by processes in different classes remain local
to the class they were initially assigned to or if they go to the Shared class. The possible
value is Yes or No. If not specified, the default is No.

authuser Specifies the user name of the user allowed to assign processes to this class. If not defined,
this attribute defaults to the empty string (″″).

authgroup Specifies the group name of the group of users allowed to assign processes to this class. If
not defined, the attribute defaults to the empty string.

rset Names the resource set to which the processes in the class have access. If the attribute is
not defined, it defaults to an empty string, meaning that the class has access to all the
resources on the system.

adminuser Specifies the user name of the user allowed to administer the subclasses of this superclass.
If not defined, the attribute defaults to the empty string.

This attribute is valid only for superclasses.
admingroup Specifies the group name of the group of users allowed to administer the subclasses of this

superclass. If not defined, the attribute defaults to the empty string.

This attribute is valid only for superclasses.

The attributes that have not been explicitly set by a WLM administrator using any of the administration
tools (file editing, command line, or SMIT) are omitted in the property files.

The default values mentioned above are the system defaults and can be modified using a special stanza
named ″default.″

Files

classes Defines the superclasses or subclasses of a WLM configuration

Security
The WLM property files defining the superclasses of a WLM configuration must have write permission only
for the root user. The WLM property files defining the subclasses of a superclass must have write
permission for the adminuser and admingroup for the superclass.

If there is no adminuser for the superclass, the files should be owned by root. If no admingroup exists for
a superclass, the WLM property files for the superclass should be group ″system″ with no write permission
for group.

Example
1. The following entry at the beginning of the classes file modifies the default values for the tier and

inheritance attributes so that if they are not defined for some (or all) of the classes specified in the
file, the tier value is 1 and the inheritance value is Yes:

Chapter 1. System Files 267

default:
tier = 1
inheritance = "yes"

The scope of these user-defined default values is limited to the file where they appear. For instance, if
the above default stanza appears in the top-level classes file of a configuration, it does not affect the
default values for the classes files defining the subclasses of the various superclasses.

2. The following is an example of a typical /etc/wlm/Config/classes file:
* system defined classes
* All attributes to default value
* Attribute values can be specified
*
Default:
System:
Shared:
* User defined classes
*
Super1:

inheritance = "yes"
adminuser = "bob"
authgroup = "devlt"

Super2:
tier = 4
localshm = "yes"
admingroup = "sales"
authuser = "sally"
rset = "part1"

Note: The asterisk (*) is a comment character. Comments are added by directly editing the file.
However, when you use the command line, or SMIT to create, modify, or delete classes, the
comments are removed.

Related Information
The lsclass command, mkclass command, chclass, rmclass command.

The shares file, limits file, rules file.

Chapter 13. Workload Manager in AIX 5L Version 5.2 System Management Concepts: Operating System
and Devices.

Workload Manager limits File

Purpose
Describes the minimum and maximum limits for the resources allocated to superclasses or subclasses of a
WLM configuration.

Description
The limits file in the /etc/wlm/Config describes the resource limits for the superclasses of the WLM
configuration Config. If the superclass Super of this configuration has subclasses defined, the resource
limits for the subclasses are defined in the file /etc/wlm/Config/Super/limits.

The limits at the superclass level represent a percentage of the total amount of resources available on the
system and the limits at the subclass level represent a percentage of the resource made available to the
parent superclass. Despite this difference, the description of resource limits is relevant to both a
superclass and a subclass.

268 Files Reference

The limits file is organized into stanzas that are named after WLM classes and contain attribute-value
pairs specifying the minimum and maximum resource limit allocated to the class for the various resources.
The attribute names identify the resource. For each resource, the following values must be provided:

v Minimum limit (expressed here as m)

v Soft maximum limit (expressed here as SM)

v Hard maximum limit (expressed here as HM)

The limits are expressed as percentages. Both the minimum and maximum limits are each a number
between 0 and 100. The hard maximum must be greater than or equal to the soft maximum, which in turn
must be greater than or equal to the minimum. When the limits are not specified for a class or a resource
type, the system defaults to 0 for the minimum and 100 for both the soft and hard maximum.

Use the following format for defining the limit values:
attribute_name = m%-SM%,HM%

In AIX 5.2 and later, you can also specify per-process and per-class total limits. These are hard limits and
can be specified in the following format:
attribute_name = <value> [unit]

The valid range of values for each attribute, as well as their default and allowed units are described in AIX
5L Version 5.2 System Management Concepts: Operating System and Devices.

Attributes
Each stanza names a WLM class that must exist in the classes file at the corresponding level (superclass
or subclass).

The following attributes are defined in the limits file:

CPU Represents the CPU limits for the class
memory Represents the physical memory limits for the class
diskIO Represents the disk I/O limits for the class
totalCPU Total amount of CPU time allowed for each process in the class
totalDiskIO Total number of blocks of I/O allowed for each process in the class
totalConnectTimeTotal amount of connect time for each login session in the class
totalProcesses Total number of processes in the class
totalThreads Total number of threads in the class
totalLogins Total number of login sessions in the class

The default values mentioned above are the system defaults and can be modified using a special stanza
named ″default.″

Consider the following stanza at the beginning of the limits file:
default:

CPU = 10%-50%,80%
diskIO = 20%-60%,100%

This stanza modifies the default values of the limits for CPU and disk I/O so that if those attributes are not
specified for some (or all) of the classes, their minimum, soft maximum, and hard maximum default to the
values shown above. In this example, the default values for the physical memory limits (specified by the
memory attribute) are still the system default—the minimum 0% and the soft and hard maximum each
100%.

Classes that use only default values for all the resource types can be omitted in the file.

Chapter 1. System Files 269

Security
The limits file defining the limits of the superclasses of a WLM configuration must have write permission
for root only. The limits file defining the limits for the subclasses of a superclass must have write
permission for the adminuser and admingroup for the superclass. If no adminuser exists for the
superclass, the limits file should be owned by root. If no admingroup exists for a superclass, the file for
the superclass should be owned by the ″system″ group and have no write permission for group.

Example
The following is an example of a typical /etc/wlm/Config/limits file:
* System Defined Classes
* In this example, the system administrator uses
* only default values for the System and Shared
* superclasses. The System class has a memory minimum of
* 1% by default - can be increased by system administrator
* The system administrator gives non default values
* only for the Default class:
*
System:

memory = 1%-100%,100%
Default:

CPU = 0%-50%,75%
memory = 0%-25%,50%

*
* User defined classes
*
Super1:

CPU = 10%-100%,100%
memory = 20%-100%,100%
diskIO = 0%-33%,50%

Super2:
memory =0%-20%,50%
diskIO =10%-66%,100%

Note: The asterisk (*) is a comment character.

Files

limits Defines the resource entitlements for the superclasses or subclasses of a WLM configuration

Related Information
The lsclass command, mkclass command, chclass command, rmclass command.

The classes file, shares file, rules file.

Files in AIX 5L Version 5.2 System User’s Guide: Operating System and Devices.

Workload Manager in AIX 5L Version 5.2 System Management Concepts: Operating System and Devices.

Workload Manager rules File

Purpose
Defines the automatic class assignment rules for the superclasses or subclasses of a given Workload
Manager (WLM) configuration.

270 Files Reference

Description
The /etc/wlm/Config/rules file describes the assignment rules for the superclasses of the WLM
configuration Config. If the superclass Super of this configuration has subclasses defined, the assignment
rules for the subclasses are defined in the file /etc/wlm/Config/Super/rules.

The assignment rules for the superclasses and subclasses are formatted the same.

The rules file is a standard text file. Each line represents an assignment rule for a specified class. Several
assignment rules can exist at the same time for the same class. Each rule lists the name of a class and a
list of values for some attributes of a process; these values are used as classification criteria. The various
fields of a rule are separated by white spaces. For attributes that you do not define, represent them with a
hyphen (-).

Note: Implicit rules exist for the default superclass and the default subclass of every superclass. These
rules catch all processes that did not match any rules explicitly stated in the rules file. They apply
to a WLM configuration regardless of whether they are explicitly stated.

Assignment Rules
Assignment rules are made of the fields described below. When present, the following fields must appear
in the order shown below. Order is important because the values are given to the field identified by its
position in the string. Only the first three fields (class, reserved, and user) are mandatory. The remaining
fields can be omitted if their values are hyphens.

For instance, the assignment rule
class1 - user1

is the same as the following:
class1 - user1 - - - -

The rule
class - - group1 - 32bit+fixed

is a valid rule equivalent to the following rule:
class - - group1 - 32bit+fixed -

But in the case of the rule class1 - group1, group1 is interpreted as a user name because of its position
in the string.

class Contains the name of a class that is defined in the class file corresponding to the level of the
rules file (superclass or subclass). Class names can contain only upper- and lowercase
letters, numbers, and underscores and are limited to 16 characters in length.

No assignment rule can be specified for the system-defined classes ″Unclassified,″
″Unmanaged,″ and ″Shared.″

reserved This field must be set to a hyphen (-)
user Contains either a hyphen or a list of valid user names (as defined in the /etc/passwd file).

The list is composed of one or more names, separated by a comma (,). To exclude a user
from the class, place an exclamation mark (!) before the name of that user. Use full Korn
shell pattern-matching syntax to specify a wildcard pattern to match a set of user names.

group Contains either a hyphen or a list of valid group names (as defined in the /etc/group file).
The list is composed of one or more names, separated by a comma. To exclude a group from
the class, place an exclamation mark before the name of that group. Use full Korn shell
pattern-matching syntax to specify a wildcard pattern to match a set of group names.

Chapter 1. System Files 271

application Contains either a hyphen or a list of application path names. This is the path name of the file
executed by the processes to be included in the class. The value can be either a full path
name or a wildcard pattern that matches a set of path names. The list is composed of one or
more path names, separated by a comma. To exclude an application from the class, place an
exclamation mark before the name of that application.

type Contains either a hyphen or a list of attributes for the process. The following are possible
values:

32bit Indicates that the process is 32-bit

64bit Indicates that the process is 64-bit

plock Indicates that the process has called the plock subroutine to pin memory

fixed Indicates that the process is fixed priority (SCHED_FIFO or SCHED_RR)

The value of the type field can be a comma-separated list of combinations of one or more of
the values above. Within the combination, each item must be separated by a plus (+) sign.
For example, the value fixed,64bit+plock indicates that any fixed priority process (whether
32- or 64-bit) matches. In addition, 64-bit processes calling the plock subroutine matches.
But the value fixed+64bit+plock indicates a different rule criteria: only processes that are
64-bit, fixed, and that are calling the plock subroutine match the criteria.

The 32bit value and 64bit value mutually exclude each other.
tag May contain either a hyphen or a list of application tags. The list is composed of one or more

application tag values separated by commas.

When classifying a process, WLM attempts to match the values of the process attributes (user, group,
application, type, and tag) with the values provided in the rules file. To match values, WLM uses the
following criteria:

v If the value in the rule is a hyphen, any value of the corresponding process attribute is a match.

v If the value of a process attribute (other than the type attribute) appears in the list of values specified in
the corresponding field in the rule and is not preceded by an exclamation mark, it is a match for the
specified attribute.

v If the values of the process type attribute (32bit/64bit, plock, fixed) match all the values (separated by
+ signs) provided in the list for the type field in the rule, they are a match for the process type.

v The process is classified in the class specified in the class field of the rule if ALL the values of the
process attributes match the values in the corresponding field of the rule.

v WLM scans the rules in the order in which they appear in the rules file and classifies the process in the
class specified in the first rule for which a match is detected. Therefore, the order of the rules in the file
is very important.

When classifying a process, WLM first scans the rules file for the superclasses of the current configuration
to determine which superclass the process is assigned to. Then, WLM scans the rules file for this
superclass to determine which subclass it assigns the process to.

Groupings
As an improvement for AIX 5.2, you can now use attribute value groupings in the rules file. Attribute
groupings can be used as element of a selection criteria in the rules file for superclasses or subclasses.
For more information, syntax and examples, see the groupings file.

Security
The file containing the assignment rules for the superclasses must have write permission for the root user
only. The The file containing the assignment rules for the subclasses of a superclass must have write
permission for the adminuser and admingroup for the superclass. If no adminuser exists for the
superclass, the file should be owned by root. If no admingroup exists for a superclass, the rules file for the
superclass should be owned by the system group and have no write permission for group.

272 Files Reference

Examples
1. The following is an example of a /etc/wlm/Config/rules file:

* This file contains the rules used by WLM to
* assign a process to a superclass
*
* class resvd user group application type tag
db1 - - - /usr/bin/oracle* - _DB1
db2 - - - /usr/bin/oracle* - _DB2
devlt - - dev - - -

VPs - bob,ted - - - -
acctg - - acct* - - -
System - root - - - -
Default - - - - - -

2. The following is an example of the rules file for the superclass devlt in the /etc/wlm/Config/devlt/
directory:
* This file contains the rules used by WLM to
* assign a process to a subclass of the
* superclass devlt
*
* class resvd user group application type tag
hackers - jim,liz - - - -
hogs - - - - 64bit+plock -
editors - !sue - /bin/vi,/bin/emacs - -
build - - - /bin/make,/bin/cc - -
Default - - - - - -

Note: The asterisk (*) is a comment character.

Files

rules Defines the class assignment rules for the superclasses or subclasses of a WLM configuration

Related Information
The wlmcheck command.

The classes file, limits file, shares file.

Files in AIX 5L Version 5.2 System User’s Guide: Operating System and Devices

Chapter 13. Workload Manager in AIX 5L Version 5.2 System Management Concepts: Operating System
and Devices

Workload Manager shares File

Purpose
Contains the definition of the number of shares of all the resources allocated to superclasses or
subclasses for a given configuration.

Description
The shares file in the /etc/wlm/Config directory describes the resource allocations for the superclasses of
the WLM configuration named Config. If the superclass named Super of this configuration has subclasses
defined, the resource allocations for the subclasses are defined in the file /etc/wlm/Config/Super/shares.

Chapter 1. System Files 273

The file is organized into stanzas that are named after WLM classes and contain attribute-value pairs
specifying the number of shares allocated to the class for the various resources. The attribute names
identify the resource. The shares value is either an integer between 1 and 65535 or a hyphen (-) to
indicate that WLM does not regulate the class for the given resource. The hyphen is the system default.

Attributes
Each stanza names a WLM class that must exist in the classes file at the corresponding level (superclass
or subclass).

The following are class attributes defined in the shares file:

CPU Specifies the number of CPU shares allocated to the class
memory Specifies the number of physical memory shares allocated to the class
diskIO Specifies the number of disk I/O shares allocated to the class

The default values mentioned above are the system default and can be modified using a special stanza
named ″default.″

Consider the following stanza at the beginning of the shares file:
default:

CPU = 10
diskIO = 4

This stanza defines the default values for the number of shares for CPU and disk I/O so that if the CPU
and diskIO attributes are not specified for some or all of the classes specified, the attributes default to 10
and 4, respectively. In this example, the default value for physical memory is still a hyphen, meaning no
regulation. Classes that use only default values for all the resource types can be omitted in the shares file.

Security
The shares file must have write permission for root user only. The shares file for superclasses must have
write permission for the adminuser and admingroup for the superclass.

If no adminuser exists for the superclass, the files should be owned by root. If no admingroup exists for a
superclass, the shares file for the superclass should be owned by the system group and should have no
write permission for group.

Example
The following is an example of a typical /etc/wlm/Config/shares file:
* System Defined Classes
* In this example, the system administrator uses
* only default values for the System
* and Shared
* superclasses, and those are omitted
* in the file
* The system administrator gives non
* default values
* only for the Default class:
*
Default:

CPU = 5
memory = 10

*
* User defined classes
*
Super1:

CPU = 8
memory = 20

274 Files Reference

diskIO = 6
Super2:

memory = 12
diskIO = 6

Note: The asterisk (*) is a comment character.

Files

shares Defines the resource entitlements for the superclasses or subclasses of a WLM configuration

Related Information
The lsclass command, mkclass command, chclass command, rmclass command.

The classes file, limits file, rules file.

Files in AIX 5L Version 5.2 System User’s Guide: Operating System and Devices.

Chapter 13. Workload Manager in AIX 5L Version 5.2 System Management Concepts: Operating System
and Devices.

xferstats File for BNU

Purpose
Contains information about the status of file transfer requests.

Description
The /var/spool/uucp/.Admin/xferstats file contains information about the status of each Basic Networking
Utilities (BNU) file transfer request. The xferstats file contains:

v System name

v Name of the user requesting the transfer

v Date and time of the transfer

v Name of the device used in the transfer

v Size of the transferred file

v Length of time the transfer took

Examples
Following is a typical entry in the xferstats file:
zeus!jim M (10/11-16:10:33) (C,9234,1) [-] -> 1167 / 0.100secs

A file was transferred by user jim to system zeus at 4:10 p.m. on the 11th of October. The file size was
1167 bytes and the transfer took 0.100 seconds to complete.

Files

/var/spool/uucp/.Admin directory Contains the xferstats file and other BNU
administrative files.

Chapter 1. System Files 275

Related Information
The uucp command, uudemon.cleanu command, uux command.

The cron daemon, uucico daemon, uuxqt daemon.

Understanding the BNU File and Directory Structure and Maintaining BNU in AIX 5L Version 5.2 System
Management Guide: Communications and Networks.

xtab File for NFS

Purpose
Contains entries for currently exported NFS directories.

Description
The /etc/xtab file contains entries for directories that are currently exported. This file should only be
accessed by programs using the getexportent subroutine. To remove entries from this file, use the -u flag
of the exportfs command.

Files

/etc/exports Lists the directories that the server can export.
/etc/hosts Contains an entry for each host on the network.
/etc/netgroup Contains information about each user group on the network.

Related Information
The exportfs command.

NFS Services in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

276 Files Reference

Chapter 2. File Formats

Certain files in the operating system are required to have a specific format. The formats of the files that
are provided with the operating system are discussed in the documentation for those files. If a file is
generated by either the system or a user rather than provided on the distribution medium, it is discussed
as a file format in this documentation. File formats often are also associated with header files that contain
C-language definitions and structures for the files.

More information about the following file formats is provided in this documentation:

acct Describes the format of the records in the system accounting files.
Describes the structure of the standard
a.out file and its associated header files.
ar Describes the format of an archive file.
audit Describes values used by the auditing system as well as the structure

of a bin.
bootptab Describes the default configuration database for the Internet Boot

Protocol server (bootpd).
CGM Defines a file format for storage and retrieval of device-independent

graphics.
charmap Defines character symbols as character encodings.
core Describes the structures created in a core file as a result of a core

dump.
cpio Describes the cpio (copy in/out) archive file.
eqnchar Contains special character definitions for the eqn and neqn commands.
lastlog Defines the last login attributes for users.
ldapattribmap Defines AIX to LDAP attribute name mapping to support configurable

LDAP server schema.
locale definition Contains one or more categories that describe a locale.
locale method Specifies the methods to be overridden when constructing a locale.
magic Defines file types.
mailrc Sets defaults for the mail command.
mh_alias Defines aliases for the Message Handler (MH).
mib_defs Provides descriptions of Management Information Base (MIB) variables

for the snmpinfo command.
nroff and troff input Specifies input file format for the nroff and troff commands.
nterm Describes the format of the terminal driver tables for the nroff

command.
profile Describes the format of the profile and .profile files, which set the user

environment at login time.
queuedefs Describes the format of the file used by the cron daemon to handle

event types.
sccsfile Describes the format of a Source Code Control System (SCCS) file.
setmaps Defines the text of a code-set map file and a terminal map file.
terminfo Contains compiled terminfo source files.
TIFF Enables InfoCrafter to support scanned images that have been imported

into Interleaf documents.
trcfmt Stores trace templates.
troff Describes the output language of the troff command.
troff Font Describes the format of the troff command font files.
tunables Centralizes tunable parameter values.
UIL Contains information on the user interface for a widget-based

application.
utmp, wtmp, failedlogin Describes the format of the user and accounting information in the

utmp, wtmp, and failedlogin files.
vgrindefs Contains the language definition database for the vgrind command.

© Copyright IBM Corp. 1997, 2002 277

WML Generates variable UIL compiler components.

Asynchronous Terminal Emulation (ATE) File Formats

ate.def Determines default settings for use in asynchronous connections and file
transfers.

ATE Dialing Directory Lists phone numbers that the ATE program uses to establish modem
connections.

Basic Networking Utilities (BNU) File Formats

Devices Contains information about devices on the local system that can establish a connection to a
remote computer using the Basic Networking Utilities (BNU) program.

Dialcodes Contains the initial digits of telephone numbers used to establish remote connections over a
phone line.

Dialers Lists modems used for Basic Networking Utilities (BNU) remote communications links.
Maxuuscheds Limits the number of instances of the uusched and uucico daemons that can run

simultaneously.
Maxuuxqts Limits the number of instances of the BNU uuxqt daemon that can run simultaneously on the

local system.
Permissions Specifies BNU permissions for remote systems that call or are called by the local system.
Poll Specifies when the BNU program should poll remote systems.
Systems Lists remote computers with which users of the local system can communicate using the Basic

Networking Utilities (BNU) program.

tip File Formats

phones Describes connections used by the tip command to contact remote systems.
remote Describes remote systems contacted by the tip command.
.tiprc Provides initial settings of variables for the tip command.

TCP/IP System Management File Formats

3270keys Defines user keyboard mapping and colors for TELNET
(3270).

Domain Cache Defines the root name server or servers for a DOMAIN
name server host.

Domain Data Stores name resolution information for the named
daemon.

Domain Local Data Defines the local loopback information for named on the
name server host.

Domain Reverse Data Stores reverse name resolution information for the
named daemon.

ftpusers Specifies local user names that cannot be used by
remote FTP clients.

gated.conf Contains configuration information for the gated
daemon.

gateways Specifies Internet routing information to the routed and
gated daemons on a network.

hosts Defines the Internet Protocol (IP) name and address of
the local host and specifies the names and addresses of
remote hosts.

278 Files Reference

hosts.equiv Specifies remote systems that can execute commands
on the local system.

hosts.lpd Specifies remote hosts that can print on the local host.
inetd.conf Defines how the inetd daemon handles Internet service

requests.
map3270 Defines keyboard mapping and colors for the tn3270

command.
.netrc Specifies automatic login information for the ftp and

rexec commands.
networks Contains the network name file.
protocols Defines the Internet protocols used on the local host.
rc.net Defines host configuration for the following areas:

network interfaces, host name, default gateway, and any
static routes.

resolv.conf Defines DOMAIN name server information for local
resolver routines.

.rhosts Specifies remote users that can use a local user
account on a network.

services Defines the sockets and protocols used for Internet
services.

Standard Resource Record Format Defines the format of lines in the DOMAIN data files.
telnet.conf Translates a client’s terminal-type strings into terminfo

file entries.

.3270keys File Format for TCP/IP

Purpose
Defines keyboard mapping and colors for the tn and telnet command.

Description
The $HOME/.3270keys file specifies for a user a tn or telnet command key mapping that differs from the
default mapping found in the /etc/3270.keys file. You can use it, for example, to make the Action key act
as the Enter key.

If you are using a color display, you can also customize the colors for various 3270 display attributes by
setting attributes in the .3270keys file. The default mapping in the /etc/3270.keys file is generic. The user
can also load the user-defined files for specific terminal types by using the .3270keys file. The .3270keys
file is specified in the user’s home directory. The default background color is black. You cannot configure
the background color.

The tn or telnet command first checks the $HOME directory for the .3270keys file and loads it. If the file
doesn’t exist, the /etc/3270.keys file is loaded. Both files, by default, end with an if statement and a list of
terminal types. If the TERM environment variable matches one of the listed terminals, a second file is
loaded. If the TERM variable does not match, the tn or telnet command uses the generic key bindings
specified before the if statement and prints the message NOBINDINGS. This file is part of TCP/IP in
Network Support Facilities.

Note: When remapping keys to customize your $HOME/.3270keys file, remember that you cannot map a
3270 function to the Esc key alone. You can specify the Esc key only in combination with another
key. Also, when mapping keys, do not duplicate key sequences. For example, if you have mapped
the backtab function to the ^A (the Ctrl-A key sequence), then mapping the PF1 function key to
^Aep (the Ctrl-Aep key sequence) is going to conflict with the backtab mapping.

Chapter 2. File Formats 279

The $HOME/.3270keys.hft File
You can also use the /usr/lpp/tcpip/samples/3270keys.hft sample file to create a $HOME/.3270keys.hft
file by copying the sample file to your home directory and modifying it as necessary.

The following options can be used in the sequence field:

\b Backspace
\s Space
\t Tab
\n New line
\r Return
\e Escape
^ Mask next character with \037; for example, ^M.
~ Set high-order bit for next character.

The following are valid colors for 3270 display attributes:

v black

v blue

v red

v green

v white

v magenta

v cyan

For more information about changing the assignment of a key set, see ″Changing the Assignment of a Key
Set″ in AIX 5L Version 5.2 System User’s Guide: Communications and Networks.

Note: The 3270keys.hft file supports the Attention key, which sends an IAC BREAK TELNET protocol
sequence to the TELNET server on a VM or MVS system. The TELNET server is responsible for
implementing the Attention key. Example 2 shows the format for binding the Attention key to the
Ctrl-F12 key sequence.

Examples
1. The following example binds the Backspace key and the Tab keys:

3270 Function Sequence Key
bind backspace "\b" #backspace key
bind tab "\t" #tab key

The # (pound sign) is used to indicate comments.

2. The following example binds the Attention key to the Ctrl-F12 key sequence:
3270 Function Sequence Key

bind attention "\e[036q" #attention key

Files

/etc/3270.keys Contains the default keyboard mapping for non-HFT keyboards.
/etc/3270keys.hft Contains the default keyboard mapping for HFT keyboards.
/usr/lpp/tcpip/samples/3270keys.hft Contains a sample HFT keyboard mapping.

280 Files Reference

Related Information
The telnet, tn, or tn3270 command.

The map3270 file format.

Changing the Assignment of a Key Set in AIX 5L Version 5.2 System User’s Guide: Communications and
Networks.

acct File Format

Purpose
Provides the accounting file format for each process.

Description
The accounting files provide a means to monitor the use of the system. These files also serve as a
method for billing each process for processor usage, materials, and services. The acct system call
produces accounting files. The /usr/include/sys/acct.h file defines the records in these files, which are
written when a process exits.

The acct structure
The acct structure in the acct.h header file contains the following fields:

ac_flag Specifies one of the following accounting flags for the process for which the accounting record is
written:

AFORK The process was created using a fork command but an exec subroutine has not yet followed. The
exec subroutine turns off the AFORK flag.

ASU The process used root user authority.
ac_stat Specifies the exit status. A flag that indicates how the process terminated.
ac_uid Specifies the user ID of the process for which the accounting record is written.
ac_gid Specifies the group ID of the process for which the accounting record is written.
ac_tty Specifies the terminal from which the process was started.
ac_wlmkey Holds a 64-bit numeric key representing the Workload Manager class to which the process belonged.

The Workload Manager Application Programming Interface provides the wlm_key2class subroutine
to convert the key back to a class name.

ac_btime Specifies the beginning time. The time at which the process started.
ac_utime Specifies the amount of user time, in seconds, used by the process.
ac_stime Specifies the amount of system time, in seconds, used by the process.
ac_etime Specifies the amount of time, in seconds, elapsed since the command ran.
ac_mem Specifies the average amount of memory used by the process. Every clock interrupt (or clock

tick,100 times per second), the sys_timer routine is called to update the user data for the current
process. If the process is in user mode, both its u_utime value and memory usage values are
incremented; otherwise, only its u_stime value is incremented. The sys_timer routine calls the
vms_rusage routine to obtain the kilobytes of real memory being used by TEXTSEG (#1), the
PRIVSEG (#2), and the big-data segments (#3-11), if used. These values are added to the total
memory usage value at each clock tick during which the process is not in kernel mode. When the
process ends, the acctexit routine computes how many clock ticks occurred while the process
executed (in both user and kernel modes) and divides the total memory usage value by this number
to give an average memory usage for the process. This value is recorded as a two-byte unsigned
short integer.

ac_io Specifies the number of characters transferred by the process.
ac_rw Specifies the number of blocks read or written by the process.
ac_comm Specifies the name of the command that started the process. A child process created by a fork

subroutine receives this information from the parent process. An exec subroutine resets this field.

Chapter 2. File Formats 281

The tacct Structure
The tacct structure, which is not part of the acct.h header file, represents the total accounting format used
by the various accounting commands:
struct tacct {

uid_t ta_uid; /* user-ID */
char ta_name[8]; /* login name */
float ta_cpu[2]; /* cum. CPU time, p/np (mins) */
float ta_kcore[2]; /* cum. kcore-mins, p/np */
float ta_io[2]; /* cum. chars xferred (512s) */
float ta_rw[2]; /* cum. blocks read/written */
float ta_con[2]; /* cum. connect time, p/np, mins */
float ta_du; /* cum. disk usage */
long ta_qsys; /* queuing sys charges (pgs) */
float ta_fee; /* fee for special services */
long ta_pc; /* count of processes */
unsigned short ta_sc; /* count of login sessions */
unsigned short ta_dc; /* count of disk samples */

};

Related Information
The acctcms command, acctcom command, acctcon1 or acctcon2 command, acctdisk command,
acctmerg command, acctprc1, acctprc2, or accton command, runacct command.

The acct subroutine, fork subroutine, exec subroutine, wlm_key2class subroutine.

The Header Files Overview in AIX 5L Version 5.2 Files Reference.

The Accounting Files and the Accounting Overview in AIX 5L Version 5.2 System Management Concepts:
Operating System and Devices.

ar File Format (Big)

Purpose
Combines several files into one. This is the default ar library archive format for the operating system.

Description
The ar (archive) file format combines several files into one. The ar command creates an archive file. The
ld (link editor) command searches archive files to resolve program linkage. The /usr/include/ar.h file
describes the archive file format. This file format accommodates both 32-bit and 64-bit object files within
the same archive.

This is the default file format used by the ar command. To use a format portable to versions prior to AIX
4.3.0, refer to ar File Format (Small).

Fixed-Length Header
Each archive begins with a fixed-length header that contains offsets to special archive file members. The
fixed-length header also contains the magic number, which identifies the archive file. The fixed-length
header has the following format:
#define __AR_BIG__
#define AIAMAGBIG "<bigaf>\n" /* Magic string */
#define SAIAMAG 8 /*Length of magic string */
struct fl_hdr /*Fixed-length header */

{
char fl_magic[SAIAMAG]; /* Archive magic string */
char fl_memoff[20]; /*Offset to member table */
char fl_gstoff[20]; /*Offset to global symbol table */
char fl_gst64off[20]; /*Offset global symbol table for 64-bit objects */

282 Files Reference

char fl_fstmoff[20]; /*Offset to first archive member */
char fl_lstmoff[20]; /*Offset to last archive member */
char fl_freeoff[20]; /*Offset to first mem on free list */

} ;

The indexed archive file format uses a double-linked list within the archive file to order the file members.
Therefore, file members may not be sequentially ordered within the archive. The offsets contained in the
fixed-length header locate the first and last file members of the archive. Member order is determined by
the linked list.

The fixed-length header also contains the offsets to the member table, the global symbol table, and the
free list. Both the member table and the global symbol table exist as members of the archive and are kept
at the end of the archive file. The free list contains file members that have been deleted from the archive.
When adding new file members to the archive, free list space is used before the archive file size is
expanded. A zero offset in the fixed-length header indicates that the member is not present in the archive
file.

File Member Header
Each archive file member is preceded by a file member header, which contains the following information
about the file member:
#define AIAFMAG "`\n" /* Header trailer string*/
struct ar_hdr /* File member header*/
{

char ar_size[20]; /* File member size - decimal */
char ar_nxtmem[20]; /* Next member offset-decimal */
char ar_prvmem[20]; /* Previous member offset-dec */
char ar_date[12]; /* File member date-decimal */
char ar_uid[12]; /* File member userid-decimal */
char ar_gid[12]; /* File member group id-decimal */
char ar_mode[12]; /* File member mode-octal */
char ar_namlen[4]; /* File member name length-dec */
union

{
char ar_name[2]; /* Start of member name */
char ar_fmag[2]; /* AIAFMAG - string to end */
};

_ar_name; /* Header and member name */
};

The member header provides support for member names up to 255 characters long. The ar_namlen field
contains the length of the member name. The character string containing the member name begins at the
_ar_name field. The AIAFMAG string is cosmetic only.

Each archive member header begins on an even-byte boundary. The total length of a member header is:
sizeof (struct ar_hdr) + ar_namlen

The actual data for a file member begins at the first even-byte boundary beyond the member header and
continues for the number of bytes specified by the ar_size field. The ar command inserts null bytes for
padding where necessary.

All information in the fixed-length header and archive members is in printable ASCII format. Numeric
information, with the exception of the ar_mode field, is stored as decimal numbers; the ar_mode field is
stored in octal format. Thus, if the archive file contains only printable files, you can print the archive.

Member Table
A member table is always present in an indexed archive file. This table quickly locates members of the
archive. The fl_memoff field in the fixed-length header contains the offset to the member table. The
member table member has a zero-length name. The ar command automatically creates and updates (but
does not list) the member table. A member table contains the following information:

Chapter 2. File Formats 283

v The number of members. This member is 20 bytes long and stored in ASCII format as a decimal
number.

v The array of offsets into the archive file. The length is 20 times the number of members. Each offset is
20 bytes long and stored in ASCII format as a decimal number.

v The name string table. The size is:
ar_size - (20 * (the number of members +1));

that is, the size equals the total length of all members minus the length of the offsets, minus the length
of the number of members.

The string table contains the same number of strings as offsets. All strings are null-terminated. Each
offset from the array corresponds sequentially to a name in the string table.

Global Symbol Tables
Immediately following the member table, the archive file contains two global symbol tables. The first global
symbol table locates 32-bit file members that define global symbols; the second global symbol table does
the same for 64-bit file members. If the archive has no 32-bit or 64-bit file members, the respective global
symbol table is omitted. The strip command can be used to delete one or both global symbol tables from
the archive. The fl_gstoff field in the fixed-length header contains the offset to the 32-bit global symbol
table, and the fl_gst64off contains the offset to the 64-bit global symbol table. The global symbol table
members have zero-length names. The ar command automatically creates and updates, but does not list
the global symbol tables. A global symbol table contains the following information:

v The number of symbols. This is 8 bytes long and can be accessed with the sgetl and sputl commands.

v The array of offsets into the archive file. The length is eight times the number of symbols. Each offset is
8 bytes long and can be accessed with the sgetl and sputl commands.

v The name-string table. The size is:
ar_size - (8 * (the number of symbols + 1));

That is, the size equals the total length of the members, minus the length of the offsets, minus the
length of the number of symbols.

The string table contains the same number of strings as offsets. All strings are null-terminated. Each
offset from the array corresponds sequentially to a name in the string table.

Related Information
The a.out file format.

The ar command, ld command, strip command.

The sgetl or sputl subroutine.

ar File Format (Small)

Purpose
Describes the small indexed archive file format, in use prior to Version 4.3 of the operating system. This
format is recognized by commands for backward compatability purposes only. See ar File Format (Big)
for the current archive file format.

Description
The ar (archive) command combines several files into one. The ar command creates an archive file. The
ld (link editor) command searches archive files to resolve program linkage. The /usr/include/ar.h file

284 Files Reference

describes the archive file format. This archive format only handles 32-bit XCOFF members. The ar File
Format (Big) handles both 32-bit and 64-bit XCOFF members

Fixed-Length Header
Each archive begins with a fixed-length header that contains offsets to special archive file members. The
fixed-length header also contains the magic number, which identifies the archive file. The fixed-length
header has the following format:
#define AIAMAG "<aiaff>\n" /* Magic string */

#define SAIAMAG 8 /* Length of magic string */

struct fl_hdr /* Fixed-length header */

{
char fl_magic[SAIAMAG]; /* Archive magic string */
char fl_memoff[12]; /* Offset to member table */
char fl_gstoff[12]; /* Offset to global symbol table */
char fl_fstmoff[12]; /* Offset to first archive member */
char fl_lstmoff[12]; /* Offset to last archive member */
char fl_freeoff[12]; /* Offset to first mem on free list */

};

The indexed archive file format uses a double-linked list within the archive file to order the file members.
Therefore, file members may not be sequentially ordered within the archive. The offsets contained in the
fixed-length header locate the first and last file members of the archive. Member order is determined by
the linked list.

The fixed-length header also contains the offsets to the member table, the global symbol table, and the
free list. Both the member table and the global symbol table exist as members of the archive and are kept
at the end of the archive file. The free list contains file members that have been deleted from the archive.
When adding new file members to the archive, free list space is used before the archive file size is
expanded. A zero offset in the fixed-length header indicates that the member is not present in the archive
file.

File Member Header
Each archive file member is preceded by a file member header, which contains the following information
about the file member:
#define AIAFMAG "`\n" /* Header trailer string */
struct ar_hdr /* File member header */
{

char ar_size[12]; /* File member size - decimal */
char ar_nxtmem[12]; /* Next member offset - decimal*/
char ar_prvmem[12]; /* Previous member offset - dec */
char ar_date[12]; /* File member date - decimal */
char ar_uid[12]; /* File member user id - decimal */
char ar_gid[12]; /* File member group id - decimal */
char ar_mode[12]; /* File member mode - octal */
char ar_namlen[4]; /* File member name length - dec */
union

{
char ar_name[2]; /* Start of member name */
char ar_fmag[2]; /* AIAFMAG - string to end */
};

_ar_name; /* Header and member name */
};

The member header provides support for member names up to 255 characters long. The ar_namlen field
contains the length of the member name. The character string containing the member name begins at the
_ar_name field. The AIAFMAG string is cosmetic only.

Chapter 2. File Formats 285

Each archive member header begins on an even-byte boundary. The total length of a member header is:
sizeof (struct ar_hdr) + ar_namlen

The actual data for a file member begins at the first even-byte boundary beyond the member header and
continues for the number of bytes specified by the ar_size field. The ar command inserts null bytes for
padding where necessary.

All information in the fixed-length header and archive members is in printable ASCII format. Numeric
information, with the exception of the ar_mode field, is stored as decimal numbers; the ar_mode field is
stored in octal format. Thus, if the archive file contains only printable files, you can print the archive.

Member Table
A member table is always present in an indexed archive file. This table quickly locates members of the
archive. The fl_memoff field in the fixed-length header contains the offset to the member table. The
member table member has a zero-length name. The ar command automatically creates and updates (but
does not list) the member table. A member table contains the following information:

v The number of members. This member is 12 bytes long and stored in ASCII format as a decimal
number.

v The array of offsets into the archive file. The length is 12 times the number of members. Each offset is
12 bytes long and stored in ASCII format as a decimal number.

v The name string table. The size is:
ar_size - (12 * (the number of members +1));

that is, the size equals the total length of all members minus the length of the offsets, minus the length
of the number of members.

The string table contains the same number of strings as offsets. All strings are null-terminated. Each
offset from the array corresponds sequentially to a name in the string table.

Global Symbol Table
If an archive file contains XCOFF object-file members that are not stripped, the archive file will contain a
global symbol-table member. This global symbol table locates file members that define global symbols.
The strip command deletes the global symbol table from the archive. The fl_gstoff field in the
fixed-length header contains the offset to the global symbol table. The global symbol table member has a
zero-length name. The ar command automatically creates and updates, but does not list the global symbol
table. A global symbol table contains the following information:

v The number of symbols. This is 4 bytes long and can be accessed with the sgetl and sputl commands.

v The array of offsets into the archive file. The length is four times the number of symbols. Each offset is
4 bytes long and can be accessed with the sgetl and sputl commands.

v The name-string table. The size is:
ar_size - (4 * (the number of symbols + 1));

That is, the size equals the total length of the members, minus the length of the offsets, minus the
length of the number of symbols.

The string table contains the same number of strings as offsets. All strings are null-terminated. Each
offset from the array corresponds sequentially to a name in the string table.

Related Information
The a.out file format.

The ar command, ld command, strip command.

The sgetl or sputl subroutine.

286 Files Reference

The Header Files Overview in AIX 5L Version 5.2 Files Reference.

ate.def File Format

Purpose
Determines default settings for the Asynchronous Terminal Emulation (ATE) program.

Description
The ate.def file sets the defaults for use in asynchronous connections and file transfers. This file is part of
Asynchronous Terminal Emulation and is created in the current directory during the first run of ATE. The
ate.def file contains the default values in the ATE program uses for the following:

v Data transmission characteristics

v Local system features

v Dialing directory file

v Control keys

The first time the ATE program runs from a particular directory, it creates the ate.def file in that directory,
with settings as follows:

LENGTH 8
STOP 1
PARITY 0
RATE 1200
DEVICE tty0
INITIAL ATDT
FINAL
WAIT 0
ATTEMPTS 0
TRANSFER p
CHARACTER 0
NAME kapture
LINEFEEDS 0
ECHO 0
VT100 0
WRITE 0
XON/XOFF 1
DIRECTORY /usr/lib/dir
CAPTURE_KEY 002
MAINMENU_KEY 026
PREVIOUS_KEY 022

Edit the ate.def file with any ASCII text editor to permanently change the values of these characteristics.
Temporarily change the values of these characteristics with the ATE alter and modify subcommands,
accessible from either ATE Main Menu.

Parameters in the ate.def File
Type parameter names in uppercase letters in the ate.def file. Spell the parameters exactly as they appear
in the original default file. Define only one parameter per line. An incorrectly defined value for a parameter
causes ATE to return a system message. However, the program continues to run using the default value.

Chapter 2. File Formats 287

These are the ate.def file parameters:

LENGTH Specifies the number of bits in a data character. This length must match the length expected
by the remote system.

Options: 7 or 8.

Default: 8.
STOP Specifies the number of stop bits appended to a character to signal that character’s end

during data transmission. This number must match the number of stop bits used by the
remote system.

Options: 1 or 2.

Default: 1.
PARITY Checks whether a character is successfully transmitted to or from a remote system. Must

match the parity of the remote system.

For example, if the user selects even parity, when the number of 1 bits in the character is
odd, the parity bit is turned on to make an even number of 1 bits.

Options: 0 (none), 1 (odd), or 2 (even).

Default: 0.
RATE Determines the baud rate, or the number of bits transmitted per second (bps). The speed

must match the speed of the modem and that of the remote system.

Options: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2400, 4800, 9600, or 19,200.

Default: 1200.
DEVICE Specifies the name of the asynchronous port used to make a connection to a remote system.

Options: Locally created port names.

Default: tty0.
INITIAL Defines the dial prefix, a string that must precede the telephone number when the user

autodials with a modem. For the proper dial commands, consult the modem documentation.

Options: ATDT, ATDP, or other values, depending on the type of modem.

Default: ATDT.
FINAL Defines the dial suffix, a string that must follow the telephone number when the user

autodials with a modem. For the proper dial commands, consult the modem documentation.

Options: Blank (none) or a valid modem suffix.

Default: No default.
WAIT Specifies the time to wait between redialing attempts. The wait period does not begin until the

connection attempt times out or until it is interrupted. If the ATTEMPTS parameter is set to 0, no
redial attempt occurs.

Options: 0 (none) or a positive integer designating the number of seconds to wait.

Default: 0.
ATTEMPTS Specifies the maximum number of times the ATE program tries to redial to make a

connection. If the ATTEMPTS parameter is set to 0, no redial attempt occurs.

Options: 0 (none) or a positive integer designating the number of attempts.

Default: 0.

288 Files Reference

TRANSFER Defines the type of asynchronous protocol that transfers files during a connection.

p pacing:

File transfer protocol controls the data transmission rate by waiting for a specified
character or for a certain number of seconds between line transmissions. This helps
prevent loss of data when the transmission blocks are either too large or sent too
quickly for the system to process.

x xmodem:

An 8-bit file transfer protocol to detect data transmission errors and retransmit the
data.

Options: p (pacing), x (xmodem).

Default: p.
CHARACTER Specifies the type of pacing protocol to be used.

Character
Signal to transmit a line. Select one character.

When the send subcommand encounters a line-feed character while transmitting
data, the subcommand waits to receive the pacing character before sending the next
line.

When the receive subcommand is ready to receive data, it sends the pacing
character, then waits 30 seconds to receive data. The receive subcommand sends a
pacing character again whenever it finds a carriage-return character in the data. The
receive subcommand ends when it receives no data for 30 seconds.

Interval Number of seconds the system waits between each line it transmits. The value of
the Interval variable must be an integer. The default value is 0, indicating a pacing
delay of 0 seconds.

Default: 0.
NAME File name for incoming data (capture file).

Options: A valid file name less than 40 characters long.

Default: The kapture file.
LINEFEEDS Adds a line-feed character after every carriage-return character in the incoming data stream.

Options: 1 (on) or 0 (off).

Default: 0.
ECHO Displays the user’s typed input.

For a remote computer that supports echoing, each character sent returns and displays on
the screen. When the ECHO parameter is on, each character is displayed twice: first when it is
entered, and again when it returns over a connection. When the ECHO parameter is off, each
character displays only when it returns over the connection.

Options: 1 (on) or 0 (off).

Default: 0.
VT100 The local console emulates a DEC VT100 terminal so DEC VT100 codes can be used with

the remote system. With the VT100 parameter off, the local console functions like a
workstation.

Options: 1 (on) or 0 (off).

Default: 0.

Chapter 2. File Formats 289

WRITE Captures incoming data and routes it to the file specified in the NAME parameter as well as to
the display. Carriage-return or line-feed combinations are converted to line-feed characters
before they are written to the capture file. In an existing file, data is appended to the end of
the file.
Note: The CAPTURE_KEY (usually the Ctrl-B key sequence) can be used to toggle capture
mode on or off during a connection.

Options: 1 (on) or 0 (off).

Default: 0.
XON/XOFF Controls data transmission at a port as follows:

v When an Xoff signal is received, transmission stops.

v When an Xon signal is received, transmission resumes.

v An Xoff signal is sent when the receive buffer is nearly full.

v An Xon signal is sent when the buffer is no longer full.

Options: 1 (On) or 0 (Off).

Default: 1.
DIRECTORY Names the file that contains the user’s dialing directory.

Default: the /usr/lib/dir file.
CAPTURE_KEY Defines the control key sequence that toggles capture mode. When pressed, the

CAPTURE_KEY (usually the Ctrl-B key sequence) starts or stops capturing (saving) the data
that is displayed on the screen during an active connection.

Options: Any ASCII control character.

Default: ASCII octal 002 (STX).
MAINMENU_KEY Defines the control key sequence that returns the Connected Main Menu so the user can

issue a command during an active connection. The MAINMENU_KEY (usually the Ctrl-V key
sequence) functions only from the connected state.

Options: Any ASCII control character.

Default: ASCII octal 026 (SYN).
PREVIOUS_KEY Defines the control key sequence that displays the previous screen anytime during the

program. The screen displayed varies, depending on the screen in use when the user
presses PREVIOUS_KEY (usually the Ctrl-R key sequence).

Options: Any ASCII control character.

Default: ASCII octal 022 (DC2). The ASCII control character is mapped to the interrupt signal.

Notes:

1. Changing or remapping may be necessary if control keys conflict across applications. For example, if
the control keys mapped for the ATE program conflict with those in a text editor, remap the ATE control
keys.

2. The ASCII control character selected may be in octal, decimal, or hexadecimal format, as follows:

octal 000 through 037. The leading zero is required.
decimal 0 through 31.
hexadecimal 0x00 through 0x1F. The leading 0x is required. The x may be uppercase or lowercase.

Examples
To change characteristics of ATE emulation, create an ate.def file that defines those characteristics.

290 Files Reference

For example, to change the RATEto 300 bps, the DEVICE to tty3, the TRANSFER mode to x (xmodem
protocol), and the DIRECTORY to my.dir, create the following ate.def file in the directory running the ATE
program:
RATE 300
DEVICE tty3
TRANSFER x
DIRECTORY my.dir

The time the ATE program starts from that directory, the program uses the defined values.

Files

/usr/lib/dir Contains the default dialing directory file.

Related Information
The ate command.

The alter subcommand, connect subcommand, directory subcommand, modify subcommand, receive
subcommand, send subcommand.

ATE Overview for System Management, ATE Overview, How to Edit the ATE Default File, How to Set Up
an ATE Dialing Directory in AIX 5L Version 5.2 System User’s Guide: Communications and Networks.

audit File Format

Purpose
Describes the auditing data structures.

Description
The /usr/include/sys/audit.h file contains structure and constant definitions for the auditing system
commands, subroutines, and daemons:

Audit Bin Format
The format of the audit bin is described by the aud_bin structure. An audit trail consists of a sequence of
bins, each of which must start with a bin head and end with a bin tail. The aud_bin structure contains the
following fields:

bin_magic The magic number for the bin (0xf0f0).
bin_version The version number for the bin (0).
bin_tail Indicates whether the bin describes the audit trail head or tail:

0 Identifies the bin header.

1 Identifies the bin end (tail).

2 Identifies the trail end.
bin_len The (unpacked) length of the bin’s records. A nonzero value indicates that the bin has a tail

record.
bin_plen The current length of the bin’s record (might be packed).
bin_time The time at which the head or tail was written.
bin_reserved1 Not currently used.
bin_reserved2 Not currently used.

Chapter 2. File Formats 291

Audit Class Format
The format of the audit class is described by the audit_class structure, which contains the following fields:

ae_name A pointer to the name of the audit class.
ae_list A pointer to a list of null-terminated audit event names for this audit class. The list is ended by

a null name (a leading null byte or two consecutive null bytes).
Note: Event and class names are limited to 15 significant characters.

ae_len The length of the event list in the ae_list member. This length includes the terminating null
bytes. On an AUDIT_SET operation, the caller must set this member to indicate the actual
length of the list (in bytes) pointed to by ae_list. On an AUDIT_GET or AUDIT_LOCK
operation, the auditevents subroutine sets this member to indicate the actual size of the list.

Audit Object Format
The format of the audit object is described by the o_event structure, which contains the following fields:

o_type Specifies the type of the object, in terms of naming space. Currently, only one object-naming space
is supported:

AUDIT_FILE
Denotes the file system naming space.

o_name Specifies the name of the object.
o_event Specifies any array of event names to be generated when the object is accessed. Note that event

names are currently limited to 16 bytes, including the trailing null. The index of an event name in
this array corresponds to an access mode. Valid indexes are defined in the audit.h file and include
the following:

v AUDIT_READ

v AUDIT_WRITE

v AUDIT_EXEC

Audit Record Format
Each audit record consists of a list of fixed-length event identifiers, each of which can be followed by a
variable-length tail. The format of the audit record is described by the aud_rec structure, which contains
the following fields to identify the event:

ah_magic Magic number for audit record.
ah_length The length of the tail portion of the audit record.
ah_event[16] The name of the event and a null terminator.
ah_result An indication of whether the event describes a successful operation. The values for this field

are:

0 Indicates successful completion.

1 Indicates a failure.

>1 An errno value describing the failure.

The aud_rec structure also contains the following fields to identify the user and the process:

ah_ruid The real user ID; that is, the ID number of the user who created the process that wrote this
record.

ah_luid The login ID of the user who created the process that wrote this record.
ah_name[16] The program name of the process, along with a null terminator.
ah_pid The process ID of the process that wrote this record.
ah_ppid The process ID of the parent of this process.
ah_time The time in seconds at which this audit record was written.
ah_ntime The nanoseconds offset from ah_time.

292 Files Reference

The record tail follows this header information.

Related Information
The audit command, auditcat command, auditpr command, auditselect command, auditstream
command.

The auditbin daemon.

The audit subroutine, auditbin subroutine, auditevents subroutine, auditlog subroutine, auditobj
subroutine, auditproc subroutine, auditwrite subroutine.

Header Files Overview in AIX 5L Version 5.2 Files Reference.

bootptab File Format

Purpose
Default configuration database for the Internet Boot Protocol server (bootpd).

Description
The bootpd configuration file contains entries for clients that use the bootpd daemon to get boot
information. This file may be modified using the System Management Interface Tool (SMIT) to configure a
Diskless client or the file may be modified manually.

The client host information consists of case-sensitive tag symbols used to represent host parameters.
These host parameter declarations are separated by : (colon). For example:
HostName:Tg=Value:Tg=Value:Tg=Value

where:

HostName
Specifies the name of a BOOTP client. This must always be the first field in the entry.

The bootpd daemon attempts to send the entire host name as it is specified in this field. However,
if the host name does not fit into the reply packet, the name is shortened to the host field (up to
the first period, if present) and tried again. An arbitrarily truncated host name is never sent. If
nothing reasonable fits, nothing is sent.

Guidelines and Restrictions
v Blank lines and lines beginning with # are ignored when the file is read.

v Host entries are separated from one another by new lines; a single host entry may be extended over
multiple lines if the lines end with a backslash (\). However, individual host entries must not exceed
1024 characters.

v Lines in the configuration file may be longer than 80 characters.

v Tags can be displayed in any order, with the following exceptions:

– The host name must be the first field in an entry, and

– The hardware type must precede the hardware address.

Related Information
The bootpd Daemon.

Chapter 2. File Formats 293

Character Set Description (charmap) Source File Format

Purpose
Defines character symbols as character encodings.

Description
The character set description (charmap) source file defines character symbols as character encodings.
The /usr/lib/nls/charmap directory contains charmap source files for supported locales. The localedef
command recognizes two sections in charmap source files, the CHARMAP section and the CHARSETID
section:

CHARMAP Maps symbolic character names to code points. This section must precede all other
sections, and is mandatory.

CHARSETID Maps the code points within the code set to a character set ID. This sections is optional.

The CHARMAP Section
The CHARMAP section of the charmap file maps symbolic character names to code points. All supported
code sets have the portable character set as a proper subset. Only symbols that are not defined in the
portable character set must be defined in the CHARMAP section. The portable character set consists of
the following character symbols (listed by their standardized symbolic names) and encodings:

Symbol Name Code (hexadecimal)
<NUL> 000
<SOH>> 001
<STX> 002
<ETX> 003
<EOT> 004
<ENQ> 005
<ACK> 006
<alert> 007
<backspace> 008
<tab> 009
<new-line> 00A
<vertical-tab 00B
<form-feed> 00C
<carriage-return> 00D
<SO> 00E
<SI> 00F
<DLE> 010
<DC1> 011
<DC2> 012
<DC3> 013
<DC4> 014
<NAK> 015
<SYN> 016
<ETB> 017
<CAN> 018
 019
<SUB> 01A
<ESC> 01B
<IS4> 01C
<IS3> 01D
<IS2> 01E
<IS1> 01F

294 Files Reference

Symbol Name Code (hexadecimal)
<space> 020
<exclamation-mark> 021
<quotation-mark> 022
<number-sign> 023
<dollar-sign> 024
<percent> 025
<ampersand> 026
<apostrophe> 027
<left-parenthesis> 028
<right-parenthesis> 029
<asterisk> 02A
<plus-sign> 02B
<comma> 02C
<hyphen> 02D
<period> 02E
<slash> 02F
<zero> 030
<one> 031
<two> 032
<three> 033
<four> 034
<five> 035
<six> 036
<seven> 037
<eight> 038
<nine> 039
<colon> 03A
<semi-colon> 03B
<less-than> 03C
<equal-sign> 03D
<greater-than> 03E
<question-mark> 03F
<commercial-at> 040
<A> 041
 042
<C> 043
<D> 044
<E> 045
<F> 046
<G> 047
<H> 048
<I> 049
<J> 04A
<K> 04B
<L> 04C
<M> 04D
<N> 04E
<O> 04F
<P> 050
<Q> 051
<R> 052
<S> 053
<T> 054
<U> 055

Chapter 2. File Formats 295

Symbol Name Code (hexadecimal)
<V> 056
<W> 057
<X> 058
<Y> 059
<Z> 05A
<left-bracket> 05B
<backslash> 05C
<right-bracket> 05D
<circumflex> 05E
<underscore> 05F
<grave-accent> 060
<a> 061
 062
<c> 063
<d> 064
<e> 065
<f> 066
<g> 067
<h> 068
<i> 069
<j> 06A
<k> 06B
<l> 06C
<m> 06D
<n> 06E
<o> 06F
<p> 070
<q> 071
<r> 072
<s> 073
<t> 074
<u> 075
<v> 076
<w> 077
<x> 078
<y> 079
<z> 07A
<left-brace> 07B
<vertical-line> 07C
<right-brace> 07D
<tilde> 07E
 07F

The CHARMAP section contains the following sections:

v The CHARMAP section header.

v An optional special symbolic name-declarations section. The symbolic name and value must be
separated by one or more blank characters. The following are the special symbolic names and their
meanings:

<code_set_name> Specifies the name of the coded character set for which the charmap
file is defined. This value determines the value returned by the
nl_langinfo subroutine. The <code_set_name> must be specified using
any character from the portable character set, except for control and
space characters.

296 Files Reference

<mb_cur_max> Specifies the maximum number of bytes in a multibyte character for the
encoded character set. Valid values are 1 to 4. The default value is 1.

<mb_cur_min> Specifies the minimum number of bytes in a multibyte character for the
encoded character set. Since all supported code sets have the portable
character set as a proper subset, this value must be 1.

<escape_char> Specifies the escape character that indicates encodings in hexadecimal
or octal notation. The default value is a \ (backslash).

<comment_char> Specifies the character used to indicate a comment within a charmap
file. The default value is a # (pound sign). With the exception of optional
comments following a character symbol encoding, comments must start
with a comment character in the first column of a line.

v Character set mapping statements for the defined code set.

Each statement in this section defines a symbolic name for a character encoding. A character symbol
begins with the < (less-than) character and ends with the > (greater-than) character. The characters
between the < (less-than) and > (greater-than) can be any characters from the portable character set,
except for control and space characters. The > (greater-than) character may be used if it is escaped
with the escape character (as specified by the <escape_char> special symbolic name). A character
symbol cannot exceed 32 characters in length.

The format of a character symbol definition is:
<char_symbol> encoding

optional comment

An encoding is specified as one or more character constants, with the maximum number of character
constants specified by the <mb_cur_max> special symbolic name. The localedef command supports
decimal, octal, and hexadecimal constants with the following formats:
hexadecimal constant \xddd
octal constant \oddd
decimal constant \dddd

Some examples of character symbol definitions are:
<A> \d65 decimal constant
 \x42 hexadecimal constant
<j10101> \x81\d254 mixed hex and decimal constants

A range of one or more symbolic names and corresponding encoding values may also be defined,
where the nonnumeric prefix for each symbolic name is common, and the numeric portion of the second
symbolic name is equal to or greater than the numeric portion of the first symbolic name. In this format,
a symbolic name value consists of zero or more nonnumeric characters followed by an integer of one or
more decimal digits. This format defines a series of symbolic names. For example, the string
<j0101>...<j0104> is interpreted as the <j0101>, <j0102>, <j0103>, and <j0104> symbolic names, in
that order.

In statements defining ranges of symbolic names, the encoded value is the value for the first symbolic
name in the range. Subsequent symbolic names have encoding values in increasing order. For
example:
<j0101>...<j0104> \d129\d254

This character set mapping statement is interpreted as follows:
<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d0
<j0104> \d130\d1

Symbolic names must be unique, but two or more symbolic names can have the same value.

v The END CHARMAP section trailer.

Chapter 2. File Formats 297

Examples
The following is an example of a portion of a possible CHARMAP section from a charmap file:
CHARMAP
<code_set_name> ISO8859-1
<mb_cur_max> 1
<mb_cur_min> 1
<escape_char> \
<comment_char> #
<NUL> \x00
<SOH> \x01
<STX> \x02
<ETX> \x03
<EOT> \x04
<ENQ> \x05
<ACK> \x06
<alert> \x07
<backspace \x09
<tab> \x09
<newline> \x0a
<vertical-tab> \x0b
<form-feed> \x0c
<carriage-return> \x0d
END CHARMAP

The CHARSETID Section
The CHARSETID section maps the code points within the code set to a character set ID. The
CHARSETID section contains the following sections:

v The CHARSETID section header.

v Character set ID mappings for the defined code sets.

v The END CHARSETID section trailer.

Character set ID mappings are defined by listing symbolic names or code points for symbolic names and
their associated character set IDs. The following are possible formats for a character set ID mapping
statement:
<character_symbol> number
<character_symbol>...<character_symbol> number
character_constant number
character_constant...character_constant number

The <character_symbol> used must have previously been defined in the CHARMAP section. The
character_constant must follow the format described for the CHARMAP section.

Individual character set mappings are accomplished by indicating either the symbolic name (defined in the
CHARMAP section or the portable character set) followed by the character set ID, or the code point
associated with a symbolic name followed by the character set ID value. Symbolic names and code points
must be separated from a character set ID value by one or more blank characters. Ranges of code points
can be mapped to a character set ID value by indicating appropriate combinations of symbolic names and
code point values as endpoints to the range, separated by ... (ellipsis) to indicate the intermediate
characters, and followed by the character set ID for the range. The first endpoint value must be less than
or equal to the second end point value.

Examples
The following is an example of a portion of a possible CHARSETID section from a charmap file:
CHARSETID
<space>...<nobreakspace> 0
<tilde>...<y-diaeresis> 1
END CHARSETID

298 Files Reference

Related Information
Locale Definition Source File Format , Locale Method Source File Format .

For specific information about the locale categories and keywords, see the LC_COLLATE category,
LC_CTYPE category, LC_MESSAGES category, LC_MONETARY category, LC_NUMERIC category, and
LC_TIME category .

The locale command, localedef command.

For information on converting data between code sets, see Converters Overview for System Management,
National Language Support Overview for System Management, Understanding the Character Set
Description (charmap) Source File in AIX 5L Version 5.2 National Language Support Guide and
Reference.

core File Format

Purpose
Contains an image of a process at the time of an error.

Description
A core file is created in the current directory when various errors occur. Errors such as memory-address
violations, illegal instructions, bus errors, and user-generated quit signals, commonly cause this core
dump. The core file that is created contains a memory image of the terminated process. If the faulty
process is multi-threaded and the current core size ulimit is less than what is required to dump the data
section, then only the faulting thread stack area is dumped from the data section.

Note: Beginning with AIX 5.1, the core dump file can only be enabled by an environment variable and has
a unique name in the format:
core.pid.ddhhmmss

where:

v pid: process id

v dd: Day of the Month

v hh: Hours

v mm: Minutes

v ss: Seconds

Default behavior is the same as in previous versions of AIX.

A process with a saved user ID that differs from the real user ID does not produce a memory image. The
same holds true for the group ID (GID) and effective group ID. The contents of a core dump are organized
sequentially in the core file as follows:

Core header Defines basic information about the core dump, and contains offsets that
locate the remainder of the core dump information.

ldinfo structures Defines loader information.
mstsave structures Defines kernel thread state information. Since the faulting thread mstsave

structure is directly saved in the core header, additional structures are
saved here only for multi-threaded programs.

Default user stack Contains a copy of the user stack at the time of the core dump.
Default data area (Optional) Contains the user data section.
Memory mapped regions (Optional) Contains the anonymously mapped regions.
vm_info structures (Optional) Contains offset and size information for memory mapped regions.

Chapter 2. File Formats 299

By default, the user data is, anonymously mapped regions, and vm_info structures are not included in a
core dump. This partial core dump includes the current process stack, thread stack, the thread mstsave
structures, the user structure, and the state of the registers at the time of the fault. A partial core dump
contains sufficient information for a stack traceback. The size of a core dump can also be limited by the
setrlimit subroutine.

To enable a full core dump, set the SA_FULLDUMP flag in the sigaction subroutine for the signal that is
to generate a full core dump. If this flag is set when the core is dumped, the data section is, anonymously
mapped regions, and vm_info structures are included in the core dump.

The format of the core header is defined by the core_dump structure (in the core.h header file), which is
organized as follows:

Field Type Field Name Description

char c_signo The number of the signal which caused the error

char c_flag A bit field which describes the core dump type. The
meanings of the bits are as follows:

FULL_CORE core contains the data
sections (0x01)

CORE_VERSION_1 core was generated by AIX
Version 4 or higher (0x02)

MSTS_VALID core contains mstsave
structures (0x04)

CORE_BIGDATA core contains big data
(0x08)

UBLOCK_VALID core contains the u_block
structure (0x10)

USTACK_VALID core contains the user stack
(0x20)

LE_VALID core contains at least one
module (0x40)

CORE_TRUNC core was truncated (0x80)

ushort c_entries The number of core dump modules

struct ld_info * c_tab The offset to the beginning of the core table

caddr_t c_stack The offset to the beginning of the user stack

int c_size The size of the user stack

struct mstsave c_mst A copy of the faulting mst

struct user c_u A copy of the user structure

int c_nmsts The number of mstsave structures referenced by the
c_msts field

struct mstsave * c_msts The offset to the other threads’ mstsave structures

int c_datasize The size of the data region

caddr_t c_data The offset to user data

int c_vmregions The number of anonymously mapped regions

struct vm_info * c_vmm The offset to the start of the vm_info table

300 Files Reference

Related Information
The param.h file.

The adb command, dbx command.

The raise subroutine, setrlimit subroutine, setuid subroutine, sigaction subroutine.

core File Format (AIX 4.2)

Purpose
Contains an image of a 32-bit process at the time of an error.

Description
A core file is created in the current directory when various errors occur. .Errors such as memory-address
violations, illegal instructions, bus errors, and user-generated quit signals commonly cause this core dump.
The core file that is created contains a memory image of the terminated process. A process with a saved
user ID that differs from the real user ID does not produce a memory image. The contents of a core dump
are organized sequentially in the core file as follows:

Core header Defines basic information about the core dump, and contains offsets which
locate the remainder of the core dump information.

ldinfo structures Defines loader information.
mstsave structures Defines kernel thread state information. Since the faulting thread mstsave

structure is directly saved in the core header, additional structures are
saved here only for multi-threaded programs.

Default user stack Contains a copy of the user stack at the time of the core dump.
Default data area (Optional) Contains the user data section.
Memory mapped regions (Optional) Contains the anonymously mapped regions.
vm_info structures (Optional) Contains offset and size information for memory mapped regions.

The core_dump structure, defined by the core.h file, occurs at the beginning of a core file. The
core_dump structure includes the following fields:

Field Type Field Name Description

char c_signo The number of the signal that caused the error

char c_flag A bit field that describes the core dump type. The
meanings of the bits are as follows:

FULL_CORE core contains the data
sections (0x01)

CORE_VERSION_1 core was generated by AIX
Version 4 or higher (0x02)

MSTS_VALID core contains mstsave
structures (0x04)

CORE_BIGDATA core contains big data
(0x08)

UBLOCK_VALID core contains the u_block
structure (0x10)

USTACK_VALID core contains the user stack
(0x20)

LE_VALID core contains at least one
module (0x40)

Chapter 2. File Formats 301

Field Type Field Name Description

CORE_TRUNC core was truncated (0x80)

ushort c_entries The number of core dump modules

struct ld_info * c_tab The offset to the beginning of the core table

caddr_t c_stack The offset to the beginning of the user stack

int c_size The size of the user stack

struct mstsave c_mst A copy of the faulting mst

struct user c_u A copy of the user structure

int c_nmsts The number of mstsave structures referenced by the
c_msts field

struct mstsave * c_msts The offset to the other threads’ mstsave structures

int c_datasize The size of the data region

caddr_t c_data The offset to user data

int c_vmregions The number of anonymously mapped regions

struct vm_info * c_vmm The offset to the start of the vm_info table

The c_u field contains the user structure (a copy of the actual u_block), which includes the registers as
they existed at the time of the fault.

The ld_info structure and then the user-mode stack follow the u_block in the core dump.

By default, the user data, anonymously mapped regions, and vm_info structures are not included in a
core dump. This partial core dump includes the current thread stack, the thread mstsave structures, the
user structures, and the state of the registers at the time of the fault. A partial core dump contains
sufficient information for a stack traceback. The size of a core dump can also be limited by the setrlimit
subroutine.

To enable a full core dump, set the SA_FULLDUMP flag in the sigaction subroutine for the signal that is
to generate a full core dump. If this flag is set when the core is dumped, the data section, anonymously
mapped regions, and vm_info structures are included in the core dump.

Related Information
The param.h file.

The adb command, dbx command.

The raise subroutine, setrlimit subroutine, setuid subroutine, sigaction subroutine.

The Header Files Overview in AIX 5L Version 5.2 Files Reference defines header files, describes how they
are used, and lists several header files for which information is provided in this documentation.

core File Format (AIX 4.3)

Purpose
Contains an image of a 32-bit or 64-bit process at the time of an error.

302 Files Reference

Description
A core file is created in the current directory when various errors occur. Errors such as memory-address
violations, illegal instructions, bus errors, and user-generated quit signals commonly cause this core dump.
The core file that is created contains a memory image of the terminated process. A process with a saved
user ID that differs from the real user ID does not produce a memory image. The contents of a core dump
are organized sequentially in the core file as follows:

Core header Defines basic information about the core dump, and contains offsets that
locate the remainder of the core dump information.

ldinfo structures Defines loader information.
thrdctx structures Defines kernel thread state information. Since the faulting thread thrdctx

structure is directly saved in the core header, additional structures are
saved here only for multi-threaded programs.

segregion structures Contains the address, size, and type for shared memory segments of the
faulting process.

Default user stack Contains a copy of the user stack at the time of the core dump.
Default data area (Optional) Contains the user data section.
vm_infox structures (Optional) Contains offset and size information for memory mapped regions.
Memory mapped regions (Optional) Contains the memory mapped regions.

The core_dumpx structure, defined by the core.h file, occurs at the beginning of a core file. The
core_dumpx structure includes the following fields:

Field Type Field Name Description

char c_signo The number of the signal that caused the error

char c_flag A bit field that describes the core dump type. The
meanings of the bits are as follows:

FULL_CORE core contains the data
sections (0x01)

CORE_VERSION_1 core was generated by AIX
Version 4 or higher (0x02)

MSTS_VALID core contains mstsave
structures (0x04)

CORE_BIGDATA core contains big data
(0x08)

UBLOCK_VALID core contains the u_block
structure (0x10)

USTACK_VALID core contains the user stack
(0x20)

LE_VALID core contains at least one
module (0x40)

CORE_TRUNC core was truncated (0x80)

ushort c_entries The number of core dump modules

int c_version Core file format version

unsigned long long c_fdsinfox Offset to fd region in file

unsigned long long c_loader Offset to loader region in file

unsigned long long c_lsize Size of the loader region

uint c_n_thr Number of elements in thread table

unsigned long long c_thr Offset to thread context table

unsigned long long c_segs Number of elements in segregion

Chapter 2. File Formats 303

Field Type Field Name Description

unsigned long long c_segregion Offset to start of segregion table

unsigned long long c_stack Offset of user stack in file

unsigned long long c_stackorg Base address of user stack region

unsigned long long c_size Size of user stack region

unsigned long long c_data Offset to user data region

unsigned long long c_dataorg Base address of user data region

unsigned long long c_datasize Size of user data region

unsigned long long c_sdorg Base address of privately loaded region

unsigned long long c_sdsize Size of user privately loaded region

unsigned long long c_vmregions Number of anonymously mapped areas

unsigned long long c_vmm Offset of start of vm_infox table

struct thrdctx c_flt Faulting thread’s context and thread data

struct userx c_u Representation of the user struct and process data

The c_flt field in the core dump contains the thrdctx structure of the faulting thread. The thrdctx
structure includes the thread data and registers as they existed at the time of the fault. The format of the
thread context structure is defined by thrdctx structure (in the core.h header file) as follows:

thrdctx thrdsinfo64
__context64
mstsave

thread data (in procinfo.h header file)
state of registers if 64-bit process, or
state of registers if 32-bit process

The c_u field follows this information in the core dump. The c_u field contains the userx structure including
the user structure fields, and the process data as they existed at the time of the fault. The format of the
process information structure is defined by the userx structure (in the core.h header file) as follows:

userx procsinfo64 process data (in procinfo.h header file)

The ld_info structure and then the thrdctx structures of the other threads (if the process is multi-threaded)
follow in the core dump.

The segregion structure and then the user-mode stack follow in the core dump.

The segregion structure contains the information about a shared memory region of the faulting process.

segregion addr
size
segflags

segment start address
size of the segment
type of the document

The first three fields of the core_dumpx header in AIX 4.3 are the same as that of the core_dump header
in AIX 4.2. However, the c_entries are always zero on AIX 4.3 systems to distinguish them from the AIX
4.2 core file formats. Further, the pi_flags2 field of the procsinfo64 structure determines if the core file is
of a 32-bit process or a 64-bit process.

The AIX 4.3 operating system can be forced to create core files in a AIX 4.2 core file format via the SMIT
tool. However, this enforcement is valid only for 32-bit processes.

304 Files Reference

By default, the user data, anonymously mapped regions, and vm_infox structures are not included in a
core dump. This partial core dump includes the current thread stack, the thread thrdctx structures, the
user structure, and the state of the registers at the time of the fault. A partial core dump contains sufficient
information for a stack traceback. The size of a core dump can also be limited by the setrlimit or
setrlimit64 subroutine.

To enable a full core dump, set the SA_FULLDUMP flag in the sigaction subroutine for the signal that is
to generate a full core dump. If this flag is set when the core is dumped, the user data section, vm_infox,
and anonymously mapped region structures are included in the core dump.

Related Information
The param.h file.

The adb command, dbx command.

The raise subroutine, setrlimit and setrlimit64 subroutines, setuid subroutine, sigaction subroutine.

The Header Files Overview in AIX 5L Version 5.2 Files Reference defines header files, describes how they
are used, and lists several header files for which information is provided in this documentation.

cpio File Format

Purpose
Describes the copy in/out (cpio) archive file.

Description
The cpio utility backs up and recovers files. The files are saved on the backup medium in the cpio format.

When the cpio command is used with the -c flag, the header for the cpio structure reads as follows:
sscanf(Chdr,"%6ho%6ho%6ho%6ho%6ho%6ho%6ho%6ho%11lo%6ho%11lo%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize, &Longfile, &Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize, respectively. The contents of
each file, and other items describing the file, are recorded in an element of the array of structures with
varying lengths.

Note: Files saved with the -c flag must be restored with the -c flag.

When the -c flag of the cpio command is not used, the header structure contains the following fields:

h_magic Contains the constant octal 070707 (or 0x71c7).
h_dev Device that contains a directory entry for this file.
h_ino I-node number that identifies the input file to the file system.
h_mode Mode of the input file, as defined in the mode.h file.
h_uid User ID of the owner of the input file.
h_gid Group ID of the owner of the input file.

For remote files, these fields contain the ID after reverse translation:

h_nlink Number of links that are connected to the input file.
h_rdev ID of the remote device from which the input file is taken.

Chapter 2. File Formats 305

h_mtime Time when data was last modified. For remote files, this field contains the time at the
server. This time can be changed by the creat, fclearf, truncate, mknod, openx, pipe,
utime, or writex subroutine.

h_namesize Length of the path name, including the terminating null byte.
h_filesize Length of the file in bytes. This is the length of the data section that follows the header

structure.
h_name Null-terminated path name. The length of the path name, including the null byte, is

indicated by the n variable, where n equals ((h_namesize % 2) + h_namesize). That is,
the n variable is equal to the h_namesize field if the h_namesize field is even. If the
h_namesize field is odd, the n variable is equal to the h_namesize field + 1.

The last record of the archive always contains the name TRAILER!!!. Special files, directories, and the
trailer are recorded with the h_filesize field equal to 0.

Related Information
The mode.h file, stat.h file.

The cpio command, find command.

The fclear subroutine, truncate or ftruncate subroutine, mknod subroutine, open, openx, or creat
subroutine, pipe subroutine, scanf, fscanf, sscanf, wsscanf subroutine, utime subroutine, write, writex,
writev, or writevx subroutine.

The Header Files Overview in AIX 5L Version 5.2 Files Reference defines header files, describes how they
are used, and lists several of the header files for which information is provided in this documentation.

Devices File Format for BNU

Purpose
Contains information about devices on the local system that can establish a connection to a remote
computer using the Basic Networking Utilities (BNU) program.

Description
The /etc/uucp/Devices file and its augmentations and alternatives specified in the /etc/uucp/ Sysfiles file
contains information about the devices on the local system that can establish a connection to a remote
computer using the Basic Networking Utilities (BNU) program. This file includes information for hardwired,
telephone, and TCP/IP communication links.

Note: Only someone with root user authority can edit the Devices file, which is owned by the uucp login
ID.

Fields in the Devices File
The Devices file must contain a description of each device on the local system that can establish a
remote connection using the BNU program. Each line in the Devices file includes the following fields:

Type Typically specifies the type of hardwired or automatic calling unit (ACU) device.
Line Specifies the device name for the port.
Line2 Specifies the dialer name if the Line entry specifies an 801 dialer.
Class Typically specifies the transmission speed.
Dialer-Token Pairs Specifies a particular type of autodialer (modem) and the token (a defined string

of characters) that is passed to the dialer. Valid entries for this field are defined in
the /etc/uucp/Dialers file.

306 Files Reference

The fields appear on the line as follows:

Type Line Line2 Class Dialer-Token Pairs

Every field of a line in the Devices file must contain an entry. If a field does not apply to the particular type
of device or system, use a - (minus sign) as a placeholder.

Lines in the Devices file cannot wrap. Each entry must be on only one line in the file. However, the
Devices file can contain blank lines and comment lines. Comment lines begin with a # (pound sign). Blank
lines are ignored.

Type Field: Enter one of the following keywords in this field:

Keyword Explanation
ACU Use this keyword, entered in uppercase letters, if your site connects multiple systems over the

telephone network with automatic calling units (autodialers or modems).
Direct Use this keyword, beginning with an uppercase D, if your site uses hardwired lines to connect

multiple systems.
TCP Use this keyword, in uppercase letters, if your site uses TCP/IP.
SystemName Enter the name of a particular remote system hardwired to the local system. The SystemName

keyword is the name assigned to each individual system, such as hera, zeus, or merlin.

This field corresponds to the Type field in the /etc/uucp/Systems file.

Line Field: The device name for the line, or port, used in the communication link is inserted here. For
example, use the appropriate device name for a hardwired line, such as tty1. For a line connected to an
ACU (a modem), use a device name appropriate to the dialer, such as tty1 or tty2. For a TCP
connection, enter a minus sign as a placeholder.

Line2 Field: Unless you are using an 801 dialer, use a - (minus sign) in this field as a placeholder. If you
are using an 801 dialer, put the device name of the 801 ACU in this field. For example, if the entry in the
Type field is ACU and the Line field entry (specifying the modem) is tty1, the Line2 field entry (specifying
the 801 dialer for the modem) might be tty3 or tty4.

Note: The Line2 field is used only to support older modems that require 801-type dialers. The modem is
plugged into one serial port, and the 801 dialer is plugged into a separate serial port.

Class Field: For an ACU or a hardwired line, the Class field can be the speed of the device. In this case,
for a hardwired line, use the transmission rate of the device connecting the two systems. For a telephone
connection, use the speed at which the ACU transmits data, such as 300 or 1200 bps.

This field can also contain a letter with a speed (for example, C1200 or 1200) to differentiate between
classes of dialers. For example, some offices have more than one telephone network, one for internal use
and one for external communications. In such a case, it is necessary to distinguish which lines should be
used for each connection.

The Class field in the Devices file is matched against the Class field in the /etc/uucp/Systems file. For
example, if the Systems file entry for system hera is:
hera Any ACU 1200 3-3-5-2 ogin: nuucp ssword: oldoaktree

BNU searches for an entry in the Devices file with a Type of ACU and a Class of 1200.

Some devices can be used at several specific speeds. In this case, make multiple entries for the device,
specifying each speed on a separate line in the Devices file. If BNU cannot connect at the first speed, it
will try the successive speeds.

Chapter 2. File Formats 307

If a device can be used at any speed, type the word Any in the Class field. Note that the A in Any must be
uppercase.

For a TCP/IP connection, enter a - (minus sign) as a placeholder.

Dialer-Token Pair Field: The Dialer-Token Pair field specifies a particular type of autodialer (modem)
and the token (a defined string of characters) that is passed to the dialer. Valid entries for this field are
defined in the /etc/uucp/Dialers file.

For a hardwired connection, enter the word direct (note the lowercase d) as the Dialer entry and leave
the Token entry blank.

For a telephone connection, enter the type of dialer and the token that is passed to that modem. The
Token field entry is either a telephone number or a predefined string used to reach the dialer.

For a telephone connection, enter one of the following as the Dialer field entry:

Entry Definition
hayes A Hayes dialer.
Other Dialers Other dialers that you can specify by including the relevant information in the

/etc/uucp/Dialers file.
TCP A TCP/IP connection. Enter TCP in the Dialer field entry if you have also entered TCP in the

Type field.

Each Dialer field entry included as part of a Dialer-Token Pair field in the Devices file has a corresponding
entry in the Dialers file.

If the Token field entry represents a telephone number, enter one of the following in the Token field to
specify how the BNU program should use the telephone number listed in the /etc/uucp/Systems file:

Entry Definition
\D The default token in a Dialer-Token Pair field. The \D token specifies that the BNU program should

take the phone number listed in the /etc/uucp/Systems file and pass it to the appropriate dialer
script (entry) in the /etc/uucp/Dialers file, without including a dial-code abbreviation.

\T This token instructs the BNU program to process the phone number by including the data
specified in the /etc/uucp/Dialcodes file.
Note: If you are using dial-code abbreviations specified in the Dialcodes file for certain telephone
numbers, you must enter the \T string as the token in those entries in the Dialers file.

blank Leaving the Token field blank is the same as entering \D, so a blank is usually sufficient as a
token if you have included complete telephone numbers in the /etc/uucp/Systems file.

If the Token field does not represent a telephone number, enter the predefined string necessary to
reach the dialer.

Examples

Setting Up Entries for Hardwired Connections
To set up a Device file entry specifying a port and a remote system, make an entry as follows:
Direct tty1 - 1200 direct
zeus tty1 - 1200 direct

The Type field lists Direct (for a direct connection) in the first part and zeus (the name of the remote
system) in the second part. The local system is connected to system zeus by way of device tty1, which is
listed in the Line field in both parts of the example.

308 Files Reference

The Line2 field contains actual data only when the entry specifies a certain type of telephone connection.
A - (minus sign) is used as a placeholder in other types of connections, as in this example. This device
transmits at a rate of 1200 bps, which is listed in the Class field in both parts of the example. The word
direct in the Dialer field portion of the Dialer-Token Pair field indicates that this is a direct connection.

Setting Up Entries for Autodialer Connections
1. For a standard Hayes modem that can be used at only one baud rate, make an entry as follows:

ACU tty2 - 1200 hayes

The Type field is specified as ACU. The Line field is specified with the device name tty2. Because this
modem is not an 801 dialer, a - (minus sign) is used as a placeholder in the Line2 field. The Class
field entry is a transmission rate of 1200 baud. The Dialer field part of the Dialer-Token Pair field is
specified as a hayes modem, and the Token field part is left blank.

2. To specify a standard Hayes modem that can be used at different baud rates, make an entry as
follows:
ACU tty3 - 1200 hayes
ACU tty3 - 300 hayes

These two lines specify the same modem, a hayes, which can be used at either 1200 or 300 baud, as
specified in the Class field. The modem is connected to a device named tty3 (the Line field), and the
Line2 field contains the - (minus sign) placeholder. The Dialer field part of the Dialer-Token Pair field is
specified as a hayes modem, and the Token field is left blank.

3. To specify a standard Hayes modem that can be used at any baud rate, make an entry as follows:
ACU tty2 - Any hayes

These two lines specify a hayes modem that can be used at any baud rate, as specified by the word
Any entered in the Class field. Note that the word Any must be entered with an uppercase A.

4. To specify a connection using a standard 801 dialer, make an entry as follows:
ACU tty4 tty5 1200 801
ACU tty6 tty7 300 801

In these entries, the ACU entries are connected to devices named tty4 and tty6, specified in the Line
field. In both cases, there is an entry in the Line2 field because a standard 801 autodialer is specified
in the Dialer-Token Pair field. Because 801 is specified as the dialer in these two examples, the Line2
field must contain the device names of the 801 ACUs. The Class field entry specifies a transmission
rate of 1200 baud for the first example and 300 for the second. The Token field part of the Dialer-Token
Pair field is blank.

Setting Up the Entry for Use with TCP/IP
If your site is using the TCP/IP system, enter the following in the Devices file:
TCP - - - TCP

TCP is specified in the Type field. minus signs are used as placeholders in the Line, Line2, and Class
fields. TCP is specified as the Dialer field entry, with the Token entry left blank.

Setting Up Entries for Both Local and Remote Systems
The following examples illustrate the entries needed in the Devices file for both local and remote systems
in order for the two systems to communicate using the BNU program.

1. To configure a hardwired connection, note the following information.

The following entries configure local and remote Devices files for a hardwired connection between
systems zeus and hera, where zeus is considered the local system and hera the remote system. The
hardwired device on system zeus is tty1; on system hera, it is tty2.

The Devices file on system zeus contains the following entry in order to connect to the remote system,
hera:

Chapter 2. File Formats 309

Direct tty1 - 1200 direct
hera tty1 - 1200 direct

The Devices file on system hera contains the following entry for communications with system zeus:
Direct tty2 - 1200 direct
zeus tty2 - 1200 direct

2. To configure a telephone connection, note the following information.

These files are set up to connect systems venus and merlin over a telephone line using modems.
System venus is considered the local system, and system merlin is considered the remote system.

On both systems, the device tty1 is hooked to a hayes modem at 1200 baud. Both computers include
partial phone numbers in their /etc/uucp/Systems files and dialing codes in their /etc/uucp/Dialcodes
files.

The Devices file on system venus contains the following entry for the connection to system merlin:
ACU tty1 - 1200 hayes \T

The Devices file on system merlin contains the following entry for the connection to system venus:
ACU tty1 - 1200 hayes \T

Files

/etc/uucp directory Contains all the configuration files for BNU, including the Devices file.
/etc/uucp/Dialcodes file Contains dialing code abbreviations.
/etc/uucp/Dialers file Specifies initial handshaking on a connection.
/etc/uucp/Systems file Describes accessible remote systems.
/etc/uucp/Sysfiles file Specifies possible alternative or augmentative files for

/etc/uucp/Devices.

Related Information
The cu command, uucp command, uucpadm command, uuto command, uux command.

The uucico daemon, uuxqt daemon.

Editing Devices File for Hardwired Connections, Editing Devices File for Autodialer Connection, Editing
Devices File for TCP/IP, Configuring BNU in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

Dialcodes File Format for BNU

Purpose
Contains the initial digits of telephone numbers used to establish remote connections over a phone line.

Description
The /etc/uucp/Dialcodes file contains the initial digits of telephone numbers used by the Basic Networking
Utilities (BNU) program to establish remote connections over a phone line. The Dialcodes file simplifies
entries in the /etc/uucp/Systems file for sites where a number of device phone numbers have the same
prefix.

If users at your site communicate regularly by way of telephone lines and modems to multiple systems all
located at the same remote site, or to multiple systems located at different remote sites, use the dial-code
abbreviations in the /etc/uucp/Systems file rather than entering the complete phone number of each
remote modem in that file.

310 Files Reference

The Dialcodes file contains dial-code abbreviations and partial phone numbers that complete the
telephone entries in the /etc/uucp/Systems file. Entries in the Dialcodes file contain an alphabetic prefix
attached to a partial phone number that may include the following information in the order listed:

v Codes for an outside line

v Long-distance access codes

v A 1 (one) plus the area code (if the modem is out of the local area)

v The three-digit exchange number

The relevant alphabetic prefix (representing the partial phone number), together with the remaining four
digits of that number, is then entered in the Phone field in the /etc/uucp/Systems file.

Following is the form of an entry in a Dialcodes file:

DialCodeAbbreviation DialingSequence

The DialCodeAbbreviation part of the entry is an alphabetic prefix containing up to 8 letters, established
when setting up the dialing-code listing. The DialingSequence is composed of all the digits in the number
that precede the actual four-digit phone number.

Notes:

1. If your site uses only a relatively small number of telephone connections to remote systems, include
the complete phone numbers of the remote modems in the /etc/uucp/Systems file rather than use
dial-code abbreviations.

2. Enter each prefix only once in the Dialcodes file. When you have set up a dial-code abbreviation, use
that prefix in all relevant entries in the /etc/uucp/Systems file.

3. Only someone with root user authority can edit the Dialcodes file, which is owned by the uucp
program login ID.

Example
The Dialcodes file on system venus contains the following dial-code prefix for use with a number in the
/etc/uucp/Systems file:
local 9=445

The Systems file on system venus contains the following entry for system zeus, including a phone number
and a dialing prefix:
zeus Any ACU 1200 local8784 in:--in: uzeus word: thunder

When BNU on system venus dials system zeus, BNU uses the expanded telephone number 9=4458784.

Files

/etc/uucp directory Contains all the configuration files for BNU, including the Dialcodes file.
/etc/uucp/Devices file Contains information about available devices.
/etc/uucp/Dialers file Specifies initial handshaking on a connection.
/etc/uucp/Systems file Describes accessible remote systems.
/etc/uucp/Sysfiles file Specifies possible files used instead of /etc/uucp/System file,

/etc/uucp/Devices file, and /etc/uucp/Dialers file.

Related Information
The cu command, tip command, uucp command, uucpadm command, uuto command, and uux
command.

Chapter 2. File Formats 311

Configuring BNU and Understanding the BNU File and Directory Structure in AIX 5L Version 5.2 System
Management Guide: Communications and Networks.

Dialers File Format for BNU

Purpose
Lists modems used for Basic Networking Utilities (BNU) remote communications links.

Description
The /etc/uucp/Dialers file and its surrogates, specified in the /etc/uucp/Sysfiles file, lists the modems
(dialers) used by the Basic Networking Utilities (BNU) program and specifies the initial handshaking
necessary to establish remote communications links. Handshaking is a series of expect-send sequences
that specify the initial communications that occur on a link before it is ready to send or receive data. Using
the handshaking, the local and remote systems confirm that they are compatible and configured to transfer
data.

The Dialers file(s) contains entries for each autodialer that is included in the /etc/uucp/Devices file or one
of its surrogate files. Surrogate file are specified in the /etc/uucp/Sysfiles file. It also contains entries
specifying no handshaking for direct hardware links (the direct entry) and TCP/IP links (the TCP entry).
The first field of the Dialers file, which specifies the dialer, is matched to the fifth field of the Devices file,
the Dialer-Token Pair field, to determine handshaking when making a connection.

Note: Only someone with root user authority can edit the Dialers file, which is owned by the uucp login
ID.

Fields in a Dialers File
Every modem (dialer) is listed on a line by itself in the Dialers file. Each line consists of three groups of
information: the Dialer Name field, the Dial Tone and Wait Characters field, and the Handshaking field.

Dialer Name Field: The first field in a Dialers file, the Dialer Name field, specifies the type of autodialer
(modem) used in the connection. It matches the fifth field, the Dialer-Token Pair field, in the Devices
file(s). When a particular device is used to make a connection, BNU uses the Dialer-Token Pair field in the
Devices file(s) to find the handshaking entry in the Dialers file(s).

If your system has direct hardware connections to one or more remote systems, include an entry with a
Dialer Name of direct. Similarly, if your system uses TCP/IP to connect to one or more other systems,
include an entry with a DialerName of TCP. These entries correspond, respectively, to the word direct and
the word TCP in the Dialer-Token Pairs field of entries in a Devices file. Omit the Dial Tone and Wait
Characters field and the Handshaking field, since no handshaking is needed on these connections.

Dial Tone and Wait Characters Field: The second field, the Dial Tone and Wait Characters field,
consists of two sets of two characters, for a total of four entries. These characters comprise a translation
string. In the actual phone number of the remote modem, the first character in each string is mapped to
the second character in that set.

Entry Action
=,-, Translate the telephone number. Any = (equal sign) represents wait for dial tone and any - (minus

sign) represents pause.
″″ Wait for nothing; continue with the rest of the string.
WAIT=n Enter this before any send string in the Dialers file, where n is the number of seconds to wait before

timing out.

This field generally translates the = and - characters into whatever the dialer uses for wait for dial tone and
pause.

312 Files Reference

For direct and TCP entries, omit this field.

Handshaking Field: The handshaking, or dialer negotiations, consists of an expect-send sequence of
ASCII strings. This sequence is given in the Handshaking field, which comprises the remainder of the
entry. This string is generally used to pass telephone numbers to a modem, or to make a connection to
another system on the same data switch as the local system. The string tells the cu or ct program or the
uucico daemon the sequence of characters to use to dial out on a particular type of modem. If the
connection succeeds, the appropriate line from a Dialers file is interpreted to perform the dialer
negotiations.

The handshaking characters include the following key sequences:

Sequence Result
\c Suppress new line (\n)
\D Raw phone number
\T Translated phone number
\N Null character (\0)
\b Backspace
\n New line
\r Carriage return
\s Space
\t Tab
\\ Backslash
\E Turn echo check on
\e Turn echo check off
\d Delay two seconds
\p Pause about 1/4 second
\K Generate a break on the line
\M Set tty setting CLOCAL on
\m Turn tty setting CLOCAL off

For direct and TCP entries, omit this field.

Examples

Setting Up Entries in a Dialers File
1. The following example lists several entries in a typical Dialers file:

hayes =,-, "" \dAT\r\c OK \pATDT\T
\r\c CONNECT
penril =W-P "" \d > s\p9\c)-W\p\r\ds\p9\c-)
y/c : \E\T
P > 9\c OK
ventel =&-% "" \r\p \r\p-\r\p-$ <K\D%%\r>\c ;ONLINE!
vadic =K-K "" \005\p *-\005\p-* D\p BER? \E\D
\e \r\c

LINE
direct
TCP

Note: In a Dialers file, each entry must be entirely on one line.

Notice that the next-to-last entry in the preceding example consists only of the word direct. This entry
indicates that hardwired connections do not require any handshaking. Similarly, the last entry, TCP,
indicates that TCP/IP connections require no handshaking.

2. The following example interprets the first line in the preceding Dialers file. This is a standard entry that
may be included in your Dialers file with modifications for use at your site.

Chapter 2. File Formats 313

hayes =,-, "" \dAT\r\c OK \pATDT\T
\r\c CONNECT

The first two sequences (=,-,″″) comprise the Dial Tone and Wait Characters field. The remaining
strings comprise the Handshaking field. Following is an explanation of how each entry affects the
action of the dialer.

Entry Action
=,-, Translate the telephone number. Any = (equal sign) represents wait for dial tone and any - (minus sign)

represents pause.
″″ Wait for nothing; continue with the rest of the string.
\dAT Delay; then send AT (the Hayes Attention prefix).
\r\c Send a carriage return (r) followed by a new line (c).
OK Wait for OK from the remote modem, signaling that the first part of the string has executed.
\pATDT Pause (p); then send ATDT. AT is the Hayes Attention prefix, D represents a dialing signal, and T

represents a touch-tone dial tone.
\T Send the telephone number, which is specified in the Systems file, with dial-code translation from the

Dialcodes file.
\r\c Send a carriage return and a new line following the number.
CONNECT Wait for CONNECT from the remote modem, signaling that the modems are connected at the baud rate

specified in the Devices file.

Note: If you need to modify this example for use at your site and are unsure about the appropriate
entries in the handshaking string, refer to the documentation that accompanied the modems you
are including in the Dialers file.

Setting Up the Direct Entry
If your BNU configuration includes hardwired connections, a Dialers file must contain a direct entry, as
follows:
direct

This entry indicates that hardwired connections do not require any handshaking. It corresponds to the
word direct in the Dialer-Token Pairs field of entries for hardwired devices in a Devices file (see the
/etc/uucp/Devices file).

Setting Up the TCP/IP Entry
If your BNU configuration includes TCP/IP connections, the Dialers file used by the uucico service must
contain a TCP entry, as follows:
TCP

This entry indicates that TCP/IP connections do not require any handshaking. It corresponds to the word
TCP in the Dialer-Token Pairs field of entries for TCP/IP connections in the uucico service Devices file(s).

Setting Up Entries for Both Local and Remote Systems
The following example illustrates the entries needed in the Dialers file to correspond to entries in the
Devices file for both local and remote systems so that the two systems can communicate using the BNU
program.

These files are set up to connect systems venus and merlin over a telephone line using modems. System
venus is considered the local system, and system merlin is considered the remote system. On both
systems, the device tty1 is hooked to a hayes modem at 1200 baud.

v The Devices file on system venus contains the following entry for the connection to remote system
merlin:
ACU tty1 - 1200 hayes

v The Dialers file on system venus contains the following entry for its modem:

314 Files Reference

hayes =,-, "" \dAT\r\c OK \pATDT\T
\r\c CONNECT

v The Devices file on system merlin contains the following entry for the connection to system venus:
ACU tty1 - 1200 hayes

v The Dialers file on system merlin contains the following entry for its modem:
hayes =,-, "" \dAT\r\c OK \pATDT\T
\r\c CONNECT

Note: The Dialers file and Devices file for the system venus and merlin can be files other than
/etc/uucp/Dialers and /etc/uucp/Devices. Use of the /etc/uucp/Sysfiles file enables a system
administrator to allow the use of one or more files on each system to replace or augment the
/etc/uucp/Dialers and /etc/uucp/Devices file. See the Sysfiles Files Format for BNU in AIX 5L
Version 5.2 Files Reference.

Troubleshooting Connection Problems

Note: The Dialer and Systems files discussed in the section can be files other than /etc/uucp/Dialers
and /etc/uucp/Systems. See the Sysfiles Files Format for BNU in AIX 5L Version 5.2 Files
Reference.

When establishing a connection between a local and a remote system using a telephone line and modem,
the BNU program consults the Dialers file. (The BNU program also checks the Systems file to make sure
it contains a listing for the specified remote computer.) If users report a faulty connection, use the uucico
command to debug the connection problem. For example, if users are experiencing difficulties connecting
to remote system venus, issue the following command:
/usr/sbin/uucp/uucico -r1 -svenus -x9

where -r1 specifies the server mode, -svenus the name of the remote system to which you are trying to
connect, and -x9 the debug level that produces the most detailed debugging information.

Expect-send debugging output produced by the uucico command can come either from information in the
Dialers file or from information in the Systems file. If the relevant line in the Dialers file is not set up
correctly for the specified modem, the BNU program will probably display the following error message:
DIALER SCRIPT FAILED

If the dialer script fails, verify the following:

v Make sure that both the local and the remote modems are turned on, that they are both set up correctly,
and that the telephone number of the remote modem is correct.

v Check the Dialers file and make sure the information is correctly specified for the local modem. If
possible, also check the Dialers file on the remote system.

v Check the documentation that came with your modem to make sure you have used the correct
expect-send sequence characters in the Dialers file.

Files

/etc/uucp directory Contains all the configuration files for BNU, including the Dialers file.
/etc/uucp/Devices file Contains information about available devices.
/etc/uucp/Dialcodes file Contains dialing code abbreviations.
/etc/uucp/Systems file Describes accessible remote systems.
/etc/uucp/Sysfiles file Specifies possible alternative files for /etc/uucp/System,

/etc/uucp/Dialers, and /etc/uucp/Devices.

Chapter 2. File Formats 315

Related Information
The ct command, cu command, uukick command, uutry command, Uutry command.

The uucico daemon.

Configuring BNU, Monitoring a BNU Remote Connection, Debugging BNU Login Failures Using the uucico
Daemon, BNU File and Directory Structure in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

Dialing Directory File Format for ATE

Purpose
Lists phone numbers used to establish modem connections.

Description
The ATE dialing directory file lists phone numbers that the Asynchronous Terminal Emulation (ATE) uses to
establish remote connections by modem.

Users name the dialing directory file with any valid file name and place it in any directory where read and
write access is owned. Edit the dialing directory file with any ASCII text editor. The default dialing directory
file is the /usr/lib/dir file.

The connect and directory subcommands of ATE access the dialing directory file. Use the connect
command to use numbers that are not in the dialing directory file. Use the directory subcommand to view
the dialing directory.

Users can have more than one dialing directory. To change the dialing directory file the ATE program uses,
modify the ate.def file in the current directory.

Note: The dialing directory file can contain up to 20 lines (one entry per line). ATE ignores subsequent
lines.

Format of Dialing Directory File Entries
The dialing directory file is similar to a page in a telephone book. This file contains entries for the remote
systems called with the ATE program. The format of a dialing directory entry is:

Name Phone Rate Length StopBit Parity Echo Linefeed

The fields must be separated by at least one space. More spaces can be used to make each entry easier
to read. The fields are:

Name Identifies a telephone number. The name can be any combination of 20 or fewer characters. Use
the _ (underscore) instead of a blank between words in a name, for example, data_bank.

Phone The telephone number to be dialed. The number can be up to 40 characters. Consult the modem
documentation for a list of acceptable digits and characters. For example, if a 9 must be dialed to
access an outside line, include a 9 and a , (comma) before the telephone number as follows:
9,1112222.
Note: Although the telephone number can be up to 40 characters long, the directory
subcommand displays only the first 26 characters.

Rate Transmission or baud rate in bits per second (bps). Determines the number of characters
transmitted per second. Select a baud rate that is compatible with the communication line being
used. The following are acceptable rates: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2400,
4800, 9600, or 19,200.

Length Number of bits that make up a character. The entry for the Length field can be 7 or 8.
StopBit Stop bits that signal the end of a character. The entry for the StopBit field can be 1 or 2.

316 Files Reference

Parity Checks whether a character was successfully transmitted to or from a remote system. The entry
for the Parity field can be 0 (none), 1 (odd), or 2 (even).

Echo Determines whether typed characters display locally. The entry for the Echo field can be 0 (off) or
1 (on).

Linefeed Adds a line-feed character at the end of each line of data coming in from a remote system. The
line-feed character is similar in function to the carriage-return and new-line characters. The entry
for the Linefeed field can be 0 (off) or 1 (on).

Examples
Following is a sample dialing directory entry:
CompuAid 111-0000 1200 7 1 2 0 0

In this example, CompuAid is the Name, 111-0000 is the Phone, 1200 is the Rate, 7 is the Length, 1 is the
StopBit, 2 is the Parity, the first 0 is the Echo, and the second 0 is the Linefeed.

Files

ate.def Contains ATE default values.
/usr/lib/dir Contains the default dialing directory listing.

Related Information
The ate command.

The connect subcommand, directory subcommand.

ATE Overview, ATE Overview for System Management, How to Edit the ATE Default File, How to Set Up
an ATE Dialing Directory File in AIX 5L Version 5.2 System User’s Guide: Communications and Networks.

DOMAIN Cache File Format for TCP/IP

Purpose
Defines the root name server or servers for a DOMAIN name server host.

Description
The cache file is one of the DOMAIN data files and contains the addresses of the servers that are
authoritative name servers for the root domain of the network. The name of this file is defined in the
named boot file. If the host serves more than one domain, the cache file should contain an entry for the
authoritative name server for each domain.

All entries in this file must be in Standard Resource Record Format. Valid resource records in this file are:

v Name Server (NS)

v Address (A)

Except for comments (starting with a ; [semicolon] and continuing to the end of the line), the resource
records in the data files generally follow the format of the resource records that the named daemon
returns in response to queries from resolver routines.

Examples
The following examples show the various ways to use the cache data file. This example is valid for any
name server or either of the two networks.

Chapter 2. File Formats 317

Network abc consists of:

v gobi.abc, the primary name server for the abc network, 192.9.201.2

v mojave.abc, a host machine, 192.9.201.6

v sandy.abc, secondary name server for the abc network and gateway between abc and xyz, 192.9.201.3

Network xyz consists of:

v kalahari.xyz, primary name server for the xyz network, 160.9.201.4

v lopnor.xyz, a host machine, 160.9.201.5

v sahara.xyz, a host machine and cache-only name server for the xyz network, 160.9.201.13

v sandy.xyz, a secondary name server for the xyz network and gateway between abc and xyz,
160.9.201.3

Note: sandy, a gateway host, is on both networks and also serves as secondary name server for both.

The following are sample entries in a DOMAIN cache file on any of the name servers in either of the
domains:
;
;cache file for all nameservers in both domains
;
; root name servers.
abc IN NS gobi.abc.
xyz IN NS kalahari.xyz.
gobi.abc. 3600000 IN A 192.9.201.2
kalahari.xyz 3600000 IN A 160.9.201.4

Files

/etc/named.conf Defines how the named daemon initializes the DOMAIN
name server file.

/usr/samples/tcpip/named.conf Sample named.conf file, which also contains directions
for its use.

/usr/samples/tcpip/named.data Sample named.data file, which also contains directions
for its use.

Related Information
The named daemon.

The DOMAIN Data file format, DOMAIN Reverse Data file format, DOMAIN Local file format.

Naming and Configuring Name Servers in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

DOMAIN Data File Format for TCP/IP

Purpose
Stores name resolution information for the named daemon.

Description
The host’s data file is one of the DOMAIN data files and contains name-to-address resolution mapping
information for all machines in the name server’s zone of authority. The name of the host’s data file is
specified in the named boot file. This file should exist only on name servers that are designated as
primary for a domain. There may be more than one host’s data file per primary name server.

318 Files Reference

All entries in this file must be in Standard Resource Record Format. Valid resource records in this file are:

v Start of Authority (SOA)

v Name Server (NS)

v Address (A)

v Mailbox (MB)

v Mail Exchanger (MX)

v Mail Group (MG)

v Mail Rename (MR)

v Canonical Name (CNAME)

v Well Known Services (WKS)

v Host Information (HINFO)

Except for comments (starting with a ; (semicolon) and continuing to the end of the line), the resource
records in the data files generally follow the format of the resource records that the named daemon
returns in response to queries from resolver routines.

Two awk scripts, addrs.awk and hosts.awk, are provided in the /usr/samples/tcpip directory to assist
you in converting your existing /etc/hosts file to DOMAIN data files. The awk scripts also contain
instructions for their use. Refer to these files for more information on the conversion.

Examples
The following examples show the various ways to use the DOMAIN host’s data file. In these examples,
two networks are represented: abc and xyz.

Network abc consists of:

v gobi.abc, the primary name server for the abc network, 192.9.201.2

v mojave.abc, a host machine, 192.9.201.6

v sandy.abc, secondary name server for the abc network and gateway between abc and xyz, 192.9.201.3

Network xyz consists of:

v kalahari.xyz, primary name server for the xyz network, 160.9.201.4

v lopnor.xyz, a host machine, 160.9.201.5

v sahara.xyz, a host machine and cache-only name server for the xyz network, 160.9.201.13

v sandy.xyz, a secondary name server for the xyz network and gateway between abc and xyz,
160.9.201.3

Note: Host sandy, a gateway host, is on both networks and also serves as secondary name server for
both.

1. The primary host data file for network abc, stored on host gobi.abc, contains the following entries:
;
;primary host data file for abc - gobi.abc
;
@ IN SOA gobi.abc. root.gobi.abc. (

1.1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

;name servers for abc
IN NS gobi.abc.

;other name servers
IN NS kalahari.xyz.

Chapter 2. File Formats 319

kalahari.xyz. IN A 160.9.201.4
;
;define local loopback host
localhost IN A 127.1
;
;define all hosts in abc
loopback IN CNAME localhost.abc
gobi IN A 192.9.201.2
gobi-abc IN CNAME gobi.abc
sandy IN A 192.9.201.3

IN WKS 192.9.201.3
udp tftp nameserver domain

IN WKS 192.9.201.3 tcp (
echo telnet smtp discard uucp-path
systat daytime netstat chargen ftp
time whois finger hostnames domain
)

sandy-abc IN CNAME sandy.abc
mojave IN A 192.9.201.6

IN HINFO System ABC 3.1
mojave-abc IN CNAME mojave.abc.

2. The primary host data file for network xyz, stored on host kalahari.xyz, contains the following entries:
;
;primary host data file for xyz - kalahari.xyz
;
@ IN SOA kalahari.xyz. root.kalahari.xyz. (

1.1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

;
;nameservers for xyz
;

IN NS kalahari.xyz.
;
;other nameservers

IN NS gobi.abc.
gobi.abc. IN A 192.9.201.2
;
;define local loopback host
localhost IN A 127.1
;
;define all hosts in xyz
loopback IN CNAME localhost.xyz.
kalahari IN A 160.9.201.4
ns-xyz IN CNAME kalahari.xyz.
kalahari-xyz IN CNAME kalahari.xyz.

IN HINFO System ABC 3.1
sahara IN A 160.9.201.13

IN WKS 160.9.201.13 (
udp tftp nameserver domain
)

IN WKS 160.9.201.13 tcp (
echo telnet smtp discard uucp-path
systat daytime netstat chargen ftp
time whois finger hostnames domain
)

IN HINFO System ABC 3.1
lopnor IN A 160.9.201.5
lopnor-xyz IN CNAME lopnor.xyz.

IN HINFO System ABC 3.1
sandy IN A 160.9.201.3

320 Files Reference

Files

/etc/named.conf Defines how the named daemon initializes the DOMAIN
name server file.

/usr/samples/tcpip/addrs.awk Sample awk script for converting an /etc/hosts file to an
/etc/named.rev file. The awk script also contains directions
for its use.

/usr/samples/tcpip/hosts.awk Sample awk script for converting an /etc/hosts file to an
/etc/named.data file. The awk script also contains directions
for its use.

/usr/samples/tcpip/named.conf Sample named.conf file, which also contains directions for
its use.

/usr/samples/tcpip/named.data Sample named.data file, which also contains directions for
its use.

Related Information
The named daemon.

The DOMAIN Reverse Data file format, DOMAIN Cache file format, DOMAIN Local file format.

Standard Resource Record Format for TCP/IP.

Naming and Configuring Name Servers in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

DOMAIN Local Data File Format for TCP/IP

Purpose
Defines the local loopback information for the named daemon on the name server host.

Description
The local data file is one of the DOMAIN data files and contains local loopback information for the
name-server host. The name of the DOMAIN local data files is specified in the named boot file.

All entries in this file must be in Standard Resource Record Format. Valid resource records in the local
data file are:

v Start of Authority (SOA)

v Name Server (NS)

v Pointer (PTR)

The records in the DOMAIN data files are called resource records. Except for comments (starting with a ;
(semicolon) and continuing to the end of the line), the resource records in the data files generally follow
the format of the resource records that the named daemon returns in response to queries from resolver
routines.

Examples
The following examples show the various ways to use the DOMAIN local data file. In these examples, two
networks are represented: abc and xyz.

Network abc consists of:

v gobi.abc, the primary name server for the abc network, 192.9.201.2

v mojave.abc, a host machine, 192.9.201.6

Chapter 2. File Formats 321

v sandy.abc, secondary name server for the abc network and gateway between abc and xyz, 192.9.201.3.

Network xyz consists of:

v kalahari.xyz, primary name server for the xyz network, 160.9.201.4

v lopnor.xyz, a host machine, 160.9.201.5

v sahara.xyz, a host machine and cache-only name server for the xyz network, 160.9.201.13

v sandy.xyz, a secondary name server for the xyz network and gateway between abc and xyz,
160.9.201.3

Note: Host sandy, a gateway host, is on both networks and also serves as secondary name server for
both.

1. The named.abclocal file stored on gobi.abc contains the following entries:
;
;primary reverse file for local 127 network
;
@ IN SOA gobi.abc. root.gobi.abc.

(
1.1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

IN NS gobi.abc.
1 IN PTR localhost.

2. The named.xyzlocal file stored on kalahari.xyz contains the following entries:
;
;primary reverse file for local 127 network
;
@ IN SOA kalahari.xyz. root.kalahari.xyz.

(
1.1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

IN NS kalahari.xyz.
1 IN PTR localhost.

3. The named.seclocal file stored on sandy contains the following entries:
;
;primary reverse file for local 127 network
;
@ IN SOA sandy.abc. root.sandy.abc.

(
1.1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

IN NS sandy.abc.
1 IN PTR localhost.

4. The named.calocal file stored on sahara.xyz contains the following entries:
;
;primary reverse file for local 127 network
;
@ IN SOA sahara.xyz. root.sahara.xyz.

(
1.1 ;serial

322 Files Reference

3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

IN NS sahara.xyz.
1 IN PTR localhost.

Files

/etc/named.conf Defines how the named daemon initializes the DOMAIN
name-server file.

/usr/samples/tcpip/named.conf Sample named.conf file, which also contains directions
for its use.

/usr/samples/tcpip/named.data Sample named.data file, which also contains directions
for its use.

Related Information
The named daemon.

The DOMAIN Data file format, DOMAIN Reverse Data file format, DOMAIN Cache file format.

Naming and Configuring Name Servers in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

DOMAIN Reverse Data File Format for TCP/IP

Purpose
Stores reverse name resolution information for the named daemon.

Description
The Reverse Data file is one of the DOMAIN data files and contains address to name resolution mapping
information for all machines in the name server’s zone of authority. The name of the reverse hosts data file
is specified in the named boot file. There may be more than one reverse hosts data file per primary name
server.

All entries in this file must be in Standard Resource Record Format. Valid resource records in this file are:

v Start of Authority (SOA)

v Name Server (NS)

v Pointer (PTR)

Except for comments (starting with a ; (semicolon) and continuing to the end of the line), the resource
records in the data files generally follow the format of the resource records that the named daemon
returns in response to queries from resolver routines.

Two awk scripts, addrs.awk and hosts.awk, are provided in the /usr/samples/tcpip directory to assist
you in converting your existing /etc/hosts file to named data files. The awk scripts also contain
instructions for their use. Refer to these files for more information on the conversion.

Examples
The following examples show the various ways to use the DOMAIN Reverse Data file. In these examples,
two networks are represented: abc and xyz.

Chapter 2. File Formats 323

Network abc consists of:

v gobi.abc, the primary name server for the abc network, 192.9.201.2

v mojave.abc, a host machine, 192.9.201.6

v sandy.abc, secondary name server for the abc network and gateway between abc and xyz, 192.9.201.3

Network xyz consists of:

v kalahari.xyz, primary name server for the xyz network, 160.9.201.4

v lopnor.xyz, a host machine and cache-only name server for the xyz network, 160.9.201.5

v sahara.xyz, a host machine, 160.9.201.13

v sandy.xyz, a secondary name server for the xyz network and gateway between abc and xyz,
160.9.201.3

Note: Host sandy, a gateway host, is on both networks and also serves as secondary name server for
both.

1. The reverse data file for gobi.abc, primary name server for network abc, contains these entries:
;
;primary reverse host data file for abc - gobi.abc
;
@ IN SOA gobi.abc. root.gobi.abc. (

1:1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

;nameservers for abc
IN NS gobi.abc.

;other nameservers
IN NS kalahari.xyz.

4.201.9.160.in-addr.arpa IN PTR kalahari.xyz
;
;define all hosts in abc
2 IN PTR gobi.abc.
3 IN PTR sandy.abc.
6 IN PTR mojave.abc.

2. The reverse data file for kalahari.xyz, primary name server for network xyz, contains these entries:
;
;primary reverse host data file for xyz - kalahari.xyz
;
@ IN SOA kalahari.xyz. root.kalahari.xyz. (

1:1 ;serial
3600 ;refresh
600 ;retry
3600000;expire
86400 ;minimum
)

;nameservers for xyz
IN NS kalahari.xyz.

;other nameservers
IN NS gobi.abc.

2.201.9.192.in-addr.arpa IN PTR gobi.abc
;
;define all hosts in xyz
4.201 IN PTR kalahari.xyz.
13.201 IN PTR sahara.xyz.
5.201 IN PTR lopnor.xyz.
3.201 IN PTR sandy.xyz.

324 Files Reference

Files

/etc/named.conf Defines how the named daemon initializes the DOMAIN
name server file.

/usr/samples/tcpip/addrs.awk Sample awk script for converting an /etc/hosts file to an
/etc/named.rev file. The awk script also contains
directions for its use.

/usr/samples/tcpip/hosts.awk Sample awk script for converting an /etc/hosts file to an
/etc/named.data file. The awk script also contains
directions for its use.

/usr/samples/tcpip/named.conf Contains a sample named.conf file, which also contains
directions for its use.

/usr/samples/tcpip/named.data Contains a sample named.data file, which also contains
directions for its use.

Related Information
The named daemon.

The DOMAIN Data file format, DOMAIN Cache file format, DOMAIN Local Data file format.

Standard Resource Record Format for TCP/IP.

Naming and Configuring Name Servers in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

eqnchar File Format

Purpose
Contains special character definitions for the eqn and neqn commands.

Description
The/usr/share/lib/pub/eqnchar file contains the following troff and nroff command character definitions
not ordinarily available on a phototypesetter or printer. These definitions are primarily intended for use with
the eqn and neqn commands. The eqnchar file format contains definitions for the characters shown in the
character definition list ″figure:″ on page 326

Chapter 2. File Formats 325

The /usr/share/lib/pub/cateqnchar file is device-independent and should produce output that looks
reasonable on any device supported by the troff command. You can link the /usr/share/lib/pub/eqnchar
file to the /usr/share/lib/pub/cateqnchar file.

The eqnchar file format can be used with either the eqn or neqn command and then piped to the troff or
nroff command. For example:

eqn /usr/share/lib/pub/eqnchar [Flag...] [—] [File...] | troff [Flag...]

eqn /usr/share/lib/pub/cateqnchar [Flag...] [—] [File...] | troff [Flag...]

neqn /usr/share/lib/pub/eqnchar [Flag...] [—] [File...] | nroff [Flag...]

Files

/usr/share/lib/pub/cateqnchar Contains the character definitions for troff-supported device.

Related Information
The eqn command, mm command, mmt command, mvt command, neqn command, nroff command,
troff command.

ftpusers File Format for TCP/IP

Purpose
Specifies local user names that cannot be used by remote FTP clients.

Description
The /etc/ftpusers file contains a list of local user names that the ftpd server does not allow remote File
Transfer Protocol (FTP) clients to use. The format of the ftpusers file is a simple list of user names that
also appear in the /etc/passwd file.

ciplus � || � square �

citimes � langle � circle �
wig � rangle � blot �

–wig � hbar � bullet �

>wig � ppd � prop ⊄
<wig � <–> 	 empty ∅
–wig
 <–> � member �
star ∗ |< � nonmem

bigstar � |> � cup �
–dot � ang � cap �
orsign ∨ rang � incl �
andsign ∧ 3dot � subset �
–del � thf � supset �
oppA ∀ quarter 1/4 !subset �
oppE ∃ 3quarter 3/4 !supset �
angstrom � degree � scrL �
––< � ––> �eqnchar File Format Character Definition List

Figure 1. . This illustration shows symbols commonly used in equations.

326 Files Reference

Entries to this file can be made using the System Management Interface Tool (SMIT) or the ruser
command.

Examples
The following are sample entries in an ftpusers file:
root
guest
ftp
joan
UUCP

Files

/etc/passwd Contains user authentication information.

Related Information
The ruser command.

The ftpd daemon.

File Transfer Protocol (FTP), TCP/IP Protocols, Understanding the SMIT Interface for TCP/IP in AIX 5L
Version 5.2 System Management Guide: Communications and Networks.

gated.conf File Format for TCP/IP

Purpose
Contains configuration information for the gated daemon.

Description
The /etc/gated.conf file contains configuration information for the gated daemon. The file contains a
sequence of statements. Statements are composed of tokens separated by white space. You can create
white space using any combination of blanks, tabs, and new lines. The gated.conf file supports several
statements:

%directory (directive) Sets the directory for include files.
%include (directive) Includes a file into gated.conf.
traceoptions (trace) Specifies which events are traced.
options (definition) Defines gated.conf options.
interfaces (definition) Defines gated.conf interfaces.
autonomoussystem Defines the AS number.
routerid (definition) Defines the originating router (BGP, OSPF).
martians (definition) Defines invalid destination addresses.
rip (protocol) Enables RIP protocol.
ripng Enables or disables RIPNG. If the RIPNG statement is not specified, the default is

ripng on ;. The options are the same for RIPNG as they are for RIP, but all the
addresses will be IPv6 addresses.

hello (protocol) Enables HELLO protocol.
isis (protocol) Enables ISIS protocol.
ospf (protocol) Enables OSPF protocol.
EGP (protocol) Enables EGP protocol.
bgp (protocol) Enables BGP protocol.
bgp4+ The options are the same as bgp but all the addresses will be IPv6 addresses.
icmp (protocol) Configures the processing of general ICMP packets.

Chapter 2. File Formats 327

snmp (protocol) Enables reporting to SNMP.
static (static) Defines static routes.
import (control) Defines which routes to import.
export (control) Defines which routes to export.
aggregate (control) Defines which routes to aggregate.
generate (control) Defines which routes to generate.

Directive Statements
Directive statements provide direction to the gated.conf configuration language parser about included files
and the directories in which these files reside. Directive statements are immediately acted upon by the
parser. Other statements terminate with a semi-colon (;), but directive statements terminate with a newline.
The two directive statements are:

%directory ″directory″ Defines the directory where the include files are stored. When it is used,
gated.conf looks in the directory identified by pathname for any included
files that do not have a fully qualified filename, that is, do not begin with
″/″. This statement does not actually change the current directory, it just
specifies the prefix applied to included file names.

%include ″filename″ Identifies an include file. The contents of the file are included in the
gated.conf file at the point in the gated.conf file where the %include
directive is encountered. If the filename is not fully qualified, that is, does
not begin with ″/″, it is considered to be relative to the directory defined in
the %directory directive. The %include directive statement causes the
specified file to be parsed completely before resuming with this file.
Nesting up to ten levels is supported.

In a complex environment, segmenting a large configuration into smaller more easily understood segments
might be helpful, but one of the great advantages of gated.conf is that it combines the configuration of
several different routing protocols into a single file. Segmenting a small file unnecessarily complicates
routing configurations.

Trace Statements
Trace statements control tracing options. gated.conf’s tracing options may be configured at many levels.
Tracing options include the file specifications, control options, and global and protocol specific tracing
options. Unless overridden, tracing options from the next higher level are inherited by lower levels. For
example, BGP peer tracing options are inherited from BGP group tracing options, which are inherited from
global BGP tracing options, which are inherited from global gated.conf tracing options. At each level,
tracing specifications override the inherited options.

Global tracing options
There are two types of global options, those that only affect global operations, and those that have
potential significance to protocols.

Global significance only
The trace flags that only have global significance are:

parse Traces the lexical analyzer and parser. Mostly used by gated.conf developers for debugging.
adv Traces the allocation of and freeing of policy blocks. Mostly used by the gated.conf developers

for debugging.
symbols Used to trace symbols read from the kernel at startup. The only useful way to specify this level of

tracing is via the -t option on the command line since the symbols are read from the kernel
before parsing the configuration file.

iflist Used to trace the reading of the kernel interface list. It is useful to specify this with the -t option
on the command line since the first interface scan is done before reading the configuration file.

328 Files Reference

Protocol significance
The options flags that have potential significance to protocols are:

all Turn on all of the following.
general Shorthand notation for specifying both normal and route.
state Trace state machine transitions in the protocols.
normal Trace normal protocols occurrences. Abnormal protocol occurrences are always traced.
policy Trace application of protocol and user-specified policy to routes being imported and exported.
task Trace system interface and processing associated with this protocol or peer.
timer Trace timer usage by this protocol or peer.
route Trace routing table changes for routes installed by this protocol or peer.

Notes:

1. Not all of the above options apply to all of the protocols. In some cases, their use does not make
sense (for instance, RIP does not have a state machine) and in some instances the requested tracing
has not been implemented (such as RIP support of the policy option).

2. It is not currently possible to specify packet tracing from the command line. This is because a global
option for packet tracing would potentially create too much output.

When protocols inherit their tracing options from the global tracing options, tracing levels that don’t make
sense (such as parse, adv and packet tracing options) are masked out.

Global tracing statements have an immediate effect, especially parsing options that affect the parsing of
the configuration file. Tracing values inherited by protocols specified in the configuration file are initially
inherited from the global options in effect as they are parsed, unless they are overridden by more specific
options. After the configuration file is read, tracing options that were not explicitly specified are inherited
from the global options in effect at the end of the configuration file.

Packet tracing
Tracing of packets is very flexible. For any given protocol, there are one or more options for tracing
packets. All protocols allow use of the packets keyword that allows for tracing all packets sent and
received by the protocol. Most protocols have other options for limiting tracing to a useful subset of packet
types. These tracing options can be further controlled with the following modifiers:

detail The detail must be specified before send or recv. Normally packets are traced in a terse form of
one or two lines. When detail is specified, a more verbose format is used to provide further detail
on the contents of the packet.

send

recv These options limit the tracing to packets sent or received. Without these options both sent and
received packets will be traced.

Note: Detail, if specified, must be before send or recv. If a protocol allows for several different types of
packet tracing, modifiers may be applied to each individual type. But be aware that within one
tracing specification the trace flags are summed up, so specifying detail packets will turn on full
tracing for all packets.

Traceoptions syntax
traceoptions ["trace_file" [replace] [size size[k|m] files files]]

[control_options] trace_options [except trace_options] ;

traceoptions none ;

Chapter 2. File Formats 329

trace_file Specifies the file to receive tracing information. If this file name
does not begin with a slash (/), the directory where gated was
started is prepended to the name.

replace Indicates tracing should start by replacing an existing file. The
default is to append to an existing file.

size size[k|m] files files Limits the maximum size of the trace file to the specified size
(minimum 10k). When the trace file reaches the specified size, it
is renamed to file.0, then file.1, file.2 up to the maximum
number of files (minimum specification is 2).

control_options Specifies options that control the appearance of tracing. Valid
values are:

nostamp
Specifies that a timestamp should not be prepended to
all trace lines.

except trace_options Used to enable a broad class of tracing and then disable more
specific options.

none Specifies that all tracing should be turned off for this protocol or
peer.

Options Statements
Options statements allow specification of some global options. If used, options must appear before any
other type of configuration statement in the gated.conf file.

The options statement syntax is:

options
[nosend]
[noresolv]

[gendefault [preference preference] [gateway gateway]]
[syslog [upto] log_level]

[mark time]
;

The options list can contain one or more of the following options:

gendefault [preference preference] [gateway gateway] When gendefault is enabled when a BGP or EGP
neighbor is up, it causes the creation of a default route
with the special protocol default. This can be disabled
per BGP/EGP group with the nogendefault option. By
default, this route has a preference of 20. This route is
normally not installed in the kernel forwarding table, it is
only present so it can be announced to other protocols. If
a gateway is specified, the default route will be installed in
the kernel forwarding table with a next hop of the listed
gateway.
Note: The use of the more general generate default
option is preferred to the use of this gendefault option.
See the section on Route Aggregation for more
information on the generate statement.

nosend Do not send any packets. This option makes it possible to
run gated.conf on a live network to test protocol
interactions without actually participating in the routing
protocols. The packet traces in the gated.conf log can be
examined to verify that gated.conf is functioning properly.
This is most useful for RIP and HELLO.

330 Files Reference

noresolv By default, gated.conf will try to resolve symbolic names
into IP addresses; this option will prevent that.

syslog [upto] log_level Controls the amount of data gated.conf logs via syslog.
mark time Specifying this option causes gated to output a message

to the trace log at the specified interval. This can be used
as one method of determining if gated is still running.

Interface Statement

Interface Syntax
interfaces {

options
[strictinterfaces]
[scaninterval time]

;
interface interface_list

[preference preference]
[down preference preference]

[passive]
[simplex]
[reject]
[blackhole]

;
define address

[broadcast address] | [pointtopoint address]
[netmask mask]
[multicast]

;
} ;

An interface is the connection between a router and one of its attached networks. A physical interface may
be specified by interface name, by IP address, or by domain name, (unless the network is an unnumbered
point-to-point network.) Multiple levels of reference in the configuration language allow identification of
interfaces using wildcard, interface type name, or delete word addresses. The interface_list is a list of one
or more interface names including wildcard names (names without a number) and names that may specify
more than one interface or address, or the token all for all interfaces.

Chapter 2. File Formats 331

interface interface_list Sets interface options on the specified interfaces. An interface list
is all or a list of interface names domain names, or numeric
addresses. Options available on this statement are:

preference preference
Sets the preference for routes to this interface when it is
up and appears to be functioning properly. The default
preference is 0.

down preference preference
Sets the preference for routes to this interface when the
gated daemon does not believe it to be functioning
properly, but the kernel does not indicate it is down. The
default value is 120.

passive
Prevents the gated daemon from changing the
preference of the route to this interface if it is not
believed to be functioning properly due to lack of
received routing information. The gated daemon will only
perform this check if the interface is actively participating
in a routing protocol.

define address Defines interfaces that might not be present when the gated
daemon is started so they may be referenced in the configuration
file when strictinterfaces is defined. Possible define keywords
are:

broadcast address
Defines the interface as broadcast capable (for example,
Ethernet or Token Ring) and specifies the broadcast
address.

pointopoint address
Defines the interface as a pointopoint interface (for
example, SLIP or PPP) and specifies the address on the
local side. The first address on the define statement
references the address of the host on the remote end of
the interface, the address specified after this pointopoint
keyword defines the address on the local side of the
interface.

An interface not defined as broadcast or pointopoint is
assumed to be non-broadcast multiaccess (NBMA), such
as an X.25 network.

netmask mask
Specifies the subnetmask to be used on this interface.
This is ignored on pointopoint interfaces.

multicast
Specifies that the interface is multicast capable.

Interface Lists
An interface list is a list of references to interfaces or groups of interfaces. There are four methods
available for referring to interfaces. They are listed here from most general to most specific.

all This refers to all available interfaces.
Interface name wildcard This refers to all the interfaces of the same type. The operating system

interfaces consist of the name of the device driver, like en, and a unit
number, like 0 or 5. References to the name contain only alphabetic
characters and match any interfaces that have the same alphabetic
part. For example, en would refer to all Ethernet interfaces.

332 Files Reference

Interface name This refers to a specific interface, usually one physical interface. These
are specified as an alphabetic part followed by a numeric part. This will
match one specific interface. For example, en1 will match an interface
named en1, but not an interface named en10. In case there are multiple
addresses aliased to a single interface, specify the particular ip address
to be used by gated, instead of the interface name.

Interface address This matches one specific interface. The reference can be by protocol
address (that is, 10.0.0.51), or by symbolic hostname (that is,
hornet.ibm.com). Note that a symbolic hostname reference is only valid
when it resolves to only one address. Use of symbolic hostnames is not
recommended.

If many interface lists are present in the config file with more than one parameter, these parameters are
collected at run-time to create the specific parameter list for a given interface. If the same parameter is
specified on more than one list, the parameter with the most specific interface is used.

For example, consider a system with three interfaces: en0, en1, and tr0.
rip yes {

interface all noripin noripout;
interface en ripin;
interface en1 ripout;

} ;

RIP packets would only be accepted from interfaces en0 and en1, but not from tr0. RIP packets would
only be sent on interface en1.

IP Interface Addresses and Routes

loopback This interface must have the address of 127.0.0.1.
Packets sent to this interface are sent back to the
originator. This interface is also used as a catch-all
interface for implementing other features, such as
reject and blackhole routes. Although a netmask
is reported on this interface, it is ignored. It is
useful to assign an additional address to this
interface that is the same as the OSPF or BGP
router id; this allows routing to a system based
on the router id that will work if some interfaces
are down.

broadcast This is a multi-access interface capable of a
physical level broadcast, such as Ethernet, Token
Ring, and FDDI. This interface has an associated
subnet mask and broadcast address. The interface
route to a broadcast network will be a route to the
complete subnet.

Chapter 2. File Formats 333

point-to-point This is a tunnel to another host, usually on some
sort of serial link. This interface has a local
address, and a remote address.

The remote address must be unique among all the
interface addresses on a given router. The local
address may be shared among many
point-to-point and up to one
non-point-to-point interface. This is technically a
form of the router id method for addressless
links. This technique conserves subnets as none
are required when using this technique.

If a subnet mask is specified on a point-to-point
interface, it is only used by RIP version 1 and
HELLO to determine which subnets may be
propagated to the router on the other side of this
interface.

non-broadcast multi-access or nbma This type of interface is multi-access, but not
capable of broadcast. An example would be frame
relay and X.25. This type of interface has a local
address and a subnet mask.

The gated daemon insures that there is a route available to each IP interface that is configured and up.
Normally this is done by the ifconfig command that configures the interface; the gated daemon does it to
insure consistency.

For point-to-point interfaces, the gated daemon installs some special routes. If the local address on
one or more point-to-point interfaces is not shared with a non-point-to-point interface, the gated
daemon installs a route to the local address pointing at the loopback interface with a preference of 110.
This insures that packets originating on this host destined for this local address are handled locally. OSPF
prefers to route packets for the local interface across the point-to-point link where they will be returned
by the router on the remote end. This is used to verify operation of the link. Since OSPF installs routes
with a preference of 10, these routes will override the route installed with a preference of 110.

If the local address of one or more point-to-point interfaces is shared with a non-point-to-point
interface, the gated daemon installs a route to the local with a preference of 0 that will not be installed in
the forwarding table. This is to prevent protocols like OSPF from routing packets to this address across a
serial interface when this system could be functioning as a host.

When the status of an interface changes, the gated daemon notifies all the protocols, which take the
appropriate action. The gated daemon assumes that interfaces that are not marked UP do not exist.

The gated daemon ignores any interfaces that have invalid data for the local, remote, or broadcast
addresses or the subnet mask. Invalid data includes zeros in any field. The gated daemon will also ignore
any point-to-point interface that has the same local and remote addresses.

Definition Statements
Definition statements are general configuration statements that relate to all of gated daemon or at least to
more than one protocol. The three definition statements are autonomoussystem, routerid, and martians. If
used, autonomoussystem, routerid, and martians must appear before any other type of configuration
statement in the gated daemon file.

Autonomous System Configuration
autonomoussystem autonomous_system [loops number] ;

334 Files Reference

Sets the autonomous system number of this router to be autonomous system. This option is required if
BGP or EGP are in use. The AS number is assigned by the Network Information Center (NIC).

Loops is only for protocols supporting AS paths, such as BGP. It controls the number of times this
autonomous system may appear in an AS path and defaults to 1 (one).

Router ID Configuration
routerid host ;

Sets the router identifier for use by the BGP and OSPF protocols. The default is the address of the first
interface encountered by the gated daemon. The address of a non-point-to-point interface is preferred
over the local address of a point-to-point interface and an address on a loopback interface that is not the
loopback address (127.0.0.1) is most preferred.

Martian Configuration
martians {

host host [allow] ;
network [allow] ;
network mask mask [allow] ;
network masklen number [allow] ;

default [allow] ;
} ;

Defines a list of martian addresses about which all routing information is ignored. Sometimes a
misconfigured system sends out obviously invalid destination addresses. These invalid addresses, called
martians, are rejected by the routing software. This command allows additions to the list of martian
addresses. See the section on Route Filtering for more information on specifying ranges. Also, the allow
parameter may be specified to explicitly allow a subset of a range that was disallowed.

Sample Definition Statements
options gendefault ;
autonomoussystem 249 ;
interface 128.66.12.2 passive ;
martians {

0.0.0.26
};

The statements in the sample perform the following functions:

v The options statement tells the system to generate a default route when it peers with an EGP or BGP
neighbor.

v The autonomoussystem statement tells the gated daemon to use the AS number 249 for EGP and
BGP.

v The interface statement tells the gated daemon not to mark interface 128.66.12.2 as down even if it
sees no traffic.

v The martians statement prevents routes to 0.0.0.26 from ever being accepted.

The RIP Statement
rip yes | no | on | off [{

broadcast ;
nobroadcast ;
nocheckzero ;
preference preference ;
defaultmetric metric ;
query authentication [none | [[simple|md5] password]] ;
interface interface_list

Chapter 2. File Formats 335

[noripin] | [ripin]
[noripout] | [ripout]
[metricin metric]
[metricout metric]
[version 1]|[version 2 [multicast|broadcast]]
[[secondary] authentication [none | [[simple|md5] password]] ;

trustedgateways gateway_list ;
sourcegateways gateway_list ;
traceoptions trace_options ;

}] ;

The rip statement enables or disables RIP. If the rip statement is not specified, the default is rip on ;. If
enabled, RIP will assume nobroadcast when there is only one interface and broadcast when there is more
than one.

The options are as follows:

broadcast
Specifies that RIP packets will be broadcast regardless of the number of interfaces present. This is
useful when propagating static routes or routes learned from another protocol into RIP. In some
cases, the use of broadcast when only one network interface is present can cause data packets to
traverse a single network twice.

nobroadcast
Specifies that RIP packets will not be broadcast on attached interfaces, even if there is more than
one. If a sourcegateways clause is present, routes will still be unicast directly to that gateway.

nocheckzero
Specifies that RIP should not make sure that reserved fields in incoming version 1 RIP packets
are zero. Normally RIP will reject packets where the reserved fields are zero.

preference preference
Sets the preference for routes learned from RIP. The default preference is 100. This preference
may be overridden by a preference specified in import policy.

defaultmetric metric
Defines the metric used when advertising routes via RIP were learned from other protocols. If not
specified, the default value is 16 (unreachable). This choice of values requires you to explicitly
specify a metric in order to export routes from other protocols into RIP. This metric may be
overridden by a metric specified in export policy.

query authentication [none | [[simple|md5] password]] ;
Specifies the authentication required of query packets that do not originate from routers. The
default is none.

interface interface_list
Controls various attributes of sending RIP on specific interfaces. See the section on interface list
specification for a description of the interface_list.

Note: If there are multiple interfaces configured on the same subnet, RIP updates will only be
sent from the first one from which RIP output is configured.

The possible parameters are:

noripin
Specifies that RIP packets received via the specified interface will be ignored. The default
is to listen to RIP packets on all non-loopback interfaces.

ripin This is the default. This argument may be necessary when noripin is used on a wildcard
interface descriptor.

336 Files Reference

noripout
Specifies that no RIP packets will be sent on the specified interfaces. The default is to
send RIP on all broadcast and non-broadcast interfaces when in broadcast mode. The
sending of RIP on point-to-point interfaces must be manually configured.

ripout This is the default. This argument is necessary when it is desired to send RIP on
point-to-point interfaces and may be necessary when noripin is used on a wildcard
interface descriptor.

metricin metric
Specifies the RIP metric to add to incoming routes before they are installed in the routing
table. The default is the kernel interface metric plus 1 (which is the default RIP hop count).
If this value is specified it will be used as the absolute value, the kernel metric will not be
added. This option is used to make this router prefer RIP routes learned via the specified
interface(s) less than RIP routes from other interfaces.

metricout metric
Specifies the RIP metric to be added to routes that are sent via the specified interface(s).
The default is zero. This option is used to make other routers prefer other sources of RIP
routes over this router.

version 1
Specifies that RIP packets sent via the specified interface(s) will be version 1 packets.
This is the default.

version 2
Specifies that RIP version 2 packets will be sent on the specified interfaces(s). If IP
multicast support is available on this interface, the default is to send full version 2 packets.
If it is not available, version 1 compatible version 2 packets will be sent.

multicast
Specifies that RIP version 2 packets should be multicast on this interface. This is the
default.

broadcast
Specifies that RIP version 1 compatible version 2 packets should be broadcast on this
interface, even if IP multicast is available.

[secondary] authentication [none | [simple|md5] password]
This defines the authentication type to use. It applies only to RIP version 2 and is ignored
for RIP-1 packets. The default authentication type is none. If a password is specified, the
authentication type defaults to simple. The password should be a quoted string with
between 0 and 16 characters.

If secondary is specified, this defines the secondary authentication. If omitted, the primary
authentication is specified. The default is primary authentication of none and no secondary
authentication.

trustedgateways gateway_list
Defines the list of gateways from which RIP will accept updates. The gateway_list is simply a list
of host names or IP addresses. By default, all routers on the shared network are trusted to supply
routing information. But if the trustedgateways clause is specified, only updates from the gateways
in the list are accepted.

sourcegateways gateway_list
Defines a list of routers to which RIP sends packets directly, not through multicast or broadcast.
This can be used to send different routing information to specific gateways. Updates to gateways
in this list are not affected by noripout on the interface.

traceoptions trace_options
Specifies the tracing options for RIP. (See Trace Statements and the RIP specific tracing options
below.)

Chapter 2. File Formats 337

Tracing options
The policy option logs info whenever a new route is announced, the metric being announced changes, or
a route goes or leaves holddown.

Packet tracing options (which may be modified with detail, send, or recv):

packets All RIP packets.
request All RIP information request packets, such as REQUEST, POLL, and POLLENTRY.
response All RIP RESPONSE packets, which are the types of packets that actually contains routing

information.
other Any other type of packet. The only valid ones are TRACE_ON and TRACE_OFF both of which are

ignored.

The RIPNG Statement
Enables or disables ripng. If the ripng statement is not specified, the default is ripng on ;. The options
are the same as for rip, but all the addresses will be IPv6 addresses.

The syntax is:
ripng yes | no | on | off [{

broadcast ;
nobroadcast ;
nocheckzero ;
preference <preference> ;
defaultmetric <metric> ;
query authentication [none | [[simple|md5] <password>]] ;
interface <interface_list>

[noripin] | [ripin]
[noripout] | [ripout]
[metricin <metric>]
[metricout <metric>]
[version 1]|[version 2 [multicast|broadcast]]
[[secondary] authentication [none | [[simple|md5] <password>]] ;

trustedgateways <gaeway_list> ;
sourcegateways <gaeway_list> ;
traceoptions <trace_options> ;

}] ;

The Hello Statement
hello yes | no | on | off [{

broadcast ;
nobroadcast ;
preference preference ;
defaultmetric metric ;
interface interface_list

[nohelloin] | [helloin]
[nohelloout] | [helloout]
[metricin metric]
[metricout metric] ;

trustedgateways gateway_list ;
sourcegateways gateway_list ;
traceoptions trace_options ;

}] ;

The hello statement enables or disables HELLO. If the hello statement is not specified, the default is
hello off. If enabled, HELLO will assume nobroadcast when there is only one interface and broadcast
when there is more than one interface.

338 Files Reference

broadcast Specifies that HELLO packets will be broadcast regardless of the
number of interfaces present. This is useful when propagating static
routes or routes learned from anther protocol into HELLO. In some
cases, the use of broadcast when only one network interface is
present can cause data packets to traverse a single network twice.

nobroadcast Specifies that HELLO packets will not be broadcast on attached
interfaces, even if there are more than one. If a sourcegateways
clause is present, routes will still be unicast directly to that gateway.

preference preference Sets the preference for routes learned from HELLO. The default
preference is op. This preference may be overridden by a
preference specified in import policy.

defaultmetric metric Defines the metric used when advertising routes via HELLO were
learned from other protocols. If not specified, the default value is
30000 (unreachable). This choice of values requires you to explicitly
specify a metric in order to export routes from other protocols into
HELLO. This metric may be overridden by a metric specified in
export policy.

interface interface_list Controls various attributes of sending HELLO on specific interfaces.
See the section on interface list specification for the description of
the interface_list.
Note: If there are multiple interfaces configured on the same
subnet, HELLO updates will only be sent from the first one from
which the HELLO output is configured.

The possible parameters are:

nohelloin
Specifies that HELLO packets received via the specified
interface will be ignored. The default is to listen to HELLO
on all non-loopback interfaces.

helloin This is the default. This argument may be necessary when
nohelloin is used on a wildcard interface descriptor.

nohelloout
Specifies that no HELLO packets will be sent on the
specified interfaces. The default is to send HELLO on all
broadcast and non-broadcast interfaces when in broadcast
mode. The sending of HELLO on point-to-point interfaces
must be manually configured.

helloout
This is the default. This argument is necessary when it is
desired to send HELLO on point-to-point interfaces and
may be necessary when nohelloin is used on a wildcard
interface descriptor.

metricin metric
Specifies the HELLO metric to add to incoming routes
before they are installed in the routing table. The default is
the kernel interface metric plus 1 (which is the default
HELLO hop count). If this value is specified it will be used
as the absolute value; the kernel metric will not be added.
This option is used to make this router prefer HELLO
routes learned via the specified interface(s) less than
HELLO routes from other interfaces.

metricout metric
Specifies the HELLO metric to be added to routes that are
sent via the specified interface(s). The default is zero. This
option is used to make other routers prefer other sources of
HELLO routes over this router.

Chapter 2. File Formats 339

trustedgateways gateway_list Defines the list of gateways from which HELLO will accept updates.
The gateway_list is simply a list of host names or IP addresses. By
default, all routers on the shared network are trusted to supply
routing information. But if the trustedgateways clause is specified,
only updates from the gateways in the list are accepted.

sourcegateways gateway_list Defines a list of routers to which HELLO sends packets directly, not
through multicast or broadcast. This can be used to send different
routing information to specific gateways. Updates to gateways in this
list are not affected by noripout on the interface.

traceoptions trace_options Specifies the tracing options for HELLO. (See Trace Statements and
the HELLO specific tracing options below.)

The default preference is 90. The default metric is 30000.

Tracing options
The policy option logs info whenever a new route is announced, the metric being announced changes, or
a route goes or leaves holddown.

Packet tracing options (which may be modified with detail, send, and/or recv):

packets All HELLO packets

The IS-IS Statement
isis no | dual | ip | iso {

level 1|2 ;
[traceoptions <isis_traceoptions> ;]
[systemid <6_digit_hexstring> ;]
[area <hexstring> ;]
[set <isis_parm> <value> ; ...]
circuit <string>

metric [level 1|2] <1..63>
...
priority [level 1|2] <0..127>
...
;

...
} ;

This statement enables the IS-IS protocol in the gated daemon. By default, IS-IS is disabled. The dual
option specifies that the IS-IS protocol is enabled for both ISO and IP addressing. The isis statement
consists of an initial description of the IS and a list of statements that determine the configuration of the
specific circuits and networks to be managed. Statements may appear in any order and include:

level Indicates whether gated is running on a Level 1 (intra-area) or Level 2 (inter-area) IS. The
default is Level 1.

traceoptions Covered in the Tracing options section below.
systemid Overrides the autoconfigured system ID (determined from interface addresses and

corresponding netmasks). If no system identifier is specified, the system ID portion of the
first real circuit’s NSAP is used. Once a system ID is set, it cannot be changed without
disabling and reenabling all of IS-IS.

area IS-IS area addresses are automatically configured based on the real circuits over which
IS-IS runs. Addresses specified in this statement are maintained in addition to those
configured automatically from the circuits. This command is used primarily for simulation.

340 Files Reference

circuit Each circuit statement specifies one of the circuits the system will manage. Circuits
normally correspond to UNIX interfaces, with string being the interface name, but
simulated device names may also be specified. If the string is in the form of ″simN″, where
N is an integer, the circuit is assumed to be a simulated circuit managed by the network
simulator troll. The circuit attributes are a list of options that may appear in any order in the
circuit statement.

metric Allows specifications of Level 1 and Level 2 metrics for each circuit. Only the default metric
type is supported. IS-IS metrics must be in the range 1 to 63. If no metric is set for the
circuit, the default value is 63.

priority Determines designated router election results; higher values give a higher likelihood of
becoming the designated router. The level defaults to Level 1. If no priority is specified,
priority is set to a random value between 0 and 127.

On a level 2 IS, to configure a circuit with a Level 1 metric of 10 and a Level 2 metric of 20, add two
metric options to the circuit statement.

The default Level is 1: the default metric is 63. The default preference for IS-IS Level 1 is 15 for IS-IS
Level 2 is 18.

Tracing options
Traceoptions can be one or more of the following:
all
iih
lanadj
p2padj
lspdb
lspcontent
lspinput
flooding
buildlsp
csnp
psnp
route
update
paths
spf
events

The OSPF Statement
ospf yes | no | on | off [{

defaults {
preference preference ;
cost cost ;
tag [as] tag ;
type 1 | 2 ;

} ;
exportlimit routes ;
exportinterval time ;
traceoptions trace_options ;
monitorauthkey authkey ;
monitorauth none | ([simple | md5] authkey) ;
backbone | (area area) {

authtype 0 | 1 | none | simple ;
stub [cost cost] ;
networks {

network [restrict] ;
network mask mask [restrict] ;

Chapter 2. File Formats 341

network masklen number [restrict] ;
host host [restrict] ;

} ;
stubhosts {

host cost cost ;
} ;
interface interface_list; [cost cost] {

interface_parameters
} ;
interface interface_list nonbroadcast [cost cost] {

pollinterval time ;
routers {

gateway [eligible] ;
} ;
interface_parameters

} ;
Backbone only:
virtuallink neighborid router_id transitarea area {

interface_parameters
} ;

};
}];

The following are the interface_parameters referred to above. They may be specified on any class of
interface and are described under the interface clause.

enable | disable;
retransmitinterval time;
transitdelay time;
priority priority;
hellointerval time;
routerdeadinterval time;
authkey auth_key;

defaults
These parameters specify the defaults used when importing OSPF ASE routes into the gated
routing table and exporting routes from the gated routing table into OSPF ASEs.

preference preference
Preference is used to determine how OSPF routes compete with routes from other
protocols in the gated routing table. The default value is 150.

cost cost
Cost is used when exporting a non-OSPF route from the gated routing table into OSPF as
an ASE. The default value is 1. This may be explicitly overridden in export policy.

tag [as] tag
OSPF ASE routes have a 32 bit tag field that is not used by the OSPF protocol, but may
be used by export policy to filter routes. When OSPF is interacting with an EGP, the tag
field may be used to propagate AS path information, in which case the as keyword is
specified and the tag is limited to 12 bits of information. If not specified, the tag is set to
zero.

type 1 | 2
Routes exported from the gated routing table into OSPF default to becoming type 1 ASEs.
This default may be explicitly changed here and overridden in export policy.

ASE export rate
Because of the nature of OSPF, the rate at which ASEs are flooded must be limited. These two
parameters can be used to adjust those rate limits.

342 Files Reference

exportinterval time
This specifies how often a batch of ASE link state advertisements will be generated and
flooded into OSPF. The default is once per second.

exportlimit routes
This parameter specifies how many ASEs will be generated and flooded in each batch.
The default is 100.

traceoptions trace_options
Specifies the tracing options for OSPF. (See Trace Statements and the OSPF specific tracing
options below.)

monitorauthkey authkey
OSPF state may be queried using the ospf_monitor command utility. This utility sends
non-standard OSPF packets that generate a text response from OSPF. By default, these requests
are not authenticated if an authentication key is configured, the incoming requests must match the
specified authentication key. No OSPF state may be changed by these packets, but the act of
querying OSPF can utilize system resources.

backbonearea area
Each OSPF router must be configured into at least one OSPF area. If more than one area is
configured, at least one must be backbone. The backbone may only be configured using the
backbone keyword, it may not be specified as area 0. The backbone interface may be a
virtuallink.

authtype 0 | 1 | none | simple
OSPF specifies an authentication scheme per area. Each interface in the area must use
this same authentication scheme although it may use a different authenticationkey. The
currently valid values are none (0) for no authentication, or simple (1) for simple password
authentication.

stub [cost cost]
A stub area is one in which there are no ASE routes. If a cost is specified, this is used to
inject a default route into the area with the specified cost.

networks
The networks list describes the scope of an area. Intra-area LSAs that fall within the
specified ranges are not advertised into other areas as inter-area routes. Instead, the
specified ranges are advertised as summary network LSAs. If restrict is specified, the
summary network LSAs are not advertised. Intra-area LSAs that do not fall into any range
are also advertised as summary network LSAs. This option is very useful on well designed
networks in reducing the amount of routing information propagated between areas. The
entries in this list are either networks, or a subnetwork/mask pair. See the section on
Route Filtering for more detail about specifying ranges.

stubhosts
This list specifies directly attached hosts that should be advertised as reachable from this
router and the costs they should be advertised with. Point-to-point interfaces on which it is
not desirable to run OSPF should be specified here.

It is also useful to assign an additional address to the loopback interface (one not on the
127 network) and advertise it as a stub hosts. If this address is the same one used as the
router-id, it enables routing to OSPF routers by router-id, instead of by an interface
address. This is more reliable than routing to one of the router’s interface addresses that
may not always be reachable.

interface interface_list [cost cost]
This form of the interface clause is used to configure a broadcast (which requires IP multicast
support) or a point-to-point interface. See the section on interface list specification for the
description of the interface_list.

Chapter 2. File Formats 343

Each interface has a cost. The costs of all interfaces a packet must cross to reach a destination
are summed to get the cost to that destination. The default cost is one, but another non-zero value
may be specified.

Interface parameters common to all types of interfaces are:

retransmitinterval time
The number of seconds between link state advertisement retransmissions for adjacencies
belonging to this interface.

transitdelay time
The estimated number of seconds required to transmit a link state update over this
interface. Transitdelay takes into account transmission and propagation delays and must
be greater than 0.

priority priority
A number between 0 and 255 specifying the priority for becoming the designated router on
this interface. When two routers attached to a network both attempt to become the
designated router, the one with the highest priority wins. A router whose router priority is
set to 0 is ineligible to become the designated router.

hellointerval time
The length of time, in seconds, between Hello packets that the router sends on the
interface.

routerdeadinterval time
The number of seconds not hearing a router’s Hello packets before the router’s neighbors
will declare it down.

authkey auth_key
Used by OSPF authentication to generate and verify the authentication field in the OSPF
header. The authentication key can be configured on a per interface basis. It is specified
by one to eight decimal digits separated by periods, a one to eight byte hexadecimal string
preceded by 0x, or a one to eight character string in double quotes.

Point-to-point interfaces also support this additional parameter:

nomulticast
By default, OSPF packets to neighbors on point-to-point interfaces are sent via the IP
multicast mechanism. If the use of IP multicasting is not desired, the nomulticast
parameter may be specified to force the use of unicast OSPF packets. gated.conf will
detect this condition and fall back to using sending unicast OSPF packets to this
point-to-point neighbor.

If the use of IP multicasting is not desired because the remote neighbor does not support
it, the nomulticast parameter may be specified to force the use of unicast OSPF packets.
This option may also be used to eliminate warnings when gated.conf detects the bug
mentioned above.

interface interface_list nonbroadcast [cost cost]
This form of the interface clause is used to specify a nonbroadcast interface on a non-broadcast
multi-access (NBMA) media. Since an OSPF broadcast media must support IP multicasting, a
broadcast-capable media, such as Ethernet, that does not support IP multicasting must be
configured as a non-broadcast interface.

A non-broadcast interface supports any of the standard interface clauses listed above, plus the
following two that are specific to non-broadcast interfaces:

pollinterval time
Before adjacency is established with a neighbor, OSPF packets are sent periodically at the
specified pollinterval.

344 Files Reference

routers
By definition, it is not possible to send broadcast packets to discover OSPF neighbors on
a non-broadcast, so all neighbors must be configured. The list includes one or more
neighbors and an indication of their eligibility to become a designated router.

virtuallink neighborid router_id transitarea area
Virtual links are used to establish or increase connectivity of the backbone area. The neighborid is
the router_id of the other end of the virtual link. The transit area specified must also be
configured on this system. All standard interface parameters defined by the interface clause
above may be specified on a virtual link.

Tracing options
In addition to the following OSPF specific trace flags, OSPF supports the state that traces interface and
neighbor state machine transitions.

lsabuild Link State Advertisement creation
spf Shortest Path First (SPF) calculations

Packet tracing options (which may be modified with detail, send and recv):

hello OSPF HELLO packets that are used to determine neighbor reachability.
dd OSPF Database Description packets that are used in synchronizing OSPF databases.
request OSPF Link State Request packets that are used in synchronizing OSPF databases.
lsu OSPF Link State Update packets that are used in synchronizing OSPF databases.
ack OSPF Link State Ack packets that are used in synchronizing OSPF databases.

The EGP Statement
EGP yes | no | on | off
[{

preference preference ;
defaultmetric metric ;
packetsize number ;
traceoptions trace_options ;
group

[peeras autonomous_system]
[localas autonomous_system]
[maxup number]

{
neighbor host

[metricout metric]
[preference preference]
[preference2 preference]

[ttl ttl]
[nogendefault]
[importdefault]
[exportdefault]
[gateway gateway]
[lcladdr local_address]
[sourcenet network]
[minhello | p1 time]
[minpoll | p2 time]
[traceoptions trace_options]

;
} ;

}] ;

Chapter 2. File Formats 345

preference preference
Sets the preference for routes learned from RIP. The default preference is 200. This preference
may be overridden by a preference specified on the group or neighbor statements or by import
policy.

defaultmetric metric ;
Defines the metric used when advertising routes via EGP. If not specified, the default value is 255
that some systems may consider unreachable. This choice of values requires you to explicitly
specify a metric when exporting routes to EGP neighbors. This metric may be overridden by a
metric specified on the neighbor or group statements or in export policy.

packetsize maxpacketsize
This defines the expected maximum size of a packet that EGP expects to receive from this
neighbor. If a packet larger than this value is received, it will be incomplete and have to be
discarded. The length of this packet will be noted and the expected size will be increased to be
able to receive a packet of this size. Specifying the parameter here will prevent the first packet
from being dropped. If not specified, the default size is 8192 bytes. All packet sizes are rounded
up to a multiple of the system page size.

traceoptions trace_options
Specifies the tracing options for EGP. By default these are inherited from the global trace options.
These values may be overridden on a group or neighbor basis. (See Trace Statements and the
EGP specific tracing options below.)

group EGP neighbors must be specified as members of a group. A group is usually used to group all
neighbors in one autonomous system. Parameters specified on the group clause apply to all of the
subsidiary neighbors unless explicitly overridden on a neighbor clause. Any number of group
clauses may specify any number of neighbor clauses.

Any parameters from the neighbor subclause may be specified on the group clause to provide
defaults for the whole group (which may be overridden for individual neighbors). In addition, the
group clause is the only place to set the following attributes:

peeras
Identifies the autonomous system number expected from peers in the group. If not
specified, it will be learned dynamically.

localas
Identifies the autonomous system that gated.conf is representing to the group. The
default is that which has been set globally in the autonomoussystem statement. This option
is usually only used when masquerading as another autonomous system and its use is
discouraged.

maxup
Specifies the number of neighbors the gated daemon should acquire from this group. The
default is to acquire all of the neighbors in the group. The gated daemon will attempt to
acquire the first maxup neighbors in the order listed. If one of the first neighbors is not
available, it will acquire one further down the list. If after start-up the gated daemon does
manage to acquire the more desirable neighbor, it will drop the less desirable one.

neighbor neighbor_address
Each neighbor subclause defines one EGP neighbor within a group. The only part of the
subclause that is required is the neighbor_address argument that is the symbolic host name or IP
address of the neighbor. All other parameters are optional.

preference preference
Specifies the preference used for routes learned from these neighbors. This can differ from
the default EGP preference set in the EGP statement, so that the gated daemon can prefer
routes from one neighbor, or group of neighbors, over another. This preference may be
explicitly overridden by import policy.

346 Files Reference

preference2 preference
In the case of a preference tie, the second preference, preference2 may be used to break
the tie. The default value is 0.

metricout metric
This defines a metric to be used for all routes sent to this neighbor. The value overrides
the default metric set in the EGP statement and any metrics specified by export policy, but
only for this specific neighbor or group of neighbors.

nogendefault
Prevents gated.conf from generating a default route when EGP receives a valid update
from its neighbor. The default route is only generated when the gendefault option is
enabled.

importdefault
Enables the gated daemon to accept the default route (0.0.0.0) if it is included in a
received EGP update. If not specified, the default route contained in an EGP update is
ignored. For efficiency, some networks have external routers announce a default route to
avoid sending large EGP update packets.

exportdefault
Enables the gated daemon to include the default route (0.0.0.0) in EGP updates sent to
this EGP neighbor. This allows the system to advertise the default route via EGP. Normally
a default route is not included in EGP updates.

gateway gateway
If a network is not shared with a neighbor, gateway specifies a router on an attached
network to be used as the next hop router for routes received from this neighbor. This
option is only rarely used.

lcladdr local_address
Specifies the address to be used on the local end of the connection with the neighbor. The
local address must be on an interface that is shared with the neighbor or with the
neighbor’s gateway when the gateway parameter is used. A session will only be opened
when an interface with the appropriate local address (through which the neighbor or
gateway address is directly reachable) is operating.

sourcenet network
Specifies the network queried in the EGP Poll packets. By default, this is the network
shared with the neighbor’s address specified. If there is no network shared with the
neighbor, one of the networks the neighbor is attached to should be specified. This
parameter can also be used to specify a network shared with the neighbor other than the
one on which the EGP packets are sent. This parameter is normally not needed.

p1 time

minhello time
Sets the minimum acceptable interval between the transmission of EGP HELLO packets.
The default hello interval is 30 seconds. If the neighbor fails to respond to three hello
packets, the gated daemon stops trying to acquire the neighbor. Setting a larger interval
gives the neighbor a better chance to respond. Minhello is an alias for the P1 value
defined in the EGP specification.

p2 time

minpoll time
Sets the time interval between polls to the neighbor. The default is 120 seconds. If three
polls are sent without a response, the neighbor is declared ″down″ and all routes learned
from that neighbor are removed from the routing database. A longer polling interval
supports a more stable routing database but is not as responsive to routing changes.
Minpoll is an alias for the P2 value defined in the EGP specification.

Chapter 2. File Formats 347

ttl ttl By default, the gated daemon sets the IP TTL for local neighbors to one and the TTL for
non-local neighbors to 255. This option is provided when attempting to communicate with
improperly functioning routers that ignore packets sent with a TTL of one.

traceoptions trace_options
Specifies the tracing options for this EGP neighbor. By default, these are inherited from
group or EGP global trace options. (See Trace Statements and the EGP specific tracing
options below.)

Tracing options
The state and policy options work with EGP.

Packet tracing options (which may be modified with detail, send and recv):

packets All EGP packets
hello EGP HELLO/I-HEARD-U packets that are used to determine neighbor reachability.
acquire EGP ACQUIRE/CEASE packets that are used to initiate and terminate EGP sessions.
update EGP POLL/UPDATE packets that are used to request and receive reachability updates.

The BGP Statement
bgp yes | no | on | off

[{
preference preference ;
defaultmetric metric ;
traceoptions trace_options ;
group type (external peeras autonomous_system)

| (internal peeras autonomous_system)
| (IGP peeras autonomous_system proto proto)
| (routing peeras autonomous_system proto proto

interface interface_list)
| (test peeras autonomous_system)

{
allow {

network
network mask mask
network masklen number
all
host host

} ;
peer host

[metricout metric]
[localas autonomous_system]
[nogendefault]
[gateway gateway]
[preference preference]
[preference2 preference]
[lcladdr local_address]
[holdtime time]
[version number]
[passive]
[indelay time]
[outdelay time]
[keep [all | none]]
[noaggregatorid]
[keepalivesalways]
[v3asloopokay]

348 Files Reference

[nov4asloop]
[logupdown]
[ttl ttl]
[traceoptions trace_options]
;

} ;
}] ;

external | internal | IGP | test

The bgp statement enables or disables BGP. By default, BGP is disabled. The default metric for
announcing routes via BGP is not to send a metric.

preference preference Sets the preference for routes learned from RIP. The default
preference is 170. This preference may be overridden by a
preference specified on the group or peer statements or by
import policy.

defaultmetric metric Defines the metric used when advertising routes via BGP. If
not specified, no metric is propagated. This metric may be
overridden by a metric specified on the neighbor or group
statements or in export policy.

traceoptions trace_options Specifies the tracing options for BGP. By default these are
inherited from the global trace options. These values may be
overridden on a group or neighbor basis. (See Trace
Statements and the BGP specific tracing options below.)

Groups
BGP peers are grouped by type and the autonomous system of the peers. Any number of groups may be
specified, but each must have a unique combination of type and peer autonomous system. There are four
possible group types:

group type external peeras autonomous_system
In the classic external BGP group, full policy checking is applied to all incoming and outgoing
advertisements. The external neighbors must be directly reachable through one of the machine’s
local interfaces. By default no metric is included in external advertisements, and the next hop is
computed with respect to the shared interface.

group type internal peeras autonomous_system
An internal group operating where there is no IP-level IGP. All neighbors in this group are required
to be directly reachable via a single interface. All next hop information is computed with respect to
this interface. Import and export policy may be applied to group advertisements. Routes received
from external BGP or EGP neighbors are by default readvertised with the received metric.

group type IGP peeras autonomous_system proto proto
An internal group that runs in association with an interior protocol. The IGP group examines routes
that the IGP is exporting and sends an advertisement only if the path attributes could not be
entirely represented in the IGP tag mechanism. Only the AS path, path origin, and transitive
optional attributes are sent with routes. No metric is sent, and the next hop is set to the local
address used by the connection. Received internal BGP routes are not used or readvertised.
Instead, the AS path information is attached to the corresponding IGP route and the latter is used
for readvertisement. Since internal IGP peers are sent only a subset of the routes that the IGP is
exporting, the export policy used is the IGP’s. There is no need to implement the ″don’t routes
from peers in the same group″ constraint since the advertised routes are routes that IGP already
exports.

group type routing peeras autonomous_system proto proto interface interface_list
An internal group that uses the routes of an interior protocol to resolve forwarding addresses. A
type routing group propagates external routes between routers that are not directly connected, and

Chapter 2. File Formats 349

computes immediate next hops for these routes by using the BGP next hop that arrived with the
route as a forwarding address to be resolved via an internal protocol’s routing information. In
essence, internal BGP is used to carry AS external routes, while the IGP is expected to only carry
AS internal routes, and the latter is used to find immediate next hops for the former.

The proto names the interior protocol to be used to resolve BGP route next hops, and may be the
name of any IGP in the configuration. By default, the next hop in BGP routes advertised to type
routing peers will be set to the local address on the BGP connection to those peers, as it is
assumed a route to this address will be propagated via the IGP. The interface_list can optionally
provide list interfaces whose routes are carried via the IGP for which third party next hops may be
used instead.

group type test peeras autonomous_system
An extension to external BGP that implements a fixed policy using test peers. Fixed policy and
special case code make test peers relatively inexpensive to maintain. Test peers do not need to
be on a directly attached network. If the gated daemon and the peer are on the same (directly
attached) subnet, the advertised next hop is computed with respect to that network, otherwise the
next hop is the local machine’s current next hop. All routing information advertised by and received
from a test peer is discarded, and all BGP advertisable routes are sent back to the test peer.
Metrics from EGP- and BGP-derived routes are forwarded in the advertisement, otherwise no
metric is included.

Group parameters
The BGP statement has group clauses and peer subclauses. Any number of peer subclauses may be
specified within a group. A group clause usually defines default parameters for a group of peers, these
parameters apply to all subsidiary peer subclauses. Any parameters from the peer subclause may be
specified on the group clause to provide defaults for the whole group (which may be overridden for
individual peers).

Specifying peers
Within a group, BGP peers may be configured in one of two ways. They may be explicitly configured with
a peer statement, or implicitly configured with the allow statement. Both are described here:

allow The allow clause allows for peer connections from any addresses in the specified range of
network and mask pairs. All parameters for these peers must be configured on the group
clause. The internal peer structures are created when an incoming open request is received
and destroyed when the connection is broken. For more detail on specifying the
network/mask pairs, see the section on Route Filtering.

peer host A peer clause configures an individual peer. Each peer inherits all parameters specified on a
group as defaults. Those defaults may be overridden by parameters explicitly specified on the
peer subclause.

Within each group clause, individual peers can be specified or a group of potential peers can be specified
using allow. Allow is used to specify a set of address masks. If the gated daemon receives a BGP
connection request from any address in the set specified, it will accept it and set up a peer relationship.

Peer parameters
The BGP peer subclause allows the following parameters, which can also be specified on the group
clause. All are optional.

metricout metric
If specified, this metric is used as the primary metric on all routes sent to the specified peer(s).
This metric overrides the default metric, a metric specified on the group and any metric specified
by export policy.

350 Files Reference

localas autonomous_system
Identifies the autonomous system that the gated daemon is representing to this group of peers.
The default is that which has been set globally in the autonomoussystem statement.

nogendefault
Prevents gated.conf from generating a default route when EGP receives a valid update from its
neighbor. The default route is only generated when the gendefault option is enabled.

gateway gateway
If a network is not shared with a peer, gateway specifies a router on an attached network to be
used as the next hop router for routes received from this neighbor. This parameter is not needed
in most cases.

preference preference
Specifies the preference used for routes learned from these peers. This can differ from the default
BGP preference set in the bgp statement, so that the gated daemon can prefer routes from one
peer, or group of peer, over others. This preference may be explicitly overridden by import policy.

preference2 preference
In the case of a preference tie, the second preference, preference2 may be used to break the tie.
The default value is 0.

lcladdr local_address
Specifies the address to be used on the local end of the TCP connection with the peer. For
external peers the local address must be on an interface that is shared with the peer or with the
peer’s gateway when the gateway parameter is used. A session with an external peer will only be
opened when an interface with the appropriate local address (through which the peer or gateway
address is directly reachable) is operating. For other types of peers, a peer session will be
maintained when any interface with the specified local address is operating. In either case,
incoming connections will only be recognized as matching a configured peer if they are addressed
to the configured local address.

holdtime time
Specifies the BGP holdtime value to use when negotiating the connection with this peer, in
seconds. According to BGP, if the gated daemon does not receive a keepalive, update, or
notification message within the period specified in the Hold Time field of the BGP Open message,
then the BGP connection will be closed. The value must be either 0 (no keepalives will be sent) or
at least 3.

version version
Specifies the version of the BGP protocol to use with this peer. If not specified, the highest
supported version is used first and version negotiation is attempted. If it is specified, only the
specified version will be offered during negotiation. Currently supported versions are 2, 3 and 4.

passive
Specifies that active OPENs to this peer should not be attempted. the gated daemon should wait
for the peer to issue an OPEN. By default, all explicitly configured peers are active, they
periodically send OPEN messages until the peer responds.

indelay time

outdelay time
Used to dampen route fluctuations. Indelay is the amount of time a route learned from a BGP
peer must be stable before it is accepted into the gated routing database. Outdelay is the amount
of time a route must be present in the gated routing database before it is exported to BGP. The
default value for each is 0, meaning that these features are disabled.

keep all
Used to retain routes learned from a peer even if the routes’ AS paths contain one of our exported
AS numbers.

Chapter 2. File Formats 351

noaggregatorid
Causes the gated daemon to specify the routerid in the aggregator attribute as zero (instead of its
routerid) in order to prevent different routers in an AS from creating aggregate routes with different
AS paths.

keepalivesalways
Causes the gated daemon to always send keepalives, even when an update could have correctly
substituted for one. This allows interoperability with routers that do not completely obey the
protocol specifications on this point.

v3asloopokay
By default, the gated daemon will not advertise routes whose AS path is looped (that is, with an
AS appearing more than once in the path) to version 3 external peers. Setting this flag removes
this constraint. Ignored when set on internal groups or peers.

nov4asloop
Prevents routes with looped AS paths from being advertised to version 4 external peers. This can
be useful to avoid advertising such routes to peers that would incorrectly forward the routes on to
version 3 neighbors.

logupdown
Causes a message to be logged via the syslog mechanism whenever a BGP peer enters or
leaves the ESTABLISHED state.

traceoptions trace_options
Specifies the tracing options for this BGP neighbor. By default, these are inherited from group or
BGP global trace options.(See Trace Statements and the BGP specific tracing options below.)

Tracing options

Note: The state option works with BGP, but does not provide true state transition information.

Packet tracing options (which may be modified with detail, send, and recv):

packets All BGP packets.
open BGP OPEN packets that are used to establish a peer relationship.
update BGP UPDATE packets that are used to pass network reachability information.
keepalive BGP KEEPALIVE packets that are used to verify peer reachability.

The BGP4+ Statement
The options are the same for BGP4+ as they are for bgp but all the addresses will be IPv6 addresses.

The syntax is:

bgp4+ yes | no | on | off
[{

preference <preference> ;
defaultmetric <metric> ;
traceoptions <trace_options> ;
group type (external peeras <autonomous_system>)

| (internal peeras <autonomous_system>)
| (igp peeras <autonomous_system> proto <proto>)
| (routing peeras <autonomous_system> proto <proto>

interface <interface_list>)
| (test peeras <autonomous_system>)

{
allow {

<network>
<network> masklen <number>
all

352 Files Reference

host <IPv6 host address>
} ;
peer <IPv6 host address>

[metricout <metric>]
[localas <autonomous_system>]
[nogendefault]
[gateway <gateway>]
[preference <preference>]
[preference2 <preference>]
[lcladdr <local_address>]
[holdtime <time>]
[version <number>]
[passive]
[sendbuffer <number>]
[recvbuffer <number>]
[indelay <time>]
[outdelay <time>]
[keep [all | none]]
[analretentive]
[noauthcheck]
[noaggregatorid]
[keepalivesalways]
[v3asloopokay]
[nov4asloop]
[logupdown]
[ttl <ttl>]
[traceoptions <trace_options>]
;

} ;
}] ;

The ICMP Statement
icmp {

traceoptions trace_options ;
}

traceoptions trace_options; Specifies the tracing options for ICMP. (See Trace
Statements and the ICMP specific tracing options below.)

Tracing options
Packet tracing options (which may be modified with detail and recv):

packets All ICMP packets received.
redirect Only ICMP REDIRECT packets received.
routerdiscovery Only ICMP ROUTER DISCOVERY packets received.
info Only ICMP informational packets, which include mask request/response, info

request/response, echo request/response, and time stamp request/response.
error Only ICMP error packets, which include time exceeded, parameter problem,

unreachable and source quench.

The SNMP Statement
The Simple Network Management Protocol (SNMP) is a not a routing protocol but a network management
protocol. The snmp statement controls whether gated.conf tries to contact the SNMP Multiplexing daemon
to register supported variables. The SNMP daemon, smuxd, must be run independently. The snmp
statement only controls whether gated.conf keeps the management software apprised of its status.

gated.conf communicates with the SNMP daemon via the SMUX protocol that is described in RFC 1227.

Chapter 2. File Formats 353

snmp yes | no | on | off
[{

port port ;
debug;
traceoptions traceoptions;

}] ;

Reporting is enabled by specifying yes or on and disabled with no or off. The default is on.

port port By default, the SMUX daemon listens for requests on port 199.
The gated.conf subroutine can be configured to try to contact the
SMUX daemon on a different port by explicitly specifying the port.

debug Specifying this option enables debugging of the ISODE SMUX
code. The default is debugging disabled.

traceoptions trace_options Specifies the tracing options for SMUX. (See Trace Statements
and the SMUX specific tracing options below.)

Tracing options
There are no SNMP-specific trace options. The detail, send, and recv options are not supported.

receive SNMP requests received from the SMUX daemon and the associated responses.
register Protocol requests to register variables.
resolve Protocol requests to resolve variable names.
trap SNMP trap requests from protocols.

Static Statements
Static statements define the static routes used by the gated daemon. A single static statement can
specify any number routes. The static statements occur after protocol statements and before control
statements in the gated.conf file. Any number of static statements may be specified, each containing any
number of static route definitions. These routes can be overridden by routes with better preference values.

static {
(host host) | default |
(network [(mask mask) | (masklen number)])

gateway gateway_list
[interface interface_list]
[preference preference]
[retain]
[reject]

[blackhole]
[noinstall] ;

(network [(mask mask) | (masklen number)])
interface interface
[preference preference]
[retain]
[reject]

[blackhole]
[noinstall] ;

} ;

host host gateway gateway_list (network [(mask mask) | (masklen number)]) default gateway
gateway_list

This is the most general form of the static statement. It defines a static route through one or more
gateways. Static routes are installed when one or more of the gateways listed are available on
directly attached interfaces.

354 Files Reference

Parameters for static routes are:

interface interface_list When this parameter is specified, gateways are only considered
valid when they are on one of these interfaces. See the section on
interface_list specification for the description of the interface_list.

preference preference This option selects the preference of this static route. The
preference controls how this route competes with routes from other
protocols. The default preference is 60.

retain Normally the gated daemon removes all routes except interface
routes from the kernel forwarding table during a graceful shutdown.
The retain option may be used to prevent specific static routes
from being removed. This is useful to insure that some routing is
available when gated is not running.

reject Instead of forwarding a packet like a normal route, reject routes
cause packets to be dropped and unreachable messages to be
sent to the packet originators. Specifying this option causes this
route to be installed as a reject route. Not all kernel forwarding
engines support reject routes.

blackhole A blackhole route is the same as a reject route except that
unreachable messages are not supported.

noinstall Normally the route with the lowest preference is installed in the
kernel forwarding table and is the route exported to other protocols.
When noinstall is specified on a route, it will not be installed in the
kernel forwarding table when it is active, but it will still be eligible to
be exported to other protocols.

(network [(mask mask) | (masklen number)]) interface interface
This form defines a static interface route that is used for primitive support of multiple network
addresses on one interface. The preference, retain, reject, blackhole and noinstall options are
the same as described above.

The Import Statement
Importation of routes from routing protocols and installation of the routes in the gated daemon’s routing
database is controlled by import statements. The format of an import statement varies depending on the
source protocol.

Specifying preferences
In all cases, one of two keywords may be specified to control how routes compete with other protocols:

restrict
preference preference

restrict Specifies that the routes are not desired in the routing table. In some cases,
this means that the routes are not installed in the routing table. In others, it
means that they are installed with a negative preference; this prevents them
from becoming active so they will not be installed in the forwarding table, or
exported to other protocols.

preference preference Specifies the preference value used when comparing this route to other
routes from other protocols. The route with the lowest preference available
at any given route becomes the active route, is installed in the forwarding
table, and is eligible to be exported to other protocols. The default
preferences are configured by the individual protocols.

Route Filters
All the formats allow route filters as shown below. See the section on route filters for a detailed explanation
of how they work. When no route filtering is specified (that is, when restrict is specified on the first line

Chapter 2. File Formats 355

of a statement), all routes from the specified source will match that statement. If any filters are specified,
only routes that match the specified filters will be imported. Put differently, if any filters are specified, an
all restrict; is assumed at the end of the list.

network [exact | refines]
network mask mask [exact | refines]
network masklen number [exact | refines]
default
host host

Importing Routes from BGP and EGP
import proto bgp | EGP autonomoussystem autonomous_system

restrict ;
import proto bgp | EGP autonomoussystem autonomous_system

[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;

import proto bgp aspath aspath_regexp
origin any | ([IGP] [EGP] [incomplete])
restrict ;

import proto bgp aspath aspath_regexp
origin any | ([IGP] [EGP] [incomplete])
[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;

EGP importation may be controlled by autonomous system.

BGP also supports controlling propagation by the use of AS path regular expressions, which are
documented in the section on Matching AS paths.

Note: EGP and BGP versions 2 and 3 only support the propagation of natural networks, so the host and
default route filters are meaningless. BGP version 4 supports the propagation of any destination
along with a contiguous network mask.

EGP and BGP both store any routes that were rejected implicitly by not being mentioned in a route filter,
or explicitly with the restrict keyword in the routing table with a negative preference. A negative
preference prevents a route from becoming active, which prevents it from being installed in the forwarding
table, or exported to other protocols. This alleviates the need to break and re-establish a session upon
reconfiguration if importation policy is changed.

Importing Routes from RIP, HELLO and Redirects
import proto rip | hello | redirect

[(interface interface_list) | (gateway gateway_list)]
restrict ;

import proto rip | hello | redirect
[(interface interface_list) | (gateway gateway_list)]
[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;

The importation of RIP, HELLO, and Redirect routes may be controlled by any of protocol, source
interface, and source gateway. If more than one is specified, they are processed from most general
(protocol) to most specific (gateway).

356 Files Reference

RIP and HELLO don’t support the use of preference to choose between routes of the same protocol. That
is left to the protocol metrics. These protocols do not save routes that were rejected since they have short
update intervals.

Importing Routes from OSPF
import proto ospfase [tag ospf_tag] restrict ;
import proto ospfase [tag ospf_tag]

[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;

Due to the nature of OSPF, only the importation of ASE routes may be controlled. OSPF intra- and
inter-area routes are always imported into the gated routing table with a preference of 10. If a tag is
specified, the import clause will only apply to routes with the specified tag.

It is only possible to restrict the importation of OSPF ASE routes when functioning as an AS border router.
This is accomplished by specifying an export ospfase clause. Specification of an empty export clause
may be used to restrict importation of ASEs when no ASEs are being exported.

Like the other interior protocols, preference can not be used to choose between OSPF ASE routes, that is
done by the OSPF costs. Routes that are rejected by policy are stored in the table with a negative
preference.

The Export Statement
The import statement controls routes received from other systems that are used by the gated daemon,
and the export statement controls which routes are advertised by the gated daemon to other systems.
Like the import statement, the syntax of the export statement varies slightly per protocol. The syntax of
the export statement is similar to the syntax of the import statement, and the meanings of many of the
parameters are identical. The main difference between the two is that while route importation is just
controlled by source information, route exportation is controlled by both destination and source.

The outer portion of a given export statement specifies the destination of the routing information you are
controlling. The middle portion restricts the sources of importation that you wish to consider And the
innermost portion is a route filter used to select individual routes.

Specifying Metrics
The most specific specification of a metric is the one applied to the route being exported. The values that
may be specified for a metric depend on the destination protocol that is referenced by this export
statement.

restrict
metric metric

restrict Specifies that nothing should be exported. If specified on the destination portion of the
export statement, it specifies that nothing at all should be exported to this destination. If
specified on the source portion, it specifies that nothing from this source should be
exported to this destination. If specified as part of a route filter, it specifies that the routes
matching that filter should not be exported.

metric metric Specifies the metric to be used when exporting to the specified destination.

Route Filters
All the formats allow route filters as shown below. See the section on route filters for a detailed explanation
of how they work. When no route filtering is specified (that is, when restrict is specified on the first line

Chapter 2. File Formats 357

of a statement), all routes from the specified source will match that statement. If any filters are specified,
only routes that match the specified filters will be exported. Put differently, if any filters are specified, an
all restrict ; is assumed at the end of the list.

network [exact | refines]
network mask mask [exact | refines]
network masklen number [exact | refines]
default
host host

Specifying the Destination
As mentioned above, the syntax of the export statement varies depending on the protocol to which it is
being applied. One thing that applies in all cases is the specification of a metric. All protocols define a
default metric to be used for routes being exported, in most cases this can be overridden at several levels
of the export statement.

The specification of the source of the routing information being exported (the export_list) is described
below.

Exporting to EGP and BGP
export proto bgp | EGP as autonomous system

restrict ;
export proto bgp | EGP as autonomous system

[metric metric] {
export_list ;

} ;

Exportation to EGP and BGP is controlled by autonomous system, the same policy is applied to all routers
in the AS.

EGP metrics range from 0 to 255 inclusive with 0 being the most attractive.

BGP metrics are 16 bit unsigned quantities, that is, they range from 0 to 65535 inclusive with 0 being the
most attractive.

If no export policy is specified, only routes to attached interfaces will be exported. If any policy is specified,
the defaults are overridden. It is necessary to explicitly specify everything that should be exported.

Note: EGP and BGP versions 2 and 3 only support the propagation of natural networks, so the host and
default route filters are meaningless. BGP version 4 supports the propagation of any destination
along with a contiguous network mask.

Exporting to RIP and HELLO
export proto rip | hello

[(interface interface_list) | (gateway gateway_list)]
restrict ;

export proto rip | hello
[(interface interface_list) | (gateway gateway_list)]
[metric metric] {
export_list ;

} ;

Exportation to RIP and HELLO is controlled by any of protocol, interface or gateway. If more than one is
specified, they are processed from the most general (protocol) to the most specific (gateway).

It is not possible to set metrics for exporting RIP routes into RIP, or exporting HELLO routes into HELLO.
Attempts to do this are silently ignored.

358 Files Reference

If no export policy is specified, RIP and interface routes are exported into RIP and HELLO and interface
routes are exported into HELLO. If any policy is specified, the defaults are overridden. It is necessary to
explicitly specify everything that should be exports.

RIP version 1 and HELLO assume that all subnets of the shared network have the same subnet mask so
they are only able to propagate subnets of that network. RIP version 2 removes that restriction and is
capable of propagating all routes when not sending version 1 compatible updates.

To announce routes that specify a next hop of the loopback interface (that is, static and internally
generated default routes) via RIP or HELLO, it is necessary to specify the metric at some level in the
export clause. For example, just setting a default metric for RIP or HELLO is not sufficient. This is a
safeguard to verify that the announcement is intended.

Exporting to OSPF
export proto osfpase [type 1 | 2] [tag ospf_tag]

restrict ;
export proto osfpase [type 1 | 2] [tag ospf_tag]

[metric metric] {
export_list ;

} ;

It is not possible to create OSPF intra- or inter-area routes by exporting routes from the the gated daemon
routing table into OSPF. It is only possible to export from the gated daemon routing table into OSPF ASE
routes. It is also not possible to control the propagation of OSPF routes within the OSPF protocol.

There are two types of OSPF ASE routes, type 1 and type 2. See the OSPF protocol configuration for a
detailed explanation of the two types. The default type is specified by the defaults subclause of the ospf
clause. This may be overridden by a specification on the export statement.

OSPF ASE routes also have the provision to carry a tag. This is an arbitrary 32 bit number that can be
used on OSPF routers to filter routing information. See the OSPF protocol configuration for detailed
information on OSPF tags. The default tag specified by the ospf defaults clause may be overridden by a
tag specified on the export statement.

Specifying the Source
The export list specifies export based on the origin of a route and the syntax varies depending on the
source.

Exporting BGP and EGP Routes
proto bgp | EGP autonomoussystem autonomous_system

restrict ;
proto bgp | EGP autonomoussystem autonomous_system

[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

BGP and EGP routes may be specified by the source autonomous system. All routes may be exported by
as path, see the Exporting by AS Path section for more information.

Exporting RIP and HELLO Routes
proto rip | hello

[(interface interface_list) | (gateway gateway_list)]
restrict ;

proto rip | hello
[(interface interface_list) | (gateway gateway_list)]

Chapter 2. File Formats 359

[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

RIP and HELLO routes may be exported by protocol, source interface, and/or source gateway.

Exporting OSPF Routes
proto ospf | ospfase restrict ;
proto ospf | ospfase [metric metric] {

route_filter [restrict | (metric metric)] ;
} ;

Both OSPF and OSPF ASE routes may be exported into other protocols. See below for information on
exporting by tag.

Exporting Routes from Non-routing Protocols

Non-routing with Interface
proto direct | static | kernel

[(interface interface_list)]
restrict ;

proto direct | static | kernel
[(interface interface_list)]
[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

These protocols may be exported by protocol, or by the interface of the next hop. These protocols are:

direct Routes to directly attached interfaces.
static Static routes specified in a static clause.
kernel Routes learned from the routing socket are installed in the gated routing table with a protocol of

kernel. These routes may be exported by referencing this protocol.

Non-routing by Protocol
proto default | aggregate

restrict ;
proto default | aggregate

[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

These protocols may only be referenced by protocol.

default Refers to routes created by the gendefault option. It is recommended that route generation be
used instead.

aggregate Refers to routes synthesized from other routes when the aggregate and generate statements
are used. See the section on Route Aggregation for more information.

Exporting by AS Path
proto proto | all aspath aspath_regexp

origin any | ([IGP] [EGP] [incomplete])
restrict ;

proto proto | all aspath aspath_regexp

360 Files Reference

origin any | ([IGP] [EGP] [incomplete])
[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

When BGP is configured, all routes are assigned an AS path when they are added to the routing table. For
all interior routes, this AS path specifies IGP as the origin and no ASEs in the AS path (the current AS is
added when the route is exported). For EGP routes this AS path specifies EGP as the origin and the
source AS as the AS path. For BGP routes, the AS path is stored as learned from BGP.

AS path regular expressions are documented in the section on Matching AS paths.

Exporting by Route Tag
proto proto | all tag tag restrict ;
proto proto | all tag tag

[metric metric] {
route_filter [restrict | (metric metric)] ;

} ;

Both OSPF and RIP version 2 currently support tags; all other protocols always have a tag of zero. The
source of exported routes may be selected based on this tag. This is useful when routes are classified by
a tag when they are exported into a given routing protocol.

Route Aggregation
Route aggregation is a method of generating a more general route given the presence of a specific route.
It is used, for example, at an autonomous system border to generate a route to a network to be advertised
via EGP given the presence of one or more subnets of that network learned via RIP. No aggregation is
performed unless explicitly requested in an aggregate statement.

Route aggregation is also used by regional and national networks to reduce the amount of routing
information passed around. With careful allocation of network addresses to clients, regional networks can
just announce one route to regional networks instead of hundreds.

Aggregate routes are not actually used for packet forwarding by the originator of the aggregate route, only
by the receiver (if it wishes).

A slight variation of aggregation is the generation of a route based on the existence of certain conditions.
This is sometimes known as the route of last resort. This route inherits the next hops and aspath from the
contributor specified with the lowest (most favorable) preference. The most common usage for this is to
generate a default based on the presence of a route from a peer on a neighboring backbone.

Aggregation and Generation syntax
aggregate default

| (network [(mask mask) | (masklen number)])
[preference preference] [brief] {
proto [all | direct | static | kernel | aggregate | proto]

[(as autonomous system) | (tag tag)
| (aspath aspath_regexp)]

restrict ;
proto [all | direct | static | kernel | aggregate | proto]

[(as autonomous system) | (tag tag)
| (aspath aspath_regexp)]

[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;
} ;

Chapter 2. File Formats 361

generate default
| (network [(mask mask) | (masklen number)])
[preference preference] {

[(as autonomous system) | (tag tag)
| (aspath aspath_regexp)]

restrict ;
proto [all | direct | static | kernel | aggregate | proto]

[(as autonomous system) | (tag tag)
| (aspath aspath_regexp)]

[preference preference] {
route_filter [restrict | (preference preference)] ;

} ;
} ;

Routes that match the route filters are called contributing routes. They are ordered according to the
aggregation preference that applies to them. If there are more than one contributing routes with the same
aggregating preference, the route’s own preferences are used to order the routes. The preference of the
aggregate route will be that of contributing route with the lowest aggregate preference.

preference preference Specifies the preference to assign to the resulting aggregate
route. The default preference is 130.

brief Used to specify that the AS path should be truncated to the
longest common AS path. The default is to build an AS path
consisting of SETs and SEQUENCEs of all contributing AS paths.

proto proto In addition to the special protocols listed, the contributing protocol
may be chosen from among any of the ones supported (and
currently configured into) gated.

as autonomous_system Restrict selection of routes to those learned from the specified
autonomous system.

tag tag Restrict selection of routes to those with the specified tag.
aspath aspath_regexp Restrict selection of routes to those that match the specified AS

path.
restrict Indicates that these routes are not to be considered as

contributors of the specified aggregate. The specified protocol
may be any of the protocols supported by the gated daemon.

route_filter See the section on Route Filters for more detail.

A route may only contribute to an aggregate route that is more general than itself; it must match the
aggregate under its mask. Any given route may only contribute to one aggregate route, which will be the
most specific configured, but an aggregate route may contribute to a more general aggregate.

Route Filters
All the formats allow route filters as shown below. See the section on route filters for a detailed explanation
of how they work. When no route filtering is specified (that is, when restrict is specified on the first line
of a statement), all routes from the specified source will match that statement. If any filters are specified,
only routes that match the specified filters will be considered as contributors. Put differently, if any filters
are specified, an all restrict ; is assumed at the end of the list.

network [exact | refines]
network mask mask [exact | refines]
network masklen number [exact | refines]
default
host host

362 Files Reference

Preference
Preference is the value the gated daemon uses to order preference of routes from one protocol or peer
over another. Preference can be set in the gated.conf configuration file in several different configuration
statements.

Preference can be set based on network interface over another, from one protocol over another, or from
one remote gateway over another.

Preference may not be used to control the selection of routes within an IGP, this is accomplished
automatically by the protocol based on metric. Preference may be used to select routes from the same
EGP learned from different peers or autonomous systems.

Each route has only one preference value associated with it, even though preference can be set at many
places in the configuration file. Simply, the last or most specific preference value set for a route is the
value used. The preference value is an arbitrarily assigned value used to determine the order of routes to
the same destination in a single routing database. The active route is chosen by the lowest preference
value.

Some protocols implement a second preference (preference2), sometimes refered to as a tie-breaker.

Selecting a Route
v The route with the best (numerically smallest) preference is preferred.

v If the two routes have the same preference, the route with the best (numerically smallest) preference2
(also known as a tie-breaker) is preferred.

v A route learned from a IGP is preferred to a route learned from an EGP. Least preferred is a route
learned indirectly by an IGP from an EGP.

v If AS path information is available it is used to help determine the most preferred route.

– A route with an AS path is preferred over one without an AS path.

– If the AS paths and origins are identical, the route with the lower metric is preferred.

– A route with an AS path origin of IGP is preferred over a route with an AS path origin of EGP. Least
preferred is an AS path with an unknown origin.

– A route with a shorter AS path is preferred.

v If both routes are from the same protocol and AS, the one with the lowest metric is preferred.

v The route with the lowest numeric next-hop address is used.

Assigning Preferences
A default preference is assigned to each source from which the gated daemon receives routes. Preference
values range from 0 to 255 with the lowest number indicating the most preferred route.

The following table summarizes the default preference values for routes learned in various ways. The table
lists the statements (some of these are clauses within statements) that set preference, and shows the
types of routes to which each statement applies. The default preference for each type of route is listed,
and the table notes preference precedence between protocols. The narrower the scope of the statement,
the higher precedence its preference value is given, but the smaller the set of routes it affects.

Preference Of Defined by Statement Default
direct connnected networks interface 0
OSPF routes ospf 10
IS-IS level 1 routes isis level 1 15
IS-IS level 2 routes isis level 2 18
internally generated default gendefault 20
redirects redirect 30
routes learned via route socket kernel 40
static routes from config static 60

Chapter 2. File Formats 363

ANS SPF (SLSP) routes slsp 70
HELLO routes hello 90
RIP routes rip 100
point-to-point interface 110
routes to interfaces that are down interfaces 120
aggregate/generate routes aggregate/generate 130
OSPF AS external routes ospf 150
BGP routes bgp 170
EGP EGP 200

Sample Preference Specifications
interfaces {
interface 138.66.12.2 preference 10 ;
} ;
rip yes {

preference 90 ;
} ;
import proto rip gateway 138.66.12.1 preference 75 ;

In these statements, the preference applicable to routes learned via RIP from gateway 138.66.12.1 is 75.
The last preference applicable to routes learned via RIP from gateway 128.66.12.1 is defined in the accept
statement. The preference applicable to other RIP routes is found in the rip statement. The preference set
on the interface statement applies only to the route to that interface.

The Router Discovery Protocol
The Router Discovery Protocol is an IETF standard protocol used to inform hosts of the existence of
routers. It is used in place of, or in addition to statically configured default routes in hosts.

The protocol is split into two portions, the server portion which runs on routers, and the client portion that
runs on hosts. The gated daemon treats these much like two separate protocols, only one of which may
be enabled at a time.

The Router Discovery Server
The Router Discovery Server runs on routers and announces their existence to hosts. It does this by
periodically multicasting or broadcasting a Router Advertisement to each interface on which it is enabled.
These Router Advertisements contain a list of all the routers addresses on a given interface and their
preference for use as default routers.

Initially, these Router Advertisements occur every few seconds, then fall back to every few minutes. In
addition, a host may send a Router Solicitation to which the router will respond with a unicast Router
Advertisement (unless a multicast or broadcast advertisement is due momentarily).

Each Router Advertisement contains an Advertisement Lifetime field indicating for how long the advertised
addresses are valid. This lifetime is configured such that another Router Advertisement will be sent before
the lifetime has expired. A lifetime of zero is used to indicate that one or more addresses are no longer
valid.

The Router Advertisements are by default sent to the all-hosts multicast address 224.0.0.1. However, the
use of broadcast may be specified. When Router Advertisements are being sent to the all-hosts multicast
address, or an interface is configured for the limited-broadcast address 255.255.255.255, all IP addresses
configured on the physical interface are included in the Router Advertisement. When the Router
Advertisements are being sent to a net or subnet broadcast, only the address associated with that net or
subnet is included.

364 Files Reference

The Router Discovery Server Statement
routerdiscovery server yes | no | on | off [{

traceoptions trace_options ;
interface interface_list

[minadvinterval time]
[maxadvinterval time]
[lifetime time]

;
address interface_list

[advertise] | [ignore]
[broadcast] | [multicast]
[ineligible] | [preference preference]
;
}] ;

traceoptions trace_options
Specifies the Router Discovery tracing options. (See Trace Statements and the Router Discovery
specific tracing options below.)

interface interface_list
Specifies the parameters that apply to physical interfaces. Note a slight difference in convention
from the rest of the gated daemon, interface specifies just physical interfaces (such as en0 and
tr0), while address specifies protocol (in this case IP) addresses.

Interface parameters are:

maxadvinterval time
The maximum time allowed between sending broadcast or multicast Router
Advertisements from the interface. Must be no less than 4 and no more than 30:00 (30
minutes or 1800 seconds). The default is 10:00 (10 minutes or 600 seconds).

minadvinterval time
The minimum time allowed between sending unsolicited broadcast or multicast Router
Advertisements from the interface. Must be no less than 3 seconds and no greater than
maxadvinterval. The default is 0.75 * maxadvinterval.

lifetime time
The lifetime of addresses in a Router Advertisement. Must be no less than
maxadvinterval and no greater than 2:30:00 (two hours, thirty minutes or 9000 seconds).
The default is 3 * maxadvinterval.

address interface_list
Specifies the parameters that apply to the specified set of addresses on this physical interface.
Note a slight difference in convention from the rest of gated.conf; interface specifies just physical
interfaces (such as en0 and tr0), while address specifies protocol (in this case IP) addresses.

advertise
Specifies that the specified address(es) should be included in Router Advertisements. This
is the default.

ignore
Specifies that the specified address(es) should not be included in Router Advertisements.

broadcast
Specifies that the given address(es) should be included in a broadcast Router
Advertisement because this system does not support IP multicasting, or some hosts on
attached network do not support IP multicasting. It is possible to mix addresses on a
physical interface such that some are included in a broadcast Router Advertisement and
some are included in a multicast Router Advertisement. This is the default if the router
does not support IP multicasting.

Chapter 2. File Formats 365

multicast
Specifies that the given address(es) should only be included in a multicast Router
Advertisement. If the system does not support IP multicasting the address(es) will not be
included. If the system supports IP multicasting, the default is to include the address(es) in
a multicast Router Advertisement if the given interface supports IP multicasting, if not the
address(es) will be included in a broadcast Router Advertisement.

preference preference
The preferability of the address(es) as a default router address, relative to other router
addresses on the same subnet. A 32-bit, signed, twos-complement integer, with higher
values meaning more preferable. Note that hex 80000000 may only be specified as
ineligible. The default is 0.

ineligible
Specifies that the given address(es) will be assigned a preference of (hex 80000000) that
means that it is not eligible to be the default route for any hosts.

This is useful when the address(es) should not be used as a default route, but are given
as the next hop in an ICMP redirect. This allows the hosts to verify that the given
addresses are up and available.

The Router Discovery Client
A host listens for Router Advertisements via the all-hosts multicast address (224.0.0.2), If IP multicasting
is available and enabled, or on the interface’s broadcast address. When starting up, or when reconfigured,
a host may send a few Router Solicitations to the all-routers multicast address, 224.0.0.2, or the
interface’s broadcast address.

When a Router Advertisement with non-zero lifetime is received, the host installs a default route to each of
the advertised addresses. If the preference ineligible, or the address is not on an attached interface, the
route is marked unusable but retained. If the preference is usable, the metric is set as a function of the
preference such that the route with the best preference is used. If more than one address with the same
preference is received, the one with the lowest IP address will be used. These default routes are not
exportable to other protocols.

When a Router Advertisement with a zero lifetime is received, the host deletes all routes with next-hop
addresses learned from that router. In addition, any routers learned from ICMP redirects pointing to these
addresses will be deleted. The same will happen when a Router Advertisement is not received to refresh
these routes before the lifetime expires.

The Router Discovery Client Statement
routerdiscovery client yes | no | on | off [{

traceoptions trace_options ;
preference preference ;
interface interface_list

[enable] | [disable]
[broadcast] | [multicast]
[quiet] | [solicit]
;
}] ;

traceoptions trace_options
Specifies the tracing options for Router Discovery Client. (See Trace Statements and the Router
Discovery Client specific tracing options below.)

preference preference ;
Specifies the preference of all Router Discovery default routes. The default is 55.

366 Files Reference

interface interface_list
Specifies the parameters that apply to physical interfaces. Note a slight difference in convention
from the rest of gated, interface specifies just physical interfaces (such as en0 and tr0). The
Router Discovery Client has no parameters that apply only to interface addresses.

enable
Specifies that Router Discovery should be performed on the specified interface(s). This is
the default.

disable
Specifies that Router Discovery should not be performed on the specified interface(s).

broadcast
Specifies that Router Solicitations should be broadcast on the specified interface(s). This
is the default if IP multicast support is not available on this host or interface.

multicast
Specifies that Router Solicitations should be multicast on the specified interface(s). If IP
multicast is not available on this host and interface, no solicitation will be performed. The
default is to multicast Router Solicitations if the host and interface support it, otherwise
Router Solicitations are broadcast.

quiet Specifies that no Router Solicitations will be sent on this interface, even though Router
Discovery will be performed.

solicit Specifies that initial Router Solicitations will be sent on this interface. This is the default.

Tracing options
The Router Discovery Client and Server support the state trace flag that traces various protocol
occurrences.

state State transitions

The Router Discovery Client and Server do not directly support any packet tracing options, tracing of
router discovery packets is enabled via the ICMP Statement.

Route Filtering
Routes are filtered by specifying configuration language that will match a certain set of routes by
destination, or by destination and mask. Among other places, route filters are used on martians, import
and export statements.

The action taken when no match is found is dependent on the context, for instance import and export
route filters assume an all reject ; at the end of a list.

A route will match the most specific filter that applies. Specifying more than one filter with the same
destination, mask and modifiers will generate an error.

Filtering syntax
network [exact | refines]
network mask mask [exact | refines]
network masklen number [exact | refines]
all
default
host host

These are all the possible formats for a route filter. Not all of these formats are available in all places, for
instance the host and default formats are not valid for martians.

Chapter 2. File Formats 367

In most cases it is possible to specify additional parameters relevent to the context of the filter. For
example, on a martian statement it is possible to specify the allow keyword, on an import statement you
can specify a preference, and on a export you can specify a metric.

network [exact | refines]

network mask mask [exact | refines]

network masklen number [exact | refines]
Matching usually requires both an address and a mask, although the mask is implied in the
shorthand forms listed below. These three forms vary in how the mask is specified. In the first
form, the mask is implied to be the natural mask of the network. In the second, the mask is
explicitly specified. In the third, the mask is specified by the number of contiguous one bits.

If no additional parameters are specified, any destination that falls in the range given by the
network and mask is matched, the mask of the destination is ignored. If a natural network is
specified, the network, any subnets, and any hosts will be match. The two optional modifiers
cause the mask of the destination to be considered also:

exact This parameter specifies that the mask of the destination must match the supplied mask
exactly. This is used to match a network, but no subnets or hosts of that network.

refines
Specifies that the mask of the destination must be more specified (that is, longer) than the
filter mask. This is used to match subnets and/or hosts of a network, but not the network.

all This entry matches anything. It is equivalent to:
0.0.0.0 mask 0.0.0.0

default
Matches the default route. To match, the address must be the default address and the mask must
be all zeros. This is equivalent to:
0.0.0.0 mask 0.0.0.0 exact

host host
Matches the specific host. To match, the address must exactly match the specified host and the
network mask must be a host mask (that is, all ones). This is equivalent to:
host mask 255.255.255 exact

Matching AS Paths
An AS path is a list of autonomous_systems that routing information has passed through to get to this
router, and an indicator of the origin of the AS path. This information can be used to prefer one path to a
destination network over another. The primary method for doing this with gated.conf is to specify a list of
patterns to be applied to AS paths when importing and exporting routes.

Each autonomous system that a route passed through prepends its AS number to the beginning of the AS
path.

The origin information details the completeness of AS path information. An origin of IGP indicates the route
was learned from an interior routing protocol and is most likely complete. An origin of EGP indicates the
route was learned from an exterior routing protocol that does not support AS paths (EGP, for example) and
the path is most likely not complete. When the path information is definitely not complete, an origin of
incomplete is used.

AS path regular expressions are defined in RFC 1164 section 4.2.

AS Path Matching Syntax
An AS path is matched using the following syntax:
aspath aspath_regexp origin any | ([IGP] [EGP] [incomplete])

368 Files Reference

This specifies that an AS matching the aspath_regexp with the specified origin is matched.

AS Path Regular Expressions
Technically, an AS path regular expression is a regular expression with the alphabet being the set of AS
numbers. An AS path regular expression is composed of one or more AS paths expressions. An AS path
expressions is composed of AS path terms and AS path operators.

AS Path Terms
An AS path term is one of the following three objects:
autonomous_system
.
(aspath_regexp)

autonomous_system Is any valid autonomous system number, from one through 65534 inclusive.
. Matches any autonomous system number.
(aspath_regexp) Contains parentheses group subexpressions—an operator, such as * or ? works

on a single element or on a regular expression enclosed in parentheses.

AS Path Operators
An AS path operator is one of the following:
aspath_term {m,n}
aspath_term {m}
aspath_term {m,}
aspath_term *
aspath_term +
aspath_term ?
aspath_term | aspath_term

aspath_term {m,n} a regular expression followed by {m,n} (where m and n are both
non-negative integers and m <= n) means at least m and at most n
repetitions.

aspath_term {m} a regular expression followed by {m} (where m is a positive integer)
means exactly m repetitions.

aspath_term {m,} a regular expression followed by {m,} (where m is a positive
integer) means m or more repetitions.

aspath_term * an AS path term followed by * means zero or more repetitions. This
is shorthand for {0,}.

aspath_term + a regular expression followed by + means one or more repetitions.
This is shorthand for {1,}.

aspath_term ? a regular expression followed by ? means zero or one repetition.
This is shorthand for {0,1}.

aspath_term | aspath_term matches the AS term on the left, or the AS term on the right.

gateways File Format for TCP/IP

Purpose
Specifies Internet routing information to the routed daemon on a network.

Description
The /etc/gateways file identifies gateways for the routed daemon. Ordinarily, the daemon queries the
network and builds routing tables. The daemon builds the tables from routing information transmitted by

Chapter 2. File Formats 369

other hosts directly connected to the network. Gateways that the daemon cannot identify through its
queries are known as distant gateways. Such gateways should be identified in the gateways file, which
the routed daemon reads when it starts.

The general format of an entry (contained on a single line) in the gateways file is:

Following is a brief description of each element in an gateways file entry:

Destination A keyword that indicates whether the route is to a network or a specific host. The two
possible keywords are net and host.

Name1 The name associated with Destination. The Name1 variable can be either a symbolic
name (as used in the /etc/hosts or /etc/networks file) or an Internet address specified in
dotted-decimal format.

gateway An indicator that the following string identifies the gateway host.
Name2 The name or address of the gateway host to which messages should be forwarded.
metric An indicator that the next string represents the hop count to the destination host or

network.
Value The hop count, or number of gateways from the local network to the destination network.
Type A keyword that indicates whether the gateway should be treated as active, passive, or

external. The three possible keywords are:
active An active gateway is treated like a network interface. That is, the gateway is expected to

exchange Routing Information Protocol (RIP) information. As long as the gateway is active,
information about it is maintained in the internal routing tables. This information is included
with any routing information transmitted through RIP. If the gateway does not respond for a
period of time, the associated route is deleted from the internal routing tables.

passive A passive gateway is not expected to exchange RIP information. Information about the
gateway is maintained in the routing tables indefinitely and is included with any routing
information transmitted through RIP.

external An external gateway is identified to inform the routed daemon that another routing
process will install such a route and that alternative routes to that destination should not
be installed. Information about external gateways is not maintained in the internal routing
tables and is not transmitted through RIP.
Note: These routes must be to networks.

Examples
1. To specify a route to a network through a gateway host with an entry in the gateways file, enter a line

in the following format:
net net2 gateway host4 metric 4 passive

This example specifies a route to a network, net2, through the gateway host4. The hop count metric
to net2 is 4 and the gateway is treated as passive.

2. To specify a route to a host through a gateway host with an entry in the gateways file, enter a line in
the following format:
host host2 gateway host4 metric 4 passive

This example specifies a route to a host, host2, through the gateway host4. The hop count metric to
host2 is 4 and the gateway is treated as passive.

3. To specify a route to a host through an active Internet gateway with an entry in the gateways file,
enter a line in the following format:
host host10 gateway 192.100.11.5 metric 9
active

This example specifies a route to a specific host, host10, through the gateway 192.100.11.5. The hop
count metric to host10 is 9 and the gateway is treated as active

370 Files Reference

4. To specify a route to a host through a passive Internet gateway with an entry in the gateways file,
enter a line in the following format:
host host10 gateway 192.100.11.5 metric 9
passive

5. To specify a route to a network through an external gateway with an entry in the gateways file, enter a
line in the following format:
net net5 gateway host7 metric 11 external

This example specifies a route to a network, net5, through the gateway host7. The hop count metric
to net5 is 11 and the gateway is treated as external (that is, it is not advertised through RIP but
instead through an unspecified routing protocol).

Files

/usr/lpp/tcpip/samples/gateways Contains the sample gateways file, which also contains
directions for its use.

Related Information
The routed daemon.

Gateways for TCP/IP, TCP/IP Protocols, TCP/IP Routing in AIX 5L Version 5.2 System Management
Guide: Communications and Networks.

hosts File Format for TCP/IP

Purpose
Defines the Internet Protocol (IP) name and address of the local host and specifies the names and
addresses of remote hosts.

Description
The /etc/hosts file contains the Internet Protocol (IP) host names and addresses for the local host and
other hosts in the Internet network. This file is used to resolve a name into an address (that is, to translate
a host name into its Internet address). When your system is using a name server, the file is accessed only
if the name server cannot resolve the host name.

When the local host is using the DOMAIN protocol, the resolver routines query a remote DOMAIN name
server before searching this file. In a flat network with no name server, the resolver routines search this file
for host name and address data.

Entries in the hosts file have the following format:

Address HostName

In this entry, Address is an IP address specified in either dotted decimal or octal format, and HostName is
the name of a host specified in either relative or absolute domain name format. If you specify the absolute
domain name, the portion of the name preceding the first . (period) has a maximum length of 63
characters and cannot contain blanks. For both formats of the name, the total number of characters cannot
exceed 255 characters, and each entry must be contained on one line. Multiple HostNames (or aliases)
can be specified.

Note: Valid host names or alias host names must contain at least one alphabetic character. If you choose
to specify a host name or alias that begins with an x followed by any hexadecimal digit (0-f), the
host name or alias must also contain at least one additional letter that cannot be expressed as a

Chapter 2. File Formats 371

hexadecimal digit. The system interprets a leading x followed by a hexadecimal digit as the base 16
representation of an address, unless there is at least one character in the host name or alias that is
not a hexadecimal digit. Thus, xdeer would be a valid host name, whereas xdee would not.

This file can contain two special case entries that define reserved (or well-known) host names. These host
names are:

timeserver Identifies a remote time server host. This host name is used by the setclock command.
printserver Identifies the default host for receiving print requests.

In this hosts file entry, the Address parameter is an IP address specified in either dotted decimal or octal
format, and each HostName parameter is a host name specified in either relative or absolute domain
name format. These never have the full domain name listed; they are always listed as either printserver
or timeserver.

Note: The local /etc/resolv.conf file defines where DOMAIN name servers are, and the name server file
defines where Internet services are available. Although it is not necessary to define well-known
hosts in the hosts file when using the DOMAIN protocol, it may be useful if they are not defined by
your name server.

Entries in this file can be made by using the System Management Interface Tool (SMIT) or the hostent
command, or by creating and editing the file with an editor.

Examples
In these examples, the name of the local host is the first line in each hosts file. This is to help you identify
the host whose file is being displayed. Your host does not have to be defined on the first line of your
hosts file.

1. The following sample entries might be contained in the hosts files for two different hosts on a network
that is not running a DOMAIN name server:

Host1
185.300.10.1 host1
185.300.10.2 host2
185.300.10.3 host3
185.300.10.4 host4 merlin
185.300.10.5 host5 arthur king
185.300.10.5 timeserver

Host 2
185.300.10.2 host2
185.300.10.1 host1
185.300.10.3 host3
185.300.10.4 host4 merlin
185.300.10.5 host5 arthur king

In this sample network with no name server, the hosts file for each host must contain the Internet
address and host name for each host on the network. Any host that is not listed cannot be accessed.
The host at Internet address 185.300.10.4 in this example can be accessed by either name: host4 or
merlin. The host at Internet address 185.300.10.5 can be accessed by any of the names host5,
arthur, or king.

2. Following is a sample entry in the hosts files for a different host on a DOMAIN network, but the host is
not the name server, and the host is keeping some additional host names for a smaller network:

Host 5
128.114.1.15 name1.xyz.aus.century.com name1
128.114.1.14 name2.xyz.aus.century.com name2
128.114.1.16 name3.xyz.aus.century.com name3

372 Files Reference

In this sample, host5 is not a name server, but is attached to a DOMAIN network. The hosts file for
host5 contains address entries for all hosts in the smaller network, and the DOMAIN data files contain
the DOMAIN database. The entries in thehost5 hosts file that begin with 128.114 indicate that host5
resolves names for hosts on the smaller network.

Related Information
The hostent command, setclock command.

The gethostbyaddr routine.

Domain Name Protocol (DOMAIN), Internet Protocol (IP), Naming for TCP/IP, Understanding the SMIT
Interface for TCP/IP in the AIX 5L Version 5.2 System Management Guide: Communications and
Networks.

hosts.equiv File Format for TCP/IP

Purpose
Specifies remote systems that can execute commands on the local system.

Description
The /etc/hosts.equiv file, along with any local $HOME/.rhosts files, defines the hosts (computers on a
network) and user accounts that can invoke remote commands on a local host without supplying a
password. A user or host that is not required to supply a password is considered trusted.

When a local host receives a remote command request, the appropriate local daemon first checks the
/etc/hosts.equiv file to determine if the request originates with a trusted user or host. For example, if the
local host receives a remote login request, the rlogind daemon checks for the existence of a hosts.equiv
file on the local host. If the file exists but does not define the host or user, the system checks the
appropriate $HOME/.rhosts file. This file is similar to the /etc/hosts.equiv file, except that it is maintained
for individual users.

Both files, hosts.equiv and .rhosts must have permissions denying write access to group and other. If
either group or other have write access to a file, that file will be ignored.

Do not give write permission to the /etc/hosts.equiv file to group and others. Permissions of the
/etc/hosts.equiv file should be set to 600 (read and write by owner only).

If a remote command request is made by the root user, the /etc/hosts.equiv file is ignored and only the
/.rhosts file is read.

Note: Be careful when establishing trusted relationships. Networks that use trusted facilities can be less
secure than those that do not.

Granting and Denying Trust
You grant trust from a local host to a remote host or remote user. The local machine’s /etc/hosts.equiv
file contains entries for each trusted host or user. The format of an entry is:
HostName [UserName]

The HostName field specifies the name of the host to trust. The UserName field specifies the name of the
user on that remote host to trust. The UserName field is optional.

You can use the + (plus sign) as a wildcard in either the HostName or UserName field to grant trust to all
users from a particular host or from all hosts that a specific user has an account on. To grant trust to every
user on every machine on the network, place a plus sign (+) at the beginning of the file.

Chapter 2. File Formats 373

Note: When granting access through the /etc/hosts.equiv file, extreme caution must be used. Lines that
include a UserName, either as an individual user, a netgroup, or the + (plus sign used as a wildcard
character), permit the qualifying users to access the system as any non-root local user.

You deny a host or user trust by omitting them from the /etc/hosts.equiv file altogether. By omitting the
host or user, you imply they are not trusted. This is the most secure way to deny trust. Otherwise, you can
explicitly deny trust to a specific host or user by using the - (minus sign). The format to explicitly deny a
host is:
-HostName

The format to explicitly deny a specific user from a host is:
HostName [-UserName]

Using NIS with the /etc/hosts.equiv file
If your network uses the Network Information Services (NIS), you can use netgroups in place of either the
HostName or UserName field. The system resolves the netgroup depending on which field the netgroup
replaces. For example, if you place a netgroup in the HostName field, the system resolves the hosts
component of the netgroup. If the netgroup appears in the UserName field, the user component is
resolved. Use the following format to grant trust to a netgroup:
+@NetGroup

To deny trust, use the following:
-@NetGroup

Refer to the NIS netgroup file for more information on netgroups.

Ordering Entries in the /etc/hosts.equiv File
The order of entries in the /etc/hosts.equiv file is important. When verifying trust, the system parses the
/etc/hosts.equiv file from top to bottom. When it encounters an entry that matches the host or user
attempting a remote command, the system stops parsing the file and grants or denies trust based on the
entry. Any additional entries that appear later in the file are ignored.

Examples
1. To allow all the users on remote hosts emerald and amethyst to log in to host diamond, enter:

emerald
amethyst

These entries in diamond’s /etc/hosts.equiv file allow all the users on emerald and amethyst with local
accounts on diamond to remotely log in without supplying a password.

2. To allow only the user gregory to remotely login to diamond from host amethyst, enter:
emerald
amethyst gregory

This entry in diamond’s /etc/hosts.equiv file forces all the users on amethyst, except for gregory, to
supply a password when remotely logging in to diamond.

3. To grant trust to peter regardless of the host he attempts to execute remote commands from, enter:
emerald
amethyst gregory
+ peter

This entry in diamond’s /etc/hosts.equiv file allows peter to execute remote commands on diamond
from any host that he has an account on.

4. To allow all hosts in the century netgroup to execute remote commands on host diamond, enter:

374 Files Reference

emerald
amethyst gregory
+ peter
+@century

This entry in diamond’s /etc/hosts.equiv file grants trust to all hosts in the century netgroup. This
means that any user with an account on a century host and an account on diamond can execute
remote commands on diamond without supplying a password.

5. To allow all the users in the engineers netgroup with accounts on citrine to execute remote
commands on host diamond, enter:
emerald
amethyst gregory
+ peter
+@century
citrine +@engineers

This entry in diamond’s /etc/hosts.equiv file grants trust to all of netgroup engineers users with an
account on citrine.

6. To grant trust to all users with accounts on hosts in the servers netgroup that are users in the
sysadmins netgroup, enter:
emerald
amethyst gregory
+ peter
+@century
citrine +@engineers
+@servers +@sysadmins

This entry in diamond’s /etc/hosts.equiv file grants trust to any user in the sysadmins netgroup who is
remotely executing commands from hosts that are in the servers netgroup.

7. To force an engineers netgroup user lydia who has an account on citrine to use a password while
allowing all other engineers users not to, enter:
emerald
amethyst gregory
+ peter
+@century
citrine -lydia
citrine +@engineers
+@servers +@sysadmins

This entry in diamond’s /etc/hosts.equiv file grants trust to all of netgroup engineers users, except for
lydia, who must supply a password. The order of entries is very important. Recall that the system
grants trust based on the first entry it encounters. If the order of the entries appeared as follows:
emerald
amethyst gregory
+ peter
+@century
citrine +@engineers
citrine -lydia
+@servers +@sysadmins

User lydia, as a member of engineers, would be allowed to execute remote commands on diamond
even though a later entry explicitly denies her trust.

Files

$HOME/.rhosts Specifies remote users who can use a local-user account.

Chapter 2. File Formats 375

Related Information
The NIS netgroup file.

The TCP/IP .rhosts file format.

The lpd command, rcp command, rdist command, rdump command, rlogin command, rsh command,
ruser command.

The rlogind daemon, rshd daemon.

Naming in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

hosts.lpd File Format for TCP/IP

Purpose
Specifies remote hosts that can print on the local host.

Description
The /etc/hosts.lpd file defines which remote systems are permitted to print on the local system. The
remote systems listed in this file do not have the full privileges given to files listed in the /etc/hosts.equiv
file.

Host-Name Field
The hosts.lpd file supports the following host-name entries:
+
HostName
-HostName
+@NetGroup
-@NetGroup

A + (plus sign) signifies that any host on the network can print using the local host. The HostName entry is
the name of a remote host and signifies that HostName can print, using the local host. A -HostName entry
signifies the host is not allowed to print using the local host. A +@NetGroup or -@NetGroup entry signifies all
hosts in the netgroup or no hosts in the netgroup, respectively, are allowed to print using the local host.

The @NetGroup parameter is used by Network Information Service (NIS) for grouping. Refer to the NIS
netgroup file for more information on netgroups.

Entries in this file can be made using the System Management Interface Tool (SMIT) or the ruser
command.

Note: Comments must be entered on separate lines in the hosts.lpd file. Comments should not be
entered on lines containing host names.

To implement hosts.lpd file changes without restarting the system, use the System Resource Controller
(SRC) refresh command.

Examples
1. To allow remote specified hosts to print using a local host, enter:

hamlet
lear
prospero
setebos

376 Files Reference

These entries in the local host’s /etc/hosts.lpd file allow hosts hamlet, lear, prospero, and setebos to
print files, using the local host.

2. To prevent a remote host from printing using a local host, enter:
-hamlet

This entry in the local host’s /etc/hosts.lpd file prevents host hamlet from printing files, using the local
host.

3. To allow all hosts in an NIS netgroup to print using the local host, enter:
+@century

This entry in the local host’s /etc/hosts.lpd file allows all hosts in the century netgroup to print files,
using the local host. The @ (at sign) signifies the network is using NIS grouping.

Files

/etc/hosts.equiv Specifies remote systems that can execute commands on the local system.

Related Information
The netgroup file for NIS.

The hosts.equiv file format for TCP/IP.

The lpd command, ruser command.

Managing and Using Remote Printers and Queues and Remote Printing Overview in AIX 5L Version 5.2
Guide to Printers and Printing.

hty_config File Format

Purpose
Specifies the number of htys to configure on a Network Terminal Accelerator adapter.

Description
The /etc/hty_config file supplies the hty_load command with information to define ports for a specified
device. The System Management Interface Tool (SMIT) writes to this file when hty devices are configured,
specifying the device by supplying the adapter minor number for the device. Both the number of ports and
the device are specified in a three-column table that can have multiple lines.

The Cluster Address column defines the cluster controller’s network address. For the boards, the cluster
address should be set to 1. Any other value may cause unpredictable results.

After you have configured the Network Terminal Accelerator adapter with SMIT, the hty_config file
appears similar to the following:
Adapter Cluster Number
minor # address of ports
------- ------- --------
0 1 256
1 1 700
2 1 85

In this example, the host has three adapters, the first of which is configured for 256 hty devices, the
second for 700, and the third for 85.

Chapter 2. File Formats 377

See ″Configuring the Network Terminal Accelerator,″ in AIX 5L Version 5.2 Asynchronous Communications
Guide for more information on configuring the adapter.

Related Information
The hty_load command

inetd.conf File Format for TCP/IP

Purpose
Defines how the inetd daemon handles Internet service requests.

Description
The /etc/inetd.conf file is the default configuration file for the inetd daemon. This file enables you to
specify the daemons to start by default and supply the arguments that correspond to the desired style of
functioning for each daemon. This file is part of TCP/IP in Network Support Facilities.

If you change the /etc/inetd.conf file, run the refresh -s inetd or kill -1 InetdPID command to inform the
inetd daemon of the changes to its configuration file. The inetd.conf file specifies which daemons start by
default and supplies arguments determining the style of functioning for each daemon.

The following daemons are controlled by the inetd daemon:

v comsat

v ftpd

v telnetd

v rshd

v rlogind

v rexecd

v fingerd

v tftpd

v talkd

v uucpd

The ftpd, rlogind, rexecd, rshd, talkd, telnetd, and uucpd daemons are started by default. The tftpd,
fingerd, and comsat daemons are not started by default unless they are uncommented in the
/etc/inetd.conf file.

Service Requests
The following Internet service requests are supported internally by the inetd daemon and are generally
used for debugging:

ECHO Returns data packets to a client host.
DISCARD Discards received data packets.
CHARGEN Discards received data packets and sends predefined or random data.
DAYTIME Sends the current date and time in user-readable form.
TIME Sends the current date and time in machine-readable form.

The inetd daemon reads its configuration file only when the inetd daemon starts, when the inetd daemon
receives a SIGHUP signal, or when the SRC refresh -s inetd command is entered. Each line in the inetd
configuration file defines how to handle one Internet service request only.

378 Files Reference

Each line is of the form:

ServiceName SocketType ProtocolName Wait/NoWait UserName ServerPath ServerArgs

These fields must be separated by spaces or tabs and have the following meanings:

ServiceName Contains the name of an Internet service defined in the etc/services file. For services
provided internally by the inetd daemon, this name must be the official name of the
service. That is, the name must be identical to the first entry on the line that describes
the service in the /etc/services file.

SocketType Contains the name for the type of socket used for the service. Possible values for the
SocketType parameter are:

stream Specifies that a stream socket is used for the service.

dgram Specifies that a datagram socket is used for the service

sunrpc_tcp
Specifies that a Sun remote procedure call (RPC) socket is used for the
service, over a stream connection.

sunrpc_udp
Specifies that a Sun RPC socket is used for the service, over a datagram
connection.

ProtocolName Contains the name of an Internet protocol defined in the /etc/protocols file. For
example, use the tcp value for a service that uses TCP/IP and the udp value for a
service that uses the User Datagram Protocol (UDP).

Wait/NoWait Contains either the wait or the nowait instruction for datagram sockets and the nowait
instruction for stream sockets. The Wait/NoWait field determines whether the inetd
daemon waits for a datagram server to release the socket before continuing to listen at
the socket.

Wait/NoWait/SRC Contains either the wait, the nowait, or the SRC instruction for datagram sockets and
the nowait instruction for stream sockets. The Wait/NoWait/SRC field determines
whether the inetd daemon waits for a datagram server to release the socket before
continuing to listen at the socket. The SRC instruction works like wait, but instead of
forking and waiting for the child to die, it does a startsrc on the subsystem and stores
information about the starting of the service. When the service is removed from the
inetd.conf file and inetd is restarted, the service then has a stopsrc issued to the
service to stop it.

UserName Specifies the user name that the inetd daemon should use to start the server. This
variable allows a server to be given less permission than the root user.

ServerPath Specifies the full path name of the server that the inetd daemon should execute to
provide the service. For services that the inetd daemon provides internally, this field
should be internal.

ServerArgs Specifies the command line arguments that the inetd daemon should use to execute
the server. The maximum number of arguments is five. The first argument specifies the
name of the server used. If the SocketType parameter is sunrpc_tcp or sunrpc_udp,
the second argument specifies the program name and the third argument specifies the
version of the program. For services that the inetd daemon provides internally, this field
should be empty.

Examples
The following are example entries in the /etc/inetd.conf file for an inetd daemon that:

v Uses the ftpd daemon for servicing ftp requests

v Uses the talkd daemon for ntalk requests

v Provides time requests internally.

Chapter 2. File Formats 379

ftp stream tcp nowait root /usr/sbin/ftpd ftpd
ntalk dgram udp wait root /usr/sbin/talkd talkd
time stream tcp nowait root internal
time dgram udp wait root internal

Files

etc/services Defines the sockets and protocols used for Internet services.
/etc/protocols Defines the Internet protocols used on the local host.

Related Information
The kill command, refresh command.

The inetd daemon.

The protocols file format, services file format.

Configuring the inetd Daemon, Transmission Control Protocol (TCP), TCP/IP Daemons, User Datagram
Protocol (UDP) in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

lastlog File Format

Purpose
Defines the last login attributes for users.

Description
The /etc/security/lastlog file is an ASCII file that contains stanzas with the last login attributes for users.
Each stanza is identified by a user name and contains attributes in the Attribute=Value form. Each attribute
is ended by a new-line character, and each stanza is ended by an additional new-line character.

Each stanza can have the following attributes:

time_last_login Specifies the number of seconds since the epoch (00:00:00
GMT, January 1, 1970) since the last successful login. The
value is a decimal integer.

tty_last_login Specifies the terminal on which the user last logged in. The
value is a character string.

host_last_login Specifies the host from which the user last logged in. The value
is a character string.

unsuccessful_login_count Specifies the number of unsuccessful login attempts since the
last successful login. The value is a decimal integer. This
attribute works in conjunction with the user’s loginretries
attribute, specified in the /etc/security/user file, to lock the
user’s account after a specified number of consecutive
unsuccessful login attempts. Once the user’s account is locked,
the user will not be able to log in until the system administrator
resets the user’s unsuccessful_login_count attribute to be less
than the value of loginretries. To do this, enter the following:

chsec -f /etc/security/lastlog -s username -a \
unsuccessful_login_count=0

time_last_unsuccessful_login Specifies the number of seconds since the epoch (00:00:00
GMT, January 1, 1970) since the last unsuccessful login. The
value is a decimal integer.

380 Files Reference

tty_last_unsuccessful_login Specifies the terminal on which the last unsuccessful login
attempt occurred. The value is a character string.

host_last_unsuccessful_login Specifies the host from which the last unsuccessful login
attempt occurred. The value is a character string.

All user database files should be accessed through the system commands and subroutines defined for this
purpose. Access through other commands or subroutines may not be supported in future releases.

The mkuser command creates a user stanza in the lastlog file. The attributes of this user stanza are
initially empty. The field values are set by the login command as a result of logging in to the system. The
lsuser command displays the values of these attributes; the rmuser command removes the user stanza
from this file, along with the user account.

Security
Access Control: This command should grant read (r) access to the root user, members of the security
group, and others consistent with the security policy for the system. Only the root user should have write
(w) access.

Examples
A typical stanza is similar to the following example for user bck:
bck:

time_last_unsuccessful_login = 732475345
tty_last_unsuccessful_login = tty0
host_last_unsuccessful_login = waterski
unsuccessful_login_count = 0
time_last_login = 734718467
tty_last_login = lft/0
host_last_login = waterski

Files

/etc/security/lastlog Specifies the path to the lastlog file.
/etc/group Contains the basic attributes of groups.
/etc/security/group Contains the extended attributes of groups.
/etc/passwd Contains the basic attributes of users.
/etc/security/passwd Contains password information.
/etc/security/environ Contains the environment attributes of users.
/etc/security/user Contains the extended attributes of users.
/etc/security/limits Contains the process resource limits of users.

Related Information
The login command, lsuser command, mkuser command, rmuser command, su command.

The getuserattr subroutine, putuserattr subroutine.

ldap.cfg File Format

Purpose
The secldapclntd LDAP client side daemon configuration file.

Chapter 2. File Formats 381

Description
The /etc/security/ldap/ldap.cfg file contains information for the secldapclntd daemon to start and
function properly as well as information for fine tuning the daemon’s performance. The
/etc/security/ldap/ldap.cfg file is updated by the mksecldap command at client setup.

The /etc/security/ldap/ldap.cfg file may contain the following fields:

ldapservers Specifies a comma separated LDAP Security Information Servers. These servers can
either be the primary server and/or replica of the primary server.

ldapadmin Specifies the administrator DN of the LDAP Security Information Server(s).

ldapadmpwd Specifies the password of the administrator DN.

useSSL Specifies whether to use SSL communication. Valid values are ON and OFF. The
default is OFF.
Note: You will need the SSL key and the password to the key to enable this feature.

ldapsslkeyf Specifies the full path to the SSL key.

ldapsslkeypwd Specifies the password to the SSL key.
Note: Comment out this line to use stashed password. The password stash file must
reside in the same directory as the SSL key itself, and must have the same name as
the key file, but with an extension of .sth instead of .kdb.

userattrmappath Specifies the full path to the AIX-LDAP attribute map for users.

groupattrmappath Specifies the full path to the AIX-LDAP attribute map for groups.

idattrmappath Specifies the full path to the AIX-LDAP attribute map for IDs. These IDs are used by
the mkuser command when creating LDAP users.

userbasedn Specifies the user base DN.

groupbasedn Specifies the group base DN.

idbasedn Specifies the ID base DN.

hostbasedn Specifies the host base DN.

servicebasedn Specifies the service base DN.

protocolbasedn Specifies the protocol base DN.

networkbasedn Specifies the network base DN.

netgroupbasedn Specifies the netgroup base DN.

rpcbasedn Specifies the RPC base DN.

userclasses Specifies the objectclasses used for user entry.

groupclasses Specifies the objectclasses used for group entry.

ldapversion Specifies the LDAP server protocol version. Default is 3.

ldapport Specifies the port that the LDAP server listens to. Default is 389.

ldapsslport Specifies the SSL port that the LDAP server listens to. Default is 636.

followaliase Specifies whether to follow aliases. Valid values are NEVER, SEARCHING, FINDING, and
ALWAYS. Default is NEVER.

usercachesize Specifies the user cache size. Valid values are 100 - 10,000 entries. Default is 1,000.

groupcachesize Specifies the group cache size. Valid values are 10 - 1,000 entries. Default is 100.

cachetimeout Specifies the cache TTL (time to live). Valid values are 60 - 3,600 seconds. Default is
300. Set to 0 to disable caching.

heartbeatinterval Specifies the interval in seconds that the client contacts the server for server status.
Valid values are 60 - 3,600 seconds. Default is 300.

numberofthread Specifies the number of threads for the secldapclntd daemon. Valid values are 1 -
1,000. Default is 10.

382 Files Reference

Related Information
The mksecldap command and secldapclntd daemon.

The start-secldapclntd, stop-secldapclntd, restart-secldapclntd, ls-secldapclntd and
flush-secldapclntd commands.

The AIX-LDAP Attribute Mapping File Format file.

LDAP Exploitation of the Security Subsystem in AIX 5L Version 5.2 System Management Concepts:
Operating System and Devices.

LDAP Attribute Mapping File Format

Purpose
Defines AIX to LDAP attribute name mapping to support configurable LDAP server schema.

Description
These map files are used by the /usr/lib/security/LDAP module and the secldapclntd daemon for
translation between AIX attribute names to LDAP attribute names. Each entry in a mapping file represents
a translation for an attribute. A entry has four space seperated fields:
AIX_Attribute_Name AIX_Attribute_Type LDAP_Attribute_Name LDAP_Value_Type

AIX_Attribute_Name Specifies the AIX attribute name.

AIX_Attribute_Type Specifies the AIX attribute type. Values are SEC_CHAR, SEC_INT, SEC_LIST, and
SEC_BOOL.

LDAP_Attribute_Name Specifies the LDAP attribute name.

LDAP_Value_Type Specifies the LDAP value type. Values are s for single value and m for multi-value.

Files
AIX ships 3 sets of attribute mapping files to the /etc/security/ldap directory. The first set includes
aixuser.map, aixgroup.map, and aixid.map. This set is for use with the AIX specific schema
(aixAccount and aixAccessGroup object classes). The second set includes 2307user.map and
2307group.map, and is for use with the nisSchema (posixAccount and posixGroup object classes
defined in RFC 2307). The third set includes aix2307user.map and aix2307group.map, and is for use
with nisSchema with full AIX support (posixAccount and posixGroup object classes, plus
aixAuxAccount and aixAuxGroup object classes).

aixuser.map Specifies mapping for the aixAccount objectclass.

aixgroup.map Specifies mapping for the aixAccessGroup objectclass.

aixid.map Specifies mapping for the aixAdmin objectclass.

2307user.map Specifies mapping for the posixAccount objectclass.

2307group.map Specifies mapping for the posixGroup objectclass.

aix2307user.map Specifies mapping for the posixAccount and aixAuxAccount object-classes.

aix2307group.map Specifies mapping for the posixGroup and aixAuxGroup objectclasses.

The aixid.map contains attribute mappings for user and group IDs. The IDs are used when one creates a
new LDAP user/group with the mkuser or mkgroup command.

Chapter 2. File Formats 383

If an LDAP server uses schema which is not covered by the above 3 sets, you must come up with your
own map set. In this case, you must edit the /etc/security/ldap.cfg file to configure the client manually.

Related Information
The mksecldap command and secldapclntd daemon.

The start-secldapclntd, stop-secldapclntd, restart-secldapclntd, ls-secldapclntd and
flush-secldapclntd commands.

The /etc/security/ldap/ldap.cfg file.

LDAP Exploitation of the Security Subsystem in AIX 5L Version 5.2 System Management Concepts:
Operating System and Devices.

Locale Definition Source File Format

Purpose
Contains one or more categories that describe a locale.

Description
A locale definition source file contains one or more categories that describe a locale. Files using this
format can be converted into a locale by using the localedef command. Locales can be modified only by
editing a locale definition source file and then using the localedef command again on the new source file.
Locales are not affected by a locale definition source file unless the file is first converted using the
localedef command.

The locale definition source file sections define categories of locale data. A source file should not contain
more than one section for the same category. The following categories are supported:

LC_COLLATE Defines character or string collation information.
LC_CTYPE Defines character classification, case conversion, and other character attributes.
LC_MESSAGES Defines the format for affirmative and negative responses.
LC_MONETARY Defines rules and symbols for formatting monetary numeric information.
LC_NUMERIC Defines a list of rules and symbols for formatting non-monetary numeric

information.
LC_TIME Defines a list of rules and symbols for formatting time and date information.

The category definition consists of:

v The category header (category name)

v The associated keyword/value pairs that comprise the category body

v The category trailer (which consists of END category-name)

For example:

LC_CTYPE
source for LC_CTYPE category
END LC_CTYPE

The source for all of the categories is specified using keywords, strings, character literals, and character
symbols. Each keyword identifies either a definition or a rule. The remainder of the statement containing
the keyword contains the operands to the keyword. Operands are separated from the keyword by one or
more blank characters. A statement may be continued on the next line by placing a / (slash) as the last

384 Files Reference

character before the new-line character that terminates the line. Lines containing the comment_char entry in
the first column are treated as comment lines. The default is # (pound sign).

The first category header in the file can be preceded by a line that changes the comment character. It has
the following format, starting in column 1:
comment_char character

where character is the new comment character.

Blank lines and lines containing the comment character in the first position are ignored.

A character symbol begins with the < (less-than) character, followed by up to 30 non-control, non-space
characters, and ends with the > (greater-than) character. For example, <A-diaeresis> is a valid character
symbol. Any character symbol referenced in the source file should either be one of the portable character
set symbols or should be defined in the provided character set description (charmap) source file.

A character literal is the character itself, or else a decimal, hexadecimal, or octal constant. A decimal
constant is of the form:
\dxxx

where x is a decimal digit. A hexadecimal constant is of the form:
\xddd

where d is a hexadecimal digit. An octal constant is of the form:
\ddd

where d is an octal digit.

A string is a sequence of character symbols, or literals enclosed by ″ ″ (double-quotation marks). For
example:
"<A-diaeresis> \d65\d120 "

The explicit definition of each category in a locale definition source file is not required. When a category is
undefined in a locale definition source file, it defaults to the C locale definition.

The first category header in the file can be preceded by a line that changes the escape character used in
the file. It has the following format, starting in column 1:
escape_char character

where character is the new escape character.

The escape character defaults to the / (backslash).

Files

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.
/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for supported

locales.

Related Information
The locale command, localedef command.

Character Set Description (charmap) Source File Format , Locale Method Source File Format .

Chapter 2. File Formats 385

For specific information about the locale categories and their keywords, see the LC_COLLATE category,
LC_CTYPE category, LC_MESSAGES category, LC_MONETARY category, LC_NUMERIC category, and
LC_TIME category for the locale definition source file format.

Changing Your Locale in AIX 5L Version 5.2 System Management Guide: Operating System and Devices.

Understanding the Locale Definition Source File in AIX 5L Version 5.2 System Management Concepts:
Operating System and Devices.

LC_COLLATE Category for the Locale Definition Source File Format

Purpose
Defines character or string collation information.

Description
A collation element is the unit of comparison for collation. A collation element may be a character or a
sequence of characters. Every collation element in the locale has a set of weights, which determine if the
collation element collates before, equal to, or after the other collation elements in the locale. Each collation
element is assigned collation weights by the localedef command when the locale definition source file is
converted. These collation weights are then used by applications programs that compare strings.

Comparison of strings is performed by comparing the collation weights of each character in the string until
either a difference is found or the strings are determined to be equal. This comparison may be performed
several times if the locale defines multiple collation orders. For example, in the French locale, the strings
are compared using a primary set of collation weights. If they are equal on the basis of this comparison,
they are compared again using a secondary set of collation weights. A collating element has a set of
collation weights associated with it that is equal to the number of collation orders defined for the locale.

Every character defined in the charmap file (or every character in the portable character set if no
charmap file is specified) is itself a collating element. Additional collating elements can be defined using
the collating-element statement. The syntax is:

collating-element character-symbol from string

The LC_COLLATE category begins with the LC_COLLATE keyword and ends with the END
LC_COLLATE keyword.

The following keywords are recognized in the LC_COLLATE category:

copy The copy statement specifies the name of an existing locale to be used as the
definition of this category. If a copy statement is included in the file, no other
keyword can be specified.

collating-element The collating-element statement specifies multicharacter collating elements.

The syntax for the collating-element statement is:

collating-element <collating-symbol> from <string>

The collating-symbol value defines a collating element that is a string of one or more characters as a
single collating element. The collating-symbol value cannot duplicate any symbolic name in the current
charmap file, or any other symbolic name defined in this collation definition. The string value specifies a
string of two or more characters that define the collating-symbol value. Following are examples of the
syntax for the collating-element statement:

386 Files Reference

collating-element <ch> from <c><h>
collating-element <e-acute> from <acute><e>
collating-element <11> from <1><1>

A collating-symbol value defined by the collating-element statement is recognized only with the
LC_COLLATE category.

collating-symbol The collating-symbol statement specifies collation symbols for use in collation
sequence statements.

The syntax for the collating-symbol statement is:

collating-symbol <collating-symbol>

The collating-symbol value cannot duplicate any symbolic name in the current charmap file, or any other
symbolic name defined in this collation definition. Following are examples of the syntax for the
collating-symbol statement:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

A collating-symbol value defined by the collating-symbol statement is recognized only within the
LC_COLLATE category.

order_start The order_start statement must be followed by one or more collation order statements,
assigning collation weights to collating elements. This statement is mandatory.

The syntax for the order_start statement is:

order_start <sort-rules>, <sort-rules>,...<sort-rules>
collation order statements
order_end

The <sort-rules> directives have the following syntax:

keyword, keyword,...keyword; keyword, keyword,...keyword

where keyword is one of the keywords forward, backward, and position.

The sort-rules directives are optional. If present, they define the rules to apply during string comparison.
The number of specified sort-rules directives defines the number of weights each collating element is
assigned (that is, the number of collation orders in the locale). If no sort-rules directives are present, one
forward keyword is assumed and comparisons are made on a character basis rather than a string basis. If
present, the first sort-rules directive applies when comparing strings using primary weight, the second
when comparing strings using the secondary weight, and so on. Each set of sort-rules directives is
separated by a ; (semicolon). A sort-rules directive consists of one or more comma-separated keywords.
The following keywords are supported:

forward Specifies that collation weight comparisons proceed from the beginning of a string toward the end of
the string.

backward Specifies that collation weight comparisons proceed from the end of a string toward the beginning of
the string.

position Specifies that collation weight comparisons consider the relative position of elements in the string not
subject to the special symbol IGNORE. That is, if strings compare equal, the element with the
shortest distance from the starting point of the string collates first.

Chapter 2. File Formats 387

The forward and backward keywords are mutually exclusive. Following is an example of the syntax for
the <sort-rules> directives:

order_start forward; backward, position

The optional operands for each collation element are used to define the primary, secondary, or subsequent
weights for the collating element. The special symbol IGNORE is used to indicate a collating element that
is to be ignored when strings are compared.

A collation statement with the ellipsis keyword on the left-hand side results in the collating-element-list on
the right-hand side being applied to every character with an encoding that falls numerically between the
character on the left-hand side in the preceding statement and the character on the left-hand side of the
following statement. If the ellipsis occur in the first statement, it is interpreted as though the preceding line
specified the NUL character. (The NUL character is a character with all bits set to 0.) If the ellipsis occur
in the last statement, it is interpreted as though the following line specified the greatest encoded value.

An ellipsis keyword appearing in place of a collating-element-list indicates the weights are to be assigned,
for the characters in the identified range, in numerically increasing order from the weight for the character
symbol on the left-hand side of the preceding statement.

Note: The use of the ellipsis keyword results in a locale that may collate differently when compiled with
different character set description (charmap) source files. For this reason, the localedef command
issues a warning when the ellipsis keyword is encountered.

All characters in the character set must be placed in the collation order, either explicitly or implicitly by
using the UNDEFINED special symbol. The UNDEFINED special symbol includes all coded character set
values not specified explicitly or with an ellipsis symbol. These characters are inserted in the character
collation order at the point indicated by the UNDEFINED special symbol in the order of their character
code set values. If no UNDEFINED special symbol exists and the collation order does not specify all
collation elements from the coded character set, a warning is issued and all undefined characters are
placed at the end of the character collation order.

Examples
The following is an example of a collation order statement in the LC_COLLATE locale definition source file
category:
order_start forward;backward
UNDEFINED IGNORE;IGNORE
<LOW> <LOW>;<space>
... <LOW>;...
<a> <a>;<a>
<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a>;<A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
<ch> <ch>;<ch>
<Ch> <ch>;<Ch>
<s> <s>;<s>
<ss> <s><s>;<s><s>
<eszet> <s><s>;<eszet><eszet>
... <HIGH>;...
<HIGH>
order_end

This example is interpreted as follows:

v The UNDEFINED special symbol indicates that all characters not specified in the definition (either
explicitly or by the ellipsis symbol) are ignored for collation purposes.

388 Files Reference

v All collating elements between <space> and <a> have the same primary equivalence class and individual
secondary weights based on their coded character set values.

v All characters based on the uppercase or lowercase a character belong to the same primary
equivalence class.

v The <c><h> multicharacter collating element is represented by the <ch> collating symbol and belongs to
the same primary equivalence class as the <C><h> multicharacter collating element.

v The <eszet> character is collated as an <s><s> string. That is, one <eszet> character is expanded to
two characters before comparing.

Files

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.
/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for supported

locales.

Related Information
The ed command, locale command, localedef command.

Character Set Description (charmap) Source File Format, Locale Definition Source File Format, Locale
Method Source File Format.

For specific information about other locale categories and their keywords, see the LC_CTYPE category,
LC_MESSAGES category, LC_MONETARY category, LC_NUMERIC category, and LC_TIME category for
the locale definition source file format.

Changing Your Locale and Understanding the Locale Definition Source File in AIX 5L Version 5.2 System
Management Concepts: Operating System and Devices.

LC_CTYPE Category for the Locale Definition Source File Format

Purpose
Defines character classification, case conversion, and other character attributes.

Description
The LC_CTYPE category of a locale definition source file defines character classification, case conversion,
and other character attributes. This category begins with an LC_CTYPE category header and terminates
with an END LC_CTYPE category trailer.

All operands for LC_CTYPE category statements are defined as lists of characters. Each list consists of
one or more semicolon-separated characters or symbolic character names.

The following keywords are recognized in the LC_CTYPE category. In the descriptions, the term
automatically included means that an error does not occur if the referenced characters are included or
omitted. The characters will be provided if they are missing and will be accepted if they are present.

copy Specifies the name of an existing locale to be used as the definition of this category. If a
copy statement is included in the file, no other keyword can be specified.

upper Defines uppercase letter characters. No character defined by the cntrl, digit, punct, or
space keyword can be specified. At a minimum, the uppercase letters A-Z must be
defined.

lower Defines lowercase letter characters. No character defined by the cntrl, digit, punct, or
space keyword can be specified. At a minimum, the lowercase letters a-z must be
defined.

Chapter 2. File Formats 389

alpha Defines all letter characters. No character defined by the cntrl, digit, punct, or space
keyword can be specified. Characters defined by the upper and lower keywords are
automatically included in this character class.

digit Defines numeric digit characters. Only the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 can be
specified.

alnum Defines alphanumeric characters. No character defined by the cntrl, punct, or space
keyword can be specified. Characters defined by the alpha and digit keywords are
automatically included in this character class.

space Defines whitespace characters. No character defined by the upper, lower, alpha, digit,
graph, cntrl, or xdigit keyword can be specified. At a minimum, the <space>,
<form-feed>, <newline>, <carriage return>, <tab>, and <vertical-tab> characters, and
any characters defined by the blank keyword, must be specified.

cntrl Defines control characters. No character defined by the upper, lower, alpha, digit,
punct, graph, print, xdigit, or space keyword can be specified.

punct Defines punctuation characters. A character defined as the <space> character and
characters defined by the upper, lower, alpha, digit, cntrl, or xdigit keyword cannot be
specified.

graph Defines printable characters, excluding the <space> character. If this keyword is not
specified, characters defined by the upper, lower, alpha, digit, xdigit, and punct
keywords are automatically included in this character class. No character defined by the
cntrl keyword can be specified.

print Defines printable characters, including the <space> character. If this keyword is not
specified, the <space> character and characters defined by the upper, lower, alpha,
digit, xdigit, and punct keywords are automatically included in this character class. No
character defined by the cntrl keyword can be specified.

xdigit Defines hexadecimal digit characters. The digits 0-9 and the letters A-F and a-f can be
specified. The xdigit keyword defaults to its normal class limits.

blank Defines blank characters. If this keyword is not specified, the <space> and
<horizontal-tab> characters are included in this character class. Any characters defined
by this statement are automatically included in the space keyword class.

charclass Defines one or more locale-specific character class names as strings separated by
semicolons. Each named character class can then be defined subsequently in the
LC_CTYPE definition. A character class name consists of at least one, and at most 32
bytes, of alphanumeric characters from the portable character set symbols. The first
character of a character class name cannot be a digit. The name cannot match any of
the LC_CTYPE keywords defined in this section.

charclass-name Defines characters to be classified as belonging to the named locale-specific character
class. Locale-specific named character classes need not exist in the POSIX locale.

If a class name is defined by a charclass keyword, but no characters are subsequently
assigned to it, it represents a class without any characters belonging to it.

The charclass-name can be used as the Property parameter in the wctype subroutine, in
regular expressions and shell pattern-matching expressions, and by the tr command.

toupper Defines the mapping of lowercase characters to uppercase characters. Operands for this
keyword consist of semicolon-separated character pairs. Each character pair is enclosed
in () (parentheses) and separated from the next pair by a , (comma). The first character
in each pair is considered lowercase; the second character is considered uppercase.
Only characters defined by the lower and upper keywords can be specified.

tolower Defines the mapping of uppercase characters to lowercase characters. Operands for this
keyword consist of semicolon-separated character pairs. Each character pair is enclosed
in () (parentheses) and separated from the next pair by a , (comma). The first character
in each pair is considered uppercase; the second character is considered lowercase.
Only characters defined by the lower and upper keywords can be specified.

The tolower keyword is optional. If this keyword is not specified, the mapping defaults to the reverse
mapping of the toupper keyword, if specified. If the toupper and tolower keywords are both unspecified,
the mapping for each defaults to that of the C locale.

390 Files Reference

The LC_CTYPE category does not support multicharacter elements. For example, the German sharp-s
character is traditionally classified as a lowercase letter. There is no corresponding uppercase letter; in
proper capitalization of German text, the sharp-s character is replaced by the two characters ss. This kind
of conversion is outside of the scope of the toupper and tolower keywords.

Examples
The following is an example of a possible LC_CTYPE category listed in a locale definition source file:
LC_CTYPE
#"alpha" is by default "upper" and "lower"
#"alnum" is by default "alpha" and "digit"
#"print" is by default "alnum", "punct" and the space character
#"graph" is by default "alnum" and "punct"
#"tolower" is by default the reverse mapping of "toupper"
#
upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\

<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
#
lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\

<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>
#
digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>
#
space <tab>;<newline>;<vertical-tab>;<form-feed>;\

<carriage-return>;<space>
#
cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/

<form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>;/
<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;<SI>;<DLE>;<DC1>;<DC2>;/
<DC3>;<DC4>;<NAK>;<SYN>;<ETB>;<CAN>;;<SUB>;/
<ESC>;<IS4>;<IS3>;<IS2>;<IS1>;

#
punct <exclamation-mark>;<quotation-mark>;<number-sign>;\

<dollar-sign>;<percent-sign>;<ampersand>;<asterisk>;\
<apostrophe>;<left-parenthesis>;<right-parenthesis>;
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;/
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;<commercial-at>;\
<left-square-bracket>;<backslash>;<circumflex>;\
<right-square-bracket>;<underline>;<grave-accent>;\
<left-curly-bracket>;<vertical-line>;<tilde>;\
<right-curly-bracket>

#
xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;\
<a>;;<c>;<d>;<e>;<f>

#
blank <space>;<tab>
#
toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\

(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);\
(<z>,<Z>)

#
END LC_CTYPE

Files

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.
/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for supported

locales.

Chapter 2. File Formats 391

Related Information
The locale command, localedef command, tr command.

The wctype subroutine.

Character Set Description (charmap) Source File Format , Locale Definition Source File Format , Locale
Method Source File Format .

For specific information about other locale categories and their keywords, see the LC_COLLATE category,
LC_MESSAGES category, LC_MONETARY category, LC_NUMERIC category, and LC_TIME category for
the locale definition source file format.

Changing Your Locale and Understanding the Locale Definition Source File in AIX 5L Version 5.2 System
Management Concepts: Operating System and Devices.

LC_MESSAGES Category for the Locale Definition Source File Format

Purpose
Defines the format for affirmative and negative system responses.

Description
The LC_MESSAGES category of a locale definition source file defines the format for affirmative and
negative system responses. This category begins with an LC_MESSAGES category header and
terminates with an END LC_MESSAGES category trailer.

All operands for the LC_MESSAGES category are defined as strings or extended regular expressions
enclosed by ″ ″ (double-quotation marks). These operands are separated from the keyword they define by
one or more blanks. Two adjacent ″ ″ (double-quotation marks) indicate an undefined value. The following
keywords are recognized in the LC_MESSAGES category:

copy Specifies the name of an existing locale to be used as the definition of this category. If a copy
statement is included in the file, no other keyword can be specified.

yesexpr Specifies an extended regular expression that describes the acceptable affirmative response to a
question expecting an affirmative or negative response.

noexpr Specifies an extended regular expression that describes the acceptable negative response to a
question expecting an affirmative or negative response.

yesstr A colon-separated string of acceptable affirmative responses. This string is accessible to
applications through the nl_langinfo subroutine as nl_langinfo (YESSTR).

nostr A colon-separated string of acceptable negative responses. This string is accessible to
applications through the nl_langinfo subroutine as nl_langinfo (NOSTR).

Examples
The following is an example of a possible LC_MESSAGES category listed in a locale definition source file:
LC_MESSAGES
#
yesexpr "([yY][[:alpha:]]*)|(OK)"
noexpr "[nN][[:alpha:]]*"
yesstr "Y:y:yes"
nostr "N:n:no"
#
END LC_MESSAGES

392 Files Reference

Files

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.
/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for supported

locales.

Related Information
The locale command, localedef command.

Character Set Description (charmap) Source File Format , Locale Definition Source File Format , Locale
Method Source File Format .

For specific information about other locale categories and their keywords, see the LC_COLLATE category,
LC_CTYPE category, LC_MONETARY category, LC_NUMERIC category, and LC_TIME category for the
locale definition source file format.

Changing Your Locale and Understanding the Locale Definition Source File in AIX 5L Version 5.2 System
Management Concepts: Operating System and Devices.

LC_MONETARY Category for the Locale Definition Source File Format

Purpose
Defines rules and symbols for formatting monetary numeric information.

Description
The LC_MONETARY category of a locale definition source file defines rules and symbols for formatting
monetary numeric information. This category begins with an LC_MONETARY category header and
terminates with an END LC_MONETARY category trailer.

All operands for the LC_MONETARY category keywords are defined as string or integer values. String
values are enclosed by ″ ″ (double-quotation marks). All values are separated from the keyword they
define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A
-1 indicates an undefined integer value. The following keywords are recognized in the LC_MONETARY
category:

copy Specifies the name of an existing locale to be used as the definition of this
category. If a copy statement is included in the file, no other keyword can be
specified.

int_curr_symbol Specifies the string used for the international currency symbol. The operand for
the int_curr_symbol keyword is a four-character string. The first three
characters contain the alphabetic international-currency symbol. The fourth
character specifies a character separator between the international currency
symbol and a monetary quantity.

currency_symbol Specifies the string used for the local currency symbol.
mon_decimal_point Specifies the string used for the decimal delimiter used to format monetary

quantities.
mon_thousands_sep Specifies the character separator used for grouping digits to the left of the

decimal delimiter in formatted monetary quantities.

Chapter 2. File Formats 393

mon_grouping Specifies a string that defines the size of each group of digits in formatted
monetary quantities. The operand for the mon_grouping keyword consists of
a sequence of semicolon-separated integers. Each integer specifies the
number of digits in a group. The initial integer defines the size of the group
immediately to the left of the decimal delimiter. The following integers define
succeeding groups to the left of the previous group. If the last integer is not -1,
the size of the previous group (if any) is repeatedly used for the remainder of
the digits. If the last integer is -1, no further grouping is performed.

The following is an example of the interpretation of the mon_grouping
statement. Assuming the value to be formatted is 123456789 and the operand
for the mon_thousands_sep keyword is ’ (single-quotation mark), the
following results occur:

mon_grouping Value Formatted Value
3;-1 123456’789
3 123’456’789
3;2;-1 1234’56’789
3;2 12’34’56’789

-1 123456789
positive_sign Specifies the string used to indicate a nonnegative-valued formatted monetary

quantity.
negative_sign Specifies the string used to indicate a negative-valued formatted monetary

quantity.
int_frac_digits Specifies an integer value representing the number of fractional digits (those

after the decimal delimiter) to be displayed in a formatted monetary quantity
using the int_curr_symbol value.

frac_digits Specifies an integer value representing the number of fractional digits (those
after the decimal delimiter) to be displayed in a formatted monetary quantity
using the currency_symbol value.

p_cs_precedes Specifies an integer value indicating whether the int_curr_symbol or
currency_symbol string precedes or follows the value for a nonnegative
formatted monetary quantity. The following integer values are recognized:

0 Indicates that the currency symbol follows the monetary quantity.

1 Indicates that the currency symbol precedes the monetary quantity.
p_sep_by_space Specifies an integer value indicating whether the int_curr_symbol or

currency_symbol string is separated by a space from a nonnegative formatted
monetary quantity. The following integer values are recognized:

0 Indicates that no space separates the currency symbol from the
monetary quantity.

1 Indicates that a space separates the currency symbol from the
monetary quantity.

2 Indicates that a space separates the currency symbol and the
positive_sign string, if adjacent.

n_cs_precedes Specifies an integer value indicating whether the int_curr_symbol or
currency_symbol string precedes or follows the value for a negative formatted
monetary quantity. The following integer values are recognized:

0 Indicates that the currency symbol follows the monetary quantity.

1 Indicates that the currency symbol precedes the monetary quantity.

394 Files Reference

mon_grouping Value Formatted Value
n_sep_by_space Specifies an integer value indicating whether the int_curr_symbol or

currency_symbol string is separated by a space from a negative formatted
monetary quantity. The following integer values are recognized:

0 Indicates that no space separates the currency symbol from the
monetary quantity.

1 Indicates that a space separates the currency symbol from the
monetary quantity.

2 Indicates that a space separates the currency symbol and the
negative_sign string, if adjacent.

p_sign_posn Specifies an integer value indicating the positioning of the positive_sign string
for a nonnegative formatted monetary quantity. The following integer values are
recognized:

0 Indicates that a left_parenthesis and right_parenthesis symbol
enclose both the monetary quantity and the int_curr_symbol or
currency_symbol string.

1 Indicates that the positive_sign string precedes the quantity and the
int_curr_symbol or currency_symbol string.

2 Indicates that the positive_sign string follows the quantity and the
int_curr_symbol or currency_symbol string.

3 Indicates that the positive_sign string immediately precedes the
int_curr_symbol or currency_symbol string.

4 Indicates that the positive_sign string immediately follows the
int_curr_symbol or currency_symbol string.

n_sign_posn Specifies an integer value indicating the positioning of the negative_sign string
for a negative formatted monetary quantity. The following integer values are
recognized:

0 Indicates that a left_parenthesis and right_parenthesis symbol
enclose both the monetary quantity and the int_curr_symbol or
currency_symbol string.

1 Indicates that the negative_sign string precedes the quantity and the
int_curr_symbol or currency_symbol string.

2 Indicates that the negative_sign string follows the quantity and the
int_curr_symbol or currency_symbol string.

3 Indicates that the negative_sign string immediately precedes the
int_curr_symbol or currency_symbol string.

4 Indicates that the negative_sign string immediately follows the
int_curr_symbol or currency_symbol string.

debit_sign Specifies the string used for the debit symbol (DB) to indicate a nonnegative
formatted monetary quantity.

credit_sign Specifies the string used for the credit symbol (CR) to indicate a negative
formatted monetary quantity.

left_parenthesis Specifies the character, equivalent to a ((left parenthesis), used by the
p_sign_posn and n_sign_posn statements to enclose a monetary quantity
and currency symbol.

right_parenthesis Specifies the character, equivalent to a) (right parenthesis), used by the
p_sign_posn and n_sign_posn statements to enclose a monetary quantity
and currency symbol.

A unique customized monetary format can be produced by changing the value of a single statement. For
example, the following table shows the results of using all combinations of defined values for the
p_cs_precedes, p_sep_by_space, and p_sign_posn statements.

Chapter 2. File Formats 395

Table 5. Results of Various Locale Variable Value Combinations

p_cs_precedes p_sign_posn p_sep_by_space =

2 1 0

p_cs_precedes = 1 p_sign_posn = 0 ($1.25) ($ 1.25) ($1.25)

p_sign_posn = 1 + $1.25 +$ 1.25 +$1.25

p_sign_posn = 2 $1.25 + $ 1.25+ $1.25+

p_sign_posn = 3 + $1.25 +$ 1.25 +$1.25

p_sign_posn = 4 $ +1.25 $+ 1.25 $+1.25

p_cs_precedes = 0 p_sign_posn = 0 (1.25 $) (1.25 $) (1.25$)

p_sign_posn = 1 +1.25 $ +1.25 $ +1.25$

p_sign_posn = 2 1.25$ + 1.25 $+ 1.25$+

p_sign_posn = 3 1.25+ $ 1.25 +$ 1.25+$

p_sign_posn = 4 1.25$ + 1.25 $+ 1.25$+

Example
The following is an example of a possible LC_MONETARY category listed in a locale definition source file:
LC_MONETARY
#
int_curr_symbol "<U><S><D>"
currency_symbol "<dollar-sign>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping <3>
positive_sign "<plus-sign>"
negative_sign "<hyphen>"
int_frac_digits <2>
frac_digits <2>
p_cs_precedes <1>
p_sep_by_space <2>
n_cs_precedes <1>
n_sep_by_space <2>
p_sign_posn <3>
n_sign_posn <3>
debit_sign "<D>"
credit_sign "<C><R>"
left_parenthesis "<left-parenthesis>"
right_parenthesis "<right-parenthesis>"
#
END LC_MONETARY

Files

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.
/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for supported

locales.

Related Information
The locale command, localedef command.

Character Set Description (charmap) Source File Format , Locale Definition Source File Format , Locale
Method Source File Format .

396 Files Reference

For specific information about other locale categories and their keywords, see the LC_COLLATE category,
LC_CTYPE category, LC_MESSAGES category, LC_NUMERIC category, and LC_TIME category for the
locale definition source file format.

Changing Your Locale and Understanding the Locale Definition Source File in AIX 5L Version 5.2 System
Management Concepts: Operating System and Devices.

LC_NUMERIC Category for the Locale Definition Source File Format

Purpose
Defines rules and symbols for formatting non-monetary numeric information.

Description
The LC_NUMERIC category of a locale definition source file defines rules and symbols for formatting
non-monetary numeric information. This category begins with an LC_NUMERIC category header and
terminates with an END LC_NUMERIC category trailer.

All operands for the LC_NUMERIC category keywords are defined as string or integer values. String
values are enclosed by ″ ″ (double-quotation marks). All values are separated from the keyword they
define by one or more spaces. Two adjacent double-quotation marks indicate an undefined string value. A
-1 indicates an undefined integer value. The following keywords are recognized in the LC_NUMERIC
category:

copy The copy statement specifies the name of an existing locale to be used as the definition
of this category. If a copy statement is included in the file, no other keyword can be
specified.

decimal_point Specifies the string used for the decimal delimiter used to format numeric, non-monetary
quantities.

thousands_sep Specifies the string separator used for grouping digits to the left of the decimal delimiter
in formatted numeric, non-monetary quantities.

grouping Defines the size of each group of digits in formatted monetary quantities. The operand
for the grouping keyword consists of a sequence of semicolon-separated integers. Each
integer specifies the number of digits in a group. The initial integer defines the size of the
group immediately to the left of the decimal delimiter. The following integers define
succeeding groups to the left of the previous group. If the last integer is not -1, the size
of the previous group (if any) is used repeatedly for the remainder of the digits. If the last
integer is -1, no further grouping is performed.

The following is an example of the interpretation of the grouping statement. Assuming the value to be
formatted is 123456789 and the operand for the thousands_sep keyword is ’ (single quotation mark) the
following results occur:

Grouping Value Formatted Value
3;-1 123456’789
3 123’456’789
3;2;-1 1234’56’789
3;2 12’34’56’789
-1 123456789

Examples
Following is an example of a possible LC_NUMERIC category listed in a locale definition source file:
LC_NUMERIC
#
decimal_point "<period>"

Chapter 2. File Formats 397

thousands_sep "<comma>"
grouping <3>
#
END LC_NUMERIC

Files

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.
/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for supported

locales.

Related Information
The locale command, localedef command.

Character Set Description (charmap) Source File Format , Locale Definition Source File Format , Locale
Method Source File Format .

For specific information about other locale categories and their keywords, see the LC_COLLATE category,
LC_CTYPE category, LC_MESSAGES category, LC_MONETARY category, and LC_TIME category for
the locale definition source file format.

Changing Your Locale and Understanding the Locale Definition Source File in AIX 5L Version 5.2 System
Management Concepts: Operating System and Devices.

LC_TIME Category for the Locale Definition Source File Format

Purpose
Defines rules and symbols for formatting time and date information.

Description
The LC_TIME category of a locale definition source file defines rules and symbols for formatting time and
date information. This category begins with an LC_TIME category header and terminates with an END
LC_TIME category trailer.

Keywords
All operands for the LC_TIME category keywords are defined as string or integer values. String values are
enclosed by ″ ″ (double-quotation marks). All values are separated from the keyword they define by one or
more spaces. Two adjacent double-quotation marks indicate an undefined string value. A -1 indicates an
undefined integer value. Field descriptors are used by commands and subroutines that query the
LC_TIME category to represent elements of time and date formats. The following keywords are recognized
in the LC_TIME category:

copy The copy statement specifies the name of an existing locale to be used as the definition of this
category. If a copy statement is included in the file, no other keyword can be specified.

abday Defines the abbreviated weekday names corresponding to the %a field descriptor. Recognized
values consist of 7 semicolon-separated strings. Each string must be of equal length and
contain 5 characters or less. The first string corresponds to the abbreviated name (Sun) for the
first day of the week (Sunday), the second to the abbreviated name for the second day of the
week, and so on.

day Defines the full spelling of the weekday names corresponding to the %A field descriptor.
Recognized values consist of seven semicolon-separated strings. The first string corresponds
to the full spelling of the name of the first day of the week (Sunday), the second to the name of
the second day of the week, and so on.

398 Files Reference

abmon Defines the abbreviated month names corresponding to the %b field descriptor. Recognized
values consist of 12 semicolon-separated strings. Each string must be of equal length and
contain 5 characters or less. The first string corresponds to the abbreviated name (Jan) for the
first month of the year (January), the second to the abbreviated name for the second month of
the year, and so on.

mon Defines the full spelling of the month names corresponding to the %B field descriptor.
Recognized values consist of 12 semicolon-separated strings. The first string corresponds to
the full spelling of the name for the first month of the year (January), the second to the full
spelling of the name for the second month of the year, and so on.

d_t_fmt Defines the string used for the standard date and time format corresponding to the %c field
descriptor. The string can contain any combination of characters and field descriptors.

d_fmt Defines the string used for the standard date format corresponding to the %x field descriptor.
The string can contain any combination of characters and field descriptors.

t_fmt Defines the string used for the standard time format corresponding to the %X field descriptor.
The string can contain any combination of characters and field descriptors.

am_pm Defines the strings used to represent ante meridiem (before noon) and post meridiem (after
noon) corresponding to the %p field descriptor. Recognized values consist of two
semicolon-separated strings. The first string corresponds to the ante meridiem designation, the
last string to the post meridiem designation.

t_fmt_ampm Defines the string used for the standard 12-hour time format that includes an am_pm value
(the %p field descriptor). This statement corresponds to the %r field descriptor. The string can
contain any combination of characters and field descriptors.

era Defines how the years are counted and displayed for each era (or emperor’s reign) in a locale,
corresponding to the %E field descriptor modifier. For each era, there must be one string in the
following format:

direction:offset:start_date:end_date:name:format

The variables for the era-string format are defined as follows:

direction
Specifies a - (minus sign) or + (plus sign) character. The plus sign character indicates
that years count in the positive direction when moving from the start date to the end
date. The minus sign character indicates that years count in the negative direction
when moving from the start date to the end date.

offset Specifies a number representing the first year of the era.

start_date
Specifies the starting date of the era in the yyyy/mm/dd format, where yyyy, mm, and
dd are the year, month, and day, respectively. Years prior to the year AD 1 are
represented as negative numbers. For example, an era beginning March 5th in the
year 100 BC would be represented as -100/03/05.

end_date
Specifies the ending date of the era in the same form used for the start_date variable
or one of the two special values -* or +*. A -* value indicates that the ending date of
the era extends backward to the beginning of time. A +* value indicates that the
ending date of the era extends forward to the end of time. Therefore, the ending date
can be chronologically before or after the starting date of the era. For example, the
strings for the Christian eras AD and BC would be entered as follows:

+:0:0000/01/01:+*:AD:%o %N
+:1:-0001/12/31:-*:BC:%o %N

name Specifies a string representing the name of the era that is substituted for the %N field
descriptor.

format Specifies a string for formatting the %E field descriptor. This string is usually a function
of the %o and %N field descriptors.

An era value consists of one string for each era. If more than one era is specified, each era
string is separated by a ; (semicolon).

Chapter 2. File Formats 399

era_year Defines the string used to represent the year in alternate-era format corresponding to the %Ey
field descriptor. The string can contain any combination of characters and field descriptors.

era_d_fmt Defines the string used to represent the date in alternate-era format corresponding to the %Ex
field descriptor. The string can contain any combination of characters and field descriptors.

era_t_fmt Defines the alternative time format of the locale, as represented by the %EX field descriptor for
the strftime subroutine.

era_d_t_fmt Defines the alternative date and time format of the locale, as represented by the %Ec field
descriptor for the strftime subroutine.

alt_digits Defines alternate strings for digits corresponding to the %o field descriptor. Recognized values
consist of a group of semicolon-separated strings. The first string represents the alternate string
for 0, the second string represents the alternate string for one, and so on. A maximum of 100
alternate strings can be specified.

Field Descriptors
The LC_TIME locale definition source file uses field descriptors to represent elements of time and date
formats. Combinations of these field descriptors create other field descriptors or create time-and-date
format strings. When used in format strings containing field descriptors and other characters, field
descriptors are replaced by their current values. All other characters are copied without change. The
following field descriptors are used by commands and subroutines that query the LC_TIME category for
time formatting:

%a Represents the abbreviated weekday name (for example, Sun) defined by the abday statement.
%A Represents the full weekday name (for example, Sunday) defined by the day statement.
%b Represents the abbreviated month name (for example, Jan) defined by the abmon statement.
%B Represents the full month name (for example, January) defined by the month statement.
%c Represents the time-and-date format defined by the d_t_fmt statement.
%C Represents the century as a decimal number (00 to 99).
%d Represents the day of the month as a decimal number (01 to 31).
%D Represents the date in %m/%d/%y format (for example, 01/31/91).
%e Represents the day of the month as a decimal number (01 to 31). The %e field descriptor uses a

two-digit field. If the day of the month is not a two-digit number, the leading digit is filled with a space
character.

%Ec Specifies the locale’s alternate appropriate date and time representation.
%EC Specifies the name of the base year (period) in the locale’s alternate representation.
%Ex Specifies the locale’s alternate date representation.
%EX Specifies the locale’s alternate time representation.
%Ey Specifies the offset from the %EC (year only) field descriptor in the locale’s alternate representation.
%EY Specifies the full alternate year representation.
%Od Specifies the day of the month using the locale’s alternate numeric symbols.
%Oe Specifies the day of the month using the locale’s alternate numeric symbols.
%OH Specifies the hour (24-hour clock) using the locale’s alternate numeric symbols.
%OI Specifies the hour (12-hour clock) using the locale’s alternate numeric symbols.
%Om Specifies the month using the locale’s alternate numeric symbols.
%OM Specifies the minutes using the locale’s alternate numeric symbols.
%OS Specifies the seconds using the locale’s alternate numeric symbols.
%OU Specifies the week number of the year (Sunday as the first day of the week) using the locale’s

alternate numeric symbols.
%Ow Specifies the weekday as a number in the locale’s alternate representation (Sunday = 0).
%OW Specifies the week number of the year (Monday as the first day of the week) using the locale’s

alternate numeric symbols.
%Oy Specifies the year (offset from the %C field descriptor) in alternate representation.
%h Represents the abbreviated month name (for example, Jan) defined by the abmon statement. This

field descriptor is a synonym for the %b field descriptor.
%H Represents the 24-hour clock hour as a decimal number (00 to 23).
%I Represents the 12-hour clock hour as a decimal number (01 to 12).

400 Files Reference

%j Represents the day of the year as a decimal number (001 to 366).
%m Represents the month of the year as a decimal number (01 to 12).
%M Represents the minutes of the hour as a decimal number (00 to 59).
%n Specifies a new-line character.
%N Represents the alternate era name.
%o Represents the alternate era year.
%p Represents the a.m. or p.m. string defined by the am_pm statement.
%r Represents the 12-hour clock time with a.m./p.m. notation as defined by the t_fmt_ampm statement.
%S Represents the seconds of the minute as a decimal number (00 to 59).
%t Specifies a tab character.
%T Represents 24-hour clock time in the format %H:%M:%S (for example, 16:55:15).
%U Represents the week of the year as a decimal number (00 to 53). Sunday, or its equivalent as

defined by the day statement, is considered the first day of the week for calculating the value of this
field descriptor.

%w Represents the day of the week as a decimal number (0 to 6). Sunday, or its equivalent as defined by
the day statement, is considered as 0 for calculating the value of this field descriptor.

%W Represents the week of the year as a decimal number (00 to 53). Monday, or its equivalent as
defined by the day statement, is considered the first day of the week for calculating the value of this
field descriptor.

%x Represents the date format defined by the d_fmt statement.
%X Represents the time format defined by the t_fmt statement.
%y Represents the year of the century (00 to 99).

Note: When the environment variable XPG_TIME_FMT=ON, %y is the year within the century. When
a century is not otherwise specified, values in the range 69-99 refer to years in the twentieth century
(1969 to 1999, inclusive); values in the range 00-68 refer to 2000 to 2068, inclusive.

%Y Represents the year as a decimal number (for example, 1989).
%Z Represents the time-zone name, if one can be determined (for example, EST); no characters are

displayed if a time zone cannot be determined.
%% Specifies a % (percent sign) character.

Example
The following is an example of a possible LC_TIME category listed in a locale definition source file:
LC_TIME
#
#Abbreviated weekday names (%a)
abday "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\

"<T><h><u>";"<F><r><i>";"<S><a><t>"
#
#Full weekday names (%A)
day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\

"<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\
"<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
"<S><a><t><u><r><d><a><y>"

#
#Abbreviated month names (%b)
abmon "<J><a><n>";"<F><e>";"<M><a><r>";"<A><p><r>";\

"<M><a><y>";"<J><u><n>";"<J><u><l>";"<A><u><g>";\
"<S><e><p>";"<O><c><t>";"<N><o><v>";"<D><e><c>"

#
#Full month names (%B)
mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>";\

"<M><a><r><c><h>";"<A><p><r><i><l>";"<M><a><y>";\
"<J><u><n><e>";"<J><u><l><y>";"<A><u><g><u><s><t>";\
"<S><e><p><t><e><m><e><r>";"<O><c><t><o><e><r>";\
"<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"

#
#Date and time format (%c)
d_t_fmt "%a %b %d %H:%M:%S %Y"
#

Chapter 2. File Formats 401

#Date format (%x)
d_fmt "%m/%d/%y"
#
#Time format (%X)
t_fmt "%H:%M:%S"
#
#Equivalent of AM/PM (%p)
am_pm "<A><M>";"<P><M>"
#
#12-hour time format (%r)
t_fmt_ampm "%I:%M:%S %p"
#
era "+:0:0000/01/01:+*:AD:%o %N";\

"+:1:-0001/12/31:-*:BC:%o %N"
era_year ""
era_d_fmt ""
alt_digits "<0><t><h>";"<1><s><t>";"<2><n><d>";"<3><r><d>";\

"<4><t><h>";"<5><t><h>";"<6><t><h>";"<7><t><h>";\
"<8><t><h>";"<9><t><h>";"<1><0><t><h>"

#
END LC_TIME

Files

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.
/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for supported

locales.

Related Information
The locale command, localedef command.

The strftime subroutine.

Character Set Description (charmap) Source File Format , Locale Definition Source File Format , Locale
Method Source File Format .

For specific information about other locale categories and their keywords, see the LC_COLLATE category,
LC_CTYPE category, LC_MESSAGES category, LC_MONETARY category, and LC_NUMERIC category
for the locale definition source file format.

Changing Your Locale and Understanding the Locale Definition Source File in AIX 5L Version 5.2 System
Management Concepts: Operating System and Devices.

Locale Method Source File Format

Purpose
Specifies the methods to be overridden when constructing a locale.

Description
The methods source file maps methods names to the National Language Support (NLS) subroutines that
implement those methods. The methods file also specifies the libraries where the implementing
subroutines are stored.

The methods correspond to those subroutines that require direct access to the data structures
representing locale data.

402 Files Reference

The following is the expected grammar for a methods file:
method_def : "METHODS"

| method_assign_list "END METHODS"
;

method_assign_list :
method_assign_list method_assign
| method_assign_list
| method_assign
;

method_assign :
"csid" meth_name meth_lib_path
| "fnmatch" meth_name meth_lib_path
| "get_wctype" meth_name meth_lib_path
| "is_wctype" meth_name meth_lib_path
| "mblen" meth_name meth_lib_path
| "__mbstopcs" meth_name meth_lib_path
| "mbstowcs" meth_name meth_lib_path
| "__mbtopc" meth_name meth_lib_path
| "mbtowc" meth_name meth_lib_path
| "__pcstombs" meth_name meth_lib_path
| "__pctomb" meth_name meth_lib_path
| "regcomp" meth_name meth_lib_path
| "regerror" meth_name meth_lib_path
| "regexec" meth_name meth_lib_path
| "regfree" meth_name meth_lib_path
| "rpmatch" meth_name meth_lib_path
| "strcoll" meth_name meth_lib_path
| "strfmon" meth_name meth_lib_path
| "strftime" meth_name meth_lib_path
| "strptime" meth_name meth_lib_path
| "strxfrm" meth_name meth_lib_path
| "towlower" meth_name meth_lib_path
| "towupper" meth_name meth_lib_path
| "wcscoll" meth_name meth_lib_path
| "wcsftime" meth_name meth_lib_path
| "wcsid" meth_name meth_lib_path
| "wcstombs" meth_name meth_lib_path
| "wcswidth" meth_name meth_lib_path
| "wcsxfrm" meth_name meth_lib_path
| "wctomb" meth_name meth_lib_path
| "wcwidth" meth_name meth_lib_path
;

meth_name: global_name
| cfunc_name
;

global_name: "CSID_STD"
| "FNMATCH_C"
| "FNMATCH_STD"
| "GET_WCTYPE_STD"
| "IS_WCTYPE_SB"
| "IS_WCTYPE_STD"
| "LOCALECONV_STD"
| "MBLEN_932"
| "MBLEN_EUCJP"
| "MBLEN_SB"
| "__MBSTOPCS_932"
| "__MBSTOPCS_EUCJP"
| "__MBSTOPCS_SB"
| "MBSTOWCS_932"
| "MBSTOWCS_EUCJP"
| "MBSTOWCS_SB"
| "__MBTOPC_932"
| "__MBTOPC_EUCJP"
| "__MBTOPC_SB"
| "MBTOWC_932"

Chapter 2. File Formats 403

| "MBTOWC_EUCJP"
| "MBTOWC_SB"
| "NL_MONINFO"
| "NL_NUMINFO"
| "NL_RESPINFO"
| "NL_TIMINFO"
| "__PCSTOMBS_932"
| "__PCSTOMBS_EUCJP"
| "__PCSTOMBS_SB"
| "__PCTOMB_932"
| "__PCTOMB_EUCJP"
| "__PCTOMB_SB"
| "REGCOMP_STD"
| "REGERROR_STD"
| "REGEXEC_STD"
| "REGFREE_STD"
| "RPMATCH_C"
| "RPMATCH_STD"
| "STRCOLL_C"
| "STRCOLL_SB"
| "STRCOLL_STD"
| "STRFMON_STD"
| "STRFTIME_STD"
| "STRPTIME_STD"
| "STRXFRM_C"
| "STRXFRM_SB"
| "STRXFRM_STD"
| "TOWLOWER_STD"
| "TOWUPPER_STD"
| "WCSCOLL_C"
| "WCSCOLL_STD"
| "WCSFTIME_STD"
| "WCSID_STD"
| "WCSTOMBS_932"
| "WCSTOMBS_EUCJP"
| "WCSTOMBS_SB"
| "WCSWIDTH_932"
| "WCSWIDTH_EUCJP"
| "WCSWIDTH_LATIN"
| "WCSXFRM_C"
| "WCSXFRM_STD"
| "WCTOMB_932"
| "WCTOMB_EUCJP"
| "WCTOMB_SB"
| "WCWIDTH_932"
| "WCWIDTH_EUCJP"
| "WCWIDTH_LATIN"
;

Where cfunc_name is the name of a user supplied subroutine, and meth_lib_path is an optional path
name for the library containing the specified subroutine.

The localedef command parses this information to determine the methods to be used for this locale. The
following subroutines must be specified in the method file:

v __mbtopc

v __mbstopcs

v __pctomb

v __pcstombs

v mblen

v mbstowcs

v mbtowc

v wcstombs

404 Files Reference

v wcswidth

v wctomb

v wcwidth

Any other method not specified in the method file retains the default.

Mixing of cfunc_name values and global_name values is not allowed. A method file should not include
both. If the localedef command receives a method file containing both cfunc_name values and
global_name values, an error is generated and the locale is not created.

It is not mandatory that the METHODS section specify the library name. If an individual method does not
specify a library, the method inherits the most recently specified library. The libc.a library is the default
library.

The method for the mbtowc and wcwidth subroutines should avoid calling other methods where possible.

An understanding of how the __mbtopc, __mbstopcs, __pctomb, and __pcstombs subroutines process
wide characters is useful when constructing a method file. These subroutines should not be used in
applications programs.

__mbtopc Subroutine
The __mbtopc subroutine converts a character to a process code.

The syntax for the __mbtopc subroutine is as follows:

size_t __mbtopc(PC, S, LenS, Err)
wchar_t * PC;
uchar * S;
size_t LenS;
int * Err;

The input buffer pointed to by the S parameter contains the number of bytes of character data specified in
the LenS parameter. The __mbtopc subroutine attempts to convert the character to a process code. If a
valid character is found in the input buffer pointed to by the S parameter, the character is converted and
stored in the PC parameter, and the number of bytes in the character is returned.

If the number of bytes specified by the LenS parameter in the input buffer pointed to by the S parameter
form an invalid character, the subroutine returns 0 and sets the Err parameter to the value -1. If a
character cannot be formed in the number of bytes specified by the LenS parameter or less, the
subroutine returns 0 and sets the Err parameter to the number of bytes required to form a character
beginning with the data pointed to by the S parameter.

The parameters have the following values:

PC Points to a wide character to contain the converted character.
S Points to the buffer of character data to be converted.
LenS Specifies the number of bytes of character data pointed to by the S parameter.
Err Specifies an error value indicating why the conversion failed.

__mbstopcs Subroutine
The __mbstopcs subroutine converts a character string to a process code string.

The syntax for the __mbstopcs subroutine is as follows:

Chapter 2. File Formats 405

size_t __mbstopcs(PC, LenPC, S, LenS, StopCh, EndPtr, Err)
wchar_t * PC;
size_t LenPC;
uchar * S;
size_t LenS;
uchar StopCh;
uchar ** EndPtr;
int * Err;

The input buffer pointed to by the S parameter contains the number of bytes of character data specified in
the LenS parameter. The __mbstopcs subroutine attempts to convert the character data to process
codes. The conversion of characters continues until one of the following occurs:

v The number of bytes specified by the LenS parameter have been converted.

v The number of characters specified by the LenPC parameter have been converted.

v The byte value specified in the StopCh parameter is encountered in the input buffer pointed to by the S
parameter.

v An invalid or incomplete character is found in the input buffer pointed to by the S parameter.

If the number of bytes specified by the LenS parameter or the number of characters specified by the
LenPC parameter are successfully converted, the __mbstopcs subroutine returns the number of
characters converted, sets the Err parameter to 0, and sets the EndPtr parameter to point immediately
after the last character converted in the input buffer pointed to by the S parameter.

If the byte specified by the StopCh parameter is found in the input buffer pointed to by the S parameter,
the following occurs:

v Conversion ceases.

v The value specified by the StopCh parameter is placed in the PC parameter.

v The EndPtr parameter is set to point immediately after the value specified by the StopCh parameter.

v The Err parameter is set to 0.

v The number of characters converted is returned.

If an invalid character is found in the input buffer pointed to by the S parameter, the EndPtr parameter is
set to point to the start of this character, the Err parameter is set to (size_t)-1, and the __mbstopcs
subroutine returns the number of characters converted.

If an incomplete character is found at the end of the input buffer pointed to by the S parameter, the EndPtr
parameter is set to point to the start of the incomplete character, and the Err parameter is set to the
number of bytes in a character starting with the byte pointed to by EndPtr parameter. The __mbstopcs
subroutine returns the number of characters converted.

The parameters have the following values:

PC Points to a wchar_t array to contain the converted characters.
LenPC Specifies the maximum number of wide characters that can be placed in the PC parameter.
S Points to a buffer of character data to be converted.
LenS Specifies the number of bytes of character data in the S parameter.
StopCh Specifies a single-byte character value to indicate end of data in the S parameter.
EndPtr Points into the S parameter where character conversion ended.
Err Specifies an error value indicating why the conversion failed.

406 Files Reference

__pctomb Subroutine
The __pctomb subroutine converts a process code to a character.

The syntax for the __pctomb subroutine is as follows:

size_t __pctomb(S, LenS, PC, Err)
char * S;
size_t LenS;
wchar_t * PC;
int * Err;

The input buffer pointed to by the PC parameter contains a wide character that the subroutine attempts to
convert to a character in the input buffer pointed to by the S parameter. If a valid process code is found in
the input buffer pointed to by the PC parameter, it is converted and stored in the input buffer pointed to by
the S parameter, and the number of bytes in the character is returned.

If the wide character in the input buffer pointed to by the PC parameter is invalid, the __pctomb
subroutine returns 0 and sets the Err parameter to the value (size_t)-1. If the length of the character is
greater than the number of bytes specified by the LenS parameter, the __pctomb subroutine returns 0
and sets the Err parameter to the number of bytes required to form the character.

The parameters have the following values:

S Points to a buffer to contain the converted process code.
LenS Specifies the size of the character array pointed to by the S parameter.
PC Points to the wide character to be converted.
Err Specifies an error value indicating why the conversion failed.

__pcstombs Subroutine
The __pcstombs subroutine converts a wide character string to a character string.

The syntax for the __pcstombs subroutine is as follows:

size_t __pcstombs(S, LenS, PC, LenPC, StopCh, EndPtr, Err)
char * S;
size_t LenS;
wchar_t * PC;
size_t LenPC;
wchar_t StopCh;
char ** EndPtr;
int * Err;

The input buffer pointed to by the PC parameter contains the number of wide characters specified by the
LenPC parameter. The __pcstombs subroutine attempts to convert the process codes to characters. The
conversion continues until one of the following occurs:

v The number of wide characters specified by the LenPC parameter have been converted.

v The number of bytes specified by the LenS parameter have been converted.

v The character value specified in the StopCh parameter is encountered in the input buffer pointed to by
the PC parameter.

v An invalid wide character is found in the input buffer pointed to by the PC parameter.

If the number of bytes specified by the LenS parameter or the number of characters specified by the
LenPC parameter are successfully converted, the __pcstombs subroutine returns the number of bytes

Chapter 2. File Formats 407

placed in the buffer pointed to by the S parameter, sets the Err parameter to 0, and sets the EndPtr
parameter to point immediately after the last character converted in the input buffer pointed to by the PC
parameter.

If the character specified by the StopCh parameter is found in the input buffer pointed to by the PC
parameter, the following occurs:

v Conversion ceases.

v The character specified by the StopCh parameter is placed at the end of the data currently pointed to
by the S parameter.

v The EndPtr parameter is set to point immediately after the character specified by the StopCh parameter.

v The Err parameter is set to 0.

v The number of bytes placed in the buffer pointed to by the S parameter is returned.

If an invalid wide character is found in the input buffer pointed to by the PC parameter, the EndPtr
parameter is set to point to the start of this character, the Err parameter is set to (size_t)-1, and the
__pcstombs subroutine returns the number of bytes placed in the buffer pointed to by the S parameter.

The parameters have the following values:

S Points to a buffer to contain the converted data.
LenS Specifies the size in bytes of the character array pointed to by the S parameter.
PC Points to a wchar_t array to be converted.
LenPC Specifies the number of wide characters in the array pointed to by the PC parameter.
StopCh Specifies a wide-character value to indicate end of data in the array pointed to by the PC parameter.
EndPtr Points into the S parameter where character conversion ended.
Err Specifies the error value indicating why the conversion failed.

Files

/usr/lib/nls/loc/* Specifies locale definition source files for supported locales.
/usr/lib/nls/charmap/* Specifies character set description (charmap) source files for supported

locales.

Related Information
The locale command, localedef command.

Character Set Description (charmap) Source File Format, Locale Definition Source File Format.

For specific information about other locale categories and their keywords, see the LC_COLLATE category,
LC_CTYPE category, LC_MESSAGES category, LC_MONETARY category, LC_NUMERIC, and LC_TIME
category for the locale definition source file format.

Changing Your Locale, Locale Overview for System Management, National Language Support Overview
for System Management, Understanding the Locale Definition Source File in AIX 5L Version 5.2 System
Management Concepts: Operating System and Devices.

magic File Format

Purpose
Defines file types.

408 Files Reference

Description
The /etc/magic file is used by commands such as the following to determine the type of a given file:

v file command

v more command

Entering the following command would result in a printed message describing the file type of the FileName
parameter:
file FileName

If FileName contains a byte pattern corresponding to an executable file, the pattern would match a stanza
in the /etc/magic file and the executable message would be displayed. If the FileName is a data file, a
data message is displayed, and so on.

The fields of the magic file are as follows:

1. Byte offset

2. Value type

3. Optional relational operator (″=″ by default) and value to match (numeric or string constant)

4. String to be printed

Numeric values may be decimal, octal, or hexadecimal. Strings can be entered as hexadecimal values by
preceding them with ’0x’.

The last string can have one printf format specification.

The > (greater than) symbol in occasional column 1s is magic; it forces commands to continue scanning
and matching additional lines. The first line not marked with the > sign terminates the search.

Examples
0 short 2345 this is a dummy type file

0 long 0x1234 this is a different dummy type file

>12 long >0 another possible type

0 short 7895 last type of file

Related Information
The file command, more or page command.

.mailrc File Format

Purpose
Sets defaults for the mail command.

Description
The .mailrc file can be placed in your $HOME directory to personalize the Mail program. You can create
the .mailrc file with any ASCII editor. Once the file is created, the Mail program reads the file when you
send or read mail, and applies the options you have set. In the file, you can define aliases for other users’
mail addresses. You can also change the way mail is displayed and stored on your system.

The Mail program uses a master file in the same format, /usr/share/lib/Mail.rc. Options you set in your
$HOME/.mailrc file override comparable options in the Mail.rc file.

Chapter 2. File Formats 409

A line that begins with a # (pound sign) followed by a space is treated as a comment. The Mail program
ignores the entire line and any entries or options it contains.

Entries
Use the following mail subcommands as entries in the .mailrc file:

mail Subcommand Definition
alias NewAlias { Address... | PreviousAlias... }

Defines an alias or distribution list. The alias can be
defined as an actual mail address, or as another alias
defined in a previous entry in the .mailrc file. To define a
group, enter multiple addresses or previous aliases
separated by spaces.

ignore FieldList Adds the header fields in the FieldList parameter to the list
of fields to be ignored. Ignored fields are not displayed
when you look at a message with the type or print
subcommand. Use this subcommand to suppress
machine-generated header fields. Use the Type or Print
subcommand to print a message in its entirety, including
ignored fields.

set [OptionList | Option=Value...]
Sets an option. The argument following the set option can
be either an OptionList giving the name of a binary option
(an option that is either set or unset) or an Option=Value
entry used to assign a value to an option.

unset OptionList Disables the values of the options specified in OptionList.
This action is the inverse of the set OptionList entry.

Binary Options for the set and unset Entries
Use the set entry to enable options and the unset entry to disable options. Add the options you want to
set or unset to the $HOME/.mailrc file. The options and the actions they generate are as follows:

append Adds messages saved in your mailbox to the end rather than to the beginning of the
$HOME/mbox file.

ask Prompts for the subject of each message sent. If you do not wish to create a subject field,
press the Enter key at the prompt.

askcc Prompts for the addresses of people who should receive copies of the message. If you do
not wish to send copies, press the Enter key at the prompt.

autoprint Sets the delete subcommand to delete the current message and display the next message.
debug Displays debugging information. Messages are not sent while in debug mode. This is the

same as specifying the -d flag on the command line.
dot Interprets a period entered on a line by itself as the end of a message you are sending.
hold Holds messages that you have read but have not deleted or saved in the system mailbox

instead of in your personal mailbox. This option has no effect on deleted messages.
ignore Ignores interrupt messages from your terminal and echoes them as @ (at sign) characters.
ignoreeof Sets the mail command to refuse the Ctrl-D key sequence as the end of a message.
keepsave Prevents the Mail program from deleting messages that you have saved with the s or w

mailbox subcommand. Normally, messages are deleted automatically when you exit the mail
command. Use the keepsave and hold options to hold messages in your system mailbox.
Otherwise, the messages are placed in your personal mailbox ($HOME/mbox).

metoo Includes the sender in the alias expansion. By default, expanding the alias removes the
sender. When this option is set in your .mailrc file, sending a message using an alias that
includes your name sends a copy of the message to your mailbox.

noheader Suppresses the list of messages in your mailbox when you start the Mail program. Instead,
only the mailbox prompt (&) is displayed. To get a list of messages, use the h mailbox
subcommand.

nosave Prevents retention of interrupted letters in the $HOME/dead.letter file.

410 Files Reference

quiet Suppresses the printing of the banner when the Mail program starts. The banner is the line
that shows the name of the Mail program.

Replyall Reverses the meaning of the reply subcommand and the Reply subcommand.
verbose Displays the actual delivery of messages on the terminal. This is the same as specifying the

-v flag on the command line.

Value Options for the set Entry
You can use a set entry to assign values to the following options. For example, enter set screen=20 to
limit headers to 20 lines per screen.

crt=Lines Defines the number of lines of a mail message the Mail program displays before
pausing for input (this option starts the pg command to control the scrolling).

EDITOR=Editor Gives the full path name of the editor to be started with the e mailbox subcommand
or the ~e mail editor subcommand. The default editor is /usr/bin/e.

escape=Character Changes the escape character used for mail editor subcommands. The default
character is ~ (tilde).

folder=PathName Gives the path name of a directory in which to store mail folders. Once the directory
is defined, you can use the + (plus sign) notation to refer to it when using the
FileName parameter with mailbox subcommands.

record=FileName Defines a file in which to record outgoing mail. The path name must be absolute (that
is, a full path name), or be given relative to the current directory.
Note: If you set up a file to record outgoing messages, read the file periodically with
the mail -f command and delete unnecessary messages. Otherwise, the file will grow
and eventually use all of your storage space.

screen=Lines Defines the number of lines of message headers displayed (for example, in response
to the h mailbox subcommand) before pausing for input.

toplines=Lines Defines the number of lines displayed by the top mailbox subcommand.
VISUAL=Editor Gives the full path name of the editor to be started with the v mailbox subcommand

or the ~v mail editor subcommand. The default editor is /usr/bin/vi.

Examples
1. To ignore the Message-ID field and the Received field, place the following entry in the .mailrc file:

ignore message-id received

When messages are displayed in the mailbox, the machine message ID number and the date your
system received the message are not displayed.

2. To set a folder directory, place the following entry in the .mailrc file:
set folder=/home/kaye/notes

To save message 1 from the mailbox in the folder procedures, enter the following at the mailbox
prompt (&):
s 1 +procedure

Message 1 is saved in the /home/kaye/notes/procedures file (if the file already exists, the message is
appended to the file).

3. To record outgoing mail in a folder directory, place the following pair of entries in the .mailrc file:
set record=/home/pierre/letters/mailout
set folder=/home/pierre/letters

Outgoing mail is placed in the /home/pierre/letters/mailout file, and can be read with the following
command:
mail -f +mailout

4. To combine the delete and print commands and also instruct the Mail program to include your user ID
when expanding aliases, enter the following in your .mailrc file:

Chapter 2. File Formats 411

set autoprint metoo

The autoprint option causes the next message to be displayed whenever you delete a message. The
metoo option causes the Mail program to send a copy of messages to you when it expands mail
aliases. By default, the Mail program discards your user address when it expands an alias, so that you
do not get a copy of mail you send.

5. To unset an option that is set in the /usr/share/lib/Mail.rc file, enter the following in your .mailrc file:
unset askcc

This entry prevents the mail editor from requesting a carbon copy list when you create messages,
even if the askcc option is set in the Mail.rc file.

6. To set aliases for two users and a distribution list that includes several users, enter the following in
your .mailrc file:
alias george george@thor.valhalla.dbm.comm
alias bill @odin.UUCP:@depta.UCCP:@deptb:bill@deptc
alias mygroup amy@cleo george bill

To send mail to user bill using his alias, enter:
mail bill

To send mail to everyone in the mygroup list, enter:
mail mygroup

When you complete and send the message, the mail command actually addresses it as follows:
amy@cleo george@thor.valhalla.dbm.comm @odin.UUCP:@depta.UCCP:
@deptb:bill@deptc

Files

/usr/share/lib/Mail.rc Contains systemwide defaults for the Mail program.
$HOME/.mailrc Contains user-specific defaults for the Mail program.

Related Information
The mail command, pg command.

Mail Editor Subcommands for the mail, Mail Command.

Mailbox Subcommands for the mail, Mail Command.

Creating and Sending Mail, Customizing the Mail Program, Mail Overview, Receiving and Handling Mail in
AIX 5L Version 5.2 System User’s Guide: Communications and Networks.

map3270 File Format for TCP/IP

Purpose
Defines keyboard mapping and colors for the tn3270 command.

Description
The /etc/map3270 file defines keyboard mapping and colors for the tn3270 command. When emulating
3270 terminals, mapping must be performed between key sequences entered on a user’s (ASCII)
keyboard and the keys that are available on a 3270 emulator.

412 Files Reference

For example, the 3270 emulator key EEOF erases the contents of the current field from the location of the
cursor to the end of the field. In order to accomplish this function, the terminal user and a program
emulating a 3270 emulator must be compatible with regard to what keys invoke the EEOF function.

The requirements for these sequences are:

v The first character of the sequence is outside of the standard ASCII printable characters.

v No one sequence is an initial part of another (although sequences may share initial parts).

The /etc/map3270 file consists of entries for various terminals. The first part of an entry lists names of
terminals using that entry. These names should be the same as those in the /usr/share/lib/terminfo/*.ti
files.

Note: Often, several terminals from different /usr/share/lib/terminfo/*.ti entries use the same
/etc/map3270 file entry. For example, both 925 and 925vb (for 925 with visual bells) might use the
same map3270 file entry. Each name is separated by a | (vertical bar), after which comes a { (left
brace); the definitions; and finally, a } (right brace).

Format
The definitions begin with a reserved keyword, which identifies the 3270 function. The keyword is followed
by an = (equal sign), which in turn is followed by the various string sequences to generate the particular
function. The definitions end with a ; (semi-colon). The string sequences are printable ASCII characters
enclosed inside ’ ’ (single quotes) and separated by | (vertical bars).

Special characters can be used within ’ ’ (single quotes). A ^ (caret) indicates a control character. For
example, the string ’^a’ represents Ctrl-A; that is, hexadecimal 1 (the string ’^A’ generates the same
code). To generate delete or rubout, enter ’^d’ ’^?’ (Ctrl-D or Ctrl-?). To represent a control character in
the /etc/map3270 file, you must use the caret. Typing Control-A or Ctrl-A does not work.

Note: The Ctrl-^ key sequence (to generate a hexadecimal 1E) is represented as ’^^’ (not ’^\^’).

The \ (backslash) special character precedes other characters to change their meaning. Because this has
little effect for most characters, its use is not recommended. The backslash prevents a single quote from
terminating a string, for example the string ’^\’’ represents Ctrl-’. For a backslash to be part of a string,
place two backslashes (’\\’) in the string.

In addition, the following characters are special:
’\e’ Specifies an escape character.
’\n’ Specifies a new line.
’\t’ Specifies a tab.
’\r’ Specifies a carriage return.

It is not necessary for each character in a string to be enclosed within single quotes. The string ’\e\e\e’
means three escape characters.

Comments, which may appear anywhere on a line, begin with a # (pound sign) and terminate at the end of
that line. However, comments cannot begin inside a quoted string. A pound sign inside a quoted string has
no special meaning.

3270 Keys Supported

Note: Some of the following keys do not exist on a 3270 emulator. The functions listed with an * (asterisk)
are not supported by the tn3270 command. An unsupported function causes the tn3270 command
to send a bell sequence to the user’s terminal.

Chapter 2. File Formats 413

The /etc/map3270 file supports the following list of 3270 key names:

Key Name Functional Description
altk* Alternate keyboard dvorak
aplend* Treat input as ASCII
aploff* APL off
aplon* APL on
attention Attention key. The attention key sends an IAC BREAK TELNET protocol sequence to the

TELNET server on a VM or MVS system. The TELNET server is responsible for
implementing the attention key.

btab Field tab back
clear Local clear of the 3270 screen
clrtab Clear all column tabs
colbak Column back tab
coltab Column tab
cursel* Cursor select
delete Delete character
deltab Delete a column tab
disc Disconnect (suspend)
down Down cursor
dp Duplicate character
eeof Erase end of field
einp Erase input
enter Enter key
erase Erase last character
escape Enter TELNET command mode
ferase Erase field
fieldend Tab to last non-blank of current or next unprotected (writable) field
flinp Flush input
fm Field mark character
home Home the cursor
indent Indent one tab stop
init* New terminal type
insrt Toggle insert mode
left Left cursor
lprt* Local print
master_reset Reset, unlock, and redisplay
nl New line
pa1 Program attention 1
pa2 Program attention 2
pa3 Program attention 3
pfk1 Program function key 1
pfk2 Program function key 2
. .
. .
. .
pfk36 Program function key 36.
pcoff* Xon/xoff off
pcon* Xon/xoff on
reset Reset key-unlock keyboard
reshow Redisplay the screen
right Right cursor
sethom Set home position
setmrg Set left margin
settab Set a column tab
synch In synch with the user

414 Files Reference

Key Name Functional Description
tab Field tab
treq Test request
undent Undent one tab stop
up Up cursor
werase Erase last word
wordbacktab Tab to beginning of current or last word
wordend Tab to end of current or next word
wordtab Tab to beginning of next word
xoff* Hold output
xon* Release output

A Sample Entry
The following default entry is included within the tn3270 command and is used when it is unable to locate
a version in the user’s environment or the /etc/map3270 file.
name { # actual name comes from TERM variable
clear = ’^z’;
flinp = ’^x’;
enter = ’^m’;
delete = ’^d’ | ’^?’; # note that ’^?’ is delete (rubout)
synch = ’^r’;
reshow = ’^v’;
eeof = ’^e’;
tab = ’^i’;
btab = ’^b’;

nl = ’^n’;
left = ’^h’;
right = ’^l’;
up = ’^k’;
down = ’^j’;
einp = ’^w’;
reset = ’^t’;
xoff = ’^s’;
xon = ’^q’;
escape = ’^c’;
ferase = ’^u’;
insrt = ’ ’;
program attention keys
pa1 = ’^p1’; pa2 = ’^p2’; pa3 = ’^p3’;
program function keys
pfk1 = ’1’; pfk2 = ’2’; pfk3 = ’3’; pfk4 = ’4’;
pfk5 = ’5’; pfk6 = ’6’; pfk7 = ’7’; pfk8 = ’8’;
pfk9 = ’9’; pfk10 = ’ ’; pfk11 = ’-’; pfk12 = ’=’;
pfk13 = ’’; pfk14 = ’@’; pfk15 = ’0;
pfk17 = ’’; pfk18 = ’’; pfk19 = ’’; pfk20 = ’;
pfk21 = ’ pfk22 = ’)’; pfk23 = ’_’; pfk24 = ’ ’;
}

3270 Key Definitions
The following table shows the proper keys to emulate each 3270 function when using the default key
mapping supplied with the tn3270 command.

Table 6. 3270 Key Definitions

Function 3270 Key Default Key(s)

Command Keys Enter RETURN

Clear Ctrl-z

Attention Ctrl-F12

Chapter 2. File Formats 415

Table 6. 3270 Key Definitions (continued)

Function 3270 Key Default Key(s)

Cursor Movement Keys New line Ctrl-n or Home

Tab Ctrl-i

Back tab Ctrl-b

Cursor left Ctrl-h

Cursor right Ctrl-l

Cursor up Ctrl-k

Cursor down Ctrl-j or LINE FEED

Edit Control Keys Delete char Ctrl-d or RUB

Erase EOF Ctrl-e

Erase input Ctrl-w

Insert mode ESC Space

End insert ESC Space

Program Function Keys PF1 ESC 1

PF2 ESC 2

... ...

PF10 ESC 0

PF11 ESC -

PF12 ESC =

PF13 ESC !

PF14 ESC @

... ...

PF24 ESC +

Program Attention Keys PA1 Ctrl-p 1

PA2 Ctrl-p 2

PA3 Ctrl-p 3

Local Control Keys Reset after error Ctrl-r

Purge input buffer Ctrl-x

Keyboard unlock Ctrl-t

Redisplay screen Ctrl-v

Other Keys Erase current field Ctrl-u

Files

/etc/3270.keys Contains the default keyboard mapping.
/usr/share/lib/terminfo/*.ti Files containing terminal information.

Related Information
The telnet, tn, or tn3270 command.

The .3270keys file format.

416 Files Reference

Changing the Assignment of a Key Set in AIX 5L Version 5.2 System User’s Guide: Communications and
Networks.

Maxuuscheds File Format for BNU

Purpose
Limits the number of instances of the uusched and uucico daemons that can run simultaneously.

Description
The /etc/uucp/Maxuuscheds file limits the number of instances of the Basic Networking Utilities (BNU)
uusched daemons that can run simultaneously. Since each instance of the uusched daemon is
associated with one instance of the uucico daemon, the file limits the instances of the uucico daemon in
a similar way. This file is used in conjunction with the lock files in the /etc/locks directory to determine the
number of systems currently being polled. Use this file to help manage system resources and load
averages.

The Maxuuscheds file contains an ASCII number that can be changed for your installation. The default is
2. The larger the number, the greater the potential load on the local system. In any case, the limit should
always be less than the number of outgoing lines used by BNU.

The Maxuuscheds file requires neither configuration nor maintenance, unless the system on which it is
installed is contacted frequently and heavily by users on remote systems.

Files

/etc/locks directory Contains lock files that prevent multiple uses of devices and multiple calls
to systems.

/etc/uucp directory Contains some of the configuration files for BNU, including the
Maxuuscheds file.

Related Information
The uucico daemon.

Configuring BNU, Understanding the BNU File and Directory Structure, Understanding the BNU Daemons
in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

Maxuuxqts File Format for BNU

Purpose
Limits the number of instances of the BNU uuxqt daemon that can run simultaneously on the local
system.

Description
The /etc/uucp/Maxuuxqts file limits both the number of instances of the Basic Networking Utilities (BNU)
uuxqt daemon that can run simultaneously on the local system and the number of commands from remote
systems that can run at one time.

This file contains an ASCII number that can be changed for your installation. The default value is 2. The
larger the number, the greater the potential load on the local system.

Chapter 2. File Formats 417

The Maxuuxqts file requires neither configuration nor maintenance, unless the system on which it is
installed is used frequently and heavily by users on remote systems.

Files

/etc/uucp directory Contains some of the configuration files for BNU, including the Maxuuxqts file.

Related Information
The uuxqt daemon.

Configuring BNU and Understanding the BNU File and Directory Structure in AIX 5L Version 5.2 System
Management Guide: Communications and Networks.

.mh_alias File Format

Purpose
Defines aliases.

Description
An alias file contains lines that associate an alias name with an address or group of addresses. The
Message Handler (MH) package reads both personal alias files (customarily the $HOME/.mh_alias file)
and a systemwide alias file, the /etc/mh/MailAliases file. Depending on the MH configuration, aliases may
also be defined in the /etc/aliases file (see the sendmail command).

The alias file name is an argument to several MH commands. These commands can be set automatically
by entries in the .mh_profile file. Personal alias files can have any name, but must follow the format
described here. The /etc/mh/MailAliases file is the default alias file for systemwide aliases. This file is set
up by a user with root user authority.

Specify your personal alias file in your .mh_profile file. Otherwise, you must use the -alias flag each time
you use an MH command that requires this flag.

Each line of an .mh_alias file has one of the following formats:

v Alias : Address-Group

v Alias ; Address-Group

v <Alias-File

The variables are described as follows:

Alias Specifies a simple address.
Address Specifies a simple Internet-style address.
Group Specifies a group name (or number) from the /etc/group file.
Alias-File Specifies a system file name. The MH package treats alias file names as case-sensitive. Alias

expansion is case-sensitive as well.

The Address-Group variable can be either of the following:

AddressList List of addresses that make up a group.
<Alias-File System file to be read for more alias definitions.

The addresses in the AddressList variable must be separated by commas.

418 Files Reference

Note: f there are references to aliases within an alias definition, those aliases must be defined in a
following line of the alias file.

Special Characters

\ (backslash) You can continue an alias definition on the next line by ending the line to be
continued with a \ (backslash) followed by a new-line character.

< (less than) If a line starts with a < (less-than sign), MH reads the file specified after the
less-than sign for more alias definitions. The reading is done recursively.

If an address group starts with a < (less-than sign), MH reads the file specified after
the less-than sign and adds the contents of that file to the address list for the alias.

= (equal) If an address group starts with an = (equal sign), MH consults the /etc/group file
for the group specified after an equal sign. The MH package adds each login name
occurring as a member of the group to the address list for the alias.

+ (plus) If an address group starts with a + (plus sign), MH consults the /etc/group file to
determine the ID of the group. Each login name appearing in the /etc/passwd file
that matches the address group is added to the address list for the alias.

* (asterisk) If an address group is defined by an * (asterisk), MH consults the /etc/passwd file
and adds all login names with a user number greater than 200 (or the value set for
everyone in the /etc/mh/mtstailor file) to the address list for the alias.

The following list explains how the system resolves aliases at posting time:

1. The system builds a list of all addresses from the message to be delivered, eliminating duplicate
addresses.

2. If the draft originated on the local host, the system performs alias resolution for addresses that have no
specified host.

3. For each line in the alias file, the system compares the alias with all existing addresses. If a match is
found, the system removes the matched alias from the address list. The system then adds each new
address in the address group to the address list. The alias itself is not usually output. Instead, the
address group to which the alias maps is output. If the alias is terminated with a ; (semicolon) instead
of a : (colon), both the alias and the address are output in the correct form. (This correct form makes
replies possible since MH aliases and personal aliases are unknown to the mail transport system.)

In pattern matching, a trailing * (asterisk) in an alias matches just about anything appropriate.

Examples
The following example of an .mh_alias file illustrates some of its features:
</home/sarah/morealiases
systems:= systems
staff:+ staff
everyone:+*
manager: harold@harold
project:lance,mark@remote,peter,manager

The first line says that more aliases should be read from the /home/sarah/morealiases file. The systems
alias is defined as all users listed as members of the group systems in the /etc/group file. The staff alias
is defined as all users whose group ID in the /etc/passwd file is equivalent to the staff group. Finally, the
everyone alias is defined as all users with a user ID in the /etc/passwd file greater than 200.

The manager alias is defined as an alias for user harold@harold. The project alias is defined as the users
lance, mark@remote, peter, and manager.

Files

/etc/aliases Contains systemwide aliases for the sendmail command.

Chapter 2. File Formats 419

/etc/group Contains basic group attributes.
/etc/passwd Contains user authentication information.
/etc/mh/MailAliases Contains the defaults alias file for systemwide aliases, which is set up by a user

with root user authority.
/etc/mh/mtstailor Tailors the Message Handler (MH) environment to the local environment.
.mh_profile Customizes the Message Handler (MH) package.

Related Information
The aliases file, /etc/group file, /etc/passwd file, $HOME/.mh_profile file.

The ali command, conflict command, post command, sendmail command, whom command.

mib.defs File Format

Purpose
Provides descriptions of Management Information Base (MIB) variables for the snmpinfo command.

Description
The mib.defs file provides object descriptions of MIB variables for the snmpinfo command issued with the
get, next, set, and dump options. See the snmpinfo command for more information. This command is
part of Simple Network Management Protocol Agent Applications in Network Support Facilities.

The mib.defs file is not intended to be edited by the user. The file should be created with the mosy
command. See the mosy command for information on how to create the mib.defs file. This file has the
following format:

The MIB group fields are separated by spaces or tabs and contain the following information:

GroupDescriptor Holds the textual name of the MIB group.
GroupEntry Denotes the parent MIB group and the location of this MIB group in the parent

group. This field is used by the snmpinfo command to resolve the ASN.1 dotted
notation for MIB variables under this group.

The MIB groups are defined as follows:

Group Descriptor Group Entry

internet iso.3.6.1

directory internet.1

mgmt internet.2

. .

. .

. .

mib-2 mgmt.1

system mib-2.1

. .

. .

420 Files Reference

The object definitions of MIB variables are formatted as follows:

Object Descriptor Group Entry Syntax Access Status

sysDescr system.1 DisplayString read-only mandatory

The MIB variable fields are separated by spaces or tabs, and contain the following information:

ObjectDescriptor Holds the textual name of the object.
GroupEntry Denotes the MIB object group and the location of this MIB variable in this group.

This field is used by the snmpinfo command to resolve the ASN.1 dotted notation
for this MIB variable.

Syntax Denotes the type of the object as one of the following:

v INTEGER

v OCTET STRING or DisplayString

v OBJECT IDENTIFIER

v Network Address

v Counter

v Gauge

v TimeTicks

v Opaque
Access Designates the access permissions for the object and can be one of the following:

v Read-only

v Read-write

v Write-only

v Not-accessible
Status Designates the RFC 1213 compliance status of the object and can be one of the

following:

v Mandatory

v Optional

v Deprecated

v Obsolete

The parent MIB group definition required for a particular MIB variable GroupEntry definition must precede
the object definition for the MIB variable.

Comments begin with a # (pound sign) or - - (two dashes) and continue to the end of the line.

Files

/usr/samples/snmpd/smi.my Defines the ASN.1 definitions by which the SMI is defined as
in RFC 1155.

/usr/samples/snmpd/mibII.my Defines the ASN.1 definitions for the MIB II variables as
defined in RFC 1213.

Related Information
The mosy command, snmpinfo command.

Understanding the Management Information Base (MIB) in AIX 5L Version 5.2 Communications
Programming Concepts.

Chapter 2. File Formats 421

named.conf File Format for TCP/IP

Purpose
Defines the configuration and behavior of the named daemon.

Description
The /etc/named.conf file is the default configuration file for the named8 and named9 server. If the
named daemon is started without specifying an alternate file, the named daemon reads this file for
information on how to set up the local name server.

The format of the named.conf file will be different depending on which version of the named server is
configured. File format information for both named8 and named9 can be found below.

Note: The named daemon reads the configuration file only when the named daemon starts or when the
named daemon receives an SRC refresh command or a SIGHUP signal.

The data in the named.conf file specifies general configuration characteristics for the name server, defines
each zone for which the name server is responsible (its zones of authority), and provides further config
information per zone, possibly including the source DOMAIN database file for the zone.

Any database files referenced in the named.conf file must be in Standard Resource Record Format.
These data files can have any name and any directory path. However, for convenience in maintaining the
named database, they are generally given names in the following form: /etc/named.extension. The
general format of named data files is described in DOMAIN Data File, DOMAIN Reverse Data File,
DOMAIN Cache File, and DOMAIN Local File.

Format of the named.conf file when configuring named8

General
Comments in the named.conf file can begin with a # (pound sign) or // (two forward slashes), or can be
enclosed in the C-style comment characters, e.g., /* comment text */.

Configuration options are lines of text beginning with a keyword, possibly including some option text or a
list, and ending in a ; (semicolon).

The named.conf file is organized into stanzas. Each stanza is an enclosed set of configuration options
that define either general characteristics of the daemon or a zone configuration. Certain stanza definitions
are allowed only at the top-level, therefore nesting these stanzas is not allowed. The current top-level
configuration stanza keywords are: acl, key, logging, options, server, and zone.

Further configuration information can be incorporated into the conf file via the include keyword. This
keyword directs the daemon to insert the contents of the indicated file into the current position of the
include directive.

Access Control List (ACL) Definition
acl acl-name {

access-element;
[access-element; ...]

};

Defines an access control list to be referenced thoughout the configuration file byacl-name. Multiple acl
definitions can exist within one configuration file provided that each acl-name is unique. Additionally, four
default access control lists are defined:

v any Any host is allowed.

422 Files Reference

v none No host is allowed.

v localhost Only the localhost is allowed.

v localnets Only hosts on a network matching a name server interface is allowed.

Option Values Explanation

access-element IP-address
IP-prefix
acl-reference

Defines a source as allowed or
disallowed. Multiple access-elements
are allowed inside the acl stanza.

Each element can be an IP address
in dot notation (e.g., 9.3.149.66) an IP
prefix in CIDR or slash notation (e.g.,
9.3.149/24) or a reference to another
access control list (e.g., localhost).

Additionally, each element indicates
whether the element is allowed or
disallowed access via an !
(exclamation point) modifier
prepended to the element.

For example:

acl hostlist1 {
!9.53.150.239;
9.3.149/24;

};

When the access control list “
hostlist1” is referenced in the
configuration, it implies to allow
access from any host whose IP
address begins with 9.3.149 and to
disallow access from the internet host
9.53.150.239.

Key Definition
key key-name {

algorithm alg-id;
secret secret-string;

};

Defines an algorithm and shared secret key to be referenced in a server stanza and used for
authentication by that name server. This feature is included for future use and is currently unused in the
name server.

Option Values Explanation

algorithm alg-id string A quoted-string that defines the type
of security algorithm that will be used
when interpreting the secret string.
None are defined at this time.

secret secret-string string A quoted-string that is used by the
algorithm to authenticate the host.

Logging Configuration
logging {

[channel channel-name {
(file file-name

Chapter 2. File Formats 423

[versions (num-vers | unlimited)]
[size size-value]

| syslog (kern | user | mail | daemon |
syslog | lpr | news | uucp)

| null);
[print-category (yes | no);]
[print-severity (yes | no);]
[print-time (yes | no);]
}; ...]

[category category-name {
channel-reference;
[channel-reference; ...]

}; ...]
};

In this newest version of the name server, the logging facility has been greatly improved to allow for much
reconfiguration of the default logging mechanism. The logging stanza is used to define logging output
channels and to associate the predefined logging categories with either the predefined or user-defined
logging output channels.

When no logging stanza is included in the conf file, the name server still logs messages and errors just as
it has in previous releases. Informational and some critical messages will be logged through the syslog
daemon facility, and debug and other esoteric information will be logged to the named.run file when the
global debug level (set with the -d command-line option) is non-zero.

Option Values Explanation

channel Defines an output channel to be
referenced later by the channel-name
identifier. An output channel specifies
a destination for output messages to
be sent as well as some formatting
information to be used when writing
the output message. More than one
output channel can be defined
provided that each channel-identifier
is unique. Also, each output channel
can be referenced from multiple
logging categories.

There are four predefined output
channels:

v default_syslog sends “info” and
higher severity messages to
syslog’s “daemon” facility

v default_debug writes debug
messages to the named.run file as
specified by the global debug level

v default_stderr writes “info” and
higher severity messages to stderr

v null discards all messages

424 Files Reference

Option Values Explanation

file file-name string Defines an output channel as one
that logs messages to an output file.
The file used for output is specified
with the file-name string. Additionally,
the file option allows for controlling
how many versions of the output file
should be kept, and what size limit
the output file should never exceed.

The file, syslog, and null output
paths are mutually exclusive.

versions num-versions
unlimited

Specifies the number of old output
files that should be kept. When an
output file is reopened, rather than
replacing a possible existing output
file, the existing output file will be
saved as an old output file with a
.value extension. Using the
num-versions value, one can limit the
number of old output files to be kept.
However, specifying the unlimited
keyword indicates to continually
accumulate old output file versions.
By default, no old versions of any log
file are kept.

size size-value Specifies the maximum size of the log
file used by this channel. By default,
the size is unlimited. However, when
a size is configured, once size-value
bytes are written to the file, nothing
more will be written until the file is
reopened.

Accepted values for size-value
include the word “unlimited” and
numbers with k, m, or g modifiers
specifying kilobytes, megabytes, and
gigabytes respectively. For example,
1000k and 1m indicate one thousand
kilobytes and one megabyte
respectively.

Chapter 2. File Formats 425

Option Values Explanation

syslog kern
user
mail
daemon
auth
syslog
lpr
news
uucp

Defines an output channel as one
that redirects its messages to the
syslog service. The supported value
keywords correspond to facilities
logged by the syslog service.

Ultimately, the syslog service will
define which received messages will
be logged through the service,
therefore, if definining a channel to
redirect its messages to the syslog
service’s user facility would not result
in any visibly logged messages if the
syslog service is not configured to
output messages from this facility.

For more information concerning the
syslog service, see the syslogd
daemon.

The file, syslog, and null output
paths are mutually exclusive.

null Defines an output channel through
which all messages will be discarded.
All other output channel options are
invalid for an output channel whose
output path is null.

426 Files Reference

Option Values Explanation

severity critical
error
warning
notice
info
debug [level]
dynamic

Sets a threshold of message
severities to be logged through the
output channel. While these severity
definitions are similar to those used
by the syslog service, for the name
server they also control output
through file path channels. Messages
must meet or exceed the severity
level to be logged through the output
channel. The dynamic severity
specifies that the name server’s
global debug level (specified when
the daemon is invoked with the -d
flag) controls which messages pass
through the output channel.

Also, the debug severity can specify a
level modifier which is an upper
threshold for debug messages
whenever the name server has
debugging enabled at any level. A
lower debug level indicates less
information is to be logged through
the channel. It is not necessary for
the global debug level to meet or
exceed the debug level value.

If used with the syslog output path,
the syslog facility will ultimately
control what severities are logged
through the syslog service. For
example, if the syslog service is
configured to only log daemon.info
messages, and the name server is
configured to channel all debug
messages to the syslog service, the
syslog service will filter the messages
from its output path.

Chapter 2. File Formats 427

Option Values Explanation

print-category yes
no

Controls the format of the output
message when it is sent through the
output path. Regardless of which,
how many, or in which order these
options are listed inside the channel
stanza, the message will be
prepended with the the text in a time,
category, severity order.

The following is an example of a
message with all three print- options
enabled:

28-Apr-1997 15:05:32.863
default: notice: Ready to
answer queries.

By default, no extra text will be
prepended to an output message.

Note that when the syslog service
logs messages, it also prepends the
date and time information to the text
of the message. Thus, enabling
print-time on a channel that uses
the syslog output path would result in
the syslog service logging a message
with two dates prepended to it.

print-severity yes
no

print-time yes
no

category The category keyword defines a
stanza which associates a logging or
messaging category with predefined
or user-defined output channels.

By default, the following categories
are defined:

category default {
default_syslog;
default_debug; };

category panic {
default_syslog;
default_debug; };

428 Files Reference

Option Values Explanation

category-name default
config
parser
queries
lame-servers
statistics
panic
update
ncache
xfer-in
xfer-out
db
event-lib
packet
notify
cname
security
os
insist
maintenance
load
response-checks

The category-name specifies which
logging category is to be associated
with the listed channel-references.
This results in any output text
generated by the name server
daemon for that logging category to
be redirected through each of the
channel-references listed.

The default category defines all
messages that are not listed in one of
the specific categories listed. Also,
the insist and panic categories are
associated with messages that define
a fatal inconsistency in the name
server’s state. The remaining
categories define messages that are
generated when handling specific
functions of the name server. For
example, the update category is used
when logging errors or messages
specific to the handling of a dynamic
zone update, and the parser category
is used when logging errors or
messages during the parsing of the
conf file.

channel-reference References a channel-name identifier
defined previously in the logging
configuration stanza. Therefore, every
message associated with the defined
category-name will be logged through
each of the defined
channel-references.

Global Options
options {

[directory path-string;]
[named-xfer path-string;]
[dump-file path-string;]
[pid-file path-string;]
[statistics-file path-string;]
[auth-nxdomain (yes | no);]
[fake-iquery (yes | no);]
[fetch-glue (yes | no);]
[multiple-cnames (yes | no);]
[notify (yes | no);]
[recursion (yes | no);]
[forward (only | first);]
[forwarders { ipaddr; [...] };]
[check-names

(master|slave|response)
(warn|fail|ignore);]

[allow-query { access-element; [...] };]
[allow-transfer { access-element; [...]);]
[listen-on [port port-num] { access-element; [...] }; ...]
[query-source [address (ipaddr|*)] [port (port|*)];]
[max-transfer-time-in seconds;]
[transfer-format (one-answer | many-answers);]
[transfers-in value;]
[transfers-out value;]

Chapter 2. File Formats 429

[transfers-per-ns value;]
[coresize size-value;]
[datasize size-value;]
[files size-value;]
[stacksize size-value;]
[clean-interval value;]
[interface-interval value;]
[statistics-interval value;]
[topology { access-element; [...] };]

};

Defines many globally available options to to modify basic characteristics of the name server.

Because some of the options in this configuration stanza may modify the behavior in how the named
daemon will read and interpret later sections of the named file, it is highly recommended that the options
stanza be the first stanza listed in the configuration file.

Option Values Default Explanation

directory path-string “.” Indicates the directory from
which all relative paths will
be anchored. The
path-string parameter must
be a quoted string. For
example, to indicate that all
zone files will exist in the
“/usr/local/named/data”
without listing each file in
the zone definitions, specify
the global option directory
as:
options {
directory
“/usr/local/named/data”;
};

named-xfer path-string “/usr/sbin/named-xfer” Specifies the path and
executable name of the
named-xfer command used
for inbound zone transfers.
The path-string parameter
must be a quoted string.

dump-file path-string “/usr/tmp/named_dump.db” Specifies a filename to
which the database in
memory will be dumped
whenever the named
daemon receives a SIGINT
signal.

pid-file path-string “/etc/named.pid” Specifies the file in which
the named daemon will
write its PID value.

statistics-file path-string “/usr/tmp/named.stats” Specifies the file to which
the name server will
append operating statistics
when it receives the SIGILL
signal.

430 Files Reference

Option Values Default Explanation

auth-nxdomain yes
no

yes Controls whether the server
should respond
authoritatively when
returning an NXDOMAIN
response.

fake-iquery yes
no

no Controls whether the server
should respond to the
obsolete IQUERY requests.

fetch-glue yes
no

yes Controls whether the server
should search for “glue”
records to include in the
additional section of a query
response.

multiple-cnames yes
no

no Controls whether the server
will allow multiple CNAME
records for one domain
name in any of its zone
databases. This practice is
discouraged but an option
remains for backwards
compatibility.

notify yes
no

yes Controls whether the name
server will send NOTIFY
messages to its slave
servers upon realization of
zone changes. Because the
slave servers will almost
immediately respond to the
NOTIFY message with a
request for zone transfer,
this limits the amount of
time that the databases are
out of synchronization in the
master and slave
relationship.

recursion yes
no

yes Controls whether the server
will attempt to resolve
names outside of its
domains on behalf of the
client. If set to no, the name
server will return a referral
to the client in order for the
client to continue searching
for the name. Used with the
fetch-glue option, one can
contain the amount of data
that grows in the name
server’s memory cache.

Chapter 2. File Formats 431

Option Values Default Explanation

forward only
first

first Controls how forwarding is
used when forwarding is
enabled. When set to
first, the name server will
attempt to search for a
name whenever the
forwarded host does not
provide an answer.
However, when set to only,
the name server will not
attempt this extra work.

forwarders ipaddr (empty list) Enables the use of query
forwarding when defining a
Forwarding Name Server.
The ipaddr parameter list
specifies the hosts to which
the query should be
forwarded when it cannot
be resolved from the local
database. Each ipaddr is an
internet address in standard
dot notation.

check-names master ignore
master warn
master fail
slave ignore
slave warn
slave fail
response ignore
response warn
response fail

master fail
slave warn
response ignore

Controls how the name
server will handle non-RFC
compliant host names and
domain names through
each of its operation
domains.

The master keyword
specifies how to handle
malformed names in a
master zone file.
The slave keyword
specifies how to handle
malformed names received
from a master server.
The response keyword
specifies how to handle
malformed names received
in response to a query.

ignore directs the server to
ignore any malformed
names and continue normal
processing.
warn directs the server to
warn the administrator
through logging, but to
continue normal processing.
fail directs the server to
reject the name entirely. For
the responses to queries,
this implies that the server
will return a REFUSED
message to the original
query host.

432 Files Reference

Option Values Default Explanation

allow-query access-element any Limits the range of querying
hosts allowed to access the
system. Each
access-element is specified
in the same manner as in
the acl stanza defined
earlier.

allow-transfer access-element any Limits the range of querying
hosts that are requesting
zone transfers. Each
access-element is specified
in the same manner as in
the acl stanza defined
earlier.

listen-on port port-num
access-element

port 53 { localhost; } Limits the interfaces
available to the name
server daemon and controls
which port to use to listen
for queries. By default, the
name server uses all
interfaces on the system
and listens on port 53.
Additionally, multiple
listen-on definitions are
allowed within the options
stanza.

Each access element is
specified in the same
manner as in the acl stanza
defined earlier. The
following example limits the
name server to using only
the interface with address
9.53.150.239: listen-on
port 53 { 9.53.150.239;
};

query-source address ipaddr
address *
port port
port *

address * port * Modifies the default address
and port from which queries
will originate.

max-transfer-time-in seconds 120 Specifies the maximum
amount of time an inbound
zone transfer will be
allowed to run before it is
aborted. This is used to
control an event in which a
child process of the name
server does not execute or
terminate properly.

Chapter 2. File Formats 433

Option Values Default Explanation

transfer-format one-answer
many-answers

one-answer Controls the method in
which full zone transfers will
be sent to requestors. The
one-answer method uses
one packet per zone
resource record while
many-answers will insert as
many resource records into
one packet as possible.
While the many-answers
method is more efficient, it
is only understood by the
newest revisions of the
name server. This option
can be overridden in the
server stanza to specify the
method on a per name
server basis.

transfers-in value 10 Specifies the maximum
number of concurrent
inbound zone transfers.
While this will limit the
amount of time each slave
zone is out of
synchronization with the
master’s database, because
each inbound transfer runs
in a separate child process,
increasing the value may
also increase the load on
the slave server.

transfers-out value N/A Specifies the maximum
number of concurrent
outbound zone transfers for
the name server. This
option is currently unused in
the server, but will be
available at a later time.

transfers-per-ns value 2 Specifies the maximum
amount of concurrent zone
transfers from a specific
remote name server. While
this will limit the amount of
time each slave zone is out
of synchronization with the
master’s database,
increasing this value may
increase the load on the
remote master server.

434 Files Reference

Option Values Default Explanation

coresize size-value default Configures some process
specific values for the
daemon.

The default values or those
inherited by the system and
by the system’s resources.

Each size-value can be
specified as a number or as
a number followed by the k,
m, and g modifiers indicating
kilobytes, megabytes, and
gigabytes respectively.

datasize size-value default

files value unlimited

stacksize size-value default

clean-interval minutes 60 Controls the intervals for
the periodic maintenance
tasks of the name server.

The clean-interval
specifies how frequently the
server will remove expired
resource records from the
cache. The
interface-interval
specifies how frequently the
server will rescan for
interfaces in the system.
The statistics-interval
specifies how frequently the
name server will output
statistics data.

A minutes value of zero
indicates that the service
task should only run when
the configuration file is
reread.

interface-interval minutes 60

statistics-interval minutes 60

cleandb-time time N/A Specifies a time of day in
which the database will be
scanned and any dynamic
records whose set of SIG
resource records are all
expired will be removed.
For a dynamic zone which
has update-security set to
presecured, only the
expired SIG KEY will remain.

The default is to never
perform this scan. Instead,
the expired records will
remain until the name is
queried.

time is specified as HH:MM in
a 24-hour format.

Chapter 2. File Formats 435

Option Values Default Explanation

topology access-element localhost; localnets; Specifies a search order to
use to find a preference in
a list of addresses
corresponding to a name
server. Whenever a query is
forwarded or a query must
be made to another name
server, it may be necessary
to choose an address from
a list of available
addresses.

Each access-element, while
seemingly similar to those
specified in an acl stanza,
is interpretted by its position
in the list. The first
elements in the list are
preferred more than those
following them. Negated
elements (those specified
with the ! (exclamation
point) modifier) are
considered least desirable.

Server Specific Options
server ipaddr
{

[bogus (yes | no);]
[transfers value;

]
[transfer-format (one-answer |

many-answers);]
}

Modifies the behavior in which the remote name server matching the specified ipaddr IP address should
be treated.

Option Values Explanation

bogus yes
no

Indicates that the name server
identified by the stanza should not be
used again. The default value is no.

transfers value Overrides the globally available option
transfers-per-ns. Specifies a
maximum value for the number of
concurrent inbound zone transfers
from the foreign name server
identified by the stanza.

436 Files Reference

Option Values Explanation

transfer-format one-answer
many-answers

Overrides the globally available option
transfer-format to a specific value
for the specified server. The
transfer-format option indicates to
the name server how to form its
outbound full zone transfers. By
default, the value is inherited from the
options stanza (where it defaults to
one-answer). one-answer specifies
that only one resource record can be
sent per packet during the zone
transfer, whereas many-answers
indicates to entirely fill the outbound
packet with resource records. The
many-answers format is only available
in the newest revisions of the name
server.

Zone Definition
zone domain-string [class] {

type (hint | stub | slave | master);
[file path-string;]
[masters { ipaddr; [...] };]
[check-names (warn | fail | ignore);]
[allow-update { access-element; [...] };]
[update-security (unsecured | presecured | controlled);]
[allow-query { access-element; [...] };]
[allow-transfer { access-element; [...] };]
[max-transfer-time-in seconds;]
[notify (yes | no);]
[also-notify { ipaddr; [...] };]
[dont-notify { ipaddr; [...] };]
[notify-delaytime seconds;]
[notify-retrytime seconds;]
[notify-retrycount value;]
[dump-interval seconds;]
[incr-interval seconds;]
[deferupdcnt value;]
[key-xfer (yes | no);]
[timesync (yes | no);]
[timesync-xfer (yes | no);]
[save-backups (yes | no);]
[ixfr-directory path-string;]
[separate-dynamic (yes | no);]

};

The zone stanza is used to define a zone, its type, possible location of data, and operating parameters.
The domain-string is a quoted string specifying the zone, where “.” is used to specify the root zone. The
class paramter specifies the class of the zone as either in, hs, hesiod, or chaos. By default, the class is
assumed to be IN.

Chapter 2. File Formats 437

Option Values Default Explanation

type hint
stub
slave
master

N/A Defines the type of the
zone. hint zones,
previously regarded as
cache zones, only describe
a source for information not
contained in the other
defined zones. A stub zone
is one similar to a slave
zone. While the slave zone
replicates the entire
database of its master, the
stub zone only replicates
the NS resource records.
The master zone maintains
a database on disk.

Based upon the selection of
zone type, some of the
other options are required
while others may be
impertinent. Zones of type
hint and master require the
file option, while zones of
type slave and stub require
the masters option.
Additionally, the only other
option available to a hint
zone is the check-names
option.

file path-string N/A Specifies the location for
the source of data specific
to the zone. This parameter
is only optional for stub and
slave zones, where its
inclusion indicates that a
locally saved copy of the
remote zone can be kept.
The path-string parameter
is a quoted string which can
specify the file name either
non-relative or relative to
the options stanza’s
directory. If the path is
intended to be specified
relative to the server root,
the options stanza must be
specified before the zone
stanza.

masters ipaddr N/A Specifies a list of sources
that will be referenced for a
slave or stub zone to
retrieve its data. This option
is not valid for any other
type of zone, and must be
included for either of these
two types.

438 Files Reference

Option Values Default Explanation

check-names warn
fail
ignore

Overrides the check-names
option in the global options
stanza. The default value is
inherited from the options
stanza, where its default is
fail for master zones and
warn for slave zones.

allow-update access-element none Indicates from what source
addresses a zone will
accept dynamic updates.
access-elements are
specified in the same
manner as they are for the
acl stanza. Because of the
inherint insecurity of a
dynamic update, this value
defaults to none. If no
update-security is
specified, dynamic updates
should be limited to a
specific set of secured
machines.

Chapter 2. File Formats 439

Option Values Default Explanation

update-security unsecured
presecured
controlled

unsecured Valid only when the
allow-update option
specifies at least one
source address,
update-security defines
what type of secured
update mechanism the
zone will use. The current
zone update security
method is a non-standard
two-key method, but is
compatible with previous
releases of the name
server.

presecured indicates that a
zone will only accept
updates for which names
and resource records
already exist, unless the
update is signed by the
zone’s authorizing key.
Normally, this means that
the zone must be
prepopulated with the
names and records it is to
maintain. controlled
specifies a zone in which
names can be added to the
database without the
signature of the zone’s
authorizing key, but existing
records cannot be modified
without being signed by the
KEY resource record’s
corresponding private key.

Note that a proper
presecured or controlled
zone must contain a zone
KEY resource record.

See the TCP/IP Name
Resolution for more
information regarding zone
update security.

allow-query access-element Overrides the globally
available option
allow-query. This option’s
default is inherited from the
global options stanza,
where its default is any.

440 Files Reference

Option Values Default Explanation

allow-transfer access-element Overrides the globally
available option
allow-transfer. This
option’s default is inherited
from the global options
stanza, where its default is
any.

max-transfer-time-in seconds Overrides the globally
available option
max-transfer-time-in. This
option’s default is inherited
from the global options
stanza, where its default is
120.

notify yes
no

Overrides the globally
available option notify.
This option’s default is
inherited from the global
options stanza, where its
default is yes.

also-notify ipaddr N/A The default NOTIFY
mechanism will notify slave
servers of a change in the
DOMAIN database in order
to limit the amount of time
that the slave server retains
a zone out of
synchronization with the
master server. The
also-notify option allows
for the addition of
addresses to submit the
notifications.

dont-notify ipaddr N/A Specifies a list of IP
addresses to be removed
from the default list of
NOTIFY recipients. This
option is useful if a name
server is known to be
problematic when receiving
NOTIFY requests.

Chapter 2. File Formats 441

Option Values Default Explanation

notify-delaytime seconds 30 Specifies an estimated time
of delay between
notifications to multiple
name servers. Because the
receipt of a NOTIFY
message usually triggers
the prompt request for a
zone transfer, this option
can tune to latency in which
each server will respond
with the request for the
modified zone.

The real value used will be
randomized between the
specified number of
seconds and twice this
value.

notify-retrytime seconds 60 Specifies the number of
seconds in which the name
server will wait to retransmit
a NOTIFY message which
has gone unresponded.

notify-retrycount value 3 Specifies the maximum
number of tries that the
name server will attempt to
send unanswered NOTIFY
messages to other name
servers.

dump-interval seconds 3600 Specifies an interval in
which the name server will
rewrite a dynamic zone to
the zone file. In the
interim, all updates and
other transactions will be
logged in the transaction
log file for performance
reasons. Aside from this
periodic zone dump, the
transaction log file is only
discarded and the zone is
only dumped when the
name server is properly
shut down.

This option is only valid for
zones in which the
allow-update option
specifies at least one valid
accessor.
Note: The transaction log
file name is the zone file
name with an appended
“.log” extension.

442 Files Reference

Option Values Default Explanation

incr-interval seconds 300 Specifies an interval in
which the name server will
accept dynamic updates
while not increasing the
zone’s SOA record’s serial
level. Because a change in
the zone SOA record will
instantiate a NOTIFY
message, limiting this
occurrence will limit the
amount of zone transfer
requests at the expense of
minimal zone differences
between a dynamic master
server and its slave.

This option is only valid for
zones in which the
allow-update option
specifies at least one valid
accessor.

deferupdcnt value 100 Specifies a threshold value
for the number of properly
applied updates received
during one incr-interval
interval. If more than value
updates are realized during
the interval, the name
server will modify the zone
SOA serial level and
subsequently NOTIFY each
of the slave servers. Use
this value to limit the
database replication
inconsistencies in an
environment where dynamic
zone updates occur
infrequently but in large
magnitude.

This option is only valid for
zones in which the
allow-update option
specifies at least one valid
accessor.

key-xfer yes
no

yes Specifies whether the
server should transmit KEY
resource records during a
zone transfer. In a very
controlled environment
where KEY queries will only
be made to the master
name server, setting this
option to no will save zone
transfer time and improve
performance.

Chapter 2. File Formats 443

Option Values Default Explanation

timesync yes
no

yes Specifies that a name
server should calculate the
true expiration time of a SIG
resource record using its
own clock rather than
relying on the expiration
time set by a possible
update source. This
removes the inconsistencies
involved when dynamic
zone updaters have their
system clocks misaligned
from the name server host.
Because enabling this
option modifies the output
and interpretation of a SIG
resource record in a DOMAIN
database file, disabling this
option may be required
when manually transfering a
DOMAIN database file to
another name server.

timesync-xfer yes
no

yes Specifies which SIG
resource record expiration
time will be transfered
during a zone transfer.
Enabling this option is only
valid when the timesync
option is enabled.

444 Files Reference

Option Values Default Explanation

ixfr-directory path-string Specifies a directory in
which temporary data files
will be contained for use
with this zone. The datafiles
contain incremental zone
changes and are essential
to the proper use of the
Incremental Zone Transfer
(IXFR) method. Because
these files are created and
destroyed dynamically by
the name server, one
should not specify a
globally-writable directory.
Additionally, the directory
specified must be unique
from other ixfr-directory
options specified in other
zones.

The default value for this
directory is derived from the
zone’s file name or
domain name. By default, a
directory is created in an
“ixfrdata” directory within
the name server’s default
directory. Contained in this
directory will be
subdirectory matching the
base name of the zone’s
file name or domain
name.

It is not necessary to
specify this option for the
proper behavior of the IXFR
feature.

Chapter 2. File Formats 445

Option Values Default Explanation

save-backups yes
no

no To properly calculate an
incremental zone difference
between server invocations,
it is necessary to determine
the zone database
differences prior to the
shutdown of the server and
after the loading of the
server. By enabling this
option, a backup of the
zone file will be written and
read upon loading of the
name server to determine
any zone differences.

While enabling this option is
necessary to use the IXFR
transfer method after a stop
and restart transition of the
name server, it is not
necessary to realize
incremental zone
differences when a zone file
is modified and signalled to
reload via the SRC refresh
command or SIGHUP signal.

separate-dynamic yes
no

no Instructs the name server to
retain $INCLUDE references
in a dynamic zone when the
DOMAIN database file is
written to disk. The
behavior of this feature
implies that resource
records that can be
modified through the
dynamic update mechanism
exist in the DOMAIN database
file referenced by the file
option, while other resource
records that should not be
modified through the
dynamic update mechanism
be contained in files
included (through the
$INCLUDE directive) by the
DOMAIN database file.

Examples
The following examples show the some of the various ways to use configure a simple named.conf file. In
these examples, two networks are represented: abc and xyz.

Network abc consists of:

v gobi.abc, the master name server for the abc network, 192.9.201.2

v mojave.abc, a host machine, 192.9.201.6

v sandy.abc, a slave name server for the abc network and the gateway between abc and xyz, 192.9.201.3

446 Files Reference

Network xyz consists of:

v kalahari.xyz, master name server for the xyz network, 160.9.201.4

v lopnor.xyz, a host machine, 160.9.201.5

v sahara.xyz, a host machine and hint name server for the xyz network, 160.9.201.13

v sandy.xyz, a slave name server for the xyz network and gateway between abc and xyz, 160.9.201.3

Note: sandy, a gateway host, is on both networks and also serves as a slave name server for both
domains.

1. The /etc/named.conf file for gobi.abc, the master name server for network abc, contains these entries:

#
conf file for abc master server - gobi.abc
#
server 192.9.201.3 {
transfer-format many-answers;
};

zone “abc” in {
type master;
file “/etc/named.abcdata”;
allow-update { localhost; };
};

zone “201.9.192.in-addr.arpa” in {
type master;
file “/etc/named.abcrev”;
allow-update { localhost; };
};

zone “0.0.127.in-addr.arpa” in {
type master;
file “/etc/named.abclocal”;
};

2. The /etc/named.conf file for kalahari.xyz, the master name server for network xyz, contains these
entries:

#
conf file for abc master server - kalahari.xyz
#
acl xyz-slaves {
160.9.201.3;
};

options {
directory “/etc”;
allow-transfer { xyz-slaves; localhost; };
};

zone “xyz” in {
type master;
file “named.xyzdata”;
};

zone “9.160.in-addr.arpa” in {
type master;
file “named.xyxrev”;
};

Chapter 2. File Formats 447

zone “0.0.127.in-addr.arpa” in {
type master;
file “named.xyzlocal”;
};

3. The /etc/named.conf file for sandy, the slave name server for networks abc and xyz, contains the
following entries:

#
conf file for slave server for abc and xyz - sandy
#
options {
directory “/etc”;
};

zone “abc” in {
type slave;
masters { 192.9.201.2; };
file “named.abcdata.bak”;
};

zone “xyz” in {
type slave;
masters { 160.9.201.4; };
file “named.xyzdata.bak”;
};

zone “201.9.192.in-addr.arpa” in {
type slave;
masters { 192.9.201.2; };
};

zone “9.160.in-addr.arpa” in {
type slave;
masters { 192.9.201.4; };
};

zone “0.0.127.in-addr.arpa” in {
type master;
file “named.local”;
};

4. The /etc/named.conf file for sahara, a hint name server for the network xyz, contains the following
entries:

#
conf file for hint server for xyz - sahara
#
zone “.” in {
type hint;
file “/etc/named.ca”;
};

zone “0.0.127.in-addr.arpa” in {
type master;
file “/etc/named.local”;
};

448 Files Reference

Format of the named.conf file when configuring named9

General
A BIND 9 configuration consists of statements and comments. Statements end with a semicolon.
Statements and comments are the only elements that can appear without enclosing braces. Many
statements contain a block of substatements, which are also terminated with a semicolon.

The following statements are supported:

acl defines a named IP address matching list, for access control and other uses.

controls declares control channels to be used by the rndc utility.

include includes a file.

key specifies key information for use in authentication and authorization using TSIG.

logging specifies what the server logs, and where the log messages are sent.

options controls global server configuration options and sets defaults for other statements.

server sets certain configuration options on a per-server basis.

trusted-keys defines trusted DNSSEC keys.

view defines a view.

zone defines a zone.

The logging and options statements may only occur once per configuration.

acl Statement Grammar
acl acl-name {

address_match_list
};

acl Statement Definition and Usage
The acl statement assigns a symbolic name to an address match list. It gets its name from a primary use
of address match lists: Access Control Lists (ACLs).

Note that an address match list’s name must be defined with acl before it can be used elsewhere; no
forward references are allowed.

The following ACLs are built-in:

any Matches all hosts.

none Matches no hosts.

localhost Matches the IPv4 addresses of all network interfaces on the system.

localnets Matches any host on an IPv4 network for which the system has an interface.

The localhost and localnets ACLs do not currently support IPv6 (that is, localhost does not match the
host’s IPv6 addresses, and localnets does not match the host’s attached IPv6 networks) due to the lack of
a standard method of determining the complete set of local IPv6 addresses for a host.

controls Statement Grammar
controls {

inet (ip_addr | *) [port ip_port] allow { address_match_list }
keys { key_list };

[inet ...;]
};

Chapter 2. File Formats 449

controls Statement Definition and Usage
The controls statement declares control channels to be used by system administrators to affect the
operation of the local nameserver. These control channels are used by the rndc utility to send commands
to and retrieve non-DNS results from a nameserver.

An inet control channel is a TCP/IP socket accessible to the Internet, created at the specified ip_port on
the specified ip_addr. If no port is specified, port 953 is used by default. ″*″ cannot be used for ip_port.

The ability to issue commands over the control channel is restricted by the allow and keys clauses.
Connections to the control channel are permitted based on the address permissions in
address_match_list. key_id members of the address_match_list are ignored, and instead are
interpreted independently based the key_list. Each key_id in the key_list is allowed to be used to
authenticate commands and responses given over the control channel by digitally signing each message
between the server and a command client . All commands to the control channel must be signed by one of
its specified keys to be honored.

If no controls statement is present, named9 will set up a default control channel listening on the loopback
address 127.0.0.1 and its IPv6 counterpart ::1. In this case, and also when the controls statement is
present but does not have a keys clause, named9 will attempt to load the command channel key from the
/etc/rndc.key file in (or whatever sysconfdir was specified as when BIND was built). To create a
rndc.key file, run rndc-confgen -a.

The rndc.key feature was created to ease the transition of systems from BIND 8, which did not have
digital signatures on its command channel messages and thus did not have a keys clause. It makes it
possible to use an existing BIND 8 configuration file in BIND 9 unchanged, and still have rndc work the
same way ndc worked in BIND 8, simply by executing the command rndc-keygen -a after BIND 9 is
installed.

Since the rndc.key feature is only intended to allow the backward-compatible usage of BIND 8
configuration files, this feature does not have a high degree of configurability. You cannot easily change
the key name or the size of the secret, so you should make a rndc.conf with your own key if you wish to
change those things. The rndc.key file also has its permissions set such that only the owner of the file
(the user that named is running as) can access it. If you desire greater flexibility in allowing other users to
access rndc commands then you need to create an rndc.conf and make it group readable by a group
that contains the users who should have access. The UNIX control channel type of BIND 8 is not
supported in BIND 9. If it is present in the controls statement from a BIND 8 configuration file, it is ignored
and a warning is logged.

include Statement Grammar
include filename;

include Statement Definition and Usage
The include statement inserts the specified file at the point that the include statement is encountered.
The include statement facilitates the administration of configuration files by permitting the reading or
writing of some things but not others. For example, the statement could include private keys that are
readable only by a nameserver.

key Statement Grammar
key key_id {

algorithm string;
secret string;

};

key Statement Definition and Usage
The key statement defines a shared secret key for use with TSIG.

450 Files Reference

The key statement can occur at the top level of the configuration file or inside a view statement. Keys
defined in top-level key statements can be used in all views. Keys intended for use in a controls statement
must be defined at the top level.

The key_id, also known as the key name, is a domain name uniquely identifying the key. It can be used in
a ″server″ statement to cause requests sent to that server to be signed with this key, or in address match
lists to verify that incoming requests have been signed with a key matching this name, algorithm, and
secret. The algorithm_id is a string that specifies a security/authentication algorithm. The only algorithm
currently supported with TSIG authentication is hmac-md5. The secret_string is the secret to be used by
the algorithm, and is treated as a base-64 encoded string.

logging Statement Grammar
logging {

[channel channel_name {
(file path name

[versions (number | unlimited)]
[size size spec]

| syslog syslog_facility
| stderr
| null);

[severity (critical | error | warning | notice |
info | debug [level] | dynamic);]

[print-category yes or no;]
[print-severity yes or no;]
[print-time yes or no;]

};]
[category category_name {

channel_name ; [channel_name ; ...]
};]
...

};

logging Statement Definition and Usage
The logging statement configures a wide variety of logging options for the nameserver. Its channel
phrase associates output methods, format options and severity levels with a name that can then be used
with the category phrase to select how various classes of messages are logged.

Only one logging statement is used to define as many channels and categories as are wanted. If there is
no logging statement, the logging configuration will be:
logging {

category "unmatched" { "null"; };
category "default" { "default_syslog"; "default_debug"; };

};

In BIND 9, the logging configuration is only established when the entire configuration file has been parsed.
In BIND 8, it was established as soon as the logging statement was parsed. When the server is starting
up, all logging messages regarding syntax errors in the configuration file go to the default channels, or to
standard error if the -g option was specified.

The channel Phrase
All log output goes to one or more channels; you can make as many of them as you want.

Every channel definition must include a destination clause that says whether messages selected for the
channel go to a file, to a particular syslog facility, to the standard error stream, or are discarded. It can
optionally also limit the message severity level that will be accepted by the channel (the default is info),
and whether to include a named-generated time stamp, the category name and/or severity level (the
default is not to include any).

Chapter 2. File Formats 451

The null destination clause causes all messages sent to the channel to be discarded; in that case, other
options for the channel are meaningless.

The file destination clause directs the channel to a disk file. It can include limitations both on how large
the file is allowed to become, and how many versions of the file will be saved each time the file is opened.

If you use the versions log file option, then named9 will retain that many backup versions of the file by
renaming them when opening. For example, if you choose to keep 3 old versions of the file lamers.log
then just before it is opened lamers.log.1 is renamed to lamers.log.2, lamers.log.0 is renamed to
lamers.log.1, and lamers.log is renamed to lamers.log.0. You can say versions unlimited; to not limit
the number of versions. If a size option is associated with the log file, then renaming is only done when
the file being opened exceeds the indicated size. No backup versions are kept by default; any existing log
file is simply appended.

The size option for files is used to limit log growth. If the file ever exceeds the size, then named9 will stop
writing to the file unless it has a versions option associated with it. If backup versions are kept, the files
are rolled as described above and a new one begun. If there is no versions option, no more data will be
written to the log until some out-of-band mechanism removes or truncates the log to less than the
maximum size. The default behavior is not to limit the size of the file.

Example usage of the size and versions options:
channel "an_example_channel" {

file "example.log" versions 3 size 20m;
print-time yes;
print-category yes;

};

The syslog destination clause directs the channel to the system log. Its argument is a syslog facility as
described in the syslog man page. How syslog will handle messages sent to this facility is described in
the syslog.conf man page. If you have a system which uses a very old version of syslog that only uses
two arguments to the openlog() function, then this clause is silently ignored. The severity clause works
like syslog’s ″priorities,″ except that they can also be used if you are writing straight to a file rather than
using syslog. Messages which are not at least of the severity level given will not be selected for the
channel; messages of higher severity levels will be accepted.

If you are using syslog, then the syslog.conf priorities will also determine what eventually passes
through. For example, defining a channel facility and severity as daemon and debug but only logging
daemon.warning via syslog.conf will cause messages of severity info and notice to be dropped. If the
situation were reversed, with named9 writing messages of only warning or higher, then syslogd would
print all messages it received from the channel.

The stderr destination clause directs the channel to the server’s standard error stream. This is intended
for use when the server is running as a foreground process, for example when debugging a configuration.

The server can supply extensive debugging information when it is in debugging mode. If the server’s
global debug level is greater than zero, then debugging mode will be active. The global debug level is set
either by starting the named9 server with the -d flag followed by a positive integer, or by running rndc
trace. The global debug level can be set to zero, and debugging mode turned off, by running ndc
notrace. All debugging messages in the server have a debug level, and higher debug levels give more
detailed output. Channels that specify a specific debug severity, for example:
channel "specific_debug_level" {

file "foo";
severity debug 3;

};

452 Files Reference

will get debugging output of level 3 or less any time the server is in debugging mode, regardless of the
global debugging level. Channels with dynamic severity use the server’s global level to determine what
messages to print.

If print-time has been turned on, then the date and time will be logged. print-time may be specified for a
syslog channel, but is usually pointless since syslog also prints the date and time. If print-category is
requested, then the category of the message will be logged as well. Finally, if print-severity is on, then
the severity level of the message will be logged. The print- ptions may be used in any combination, and
will always be printed in the following order: time, category, severity. Here is an example where all three
print- options are on:
28-Feb-2000 15:05:32.863 general: notice: running

There are four predefined channels that are used for named9’s default logging as follows.
channel "default_syslog" {

syslog daemon; // send to syslog’s daemon
// facility

severity info; // only send priority info
// and higher

};

channel "default_debug" {
file "named.run"; // write to named.run in

// the working directory
// Note: stderr is used instead
// of "named.run"
// if the server is started
// with the ’-f’ option.

severity dynamic; // log at the server’s
// current debug level

};

channel "default_stderr" { // writes to stderr
stderr;
severity info; // only send priority info

// and higher
};

channel "null" {
null; // toss anything sent to

// this channel
};

The default_debug channel has the special property that it only produces output when the server’s debug
level is nonzero. It normally writes to a file named9run in the server’s working directory.

For security reasons, when the -u command line option is used, the named9run file is created only after
named9 has changed to the new UID, and any debug output generated while named9 is starting up and
still running as root is discarded. If you need to capture this output, you must run the server with the -g
option and redirect standard error to a file.

Once a channel is defined, it cannot be redefined. Thus you cannot alter the built-in channels directly, but
you can modify the default logging by pointing categories at channels you have defined.

The category Phrase
There are many categories, so you can send the logs you want to see wherever you want, without seeing
logs you don’t want. If you don’t specify a list of channels for a category, then log messages in that
category will be sent to the default category instead. If you don’t specify a default category, the following
″default default″ is used:

Chapter 2. File Formats 453

category "default" { "default_syslog"; "default_debug"; };

As an example, let’s say you want to log security events to a file, but you also want keep the default
logging behavior. You’d specify the following:
channel "my_security_channel" {

file "my_security_file";
severity info;

};
category "security" {

"my_security_channel";
"default_syslog";
"default_debug";

};

To discard all messages in a category, specify the null channel:
category "xfer-out" { "null"; };
category "notify" { "null"; };

Following are the available categories and brief descriptions of the types of log information they contain.

default The default category defines the logging options for those categories where no specific
configuration has been defined.

general The catch-all. Many things still aren’t classified into categories, and they all end up here.

database Messages relating to the databases used internally by the name server to store zone and cache
data.

security Approval and denial of requests.

config Configuration file parsing and processing.

resolver DNS resolution, such as the recursive lookups performed on behalf of clients by a caching
name server.

xfer-in Zone transfers the server is receiving.

xfer-out Zone transfers the server is sending.

notify The NOTIFY protocol.

client Processing of client requests.

unmatched Messages that named was unable to determine the class of or for which there was no matching
view. A one line summary is also logged to the client category. This category is best sent to a
file or stderr, by default it is sent to the null channel.

network Network operations.

update Dynamic updates.

queries Queries. Using the category queries will enable query logging.

dispatch Dispatching of incoming packets to the server modules where they are to be processed.

dnssec DNSSEC and TSIG protocol processing.

lame-servers Lame servers. These are misconfigurations in remote servers, discovered by BIND 9 when
trying to query those servers during resolution.

options Statement Grammar
options {

[version version_string;]
[directory path_name;]
[named-xfer path_name;]
[tkey-domain domainname;]
[tkey-dhkey key_name key_tag;]

454 Files Reference

[dump-file path_name;]
[memstatistics-file path_name;]
[pid-file path_name;]
[statistics-file path_name;]
[zone-statistics yes_or_no;]
[auth-nxdomain yes_or_no;]
[deallocate-on-exit yes_or_no;]
[dialup dialup_option;]
[fake-iquery yes_or_no;]
[fetch-glue yes_or_no;]
[has-old-clients yes_or_no;]
[host-statistics yes_or_no;]
[minimal-responses yes_or_no;]
[multiple-cnames yes_or_no;]
[notify yes_or_no | explicit;]
[recursion yes_or_no;]
[rfc2308-type1 yes_or_no;]
[use-id-pool yes_or_no;]
[maintain-ixfr-base yes_or_no;]
[forward (only | first);]
[forwarders { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
[check-names (master | slave | response)(warn | fail | ignore);]
[allow-notify { address_match_list };]
[allow-query { address_match_list };]
[allow-transfer { address_match_list };]
[allow-recursion { address_match_list };]
[allow-v6-synthesis { address_match_list };]
[blackhole { address_match_list };]
[listen-on [port ip_port] { address_match_list };]
[listen-on-v6 [port ip_port] { address_match_list };]
[query-source [address (ip_addr | *)] [port (ip_port | *)];]
[max-transfer-time-in number;]
[max-transfer-time-out number;]
[max-transfer-idle-in number;]
[max-transfer-idle-out number;]
[tcp-clients number;]
[recursive-clients number;]
[serial-query-rate number;]
[serial-queries number;]
[transfer-format (one-answer | many-answers);]
[transfers-in number;]
[transfers-out number;]
[transfers-per-ns number;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[also-notify { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
[max-ixfr-log-size number;]
[coresize size_spec ;]
[datasize size_spec ;]
[files size_spec ;]
[stacksize size_spec ;]
[cleaning-interval number;]
[heartbeat-interval number;]
[interface-interval number;]
[statistics-interval number;]
[topology { address_match_list }];
[sortlist { address_match_list }];
[rrset-order { order_spec ; [order_spec ; ...]] };
[lame-ttl number;]
[max-ncache-ttl number;]
[max-cache-ttl number;]
[sig-validity-interval number ;]
[min-roots number;]
[use-ixfr yes_or_no ;]
[provide-ixfr yes_or_no;]

Chapter 2. File Formats 455

[request-ixfr yes_or_no;]
[treat-cr-as-space yes_or_no ;]
[min-refresh-time number ;]
[max-refresh-time number ;]
[min-retry-time number ;]
[max-retry-time number ;]
[port ip_port;]
[additional-from-auth yes_or_no ;]
[additional-from-cache yes_or_no ;]
[random-device path_name ;]
[max-cache-size size_spec ;]
[match-mapped-addresses yes_or_no;]

options Statement Definition and Usage
The options statement sets up global options to be used by BIND. This statement may appear only once
in a configuration file. If more than one occurrence is found, the first occurrence determines the actual
options used, and a warning will be generated. If there is no options statement, an options block with
each option set to its default will be used.

version
The version the server should report via a query of name version.bind in class CHAOS. The
default is the real version number of this server.

directory
The working directory of the server. Any non-absolute pathnames in the configuration file will be
taken as relative to this directory. The default location for most server output files (e.g. named.run)
is this directory. If a directory is not specified, the working directory defaults to ″.,″ the directory
from which the server was started. The directory specified should be an absolute path.

named-xfer
This option is obsolete. It was used in BIND 8 to specify the pathname to the named-xfer program.
In BIND 9, no separate named-xfer program is needed; its functionality is built into the name
server.

tkey-domain
The domain appended to the names of all shared keys generated with TKEY. When a client
requests a TKEY exchange, it may or may not specify the desired name for the key. If present, the
name of the shared key will be client specified part + tkey-domain. Otherwise, the name of the
shared key will be random hex digits + tkey-domain. In most cases, the domainname should
be the server’s domain name.

tkey-dhkey
The Diffie-Hellman key used by the server to generate shared keys with clients using the
Diffie-Hellman mode of TKEY. The server must be able to load the public and private keys from
files in the working directory. In most cases, the keyname should be the server’s host name.

dump-file
The pathname of the file the server dumps the database to when instructed to do so with rndc
dumpdb. If not specified, the default is named_dump.db.

memstatistics-file
The pathname of the file the server writes memory usage statistics to on exit. If not specified, the
default is named.memstats.

Note: Not yet implemented in BIND 9.

pid-file
The pathname of the file the server writes its process ID in. If not specified, the default is
/var/run/named.pid. The pid-file is used by programs that want to send signals to the running
nameserver.

456 Files Reference

statistics-file
The pathname of the file the server appends statistics to when instructed to do so using rndc
stats. If not specified, the default is named.stats in the server’s current directory.

port The UDP/TCP port number the server uses for receiving and sending DNS protocol traffic. The
default is 53. This option is mainly intended for server testing; a server using a port other than 53
will not be able to communicate with the global DNS.

random-device
The source of entropy to be used by the server. Entropy is primarily needed for DNSSEC
operations, such as TKEY transactions and dynamic update of signed zones. This options
specifies the device (or file) from which to read entropy. If this is a file, operations requiring
entropy will fail when the file has been exhausted. If not specified, the default value is
/dev/random (or equivalent) when present, and none otherwise. The random-device option takes
effect during the initial configuration load at server startup time and is ignored on subsequent
reloads.

Boolean Options
auth-nxdomain

If yes, then the AA bit is always set on NXDOMAIN responses, even if the server is not actually
authoritative. The default is no; this is a change from BIND 8. If you are using very old DNS
software, you may need to set it to yes.

deallocate-on-exit
This option was used in BIND 8 to enable checking for memory leaks on exit. BIND 9 ignores the
option and always performs the checks.

dialup If yes, the server treats all zones as if they are doing zone transfers across a dial on demand
dialup link, which can be brought up by traffic originating from this server. This has different effects
according to zone type and concentrates the zone maintenance so that it all happens in a short
interval, once every heartbeat-intervaland hopefully during the one call. It also suppresses some
of the normal zone maintenance traffic. The default is no.
The dialup option may also be specified in the view and zone statements, in which case it
overrides the global dialup option.

If the zone is a master zone then the server will send out a NOTIFY request to all the slaves. This
will trigger the zone serial number check in the slave (providing it supports NOTIFY) allowing the
slave to verify the zone while the connection is active.

If the zone is a slave or stub zone, then the server will suppress the regular ″zone up to date″
(refresh) queries and only perform them when the heartbeat-interval expires in addition to
sending NOTIFY requests.

Finer control can be achieved by using notify, which only sends NOTIFY messages;
notify-passive, which sends NOTIFY messages and suppresses the normal refresh queries; and
refresh, which suppresses normal refresh processing and send refresh queries when the
heartbeat-interval expires and passive which just disables normal refresh processing.

fake-iquery
In BIND 8, this option was used to enable simulating the obsolete DNS query type IQUERY. BIND
9 never does IQUERY simulation.

fetch-glue
This option is obsolete. In BIND 8, fetch-glue yes caused the server to attempt to fetch glue
resource records it didn’t have when constructing the additional data section of a response. This is
now considered bad practice, and BIND 9 never does it.

has-old-clients
This option was incorrectly implemented in BIND 8, and is ignored by BIND 9. To achieve the
intended effect of has-old-clients yes, specify the two separate options auth-nxdomain yes and
rfc2308-type1 no instead.

Chapter 2. File Formats 457

host-statistics
In BIND 8, this enables keeping of statistics for every host that the nameserver interacts with. It is
not implemented in BIND 9.

maintain-ixfr-base
This option is obsolete. It was used in BIND 8 to determine whether a transaction log was kept for
Incremental Zone Transfer. BIND 9 maintains a transaction log whenever possible. If you need to
disable outgoing incremental zone transfers, use provide-ixfr no.

minimal-responses
If yes, then when generating responses the server will only add records to the authority and
additional data sections when they are required. This may improve the performance of the server.
The default is no.

multiple-cnames
This option was used in BIND 8 to allow a domain name to allow multiple CNAME records in
violation of the DNS standards. BIND 9.2 strictly enforces the CNAME rules both in master files
and dynamic updates.

notify If yes (default), DNS NOTIFY messages are sent when a zone the server is authoritative for
changes. The messages are sent to the servers listed in the zone’s NS records (except the master
server identified in the SOA MNAME field), and to any servers listed in the also-notify option.
If explicit, notifies are sent only to servers explicitly listed using also-notify. If no, no notifies are
sent.

The notify option may also be specified in the zone statement, in which case it overrides the
options notify statement. It would only be necessary to turn off this option if it caused slaves to
crash.

recursion
If yes, and a DNS query requests recursion, then the server will attempt to do all the work required
to answer the query. If recursion is off and the server does not already know the answer, it will
return a referral response. The default is yes.

Note: Setting recursion no does not prevent clients from getting data from the server’s cache; it
only prevents new data from being cached as an effect of client queries. Caching may still
occur as an effect the server’s internal operation, such as NOTIFY address lookups.

rfc2308-type1
Setting this to yes will cause the server to send NS records along with the SOA record for negative
answers. The default is no.

Note: Not yet implemented in BIND 9.

use-id-pool
This option is obsolete. BIND 9 always allocates query IDs from a pool.

zone-statistics
If yes, the server will, by default, collect statistical data on all zones in the server. These statistics
may be accessed using rndc stats, which will dump them to the file listed in the statistics-file.
See “The Statistics File” on page 466.

use-ixfr
This option is obsolete. If you need to disable IXFR to a particular server or servers see the
information on the provide-ixfr option in “server Statement Definition and Usage” on page 466.

provide-ixfr
See the description of provide-ixfr in “server Statement Definition and Usage” on page 466.

request-ixfr
See the description of request-ixfr in “server Statement Definition and Usage” on page 466.

458 Files Reference

treat-cr-as-space
This option was used in BIND 8 to make the server treat carriage return (″\r″) characters the same
way as a space or tab character to facilitate loading of zone files on a UNIX system that were
generated on a Windows NT or DOS machine. In BIND 9, both UNIX ″\n″ and NT/DOS ″\r\n″
newlines are always accepted, and the option is ignored.

additional-from-auth, additional-from-cache
These options control the behavior of an authoritative server when answering queries which have
additional data, or when following CNAME and DNAME chains.
When both of these options are set to yes (default) and a query is being answered from
authoritative data (a zone configured into the server), the additional data section of the reply will
be filled in using data from other authoritative zones and from the cache. In some situations this is
undesirable, such as when there is concern over the correctness of the cache, or in servers where
slave zones may be added and modified by untrusted third parties. Also, avoiding the search for
this additional data will speed up server operations at the possible expense of additional queries to
resolve what would otherwise be provided in the additional section.

For example, if a query asks for an MX record for host foo.example.com, and the record found is
″MX 10 mail.example.net″, normally the address records for mail.example.net will be provided as
well, if known. Setting these options to no disables this behavior.

These options are intended for use in authoritative-only servers, or in authoritative-only views.
Attempts to set them to no without also specifying recursion no; will cause the server to ignore
the options and log a warning message.

Specifying additional-from-cache no actually disables the use of the cache not only for additional
data lookups but also when looking up the answer. This is usually the desired behavior in an
authoritative-only server where the correctness of the cached data is an issue.

When a name server is non-recursively queried for a name that is not below the apex of any
served zone, it normally answers with an ″upwards referral″ to the root servers or the servers of
some other known parent of the query name. Since the data in an upwards referral comes from
the cache, the server will not be able to provide upwards referrals when additional-from-cache
no has been specified. Instead, it will respond to such queries with REFUSED. This should not
cause any problems since upwards referrals are not required for the resolution process.

match-mapped-addresses
If yes, then an IPv4-mapped IPv6 address will match any address match list entries that match the
corresponding IPv4 address. Enabling this option is sometimes useful on IPv6-enabled Linux
systems, to work around a kernel quirk that causes IPv4 TCP connections such as zone transfers
to be accepted on an IPv6 socket using mapped addresses, causing address match lists designed
for IPv4 to fail to match. The use of this option for any other purpose is discouraged.

Forwarding
The forwarding facility can be used to create a large site-wide cache on a few servers, reducing traffic
over links to external nameservers. It can also be used to allow queries by servers that do not have direct
access to the Internet, but wish to look up exterior names anyway. Forwarding occurs only on those
queries for which the server is not authoritative and does not have the answer in its cache.

forward
This option is only meaningful if the forwarders list is not empty. A value of first, the default,
causes the server to query the forwarders first, and if that doesn’t answer the question the server
will then look for the answer itself. If only is specified, the server will only query the forwarders.

forwarders
Specifies the IP addresses to be used for forwarding. The default is the empty list (no forwarding).

Forwarding can also be configured on a per-domain basis, allowing for the global forwarding options to be
overridden in a variety of ways. You can set particular domains to use different forwarders, or have a
different forward only/first behavior, or not forward at all. See “zone Statement Grammar” on page 469.

Chapter 2. File Formats 459

Access Control
Access to the server can be restricted based on the IP address of the requesting system.

allow-notify
Specifies which hosts are allowed to notify slaves of a zone change in addition to the zone
masters. The allow-notify option may also be specified in the zone statement, in which case it
overrides the options allow-notify statement. It is only meaningful for a slave zone. If not
specified, the default is to process notify messages only from a zone’s master.

allow-query
Specifies which hosts are allowed to ask ordinary questions. The allow-query option may also be
specified in the zone statement, in which case it overrides the options allow-query statement. If
not specified, the default is to allow queries from all hosts.

allow-recursion
Specifies which hosts are allowed to make recursive queries through this server. If not specified,
the default is to allow recursive queries from all hosts. Note that disallowing recursive queries for a
host does not prevent the host from retrieving data that is already in the server’s cache.

allow-transfer
Specifies which hosts are allowed to receive zone transfers from the server. allow-transfer may
also be specified in the zone statement, in which case it overrides the options allow-transfer
statement. If not specified, the default is to allow transfers from all hosts.

blackhole
Specifies a list of addresses that the server will not accept queries from or use to resolve a query.
Queries from these addresses will not be responded to. The default is none.

Interfaces
The interfaces and ports that the server will answer queries from may be specified using the listen-on
option. listen-on takes an optional port, and an address_match_list. The server will listen on all interfaces
allowed by the address match list. If a port is not specified, port 53 will be used.

Multiple listen-on statements are allowed. For example:
listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

This will enable the nameserver on port 53 for the IP address 5.6.7.8, and on port 1234 of an address on
the machine in net 1.2 that is not 1.2.3.4.

If no listen-on is specified, the server will listen on port 53 on all interfaces.

Query Address
If the server doesn’t know the answer to a question, it will query other nameservers. query-source
specifies the address and port used for such queries. If address is * or is omitted, a wildcard IP address
(INADDR_ANY) will be used. If port is * or is omitted, a random unprivileged port will be used. The
defaults are as follows:
query-source address * port *;
query-source-v6 address * port *

Note: The address specified in the query-source option is used for both UDP and TCP queries, but the
port applies only to UDP queries. TCP queries always use a random unprivileged port.

Zone Transfers
BIND has mechanisms in place to facilitate zone transfers and set limits on the amount of load that
transfers place on the system. The following options apply to zone transfers.

also-notify
Defines a global list of IP addresses of name servers that are also sent NOTIFY messages
whenever a fresh copy of the zone is loaded, in addition to the servers listed in the zone’s NS

460 Files Reference

records. This helps to ensure that copies of the zones will quickly converge on stealth servers. If
an also-notify list is given in a zone statement, it will override the options also-notify statement.
When a zone notify statement is set to no, the IP addresses in the global also-notify list will not
be sent NOTIFY messages for that zone. The default is the empty list (no global notification list).

max-transfer-time-in
Inbound zone transfers running longer than this many minutes will be terminated. The default is
120 minutes (2 hours).

max-transfer-idle-in
Inbound zone transfers making no progress in this many minutes will be terminated. The default is
60 minutes (1 hour).

max-transfer-time-out
Outbound zone transfers running longer than this many minutes will be terminated. The default is
120 minutes (2 hours).

max-transfer-idle-out
Outbound zone transfers making no progress in this many minutes will be terminated. The default
is 60 minutes (1 hour).

serial-query-rate
Slave servers will periodically query master servers to find out if zone serial numbers have
changed. Each such query uses a minute amount of the slave server’s network bandwidth. To limit
the amount of bandwidth used, BIND 9 limits the rate at which queries are sent. The value of the
serial-query-rate option, an integer, is the maximum number of queries sent per second. The
default is 20.

serial-queries
In BIND 8, the serial-queries option set the maximum number of concurrent serial number queries
allowed to be outstanding at any given time. BIND 9 does not limit the number of outstanding
serial queries and ignores the serial-queries option. Instead, it limits the rate at which the queries
are sent as defined using the serial-query-rate option.

transfer-format
Zone transfers can be sent using two different formats, one-answer and many-answers. The
transfer-format option is used on the master server to determine which format it sends.
one-answer uses one DNS message per resource record transferred. many-answers packs as
many resource records as possible into a message. many-answers is more efficient, but is only
supported by relatively new slave servers, such as BIND 9, BIND 8.x and patched versions of
BIND 4.9.5. The default is many-answers. transfer-format may be overridden on a per-server
basis by using the server statement.

transfers-in
The maximum number of inbound zone transfers that can be running concurrently. The default
value is 10. Increasing transfers-in may speed up the convergence of slave zones, but it also may
increase the load on the local system.

transfers-out
The maximum number of outbound zone transfers that can be running concurrently. Zone transfer
requests in excess of the limit will be refused. The default value is 10.

transfers-per-ns
The maximum number of inbound zone transfers that can be concurrently transferring from a given
remote nameserver. The default value is 2. Increasing transfers-per-ns may speed up the
convergence of slave zones, but it also may increase the load on the remote nameserver.
transfers-per-ns may be overridden on a per-server basis by using the transfers phrase of the
server statement.

transfer-source
transfer-source determines which local address will be bound to IPv4 TCP connections used to

Chapter 2. File Formats 461

fetch zones transferred inbound by the server. It also determines the source IPv4 address, and
optionally the UDP port, used for the refresh queries and forwarded dynamic updates. If not set, it
defaults to a system controlled value which will usually be the address of the interface ″closest to″
the remote end. This address must appear in the remote end’s allow-transfer option for the zone
being transferred, if one is specified. This statement sets the transfer-source for all zones, but
can be overridden on a per-view or per-zone basis by including a transfer-source statement
within the view or zone block in the configuration file.

notify-source
notify-source determines which local source address, and optionally UDP port, will be used to
send NOTIFY messages. This address must appear in the slave server’s masters zone clause or
in an allow-notify clause. This statement sets the notify-source for all zones, but can be
overridden on a per-zone / per-view basis by including a notify-source statement within the zone
or view block in the configuration file.

Operating System Resource Limits
The server’s usage of many system resources can be limited. Scaled values are allowed when specifying
resource limits. For example, 1G can be used instead of 1073741824 to specify a limit of one gigabyte.
The unlimited option requests unlimited use, or the maximum available amount. The default option uses
the limit that was in force when the server was started.

The following options set operating system resource limits for the name server process. Some operating
systems don’t support some or any of the limits. On such systems, a warning will be issued if the
unsupported limit is used.

coresize
The maximum size of a core dump. The default is default.

datasize
The maximum amount of data memory the server may use. The default is default. This is a hard
limit on server memory usage. If the server attempts to allocate memory in excess of this limit, the
allocation will fail, which may in turn leave the server unable to perform DNS service. Therefore,
this option is rarely useful as a way of limiting the amount of memory used by the server, but it
can be used to raise an operating system data size limit that is too small by default. If you wish to
limit the amount of memory used by the server, use the max-cache-size and recursive-clients
options instead.

files The maximum number of files the server may have open concurrently. The default is unlimited.

stacksize
The maximum amount of stack memory the server may use. The default is default.

Server Resource Limits
The following options set limits on the server’s resource consumption that are enforced internally by the
server rather than the operating system.

max-ixfr-log-size
This option is obsolete; it is accepted and ignored for BIND 8 compatibility.

recursive-clients

The maximum number of simultaneous recursive lookups the server will perform on behalf of
clients. The default is 1000. Because each recursing client uses a fair bit of memory, on the order
of 20 kilobytes, the value of the recursive-clients option may have to be decreased on hosts with
limited memory.

tcp-clients

The maximum number of simultaneous client TCP connections that the server will accept. The
default is 100.

max-cache-size

462 Files Reference

The maximum amount of memory to use for the server’s cache, in bytes. When the amount of
data in the cache reaches this limit, the server will cause records to expire prematurely so that the
limit is not exceeded. In a server with multiple views, the limit applies separately to the cache of
each view. The default is unlimited, meaning that records are purged from the cache only when
their TTLs expire.

Periodic Task Intervals
cleaning-interval

The server will remove expired resource records from the cache every cleaning-interval minutes.
The default is 60 minutes. If set to 0, no periodic cleaning will occur.

heartbeat-interval

The server will perform zone maintenance tasks for all zones marked as dialup whenever this
interval expires. The default is 60 minutes. Reasonable values are up to 1 day (1440 minutes). If
set to 0, no zone maintenance for these zones will occur.

interface-interval

The server will scan the network interface list every interface-interval minutes. The default is 60
minutes. If set to 0, interface scanning will only occur when the configuration file is loaded. After
the scan, listeners will be started on any new interfaces (provided they are allowed by the
listen-on configuration). Listeners on interfaces that have gone away will be cleaned up.

statistics-interval

Nameserver statistics will be logged every statistics-interval minutes. The default is 60. If set to
0, no statistics will be logged.

Note: Not yet implemented in BIND 9.

Topology
All other things being equal, when the server chooses a nameserver to query from a list of nameservers, it
prefers the one that is topologically closest to itself. The topology statement takes an
address_match_list and interprets it in a special way. Each top-level list element is assigned a distance.
Non-negated elements get a distance based on their position in the list, where the closer the match is to
the start of the list, the shorter the distance is between it and the server. A negated match will be assigned
the maximum distance from the server. If there is no match, the address will get a distance which is further
than any non-negated list element, and closer than any negated element. For example,
topology {

10/8;
!1.2.3/24;
{ 1.2/16; 3/8; };

};

will prefer servers on network 10 the most, followed by hosts on network 1.2.0.0 (netmask 255.255.0.0)
and network 3, with the exception of hosts on network 1.2.3 (netmask 255.255.255.0), which is preferred
least of all.

The default topology is
topology { localhost; localnets; };

Note: The topology option is not implemented in BIND 9.

The sortlist Statement
The response to a DNS query may consist of multiple resource records (RRs) forming a resource records
set (RRset). The name server will normally return the RRs within the RRset in an indeterminate order (but
see the rrset-order statement in “RRset Ordering” on page 464). The client resolver code should
rearrange the RRs as appropriate, that is, using any addresses on the local net in preference to other

Chapter 2. File Formats 463

addresses. However, not all resolvers can do this or are correctly configured. When a client is using a
local server the sorting can be performed in the server, based on the client’s address. This only requires
configuring the nameservers, not all the clients.

The sortlist statement (see below) takes an address_match_list and interprets it even more specifically
than the topology statement does (“Topology” on page 463). Each top level statement in the sortlist must
itself be an explicit address_match_list with one or two elements. The first element (which may be an IP
address, an IP prefix, an ACL name or a nested address_match_list) of each top level list is checked
against the source address of the query until a match is found.

Once the source address of the query has been matched, if the top level statement contains only one
element, the actual primitive element that matched the source address is used to select the address in the
response to move to the beginning of the response. If the statement is a list of two elements, then the
second element is treated the same as the address_match_list in a topology statement. Each top level
element is assigned a distance and the address in the response with the minimum distance is moved to
the beginning of the response.

In the following example, any queries received from any of the addresses of the host itself will get
responses preferring addresses on any of the locally connected networks. Next most preferred are
addresses on the 192.168.1/24 network, and after that either the 192.168.2/24 or 192.168.3/24 network
with no preference shown between these two networks. Queries received from a host on the 192.168.1/24
network will prefer other addresses on that network to the 192.168.2/24 and 192.168.3/24 networks.
Queries received from a host on the 192.168.4/24 or the 192.168.5/24 network will only prefer other
addresses on their directly connected networks.
sortlist {

{ localhost; // IF the local host
{ localnets; // THEN first fit on the

192.168.1/24; // following nets
{ 192.168.2/24; 192.168.3/24; }; }; };

{ 192.168.1/24; // IF on class C 192.168.1
{ 192.168.1/24; // THEN use .1, or .2 or .3

{ 192.168.2/24; 192.168.3/24; }; }; };
{ 192.168.2/24; // IF on class C 192.168.2

{ 192.168.2/24; // THEN use .2, or .1 or .3
{ 192.168.1/24; 192.168.3/24; }; }; };

{ 192.168.3/24; // IF on class C 192.168.3
{ 192.168.3/24; // THEN use .3, or .1 or .2

{ 192.168.1/24; 192.168.2/24; }; }; };
{ { 192.168.4/24; 192.168.5/24; }; // if .4 or .5, prefer that net
};

};

The following example will give reasonable behavior for the local host and hosts on directly connected
networks. It is similar to the behavior of the address sort in BIND 4.9.x. Responses sent to queries from
the local host will favor any of the directly connected networks. Responses sent to queries from any other
hosts on a directly connected network will prefer addresses on that same network. Responses to other
queries will not be sorted.
sortlist {

{ localhost; localnets; };
{ localnets; };

};

RRset Ordering
When multiple records are returned in an answer it may be useful to configure the order of the records
placed into the response. The rrset-order statement permits configuration of the ordering of the records in
a multiple record response. See also the sortlist statement, “The sortlist Statement” on page 463.

An order_spec is defined as follows:

464 Files Reference

[class class_name][type type_name][name "domain_name"]
order ordering

If no class is specified, the default is ANY. If no type is specified, the default is ANY. If no name is
specified, the default is ″ *″.

The legal values for ordering are:

fixed Records are returned in the order they are defined in the zone file.

random Records are returned in some random order.

cyclic Records are returned in a round-robin order.

For example:
rrset-order {

class IN type A name "host.example.com" order random;
order cyclic;

};

will cause any responses for type A records in class IN that have ″ host.example.com″ as a suffix, to
always be returned in random order. All other records are returned in cyclic order.

If multiple rrset-order statements appear, they are not combined — the last one applies.

Note: The rrset-order statement is not yet implemented in BIND 9. BIND 9 currently supports only a
″random-cyclic″ ordering, where the server randomly chooses a starting point within the RRset and
returns the records in order starting at that point, wrapping around the end of the RRset if
necessary.

Tuning
lame-ttl

Sets the number of seconds to cache a lame server indication. 0 disables caching. (This is not
recommended.) Default is 600 (10 minutes). Maximum value is 1800 (30 minutes).

max-ncache-ttl
To reduce network traffic and increase performance the server stores negative answers.
max-ncache-ttl is used to set a maximum retention time for these answers in the server in
seconds. The default max-ncache-ttl is 10800 seconds (3 hours). max-ncache-ttl cannot exceed
7 days and will be silently truncated to 7 days if set to a greater value.

max-cache-ttl
max-cache-ttl sets the maximum time for which the server will cache ordinary (positive) answers.
The default is one week (7 days).

min-roots
The minimum number of root servers that is required for a request for the root servers to be
accepted. Default is 2.

Note: Not yet implemented in BIND 9.

sig-validity-interval

Specifies the number of days into the future when DNSSEC signatures automatically generated as
a result of dynamic updates ((Section 4.1)) will expire. The default is 30 days. The signature
inception time is unconditionally set to one hour before the current time to allow for a limited
amount of clock skew.

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time

Chapter 2. File Formats 465

These options control the server’s behavior on refreshing a zone (querying for SOA changes) or
retrying failed transfers. Usually the SOA values for the zone are used, but these values are set by
the master, giving slave server administrators little control over their contents.

These options allow the administrator to set a minimum and maximum refresh and retry time either
per-zone, per-view, or per-server. These options are valid for master, slave and stub zones, and
clamp the SOA refresh and retry times to the specified values.

The Statistics File
The statistics file generated by BIND 9 is similar, but not identical, to that generated by BIND 8.

The statistics dump begins with the line +++ Statistics Dump +++ (973798949), where the number in
parentheses is a standard Unix-style timestamp, measured as seconds since January 1, 1970. Following
that line are a series of lines containing a counter type, the value of the counter, optionally a zone name,
and optionally a view name. The lines without view and zone listed are global statistics for the entire
server. Lines with a zone and view name for the given view and zone (the view name is omitted for the
default view). The statistics dump ends with the line —- Statistics Dump —- (973798949), where the
number is identical to the number in the beginning line.

The following statistics counters are maintained:

success The number of successful queries made to the server or zone. A successful query is
defined as query which returns a NOERROR response other than a referral response.

referral The number of queries which resulted in referral responses.

nxrrset The number of queries which resulted in NOERROR responses with no data.

nxdomain The number of queries which resulted in NXDOMAIN responses.

recursion The number of queries which caused the server to perform recursion in order to find
the final answer.

failure The number of queries which resulted in a failure response other than those above.

server Statement Grammar
server ip_addr {

[bogus yes_or_no ;]
[provide-ixfr yes_or_no ;]
[request-ixfr yes_or_no ;]
[edns yes_or_no ;]
[transfers number ;]
[transfer-format (one-answer | many-answers) ;]]
[keys { string ; [string ; [...]] } ;]

};

server Statement Definition and Usage
The server statement defines characteristics to be associated with a remote nameserver.

The server statement can occur at the top level of the configuration file or inside a view statement. If a
view statement contains one or more server statements, only those apply to the view and any top-level
ones are ignored. If a view contains no server statements, any top-level server statements are used as
defaults.

If you discover that a remote server is giving out bad data, marking it as bogus will prevent further queries
to it. The default value of bogus is no.

The provide-ixfr clause determines whether the local server, acting as master, will respond with an
incremental zone transfer when the given remote server, a slave, requests it. If set to yes, incremental

466 Files Reference

transfer will be provided whenever possible. If set to no, all transfers to the remote server will be
nonincremental. If not set, the value of the provide-ixfr option in the view or global options block is used
as a default.

The request-ixfr clause determines whether the local server, acting as a slave, will request incremental
zone transfers from the given remote server, a master. If not set, the value of the request-ixfr option in
the view or global options block is used as a default.

IXFR requests to servers that do not support IXFR will automatically fall back to AXFR. Therefore, there is
no need to manually list which servers support IXFR and which ones do not; the global default of yes
should always work. The purpose of the provide-ixfr and request-ixfr clauses is to make it possible to
disable the use of IXFR even when both master and slave claim to support it, for example if one of the
servers is buggy and crashes or corrupts data when IXFR is used.

The edns clause determines whether the local server will attempt to use EDNS when communicating with
the remote server. The default is yes.

The server supports two zone transfer methods. The first, one-answer, uses one DNS message per
resource record transferred. many-answers packs as many resource records as possible into a message.
many-answers is more efficient, but is only known to be understood by BIND 9, BIND 8.x, and patched
versions of BIND 4.9.5. You can specify which method to use for a server with the transfer-format option.
If transfer-format is not specified, the transfer-format specified by the options statement will be used.

transfers is used to limit the number of concurrent inbound zone transfers from the specified server. If no
transfers clause is specified, the limit is set according to the transfers-per-ns option.

The keys clause is used to identify a key_id defined by the key statement, to be used for transaction
security when talking to the remote server. The key statement must come before the server statement
that references it. When a request is sent to the remote server, a request signature will be generated using
the key specified here and appended to the message. A request originating from the remote server is not
required to be signed by this key.

Although the grammar of the keys clause allows for multiple keys, only a single key per server is currently
supported.

trusted-keys Statement Grammar
trusted-keys {

string number number number string ;
[string number number number string ; [...]]

};

trusted-keys Statement Definition and Usage
The trusted-keys statement defines DNSSEC security roots. A security root is defined when the public
key for a non-authoritative zone is known, but cannot be securely obtained through DNS, either because it
is the DNS root zone or its parent zone is unsigned. Once a key has been configured as a trusted key, it
is treated as if it had been validated and proven secure. The resolver attempts DNSSEC validation on all
DNS data in subdomains of a security root.

The trusted-keys statement can contain multiple key entries, each consisting of the key’s domain name,
flags, protocol, algorithm, and the base-64 representation of the key data.

view Statement Grammar
view view_name [class] {

match-clients { address_match_list } ;
match-destinations { address_match_list } ;
match-recursive-only { yes_or_no } ;

Chapter 2. File Formats 467

[view_option; ...]
[zone-statistics yes_or_no ;]
[zone_statement; ...]

};

6.2.20. view Statement Definition and Usage
The view statement is a powerful new feature of BIND 9 that lets a name server answer a DNS query
differently depending on who is asking. It is particularly useful for implementing split DNS setups without
having to run multiple servers.

Each view statement defines a view of the DNS namespace that will be seen by a subset of clients. A
client matches a view if its source IP address matches the address_match_list of the view’s
match-clients clause and its destination IP address matches the address_match_list of the view’s
match-destinations clause. If not specified, both match-clients and match-destinations default to
matching all addresses. A view can also be specified as match-recursive-only, which means that only
recursive requests from matching clients will match that view. The order of the view statements is
significant — a client request will be resolved in the context of the first view that it matches.

Zones defined within a view statement will be only be accessible to clients that match the view. By
defining a zone of the same name in multiple views, different zone data can be given to different clients,
for example, ″internal″ and ″external″ clients in a split DNS setup.

Many of the options given in the options statement can also be used within a view statement, and then
apply only when resolving queries with that view. When no view-specific value is given, the value in the
options statement is used as a default. Also, zone options can have default values specified in the view
statement; these view-specific defaults take precedence over those in the options statement.

Views are class specific. If no class is given, class IN is assumed. Note that all non-IN views must contain
a hint zone, since only the IN class has compiled-in default hints.

If there are no view statements in the config file, a default view that matches any client is automatically
created in class IN, and any zone statements specified on the top level of the configuration file are
considered to be part of this default view. If any explicit view statements are present, all zone statements
must occur inside view statements.

Here is an example of a typical split DNS setup implemented using view statements.
view "internal" {

// This should match our internal networks.
match-clients { 10.0.0.0/8; };

// Provide recursive service to internal clients only.
recursion yes;

// Provide a complete view of the example.com zone
// including addresses of internal hosts.

zone "example.com" {
type master;
file "example-internal.db";

};
};
view "external" {

match-clients { any; };
// Refuse recursive service to external clients.

recursion no;
// Provide a restricted view of the example.com zone
// containing only publicly accessible hosts.

zone "example.com" {
type master;
file "example-external.db";

};
};

468 Files Reference

zone Statement Grammar
zone zone_name [class] [{

type (master | slave | hint | stub | forward) ;
[allow-notify { address_match_list } ;]
[allow-query { address_match_list } ;]
[allow-transfer { address_match_list } ;]
[allow-update { address_match_list } ;]
[update-policy { update_policy_rule [...] } ;]
[allow-update-forwarding { address_match_list } ;]
[also-notify { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
[check-names (warn|fail|ignore) ;]
[dialup dialup_option ;]
[file string ;]
[forward (only|first) ;]
[forwarders { ip_addr [port ip_port] ; [ip_addr [port ip_port] ; ...] };]
[ixfr-base string ;]
[ixfr-tmp-file string ;]
[maintain-ixfr-base yes_or_no ;]
[masters [port ip_port] { ip_addr [port ip_port] [key key]; [...] } ;]
[max-ixfr-log-size number ;]
[max-transfer-idle-in number ;]
[max-transfer-idle-out number ;]
[max-transfer-time-in number ;]
[max-transfer-time-out number ;]
[notify yes_or_no | explicit ;]
[pubkey number number number string ;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[zone-statistics yes_or_no ;]
[sig-validity-interval number ;]
[database string ;]
[min-refresh-time number ;]
[max-refresh-time number ;]
[min-retry-time number ;]
[max-retry-time number ;]

}];

zone Statement Definition and Usage

Zone Types:

master The server has a master copy of the data for the zone and will be able to provide authoritative
answers for it.

slave A slave zone is a replica of a master zone. The masters list specifies one or more IP
addresses of master servers that the slave contacts to update its copy of the zone. By default,
transfers are made from port 53 on the servers; this can be changed for all servers by
specifying a port number before the list of IP addresses, or on a per-server basis after the IP
address. Authentication to the master can also be done with per-server TSIG keys. If a file is
specified, then the replica will be written to this file whenever the zone is changed, and
reloaded from this file on a server restart. Use of a file is recommended, since it often speeds
server start-up and eliminates a needless waste of bandwidth. Note that for large numbers (in
the tens or hundreds of thousands) of zones per server, it is best to use a two level naming
scheme for zone file names. For example, a slave server for the zone example.com might place
the zone contents into a file called ex/example.com where ex/ is just the first two letters of the
zone name. (Most operating systems behave very slowly if you put 100K files into a single
directory.)

Chapter 2. File Formats 469

stub A stub zone is similar to a slave zone, except that it replicates only the NS records of a master
zone instead of the entire zone. Stub zones are not a standard part of the DNS; they are a
feature specific to the BIND implementation.

Stub zones can be used to eliminate the need for glue NS record in a parent zone at the
expense of maintaining a stub zone entry and a set of name server addresses in named.conf.
This usage is not recommended for new configurations, and BIND 9 supports it only in a
limited way. In BIND 4/8, zone transfers of a parent zone included the NS records from stub
children of that zone. This meant that, in some cases, users could get away with configuring
child stubs only in the master server for the parent zone. BIND 9 never mixes together zone
data from different zones in this way. Therefore, if a BIND 9 master serving a parent zone has
child stub zones configured, all the slave servers for the parent zone also need to have the
same child stub zones configured.

Stub zones can also be used as a way of forcing the resolution of a given domain to use a
particular set of authoritative servers. For example, the caching name servers on a private
network using RFC2157 addressing may be configured with stub zones for 10.in-addr.arpa to
use a set of internal name servers as the authoritative servers for that domain.

forward A ″forward zone″ is a way to configure forwarding on a per-domain basis. A zone statement of
type forward can contain a forward and/or forwarders statement, which will apply to queries
within the domain given by the zone name. If no forwarders statement is present or an empty
list for forwarders is given, then no forwarding will be done for the domain, canceling the
effects of any forwarders in the options statement. Thus if you want to use this type of zone to
change the behavior of the global forward option (that is, ″forward first to″, then ″forward
only″, or vice versa, but want to use the same servers as set globally) you need to respecify
the global forwarders.

hint The initial set of root nameservers is specified using a ″hint zone″. When the server starts up,
it uses the root hints to find a root nameserver and get the most recent list of root
nameservers. If no hint zone is specified for class IN, the server uses a compiled-in default set
of root servers hints. Classes other than IN have no built-in defaults hints.

Class: The zone’s name may optionally be followed by a class. If a class is not specified, class IN (for
Internet), is assumed. This is correct for the vast majority of cases.

The hesiod class is named for an information service from MIT’s Project Athena. It is used to share
information about various systems databases, such as users, groups, printers and so on. The keyword HS
is a synonym for hesiod.

Another MIT development is CHAOSnet, a LAN protocol created in the mid-1970s. Zone data for it can be
specified with the CHAOS class.

Zone Options:

allow-notify

See the description of allow-notify in “Access Control” on page 460.

allow-query

See the description of allow-query in “Access Control” on page 460.

allow-transfer

See the description of allow-transfer in “Access Control” on page 460.

allow-update

Specifies which hosts are allowed to submit Dynamic DNS updates for master zones. The default
is to deny updates from all hosts.

update-policy

470 Files Reference

Specifies a ″Simple Secure Update″ policy. See “Dynamic Update Policies” on page 472.

allow-update-forwarding

Specifies which hosts are allowed to submit Dynamic DNS updates to slave zones to be forwarded
to the master. The default is { none; }, which means that no update forwarding will be performed.
To enable update forwarding, specify allow-update-forwarding { any; };. Specifying values other
than { none; } or { any; } is usually counterproductive, since the responsibility for update access
control should rest with the master server, not the slaves.

Note that enabling the update forwarding feature on a slave server may expose master servers
relying on insecure IP address based access control to attacks.

also-notify

Only meaningful if notify is active for this zone. The set of machines that will receive a DNS NOTIFY
message for this zone is made up of all the listed nameservers (other than the primary master) for
the zone plus any IP addresses specified with also-notify. A port may be specified with each
also-notify address to send the notify messages to a port other than the default of 53. also-notify
is not meaningful for stub zones. The default is the empty list.

check-names

This option was used in BIND 8 to restrict the character set of domain names in master files or
DNS responses received from the network. BIND 9 does not restrict the character set of domain
names and does not implement the check-names option.

database

Specify the type of database to be used for storing the zone data. The string following the
database keyword is interpreted as a list of whitespace-delimited words. The first word identifies
the database type, and any subsequent words are passed as arguments to the database to be
interpreted in a way specific to the database type.

The default is ″rbt″, BIND 9’s native in-memory red-black-tree database. This database does not
take arguments.

Other values are possible if additional database drivers have been linked into the server. Some
sample drivers are included with the distribution but none are linked in by default.

dialup

See the description of dialup in “Boolean Options” on page 457.

forward

Only meaningful if the zone has a forwarders list. The only value causes the lookup to fail after
trying the forwarders and getting no answer, while first would allow a normal lookup to be tried.

forwarders

Used to override the list of global forwarders. If it is not specified in a zone of type forward, no
forwarding is done for the zone; the global options are not used.

ixfr-base

Was used in BIND 8 to specify the name of the transaction log (journal) file for dynamic update
and IXFR. BIND 9 ignores the option and constructs the name of the journal file by appending ″
.jnl″ to the name of the zone file.

ixfr-tmp-file

Was an undocumented option in BIND 8. Ignored in BIND 9.

max-transfer-time-in

See the description of max-transfer-time-in in “Zone Transfers” on page 460.

Chapter 2. File Formats 471

max-transfer-idle-in

See the description of max-transfer-idle-in in “Zone Transfers” on page 460.

max-transfer-time-out

See the description of max-transfer-time-out in “Zone Transfers” on page 460.

max-transfer-idle-out

See the description of max-transfer-idle-out in “Zone Transfers” on page 460.

notify

See the description of notify in “Boolean Options” on page 457.

pubkey

In BIND 8, this option was intended for specifying a public zone key for verification of signatures in
DNSSEC signed zones when they are loaded from disk. BIND 9 does not verify signatures on
loading and ignores the option.

zone-statistics

If yes, the server will keep statistical information for this zone, which can be dumped to the
statistics-file defined in the server options.

sig-validity-interval

See the description of sig-validity-interval in “Tuning” on page 465.

transfer-source

See the description of transfer-source in “Zone Transfers” on page 460

notify-source

See the description of notify-source in “Zone Transfers” on page 460

min-refresh-time, max-refresh-time, min-retry-time, max-retry-time

See the description in “Tuning” on page 465.

Dynamic Update Policies: BIND 9 supports two alternative methods of granting clients the right to
perform dynamic updates to a zone, configured by the allow-update and update-policy option,
respectively.

The allow-update clause works the same way as in previous versions of BIND . It grants given clients the
permission to update any record of any name in the zone.

The update-policy clause is new in BIND 9 and allows more fine-grained control over what updates are
allowed. A set of rules is specified, where each rule either grants or denies permissions for one or more
names to be updated by one or more identities. If the dynamic update request message is signed (that is,
it includes either a TSIG or SIG(0) record), the identity of the signer can be determined.

Rules are specified in the update-policy zone option, and are only meaningful for master zones. When
the update-policy statement is present, it is a configuration error for the allow-update statement to be
present. The update-policy statement only examines the signer of a message; the source address is not
relevant.

This is how a rule definition looks:
(grant | deny) identity nametype name [types]

472 Files Reference

Each rule grants or denies privileges. Once a message has successfully matched a rule, the operation is
immediately granted or denied and no further rules are examined. A rule is matched when the signer
matches the identity field, the name matches the name field, and the type is specified in the type field.

The identity field specifies a name or a wildcard name. The nametype field has 4 values: name, subdomain,
wildcard, and self

name Matches when the updated name is the same as the name in the name field.

subdomain Matches when the updated name is a subdomain of the name in the name field (which
includes the name itself).

wildcard Matches when the updated name is a valid expansion of the wildcard name in the name field.

self Matches when the updated name is the same as the message signer. The name field is
ignored.

If no types are specified, the rule matches all types except SIG, NS, SOA, and NXT. Types may be
specified by name, including ″ANY″ (ANY matches all types except NXT, which can never be updated).

Zone File:

DOMAIN Data File, DOMAIN Reverse Data File, DOMAIN Cache File, and DOMAIN Local:

Types of Resource Records and When to Use Them: This section, largely borrowed from RFC 1034,
describes the concept of a Resource Record (RR) and explains when each is used. Since the publication
of RFC 1034, several new RRs have been identified and implemented in the DNS. These are also
included.

Resource Records: A domain name identifies a node. Each node has a set of resource information,
which may be empty. The set of resource information associated with a particular name is composed of
separate RRs. The order of RRs in a set is not significant and need not be preserved by nameservers,
resolvers, or other parts of the DNS. However, sorting of multiple RRs is permitted for optimization
purposes, for example, to specify that a particular nearby server be tried first. See “The sortlist Statement”
on page 463 and “RRset Ordering” on page 464.

The components of a Resource Record are:

owner name the domain name where the RR is found.

type an encoded 16 bit value that specifies the type of the resource in this resource record.
Types refer to abstract resources.

TTL the time to live of the RR. This field is a 32 bit integer in units of seconds, and is primarily
used by resolvers when they cache RRs. The TTL describes how long a RR can be
cached before it should be discarded.

class an encoded 16 bit value that identifies a protocol family or instance of a protocol.

RDATA the type and sometimes class-dependent data that describes the resource.

The following are types of valid RRs (some of these listed, although not obsolete, are experimental (x) or
historical (h) and no longer in general use):

A a host address.

A6 an IPv6 address.

AAAA Obsolete format of IPv6 address

AFSDB (x) location of AFS database servers. Experimental.

CNAME identifies the canonical name of an alias.

Chapter 2. File Formats 473

DNAME for delegation of reverse addresses. Replaces the domain name specified with another
name to be looked up. Described in RFC 2672.

HINFO identifies the CPU and OS used by a host.

ISDN (x) representation of ISDN addresses. Experimental.

KEY stores a public key associated with a DNS name.

LOC (x) for storing GPS info. See RFC 1876. Experimental.

MX identifies a mail exchange for the domain. See RFC 974 for details.

NS the authoritative nameserver for the domain.

NXT used in DNSSEC to securely indicate that RRs with an owner name in a certain name
interval do not exist in a zone and indicate what RR types are present for an existing
name. See RFC 2535 for details.

PTR a pointer to another part of the domain name space.

RP (x) information on persons responsible for the domain. Experimental.

RT (x) route-through binding for hosts that do not have their own direct wide area network
addresses. Experimental.

SIG (″signature″) contains data authenticated in the secure DNS. See RFC 2535 for details.

SOA identifies the start of a zone of authority.

SRV information about well known network services (replaces WKS).

WKS (h) information about which well known network services, such as SMTP, that a domain
supports. Historical, replaced by newer RR SRV.

X25 (x) representation of X.25 network addresses. Experimental.

The following classes of resource records are currently valid in the DNS:

IN the Internet system.

For information about other, older classes of RRs

RDATA is the type-dependent or class-dependent data that describes the resource:

A for the IN class, a 32 bit IP address.

A6 maps a domain name to an IPv6 address, with a provision for indirection for leading ″prefix″
bits.

CNAME a domain name.

DNAME provides alternate naming to an entire subtree of the domain name space, rather than to a
single node. It causes some suffix of a queried name to be substituted with a name from the
DNAME record’s RDATA.

MX a 16 bit preference value (lower is better) followed by a host name willing to act as a mail
exchange for the owner domain.

NS a fully qualified domain name.

PTR a fully qualified domain name.

SOA several fields.

The owner name is often implicit, rather than forming an integral part of the RR. For example, many
nameservers internally form tree or hash structures for the name space, and chain RRs off nodes. The
remaining RR parts are the fixed header (type, class, TTL) which is consistent for all RRs, and a variable
part (RDATA) that fits the needs of the resource being described.

474 Files Reference

The meaning of the TTL field is a time limit on how long an RR can be kept in a cache. This limit does not
apply to authoritative data in zones; it is also timed out, but by the refreshing policies for the zone. The
TTL is assigned by the administrator for the zone where the data originates. While short TTLs can be used
to minimize caching, and a zero TTL prohibits caching, the realities of Internet performance suggest that
these times should be on the order of days for the typical host. If a change can be anticipated, the TTL
can be reduced prior to the change to minimize inconsistency during the change, and then increased back
to its former value following the change.

The data in the RDATA section of RRs is carried as a combination of binary strings and domain names.
The domain names are frequently used as ″pointers″ to other data in the DNS.

Textual expression of RRs: RRs are represented in binary form in the packets of the DNS protocol, and
are usually represented in highly encoded form when stored in a nameserver or resolver. In the examples
provided in RFC 1034, a style similar to that used in master files was employed in order to show the
contents of RRs. In this format, most RRs are shown on a single line, although continuation lines are
possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with a blank, then the owner is assumed to
be the same as that of the previous RR. Blank lines are often included for readability.

Following the owner, we list the TTL, type, and class of the RR. Class and type use the mnemonics
defined above, and TTL is an integer before the type field. In order to avoid ambiguity in parsing, type and
class mnemonics are disjoint, TTLs are integers, and the type mnemonic is always last. The IN class and
TTL values are often omitted from examples in the interests of clarity.

The resource data or RDATA section of the RR are given using knowledge of the typical representation for
the data.

For example, we might show the RRs carried in a message as:

ISI.EDU. MX 10 VENERA.ISI.EDU.

MX 10 VAXA.ISI.EDU

VENERA.ISI.EDU A 128.9.0.32

A 10.1.0.52

VAXA.ISI.EDU A 10.2.0.27

A 128.9.0.33

The MX RRs have an RDATA section which consists of a 16 bit number followed by a domain name. The
address RRs use a standard IP address format to contain a 32 bit internet address.

This example shows six RRs, with two RRs at each of three domain names.

Similarly we might see:

XX.LCS.MIT.EDU. IN A 10.0.0.44

CH A MIT.EDU. 2420

This example shows two addresses for XX.LCS.MIT.EDU, each of a different class.

Discussion of MX Records: As described above, domain servers store information as a series of resource
records, each of which contains a particular piece of information about a given domain name (which is

Chapter 2. File Formats 475

usually, but not always, a host). The simplest way to think of a RR is as a typed pair of datum, a domain
name matched with relevant data, and stored with some additional type information to help systems
determine when the RR is relevant.

MX records are used to control delivery of email. The data specified in the record is a priority and a
domain name. The priority controls the order in which email delivery is attempted, with the lowest number
first. If two priorities are the same, a server is chosen randomly. If no servers at a given priority are
responding, the mail transport agent will fall back to the next largest priority. Priority numbers do not have
any absolute meaning — they are relevant only respective to other MX records for that domain name. The
domain name given is the machine to which the mail will be delivered. It must have an associated A record
— CNAME is not sufficient.

For a given domain, if there is both a CNAME record and an MX record, the MX record is in error, and will
be ignored. Instead, the mail will be delivered to the server specified in the MX record pointed to by the
CNAME.

example.com. IN MX 10 mail.example.com.

IN MX 10 mail2.example.com.

IN MX 20 mail.backup.org.

mail.example.com. IN A 10.0.0.1

mail2.example.com. IN A 10.0.0.2

For example:

Mail delivery will be attempted to mail.example.com and mail2.example.com (in any order), and if neither of
those succeed, delivery to mail.backup.org will be attempted.

Setting TTLs: The time to live of the RR field is a 32 bit integer represented in units of seconds, and is
primarily used by resolvers when they cache RRs. The TTL describes how long a RR can be cached
before it should be discarded. The following three types of TTL are currently used in a zone file.

SOA The last field in the SOA is the negative caching TTL. This controls how long other servers will
cache no-such-domain (NXDOMAIN) responses from you.

The maximum time for negative caching is 3 hours (3h).

$TTL The $TTL directive at the top of the zone file (before the SOA) gives a default TTL for every RR
without a specific TTL set.

RR TTLs Each RR can have a TTL as the second field in the RR, which will control how long other servers
can cache the it.

All of these TTLs default to units of seconds, though units can be explicitly specified, for example, 1h30m.

Inverse Mapping in IPv4: Reverse name resolution (that is, translation from IP address to name) is
achieved by means of the in-addr.arpa domain and PTR records. Entries in the in-addr.arpa domain are
made in least-to-most significant order, read left to right. This is the opposite order to the way IP
addresses are usually written. Thus, a machine with an IP address of 10.1.2.3 would have a
corresponding in-addr.arpa name of 3.2.1.10.in-addr.arpa. This name should have a PTR resource record
whose data field is the name of the machine or, optionally, multiple PTR records if the machine has more
than one name. For example, in the [example.com] domain:

$ORIGIN 2.1.10.in-addr.arpa

3 IN PTR foo.example.com.

476 Files Reference

Note: The $ORIGIN lines in the examples are for providing context to the examples only-they do not
necessarily appear in the actual usage. They are only used here to indicate that the example is
relative to the listed origin.

Other Zone File Directives: The Master File Format was initially defined in RFC 1035 and has
subsequently been extended. While the Master File Format itself is class independent all records in a
Master File must be of the same class.

Master File Directives include $ORIGIN, $INCLUDE, and $TTL.

The $ORIGIN Directive: Syntax: $ORIGIN domain-name [comment]

$ORIGIN sets the domain name that will be appended to any unqualified records. When a zone is first
read in there is an implicit $ORIGIN < zone-name> . The current $ORIGIN is appended to the domain
specified in the $ORIGIN argument if it is not absolute.
$ORIGIN example.com.
WWW CNAME MAIN-SERVER

is equivalent to
WWW.EXAMPLE.COM. CNAME MAIN-SERVER.EXAMPLE.COM.

The $INCLUDE Directive: Syntax: $INCLUDE filename [origin] [comment]

Read and process the file filename as if it were included into the file at this point. If origin is specified the
file is processed with $ORIGIN set to that value, otherwise the current $ORIGIN is used.

The origin and the current domain name revert to the values they had prior to the $INCLUDE once the file
has been read.

Note: RFC 1035 specifies that the current origin should be restored after an $INCLUDE, but it is silent on
whether the current domain name should also be restored. BIND 9 restores both of them. This
could be construed as a deviation from RFC 1035, a feature, or both.

The $TTL Directive: Syntax: $TTL default-ttl [comment]

Set the default Time To Live (TTL) for subsequent records with undefined TTLs. Valid TTLs are of the
range 0-2147483647 seconds.

$TTL is defined in RFC 2308.

BIND Master File Extension: the $GENERATE Directive: Syntax: $GENERATE range lhs type rhs [
comment]

$GENERATE is used to create a series of resource records that only differ from each other by an iterator.
$GENERATE can be used to easily generate the sets of records required to support sub /24 reverse
delegations described in RFC 2317: Classless IN-ADDR.ARPA delegation.
$ORIGIN 0.0.192.IN-ADDR.ARPA.
$GENERATE 1-2 0 NS SERVER$.EXAMPLE.
$GENERATE 1-127 $ CNAME $.0

is equivalent to
0.0.0.192.IN-ADDR.ARPA NS SERVER1.EXAMPLE.
0.0.0.192.IN-ADDR.ARPA NS SERVER2.EXAMPLE.
1.0.0.192.IN-ADDR.ARPA CNAME 1.0.0.0.192.IN-ADDR.ARPA

Chapter 2. File Formats 477

2.0.0.192.IN-ADDR.ARPA CNAME 2.0.0.0.192.IN-ADDR.ARPA
...
127.0.0.192.IN-ADDR.ARPA CNAME 127.0.0.0.192.IN-ADDR.ARPA
.

range This can be one of two forms: start-stop or start-stop/step. If the first form is used then step is
set to 1. All of start, stop and step must be positive.

lhs lhs describes the owner name of the resource records to be created. Any single $ symbols
within the lhs side are replaced by the iterator value. To get a $ in the output you need to
escape the $ using a backslash \, e.g. \$. The $ may optionally be followed by modifiers which
change the offset from the interator, field width and base. Modifiers are introduced by a {
immediately following the $ as ${offset[,width[,base]]}. e.g. ${-20,3,d} which subtracts 20 from
the current value, prints the result as a decimal in a zero padded field of with 3. Available output
forms are decimal (d), octal (o) and hexadecimal (x or X for uppercase). The default modifier is
${0,0,d}. If the lhs is not absolute, the current $ORIGIN is appended to the name.

For compatability with earlier versions $$ is still recognised a indicating a literal $ in the output.

type At present the only supported types are PTR, CNAME, DNAME, A, AAAA and NS.

rhs rhs is a domain name. It is processed similarly to lhs.

The $GENERATE directive is a BIND extension and not part of the standard zone file format.

Files

/usr/samples/tcpip/named.conf Contains the sample named.conf file.

Related Information
The named daemon.

The syslogd daemon.

The DOMAIN cache file format, DOMAIN local file format, DOMAIN data file format, DOMAIN Reverse
data file format, rc.tcpip file format.

Configuring a Primary Name Server and Naming for TCP/IP in AIX 5L Version 5.2 System Management
Guide: Communications and Networks.

.netrc File Format for TCP/IP

Purpose
Specifies automatic login information for the ftp and rexec commands.

Description
The $HOME/.netrc file contains information used by the automatic login feature of the rexec and ftp
commands. It is a hidden file in a user’s home directory and must be owned either by the user executing
the command or by the root user. If the .netrc file contains a login password, the file’s permissions must
be set to 600 (read and write by owner only). This file is part of TCP/IP in Network Support Facilities.

Note: The .netrc file is not used by any programs when the securetcpip command is running on your
system.

478 Files Reference

The .netrc can contain the following entries (separated by spaces, tabs, or new lines):

machine HostName The HostName variable is the name of a remote host. This entry begins the
definition of the automatic login process for the specified host. All following entries
up to the next machine entry or the end of the file apply to that host.

default The default variable is the same as machine except that default matches any name.
There can be only one default entry. It must be the last entry (after all machine
entries); otherwise, entries that follow it will be ignored. This is normally used as:

default login anonymous password user@site

thereby giving the user automatic anonymous ftp login to machines not specified in
the .netrc file. This can be overridden by using the -n flag to disable the auto-login.

login UserName The UserName variable is the full domain user name for use at the remote host. If
this entry is found, the automatic login process initiates a login, using the specified
name. If this entry is missing, the automatic login process is unsuccessful.

password Password The Password variable is the login password to be used. The automatic login
process supplies this password to the remote server. A login password must be
established at the remote host, and that password must be entered in the .netrc
file. Otherwise the automatic login process is unsuccessful, and the user is
prompted for the login password.

account Password The Password variable is the account password to be used. If this entry is found
and an account password is required at the remote host, the automatic login
process supplies the password to the remote server. If the remote host requires an
account password but this entry is missing, the automatic login process prompts for
the account password.

macdef MacroName The MacroName variable is the name of an ftp subcommand macro. The macro is
defined to contain all of the following ftp subcommands up to the next blank line or
the end of the file. If the macro is named init, the ftp command executes the macro
upon successful completion of the automatic login process. The rexec command
does not recognize a macdef entry.

Examples
The following is an example of an entry in a .netrc file:
machine host1.austin.century.com login fred password bluebonnet

Files

/usr/samples/tcpip/netrc Sample .netrc file

Related Information
The ftp command, rexec command, securetcpip command.

Creating the .netrc File in AIX 5L Version 5.2 System User’s Guide: Communications and Networks.

networks File Format for TCP/IP

Purpose
Contains network name information.

Description
The /etc/networks file contains information about the known networks that comprise the DARPA Internet.
Each network is represented by a single line in the networks file. The format for the entries in the
networks file is:

Chapter 2. File Formats 479

Name Number Aliases

The fields are described as follows:

Name Specifies an official network name.
Number Specifies a network number.
Aliases Specifies any unofficial names used for the network.

Items on a line are separated by one or more spaces or tab characters. Comments begin with a # (pound
sign). Routines that search the networks file do not interpret characters from the beginning of a comment
to the end of that line. Network numbers are specified in dotted-decimal notation. A network name can
contain any printable character except a field delimiter, new-line character, or comment character.

The networks file is normally created from the official network database maintained at the Network
Information Center (NIC). The file can be modified locally to include unofficial aliases or unknown
networks.This file is part of TCP/IP in Network Support Facilities.

Files

/usr/lpp/tcpip/samples/networks Contains a sample networks file, which also contains
directions for its use.

Related Information
The routed daemon.

The getnetent subroutine.

Naming in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

nroff or troff Input File Format

Purpose
Specifies input file format for the nroff and troff commands.

Description
The nroff and troff commands format text for printing by interspersing the text with control sequences.
Control sequences are either control line requests or escape requests that control text processing by the
printing device.

Control lines begin with a control character followed by a one- or two-character name that specifies a
basic request or a user-defined macro. Default control characters are the . (dot) or the ’ (apostrophe). The
’ (apostrophe) control character suppresses the nroff or troff command break function, which is caused by
some requests. This break function forces output of a partially filled line. To separate the control character
from the request or macro, use white space created with either a tab or the space bar. The nroff and troff
commands ignore control lines with unrecognized names.

Escape requests can be inserted anywhere in the input text by means of an escape character. The \
(backslash) character is the default escape character. For example, the escape request \nr causes the
contents of the number register, r, to be read.

Note: If text must begin a line with a . (dot), a zero-width character sequence (\&) must precede the
control character. This is true even if the control character is preceded by an escape request. The

480 Files Reference

zero-width character prevents the command from interpreting the text as a control character. See
the example for an illustration of the use of a zero-width character.

Examples
To print the words .dean, enter:
\fB\&.dean

If you neglected to add the \&, the formatter would read the statement as the macro request:
.de an

Related Information
The nroff command, troff command.

The nroff and troff Requests for the nroff and troff Commands.

nterm File Format

Purpose
Describes terminal driving tables for the nroff command.

Description
The nroff command uses driving tables to customize its output for various types of output devices such as
printing terminals, special word-processing terminals (such as Diablo, Qume, or NEC Spinwriter
mechanisms), or special output-filter programs. These driving tables are written as ASCII files and are
installed in the /usr/share/lib/nterm/tab.Name file, where the Name variable is the name for a terminal
type.

The first line of a driving table should contain the name of the terminal, which is simply a string with no
imbedded white space (any combination of spaces, tabs, and newline characters). The next part of the
driver table is structured as follows:

v bset [Integer]

v breset [Integer]

v hor [Integer]

v vert [Integer]

v newline [Integer]

v char [Integer]

v em [Integer]

v halfline [Integer]

v adj [Integer]

v twinit [Character String]

v twrest [Character String]

v twnl [Character String]

v hlr [Character String]

v hlf [Character String]

v flr [Character String]

v bdon [Character String]

v bdoff [Character String]

v iton [Character String]

Chapter 2. File Formats 481

v itoff [Character String]

v ploton [Character String]

v plotoff [Character String]

v up [Character String]

v down [Character String]

v right [Character String]

v left [Character String]

v codeset [Character String]

The meanings of these fields are as follows:

bset Specifies bits to set in the c_oflag field of the termio structure before output.
breset Specifies bits to reset in the c_oflag field of the termio structure before output.
hor Specifies horizontal resolution in units of 1/240 of an inch.
vert Defines vertical resolution in units of 1/240 of an inch.
newline Defines space moved by a new-line (linefeed) character in units of 1/240 of an inch.
char Defines a quantum of character sizes, in units of 1/240 of an inch (that is, a character is a

multiple of char units wide).
em Defines the size of an em space in units of 1/240 of an inch.
halfline Defines the amount of space moved by a half-linefeed (or half-reverse-linefeed) character in

units of 1/240 of an inch.
adj Defines a quantum of white space, in 1/240 of an inch; that is, white spaces are a multiple of

adj units wide.
Note: If this is less than the size of the space character, the nroff command outputs
fractional spaces using plot mode. Also, if the -e switch to the nroff command is used, the
adj variable is set equal to the hor variable by the nroff command.

twinit Specifies a sequence of characters used to initialize the terminal in a mode suitable for the
nroff command.

twrest Specifies a sequence of characters used to restore the terminal to normal mode.
twnl Specifies a sequence of characters used to move down one line.
hlr Specifies a sequence of characters used to move up one-half line.
hlf Specifies a sequence of characters used to move down one-half line.
flr Specifies a sequence of characters used to move up one line.
bdon Specifies a sequence of characters used to turn on hardware boldface mode, if any.
bdoff Specifies a sequence of characters used to turn off hardware boldface mode, if any.
iton Specifies a sequence of characters used to turn on hardware italics mode, if any.
itoff Specifies a sequence of characters used to turn off hardware italics mode, if any.
ploton Specifies a sequence of characters used to turn on hardware plot mode (for Diablo-type

mechanisms), if any.
plotoff Specifies a sequence of characters used to turn off hardware plot mode (for Diablo-type

mechanisms), if any.
up Specifies a sequence of characters used to move up one resolution unit (vert) in plot mode, if

any.
down Specifies a sequence of characters used to move down one resolution unit (vert) in plot

mode, if any.
right Specifies a sequence of characters used to move right one resolution unit (hor) in plot mode,

if any.
left Specifies a sequence of characters used to move left one resolution unit (hor) in plot mode, if

any.

482 Files Reference

codeset
CodeSetName

Specifies the code set for the particular output device. CodesetName is any valid name for
use with the iconv command. The code set defines character entries within the font
description file for the character set section. The code set field is optional. If used, the code
set field must follow the ″left″ field and precede the character set section, if provided. The
default is IBM-850.

The nroff command uses the specified CodesetName and the code set implied by the
current locale to determine if code set conversions are necessary for the input characters.
The iconv function is used to perform the code set conversion if necessary.

This part of the driving table is fixed-format; you cannot change the order of entries. Entries should be on
separate lines each containing two fields (no comments allowed) separated by white space; for example:
bset 0
breset 0
Hor 24

Follow this first part of the driving table with a line containing only the word charset, and then specify a
table of special characters that you want to include. That is, specify all the non-ASCII characters that the
nroff command knows by 2-character names, such as \(hy. If the nroff command does not find the word
charset where it expects, it terminates processing with an error message.

Each definition after charset occupies one line and has the following format:
chname width output

The chname field is the (2-letter) name of the special character, the width field is its width in ems, and the
output field is the string of characters and escape sequences to send to the terminal to produce the
special character.

International Character Support
For fonts for large character sets in which most characters are the same width, as in Japanese, Chinese,
and Korean, prototype characters are provided for the character set section of the nterm table. These
prototype characters specify the width of characters of varying byte lengths. The code field for prototype
character entries must contain a single ? (question mark). The prototype character entries apply to all
characters not explicitly defined on their own in the character set section. It is assumed the output device
code for characters handled via prototype characters is the same as the input code for characters (with
possible codeset conversions). The following are the prototype character definitions:

X1 Width ? Represents the width of all one-byte characters not defined elsewhere.

X2 Width ? Represents the width of all two-byte characters not defined elsewhere.

X3 Width ? Represents the width of all three-byte characters not defined elsewhere.

X4 Width ? Represents the width of all four-byte characters not defined elsewhere.

If any field in the charset part of the driving table does not pertain to the output device, you can give that
particular sequence as a null string or leave out the entry. Special characters that do not have a definition
in this file are ignored on output by the nroff command.

You can put the charset definitions in any order, so it is possible to speed up the nroff command by
putting the most used characters first. For example:
charset
em 1-
hy 1-
\-1-
bu 1 +\bo

Chapter 2. File Formats 483

The best way to create a terminal table for a new device is to take an existing terminal table and edit it to
suit your needs. Once you create such a file, put it in the /usr/share/lib/nterm directory. Then, give it the
name tab.xyz, where the xyz variable is the name of the terminal and also the name that you pass the
nroff command by way of the -T flag. For example:
nroff -Txyz

Files

/usr/share/lib/nterm/tab.Name Contains terminal files.

Related Information
The iconv command, nroff command.

International Character Support in Text Formatting Overview in AIX 5L Version 5.2 System User’s Guide:
Operating System and Devices discusses the European-language extended character set and the
commands that use it.

Permissions File Format for BNU

Purpose
Specifies BNU permissions for remote systems that call or are called by the local system.

Description
The /etc/uucp/Permissions file specifies access for remote systems that use the Basic Networking
Utilities (BNU) program to communicate with the local system. The Permissions file contains an entry for
each system the local system contacts using BNU. These entries correspond to entries in the
/etc/uucp/Systems file or other systems files listed in the /etc/uucp/Sysfiles file with the same format.
The Permissions file also contains an entry for each login ID that remote systems are permitted to use
when using BNU to log into the local system.

Entries in the Permissions file specify:

v The login ID for a remote system

v The circumstances under which a remote system is allowed to send files to and receive files from the
local system

v The commands a remote system is permitted to execute on the local system.

The access permissions set in a Permissions file affect remote systems as a whole. They do not pertain
to individual users who work on those remote systems. Permissions limiting uucico and uuxqt daemon
activities restrict the BNU access to a local system by all users on a specified remote system. The default
permissions for sending and receiving files and executing commands are very restrictive. However, the file
also provides options that enable you to change these defaults if you want to allow remote systems to
have less restricted access to the local system.

Each entry in a Permissions file is a logical line. If an entry is too long to fit on the screen, make the last
character in that physical line a \ (backslash), which indicates continuation, and then type the remainder of
the entry on the next physical line.

Each logical line contains a required entry specifying a login ID (LOGNAME entry) or the name of a
remote system (MACHINE entry), followed by optional option/value pairs separated by either spaces or
tabs. Both the LOGNAME and MACHINE entries and the option/value pairs are composed of name/value
pairs. Name/value pairs consist of the name of the entry or option followed by an = (equal sign) and the
value of the entry or option, with no spaces allowed within the pair.

484 Files Reference

The Permissions file can also contain comment lines and blank lines. Comment lines begin with a #
(pound sign) and occupy the entire physical line. Blank lines are ignored.

Notes:

1. Access permissions set in the Permissions file affect all BNU communications, including those made
through the mail facility or over a TCP/IP connection. Entries in a Permissions file do not affect a
remote-system user with a valid login on a specified local system. Remote login commands (such as
cu, ct, tn, or tip) connect to and log in on a system regardless of the restrictions set up in the
localPermissions file. A user with a valid login ID is subject only to the permission codes established
for that user’s user ID (UID) and group ID (GID).

2. Examples of using the Permissions file are provided. The examples include issuing default or
restricted access to remote systems and combining LOGNAME and MACHINE entries.

LOGNAME and MACHINE Entries
The Permissions file contains two types of required entries:

LOGNAME Specifies the login IDs and access permissions for remote systems that are allowed to contact the local
system.

MACHINE Specifies the names and access permissions for the remote systems that the local system can contact.

Both LOGNAME and MACHINE entries specify what the remote system can do on the local system.
LOGNAME entries take effect when a remote system contacts the local system. MACHINE entries take
effect when the local system contacts a remote system. The permissions given to the remote system in
the two types of entries can be the same or different.

For example, if remote system hera contacts local system zeus and logs in as uhera, the LOGNAME=uhera
entry in the Permissions file on zeus controls what actions system hera can take on system zeus. If
system zeus contacts system hera, the MACHINE=hera entry in the Permissions file on zeus controls what
actions system hera can take on system zeus.

The most restrictive LOGNAME and MACHINE entry is an entry without any option/value pairs, which
means that the remote system’s access to the local system is defined by the default permissions. To
override these defaults, include option/value pairs in the entry. The available options are:

v REQUEST

v SENDFILES

v READ,WRITE

v NOREAD,NOWRITE

v COMMANDS

v VALIDATE

v CALLBACK

These options allow different remote systems different types of access to the local system when using the
BNU file transport and command execution programs. A LOGNAME and a MACHINE entry can be
combined into a single entry when both include the same options.

LOGNAME Entry
A LOGNAME entry specifies one or more login IDs for remote systems permitted to log into the local
system to conduct uucico and uuxqt daemon transactions, plus the access permissions for those remote
systems. The login ID can be any valid login name. The LOGNAME entry specifies permissions for the
remote system when it contacts the local system. The format of a LOGNAME entry is:

LOGNAME=LoginID[:LoginID . . .] [Option=Value . . .]

Chapter 2. File Formats 485

Remote systems log in with one of the IDs listed in the LoginID list. While logged in with that ID, the
remote system has the permissions specified in the Option=Value list. The remote system that is calling
must be listed in the /etc/uucp/Systems file or an alternative uucico service systems file specified in
/etc/uucp/Sysfiles on the local system.

To specify more than one login ID with the same option/value pairs, list them in the same LOGNAME
entry, separated by colons but without spaces. To specify multiple login IDs with different option/value
pairs, list them in separate LOGNAME entries.

The most restrictive LOGNAME entry is an entry without any option/value pairs. The remote system’s
access to the local system is then defined by these default permissions:

v The remote system cannot ask to receive any queued files from the local system.

v The local system cannot send queued work to the calling remote system when the remote system has
completed its current operations. Instead, the queued work can be sent only when the local system
contacts the remote system.

v The remote system cannot send files to (write) or transfer files from (read) any location except the BNU
public directory (/var/spool/uucppublic/Syste mName) on the local system.

v Users on the remote system can execute only the default commands on the local system. (The default
command set includes only the rmail command, which users implicitly execute by issuing the mail
command.)

To override these defaults, include option/value pairs in the LOGNAME entry.

Note: A login ID can appear in only one LOGNAME entry. If there is a single entry for a login ID, that
entry alone is sufficient for all remote systems using that login ID.

Attention: Allowing remote systems to log in to the local system with the uucp login ID seriously
jeopardizes the security of your system. Remote systems logged in with the uucp ID can display and
possibly modify (depending on the other permissions specified in the LOGNAME entry) the local
Systems and Permissions files. It is strongly recommended that you create other BNU login IDs for
remote systems and reserve the uucp login ID for the person responsible for administering BNU on
the local system. Each remote system that contacts the local system should have a unique login ID
with a unique UID.

MACHINE Entry
The Permissions file contains a MACHINE entry for each remote system the local system is permitted to
contact. The access permissions specified in the MACHINE entry affect the remote system’s access to the
local system when the local system contacts the remote system. Following is the format of a MACHINE
entry:

MACHINE=SystemName[:SystemName . . .] [Option=Value . . .]

OR

MACHINE=OTHER [Option=Value . . .]

The most restrictive type of MACHINE entry, which uses the default permissions, is:

MACHINE=SystemName[:SystemName . . .]

The system names are separated by a colon. The entry includes no spaces or tab characters. There are
no option/value pairs, indicating that remote system access to the local system is defined by the following
default permissions:

v The remote system cannot ask to receive any local system files queued to run on the calling remote
system.

486 Files Reference

v The remote system cannot access (read) any files except those in the public directory on the local
system.

v The remote system can send (write) files only to the local public directory.

v The remote system can execute only those commands in the default command set on the local system.

To override these defaults, include option/value pairs in the LOGNAME entry.

The SystemName list in a MACHINE entry may include a number of different remote systems. A
MACHINE entry can also be:

MACHINE=OTHER [Option=Value . . .]

where the word OTHER represents a system name. This sets up access permissions for remote systems
not specified in the existing MACHINE entries in a Permissions file. The MACHINE=OTHER entry is
useful in these circumstances:

v When your installation includes a large number of remote systems that the local system regularly
contacts for uucico and uuxqt daemon transactions

v When it is occasionally necessary to change the default command set specified in the COMMANDS
option in the MACHINE entry.

Rather than create separate MACHINE entries for each of a large group of remote systems, set up one
MACHINE=OTHER entry that includes the appropriate commands specified in a COMMANDS option
entry. Then, when it becomes necessary to change the default command set, change the list of commands
in only one entry rather than in numerous entries. Usually, a MACHINE=OTHER entry also specifies more
restrictive option values for the unidentified remote systems.

Note: The local system cannot call any remote system that is not listed by name in a MACHINE entry,
unless there is a MACHINE=OTHER entry in the Permissions file on the local system.

Option/Value Pairs
Option/value pairs can be used with the LOGNAME and MACHINE entries. The default permissions are
restrictive, but can be changed with one or more of the option/value pairs. These options allow different
remote systems different types of access to the local system when using the BNU file transport and
command execution programs.

CALLBACK Option
The CALLBACK option, included in LOGNAME entries, specifies that no file transfer transactions will occur
until the local system contacts the targeted remote system. The format of the CALLBACK option is either:

CALLBACK=no

OR

CALLBACK=yes

Note: If two systems both include the CALLBACK=yes option in their respective Permissions files, they
cannot communicate with each other using BNU.

The default value, CALLBACK=no, specifies that the remote system may contact the local system and
begin transferring files without the local system initiating the operations.

For tighter security, use the CALLBACK=yes option to specify that the local system must contact the
remote system before the remote system may transfer any files to the local system.

Chapter 2. File Formats 487

If you include the CALLBACK=yes option in the LOGNAME entry, you must also have a MACHINE entry
for that system so that your system can call it back. You can have a MACHINE=OTHER entry to allow
your system to call any remote system, including the one for which the CALLBACK=yes option is
specified.

The default value, CALLBACK=no, is generally sufficient for most sites.

COMMANDS Option
The COMMANDS option, included only in a MACHINE entry, specifies the commands that the remote
systems listed in that MACHINE entry can execute on the local system. The format of the COMMANDS
option is either:

COMMANDS=CommandName[:CommandName . . .]

OR

COMMANDS=ALL

The default is COMMANDS=rmail:uucp. Under the default, remote systems can run only the rmail and
uucp commands on the local system. (Users enter the mail command, which then calls the rmail
command.)

The commands listed in the COMMANDS option override the default. You can also specify path names to
those locations on the local system where commands issued by users on remote systems are stored.
Specifying path names is useful when the default path of the uuxqt daemon does not include the directory
where a command resides.

Note: The default path of the uuxqt daemon includes only the /usr/bin directory.

To allow a certain remote system to execute all available commands on the local system, use the
COMMANDS=ALL format. This specifies that the command set available to the designated remote system
includes all commands available to users on the local system.

Note: The COMMANDS option can jeopardize the security of your system. Use it with extreme care.

NOREAD and NOWRITE Options
The NOREAD and NOWRITE options, used in both LOGNAME and MACHINE entries, delineate
exceptions to the READ and WRITE options by explicitly forbidding access by the remote system to
directories and files on the local system.

The formats of these options follow:

NOREAD=PathName[:PathName . . .]

NOWRITE=PathName[:PathName . . .]

Note: The specifications you enter with the READ, WRITE, NOREAD, and NOWRITE options affect the
security of your local system in terms of BNU transactions.

READ and WRITE Options
The READ and WRITE options, used in both LOGNAME and MACHINE entries, specify the path names of
directories that theuucico daemon can access when transferring files to or from the local system. You can
specify more than one path for uucico daemon activities.

The default location for both the READ and WRITE options is the /var/spool/uucppublic directory (the
BNU public directory) on the local system. The formats for these options follow:

488 Files Reference

READ=PathName[: PathName . . .]

WRITE=PathName[: PathName . . .]

The source file, destination file, or directory must be readable or writable for the other group for the BNU
program to access it. Set these permissions with the chmod command. A user without root user authority
can take away permissions granted by the READ and WRITE options, but that user cannot grant
permissions that are denied by these options.

If the READ and WRITE options are not present in the Permissions file, the BNU program transfers files
only to the/var/spool/uucppublic directory. However, if you specify path names in these options, enter the
path name for every source and destination, including the /var/spool/uucppublic directory if the remote
system is to be permitted access to it.

Attention: Specifications with the READ, WRITE, NOREAD, and NOWRITE options affect the
security of your local system in terms of BNU transactions. The subdirectories of directories specified
in the READ and WRITE options can also be accessed by the remote system unless these
subdirectories are forbidden with the NOREAD or NOWRITE options.

REQUEST Option
The REQUEST option, used in both LOGNAME and MACHINE entries, enables a remote system to ask to
receive any queued files containing work that users on the local system have requested to be executed on
that remote system. The default is not to allow such requests.

When a remote system contacts the local system to transfer files or execute commands, the remote
system may also request permission to receive any files queued on the local system for transfer to or
execution on that remote system. This format of the REQUEST option permits such requests:

REQUEST=yes

The default, REQUEST=no, does not have to be entered. This specifies that the remote system cannot
ask to receive any work queued for it on the local system. The local system must contact the remote
system before transmitting files and execute commands queued on the local system to the remote system.

Use the REQUEST=yes option in both LOGNAME and MACHINE entries to allow remote-system users to
transfer files to and execute commands on a local system on demand. Restrict access with the
REQUEST=no option so that the local system retains control of file transfers and command executions
initiated by remote systems.

Note: Entries in the Permissions file affect only BNU transactions. They do not affect remote-system
users with valid logins on a local system.

SENDFILES Option
The default allows the local system to transfer queued work to the remote system only when the local
system contacts the remote system. However, when a remote system finishes transferring files to or
executing commands on a local system, that local system may try to send queued work to the calling
remote system immediately. To enable an immediate transfer, use the following SENDFILES option:

SENDFILES=yes

The SENDFILES=yes option allows the transfer of queued work from the local to the remote system once
the remote system has completed its operations. The default value, SENDFILES=call, specifies that local
files queued to run on the remote system are sent only when the local system contacts the remote system.

Notes:

1. The SENDFILES option is ignored when it is included in a MACHINE entry.

Chapter 2. File Formats 489

2. Entries in the Permissions file affect only BNU transactions. They do not affect remote-system users
with valid logins on a local system.

VALIDATE Option
The VALIDATE option provides more security when including commands in the default command set that
could cause damage when executed by a remote system on a local system. Use this option, specified only
in a MACHINE entry, in conjunction with a COMMANDS option. The format of the VALIDATE option is:

VALIDATE=LoginName[: LoginName . . .]

The VALIDATE option verifies the identity of the calling remote system. Including this option in a
MACHINE entry means that the calling remote system must have a unique login ID and password for file
transfers and command executions.

Note: This option is meaningful only when the login ID and password are protected. Giving a remote
system a special login and password that provide unlimited file access and remote
command-execution ability is equivalent to giving any user on that remote system a normal login
and password on the local system, unless the special login and password are well-protected.

The VALIDATE option links a MACHINE entry, which includes a specified COMMANDS option, to a
LOGNAME entry associated with a privileged login. The uuxqt daemon, which executes commands on the
local system on behalf of users on a remote system, is not running while the remote system is logged in.
Therefore, the uuxqt daemon does not know which remote system sent the execution request.

Each remote system permitted to log in to a local system has its own spooling directory on that local
system. Only the BNU file transport and command execution programs are allowed to write to these
directories. For example, when the uucico daemon transfers execution files from the remote system hera
to the local system zeus, it places these files in the /var/spool/uucppublic/hera directory on system zeus.

When the uuxqt daemon attempts to execute the specified commands, it determines the name of the
calling remote system (hera) from the path name of the remote-system spooling directory
(/var/spool/uucppublic/hera). The daemon then checks for that name in a MACHINE entry in the
Permissions file. The daemon also checks for the commands specified in the COMMANDS option in a
MACHINE entry to determine whether the requested command can be executed on the local system.

Security
Access Control: Only a user with root authority can edit the Permissions file.

Examples
The following are examples of using the Permissions file.

Providing Default Access to Remote Systems
1. To provide the default permissions to any system logging in as uucp1, enter:

LOGNAME=uucp1

2. To provide the default permissions to systems venus, apollo, and athena when called by the local
system, enter:
MACHINE=venus:apollo:athena

Providing Less Restricted Access to Remote Systems
1. The following LOGNAME entry allows remote system merlin to read and write to more directories than

just the spool directory:
LOGNAME=umerlin READ=/ NOREAD=/etc:/usr/sbin/uucp
WRITE=/home/merlin:/var/spool/uucppublic

490 Files Reference

A system logging in as user umerlin can read all directories except the /usr/sbin/uucp and /etc
directories, but can write only to the /home/merlin and public directories. Because the login name
umerlin has access to more information than is standard, BNU validates the system before allowing
merlin to log in.

2. The following example allows remote system hera unrestricted access to system zeus, and shows the
relationship between the LOGNAME and MACHINE entries:
LOGNAME=uhera REQUEST=yes SENDFILES=yes READ
=/ WRITE=/MACHINE=hera VALIDATE=uhera REQUEST=yes \COMMANDS=ALL READ=/ WRITE=/

The remote system hera may engage in the following uucico and uuxqt transactions with system
zeus:

v System hera may request that files be sent from system zeus, regardless of which system placed
the call (REQUEST=yes appears in both entries);

v System zeus may send files to system hera when system hera contacts system zeus (SENDFILES=yes
in the LOGNAME entry);

v System hera may execute all available commands on system zeus (COMMANDS=ALL in the MACHINE
entry);

v System hera may read from and write to all directories and files under the root directory on system
zeus, regardless of which system placed the call (READ=/ WRITE=/ in both entries).

Because the entries provide system hera with relatively unrestricted access to system zeus, BNU
validates the log name before permitting system hera to log in.

Note: This entry allows unrestricted access to the local system by the remote system listed in the
MACHINE entry. This entry can jeopardize the security of your system.

Combining LOGNAME and MACHINE Entries
1. Following are LOGNAME and MACHINE entries for system hera:

LOGNAME=uhera REQUEST=yes SENDFILES=yes
MACHINE=hera VALIDATE=uhera REQUEST=yes COMMANDS=rmail:news:uucp

Since they have the same permissions and apply to the same remote system, these entries can be
combined as:
LOGNAME=uhera SENDFILES=yes REQUEST=yes \
MACHINE=hera VALIDATE=uhera COMMANDS=rmail:news:uucp

2. LOGNAME and MACHINE entries used for more than one remote system can be combined if they
have the same permissions. For example:
LOGNAME=uucp1 REQUEST=yes SENDFILES=yes
MACHINE=zeus:apollo:merlin REQUEST=yes COMMANDS=rmail:uucp

can be combined as:
LOGNAME=uucp1 REQUEST=yes SENDFILES=yes \MACHINE=zeus:apollo:
merlin COMMANDS=rmail:uucp

Either form of the entries allows systems zeus, apollo, and merlin the same permissions. They can:

v Log into the local system as uucp1.

v Execute the rmail and uucp commands.

v Request files from the local system, regardless of which system placed the call.

Allowing Access to Unnamed Systems
To allow your system to call systems that are not specified by name in a MACHINE entry, use a
MACHINE=OTHER entry as follows:
MACHINE=OTHER COMMANDS=rmail

Chapter 2. File Formats 491

This entry allows your system to call any machine. The machine called will be able to request execution of
the rmail command. Otherwise, the default permissions apply.

Permissions File Entries for Three Systems
The following examples show the Permissions files for three connected systems:

On system venus:
LOGNAME=uhera MACHINE=hera \
READ=/ WRITE=/ COMMANDS=ALL \
NOREAD=/usr/secure:/etc/uucp \
NOWRITE=/usr/secure:/etc/uucp
SENDFILES=yes REQUEST=yes VALIDATE=hera

On system hera:
LOGNAME=uvenus MACHINE=venus \
READ=/ WRITE=/ COMMANDS=rmail:who:lp:uucp \
SENDFILES=yes REQUEST=yes

LOGNAME=uucp1 MACHINE=OTHER \
REQUEST=yes SENDFILES=yes

On system apollo:
LOGNAME=uhera MACHINE=hera \
READ=/var/spool/uucppublic:/home/hera \
REQUEST=no SENDFILES=call

Given these permissions:

v System hera logs into system venus as uhera. It can request or send files regardless of who initiated the
call and can read or write to all directories except /usr/secure and /usr/sbin/uucp. It can execute any
command. However, before system venus allows any system to log in as uhera, it checks to make sure
that system is hera.

v System venus logs into system hera as uvenus. After it logs in, it can read or write to all directories on
system hera and can request or send commands regardless of who initiated the call. It can execute the
rmail, who, lp, and uucp commands only.

v System hera logs into system apollo as uhera. After it logs in, it can send files, but requests to receive
files will be denied. It can read and write only from the public directory and the /home/hera directory,
and can execute only the default list of commands.

v System apollo logs into system hera as uucp1, since it does not have a unique login ID on system
hera. It can request and send files, regardless of who initiated the call. It can read and write only from
the public directory (the default) and execute only the default list of commands.

Note: The uucp1 login ID defined on system hera can be used by any remote system, not just by
system apollo. In addition, the presence of the MACHINE=OTHER entry allows system hera to
call machines not specified elsewhere in the Permissions file. If system hera calls an unknown
machine, the permissions in the MACHINE=OTHER entry take effect.

Files

/etc/uucp/Permissions file Describes access permissions for remote systems.
/etc/uucp/Systems file Describes accessible remote systems.
/etc/uucp/Sysfiles file Specifies possible alternative files for the

/etc/uucp/Systems file.
/var/spool/uucppublic directory Contains files that have been transferred.

492 Files Reference

Related Information
The chmod command, mail command, rmail command, uucheck command, uucpadm command.

The uucico daemon and uuxqt daemon read the Permissions file.

Configuring BNU, Understanding the BNU File and Directory Structure, Understanding BNU Security in
AIX 5L Version 5.2 System Management Guide: Communications and Networks.

phones File Format for tip

Purpose
Describes connections used by the tip command to contact remote systems.

Description
The /etc/phones-file file lists the remote systems that can be contacted using the tip command, along
with the telephone numbers used to contact those systems.

A sample phones-file file for the tip command is included with the operating system. The sample file is
named /usr/lib/phones-file. A user with root user authority can copy the sample file to the /etc/phones file
and modify it to suit the needs of a particular site.

Any tip user can create an individual phones file in the format of the phones-file file. The individual
phones file can be named with any operating system file name and placed in any directory to which the
user has access. To instruct the tip command to use the new file, either set the tip command phones
variable or set an environment variable named PHONES.

Systems listed in the phones file must also be described in the /etc/remote-file file, in the file specified by
the REMOTE environment variable, or in the file specified by the tip command remote variable.

Format of Entries
The format of an entry in the phones file is:
SystemName PhoneNumber

The SystemName field and the PhoneNumber field must be separated by at least one space. More than
one space can be used to improve readability.

SystemName Specifies the name of the remote system to be contacted.
PhoneNumber Specifies the telephone number, including line access codes, to be used to reach the remote

system. Dashes may be used for readability.

If more than one phone number can be used to reach a certain system, make multiple entries for that
system, placing each entry on a separate line.

Any line beginning with a # (pound sign) is interpreted as a comment.

Examples
1. To list phone numbers in a phones file, make entries similar to the following:

hera 1237654
zeus 9-512-345-9999

System hera is contacted using the telephone number 123-7654. To contact system zeus, a line-access
code of 9 is followed by the telephone number 512-345-9999.

Chapter 2. File Formats 493

2. To define more than one phone number for the same system, make multiple entries for that system, as
follows:
decvax 9-915-987-1111
decvax 9-915-987-2222

If the tip command cannot reach the decvax system using the first phone number, it attempts to
contact the system using the second phone number.

Files

/etc/phones Denotes complete path name of the phones file.
/usr/lib/phones-file Contains an example phones file.
/etc/remote Describes remote systems that can be contacted using the tip command.

Related Information
The tip command.

The Contacting Connected UNIX Systems Using the tip Command in AIX 5L Version 5.2 System
Management Guide: Communications and Networks.

Poll File Format for BNU

Purpose
Specifies when the BNU program should poll remote systems.

Description
The /etc/uucp/Poll file specifies when the Basic Networking Utilities (BNU) program should poll (initiate
automatic calls to) designated remote computers. This file is used in conjunction with the
/var/spool/cron/crontabs/uucp file, uudemon.hour command, and uudemon.poll command. Together,
these files are responsible for initiating automatic calls to certain remote systems.

Each entry in the Poll file contains the name of the remote computer followed by a sequence of times
when the BNU program should poll that system. Modify the times specified in the Poll file based on how
the systems at your site are used. Specify times as digits between 0 and 23. The format of the entry is as
follows:
SystemName Time [Time ...]

The fields in the Poll file entry must be separated by at least one space. More spaces can be used for
readability. A tab character between the SystemName field and the first Time field is optional.

Notes:

1. Only someone with root user authority can edit the Poll file, which is owned by the uucp program login
ID.

2. Most versions of UUCP require a tab character between the SystemName field and the first Time field.
In BNU, either a tab or spaces will work.

Examples
Following is a standard entry in the Poll file:
hera <TAB> 0 4 8 12 16 20

This entry specifies that the local system will poll the remote system hera every 4 hours.

494 Files Reference

The tab character can be replaced by one or more spaces. Thus the preceding entry is equivalent to the
following one:
hera 0 4 8 12 16 20

Files

/etc/locks Contains lock files that prevent multiple uses of devices and
multiple calls to systems.

/var/spool/cron/crontabs/uucp Schedules BNU jobs for the cron daemon.

Related Information
The uucpadm command, uudemon.hour command, uudemon.poll command.

The cron daemon.

Configuring BNU, Setting Up BNU Polling of Remote Systems, Understanding the BNU File and Directory
Structure in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

profile File Format

Purpose
Sets the user environment at login time.

Description
The $HOME/.profile file contains commands that the system executes when you log in. The .profile also
provides variable profile assignments that the system sets and exports into the environment. The
/etc/profile file contains commands run by all users at login.

After the login program adds the LOGNAME (login name) and HOME (login directory) variables to the
environment, the commands in the $HOME/.profile file are executed, if the file is present. The .profile file
contains the individual user profile that overrides the variables set in the profile file and customizes the
user-environment profile variables set in the /etc/profile file. The .profile file is often used to set exported
environment variables and terminal modes. The person who customizes the system can use the mkuser
command to set default .profile files in each user home directory. Users can tailor their environment as
desired by modifying their .profile file.

Note: The $HOME/.profile file is used to set environments for the Bourne and Korn shells. An equivalent
environment for the C shell is the $HOME/.cshrc file.

Examples
The following example is typical of an /etc/profile file:
#Set file creation mask unmask 022
#Tell me when new mail arrives
MAIL=/usr/mail/$LOGNAME
#Add my /bin directory to the shell
search sequence
PATH=/usr/bin:/usr/sbin:/etc::
#Set terminal type
TERM=lft
#Make some environment variables global
export MAIL PATH TERM

Chapter 2. File Formats 495

Files

/etc/profile Contains profile variables.

Related Information
The bsh command, csh command, env command, login command, mail command, mkuser command,
ksh command, stty command, su command.

The Profiles Overview in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices discusses profiles and how they can be modified for individual needs.

The Shells Overview in AIX 5L Version 5.2 System User’s Guide: Operating System and Devices
describes what shells are, the different types, and how they affect the way commands are interpreted.

protocols File Format for TCP/IP

Purpose
Defines the Internet protocols used on the local host.

Description
The /etc/protocols file contains information about the known protocols used in the DARPA Internet. Each
protocol is represented by a single line in the protocols file. Each entry corresponds to the form:

Name Number Aliases

The fields contain the following information:

Name Specifies an official Internet Protocol name.
Number Specifies a protocol number.
Aliases Specifies any unofficial names used for the protocol.

Items on a line are separated by one or more spaces or tab characters. Comments begin with the #
(pound sign), and routines that search the protocols file do not interpret characters from the beginning of
a comment to the end of the line. A protocol name can contain any printable character except a field
delimiter, new line character, or comment character.

The lines appear as follows:
ip 0 #dummy for IP
icmp 1 #control message protocol
#ggp 2 #gateway^2 (not normally used)
tcp 6 #tcp
#egp 8 #exterior gateway protocol
#pup 12 #pup
udp 17 #user datagram protocol
#idp 22 #xns idp

Related Information
The getprotoent subroutine.

TCP/IP Protocols in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

496 Files Reference

queuedefs File Format

Purpose
Specifies the handling of cron daemon events.

Description
The /var/adm/cron/queuedefs file defines how the system handles different cron daemon events types.
The file specifies the maximum number of processes per event type to schedule at one time, the nice
value of the event type, and how long to wait before retrying to execute a process. The following event
types can be scheduled by the cron daemon:

v at command events

v batch command events

v crontab command events

v sync subroutine events

v ksh command events

v csh command events

This file is empty as shipped, but can be modified to change how the cron daemon handles each event
type. Each entry in the queuedefs file is of the form:
EventType.[Jobsj][Nicen][Waitw]

The fields are described as follows:

EventType Specifies a character representing an event type. The following are valid values for the EventType
field:

a Specifies an at command event.
b Specifies a batch command event.
c Specifies a crontab command event.
d Specifies a sync subroutine event.
e Specifies a ksh command event.
f Specifies a csh command event.
Jobsj Specifies the maximum number of jobs the cron daemon can start at one time. The default value is

100.
Nicen Specifies the nice value for job execution. The default value is 2.
Waitw Specifies the time, in seconds, to wait before attempting to execute the command again. The

default value is 60 seconds.

Note: You must have root user authority to modify this file.

The at command allows you to specify the time when a command should be run. Each command or
program will be assigned a job number and will be queued in the /var/spool/cron/atjobs directory.

The queueing system may also be set up by defining a batch queue in the /etc/qconfig file and using the
enq command to submit a job to this queue. This queue may be set up with a first-come, first-serve
discipline. The following stanzas should be added to the /etc/qconfig file to enable this:
bsh
device = bshdev
discipline = fcfs
bshdev:
backend = usr/bin/sh

This configuration may already exist in the /etc/qconfig file. If you want your commands and programs to
run under the Korn shell, you should change the last line in the above stanza to:

Chapter 2. File Formats 497

backend = usr/bin/ksh

After creating the above stanza in the /etc/qconfig file, enable the queue by issuing the following:
qchk -A

Programs and commands may now be run on a first-come, first-serve basis using the enq command. For
example, to run the program PROGRAM1 from the bsh queue, enter:
enq -P bsh PROGRAM1

The flags for the batch facility and queueing are:

at -qa This is for queueing at jobs.
at -qb This is for queueing batch jobs.
at -qe This is for queueing ksh jobs.
at -qf This is for queueing csh jobs.

Examples
1. To set the at command job queue to handle 4 concurrent jobs with a nice value of 1 and no retries,

enter:
a.4j1n

2. To set the crontab command job queue to handle 2 concurrent jobs with a nice value of 2 and a retry
in 90 seconds if the fork subroutine fails, enter:
c.2j2n90w

Related Information
The at command, batch command, crontab command, csh command, enq command, ksh command, rc
command.

The cron daemon.

The fork subroutine, sync subroutine.

rc.net File Format for TCP/IP

Purpose
Defines host configuration for network interfaces, host name, default gateway, and static routes.

Description
The /etc/rc.net file is a shell script that contains configuration information. The stanzas allow you to enable
the network interfaces and set the host name, the default gateway, and any static routes for the current
host. This file can be used as a one-step configuration alternative to using individually the set of
commands and files necessary to configure a host.

The rc.net shell script is run by the configuration manager program during the second phase of
configuration. If TCP/IP is installed, a second script, rc.tcpip, is run from the init command after the
second phase of configuration has completed and after the init command has started the SRC master.

Stanzas in the file should appear in the order in which they are presented here.

The rc.net shell script may also be run by the configuration manager program (cfgmgr) if cfgmgr is run
after system configuration is completed. It is often run at other times to configure new devices that have
been added to the system since boot time. If cfgmgr runs rc.net, both the configuration methods and

498 Files Reference

rc.net itself check to see if networking devices are already in the Available state. If so, the values of
device attributes are not changed to avoid overwriting any configuration changes that have been made
since boot time.

If /etc/rc.net is run without cfgmgr, device attributes will be reset to the values in the ODM database
regardless of the states of the devices. This allows a system’s configuration to be restored to the values
specified in the ODM database.

Using the Configuration Methods
These stanzas use the configuration methods for TCP/IP to manipulate the ODM database.

Configuring Network Interfaces
For each network adapter that has been previously configured, a set of stanzas is required. The following
stanzas define, load, and configure the appropriate network interfaces for every configured network
adapter. These configuration methods require that the interface and protocol information be entered in the
ODM database, using either SMIT or high-level configuration commands such as the mkdev command.
The network interface configuration information is held in the running system only and must be reset at
each system restart.
/usr/lib/methods/defif >>
$LOGFILE 2>&1
/usr/lib/methods/cfgif $* >> $LOGFILE

2>&1

The defif method defines the network interfaces. The cfgif method configures the network interfaces in
the configuration database.

The second part of the stanzas indicates that output should be sent to a log file. The log file must include
the full path name. If no log file is specified, the default log file is /dev/null.

Along with the network interface configuration, additional commands must be executed for X.25 and SLIP
interfaces: the x25ip command for X.25 interfaces and the slattach command for SLIP connections. The
x25ip command loads the X.25 translation table into the kernel and the slattach command is used to
assign a TTY line to an interface for SLIP. For each SLIP interface, the slattach command must be
executed for the appropriate TTY.

At times, when diskless clients reboot using these configuration methods they hang on LED 581. This
happens because diskless clients use server disk space to store the logging information. To get the client
to reboot when this happens, execute the /usr/lib/methods/cgfig configuration method in the client rc.net
file that resides on the server without message logging as follows:
/usr/lib/methods/cfgif $*

Setting the Host Name, Default Gateway, and Any Static Routes
The following stanzas set the host name, default gateway, and static routes, using the definet and cfginet
subroutines to alter the ODM database for the inet0 object.
/usr/lib/methods/definet >>
$LOGFILE 2>&1/usr/lib/methods/cfginet >> $LOGFILE
2>&1

The second part of the stanzas indicates that output should be sent to a log file. The log file must include
the full path name. If no log file is specified, the default log file is /dev/null.

Using Traditional Configuration Commands
These stanzas use configuration commands for TCP/IP to set configuration values.

Configuring Network Interfaces
The following stanza defines, loads, and configures the specified network interface:

Chapter 2. File Formats 499

/usr/sbin/ifconfig Interface inet
InternetAddress up>>$LOGFILE 2 &1

The Interface parameter should specify the type and number of the interface, for example, tr0. The
InternetAddress parameter should specify the Internet address of the interface, for example, 192.1.8.0.

The last part of the stanza indicates that output should be sent to a log file. The log file must include the
full path name. If no log file is specified, the default log file is /dev/null.

Setting the Host Name, Default Gateway, and Any Static Routes
These stanzas should follow any stanzas for the network interfaces. These stanzas use the hostname
command to set the host name and the route command to define the default gateway and any static
routes. The static route information is held in the running system only and must be reset at each system
restart.
/usr/bin/hostname Hostname >>
$LOGFILE 2>&1/usr/sbin/route add 0
Gateway >> $LOGFILE 2>&1

/usr/sbin/route add DestinationAddress
Gateway >>$LOGFILE 2>&1

The add variable for the route command adds a static route to the host. This route can be to the default
gateway (by specifying a hop count, or metric, of 0), or to another host through a gateway.

The last part of the stanzas indicates that output should be sent to a log file. The log file must include the
full path name. If no log file is specified, the default log file is /dev/null.

Miscellaneous Functions
Use these stanzas to set the host ID and user name. By default, the host ID and user name are set to the
host name. However, these stanzas can be altered to customize the host ID and user name.
/usr/sbin/hostid `hostname’
/usr/bin/uname -s `hostname | sed -e ’s/\..*$//’`
>> $LOGFILE 2>&1

To customize these stanzas, replace the hostname entry in single quotation marks with the desired host ID
or user name.

The second part of the user name stanza indicates that output should be sent to a log file. The log file
must include the full path name. If no log file is specified, the default log file is /dev/null.

Load Network File System (NFS)
If you have the Network File System (NFS) installed on the current host, the following stanza loads and
configures the NFS kernel extension:
if [-x /usr/sbin/gfsinstall -a
-x /usr/lib/drivers/nfs.ext] ; then

/usr/sbin/gfsinstall -a /usr/lib/drivers/
nfs.ext >>$LOGFILE 2>&1fi

The last part of the NFS stanza indicates that output should be sent to a log file. The log file must include
the full path name. If no log file is specified, the default log file is /dev/null.

Examples
1. To set up a Token-Ring interface, using the ifconfig command, include the following stanza:

/usr/sbin/ifconfig tr0 inet
192.1.8.0 up >>$LOGFILE 2>&1

This stanza defines Token-Ring interface tr0, with the Internet address 192.1.8.0.

500 Files Reference

2. To set the host name, using the hostname command, include the following stanza:
/usr/bin/hostname robo.austin.century.com

>>$LOGFILE 2>&1

This stanza sets host name robo.austin.century.com. The host name in this example includes domain
and subdomain information, which is necessary if the host is using the domain naming system.

3. To set up a default gateway, using the route command, include the following stanza:
/usr/sbin/route add 0
192.100.13.7 >>$LOGFILE 2>&1

The value 0 for the Metric parameter means that any packets sent to destinations not previously
defined and not on a directly connected network go through the default gateway. The 192.100.13.7
address is the default gateway.

4. To set up a static route, using the route command, include the following stanza:
/usr/sbin/route add net
192.100.201.7 192.100.13.7>>$LOGFILE 2>&1

The 192.100.201.7 address is the receiving computer (the Destination parameter). The 192.100.13.7
address is the routing computer (the Gateway parameter).

Files

/etc/rc.tcpip Initializes daemons at each system restart.

Related Information
The hostname command, ifconfig command, init command, mkdev command, route command,
sendmail command, slattach command.

The cfgif method, cfginet method, defif method, definet method.

The rc.tcpip file.

The inetd daemon.

Installation and Configuration for TCP/IP in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

rc.ntx File Format

Purpose
Supplies configuration information for the Network Terminal Accelerator adapter card.

Description
The /etc/rc.ntx file invokes the hty_load command to load the /etc/hty_config file. This file can also
specify a route to a gateway, using the ntx_route command. Also, the rc.ntx file enables SNMP.

The /etc/rc.ntx file can be used to perform different configuration tasks. For example, to supply a route to
an additional gateway, add the following line immediately after the comment about additional routes, and
supply an IP address for the Destination and Gateway parameters:
/usr/bin/ntx_route -drhp$i net Destination
Gateway

Chapter 2. File Formats 501

Following is the file as it is shipped with the software package. You can add additional commands to the
file, as indicated above.
echo "Executing hty_load"
/usr/bin/hty_load -f /etc/hty_config
echo "Finished executing hty_load"

#
Maximum number of Network Terminal Accelerator adapters
supported on each workstation.
#

MAX_RHP_DEVICES=7

i=0
while [$i -le $MAX_RHP_DEVICES]
do

if [-f /etc/rhp$i.ntx_comun.conf]; then
echo "Configuring SNMP communities on NTX

Adapter rhp$i"
/usr/bin/ntx_comun -d /dev/rhp$i -f

/etc/rhp$i.ntx_comun.conf
fi
if [-f /etc/rhp$i.ntx_traps.conf]; then

echo "Configuring SNMP traps on NTX Adapter rhp$i"
/usr/bin/ntx_traps -d /dev/rhp$i -f

/etc/rhp$i.ntx_traps.conf
fi
if [-f /etc/rhp$i.ntx_nms.conf]; then

echo "Configuring SNMP nms on NTX Adapter rhp$i"
/usr/bin/ntx_nms -d /dev/rhp$i -f

/etc/rhp$i.ntx_nms.conf
fi
if [-f /etc/rhp$i.ntx_descr.conf]; then

echo "Configuring SNMP site-specific variables on
NTX Adapter rhp$i"

/usr/bin/ntx_descr -d /dev/rhp$i -f
/etc/rhp$i.ntx_descr.conf

fi
if [-c /dev/rhp$i]; then

STATE=`lsattr -E -l rhp$i -a snmp -F value`
echo "Turning $STATE SNMP on NTX Adapter rhp$i"
/usr/bin/ntx_snmp -d /dev/rhp$i $STATE

fi
Additional routes for each NTX Adapter can be added here
example: /usr/bin/ntx_route -d /dev/rhp$i X.X.X X.X.X.X

i=`expr $i + 1` # increment count

done

Related Information
The hty_load command.

remote File Format for tip

Purpose
Describes remote systems contacted by the tip command.

Description
The /etc/remote-file file describes the remote systems that can be contacted using the tip command.
When a user invokes the tip command, the command reads the remote file to find out how to contact the

502 Files Reference

specified remote system. If invoked with the SystemName parameter, the tip command searches the
remote file for an entry beginning with that system name. If invoked with the PhoneNumber parameter, the
command searches the remote file for an entry beginning with tipBaudRate, where BaudRate designates
the baud rate to be used for the connection.

Any tip user can create an individual remote file in the format of the remote file. The individual remote file
can be named with any operating system file name and placed in any directory to which the user has
access. To instruct the tip command to use the new file, set the REMOTE environment variable before
issuing the tip command, or use the tip command remote variable.

A sample remote file for tip is included with the operating system. The sample file is named
/usr/lib/remote-file. This sample file contains two examples, either of which is a complete remote file.
One of the examples uses a set of general dialer definitions, followed by general system definitions, and
specific systems. The second example defines each system individually.

Any user can copy the sample file to some other directory and modify it for individual use. A user with root
user authority can copy the sample file to the /etc/remote file and modify it to suit the needs of a particular
site.

Format of Entries
The general format of an entry in the /etc/remote-file file is a system name, baud rate, or dialer name
followed by a description and one or more attributes, as follows:

SystemName[|SystemName ...]| Description:Attribute[:Attribute ...]:

OR

tipBaudRate|Description: Attribute[:Attribute ...]:

OR

DialerName[|DialerName ...]| Description:Attribute[:Attribute ...]:

The name of the system or dialer is followed by a | (pipe symbol) and a description of the system or dialer.
More than one system or dialer name can be given; in this case, they must be separated by pipe symbols
and precede the Description parameter. The last section in this list is always treated by the tip command
as a description, not a system name.

The Description field is followed by a : (colon) and a list of attributes separated by colons. Each entry must
also end with a colon.

An entry can be continued on the next line by typing a \ (backslash). The continuation line must begin with
a : (colon) and can be indented for readability.

Any line beginning with a # (pound sign) is read as a comment line.

Note: Spaces can be used only within the Description parameter or in comment lines.

Chapter 2. File Formats 503

Attributes Used to Define Systems and Dialers
Use the following attributes to describe systems in the remote file:

at=ACUType Defines the type of automatic calling unit (also known as the ACU or
modem). This attribute should be specified in each entry (or in another
entry included with the tc attribute) unless the system is linked to a
modem. The ACUType must be one of the following:

v biz31f

v biz31w

v bix22f

v biz22w

v df02

v df03

v dn11

v ventel

v hayes

v courier

v vadic

v v3451

v v831
br#BaudRate Specifies the baud rate to be used on the connection. The default rate is

1200 baud. This attribute should be specified in each entry or in another
entry included with the tc attribute. The baud rate specified can be
overridden using the tip command -BaudRate parameter.

cu=Device Specifies the device for the call unit if it is different from the device
defined in the dv statement. The default is the device defined in the dv
statement.

du Makes a call. This attribute must be specified in each entry or in another
entry included with the tc attribute.

dv=Device[,Device ...]
Lists one or more devices to be used to
link to the remote system. If the first
device listed is not available, the tip
command attempts to use the next device
in the list, continuing until it finds one
available or until it has tried all listed
devices.

This attribute must be specified in each
entry or in another entry included with the
tc attribute.
el=Mark Defines the mark used to designate an end-of-line in a file transfer. This

setting is the same as that defined by the tip command eol variable.
fs=Size Specifies the frame size. The default is the value of the BUFSIZ

environment variable. This value can also be changed using the tip
command framesize variable.

ie=InputString Specifies the input end-of-file mark. The default setting is null value.
oe=OutputString Specifies the output end-of-file mark. The default setting is a null value.
pa=Parity Specifies the required parity setting for connecting to the remote system.

The default setting is Even. Valid choices are: Even (7 bits, even parity),
Odd (7 bits, odd parity), None (7 bits, no parity), and Graphic (8 bits, no
parity).

504 Files Reference

pn= Lists telephone numbers to be used to call the remote system. This entry
is required if a modem is used to call a remote system, except in a
tipBaudRate entry when a telephone number is entered with the tip
command.

If the tip command is invoked with the PhoneNumber parameter, the pn
attribute in the appropriate tipBaudRate entry is ignored and the number
given when the command is invoked is used instead.

The pn attribute can be in either of the following forms:

pn=@ Instructs tip to search the /etc/phones-file file, or the file
specified with the phones variable, for the telephone number.

pn=Number[,Number ...]
Lists one or more phone numbers to be used to call the remote
system.

tc=Entry Refers to another entry in the file. This allows you to avoid defining the
same attributes in more than one entry. If used, this attribute should be at
the end of the entry.

tc=DialerName Includes the specified DialerName entry. The DialerName entry must be
defined elsewhere in the remote file.

tc=SystemName Includes the specified SystemName entry. The SystemName entry must
be defined elsewhere in the remote file.

Setting Up Group Entries
Set up entries in the remote file in two ways. Define each system individually, giving all of its attributes in
that entry. This works well if you are contacting several dissimilar systems.

Or group the systems by similarity. To do this, use two or three groups, depending on how the systems are
similar. The groups can be arranged by:

v Dialer definitions, including the device, baud rate, call unit, ACU type, and dial-up flag.

v General system definitions, including any information that several systems have in common. Use the tc
attribute to refer to a dialer entry.

v Specific system descriptions, which use the tc attribute to refer to one of the general system types or a
dialer entry.

You can omit either the dialer definitions or the general system definitions, depending on the way the
remote systems are grouped.

Examples

Defining a System Individually
To define a system without using the tc= attribute, enter:
vms750|ghost|NPG 750:\

:dv=/dev/tty36,/dev/tty37:br#9600:el=^Z^U^C^S^Q^O:\
:ie=$@:oe=^Z:

This entry defines system vms750, which can also be referred to as ghost. The system can be accessed
using either /dev/tty36 or /dev/tty37, at a baud rate of 9600. The end-of-line mark is ^Z^U^C^S^Q^O. The
input end-of-file mark is $@ and the output end-of-file mark is ^Z. Since no phone number is defined, the
system is accessed over a direct connection.

Grouping Systems by Similarity
The following examples use a dialer entry and a general system entry, followed by specific system entries
that refer to the general entries.

1. To define a dialer, enter:

Chapter 2. File Formats 505

dial1200|1200 Baud Able Quadracall attributes:
\ :dv=/dev/cul1:br#1200:at=dn11:du:

This entry defines a dialer called dial1200. The dialer is connected to device /dev/cul1 and is an ACU
type of dn11. The dial-up (du) flag is set.

2. To define a general system type and refer to a dialer entry, enter:
unix1200|1200 Baud dial-out to another UNIX system:\ :el=^U^C^R^O^D^S^Q:ie=%$:oe=^D:tc=dial1200:

This entry defines a system type called unix1200. The end-of-line mark for communication with this
type of remote system is ^U^C^R^O^D^S^Q. The input end-of-file mark is %$ and the output end-of-file
mark is ^D. The dialer defined by the dial1200 entry is used.

3. To describe a specific system, enter:
zeus|CSRG ARPA VAX-11/780:pn=@:tc=unix1200:

This entry describes system zeus, which is described as a CSRG ARPA VAX-11. The tip command then
searches the /etc/phones file for the telephone number (pn=@) and uses the attributes of a unix1200
system type (tc=unix1200).

Files

/etc/remote Denotes the complete path name of the remote file.
/etc/phones Lists the phone numbers used to contact remote systems.
/usr/lib/remote-file Contains an example remote file.

Related Information
The tip command.

The Contacting Connected UNIX Systems Using the tip Command in AIX 5L Version 5.2 System
Management Guide: Communications and Networks.

resolv.conf File Format for TCP/IP

Purpose
Defines Domain Name Protocol (DOMAIN) name-server information for local resolver routines.

Description
If the /etc/resolv.conf file exists, the local resolver routines either use a local name resolution database
maintained by a local named daemon (a process) to resolve Internet names and addresses, or they use
the DOMAIN protocol to request name resolution services from a remote DOMAIN name server host. If no
resolv.conf file exist than the resolver routines continue searching their direct path, which may include
searching through /etc/hosts file or the NIS hosts map.

Note: If the resolv.conf file does not exist, the resolver routines attempt name resolution using the default
paths, the /etc/netsvc.conf file, or the NSORDER environment variable.

If the host is a name server, the resolv.conf file must exist and contain a nameserver reference to itself as
well as a default domain.

The resolv.conf file can contain one domain entry or one search entry, a maximum of three nameserver
entries, and any number of options entries.

A domain entry tells the resolver routines which default domain name to append to names that do not end
with a . (period). There can be only one domain entry. This entry is of the form:

506 Files Reference

domain DomainName

The DomainName variable is the name of the local Internet domain. If there is no domain or search entry
in the file, the gethostbyname subroutine returns the default domain (that is, everything following the first
period). If the host name does not have a domain name included, the root domain is assumed.

A search entry defines the list of domains to search when resolving a name. Only one domain entry or
search entry can be used. If the domain entry is used, the default search list is the default domain. A
search entry should be used when a search list other than the default is required. The entry is of the form:
search DomainName ...

The search entry can have from one to six DomainName variables. The first DomainName variable is
interpreted as the default domain name. The DomainName variable is the name of a domain that should be
included in the search list.

Notes:

1. The domain entry and search entry are mutually exclusive, so if both entries are used, the one that
appears last will override the other.

2. The resolver routines require you to set the default domain. If the default domain is not set in the
/etc/resolv.conf file, then you must set it in the hostname on the machine.

A nameserver entry defines the Internet address of a remote DOMAIN name server to the resolver routines
on the local domain. This entry is of the form:
nameserver Address

The Address variable is the dotted decimal address of the remote name server. If more than one name
server is listed, the resolver routines query each name server (in the order listed) until either the query
succeeds or the maximum number of attempts have been made.

The Address variable is the address of the preferred network on which you want the address returned.
The Netmask variable is the netmask of the corresponding network address.

The options entry specifies miscellaneous behaviors of the resolver. The entry is of the form:
options OptionName

The OptionName variable can have one of the following values:

debug Turns on the RES_DEBUG resolver option, which enables resolver debugging.
ndots:n Specifies that for a domain name with n or more periods (.) in it, the resolver should try to look up the

domain name ″as is″ before applying the search list.

Entries in this file can be made using the System Management Interface Tool (SMIT), by using the
namerslv command, or by creating and editing the file with an editor.

Examples
To define a domain host that is not a name server, enter:
domain abc.aus.century.com
nameserver 192.9.201.1
nameserver 192.9.201.2

The example contains entries in the resolv.conf file for a host that is not a name server.

Chapter 2. File Formats 507

Files

/usr/lpp/tcpip/samples/resolv.conf Contains the sample resolv.conf file.

Related Information
The namerslv command.

The named daemon.

The /etc/hosts file format.

The gethostbyaddr subroutine, gethostname subroutine.

TCP/IP Name Resolution.

Configuring Name Servers and Naming in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

resolv.ldap File Format for TCP/IP

Purpose
Defines Lightweight Directory Access Protocol (LDAP) server information for ldap mechanism used by
local resolver subroutines.

Description
The /etc/resolv.ldap file specifies the IP address of the LDAP server, which contains the name resolution
database. This database is used by the local resolver subroutines to resolve symbolic host names into
Internet addresses. LDAP server specifications are obtained from resolv.ldap file only for the ldap
mechanism.

Note: Although still supported, the use of the ldap mechanism is not recommended. Instead, the use of
the nis_ldap mechanism is advised. For the nis_ldap mechanism, use the ldap.cfg file for
configuring the LDAP server and other details.

However, if the resolv.ldap file does not exist, then the resolver subroutines continue searching their direct
paths, which may include searching through a DNS server, the /etc/hosts file, or the NIS hosts map. In
addition to the default paths, the resolver subroutines may also use the /etc/irs.conf file, the
/etc/netsvc.conf file, or the NSORDER environment variable.

The resolv.ldap file contains one ldapserver entry, which is required, and one searchbase entry, which is
optional. The ldapserver entry specifies the Internet address of the LDAP server to the resolver
subroutines. The entry must take the following format:

ldapserver Address [Port]

The Address parameter specifies the dotted decimal address of the LDAP server. The Port parameter is
optional; it specifies the port number that the LDAP server is listening on. If you do not specify the Port
parameter, then it defaults to 389.

The searchbase optional entry specifies the base DN (distinguished name) of the name resolution
database on the LDAP server. This entry must take the following format:

searchbase baseDN

508 Files Reference

The baseDN parameter specifies the starting point for the name resolution database on the LDAP server.
If you do not define this entry, then the searchbase entry defaults to cn=hosts.

Example
To define an LDAP server with an IP address 192.9.201.1, that listens on the port 636, and with a
searchbase cn=hosttab, enter the following:
ldapserver 192.9.201.1 636
searchbase cn=hosttab

Files

/etc/resolv.ldap Contains the IP address of the LDAP server.

Related Information
The irs.conf file, hosts file format, the netsvc.conf file, and the ldap.cfg file.

TCP/IP Name Resolution in AIX 5L Version 5.2 System Management Guide: Communications and
Networks.

.rhosts File Format for TCP/IP

Purpose
Specifies remote users that can use a local user account on a network.

Description
The $HOME/.rhosts file defines which remote hosts (computers on a network) can invoke certain
commands on the local host without supplying a password. This file is a hidden file in the local user’s
home directory and must be owned by the local user. It is recommended that the permissions of the
.rhosts file be set to 600 (read and write by the owner only). The group user and others should not have
write permission for the .rhosts file. If write permission is granted to the group user (and others), then
permission to invoke any command on the local host will not be given to the remote host . The format of
the $HOME/.rhosts file is:

HostNameField [UserNameField]

When a remote command executes, the local host uses the local /etc/hosts.equiv file and the
$HOME/.rhosts file of the local user account to validate the remote host and remote user.

Host-Name Field
The .rhosts file supports the following host-name entries:
+
HostName
-HostName
+@NetGroup
-@NetGroup

A + (plus sign) signifies that any host on the network is trusted. The HostName entry is the name of a
remote host and signifies that any user logging in from HostName is trusted. A -HostName entry signifies that
the host is not trusted. A +@NetGroup or -@NetGroup entry signifies that all hosts in the netgroup or no hosts
in the netgroup, respectively, are trusted.

The @NetGroup parameter is used by Network Information Service (NIS) for grouping. Refer to the NIS
netgroup file for more information.

Chapter 2. File Formats 509

User-Name Field
The .rhosts file supports the following user-name entries:
+
UserName
-UserName
+@NetGroup
-@NetGroup

A + (plus sign) signifies that any user on the network is trusted. The UserName entry is the login name of
the remote user and signifies that the user is trusted. If no user name is specified, the remote user name
must match the local user name. A -UserName entry signifies that the user is not trusted. A +@NetGroup or
-@NetGroup entry signifies that all users in the netgroup or no users in the netgroup, respectively, are
trusted.

The @NetGroup parameter is used by NIS for grouping. Refer to the NIS netgroup file for more
information.

Examples
1. To allow remote users to log in to a local-user account, enter:

hamlet dewey
hamlet irving

These entries in the local user’s $HOME/.rhosts file allow users dewey and irving at remote host
hamlet to log in as the local user on the local host.

2. To prevent any user on a given remote host from logging in to a local-user account, enter:
-hamlet

This entry in the local user’s $HOME/.rhosts file prevents any user on remote host hamlet from
logging in as a local user on the local host.

3. To allow all hosts in a netgroup to log in to a local-user account, while restricting specified users, enter:
+@century -joe
+@century -mary
+@century

This entry in the local user’s $HOME/.rhosts file allows all hosts in the century netgroup to log in to
the local host. However, users joe and mary are not trusted, and therefore are requested to supply a
password. The deny, or - (minus sign), statements must precede the accept, or + (plus sign),
statements in the list. The @ (at sign) signifies the network is using NIS grouping.

Files

/etc/host.equiv Specifies remote systems that can execute commands on the local system.
netgroup Lists the groups of users on the network.

Related Information
The lpd command, rcp command, rdist command, rdump command, rlogin command, rsh command,
ruser command.

The NIS netgroup file.

The rlogind daemon, rshd daemon.

The TCP/IP hosts.equiv file format.

510 Files Reference

Naming in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

sccsfile File Format

Purpose
Describes the format of a Source Code Control System (SCCS) file.

Description
The SCCS file is an ASCII file consisting of the following logical parts:

Checksum The logical sum of all characters except the characters in the first line
Delta table Information about each delta including type, SCCS identification (SID) number, date and time

of creation, and comments about the delta
User Names Login names, group names, or numerical group IDs of users who are allowed to add or

remove deltas from the SCCS file
Header flags Flags defining how some SCCS commands work with the SCCS file, or defining values for

identification keywords in the file
Comments Descriptive information about the file
Body The actual text lines intermixed with control lines

Note: Several lines in an SCCS file begin with the ASCII SOH (start-of-heading) character (octal 001).
This character is called the control character and is represented graphically as the @ (at sign) in
the following text. Any line described in the following text that does not begin with the control
character contains text from the source file. Text lines cannot begin with the control character.

Checksum
The checksum is the first line of an SCCS file. This line has the following format:

@hNumber

The control character and variables in the checksum line have the following meanings:

@h Designates a magic number of 064001 octal (or 0x6801).
Number Represents the logical sum of all characters in the SCCS file (not including the characters in this line).

It is recalculated each time the SCCS file is updated with SCCS commands, and is used to detect
possibly damaging changes made to an SCCS file by non-SCCS commands.

Delta Table
Each time a group of changes, known as a delta, is made to an SCCS file, the delta table creates a new
entry. Each entry contains descriptive information about the delta. The @s (at sign, letter s) character
defines the beginning of a delta table entry, and the @e (at sign, letter e) character defines the end of the
entry. For each delta created, there is a delta table entry in the following format:
@s NumberLinesInserted/NumberLinesDeleted/NumberLinesUnchanged
@d DeltaType SIDDate Time UserID Number PreNumber
@i NumbersIncluded . . .
@x NumbersExcluded . . .
@g NumbersIgnored . . .
@m ModificationRequestNumber
@c Comments . . .

The control characters and variables in the delta table entries have the following meanings:

@s Designates the first line of each entry, which contains the number of lines inserted, deleted, and unchanged
from the previous delta.

Chapter 2. File Formats 511

@d Designates the second line of each entry, which contains the following variables:

DeltaType
Type of delta. The letter d designates a normal delta; the letter r designates a delta that has been
removed with the rmdel command.

SID SCCS ID (SID) of the delta.

Date Date, in the YY/MM/DD format, that the delta was created.

Time Time, in the HH:MM:SS format, that the delta was created.

UserID Login name that corresponds to the real user ID at the time the delta was created.

Number
Serial numbers of the delta.

PreNumber
Serial numbers of the delta’s predecessor.

@i Indicates the serial numbers of the deltas that are included in the creation of this delta by using the get
command with the -i flag. This line can contain several delta numbers and is optional.

@x Indicates the serial numbers of the deltas that were excluded from the creation of this delta by using the get
command with the -x flag. This line can contain several delta numbers and is optional.

@g Indicates the serial numbers of the deltas that were ignored in the creation of this delta by using the delta
command with the -g flag. This line can contain several delta numbers and is optional.

@m Indicates a modification request (MR) number associated with the delta. There can be several MR lines in an
SCCS file, each one containing a different MR number. These lines are optional.

@c Comment lines associated with the delta. There can be several comment lines in an SCCS file. These lines are
optional.

@e Ends the delta table entry.

User Names
This section of the file contains the list of login names, group names, or numerical group IDs of users who
can add deltas to the file. The names and IDs are separated by new-line characters. This section uses the
following control characters:

@u A bracketing line that indicates the beginning of a user-name list. This line appears before the first line in the
list.

@U A bracketing line that indicates the end of a user name list. This line appears after the last line in the list.

An empty list allows any user to make a delta. The list is changed using the admin command with the -a
or -e flag.

Header Flags
Flags control commands and define keywords used internally in the SCCS. Header flags are set using the
admin command with various flags. The format of each line is:
@f Flag Text

The control character and variables in the header flags section have the following meanings:

@fb Branch. Allows the use of the -b flag of the get command to cause a branch in the delta tree.
@fc Ceiling. Defines the highest release number from 0 through 9999 that can be retrieved by a get command for

editing. This release number is called the ceiling release number.
@fd Default SCCS ID. Defines the default SID to be used when one is not specified with a get command. When

this flag is not set, the get command uses the most recently created delta.
@ff Floor. Defines the lowest release number from 0 through 9999 that can be retrieved by a get command for

editing. This release number is called the floor release number.
@fi ID keywords. Controls the No ID keywords error warning message. When this flag is not set, the message is

only a warning. When this flag is set, the absence of ID keywords causes an error and the delta fails.
@fj Joint edit. Causes the get command to allow concurrent edits of the same base SID.

512 Files Reference

@fl Lock releases. Defines a list of releases that cannot be edited with the get command using the -e flag.
@fm Module name. Defines the replacement of a module name for the 11 identification keyword. This value is used

to override the default.
@fn No changes. Causes the delta command to insert null deltas (delta entries with no changes) for any skipped

releases when a delta for a new release is created. For example, delta 5.1 is created after delta 2.1, skipping
releases 3 and 4. When this flag is omitted, skipped releases are omitted from the delta table.

@fq User-defined flag. Defines the replacement of the identification keyword.
@ft Type of program. Defines the replacement of the identification keyword.
@fv Program name. Controls prompting for MR numbers in addition to comments on delta creation. If a value is

assigned, it defines an MR number validity-checking program.

Comments
When comments are taken from a file containing descriptive text by using the admin command with the -t
flag option, the contents of that file are displayed in the comments section. Typically, the comments section
contains a description of the purpose of the entire file and uses the following control characters:

@t A bracketing line that indicates the beginning of the comments section. This line appears before the first
comment line.

@T A bracketing line that indicates the end of the comments section. This line appears after the last comment line.

Body
The body consists of two types of lines: control lines and text lines. Control lines bracket text lines. The
text lines contain pieces of text that were inserted or deleted for a particular version of the file. The control
lines that bracket a piece of text indicate whether a piece of text was inserted or deleted, and in what
version. When a particular version of a file is created from the SCCS file, the control lines identify the
pieces of text that should be added or deleted for that version of the file.

Control lines can be nested within one another, so the same portion of text can be bracketed by several
sets of control lines. The body of a long SCCS file can be very complicated. The SCCS commands,
however, provide a better way to understand the different versions of an SCCS file.

@INumber Indicates an insert control line. The Number variable indicates the serial number that corresponds to
the delta for the control line. Text inserted between this control line and an end control line with the
same serial number was inserted as part of the delta that corresponded to the same serial number.

@DNumber Indicates a delete control line. The Number variable indicates the serial number that corresponds to
the delta for the control line is indicated by the Number variable. Text deleted between this control
line and an end control line with the same serial number was deleted as part of the delta that
corresponded to the same serial number.

@ENumber Indicates an end control line. The serial number that corresponds to the delta for the control line is
indicated by the Number variable. This indicates the end of a section of text to be inserted or deleted.

Within the text are also identification keywords that are specific to the SCCS file system. These keywords
represent identifying information about the SCCS file. When using the get command without the -e or -k
flag, these keywords will be replaced by their values. Because different versions have different identifying
information, the identification keywords provide an easy way for the SCCS file system to provide the
correct identifying information for any version of the file requested by the get command. Keywords can be
used to provide several kinds of information:

v Version identification information:

Keyword Value
11 Module name; the value of the m header flag in the SCCS file
1.1 SID (1, 1, 0, 0)
1 Release
1 Level
0 Branch

Chapter 2. File Formats 513

Keyword Value
0 Sequence

v Time and date information:

Keyword Value
01/09/28 Date of the current get command (YY/MM/DD)
9/28/01 Date of the current get command (MM/DD/YY)
14:33:53 Time of the current get command (HH:MM:SS)
00/12/05 Date newest applied delta was created (YY/MM/DD)
12/5/00 Date newest applied delta was created (MM/DD/YY)
14:59:04 Time newest applied delta was created (HH:MM:SS)

v Name information:

Keyword Value
/family/aix/vc/8/9/7/3/s.11 SCCS file name
/family/aix/vc/8/9/7/3/s.11 Full path name of the SCCS file

v Flag values:

Keyword Value
Value of the -q header flag in the SCCS file
Module type; the value of the -t header flag in the SCCS file

v Line numbers:

Keyword Value
562 The current line number. This keyword identifies message output by the program. It should not be

used on every line to provide sequence numbers.

v Constructing what strings:

Keyword Value
@(#) 11 1.1@(#) A shorthand notation for constructing what strings for program files specific to other

operating systems. Its value equals the following key letters:

@(#) 11 1.1@(#) = @(#) 11 1.1@(#)
src/idd/en_US/files/aixfiles/sccsfile.ide,
idaixfiles, idd520

A shorthand notation for constructing what strings for program files specific to this
operating system. Its value is the characters and key letters:

src/idd/en_US/files/aixfiles/sccsfile.ide, idaixfiles, idd520 = @(#)11<horizontal-tab>1.1
@(#) The 4-character string @(#) (at sign, left parenthesis, pound sign, right parenthesis)

recognized by the what command.

Related Information
Source Code Control System (SCCS) Overview in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs contains general information about the SCCS file system.

The admin command, delta command, get command, prs command, rmdel command, what command.

services File Format for TCP/IP

Purpose
Defines the sockets and protocols used for Internet services.

514 Files Reference

Description
The /etc/services file contains information about the known services used in the DARPA Internet network.
Each service is listed on a single line corresponding to the form:

ServiceName PortNumber/ProtocolName Aliases

These fields contain the following information:

ServiceName Specifies an official Internet service name.
PortNumber Specifies the socket port number used for the service.
ProtocolName Specifies the transport protocol used for the service.
Aliases Specifies a list of unofficial service names.

Items on a line are separated by spaces or tabs. Comments begin with a # (pound sign) and continue until
the end of the line.

If you edit the /etc/services file, run the refresh -s inetd or kill -1 InetdPID command to inform the inetd
daemon of the changes.

Examples
Entries in the services file for the inetd internal services may look like this:
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
daytime 13/tcp
daytime 13/udp
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp 21/tcp
time 37/tcp timeserver
time 37/udp timeserver

Related Information
The getservent subroutine.

The /etc/inetd.conf file format.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

TCP/IP Daemons in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

setmaps File Format

Purpose
Defines the text of a code-set map file and a terminal map file.

Description
The text of a code set map file consists of a description of the code set. The text of a terminal map file
consists of a set of rules.

Chapter 2. File Formats 515

Code-Set Map File
The text of a code set map file is a description of the code set. It specifies the optional converter modules
to push on the stream. The code set map file is located in the /usr/lib/nls/csmap directory. Its name is the
code set name.

The code set map file contains the following lines:

Name : name

Type : M | S

Multibyte handling : EUC

ioctl EUC_WSET : w1:d1, w2:d2, w3:d3

lower converter : /usr/lib/drivers/lwconv

upper converter : /usr/lib/drivers/upconv

The lines have the following meaning:

Name Specifies the code set name. It is also the code set map file name.
Type Specifies the code set type. It can be one of the following:

M Denotes a multibyte code set.

S Denotes a single byte code set.
Multibyte handling Specifies the type of multibyte handling of the code set. This line is required only

if Type is M. It must be EUC, denoting an EUC multibyte code set.
ioctl EUC_WSET Specifies the parameters for the EUC_WSET ioctl operation. This line is required

only if Type is M. The w1, w2, and w3 parameters specify the memory width of
the code set; the d1, d2, and d3 parameters specify the screen width of the code
set.

lower converter
upper converter Specifies the lower and upper converters to use on the stream. This line is

required only if the code set is a non-EUC multibyte code set.

For example, the code set map file for the ISO 8859-1 code set would contain the following lines:
Name: ISO8859-1
Type: S

Another example: the code set map file for the IBM-943 code set would contain the following lines:
Name : IBM-943
Type : M
Multibyte handling : EUC
ioctl EUC_WSET : 2:2,1:1,2:2
lower converter : /usr/lib/drivers/lc_sjis
upper converter : /usr/lib/drivers/up_sjis

Terminal Map File
The text of a terminal map file is a set of rules. Each rule has the following format:
pattern:replacement

The size of the input pattern string is limited to 10 characters in length and the size of the replacement
pattern string is limited to 16 characters in length.

The pattern string can include the following special characters:

? Matches any single byte.

516 Files Reference

@x Matches this rule only if the pattern processor is in state x, where x is any single byte. (This
sequence does not match a character in the input buffer.)

\?, \@, or \\ Prevents the pattern processor from interpreting ? (question mark), @ (at sign), or \
(backslash) as special characters.

\ddd Represents any byte in octal notation.
\xdd Represents any byte in hexadecimal notation.

The replacement string can include the following special characters:

$n Uses the nth character in the input string that matched this pattern, where n is a decimal
digit.

@x Moves the pattern processor into state x. (This sequence does not become part of the
replacement string.)

\$, \@, or \\ Prevents the pattern processor from interpreting $, @, or \ as special characters.
\ddd Represents any byte in octal notation.
\xdd Represents any byte in hexadecimal notation.

Files

/usr/lib/nls/csmap/sbcs Code set map for a single-byte code page
/usr/lib/nls/csmap/IBM-932 Code set map for the IBM-932 code page
/usr/lib/nls/csmap/IBM-943 Code set map for the IBM-943 code page
/usr/lib/nls/csmap/IBM-eucJP Code set map for the IBM-eucJP code page
/usr/lib/nls/csmap/IBM-eucKR Code set map for the IBM-eucKR code page
/usr/lib/nls/csmap/IBM-eucTW Code set map for the IBM-eucTW code page
/usr/lib/nls/termmap/*.in Input map files
/usr/lib/nls/termmap/*.out Output map files

Related Information
The eucioctl.h file.

The setmaps command.

The setcsmap subroutine.

tty Subsystem Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

simprof File Format

Purpose
Specifies PC Simulator startup options.

Description
When you start PC Simulator with the pcsim command, PC Simulator searches for a profile of startup
options. The profile used by PC Simulator is the simprof file format. It is a pure ASCII text file that you
can edit with any text editor.

You can specify the name of a profile with the -profile flag at the pcsim command. If you do not enter a
-profile flag, PC Simulator searches for the simprof default profile. This sample profile, included with PC
Simulator, is located in the /usr/lpp/pcsim/samples directory.

Chapter 2. File Formats 517

You can define more than one profile. These profiles can be for different users or for starting PC Simulator
with different options. PC Simulator first searches for the specified profile in the current working directory,
then in the $HOME directory, and finally in the /usr/lpp/pcsim directory. To operate with only one profile,
you can copy the simprof sample profile to one of these directories, and edit it to set the options you
want.

Even if PC Simulator finds a profile, it searches all three directories. It can, therefore, find more than one
profile with the same file name. If this happens, PC Simulator accumulates options from each profile. It
overlays values for the same option in each profile and uses the last value it reads. You can set options
with flags from the command line that override any options in a profile.

Examples
A simulator profile resembles an AIXwindows default profile. Options are listed by flag name, followed by a
: (colon), then a parameter value. The simprof sample profile included with PC Simulator is similar to this
example, except that it includes no parameter values.

If an option is not listed or no value is specified, PC Simulator starts with the default value for this option.
A blank space between the colon and parameter value is optional. Any text following a # (pound sign) is a
comment. PC Simulator expands environment variables inside the simprof file.

Note: If there is no diskette drive present, the entries for Adiskette and Bdiskette should be removed
from the profile. If there is only one diskette drive present, the entry for Bdiskette should be
removed from the profile.

Cdrive : /home/dos1/txt.fil # select file /home/dos1/txt.fil
for fixed disk C:

Ddrive : /home/dos2 # select directory /home/dos2
for fixed disk D:

permission : 666 # read/write permissions to
all users for files saved
to fixed disk

Adiskette : 3 # select 3.5-inch diskette drive
Bdiskette : # no B diskette drive selected
dtime : 5 # release diskette drive to

AIX after 5 seconds
display : # use default AIXwindows

server, unix:0
dmode : V # select VGA display mode
geometry : # use default window size

& position, 720x494+152+265
iconGeometry : =64X64+10+10 # size and position of icon
iconName : # use default, pcsim
kbdmap : # no file selected
name : BUDGET # name in window title bar
refresh : 100 # refresh display every

100 milliseconds
lpt1 : lp0 # emulate DOS lpt1 with AIX lp0
lpt2 : # none selected
lpt3 : # none selected
mouse : com1 # emulate Microsoft serial mouse
ptime : 30 # print job file buffering

time out after 30 seconds
xmemory : 1024 # provide 1MB extended memory

Files

/usr/lpp/pcsim/samples/simprof Contains an example startup profile.

518 Files Reference

Standard Resource Record Format for TCP/IP

Purpose
Defines the format of lines in the named data files.

Description
Records in the named files are called resource records. Files using the standard resource record format
are:

v DOMAIN data file

v DOMAIN reverse data file

v DOMAIN cache file

v DOMAIN local file

Resource records in the named files have the following general format:

{Name} {TTL} AddressClass RecordType RecordSpecificData

Field Definitions
Name Varies depending on the RecordType field. The Name field can

specify the name of a domain, a zone of authority, the name of a
host, the alias of a host or of a mailbox, or a user login ID. The
Name field must begin in column one. If this field is left blank, the
name defaults to the value of the previous resource record.

TTL Time to live. This specifies how long the record is stored in the
database. If this field is left blank, the time to live defaults to the
time to live specified in the start of authority record. This field is
optional.

AddressClass Address class of the record. There are three valid entries for this
field: ANY for all address classes, IN for Internet, and CHAOS for
Chaos net.

RecordType The type of resource record. Valid record types are:
SOA Start of authority record
NS Name server record
A Address record
HINFO Host information record
WKS Well-known services record
CNAME Canonical name record
PTR Domain name pointer record
MB Mailbox record
MR Mail rename name record
MINFO Mailbox information record
MG Mail group member record
MX Mail exchanger record

Details and examples of record types are given below.
RecordSpecificData These fields are dependent on the RecordType field.

Although case distinctions are kept when loading databases, all queries to the name server database are
case insensitive.

Chapter 2. File Formats 519

The following characters have special meanings:

Special Characters
. If used in the Name field, a . (period) indicates the current domain.

Note: Use the . (period) at the end of resource records to append the
path of the current domain.

. . If used in the Name field, two periods indicate the null domain name of
the root domain.

@ If used in the Name field, an @ (at sign) indicates the current origin.
\X Where X is any character except numbers 0 through 9 or the character .

(period), a backslash preceding a character indicates that the character’s
special meaning should not be used. For example, \@ (backslash, at
sign) can be used to put an @ character in the label of an entry in the
Name field.

\DDD Where each D is any number between 0 and 9. Each number is identified
as the binary octet corresponding to the number. These octets are not
checked for special meaning.
Note: The \DDD character is not used in the Name field of a resource
record.

() Parentheses indicate that data broken into more than one line should be
grouped together. The () (parentheses) are currently used in the SOA and
WKS resource records.

; Indicates a comment line. All characters after the ; (semicolon) are
ignored.

* An * (asterisk) indicates wildcards.
Note: The * (asterisk) character is not used in the Name field of a
resource record.

There are two special types of lines that are not data lines. Instead they specify special processing. These
lines are the $INCLUDE and $ORIGIN lines.

Special Types of Lines
$INCLUDE FileName This line begins in column one and is followed by a file name. It indicates that the

specified file should be included in the name server database. This is useful in
separating different types of data into multiple files. For example:

$INCLUDE /usr/named/data/mailbox

indicates that this file should be loaded into the name server’s database. Data
files specified by the $INCLUDE line are not treated differently from any other
named data file.

$ORIGIN OriginName This line begins in column one and is followed by the name of a domain. This line
indicates that the origin from more than one domain in a data file should be
changed.

Resource Record Types
Following is a list of the resource record types used in the named data files:

v Start of authority record

v Name server record

v Address record

v Host information record

v Well-known services record

v Canonical name record

v IN-ADDR.ARPA record

520 Files Reference

v Domain-name pointer record

v Gateway PTR record

v Mailbox record

v Mail rename name record

v Mailbox information record

v Mail group member record

v Mail exchanger record

Start of Authority Record

The start of authority (SOA) record indicates the start of a zone of authority. There should be only one
start of authority record per zone, indicated by a value of SOA in the RecordType field. However, the SOA
record for the zone should be in each named.data and named.rev file on each name server in the zone.
Its structure corresponds to the following format:

{Name}{TTL} AddressClass RecordType Origin PersonInCharge
@ IN SOA merl.century.com jane.merl.century.com
(1.1 ;Serial
3600 ;Refresh
600 ;Retry
3600000 ;Expire
86400) ;Minimum

Fields:

Name Name of the zone.
TTL Time to live.
AddressClass Internet (IN).
RecordType Start of authority (SOA).
Origin Name of the host on which this data file resides.
PersonInCharge Person responsible for keeping the data file current. The format is similar to a mailing

address, but the @ (at sign) that normally separates the user from the host name is
replaced by a . (period).

Serial Version number of this data file. This number should be incremented each time a change
is made to the data. The upper limit for the number to the right of the decimal point is
9999.

Refresh The number of seconds after which a secondary name server checks with the primary
name server to see if an update is needed. A suggested value for this field is 3600 (1
hour).

Retry The number of seconds after which a secondary name server is to retry after a refresh
attempt fails. A suggested value for this field is 600 (10 minutes).

Expire The upper limit in seconds that a secondary name server can use the data before it
expires because it has not been refreshed. This value should be fairly large, and a
suggested value is 3600000 (42 days).

Minimum The minimum time, in seconds, to use as time-to-live values in resource records. A
suggested value is 86400 (one day).

Name Server Record

The name server record specifies the name server responsible for a given domain. There should be one
name server record for each primary server for the domain, indicated by a value of NS in the RecordType
field. The name server record can be in the named.data file, the named.rev file, the named.ca file, and
the named.local file. Its structure corresponds to the following format:

{Name} {TTL} AddressClass RecordType NameServerName

Chapter 2. File Formats 521

IN NS arthur.century.com

Fields:

Name Indicates the domain serviced by the specified name server. In this case, the domain
defaults to the value in the previous resource record.

TTL Time to live.
AddressClass Internet (IN).
RecordType Name server (NS).
NameServerName The name server responsible for the specified domain.

Address Record

The address record specifies the address for the host and is indicated by a value of A in the RecordType
field. Address records can be entries in the named.ca, named.data, and named.rev files. Its structure
corresponds to the following format:

{Name} {TTL} AddressClass RecordType Address
arthur IN A 132.10.8.1

IN A 10.0.4.1

Fields:

Name Name of the host.
TTL Time to live.
AddressClass Internet (IN).
RecordType Address (A).
Address Internet address of the host in dotted decimal form. There should be one address record for

each Internet address of the host.

If the name server host for a particular domain resides inside the domain, then an A
(address) resource record that specifies the address of the server is required. This address
record is only needed in the server delegating the domain, not in the domain itself. If, for
example, the server for domain aus.century.com was fran.aus.century.com, then the NS
record and the required A record would look like:

aus.century.com. IN NS fran.aus.century.com.
fran.aus.century.com. IN A 192.9.201.14

Host Information Record

The host information (HINFO) record lists host specific information, and is indicated by HINFO in the
RecordType field. This lists the hardware and operating system that are running at the specified host. Note
that the hardware and operating system information is separated by a single space. There must be one
host information record for each host. The HINFO record is a valid entry in the named.data and the
named.rev files. Its structure corresponds to the following format:

{Name} {TTL} AddressClass RecordType Hardware OS

Fields:

Name Name of the host.
TTL Time to live.
AddressClass Address class. Valid values are IN for Internet and CHAOS for Chaos net.
RecordType Host information (HINFO).
Hardware Make and model of hardware.
OS Name of the operating system running on the host.

522 Files Reference

Well-Known Services Record

The well-known services (WKS) record lists the well-known services supported by a particular protocol at a
specified address. This record is indicated by WKS in the RecordType field. Although TCP/IP provides the
record for backward compatibility, it is now obsolete.

The services and port numbers come from the list of services in the /etc/services file. There should be
only one WKS record per protocol per address. The WKS record is a valid entry in the named.data file.
Its structure corresponds to the following format:

{Name}{TTL} AddressClass RecordType Address Protocol ListOfServices
IN WKS 125.10.0.4 UDP (who route timed domain)
IN WKS 125.10.0.4 TCP (echo telnet ftp netstat finger)

Fields:

Name Name of the host. In this case, the name of the host defaults to the value in the previous
resource record.

TTL Time to live
AddressClass Internet (IN)
RecordType Well-known services (WKS)
Address Internet address of the adapter in dotted decimal form
Protocol Protocol used by the list of services at the specified address
ListOfServices Services supported by a protocol at the specified address

Canonical Name Record
The canonical name record specifies an alias for a canonical name (CNAME), and is indicated by CNAME
in the RecordType field. The CNAME record is the only Resource record that can use the alias of a
canonical name. All other resource records must use the full canonical (or domain) name. The CNAME
record is a valid entry in the named.data file. For each CNAME record, there must be a corresponding
address (A) record. Its structure corresponds to the following format:

{Aliases} {TTL} AddressClass RecordType CanonicalName
knight IN CNAME lancelot
john IN CNAME lancelot

Fields:

Aliases Alias by which the host is known
TTL Time to live
AddressClass Internet (IN)
RecordType Canonical name (CNAME)
CanonicalName Official name associated with the alias

IN-ADDR.ARPA Record

The structure of names in the domain system is set up in a hierarchical fashion. The address of a name
can be found by tracing down the domain structure, contacting a server for each label in the name.
Because the structure is based on names, there is no easy way to translate a host address back into its
host name.

In order to allow simple reverse translation, the IN-ADDR.ARPA domain was created. This domain uses
host addresses as part of a name that points to the data for that host. The IN-ADDR.ARPA domain
provides an index to the resource records of each host based on its address. There are subdomains within
the IN-ADDR.ARPA domain for each network, based on network number. Also, to maintain consistency

Chapter 2. File Formats 523

and natural groupings, the 4 octets of a host number are reversed. The IN-ADDR.ARPA domain is defined
by the IN-ADDR.ARPA record in the named.boot files and the DOMAIN hosts data file.

For example, the ARPANET is net 10, which means that there is a domain called 10.in-addr.arpa. Within
this domain, there is a PTR resource record at 51.0.0.10.IN-ADDR, which points to the resource records
for the host sri-nic.arpa (whose address is 10.0.0.51). Since the NIC is also on the MILNET (net 26,
address 26.0.0.73), there is also a PTR resource record at 73.0.0.26.in-addr.arpa that points to the
same resource records for SRI-NIC.ARPA. The format of these special pointers is defined in the following
section on PTR resource records, along with the examples for the NIC.

Domain-Name Pointer Record
The Domain-Name Pointer record allows special names to point to some other location in the domain. This
record is indicated by PTR in the RecordType field. PTR resource records are mainly used in
IN-ADDR.ARPA records to translate addresses to names.

Note: PTR records should use official host names, not aliases.

The PTR record is a valid entry in the named.rev file. Its structure corresponds to the following format:

{Aliases} {TTL} AddressClass RecordType RealName
7.0 IN PTR arthur.century.com.

Fields:

Aliases Specifies where this record should point in the domain. Also specifies the Internet address of
the host with the octets in reverse order. If you have not defined the IN-ADDR.ARPA domain
in your named.boot file, this address must be followed by .in-addr.arpa.

TTL Time to live.
AddressClass Internet (IN).
RecordType Pointer (PTR).
RealName The domain name of the host to which this record points.

Gateway PTR Record
The IN-ADDR domain is also used to locate gateways on a particular network. Gateways have the same
kind of PTR resource records as hosts, but they also have other PTR records used to locate them by
network number alone. These records have 1, 2, or 3 octets as part of the name, depending on whether
they are class A, B, or C networks, respectively.

The gateway host named gw, for example, connects three different networks, one for each class, A, B, and
C. The gw gateway has the standard resource records for a host in the csl.sri.com zone:
gw.csl.sri.com. IN A 10.2.0.2

IN A 128.18.1.1
IN A 192.12.33.2

In addition, this gateway has one of the following pairs of number-to-name translation pointers and
gateway location pointers in each of the three different zones (one for each network). In each example, the
number-to-name pointer is listed first, followed by the gateway location pointer.

Class A
2.0.2.10.in-addr.arpa. IN PTR gw.csl.sri.com.
10.in-addr.arpa. IN PTR gw.csl.sri.com.

Class B
1.1.18.128.in-addr.arpa. IN PTR gw.csl.sri.com.
18.128.in-addr.arpa. IN PTR gw.csl.sri.com.

524 Files Reference

Class C
2.33.12.192.in-addr.arpa. IN PTR gw.csl.sri.com.
33.12.192.in-addr.arpa. IN PTR gw.csl.sri.com.

For example, a user named elizabeth used the following resource record to have her mail delivered to
host venus.abc.aus.century.com:
elizabeth IN MB venus.abc.aus.century.com.

Mailbox Record
The mailbox (MB) record defines the machine where a user wants to receive mail, and is indicated by MB
in the RecordType field. The MB record is a valid entry in the named.data file. Its structure corresponds to
the following format:

{Aliases} {TTL} AddressClass RecordType Machine
jane IN MB merlin.century.com

Fields:

Aliases The user login ID
TTL Time to live
AddressClass Internet (IN)
RecordType Mailbox (MB)
Machine Name of the machine at which the user wants to receive mail

Mail Rename Name Record
The mail rename (MR) name record allows a user to receive mail addressed to a list of aliases. This
record is indicated by MR in the RecordType field. The MR record is a valid entry in the named.data file.
Its structure corresponds to the following format:

{Aliases} {TTL} AddressClass RecordType CorrespondingMB
merlin IN MR jane

Fields:

Aliases Alias for the mailbox name listed in the last field.
TTL Time to live.
AddressClass Internet (IN).
RecordType Mail rename (MR).
CorrespondingMB The name of the mailbox. This record should have a corresponding MB record.

Mailbox Information Record
The mailbox information (MINFO) record creates a mail group for a mailing list, and is indicated by MINFO
in the RecordType field. This record usually has a corresponding mail group record, but may also be used
with a mailbox record. The MINFO record is a valid entry in the named.data file. Its structure corresponds
to the following format:

{Name} {TTL} AddressClass RecordType Requests Maintainer
postmaster IN MINFO post-request greg.century.com

Fields:

Name The name of the mailbox.
TTL Time to live.
AddressClass Internet (IN).
RecordType Mail Information record (MINFO).

Chapter 2. File Formats 525

Requests Where mail requests (such as a request to be added to the mailing list) should be sent.
Maintainer The mailbox that should receive error messages. This is particularly useful when mail errors

should be reported to someone other than the sender.

Mail Group Member Record
The mail group member (MG) record lists the members of a mail group. This record is indicated by MG in
the RecordType field. The MG record is a valid entry in the named.data file. Its structure corresponds to
the following format:

{MailGroupName} {TTL} AddressClass RecordType MemberName
dept IN MG Tom

Fields:

MailGroupName Name of the mail group.
TTL Time to live.
AddressClass Internet (IN).
RecordType Mail group member record (MG).
MemberName The login ID of the group member.

Mail Exchanger Record

The mail exchanger (MX) records identify machines (gateways) that know how to deliver mail to a machine
that is not directly connected to the network. This record is indicated by MX in the RecordType field.
Wildcard names containing an * (asterisk) can be used for mail routing with MX records. There may be
servers on the network that state that any mail to a domain is to be routed through a relay. The MX record
is a valid entry in the named.data file. Its structure corresponds to the following format:

{Name} {TTL} AddressClass RecordType PrefValue MailExchanger
Ann.bus.com IN MX 0 Hamlet.Century.Com
*.dev.bus.com IN MX 0 Lear.Century.Com

Fields:

Name Specifies the full name of the host to which the mail exchanger knows how to deliver
mail.
Note: The * (asterisk) in the second name entry is a wildcard name entry. It indicates
that any mail to the domain dev.bus.com should be routed through the mail gateway
Lear.Century.Com.

TTL Time to live.
AddressClass Internet (IN).
RecordType Mail Exchanger (MX).
PrefValue Indicates the order the mailer should follow when there is more than one way to deliver

mail to a host.
MailerExchanger The full name of the mail gateway. See RFC 974 for more information.

Examples
The following is an example of a mailing list:
dept IN MINFO dept-request jane.merlin.century.com

IN MG greg.arthur.century.com
IN MG tom.lancelot.century.com
IN MG gary.guinevere.century.com
IN MG kent.gawain.century.com

526 Files Reference

Related Information
The named daemon.

The DOMAIN Data file format, DOMAIN Cache file format, DOMAIN Local file format, DOMAIN Reverse
Data file format.

Naming in AIX 5L Version 5.2 System Management Guide: Communications and Networks.

Configuring Name Servers in AIX 5L Version 5.2 Communications Programming Concepts.

Sysfiles File Format for BNU

Purpose
Gives system administrators flexibility in configuring their Systems, Devices and Dialers files for use with
BNU commands.

Description
The /etc/uucp/Sysfiles file let system administrators specify alternate Systems, Devices and Dialers files
to replace the default files in the /etc/uucp directory or to supplement those files to enable a separation of
the data needed to access remote systems. It is organized so a user can invoke two distinct types of
services, uucico and cu. The uucico service refers to the /usr/sbin/uucp/uucico command and the
commands that invoke it, for example uucp, uux, uusend, uucico. It automatically logs into remote
systems and sends and receives data. The cu service connects to remote systems without attempting to
login and uses the cu, ct, and slattach commands to contact remote systems. The responses to the user
name and password prompts as well as any data transfer is the responsibility of the user. Based upon
these differences a system administrator can split the data used to contact remote systems according the
service types

The Sysfiles file contains a description of each BNU service on the local system that can establish a
remote connection. Each line in the Sysfiles file corresponds to the following syntax:
service=uucico|cu [systems=filename[:filename]] \

[devices=filename[:filename]] \
[dialers=filename[:filename]] \

If a service does not have a corresponding line in the Sysfiles file, the default files are used.

Examples
1. A Sysfiles configuration that splits the configuration files for uucico and cu into different sets of files

would be as follows:
service=uucico systems=Systems.cico devices=Devices.cico \

dialers=Dialers.cico
service=cu systems=Systems.cu devices=Devices.cu \

dialers=Dialers.cu

These two lines in a Sysfiles file state that two separate sets of Systems, Devices and Dialers files
are used for each service. Each service is specified by the service= at the beginning of a line with no
leading white space. The files used for each service is named on the same line according to the
substrings appended to the systems=, devices= and dialers=. Their default location is in the
/etc/uucp directory.

2. A configuration to split the uucico and cu service entries into separate files, but to combine common
configuration data would be as follows:

Chapter 2. File Formats 527

service=uucico systems=Systems.cico:Systems \
devices=Devices.cico:Devices \
dialers=Dialers.cico:Dialers

service=cu systems=Systems.cu:Systems \
devices=Devices.cu:Devices \
dialers=Dialers.cu:Dialers

This example provides separate Systems, Devices, and Dialers files for each service, but combines
any common data into the default files. As the example shows, multiple Systems, Devices and
Dialers files can be specified for each service. A colon is used as the filename delimiter in such a
case.

3. This example specifies separate Systems files for each service. Each service uses the default
Devices and Dialers files.
service=uucico systems=Systems.cico
service=cu systems=Systems.cu

If no Sysfiles service entry is made for a Systems, Devices, or Dialers file, the default file is used.
Any files specified in Sysfiles to serve as Systems, Devices, or Dialers files need to conform to the
syntax used in the default files, /etc/uucp/Systems, /etc/uucp/Devices or /etc/uucp/Dialers.

Files

/etc/uucp Contains all the default configuration files for BNU, including the Sysfiles file.
/etc/uucp/Sysfiles Contains information about alternate Systems, Devices and Dialers files.
/etc/uucp/Systems Lists and describes remote systems accessible to a local system, using the Basic

Networking Utilities (BNU).
/etc/uucp/Devices Contains information about available devices.
/etc/uucp/Dialers Contains dialing sequences for various types of modems and other types of

dialers.

Related Information
The uucico daemon, ct command, cu command, uucp command, uux command, uusend command

The /etc/uucp/Devices File, /etc/uucp/Dialers File, /etc/uucp/Systems File,

Systems File Format for BNU

Purpose
Lists and describes remote systems accessible to a local system, using the Basic Networking Utilities
(BNU).

Description
BNU Systems files, /etc/uucp/Systems by default, list the remote computers with which users of a local
system can communicate using the Basic Networking Utilities (BNU) program. Other files specified in the
/etc/uucp/Sysfiles file can be configured and BNU Systems files. Each entry in a Systems file represents
a remote system, and users on the local system cannot communicate with a remote system unless that
system is listed in the local Systems file. A Systems file must be present on every computer at your site
that uses the BNU facility.

Each entry in a Systems file contains:

v Name of the remote system

v Times when users can connect to the remote system

v Type of link (direct line or modem link)

528 Files Reference

v Speed of transmission over the link

v Information needed to log in to the remote system

Notes:

1. When a remote system not listed in a Systems file attempts to contact the remote system, the BNU
program calls the /usr/sbin/uucp/remote.unknown shell procedure.

2. Only someone with root user authority can edit a Systems file, which is owned by the uucp
program login ID.

Fields in a Systems File
Each entry in a Systems file is a logical line containing fields and optional subfields. These fields appear
in the following order:

SystemName Time[;RetryTime] Type[,ConversationProtocol] Class Phone Login

There must be an entry in every field of a line in a Systems file. If a field does not apply to the particular
remote system (for example, a hardwired connection would not need a telephone number in the Phone
field), use a - (minus sign) as a placeholder.

Lines in a Systems file cannot wrap. In addition, each entry must be on only one line in the file. However,
a Systems file can contain blank lines and comment lines. Comment lines begin with a # (pound sign).
Blank lines are ignored.

System Name
The SystemName field contains the name of the remote system. You can list an individual remote system
in a Systems file more than once. Each additional entry for a system represents an alternate
communication path that the BNU program uses in sequential order when trying to establish a connection
between the local and the remote system.

Time
The Time field contains a string that indicates the days of the week and the times of day during which
users on the local system can communicate with the specified remote system. For example, the
MoTuTh0800-1730 string indicates that local users can contact the specified remote system on Mondays,
Tuesdays, and Thursdays from 8 a.m. until 5:30 p.m.

The day part of the entry can be a list including any day or days represented by Mo, Tu, We, Th, Fr, Sa, or
Su. The day entry may also be Wk if users can contact the remote system on any weekday, or Any if they
can use the remote system on any day of the week including Saturday and Sunday.

Enter the time at which users can contact the remote system as a range of times, using the 24-hour clock
notation. For example, if users can communicate with the specified remote system only during the morning
hours, type a range such as 0800-1200. If users can contact the remote computer at any time of day or
night, simply leave the time range blank.

It is also possible to specify times during which users cannot communicate with the remote system by
specifying a time range that spans 0000. For example, typing 0800-0600 means that users can contact the
specified system at any time except between 6 a.m and 8 a.m. This is useful if a free line is needed at a
certain time of day in order to use the remote system for administrative purposes.

If the remote system calls the local system, but users on the local system cannot call the remote system,
the time entry may be Never.

Multiple Time fields are separated by a , (comma). For example, Wk1800-0600,Sa,Su means that users can
contact the remote system on any weekday at any time except between the hours of 6 p.m. and 6 a.m.
and at any time on Saturday and Sunday.

Chapter 2. File Formats 529

RetryTime Subfield: The RetryTime subfield is an optional subfield that specifies the minimum time in
minutes between an unsuccessful attempt to reach the remote system and the retry time when the BNU
program again attempts to communicate with that system. This subfield is separated from the rest of the
string by a ; (semicolon). For example, Wk1800-0600,Sa,Su;2 indicates that if the first attempt to establish
communications fails, BNU should continue to attempt to contact the remote system at no less than
2-minute intervals.

Notes:

1. This subfield, when present, overrides the default retry time of 5 minutes.

2. The retry time does not cause BNU to attempt contact with the system once the time has elapsed. It
specifies the minimum time BNU must wait before attempting to contact the remote system.

Type
The Type field identifies the type of connection used to communicate with the remote system. The
available types of connections are ACU for a telephone connection using a modem, the remote system
name (as in the SystemName field) for a hardwired connection, and TCP for a connection using TCP/IP.
There must be a corresponding entry for the type of connection in either the /etc/uucp/Devices file or the
Devices file specified in the /etc/uucp/Sysfiles file.

Conversation Protocol Subfield: If you use the TCP entry in the Type field, the ConversationProtocol
subfield, associated with the caller, specifies a conversation protocol. The default is the g protocol. To use
a different subfield, enter a , (comma) and the letter representing one of the other conversation protocols,
either t or e. These protocols are faster and more efficient than the g protocol.

Protocol Explanation
g This is the default. The g protocol is preferred for modem connections, but it involves a large

overhead in running BNU commands because it uses the checksumming and packetizing functions.
t The t protocol presumes an error-free channel and is essentially the g protocol without the

checksumming and packetizing functions. Use the t protocol:

v To communicate with a site running the operating system version of the BNU program

v To communicate with a site running the Berkeley version of the UNIX-to-UNIX Copy Program
(UUCP).

The t protocol cannot be used when the Type field is ACU or when a modem connection is being
used.

e Use the e protocol:

v To communicate with a site running the BNU program on

v To communicate with a site running the operating system version of the BNU program.

The e protocol is not reliable for modem connections.

Use either the t or e protocol to communicate with a site running the operating system version of the
BNU program. Use the e protocol for a site running a non-operating system version of the BNU
program. Use the t protocol for sites running the Berkeley version of the UNIX-to-UNIX Copy
Program (UUCP).

Class
The Class field typically specifies the speed at which the specified hardwired or telephone line transmits
data. It is generally 300, 1200, 2400, or higher for a hardwired device, and 300, 1200, or 2400 for a
telephone connection.

This field can also contain a letter with a speed (for example, C1200, D1200) to differentiate between
classes of dialers. For example, some offices have more than one telephone network, one for internal use
and one for external communications. In such a case, it is necessary to distinguish which lines should be
used for each connection.

530 Files Reference

If the entry in the Type field is ACU, the Class field in a Systems file is matched against the Class field in a
Devices file to find the device to use for connections. For example, if a Systems file entry for system hera
is:
hera Any ACU 1200 3-3-5-2 ogin: nuucp ssword: oldoaktree

BNU searches for an entry in the Devices file with a Type of ACU and a Class of 1200 and connects to
system hera using the first available device that meets these specifications.

If the device can match any speed, enter the word Any in the Class field. Note that the word Any begins
with an uppercase A.

Do not include a transmission rate for a TCP/IP connection. If you do not type a transmission rate in the
Class field, use a - (minus sign) as a placeholder.

Phone
For a telephone connection over a modem, the Phone field specifies the telephone number used to reach
the remote modem. If this entry represents a hardwired connection, type a - (minus sign) as a placeholder.
If this entry represents a telephone connection using a modem, type the remote modem’s phone number.

The Phone field for a telephone connection must include all of the following items that apply, in the
following order:

1. Outside line code

2. Long-distance access codes

3. Number 1 (one) plus the area code (if the modem is out of the local area)

4. Three-digit exchange number

5. Four-digit modem number

Entering a complete phone number is the most efficient method of including phone numbers if your site
uses only a relatively small number of telephone connections. However, if your site includes a large
number of remote connections established using a phone line and a modem, you may prefer to use the
/etc/uucp/Dialcodes file to set up dial-code abbreviations.

For example, if your site communicates regularly using modems to other systems at the same remote site,
it is more efficient to use a dial-code abbreviation in a Systems file than to type the complete phone
number of each remote modem.

The dial-code entry in the /etc/uucp/Dialcodes file defines an alphabetic abbreviation that represents the
following portions of the phone number:

v Outside line code

v Long-distance access code

v Number 1 (one) plus the area code (if the modem is out of the local area)

v Three-digit exchange number

In the Phone field in a Systems file entry, type the alphabetic abbreviation followed by the four-digit
modem number.

Note: Enter the alphabetic abbreviation in the /etc/uucp/Dialcodes file only once for all the remote
modems listed in a Systems file. Then use the same abbreviation for all entries in a Systems file
for modems at that site.

For callers that are actually switches, the Phone field is the token the switch requires to get to the
particular computer. The token you enter here is used by the functions specified in the Type field of the
/etc/uucp/Dialcodes file.

Chapter 2. File Formats 531

Login
The Login field specifies login information that the remote system must receive before allowing the calling
local system to establish a connection. The Login field is a series of fields and subfields called
expect-send characters.

Expect-Send Characters in Login Fields: Enter the required login information as:
[Expect Send] ...

The Expect subfield contains characters that the local system expects to receive from the remote system.
Once the local system receives those characters, it sends another string of characters that comprise the
Send subfield.

For example, the first Expect subfield generally contains the remote system’s login prompt, and the first
Send subfield generally contains the remote system login ID. The second Expect subfield contains the
remote password prompt, and the second Send subfield contains the remote system password.

The Expect subfield may include subfields entered in the following form:
Expect[-Send-Expect] ...

In this case, the first Expect subfield still represents the string that the local system expects to receive
from the remote system. However, if the local system does not receive (or cannot read) the first Expect
string, it sends its own string (the Send string within brackets) to the remote system. The local system then
expects to receive another Expect string from the remote system.

For example, the Expect string may contain the following characters:
login:--login:

The local system expects to receive the login: string. If the remote system sends that string and the local
system receives it correctly, the BNU program goes on to the next field in the expect-send sequence.
However, if the local system does not receive the login: string, it sends a null character followed by a
new line, and then expects to receive a second login: string from the remote computer.

If the remote system does not send an Expect string to the local system, type ″″ (two double quotation
marks), representing a null string, in the first Expect subfield.

Every time the local system sends a field, it automatically transmits a new line following that Send subfield.
To disable this automatic new line, type \c (backslash and the letter c) as the last two characters in the
Send string.

Two special strings can be included in the login sequence. The EOT string sends an ASCII EOT (end of
transmission) character, and the BREAK string attempts to send an ASCII BREAK character.

Valid Expect-Send Sequences: Following are the valid expect-send strings for the Login field:

String Explanation
\N Null character.
\b Backspace character.
\c At the end of a field, suppress the new line that normally follows the characters in a Send subfield.

Otherwise, ignore this string.
\d Delay 2 seconds before sending or reading more characters.
\p Pause for approximately .25 to .50 seconds.
\E Turn on the echo check.
\e Turn off the echo check.
\K Send a BREAK character. This is the same as entering BREAK. This character can be used to cycle a

modem’s speed.
\n New-line character.

532 Files Reference

String Explanation
\r Carriage return.
\s Space character.
\t Tab character.
\\ Backslash character.
EOT EOT character. When you enter this string, the system sends two EOT new-line characters.
BREAK BREAK character. This character can be used to cycle the modem speed.
\ddd Collapse the octal digits (ddd) into a single character and send that character.

Using the BREAK Character to Cycle a Modem: A BREAK or \K character is usually sent to cycle the
line speed on computers that have a multispeed modem. For example, if you are using a 2400 baud
modem to contact a remote system with a multi speed modem that normally answers the phone at 9600
baud, you can begin the chat script for that system with a \K character to cause the remote system
modem to cycle down to 2400 baud.

Entries for Use with TCP/IP
If your site is using TCP/IP, include the relevant TCP/IP entries in a Systems file. For a remote system
connected to the local system using TCP/IP, the entries in the SystemName, Time, and Login fields are
the same as for a remote system using any other type of connection. For the Type field, decide on the
appropriate TCP/IP conversation protocol to enter in the TCP ConversationProtocol subfield. Enter TCP
followed by a ,(comma) followed by the letter representing the protocol. In the Class and Phone fields,
enter a - (minus sign) as a placeholder.

Examples

Setting Up Entries Using Modems
1. A standard entry for a telephone connection using a modem looks like this:

merlin 0830-1730 ACU 1200 123-4567 in:--in: uucp1 word: rainday

This entry allows users to contact system merlin daily between 8:30 a.m. and 5:30 p.m., using an ACU
at 1200 bps. The telephone number is 123-4567. The login name on merlin is uucp1 and the password
is rainday. The local system expects the phrase in: before it sends the login name. If the local system
does not receive the phrase in:, it sends a null character and a new-line character and expects the
phrase again.

2. To use a 1200 baud modem to contact a system with a multispeed modem, make an entry similar to
the following:
athena Any ACU 1200 123-7654 \K\K in:--in: uucpa word: shield

The \K prefacing the login script instructs the remote modem to cycle down one speed. If the modem
has three speeds, 9600, 2400, and 1200, the first \K character causes it to cycle to the 2400 baud
setting, and the second \K character causes it to use the 1200 baud setting. (A third \K causes the
modem to start the cycle over by returning to 9600 baud.)

Setting Up Entries Using Direct Connections
A standard entry for a hardwired connection between a local and a remote system looks like this:
hera Any hera 1200 - login:--login: uzeus word: thunder

The remote system is hera, which can be called at any time. The entry in the Type field is also hera,
indicating a directory connection at 1200 bps (the Class field). There is a placeholder in the Phone field
since no telephone number is necessary.

Chapter 2. File Formats 533

Setting Up Entries Using TCP/IP Connections
In order to make the appropriate entries in a Systems file, decide on the appropriate TCP/IP conversation
protocol to enter in the TCP Caller subfield. For example, enter the following in a Systems file to use
TCP/IP to connect to system venus with the default g protocol:
venus Any TCP - - in:--in: uzeus word: lamplight

Replace the send and expect characters in the sample login field with the login prompt, login, password
prompt, and password appropriate to the remote system for which you are establishing a connection.

Using Dialcode Abbreviations
To use a dialcode abbreviation defined in the /etc/uucp/Dialcodes file, enter the following in a Systems
file:
merlin Any ACU 1200 local8784 in:--in: uucp1 word: magic

This assumes that an entry for the dial code local exists in the Dialcodes file. For example, the following
entry:
local 9=445

in the Dialcodes file would cause BNU to expand the telephone number as 9=4458784.

Setting Up Entries for Both Local and Remote Systems
For a direct connection between two systems, a Systems file on system zeus contains the following entry
for the remote system hera:
hera Any hera 1200 - "" \r\d\r\d\r in:--in: uzeus word: thunder

A Systems file on system hera contains the following entry for system zeus:
zeus Any zeus 1200 - "" \r\d\r\d\r in:--in: uhera word: lostleaf

Files

/etc/uucp directory Contains all the configuration files for BNU,
including a Systems file.

/etc/uucp/Sysfiles file Specifies possible alternative foles for the
/etc/uucp/Systems file.

/etc/uucp/Devices file Contains information about available devices.
/etc/uucp/Dialcodes file Contains dialing code abbreviations.
/etc/uucp/Permissions file Describes access permissions for remote systems.
/usr/sbin/uucp/remote.unknown file Records contacts from unknown systems.

Related Information
The mail command, sendmail command, uucp command, uucpadm command, uuname command, uuto
command, uutry command, Uutry command, uukick command, uux command.

The uucico daemon, uucpd daemon, uusched daemon, uuxqt daemon.

Configuring BNU, Monitoring a BNU Remote Connection, Debugging BNY Login Failures Using the uucico
Daemon, Understanding the BNU File and Directory Structure in AIX 5L Version 5.2 System Management
Guide: Communications and Networks.

telnet.conf File Format for TCP/IP

Purpose
Translates a client’s terminal-type strings into terminfo file entries.

534 Files Reference

Description
The telnetd daemon uses the /etc/telnet.conf file during terminal negotiation to translate a client’s
terminal-type strings into terminfo file entries. The telnet.conf file is used when a client’s terminal does
not correspond directly to a terminfo file entry. If this is the case, the telnet.conf file can map standard
terminal names (defined in RFC-1060 Assigned Numbers) to terminfo file entries that the system can
emulate.

Each line in the telnet.conf file can contain up to 255 characters. Lines beginning with a # (pound sign)
are comment lines.

The telnet.conf file is structured in a two-column line format, with dashes separating the items in each
column. The first column specifies a manufacturer, model type, and optional additional information. The
second column specifies the terminfo file entry that corresponds to the manufacturer, model, and optional
information in the first column. The items in the first column can be either uppercase or lowercase. The
items in the second column must be lowercase. RFC-1060 specifies the first terminal type in the
telnet.conf file. The format for the telnet.conf file is:
Manufacturer-Model-Options TerminfoModel-Options

Security
Suggested permissions for the telnet.conf file are rw-rw-r— or 664. Suggested ownership is root for
owner and system for group.

Examples
Sample telnet.conf entries might look like the following:
DEC-VT100-AM vt100-am
diablo-1620-m8 1620-m8
h-19-a 19-a
TI-800 ti-800

In the first entry, the manufacturer is DEC (Digital Equipment Corporation), the model is VT100, and the AM
option specifies automargin. In the second entry, the manufacturer is diablo, the model is 1620, and the m8
option specifies a left margin of 8 columns. In the third entry, the manufacturer is h (Heath), the model is
19, and the a option specifies ANSII mode. In the fourth entry, the manufacturer is TI (Texas Instruments),
and the model is 800; no options are specified. For additional terminfo options, refer to the *.ti files in the
/usr/lib/terminfo directory.

Files

terminfo Describes terminal by capability.

Related Information
The telnet command.

The telnetd daemon.

terminfo Directory

Purpose
Contains compiled terminfo source files.

Chapter 2. File Formats 535

Description
Terminfo is a compiled database describing the capabilities of terminals. Terminals are described in the
terminfo source files via entries. Each entry contains information about the capabilities for a particular
terminal or set of common terminals. Capabilities include the operations that can be performed, the
padding requirements, cursor positioning, command sequences, and initialization sequences.

The compiled terminfo database is used by applications such as curses and vi that must have knowledge
of the terminal but do not want to be terminal-dependent.

An example of a terminfo source file is provided.

This article explains the terminfo source file format. Before a terminfo description can be used by
applications, the terminfo source file it resides in must be compiled using the tic command. Using the tic
command results in the creation of one or more binaries, one for each terminal. The collection of terminfo
binaries in a directory (usually /usr/share/lib/terminfo) is known as the terminfo database, or terminfo.

Source File Entries
You can edit or modify source files. A source file can contain one or more terminal descriptions or entries.
A terminfo source file has a .ti suffix. Examples of source files are the /usr/share/lib/terminfo/ibm.ti file,
which describes IBM terminals, and the /usr/share/lib/terminfo/dec.ti file, which describes DEC terminals.

See the infocmp command for obtaining the source description for a terminal when only the binary is
available.

Each entry in a terminfo source file consists of a number of fields separated by commas. White space
between commas is ignored. The following example shows a source file entry:
ibm6155-113|IBM 6155 Black & White display,

font0=\E[10m, font1=\E[11m, font2=\E[12m,
bold=\E[12m, sgr0=\E[0;10m,
cols#113, lines#38,
sgr=\E[%?%p1%t;7%;%?%p2%t;4%;%?%p3%t;7%;%?%p4%t;5%;%?%p6%t;12%;m,
blink@, use=ibm5151,

Entries can continue onto multiple lines by placing white space at the beginning of each subsequent line.
To create a comment line, begin the line with a # (pound sign) character. To comment out an individual
terminal capability, put a period before the capability name.

The first field (or line) for each terminal gives the various names by which the terminal is known, separated
by | (pipe symbol) characters. The first name given should be the most common abbreviation for the
terminal. (This name is the one most commonly used when setting the TERM environment variable.) The
last name given should be a long name fully identifying the terminal. All other names are understood as
synonyms for the terminal name. All names but the last should contain no blanks. The last name may
contain blanks for readability. All names should be unique.

The remaining fields identify the terminal ’s capabilities.

When choosing terminal names, there are some conventions you should follow. The root name should
represent the particular hardware class of the terminal. Do not use hyphens in the root name, except to
avoid synonyms that conflict with other names. To indicate possible modes for the hardware or user
preferences, append a - (minus sign) and one of the following suffixes:

Table 7. Root Name Suffixes

Suffix Meaning Example

-am With automatic margins (usually default) Terminal-am

-m Monochrome mode Terminal-m

536 Files Reference

Table 7. Root Name Suffixes (continued)

Suffix Meaning Example

-w Wide mode (more than 80 columns) Terminal-w

-nam Without automatic margins Terminal-nam

-n Number of lines on the screen Terminal-60

-na No arrow keys (leave them in local) Terminal-na

-np Number of pages of memory Terminal-4p

-rv Reverse video Terminal-rv

-s Status line simulation. The terminal allows for
one or more lines that are normally part of
the screen to be used for the status line. This
is not the same as terminals that have
permanently dedicated status lines.

Terminal-s

-unk Unknown mode. This entry can be used to
define a general description of a terminal that
has several of the modes described above.
The other entries would use the unknown
entry as a base description and add the
appropriate customization. See the use=
field.

Terminal-unk

A terminal in 132-column mode would be Terminal-w.

Types of Capabilities
A terminfo entry can define any number of capabilities. All capabilities belong to one of three types:

Boolean Indicates that the terminal has a particular feature. Boolean capabilities are true if the corresponding
name is contained in the terminal description.

Numeric Gives the size of the terminal or the size of particular delays.
String Gives a sequence that can be used to perform particular terminal operations.

This article provides tables that document the capability types. All the tables list the following:

Variable The name the application uses to access a capability.
Cap Name The short capability name. This name is used in the terminfo database text and by the person

creating or editing a source file entry. You can use the tput command to output the value of a
capability for a particular terminal.

I.Code The 2-letter internal code used in the compiled database. This code always corresponds to a
termcap capability name.

Description A description of the capability.

Capability names have no absolute length limit. An informal limit of five characters is adopted to keep them
short and to allow the tabs in the caps source file to be aligned. Whenever possible, names are chosen to
be the same as or similar to the ANSI X3.64 standard of 1979.

Boolean Capabilities

A Boolean capability indicates that the terminal has some particular feature. For instance, the am
capability in a terminal description indicates that the terminal has automatic margins (such as an automatic
new line when the end of a line is reached). The following are the Boolean capabilities:

Chapter 2. File Formats 537

Table 8. Boolean Capabilities

Variable Cap Name I.Code Description

auto_left_margin bw bw Indicates cub1 wraps from column 0 to last column.

auto_right_margin am am Indicates terminal has automatic margins.

back_color_erase bce ut Erases screen with current background.

can_change ccc cc Can redefine existing color.

ceol_standout_glitch xhp xs Indicates that standout is not erased by overwriting.

col_addr_glitch xhpa YA Indicates only positive motion for hpa/mhpa caps.

cpi_changes_res cpix YF Indicates resolution changed when changing
character pitch.

cr_cancels_micro_mode crxm YB Indicates cr turns off micro mode.

dest_tabs_magic_smso (or
teleray_glitch)

xt xt Indicates destructive tabs and blanks inserted while
entering standout mode.

eat_newline_glitch xenl xn Ignores new-line character after 80 columns.

erase_overstrike eo eo Erases overstrikes with a blank.

generic_type gn gn Indicates generic line type, such as, dialup or switch.

hard_copy hc hc Indicates hardcopy terminal.

hard_cursor chts HC Indicates cursor is hard to see.

has_meta_key km km Indicates terminal has a meta key, such as shift or
sets parity bit.

has_print_wheel daisy YC Indicates operator needed to change character set.

has_status_line hs hs Indicates terminal has a dedicated status line.

hue_lightness_saturation hls hl Uses HLS color notation (Tektronix).

insert_null_glitch in in Indicates insert mode distinguishes nulls.

lpi_changes_res lpix YG Indicates resolution changed when changing line
pitch.

memory_above da da Display retained above the screen (usually
multi-page terminals).

memory_below db db Display retained below the screen (usually
multi-page terminals)

move_insert_mode mir mi Indicates safe to move while in insert mode.

move_standout_mode msgr ms Indicates safe to move in standout modes.

needs_xon_xoff nxon nx Indicates padding will not work, that xon/xoff is
required.

no_esc_ctlc (or
beehive_glitch)

xsb xb Indicates a terminal with F1=escape and F2=Ctrl-C.

no_pad_char npc NP Indicates pad character does not exist.

non_dest_scroll_region ndscr ND Indicates non-destructive scrolling region.

non_rev_rmcup nrrmc NR Indicates smcup does not reverse rmcup.

over_strike os os Indicates terminal overstrikes.

prtr_silent mc5i 5i Indicates printer will not echo on screen.

row_addr_glitch xvpa YD Indicates only positive motion for vpa/mvpa caps.

semi_auto_right_margin sam YE Indicates printing in last column causes carriage
return.

status_line_esc_ok eslok es Indicates escape can be used on the status line.

538 Files Reference

Table 8. Boolean Capabilities (continued)

Variable Cap Name I.Code Description

tilde_glitch hz hz Indicates terminal cannot print the ~ (tilde) character.

transparent_underline ul ul Overstrikes with underline character.

xon_xoff xon xo Indicates terminal uses xon/xoff handshaking.

Numeric Capabilities
Numeric capabilities are followed by the # (pound sign) character and a numeric value. The cols#80
capability indicates the terminal has 80 columns. The following are the numeric capabilities:

Table 9. Numeric Capabilities

Variable Cap Name I.Code Description

buffer_capacity bufsz Ya Specifies the number of bytes buffered before
printing.

columns cols co Specifies the number of columns in a line.

dot_horz_spacing spinh Yc Identifies the horizontal spacing of dots in dots per
inch.

dot_vert_spacing spinv Yb Specifies vertical spacing of pins in pins per inch.

init_tabs it it Provides initial tabs every specified number of
spaces.

label_height lh lh Specifies the number of rows in each label.

label_width lw lw Specifies the number of columns in each label.

lines lines li Specifies the number of lines on screen or page.

lines_of_memory lm lm Specifies the number of lines of memory if > lines.
A value of 0 indicates a variable number.

magic_cookie_glitch xmc sg Indicates number of blank characters left by smso
or rmso.

max_attributes ma ma Identifies the maximum combined video attributes
the terminal can display.

max_colors colors Co Specifies the maximum number of colors
supported.

max_micro_address maddr Yd Indicate the limit on use of mhpa and mvpa.

max_micro_jump mjump Ye Specifies the limit on use of the mcub1, mcuf1,
mcuu1, and mcud1 capabilities.

max_pairs pairs pa Specifies the maximum number of color pairs
supported.

maximum_windows wnum MW Specifies the maximum number of defineable
windows.

micro_char_size mcs Yf Specifies the character step size when in micro
mode.

micro_line_size mls Yg Identifies the line step size when in micro mode.

no_color_video ncv NC Indicates video attributes that cannot be used with
colors.

num_labels nlab Nl Specifies the number of labels on the screen. This
value starts at 1.

number_of_pins npins Yh Identifies the number of pins in the print-head.

Chapter 2. File Formats 539

Table 9. Numeric Capabilities (continued)

Variable Cap Name I.Code Description

output_res_char orc Yi Specifies the horizontal resolution in units per
character.

output_res_horz_inch orhi Yk Specifies the horizontal resolution in units per inch.

output_res_line orl Yj Specifies the vertical resolution in units per line.

output_res_vert_inch orvi Yl Indicates vertical resolution in units per inch.

padding_baud_rate pb pb Indicates lowest baud rate where carriage-return
and line-return padding is needed.

print_rate cps Ym Indicates print rate in characters per second.

virtual_terminal vt vt Indicates virtual terminal number.

wide_char_size widcs Yn Identifies the character step size when the terminal
is in double-wide mode.

width_status_lines wsl ws Specifies the number of columns in status lines.

String Capabilities
You define string-valued capabilities, such as the el capability (clear to end of line) with a 2-character
code, an = (equal sign), and a string ending with a , (comma). A delay in milliseconds can appear
anywhere in a string capability. To define a delay, enclose the delay between a $< and a >. The following
shows the el capability with a delay of 3:
el=\EK$<3>

The tputs subroutine provides padding characters for a delay. A delay can be a number, such as 20, or a
number followed by an * (asterisk), such as 3*. An asterisk indicates that the required padding is
proportional to the number of lines affected by the operation. The number given represents the required
padding for each affected unit. (For insert character, the factor is the number of lines affected, which is
always 1, unless the terminal has the xenl capability and the software supports it). If you specify an
asterisk, it is sometimes useful to give a delay of the form a.b, such as 3.5, to specify a delay for each
unit to tenths of milliseconds. You can only specify one decimal place.

The terminfo database provides several escape sequences in the string-valued capabilities for easy
encoding of characters. The following escape codes are recognized:

Escape Code Meaning
\E,\e Escape
\n New line
\l Line feed
\r Carriage return
\t Tab
\b Backspace
\f Form feed
\s Space
\^ Caret
\\ Backslash
\, Comma
\: Colon
\nnn Character with octal value nnn
^x Ctrl-x for any appropriate x
\0 Null character. \0 actually produces \200, which does not end a string but behaves as a null

character on most terminals.

540 Files Reference

The following conventions are used in the Description column of the String Capabilities table:

(G) Indicates that the string is passed through tparm, with parameters as given (#i).

(*) Indicates that padding can be based on the number of lines affected.

(#i) Indicates the ith parameter.

Table 10. String Capabilities

Variable Cap Name I.Code Description

appl_defined_str apstr za Application-defined terminal string.

asc_chars acsc ac Alternate character set mapping of glyph to
characters.

back_tab cbt bt Back tab.

bell bel bl Produces an audible signal (bell).

box_chars_1 box1 bx Box characters, primary set.

box_chars_2 box2 by Box characters, alternate set.

box_attr_1 batt1 Bx Attributes for box_chars_1.

box_attr_2 batt2 By Attributes for box_chars_2.

carriage_return cr cr Indicates carriage return. (*)

change_char_pitch cpi ZA Change number of characters per inch.

change_line_pitch lpi ZB Change number of lines per inch.

change_res_horz chr ZC Change horizontal resolution.

change_res_vert cvr XD Change vertical resolution.

char_padding rmp rP Specifies character padding when in replace mode.

change_scroll_region csr cs Changes scroll region to lines #1 through #2. (G)

char_set_names csnm Zy List of character set names.

clear_all_tabs tbc ct Clears all tab stops.

clear_margins mgc MC Clear left and right soft margins.

clear_screen clear cl Clears screen and puts cursor in home position. (*)

clr_bol el1 cb Clear to beginning of line, inclusive.

clr_eol el ce Clears to end of line.

clr_eod ed cd Clears to end of the display.(*)

color_bg_0 colb0 d0 Background color 0, black.

color_bg_1 colb1 d1 Background color 1, red.

color_bg_2 colb2 d2 Background color 2, green.

color_bg_3 colb3 d3 Background color 3, brown.

color_bg_4 colb4 d4 Background color 4, blue.

color_bg_5 colb5 d5 Background color 5, magenta.

color_bg_6 colb6 d6 Background color 6, cyan.

color_bg_7 colb7 d7 Background color 7, white.

color_fg_0 colf0 c0 Foreground color 0, black.

color_fg_1 colf1 c1 Foreground color 1, red.

color_fg_2 colf2 c2 Foreground color 2, green.

color_fg_3 colf3 c3 Foreground color 3, brown.

color_fg_4 colf4 c4 Foreground color 4, blue.

Chapter 2. File Formats 541

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

color_fg_5 colf5 c5 Foreground color 5, magenta.

color_fg_6 colf6 c6 Foreground color 6, cyan.

color_fg_7 colf7 c7 Foreground color 7, white.

column_address hpa ch Sets cursor column. (G)

command_character cmdch CC Indicates that a terminal command-prototype
character can be set.

create_window cwin CW Define win #1 to go from #2, #3 to #4, #5.

cursor_address cup cm Indicates screen-relative cursor motion row #1, col
#2. (G)

cursor_down cud1 do Moves cursor down one line.

cursor_home home ho Moves cursor to home position (if no cup
addressing).

cursor_invisible civis vi Makes cursor invisible.

cursor_left cub1 le Moves cursor left one space.

cursor_mem_address mrcup CM Indicates memory relative cursor addressing. (G)

cursor_normal cnorm ve Makes cursor appear normal (undo vs or vi).

cursor_right cuf1 nd Indicates nondestructive space (cursor right).

cursor_to_ll ll ll Moves cursor to first column of last line (if no cup
addressing).

cursor_up cuu1 up Moves cursor up one line.

cursor_visible cvvis vs Makes cursor very visible.

define char defc ZE Define a character in a character set.

delete_character dch1 dc Deletes character. (*)

delete_line dl1 dl Deletes line. (*)

dial_phone dial DI Dial phone number #1.

dis_status_line dsl ds Disables status line.

display_clock dclk DK Display time-of-day clock.

down_half_line hd hd Indicates subscript (forward 1/2 line feed).

ena_acs enacs eA Enable alternate character set.

enter_alt_charset_mode smacs as Starts alternate character set.

enter_am_mode smam SA Turn on automatic margins.

enter_blink_mode blink mb Enables blinking.

enter_bold_mode bold md Enables bold (extra bright)mode.

enter_bottom_mode btml bm Starts bottom line mode. This string capability is an
aid for drawing tables and is valid only for aixterm
and aixterm-m terminal definitions.

enter_ca_mode smcup ti Begins programs that use cup addresing.

enter_delete_mode smdc dm Starts delete mode.

enter_dim_mode dim mh Enables half-bright mode.

enter_doublewide_mode swidm ZF Enable double-wide printing.

enter_draft_quality sdrfq ZG Set draft quality print.

enter_insert_mode smir im Starts insert mode.

542 Files Reference

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

enter_italics_mode sitm ZH Enable italics.

enter_leftward_mode slm Zl Enable leftward carrige motion.

enter_lvert_mode lvert lv Starts left vertical line mode. This string capability is
an aid for drawing tables. Valid only for aixterm
and aixterm-m terminal definitions.

enter_micro_mode smicm ZJ Enable micro motion capabilities.

enter_near_letter_quality snlq ZK Set near-letter quality print.

enter_normal_quality snrmq ZL Set normal quality print.

enter_protected_mode prot mp Enables protected mode.

enter_reverse_mode rev mr Enables reverse video mode.

enter_rvert_mode rvert rv Starts right vertical line mode. This string capability
is an aid for drawing tables and is valid only for
aixterm and aixterm-m terminal definitions.

enter_secure_mode invis mk Enables blank mode (characters are invisible).

enter_shadow_mode sshm ZM Enable shadow printing.

enter_standout_mode smso so Begins standout mode.

enter_subscript_mode ssubm ZN Enable subscript printing.

enter_superscript_mode ssupm ZO Enable superscript printing.

enter_topline_mode topl tp Starts top line mode. This string capability is an aid
for drawing tables and is valid only for aixterm and
aixterm-m terminal definitions.

enter_underline_mode smul us Starts underscore mode.

enter_upward_mode sum ZP Enable upward carriage motion.

enter_xon_mode smxon SX Turn on xon/xoff handshaking.

erase_chars ech ec Erases #1 characters. (G)

exit_alt_charset_mode rmacs ae Ends alternate character set.

exit_am_mode rmam RA Turn off automatic margins.

exit_attribute_mode sgr0 me Disables all attributes.

exit_ca_mode rmcup te Ends programs that use cup addressing.

exit_delete_mode rmdc ed Ends delete mode.

exit_doublewide_mode rwidm ZQ Disable double-wide printing.

exit_insert_mode rmir ei Ends insert mode.

exit_italics_mode ritm ZR Disable italics.

exit_leftward_mode rlm ZS Enable rightward (normal) carriage motion.

exit_micro_mode micm ZT Disable micro motion capabilities.

exit_shadow_mode rshm ZU Disable shadow printing.

exit_standout_mode rmso se Ends standout mode.

exit_subscript_mode rsubm ZV Disable subscript printing.

exit_superscript_mode rsupm ZW Disable superscript printing.

exit_underline_mode rmul ue Ends underscore mode.

exit_upward_mode rum ZX Enable downard (normal) carrige motion.

exit_xon_mode rmxon RX Turn off xon/xoff handshaking.

Chapter 2. File Formats 543

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

flash_screen flash vb Indicates visual bell (may not move cursor).

fixed_pause pause PA Pause for 2-3 seconds.

flash_hook hook fh Flash the switch hook.

font_0 font0 f0 Select font 0.

font_1 font1 f1 Select font 1.

font_2 font2 f2 Select font 2.

font_3 font3 f3 Select font 3.

font_4 font4 f4 Select font 4.

font_5 font5 f5 Select font 5.

font_6 font6 f6 Select font 6.

font_7 font7 f7 Select font 7.

form_feed ff ff Ejects page (hardcopy terminal). (*)

from_status_line fsl fs Returns from status line.

goto_window wingo WG Go to window #1.

hangup hup HU Hang-up phone.

init_1string is1 i1 Initializes terminal.

init_2string is2 is Initializes terminal.

init_3string is3 i3 Initializes terminal.

init_file if if Identifies file containing is long initialization strings.

init_prog iprog iP Locates the program for initialization.

initialize_color initc Ic Initialize the color definition.

initialize_pair initp Ip Initialize color pair.

insert_character ich1 ic Inserts character.

insert_line il1 al Adds new blank line. (*)

insert_padding ip ip Inserts pad after character inserted. (*)

key_a1 ka1 K1 Specifies upper left of keypad.

key_a3 ka3 K3 Specifies upper right of keypad.

key_action kact kJ Sent by action key.

key_b2 kb2 K2 Specifies center of keypad.

key_backspace kbs kb Sent by backspace key.

key_beg kbeg @1 Beginning key. KEY_BEG

key_btab kcbt kB Sent by backtab key. KEY_BTAB

key_c1 kc1 K4 Specifies lower left of keypad.

key_c3 kc3 K5 Specifies lower right of keypad.

key_cancel kcan @2 Cancel key. KEY_CANCEL

key_catab ktbc ka Sent by clear-all-tabs key.

key_clear kclr kC Sent by clear screen or erase key.

key_close kclo @3 Close key. KEY_CLOSE

key_command kcmd @4 Command-request key.

key_command_pane kcpn @7 Command-pane key.

544 Files Reference

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

key_copy kcpy @5 Copy key. KEY_COPY

key_create kcrt @6 Create key. KEY_CREATE

key_ctab kctab kt Sent by clear tab key.

key_dc kdch1 kD Sent by delete-character key.

key_dl kdl1 kL Sent by delete-line key.

key_do kdo ki Do request key.

key_down kcud1 kd Sent by terminal down-arrow key.

key_eic krmir kM Sent by rmir or smir in insert mode.

key_end kend @7 End key. KEY_END

key_enter kent @8 Enter/send (unreliable). KEY_ENTER.

key_eol kel kE Sent by clear-to-end-of-line key.

key_eos ked kS Sent by clear-to-end-of-screen key.

key_exit kext @9 Exit key. KEY_EXIT.

key_f0 kf0 k0 Sent by function key F0.

key_f1 kf1 k1 Sent by function key F1.

key_f2 kf2 k2 Sent by function key F2.

key_f3 kf3 k3 Sent by function key F3.

key_f4 kf4 k4 Sent by function key F4.

key_f5 kf5 k5 Sent by function key F5.

key_f6 kf6 k6 Sent by function key F6.

key_f7 kf7 k7 Sent by function key F7.

key_f8 kf8 k8 Sent by function key F8.

key_f9 kf9 k9 Sent by function key F9.

key_f10 kf10 k; Sent by function key F10.

key_f11 kf11 F1 Sent by function key F11.

key_f12 kf12 F2 Sent by function key F12.

key_f13 kf13 F3 Sent by function key F13. KEY_F(13)

key_f14 kf14 F4 Sent by function key F14. KEY_F(14)

key_f15 kf15 F5 Sent by function key F15. KEY_F(15)

key_f16 kf16 F6 Sent by function key 16. KEY_F(16)

key_f17 kf17 F7 Sent by function key 17. KEY_F(17)

key_f18 kf18 F8 Sent by function key 18. KEY_F(18)

key_f19 kf19 F9 Sent by function key 19. KEY_F(19)

key_f20 kf20 FA Sent by function key 20. KEY_F(20)

key_f21 kf21 FB Sent by function key 21. KEY_F(21)

key_f22 kf22 FC Sent by function key 22. KEY_F(22)

key_f23 kf23 FD Sent by function key 23. KEY_F(23)

key_f24 kf24 FE Sent by function key 24. KEY_F(24)

key_f25 kf25 FF Sent by function key 25. KEY_F(25)

key_f26 kf26 FG Sent by function key 26. KEY_F(26)

Chapter 2. File Formats 545

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

key_f27 kf27 FH Sent by function key 27. KEY_F(27), 03543

key_f28 kf28 FI Sent by function key 28. KEY_F(28)

key_f29 kf29 FJ Sent by function key 29. KEY_F(29)

key_f30 kf30 FK Sent by function key 30. KEY_F(30)

key_f31 kf31 FL Sent by function key 31. KEY_F(31)

key_f32 kf32 FM Sent by function key 32. KEY_F(32)

key_f33 kf33 FN Sent by function key 33. KEY_F(33)

key_f34 kf34 FO Sent by function key 34. KEY_F(34)

key_f35 kf35 FP Sent by function key 35. KEY_F(35)

key_f36 kf36 FP Sent by function key 36. KEY_F(36)

key_f37 kf37 FQ Sent by function key 37. KEY_F(37)

key_f38 kf38 FR Sent by function key 38. KEY_F(38)

key_f39 kf39 FS Sent by function key 39. KEY_F(39)

key_f40 kf40 FT Sent by function key 40. KEY_F(40)

key_f41 kf41 FU Sent by function key 41. KEY_F(41)

key_f42 kf42 FV Sent by function key 42. KEY_F(42)

key_f43 kf43 FW Sent by function key 43. KEY_F(43)

key_f44 kf44 FX Sent by function key 44. KEY_F(44)

key_f45 kf45 FY Sent by function key 45. KEY_F(45)

key_f46 kf46 FZ Sent by function key 46. KEY_F(46)

key_f47 kf47 Fa Sent by function key 47. KEY_F(47)

key_f48 kf48 Fb Sent by function key 48. KEY_F(48)

key_f49 kf49 Fc Sent by function key 49. KEY_F(49)

key_f50 kf50 Fd Sent by function key 50. KEY_F(50)

key_f51 kf51 Fe Sent by function key f51. KEY_F(51)

key_f52 kf52 Ff Sent by function key f52. KEY_F(52)

key_f53 kf53 Fg Sent by function key f53. KEY_F(53)

key_f54 kf54 Fi Sent by function key f54. KEY_F(54)

key_f55 kf55 Fj Sent by function key f55. KEY_F(55)

key_f56 kf56 Fk Sent by function key f56. KEY_F(56)

key_f57 kf57 Fl Sent by function key f57. KEY_F(57)

key_f58 kf58 Fm Sent by function key f58. KEY_F(58)

key_f59 kf59 Fn Sent by function key f59. KEY_F(59)

key_f60 kf60 Fo Sent by function key f60. KEY_F(60)

key_f61 kf61 Fp Sent by function key f61. KEY_F(61)

key_f62 kf62 Fq Sent by function key f62. KEY_F(62)

key_f63 kf63 Fr Sent by function key f63. KEY_F(63)

key_find kfnd @0 Find key. KEY_FIND

key_help khlp kq Help key.

546 Files Reference

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

key_home khome kh Sent by home key.

key_ic kich1 kI Sent by insert-character/ enter-insert-mode key.

key_il kil1 kA Sent by insert line key.

key_left kcub1 kl Sent by terminal left-arrow key.

key_ll kll kH Sent by home-down key.

key_mark kmrk %2 Mark key. KEY_MARK

key_message kmsg %3 Message key. KEY_MESSAGE

key_move kmov %4 Move key. KEY_MOVE

key_newline knl kn New-line key.

key_next knxt %5 Next object key. KEY_NEXT

key_next_pane knpn kv Next-pane key.

key_npage knp kN Sent by next-page key.

key_open kopn %6 Open key. KEY_OPEN

key_options kopt %7 Options key. KEY_OPTIONS

key_ppage kpp kP Sent by previous-page key.

key_prev_pane kppn kV Sent by previous-pane key.

key_prev_cmd kpcmd kp Sent by previous-command key.

key_previous kprv %8 Previous object key. KEY_PREVIOUS

key_print kprt %9 Print or copy. KEY_PRINT

key_quit kquit kQ Quit key.

key_redo krdo %0 Redo key. KEY_REDO

key_reference kref &1 Reference key. KEY_REFERENCE

key_refresh krfr &2 Refresh key. KEY_REFRESH

key_replace krpl &3 Replace key. KEY_REPLACE

key_restart krst &4 Restart key. KEY_RESTART

key_resume kres &5 Resume key. KEY_RESUME

key_right kcuf1 kr Sent by terminal right-arrow key.

key_save ksav &6 Save key. KEY_SAVE

key_sbeg kBEG &9 Shifted beginning key. KEY_SBEG

key_scancel kCAN &0 Shifted cancel key. KEY_SCANCEL

key_scommand kCMD *1 Shifted command key. KEY_SCOMMAND

key_scopy kCPY *2 Shifted copy key. KEY_SCOPY

key_screate kCRT *3 Shifted create key. KEY_SCREATE

key_scroll_left kscl kz Scroll left.

key_scroll_right kscr kZ Scroll right.

key_sdc kDC *4 Shifted delete-character key. KEY_SDC

key_sdl kDL *5 Shifted delete-line key. KEY_SDL

key_select kslt *6 Select key.

key_send kEND *7 Shifted end key. KEY_SEND

key_seol kEOL *8 Shifted clear-line key. KEY_SEOL

Chapter 2. File Formats 547

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

key_sexit kEXT *9 Shifted exit key. KEY_SEXIT

key_sf kind kF Sent by scroll-forward/ scroll-down key.

key_sf1 ksf1 S1 Special function key 1.

key_sf2 ksf2 S2 Special function key 2.

key_sf3 ksf3 S3 Special function key 3.

key_sf4 ksf4 S4 Special function key 4.

key_sf5 ksf5 S5 Special function key 5.

key_sf6 ksf6 S6 Special function key 6.

key_sf7 ksf7 S7 Special function key 7.

key_sf8 ksf8 S8 Special function key 8.

key_sf9 ksf9 S9 Special function key 9.

key_sf10 ksf10 S0 Special function key 10.

key_sfind kFND *0 Shifted find key. KEY_SFIND

key_shelp kHLP #1 Shifted help key. KEY_SHELP

key_shome kHOM #2 Shifted home key. KEY_SHOME

key_sic kIC #3 Shifted input key. KEY_SIC

key_sleft kLFT #4 Shifted left-arrow key. KEY_SLEFT

key_smap_in1 kmpf1 Kv Input for special mapped key 1.

key_smap_in2 kmpf2 Kw Input for special mapped key 2.

key_smap_in3 kmpf3 Kx Input for special mapped key 3.

key_smap_in4 kmpf4 Ky Input for special mapped key 4.

key_smap_in5 kmpf5 Kz Input for special mapped key 5.

key_smap_in6 kmpf6 Kr Input for special mapped key 6.

key_smap_in7 kmpf7 Ks Input for special mapped key 7.

key_smap_in8 kmpf8 Kt Input for special mapped key 8.

key_smap_in9 kmpf9 Ku Input for special mapped key 9.

key_smap_out1 kmpt1 KV Output for mapped key 1.

key_smap_out2 kmpt2 KW Output for mapped key 2.

key_smap_out3 kmpt3 KX Output for mapped key 3.

key_smap_out4 kmpt4 KY Output for mapped key 4.

key_smap_out5 kmpt5 KZ Output for mapped key 5.

key_smap_out6 kmpt6 KR Output for mapped key 6.

key_smap_out7 kmpt7 KS Output for mapped key 7.

key_smap_out8 kmpt8 KT Output for mapped key 8.

key_smap_out9 kmpt9 KU Output for mapped key 9.

key_smessage kMSG %a Shifted message key. KEY_SMESSAGE

key_smove kMOV %b Shifted move key. KEY_SMOVE

key_snext kNXT %c Shifted next key. KEY_SNEXT

key_soptions kOPT %d Shifted options key. KEY_SOPTIONS

key_sprevious kPRV %e Shifted previous key. KEY_SPREVIOUS

548 Files Reference

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

key_sprint kPRT %f Shifted print key. KEY_SPRINT

key_sr kri kR Sent by scroll-backward key.

key_redo kRDO %g Shifted redo key. KEY_SREDO

key_replace kRPL %h Shifted replace key. KEY_REPLACE

key_sright kRIT %i Shifted right-arrow key. KEY_SRIGHT

key_srsume kRES %j Shifted resume key. KEY_SRSUME

key_ssave kSAV !1 Shifted save key. KEY_SSAVE

key_ssuspend kSPD !2 Shifted suspend key. KEY_SSUPEND

key_stab khts kT Sent by set-tab key.

key_sundo kUND !3 Shifted undo key. KEY_SUNDO

key_suspend kspd &7 Suspend key. KEY_SUSPEND

key_tab ktab ko Tab key.

key_undo kund &8 Undo key. KEY_UNDO

key_up kcuu1 ku Sent by terminal up-arrow key.

keypad_local rmkx ke Ends keypad transmit mode.

keypad_xmit smkx ks Puts terminal in keypad transmit mode.

lab_f0 lf0 l0 Labels function key F0, if not F0.

lab_f1 lf1 l1 Labels function key F1, if not F1.

lab_f2 lf2 l2 Labels function key F2, if not F2.

lab_f3 lf3 l3 Labels function key F3, if not F3.

lab_f4 lf4 l4 Labels function key F4, if not F4.

lab_f5 lf5 l5 Labels function key F5, if not F5.

lab_f6 lf6 l6 Labels function key F6, if not F6.

lab_f7 lf7 l7 Labels function key F7, if not F7.

lab_f8 lf8 l8 Labels function key F8, if not F8.

lab_f9 lf9 l9 Labels function key F9, if not F9.

lab_f10 lf10 la Labels function key F10, if not F10.

label_format fln Lf Label format.

label_off rmln LF Turn off soft labels.

label_on smln LO Turn on soft labels.

meta_on smm mm Enables meta mode (8th bit).

meta_off rmm mo Disables meta mode.

micro_column_address mhpa ZY Move N steps from the left.

micro_down mcud1 ZZ Move 1 step down.

micro_left mcub1 Za Move 1 step left.

micro_right mcuf1 Zb Move 1 step right.

micro_row_address mvpa Zc Move N steps from the top.

micro_up mcuu1 Zd Move 1 step up.

newline nel nw Performs new-line function (behaves like carriage
return followed by line feed).

Chapter 2. File Formats 549

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

order_of_pins porder Ze Matches software bits to print-head pins.

orig_colors oc oc Original colors.

orig_pair op op Original color-pair.

pad_char pad pc Pads character (instead of NULL).

parm_dch dch DC Deletes #1 characters. (G)

parm_delete_line dl DL Deletes #1 lines. (G)

parm_down_cursor cud DO Moves cursor down #1 lines. (G*)

parm_down_micro mcud Zf Move N steps down. (G*)

parm_ich ich IC Inserts #1 blank characters. (G*)

parm_index indn SF Scrolls forward #1 lines. (G)

parm_insert_line il AL Adds #1 new blank lines. (G*)

parm_left_cursor cub LE Moves cursor left #1 spaces. (G)

parm_left_micro mcub Zg Move N steps left.

parm_right_cursor cuf RI Moves cursor right #1 spaces. (G*)

parm_right_micro mcuf Zh Move N steps right.

parm_rindex rin SR Scrolls backward #1 lines. (G)

parm_up_cursor cuu UP Moves cursor up #1 lines. (G*)

parm_up_micro mcuu Zi Move N steps up.

pkey_key pfkey pk Programs function key #1 to type string #2.

pkey_local pfloc pl Programs function key #1 to execute string #2.

pkey_xmit pfx px Programs function key #1 to transmit string #2.

plab_norm pln pn Program label #1 to show string #2.

print_screen mc0 ps Prints contents of the screen.

prtr_non mc5p pO Enables the printer for #1 bytes.

prtr_off mc4 pf Disables the printer.

prtr_on mc5 po Enables the printer.

pulse pulse PU Select pulse dialing.

quick_dial qdial QD Dial phone number #1, without progress detection.

remove_clock rmclk RC Remove time-of-day clock.

repeat_char rep rp Repeats #1 character #2 times. (G*)

req_for_input rfi RF Send next input char (for pty’s).

reset_1string rs1 r1 Resets terminal to known modes.

reset_2string rs2 r2 Resets terminal to known modes.

reset_3string rs3 r3 Resets terminal to known modes.

reset_file rf rf Identifies the file containing reset string.

restore_cursor rc rc Restores cursor to position of last sc (save_cursor).

row_address vpa cv Positions cursor to an absolute vertical position (set
row). (G)

save_cursor sc sc Saves cursor position.

scroll_forward ind sf Scrolls text up.

550 Files Reference

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

scroll_reverse ri sr Scrolls text down.

select_char_set scs Zj Select character set.

set_attributes sgr sa Defines the video attributes. (G) #1-#9

set_background setb Sb Set background color.

set_bottom_margin smgb Zk Set soft bottojm margin at current line.

set_bottom_margin_parm smgbp Zl Set soft bottom margin.

set_clock sclk SC Set time-of-day clock.

set_color_pair scp sp Set color pair.

set_foreground setf Sf Set foreground color.

set_left_margin smgl ML Set soft left margin.

set_left_margin_parm smglp Zm Set soft left margin.

set_right_margin smgr MR Set soft right margin.

set_right_margin_parm smgrp Zn Set soft right margin.

set_tab hts st Sets a tab in every row of the current column.

set_top_margin smgt Zo Set top margin at current line.

set_top_margin_parm smgtp Zp Set soft top margin.

set_window wind wi Indicates current window is lines #1-#2, columns
#3-#4. (G)

start_bit_image sbim Zq Start printing bit-image graphics.

start_char_set_def scsd Zr Start definition of a character set.

stop_bit_image rbim Zs End printing bit image graphics.

stop_char_set_def rcsd Zt End definition of a character set.

subscript_characters subcs Zu List of charcters that can appear in subscript.

superscript_characters supcs Zv List of characters that can appear in superscript.

tab ht ta Tabs to next 8-space hardware tab stop.

these_cause_cr docr Zw Printing any of these characters cause a carrige
return.

tone tone TO Select touch-tone dialing.

to_status_line tsl ts Moves to status line, column #1. (G)

underline_char uc uc Underscores one character and moves beyond it.

up_half_line hu hu Indicates superscript (reverse 1/2 line-feed)

user0 u0 u0 User string 0.

user1 u1 u1 User string 1.

user2 u2 u2 User string 2.

user3 u3 u3 User string 3.

user4 u4 u4 User string 4.

user5 u5 u5 User string 5.

user6 u6 u6 User string 6.

user7 u7 u7 User string 7.

user8 u8 u8 User string 8.

Chapter 2. File Formats 551

Table 10. String Capabilities (continued)

Variable Cap Name I.Code Description

user9 u9 u9 User string 9.

wait_tone wiat WA Wait for dial tone.

xoff_character xoffc XF X-off character.

xon_character xonc XN X-on character.

zero_motion zerom Zx No motion for the subsequent character.

Preparing Descriptions
You can create a terminal description by copying and then modifying the description of a similar terminal.
You can check the accuracy of your partial descriptions with the vi editor. Some terminals may reveal bugs
in the vi editor as well as deficiencies in the ability of the terminfo database to provide a terminal
description.

To test a new terminal description, set the TERMINFO environment variable to the path name of the
directory containing the compiled description on which you are working. Programs then check that
directory instead of the /usr/share/lib/terminfo directory.

To test for correct padding (if known), do the following:

1. Edit the /etc/passwd file at 9600 baud.

2. Delete about 16 lines from the middle of the screen.

3. Press the u key several times quickly.

If the terminal fails to display the result properly, more padding is usually needed. You can perform a
similar test for insert character.

Note: Excessive padding slows down the terminal.

Basic Capabilities
This section describes some basic terminal capabilities. If a terminal supports one of these capabilities, the
terminal’s terminfo source file entry indicates it. The following list is a list of basic capabilities:

am Indicates that the cursor moves to the beginning of the next line when it reaches the right margin. This
capability also indicates whether the cursor can move beyond the bottom right corner of the screen.

bel Produces an audible signal (such as a bell or a beep).
bw Indicates that a backspace from the left edge of the terminal moves the cursor to the last column of the

previous row.
clear Clears the screen, leaving the cursor in the home position.
cols Specifies the number of columns on each line for the terminal.
cr Moves the cursor to the left edge of the current row. This code is usually carriage return (Ctrl-M).
cub1 Moves the cursor one space to the left, such as backspace.
cuf1 Moves the cursor to the right one space.
cuu1 Moves the cursor up one space.
cud1 Move the cursor down one space.
hc Specifies a printing terminal with no softcopy unit. You should also specify the os capability.
ind Scrolls text up.
lf Specifies a line-feed.
lines Specifies the number of lines on a cathode ray tube (CRT) terminal.
nel Specifies a newline. The terminal behaves as if it received a carriage return followed by a line feed.
os Indicates that when a character is displayed or printed in a position already occupied by another character,

the terminal overstrikes the existing character, rather than replacing it with the new character. The os
capability applies to storage scope, printing, and APL terminals.

552 Files Reference

ri Scrolls text down.

If the LINES and COLUMNS environment variables are set, these variables override the values in the
terminfo database.

The local cursor motions encoded in the terminfo database files are undefined at the left and top edges of
a CRT terminal. Programs should never attempt to backspace around the left edge (unless the bw string
is given) or to go up locally off the top.

To scroll text up, a program should go to the bottom left corner of the screen and send the index string. To
scroll text down, a program goes to the top left corner of the screen and sends the reverse index string.
The index string is specified by the ind capability and the reverse index string is specified by the ri
capability. The index string and the reverse index string are undefined when not on their respective
corners of the screen.

The am capability determines whether the cursor sticks at the right edge of the screen when text is output,
but this does not necessarily apply when the cursor is moved to the right (the cuf1 capability) from the last
column. A terminal has local motion from the left edge only if the bw capability is defined. The cursor then
goes to the right edge of the previous row when moved to the left (the cub1 capability) from the left edge.
If the terminal does not have the bw capability, the effect is undefined, which is useful for drawing a box
around the edge of the screen, for example.

A terminal has switch-selectable automatic margins if the am capability is specified. If the terminal has a
command that moves to the first column of the next line, you can define the nel (new-line) capability. It
does not matter whether the command clears the remainder of the current line. Therefore, if the terminal
has no cr and lf, a working nel can still be crafted out of one or both of them.

These capabilities suffice to describe printing terminals and simple CRT terminals. Thus, the Model 33
Teletype is described as:
33 | tty33 | tty | Model 33 Teletype

bel=^G, cols#72, cr=^M, cud1=^J, hc, ind=^J, os, xon,

Another terminal is described as:
xxxx | x | xxxxxxxx,

am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H, cud1=^J,
ind=^J, lines#24,

Parameterized Strings
Cursor-addressing and other strings requiring parameters are described by parameterized string
capabilities. These strings have escape sequences similar to the printf %x format. For example, to
address the cursor, you specify the cup capability using the row and column parameters.

The parameterized capabilities include:

cub1 Backspaces the cursor one space.
cup Addresses the cursor using the row and column parameters. Rows and columns are

numbered starting with 0 and refer to the physical screen visible to the user, not to memory.
hpa and vpa Indicates the cursor has row or column absolute cursor addressing: horizontal position

absolute (hpa) or vertical absolute (vpa).

Sometimes the hpa and vpa capabilities are shorter than the more general two-parameter
sequence and you can use them in preference to the cup capability. Parameterized local
motions (such as, a move of n spaces to the right) are defined with the cud, cub, cuf, and
cuu capabilities, with a single parameter indicating how many spaces to move. These
capabilities are primarily useful if the terminal does not have cup capability.

Chapter 2. File Formats 553

indn and rin Scrolls text. These are parameterized versions of the basic ind and ri capabilities. The n
value is a number of lines.

mrcup Indicates the terminal has memory-relative cursor addressing.

The parameter mechanism uses a stack and has special % (percent sign) codes to manipulate the stack.
Typically, a sequence pushes one of the parameters onto the stack and then prints it in some format.
Often, more complex operations are necessary. The encodings have the following meanings:

%% Outputs a % (percent sign).
%[[:] Flags] [Width [.Precision]] [doxXs] As in the printf command, flags are the [- + #] and

space.
%d Prints pop() as in the printf command (numeric string

from stack).
%2d Prints pop() like %2d (minimum 2 digits output from

stack).
%3d Prints pop() like %3d (minimum 3 digits output from

stack).
%02d Prints as in the printf command (2 digits output).
%03d Prints as in the printf command (3 digits output).
%c Prints pop() gives %c (character output from stack).
%s Prints pop() gives %s (string output from stack).
%p[i] Pushes the ith parameter onto the stack where i is a

number between 1 and 9.
%P[a-z] Sets variable [a-z] to pop() (variable output from stack).
%g[a-z] Gets variable [a-z] and pushes it onto the stack.
%’c’ Character constant c.
%{nn} Integer constant nn.
%l Push strlen (pop())
%+ %- %* %/ %m Arithmetic operators (%m is modulus): push (pop()

operation pop()).
%& %| %^ Bit operations: push (pop() operation pop()).
%= %> %< Logical operations: push (pop() operation pop()).
%! %~ Unary operations: push (operation pop()).
%i Add 1 to first two parameters (for ANSI terminals).
%?expr %t thenpart %e elsepart %; If-then-else. The %e elsepart is optional. You can make

an else-if construct as with Algol 68 in the following
example, where ci denotes conditions and bi bodies.

%? c1 %t b1 %e c2 %t b2 %e c3 %t b3 %e b4 %;

Binary operations are in postfix form with the operands in the usual order. That is, to get x - 5 use
%gx%{5}%-.

If you use the - (minus sign) flag with %[doxXs], then you must place a colon between the % (percent sign)
and the - (minus sign) to differentiate the flag from the %- binary operation, for example, %:-16.16s.

Consider a terminal that needs to be sent \E&a12c03Y padded for 6 milliseconds to get to row 3 and
column 12. Here the order of the rows and columns is inverted, and the row and column are zero-padded
as two digits. Thus, the cup capability of this terminal is cup=\E&a%p2%2.2dc%p1%2.2dY$<6>.

Some terminals need the current row and column sent, preceded by a ^T, with the row and column
encoded in binary: cup=^T%p1%c%p2%c. Terminals that use %c need to be able to backspace the cursor
(cub1) and to move the cursor up one line on the screen (cuu1). This is necessary because it is not
always safe to transmit \n, ^D, and \r characters, since the system may change or discard them.

554 Files Reference

Note: The library routines dealing with the terminfo database files set terminal modes so that tabs are
not expanded by the operating system; thus, \t (tab) is safe to send.

A final example is a terminal that uses row and column offset by a blank character:
cup=\E=%p1%’\s’%+%c%p2’\s’%+%c. After sending \E=, this operation pushes the first parameter, pushes the
ASCII value for a space (32), adds them (pushing the sum on the stack in place of the two previous
values), and outputs that value as a character. Then the same is done for the second parameter. More
complex arithmetic is possible using the stack.

Cursor Motions
The top left corner of the screen is the home position. If the terminal has a fast way to get the cursor to
the home position, specify the home capability. Specify, a fast way of getting to the bottom left corner with
the ll capability. This method may involve going up (cuu1) from the home position, but a program should
never do this itself (unless ll does) because the effect of moving up from the home position is not certain.

Note: The home position is the same as addressing (0,0) to the top left corner of the screen, not of
memory.

If the terminal has row or column absolute-cursor addressing, you should specify the single hpa capability
(horizontal position above) and the vpa capability (vertical position absolute). Sometimes these are shorter
than the more general two parameter sequence and you can use them instead of the cup capability.

If the terminal has parameterized local motions for example, it is capable of moving the cursor n spaces
right, you can specify the cud, cub, cuf, and cuu capabilities with a single parameter indicating how many
spaces to move. These capabilities are useful if the terminal does not have the cup capability.

Area Clears
The following capabilities clear large areas of the terminal:

ed Clears from the current position to the end of the display. This is defined only from the first column of a line.
(Thus, it can be simulated by a request to delete a large number of lines, if a true ed is not available.)

el Clears from the current cursor position to the end of the line without moving the cursor.
el1 Clears from the beginning of the line to the current position, inclusive. The cursor is not moved.

Scrolling
The following insert-line and delete-line capabilities are used to indicate a terminal can:

csr Change the scrolling region. This capability takes two parameters: the top and bottom lines of the scrolling
region. The top line of the screen is 0. After using this capability, the cursor position is undefined. See the sc
and rc capabilities in this section.

da Retain the display above the screen. If a line is deleted or the screen is scrolled, non-blank lines can be
brought in at the top. This capability is usually defined for multipage terminals.

db Retain the display below the screen. If a line is deleted or the screen is reverse scrolled, the terminal can
bring the non-blank lines at the bottom. This capability is usually defined for multipage terminals.

dl1 Delete the line the cursor is on. This is done only from the first position on the line to be deleted. Additionally,
the dl capability takes a single parameter indicating the number of lines to be deleted.

il1 Create a new blank line before the line where the cursor is currently located and scrolls the rest of the
screen down. This is done only from the first position of a line. The cursor then appears on the newly blank
line. Additionally, the il capability can take a single parameter indicating the number of lines to insert.

ind Index or scroll forward. A terminal with this capability can shift the display up one line by deleting the top line
and adding a blank line at the bottom.

indn Specify the number of lines to scroll forward. This capability has meaning only if the ind capability is also
defined.

rc Restore the cursor. This capability is useful with the csr and sc capabilities.

Chapter 2. File Formats 555

ri Reverse scrolling. With this capability, the terminal can shift the screen down by deleting the bottom line and
adding a blank line at the top.

rin Specify the number of lines to reverse scroll. This capability has meaning only if the ri capability also is
defined.

sc Save the cursor. If defined, you can use the sc capability to save the cursor before using the csr capability.
Saving the cursor is necessary because the cursor position is undefined after you use the csr capability. Use
the rc capability to restore the cursor to the position it held before you used the csr capability.

wind Indicates the terminal has the ability to define a window as part of memory. This is a parameterized string
capability with four parameters: the starting and ending lines in memory and the starting and ending columns
in memory, in that order.

A terminal that has the csr capability can scroll part of its screen while leaving other lines above and
below the region untouched. A forward scroll applied to a region deletes the top of the region, shifts, and
adds a line to the bottom of the region. When finished with the scrolling region, you should use the csr
capability to restore the scrolling region to the full screen.

Be sure you move the cursor into the scrolling region with the cup capability before you attempt to scroll
the region. You should not move the cursor from the region until you are done with it.

Note: If you are using a terminals csr capability, you may also need to use the sc and rc capability.

Terminals that have csr defined have a destructive scrolling region. Once a line is scrolled off the screen,
the terminal cannot retrieve it. A terminal with a non-destructive scrolling region can restore scrolled lines
by reversing the scrolling. Unless the ind, ri, indn, rin, dl, and dl1 all simulate destructive scrolling, do not
specify the csr capability if the terminal has non-destructive scrolling regions.

On multipage terminals, scrolling can put a line onto another page and scrolling in the opposite direction
brings the line back. Similarly, deleting a line can cause a line from another page to appear on the screen.
Multipage terminals should have the da and db capabilities defined so that program that use scrolling can
adjust their behavior.

A few terminals can define a window as part of memory. For these types of terminals, all clearing, deletion,
insertion, and wrapping commands affect the area in memory where the window is defined.

Insert or Delete Character
Generally, terminals handle insert/delete character operations in one of two ways. The most common
insert/delete character operations affect only the characters on the current line and shift characters to the
right and off the line. Other terminals make a distinctions between typed and untyped blanks on the
screen. When inserting a character, the displayed data is shifted and an untyped blank is eliminated. Once
all the untyped blanks are eliminated, the displayed data wraps to the next line if you continue to insert
characters. When deleting a character, an untyped blank is added to the line to compensate for the
deleted character.

Generally, terminals insert/delete characters in one-line mode or multiline mode. The two types of
terminals also handle untyped spaces differently. One-line mode is the most common mode. In one-line
mode, insert/delete character operations affect only the characters on the current line. Insertions shift
characters to the right and off the line.

Multiline mode terminals can affect more than one line. In this mode, the terminal makes a distinction
between typed and untyped blanks on the screen. Inserting a character on a multiline mode terminal shifts
the displayed data and eliminates untyped blanks. If all the untyped blanks are eliminated and you
continue to insert characters, the display wraps to the next line. When deleting a character, multiline
terminals add an untyped blank to the line to compensate for the deleted character.

556 Files Reference

Determining Your Terminal’s Type
Clearing a screen and then typing text separated by cursor motions helps you determine the type of
insert/delete operations your terminal performs. Clear the screen, then proceed as follows:

1. Type abc def using local cursor movements, not spaces, between the abc and the def.

2. Position the cursor before the abc.

3. Place the terminal in insert mode.

4. Type a line of text. If your typing causes the abc def characters to shift right and exit the right side of
the display, the terminal does not distinguish between blanks and untyped positions.

If the abc moves to positions to the immediate left of the def and the characters move to the right on
the line, around the end, and to the next line, the terminal is the second type. This is described by the
in capability, which signifies insert null.

Although these two attributes (one-line versus multiline insert mode, and different treatment of untyped
spaces) are logically separate, there are no known terminals whose insert mode cannot be described with
a single attribute.

Insert or Delete Character Capabilities
The terminfo database describes terminals that have an insert mode as well as terminals that send a
simple sequence to open a blank position on the current line. The following are used to describe
insert/delete character capabilities:

dch1 Deletes a single character. The dch capability with one parameter, n, deletes n characters.
ech Replaces the specified number of characters, starting at the cursor, with blanks. The cursor position remains

unchanged.
ich1 Opens a space in a line for a character to be inserted. This sequence precedes the actual character

insertion. Terminals with a true insert mode would not use this capability.
ip Indicates post-padding needed. This is given as a number of milliseconds. Any other sequence that may

need to be sent after inserting a single character can be given in this capability.
mir Allows cursor movement while in insert mode. It is sometimes necessary to move the cursor while in insert

mode to delete characters on the same line. Some terminals may not have this capability due to their
handling of insert mode.

rmdc Exits delete mode.
rmir Ends insert mode.
rmp Indicates that padding is necessary between characters typed while not in insert mode. This capability is

used in replace mode.
smdc Enters delete mode.
smir Begins insert mode.

If you are creating a terminfo description for a terminal that requires an insert mode and also needs a
special code to precede each inserted character, then define the smir/rmr, and ich1 capabilities. The ich
capability, with the one parameter n, opens up n spaces so that n characters can be inserted.

Highlighting, Underlining, and Visual Bells
If your terminal has one or more kinds of display attributes, such as highlighting, underlining, and visual
bells, you can present these in a number of ways. Highlighting, such as standout mode, presents a
high-contrast, easy-to-read format that adds emphasis to error messages and other important messages.
Underlining is another method to focus attention on a particular portion of the terminal. Visual bells include
methods such as flashing the screen. The following capabilities describe highlighting, underlining, and
visual bells:

blink Indicates terminal has blink highlighting mode.

bold Indicates terminal has extra bright highlighting mode.

civis Makes the cursor invisible.

Chapter 2. File Formats 557

cnorm
Displays a normal cursor. This capability reverses the effects of the civis and cvvis capabilities.

cvvis Makes the cursor more visible than normal when it is not on the bottom line.

dim Indicates the terminal has half-bright highlighting modes.

eo Indicates that blanks erase overstrikes.

enacs Specifies a command string that enables alternate character set mode. Some terminals cannot
enter alternate character set mode without first receiving a specific command. The enacs
capability defines the command.

flash Indicates the terminal has a way of making the screen flash (as a bell replacement) for errors,
without moving the cursor.

invis Indicates the terminal has blanking or invisible-text highlighting modes.

msgr Indicates it is safe to move the cursor in standout mode. Otherwise, programs using standout
mode should exit this mode before moving the cursor or sending a new-line. Some terminals
automatically leave standout mode when they move to a new line or when the cursor is
addressed.

nrrmc Indicates that the smcup sequence does not restore the screen after a rmcup sequence is output.
This means that you cannot restore the screen to the state prior to outputting rmcup.

os Indicates the terminal can overstrike an existing character without erasing the original. Overstriking
creates a compound character.

prot Indicates the terminal has protected text mode. This means the terminal protects the text from
overwriting or erasing. The method of protection is terminal dependent.

rev Indicates the terminal has reverse-video mode.

rmacs Exits the alternate character set mode.

rmso Exits standout mode.

rmul Ends underlining.

sgr Provides a sequence to set arbitrary combinations of attributes. The sgr capability can set nine
attributes. In order, these attributes are the following:

v standout

v underline

v blink

v dim

v bold

v blank

v protect

v alternate character set

To turn a mode on, set it to a nonzero value. To turn a mode off, set it to 0. The sgr capability can
only support those modes for which separate capabilities already exist on the terminal.

sgr0 Turns of all the special modes, including the alternate character set.

smacs
Enters the alternate character set mode.

smcup and rmcup
Indicate the terminal must be in a special mode when running a program that uses any of the
highlighting, underlining, or visual bell capabilities. The smcup capability enters this mode, and the
rmcup capability exits this mode.

558 Files Reference

This need arises, for example, with terminals having more than one page of memory. If the
terminal has only memory-relative cursor addressing, and not screen-relative cursor addressing, a
screen-sized window must be fixed into the terminal for cursor addressing to work properly. This is
also used when the smcup capability sets the command character to be used by the terminfo
database file.

smso Enters standout mode.

smul Begins underlining.

uc Underlines the current character and moves the cursor one space to the right.

ul Indicates the terminal correctly generates underlined characters (with no special codes needed),
even though it does not overstrike.

xmc Indicates the number of blanks left if the capability to enter or exit standout mode leaves blank
spaces on the screen.

Highlighting, Overstriking, and Underlining
You should choose one display method as standout mode and use it to highlight error messages and other
kinds of text to which you want to draw attention. For example, you could choose reverse-video plus
half-bright or reverse-video alone. The sequences to enter and exit standout mode are given by the smso
and rmso capabilities. If the code to change into or out of standout mode leaves one or even two blank
spaces on the screen, then xmc should be given to tell how many spaces are left.

You should specify the ul boolean capability if your terminal generates underlined characters by using the
underline character with no special codes. You should specify this capability even if the terminal does not
otherwise overstrike characters. For terminals where a character overstriking another leaves both
characters on the screen, specify the os capability. If the terminal can erase overstrikes with a blank, then
indicate this by specifying the eo capability.

Example of Using the sgr Capability
The following example demonstrates how to use the sgr capability to turn on various modes. Assume that
you must define a terminal that requires the following escape sequences to turn on various modes:

Terminfo Parameter Mode Escape Sequence
none \E[0m

p1 standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[0;5m
p5 dim \E[0;7m
p6 bold \E[0;3:4m
p7 invis \E[0;8m
p8 protect not available
p9 altcharset ^O (off) ^N (on)

Note: Each escape sequence requires a 0 to turn off other modes before turning on its own mode.

You can simulate some modes by combining others. In this example, the standout attribute escape
sequence is a combination of the reverse and dim sequences. Also, in the example the bold sequence is
a combination of the reverse and underline sequences. To combine such modes as underline and blink,
the sequence to use would be \E[0;3;5m.

You cannot simulate certain modes by combining others. For example, you cannot simulate the protect
mode. In this example, the system ignores the p8 parameter. The altcharset mode is different in that it is
either ^O or ^N, depending on whether the alternate character mode set is on or off. If all modes were
turned on, the sequence would appear as \E[0;3;4;5;7;8m^N.

Chapter 2. File Formats 559

Some sequences are outputted for one or more modes. For example, the ;3 is outputted when either the
p2 parameter or p6 parameter is true. If you write out the above sequences along with their dependencies,
the result is the following;

Sequence When To Output terminfo Translation
\E[0 always \E[0
;3 if p2 or p6 %?%p2%p6%|%t;3%;
;4 if p1 or p3 or p6 %?%p1%p3%|%p6%|%t;4%;
;5 if p4 %?%p4%t;5%;
;7 if p1 or p5 %?%p1%p5%|%t;7%;
;8 if p7 %?%p1%t;8%;
m always m
^N or ^O if p9 ^N, else ^O %?%p9%t^N%e^O%;

The final result would produce a sgr sequence that appears as follows:
sgr=\E[0%?%p2%p6%|%t;3%;%?%p1%p3%|%p6%|%t;4%;%?%p4%t;5;%?%p1%p5%|
%t;7%;%?%p1%t;8%;m%?%p9%t^N%e^O%;,

Keypad
If the terminal has a keypad that transmits codes when the keys are pressed, you can define this in the
terminfo entry for the terminal. It is not possible to handle terminals where the keypad only works in local
mode. If the keypad can be set to transmit or not transmit, give these codes as smkx and rmkx.
Otherwise, the keypad is assumed to always transmit.

To define the codes sent by the left-arrow, right-arrow, up-arrow, down-arrow, and home keys, use the
kcub1, kcuf1, kcud1, and khome capabilities, respectively. If there are function keys such as F0, F1, ...,
F63, the codes they send can be given as the kf0, kf1, ..., kf63 capabilities. If the first eleven keys have
labels other than the default F0 through F10, you can specify the labels with the lf0, lf1, ..., lf10
capabilities. The codes transmitted by certain other special keys can be defined with:

kbs Backspace key.
kclr Clear-screen or erase key.
kctab Clear the tab stop in this column.
kdch1 Delete-character key.
kdl1 Delete-line key.
ked Clear to end of screen.
kel Clear to end of line.
khts Set a tab stop in this column.
kich1 Insert character or enter insert mode.
kil1 Insert line.
kind Scroll forward or down, or both.
kll Home down key (home is the lower left corner of the display, in this instance).
krmir Exit insert mode.
knp Next page.
kpp Previous page.
ktbc Clear-all-tabs key.
ri Scroll backward or up, or both.

In addition, if the keypad has a three-by-three array of keys including the four arrow keys, specify the other
five keys as ka1, ka3, kb2 kc1, and kc3. These keys are useful when you need the effects of a
three-by-three directional pad.

Strings that program function keys can be given as the pfkey, pfloc, and pfx capabilities. A string to
program the soft screen labels can be given as pln. Each of these strings takes two parameters: the

560 Files Reference

function key number to program (from 0 to 10) and the string with which to program it. Function key
numbers out of this range can program undefined keys in a terminal-dependent manner. The capabilities
differ in that pfkey causes pressing a given key to be the same as the user typing the given string, pfloc
causes the string to be executed by the terminal in local mode, and pfx causes the string to be transmitted
to the computer. The capabilities nlab, lw, and lh define the number of soft labels and the width and
height. Use smln and rmln to specify the commands for turning on and off soft labels. smln is normally
output after one or more pln sequences to ensure the change becomes visible.

Tabs and Initialization
If the terminal has hardware tabs, you can use ht capability (usually Ctrl-I) to specify the command to
advance to the next tab stop. To specify the command to move left toward the previous tab stop, use the
cbt capability. By convention, if the terminal modes indicate that operating system is expanding the tabs
rather than sending them to the terminal, programs should not use the ht or cbt capabilities even if they
are present, since the user may not have the tab stops properly set.

If the terminal has hardware tabs that are initially set every n spaces when the terminal is powered up, its
terminfo description should define the numeric capability it to show the number of spaces the tabs are set
to. Normally, the tput init command uses the it parameter to determine whether to set the mode for
hardware tab expansion and whether to set the tab stops. If the terminal has tab stops that can be saved
in nonvolatile memory, the terminfo description can assume that they are properly set.

Other, similar capabilities include the is1, is2, and is3 initialization strings for the terminal; the iprog
capability that specifies the terminal’s initialization program, and the if capability that identifies the name of
a file containing long initialization strings. These strings are expected to set the terminal into modes
consistent with the rest of the terminfo file description. They are normally sent to the terminal by the tput
init command each time the user logs in. When the user logs in, the system does the following:

v Runs the iprog program.

v Prints is1.

v Print is2.

v Sets the margins using the mgc, smgl, and smgr capabilities.

v Sets the tabs using tbc and hts capabilities.

v Prints the if file.

v Prints is3.

You can set up special terminal modes without duplicating strings by putting the common sequences in the
is2 capability and special cases in the is1 and is3 capabilities. To specify sequences that do a harder
reset from a totally unknown state, specify the rs1, rs2, rs3, and rf capabilities that are the same as is1,
is2, is3, and the if capabilities.

A few terminals use the if and rf files. However, the recommended method is to use the initialization and
reset strings. These strings are output by the tput reset command. This command is used when the
terminal starts behaving strangely or is not responding at all. Commands are normally placed in the rs1,
rs2, rs3 and rf capabilities only if they produce annoying effects on the screen and are not necessary
when logging in. For example, the command to set the terminal into 80-column mode would normally be
part of is2, but it causes an annoying screen behavior and is not necessary since most terminals initialize
in 80-column mode.

If there are commands to set and clear tab stops, specify them using the tbc (clear all tab stops) and the
hts (set a tab stop in the current column of every row) capabilities. If a more complex sequence is needed
to set the tabs, the place the sequence in the is2 or the if capability.

The mgc capability can clear any margin. For more information about how to set and clear margins, see
Margins.

Chapter 2. File Formats 561

Miscellaneous Strings

If the terminal requires a character other than a null character as a pad, then specify the pad string. Only
the first character of the pad string is used. If a terminal does not have a pad character, specify the npc
capability.

If the terminal can move up or down half a line, define the hu (half-line up) and hd (half-line down)
capabilities. These capabilities are primarily useful for superscripts and subscripts on hardcopy terminals. If
a hardcopy terminal can eject to the next page (form feed), specify the as ff (usually Ctrl-L) capability.

If there is a command to repeat a given character a given number of times (to save time transmitting a
large number of identical characters), this can be indicated with the rep parameterized string. The first
parameter is the character to be repeated, and the second is the number of times to repeat it. Thus
following:
tparm(repeat_char,’x’,10)

is the same as
xxxxxxxxxx

If the terminal has a settable command character, such as the Tektronix 4025, indicate this with the
cmdch capability. A prototype command character is chosen that is used in all capabilities. This character
is given in the cmdch capability to identify it. On some UNIX systems, if the CC environment variable
exists, all occurrences of the prototype character are replaced with the character in the CC variable.

Terminal descriptions that do not represent a specific kind of known terminal such as switch, dialup, patch,
and network, should include the gn (generic) capability. This capability allows programs to return errors if
they cannot talk to the terminal. The gn capability does not apply to virtual terminal descriptions for which
the escape sequences are known. If a terminal is supported by the UNIX system virtual terminal protocol,
use the vt capability to define its terminal number.

If a terminal uses xon/xoff handshaking for the flow control, its description should include the xon
capability. You should still include padding information as well so that routines can make better decisions
about costs. However, actual pad characters are not transmitted. To specify sequences to turn on and off
xon/xoff handshaking, use the smxon and rmxon capabilities. If the characters used for handshaking are
not ^S and ^Q, use the xonc and xoffc capabilities to define them.

If a terminal has a meta key that acts as a shift key to set the eighth bit of any character transmitted,
identify the key with the km capability. Otherwise, software assumes that the eighth bit is parity, and it will
usually be cleared. If strings exist to turn this meta mode on and off, they can be given as the smm and
rmm capabilities.

If a terminal has more lines of memory than fit on the screen at once, use the lm capability to define the
number of lines of memory. A value of lm#0 indicates that the number of lines is not fixed, but that there
are still more lines of memory than fit on the screen.

Media copy strings that control an auxiliary printer connected to the terminal are identified with the
following capabilities:

mc0 Prints the contents of the screen
mc4 Turns off the printer, and
mc5 Turns on the printer. When the printer is on, all text sent to the terminal is sent to the printer. It is undefined

whether the text is also displayed on the terminal screen when the printer is on.
mc5p Leaves the printer on for a specified number of characters and then turns the printer off. The parameter

passed to mc5p should not exceed 255.

562 Files Reference

If the terminal screen does not display the text when the printer is on, specify the mc5i capability to signify
a silent printer. All text, including the mc4, is transparently passed to the printer while an mc5p is in effect.

Status Lines
You can use the terminfo entry to indicate that the terminal has an extra status line that is not normally
used by software,. If the status line is viewed as an extra line below the bottom line, into which the cursor
can be addressed normally, the hs capability should be given. Special strings to go to the beginning of the
status line and to return from the status line can be given as the tsl and fsl capabilities, respectively. (The
fsl must leave the cursor position in the same place it was before the tsl. If necessary, the sc string and
the rc string can be included in tsl and fsl to get this effect.) The tsl capability takes one parameter, which
is the column number of the status line to which the cursor is to be moved.

If escape sequences and other special commands, such as tab, work while in the status line, specify the
eslok capability. A string that turns off the status line (or otherwise erases its contents) should be given as
dsl. If the terminal has commands to save and restore the position of the cursor, give them as sc and rc
capabilities. The status line is normally assumed to be the same width as the rest of the screen, such as
cols. If the status line is a different width (possibly because the terminal does not allow an entire line to be
loaded), the width, in columns, can be indicated with the wsl numeric parameter.

Line Graphics
If the terminal has a line drawing alternate character set, specify the mapping of glyph to character in the
acsc capability. The definition of this string is based on the alternate character set used in the DEC VT100
terminal, extended slightly with some characters from the AT&T4410v1 terminal. Use the following to
define the string:

Glyph Name vt100+ Character
arrow pointing right +
arrow pointing left ,
arrow pointing down .
solid square block 0
lantern symbol I
arrow pointing up -
diamond ’
check board (stipple) a
degree symbol f
plus or minus sign g
board of squares h
lower right corner j
upper right corner k
upper left corner l
lower left corner m
plus n
scan line 1 o
horizontal line q
scan line 9 s
left tee t
right tee u
bottom tee v
top tee w
vertical line x
bullet ~

Chapter 2. File Formats 563

The best way to describe a new terminal’s line graphics set is to add a third column to the above table
with the characters for the new terminal that would produce the appropriate glyph when the terminal is in
alternate character set mode. For example:
glyph name vt100 tty

character character

upper left corner l R

lower left corner m F

upper right corner k T

lower right corner j G

horizontal line q ,

vertical line x .

Then, you specify the acsc capability by specifying the characters from left to right as follows:
acsc=lRmFkTjGq\,x.

Color Manipulation
There are two methods of color manipulation, the HP method and the Tektronix method. Most existing
color terminals belong to one of these two classes. The Tektronix method uses a set of N predefined
colors (usually 8) from which a user can select current foreground and background colors. Thus, the
terminal can support up to N colors mixed into N*N color-pairs that are displayed on the screen at the
same time.

The HP method restricts the user from both defining the foreground independently of the background or
the background independently of the foreground. Instead, the user must define an entire color-pair at once.
Up to M color-pairs, made from 2*M different colors, can be defined this way.

The numeric variables colors and pairs define the number of colors and color-pairs that the terminal can
display on the screen at one time. If a terminal can change the definition of a color, you should specify the
ccc capability. To change the definition of a color using the Tektronix method, use the initc capability. This
capability requires four parameters: a color number ranging from 0 to colors-1 and three Red, Green, Blue
(RGB) values ranging from 0 to 1,000.

Tektronix 4100 series terminals use a type of color notation called HLS (Hue Lightness Saturation) instead
of RGB color notation. For such terminals, you should define the hls boolean capability. The last three
arguments to the initc capability would then be HLS values where H ranges from 0 to 360 and L and S
range from 0 to 100.

Note: If a terminal can change the definitions of colors but uses a color notation different from RGB or
HLS, you must develop a mapping to either RGB or HLS.

To set current foreground and background to a given color, use the setf and setb capabilities. These
capabilities require a single parameter that specifies the number of the color. To use the HP method to
initialize a color-pair, use the initp capability. This capability requires seven parameters:

v the number of the color-pair in the range of 0 to pairs -1

v three RGB values for the foreground

v three RGB values fro the background

When you use the initc or initp capabilities, be sure you specify the values in the order red, green, blue
or hue, lightness, saturation, respectively. To make a color-pair current, use the scp capability. This
capability takes one parameter, the number of the color-pair.

Some terminals erase areas of the screen with the current background color. In such cases, define the
bce capability. The op capability contains a sequence for setting the foreground and the background

564 Files Reference

colors to what they were at the terminal start-up time. Similarly, the oc capability contains a control
sequence for setting all colors or -pairs to the values they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes should not be combined
with colors. You should pack information about these video attributes into the ncv capability. There is a
one-to-one correspondence between the nine least significant bits of that variable and the video attributes.
The following table depicts this correspondence:

Attribute NCV Bit Number
A_STANDOUT 0
A_UNDERLINE 1
A_REVERSE 2
A_BLINK 3
A_DIM 4
A_BOLD 5
A_INVIS 6
A_PROTECT 7
A_ALTCHARSET 8

When a particular video attribute should not be used with colors, the corresponding ncv bit should be set
to 1. Otherwise, set the bit to 0. For example, if the terminal uses colors to simulate reverse video and
bold, bits 2 and 5 should be set to 1. The resulting values for ncv will be 22.

Special Cases
Some terminals require special support by the terminfo database. These terminals are not deficient.
These terminals have hardware that may be slightly different than what the terminfo database expects of
most terminals. Some of the special cases are discussed in this section. The programmer’s manual for a
terminal should provided all the information you need to code a terminfo description for the terminal.

For terminals that do not allow the ~ (tilde) character, use the hz capability.

Descriptions of terminals that ignore a line-feed character immediately after an am wrap should include the
xenl capability. Those terminals whose cursor remains on the right-most column until another character is
received rather than wrapping immediately upon receiving the right-most character, should also use the
xenl capability.

If el capability is required to get rid of standout (instead of merely writing normal text on top of it), then you
should specify xhp capability.

Terminals for which tabs change all moved characters into blanks should indicate the xt capability
(destructive tabs). This capability is interpreted to mean that it is not possible to position the cursor on top
of the pads inserted for standout mode. Instead, it is necessary to erase standout mode using delete and
insert line.

A terminal that is unable to correctly transmit the ESC (escape) or Ctrl-C characters should specify the
xsb capability, indicating that the F1 key is used for ESC and the F2 key is used for Ctrl-C.

Other specific terminal problems can be corrected by adding more capabilities.

Similar Terminals
If two terminals are very similar, you can define one as being just like the other with the use string
capability. You can also use all of the definitions from an existing description and identify exceptions. The

Chapter 2. File Formats 565

capabilities given before the use capability override those in the terminal type called by the use capability.
To cancel a capability place xx@ to the left of the use capability definition, where xx is the capability. For
example, the entry:
term-nl | Terminal smkx@, rmkx@, use=term

defines a terminal that does not have either the smkx or the rmkx capability, and hence does not turn on
the function key labels when in visual mode. This is useful for different terminal modes or for different user
preferences. You can specify more than one use capability.

Printer Capabilities
The terminfo database allows you to define the capabilities of printers as well as terminals. To find out
what capabilities are available for printers as well as for terminals, see the two lists under Terminal
Capabilities that the list the capabilities by variable and by capability name.

Rounding Values
Because parameterized string capabilities work only with integer values, we recommend that terminfo
designers create strings that expect rounded numeric values. Programmers should always round values to
the nearest integer before using them with a parameterized string capability.

Printer Resolution
A printer’s resolution is the smallest spacing of characters it can achieve. In general, printers have
independent resolution horizontally and vertically. To determine the vertical resolution of a printer, measure
the smallest achievable distance between consecutive printing baselines. To determine the horizontal
resolution, measure the smallest achievable distance between the left-most edges of consecutive printed,
identical, characters.

The terminfo database assumes all printers are capable of printing with a uniform horizontal and vertical
resolution. The terminfo database currently interacts with printers as if they print inside a uniform matrix.
All characters are printed at fixed positions relative to each cell in the matrix. Furthermore, each cell has
the same size given by the smallest horizontal and vertical step sizes dictated by the resolution.

Many printers are capable of proportional printing where the horizontal spacing depends on the size of the
last character printed. The terminfo database does not make use of this capability, although it does
provide enough capability definitions to allow an application to simulate proportional printing.

A printer must not only be able to print characters as close together as the horizontal and vertical
resolutions suggest, but also of moving to a position that is an integral multiple of the smallest distance
away from a previous position. Thus, printed characters can be spaced apart a distance that is an integral
multiple of the smallest distance, up to the length of width of a single page.

Some printers can have different resolutions depending on different modes. In normal mode, the existing
terminfo capabilities are assumed to work on columns and lines, just like a video terminal. For example,
the old lines capability specify the length of a page in lines, and the cols capability specifies the width of a
page in columns. In micro mode many terminfo capabilities work on increments of lines and columns.
With some printers, the micro mode may exist concurrently with normal mode, so that all the capabilities
work at the same time.

Specifying Printer Resolution
You can specify a printer’s printing resolution with several different capabilities. Each capability specifies
distance in a different way. The following capabilities define print resolution:

Capability Defined as
orhi steps per inch horizontally
orvi steps per inch vertically
orc steps per column
orl steps per line

566 Files Reference

When printing in normal mode, each character printed causes the printer to move to the next column,
except in special cases described later. The distance moved is the same as the per-column resolution.
Some printers cause an automatic movement to the next line when a character is printed in the rightmost
position. The vertical distance moved is the same as the per-line resolution. When printing in micro mode,
these distances can be different, and may be zero for some printers. The following specify printer
resolution automatic motion after printing:

Capability Defined as
orc Steps moved horizontally in normal mode.
orl Steps moved vertically in normal mode.
mcs Steps moved horizontally in micro mode.
mls Steps moved vertically in micro mode.

Some printers can print wide characters. The distance moved when a wide character is printed in normal
mode may be different from when a regular width character is printed. The distance moved when a wide
character is printed in micro mode may also be different from when a regular character is printed in micro
mode, but the differences are assumed to be related.

If the distance moved for a regular character is the same in normal mode or micro mode (mcs=ocs), then
the distance moved for a wide character is also the same in both modes. This does not mean the normal
character distance is necessarily the same as the wide character distance, just that the distances do not
change with a change from normal to micro mode. Use the widcs capability to specify the printer
resolution when the automatic motion after printing a wide character is the same in both normal or micro
mode.

If the distance moved for a regular character is different in micro mode from the distance moved in normal
mode (mcs<orc), you can assume the micro mode distance is the same for a wide character printed in
micro mode. In this case, you use the mcs capability to specify the distance moved. The printer uses the
value you specify for both regular and wide characters

A printer may use control sequences to change the number of columns per inch (the character pitch) and
to change the number of lines per inch (the line pitch). If these are used, the resolution of the printer
changes but the type of change depends on the printer.

Capability Defined as
cpi Change character pitch.
cpix If set, cpi changes orhi, otherwise the cpi capability changes the orc value.
lpi Change line pitch
lpix If set, lpi changes the orvi value, otherwise the orl value is changed.
chr Changes steps per column.
cvr Changes steps per line.

The cpi and lpi string capabilities have a single argument, the pitch in columns (or characters) and lines
per inch, respectively. The chr capability and cvr string capabilities each have a single argument, the
number of steps per column and line, respectively.

Using any of the control sequences in these strings implies a change in some of the values of the orc,
orhi, orl, and orvi capabilities. Also, the distance moved when a wide character is printed, specified by the
widcs capability, changes in relation to the orc value. The distance moved when a character is printed in
micro mode, mcs, changes similarly, with one exception: if the distance is 0 or 1, then no change is
assumed.

Chapter 2. File Formats 567

Programs that use the cpi, lpi, chr, or cvr capability should recalculate the printer resolution and should
recalculate other values. For more information, see Effect of Changing Printing Resolution .

The following figure, ″Specification of Printer Resolution Effects of Changing the Character/Line Pitches″
shows the effects on printer resolution before and after a change.

Vcpi, Vlpi, Vchr, and Vcvr are the arguments used with cpi, lpi, chr, and cvr respectively. The dagger
symbol indicates the old value.

Capabilities that Cause Movement
In the following descriptions, movement refers to the motion of the current position. With video terminals
this would be the cursor; with some printers this is the carriage position. Other printers have different
equivalents. In general, the current position is where a character would be displayed if printed.

The terminfo database has string capabilities for control sequences that cause movement a number of full
columns or lines. It also has equivalent string capabilities for control sequences that cause movement a
number of small steps. The following are the string capabilities for motion:

orc
orc’

orhi

cpi

orhi=orc

Using with clear:
Before

 Specification of Printer Resolution
Effects of Changing the Character/Line Pitches

cpi
After

cpix
orhi ’ orhi

Using with set:cpi cpix
orhi ’

Using with clear:lpi lpix
orvi ’

Using with set:lpi lpix
orvi ’

Using chr:
orhi ’

Using cvr:
orvi ’

orc ’ orc=
V

orc ’

. V
cpi

orc

orl ’

orvi

orl= orvi
Vlpi

orl ’

orvi=orl . Vlpi

orl

orc ’

orhi

Vchr

orl ’

orvi

Vcvr

Using orcpi chr:
widcs ’

mcs ’ �

widcs =widcs’

mcs=mcs’ orc
orc’

Figure 2. . This illustration shows the effects of changing characterpitch and line pitch on printer resolution.

568 Files Reference

Capability Description
mcub1 Move 1 step left.
mcuf1 Move 1 step right.
mcuu1 Move 1 step up.
mcud1 Move 1 step down.
mcub Move N steps left.
mcuf Move N steps right.
mcuu Move N steps up.
mcud Move N steps down.
mhpa Move N steps from the left.
mvpa Move N steps from the top.

The last six strings are each used with a single N argument.

Sometimes the motion is limited to less than the width or length of a page. Also, some printers do not
accept absolute motion to the left of the current position. The following capabilities limit motion:

Capability Description
mjump Limits the use of mcub1, mcuf1, mcuu1, and mcud1 capabilities.
maddr Limits the use of the mhpa and mvpa capabilities.
xhpa If set, the hpa and mhpa capabilities are negated.
xvpa If set, the vpa and mvpa capabilities are negated.

If a printer needs to be in micro mode for the motion capabilities to work, you can define a string capability
to contain the control sequence to enter and exit micro mode. A boolean is available for those printers
where using a carriage return causes an automatic return to normal mode. The following capabilities are
related to micro mode behavior:

Capability Description
smicm Enter micro mode.
rmicm Exit micro mode.
crxm Using the key specified by the cr capability exits micro mode.

The movement made when a character is printed in the rightmost position varies among printers. Some
make no movement, some move to the beginning of the next line, others move to the beginning of the
same line. The terminfo database has boolean capabilities that description all three cases. The sam
capability specifies that the printer automatically moves to the beginning of the same line after the
character is printed in the rightmost margin.

Some printers can be put in a mode where the normal direction of motion is reversed. This mode is
especially useful when there exists no capabilities for leftward or upward motion, you can build these
capabilities from the motion reversal capability and the rightward or downward motion capabilities. It is
best to leave it up to an application to build the leftward or upward capabilities, though, and not enter them
into to the terminfo database. This allows several reverse motions to be strung together without
intervening wasted steps that leave and reenter reverse mode. The following capabilities control entering
and exiting reverse modes:

Capability Description
slm Reverse sense of horizontal motions.
rlm Restore sense of horizontal motions.
sum Reverse sense of vertical motions.
rum Restore sense of vertical motions.

Chapter 2. File Formats 569

The following capabilities affect the screen while the horizontal motions are reversed:

Capability Description
mcub1 Move 1 step right.
mcuf1 Move 1 step left.
mcub Move N steps right.
mcuf Move N steps left.
cub1 Move 1 column right.
cuf1 Move 1 column left.
cub Move N columns right.
cuf Move N columns left.

The following capabilities affect the screen whilethe vertical motions are reversed:

Capability Description
mcuu1 Move 1 step down.
mcud1 Move 1 step up.
mcuu Move N steps down.
mcud Move N steps up.
cuu1 Move 1 line down.
cud1 Move 1 line up
cuu Move N lines down.
cud Move N lines up.

The reverse motion mode should not affect the mvpa and mhpa absolute motion capabilities. The reverse
vertical motion mode should, however, also reverse the action of the line wrapping that occurs when a
character is printed in the right-most position. Thus printers that have the standard terminfo capability am
defined should move to the beginning of the previous line when a character is printed on the right-most
position and the printer is in reverse-vertical motion mode.

The action when any other motion capabilities are used in reverse motion modes is not defined. Thus,
programs must exit reverse motion modes before using other motion capabilities.

Two miscellaneous capabilities complete the list of new motion capabilities, the docr and the zerom
capability. The docr capability provides a list of control characters that cause a carriage return. This
capability is useful for printers that move the current position to the beginning of a line when certain control
characters, like line-feed or form-feed are used. The zerom capability prevents automatic motion after
printing a single character. This capability suspends the motion that normally occurs after printing a
character.

Margins
The terminfo database provides two strings for setting margins on terminals: one for the left and one for
the right margin. Printers, however, have two additional margins for the top and bottom margins of each
page. Furthermore, some printers do not require using motion strings to move the current position to a
margin and fixing the margin there, as with existing capabilities, but require the specification of where a
margin should be regardless of the current position. Therefore, the terminfo database offers six additional
strings for defining margins with printers. The following capabilities affect margins:

Capability Definition
smgl Set left margin at the current column.
smgr Set right margin at the current column.
smgb Set the soft bottom margin at the current line.
smgt Set the soft top margin at the current line.
smgbp Set the soft bottom margin at line N.
smglp Set the soft left margin at column N.

570 Files Reference

Capability Definition
smgrp Set the soft right margin at column N.
smgtp Set soft top margin at line N.

The last four strings are used with a single N parameter. This parameter specifies a line or column
number, where 0 is the top line and column 0 is the left-most column.

Note: Not all printers use 0 for the top line or the left-most column.

All margins can be cleared with the mgc capability.

Shadows, Italics, Wide Characters, Superscripts, and Subscripts
Five new sets of strings are used to describe the capabilities that printers have of enhancing printed text.
The following define enhanced printing capabilities:

Capability Definition
sshm Enter shadow-printing mode.
rshm Exit shadow-printing mode.
sitm Enter italicizing mode.
ritm Exit italicizing mode.
swidm Enter wide-character mode.
rwidm Exit wide-character mode.
ssupm Enter superscript mode.
rsupm Exit superscript mode.
supcs List of characters available as superscripts.
ssubm Enter subscript mode.
rsubm Exit subscript mode.
subcs List of characters available as subscripts.

If a printer requires the sshm control sequence before every character to be shadow-printed, the rshm
string is left blank. Thus, programs that find a control sequence in sshm but none in shadow printing
mode should use the control sequence specified by the sshm capability before every character to be
shadow printed. Otherwise, the control sequence should be used once before the set of characters to be
shadow-printed, followed by exiting shadow-printing mode.

The terminfo database also has a capability for printing emboldened text, the bold capability. While
shadow printing and emboldened printing are similar in that they darken the text, many printers produce
these two types of print in slightly different ways. Generally emboldened printing is done by overstriking
the same character one or more times. Shadow printing likewise usually involves overstriking, but with a
slight movement up and/or to the side so that the character is fatter.

It is assumed that enhanced printing modes are independent modes, so that it would be possible, for
instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a wide character should be
given in the widcs capability.

If only a subset of the printable ASCII characters can be printed as superscripts or subscripts, they should
be listed in the supcs or subcs capabilities, respectively. If the ssupm or ssubm strings contain control
sequences, but the corresponding supcs or subcs strings are empty, it is assumed that all printable ASCII
characters are available as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be the same as for regular
characters. For example, printing any of the following result in equivalent motion:

Chapter 2. File Formats 571

Bi Bi Bi

The boolean capability msgr describes whether an application can use motion control sequences while in
standout mode. This capability is extended to cover the enhanced printing modes added here. The mgsr
capability should be set for those printers that accept any motion control sequences without affecting
shadow, italicized, widened, superscript, or subscript printing. Conversely, if the mgsr capability is not set,
a program should end these modes before attempting any motion.

Alternate Character Sets
In addition to allowing you to define line graphics, the terminfo database also lets you define alternate
character sets. The following capabilities cover printers and terminals with multiple selectable or definable
character sets:

Capability Definition
scs Select character set N. The N parameter specifies a number from 0 to 63 that identifies a

character set.
scsd Start definition of character set N, M characters. The N parameter specifies a number from 0 to

63 that identifies a character set and the M parameter specifies the number of characters in the
set.

defc Defines a character A to be B dots wide with a descender D. The A parameter is the ASCII
code representation for the character. The B parameter specifies the width of the character in
dots. The D parameter specifies whether the character is a descender or not. If the character is
a descender, specify a 1 for the D parameter. Otherwise, specify a 1. This string is followed by
a string of image-data bytes that describe how the character looks.

rcsd End definition of character set N. The N parameter specifies a number from 0 to 63 that
identifies a character set.

csnm List of character set names.
daisy Indicates the printer has manually changed print-wheels.

Character set 0 is the default character set. This is the set that is present after the printer is initialized. Not
every printer supports 64 character sets. If you specify a set that a printer does not support, the tparm
subroutine returns a null result.

If your application must define a character before using it, use the scsd control sequence before defining
the character set, and the rcsd after. If you specify an invalid character set for either of these capabilities,
the tparm subroutine returns a null resolution. If your application must select a character set after it is
defined, the scs control sequence should follow the rcsd control sequence. By examining the results of
using each of the scs, scsd, and rcsd strings with a character set number in a call to the tparm
subroutine, a program can determine which of the three are needed.

Between use of the scsd and rcsd strings, the defc string should be used to define each character. To
print any character on printers defined in the terminfo database, the ASCII cod is sent to the printer. This
is true for characters in an alternate set as well as normal characters. Thus, the definition of a character
includes the ASCII code that represents it. In addition, the width of the character includes the ASCII code
that represents it. In addition, the width of the character in dots is given, along with tan indication of
whether the character is a descender. A descender is a character whose shape extends below the
baseline, for example the character g is a descender. The width of the character is dots also indicates the
number of image-data bytes that will follow the defc string. These image-data bytes indicate where in a
dot-matrix pattern ink should be applied to draw the character. The number of these bytes and their form
are defined below under Dot-Mapped Graphics.

It is easiest for the creator of terminfo entries to refer to each character set by number. However, these
numbers will be meaningless to the application developer. The csnm capability alleviates this problem by
providing names for each number.

572 Files Reference

When used with a character set number in a call to the tparm subroutine, the csnm capability produces
the equivalent name. Use these names as a references only. No naming convention is implied, although
anyone who creates a terminfo entry for a printer should use names consistent with the names found in
user documents for the printer. Application developers should allow a user to specify a character set by
number (leaving it up to the user to examine the csnm string to determine the correct number), or by
name, where the application examines the csnm capability to determine the corresponding character set
number.

The alternate character set capabilities are likely to be used only with dot-matrix printers. If they are not
available, do not define these strings. For printers that have manually changed print-wheels or font
cartridges, set the boolean daisy capability.

Dot-Matrix Graphics
Dot-matrix printers typically have the capability to reproduce raster-graphics images. Three new numeric
capabilities and three new string capabilities can help a program draw raster-graphic images independent
of the type of dot-matrix printer or the number of pins or dots the printer can handle at one time. The
dot-matrix capabilities are as follows:

Capability Definition
npins Number of pins N in the print-head. The N parameter specifies the number of pins.
spinv Spacing of pins vertically in pins per inch.
spinh Spacing of dots horizontally in dots per inch.
porder Matches software bits to print-head pins.
sbim Start printing bit image graphics, B bits wide. The B value specifies the width of the image in

dots.
rbim End printing bit image graphics.

The model of dot-matrix or raster-graphics that the terminfo database presents is similar to the technique
used for most dot-matrix printers. Each pass of the printer’s print-head is assumed to produce a dot-matrix
that is N dots high and B dots wide. This is typically a wide, squat, rectangle of dots. The height of this
rectangle in dots varies from one printer to the next. This is given in the npins numeric capability. The size
of the rectangle in fractions of an inch will also vary. The size can be deduced from the spinv and spinh
numeric capabilities. With these three values an application can divide a complete raster-graphics image
into several horizontal strips, perhaps interpolating to account for different dot spacing vertically and
horizontally.

The sbim and rbim capabilities are used to start and end a dot-matrix image, respectively. The sbim
capability is used with a single argument that gives the width of the dot-matrix in dots. A sequence of
image-data bytes are sent to the printer after the sbim capability and before the rbim string. The number
of bytes is an integral multiple of the width of the dot-matrix. The multiple and the form of each byte is
determined by the porder capability is described below.

The porder capability is a comma-separated list of pin numbers. The position of each pin number in the
list corresponds to a bit in a data byte. The pins are numbered consecutively from 1 to npins, with 1 being
the top pin. The term pin is used loosely here. Ink-jet dot matrix printers don’t have pins but they do have
an equivalent method of applying a single dot of ink to paper. The bit positions in porder are in groups of
8, with the first position in each group the most significant bit and the last position the least significant bit.

The image-data bytes are computed from the dot-matrix image, mapping vertical dot positions in each
print-head pass into eight-bit bytes, using a 1 bit where ink should be applied and 0 where no ink should
be applied. If a position is skipped in porder, a 0 bit is used. There must be a multiple of 8 bit positions
used or skipped in porder. If not, 0 bits are used to fill the last byte in the least significant bits.

Effect of Changing Printing Resolution
If the control sequences to change the character pitch or the line pitch are used, the pin or dot spacing
may change. The following capabilities change pitch on dot-matrix graphics:

Chapter 2. File Formats 573

Capabilities Definition
cpi Change the character pitch.
cpix If set, cpi changes spinh.
lpi Change line pitch.
lpix If set, lpi changes spinv.

Programs that use cpi or lpi should recalculate the dot spacing. The following figure ″Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches″ shows graphics both before and after a change in pitch.

The orhi’ and orhi values are the values of the horizontal resolution in steps per inch, before using cpi
and after using cpi, respectively. Likewise, orvi’ and orvi are the values of the vertical resolution in steps
per inch, before using lpi and after using lpi, respectively. Thus, the changes in the dots per inch for
dot-matrix graphics follow the changes in steps per inch for printer resolution.

Print Quality
Many dot-matrix printers can alter the dot spacing of printed text to produce near letter-quality printing or
draft-quality printing. Usually, it is important to be able to choose one or the other because the rate of
printing generally falls off as the quality improves. The capabilities that specify print quality are the
following:

Capability Definition
snlq Set near-letter quality print.
snrmq Set normal quality print.
sdrfq Set draft-quality print.

The capabilities are listed in decreasing levels of quality. If a printer does not have all three levels, one or
two of the strings should be left blank as appropriate.

orhi

Using with clear:
Before

 Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches

cpi
After

cpix
spinh ’ spinh

Using with set:cpi cpix
spinh ’ spinh=spinh’ .

orhi’

Using with clear:lpi lpix
spinv ’ spinv

orhiUsing with set:lpi lpix
spinv ’ spinv=spinv’ .

orhi’

Using chr:
spinh ’ spinh

Using cvr:
spinv ’ spinv

Figure 3. . This illustration shows the effects of changing character pitch and line pitch on dot-matrix graphics.

574 Files Reference

Printing Rate and Buffer Size
Because there is no standard protocol that synchronizes a printer with a program, and because modern
printers can buffer data before printing it, a program generally cannot determine at any time what has
printed. Two new numeric capabilities can help a program estimate what has printed, the cps and bufsz
capabilities.

The cps capability specifies the nominal print rate in characters per second. The cps capability is the
nominal or average rate at which the printer prints characters. If this value is not given, estimate the rate
at one-tenth the prevailing baud rate.

The bufsz capability defines a terminal’s buffer capacity in characters. The bufsz value is the maximum
number of subsequent characters buffered before the guaranteed printing of an earlier character, assuming
proper flow control was used. If this value is not given it is assumed that the printer does not buffer
characters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter ″a″ followed by 1000
additional characters is guaranteed to cause the letter ″a″ to print. If the same printer prints at the rate of
100 characters per second, then it should take 10 seconds to print all the characters in the buffer, less if
the buffer is not full. By keeping track of the characters sent to a printer, and knowing the print rate and
buffer size, a program can synchronize itself with the printer.

Most printer manufacturers advertise the maximum print rate, not the nominal print rate. A good way to get
a value to put in for cps is to generate a few pages of text, count the number of printable characters, then
see how long it takes to print the text.

Applications that use these values should recognize the variability in the print rate. Straight text, in short
lines, with no embedded control sequences will probably print at close to the advertised print rate and
probably faster than the rate in cps. Graphics data with a lot of control sequences, or very long lines of
text, will print at well below the advertised rate and below the rate in cps. If the application is using cps to
decide how long it should take a printer to print a block of text, the application should pad the estimate. If
the application is using cps to decide how much text has already been printed, it should shrink the
estimate. The application errs in favor of the user, who wants, above all, to see all the output in its correct
place.

Database File Names
Compiled terminfo file descriptions are placed in subdirectories under the /usr/share/lib/terminfo
directory to avoid performing linear searches through a single directory containing all of the terminfo file
description files. A given description file is stored in the /usr/share/lib/terminfo/c/name file, where name is
the name of the terminal, and c is the first letter of the terminal name. For example, the compiled
description for the terminal term4-nl can be found in the file /usr/share/lib/terminfo/t/term4-nl. You can
create synonyms for the same terminal by making multiple links to the same compiled file. (See the ln
command on how to create multiple links to a file.)

Example

The following terminfo entry describes a terminal:
hft|High Function Terminal,

cr=^M, cud1=\E[B, ind=\E[S, bel=^G, il1=\E[L, am,
cub1=^H, ed=\E[J, el=\E[K, clear=\E[H\E[J,
cup=\E[%ip1%d;%p2%dH, cols#80, lines=#25,
dch1=\E[P, dl1=\E[M, home=\E[H,
ich=\E[%p1%d@, ich1=\E[@, smir=\E[6, rmir=\E6,
bold=\E[1m, rev=\E[7m, blink=\E[5m, invis=\E[8m, sgr0=\E[0m,
sgr=\E[%?%p1%t7;%;%?%p2%t4;%;%?%p3%t7;%;%?%p4%t5;%;%?%p6t1;%;m,
kcuu1=\E[A, kcud1=\E[B, kcub1=\E[D,
kcuf1=\E[C, khome=\E[H, kbs=^H,
cuf1=\E[C, ht=^I, cuu1=\E[A, xon,

Chapter 2. File Formats 575

rmul1=\E[m, smul=\E[4m, rmso=\E[m, smso=\E[7m,
kpp=\E[150q, knp=\E[154q,
kf1=\E[001q, kf2=\E[002q, kf3=\E[003q, kf4=\E[004q,
kf5=\E[005q, kf6=\E[006q, kf7=\E[007q, kf8=\E[008q,
kf9=\E[009q, kf10=\E[010q,
bw, eo, it#8, ms,
ch=\E%i%p1%dG, ech=\E[%p15dx,
kdch1=\E[P, kind=\E[151q, kich1=\E[139q, kimr=\E[41,
kn=^M, ko=^I, ktab=\E[Z, kri=\E[155q,
cub=\E[%p1%dD, cuf=\E[%p1%dC, indn=\E[%p1dS, rin=\E[%p1%dT,
ri=\E[T, cuu=\E[%p1%dA,
box1=332\304\277\263\331\300\302\264\301\303\305,
box2=311\315\273\272\274\310\313\271\312\314\316,
batt2=md,
colf0=\E[30m, colf1=\E[31m, colf2=\E[32m, colf3=\E[33m,
colf4=\E[34m, colf5=\E[35m, colf6=\E[36m, colf7=\E[37m,
colb0=\E[40m, colb1=\E[41m, colb2=\E[42m, colb3=\E[43m,
colb4=\E[44m, colb5=\E[45m, colb6=\E[46m, colb7=\E[47m,

The following terminfo entry describes a terminal:
ibm3161|ibm3163|wy60-316X|wyse60-316X|IBM 3161/3163 display,

am, mir, cr=^M, ind=^J,
cols#80, it#8, lines#24,

kich1=\EP\040\010,
ed=\EJ, el=\EI, cup=\EY%p1%’ ’%+%c%p2%’

’%+%c,
clear=\EH\EJ, dch1=\EQ, dl1=\EO, cud1=\EB,
cub1=\ED, blink=\E4D, bold=\E4H,

sgr0=\E4@\E<@,
invis=\E4P, rev=\E4A, cuf1=\EC,

rmso=\E4@,
smso=\E4A, rmul=\E4@, cuu1=\EA,

smul=\E4B,
sgr=\E4%’@’%?%p1%t%’A’%|%;

%?%p2%t%’B’%|%;
%?%p3%t%’A’%|%;
%?%p4%t%’D’%|%;
%?%p5%t%’@’%|%;
%?%p6%t%’H’%|%;
%?%p7%t%’P’%|%;%c
%?%p9%t\E>A%e\E<@%;,

box1=\354\361\353\370\352\355\367\365\366\364\356,
box2=\354\361\353\370\352\355\367\365\366\364\356,

batt2=md,
ktbc=\E\0401, kil1=\EN, kbs=^H,

kclr=\EL^M,
kcud1=\EB, kdch1=\EQ, kel=\EI,

khome=\EH,
kcub1=\ED, kdl1=\EO, ktab=^I, kcbt=\E2,
kcuf1=\EC, ked=\EJ, kctab=\E1, khts=\E0,
kcuu1=\EA, knl=\r, kact=\E8\r,
kf1=\Ea\r, kf2=\Eb\r, kf3=\Ec\r,

kf4=\Ed\r,
kf5=\Ee\r, kf6=\Ef\r, kf7=\Eg\r,

kf8=\Eh\r,
kf9=\Ei\r, kf10=\Ej\r, kf11=\Ek\r,

kf12=\El\r,
kf13=\E!a\r, kf14=\E!b\r, kf15=\E!c\r,

kf16=\E!d\r,
kf17=\E!e\r, kf18=\E!f\r, kf19=\E!g\r,

kf20=\E!h\r,
kf21=\E!i\r, kf22=\E!j\r, kf23=\E!k\r,

kf24=\E!l\r,
smcup=\E>A, rmcup=\E>A, msgr,
home=\EH, bel=^G, mc5=^P^R, mc4=^P^T,

576 Files Reference

Files

/usr/share/lib/terminfo/?/* Compiled terminal capability database.

Related Information
The captoinfo command, infocmp command, tic command.

The printf, fprintf, or sprintf subroutine.

Curses Overview for Programming in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

.tiprc File Format for tip

Purpose
Provides initial settings of variables for the tip command.

Description
The .tiprc file allows you to initialize variable settings for the tip command. When first invoked the tip
command searches the user’s home directory (defined by the $HOME environment variable) for a .tiprc
file. If the file is present, the tip command sets the tip variables according to instructions in the .tiprc file.

The tip command uses several different types of variables: numeric, string, character, or Boolean. A
Boolean variable can be toggled by putting the variable name in the .tiprc file, or it can be reset by putting
an ! (exclamation point) in front of the variable name. Other types of variables are set by following the
variable name with an = (equal sign) and the new value of the variable.

You can use the -v flag of the tip command to see the variable settings as they are made. Also, you can
use the ~s escape signal to change variables while the tip command is running.

Examples
Following is a sample .tiprc file:
be
ba=9600
!echocheck

This file toggles the beautify (be) variable, sets the baudrate (ba) variable to 9600, and resets the
echocheck variable to the default setting.

Files

$HOME/.tiprc Specifies the complete path name of the .tiprc file.

Related Information
The tip command.

The tip Overview for System Management in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

Chapter 2. File Formats 577

trcfmt File Format

Purpose
Stores trace templates.

Description
The trcrpt command, which formats trace reports, uses trace templates to determine how the data
contained in trace entries should be formatted. All trace templates are stored in the master template file,
/etc/trcfmt. Trace templates identify the trace hook ID, the version and release number, the indentation
level, the event label, and data description fields. The data description fields contain formatting information
for the trace entry data and can be repeated as many times as is necessary to format all of the trace data
in the trace entry.

Modifying this File
The trcfmt file should only be modified using the trcupdate command. Trace hooks with values less than
010 are for internal use by the trace facilities. If these hooks are changed, the performance of trace, in
particular trcrpt, is unpredictable.

Trace Entries
The data recorded for each traced event consist of a word containing the trace hook identifier and the
hook type followed by a variable number of words of trace data optionally followed by a timestamp. The
word containing the trace hook identifier and the hook type is call the hook word. The remaining two bytes
of the hook word are called hook data and are available for recording event data.

HookWord The first two bytes of a HookWord contain the HookID and HookType. The contents of the second
two bytes depends on the value of the HookType.

HookID The HookID is represented in the trace entry as 3 hexadecimal digits. For user programs, the hook id
may be a value ranging from 0x010 to 0x0FF. HookIDs are defined in the /usr/include/sys/trchkid.h
file.

578 Files Reference

HookType The HookType is a 4-bit value that identifies the format of the remainder of the trace entry. You
specify the HookType when you record the trace entry.

Value Trace Entry Format

1 The trace entry consists of only the HookWord. The third and fourth bytes of the HookWord
contain trace data. Trace entries of this type are recorded using the trchook or utrchook
subroutine.

2 The trace entry consists of the HookWord and one additional word of trace data. The third
and fourth bytes of the HookWord contain trace data. Trace entries of this type are recorded
using the trchook or utrchook subroutine.

6 The trace entry consists of the HookWord and up to five additional words of trace data. The
third and fourth bytes of the HookWord contain trace data. Trace entries of this type are
recorded using the trchook or utrchook subroutine.

8 The trace entry consists of the HookWord and a data word followed by a variable number of
bytes of trace data and a timestamp. The third and fourth bytes of the HookWord contain
the number of bytes of trace data which follows the trace word. Trace entries of this type are
recorded using the trcgent subroutine or the trcgenkt kernel service.

9 The trace entry consists of the HookWord and a timestamp. The third and fourth bytes of
the HookWord contain trace data. Trace entries of this type are recorded using the trchook
or utrchook subroutine.

A The trace entry consists of the HookWord, one additional word of trace data, and a
timestamp. The third and fourth bytes of the HookWord contain trace data. Trace entries of
this type are recorded using the trchook or utrchook subroutine.

E The trace entry consists of the HookWord, up to five additional words of trace data, and a
timestamp. The third and fourth bytes of the HookWord contain trace data. Trace entries of
this type are recorded using the trchook or utrchook subroutine.

0 The trace entry consists of the HookWord and a data word followed by a variable number of
bytes of trace data. The third and fourth bytes of the HookWord contain the number of bytes
of trace data which follows the trace word. Trace entries of this type are recorded using the
trcgen subroutine or the trcgenk kernel service.

Data Pointer
The DATA POINTER is a pointer to the current position in the trace entry. The DATA POINTER is changed
by the trcrpt as it interprets the template and formats the trace entry. The initial position of the DATA
POINTER is the third byte of the HookWord for HookTypes 1, 9, 2, A, 6, and E and the first byte after
the HookWord for HookTypes 0 and 8.

Trace Data Formatting

Indentation Level
The formatted trace data is aligned in columns corresponding to the source of the trace event. This is
identified in each template using the L=X descriptor. The possible values of the L=X command are as
follows:

L=APPL Outputs the trace data in the APPL (application) column.
L=SVC Outputs the trace data in the SVC (system call) column.
L=KERN Outputs the trace data in the KERN (kernel) column.
L=INT Outputs the trace data in the INT (interrupt)column.

Continuation Character
A \ (backslash) at the end of a line must be used to continue a template on the next line.

Chapter 2. File Formats 579

Labels or Text Strings
Individual strings (or labels) can be separated by any number of spaces or tabs, but all excess spacing is
compressed to one blank on the trace report unless other format structures are put into effect. Labels are
enclosed in double quotes (″ ″).

\n Outputs to a new line. Data on the new line is left-justified according to the value set in the INDENTATION
LEVEL.

\t Inserts a tab. Tabs are expanded to spaces, using a fixed tabstop separation of 8.

Format Codes

DATA POINTER Position Format Codes

Gm.n Sets DATA POINTER to byte.bit location m.n.
Om.n Advances DATA POINTER by m.n byte.bits.
Rm Decrements DATA POINTER by m bytes.

Output Format Codes

Bm.n Sends output in Binary format where m is the length of the data in bytes and n is the length in
bits. Unlike the other printing format codes, the DATA POINTER can be bit aligned and is not
rounded up to the next byte boundary.

D2, D4 , D8 Converts data to signed decimal format. The length of the data is two, four, or eight bytes, and
the DATA POINTER is advanced by the same number of bytes.

F4 Converts data to C type ’float’ floating point format. The length of the data is 4 bytes, and the
DATA POINTER is advanced by 4 bytes.

F8 Converts data to C type ’double’ floating point format. The length of the data is 8 bytes, and the
DATA POINTER is advanced by 8 bytes.

S1, S2, S4 Left-justifies ASCII strings. The length of the string is in the first byte (half-word, word) of the
data. The length of the string does not include this byte.

T4 Outputs the next 4 bytes as a date and time string.
U2, U4 , U8 Converts data to unsigned decimal format. The length of the data is two, four, or eight bytes, and

the DATA POINTER is advanced by the same number of bytes.
Xm Converts data to hexadecimal format. The DATA POINTER is advanced by m bytes.

Interpreter Format Codes

E1, E2, E4 Outputs the next byte (half_word, word) as an ’errno’ value, replacing the numeric code with the
corresponding #define name in the /usr/include/sys/errno.h file. The DATA POINTER is
advanced by 1, 2, or 4 bytes.

P4 Uses the next word as a process ID, and outputs the pathname of the executable with that
process ID. Process IDs and their pathnames are acquired by the trace command at the start of
a trace and by the trcrpt command via a special EXEC tracehook. The DATA POINTER is
advanced by 4 bytes.

Switch Statements
A SWITCH statement is a format code followed by a comma. Each CASE entry of the SWITCH statement
consists of:

1. A ’MatchValue’ with a type (usually numeric) corresponding to the format code.

2. A simple ’String’ or a new ’Descriptor’ bounded by braces. A descriptor is a sequence of format codes,
strings, switches, and loops.

3. A comma delimiter.

580 Files Reference

The switch is terminated by a CASE entry without a comma delimiter. The CASE entry is selected as the
first entry whose MatchValue is equal to the expansion of the format code. The special matchvalue ’*’ is a
wildcard and matches anything.

The DATA POINTER is advanced by the format code.

LOOP Statements
Loops are used to output binary buffers of data; therefore, the descriptor for a LOOP is usually X0 or X1.
The syntax of a loop is LOOP format_code {descriptor}. The descriptor is executed N times, where N is
the numeric value of the format code.

The DATA POINTER is advanced by the format code and by the operations of the descriptor.

Macros
Macros are temporary variables that work like shell variables. They are assigned a value with the syntax:
{{ $xxx = EXPR }}

where EXPR is a combination of format codes, macros, and constants. The operators + (addition), -
(subtraction), / (division), and * (multiplication). are permissible within macros.

Predefined Macros

Macro Name Description
$BASEPOINTER Marks the starting offset into an event. The default is 0, but the actual offset is the sum of the

values of DATA POINTER and BASE_POINTER. It is used with template subroutines when
the parts of an event have same structure and can be printed by same template but may
have different starting points into an event.

$BREAK Ends the current trace event.
$D1 - $D5 Dataword 1 through dataword 5. The DATA POINTER is not moved.
$DATAPOINTER Activates the DATA POINTER. It can be set and manipulated like other user macros.
$DEFAULT Uses the DEFAULT template 008.
$ERROR Outputs an error message to the report and exit from the template after the current descriptor

is processed. The error message supplies the logfile, the logfile offset of the start of that
event, and the trace ID.

$EXECPATH Outputs the pathname of the executable for the current process.
$HB Number of bytes in trcgen subroutine variable length buffer. This is also equal to the 16-bit

hook data.
$HD Hook data (lower 16 bits).
$HT Allows for multiple, different trchook subroutine call with the same template. The return

values of the $HT macro are:

Value Description

1 hook word

2 hook word and one additional word

6 hook word and up to five data words

9 hook word and a timestamp

A hook word, one data word, and a timestamp

E hook word, up to five data words, and a timestamp.

The DATA POINTER is not changed.
$L1-$L2 Long (64-bit) dataword 1, or 2. For example, $L1 is the concatination of $d1 and $d2. The

64-bit values would most likely have been traced with the TRCHK64L1 or TRCHK64L2
macros. No change to data pointer.

$LOGID0 Current logfile offset at the start of the event.

Chapter 2. File Formats 581

Macro Name Description
$LOGIDX Current logfile offset into this event.
$LOGFILE Returns the name of the logfile being processed.
$RELLINENO Line number for this event. The first line starts at 1.
$PID Outputs the current process ID.
$SKIP Ends the current trace event without printing.
$STOP Immediately ends a trace report.
$SVC Outputs the name of the current system call.
$TID Outputs the current kernel thread ID.
$TRACEID Returns the trace ID of the current event.

Built-in Macros
The built-in macros are:

buftofilename (bp) Looks up filename by buf struct.
fdinstall () Installs the file descriptor and the current v-node from

lookuppn as a file_descriptor/v-node pair for this process ID.
fdtofilename () Looks up the filename for the given file descriptor for this

process ID. If the filename is not found, nothing is output.
flih () Advances the Interrupt Depth.
lookuppninstall1 Installs the filename as the current file with the trcrpt

command.
lookuppninstall2 Install the v-node as the current v-node. It also installs the

current_v-node/current_file as a v-node/filename par.
pfsrdwrinstall1 (vp) Sets the current v-node of this process to vp.
pfsrdwrinstall2 (VA.S, count) Creates a virtual address/v-node structure to be filled in be

VMM hooks if a page fault occurs.
resume () Decrements the Interrupt Depth.
setdelim () Inhibits spaces between characters.
slihlookup () Looks up the second level interrupt handler.
sidtofilename (sid) Looks up filename by segment ID.
vmbufinstall () Looks up the v-node of the file through the virtual page/sid

and install the v-node and buf as a v-node/bp pair. This will
be used by lvm on down.

v-nodetofilename (vp) Looks up filenames by v-node.
vpagetofilename (vpage, sid) Looks up filenames by vpage and segment ID.

Files

/etc/trcfmt Stores trace templates.
/usr/include/sys/trchkid.h Defines hook identifiers.
/usr/include/sys/trcmacros.h Defines trace macros.

Related Information
The trcupdate command.

The trcgen subroutine, trchook subroutine.

Trace Facility Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

582 Files Reference

troff File Format

Purpose
Describes the output language from the troff command.

Description
The device-independent troff file format outputs a pure ASCII description of a typeset document. The
description specifies the typesetting device, the fonts, and the point sizes of characters to be used, as well
as the position of each character on the page.

A list of all the legal commands follows. Most numbers are denoted by the Number variable and are ASCII
strings. Strings inside [] (brackets) are optional. The troff command can produce them, but they are not
required for the specification of the language. The \n command character has the standard meaning of
new-line character. Between commands, white space has no meaning. White-space characters are spaces
and new lines.

The following are the legal commands:

sNumber Specifies the point size of the characters to be generated.
fNumber Indicates the font is to be mounted in the position specified by the Number

variable value, which ranges from 0 (zero) to the highest font currently
mounted. The 0 (zero) value is a special position, called by the troff
command, but not directly accessible by the user. Fonts are normally
mounted starting at position 1 (one).

cCharacter Generates the specified character at the current location on the page; the
value specified by the Character variable is a single-byte character.

CXYZ Generates the XYZ special character whose name is delimited by white
space. The name is one of the special characters legal for the typesetting
device as specified in the DESC file. This file resides in a directory specific to
the typesetting device. For instruction, see troff Font File Format and the
/usr/lib/font/devDevice directory.

HNumber Changes the horizontal position on the page to the number specified. The
number is in basic units of motions as specified by the DESC file. This is an
absolute goto statement.

hNumber Adds the number specified to the current horizontal position. This is a relative
goto statement.

VNumber Changes the vertical position on the page to the number specified (down is
positive).

vNumber Adds the number specified to the current vertical position.
NumberCharacter This is a two-digit number followed by an single-byte character. The meaning

is a combination of the hNumber command followed by the cCharacter
command. The specified number is added to the current horizontal position
and then the single-byte character, specified by the Character variable, is
produced. This is the most common form of character specification.

nB A Indicates that the end of a line has been reached. No action is required,
though by convention the horizontal position is set to 0 (zero). The troff
command specifies a resetting of the x,y coordinates on the page before
printing more characters. The first number, B, is the amount of space before
the line and the second number, A, the amount of space after the line. The
second number is delimited by white space.

w A w command appears between words of the input document. No action is
required. It is included so that one device can be emulated more easily on
another device.

pNumber Begins a new page. The new page number is included in this command. The
vertical position on the page should be set to 0 (zero).

#...\n Initiates a comment line with the # (pound sign).

Chapter 2. File Formats 583

Dl X Y Draws a line from the current position to that specified by the X,Y variables.
Dc D\n Draws a circle of the diameter specified by the D variable with the leftmost

edge being at the current location (X,Y). The current location after drawing
the circle is X+D,Y, the rightmost edge of the circle.

DeDX DY\n Draws an ellipse with the specified axes. The DX variable is the axis in the X
direction and the DY variable is the axis in the Y direction. The leftmost edge
of the ellipse is at the current location. After drawing the ellipse, the current
location is X+DX,Y.

Da DH1 DV1 DH2 DV2\n Draws a counterclockwise arc from the current position to the DH1I+DH2,
DV1+DV2 variable that has a center of DH1, DV1 from the current position.
The current location after drawing the arc is at its end.

D~ X Y X Y ...\n Draws a spline curve (wiggly line) between each of the X,Y coordinate pairs
starting at the current location. The final location is the final X,Y pair of the
list.

x P[aper] PaperSize W L\n Specifies the name of the paper size to be printed. Valid paper sizes are
Letter, Legal, A4, B5, Executive, and A5, where W and L are the paper width
and length in machine units.

x i[nit]\n Initializes the typesetting device. The actions required are dependent on the
device. An initializing command always occurs before any output generation is
attempted.

x T Device\n Specifies the name of the typesetter with the Device variable. This is the
same as the variable to the -T flag. Information about the typesetter is found
in the /usr/lib/font/devDevice directory.

x r[es] N H V\n Specifies the resolution of the typesetting device in increments per inch with
the N variable. The H variable specifies units of basic increments that
horizontal motion will take place. The V variable indicates the units of basic
increments for vertical motion.

x p[ause]\n Pauses the process by causing the current page to finish but does not
relinquish the typesetter.

x s[top]\n Stops the process by causing the current page to finish and then relinquishes
the typesetter. Performs any shutdown and bookkeeping procedures required.

x t[railer]\n Generates a trailer. On some devices, no operation is performed.
x f[ont] N Font\n Loads the specified font into position N.
x H[eight] N\n Sets the character height to N points. This causes the letters to be elongated

or shortened. It does not affect the width of a letter. Not all typesetters can do
this.

x S[lant] N\n Sets the slant to N degrees. Only some typesetters can do this and not all
angles are supported.

x c[codeset] CS\n Switch to codeset CS. For example:

x codeset ISO8859-1

The following commands are effective on multi-byte characters.

QC1C2 Outputs the character specified by the 2 bytes specified by the C1 and C2 variables. The
high-order bits can be set in these bytes.

RC1C2C3 Outputs the character specified by the three bytes of the C1, C2, and C3 parameters. The
high-order bits can be set in these bytes.

SC1C2C3C4 Outputs the character specified by the four bytes of the C1, C2, C3, and C4 parameters. The
high-order bits can be set in these bytes.

Files

/usr/lib/font/devDevice Contains the DESC file and phototypesetter-specific files.

584 Files Reference

Related Information
International Character Support in Text Formatting Overview in AIX 5L Version 5.2 System User’s Guide:
Operating System and Devices discusses the European-language extended character set and the
commands that use it.

The troff Font File Format.

The troff command.

troff Font File Format

Purpose
Specifies description files for the troff command.

Description
For each phototypesetter that the troff command supports and that is available on your system, there is a
directory that contains files describing the phototypesetter and its fonts. This directory is named
/usr/lib/font/devName, where the Name variable specifies the name of the phototypesetter.

The ASCII DESC file in the /usr/lib/font/devName directory within the troff command source directory
describes the characteristics of the phototypesetter specified by the Name variable. A binary version of this
file is found in the /usr/lib/font/devName/DESC.out file. Each line of this ASCII file starts with a word that
identifies a characteristic, followed by appropriate specifiers. Blank lines and lines beginning with the #
(pound sign) are ignored.

For many typesetters, downloaded fonts are supported in a general fashion. The bitmaps for these fonts
are stored in the /usr/lib/font/devName/bitmaps directory. Each font size pair is stored in a file with a
name of the form Fontname-Size.pk. For example:
B-24.pk

These bitmaps are stored in the PK packed-font format used by TeX and its post-processors. These
bitmaps are easily generated form readily available programs, such as METAFONT, or easily converted
from other forms.

In addition to the bitmap files, a troff font file, as described here, is required for each font typeface. In the
unitwidth field of this file, the width of each character bitmap in device units is given.

The legal lines for the DESC file are:

res Number Resolution of device in basic increments per inch.
unitwidth Number Point size in which all width tables in the font description files are

given. The troff command automatically scales the widths from the
unitwidth size to the point size with which it is working.

sizescale Number Scaling for fractional point sizes. The value of the Number variable is
1. The sizescale line is not currently used.

paperwidth Number Width of paper in basic increments.
paperlength Number Length of paper in basic increments.
biggestfont Number Maximum number of characters in a font.
sizes Number1 Number2... List of point sizes available on typesetter, ended by 0.
fonts NumberName... Number of initial fonts, followed by the ASCII names of the fonts. For

example:

fonts 4 R I B S

Chapter 2. File Formats 585

codeset codesetName Code set for the particular printer or typesetter, where CodesetName
is a valid code set name for use with the iconv command. The
specified code set is used to define character entries in the charset
section of font description files. For example:

codeset ISO8859-1

The troff command uses the specified CodesetName and the code
set implied by the current locale to determine if code set conversions
are necessary for the input characters. The iconv function is used to
perform the code set conversion if necessary.

charset Last keyword in the file is on a line by itself. Following it is the list of
special character names for this device. Names are separated by a
space or a new line. The list can be as long as necessary. Names not
in this list are not allowed in the font description files.

hor Number Smallest unit of horizontal motion.
vert Number Smallest unit of vertical motion.

The hor and vert lines describe the relationships between motions in
the horizontal and vertical directions. For example, if the device
moves in single basic increments in both directions, both the hor and
vert lines have values of 1. If vertical motion occurs only in multiples
of two basic units and horizontal motion occurs only in one basic unit,
vert is 2 and hor is 1.

For each font supported by the phototypesetter, there is also an ASCII file with the same name as the font
(for instance, R, I, CW) that describes it. The format for a font description file is as follows:

name Name Name of the font, such as R or CW.
internalname Name Internal name of the font.
special Sets the flag indicating that the font is special.
ligatures Name...0 Sets the flag indicating that the font has ligatures. The list of ligatures follows and

is ended by a 0 (zero). Accepted ligatures are ff fi fl ffi ffl.
spacewidth Number Specifies width of space if something other than the default (1/3 of an em space)

is desired.
charset The character set must come at the end. Each line following the charset word

describes one character in the font. Each line has one of two formats:

Name Width Kerning Code

OR

Name "

where the value of the Name field is either a single-byte character or a special
character name from the list found in the DESC file. The Width field is in basic
increments. The Kerning field is 1 if the character descends below the line, 2 if it
rises above the letter `a’, and 3 if it both rises and descends. The Code field is
the number sent to the typesetter to produce the character. For an nls font, the
Code field can be a multi-byte sequence.

For fonts of extended-character output devices, the Code field can be a multi-byte
sequence that begins and ends with a double quotation mark. In the sequence,
control or nonprinting characters can be represented by the following escape
sequences:

\n Produces a new line.
\r Produces a return.
\t Produces a tab.
\b Produces a backspace.
\″ Produces a double quote.
\xdd Produces a hexadecimal number, where dd is two hexadecimal digits.

586 Files Reference

\ooo Produces an octal number, where ooo is three octal digits.

The second format, Name ″, is used to show that the character has more than one
name. The double quotation marks indicate that this name has the same values
as the preceding line. The Kerning and Code fields are not used if the value of the
Width field is a double quotation mark. The total number of different characters in
this list should not be greater than the value of the biggestfont line in the DESC
file.

The DESC.out and Font.out files were created as a result of executing the makedev program on the
DESC file.

Prototype characters are provided for the charset section of the font table for fonts in large-character sets.
Most characters in large-character sets, such as the Japanese, Chinese, and Korean character sets, have
the same width. These prototype characters specify the width of characters with varying byte lengths. The
kerning and code fields are not available for prototype character entries. These entries apply to all
characters not explicitly defined in the charset section. It is assumed that the printer or typesetter code for
characters handled through prototype characters is the same as the input code for the character after
conversion by the iconv function. The following are the prototype character definitions:

X0 Width Width of all characters that return a value of 0 for csid().

X1 Width Width of all 1-byte characters not defined elsewhere.

X1 Width Width of all characters that return a value of 1 for csid().

X2 Width Width of all 2-byte characters not defined elsewhere.

Xi Width Width of all characters that return a value of i for csid().

X3 Width Width of all 3-byte characters not defined elsewhere.

X4 Width Width of all 4-byte characters not defined elsewhere.

For example, the following prototype character definitions apply to the Japanese character sets (both
IBM-932 and IBM-eucJP):
X0 : alphanumeric characters
X1 : JIS level 1 and 2 Kanji characters in JISX0208.1990
X2 : Katakana characters
X3 : IBM selected characters

Files

/usr/lib/font/devName/DESC.out file Contains the description file for
phototypesetter specified by the Name
variable.

/usr/lib/font/devName/bitmaps directory Contains bitmap files.
/usr/lib/font/devName/Font.out file Contains the font description file for

phototypesetter specified by the Name
variable.

Related Information
The troff file format.

The troff command.

The iconv subroutine.

Chapter 2. File Formats 587

tunables File Format

Purpose
Centralizes tunable parameter values.

Description
Tunables files contain one or more sections, called ″stanzas″. A stanza is started by a line containing the
stanza name followed by a colon (:). There is no marking for the end of a stanza. It simply continues until
another stanza starts. Each stanza contains a set of parameter/value pairs; one pair per line. The values
are surrounded by double quotes (″), and an equal sign (=) separates the parameter name from its value.
A parameter/value pair must necessarily belong to a stanza. It has no meaning outside of a stanza. Two
parameters sharing the same name but belonging to different stanzas are considered to be different
parameters. If a parameter appears several times in a stanza, only its first occurence is used. Following
occurences are simply ignored. Similarly, if a stanza appears multiple times in the file, only the first
occurrence is used. Everything following a number sign (#) is considered a comment and ignored. Heading
and trailing blanks are also ignored.

A tunable file uses the following syntax:
first stanza
stanza1:

param1 = "value1"
param2 = "value2"
param2 = "value3" # ignored, since already defined

another stanza
stanza2:

param1 = "value4" # not the same parameter as param1 in stanza1

the first stanza again
stanza1: # ignored since already defined

Tunables files currently support 6 different stanzas: one for each of the tunable command (schedo, vmo,
ioo, no and nfso), plus a special info stanza. The five stanzas schedo, vmo, ioo, no and nfso contain
tunable parameters managed by the corresponding command (see the command’s man pages for the
complete parameter lists).

The value can either be a numerical value or the litteral word DEFAULT, which is interpreted as this
tunable’s default value. It is possible that some stanza contains values for non-existent parameters (in the
case a tunable file was copied from a machine running an older version of AIX and one or more tunables
do not exist anymore). Both the tunrestore and the tuncheck commands will print warnings about such
parameters.

The info stanza is used to store information about the purpose of the tunable file and the level of AIX on
which it was validated. Any parameter is acceptable in this stanza, however, some fields have a special
meaning:

Description A character string describing the tunable file. SMIT displays this field in the file selection box.

AIX_level AIX version. This field is automatically updated by tunsave and tuncheck (on success only).

Kernel_type: ″UP″ this is a uniprocessor kernel.
″MP″ this is a multiprocessor kernel.
″MP64″ this is a 64 bits multiprocessor kernel.
This field is automatically updated by tunsave and tuncheck (on success only).

588 Files Reference

Last_validation The date this file was validated for the last time, and the type of validation:
″current″ the file has been validated against the current context.
″reboot″ the file has been validated against the nextboot context.
This field is automatically updated by tunsave and tuncheck (on success only).

Logfile_checksum The checksum of the lastboot.log file matching this tunables file. This field is present only in
the lastboot file.

Other stanzas like info, schedo, vmo, ioo, no and nfso may be present. These stanzas are simply
ignored by the tunrestore command, but flagged by the tuncheck command.

Three files under /etc/tunables have special names and meaning:

nextboot This file is automatically applied at boot time. The bosboot command also get the value of
Bosboot types tunables from this file. It contains all tunable settings made permanent.

lastboot This file is automatically generated at boot time. It contains the full set of tunable
parameters, with their values after the last boot. Default values are marked with # DEFAULT
VALUE.

lastboot.log This should be the only file in /etc/tunables that is not in the stanza format described here.
It is automatically generated at boot time, and contains the logging of the creation of the
lastboot file, i.e. any parameter change made is logged. Any change which could not be
made (possible if the nextboot file was created manually and not validated with tuncheck)
is also logged.

Examples
The following is a sample tunables file:
info:

Description = "Set of tunables for departmental server"
AIX_level = "5.2.0.0"
Kernel_type = "UP"
Last_validation = "2002-06-16 12:11:11 CDT current"

schedo:
timeslice = "2" # set timeslice to 30ms
sched_D = "DEFAULT"

vmo:
minperm = "48538"

ioo:
iotunable = "value"

no:
ipforwarding = "1"
ipsrcrouteforward = "1"

nfso:
nfs_allow_all_signals = "0" # DEFAULT VALUE
nfs_device_specific_bufs = "0"

Files
All the tunable files are located in the /etc/tunables directory.

/etc/tunables/nextboot Contains the values to be applied at the next rebooting of the machine.
/etc/tunables/lastboot Contains the values for all tuning parameters after the last rebooting of the machine.
/etc/tunables/lastboot.log Contains logging information about changes made and errors encountered during the last

rebooting of the machine.

Chapter 2. File Formats 589

Related Information
The schedo, vmo, ioo, no, tundefault, tunsave, tunrestore, tuncheck, and nfso commands.

The

Tuning the AIX kernel in Performance Tools and APIs Reference Guide.

uconvdef Source File Format

Purpose
Defines UCS-2 (Unicode) conversion mappings for input to the uconvdef command.

Description
Conversion mapping values are defined using UCS-2 symbolic character names followed by character
encoding (code point) values for the multibyte code set. For example,
<U0020> \x20

represents the mapping between the <U0020> UCS-2 symbolic character name for the space character and
the \x20 hexadecimal code point for the space character in ASCII.

In addition to the code set mappings, directives are interpreted by the uconvdef command to produce the
compiled table. These directives must precede the code set mapping section. They consist of the following
keywords surrounded by < > (angle brackets), starting in column 1, followed by white space and the value
to be assigned to the symbol:

<code_set_name> The name of the coded character set, enclosed in quotation marks (″ ″), for
which the character set description file is defined.

<mb_cur_max> The maximum number of bytes in a multibyte character. The default value is 1.
<mb_cur_min> An unsigned positive integer value that defines the minimum number of bytes in

a character for the encoded character set. The value is less than or equal to
<mb_cur_max>. If not specified, the minimum number is equal to
<mb_cur_max>.

<escape_char> The escape character used to indicate that the character following is interpreted
in a special way. This defaults to a backslash (\).

<comment_char> The character that, when placed in column 1 of a charmap line, is used to
indicate that the line is ignored. The default character is the number sign (#).

<char_name_mask> A quoted string consisting of format specifiers for the UCS-2 symbolic names.
This must be a value of AXXXX, indicating an alphabetic character followed by
4 hexadecimal digits. Also, the alphabetic character must be a U, and the
hexadecimal digits must represent the UCS-2 code point for the character. An
example of a symbolic character name based on this mask is <U0020> Unicode
space character.

<uconv_class> Specifies the type of the code set. It must be one of the following:

SBCS Single-byte encoding

DBCS Stateless double-byte, single-byte, or mixed encodings

EBCDIC_STATEFUL
Stateful double-byte, single-byte, or mixed encodings

MBCS Stateless multibyte encoding

This type is used to direct uconvdef on what type of table to build. It is also
stored in the table to indicate the type of processing algorithm in the UCS
conversion methods.

<locale> Specifies the default locale name to be used if locale information is needed.

590 Files Reference

<subchar> Specifies the encoding of the default substitute character in the multibyte code
set.

The mapping definition section consists of a sequence of mapping definition lines preceded by a
CHARMAP declaration and terminated by an END CHARMAP declaration. Empty lines and lines
containing <comment_char> in the first column are ignored.

Symbolic character names in mapping lines must follow the pattern specified in the <char_name_mask>,
except for the reserved symbolic name, <unassigned>, that indicates the associated code points are
unassigned.

Each noncomment line of the character set mapping definition must be in one of the following formats:

1. ″%s %s %s/n″, <symbolic-name>, <encoding>, <comments>

For example:
<U3004> \x81\x57

This format defines a single symbolic character name and a corresponding encoding.

The encoding part is expressed as one or more concatenated decimal, hexadecimal, or octal constants
in the following formats:

v ″%cd%d″, <escape_char>, <decimal byte value>

v ″%cx%x″, <escape_char> , <hexadecimal byte value>

v ″%c%o″, <escape_char>, <octal byte value>

Decimal constants are represented by two or more decimal digits preceded by the escape character
and the lowercase letter d, as in \d97 or \d143. Hexadecimal constants are represented by two or
more hexadecimal digits preceded by an escape character and the lowercase letter x, as in \x61 or
\x8f. Octal constants are represented by two or more octal digits preceded by an escape character.

Each constant represents a single-byte value. When constants are concatenated for multibyte
character values, the last value specifies the least significant octet and preceding constants specify
successively more significant octets.

2. ″%s. . .%s %s %s/n″, <symbolic-name>, <symbolic-name>, <encoding>, <comments>

For example:
<U3003>...<U3006> \x81\x56

This format defines a range of symbolic character names and corresponding encodings. The range is
interpreted as a series of symbolic names formed from the alphabetic prefix and all the values in the
range defined by the numeric suffixes.

The listed encoding value is assigned to the first symbolic name, and subsequent symbolic names in
the range are assigned corresponding incremental values. For example, the line:
<U3003>...<U3006> \x81\x56

is interpreted as:
<U3003> \x81\x56
<U3004> \x81\x57
<U3005> \x81\x58
<U3006> \x81\x59

3. ″<unassigned> %s. . .%s %s/n″, <encoding>, <encoding>, <comments>

This format defines a range of one or more unassigned encodings. For example, the line:
<unassigned> \x9b...\x9c

Chapter 2. File Formats 591

is interpreted as:
<unassigned> \x9b
<unassigned> \x9c

Related Information
The uconvdef command.

Code Set Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

List of UCS-2 Interchange Converters in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

UIL File Format

Purpose
Contains information on the user interface for a widget-based application.

Description
User Interface Language (UIL) is used to describe the initial state of a user interface for a widget-based
application. UIL describes the widgets used in the interface, the resources of those widgets, and the
callbacks of those widgets. A UIL file is compiled into a user interface definition (UID) file using the uil
command or the Uil callable compiler function. The contents of the compiled UID file can then be
accessed by the various Motif Resource Manager (MRM) functions from within an application program.

The syntax for the UIL is as follows:

MODULE ModuleName
[NAMES = CASE_INSENSITIVE | CASE_SENSITIVE]
[CHARACTER_SET = CharacterSet]
[OBJECTS = { WidgetName = GADGET | WIDGET; [...] }]
{ [
[ValueSection] |
[ProcedureSection] |
[ListSection] |
[ObjectSection] |
[IdentifierSection] |
[...]
] }
END MODULE;

File Format
UIL is a free-form language. This means that high-level constructs, such as object and value declarations,
do not need to begin in any particular column and can span any number of lines. Low-level constructs,
such as keywords and punctuation characters, can also begin in any column; however, except for string
literals and comments, they cannot span lines.

The UIL compiler accepts input lines up to 132 characters in length.

MODULE ModuleName The name by which the UIL module is known in the UID
file. This name is stored in the UID file for later use in the
retrieval of resources by the MRM. This module name is
always uppercase.

592 Files Reference

NAMES = CASE_INSENSITIVE | CASE_SENSITIVE Indicates whether names should be treated as
case-sensitive or case-insensitive. The default is
case-sensitive. The case-sensitivity clause should be the
first clause in the module header and must precede any
statement that contains a name. If names are
case-sensitive in a UIL module, UIL keywords in that
module must be in lowercase. Each name is stored in the
UIL file in the same case as it appears in the UIL module.
If names are case-insensitive, keywords can be in
uppercase, lowercase, or mixed case, and the uppercase
equivalent of each name is stored in the UID file.

CHARACTER_SET = CharacterSet Specifies the default character set for string literals in the
module that do not explicitly set their character set. In the
absence of this clause, the default character set is the
codeset component of the LANG environment variable, or
the value of XmFALLBACK_CHARSET if LANG is not
set or has no codeset component. The value of
XmFALLBACK_CHARSET is defined by the UIL supplier,
but is usually ISO8859-1 (equivalent to ISO_LATIN1). Use
of this clause turns off all localized string literal processing
turned on by either the -s compiler flag or the
Uil_command_type data structure element
use_setlocale_flag.

OBJECTS = { WidgetName = GADGET | WIDGET;} Indicates whether the widget or gadget form of the control
specified by WidgetName variable is used by default. The
widget form is used by default. The specified control
should be one that has both a widget and gadget version,
for example: XmCascadeButton, XmLabel,
XmPushButton, XmSeparator, and XmToggleButton.
The form of more than one control can be specified by
delimiting them with ; (semicolons). The gadget or widget
form of an instance of a control can be specified with the
GADGET and WIDGET keywords in a particular object
declaration.

ValueSection Provides a way to name a value expression or literal. The
value name can then be referred to by declarations that
occur elsewhere in the UIL module in any context where a
value can be used. Values can be forward-referenced.
See ″Value Sections″ for more detail.

ProcedureSection Defines the callback functions used by a widget and the
creation functions for user-defined widgets. These
definitions are used for error checking. See ″Procedure
Sections″ for more detail.

ListSection Provides a way to group together a set of arguments,
controls (children), callbacks, or procedures for later use
in the UIL module. Lists can contain other lists so you can
set up a hierarchy to clearly show which arguments,
controls, callbacks, and procedures are common to which
widgets. See ″List Sections″ for more detail.

ObjectSection Defines the objects that make up the user interface of the
application. You can reference the object names in
declarations that occur elsewhere in the UIL module in
any context where an object name can be used (for
example, in a controls list, as a symbolic reference to a
widget ID, or as the TagValue argument for a callback
procedure). Objects can be forward-referenced. See
″Object Sections″ for more detail.

IdentifierSection Defines a run-time binding of data to names that appear in
the UIL module. See ″Identifier Sections″ for more detail.

Chapter 2. File Formats 593

The UIL file can also contain comments and include directives. These, as well as the main elements of the
UIL file format, are described in the following sections.

Comments
Comments can take one of two forms, neither of which can be nested:

v The comment is introduced with the /* sequence followed by the text of the comment and terminated
with the */ sequence. This form of comment can span multiple source lines.

v The comment is introduced with an ! (exclamation point) followed by the text of the comment and
terminated by the end of the source line.

Value Sections
A value section consists of the VALUE keyword followed by a sequence of value declarations. It has the
following syntax:

VALUE ValueName :
[EXPORTED | PRIVATE] ValueExpression |
IMPORTED ValueType ;

ValueExpression is assigned to ValueName, or a ValueType is assigned to an imported value name. A
value declaration provides a way to name a value expression or literal. The value name can be referred to
by declarations that occur later in the UIL module in any context where a value can be used. Values can
be forward-referenced.

EXPORTED A value that you define as exported is stored in the UID file as a named resource and can be
referenced by name in other UID files. When you define a value as exported, MRM looks outside the
module in which the exported value is declared to get its value at run time.

PRIVATE A private value is a value that is not imported or exported. A value that you define as private is not
stored as a distinct resource in the UID file. You can reference a private value only in the UIL module
containing the value declaration. The value or object is directly incorporated into anything in the UIL
module that references the declaration.

IMPORTED A value that you define as imported is one that is defined as a named resource in a UID file. MRM
resolves this declaration with the corresponding exported declaration at application run time.

By default, values and objects are private. The following is a list of the supported value types in UIL:

v ANY

v ARGUMENT

v BOOLEAN

v COLOR

v COLOR_TABLE

v COMPOUND_STRING

v FLOAT

v FONT

v FONT_TABLE

v FONTSET

v ICON

v INTEGER

v INTEGER_TABLE

v KEYSYM

v REASON

v SINGLE_FLOAT

v STRING

594 Files Reference

v STRING_TABLE

v TRANSLATION_TABLE

v WIDE_CHARACTER

v WIDGET

Procedure Sections
A procedure section consists of the PROCEDURE keyword followed by a sequence of procedure
declarations. It has the following syntax:

PROCEDURE
ProcedureName [([ValueType])] ;

Use a procedure declaration to declare the following:

v A function that can be used as a callback function for a widget

v The creation function for a user-defined widget.

You can reference a procedure name in declarations that occur later in the UIL module in any context
where a procedure can be used. Procedures can be forward-referenced. You cannot use a name that you
used in another context as a procedure name.

In a procedure declaration, you have the option of specifying that a parameter is passed to the
corresponding callback function at run time. This parameter is called the callback tag. You can specify the
data type of the callback tag by putting the data type in parentheses following the procedure name. When
you compile the module, the UIL compiler checks that the argument you specify in references to the
procedure is of this type. Note that the data type of the callback tag must be one of the valid UIL data
types. You can use a widget as a callback tag, as long as the widget is defined in the same widget
hierarchy as the callback; that is, they must have a common ancestor that is in the same UIL hierarchy.

The following list summarizes how the UIL compiler checks argument type and argument count, depending
on the procedure declaration:

No parameters No argument type or argument count checking occurs. You can supply either 0 or 1
arguments in the procedure reference.

() Checks that the argument count is 0.
(ANY) Checks that the argument count is 1. Does not check the argument type. Use the ANY data

type to prevent type checking on procedure tags.
(Type) Checks for one argument of the specified type.
(ClassName) Checks for one widget argument of the specified widget class.

While it is possible to use any UIL data type to specify the type of a tag in a procedure declaration, you
must be able to represent that data type in the programming language you are using. Some data types
(such as integer, Boolean, and string) are common data types recognized by most programming
languages. Other UIL data types (such as string tables) are more complicated and may require you to set
up an appropriate corresponding data structure in the application in order to pass a tag of that type to a
callback function.

You can also use a procedure declaration to specify the creation function for a user-defined widget. In this
case, you specify no formal parameters. The procedure is called with the standard three arguments
passed to all widget creation functions. See ″Chapter 1. AIXwindows Overview for Programmers″ in AIX
5L Version 5.2 AIXwindows Programming Guide for more information about widget creation functions.

List Sections
A list section consists of the LIST keyword followed by a sequence of list declarations. It has the following
syntax:

Chapter 2. File Formats 595

LIST
ListName : { ListItem; [...] }
[...]

You can also use list sections to group together a set of arguments, controls (children), callbacks, or
procedures for later use in the UIL module. Lists can contain other lists so you can set up a hierarchy to
clearly show which arguments, controls, callbacks, and procedures are common to which widgets. You
cannot mix the different types of lists; a list of a particular type cannot contain entries of a different list type
or reference the name of a different list type. A list name is always private to the UIL module in which you
declare the list and cannot be stored as a named resource in a UID file.

The additional list types are described in the following sections.

Arguments List Structure: An arguments list defines which arguments are specified in the
arguments-list parameter when the creation function for a particular object is called at run time. An
arguments list also specifies the values for those arguments. Arguments lists have the following syntax:

LIST ListName : ARGUMENTS {
ArgumentName = ValueExpression;
[...] }
[...]

The argument name (ArgumentName) must be either a built-in argument name or a user-defined argument
name that is specified with the ARGUMENTS function.

If you use a built-in argument name as an arguments list entry in an object definition, the UIL compiler
checks the argument name to be sure that it is supported by the type of object that you are defining. If the
same argument name is displayed more than once in a given arguments list, the last entry that uses that
argument name supersedes all previous entries with that name, and the compiler issues a message.

Some arguments, such as XmNitems and XmNitemCount, are coupled by the UIL compiler. When you
specify one of the coupled arguments, the compiler also sets the other one. The coupled argument is not
available to you.

AIXwindows and the X Toolkit (Intrinsics) support constraint arguments. A constraint argument is one that
is passed to children of an object, beyond those arguments normally available. For example, the Form
widget grants a set of constraint arguments to its children. These arguments control the position of the
children within the Form widget.

Unlike the arguments used to define the attributes of a particular widget, constraint arguments are used
exclusively to define additional attributes of the children of a particular widget. These attributes affect the
behavior of the children within their parent. To supply constraint arguments to the children, include the
arguments in the arguments list for the child.

Callbacks List Structure: Use a callbacks list to define which callback reasons are to be processed by a
particular widget at run time. Callback lists have the following syntax:

LIST
ListName : CALLBACKS {
ReasonName = PROCEDURE ProcedureName [([ValueExpression])]; |
ReasonName = ProcedureList ;
[...] }
[...]

596 Files Reference

For AIXwindows widgets, the reason name must be a built-in reason name. For a user-defined widget, you
can use a reason name that you previously specified using the REASON function. If you use a built-in
reason in an object definition, the UIL compiler ensures that reason is supported by the type of object you
are defining.

If the same reason is displayed more than once in a callbacks list, the last entry referring to that name
supersedes all previous entries using the same reason. The UIL compiler then issues a diagnostic
message.

If you specify a named value for the procedure argument (callback tag), the data type of the value must
match the type specified for the callback tag in the corresponding procedure declaration. When specifying
a widget name as a procedure value expression, you must also specify the type of the widget and a space
before the name of the widget.

Because the UIL compiler produces a UID file rather that an object module (.o), the binding of the UIL
name to the address of the entry point and then to the procedure is not done by the loader. Instead, this
binding is established at run time with the MrmRegisterNames MRM function. You call this function before
fetching any objects, giving it both the UIL names and the procedure addresses of each callback. The
name you register with MRM in the application program must match the name you specified for the
procedure in the UIL module.

Each callback procedure received three arguments. The first two arguments have the same form for each
callback. The form of the third argument varies from object to object.

The first argument is the address of the data structure maintained by the AIXwindows for this object
instance. This address is called the widget ID for this object.

The second argument is the address of the value you specified in the callbacks list for this procedure. If
you do not specify an argument, the address is null.

The third argument is the reason name you specified in the callbacks list.

Controls List Structure: A controls list defines which objects are children of, or controlled by, a
particular object. Each entry in a controls list has the following syntax:

LIST
ListName : CONTROLS {
[ChildName] [MANAGED | UNMANAGED] ObjectDefinition;
[...] }
[...]

If you specify the MANAGED keyword at run time, the object is created and managed; if you specify the
UNMANAGED keyword at run time, the object is only created. Objects are managed by default.

You can use the ChildName parameter to specify resources for the automatically created children of a
particular control. Names for automatically created children are formed by appending Xm_ to the name of
the child widget. This name is specified in the documentation for the parent widget.

Unlike the arguments list and the callbacks list, a controls list entry that is identical to a previous entry
does not supersede the previous entry. At run time, each controls list entry causes a child to be created
when the parent is created. If the same object definition is used for multiple children, multiple instances of
the child are created at run time.

Procedures List Structure: You can specify multiple procedures for a callback reason in UIL by defining
a procedures list. Just as with other list types, procedures lists can be defined in-line or in a list section
and referenced by name.

Chapter 2. File Formats 597

If you define a reason more than once (for example, when the reason is defined both in a referenced
procedures list and in the callbacks list for the object), previous definitions are overridden by the latest
definition. The syntax for a procedures list is as follows:

LIST
ListName : PROCEDURES {
ProcedureName [([ValueExpression])];
[...] }
[...]

When specifying a widget name as a procedure value expression, you must also specify the type of the
widget and a space before the name of the widget.

Object Sections
An object section consists of the OBJECT keyword followed by a sequence of object declarations. It has
the following syntax:

OBJECT ObjectName :
[EXPORTED | PRIVATE | IMPORTED] ObjectType
[PROCEDURE CreationFunction]
[ObjectName [WIDGET | GADGET] | { ListDefinitions }]

Use an object declaration to define the objects that are stored in the UID file. You can reference the object
name in declarations that occur elsewhere in the UIL module in any context where an object name can be
used (for example, in a controls list, as a symbolic reference to a widget ID, or as the TagValue argument
for a callback procedure). Objects can be forward-referenced, meaning that you can declare an object
name after you have referenced it. All references to an object name must be consistent with the type of
the object, as specified in the object declaration. You can specify an object as exported, imported, or
private.

The object definition can contain a sequence of lists that define the arguments, hierarchy, and callbacks
for the widget. You can only specify one list of each type for an object. When you declare a user-defined
widget, you must include a reference to the widget creation function for the user-defined widget.

Use the GADGET or WIDGET keyword to specify the object type or to override the default variant for this
object type. You can use the AIXwindows name of an object type that has a gadget variant (for example,
XmLabelGadget) as an attribute of an object declaration. The ObjectType can be any object type,
including gadgets. You need to specify the GADGET or WIDGET keyword only in the declaration of an
object, not when you reference the object. You cannot specify the GADGET or WIDGET keyword for a
user-defined object; user-defined objects are always widgets.

Identifier Sections
The identifier section allows you to define an identifier, a mechanism that achieves run-time binding of
data to names that appear in a UIL module. The identifier section consists of the reserved IDENTIFIER
keyword, followed by a list of names. Each name is followed by a semicolon (;). The syntax is as follows:

IDENTIFIER IdentifierName; [...;]

You can use these names later in the UIL module as either the value of an argument to a widget or the
tag value to a callback procedure. At run time, use the MrmRegisterNames and
MrmRegisterNamesInHierarchy MRM functions to bind the identifier name with the data (or, in the case
of callbacks, with the address of the data) associated with the identifier.

Each UIL module has a single name space; therefore, you cannot use the name you used for a value,
object, or procedure as an identifier name in the same module.

598 Files Reference

The UIL compiler does not do any type checking on the use of identifiers in a UIL module. Unlike a UIL
value, an identifier does not have a UIL type associated with it. Regardless of what particular type a
widget argument or callback procedure tag is defined to be, you can use an identifier in that context
instead of a value of the corresponding type.

To reference these identifier names in a UIL module, use the name of the identifier wherever you want its
value to be used.

Include Directives
The include directive incorporates the contents of a specified file into a UIL module. This mechanism
allows several UIL modules to share common definitions. The syntax for the include directive is as follows:

INCLUDE FILE FileName ;

The UIL compiler replaces the include directive with the contents of the include file and processes it as if
these contents were displayed in the current UIL source file.

You can nest include files, meaning that an include file can contain include directives. The UIL compiler
can process up to 100 references (including the file containing the UIL module). Therefore, you can
include up to 99 files in a single UIL module, including nested files. Each time a file is opened counts as a
reference; therefore, including the same file twice counts as two references.

The character expression is a file specification that identifies the file to be included. The rules for finding
the specified file are similar to the rules for finding header, or .h, files using the include directive, #include,
with a quoted string in C language. The uil command uses the -I option for specifying a search directory
for include files. Search rules are as follows:

v If you supply a directory, the UIL compiler searches only that directory for the include file.

v If you do not supply a directory, the UIL compiler searches for the include file in the directory of the
main source file.

v If the include file is not found in the main source file directory, the compiler looks in the same directory
as the source file.

Language Syntax
This section contains information on the following:

v Names and Strings

v Data Types

v String Literals

v Integer Literals

v Boolean Literals

v Floating-Point Literals

v ANY Data Type

v Expressions

v Functions.

Names and Strings
Names can consist of any of the characters A to Z, a to z, 0 to 9, $ (dollar sign), and _ (underscore).
Names cannot begin with a digit (0 to 9). The maximum length of a name is 31 characters.

UIL gives you a choice of either case-sensitive or case-insensitive names through a clause in the
MODULE header. For example, if names are case-sensitive, the names ″sample″ and ″Sample″ are
distinct from each other. If names are case-insensitive, these names are treated as the same name and
can be used interchangeably. By default, UIL assumes names are case-sensitive.

Chapter 2. File Formats 599

In case-insensitive mode, the compiler outputs all names in the UID file in uppercase form. In
case-sensitive mode, names are displayed in the UIL file exactly as they are displayed in the source file.

The following lists the reserved keywords, which cannot be used for programmer-defined names:

Reserved Keyword

ARGUMENTS CALLBACKS CONTROLS END

EXPORTED FALSE GADGET IDENTIFIER

INCLUDE LIST MODULE OFF

ON OBJECT PRIVATE PROCEDURE

PROCEDURES TRUE VALUE WIDGET

The following lists UIL unreserved keywords. These keywords can be used as programmer-defined names;
however, if you use any of these keywords as names, you cannot use the UIL-supplied form of that
keyword.

Built-in argument names (for example, XmNx, XmNheight)
Built-in reason names (for example, XmNactivateCallback, XmNhelpCallback)
Character set names (for example, ISO_LATIN1, ISO_HEBREW_LR)
Constant value names (for example, XmMENU_OPTION, XmBROWSE_SELECT)
Object types (for example, XmPushButton, XmBulletinBoard)

Unreserved Keyword

ANY FILE IMPORTED

ARGUMENT FLOAT REASON

ASCIZ_STRING_TABLE FONT RGB

ASCIZ_TABLE FONTSET SINGLE_FLOAT

BACKGROUND FONT_TABLE STRING

BOOLEAN FOREGROUND STRING_TABLE

CASE_INSENSITIVE ICON TRANSLATION_TABLE

CASE_SENSITIVE INTEGER UNMANAGED

CHARACTER_SET INTEGER_TABLE USER_DEFINED

COLOR KEYSYM VERSION

COLOR_TABLE MANAGED WIDE_CHARACTER

COMPOUND_STRING NAMES WIDGET

COMPOUND_STRING_TABLE OBJECTS XBITMAPFILE

RIGHT_TO_LEFT

String literals can be composed of uppercase and lowercase letters, digits, and punctuation characters.
Spaces, tabs, and comments are special elements in the language. They are a means of delimiting other
elements, such as two names. One or more of these elements can be displayed before or after any other
element in the language. However, spaces, tabs, and comments that are displayed in string literals are
treated as character sequences rather than delimiters.

Data Types

UIL provides literals for several of the value types it supports. Some of the value types are not supported
as literals (for example, pixmaps and string tables). You can specify values for these types by using
functions described in the ″Functions″ section. UIL directly supports the following literal types:

600 Files Reference

v String literal

v Integer literal

v Boolean literal

v Floating-point literal

UIL also includes the ANY data type, which is used to turn off compile-time checking of data types.

String Literals

A string literal is a sequence of 0 or more 8-bit or 16-bit characters or a combination delimited by ’ (single
quotation marks) or ″ (double quotation marks). String literals can also contain multibyte characters
delimited with double quotation marks. String literals can be no more than 2,000 characters long.

A single-quoted string literal can span multiple source lines. To continue a single-quoted string literal, end
the continued line with a \ (backslash). The literal continues with the first character on the next line.

Double-quoted string literals cannot span multiple source lines. (Because double-quoted strings can
contain escape sequences and other special characters, you cannot use the backslash character to
designate the continuation of the string.) To build a string value that must span multiple source lines, use
the concatenation operation that is described later in this section.

The syntax of a string literal can be one of the following:
’[CharacterString]’
[#CharSet]"[CharacterString]"

Both string forms associate a character set with a string value. UIL uses the following rules to determine
the character set and storage format for string literals:

v A string declared as ’String’ is equivalent to #CurCharSet″String″, where CurCharSet is the codeset
portion of the value of the LANG environment variable. If the LANG environment variable is not set or
has no code set component, CurCharSet is the value of XmFALLBACK_CHARSET. By default,
XmFALLBACK_CHARSET is ISO8859-1 (equivalent to ISO_LATIN1), but vendors can define a
different default.

v A string declared as ″String″ is equivalent to #CharSet″String″ if you specified CharSet as the default
character set for the module. If no default character set has been specified for the module and either
the -s option is provided to the uil command or the use_setlocale_flag value is set for the Uil function
callable compiler, the string is interpreted to be a string in the current locale. This means that the string
is parsed in the locale of the user by calling setlocale and its character set is set to a value of
XmFONTLIST_DEFAULT_TAG. If the string is converted to a compound string, it is stored as a
locale-encoded text segment. Otherwise, ″String″ is equivalent to #CurCharSet″String″, where
CurCharSet is interpreted as described for single-quoted strings.

v A string of the form ″String″ or #CharSet″String″ is stored as a null-terminated string.

The following lists the character sets supported by the UIL compiler for string literals. Note that several UIL
names map to the same character set. In some cases, the UIL name influences how string literals are
read. For example, strings identified by a UIL character set name ending in _LR are read left-to-right.
Names that end in a different number reflect different fonts (for example, ISO_LATIN1 or ISO_LATIN6). All
character sets in this list are represented by 8 bits.

UIL Name Description
ISO_LATIN1 GL: ASCII, GR: Latin-1 Supplement
ISO_LATIN2 GL: ASCII, GR: Latin-2 Supplement
ISO_ARABIC GL: ASCII, GR: Latin-Arabic Supplement
ISO_LATIN6 GL: ASCII, GR: Latin-Arabic Supplement
ISO_GREEK GL: ASCII, GR: Latin-Greek Supplement
ISO_LATIN7 GL: ASCII, GR: Latin-Greek Supplement

Chapter 2. File Formats 601

UIL Name Description
ISO_HEBREW GL: ASCII, GR: Latin-Hebrew Supplement
ISO_LATIN8 GL: ASCII, GR: Latin-Hebrew Supplement
ISO_HEBREW_LR GL: ASCII, GR: Latin-Hebrew Supplement
ISO_LATIN8_LR GL: ASCII, GR: Latin-Hebrew Supplement
JIS_KATAKANA GL: JIS Roman, GR: JIS Katakana

Following are the parsing rules for each of the character sets:

Character Set Parsing Rule
All character sets Character codes in the range 00 to 1F, 7F, and 80 to 9F

are control characters including both bytes of 16-bit
characters. The compiler flags these as illegal characters.

ISO_LATIN1, ISO_LATIN2, ISO_ARABIC, ISO_LATIN6,
ISO_GREEK, ISO_LATIN7

These sets are parsed from left to right. The escape
sequences for null-terminated strings are also supported
by these character sets.

ISO_HEBREW, ISO_LATIN8 These sets are parsed from right to left. For example, the
string #ISO_HEBREW″012345″ generates a primitive string
″543210″ with the character set ISO_HEBREW. A DDIS
descriptor for such a string has this segment marked as
being right to left. The escape sequences for
null-terminated strings are also supported by these
character sets, and the characters that compose the
escape sequences are in left-to-right order. For example,
you type \n, not n\.

ISO_HEBREW_LR, ISO_LATIN8_LR These sets are parsed from left to right. For example, the
string #ISO_HEBREW″012345″ generates a primitive string
″012345″ with the character set ISO_HEBREW. A DDIS
descriptor for such a string marks this segment as being
left to right. The escape sequences for null-terminated
strings are also supported by these character sets.

JIS_KATAKANA This set is parsed from left to right. The escape
sequences for null-terminated strings are also supported
by these character sets. Note that the \ (backslash) can
be displayed as a yen symbol.

In addition to designating parsing rules for strings, character set information remains an attribute of a
compound string. If the string is included in a string consisting of several concatenated segments, the
character set information is included with that string segment. This gives AIXwindows the information it
needs to decipher the compound string and choose a font to display the string.

For an application interface displayed only in English, UIL lets you ignore the distinctions between the two
uses of strings. The compiler recognizes by context when a string must be passed as a null-terminated
string or as a compound string.

The UIL compiler recognizes enough information about the various character sets to correctly parse string
literals. The compiler also issues errors if you use a compound string in a context that supports only
null-terminated strings.

Since the character set names are keywords, you must put them in lowercase if case-sensitive names are
in force. If names are case-insensitive, character set names can be uppercase, lowercase, or mixed case.

In addition to the built-in character sets recognized by UIL, you can define your own character sets with
the CHARACTER_SET function. You can use the CHARACTER_SET function anywhere a character set
can be specified.

602 Files Reference

String literals can contain characters with the eighth (high-order) bit set. You cannot type control characters
(00 to 1F, 7F, and 80 to 9F) directly in a single-quoted string literal. However, you can represent these
characters with escape sequences. The following list shows the escape sequences for special characters:

\b Backspace
\f Form-feed
\n New-line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\’ Single quotation mark
\″ Double quotation mark
\\ Backslash
\Integer\ Character whose internal representation is given by Integer (in the range 0 to 255 decimal).

Note: Escape sequences are processed literally in strings that are parsed in the current locale (localized
strings).

The UIL compiler does not process new-line characters in compound strings. The effect of a new-line
character in a compound string depends only on the character set of the string. The result is not
guaranteed to be a multiline string.

Compound String Literals:

A compound string consists of a string of 8-bit, 16-bit, or multibyte characters, a named character set, and
a writing direction. Its UIL data type is compound_string.

The writing direction of a compound string is implied by the character set specified for the string. You can
explicitly set the writing direction for a compound string by using the COMPOUND_STRING function.

A compound string can consist of a sequence of concatenated compound strings, null-terminated strings,
or a combination of both, each of which can have a different character set property and writing direction.
Use the & (ampersand) concatenation operator to create a sequence of compound strings.

Each string in the sequence is stored, including the character set and writing direction information.

Generally, a string literal is stored in the UID file as a compound string when the literal consists of
concatenated strings having different character sets or writing directions, or when you use the string to
specify a value for an argument that requires a compound string value. If you want to guarantee that a
string literal is stored as a compound string, you must use the COMPOUND_STRING function.

Data Storage Consumption for String Literals:

The way a string literal is stored in the UID file depends on how you declare and use the string. The UIL
compiler automatically converts a null-terminated string to a compound string if you use the string to
specify the value of an argument that requires a compound string. However, this conversion is costly in
terms of storage consumption.

PRIVATE, EXPORTED, and IMPORTED string literals require storage for a single allocation when the
literal is declared; thereafter, storage is required for each reference to the literal. Literals declared in-line
require storage for both an allocation and a reference.

The following list summarizes data storage consumption for string literals. The storage requirement for an
allocation consists of a fixed portion and a variable portion. The fixed portion of an allocation is roughly the
same as the storage requirement for a reference (a few bytes). The storage consumed by the variable

Chapter 2. File Formats 603

portion depends on the size of the literal value (the length of the string). To conserve storage space, avoid
making string literal declarations that result in an allocation per use.

Declaration Data Type Used As Storage Requirements Per Use

In-line Null-terminated Null-terminated An allocation and a reference (within the
module)

Private Null-terminated Null-terminated A reference (within the module)

Exported Null-terminated Null-terminated A reference (within the UID hierarchy)

Imported Null-terminated Null-terminated A reference (within the UID hierarchy)

In-line Null-terminated Compound An allocation and a reference (within the
module)

Private Null-terminated Compound An allocation and a reference (within the
module)

Exported Null-terminated Compound A reference (within the UID hierarchy)

Imported Null-terminated Compound A reference (within the UID hierarchy

In-line Compound Compound An allocation and a reference (within the
module)

Private Compound Compound A reference (within the module)

Exported Compound Compound A reference (within the UID hierarchy)

Imported Compound Compound A reference (within the UID hierarchy)

Integer Literals
An integer literal represents the value of a whole number. Integer literals have the form of an optional sign
followed by one or more decimal digits. An integer literal must not contain embedded spaces or commas.

Integer literals are stored in the UID file as long integers. Exported and imported integer literals require a
single allocation when the literal is declared; thereafter, a few bytes of storage are required for each
reference to the literal. Private integer literals and those declared in-line require allocation and reference
storage per use. To conserve storage space, avoid making integer literal declarations that result in an
allocation per use.

The following list shows data storage consumption for integer literals:

Declaration Storage Requirements Per Use
In-line An allocation and a reference (within the module).
Private An allocation and a reference (within the module).
Exported A reference (within the UID hierarchy).
Imported A reference (within the UID hierarchy).

Boolean Literals

A Boolean literal represents the True value (reserved keyword TRUE or On) or False value (reserved
keyword FALSE or Off). These keywords are subject to case-sensitivity rules.

In a UID file, TRUE is represented by the integer value 1 and FALSE is represented by the integer value
0.

Data storage consumption for Boolean literals is the same as that for integer literals.

Floating-Point Literals
A floating-point literal represents the value of a real (or float) number. Floating-point literals have the
following form:

604 Files Reference

[+|-][Integer].Integer[E|e[+|-]Exponent]

For maximum portability, a floating-point literal can represent values in the range 1.0E-37 to 1.0E+37 with
at least six significant digits. On many machines, this range is wider, with more significant digits. A
floating-point literal must not contain embedded spaces or commas.

Floating-point literals are stored in the UID file as double-precision, floating-point numbers. The following
gives examples of valid and invalid floating-point notation for the UIL compiler:

Valid Floating-Point Literals Invalid Floating-Point Literals
1.0 1e1 (no decimal point)
.1 E-1 (no decimal point or digits)
3.1415E-2 (equals .031415) 2.87 e6 (embedded blanks)
-6.29e7 (equals -62900000) 2.0e100 (out of range)

Data storage consumption for floating-point literals is the same as that for integer literals.

ANY Data Type
The purpose of the ANY data type is to shut off the data-type checking feature of the UIL compiler. You
can use the ANY data type for either of the following:

v Specifying the type of a callback procedure tag.

v Specifying the type of a user-defined argument.

You can use the ANY data type when you need to use a type not supported by the UIL compiler or when
you want the data-type restrictions imposed by the compiler to be relaxed. For example, you might want to
define a widget having an argument that can accept different types of values, depending on run-time
circumstances.

If you specify that an argument takes an ANY value, the compiler does not check the type of the value
specified for that argument. Therefore, you need to take care when specifying a value for an argument of
the ANY data type. You may get unexpected results at run time if you pass a value having a data type that
the widget does not support for that argument.

Expressions
UIL includes compile-time value expressions. These expressions can contain references to other UIL
values, but cannot be forward-referenced.

The following lists the set of operators in UIL that allow you to create integer, real, and Boolean values
based on other values defined with the UIL module. In the list, a precedence of 1 is the highest.

Operator Operand Types Meaning Precedence

~ Boolean NOT 1

integer Ones complement

- float Negate 1

integer Negate

+ float NOP 1

integer NOP

* float,float Multiply 2

integer,integer Multiply

/ float,float Divide 2

integer,integer Divide

Chapter 2. File Formats 605

Operator Operand Types Meaning Precedence

+ float,float Add 3

integer,integer Add

- float,float Subtract 3

integer,integer Subtract

>> integer,integer Shift right 4

<< integer,integer Shift left 4

& Boolean,Boolean AND 5

integer,integer Bitwise AND

string,string Concatenate

| Boolean,Boolean OR 6

integer,integer Bitwise OR

^ Boolean,Boolean XOR 6

integer,integer Bitwise XOR

A string can be either a single compound string or a sequence of compound strings. If the two
concatenated strings have different properties (such as writing direction or character set), the result of the
concatenation is a multisegment compound string.

The string resulting from the concatenation is a null-terminated string unless one or more of the following
conditions exists:

v One of the operands is a compound string.

v The operands have different character set properties.

v The operands have different writing directions.

If one or more of previous conditions are met, the resulting string is a compound string. You cannot use
imported or exported values as operands of the concatenation operator.

The result of each operator has the same type as its operands. You cannot mix types in an expression
without using conversion functions.

You can use parentheses to override the normal precedence of operators. In a sequence of unary
operators, the operations are performed in right-to-left order. For example, - + -A is equivalent to
-(+(-A)). In a sequence of binary operators of the same precedence, the operations are performed in
left-to-right order. For example, A*B/C*D is equivalent to ((A*B)/c)*D.

A value declaration gives a value a name. You cannot redefine the value of that name in a subsequent
value declaration. You can use a value containing operators and functions anywhere you can use a value
in a UIL module. You cannot use imported values as operands in expressions.

Several of the binary operators are defined for multiple data types. For example, the operator for
multiplication (*) is defined for both floating-point and integer operands.

For the UIL compiler to perform these binary operations, both operands must be of the same type. If you
supply operands of different data types, the UIL compiler automatically converts one of the operands to the
type of the other according to the following conversion rules:

v If the operands are an integer and a Boolean, the Boolean is converted to an integer.

v If the operands are an integer and a floating-point, the integer is converted to a floating-point.

v If the operands are a floating-point and a Boolean, the Boolean is converted to a floating-point.

606 Files Reference

You can also explicitly convert the data type of a value by using one of the INTEGER, FLOAT, or
SINGLE_FLOAT conversion functions.

Functions
UIL provides functions to generate the following types of values:

v Character sets

v Keysyms

v Colors

v Pixmaps

v Single-precision, floating-point numbers

v Double-precision, floating-point numbers

v Fonts

v Font sets

v Font tables

v Compound strings

v Compound string tables

v ASCIZ (null-terminated) string tables

v Wide character strings

v Widget class names

v Integer tables

v Arguments

v Reasons

v Translation tables.

All examples in the following sections assume case-insensitive mode. Keywords are shown in uppercase
letters to distinguish them from user-specified names, which are shown in mixed-case italics. This use of
uppercase letters is not required in case-insensitive mode. In case-sensitive mode, keywords must be in
lowercase letters.

CHARACTER_SET(StringExpression[,Property[, ...]])
You can define your own character sets with the CHARACTER_SET function. You can use the
CHARACTER_SET function anywhere a character set can be specified.

The result of the CHARACTER_SET function is a character set with the name StringExpression
and the properties you specify. StringExpression must be a null-terminated string. You can
optionally include one or both of the following clauses to specify properties for the resulting
character set: RIGHT_TO_LEFT = BooleanExpression SIXTEEN_BIT = BooleanExpression

The RIGHT_TO_LEFT clause sets the default writing direction of the string from right to left if
BooleanExpression is True, and left to right otherwise.

The SIXTEEN_BIT clause allows the strings associated with this character set to be interpreted as
16-bit characters if BooleanExpression is True, and 8-bit characters otherwise.

KEYSYM(StringLiteral)
The KEYSYM function is used to specify a keysym for a mnemonic resource. The StringLiteral
must contain exactly one character. If the -s compiler flag is used, StringLiteral which uses double
quotes must specify a character set.

COLOR(StringExpression[,FOREGROUND|BACKGROUND])
The COLOR function supports the definition of colors. Using the COLOR function, you can
designate a value to specify a color and use that value for arguments requiring a color value. The
string expression names the color you want to define. The optional FOREGROUND and
BACKGROUND keywords identify how the color is to be displayed on a monochrome device
when the color is used in the definition of a color table.

Chapter 2. File Formats 607

The UIL compiler does not have built-in color names. Colors are a server-dependent attribute of
an object. Colors are defined on each server and may have different red-green-blue (RGB) values
on each server. The string you specify as the color argument must be recognized by the server on
which your application runs.

In a UID file, UIL represents a color as a character string. MRM calls X translation functions that
convert a color string to the device-specific pixel value. If you are running on a monochrome
server, all colors translate to black or white. If you are on a color server, the color names translate
to their proper colors if the following conditions are met:

v The color is defined.

v The color map is not yet full.

If the color map is full, even valid colors translate to black or white (foreground or background).

Generally, interfaces do not specify colors for widgets. This enables the selection of colors to be
controlled by the user through the .Xdefaults file.

To write an application that runs on both monochrome and color devices, you need to specify
which colors in a color table (defined with the COLOR_TABLE function) map to the background
and which colors map to the foreground. UIL lets you use the COLOR function to map the color
red to the background color on a monochrome device as follows:
VALUE c: COLOR (’red’,BACKGROUND);

Mapping is necessary only when the MRM is given a color and the application is to be displayed
on a monochrome device. In this case, each color is considered to be in one of the following three
categories:

v The color is mapped to the background color on the monochrome device.

v The color is mapped to the foreground color on the monochrome device.

v Monochrome mapping is undefined for this color.

If the color is mapped to the foreground or background color, MRM substitutes the foreground or
background color, respectively. If you do not specify the monochrome mapping for a color, MRM
passes the color string to AIXwindows for mapping to the foreground or background color.

RGB(RedInteger, GreenInteger, BlueInteger)
The three integers define the values for the red, green, and blue components of the color, in that
order. The values of these components can range from 0 to 65,535, inclusive.

In a UID file, UIL represents an RGB value as three integers. MRM calls X translation functions
that convert the integers to the device-specific pixel value. If you are running on a monochrome
server, all colors translate to black or white. If you are on a color server, RGB values translate to
their proper colors if the color map is not yet full. If the color map is full, values translate to black
or white (foreground or background).

COLOR_TABLE(ColorExpression=’Character’[, ...])
The color expression is a previously defined color, a color defined in-line with the COLOR function,
or the phrase BACKGROUND COLOR or FOREGROUND COLOR. The character can be any
valid UIL character.

The COLOR_TABLE function provides a device-independent way to specify a set of colors. The
COLOR_TABLE function accepts either previously defined UIL color names or in-line color
definitions (using the COLOR function). A color table must be private because its contents must be
known by the UIL compiler to construct an icon. The colors within a color table, however, can be
imported, exported, or private.

The single letter associated with each color is the character you use to represent that color when
creating an icon. Each letter used to represent a color must be unique within the color table.

608 Files Reference

ICON([COLOR_TABLE=ColorTableName,] Row[, ...])
The color table name must refer to a previously defined color table. The row is a character
expression that gives one row of the icon.

The ICON function describes a rectangular icon that is x pixels wide and y pixels high. The strings
surrounded by single quotation marks describe the icon. Each string represents a row in the icon;
each character in the string represents a pixel.

The first row in an icon definition determines the width of the icon. All rows must have the same
number of characters as the first row. The height of the icon is dictated by the number of rows.

The first argument of the ICON function (the color table specification) is optional and identifies the
colors that are available in this icon. By using the single letter associated with each color, you can
specify the color of each pixel in the icon. The icon must be constructed of characters defined in
the specified color table.

A default color table is used if you omit the argument specifying the color table. To make use of
the default color table, the rows of your icon must contain only spaces and asterisks. The default
color table is defined as follows:

COLOR_TABLE(BACKGROUND COLOR = ’ ’, FOREGROUND COLOR = ’*’)

You can define other characters to represent the background color and foreground color by
replacing the space and asterisk in the BACKGROUND COLOR and FOREGROUND COLOR
clauses shown in the example statement. You can specify icons as private, imported, or exported.
Use the MrmFetchIconLiteral MRM function to retrieve an exported icon at run time.

XBITMAPFILE(StringExpression)
The XBITMAPFILE function is similar to the ICON function in that both describe a rectangular icon
that is x pixels wide and y pixels high. However, the XBITMAPFILE function allows you to specify
an external file containing the definition of an X bitmap, while all ICON function definitions must be
coded directly within UIL. X bitmap files can be generated by many different X applications. UIL
reads these files through the XBITMAPFILE function, but does not support creation of these files.
The X bitmap file specified as the argument to the XBITMAPFILE function is read by MRM at
application run time.

The XBITMAPFILE function returns a value of type pixmap and can be used anywhere a pixmap
data type is expected.

SINGLE_FLOAT(RealNumberLiteral)
The SINGLE_FLOAT function lets you store floating-point literals in UIL files as single-precision,
floating-point numbers. Single-precision, floating-point numbers can often be stored using less
memory than double-precision, floating-point numbers. The RealNumberLiteral can be either an
integer literal or a floating-point literal. A value defined using this function cannot be used in an
arithmetic expression.

FLOAT(RealNumberLiteral)
The FLOAT function lets you store floating-point literals in UIL files as double-precision,
floating-point numbers. The RealNumberLiteral can be either an integer literal or a floating-point
literal.

FONT(StringExpression[,CHARACTER_SET=CharSet])
You define fonts with the FONT function. Using the FONT function, you designate a value to
specify a font and use that value for arguments that require a font value. The UIL compiler has no
built-in fonts.

Each font makes sense only in the context of a character set. The FONT function has an
additional parameter to let you specify the character set for the font. This parameter is optional; if
you omit it, the default character set depends on the value of the LANG environment variable. If
LANG is not set, the default character set is set to XmFALLBACK_CHARSET.

Chapter 2. File Formats 609

The string expression specifies the name of the font and the clause CHARACTER_SET=CharSet
specifies the character set for the font. The string expression used in the FONT function cannot be
a compound string.

FONTSET(StringExpression[,...][,CHARACTER_SET=CharSet])
You define fontsets with the FONTSET function. Using the FONTSET function, you designate a
set of values to specify a font and use those values for arguments that require a fontset value.
The UIL compiler has no built-in fonts.

Each font makes sense only in the context of a character set. The FONTSET function has an
additional parameter to let you specify the character set for the font. This parameter is optional; if
you omit it, the default character set depends on the value of the LANG environment variable. If
LANG is not set, the default character set is set to XmFALLBACK_CHARSET.

The string expression specifies the name of the font and the clause CHARACTER_SET=CharSet
specifies the character set for the font. The string expression used in the FONTSET function
cannot be a compound string.

FONT_TABLE(FontExpression[,...])
A font table is a sequence of pairs of fonts and character sets. At run time when an object needs
to display a string, the object scans the font table for the character set that matches the character
set of the string to be displayed. UIL provides the FONT_TABLE function to let you supply such
an argument. The font expression is created with the FONT and FONTSET functions.

If you specify a single font value to specify an argument that requires a font table, the UIL
compiler automatically converts a font value to a font table.

COMPOUND_STRING(StringExpression[,Property[,...]])
Use the COMPOUND_STRING function to set properties of a null-terminated string and to convert
it into a compound string. The properties you can set are the character set, writing direction, and
separator.

The result of the COMPOUND_STRING function is a compound string with the string expression
as its value. You can optionally include one or more of the following clauses to specify properties
for the resulting compound string:

CHARACTER_SET=CharacterSet
RIGHT_TO_LEFT=BooleanExpression
SEPARATE=BooleanExpression

The CHARACTER_SET clause specifies the character set for the string. If you omit the
CHARACTER_SET clause, the resulting string has the same character set as StringExpression.

The RIGHT_TO_LEFT clause sets the writing direction of the string from right to left if
BooleanExpression is True. Otherwise, writing direction is left to right. Specifying this argument
does not cause the value of the string expression to change. If you omit the RIGHT_TO_LEFT
argument, the resulting string has the same writing direction as StringExpression.

The SEPARATE clause appends a separator to the end of the compound string if
BooleanExpression is True. If you omit the SEPARATE clause, the resulting string does not have
a separator.

You cannot use imported or exported values as the operands of the COMPOUND_STRING
function.

COMPOUND_STRING_TABLE(StringExpression[,...])
A compound string table is an array of compound strings. Objects requiring a list of string values,
such as the XmNitems and XmNselectedItems arguments for the List widget, use string table
values. The COMPOUND_STRING_TABLE function builds the values for these two arguments of
the List widget. The COMPOUND_STRING_TABLE function generates a value of type
string_table. The name STRING_TABLE is a synonym for COMPOUND_STRING_TABLE.

610 Files Reference

The strings inside the string table can be simple strings, which the UIL compiler automatically
converts to compound strings.

ASCIZ_STRING_TABLE(StringExpression[,...])
An ASCIZ string table is an array of ASCIZ (null-terminated) string values separated by commas.
This function allows you to pass more than one ASCIZ string as a callback tag value. The
ASCIZ_STRING_TABLE function generates a value of type asciz_table. The name
ASCIZ_TABLE is a synonym for ASCIZ_STRING_TABLE.

WIDE_CHARACTER(StringExpression)
Use the WIDE_CHARACTER function to generate a wide character string from a null-terminated
string in the current locale.

CLASS_REC_NAME(StringExpression)
Use the CLASS_REC_NAME function to generate a widget class name. For a widget class
defined by the toolkit, the string argument is the name of the class. For a user-defined widget, the
string argument is the name of the creation function for the widget.

INTEGER_TABLE(IntegerExpression[,...])
An integer table is an array of integer values separated by commas. This function allows you to
pass more than one integer per callback tag value. The INTEGER_TABLE function generates a
value of type integer_table.

ARGUMENTS(StringExpression[,ArgumentType])
The ARGUMENTS function defines the arguments to a user-defined widget. Each of the objects
that can be described by UIL permits a set of arguments. For example, XmNheight is an
argument to most objects and has the integer data type. To specify height for a user-defined
widget, you can use the built-in argument name XmNheight and specify an integer value when
you declare the user-defined widget. Do not use the ARGUMENTS function to specify arguments
that are built into the UIL compiler.

The StringExpression name is the name the UIL compiler uses for the argument in the UID file.
The ArgumentType is the type of value that can be associated with the argument. If you omit the
second argument, the default type is ANY and no value type checking occurs. Use any of the
following keywords to specify the argument type:

v Any

v Asciz_Table

v Boolean

v Color

v Color_Table

v Compound_String

v Float

v Font

v Font_Table

v Fontset

v Icon

v Integer

v Integer_Table

v Reason

v Single_Float

v String

v String_Table

v Translation_Table

v Wide_Character

Chapter 2. File Formats 611

v WIdget

You can use the ARGUMENTS function to allow the UIL compiler to recognize extensions to
AIXwindows. For example, an existing widget can accept a new argument. Using the
ARGUMENTS function, you can make this new argument available to the UIL compiler before the
updated version of the compiler is released.

REASON(StringExpression)
The REASON function is useful for defining new reasons for user-defined widgets.

Each of the objects in AIXwindows defines a set of conditions under which it calls a user-defined
function. These conditions are known as callback reasons. The user-defined functions are called
callback procedures. In a UIL module, you use a callbacks list to specify which user-defined
functions are to be called for which reasons.

When you declare a user-defined widget, you can define callback reasons for that widget using the
REASON function. The string expression specifies the argument name stored in the UID file for
the reason. This reason name is supplied to the widget creation function at run time.

TRANSLATION_TABLE(StringExpression[,...])
Each of the AIXwindows widgets have a translation table that maps X events (for example,
pressing mouse button 1) to a sequence of actions. Through widget arguments, such as the
common translations argument, you can specify an alternate set of events or actions for a
particular widget. The TRANSLATION_TABLE function creates a translation table that can be
used as the value of an argument that is of the data type translation_table.

You can use one of the following translation table directives with the TRANSLATION_TABLE
function: #override, #augment, or #replace. The default is #replace. If you specify one of these
directives, it must be the first entry in the translation table.

The #override directive causes any duplicate translations to be ignored. For example, if a
translation for <Btn1Down> is already defined in the current translations for a PushButton, the
translation defined by NewTranslations overrides the current definition. If the #augment directive is
specified, the current definition takes precedence. The #replace directive replaces all current
translations with those specified in the XmNtranslations resource.

Files

/usr/include/uil/Uil.h
/usr/include/uil/UilDBDef.h
/usr/include/uil/UilDef.h
/usr/include/uil/UilSymDef.h
/usr/include/uil/UilSymGl.h

Related Information
The uil command.

The WML file format.

utmp, wtmp, failedlogin File Format

Purpose
Describes formats for user and accounting information.

612 Files Reference

Description
The utmp file, the wtmp file, and the failedlogin file contain records with user and accounting information.

When a user attempts to logs in, the login program writes entries in two files:

v The /etc/utmp file, which contains a record of users logged into the system.

v The /var/adm/wtmp file (if it exists), which contains connect-time accounting records.

On an invalid login attempt, due to an incorrect login name or password, the login program makes an
entry in:

v The /etc/security/failedlogin file, which contains a record of unsuccessful login attempts.

The records in these files follow the utmp format, defined in the utmp.h header file.

Files

/etc/utmp Contains a record of users logged into the system.
/var/adm/wtmp Contains connect accounting information.
/etc/security/failedlogin Contains a record of invalid login attempts.

Related Information
The fwtmp command, init command, login command, su command, who command.

The utmp.h file, lastlog file format.

Accounting Commands in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices lists accounting commands that run automatically or keyboard commands entered from the
keyboard.

Accounting Overview in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices and Setting Up an Accounting System in AIX 5L Version 5.2 System Management Guide:
Operating System and Devices.

vgrindefs File Format

Purpose
Contains the language definition database for the vgrind command.

Description
The vgrindefs file format contains all the language definitions for the vgrind command. The database is
very similar to the terminfo file format (file of terminal capabilities).

Fields
The following table contains the name and description of each field:

Name Type Description

ab str Alternate regular expression for the start of a comment.

ae str Alternate regular expression for the end of a comment.

pb str Regular expression for the start of a procedure.

bb str Regular expression for the start of a lexical block.

be str Regular expression for the end of a lexical block.

Chapter 2. File Formats 613

Name Type Description

cb str Regular expression for the start of a comment.

ce str Regular expression for the end of a comment.

sb str Regular expression for the start of a string.

se str Regular expression for the end of a string.

lb str Regular expression for the start of a character constant.

le str Regular expression for the end of a character constant.

tl bool Presence means procedures are only defined at the top lexical level.

oc bool Presence means upper and lowercase are equivalent.

kw str List of keywords separated by spaces.

Examples
The following entry, which describes the C language, is typical of a language entry:
C|c: :pb=^\d?*?\d?\p\d??):bb={:be=}:cb=/*:ce=*/:sb=":se=\e":\

:lb=’:le=\e’:tl:\
:kw=asm auto break case char continue default do
double else enum\
extern float for fortran goto if int long register
return short\
sizeof static struct switch typedef union unsigned
while #define\
#else #endif #if #ifdef #ifndef #include #undef # define
else endif\
if ifdef ifndef include undef:

The first field is the language name or any variants of the name. Thus the C language can be specified to
the vgrind command in either lowercase or uppercase c.

Entries can continue onto multiple lines by giving a \ (backslash) as the last character of a line. The
vgrindefs file format has the following two capabilities:

v Boolean capabilities that indicate a particular feature of the language

v String capabilities that give a regular expression or keyword list.

In Java, where comments can be delimited either by a starting ″/*″ or an ending ″*″, or by a starting ″//″
and ″end″ at the end of the line, the Java vgrindefs definition might be:
cb=/*:ce=*/:ab=//:ae=$

Regular Expressions
The vgrindefs file format uses regular expressions similar to those of the ex command and the lex
command. The characters ^ (caret), $ (dollar sign), : (colon), and \ (backslash) are reserved characters
and must be quoted with a preceding \ (backslash) if they are to be included as normal characters. The
metasymbols and their meanings follow:

$ End of a line.
^ Beginning of a line.
\d Delimiter (space, tab, newline, start of line).
\a Matches any string of symbols, such as .* in the lex command.
\p Matches any alphanumeric name. In a procedure definition (pb), the string that matches this symbol is used as

the procedure name.
() Grouping.
| Alternation.
? Last item is optional.

614 Files Reference

\e Preceding any string, means that the string does not match an input string if the input string is preceded by an
escape character (\). Typically used for languages (such as C) that can include the string delimiter in a string
by escaping it.

Unlike other regular expressions in the system, these metasymbols match words and not characters.
Hence the pattern ″(tramp|steamer)flies?″ matches ″tramp,″ ″steamer,″ ″trampflies,″ or ″steamerflies.″

Keyword List
The keyword list lists keywords in the language, separated by spaces. If the oc field is specified, indicating
that uppercase and lowercase are equivalent, then all the keywords should be specified in lowercase.

Files

/usr/share/lib/vgrindefs Contains terminal descriptions.

Related Information
The ex command, lex command, troff command, vgrind command.

The terminfo file format.

WML File Format

Purpose
Generates variable UIL compiler components.

Description
The widget meta-language facility (WML) is used to generate changeable components of the user interface
language (UIL) compiler, depending on the widget set. Using WML, you can add new widget UIL support
to the AIXwindows widget set or add support for a totally new widget set.

File Format
WML files are ASCII files and can be modified with any standard text editor. They are accessed by WML in
the tools/wml directory and have a .wml suffix. The Motif AIXwindows widget set is described in the
motif.wml file. This is also the default WML file when using the WML facility.

When creating a WML file to add new widgets or change widget characteristics, you can make a copy of
the motif.wml file and modify it. If you are creating a new widget set for use with UIL, create a completely
new file. In either case, the motif.wml file is a good example of WML syntax and can help familiarize you
with the language before attempting to write your own WML file.

WML files have a basic syntax that is similar in structure to UIL. WML syntax is made up of the following
elements:

v Comments

v Data Type Definitions

v Character Set Definitions

v Enumeration Set Definitions

v Control List Definitions

v Class Definitions

v Child Definitions

v Resource Definitions

Chapter 2. File Formats 615

You can use spaces, tabs, or new-line characters anywhere in syntax, as long as they do not split
keywords or strings. Comments end at a new-line character. The order of elements in syntax is not
important.

The widget meta-language syntax examples shown use the following additional conventions:

[] Indicates optional elements.
... Indicates where an element of syntax can be repeated.
| Indicates a choice among multiple items.

Comments
You can include comments in the WML file. Comments have the following syntax:

[AnyElement]!AnyComment

Comments begin with an ! (exclamation point) and extend to the end of the line. A comment can begin on
a line by itself or follow any part of another element. A comment does not change the meaning of any
other element. For example:
!This is a comment
! that spans two lines.
DataType !This is a comment that follows code.

Data Type Definitions
Data type definitions register all the resource data types used in the file. You must register all the data
types used in your WML file. Data type definitions have the following syntax:

DataType AnyDatatype [{ InternalLiteral = InternalName |
DocName = ″String″; [...]}];
[...]

A data type definition begins with the DataType keyword. Following the DataType keyword is a list of data
types that can be modified with the following:

InternalLiteral Forces the value of the internal symbol table literal definition of the data type name.
This modifier is used only to circumvent symbol table definitions hard-coded into the
UIL compiler and should be used sparingly.

DocName Gives an arbitrary string for use in the documentation. This string supplies a different
name for the data type or a single name for the data type if the data type has aliases.

For example:

DataType OddNumber {DocName="OddNumber";};
NewString;

Character Set Definitions
Character set definitions register the AIXwindows Toolkit name and other information for the character set
names used in UIL. Character set definitions have the following syntax:

CharacterSet
AnyCharacterSet
{ [FontListElementTag | XmStringCharsetName] = ″String″;
[Alias = ″String″ ... ; |
Direction = [LeftToRight | RightToLeft] ; |
ParseDirection = [LeftToRight | RightToLeft] ; |
CharacterSize = [OneByte | TwoByte] ;]
[...] } ;
[...]

616 Files Reference

A character set definition begins with the CharacterSet keyword. Following the CharacterSet keyword is a
list of character sets that can be modified with the following:

FontListElementTag | XmStringCharsetName Specifies the name of the character
set. The set specified becomes the
character set component of the
compound string segment that is
created. One of these character sets
must be specified.

Alias Specifies one or more aliases for the
character set name. Each alias can be
used within UIL to refer to the same
character set.

Direction Specifies the direction of a compound
string segment created using this
character set. The default is
LeftToRight.

ParseDirection Specifies the direction in which an
input string is parsed when a
compound string segment is created
using this character set. If this is not
specified, the value of Direction is the
default.

CharacterSize Specifies the number of bytes in each
character of a compound string
segment created using this character
set. The default is OneByte.

An example of the character set definition syntax is as follows:
CharacterSet

iso_latin1
{ XmStringCharsetName = "ISO8859-1";

Alias = "ISOLatin1"; } ;
iso_hebrew_lr

{ XmStringCharsetName = "ISO8859-8";
Alias = "iso_latin8_lr";
Direction = RightToLeft;
ParseDirection = LeftToRight; } ;

ksc_korean
{ XmStringCharsetName = "KSC5601.1987-0";

CharacterSize = TwoByte; };

Enumeration Set Definitions

Enumeration set definitions register the named constants used in the AIXwindows Toolkit to specify certain
resource values. Enumeration set definitions have the following syntax:

EnumerationSet
ResourceName : ResourceType
{ EnumerationValueName ; [...] } ;

An enumeration set definition begins with the EnumerationSet keyword. For each enumeration set
defined, the name and type of the resource is listed. The resource name is the AIXwindows Toolkit
resource name, with the beginning XmN prefix removed and the initial letter capitalized. For example, the
name of the AIXwindows Toolkit resource XmNrowColumnType would be RowColumnType. The
resource type is the data type for the resource; for most resources, this is the integer data type. Following
the resource name and type is a list of enumeration value names that can be used as settings for the
resource. These names are the same as those in the AIXwindows Toolkit.

Chapter 2. File Formats 617

An example of the enumeration set definition syntax is as follows:
EnumerationSet

RowColumnType: integer
{ XmWORK_AREA; XmMENU_BAR; XmMENU_POPUP;

XmMENU_PULLDOWN; XmMENU_OPTION; };

Control List Definitions
Control list definitions assign a name to groups of controls. You can use these control lists later in class
definitions to simplify the structure of your WML file. Control list definitions have the following syntax:

ControlList
AnyControlList [{ AnyControl; [...]}];

A control list definition starts with the ControlList keyword. Following the ControlList keyword are any
number of control list definitions. Control list definitions are made up of a control list name followed by the
set of controls it represents. For example:
ControlList

Buttons {PushButton;
RadioButton;
CascadeButton;
NewCascadebutton; } ;

Each control specified in the control list must be defined as a class in the file.

Class Definitions
Class definitions describe a particular widget class. Included in this description is its position in the class
hierarchy, toolkit convenience function, resources, and controls. There should be one class definition for
each widget or gadget in the widget set you want to support in UIL. Class definitions have the following
syntax:

Class ClassName : MetaClass | Widget | Gadget
[{[
SuperClass = ClassName; |
ParentClass = ParentClassName; |
InternalLiteral = InternalName; |
Alias = Alias; |
ConvenienceFunction = ConvenienceFunction; |
WidgetClass = WidgetClass ; |
DocName = ″String″; |
DialogClass = True | False; |
Resources { AnyResourceName [{
Default = NewDefaultValue; |
Exclude = True |
False;
[...]}];
[...]};|
Controls { AnyControlName; [...]};
Children { AnyChildName; [...]};
[...]
]}];

Class definitions start with the Class keyword. For each class defined, the name of the class and whether
the class is a metaclass, widget, or gadget is listed. Each class definition can be modified using the
following:

SuperClass Indicates the name of the parent class. Only the root of the hierarchy does not
specify a super class.

618 Files Reference

ParentClass Indicates the name of the widget’s automatically created parent class, if one
exists. This allows resources for the automatically created parent class to be
used in this class definition. For example, XmBulletinBoardDialog creates
both an XmBulletinBoard and an XmDialogShell. To access the resources of
the XmDialogShell parent class, specify it here.

InternalLiteral Forces the value of the internal symbol table literal definition of the class name.
This modifier is used only to circumvent symbol table definitions hard-coded
into the UIL compiler and should be used sparingly.

Alias Indicates alternate class names for use in a UIL specification.
ConvenienceFunction Indicates the name of the creation convenience function for this class. All

widget and gadget classes must have ConvenienceFunction specified.
WidgetClass Indicates the associated widget class of gadget type classes. This value is

currently not recognized.
DocName Defines an arbitrary string for use in the documentation. This value is currently

not recognized.
DialogClass Indicates whether the class is a dialog class. This value is currently not

recognized.
Resources Lists the resources of the widget class. This keyword can be further modified

with the following:
Default Specifies a new default value for this resource. Resource default values are

usually set in the resource definition. If an inherited resource’s default value is
changed by the class, the new default value should be noted here.

Exclude Specifies whether an inherited resource should be excluded from the resource
list of the class. The default value is False.

Children Lists the names of the automatically created children of this class. This allows
those children to be accessed in the UIL file.

Controls Lists the controls that the widget class allows. The controls can be other
classes or a control list from the control definition list.

An example of the usage of the preceding data type and control list definitions is shown:
Class

TopLevelWidget : MetaClass
{
Resources

{
XtbNfirstResource;
XtbNsecondResource;
};

};

NewWidget : Widget
{
SuperClass = TopLevelWidget;
ConvenienceFunction =

XtbCreateNewWidget;
Resources
{
XtbNnewResource;
XtbNfirstResource

{Default="XtbNEW_VALUE";};
XtbNsecondResource

{Exclude=True;};
};
Controls
{
NewWidget;
Buttons;
};
};

Chapter 2. File Formats 619

Child Definitions
Child definitions register the classes of automatically created children. Automatically created children are
referenced elsewhere in a UIL file using the Children keyword within a class definition. Child definitions
have the following syntax:

Child
ChildName : ClassName;
[...]

ChildName is the name of the automatically created child and ClassName is the name of the class of that
child.

Resource Definitions
Resource definitions describe a particular resource. Included in this description is its type and default
value. Each new resource reference in a class definition should have a resource definition. Resource
definitions have the following syntax:

Resource
ResourceName : Argument | Reason | Constraint | SubResource
[{[
Type = Type ; |
ResourceLiteral = ResourceLiteral ; |
InternalLiteral = InternalName ; |
Alias = Alias ; |
Related = Related ; |
Default = Default ; |
DocName = DocumentName ; |
[...]}]
[...]

Resource definitions start with the Resource keyword. For each resource definition, the name of the
resource and whether the resource is an argument, reason, constraint, or subresource is listed.

Argument Indicates a standard resource.
Reason Indicates a callback resource.
Constraint Indicates a constraint resource.
SubResource This value is currently not recognized.

A resource definition can be modified with the following:

Type Indicates the data type of the resource. The data type specified must be listed in the
data type definition.

ResourceLiteral Indicates the keyword used in the UIL file to reference the resource. In AIXwindows, the
resource name is the same as the resource literal name (ResourceLiteral).

InternalLiteral Forces the value of the internal symbol table literal definition of the resource name. This
modifier is used only to circumvent symbol table definitions hard-coded into the UIL
compiler and should be used sparingly.

Alias Indicates alternate names for the resources used in a UIL specification.
Related Special purpose field that allows resources that act as a counter for the current

resources to be related to the resource. UIL automatically sets the value of this related
resource to the number of items in the compiled instance of the ResourceName type.

Default Indicates the default value of the resource.
DocName Defines an arbitrary string for use in the documentation. This value is currently not

recognized.

An example of the usage of data type, control list, and class definitions is shown:

620 Files Reference

Resource
XtbNfirstResource : Argument

{ Type = OddNumber;
Default = "XtbOLD_VALUE";};

XtbNsecondResource : Argument
{ Type = NewString;

Default = "XtbNEW_STRING";};
XtbNnewResource : Argument

{ Type = OddNumber;
Default = "XtbODD_NUMBER";};

Related Information
The UIL file format.

XCOFF Object File Format

Purpose
The extended common object file format (XCOFF) is the object file format for the operating system.
XCOFF combines the standard common object file format (COFF) with the TOC module format concept,
which provides for dynamic linking and replacement of units within an object file. In AIX 4.3, XCOFF has
been extended to provide for 64-bit object files and executable files.

XCOFF is the formal definition of machine-image object and executable files. These object files are
produced by language processors (assemblers and compilers) and binders, and are used primarily by
binders and the system loaders.

The default name for an XCOFF executable file is a.out.

Note: This information lists bits in big-endian order.

Read the following information to learn more about XCOFF object files:

v Composite File Header

v Sections and Section Headers

v Relocation Information for XCOFF File (reloc.h)

v Line Number Information for XCOFF File (linenum.h)

v Symbol Table Information

v dbx Stabstrings

Writing Applications that Use XCOFF Declarations
Programs can be written to understand 32-bit XCOFF files, 64-bit XCOFF files, or both. The programs
themselves may be compiled in 32-bit mode or 64-bit mode to create 32-bit or 64-bit programs. By
defining preprocessor macros, applications can select the proper structure definitions from the XCOFF
header files.

Note: This document uses ″XCOFF32″ and ″XCOFF64″ as shorthand for ″32-bit XCOFF″ and ″64-bit
XCOFF″, respectively.

Selecting XCOFF32 Declarations
To select the XCOFF32 definitions, an application merely needs to include the appropriate header files.
Only XCOFF32 structures, fields, and preprocessor defines will be included. Structure names and field
names will match those in previous versions of the operating system, so existing programs can be
recompiled without change.

Note: Existing uses of shorthand type notation (e.g., UINT, ULONG) have been removed.

Chapter 2. File Formats 621

Selecting XCOFF64 Declarations
To select the XCOFF64 definitions, an application should define the preprocessor macro __XCOFF64__.
When XCOFF header files are included, the structures, fields, and preprocessor defines for XCOFF64 will
be included. Where possible, the structure names and field names are identical to the XCOFF32 names,
but field sizes and offsets may differ.

Selecting Both XCOFF32 and XCOFF64 Declarations
To select structure definitions for both XCOFF32 and XCOFF64, an application should define both the
preprocessor macros __XCOFF32__ and __XCOFF64__. This will define structures for both kinds of
XCOFF files. Structures and typedef names for XCOFF64 files will have the suffix ″_64″ added to them.
(Consult the header files for details.)

Selecting Hybrid XCOFF Declarations
An application may choose to select single structures that contain field definitions for both XCOFF32 and
XCOFF64 files. For fields that have the same size and offset in both XCOFF32 and XCOFF64 definitions,
the field names are retained. For fields whose size or offset differ between XCOFF32 and XCOFF64
definitions, the XCOFF32 fields have a ″32″ suffix, while the XCOFF64 fields have a ″64″ suffix. To select
hybrid structure definitions, an application should define the preprocessor macro __XCOFF_HYBRID__.
For example, the symbol table definition (in /usr/include/syms.h) will have the names n_offset32 and
n_offset64, which should be used for the 32-bit XCOFF and 64-bit XCOFF respectively.

Understanding XCOFF
Assemblers and compilers produce XCOFF object files as output. The binder combines individual object
files into an XCOFF executable file. The system loader reads an XCOFF executable file to create an
executable memory image of a program. The symbolic debugger reads an XCOFF executable file to
provide symbolic access to functions and variables of an executable memory image.

An XCOFF file contains the following parts:

v A composite header consisting of:

– A file header

– An optional auxiliary header

– Section headers, one for each of the file’s raw-data sections

v Raw-data sections, at most one per section header

v Optional relocation information for individual raw-data sections

v Optional line number information for individual raw-data sections

v An optional symbol table

v An optional string table, which is used for all symbol names in XCOFF64 and for symbol names longer
than 8 bytes in XCOFF32.

Not every XCOFF file contains every part. A minimal XCOFF file contains only the file header.

Object and Executable Files
XCOFF object files and executable files are similar in structure. An XCOFF executable file (or ″module″)
must contain an auxiliary header, a loader section header, and a loader section.

The loader raw-data section contains information needed to dynamically load a module into memory for
execution. Loading an XCOFF executable file into memory creates the following logical segments:

v A text segment (initialized from the .text section of the XCOFF file).

v A data segment, consisting of initialized data (initialized from the .data section of the XCOFF file)
followed by uninitialized data (initialized by the system loader to 0). The length of uninitialized data is
specified in the .bss section header of the XCOFF file.

The XCOFF file Organization illustrates the structure of the XCOFF object file.

622 Files Reference

XCOFF Header Files
The xcoff.h file defines the structure of the XCOFF file. The xcoff.h file includes the following files:

filehdr.h Defines the file header.
aouthdr.h Defines the auxiliary header.
scnhdr.h Defines the section headers.
loader.h Defines the format of raw data in the .loader section.
typchk.h Defines the format of raw data in the .typchk section.
exceptab.h Defines the format of raw data in the .except section.
dbug.h Defines the format of raw data in the .debug section.
reloc.h Defines the relocation information.
linenum.h Defines the line number information.
syms.h Defines the symbol table format.
storclass.h Defines ordinary storage classes.
dbxstclass.h Defines storage classes used by the symbolic debuggers.

The a.out.h file includes the xcoff.h file. All of the XCOFF include files include the xcoff32_64.h file.

For more information on sections of the XCOFF object file, see ″Sections and Section Headers.″ For more
information on the symbol table, see ″Symbol Table Information.″ For more information on the string table,
see ″String Table.″ For more information on the Debug section, see ″Debug Section.″

Composite File Header
The following sections describe the XCOFF composite file header components:

v File Header (filehdr.h)

v Auxiliary Header (aouthdr.h)

v Section Headers (scnhdr.h)

File Header (filehdr.h)
The filehdr.h file defines the file header of an XCOFF file. The file header is 20 bytes long in XCOFF32
and 24 bytes long in XCOFF64. The structure contains the fields shown in the following table.

Table 11. File Header Structure (Defined in filehdr.h)

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 2 0 2 f_magic Target machine

2 2 2 2 f_nscns Number of sections

4 4 4 4 f_timdat Time and date of file creation

8 4 8 8 f_symptr+ Byte offset to symbol table start

12 4 20 4 f_nsyms+ Number of entries in symbol table

16 2 16 2 f_opthdr Number of bytes in optional header

18 2 18 2 f_flags Flags (see ″Field Definitions″)

+ Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined.

Field Definitions:

f_magic Specifies an integer known as the magic number, which specifies the target machine and
environment of the object file. For XCOFF32, the only valid value is 0x01DF (0737 Octal). For
XCOFF64 on AIX 4.3 and earlier, the only valid value is 0x01EF (0757 Octal). For XCOFF64 on AIX
5.1 and later, the only valid value is 0x01F7 (0767 Octal). Symbolic names for these values are
found in the file, /usr/include/filehdr.h.

Chapter 2. File Formats 623

f_nscns Specifies the number of section headers contained in the file. The first section header is section
header number one; all references to a section are one-based.

f_timdat Specifies when the file was created (number of elapsed seconds since 00:00:00 Universal
Coordinated Time (UCT), January 1, 1970). This field should specify either the actual time or be set
to a value of 0.

f_symptr Specifies a file pointer (byte offset from the beginning of the file) to the start of the symbol table. If
the value of the f_nsyms field is 0, then this value is undefined.

f_nsyms Specifies the number of entries in the symbol table. Each symbol table entry is 18 bytes long.
f_opthdr Specifies the length, in bytes, of the auxiliary header. For an XCOFF file to be executable, the

auxiliary header must exist and be _AOUTHSZ_EXEC bytes long. (_AOUTHSZ_EXEC is defined
in aouthdr.h.)

624 Files Reference

f_flags Specifies a bit mask of flags that describe the type of the object file. The following information
defines the flags:

Bit Mask
Flag

0x0001 F_RELFLG

Indicates that the relocation information for binding has been removed from the file. This
flag must not be set by compilers, even if relocation information was not required.

0x0002 F_EXEC

Indicates that the file is executable. No unresolved external references exist.

0x0004 F_LNNO

Indicates that line numbers have been stripped from the file by a utility program. This flag
is not set by compilers, even if no line-number information has been generated.

0x0008 Reserved.

0x0010 F_FDPR_PROF

Indicates that the file was profiled with the fdpr command.

0x0020 F_FDPR_OPTI

Indicates that the file was reordered with the fdpr command.

0x0040 F_DSA

Indicates that the file uses Very Large Program Support.

0x0080 Reserved.

0x0100 Reserved.

0x0200 Reserved.

0x0400 Reserved.

0x0800 Reserved.

0x1000 F_DYNLOAD

Indicates the file is dynamically loadable and executable. External references are resolved
by way of imports, and the file might contain exports and loader relocation.

0x2000 F_SHROBJ

Indicates the file is a shared object (shared library). The file is separately loadable. That is,
it is not normally bound with other objects, and its loader exports symbols are used as
automatic import symbols for other object files.

0x4000 F_LOADONLY

If the object file is a member of an archive, it can be loaded by the system loader, but the
member is ignored by the binder. If the object file is not in an archive, this flag has no
effect.

0x8000 Reserved.

Auxiliary Header (aouthdr.h)
The auxiliary header contains system-dependent and implementation-dependent information, which is used
for loading and executing a module. Information in the auxiliary header minimizes how much of the file
must be processed by the system loader at execution time.

The binder generates an auxiliary header for use by the system loader. Auxiliary headers are not required
for an object file that is not to be loaded. When auxiliary headers are generated by compilers and
assemblers, the headers are ignored by the binder.

Chapter 2. File Formats 625

The auxiliary header immediately follows the file header.

Note: If the value of the f_opthdr field is 0, the auxiliary header does not exist.

The C language structure for the auxiliary header is defined in the aouthdr.h file. The auxiliary header
contains the fields shown in the following table.

Table 12. Auxiliary Header Structure (Defined in aouthdr.h)

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 2 0 2 o_mflag Flags, how to execute

2 2 2 2 o_vstamp Version

4 4 56 8 o_tsize+ Text size in bytes

8 4 64 8 o_dsize+ Initialized data size in bytes

12 4 72 8 o_bsize+ Uninitialized data size in bytes

16 4 80 8 o_entry+ Entry point descriptor (virtual address)

20 4 8 8 o_text_start+ Base address of text (virtual address)

24 4 16 8 o_data_start+ Base address of data (virtual address)

28 4 24 8 o_toc+ Address of TOC anchor

32 2 32 2 o_snentry Section number for entry point

34 2 34 2 o_sntext Section number for .text

36 2 36 2 o_sndata Section number for .data

38 2 38 2 o_sntoc Section number for TOC

40 2 40 2 o_snloader Section number for loader data

42 2 42 2 o_snbss Section number for .bss

44 2 44 2 o_algntext Maximum alignment for .text

46 2 46 2 o_algndata Maximum alignment for .data

48 2 48 2 o_modtype Module type field

50 1 50 1 o_cpuflag Bit flags - cpu types of objects

51 1 51 1 o_cputype Reserved for CPU type

52 4 88 8 o_maxstack+ Maximum stack size allowed (bytes)

56 4 96 8 o_maxdata+ Maximum data size allowed (bytes)

60 4 4 4 o_debugger+ Reserved for debuggers.

64 8 52 4 o_resv2 Reserved Field must contain 0s.

N/A 104 116 o_resv3 Reserved. Field must contain 0s.

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined.

Field Definitions: The following information defines the auxiliary header fields. For entries with two
labels, the label in parentheses is the alternate original COFF a.out file format name.

o_mflags (magic) Specifies the magic number, which informs the operating system of the file’s execution
characteristics. The binder assigns the following value:

0x010B
Text and data are aligned in the file and may be paged.

o_vstamp (vstamp) Specifies the format version for this auxiliary header. The only valid value is 1.

626 Files Reference

o_tsize (tsize) Specifies the size (in bytes) of the raw data for the .text section. The .text section
typically contains the read-only part of the program. This is the same value as contained in
the s_size field of the section header for the .text section.

o_dsize (dsize) Specifies the size (in bytes) of the raw data for the .data section. The .data section
contains the initialized data of the program and is writable. This is the same value as
contained in the s_size field of the section header for the .data section.

o_bsize (bsize) Specifies the size (in bytes) of .bss area, which is used for uninitialized variables during
execution and is writable. No raw data exists in the file for the .bss section. This is the
same value as contained in the s_size field of the section header for the .bss section.

o_entry (entry) Specifies the virtual address of the entry point. (See the definition of the o_snentry field.)
For application programs, this virtual address is the address of the function descriptor. The
function descriptor contains the addresses of both the entry point itself and its TOC anchor.
The offset of the entry point function descriptor from the beginning of its containing section
can be calculated as follows:

Section_offset_value=o_entry-s_paddr[o_snentry - 1],

where s_paddr is the virtual address contained in the section header.
o_text_start
(text_start)

Specifies the virtual address of the .text section. This is the address assigned to (that is,
used for) the first byte of the .text raw-data section. This is the same value as contained in
the s_paddr field of the section header for the .text section.

o_data_start
(data_start)

Specifies the virtual address of the .data section. This is the address assigned to (that is,
used for) the first byte of the .data raw-data section. This is the same value as contained in
the s_paddr field of the section header for the .data section.

For addressing purposes, the .bss section is considered to follow the .data section.

The following definitions are extensions used by the system loader. In general, an object file may contain
multiple sections of a given type, but in a module, only a single occurrence of the .text, .data, .bss, and
.loader sections may exist.

o_toc Specifies the virtual address of the TOC anchor (see the definition of the o_sntoc field).
o_snentry Specifies the number of the file section containing the entry-point. (This field contains a file

section header sequence number.) The entry point must be in the .text or .data section.
o_sntext Specifies the number of the file .text section. (This field contains a file section header sequence

number.)
o_sndata Specifies the number of the file .data section. (This field contains a file section header sequence

number.)
o_sntoc Specifies the number of the file section containing the TOC. (This field contains a file section

header sequence number.)
o_snloader Specifies the number of the file section containing the system loader information. (This field

contains a file section header sequence number.)
o_snbss Specifies the number of the file .bss section. (This field contains a file section header sequence

number.)
o_algntext Specifies the log (base 2) of the maximum alignment needed for any csect in the .text section.
o_algndata Specifies the log (base 2) of the maximum alignment needed for any csect in the .data and .bss

sections.
o_modtype Specifies a module type. The value is an ASCII character string. The following module type is

recognized by the system loader:

RO Specifies a read-only module. If a shared object with this module type has no BSS
section and no dependents, the data section of the module will be mapped read-only
and shared by all processes using the object.

o_cpuflag Bit flags - cputypes of objects.
o_cputype Reserved. This byte must be set to 0.
o_maxstack Specifies the maximum stack size (in bytes) allowed for this executable. If the value is 0, the

system default maximum stack size is used.
o_maxdata Specifies the maximum data size (in bytes) allowed for this executable. If the value is 0, the

system default maximum data size is used.

Chapter 2. File Formats 627

o_debugger This field should contain 0. When a loaded program is being debugged, the memory image of
this field may be modified by a debugger to insert a trap instruction.

Section Headers (scnhdr.h)
Each section of an XCOFF file has a corresponding section header, although some section headers may
not have a corresponding raw-data section. A section header provides identification and file-accessing
information for each section contained within an XCOFF file. Each section header in an XCOFF32 file is
40 bytes long, while XCOFF64 section headers are 72 bytes long. The C language structure for a section
header can be found in the scnhdr.h file. A section header contains the fields shown in the following table.

Table 13. Section Header Structure (Defined in scnhdr.h)

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 8 0 8 s_name Section name

8 4 8 8 s_paddr+ Physical address

12 4 16 8 s_vaddr+ Virtual address (same as physical address)

16 4 24 8 s_size+ Section size

20 4 32 8 s_scnptr+ Offset in file to raw data for section

24 4 40 8 s_relptr+ Offset in file to relocation entries for section

28 4 48 8 s_lnnoptr+ Offset in file to line number entries for section

32 2 56 4 s_nreloc+ Number of relocation entries

34 2 60 4 s_nlnno+ Number of line number entries

36 2 64 4 s_flags+ Flags to define the section type

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined.

Field Definitions: The following information defines the section header fields:

s_name Specifies an 8-byte, null-padded section name. An 8-byte section name will not have a terminating
null character. Use the s_flags field instead of the s_name field to determine a section type. Two
sections of the same type may have different names, allowing certain applications to distinguish
between them.

s_paddr Specifies the physical address of the section. This is the address assigned and used by the
compilers and the binder for the first byte of the section. This field should contain 0 for all sections
except the .text , .data , and .bss sections.

s_vaddr Specifies the virtual address of the section. This field has the same value as the s_paddr field.

s_size Specifies the size (in bytes) of this section.

s_scnptr Specifies a file pointer (byte offset from the beginning of the file) to this section’s raw data. If this
field contains 0, this section has no raw data. Otherwise, the size of the raw data must be
contained in the s_size field.

s_relptr Specifies a file pointer (byte offset from the beginning of the file) to the relocation entries for this
section. If this section has no relocation entries, this field must contain 0.

s_lnnoptr Specifies a file pointer (byte offset from the beginning of the file) to the line number entries for this
section. If this section has no line number entries, this field must contain 0.

s_nreloc Specifies the number of relocation entries for this section. In an XCOFF32 file, if more than 65,534
relocation entries are required, the field value will be 65535, and an STYP_OVRFLO section
header will contain the actual count of relocation entries in the s_paddr field. Refer to the
discussion of overflow headers in ″Sections and Section Headers″ . If this field is set to 65535, the
s_nlnno field must also be set to 65535.

628 Files Reference

s_nlnno Specifies the number of line number entries for this section. In an XCOFF32 file, if more than
65,534 line number entries are required, the field value will be 65535, and an STYP_OVRFLO
section header will contain the actual number of line number entries in the s_vaddr field. Refer to
the discussion of overflow headers in ″Sections and Section Headers″ . If this field is set to 65535,
the s_nreloc field must also be set to 65535.

s_flags Specifies flags defining the section type. The low-order pair of bytes is used. A section type
identifies the contents of a section and specifies how the section is to be processed by the binder
or the system loader. Only a single bit value may be assigned to the s_flags field. This value must
not be the sum or bitwise OR of multiple flags. The two high-order bytes should contain 0.

Valid bit values are:

Value Flag

0x0000 Reserved.

0x0001 Reserved.

0x0002 Reserved.

0x0004 Reserved.

0x0008 STYP_PAD

Specifies a pad section. A section of this type is used to provide alignment padding
between sections within an XCOFF executable object file. This section header type is
obsolete since padding is allowed in an XCOFF file without a corresponding pad section
header.

0x0010 Reserved.

0x0020 STYP_TEXT

Specifies an executable text (code) section. A section of this type contains the executable
instructions of a program.

0x0040 STYP_DATA

Specifies an initialized data section. A section of this type contains the initialized data and
the TOC of a program.

0x0080 STYP_BSS

Specifies an uninitialized data section. A section header of this type defines the
uninitialized data of a program.

0x0100 STYP_EXCEPT

Specifies an exception section. A section of this type provides information to identify the
reason that a trap or exception occurred within an executable object program.

0x0200 STYP_INFO

Specifies a comment section. A section of this type provides comments or data to special
processing utility programs.

0x0400 Reserved.

0x0800 Reserved.

Chapter 2. File Formats 629

s_flags
continued

Valid bit values are:

Value Flag

0x1000 STYP_LOADER

Specifies a loader section. A section of this type contains object file information for the
system loader to load an XCOFF executable. The information includes imported symbols,
exported symbols, relocation data, type-check information, and shared object names.

0x2000 STYP_DEBUG

Specifies a debug section. A section of this type contains stabstring information used by
the symbolic debugger.

0x4000 STYP_TYPCHK

Specifies a type-check section. A section of this type contains parameter/argument
type-check strings used by the binder.

0x8000 STYP_OVRFLO
Note: An XCOFF64 file may not contain an overflow section header.

Specifies a relocation or line-number field overflow section. A section header of this type
contains the count of relocation entries and line number entries for some other section.
This section header is required when either of the counts exceeds 65,534. See the
s_nreloc and s_nlnno fields in ″Sections and Section Headers″ for more information on
overflow headers.

For general information on the XCOFF file format, see ″XCOFF Object File Format.″

Sections and Section Headers
Section headers are defined to provide a variety of information about the contents of an XCOFF file.
Programs that process XCOFF files will recognize only some of the valid sections.

See the following information to learn more about XCOFF file sections:

v Loader Section (loader.h)

v Debug Section

v Type-Check Section

v Exception Section

v Comment Section

Current applications do not use the s_name field to determine the section type. Nevertheless, conventional
names are used by system tools, as shown in the following table.

Table 14. Conventional Header Names

Description Conventional Name Multiple Allowed? s_flag

Text section .text Yes STYP_TEXT

Data section .data Yes STYP_DATA

BSS section .bss Yes STYP_BSS

Pad section .pad Yes STYP_PAD

Loader section .loader No STYP_LOADER

Debug section .debug No STYP_DEBUG

Type-check section .typchk Yes STYP_TYPCHK

Exception section .except No STYP_EXCEPT

630 Files Reference

Table 14. Conventional Header Names (continued)

Description Conventional Name Multiple Allowed? s_flag

Overflow section .ovrflo Yes (one per .text or .data
section)

STYP_OVRFLO

Comment section .info Yes STYP_INFO

Some fields of a section header may not always be used, or may have special usage. This pertains to the
following fields:

s_name On input, ignored by the binder and system loader. On output, the conventional names (shown
in the ″Conventional Header Names″ table) are used.

s_scnptr Ignored for .bss sections.
s_relptr Recognized for the .text and .data sections only. No relocation is performed for other

sections, where this value must be 0.
s_lnnoptr Recognized for the .text section only. Otherwise, it must be 0.
s_nreloc , s_nlnno Handles relocation or line-number field overflows in an XCOFF32 file. (XCOFF64 files may not

have overflow section headers.) If a section has more than 65,534 relocation entries or line
number entries, both of these fields are set to a value of 65535. In this case, an overflow
section header with the s_flags field equal to STYP_OVRFLO is used to contain the relocation
and line-number count information. The fields in the overflow section header are defined as
follows:

s_nreloc
Specifies the file section number of the section header that overflowed; that is, the
section header containing a value of 65535 in its s_nreloc and s_nlnno fields. This
value provides a reference to the primary section header. This field must have the
same value as the s_nlnno field.
Note: There is no reference in the primary section header that identifies the
appropriate overflow section header. All the section headers must be searched to
locate an overflow section header that contains the correct primary section header
reference in this field.

s_nlnno
Specifies the file section number of the section header that overflowed. This field must
have the same value as the s_nreloc field.

s_paddr
Specifies the number of relocation entries actually required. This field is used instead
of the s_nreloc field of the section header that overflowed.

s_vaddr
Specifies the number of line-number entries actually required. This field is used
instead of the s_nlnno field of the section header that overflowed.

The s_size and s_scnptr fields have a value of 0 in an overflow section header. The s_relptr
and s_lnnoptr fields must have the same values as in the corresponding primary section
header.

An XCOFF file provides special meaning to the following sections:

v The .text, .data, and .bss sections define the memory image of the program. The relocation parts
associated with the .text and .data sections contain the full binder relocation information so it can be
used for replacement link editing. Only the .text section is associated with a line number part. The
parts associated with the executable code are produced by the compilers and assemblers.

v The .pad section is defined as a null-filled, raw-data section that is used to align a subsequent section
in the file on some defined boundary such as a file block boundary or a system page boundary. Padding
is allowed in an XCOFF file without a corresponding section header.

Chapter 2. File Formats 631

v The .loader section is a raw-data section defined to contain the dynamic loader information. This
section is generated by the binder and has its own self-contained symbol table and relocation table.
There is no reference to this section from the XCOFF Symbol Table.

v The .debug section is a raw-data section defined to contain the stab (symbol table) or dictionary
information required by the symbolic debugger.

v The .typchk section is a raw-data section defined to contain parameter and argument type-checking
strings.

v The .except section is a raw-data section defined to contain the exception tables used to identify the
reasons for an exception in program execution.

v The .info comment section is a raw-data section defined to contain comments or data that are of
significance to special processing utility programs.

v The .debug, .except, .info, and .typchk sections are produced by compilers and assemblers.
References to these sections or to items within these sections are made from the XCOFF Symbol
Table.

For more information on XCOFF file sections, see ″Loader Section (loader.h),″ ″Debug Section,″
″Type-Check Section,″ ″Exception Section,″ and ″Comment Section.″

Loader Section (loader.h)
The loader section contains information required by the system loader to load and relocate an executable
XCOFF object. The loader section is generated by the binder. The loader section has an s_flags section
type flag of STYP_LOADER in the XCOFF section header. By convention, .loader is the loader section
name. The data in this section is not referenced by entries in the XCOFF symbol table.

The loader section consists of the following parts:

v Header fields

v Symbol table

v Relocation table

v Import file ID strings

v Symbol name string table

The C language structure for the loader section can be found in the loader.h file.

Loader Header Field Definitions
The following table describes the loader section’s header field definitions.

Table 15. Loader Section Header Structure (Defined in loader.h)

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 4 0 4 l_version Loader section version number

4 4 4 4 l_nsyms Number of symbol table entries

8 4 8 4 l_nreloc Number of relocation table entries

12 4 12 4 l_istlen Length of import file ID string table

16 4 16 4 l_nimpid Number of import file IDs

20 4 24 8 l_impoff+ Offset to start of import file IDs

24 4 20 4 l_stlen+ Length of string table

28 4 32 8 l_stoff+ Offset to start of string table

N/A 40 8 l_symoff Offset to start of symbol table

N/A 48 8 l_rldoff Offset to start of relocation entries

632 Files Reference

Table 15. Loader Section Header Structure (Defined in loader.h) (continued)

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined.

The following information defines the loader section’s header fields:

l_version Specifies the loader section version number. This value must be 1 for XCOFF32, 2 for XCOFF64.
l_nsyms Specifies the number of symbol table entries in the loader section. This value is the actual count of

symbol table entries contained in the loader section and does not include the three implicit entries
for the .text, .data, and .bss symbol entries.

l_nreloc Specifies the number of relocation table entries in the loader section.
l_istlen Specifies the byte length of the import file ID string table in the loader section.
l_nimpid Specifies the number of import file IDs in the import file ID string table.
l_impoff Specifies the byte offset from beginning of the loader section to the first import file ID.
l_stlen Specifies the length of the loader section string table.
l_stoff Specifies the byte offset from beginning of the loader section to the first entry in the string table.
l_symoff Specifies the byte offset from beginning of the loader section to the start of the loader symbol table

(in XCOFF64 only).
l_rldoff Specifies the byte offset from beginning of the loader section to the start of the loader section

relocation entries (in XCOFF64 only).

Loader Symbol Table Field Definitions
The loader section symbol table contains the symbol table entries that the system loader needs for its
import and export symbol processing and dynamic relocation processing.

The loader.h file defines the symbol table fields. Each entry is 24 bytes long.

There are three implicit external symbols, one each for the .text, .data, and .bss sections. These
symbols are referenced using symbol table index values 0, 1, and 2, respectively. The first symbol
contained in the loader section symbol table is referenced using an index value of 3.

Table 16. Loader Section Symbol Table Entry Structure

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 8 N/A l_name+ Symbol name or byte offset into string table

0 4 N/A l_zeroes+ Zero indicates symbol name is referenced from
l_offset

4 4 8 4 l_offset+ Byte offset into string table of symbol name

8 4 0 8 l_value+ Address field

12 2 12 2 l_scnum Section number containing symbol

14 1 14 1 l_smtype Symbol type, export, import flags

15 1 15 1 l_smclas Symbol storage class

16 4 16 4 l_ifile Import file ID; ordinal of import file IDs

20 4 20 4 l_parm Parameter type-check field

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined.

Chapter 2. File Formats 633

The symbol table fields are:

l_name (XCOFF32 only) Specifies an 8-byte, null-padded symbol name if it is 8 bytes or less in length.
Otherwise, the field is treated as the following two 4-byte integers for accessing the symbol name:

l_zeroes
(XCOFF32 only) A value of 0 indicates that the symbol name is in the loader section string
table. This field overlays the first word of the l_name field. An l_name field having the first 4
bytes (first word) equal to 0 is used to indicate that the name string is contained in the string
table instead of the l_name field.

l_offset
(XCOFF32 only) This field overlays the second word of the l_name field. The value of this
field is the byte offset from the beginning of the loader section string table to the first byte of
the symbol name (not its length field).

l_offset (XCOFF64 only) This field has the same use as the l_offset field in XCOFF32.
l_value Specifies the virtual address of the symbol
l_scnum Specifies the number of the XCOFF section that contains the symbol. If the symbol is undefined or

imported, the section number is 0. Otherwise, the section number refers to the .text, .data, or .bss
section. Section headers are numbered beginning with 1.

l_smtype Specifies the symbol type, import flag, export flag, and entry flag.

Bits 0-4 are flag bits defined as follows:

Bit 0 0x80 Reserved.
Bit 1 0x40 Specifies an imported symbol.
Bit 2 0x20 Specifies an entry point descriptor symbol.
Bit 3 0x10 Specifies an exported symbol.
Bit 4 0x08 Specifies a weak symbol.
Bits 5-7 0x07 Symbol type--see below.

Bits 5-7 constitute a 3-bit symbol type field with the following definitions:

0 XTY_ER

Specifies an external reference providing a symbol table entry for an external (global)
symbol contained in another XCOFF object file.

1 XTY_SD

Specifies the csect section definition, providing the definition of the smallest initialized unit
within an XCOFF object file.

2 XTY_LD

Specifies the label definition, providing the definition of the global entry points for initialized
csects. An uninitialized csect of type XTY_CM may not contain a label definition.

3 XTY_CM

Specifies a common (BSS uninitialized data) csect definition, providing the definition of the
smallest uninitialized unit within an XCOFF object file.

4-7 Reserved.

l_smclas Specifies the storage mapping class of the symbol, as defined in syms.h for the x_smclas field of the
csect auxiliary symbol table entry. Values have the symbolic form XMC_xx, where xx is PR, RO, GL,
XO, SV, SV64, SV3264, RW, TC, TD, DS, UA, BS, or UC. See ″csect Auxiliary Entry for the C_EXT,
C WEAKEXT, and C_HIDEXT Symbols″ for more information.

l_ifile Specifies the import file ID string. This integer is the ordinal value of the position of the import file ID
string in the import file ID name string table of the loader section. For an imported symbol, the value
of 0 in this field identifies the symbol as a deferred import to the system loader. A deferred import is a
symbol whose address can remain unresolved following the processing of the loader. If the symbol
was not imported, this field must have a value of 0.

634 Files Reference

l_parm Specifies the offset to the parameter type-check string. The byte offset is from the beginning of the
loader section string table. The byte offset points to the first byte of the parameter type-check string
(not to its length field). For more information on the parameter type-check string, see ″Type-Check
Section″ . A value of 0 in the l_parm field indicates that the parameter type-checking string is not
present for this symbol, and the symbol will be treated as having a universal hash.

Loader Relocation Table Field Definitions
The Loader Section Relocation Table Structure contains all the relocation information that the system
loader needs to properly relocate an executable XCOFF file when it is loaded. The loader.h file defines
the relocation table fields. Each entry in the loader section relocation table is 12 bytes long in XCOFF32
and 16 bytes long in XCOFF64. The l_vaddr, l_symndx, and l_rtype fields have the same meaning as the
corresponding fields of the regular relocation entries, which are defined in the reloc.h file. See ″Relocation
Information for XCOFF File (reloc.h)″ for more information.

Table 17. Loader Section Relocation Table Entry Structure

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 4 0 8 l_vaddr+ Address field

4 4 12 4 l_symndx+ Loader section symbol table index of referenced item

8 2 8 2 l_rtype Relocation type

10 2 10 2 l_rsecnm File section number being relocated

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined.

The loader.h file defines the following fields:

Name Description
l_vaddr Specifies the virtual address of the relocatable reference.
l_symndx Specifies the loader section symbol table index (n-th entry) of the symbol that is being referenced.

Values 0, 1, and 2 are implicit references to the .text, .data, and .bss sections, respectively. Symbol
index 3 is the index for the first symbol actually contained in the loader section symbol table.
Note: A reference to an exported symbol can be made using the symbol’s section number (symbol
number 0, 1, or 2) or using the actual number of the exported symbol.

l_rtype Specifies the relocation size and type. (This field has the same interpretation as the r_type field in
the reloc.h file.) See ″Relocation Information for XCOFF File (reloc.h)″ for more information.

l_rsecnm Specifies the section number of the .text, .data, or .bss section being relocated (associated with
l_vaddr field). This is a one-based index into the section headers.

Loader Import File ID Name Table Definition
The loader section import file ID name strings of a module provide a list of dependent modules that the
system loader must load in order for the module to load successfully. However, this list does not contain
the names of modules that the named modules themselves depend on.

Table 18. Loader Section Import File IDs - Contains Variable Length Strings

Offset Length in
Bytes

Name Description

0 n1 l_impidpath Import file ID path string, null-delimited

n1 + 1 n2 l_impidbase Import file ID base string, null-delimited

n1 + n2 + 2 n3 l_impidmem Import file ID member string, null-delimited

Fields repeat for each import file ID.

Each import file ID name consists of three null-delimited strings.

Chapter 2. File Formats 635

The first import file ID is a default LIBPATH value to be used by the system loader. The LIBPATH
information consists of file paths separated by colons. There is no base name or archive member name,
so the file path is followed by three null bytes.

Each entry in the import file ID name table consists of:

v Import file ID path name

v Null delimiter (ASCII Null Character)

v Import file ID base name

v Null delimiter

v Import file ID archive-file-member name

v Null delimiter

For example:
/usr/lib\0mylib.a\0shr.o\0

Loader String Table Definition
The loader section string table contains the parameter type-checking strings, all symbols names for an
XCOFF64 file, and the names of symbols longer than 8 bytes for an XCOFF32 file. Each string consists of
a 2-byte length field followed by the string.

Table 19. Loader Section String Table

Offset Length in
Bytes

Description

0 2 Length of string.

2 n Symbol name string (null-delimited) or parameter type string (not null-delimited).

Fields repeat for each string.

Symbol names are null-terminated. The value in the length-field includes the length of the string plus the
length of the null terminator but does not include the length of the length field itself.

The parameter type-checking strings contain binary values and are not null-terminated. The value in the
length field includes the length of the string only but does not include the length of the length field itself.

The symbol table entries of the loader section contain a byte offset value that points to the first byte of the
string instead of to the length field.

Loader Section Header Contents
The contents of the section header fields for the loader section are:

Name Contents
s_name .loader
s_paddr 0
s_vaddr 0
s_size The size (in bytes) of the loader section
s_scnptr Offset from the beginning of the XCOFF file to the first byte of the loader section data
s_relptr 0
s_lnnoptr 0
s_nreloc 0
s_nlnno 0
s_flags STYP_LOADER

For general information on the XCOFF file format, see ″XCOFF Object File Format.″

636 Files Reference

For more information on XCOFF file sections, see ″Sections and Section Headers,″ ″Debug Section,″
″Type-Check Section,″ ″Exception Section,″ and ″Comment Section.″

Debug Section
The debug section contains the symbolic debugger stabstrings (symbol table strings). It is generated by
the compilers and assemblers. It provides symbol attribute information for use by the symbolic debugger.
The debug section has a section type flag of STYP_DEBUG in the XCOFF section header. By convention,
.debug is the debug section name. The data in this section is referenced from entries in the XCOFF
symbol table. A stabstring is a null-terminated character string. Each string is preceded by a 2-byte length
field in XCOFF32 or a 4-byte length field in XCOFF64.

Field Definitions
The following two fields are repeated for each symbolic debugger stabstring:

v A 2-byte (XCOFF32) or 4-byte (XCOFF64) length field containing the length of the string. The value
contained in the length field includes the length of the terminating null character but does not include
the length of the length field itself.

v The symbolic debugger stabstring.

Refer to discussion of symbolic debugger stabstring grammar for the specific format of the stabstrings.

Debug Section Header Contents
The contents of the section header fields for the debug section are:

Name Contents
s_name .debug
s_paddr 0
s_vaddr 0
s_size The size (in bytes) of the debug section
s_scnptr Offset from the beginning of the XCOFF file to the first byte of the debug section data
s_relptr 0
s_lnnoptr 0
s_nreloc 0
s_nlnno 0
s_flags STYP_DEBUG

For general information on the XCOFF file format, see ″XCOFF Object File Format.″

For more information on XCOFF file sections, see ″Sections and Section Headers,″ ″Debug Section,″
″Type-Check Section,″, ″Exception Section,″ and ″Comment Section.″

Type-Check Section
The type-check section contains the type-checking hash strings and is produced by compilers and
assemblers. It is used by the binder to detect variable mismatches and argument interface errors when
linking separately compiled object files. (The type-checking hash strings in the loader section are used to
detect these errors prior to running a program.) The type-check section has a section type flag of
STYP_TYPCHK in the XCOFF section header. By convention, .typchk is the type-check section name.
The strings in this section are referenced from entries in the XCOFF symbol table.

Field Definitions
The following two fields are repeated for each parameter type-checking string:

v A 2-byte length field containing the length of the type-checking string. The value contained in the length
field does not include the length of the length field itself.

v The parameter type-checking hash string.

Chapter 2. File Formats 637

Type Encoding and Checking Format for Data
The type-checking hash strings are used to detect errors prior to execution of a program. Information
about all external symbols (data and functions) is encoded by the compilers and then checked for
consistency at bind time and load time. The type-checking strings are designed to enforce the maximum
checking required by the semantics of each particular language supported, as well as provide protection to
applications written in more than one language.

The type encoding and checking mechanism features 4-part hash encoding that provides some flexibility in
checking. The mechanism also uses a unique value, UNIVERSAL, that matches any code. The
UNIVERSAL hash can be used as an escape mechanism for assembly programs or for programs in which
type information or subroutine interfaces might not be known. The UNIVERSAL hash is four blank ASCII
characters (0x20202020) or four null characters (0x00000000).

The following fields are associated with the type encoding and checking mechanism:

code length A 2-byte field containing the length of the hash. This field has a value of 10.
language identifier A 2-byte code representing each language. These codes are the same as those

defined for the e_lang field in the ″Exception Section″ information .
general hash A 4-byte field representing the most general form by which a data symbol or function

can be described. This form is the most common to languages supported by . If the
information is incomplete or unavailable, a universal hash should be generated. The
general hash is language-independent and must match for the binding to succeed.

language hash A 4-byte field containing a more detailed, language-specific representation of what is in
the general hash. It allows for the strictest type-checking required by a given
language. This part is used in intra-language binding and is not checked unless both
symbols have the same language identifier.

Section Header Contents
The contents of the section header fields for the type-check section are:

Name Contents
s_name .typchk
s_paddr 0
s_vaddr 0
s_size The size (in bytes) of the type-check section
s_scnptr Offset from the beginning of the XCOFF file to the first byte of the type-check section data
s_relptr 0
s_lnnoptr 0
s_nreloc 0
s_nlnno 0
s_flags STYP_TYPCHK.

For general information on the XCOFF file format, see ″XCOFF Object File Format.″

For more information on XCOFF file sections, see ″Sections and Section Headers,″ ″Debug Section,″
″Type-Check Section,″ ″Exception Section,″ and ″Comment Section.″

Exception Section
The exception section contains addresses of trap instructions, source language identification codes, and
trap reason codes. This section is produced by compilers and assemblers, and used during or after run
time to identify the reason that a specific trap or exception occurred. The exception section has a section
type flag of STYP_EXCEPT in the XCOFF section header. By convention, .except is the exception section
name. Data in the exception section is referenced from entries in the XCOFF symbol table.

638 Files Reference

An exception table entry with a value of 0 in the e_reason field contains the symbol table index to a
function’s C_EXT, C_WEAKEXT, or C_HIDEXT symbol table entry. Reference from the symbol table to an
entry in the exception table is via the function auxiliary symbol table entry. For more information on this
entry, see ″csect Auxiliary Entry for C_EXT, C_WEAKEXT and C_HIDEXT Symbols.″

The C language structure for the exception section entries can be found in the exceptab.h file.

The exception section entries contain the fields shown in the following tables.

Table 20. Initial Entry: Exception Section Structure

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 4 0 4 e_addr.e_symndx+ Symbol table index for function

4 1 8 1 e_lang+ Compiler language ID code

5 1 9 1 e_reason+ Value 0 (exception reason code 0)

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined. With e_addr.e_symndx, the suffix is added to e_addr
(i.e. e_addr32.e_symndx).

Table 21. Subsequent Entry: Exception Section Structure

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 4 0 8 e_addr.e_paddr+ Address of the trap instruction

4 1 8 1 e_lang+ Compiler language ID code

5 1 9 1 e_reason+ Trap exception reason code

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined. With e_addr.e_paddr, the suffix is added to e_addr
(i.e. e_addr32.e_paddr).

Field Definitions
The following defines the fields listed of the exception section:

e_symndx Contains an integer (overlays the e_paddr field). When the e_reason field is 0, this field is the symbol
table index of the function.

e_paddr Contains a virtual address (overlays the e_symndx field). When the e_reason field is nonzero, this field
is the virtual address of the trap instruction.

Chapter 2. File Formats 639

e_lang Specifies the source language. The following list defines the possible values of the e_lang field.

ID Language

0x00 C

0x01 FORTRAN

0x02 Pascal

0x03 Ada

0x04 PL/I

0x05 BASIC

0x06 Lisp

0x07 COBOL

0x08 Modula2

0x09 C++

0x0A RPG

0x0B PL8, PLIX

0x0C Assembly

0x0D-0xFF
Reserved

e_reason Specifies an 8-bit, compiler-dependent trap exception reason code. Zero is not a valid trap exception
reason code because it indicates the start of exception table entries for a new function.

Section Header Contents
The following fields are the contents of the section header fields for the exception section.

Name Contents
s_name .except
s_paddr 0
s_vaddr 0
s_size The size (in bytes) of the exception section
s_scnptr Offset from the beginning of the XCOFF file to the first byte of the exception section data
s_relptr 0
s_lnnoptr 0
s_nreloc 0
s_nlnno 0
s_flags STYP_EXCEPT

For general information on the XCOFF file format, see ″XCOFF Object File Format.″

For more information on XCOFF file sections, see ″Sections and Section Headers,″ ″Debug Section,″
″Type-Check Section,″ ″Exception Section,″ and ″Comment Section.″

Comment Section
The comment section contains information of special processing significance to an application. This
section can be produced by compilers and assemblers and used during or after run time to fulfill a special
processing need of an application. The comment section has a section type flag of STYP_INFO in the
XCOFF section header. By convention, .info is the comment section name. Data in the comment section
is referenced from C_INFO entries in the XCOFF symbol table.

640 Files Reference

The contents of a comment section consists of repeated instances of a 4-byte length field followed by a
string of bytes (containing any binary value). The length of each string is stored in its preceding 4-byte
length field. The string of bytes need not be terminated by a null character nor by any other special
character. The specified length does not include the length of the length field itself. A length of 0 is
allowed. The format of the string of bytes is not specified.

A comment section string is referenced from an entry in the XCOFF symbol table. The storage class of the
symbol making a reference is C_INFO. See ″Symbol Table Field Contents by Storage Class″ for more
information.

A C_INFO symbol is associated with the nearest C_FILE, C_EXT, C_WEAKEXT, or C_HIDEXT symbol
preceding it.

Section Header Contents
The following fields are the contents of the section header fields for the comment section.

Name Contents
s_name .info
s_paddr 0
s_vaddr 0
s_size The size (in bytes) of the comment section
s_scnptr Offset from the beginning of the XCOFF file to the first byte of the comment section data
s_relptr 0
s_lnnoptr 0
s_nreloc 0
s_nlnno 0
s_flags STYP_INFO

For general information on the XCOFF file format, see ″XCOFF Object File Format.″

For more information on XCOFF file sections, see ″Sections and Section Headers,″ ″Debug Section,″
″Type-Check Section,″ ″Exception Section,″ and ″Comment Section.″

Relocation Information for XCOFF File (reloc.h)
The .text section and .data section may have relocation information. The relocation information is used
by the binder to modify the .text section and .data section contents with address and byte-offset
information of individual XCOFF object files collected into an XCOFF executable file.

The compilers and assemblers are responsible for generating the relocation entries for the .text and
.data sections.

The binder generates relocation information for the .loader section, as required by the system loader.

Each relocation entry of the .text and .data section is 10 bytes long (14 for XCOFF64). (A relocation
entry in the .loader section is 12 bytes long (16 for XCOFF64) and is explained in the loader section
description in this document. See ″Relocation Table Field Definitions″ for more information.) The C
language structure for a relocation entry can be found in the reloc.h file. A relocation entry contains the
fields shown in the following table.

Table 22. Relocation Entry Structure

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 4 0 8 r_vaddr+ Virtual address (position) in section to be
relocated

Chapter 2. File Formats 641

Table 22. Relocation Entry Structure (continued)

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

4 4 8 4 r_symndx+ Symbol table index of item that is referenced

8 1 12 1 r_rsize+ Relocation size and information

9 1 13 1 r_rtype+ Relocation type

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined.

The relocation entries for the .text and .data sections are part of their respective sections. The relocation
entry refers to a location to be modified. The relocation entries for a section must be in ascending address
order.

(The loader section contains a single set of relocation entries used by the system loader, so a section
number is required within each relocation entry to identify the section that needs to be modified.)

Field Definitions
The following defines the relocation-information fields:

r_vaddr Specifies the virtual address of the value that requires modification by the binder. The byte offset
value to the data that requires modification from the beginning of the section that contains the
data can be calculated as follows:

offset_in_section = r_vaddr - s_paddr

r_symndx Specifies a zero-based index into the XCOFF symbol table for locating the referenced symbol.
The symbol table entry contains an address used to calculate a modification value to be applied at
the r_vaddr relocation address.

r_rsize Specifies the relocation size and sign. Its contents are detailed in the following list:

0x80 (1 bit)
Indicates whether the relocation reference is signed (1) or unsigned (0).

0x40 (1 bit)
If this field is one, it indicates that the binder replaced the original instruction by a branch
instruction to a special fixup instruction sequence.

0x3F(6 bits)
Specifies the bit length of the relocatable reference minus one. The current architecture
allows for fields of up to 32 bits (XCOFF32) or 64 bits (XCOFF64) to be relocated.

642 Files Reference

r_rtype Specifies an 8-bit relocation type field that indicates to the binder which relocation algorithm to use
for calculating the modification value. This value is applied at the relocatable reference location
specified by the r_vaddr field. The following relocation types are defined:

0x00 R_POS

Specifies positive relocation. Provides the address of the symbol specified by the
r_symndx field.

0x01 R_NEG

Specifies negative relocation. Provides the negative of the address of the symbol
specified by the r_symndx field.

0x02 R_REL

Specifies relative-to-self relocation. Provides a displacement value between the address
of the symbol specified by the r_symndx field and the address of the csect to be modified.

0x03 R_TOC

Specifies relative-to-TOC relocation. Provides a displacement value that is the difference
between the address value in the symbol specified by the r_symndx field and the address
of the TOC anchor csect. The TOC anchor csect has a symbol table csect auxiliary entry
with an x_smclass (storage mapping class) value of XMC_TC0. The TOC anchor csect
must be of zero length. There may be only one TOC anchor csect per XCOFF section.

0x04 R_TRL

Specifies TOC Relative Indirect Load (modifiable) relocation. Provides a displacement
value that is the difference between the address value in the symbol specified by the
r_symndx field and the address of the TOC anchor csect. This relocation entry is treated
the same as an R_TOC relocation entry. It provides the following additional information
concerning the instruction being relocated: The instruction that is referenced by the
r_vaddr field is a load instruction. That load instruction is permitted to be modified by the
binder to become a compute address instruction. Changing an instruction from a load
instruction to a compute address instruction avoids a storage reference during execution.
A compute address instruction can be used if the address contained at the address
specified by the r_symndx field has a value that itself references a r_symndx field that can
be accessed with a valid in-range displacement relative to the TOC anchor address. That
is, the target of the TOC entry is from -32,768 to 32,767, inclusive, from the TOC anchor
address. If a compute address instruction is generated by the binder, the R_TRL
relocation type is changed to become a R_TRLA type. This allows the reverse
transformation, if required. Compilers are permitted to generate this relocation type.

0x13 R_TRLA

Specifies TOC Relative Load Address (modifiable LA to L) relocation. Provides a
displacement value that is the difference between the address value in the symbol
specified by the r_symndx field and the address of the TOC anchor csect. This relocation
entry is treated the same as an R_TOC relocation entry. It provides the following
additional information concerning the instruction being relocated: The instruction that is
referenced by the r_vaddr field is a compute address instruction. The compute address
instruction is modified by the binder to become a load instruction whenever the calculated
displacement value is outside the valid displacement range relative to the TOC anchor
address. This relocation type provides the binder with a means to transform a compute
address instruction into a load instruction whenever required. If a load instruction is
generated by the binder, the R_TRLA relocation type is changed to become an R_TRL
type. Compilers are not permitted to generate this relocation type.

Chapter 2. File Formats 643

r_rtype continued
0x05 R_GL

Specifies Global Linkage-External TOC address relocation. Provides the address of the
TOC associated with a defined external symbol. The external symbol with the required
TOC address is specified by the r_symndx field of the relocation entry. This relocation
entry provides a method of accessing the address of the TOC contained within the same
executable where the r_symndx external symbol is defined.

0x06 R_TCL

Specifies local object TOC address relocation. Provides the address of the TOC
associated with a defined external symbol. The external symbol for which the TOC
address is required is specified by the r_symndx field of the relocation entry. The external
symbol is defined locally within the resultant executable. This relocation entry provides a
method of accessing the address of the TOC contained within the same executable
where the r_symndx external symbol is defined.

0x0C R_RL

Treated the same as the R_POS relocation type.

0x0D R_RLA

Treated the same as the R_POS relocation type.

0x0F R_REF

Specifies a nonrelocating reference to prevent garbage collection (by the binder) of a
symbol. This relocation type is intended to provide compilers and assemblers a method
to specify that a given csect has a dependency upon another csect without using any
space in the actual csect. The reason for making the dependency reference is to prevent
the binder from garbage-collecting (eliminating) a csect for which another csect has an
implicit dependency.

0x08 R_BA

Treated the same as the R_RBA relocation type.

0x18 R_RBA

Specifies branch absolute relocation. Provides the address of the symbol specified by the
r_symndx field as the target address of a branch instruction. The instruction can be
modified to a (relative) branch instruction if the target address is relocatable.

0x0A R_BR

Treated the same as the R_RBR relocation type.

0x1A R_RBR

Specifies (relative) branch relocation. Provides a displacement value between the
address of the symbol specified by the r_symndx field and the address of the csect
containing the branch instruction to be modified. The instruction can be modified to an
absolute branch instruction if the target address is not relocatable.

The R_RBR relocation type is the standard branch relocation type used by compilers and
assemblers for the . This relocation type along with glink code allows an executable
object file to have a text section that is position-independent.

Additional Relocation Features
Standard practice is to retain relocation information only for unresolved references or references between
distinct sections. Once a reference is resolved, the relocation information is discarded. This is sufficient for
an incremental bind and a fixed address space model. To provide the capability for rebinding and handling
a relocatable address space model, the relocation information is not discarded from an XCOFF file.

For general information on the XCOFF file format, see ″XCOFF Object File Format.″

644 Files Reference

For more information on relocation field table definitions, see ″Relocation Table Field Definitions″ in the
loader section.

Line Number Information for XCOFF File (linenum.h)
Line number entries are used by the symbolic debugger to debug code at the source level. When present,
there is a single line number entry for every source line that can have a symbolic debugger breakpoint.
The line numbers are grouped by function. The beginning of each function is identified by the l_lnno field
containing a value of 0. The first field, l_symndx , is the symbol table index to the C_EXT, C_WEAKEXT,
or C_HIDEXT symbol table entry for the function.

Each line number entry is six bytes long. The C language structure for a line number entry can be found in
the linenum.h file. A line number entry contains the fields shown in the following tables.

Table 23. Initial Line Number Structure Entry for Function

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 4 0 4 l_ addr.l_ symndx+ Symbol table index for function

4 2 8 4 l_ lnno+ Value 0 (line number 0)

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined. With l_addr.l_symndx, the suffix is added to l_addr
(i.e. l_addr32.l_symndx).

Table 24. Subsequent Line Number Entries for Function

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 4 0 8 l_paddr+ Address at which break point can be inserted

4 2 8 4 l_lnno+ Line number relative to start of function

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined. With l_addr.l_paddr, the suffix is added to l_addr
(i.e. l_addr32.l_paddr).

Field Definitions
The following list defines the line number entries:

l_symndx Specifies the symbol table index to the function name (overlays the l_paddr field). When the l_lnno
field is 0, this interpretation of the field is used.

l_paddr Specifies the virtual address of the first instruction of the code associated with the line number
(overlays the l_symndx field). When the l_lnno field is not 0, this interpretation of the field is used.

l_lnno Specifies either the line number relative to the start of a function or 0 to indicate the beginning of a
function.

Note: If part of a function other than the beginning comes from an include file, the line numbers are
absolute, rather than relative to the beginning of the function. (See the C_BINCL and C_EINCL
symbol types in ″Storage Classes by Usage and Symbol Value Classification″ for more information.)

For general information on the XCOFF file format, see ″XCOFF Object File Format.″

For information on debugging, see ″Debug Section.″

Chapter 2. File Formats 645

Symbol Table Information

One composite symbol table is defined for an XCOFF file. The symbol table contains information required
by both the binder (external symbols) and the symbolic debugger (function definitions and internal and
external symbols).

The symbol table consists of a list of 18-byte, fixed-length entries. Each symbol represented in the symbol
table consists of at least one fixed-length entry, and some are followed by auxiliary entries of the same
size.

See the following information to learn more about the symbol table:

v Symbol Table Auxiliary Information

v Symbol Table Field Contents by Storage Class

v String Table

For each external symbol, one or more auxiliary entries are required that provide additional information
concerning the external symbol. There are three major types of external symbols of interest to the binder,
performing the following functions:

v Define replaceable units or csects.

v Define the external names for functions or entry points within csects.

v Reference the names of external functions in another XCOFF object.

For symbols defining a replaceable unit (csect), a csect auxiliary entry defines the length and
storage-mapping class of the csect. For symbols defining external names for functions within a csect, the
csect auxiliary entry points to the containing csect, the parameter type-checking information, and the
symbolic debugger information for the function. For symbols referencing the name of an external function,
a csect auxiliary entry identifies the symbol as an external reference and points to parameter
type-checking information.

Symbol Table Contents
An XCOFF symbol table has the following general contents and ordering:

v The C_FILE symbol table entries used to bracket all the symbol table entries associated with a given
source file.

v The C_INFO comment section symbol table entries that are of source file scope. These follow the
C_FILE entry but before the first csect definition symbol table entry.

v The symbolic debugger symbol table entries that are of file scope. These follow the C_FILE entry but
before the first csect entry.

v csect definition symbol table entries used to define and bracket all the symbols contained with a csect.

v C_INFO comment section symbol table entries that follow a csect definition symbol table entry are
associated with that csect.

v All symbolic debugger symbol table entries that follow a csect definition symbol table entry or label
symbol table entry are associated with that csect or label.

The ordering of the symbol table must be arranged by the compilers and assemblers both to
accommodate the symbolic debugger requirements and to permit effective management by the binder of
the different sections of the object file as a result of such binder actions as garbage collection, incremental
binding, and rebinding. This ordering is required by the binder so that if a csect is deleted or replaced, all
the symbol table information associated with the csect can also be deleted or replaced. Likewise, if all the
csects associated with a source file are deleted or replaced, all the symbol table and related information
associated with the file can also be deleted or replaced.

Symbol Table Layout
The following example shows the general ordering of the symbol table.

646 Files Reference

un_external Undefined global symbols

.file Prolog --defines stabstring compaction level

.file Source file 1
.info Comment section reference symbol with file scope
stab Global Debug symbols of a file
csect Replaceable unit definition (code)

.info Comment section reference symbol with csect scope
function Local/External function

stab Debug and local symbols of function
function Local/External function

stab Debug and local symbols of function
..............
csect Replaceable unit definition (local statics)

stab Debug and local statics of file
..............
csect Relocatable unit definition (global data)

external Defined global symbol
stab Debug info for global symbol

..............
.file Source file 2

stab Global Debug symbols of a file
csect Replaceable unit definition (code)

function Local/External function
stab Debug and local symbols of function

..............
csect Replaceable unit definition (local statics)

stab Debug and Local statics of file
..............
csect Replaceable unit definition (global data)

external Defined global symbol
stab Debug info for global symbol

.file Source file
..............

Symbol Table Entry (syms.h): Each symbol, regardless of storage class and type, has a fixed-format
entry in the symbol table. In addition, some symbol types may have additional (auxiliary) symbol table
entries immediately following the fixed-format entry. Each entry in the symbol table is 18 bytes long. The C
language structure for a symbol table entry can be found in the syms.h file. The index for the first entry in
the symbol table is 0. The following table shows the structure of the fixed-format part of each symbol in
the symbol table.

Table 25. Symbol Table Entry Format

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 8 N/A n_name Symbol name (occupies the same 8 bytes as
n_zeroes and n_offset)

0 4 N/A n_zeroes Zero, indicating name in string table or .debug
section (overlays first 4 bytes of n_name)

4 4 8 4 n_offset+ Offset of the name in string table or .debug section
(In XCOFF32: overlays last 4 bytes of n_name)

8 4 0 8 n_value+ Symbol value; storage class-dependent

12 2 12 2 n_scnum Section number of symbol

14 2 14 2 n_type Basic and derived type specification

14 1 14 1 n_lang Source language ID (overlays first byte of n_type)

15 1 15 1 n_cpu CPU Type ID (overlays second byte of n_type)

16 1 16 1 n_sclass Storage class of symbol

17 1 17 1 n_numaux Number of auxiliary entries

Chapter 2. File Formats 647

Table 25. Symbol Table Entry Format (continued)

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

+Use ″32″ or ″64″ suffix when __XCOFF_HYBRID__ is defined.

Field Definitions: The following defines the symbol table entry fields:

n_name Used by XCOFF32 only. Specifies an 8-byte, null-padded symbol name or symbolic debugger
stabstring. The storage class field is used to determine if the field is a symbol name or symbolic
debugger stabstring. By convention, a storage class value with the high-order bit on indicates that
this field is a symbolic debugger stabstring.

If the XCOFF32 symbol name is longer than 8 bytes, the field is interpreted as the following two
fields:

n_zeroes
A value of 0 indicates that the symbol name is in the string table or .debug section (overlays
first word of n_name).

n_offset
Specifies the byte offset to the symbol name in the string table or .debug section (overlays
last 4 bytes of n_name). The byte offset is relative to the start of the string table or .debug
section. A byte offset value of 0 is a null or zero-length symbol name.

n_offset For XCOFF64: Specifies the byte offset to the symbol name in the string table or .debug section. The
byte offset is relative to the start of the string table or .debug section. A byte offset value of 0 is a null
or zero-length symbol name. (For XCOFF32 only, used in conjunction with n_zeroes. See entry
immediately above.)

n_value Specifies the symbol value. The contents of the symbol value field is storage class-dependent, as
shown in the following definitions:

Content
Storage Class

Relocatable address
C_EXT, C_WEAKEXT, C_HIDEXT, C_FCN, C_BLOCK, C_STAT

Zero C_GSYM, C_BCOMM, C_DECL, C_ENTRY, C_ESTAT, C_ECOMM

Offset in csect
C_FUN, C_STSYM

Offset in file
C_BINCL, C_EINCL

Offset in comment section
C_INFO

Symbol table index
C_FILE, C_BSTAT

Offset relative to stack frame
C_LSYM, C_PSYM

Register number
C_RPSYM, C_RSYM

Offset within common block
C_ECOML

648 Files Reference

n_scnum Specifies a section number associated with one of the following symbols:

-2 Specifies N_DEBUG, a special symbolic debugging symbol.

-1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not relocatable.

0 Specifies N_UNDEF, an undefined external symbol.

Any other value
Specifies the section number where the symbol was defined.

n_type Used in COFF for type information. This use is obsolete in XCOFF. For C_EXT and C_HIDEXT
symbols, this field should contain 0x0020 for function symbols and 0 otherwise. This field has a
special purpose for C_FILE symbols. See ″File Auxiliary Entry for the C_FILE Symbol″ for more
information.

n_sclass Specifies the storage class of the symbol. The storclass.h and dbxstclass.h files contain the
definitions of the storage classes. See ″Symbol Table Field Contents by Storage Class″ for more
information.

n_numaux Specifies the number of auxiliary entries for the symbol. If more than one auxiliary entry is required
for a symbol, the order of the auxiliary entries is determined by convention. That is, no flag field in
the auxiliary entries can be used to distinguish one type of auxiliary entry from another.

For general information on the XCOFF file format, see ″XCOFF Object File Format.″

Symbol Table Auxiliary Information
The symbol table contains auxiliary entries to provide supplemental information for a symbol. The auxiliary
entries for a symbol follow its symbol table entry. The length of each auxiliary entry is the same as a
symbol table entry (18 bytes). The format and quantity of auxiliary entries depend on the storage class
(n_sclass) and type (n_type) of the symbol table entry.

In XCOFF32, symbols having a storage class of C_EXT, C_WEAKEXT or C_HIDEXT and more than one
auxiliary entry must have the csect auxiliary entry as the last auxiliary entry. In XCOFF64, the x_auxtype
field of each auxiliary symbol table entry differentiates the symbols, but the convention is to generate the
csect auxiliary symbol table entry last.

File Auxiliary Entry for C_FILE Symbols
The file auxiliary symbol table entry is defined to contain the source file name and compiler-related strings.
A file auxiliary entry is optional and is used with a symbol table entry that has a storage-class value of
C_FILE. The C language structure for a file auxiliary entry can be found in the x_file structure in the
syms.h file.

The C_FILE symbol provides source file-name information, source-language ID and CPU-version ID
information, and, optionally, compiler-version and time-stamp information.

The n_type field of the symbol table entry identifies the source language of the source file and the CPU
version ID of the compiled object file. The field information is as follows:

Source Language ID Overlays the high-order byte of the n_type field. This field contains the
source-language identifier. The values for this field are defined in the e_lang field
in ″Exception Section″ . This field can be used by the symbolic debuggers to
determine the source language.

The optional values for this field are 248 (TB_OBJECT) for symbols from object
files with no C_FILE symbol table entry; or 249 (TB_FRONT) or 250 (TB_BACK)
for generated entries used to provide debugging information. If the source
language is TB_FRONT or TB_BACK, the 8-character name field begins with ’ ’
(blank) , ’\0’(NULLl). If the source language is TB_FRONT, the third byte is the
stabstring compaction level for the object file, and the n_offset field contains the
symbol table index of the TB_BACK symbol table entry, if it exists, or 0 otherwise.

Chapter 2. File Formats 649

CPU Version ID Defined as the low-order byte of the n_type field. Decribes the kind of instructions
generated for the file. The following values are defined:

0 Reserved.

1 Specifies , 32-bit mode.

2 Reserved.

3 Specifies the common intersection of 32-bit and Processor.

4 Specifies Processor.

5 Specifies any mix of instructions between different architectures.

6 Specifies a mix of and instructions ().

7-223 Reserved.

224 Specifies instructions.

225-255
Reserved.

If both fields are 0, no information is provided about the source language.

File Name Auxiliary Entry Format

Offset Length in Bytes

Name Description

0 14

x_fname
Source file string

0 4

x_zeroes
Zero, indicating file string in string table (overlays first 4 bytes of
x_fname)

4 4

x_offset
Offset of file string in string table (overlays 5th-8th bytes of x_fname)

14 1

x_ftype
File string type

15 2

Reserved. Must contain 0.

17 1

x_auxtype
Auxiliary symbol type(XCOFF64 only)

650 Files Reference

Field Definitions: The following defines the fields listed above:

x_fname Specifies the source file name or compiler-related string.

If the file name or string is longer than 8 bytes, the field is interpreted as the following two fields:

x_zeroes
A value of 0 indicates that the source file string is in the string table (overlays first 4 bytes
of x_fname).

x_offset
Specifies the offset from the beginning of the string table to the first byte of the source file
string (overlays last 4 bytes of x_fname).

x_ftype Specifies the source-file string type.

0 XFT_FN
Specifies the source-file name

1 XFT_CT
Specifies the compiler time stamp

2 XFT_CV
Specifies the compiler version number

128 XFT_CD
Specifies compiler-defined information

(no name) Reserved. This field must contain 2 bytes of 0.
x_auxtype (XCOFF64 only) Specifies the type of auxiliary entry. Contains _AUX_FILE for this auxiliary entry.

If the file auxiliary entry is not used, the symbol name is the name of the source file. If the file auxiliary
entry is used, then the symbol name should be .file, and the first file auxiliary entry (by convention)
contains the source file name. More than one file auxiliary entry is permitted for a given symbol table entry.
The n_numaux field contains the number of file auxiliary entries.

csect Auxiliary Entry for C_EXT, C_WEAKEXT, and C_HIDEXT Symbols
The csect auxiliary entry identifies csects (section definitions), entry points (label definitions), and external
references (label declarations). A csect auxiliary entry is required for each symbol table entry that has a
storage class value of C_EXT, C_WEAKEXT, or C_HIDEXT. See ″Symbol Table Entry (syms.h)″ for more
information. By convention, the csect auxiliary entry in an XCOFF32 file must be the last auxiliary entry for
any external symbol that has more than one auxiliary entry. The C language structure for a csect auxiliary
entry can be found in the x_csect structure in the syms.h file.

Table 26. csect Auxiliary Entry Format

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 4 N/A x_scnlen (See field definition section)

N/A 0 4 x_scnlen_lo (See field definition section) Low 4 bytes of
section length

4 4 4 4 x_parmhash Offset of parameter type-check hash in .typchk
section

8 2 8 2 x_snhash .typchk section number

10 1 10 1 x_smtyp Symbol alignment and type 3-bit symbol
alignment (log 2) 3-bit symbol type

11 1 11 1 x_smclas Storage mapping class

12 4 N/A x_stab Reserved

16 2 N/A x_snstab Reserved

Chapter 2. File Formats 651

Table 26. csect Auxiliary Entry Format (continued)

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

N/A 12 4 x_scnlen_hi (See field definition section) High 4 bytes of
section length

N/A 16 1 (pad) Reserved

N/A 17 1 x_auxtype Contains _AUX_CSECT; indicates type of
auxiliary entry

Field Definitions: The following defines the fields listed above:

x_scnlen Specifies a meaning dependent on x_smtyp as follows:

If Then

XTY_SD
x_scnlen contains the csect length.

XTY_LD
x_scnlen contains the symbol table index of the containing csect.

XTY_CM
x_scnlen contains the csect length.

XTY_ER
x_scnlen contains 0.

In the XCOFF64 format, the value of x_scnlen is divided into two fields: x_scnlen_hi, representing
the upper 4 bytes of the value, and x_scnlen_lo, representing the lower 4 bytes of the value.

x_parmhash Specifies the byte offset of the parameter type-check string in the .typchk section. The byte offset
is from the beginning of the .typchk section in an XCOFF file. The byte offset points to the first
byte of the parameter type-check string (not to its length field). See ″Type-Check Section″ for
more information. A value of 0 in the x_parmhash field indicates that the parameter type-checking
string is not present for this symbol, and the symbol will be treated as having a universal hash.
The value should be 0 for C_HIDEXT symbols.

x_snhash Specifies the .typchk section number. The XCOFF section number containing the parameter
type-checking strings. The section numbers are one-based. For compatibility with object files
generated by some compilers, if x_parmhash is not equal to 0 but x_snhash does equal 0, then the
first .typchk section in the file is used. The value should be 0 for C_HIDEXT symbols.

x_smtyp Specifies symbol alignment and type:

Bits 0-4
Contains a 5-bit csect address alignment value (log base 2). For example, a value of 3 in
this field indicates 23, or 8, meaning the csect is to be aligned on an 8-byte address
value. The alignment value is used only when the value of bits 5-7 of the x_smtyp field is
either XTY_SD or XTY_CM.

Bits 5-7
Contains a 3-bit symbol type field. See the definitions for bits 5-7 of the l_smtype field in
″Loader Section″ for more information.

652 Files Reference

x_smclas Specifies the csect storage-mapping class. This field permits the binder to arrange csects by their
storage-mapping class. The x_smclas field is used only when the value of bits 5-7 of the x_smtyp
field is either XTY_SD or XTY_CM.

The following storage-mapping classes are read-only and normally mapped to the .text section:

Value Class
Description

0 XMC_PR
Specifies program code. The csect contains the executable instructions of the program.

1 XMC_RO
Specifies a read-only constant. The csect contains data that is constant and will not
change during execution of the program.

2 XMC_DB
Specifies the debug dictionary table. The csect contains symbolic-debugging data or
exception-processing data. This storage mapping class was defined to permit compilers
with special symbolic-debugging or exception-processing requirements to place data in
csects that are loaded at execution time but that can be collected separately from the
executable code of the program.

6 XMC_GL
Specifies global linkage. The csect provides the interface code necessary to handle csect
relative calls to a target symbol that can be out-of-module. This global linkage csect has
the same name as the target symbol and becomes the local target of the relative calls.
As a result, the csect maintains position-independent code within the .text section of the
executable XCOFF object file.

7 XMC_XO
Specifies extended operation. A csect of this type has no dependency on (references
through) the TOC. It is intended to reside at a fixed address in memory such that it can
be the target of a branch-absolute instruction.

12 XMC_TI
Reserved.

13 XMC_TB
Reserved.

The following storage-mapping classes are read/write and normally mapped to the .data or .bss
section:

Value Class
Description

5 XMC_RW
Specifies read/write data. A csect of this type contains initialized or uninitialized data that
is permitted to be modified during program execution. If the x_smtyp value is XTY_SD,
the csect contains initialized data and is mapped into the .data section. If the x_smtyp
value is XTY_CM, the csect is uninitialized and is mapped into the .bss section.
Typically, all the initialized static data from a C source file is contained in a single csect of
this type. The csect would have a storage class value of C_HIDEXT. An initialized
definition for a global data scalar or structure from a C source file is contained in its own
csect of this type. The csect would have a storage class value of C_EXT. A csect of this
type is accessible by name references from other object files.

Chapter 2. File Formats 653

x_smclas
continued Value Class

Description

15 XMC_TC0
Specifies TOC anchor for TOC addressability. This is a zero-length csect whose n_value
address provides the base address for TOC relative addressability. Only one csect of
type XMC_TC0 is permitted per section of an XCOFF object file. In implementations that
permit compilers and assemblers to generate multiple .data sections, there must be a
csect of type XMC_TC0 in each section that contains data that is referenced (by way of a
relocation entry) as a TOC-relative data item. Some hardware architectures limit the
value that a relative displacement field within a load instruction may contain. This limit
then becomes an inherent limit on the size of a TOC for an executable XCOFF object.
For RS/6000, this limit is 65,536 bytes, or 16,384 4-byte TOC entries.

3 XMC_TC
Specifies general TOC entry. A csect of this type is usually 4 bytes in length and contains
the address of another csect or global symbol. This csect provides addressability to other
csects or symbols. The symbols may be contained in either the local executable XCOFF
object or in another executable XCOFF object. Special processing semantics are used by
the binder to eliminate duplicate TOC entries as follows:

v Symbols that have a storage class value of C_EXT are global symbols and must have
names (a non-null n_name field). These symbols require no special TOC processing
logic to combine duplicate entries. Duplicate entries with the same n_name value are
combined into a single entry.

v Symbols that have a storage class value of C_HIDEXT are not global symbols, and
duplicate entries are resolved by context. Any two such symbols will be defined as
duplicates and combined into a single entry whenever the following conditions are met:

– The n_name fields are the same. That is, they have either a null name or the same
name string.

– Each is 4 bytes long.

– Each has a single RLD entry that references external symbols with the same name.

To minimize the number of duplicate TOC entries that cannot be combined by the binder,
compilers and assemblers should adhere to a common naming convention for TOC
entries. By convention, compilers and assemblers produce TOC entries that have a
storage class value of C_HIDEXT and an n_name string that is the same as the n_name
value for the symbol that the TOC entry addresses.

16 XMC_TD
Specifies scalar data entry in the TOC. A csect that is a special form of an XMC_RW
csect that is directly accessed from the TOC by compiler generated code. This lets some
frequently used globol symbols be accessed directly from the TOC rather than indirectly
through an address pointer csect contained in the TOC. A csect of type XMC_TD has the
following characteristics:

v The compiler generates code that is TOC relative to directly access the data contained
in the csect of type XMC_TD.

v It is 4-bytes long or less.

v It has initialized data that can be modified as the program runs.

v If a same named csect of type XMC_RW or XMC_UA exist, it is replaced by the
XMC_TD csect.

For the cases where TOC scalar cannot reside in the TOC, the binder must be capable
of transforming the compiler generated TOC relative instruction into a conventional
indirect addressing instruction sequence. This transformation is necessary if the TOC
scalar is contained in a shared object.

654 Files Reference

x_smclas
continued Value Class

Description

10 XMC_DS
Specifies a csect containing a function descriptor, which contains the following three
values:

v The address of the executable code for a function.

v The address of the TOC anchor (TOC base address) of the module that contains the
function.

v The environment pointer (used by languages such as Pascal and PL/I).

There is only one function descriptor csect for a function, and it must be contained within
the same executable as the function itself is contained. The function descriptor has a
storage class value of C_EXT and has an n_name value that is the same as the name of
the function in the source file. The addresses of function descriptors are imported to and
exported from an executable XCOFF file.

8 XMC_SV
Specifies 32-bit supervisor call descriptor csect. The supervisor call descriptors are
contained within the operating system kernel. To an application program, the reference to
a supervisor call descriptor is treated the same as a reference to a regular function
descriptor. It is through the import/export mechanism that a function descriptor is treated
as a supervisor call descriptor. These symbols are only available to 32-bit programs.

17 XMC_SV64
Specifies 64-bit supervisor call descriptor csect. See XMV_SV for supervisor call
information. These symbols are only available to 64-bit programs.

18 XMC_SV3264
Specifies supervisor call descriptor csect for both 32-bit and 64-bit. See XMV_SV for
supervisor call information. These symbols are available to both 32-bit and 64-bit
programs.

4 XMC_UA
Unclassified. This csect is treated as read/write. This csect is frequently produced by an
assembler or object file translator program that cannot determine the true classification of
the resultant csect.

9 XMC_BS
Specifies BSS class (uninitialized static internal). A csect of this type is uninitialized, and
is intended to be mapped into the .bss section. This type of csect must have a x_smtyp
value of XTY_CM.

11 XMC_UC
Specifies unnamed FORTRAN common. A csect of this type is intended for an unnamed
and uninitialized FORTRAN common. It is intended to be mapped into the .bss section.
This type of csect must have a x_smtyp value of XTY_CM.

x_stab Reserved (Unused for 64-bit).

x_snstab Reserved (Unused for 64-bit).

Auxiliary Entries for the C_EXT, C_WEAKEXT, and C_HIDEXT Symbols
Auxiliary symbol table entries are defined in XCOFF to contain reference and size information associated
with a defined function. These auxiliary entries are produced by compilers and assembler for use by the
symbolic debuggers. In XCOFF32, a function auxiliary symbol table entry contains the required
information. In XCOFF64, both a function auxiliary entry and an exeption auxiliary entry may be needed.
When both auxiliary entries are generated for a single C_EXT, C_WEAKEXT, or C_HIDEXT symbol, the
x_size and x_endndx fields must have the same values.

The function auxiliary symbol table entry is defined in the following table.

Chapter 2. File Formats 655

Table 27. Function Auxiliary Entry Format

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 4 N/A x_exptr File offset to exception table entry.

4 4 8 4 x_fsize Size of function in bytes

8 4 0 8 x_lnnoptr File pointer to line number

12 4 12 4 x_endndx Symbol table index of next entry beyond this
function

16 1 16 1 (pad) Unused

N/A 17 1 x_auxtype Contains _AUX_FCN; Type of auxiliary entry

Field Definitions: The following defines the fields listed in the Function Auxiliary Entry Format table:

x_exptr (XCOFF32 only) This field is a file pointer to an exception table entry. The value is the byte offset
from the beginning of the XCOFF object file. In an XCOFF64 file, the exception table offsets are in
an exception auxiliary symbol table entry.

x_fsize Specifies the size of the function in bytes.
x_lnnoptr Specifies a file pointer to the line number. The value is the byte offset from the beginning of the

XCOFF object file.
x_endndx Specifies the symbol table index of the next entry beyond this function.

The exception auxiliary symbol table entry, defined in XCOFF64 only, is shown in the following table.

Table 28. Exception Auxiliary Entry Format (XCOFF64 only)

Offset Length Name Description

0 8 x_exptr File offset to exception table entry.

8 4 x_fsize Size of function in bytes

12 4 x_endndx Symbol table index of next entry beyond this function

16 1 (pad) Unused

17 1 x_auxtype Contains _AUX_EXCEPT; Type of auxiliary entry

Field Definitions: The following defines the fields listed in the Exception Auxiliary Entry Format table:

x_exptr This field is a file pointer to an exception table entry. The value is the byte offset from the beginning
of the XCOFF object file.

x_fsize Specifies the size of the function in bytes.
x_endndx Specifies the symbol table index of the next entry beyond this function.

Block Auxiliary Entry for the C_BLOCK and C_FCN Symbols
The section auxiliary symbol table entry is defined in XCOFF to provide information associated with the
begin and end blocks of functions. The section auxiliary symbol table entry is produced by compilers for
use by the symbolic debuggers.

Table 29. Table Entry Format

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

0 4 N/A (no name) Reserved

4 2 0 4 x_lnno Source line number

656 Files Reference

Table 29. Table Entry Format (continued)

XCOFF32 XCOFF64 Name Description

Offset Length Offset Length

6 12 4 13 (no name) Reserved

N/A 17 1 x_auxtype Contains _AUX_SYM; Type of auxiliary entry

Field Definitions: The following defines the fields above:

(no name) Reserved.
x_lnno Specifies the line number of a source file. The maximum value of this field is 65535 for XCOFF64

and 232 for XCOFF64.
(no name) Reserved.

Section Auxiliary Entry for the C_STAT Symbol
The section auxiliary symbol table entry ID is defined in XCOFF32 to provide information in the symbol
table concerning the size of sections produced by a compiler or assembler. The generation of this
information by a compiler is optional, and is ignored and removed by the binder.

Table 30. Section Auxiliary Entry Format (XCOFF32 Only)

Offset Length in Bytes Name Description

0 4 x_scnlen Section length

4 2 x_nreloc Number of relocation entries

6 2 x_nlinno Number of line numbers

8 10 (no name) Reserved

Field Definitions: The following list defines the fields:

x_scnlen Specifies section length in bytes.
x_nreloc Specifies the number of relocation entries. The maximum value of this field is 65535.
x_nlinno Specifies the number of line numbers. The maximum value of this field is 65535.
(no name) Reserved.

For general information on the XCOFF file format, see ″XCOFF Object File Format.″ For more information
on the symbol table, see ″Symbol Table Information.″

For information on debugging, see ″Debug Section.″

Symbol Table Field Contents by Storage Class
This section defines the symbol table field contents for each of the defined storage classes (n_sclass)
that are used in XCOFF. The following table lists storage class entries in alphabetic order. See ″Symbol
Table Entry (syms.h)″ for more information.

Table 31. Symbol Table by Storage Class

Class Definition n_name n_value n_scnum Aux. Entry

C_BCOMM 135
Beginning of common
block

Name of the common
block*

0, undefined N_DEBUG

C_BINCL 108
Beginning of include
file

Source name of the
include file**

File pointer N_DEBUG

Chapter 2. File Formats 657

Table 31. Symbol Table by Storage Class (continued)

Class Definition n_name n_value n_scnum Aux. Entry

C_BLOCK 100
Beginning or end of
inner block

.bb or .eb Relocatable address N_SCNUM BLOCK

C_BSTAT 143
Beginning of static
block

.bs Symbol table index N_DEBUG

C_DECL 140
Declaration of object
(type)

Debugger stabstring* 0, undefined N_SCNUM

C_ECOML 136 Local
member of common
block

Debugger stabstring* Offset within common
block

N_ABS

C_ECOMM 137 End
of common block

Debugger stabstring* 0, undefined N_DEBUG

C_EINCL 109 End of
include file

Source name of the
include file**

File pointer N_DEBUG

C_ENTRY 141
Alternate entry

* 0, undefined N_DEBUG

C_ESTAT 144 End of
static block

.es 0, undefined N_DEBUG

C_EXT 2 External
symbol (defining
external symbols for
binder processing)

Symbol Name** Relocatable address N_SCNUM or
N_UNDEF

FUNCTION CSECT

C_FCN 101
Beginning or end of
function

.bf or .ef Relocatable address N_SCNUM BLOCK

C_FILE 103 Source
file name and
compiler information

.file or source file
name (if no auxiliary
entries)**

Symbol table index N_DEBUG FILE

C_FUN 142 Function
or procedure

Debugger stabstring* Offset within
containing csect

N_ABS

C_GSYM 128 Global
variable

Debugger stabstring* 0, undefined N_DEBUG

C_HIDEXT 107
Unnamed external
symbol

Symbol Name or
null**

Relocatable address N_SCNUM FUNCTION CSECT

C_INFO 100
Comment section
reference

Info Name Identifier
or null**

Offset within comment
section

N_SCNUM

C_LSYM 129
Automatic variable
allocated on stack

Debugger stabstring* Offset relative to
stack frame

N_ABS

C_NULL 0 Symbol
table entry marked for
deletion.

0x00DE1E00 Any

C_PSYM 130
Argument to
subroutine allocated
on stack

Debugger stabstring* Offset relative to
stack frame

N_ABS

658 Files Reference

Table 31. Symbol Table by Storage Class (continued)

Class Definition n_name n_value n_scnum Aux. Entry

C_RPSYM 132
Argument to function
or procedure stored in
register

Debugger stabstring* Register number N_ABS

C_RSYM 131
Register variable

Debugger stabstring* Register number N_ABS

C_STAT 3 Static
symbol (Unknown.
Some compilers
generate these
symbols in the symbol
table to identify size
of the .text , .data ,
and .bss sections.
Not used or
preserved by binder.)

Symbol Name** Relocatable address N_SCNUM SECTION

C_STSYM 133
Statically allocated
symbol

Debugger stabstring* Offset within csect N_ABS

C_TCSYM 134
Reserved

Debugger stabstring*

C_WEAKEXT 111
Weak external symbol
(defining weak
external symbols for
binder processing)

Symbol Name** Relocatable address N_SCNUM or
N_UNDEF

FUNCTION CSECT

Notes:

1. *For long name, the n_offset value is an offset into the .debug section.

2. **For long name, the n_offset value is an offset into the string table.

Storage Classes by Usage and Symbol Value Classification
Following are the storage classes used and relocated by the binder. The symbol values (n_value) are
addresses.

Class Description
C_EXT Specifies an external or global symbol
C_WEAKEXT Specifies an external or global symbol with weak binding
C_HIDEXT Specifies an internal symbol
C_BLOCK Specifies the beginning or end of an inner block (.bb or .eb)
C_FCN Specifies the beginning or end of a function (.bf or .ef only)
C_STAT Specifies a static symbol (contained in statics csect)

Following are storage classes used by the binder and symbolic debugger or by other utilities for file
scoping and accessing purposes:

C_FILE Specifies the source file name. The n_value field holds the symbol index of the next file entry. The
n_name field is the name of the file.

C_BINCL Specifies the beginning of include header file. The n_value field is the line number byte offset in the
object file to the first line number from the include file.

C_EINCL Specifies the end of include header file. The n_value field is the line number byte offset in the object
file to last line number from the include file.

Chapter 2. File Formats 659

C_INFO Specifies the location of a string in the comment section. The n_value field is the offset to a string of
bytes in the specified STYP_INFO section. The string is preceded by a 4-byte length field. The n_name
field is preserved by the binder. An application-defined unique name in this field can be used to filter
access to only those comment section strings intended for the application.

Following are the storage classes that exist only for symbolic debugging purposes:

C_BCOMM Specifies the beginning of a common block. The n_value field is meaningless; the name is the name of
the common block.

C_ECOML Specifies a local member of a common block. The n_value field is byte-offset within the common block.
C_ECOMM Specifies the end of a common block. The n_value field is meaningless.
C_BSTAT Specifies the beginning of a static block. The n_value field is the symbol table index of the csect

containing static symbols; the name is .bs.
C_ESTAT Specifies the end of a static block. The n_value field is meaningless; the name is .es.
C_DECL Specifies a declaration of object (type declarations). The n_value field is undefined.
C_ENTRY Specifies an alternate entry (FORTRAN) and has a corresponding C_EXT or C_WEAKEXT symbol.

The n_value field is undefined.
C_FUN Specifies a function or procedure. May have a corresponding C_EXT or C_WEAKEXT symbol. The

n_value field is byte-offset within the containing csect.
C_GSYM Specifies a global variable and has a corresponding C_EXT or C_WEAKEXT symbol. The n_value field

is undefined.
C_LSYM Specifies an automatic variable allocated on the stack. The n_value field is byte offset relative to the

stack frame (platform dependent).
C_PSYM Specifies an argument to a subroutine allocated on the stack. The n_value field is byte-offset relative to

the stack frame (platform dependent).
C_RSYM Specifies a register variable. The n_value field is the register number.
C_RPSYM Specifies an argument to a function or procedure stored in a register. The n_value field is the register

number where argument is stored.
C_STSYM Specifies a statically allocated symbol. The n_value field is byte-offset within csect pointed to by

containing C_BSTAT entry.

For general information on the XCOFF file format, see ″XCOFF Object File Format.″ For more information
on the symbol table, see ″Symbol Table Information.″

For information on debugging, see ″Debug Section.″

String Table
IN XCOFF32, the string table contains the names of symbols that are longer than 8 bytes. In XCOFF64,
the string table contains the names of all symbols. If the string table is present, the first 4 bytes contain the
length (in bytes) of the string table, including the length of this length field. The remainder of the table is a
sequence of null-terminated ASCII strings. If the n_zeroes field in the symbol table entry is 0, then the
n_offset field gives the byte offset into the string table of the name of the symbol.

If a string table is not used, it may be omitted entirely, or a string table consisting of only the length field
(containing a value of 0 or 4) may be used. A value of 4 is preferable. The following table shows string
table organization.

Table 32. String Table Organization

Offset Length in Bytes Description

0 4 Length of string table.

4 n Symbol name string, null-terminated.

Field repeats for each symbol name.

660 Files Reference

For general information on the XCOFF file format, see ″XCOFF Object File Format.″

dbx Stabstrings
The debug section contains the symbolic debugger stabstrings (symbol table strings). It is generated by
the compilers and assemblers. It provides symbol attribute information for use by the symbolic debugger.

See ″Debug Section″ for a general discussion.

Stabstring Terminal Symbols
In the stabstring grammar, there are five types of terminal symbols, which are written in all capital letters.
These symbols are described by the regular expressions in the following list:

Note: The [] (brackets) denote one instance, []* (brackets asterisk) denote zero or more instances, []+
(brackets plus sign) denote one or more instances, () (parentheses) denote zero or one instance, .*
(dot asterisk) denotes a sequence of zero or more bytes, and | (pipe) denotes alternatives.

Symbol Regular Expression
NAME [^ ; : ’ ″] (A name consists of any non-empty set of characters, excluding ; : ’ or ″.)
STRING ’.*’ | ″.*″, where \″, \’, or \\ can be used inside the string

Within a string, the \ (backslash character) may have a special meaning. If the character following
the \ is another \, one of the backslashes is ignored. If the next character is the quote character
used for the current string, the string is interpreted as containing an embedded quote. Otherwise,
the \ is interpreted literally. However, if the closing quote is the last character in the stabstring,
and a \ occurs immediately before the quote, the \ is interpreted literally. This use is not
recommended.

The \ must be quoted only in the following instances:

v The \ is the last character in the string (to avoid having the closing quote escaped).

v The \ is followed by the current quote character.

v The \ is followed by another \.

An escaped quote is required only when a single string contains both a single quote and a
double quote. Otherwise, the string should be quoted with the quote character not contained in
the strings.

A string can contain embedded null characters, so utilities that process stabstrings must use the
length field to determine the length of a stabstring.

INTEGER (-)[0-9]+
HEXINTEGER [0-9A-F]+

The hexadecimal digits A-F must be uppercase.
REAL [+-][0-9]+(.)[0-9]*([eEqQ](+-)[0-9]+) | (+-)INF | QNAN | SNAN

Real numbers are the same strings recognized by the scanf subroutine when using the ″%lf″
pattern. Therefore, white space may occur before a real number.

Stabstring Grammar
REALs may be preceded by white space, and STRINGs may contain any characters, including null and
blank characters. Otherwise, there are no null or blank characters in a stabstring.

Long stabstrings can be split across multiple symbol table entries for easier handling. In the stabstring
grammar, a # (pound sign) indicates a point at which a stabstring may be continued. A continuation is
indicated by using either the ? (question mark) or \ as the last character in the string. The next part of the
stabstring is in the name of the next symbol table entry. If an alternative for a production is empty, the
grammar shows the keyword /*EMPTY*/.

The following list contains the stabstring grammar:

Chapter 2. File Formats 661

Stabstring:
Basic structure of stabstring:

NAME : Class
Name of object followed by object classification

:Class Unnamed object classification.

Class: Object classifications:

c = Constant ;
Constant object

NamedType
User-defined types and tags

Parameter
Argument to subprogram

Procedure
Subprogram declaration

Variable
Variable in program

Label Label object.

Constant:
Constant declarations:

b OrdValue
Boolean constant

c OrdValue
Character constant

e TypeID , OrdValue
Enumeration constant

i INTEGER
Integer constant

r REAL
Floating point constant

s STRING
String constant

C REAL, REAL
Complex constant

S TypeID , NumElements , NumBits , BitPattern
Set constant.

OrdValue:
Associated numeric value: INTEGER

NumElements:
Number of elements in the set: INTEGER

NumBits:
Number of bits in item: INTEGER

NumBytes:
Number of bytes in item: INTEGER

662 Files Reference

BitPattern:
Hexadecimal representation, up to 32 bytes: HEXINTEGER

NamedType:
User-defined types and tags:

t TypeID
User-defined type (TYPE or typedef), excluding those that are valid for T TypeID

T TypeID
Struct, union, class, or enumeration tag

Parameter:
Argument to procedure or function:

a TypeID
Passed by reference in general register

p TypeID
Passed by value on stack

v TypeID
Passed by reference on stack

C TypeID
Constant passed by value on stack

D TypeID
Passed by value in floating point register

R TypeID
Passed by value in general register

Procedure:
Procedure or function declaration:

Proc Procedure at current scoping level

Proc , NAME : NAME
Procedure named 1st NAME, local to 2nd NAME, where 2nd NAME is different from the
current scope.

Variable:
Variable in program:

TypeID
Local (automatic) variable of type TypeID

d TypeID
Floating register variable of type TypeID

r TypeID
Register variable of type TypeID

G TypeID
Global (external) variable of type TypeID

S TypeID
Module variable of type TypeID (C static global)

V TypeID
Own variable of type TypeID (C static local)

Y FORTRAN pointer variable

Z TypeID NAME
FORTRAN pointee variable

Chapter 2. File Formats 663

Label: Label:

L Label name.

Proc: Different types of functions and procedures:

f TypeID
Private function of type TypeID

g TypeID
Generic function (FORTRAN)

m TypeID
Module (Modula-2, ext. Pascal)

J TypeID
Internal function of type TypeID

F TypeID
External function of type TypeID

I (capital i) Internal procedure

P External procedure

Q Private procedure

TypeID:
Type declarations and identifiers:

INTEGER
Type number of previously defined type

INTEGER = TypeDef
New type number described by TypeDef

INTEGER = TypeAttrs TypeDef
New type with special type attributes

TypeAttrs:
@ TypeAttrList ;

Note: Type attributes (TypeAttrs) are extra information associated with a type, such as alignment
constraints or pointer-checking semantics. The dbx program recognizes only the size
attribute and the packed attribute. The size attribute denotes the total size of a padded
element within an array. The packed attribute indicates that a type is a packed type. Any
other attributes are ignored by dbx.

TypeAttrList:
List of special type attributes:

TypeAttrList ;
@ TypeAttr
TypeAttr

TypeAttr:
Special type attributes:

a INTEGER
Align boundary

s INTEGER
Size in bits

p INTEGER
Pointer class (for checking)

664 Files Reference

P Packed type

Other Anything not covered is skipped entirely

TypeDef:
Basic descriptions of objects:

INTEGER
Type number of a previously defined type

b TypeID ; # NumBytes
Pascal space type

c TypeID ; # NumBits
Complex type TypeID

d TypeID
File of type TypeID

e EnumSpec ;
Enumerated type (default size, 32 bits)

g TypeID ; # NumBits
Floating-point type of size NumBits

For i types, ModuleName refers to the Modula-2 module from which it is imported.

i NAME : NAME ;
Imported type ModuleName:Name

i NAME : NAME , TypeID ;
Imported type ModuleName:Name of type TypeID

k TypeID
C++ constant type

l ; # Usage-is-index; specific to COBOL

m OptVBaseSpec OptMultiBaseSpec TypeID : TypeID : TypeID ;
C++ pointer to member type; the first TypeID is the member type; the second is the type
of the class

n TypeID ; # NumBytes
String type, with maximum string length indicated by NumBytes

o NAME ;
Opaque type

o NAME , TypeID
Opaque type with definition of TypeID

w TypeID
Wide character

z TypeID ; # NumBytes
Pascal gstring type

C Usage
COBOL Picture

I NumBytes ; # PicSize
(uppercase i) Index is type; specific to COBOL

K CobolFileDesc;
COBOL File Descriptor

Chapter 2. File Formats 665

M TypeID ; # Bound
Multiple instance type of TypeID with length indicated by Bound

N Pascal Stringptr

S TypeID
Set of type TypeID

* TypeID
Pointer of type TypeID

& TypeID
C++ reference type

V TypeID
C++ volatile type

Z C++ ellipses parameter type

Array Subrange ProcedureType
For function types rather than declarations

Record
Record, structure, union, or group types

EnumSpec:
List of enumerated scalars:

EnumList
Enumerated type (C and other languages)

TypeID : EnumList
C++ enumerated type with repeating integer type

EnumList:
Enum EnumList Enum

Enum: Enumerated scalar description:
NAME : OrdValue , #

Array: Array descriptions:

a TypeID ; # TypeID
Array; FirstTypeID is the index type

A TypeID
Open array of TypeID

D INTEGER ,TypeID
N-dimensional dynamic array of TypeID

E INTEGER , TypeID
N-dimensional dynamic subarray of TypeID

O INTEGER , TypeID
New open array

P TypeID ; # TypeID
Packed array

Subrange:
Subrange descriptions:

r TypeID ; # Bound ; # Bound
Subrange type (for example, char, int,\,), lower and upper bounds

666 Files Reference

Bound:
Upper and lower bound descriptions:

INTEGER
Constant bound

Boundtype INTEGER
Variable or dynamic bound; value is address of or offset to bound

J Bound is indeterminable (no bounds)

Boundtype:
Adjustable subrange descriptions:

A Bound passed by reference on stack

S Bound passed by value in static storage

T Bound passed by value on stack

a Bound passed by reference in register

t Bound passed by value in register

ProcedureType:
Function variables (1st type C only; others Modula-2 & Pascal)

f TypeID ;
Function returning type TypeID

f TypeID , NumParams ; TParamList ;
Function of N parameters returning type TypeID

p NumParams ; TParamList ;
Procedure of N parameters

R NumParams ; NamedTParamList
Pascal subroutine parameter

F TypeID, NumParams ; NamedTParamList ;
Pascal function parameter

NumParams:
Number of parameters in routine:

INTEGER.

TParamList:
Types of parameters in Modula-2 function variable:

TParam
Type of parameter and passing method

TParam:
Type and passing method

TypeID , PassBy ; #

NamedTParamList:
Types of parameters in Pascal-routine variable:
/*EMPTY*/
NamedTPList

NamedTPList:
NamedTParam NamedTPList NamedTParam

NamedTParam:
Named type and passing method:

Chapter 2. File Formats 667

Name : TypeID , PassBy InitBody ; #
: TypeID , PassBy InitBody ; #
Unnamed parameter

Record:
Types of structure declarations:

v s NumBytes # FieldList ;

v Structure or record definition

v u NumBytes # FieldList ;

v Union

v v NumBytes # FieldList VariantPart ;

v Variant Record

v Y NumBytes ClassKey OptPBV OptBaseSpecList (ExtendedFieldListOptNameResolutionList ;

v C++ class

v G Redefinition , n NumBits # FieldList ;

v COBOL group without conditionals

Gn NumBits FieldList ;

v G Redefinition , c NumBits # CondFieldList ;

v COBOL group with conditionals

Gc NumBits CondFieldList ;

OptVBaseSpec:

v ptr-to-mem class has virtual bases.

/*EMPTY*/
Class has no virtual bases.

OptMultiBaseSpec:

m Class is multi-based.

/*EMPTY*/
Class is not multi-based.

OptPBV:

V Class is always passed by value.

/*EMPTY*/
Class is never passed by value.

ClassKey:

s struct

u union

c class

OptBaseSpecList:
/*EMPTY*/ BaseSpecList

BaseSpecList:
BaseSpec
BaseSpecList , BaseSpec

BaseSpec:
VirtualAccessSpec BaseClassOffset : ClassTypeID

668 Files Reference

BaseClassOffset:

INTEGER
Base record offset in bytes

ClassTypeID:

TypeID
Base class type identifier

VirtualAccessSpec:

v AccessSpec
Virtual

v Virtual

AccessSpec

/*EMPTY*/

GenSpec:

c Compiler-generated

/*EMPTY*/

AccessSpec:

i # Private

o # Protected

u # Public

AnonSpec:

a Anonymous union member

/*EMPTY*/

VirtualSpec:

v p Pure virtual

v Virtual

/*EMPTY*/

ExtendedFieldList:
ExtendedFieldList ExtendedField
/*EMPTY*/

ExtendedField:
GenSpec AccessSpec AnonSpec DataMember
GenSpec VirtualSpec AccessSpec OptVirtualFuncIndex MemberFunction
AccessSpec AnonSpec NestedClass
AnonSpec FriendClass
AnonSpec FriendFunction

DataMember:
MemberAttrs : Field ;

MemberAttrs:
IsStatic IsVtblPtr IsVBasePtr

Chapter 2. File Formats 669

IsStatic:
/*EMPTY*/

s Member is static.

IsVtblPtr:
/*EMPTY*/

p INTEGER NAME
Member is vtbl pointer; NAME is the external name of v-table.

IsVBasePtr:
/*EMPTY*/

b Member is vbase pointer.

r Member is vbase self-pointer.

Member Function:
[FuncType MemberFuncAttrs : NAME : TypeID ; #

MemberFuncAttrs:
IsStatic IsInline IsConst IsVolatile

IsInline:
/*EMPTY*/

i Inline function

IsConst:
/*EMPTY*/

k const member function

IsVolatile:
/*EMPTY*/

V Volatile member function

NestedClass:
N TypeID ; #

FriendClass:
(TypeID ; #

FriendFunction:
] NAME : TypeID ; #

OptVirtualFuncIndex:
/*EMPTY*/ INTEGER

FuncType:

f Member function

c Constructor

d Destructor

InitBody:
STRING
/*EMPTY*/

OptNameResolutionList:
/*EMPTY*/
) NameResolutionList

670 Files Reference

NameResolutionList: NameResolution
NameResolution , NameResolutionList

NameResolution: MemberName : ClassTypeID
Name is resolved by compiler.

MemberName:
Name is ambiguous.

MemberName:
NAME

FieldList:
Structure content descriptions:

Field /*EMPTY*/

FieldList Field
Member of record or union.

Field: Structure-member type description:

NAME : TypeID , BitOffset , NumBits ; #

VariantPart:
Variant portion of variant record:

[Vtag VFieldList]
Variant description

VTag: Variant record tag:

(Field Member of variant record

(NAME : ; #
Variant key name

VFieldList:
Variant record content descriptions:

VList
VFieldList VList

Member of variant record

VList: Variant record fields:

VField
VField VariantPart

Member of variant record

VField:
Variant record member type description:

(VRangeList : FieldList
Variant with field list

VRangeList:
List of variant field labels:

VRange
VRangeList , VRange

Member of variant record

VRange:
Variant field descriptions:

Chapter 2. File Formats 671

b OrdValue
Boolean variant

c OrdValue
Character variant

e TypeID , OrdValue
Enumeration variant

i INTEGER
Integer variant

r TypeID ; Bound ; Bound
Subrange variant

CondFieldList:
Conditions,#FieldList
FieldList# ;

Conditions:
/*Empty*/
Conditions condition

BitOffset:
Offset in bits from beginning of structure: INTEGER

Usage:
Cobol usage description:
PICStorageType NumBits , EditDescription , PicSize ;
Redefinition , PICStorageType NumBits , EditDescription , PicSize ;
PICStorageType NumBits , EditDescription , PicSize , # Condition ;
Redefinition , PICStorageType NumBits , EditDescription , PicSize , # Condition ;

Redefinition:
Cobol redefinition: r NAME

PICStorageType:
Cobol PICTURE types:

a Alphabetic

b Alphabetic, edited

c Alphanumeric

d Alphanumeric, edited

e Numeric, signed, trailing, included

f Numeric, signed, trailing, separate

g Numeric, signed, leading, included

h Numeric, signed, leading, separate

i Numeric, signed, default, comp

j Numeric, unsigned, default, comp

k Numeric, packed, decimal, signed

l Numeric, packed, decimal, unsigned

m Numeric, unsigned, comp-x

n Numeric, unsigned, comp-5

o Numeric, signed, comp-5

672 Files Reference

p Numeric, edited

q Numeric, unsigned

s Indexed item

t Pointer

EditDescription:
Cobol edit description:

STRING
Edit characters in an alpha PIC

INTEGER
Decimal point position in a numeric PIC

PicSize:
Cobol description length:

INTEGER
Number of repeated ’9’s in numeric clause, or length of edit format for edited numeric

Condition:
Conditional variable descriptions:

NAME : INTEGER = q ConditionType , ValueList ; #

ConditionType:
Condition descriptions:

ConditionPrimitive , KanjiChar

ConditionPrimitive:
Primitive type of Condition:

n Sign DecimalSite
Numeric conditional

a Alphanumeric conditional

f Figurative conditional

Sign: For types with explicit sign:

+ Positive

- Negative

[^+-] Not specified

DecimalSite:
Number of places from left for implied decimal point:

INTEGER

KanjiChar:
0 only if Kanji character in value: INTEGER

ValueList
Values associated with condition names

Value ValueList Value

Value Values associated with condition names:

INTEGER : ArbitraryCharacters #
Integer indicates length of string

Chapter 2. File Formats 673

CobolFileDesc:
COBOL file description:
Organization AccessMethod NumBytes

Organization:
COBOL file-description organization:

i Indexed

l Line Sequential

r Relative

s Sequential

AccessMethod:
COBOL file description access method:

d Dynamic

o Sort

r Random

s Sequential

PassBy:
Parameter passing method:

INTEGER
0 = passed-by reference; 1 = passed-by value

Related Information
Header Files.

The as command, dbx command, dump command, ld command, size command, strip command, and
what command.

674 Files Reference

Chapter 3. Special Files

A special file is associated with a particular hardware device or other resource of the computer system.
The operating system uses special files, sometimes called device files, to provide file I/O access to
specific character and block device drivers.

Special files, at first glance, appear to be just like ordinary files, in that they:

v Have path names that appear in a directory.

v Have the same access protection as ordinary files.

v Can be used in almost every way that ordinary files can be used.

However, there is an important difference between the two. An ordinary file is a logical grouping of data
recorded on disk. A special file, on the other hand, corresponds to a device entity. Examples are:

v An actual device, such as a line printer

v A logical subdevice, such as a large section of the disk drive

v A pseudo device, such as the physical memory of the computer (/dev/mem) or the null file (/dev/null).

Special files are distinguished from other files by having a file type (c or b, for character or block) stored in
the i-nodes to indicate the type of device access provided. The i-node for the special file also contains the
device major and minor numbers assigned to the device at device configuration time.

Note: Data corruption, loss of data, or loss of system integrity (a system crash) will occur if devices
supporting paging, logical volumes, or mounted file systems are accessed using block special files.
Block special files are provided for logical volumes and disk devices on the operating system and
are solely for system use in managing file systems, paging devices, and logical volumes. These
files should not be used for other purposes.

Several special files are provided with the operating system. By convention, special files are located in the
/dev directory.

More information is provided about the following special files:

3270cn Provides access to 3270 connection adapters by way of the 3270 connection adapter device
driver.

bus Provides access to the hardware bus by way of the machine I/O device driver.
cd Provides access to the cdrom device driver.
console Provides access to the system console.
dials Provides access to the dials.
dump Supports system dump.
entn Provides access to the 3COM Ethernet adapters by way of the Ethernet device handler for

this platform.
error Supports error logging.
fd Provides access to the diskette device driver.
fddin Provides access to the FDDI device driver by way of the FDDI device handler.
GIO Provides access to the graphics I/O (GIO) adapter.
ide Provides access to the Integrated Device Electronics (IDE) adapter driver.
kbd Provides access to the natively attached keyboard.
kmem and mem Provides privileged read and write access to virtual memory.
lft Implements a low-function terminal (LFT) device.
ide Provides access to the IDE adapter device driver.
lp Provides access to the line printer device driver.
lpfk Provides access to the lighted program function key (LPFK) array.
lvdd Provides access to the logical volume device driver.

© Copyright IBM Corp. 1997, 2002 675

mouse Provides access to the natively attached mouse.
mpqi Provides access to the Multiport Model 2 Adapter (MM2) SDLC device driver.
mpqn Provides access to multiprotocol adapters by way of the Multiprotocol Quad Port (MPQP)

device handler.
null Provides access to the null device.
nvram Provides access to platform-specific nonvolatile RAM used for system boot, configuration,

and fatal error information.
omd Provides access to the read/write optical device driver.
opn Provides diagnostic interface to the Serial Optical Link device driver.
ops0 Provides access to the Serial Optical Link device driver
pty Provides the pseudo-terminal (pty) device driver.
random Source of secure random output.
rcm Provides application interface to obtain and relinquish status of a graphics process through

the Rendering Context Manager (RCM) device driver.
rhdisk Provides raw access to the physical volume (fixed-disk) device driver.
rmt Provides access to the sequential-access bulk-storage medium device driver.
scsi Provides access to the SCSI adapter device driver.
serdasda Provides access and control functions to the serial DASD subsystem adapters.
serdasdc Provides access and control functions to the serial DASD subsystem controllers.
tablet Provides access to the tablet.
tmscsi Provides access to the SCSI Target-mode interface by way of the SCSI tmscsi device driver.
tokn Provides access to the token-ring adapters by way of the token-ring device handler.
trace Supports event tracing.
tty Supports the controlling terminal interface.
urandom Source of secure random output.
x25sn Provides access to the X.25 Interface Co-Processor/2 adapters.

Related Information
File Formats Overview defines and describes file formats.

Header Files Overview describes header files.

3270cn Special File

Purpose
Provides access to 3270 connection adapters by way of the 3270 connection adapter device handler.

Description
The 3270cn character special file provides access to the 3270 connection adapter device handler for the
purpose of emulating 3270 display stations and printers. The device handler is a multiplexed device
handler that supports an independent logical 3270 session on each of its channels.

The device handler supports two modes of operation:

Distributed Function Terminal (DFT) mode
In DFT mode, the adapter can appear as multiple SNA or non-SNA display sessions, non-SNA printer sessions, or
both, and is an intelligent device to the control unit. In this mode, the device handler provides the capability of
emulating several 3278/79 display stations. If the attached control unit does not support Extended Asynchronous
Event Device Status, either the control unit port or the device handler must be configured for one session only.
3278/79 emulation Control Unit Terminal (CUT) mode
In CUT mode, the adapter appears as a single-session, unintelligent device to the control unit. In this mode, the
device handler provides the capability of emulating a single 3278/79 display station.

676 Files Reference

The device handler supports up to four 3270 connection adapters, each of which may have up to five DFT
sessions or one CUT session.

The /usr/include/sys/io3270.h file contains the definitions of the structures used by the device handler.

Usage Considerations
When accessing the 3270 connection device handler, the following should be taken into account:

Driver initialization and termination The device handler may be loaded and
unloaded. The device handler supports the
configuration calls to initialize and terminate
itself, but does not support the configuration
call to query vital product data (VPD).

Special file support Subroutines other than open and close are
discussed in regard to the mode in which
the device handler is operating.

Subroutine Support
The 3270 device handler provides 3270-specific support for the following subroutines:

v open

v close

v read

v readx (non-SNA DFT mode only)

v write

v writex (non-SNA DFT mode only)

v ioctl

open and close Subroutines: The device handler supports the 3270cn special file as a
character-multiplex special file. The special file must be opened for both reading and writing (O_RDWR).

A special consideration exists for closing the 3270cn special file. If the file was opened in both CUT mode
and CUT-File Transfer mode, the close operation for CUT-File Transfer mode must precede the close
operation for CUT mode.

The special file name used in an open call takes on several different forms, depending on how the device
is to be opened. Types of special file names are:

dev/3270cn/C Starts the device handler in CUT mode for the selected port, where the value of n is 0 <= n
<= 7.

/dev/3270cn/F Starts the device handler in CUT File-Transfer mode for the selected port, where the value
of n is 0 <= n <= 7. The file must be currently open in CUT mode before it can be opened
in CUT File-Transfer mode.

/dev/3270cn/* Starts the device handler in DFT mode for the selected port, where the value of n is 0 <= n
<= 7 and the * (asterisk) is defined by P/a, as follows:

P/00, P/01, P/02,...P/1F
The printer session specified by the P variable is equal to the control unit session
address, and the value of a is less than or equal to 0x1F.

01 through 05
Terminal session number.

/dev/3270cn Starts the device handler in DFT mode for the selected port, where the value of n is 0 <= n
<= 7.

read Subroutine in Non-SNA DFT Mode: Data received by the communication adapter from the host is
placed in the buffer until the message is completed or the buffer is full. When either condition occurs, the

Chapter 3. Special Files 677

driver returns program control back to the application. The application can determine the status of a read
subroutine call by issuing a WDC_INQ ioctl operation.

If the WDC_INQ operation returns a status indicating that more data is available, the application should
immediately issue another read call. Available data must be read as soon as possible to avoid degrading
link or host performance.

If a read call is made and no data is available, the calling process is blocked until data becomes available.
To avoid blocking, use the poll subroutine to determine if data is available.

The host sends data as an outbound 3270 data stream. The device handler translates the command
codes in the outbound 3270 data stream. The command codes and translations are as follows:

Command Code Into Driver Out of Driver

Erase All Unprotected 0x6F 0x0F

Erase/Write 0xF5 0x03

Erase/Write Alternate 0x7E 0x0D

Read Buffer 0xF2 0x02

Read Modified 0xF6 0x06

Write 0xF1 0x01

Write Structured Field 0xF3 0x11

read Subroutine in SNA DFT Mode: The communication adapter receives data from the control unit in
individual SNA data segments. The device driver notifies the application that data is available. During the
read subroutine call, the data is transferred to the application’s user space from the device driver’s kernel
space (without the TCA header from the control unit), and control is passed back to the application. The
device driver acknowledges each SNA data segment received, making it unnecessary for the application to
inquire about the link status after the read call.

Note: The STAT_ACK ioctl operation is not valid in SNA DFT mode.

Unlike non-SNA DFT mode, neither chaining nor command interpretation is performed by the device driver
in SNA DFT mode. The application must both accumulate SNA data segments to form an response unit
(RU) and interpret any 3270 data contained within.

readx Subroutine in Non-SNA DFT Mode: Data received by the communication adapter from the host
is placed in the buffer until either the message completes or the buffer is full. Upon completion of the read
call, the io3270 structure pointed to by the read extension contains the status. One of the following status
codes is set in the io_flags field of the io3270 structure:

WDI_DAVAIL Additional data is available for this link address.
WDI_COMM A communication error occurred. The io_status field contains the corresponding message code.
WDI_PROG A program error occurred. The io_status field contains the corresponding message code.
WDI_MACH A hardware error occurred. The io_status field contains the corresponding message code.
WDI_FATAL An error occurred that prevents further communication with the host. This flag is optionally set in

addition to the WDI_COMM, WDI_PROG, or WDI_MACH flag. It is also set when a coax failure
occurs. In this case, the io_status field contains a value of WEB_610, but the WDI_COMM,
WDI_PROG, or WDI_MACH flag is not set.

When reset, the WDI_DAVAIL flag indicates that the data just read marks the completion of an outbound
3270 data stream.

678 Files Reference

If the WDI_DAVAIL flag indicates more data is available, another readx subroutine should be issued
immediately. Available data must be read as soon as possible to avoid degrading link or host performance.

If a readx subroutine call is made and no data is available, the calling process is blocked until data
becomes available. To avoid blocking, use the poll subroutine to determine if data is available.

Data received from the host is in the form of an outbound 3270 data stream. The device driver translates
the command codes in the outbound 3270 data stream.

Note: The 3270 write commands require the application to send a status to the host. Status is sent using
the WDC_SSTAT ioctl operation.

write Subroutine in Non-SNA DFT Mode: In non-SNA DFT mode, the write subroutine sends an
inbound 3270 data stream to the host. The buffer specified on a write subroutine call must contain a
complete inbound 3270 data stream. The write call is complete when it has successfully transferred from
the buffer specified on the subroutine call.

write Subroutine in SNA DFT Mode: In SNA DFT mode, the write subroutine transmits SNA data to the
host system. This data can be either a 3270 data stream with SNA headers or an SNA response.

The application sends data to the device driver, one RU at a time. The device driver is then responsible for
segmenting the inbound SNA data. If a second write call is made before the first call is processed, the
second call does not proceed until the device driver is ready. After the data is transferred from the
application’s user space to the device driver’s kernel space, the write subroutine completes and control is
returned to the application.

If the device driver detects a coax disconnect between two write calls, the second write call will return to
the application, with the errno global variable set to EFAULT.

writex Subroutine in Non-SNA DFT Mode: The writex subroutine sends an inbound 3270 data stream
to the host. The buffer specified on a writex subroutine call must contain a complete inbound 3270 data
stream.

The write subroutine is complete when it has successfully transferred the data from the specified buffer.
Upon completion of the write subroutine call, the io3270 structure pointed to by the write extension
contains the status. One of the following status codes is set in the io_flags field of the io3270 structure:

WDI_DAVAIL Indicates that data is available for this link address; the data must be read before any write can
occur.

WDI_COMM Indicates a communication error. The io_status field contains the corresponding message code.
WDI_PROG Indicates a program error. The io_status field contains the corresponding message code.
WDI_MACH Indicates a hardware error. The io_status field contains the corresponding message code.

ioctl Subroutine in DFT Mode: The ioctl subroutine may be issued to the device handler when it is in
DFT mode. The following are the available ioctl operations:

IOCINFO Returns the logical terminal number. This number is the EBCDIC representation of the controller
type and the controller attachment protocol in the iocinfo structure.

WDC_AUTO Valid only for non-SNA DFT mode. Provides the handler with the option to automatically
acknowledge the receipt of a valid 3270 data stream. An acknowledgment is sent only if the
beginning of the 3270 data stream consists of 0xF3 00 06 40 00 F1 C2 xx xx 10 14, where the xx
fields are not examined. This command also allows the driver not to indicate acknowledgment upon
receipt of data.

Chapter 3. Special Files 679

WDC_INQ Queries the status of the last non-SNA read or write call issued by the application. Also, the
WDC_INQ operation determines if data is available for reading. The status is placed in the
io_flags field of the io3270 structure. This field accepts the following values:

WDI_DAVAIL
Data is available for reading. The data is buffered either in the driver or in the
communication adapter. The data should be read immediately to avoid its having an
impact on performance.

In non-SNA DFT mode, a write or writex subroutine call cannot complete until the data
has been read. In SNA DFT mode, the WDI_DAVAIL flag is used only to indicate that data
is available when the device driver wakes up the application (if waiting on a poll or select
call) after receiving data from the control unit.

WDI_COMM, WDI_PROG, or WDI_MACH
Indicates a communication check, program check, or machine check, respectively. In each
of these cases, the io_status field contains a message code that specifies the type of
check.

WDI_FATAL
Indicates that an error has occurred that prevents further communication between the
application and the device driver, typically a coax disconnect or adapter failure. This flag
may be set in conjunction with the WDI_COMM, WDI_PROG, or WDI_MACH flag. If the
communications failure was caused by a coax disconnect, the io_status field contains a
value of WEB_610.

WDI_WCUS_30
A communications check reminder that occurs when there is a network failure and the
control unit is still communicating with the communication adapter. The specific type of
error is contained in the io_status field as a 5XX error code. The communications check
reminder is cleared automatically after the network condition is corrected.

WDI_WCUS_31
Indicates that the communications check reminder has been cleared.

WDI_CU
Valid only for SNA DFT mode. Indicates that an ACTLU or DACTLU request was received
by the device driver. The accompanying data is contained in the io_extra field of the
io3270 structure.

WDC_POR The link address is first disabled and then re-enabled to emulate a 3270 terminal power-on reset
function.

WDC_SSTAT Valid only for non-SNA DFT mode. Sends status to the host. The argument field contains one of
the following values:

STAT_ACK
The previously received 3270 data stream is valid, and the proper response is made to
the host.

STAT_RESET
Sends a RESET Key to the DFT device handler.

STAT_PRTCMP
The printer session has completed printing the data.

STAT_BERR
Received a bad buffer order or an invalid buffer address.

STAT_UNSUP
Received an unsupported 3270 command.

The /usr/include/sys/io3270.h file contains the definitions of the structures used by the
device handler.

Error Conditions in DFT Mode: The following error conditions may be returned when accessing the
device handler through the 3270cn special file:

680 Files Reference

EBUSY An open was requested for a channel that is already open.
EFAULT A buffer specified by the caller was not valid.
EINTR A subroutine call was interrupted.
EINVAL An invalid argument was received.
EIO An unrecoverable I/O error occurred on the requested data transfer.
ENODEV An open was requested for an invalid channel.
ENOMEM The driver could not allocate memory for use in the data transfer.
ENXIO An operation was requested for an invalid minor device number.

read Subroutine in CUT Mode: The read subroutine places data received by the communication
adapter in a buffer.

Note: To set the offset into the communication adapter’s buffer from which to read, use the EMSEEK ioctl
operation.

Two ioctl operations control the way the read subroutine operates: the EMNWAIT and EMWAIT
operations. The EMNWAIT operation indicates that subsequent read calls should be satisfied immediately.
The EMWAIT ioctl operation (the default) indicates that read calls should be satisfied only after an interrupt
from the control unit indicates that something has changed on the display. The following are control unit
interrupts:

Buffer Modification Complete The read subroutine returns the number of bytes
requested.

Load I/O Address Command Decoded The read subroutine returns 0 for the number of bytes
read.

write Subroutine in CUT Mode: The write subroutine sends an inbound 3270 data stream to the host.
The buffer specified on a write subroutine must contain a complete inbound 3270 data stream. To set the
offset into the communication adapter buffer to begin to write, use the EMSEEK ioctl operation.

ioctl Subroutine in CUT Mode: The ioctl subroutine may be issued to the device handler in CUT mode.
The following are acceptable ioctl operations:

EMKEY Sends a scancode to the emulation adapter. The scan code is logically ORed with the EMKEY
operation, and the result is used as the command field on the ioctl subroutine call.

EMCPOS Returns the position of the cursor relative to the start of the communication adapter buffer.
EMXPOR Disables the link address and then re-enables it to emulate a 3270 terminal power-on reset function.
EMNWAIT Specifies that read subroutine calls should be satisfied immediately.
EMWAIT Specifies that read subroutine calls should be satisfied only after a change to the emulation buffer or

the cursor position (this is the default setting).
EMVISND Returns the current contents of the emulation Visual/Sound register in the integer field. The address of

this field is specified as the argument to the EMVISND operation.
EMIMASK Provides a mask to specify which interrupts appear. The argument field specifies the address of the

mask. The low-order bits of the mask (0 through 7) correspond to bits 0 through 7 of the Interrupt
Status register. Bits 8 through 15 of the mask correspond to bits 0 through 7 of the Visual/Sound
register.

This operation allows the driver to ignore visual or sound interrupts except for those bits specifically
masked ON. When a bit is on, the interrupt that corresponds to that bit position appears. Interrupts that
correspond to off (0) bit positions in the mask are discarded by the device handler. The previous mask
setting is returned to the caller in the mask field. The interrupt status bits and the visual or sound bits
are documented in the IBM 3270 Connection Technical Reference.

IOCINFO Returns a structure of device information, as defined in the /usr/include/sys/devinfo.h file, to the
user-specified area. The devtype field has a value of DD_EM78, which is defined in the devinfo.h file,
and the flag field value has a value of 0.

EMSEEK Sets the offset into the communication adapter buffer to begin a read or write subroutine call.

Chapter 3. Special Files 681

Error Conditions in CUT Mode: The following error conditions may be returned when accessing the
device handler through the dev/3270cn special file:

EBUSY An open was requested for a channel that is already open. The keystroke buffer is full.
EFAULT A buffer specified by the caller is not valid.
EINTR A subroutine call was interrupted.
EINVAL An invalid argument was specified on an ioctl call.
EL3RST A reset command was received by the communications adapter.
ENOCONNECT The connection to the control unit stopped while a read operation, for which the EMWAIT ioctl

operation had been specified, was waiting.
EIO An unrecoverable I/O error occurred on the requested data transfer.
ENXIO An operation was requested for a minor device number that is not valid.

This special file requires the IBM 3270 Connection Adapter.

Related Information
Special Files Overview.

The close subroutine, open subroutine, poll subroutine, read subroutine, write subroutine, ioctl
subroutine.

bus Special File

Purpose
Provides access to each of the hardware buses by way of the machine I/O device driver.

Description
The bus special files consist of a pseudo-driver in the kernel that allows a privileged user to access each
hardware I/O bus. This is done indirectly by using the ioctl subroutine. The calling process, however, must
have the appropriate system privilege to open the bus special files.

For additional information on bus special files, see device configuration documentation in AIX 5L Version
5.2 Kernel Extensions and Device Support Programming Concepts and machine device driver
documentation in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

This capability should be used only by device initialization and configuration programs. Programs that
depend upon the bus device interface may not be portable to machines with different hardware.

There is at least one bus special file, usually the /dev/pci0 or the /dev/bus0 special file. This file
accesses the primary hardware bus. One bus special file exists for each hardware bus on the machine.
Each bus special file gains access to the corresponding hardware bus, and exists only if the hardware bus
is present or was present at one time. Run the following command to generate a list of all the defined bus
special files for a machine:
lsdev -C -c bus -F name | xargs -i echo
/dev/{}

Related Information
The ioctl subroutine.

Special Files Overview.

682 Files Reference

Device Configuration Subsystem Programming Introduction, Machine Device Driver, Understanding Device
Driver Classes, in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

cd Special File

Purpose
Provides access to the CD-ROM device driver.

Description
The CD-ROM special file provides block and character (raw) access to disks in the CD-ROM drives.

The r prefix on a special file name means the drive is accessed as a raw device rather than a block
device. Performing raw I/O with a compact disk requires the performance of all data transfers in multiples
of the compact-disk logical block length. Also, all lseek subroutines made to the raw CD-ROM device
driver must set the file offset pointer to a value that is a multiple of the specified logical block size.

CD-ROM Device Drivers
Compact disks, used in CD-ROM device drivers, are read-only media that provide storage for large
amounts of data. The special files /dev/cd0, /dev/cd1,... provide block access to compact disks. The
special files /dev/rcd0, /dev/rc1,... provide character access.

When a CD-ROM disc is ejected from the drive for a mounted CD-ROM file system, the files on the
compact disc can no longer be accessed. Before these files can be accessed again, the file systems
mounted from the CD-ROM must be unmounted. Processes having files open on these file systems should
be exited. Processes having current directories on these file systems should be moved. If these actions do
not work, perform a forced unmount.

Another problem that results from ejecting the CD-ROM disc for a mounted CD-ROM file system is that
the man command can become unresponsive. Reinserting the CD-ROM disc will not fix the problem. All
processes (graphical and ASCII) should be exited and the file system should be forced unmounted and
mounted again. Afterwards, any man commands can be started again.

Device-Dependent Subroutines
Most CD-ROM operations are implemented using the open, read, and close subroutines. However, for
some purposes, use of the openx (extended) subroutine is required.

openx Subroutine The openx subroutine is supported to provide additional functions to the open
sequence. The openx subroutine requires appropriate authority to start. Attempting to
execute this subroutine without the proper authority results in a return value of -1,
with the errno global variable set to EPERM.

ioctl Subroutine The IOCINFO ioctl operation is defined for all device drivers that use the ioctl
subroutine. The remaining ioctl operations are all physical volume device-specific
operations. Diagnostic mode is not required for the following operation. The IOCINFO
operation returns a devinfo structure, which is defined in the devinfo.h file.

Error Codes
In addition to the error codes listed for the ioctl, open, read, and write subroutines, the following error
codes are also possible:

EACCES A subroutine other than ioctl or close was attempted while in Diagnostic mode.
EACCES A normal read call was attempted while in Diagnostic mode.
EFAULT Illegal user address.
EBUSY The target device is reserved by another initiator.
EINVAL The device was opened with a mode other than read-only.
EINVAL An nbyte parameter to a read subroutine is not an even multiple of the block size.

Chapter 3. Special Files 683

EINVAL A sense-data buffer length greater than 255 is not valid for a CDIOCMD ioctl operation.
EINVAL A data buffer length greater than that allowed by the drive is not valid for a CDIOCMD ioctl

operation.
EINVAL An attempt was made to configure a device that is still open.
EINVAL An illegal configuration command has been given.
EMFILE An open call has been attempted for a SCSI adapter that already has the maximum permissible

number of open devices.
ENOTREADY There is no compact disk in the drive.
ENODEV An attempt was made to access a device that is not defined.
ENODEV An attempt was made to close a device that has not been defined.
EMEDIA The media was changed.
EIO Hardware error or aborted command or illegal request.
EIO An attempt has been made to read beyond the end of media.
EPERM This subroutine requires appropriate authority.
ESTALE A CD-ROM disk was ejected (without first being closed by the user) and then either re-inserted or

replaced with a second disk.
ETIMEDOUT An I/O operation has exceeded the given timer value.

Related Information
The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine.

The scdisk SCSI Device Driver in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems
Volume 1.

SCSI Subsystem Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

console Special File

Purpose
Provides access to the system console.

Description
The /dev/console special file provides access to the device or file designated as the system console. This
file can be designated as the console device by the person administering the system or a user with the
appropriate permissions. The console character special file provides access to the console device driver.
The console device driver in turn directs input and output to the device or file selected as the system
console.

The system console is typically a terminal or display located near the system unit. It has two functions in
the operating system. First, it provides access to the system when it is operating in a non-multiuser mode.
(This would be the case during maintenance and diagnostic sessions.) A console login is also normally
provided on this device for all operating system run levels.

Second, the system console displays messages for system errors and other problems requiring
intervention. These messages are generated by the operating system and its various subsystems when
starting or operating. The system console can also be redirected to a file or to the /dev/null special file for
systems operating without a console device.

Console Driver Configuration Support
Console driver configuration support allows the system console to be assigned or reassigned to a
specified device or file. Such support also provides query functions to determine the current and

684 Files Reference

configured path names for the device or file designated as the console. This configuration support is used
by the swcons, chcons, and lscons high-level system management commands. It is also used by the
console configuration method at system startup.

The swcons (switch console) command can be used during system operation to switch the system
console output to a different target temporarily. This command switches only system information, error, and
intervention-required messages to the specified destination. The swcons command does not affect the
operation of the system console device that provides a login through the getty command. The device or
file specified when using the swcons command remains the target for console output until one of the
following happens:

v Another swcons command is issued.

v The system is started again.

v The console driver detects an error when accessing the designated device or file.

If an open or write error is detected on the device or file specified by the swcons command, the console
device driver switches all output back to the device or file providing console support when the system
started.

The chcons (change console) command can be used to switch the system console output to a different
device or file for the next startup. This command does not affect the current console selection, but
becomes effective when the system is started again.

When requested to activate a login on the console device, the getty program (which provides login
support) uses the console configuration support to determine the path name of the targeted console device
used at startup. This action ensures that the swcons command does not effect the console device being
used for login.

Usage Considerations
The open, close,read, write, ioctl, select, and poll subroutines are supported by the console device
driver and may be used with the /dev/console special file. These subroutines are redirected to the device
or file serving as the current system console device by the console device driver.

open and close Subroutines: When an open subroutine call is issued to the console device driver, it is
redirected to the device or file currently chosen as the console device. If the system console choice is a
file, the file is opened with the append and create options when the first open of the dev/console file is
received. Subsequent opens have no effect when the console selection is a file. However, the opens are
then passed to the device driver supporting the device chosen as the console.

If the console selection has been temporarily switched using the swcons command and the first open of
the new underlying device fails, the console device driver switches back to the console device or file with
which the system was booted. This prevents important system messages from being lost.

An ext parameter passed using the openx subroutine is passed to the device driver supporting the
console target or else ignored. (The latter is true if the console selection is a file.)

The close subroutine support is standard.

select, poll, and ioctl Subroutines: The select, poll, and ioctl subroutines are redirected to the current
system console device when the console selection is not a file. If the selected console device is a file, the
console device driver returns an error indicating that the subroutine is not supported.

An ext parameter passed to the ioctlx subroutine is then passed to the device driver supporting the
console target, or else ignored. (The latter is true if the console selection is a file.)

read and write Subroutines: The write subroutine calls are redirected to the current console device or
file. If the console selection has been temporarily switched using the swcons command, and the write to

Chapter 3. Special Files 685

the targeted device or file is unsuccessful, the console device driver switches back to the console device
or file from which the system was started and tries the write again. This prevents important system
messages from being lost in case the temporary console target is unavailable or unsuccessful. The
console device driver should stay connected to the original system device until another swcons command
is issued.

If the current console selection is a device, it redirects the read subroutine call. If the current console
selection is a file, the read call is rejected with an error (EACCES).

An ext parameter passed to the readx or writex subroutine is passed to the device driver supporting the
console target, or else ignored. (The latter is true if the console selection is a file.)

Console Output Logging
All output sent to the console is logged to a system log file. Only output sent to the console is logged. Any
output sent to a device acting as the console is not logged. This means that system informational, error,
and intervention-required messages are captured (logged), while other types of output seen at the console
are not; e.g., getty output, smitty output, user interaction at the console device, etc.

The log file is based on the alog format; this format allows the file to wrap after it attains a predetermined
maximum size. The alog command is typically used to view the console log file. The console log file
deviates from the normal alog format in that each record of the file contains, in addition to the logged text,
the user id who wrote to the console and the epoch time when it was written. The epoch time is formatted
and displayed in the user’s locale date and time when the file is output by the alog command.

When the console device is configured or when any modification is made to the console log file, ownership
of the file is set to root and permissions are set to 622 to match that of the console device driver special
file. The root user can modify the ownership or permissions, but they will not persist across boots.

The swcons command is used to make changes to console logging parameters during system operation;
these changes are rescinded at the next console device configuration (typically reboot), and the original
console logging parameters are reinstated.

The chcons command is used to make changes to the console logging parameters for the next console
device configuration (typically reboot). These changes do not apply to the current running system.

The console logging facility can also be configured using the alog command. When the alog -C flag is
used, changes are effective in the current running system and are persistent across boots. When the -s
flag is used (without) the -C) to change the file size, the file is changed immediately but this change is not
saved in the ODM and is not persistent across boots.

The parameters that control the console logging facility are the pathname of the log file, the maximum size
of the log file, and the verbosity index for logging. Restrictions on these parameters are:

v the log file path must be absolute

v the maximum file size must not exceed the current free space of the file system on which it is stored
(and the user entered value is rounded up to the nearest 4K boundary)

v verbosity values are 0-9 with any value greater than 0 indicating that all console output is to be
recorded.

Console Output Tagging
A facility is provided to prefix each console output message with the effective user ID of the user that sent
the message to the console. Only output sent to the console is tagged, any output sent to the device
acting as the console is not.

686 Files Reference

Both the swcons command and the chcons commands can be used to enable and disable console
output tagging with the same caveats about the persistence of the values applying as mentioned above in
Console Output Logging.

The console output tagging verbosity value is limited to the range 0-9. Any value greater than 0 causes all
console output to be tagged.

Files

/dev/null Provides access to the null device.

Related Information
The chcons command, getty command, lscons command, swcons command, alog command.

The consdef file.

The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, poll subroutine, read
subroutine, select subroutine, write subroutine.

dials Special File

Purpose
Provides access to the dials.

Description
The dials special file is the application interface to the dials. It allows the applications to receive operator
input from the dials and to set the granularity of the dials.

Configuration
Standard configuration methods are provided for the dials special file. The user cannot enter configurable
attributes by way of the command line.

Usage Considerations

open: An open subroutine call specifying the dials special file is processed normally except that the
Oflag and Mode parameters are ignored. An open request is rejected if the special file is already opened
or if a kernel extension attempts to open the dials special file. All dials inputs are flushed following an
open call until an input ring is established.

read and write: The dials special file does not support read or write subroutine calls. Input data is
obtained from the dials via the input ring. The read and write subroutine calls behave the same as read or
write to /dev/null. See ″LFT Input Ring″ in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepts for how to use the input ring.

ioctl: The dials special file supports the following ioctl operations:

IOCINFO Returns the devinfo structure.
DIALREGRING Registers input ring.
DIALRFLUSH Flushes input ring.
DIALSETGRAND Sets dial granularity.

Chapter 3. Special Files 687

Error Codes
The error codes can be found in the /usr/include/sys/errno.h file.

EFAULT Indicates insufficient authority to access address or invalid address.
EIO Indicates I/O error.
ENOMEM Indicates insufficient memory for required paging operation.
ENOSPC Indicates insufficient file system or paging space.
EINVAL Indicates invalid argument specified.
EINTR Indicates request interrupted by signal.
EPERM Indicates a permanent error occurred.
EBUSY Indicates device busy.
ENXIO Indicates unsupported device number.
ENODEV Indicates unsupported device or device type mismatch.

Files

/usr/include/sys/inputdd.h Contains declarations for ioctl commands and input ring report
format.

Related Information
The GIO special file, kbd special file, lpfk special file, mouse special file, tablet special file.

The close subroutine, ioctl subroutine, open subroutine, read subroutine, write subroutine.

Special Files Overview .

Graphic Input Devices Subsystem Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepts.

dump Special File

Purpose
Supports system dump.

Syntax
#include <sys/dump.h>

Description
The /dev/sysdump and /dev/sysdumpctl special files support system dumping. Minor device 0 of the
sysdump driver provides the interfaces for the system dump routine to write data to the dump device. The
sysdump driver also provides interfaces for querying or assigning the dump devices and initiating a dump.

Related Information
The dmp_ctl kernel service.

RAS Kernel Services in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

System Dump Facility in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

688 Files Reference

entn Special File

Purpose
Provides access to Ethernet high-performance LAN adapters by way of the Ethernet device handler.

Description
The /dev/entn character special file provides access to the Ethernet device handler for the purpose of
providing access to an Ethernet LAN. The device handler supports up to four adapters, each of which may
be running either or both of the standard Ethernet and IEEE 802.3 protocols.

Usage Considerations
When accessing the Ethernet device handler, the following should be taken into account:

Driver Initialization and Termination: The device handler can be loaded and unloaded. The handler
supports the configuration calls to initialize and terminate itself.

Special File Support: Calls other than the open and close subroutines are discussed based on the
mode in which the device handler is operating.

Subroutine Support
The Ethernet device handler supports the open and close, read, write, and ioctl subroutines in the
following manner:

open and close Subroutines: The device handler supports the /dev/entn special file as a
character-multiplex special file. The special file must be opened for both reading and writing (O_RDWR).
However, there are no particular considerations for closing the special file. The special file name used in
an open call depends upon how the device is to be opened. Types of special file names are:

/dev/entn An open call to this device is used to start the device handler for the selected port, where the
value of n is 0 <= n <= 7.

/dev/entn/D An open call to this device is used to start the device handler for the selected port in diagnostic
mode, where the value of n is 0 <= n <= 7.

read Subroutine: Can take the form of a read, readx, readv, or readvx subroutine. For this call, the
device handler copies the data into the buffer specified by the caller.

write Subroutine: Can take the form of a write, writex, writev, or writevx subroutine. For this call, the
device handler copies the user data into a buffer and transmits the data on the LAN.

ioctl Subroutine: The Ethernet device handler supports the following ioctl operations:

CCC_GET_VPD Returns adapter vital product data (VPD) if available and valid.
CIO_GET_FASTWRT Returns the parameters required to issue an ent_fastwrt call.
CIO_GET_STAT Returns current adapter and device handler status.
CIO_HALT Halts a session and unregisters a network ID.
CIO_QUERY Returns the current RAS counter values, as defined in the sys/comio.h and

sys/entuser.h files.
CIO_START Starts a session and registers a network ID.
ENT_SET_MULTI Sets or clears a multicast address.
IOCINFO Returns a device information structure to the user specified area. The devtype field

value is DD_NET_DH and the devsubtype field is value DD_EN, as defined in the
sys/devinfo.h file.

Chapter 3. Special Files 689

Error Codes
The following error codes may be returned when accessing the device handler through the dev/entn
special file:

EACCES Permission to access the port is denied for one of the following reasons:

v The device has not been initialized.

v The request to open the device in Diagnostic mode is denied.

v The call is from a kernel mode process.
EAFNOSUPPORT The address family is not supported by the protocol, or the multicast bit in the address is

not set.
EAGAIN The transmit queue is full.
EBUSY The request is denied because the device is already opened in Diagnostic mode, or the

maximum number of opens was reached.
EEXIST The define device structure (DDS) already exists.
EFAULT An address or parameter was specified that is not valid.
EINTR A subroutine call was interrupted.
EINVAL A range or operation code that is not valid was specified, or the device is not in Diagnostic

mode.
EIO An I/O error occurred.
ENOBUFS No buffers are available.
ENOCONNECT A connection was not established.
ENODEV The device does not exist.
ENOENT There is no DDS to delete.
ENOMEM The device does not have enough memory.
ENOMSG No message of desired type was available.
ENOSPC No space is left on the device (the multicast table is full).
ENOTREADY The device is not ready, a CIO_START operation was not issued, or the operation was

issued but did not complete.
ENXIO The device does not exist, or the maximum number of adapters was exceeded.
EUNATCH The protocol driver is not attached.

Related Information
The close subroutine, open subroutine, read or readx subroutine, write or writex subroutine, ioctl
subroutine.

Error Logging Special Files

Purpose
Support error logging.

Description
The error and errorctl special files support the logging of error events. Minor device 0 (zero) of the error
special file is the interface between processes that log error events and the errdemon (error daemon).
Error records are written to the error special file by the errlog library routine and the errsave and errlast
kernel services. The error special file timestamps each error record entry.

The error daemon opens error file for reading. Each read retrieves an entire error record. The format of
error records is described in the erec.h header file.

Each time an error is logged, the error ID, the resource name, and the time stamp are recorded in
nonvolatile random access memory (NVRAM). Therefore, in the event of a system crash, the last logged
error is not lost. When the error file is restarted, the last error entry is retrieved from NVRAM.

690 Files Reference

The standard device driver interfaces (open, close, read, and write) are provided for the error file. The
error file has no ioctl functions.

The ioctl function interface for the error special file is provided by the errorctl special file. This interface
supports stopping the error logging system, synchronizing the error logging system, and querying the
status of the error special file.

Related Information
Special Files Overview in AIX 5L Version 5.2 Files Reference

The errclear command, errdead command, errdemon command, errinstall command, errlogger
command, errmsg command, errpt command, errstop command, errupdate command.

The errlog subroutine.

The errsave and errlast kernel services.

RAS Kernel Services in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

Error Logging Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

fd Special File

Purpose
Provides access to the diskette device driver.

Description
The fd special file provides block and character (raw) access to diskettes in the diskette drives. The
special file name usually specifies both the drive number and the format of the diskette. The exceptions
are /dev/fd0 and /dev/fd1, which specify diskette drives 0 and 1, respectively, without specifying their
formats.

The generic special files /dev/fd0 and /dev/fd1 determine the diskette type automatically for both drive 0
and drive 1. First, the device-driver attempts to read the diskette using the characteristics of the default
diskette for the drive type. If this fails, the device-driver changes its characteristics and attempts to read
until it has read the diskette successfully or until it has tried all the possibilities supported for the drive type
by the device driver.

An r prefix on a special file name means that the drive is accessed as a raw device rather than a block
device. Performing raw I/O with a diskette requires that all data transfers be in multiples of the diskette
sector length. Also, all lseek subroutine calls made to the raw diskette device driver must result in a file
offset value that is a multiple of the sector size. For the diskette types supported, the sector length is
always 512 bytes.

Note: The diskette device driver does not perform read verification of data that is written to a diskette.

Types of Diskettes Supported
The fd special file supports three diskette drives: the 1.2MB, 5.25-inch diskette drive, and the 1.44MB and
2.88MB, 3.5-inch diskette drives. All fd special file names (except the generic special files /dev/fd0,
/dev/fd1, /dev/rfd0, and /dev/rfd1) contain suffixes that dictate how a diskette is to be treated. These
special file names have a format of PrefixXY, where the Prefix, X, and Y variables have the following
meanings:

Chapter 3. Special Files 691

Prefix Special file type. Possible values are fd and rfd, where the r indicates raw access to the special file.
X Drive number indicator. Possible values of 0 and 1 indicate drives 0 and 1, respectively.
Y Diskette format indicator. Possible values depend on the type of diskette being used. Either a single

character or a decimal point followed by numeric characters is allowed. Possible values are:

h Highest density supported by the drive type

l Lowest density supported by the drive type

.9 9 sectors per track (all three drive types)

.15 15 sectors per track (1.2MB, 5.25-inch drive only)

.18 18 sectors per track (both 3.5-inch drive types)

.36 36 sectors per track (2.88MB, 3.5-inch drive only)

1.44MB, 3.5-inch Diskette Special Files: Ten different special files are available for use with the
1.44MB, 3.5-inch diskette drive. The default diskette type assumed for this drive type is a double-sided,
80-cylinder, 18 sectors-per-track diskette.

An h or .18 as the suffix of the special file name (for example, /dev/rfd0h or /dev/fd0.18) forces a
diskette to be treated as a double-sided, 80-cylinder, 18 sectors-per-track diskette. An l or .9 as the suffix
of the special file name (for example, /dev/fd1l or /dev/rfd0.9) forces a diskette to be treated as a
double-sided, 80-cylinder, 9 sectors-per-track diskette.

2.88MB, 3.5-inch Diskette Special Files: Twelve different special files are available for use with the
2.88MB, 3.5-inch diskette drive. The default diskette type assumed for this drive type is a double-sided,
80-cylinder, 36 sectors-per-track diskette.

An h or .36 as the suffix of the special file name (for example, /dev/fd1h or /dev/fd0.36) forces a diskette
to be treated as a double-sided, 80-cylinder, 36 sectors-per-track diskette. An l or .9 as the suffix of the
special file name (for example, /dev/rfd0l or /dev/fd1.9) forces a diskette to be treated as a
double-sided, 80-cylinder, 9 sectors-per-track diskette. A suffix of .18 (for example, /dev/fd1.18) forces a
diskette to be treated as a double-sided, 80-cylinder, 18-sectors-per-track diskette.

1.2MB, 5.25-inch Diskette Special Files: Ten different special files are available for use with the 1.2MB,
5.25-inch diskette drive. The default diskette type assumed for this drive type is a double-sided,
80-cylinder, 15 sectors-per-track diskette.

An h or .15 as the suffix of the special file name (for example, /dev/rfd1h or /dev/fd0.15) forces a
diskette to be treated as a double-sided, 80-cylinder, 15 sectors-per-track diskette. An l or .9 as the suffix
of the special file name (for example, /dev/fd0l or /dev/rfd1.9) forces a diskette to be treated as a
double-sided, 80-cylinder, 9 sectors-per-track diskette.

Note: Regardless of the diskette drive type, an h as the suffix of the special file name forces a diskette to
be treated as the highest capacity diskette supported by the drive type. When an l is used as the
suffix of the special file name, the diskette is treated as the lowest capacity diskette supported by
the drive type.

Usage Considerations
When using subroutines with the fd special file, consider the following items:

open and close subroutines Only one process at a time can issue an open subroutine to gain
access to a particular drive. However, all child processes created
by a parent process that successfully opens a diskette drive
inherit the open diskette drive.

read and write subroutines No special considerations.

692 Files Reference

ioctl subroutines The possible ioctl operations and their descriptions are:

IOCINFO
Returns a devinfo structure (defined in the
/usr/include/sys/devinfo.h file) that describes the
device.

FDIOCSINFO
Sets the characteristics of the device driver diskette to
the values passed in the fdinfo structure, as defined in
the /usr/include/sys/fd.h file.

FDIOCGINFO
Gets the device-driver diskette characteristics and returns
the values in the fdinfo structure, as defined in the
/usr/include/sys/fd.h file.

FDIOCFORMAT
Formats a diskette track. The diskette is formatted using
data passed in an array of bytes. The length of this array
is four times the number of sectors per track on the
diskette. The reason for this is that 4 bytes of data must
be passed in for every sector on the track. The 4 bytes
contain, in this order, the cylinder number, the side
number (0 or 1), the sector number, and the number of
bytes per sector. This pattern must be repeated for every
sector on the track.

The diskette characteristics used during formatting are whatever
values are in the device driver when it receives the format
command. These characteristics need to be set to the desired
values prior to issuing the format command. There are three
ways to do this:

v Open the diskette driver using one of the format-specific special
files. As a result, the diskette characteristics for the driver will
be those of the diskette indicated by the special file.

v Open the diskette driver using one of the generic special files.
In this case, the diskette characteristics will be the default
characteristics for that driver.

v Set the characteristics explicitly using the FDIOCSINFO ioctl
operation.

For formatting, the diskette driver should be opened only when
the O_NDELAY flag is set. Otherwise, the driver will attempt to
determine the type of diskette in the drive, causing the open to
fail.

Related Information
The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine, write
subroutine.

fddin Special File

Purpose
Provides access to the FDDI device driver by way of the FDDI device handler.

Chapter 3. Special Files 693

Description
The fddin special file provides access to the FDDI device handler that provides access to a FDDI local
area network.

When accessing the FDDI device driver, the following information should be taken into account.

Driver Initialization and Termination
The device driver can be loaded and unloaded. The device driver supports the configuration calls to
initialize and terminate itself.

Special File Support
Subroutine calls other than those made with the open and close subroutines are discussed based on the
mode in which the device driver is operating.

Subroutine Support
The FDDI device driver provides specific support for the open, close, read, write, ioctl, select, and poll
subroutines.

The device driver supports the /dev/fddin special file as a character-multiplex special file. The special file
must be opened for both reading and writing. There are no particular considerations for closing the special
file. The special file name used in an open call differs depending upon how the device is to be opened.
Types of special file names are:

/dev/fddin Starts the device driver for the selected port.
/dev/fddin/D Starts the device driver for the selected port in Diagnostic mode.
/dev/fddin/C Starts the device driver for the selected port in Diagnostic Configuration mode.

Error Codes
The following error conditions may be encountered when accessing the FDDI device driver through the
/dev/fddin special file. The error codes can be found in the /usr/include/sys/errno.h file.

ENODEV Indicates that an invalid minor number was specified.
EINVAL Indicates that an invalid parameter was specified.
ENOMEM Indicates that the device driver was unable to allocate the required memory.
EINTR Indicates that a system call was interrupted.
EPERM Indicates that the Diagnostic mode open request was denied because the device was already

open.
EACCES Indicates one of the following:

v A non-privileged user tried to open the device in Diagnostic mode.

v An illegal call from a kernel-mode user.

v An illegal call from a user-mode user.
ENETDOWN Indicates one of the following:

v The network is down. The device is unable to process the requested operation.

v An unrecoverable hardware error.
ENETUNREACH Indicates that the device is in Network Recovery mode and is unable to process the requested

operation.
ENOCONNECT Indicates that the device has not been started.
EAGAIN Indicates that the transmit queue is full.
EFAULT Indicates that an invalid address was supplied.
EIO Indicates an error. See the status field for detailed information.
EMSGSIZE Indicates that the data was too large to fit into the receive buffer and that no ext parameter was

supplied to provide an alternate means of reporting this error with a status of
CIO_BUF_OVFLW.

694 Files Reference

Related Information
The close subroutine, ioctl subroutine, open subroutine, poll subroutine, read subroutine, select
subroutine, and write subroutine.

Special Files Overview in AIX 5L Version 5.2 Files Reference.

GIO Special File

Purpose
Provides access to the graphics I/O (GIO) adapter.

Description
The GIO special file is the application interface to the GIO adapter. The GIO special file provides
applications with the ability to determine what I/O devices are attached to the GIO adapter.

Configuration
Standard configuration methods are provided for the GIO special file. User configurable attributes for the
GIO special file do not exist.

Usage Considerations
The open subroutine call specifying the GIO special file is processed normally except that the Oflag and
Mode parameters are ignored. An open request is rejected if the special file is already opened or if a
kernel extension attempts to open the GIO special file.

Calls to the read and write routines behave as if the call was made to the /dev/null file.

The GIO special file supports the following functions with ioctls:

IOCINFO Returns the devinfo structure.
GIOQUERYID Returns the identifier of device connected to the GIO adapter.

Error Codes
The following error codes can be found in the /usr/include/sys/errno.h file:

EFAULT Indicates insufficient authority to access address or invalid address.
EIO Indicates an I/O error.
ENOMEM Indicates insufficient memory for required paging operation.
ENOSPC Indicates insufficient file system or paging space.
EINVAL Indicates that an invalid argument was specified.
EINTR Indicates a request interrupted by signal.
EPERM Indicates a permanent error occurred.
EBUSY Indicates the device is busy.
ENXIO Indicates an unsupported device number.
ENODEV Indicates an unsupported device or device type mismatch occurred.

Files

/usr/include/sys/inputdd.h Contains the ioctl commands.

Chapter 3. Special Files 695

Related Information
The close subroutine, ioctl subroutine, open subroutine, read subroutine, write subroutine.

The dials special file, lpfk special file.

Special Files Overview .

ide Special File

Purpose
Provides access to the Integrated Device Electronics (IDE) adapter driver.

Description
The ide special file provides an interface to an attached IDE Bus. This special file should not be opened
directly by application programs. The /dev/ide0, /dev/ide1, ... /dev/iden files are the ide special files.

Related Information
Special Files Overview.

Integrated Device Electronics (IDE) Subsystem Overview and Direct Access Storage Device Subsystem
Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

IDE Adapter Device Driver, idedisk IDE Disk Device Driver, and idecdrom IDE CD-ROM Device Driver in
AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 2.

kbd Special File

Purpose
Provides access to the natively attached keyboard.

Description
The kbd special file is the interface to the native keyboard. It provides an interface through which
applications can receive operator input from the keyboard, control the keyboard LED’s, and changing
various keyboard parameters. The special file also allows an application to send an audible signal to the
operator via the speaker located within the keyboard.

Configuration
The sound volume, click volume, typematic rate and typematic delay are configurable by the application
through the ioctl subroutine. These changes are not reflected in the ODM database. To change these
attributes in the ODM database, use the chhwkbd command.

Usage Considerations

open
This subroutine call creates a channel between the application and the natively attached keyboard. Two
channels are supported. The open subroutine call is processed normally except that the MODE and Oflag
parameters are ignored. All keyboard input is flushed until an input ring is established. Only the input ring
associated with the most recent open receives input reports.

696 Files Reference

close
When the kbd device has been opened twice, input is reported through the input ring registered previous
to the first open, after the close subroutine call.

read and write
The keyboard device driver does not return nor accept data via read and write. These calls behave as if
the call was made to /dev/null. Input data is received from the input drivers via the input ring.

ioctl
The keyboard device driver supports the following ioctl commands:

IOCINFO Return devinfo structure.
KSALARM Sound alarm.
KSCFGCLICK Control keyboard click.
KSDIAGMODE Enable/disable diagnostics mode (user mode only).
KSLED Set/reset keyboard LED’s.
KSKAP Enable/disable keep alive poll (user mode only).
KSKAPACK Acknowledge keep alive poll (user mode only).
KSQUERYID Query keyboard device identifier.
KSQUERYSV Query keyboard service vector (kernel mode only).
KSREGRING Register input ring.
KSRFLUSH Flush input ring.
KSTDELAY Set typamatic delay.
KSTRATE Set typamatic rate.
KSVOLUME Set alarm volume

Error Codes
The error codes can be found in the /usr/include/sys/errno.h file.

EFAULT indicates insufficient authority to access address or invalid address.
EIO indicates that an I/O error occurred.
ENOMEM indicates there was insufficient memory for required paging operation.
ENOSPC indicates there was insufficient file system or paging space.
EINVAL indicates that an invalid argument was specified.
EINTR indicates the request was interrupted by signal.
EPERM indicates that a permanent error occurred.
EBUSY indicates the device is busy.
ENXIO indicates unsupported device number was specified.
ENODEV indicates an unsupported device or device type mismatch.

Files

/usr/include/sys/inputdd.h Contains declarations for ioctl commands and input ring report
format.

Related Information
The close subroutine, ioctl subroutine, open subroutine, read subroutine, write subroutine.

Special Files Overview .

Chapter 3. Special Files 697

lft Special File

Purpose
Provides character-based terminal support for the local graphics display and keyboard.

Description
The lft file is the application interface to the ″Low Function Terminal (LFT) Subsystem″. It provides support
for a VT100-like terminal which is associated with the local graphics display and keyboard. It provides only
character operations and is designed to be used during system installation, startup, shutdown, and
stand-alone diagnostics.

The terminal supports a single logical screen size of 80 characters and 25 lines and a single color.
Dynamic Logical Partitioning is not supported, configuration changes take effect at the next system startup.
In the cases when multiple fonts may be used to achieve the 80x25 screen size, the user may set which
font is used with the next system restart. See ″LFT User Commands″ for details of the available
commands.

When multiple displays are available, the LFT Subsystem initially uses the default display. The user may
change to another display and set the default display. See ″LFT User Commands″ for details of the
available commands.

Usage Considerations
The LFT device driver supports the lft special file. The device driver is a streams based driver. It handles
only the system attached keyboard and graphics displays.

Sharing Displays with Graphic Subsystem
Certain LFT ioctl commands allow graphics subsystems to obtain exclusive use of the displays, a right
initially held by the LFT. However, this is done by the Rendering Context Manager (RCM) on behalf of the
graphics subsystem. See ″Rendering Context Manager″ for details of the procedure for becoming a
graphics process.

Subroutine Support
The lft special file supports the open, close, read, write, and ioctl subroutines.

ioctl system call: The functions performed by the ioctl commands fall into three categories:

v Sharing devices between the lft and a graphic subsystem

v Query information about configured displays and keyboard devices

v Compatibility with the common tty ioctl commands

Sharing devices:

IOCINFO The IOCINFO ioctl operation is defined for all device drivers that use the ioctl
subroutine. The IOCINFO operation returns a devinfo structure, which is defined
in the devinfo.h file.

LFT_SET_DEFLT_DISP Sets the default display.
LFT_ACQ_DISP Acquire display for exclusive use.
LFT_REL_DISP Release display.
LFT_DIAG_OWNER Acquire display for diagnostics.

Query information about configured displays and keyboard devices:

LFT_QUERY_LFT Query common LFT information.
LFT_QUERY_DISP Query display information.

698 Files Reference

Compatibility with the common tty ioctl commands: TCSAK

TCGETA

TCSETAW

TCSETAF

TCSETA

TIOCGWINSZ

TIOCSWINSZ

TXTTYNAME

TSCBRK

Related Information
Low Function Terminal (LFT) Subsystem Overview in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

rcm and kbd Special Files.

Special Files Overview .

lp Special File

Purpose
Provides access to the line printer device driver.

Description
The lp driver provides an interface to the port used by a printer.

Printer Modes
The lp driver interprets carriage returns, backspaces, line feeds, tabs, and form feeds in accordance with
the modes that are set in the driver (through the splp command or configuration). The number of lines per
page, columns per line, and the indentation at the beginning of each line can also be selected. The default
for these modes can be found using the lsattr command. The following modes can be set with the
LPRMODS ioctl operation:

PLOT Determines if the data stream is interpreted by the device driver when formatting the text. If the
PLOT mode is off, the text is formatted using the current values set with the LPRSET ioctl operation.

If the PLOT mode is set, no interpretation of the data stream is performed and the bytes are sent to
the printer without modification. Setting the PLOT mode causes other formatting modes, such as
NOFF and NOFL, to be ignored. The default printer backend, piobe, sends all output in PLOT mode.

When in PLOT mode, the application must send a final form-feed character. If the last write operation
was performed while not in PLOT mode, the final form-feed character will be sent by the device
driver.

NOFF If this mode is on, each form-feed character is replaced with a line-feed character, based on the
current line value set with the LPRSET ioctl operation. This mode is ignored if the PLOT mode is
active.

Chapter 3. Special Files 699

NONL If this mode is on, each line-feed character is replaced with a carriage return. This mode is ignored if
the PLOT mode is active.

NOCL If this mode is off, a carriage return is inserted after each line-feed character. If the mode is on, no
carriage return is inserted after the line-feed character. This mode is ignored if the PLOT mode is
active.

NOTAB If this mode off, 8 position tabs are simulated using spaces. If the NOTAB mode is on, the tab
character is replaced with a space. This mode is ignored if the PLOT mode is active.

NOBS If this mode off, backspaces are sent to the printers. If the NOBS mode is on, the backspace is
simulated by sending a carriage return followed by spaces to the proper print position. This mode is
ignored if the PLOT mode is active.

NOCR If this mode on, each carriage return is replaced with a line-feed character. This mode is ignored if
the PLOT mode is active.

CAPS If this mode on, lowercase characters are converted to uppercase. This mode is ignored if the PLOT
mode is active.

WRAP If this mode off, the line is truncated at the right margin and any characters received past the right
margin are discarded. If the WRAP mode is on, the characters received after the right margin are
printed on the next line preceded by ... (ellipsis). This mode is ignored if the PLOT mode is active.

FONTINIT The FONTINIT mode is initially off. It is turned on by an application when a printer font has been
initialized. It can be turned off in the following two cases:

v An application needs fonts to be reinitialized.

v A fatal printer error occurs. In this case, the lp device driver turns the FONTINIT mode off.
RPTERR If the RPTERR mode is off and an error occurs, the device driver does not return until the error has

been cleared or a cancel signal is received. If the RPTERR mode is on, the device driver waits the
amount of time specified by a previous LPRSTOV ioctl operation and then returns with an error.

IGNOREPE If IGNOREPE mode is on, the device driver allows writes to the device regardless of the state of the
PE (paper-end) line on the parallel interface. An application can make use of this mode, for example,
to change the paper tray of a printer under software control when detecting that the printer is out of
paper.

Error Handling When the RPTERR Mode Is Off
If the RPTERR mode is off, no error reporting is performed. The device driver waits for the error to be
cleared or a cancel signal to be received before returning to the application. RPTERR is the default mode
and is intended for existing applications that do not perform error recovery.

If a signal is received by the device driver, the current operation is returned incomplete with an EINTR
error code.

If printing is canceled and the printer is in PLOT mode, it is the application must send the final form-feed
character to eject the partial page. If the printer is not in PLOT mode, the final form-feed character after
cancelation will be sent by the device driver.

Error Handling When the RPTERR Mode Is On
If the RPTERR mode is on, the device driver will wait for the time specified in the v_timeout configuration
parameter and then return the uncompleted operation with an error code. This return allows the application
to get the printer status and possibly display an error message.

Note: When a device driver returns an incomplete operation with an error code (as previously described),
the application must resend any data not printed.

Usage Considerations

Device-Dependent Subroutines: Most printer operations are implemented using the open, read, write,
and close subroutines. However, these subroutines provide little or no information to the calling program
about the configuration and state of the printer. The ioctl subroutine provides a more device-specific
interface to the printer device driver.

700 Files Reference

Most of these subroutines pass data contained in structures. In all cases, a structure of the type indicated
should be allocated in the calling routine. A pointer to this structure should then be passed to the device
driver.

open and close Subroutines: If an adapter for a printer is not installed, an attempt to open fails. If the
printer adapter is busy, the open subroutine returns an error. However, all child processes created by a
parent process that successfully opens the lp special file inherit the open printer.

The driver allows multiple open subroutines to occur if they all have a mode parameter value of read-only.
Thus, the splp command can perform inquiries when the printer adapter is currently in use. The lp driver
allows only one process to write to a printer adapter at a time.

The close subroutine waits until all output completes before returning to the user.

read and write Subroutines: The read subroutine is not implemented for the native I/O parallel port.

When printing to a parallel printer that is offline, the write subroutine may return one fewer than the actual
number of bytes that are buffered and ready to be written when the printer is put back online. This is used
as a mechanism to indicate to the calling application that there is a problem with the printer requiring user
intervention, possibly allowing the user to put the printer online and continue with printing. In this situation,
no error is returned by the write subroutine.

ioctl Subroutine: The possible ioctl operations and their descriptions are:

IOCINFO Returns a structure defined in the /usr/include/sys/devinfo.h file, which describes the device.
LPQUERY Provides access to the printer status. Refer to the /usr/include/sys/lpio.h file for value definitions. The

types of errors are the following:

v The printer is out of paper.

v No select bit: the printer may be turned off or not installed.

v The printer is busy.

v The printer is unknown.
LPRGET Returns the page length, width and indentation values. These values are used by the device driver

when PLOT mode is not set. The default printer backend, piobe, sends all print jobs with PLOT mode
set. The LPRGET operation uses the lprio structure, as defined in the /usr/include/sys/lpio.h file.

LPRGETA Gets the RS232 parameters. These are the values for baud rate, character rate, character size, stop
bits and parity. Refer to the LPR232 structure and to the termio structure, as defined in the termios.h
file.
Note: This operation is supported for compatibility reasons. The use of the tcgetattr subroutine is
recommended.

LPRGTOV Gets the current time-out value and stores it in the lptimer structure defined in the
/usr/include/sys/lpio.h file. The time-out value is measured in seconds.

LPRMODG Gets the printer modes. These printer modes support the various formatting options and error reporting.
This ioctl operation uses the LPRMOD structure, as defined in the /usr/include/sys/lpio.h file.

LPRMODS Sets the printer modes. These printer modes support the various formatting options and error reporting.
This ioctl operation uses the LPRMOD structure, as defined in the /usr/include/sys/lpio.h file.

LPRSET Sets the page length, width and indent values. These values are used by the device driver when PLOT
mode is not set. The default printer backend, piobe, sends all print jobs with PLOT mode set. The
LPRSET operation uses the lprio structure, as defined in the /usr/include/sys/lpio.h file.

LPRSETA Sets the RS232 parameters. These are the values for baud rate, character rate, character size, stop
bits and parity. Refer to the LPR232 structure and to the termio structure, as defined in the termios.h
header file.
Note: This operation is supported for compatibility reasons. The use of the tcsetattr subroutine is
recommended.

LPRSTOV Sets the time-out value. The arg parameter to this ioctl operation points to a lptimer structure defined
in the /usr/include/sys/lpio.h file. The time-out value must be given in seconds.

Chapter 3. Special Files 701

Related Information
Special Files Overview .

Printer Addition Management Subsystem: Programming Overview in AIX 5L Version 5.2 Kernel Extensions
and Device Support Programming Concepts

The lsattr command, piobe command, splp command.

The close subroutine, ioctl subroutine, open subroutine, read subroutine, write subroutine.

lpfk Special File

Purpose
Provides access to the lighted program function key (LPFK) array.

Description
The lpfk special file is the application interface to the lighted program function keys. It allows the
application to receive operator input from the LPFKs and to illuminate and darken each key in the array.

Configuration
Standard configuration methods are provided for the lpfk special file. The user cannot enter configurable
attributes by way of the command line.

Usage Considerations

open: An open subroutine call specifying the lpfk special file is processed normally except that the Oflag
and Mode parameters are ignored. An open request is rejected if the special file is already opened or if a
kernel extension attempts to open the lpfk special file. All LPFK inputs are flushed following an open call
until an input ring is established.

read and write: The lpfk special file does not support read or write subroutine calls. Instead, input data
is obtained from the LPFKs through the input ring. The read and write subroutine calls behave the same
as read and write functions of the /dev/null file. See ″LFT Input Ring″ in AIX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts for how to use the input ring.

ioctl: The lpfk special file supports the following ioctl operations:

IOCINFO Returns the devinfo structure.
LPFKREGRING Registers input ring.
LPFKRFLUSH Flushes input ring.
LPFKLIGHT Sets key lights.

Error Codes
The error codes can be found in the /usr/include/sys/errno.h file.

EFAULT Indicates insufficient authority to access address, or invalid address.
EIO Indicates I/O error.
ENOMEM Indicates insufficient memory for required paging operation.
ENOSPC Indicates insufficient file system or paging space.
EINVAL Indicates invalid argument specified.
EINTR Indicates request interrupted by signal.
EPERM Indicates a permanent error occurred.
EBUSY Indicates device busy.

702 Files Reference

ENXIO Indicates unsupported device number.
ENODEV Indicates unsupported device, or device type mismatch.

Files

/usr/include/sys/inputdd.h Contains declarations for ioctl commands and input ring report
format

Related Information
The dials special file, GIO special file, kbd special file, mouse special file, and tablet special file.

The close subroutine, ioctl subroutine, open subroutine, read subroutine, write subroutine.

Special Files Overview .

lvdd Special File

Purpose
Provides access to the logical volume device driver.

Description
The logical volume device driver provides character (raw) access to logical volumes. The Logical Volume
Manager associates a major number with each volume group and a minor number with each logical
volume in a volume group.

Logical volume special file names can be assigned by the administrator of the system. However, /dev/lv1,
/dev/lv2 and /dev/rlv1, /dev/rlv2 are the names conventionally chosen.

When performing character I/O, each request must start on a logical block boundary of the logical volume.
The logical block size is 512 bytes. This means that for character I/O to a logical volume device, the offset
supplied to the lseek subroutine must specify a multiple of 512 bytes. In addition, the number of bytes to
be read or written, supplied to the read or write subroutine, must be a multiple of 512 bytes.

Note: I/O requests should not be sent to the block special file interface when the logical volume is
mounted. When a logical volume is mounted (that is, the block special file is opened by the file
system), any I/O requests from the user made to that logical volume should be made only through
the character special file.

Usage Considerations

Note: Data corruption, loss of data, or loss of system integrity (system crashes) will occur if devices
supporting paging, logical volumes, or mounted file systems are accessed using block special files.
Block special files are provided for logical volumes and disk devices on the operating system and
are solely for system use in managing file systems, paging devices and logical volumes. They
should not be used for other purposes. Additional information concerning the use of special files
may be obtained in ″Understanding I/O Access through Special Files″ in AIX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts.

open and close Subroutines: No special considerations.

Extension Word Specification for the readx and writex Subroutines: The ext parameter for the readx
and writex extended I/O subroutines indicates specific physical or logical operations, or both. The upper 4

Chapter 3. Special Files 703

bits of the ext parameter are reserved for internal LVDD use. The value of the ext parameter is defined by
logically ORing values from the following list, as defined in the /usr/include/sys/lvdd.h file:

WRITEV Perform physical write verification on this request. This
operation can be used only with the writex subroutine.

RORELOC For this request, perform relocation on existing relocated
defects only. Newly detected defects should not be relocated.

MWC_RCV_OP Mirror-write-consistency recovery operation. This option is
used by the recovery software to make consistent all mirrors
with writes outstanding at the time of the crash.

NOMWC Inhibit mirror-write-consistency recovery for this request only.
This operation can only be used with the writex subroutine.

AVOID_C1, AVOID_C2, AVOID_C3 For this request, avoid the specified mirror. This operation can
only be used with the readx subroutine.

RESYNC_OP For this request, synchronize the specified logical track group
(LTG). This operation can only be used with the readx
subroutine and must be the only operation. When
synchronizing a striped logical volume, the data returned is
not usable by the application because the logical track group
is not read on a striped basis.

LV_READ_BACKUP Read only the mirror copy that is designated as the backup
mirror copy.

LV_WRITE_BACKUP Write only the mirror copy that is designated as the backup
mirror copy.

LV_READ_ONLY_C1 Read only copy one of the data.
LV_READ_ONLY_C2 Read only copy two of the data.
LV_READ_ONLY_C3 Read only copy three of the data.
LV_READ_STALE_C1 Read only copy one of the data even if it is stale.
LV_READ_STALE_C2 Read only copy two of the data even if it is stale.
LV_READ_STALE_C3 Read only copy three of the data even if it is stale.

There are some restrictions when using this operation. To synchronize a whole logical partition (LP), a
series of readx subroutines using the RESYNC_OP operation must be done. The series must start with
the first logical track group (LTG) in the partition and proceed sequentially to the last LTG. Any deviation
from this will result in an error. The length provided to each readx operation must be exactly 128KB (the
LTG size).

Normal I/O can be done concurrently anywhere in the logical partition while the RESYNC_OP is in
progress. If an error is returned, the series must be restarted from the first LTG. An error is returned only if
resynchronization fails for every stale physical partition copy of any logical partition. Therefore, stale
physical partitions are still possible at the end of synchronizing an LP.

Normal I/O operations do not need to supply the ext parameter and can use the read and write
subroutines.

IOCINFO ioctl Operation: The IOCINFO ioctl operation returns the devinfo structure, as defined in the
/usr/include/sys/devinfo.h file. The values returned in this structure are defined as follows for requests to
the logical volume device driver:

devtype Equal to DD_DISK (as defined in the devinfo.h file)
flags Equal to DF_RAND
devsubtype Equal to DS_LV
bytpsec Bytes per block for the logical volume
secptrk Number of blocks per logical track group
trkpcyl Number of logical track groups per partition
numblks Number of logical blocks in the logical volume

704 Files Reference

XLATE ioctl Operation: The XLATE ioctl operation translates a logical address (logical block number
and mirror number) to a physical address (physical device and physical block number on that device). The
caller supplies the logical block number and mirror number in the xlate_arg structure, as defined in the
/usr/include/sys/lvdd.h file. This structure contains the following fields:

lbn Logical block number to translate
mirror The number of the copy for which to return a pbn (physical block number on disk). Possible values are:
1 Copy 1 (primary)
2 Copy 2 (secondary)
3 Copy 3 (tertiary)
p_devt Physical dev_t (major/minor number of the disk)
pbn Physical block number on disk

XLATE64 ioctl Operation: The XLATE64 ioctl operation functions the same as the XLATE operation
except that it uses the xlate_arg64 structure, in which the logical and physical block numbers and the
device (major/minor) number fields are 64-bit wide.

PBUFCNT ioctl Operation: The PBUFCNT ioctl operation increases the size of the physical buffer
header, pbuf, pool that is used by LVM for logical-to-physical request translation. The size of this pool is
determined by the number of active disks in the system, although the pool is shared for request to all
disks.

The PBUFCNT ioctl operation can be issued to any active volume group special file, for example
/dev/VolGrpName. The parameter passed to this ioctl is a pointer to an unsigned integer that contains the
pbufs-per-disk value. The valid range is 16 - 128. The default value is 16. This value can only be
increased and is reset to the default at IPL. The size of the pbuf pool is not reduced when the number of
active disks in the system is decreased.

The PBUFCNT ioctl operation returns the following:

EINVAL Indicates an invalid parameter value. The value is larger than the maximum allowed, or
smaller than or equal to the current value.

EFAULT Indicates that the copy in of the parameter failed.
LVDD_ERROR An error occurred in allocating space for additional buffer headers.
LVDD_SUCCESS Indicates a successful ioctl operation.

LV_INFO ioctl Operation: The LV_INFO ioctl operation returns information about the logical volume in
question. This ioctl operation only applies to AIX 4.2.1 and later.

The caller supplies the logical volume special file in the system open call and the information is returned
via the lv_info structure, as defined in the /usr/include/sys/lvdd.h file. This structure contains the
following fields:

vg_id Volume group ID of which the logical volume is a member
major_num Major number of logical volume
minor_num Minor number of the logical volume
max_lps Maximum number of logical partitions allowed for this logical volume
current_lps Current size of the lofical volume in terms of logical partitions
mirror_policy Specifies the type of mirroring, if the logical volume is mirrored. Valid values are parallel,

sequential, striped, and striped_parallel.
permissions Specifies whether the logical volume is read only or read-write
bb_relocation Specifies whether bad block relocation is activated for the logical volume
write_verify Specifies whether the write verify command for writes to the logical volume is enforced
num_blocks Number of 512 byte blocks that make up the logical volume. This value does not include

mirrored logical volumes

Chapter 3. Special Files 705

mwcc Specifies which mirrored write consistency check algorithm is set, if it is active.

MWCC_NON_ACTIVE
mwcc disabled for this logical volume

MWCC_ACTIVE_MODE
ACTIVE mwcc algorithm set for this logical volume

MWCC_PASSIVE_MODE
PASSIVE mwcc algorithm set for this logical volume

MWCC_PASSIVE_RECOVERY
logical mirrors undergoing PASSIVE mwcc recovery after system interruption

mirr_able Specifies whether the logical volume is capable of being mirrored
num_mirrors Number of mirror copies for this logical volume
striping_width Number of drives across which this logical volume is striped
stripe_exp Stripe block exponent value
backup_mirror Backup mirror mask will be zero indicating there is not a backup copy active.

AVOID_C1
For the first copy

AVOID_C2
For the second copy

AVOID_C3
For the third copy.

The LV_INFO ioctl operation returns the following:

EFAULT Indicates that the copy of the parameter failed.

LVM ioctl Operations Used to Modify Single Logical Volumes

LV_QRYBKPCOPY Query for designated backup mirror copy.
LV_SETBKPCOPY Designate backup mirror copy.
LV_FSETBKPCOPY Force new designation for backup mirror copy. Used when there are stale partitions on

either the active mirror or backup mirror.
SET_SYNC_ON_RD Causes the logical volume to go into MWCC_PASSIVE_RECOVERY mode. All reads

from one mirror copy will cause non-read mirror copies to undergo a sync write.
CLR_SYNC_ON_RD Clears the MWCC_PASSIVE_RECOVERY mode of the logical volume, if it exists. This

clear should not be exercised if mirror consistency is not guaranteed.

LV_INFO64 ioctl Operation: The LV_INFO64 ioctl operation functions the same as the LV_INFO
operation except that it uses the lv_info64 structure, in which the major_num and minor_num fields are
32-bit wide each and the num_blocks field is 64-bit wide.

Error Codes
In addition to the possible general errors returned by the ioctl subroutine, the following errors can also be
returned from specific ioctl operation types.

ENXIO The logical volume does not exist. (This error type is relevant to the IOCINFO, XLATE ioctl, and XLATE64
operations.)

ENXIO The logical block number is larger than the logical volume size. (This error type is relevant only to the
XLATE ioctl and XLATE64 ioctl operations.)

ENXIO The copy (mirror) number is less than 1 or greater than the number of actual copies. (This error type is
relevant only to the XLATE ioctl and XLATE64 ioctl operations.)

706 Files Reference

ENXIO No physical partition has been allocated to this copy (mirror). (This error type is relevant only to the XLATE
ioctl and XLATE64 ioctl operations.)

Related Information
The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine, write
subroutine.

Logical Volume Storage Overview in AIX 5L Version 5.2 System Management Concepts: Operating
System and Devices.

mem or kmem Special File

Purpose
Provides privileged virtual memory read and write access.

Description

Note: When incorrect access to virtual memory is made through these files, process termination, a system
crash, or loss of system data integrity can result.

The /dev/mem and /dev/kmem character special files provide access to a pseudo device driver that
allows read and write access to system memory or I/O address space. Typically, these special files are
used by operating system utilities and commands (such as sar, iostat, and vmstat) to obtain status and
statistical information about the system.

Note: Programs accessing these special files must have appropriate privilege. Commercial application
programs should avoid using the /dev/mem and /dev/kmem files, since the virtual memory image
is quite specific to the operating system level and machine platform. Use of these special files thus
seriously affects the portability of the application program to other systems.

Usage Considerations

kmem Special File Access: The kmem special file provides access to the virtual memory address
space for the current process, as it is seen by the kernel. The seek offset, set by the lseek subroutine, is
used to specify the virtual address targeted for the read or write. The kmem pseudo-device driver only
supports the open, close, read, readx, writex, and write subroutines.

The knlist system subroutine is typically used to obtain the addresses of kernel symbols to read or write
through access provided by the kmem special file.

Before issuing a read or write operation, the lseek subroutine must be used to designate the relevant
starting address in virtual memory. If this address is within the first two gigabytes of address space, then
the read or write subroutine calls can be used. However, if the upper two gigabytes of address space are
to be accessed, the readx and writex form of the subroutine calls must be used. In this case, the ext
(extension) parameter must be set to a value of True. This causes the lseek offset to be interpreted
relative to the upper 2 gigabytes of address space.

Note: The process address space is defined as shown in the Implementation of mem Special File Access
section. This address space layout can vary on other machine platforms and versions of the
operating system.

mem Special File Access:

Chapter 3. Special Files 707

Note: Use of this special file by application programs should be strictly avoided, as it is provided for
diagnostic and problem determination procedures only.

The mem special file access is specific to the system on which the operating system is running.

Please refer to the Implementation of mem Special File Access section for details on the function provided
by this special file.

Process Address Space Regions for the /dev/kmem Special File
The ″Process Address Space Map″ illustrates the layout of process address space regions as accessed
through the /dev/kmem special file on this system.

Lower 2 gigabytyes of address
space: Use read or write
subrourines

Upper 4 bits of lseek offset Process Address Space Regions

0 Primary Kernel Region

1 User Text Region

2 Process Private Region

3

Attached Data Mapped Files Region

4

5

6

7

Upper 2 gigabytyes of address
space: Use readx or writex
subroutines with ext parameter =
TRUE.

0

1

2

3

4

5 Shared Library Text Region

6 Secondary Kernel Region

7 Shared Data Region

Implementation of mem Special File Access
The mem special file has traditionally provided direct access to physical memory. This capability and its
interface requirements are machine-specific. However, for this operating system this function is indirectly
provided by using the ext (extension) parameter on the readx and writex subroutine calls. When a readx
or writex subroutine call associated with the /dev/mem special file is issued, the ext parameter must
contain a valid segment register value as defined in the POWERstation and POWERserver Hardware
Technical Reference - General Information documentation for the platform types(s) on which the program
will be run. This allows the program to access all physical memory mapped by the page table as well as
the platform-specific I/O (T=1) segments.

The seek offset set by the lseek subroutine call is used to specify the address offset within the segment
described by the ext parameter. The upper four bits of the offset are not used. The pseudo-device driver
only supports the open, close, read, readx, write, and writex subroutine calls. The lseek subroutine call
must also be used before the readx or writex subroutine calls are issued, in order to specify the address
offset.

If a read or write subroutine call is used with this special file, the access to memory is identical to that
provided by the /dev/kmem special file.

708 Files Reference

The mem special file is part of Base Operating System (BOS) Runtime.

Files

/dev/mem Provides privileged virtual memory read and write access.
/dev/kmem Provides privileged virtual memory read and write access.

Related Information
The iostat command, sar command, vmstat command.

The close subroutine, ioctl subroutine, knlist subroutine, lseek subroutine, open subroutine, poll
subroutine, read subroutine, select subroutine, write subroutine.

Special Files Overview .

mouse Special File

Purpose
Provides access to the natively attached mouse.

Description
The mouse special file serves as an interface between the application interface and the system mouse.
This special file provides the application with the ability to receive input from the mouse and allows the
application to change mouse configuration parameters, such as mouse sampling rates and resolution.

Configuration
Standard configuration methods work with the mouse special file. No user configurable attribute
commands exist for this special file. Applications that open the special file can modify device attribute
dynamically using the appropriate ioctl interface; however, modifications are not saved in the configuration
database.

Usage Considerations
The open subroutine call specifying the mouse special file is processed normally except that the Oflag
and Mode parameters are ignored. The open request is rejected when the special file is already opened
or when a kernel extension attempts to open the special file. All mouse inputs are flushed following an
open subroutine call until an input ring is established. The mouse device is reset to the default
configuration when an open request is made.

The mouse special file does not support the read or write subroutine calls. Instead, input data is obtained
from the mouse via the input ring. The read and write subroutine calls behave the same as read or write
to the /dev/null file.

The mouse special file supports the following functions with ioctls:

IOCINFO Returns a devinfo structure.
MQUERYID Returns the query mouse device identifier.
MREGRING Specifies the address of the input ring and the value to be used as the source identifier when

enqueueing reports on the ring.
MRFLUSH Flushes the input ring.
MTHRESHOLD Sets the mouse reporting threshold.
MRESOLUTION Sets the mouse resolution.
MSCALE Sets the mouse scale factor.

Chapter 3. Special Files 709

MSAMPLERATE Sets the mouse sample rate.

Error Codes
The following error codes can be found in the /usr/include/sys/errno.h file:

EFAULT Indicates insufficient authority to access an address or invalid address.
EIO Indicates and I/O error.
ENOMEM Indicates insufficient memory for required paging operation.
ENOSPC Indicates insufficient file system or paging space.
EINVAL Indicates invalid argument specified.
EINTR Indicates that the request has been interrupted by a signal.
EPERM Specifies a permanent error occurred.
EBUSY Indicates a device is busy.
ENXIO Indicates an unsupported device number.
ENODEV Indicates an unsupported device or device type mismatch.
EACCES Indicates that an open is not allowed.

Files

/usr/include/sys/inputdd.h Contains the ioctl commands.

Related Information
The close subroutine, ioctl subroutine, open subroutine, read subroutine, write subroutine.

Special Files Overview .

mpcn Special File

Purpose
Provides access to the HDLC network device driver by way of the SDLC COMIO device driver emulator.
This special file only applies to AIX 4.2.1 and later.

Description
The /dev/mpcn character special file provides access to the HDLC network device driver via the SDLC
COMIO device driver emulator in order to provide access to a synchronous network. The SDLC COMIO
emulator device handler supports multiple HDLC network devices.

Usage Considerations
When accessing the SDLC COMIO emulator device handler, consider the following information.

Driver Initialization and Termination
The device handler can be loaded and unloaded. The handler supports the configuration calls to initialize
and terminate itself.

Special File Support
The SDLC COMIO emulator device handler uses the t_start_dev and t_chg_parms structures defined in
the /usr/include/sys/mpqp.h file to preserve compatibility with the existing GDLC, MPQP API, and SNA
Services interface. However, only a subset of the #define values are supported for the following
t_start_dev structure fields:

710 Files Reference

phys_link Indicates the physical link protocol. Only one type of physical link is valid at a time. The SDLC
COMIO emulator device handler supports PL_232D (EIA-232D), PL_422A (EIA-422A/v.36),
PL_V35 (V.35), PL_X21 (X.21 leased only), and PL_V25 (V.25bis EIA-422A autodial).

data_proto Identifies the data protocol. The SDLC COMIO emulator device handler supports only the SDLC
DATA_PRO_SDLC_HDX (half duplex) and the DATA_PRO_SDLC_FDX (full duplex) values.

baud_rate Specifies the baud rate for transmit and receive clocks. The SDLC COMIO emulator device
handler supports only external clocking where the DCE supplies the clock, and this field should
be set to zero.

Subroutine Support
The SDLC COMIO emulator device handler supports the open, close, read, write, and ioctl subroutines
in the following manner:

open and close Subroutines: The device handler supports the /dev/mpcn special file as a
character-multiplex special file. The special file must be opened for both reading and writing (O_RDWR).
No special considerations exist for closing the special file.

read Subroutine: Can take the form of a read, readx, readv, or readvx subroutine call. For this call, the
device handler copies the user data in to the buffer specified by the caller.

write Subroutine: Can take the form of a write, writex, writev, or writevx subroutine call. For this call,
the device handler copies the user data into a buffer and transmits the data on the wide area network
using the HDLC network device driver.

ioctl Subroutine: The ioctl subroutine supports the following flags:

CIO_START Starts a session and registers a network ID.
CIO_HALT Halts a session and removes a network ID.
CIO_QUERY Returns the current reliability, availability, and serviceability (RAS) counter values. These

values are defined in the /usr/include/sys/comio.h file.
MP_CHG_PARMS Permits the data link control (DLC) to change certain profile parameters after the SDLC

COMIO device driver emulator is started.

Error Codes
The following error codes can be returned when gaining access to the device handler through the
/dev/mpcn special file:

ECHRNG Indicates that the channel number is out of range.
EAGAIN Indicates that the device handler cannot transmit data because of a lack of system resources, or,

because an error returned from the HDLC network device driver’s transmit routine.
EBUSY Indicates that the device handler is already in use (opened/started) by another user.
EIO Indicates that the handler cannot queue the request to the adapter.
EFAULT Indicates that the cross-memory copy service failed.
EINTR Indicates that a signal has interrupted the sleep.
EINVAL Indicates one of the following:

v The port is not set up properly.

v The handler cannot set up structures for write.

v The port is not valid.

v A kernel process called a select operation.

v The specified physical-link parameter is not valid for that port.

v A kernel process called a read operation.

Chapter 3. Special Files 711

ENOMEM Indicates one of the following:

v No mbuf or mbuf clusters are available.

v The total data length is more than one page.

v There is no memory for internal structures.
ENOMSG Indicates that the status-queue pointer is null, and there are no entries.
ENOTREADY Indicates that the port state in the define device structure (DDS) is not in Data Transfer mode or

that the implicit halt of port failed.
ENXIO Indicates one of the following:

v The port was not started successfully.

v The channel number is illegal.

v The driver control block pointer is null or does not exist.

This file functions with the SDLC COMIO emulator device handler over the HDLC network device driver. It
emulates the SDLC API (full and half duplex) of the Multiprotocol Quad Port (MPQP) device handler.

Related Information
The close subroutine, open subroutine, read or readx subroutine, write or writex subroutine.

Special Files Overview

2-Port Multiprotocol HDLC Network Device Driver Overview in AIX 5L Version 5.2 System Management
Guide: Communications and Networks

MPQP Device Handler Interface Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepts

mpqi Special File

Purpose
Provides access to the Multiport Model 2 Adapter (MM2) device driver via SNA Services, GDLC, or
user-written applications compatible with current MPQP Applications Programming Interface (API).

Description
The Multiport Model 2 devic e driver provides access to the mpqi special file through SNA Services,
Generic Data Link Control, or through user-written applications.

Usage Considerations
When accessing the Multiport Model 2 device driver via these methods, consider the following information:

Driver Initialization and Termination: The device driver can be loaded and unloaded in the kernel in
the same way as other communications device drivers. The device driver supports the configuration calls
to initialize and terminate itself. Therefore, you must ensure that the device driver is initialized before using
it. A listing of the device driver, either via SMIT or by using the lsdev command, should indicate the device
driver state as Available.

Special File Support: The Multiport Model 2 device driver is a character I/O device and provides a
special file entry in the /dev directory for file system access. The Multiport Model 2 device driver uses the
t_start_dev and t_chg_parms structures defined in the /usr/include/sys/mpqp.h file to preserve
compatibility with the existing GDLC, MPQP API and SNA Services interface. However, only a subset of
the #define values is supported for the following t_start_dev structure fields:

712 Files Reference

data_proto Identifies the data protocol. T he Multiport Model 2 device driver supports the SDLC
DATA_PRO_SDLC_HDX value (indicating half duplex only) and the bisync DATA_PRO_BSC
value.

baud_rate Specifies the baud rate for transmit and receive clock. The Multiport Model 2 device driver only
supports external clocking where the modem supplies the clock, and this field should be set to
zero. However, when using SNA Services, this field is ignored when external clocking is specified
in the physical link profile and does not need to be zero.

Related Information
Special Files Overview

MPQP Device Handler Interface Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepts

Data Link Control in AIX 5L Version 5.2 Technical Reference: Communications Volume 1

mpqn Special File

Purpose
Provides access to multiprotocol adapters by way of the Multiprotocol Quad Port (MPQP) device handler.

Description
The /dev/mpqn character special file provides access to the MPQP device handler for the purpose of
providing access to a synchronous network. The MPQP device handler supports multiple adapters.

Usage Considerations
When accessing the MPQP device handler, the following should be taken into account:

Driver initialization and termination: The device handler may be loaded and unloaded. The handler
supports the configuration calls to initialize and terminate itself.

Special file support: Calls other than the open and close subroutine calls are discussed in relation to
the mode in which the device handler is operating.

Subroutine Support
The MPQP device handler supports the open, close, read, write, and ioctl subroutines in the following
manner:

v The open and close subroutines

The device handler supports the /dev/mpqn special file as a character-multiplex special file. The special
file must be opened for both reading and writing (O_RDWR). There are no particular considerations for
closing the special file. Which special file name is used in an open call depends on how the device is to
be opened. Types of special file names are:

/dev/mpqn Starts the device handler for the selected port.
/dev/mpqn/D Starts the device handler in Diagnostic mode for the selected port.

v The read subroutine

Can take the form of a read, readx, readv, or readvx subroutine call. For this call, the device handler
copies the data into the buffer specified by the caller.

v The write subroutine

Can take the form of a write, writex, writev, or writevx subroutine call. For this call, the device handler
copies the user data into a buffer and transmits the data on the LAN.

Chapter 3. Special Files 713

v The ioctl subroutine

CIO_START Starts a session and registers a network ID.
CIO_HALT Halts a session and removes a network ID.
CIO_QUERY Returns the current RAS counter values. These values are defined in the

/usr/include/sys/comio.h file.
CIO_GET_STAT Returns the current adapter and device handler status.
MP_START_AR Puts the MPQP port into Autoresponse mode.
MP_STOP_AR Permits the MPQP port to exit Autoresponse mode.
MP_CHG_PARMS Permits the data link control (DLC) to change certain profile parameters after the MPQP

device has been started.
MP_SET_DELAY Sets the value of NDELAY.

Error Codes
The following error codes may be returned when accessing the device handler through the /dev/mpqn
special file:

ECHRNG Indicates that the channel number is out of range.
EAGAIN Indicates that the maximum number of direct memory accesses (DMAs) was reached, so that the

handler cannot get memory for internal control structures.
EBUSY Indicates one of the following:

v The port is not in correct state.

v The port should be configured, but is not opened or started.

v The port state is not opened for start of an ioctl operation.

v The port is not started or is not in data-transfer state.
EIO Indicates that the handler could not queue the request to the adapter.
EFAULT Indicates that the cross-memory copy service failed.
EINTR Indicates that the sleep was interrupted by a signal.
EINVAL Indicates one of the following:

v The port not set up properly.

v The handler could not set up structures for write.

v The port is not valid.

v A select operation was called by a kernel process.

v The specified physical-link parameter is not valid for that port.

v The read was called by a kernel process.
ENOMEM Indicates one of the following:

v No mbuf or mbuf clusters are available.

v The total data length is more than a page.

v There is no memory for internal structures.
ENOMSG Indicates that the status-queue pointer is null, and there are no entries.
ENOTREADY Indicates that the port state in define device structure (DDS) is not in Data Transfer mode or that

the implicit halt of port failed.
ENXIO Indicates one of the following:

v The port has not been started successfully.

v An invalid adapter number was specified.

v The channel number is illegal.

v The adapter is already open in Diagnostic mode.

v The adapter control block (ACB) pointer is null or does not exist.

v The registration of the interrupt handler failed.

v The port does not exist or is not in proper state.

v The adapter number is out of range.

714 Files Reference

The communication device handler chapter defines specific errors returned on each subroutine call.

Related Information
The close subroutine, open subroutine, read or readx subroutine, write or writex subroutine, ioctl
subroutine.

MPQP Device Handler Interface Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepts.

null Special File

Purpose
Provides access to the null device, typically for writing to the bit bucket.

Description
The /dev/null special file provides character access to the null device driver. This device driver is normally
accessed to write data to the bit bucket (when the data is to be discarded).

Usage Considerations
When using subroutines with the null device file, consider the following items:

open and close subroutines The null device can be opened by using the open subroutine with
the /dev/null special file name. The close subroutine should be
used when access to the null device is no longer required.

read and write subroutines Data written to this file is discarded. Reading from this file always
returns 0 bytes.

ioctl subroutine There are no ioctl operations available for use with the null
special file. Any ioctl operation issued returns with the ENODEV
error type.

Related Information
The close subroutine, ioctl subroutine, open subroutine.

nvram Special File

Purpose
Provides access to platform-specific nonvolatile RAM used for system boot, configuration, and fatal error
information. This access is achieved through the machine I/O device driver.

Description
The /dev/nvram character special file provides access to the machine device driver for accessing or
modifying machine-specific nonvolatile RAM. The appropriate privilege is required to open the nvram
special file. The nvram special file is used by machine-specific configuration programs to store or retrieve
configuration and boot information using the nonvolatile RAM or ROM provided on the machine. The
nvram special file supports open, close, read, and ioctl operations.

Note: Application programs should not access the nonvolatile RAM. Since nonvolatile RAM is
platform-specific, any reliance on its presence and implementation places portability constraints
upon the using application. In addition, accessing the nonvolatile RAM may cause loss of system
startup and configuration information. Such a loss could require system administrative or
maintenance task work to rebuild or recover.

Chapter 3. Special Files 715

For additional information concerning the use of this special file to access machine-specific nonvolatile
RAM, see the ″Machine Device Driver″ in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 1.

Usage Considerations
When using subroutines with the nvram special file, consider the following items.

open and close Subroutines: The machine device driver supports the nvram special file as a
multiplexed character special file.

A special channel name of base can be used to read the base customize information stored as part of the
boot record. The nvram special file must be opened with a channel name of base, as follows:
/dev/nvram/base

The special file /dev/nvram/base can only be opened once. When it is closed for the first time after a
boot, the buffer containing the base customize information is free. Subsequent opens return a ENOENT
error code.

read, write, and lseek Subroutines: The read subroutine is supported after a successful open of the
nvram special file with a channel name of base. The read operation starts transferring data at the location
associated with the base customization information and with an offset specified by the offset value
associated with the file pointer being used on the subroutine.

On a read subroutine, if the end of the data area is reached before the transfer count is reached, the
number of bytes read before the end of the data area was reached is returned. If the read starts after the
end of the data area, an error of ENXIO is returned by the driver.

The lseek subroutine can be used to change the starting read offset within the data area associated with
the base customization information. The write subroutine is not supported on this channel and results in
an error return of ENODEV.

ioctl Subroutine: ioctl commands can be issued to the machine device driver after the /dev/nvram
special file has been successfully opened. The IOCINFO parameter returns machine device driver
information in the caller’s devinfo structure, as pointed to by the arg parameter to the ioctl subroutine.
This structure is defined in the /usr/include/sys/devinfo.h file. The device type for this device driver is
DD_PSEU.

Error Codes
The following error conditions can be returned when accessing the machine device driver using the nvram
special file name:

EFAULT A buffer specified by the caller was invalid on a read, write, or ioctl subroutine call.
ENXIO A read operation was attempted past the end of the data area specified by the channel.
ENODEV A write operation was attempted.
ENOMEM A request was made with a user-supplied buffer that is too small for the requested data.

Security
Programs attempting to open the nvram special file require the appropriate privilege.

Files

/dev/nvram/base Allows read access to the base customize information stored as part of the boot record.

716 Files Reference

Related Information
The Device Configuration Subsystem Programming Introduction in AIX 5L Version 5.2 Kernel Extensions
and Device Support Programming Concepts.

The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine.

random and urandom Devices

Purpose
Source of secure random output.

Description
The /dev/random and /dev/urandom character devices provide cryptographically secure random output
generated from interrupt timings or input written to the devices.

The /dev/random device is intended to provide high quality, cryptographically secure random output and
will only return output for which sufficient (an equal or greater amount) random input is available to
generate the output. If insufficient random input is available, reads from the /dev/random device will block
until the request can be fulfilled unless the O_NONBLOCK flag was specified when the device was
opened, in which case as much high quality output as could be generated is returned with the error code
EAGAIN.

The /dev/urandom device provides a reliable source of random output, however the output will not be
generated from an equal amount of random input if insufficient input is available. Reads from the
/dev/urandom device always return the quantity of output requested without blocking. If insufficient
random input is available, alternate input will be processed by the random number generator to provide
cryptographically secure output, the strength of which will reflect the strength of the algorithms used by the
random number generator. Output generated without random input is theoretically less secure than output
generated from random input, so /dev/random should be used for applications for which a high level of
confidence in the security of the output is required.

Data written to either device is added to the pool of stored random input and may be used for generating
output. Writes behave identically for both devices and will not block.

Implementation Specifics
The /dev/random and /dev/urandom devices are created from major and minor numbers assigned by the
device configuration subsystem when the random number generator is loaded, so the device names
should always be used when attempting to locate or open the devices. The devices are deleted when the
random number generator is unloaded. When the system is shut down using the shutdown command,
output is taken from the /dev/urandom device and is written back to the /dev/random device when the
random number generator is loaded on the next boot to provide starting entropy to the generator,
enhancing the quality of the stored random input after boot.

Input is gathered from interrupt timings when the pool of stored random input falls below half full and
continues to be gathered until the pool is again full. This process causes a minor performance impact to all
external interrupts while timings are being gathered, which ceases when timings cease to be gathered.
Data written to either of the random devices will also contribute to the pool of stored random input and can
influence the output, thus writing to these devices should be a privileged operation. This is enforced by the
permissions of the devices, so it can be changed by the administrator to be completely disallowed if
desired.

Chapter 3. Special Files 717

omd Special File

Purpose
Provides access to the read/write optical device driver.

Description
The omd special file provides block and character (raw) access to disks in the read/write optical drive.

The r prefix on a special file name means that the drive is accessed as a raw device rather than a block
device. Performing raw I/O with an optical disk requires that all data transfers be in multiples of the
optical-disk logical block length. Also, all lseek subroutines that are made to the raw read/write optical
device driver must set the file offset pointer to a value that is a multiple of the specified logical block size.

The scdisk SCSI Device Driver provides more information about implementation specifics.

Read/Write Optical Device Driver
Read/write optical disks, used in read/write optical drives, are media that provide storage for large
amounts of data. Block access to optical disks is achieved through the special files /dev/omd0,
/dev/omd1, ... /dev/omdn. Character access is provided through the special files /dev/romd0,
/dev/romd1, ... /dev/romdn.

When a read/write optical disk is ejected from the drive for a mounted read/write optical file system, the
files on the optical disk can no longer be accessed. Before attempting to access these files again, perform
the following steps for a file system mounted from the read/write optical disk:

1. Stop processes that have files open on the file system.

2. Move processes that have current directories on the file system.

3. Unmount the file system.

4. Remount the file system after reinserting the media.

If these actions do not work, perform a forced unmount of the file system; then, remount the file system.

Note: Reinserting the read/write optical disk will not fix the problem. Stop all processes (graphical and
ASCII), and then forcibly unmount the file system. Then remount the file system. After performing
this procedure, you can restart any man commands.

Device-Dependent Subroutines
Most read/write optical operations are implemented using the open, read, write, and close subroutines.
However, for some purposes, use of the openx (extended) subroutine is required.

The openx Subroutine
The openx subroutine is supported to provide additional functions to the open sequence. Appropriate
authority is required for execution. If an attempt is made to run the openx subroutine without the proper
authority, the subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The ioctl Subroutine
The ioctl subroutine IOCINFO operation returns the devinfo structure defined in the
/usr/include/sys/devinfo.h file. The IOCINFO operation is the only operation defined for all device drivers
that use the ioctl subroutine. Other ioctl operations are specific for the type of device driver. Diagnostic
mode is not required for the IOCINFO operation.

Error Conditions
Possible errno values for ioctl, open, read, and write subroutines when using the omd special file
include:

718 Files Reference

EACCES Indicates one of the following circumstances:

v An attempt was made to open a device currently open in Diagnostic or Exclusive Access
mode.

v An attempt was made to open a Diagnostic mode session on a device already open.

v The user attempted a subroutine other than an ioctl or close subroutine while in Diagnostic
mode.

v A DKIOCMD operation was attempted on a device not in Diagnostic mode.

v A DKFORMAT operation was attempted on a device not in Exclusive Access mode.
EBUSY Indicates one of the following circumstances:

v The target device is reserved by another initiator.

v An attempt was made to open a session in Exclusive Access mode on a device already
opened.

EFAULT Indicates an illegal user address.
EFORMAT Indicates the target device has unformatted media or media in an incompatible format.
EINVAL Indicates one of the following circumstances:

v The read or write subroutine supplied an nbyte parameter that is not an even multiple of the
block size.

v A sense data buffer length of greater than 255 bytes is not valid for a DKIOWRSE or
DKIORDSE ioctl subroutine operation.

v The data buffer length exceeded the maximum defined in the devinfo structure for a
DKIORDSE, DKIOWRSE, or DKIOCMD ioctl subroutine operation.

v An unsupported ioctl subroutine operation was attempted.

v An attempt was made to configure a device that is still open.

v An illegal configuration command has been given.

v A DKPMR (Prevent Media Removal), DKAMR (Allow Media Removal), or DKEJECT (Eject
Media) command was sent to a device that does not support removable media.

v A DKEJECT (Eject Media) command was sent to a device that currently has its media locked
in the drive.

EIO Indicates one of the following circumstances:

v The target device cannot be located or is not responding.

v The target device has indicated an unrecovered hardware error.
EMEDIA Indicates one of the following circumstances:

v The target device has indicated an unrecovered media error.

v The media was changed.
EMFILE Indicates an open operation was attempted for an adapter that already has the maximum

permissible number of opened devices.
ENODEV Indicates one of the following circumstances:

v An attempt was made to access an undefined device.

v An attempt was made to close an undefined device.
ENOTREADY Indicates no read/write optical disk is in the drive.
ENXIO Indicates one of the following circumstances:

v The ioctl subroutine supplied an invalid parameter.

v A read or write operation was attempted beyond the end of the physical volume.
EPERM Indicates the attempted subroutine requires appropriate authority.
ESTALE Indicates a read-only optical disk was ejected (without first being closed by the user) and then

either reinserted or replaced with a second disk.
ETIMEDOUT Indicates an I/O operation has exceeded the given timer value.
EWRPROTECT Indicates one of the following circumstances:

v An open operation requesting read/write mode was attempted on read-only media.

v A write operation was attempted to read-only media.

Chapter 3. Special Files 719

Files

/dev/romd0, /dev/romd1,..., /dev/romdn Provides character access to the
read/write optical device driver.

/dev/omd0, /dev/omd1,..., /dev/omdn Provides block access to the read/write
optical device driver.

Related Information
Special Files Overview.

scdisk SCSI Device Driver.

The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine, write
subroutine.

opn Special File

Purpose
Provides a diagnostic interface to the serial optical ports by way of the Serial Optical Link device driver.

Description
The opn character special file provides strictly diagnostic access to a specific serial optical port. The
normal interface to the serial optical link is through the ops0 special file.

Related Information
Serial Optical Link Device Handler Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepts.

ops0 Special File

Purpose
Provides access to the serial optical link by way of the Serial Optical Link Device Handler Overview.

Description
The Serial Optical Link device driver is a component of the Communication I/O subsystem. The device
driver can support from one to four serial optical ports. An optical port consists of two separate pieces. The
Serial Link Adapter is on the system planar, and is packaged with two to four adapters in a single chip.
The Serial Optical Channel Converter plugs into a slot on the system planar and provides two separate
optical ports.

The ops0 special file provides access to the optical port subsystem. An application that opens this special
file has access to all the ports, but does not need to be aware of the number of ports available. Each write
operation will include a destination processor ID, and the device driver will route the data through the
correct port to reach that processor. If there is more than one path to the destination, the device driver will
use any link that is available, in case of a link failure.

720 Files Reference

Usage Considerations
When accessing the Serial Optical Link device driver, the following should be taken into account:

driver initialization and termination The device driver may be loaded and
unloaded. The device driver supports the
configuration calls to initialize and terminate
itself.

special file support Calls other than the open and close
subroutines are discussed based on the
mode in which the device driver is operating.

Subroutine Support
The Serial Optical Link device driver provides specific support for the open, close, read, write, and ioctl
subroutines.

open and close Subroutines: The device driver supports the /dev/ops0 special file as a
character-multiplex special file. The special file must be opened for both reading and writing (O_RDWR).
There are no particular considerations for closing the special file. The special file name is used in an open
call depending on how the device is to be opened. The two types of special file names are:

/dev/ops0 Starts the device driver in normal mode.
/dev/ops0/S Starts the device driver in serialized mode. As a result, the device driver transmits data in the

same order in which it receives the data.

read Subroutine: Can take the form of a read, readx, readv, or readvx subroutine. For this call, the
device driver copies the data into the buffer specified by the caller.

write Subroutine: Can take the form of a write, writex, writev, or writevx subroutine. For this call, the
device driver copies the user data into a kernel buffer and transmits the data.

ioctl subroutine: The Serial Optical Link device driver supports the following ioctl operations:

CIO_GET_FASTWRT Gets attributes needed for the sol_fastwrt entry point.
CIO_GET_STAT Gets device status.
CIO_HALT Halts the device.
CIO_QUERY Queries device statistics.
CIO_START Starts the device.
IOCINFO I/O character information.
SOL_CHECK_PRID Checks if a processor ID is connected.
SOL_GET_PRIDS Gets connected processor IDs.

Error Codes
The following error codes may be returned when accessing the device driver through the /dev/ops0
special file:

EACCES Indicates access to the device is denied for one of the following reasons:

v A non-privileged user tried to open the device in Diagnostic mode.

v A kernel-mode user attempted a user-mode call.

v A user-mode user attempted a kernel-mode call.
EADDRINUSE Indicates the network ID is in use.
EAGAIN Indicates that the transmit queue is full.

Chapter 3. Special Files 721

EBUSY Indicates one of the following:

v The device was already initialized.

v There are outstanding opens; unable to terminate.

v The device is already open in Diagnostic mode.

v The maximum number of opens has been exceeded.
EFAULT Indicates that the specified address is not valid.
EINTR Indicates that a system call was interrupted.
EINVAL Indicates that the specified parameter is not valid.
EIO Indicates a general error. If an extension was provided in the call, additional data identifying the

cause of the error can be found in the status field.
EMSGSIZE Indicates that the data was too large to fit into the receive buffer and that no arg parameter was

supplied to provide an alternate means of reporting this error with a status of CIO_BUF_OVFLW.
ENETDOWN Indicates that the network is down. The device is unable to process the write.
ENOCONNECT Indicates one of the following:

v The device is not started.

v The processor ID is not connected to the Serial Optical Link subsystem.
ENODEV Indicates that the specified minor number is not valid.
ENOMEM Indicates that the device driver was unable to allocate the required memory.
ENOSPC Indicates the network ID table is full.
EPERM Indicates that the device is open in a mode that does not allow a Diagnostic-mode open request.

Related Information
The close subroutine, open subroutine, read or readx subroutine, write or writex subroutine, ioctl
subroutine.

Serial Optical Link Device Handler Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepts.

pty Special File

Purpose
Provides the pseudo-terminal (pty) device driver.

Description
The pty device driver provides support for a pseudo-terminal. A pseudo-terminal includes a pair of control
and slave character devices. The slave device provides processes with essentially the same interface as
that provided by the tty device driver. However, instead of providing support for a hardware device, the
slave device is manipulated by another process through the control half of the pseudo-terminal. That is,
anything written on the control device is given to the slave device as input and anything written on the
slave device is presented as input on the control device.

In AIX Version 4, the pty subsystem uses naming conventions similar to those from UNIX System V. There
is one node for the control driver, /dev/ptc, and a maximum number of N nodes for the slave drivers,
/dev/pts/n. N is configurable at pty configuration and may be changed dynamically by pty reconfiguration,
without closing the opened devices.

The control device is set up as a clone device whose major device number is the clone device’s major
number and whose minor device number is the control driver’s major number. There is no node in the
filesystem for control devices. A control device can be opened only once, but slave devices can be opened
several times.

722 Files Reference

By opening the control device with the /dev/ptc special file, an application can quickly open the control
and slave sides of an unused pseudo-terminal. The name of the corresponding slave side can be retrieved
using the ttyname subroutine, which always returns the name of the slave side.

With Berkeley pty subsystems, commands have to search for an unused pseudo-terminal by opening each
control side sequentially. The control side could not be opened if it was already in use. Thus, the opens
would fail, setting the errno variable to EIO, until an unused pseudo-terminal was found. It is possible to
configure the pty subsystem in order to use special files with the BSD pty naming convention:

Control devices /dev/pty[p-zA-Z][0-f]
Slave devices /dev/tty[p-zA-Z][0-f]

These special files are not symbolic links to the operating system special files. They are completely
separate. The number of control and slave pair devices using the BSD naming convention is configurable.

The following ioctl commands apply to pseudo-terminals:

TIOCSTOP Stops output to a terminal. This is the same as using the Ctrl-S key sequence. No parameters
are allowed for this command.

TIOCSTART Restarts output that was stopped by a TIOCSTOP command or by the Ctrl-S key sequence. This
is the same as typing the Ctrl-Q key sequence. No parameters are allowed for this command.

TIOCPKT Enables and disables the packet mode. Packet mode is enabled by specifying (by reference) a
nonzero parameter. It is disabled by specifying (by reference) a zero parameter. When applied to
the control side of a pseudo-terminal, each subsequent read from the terminal returns data
written on the slave part of the pseudo terminal. The data is preceded either by a zero byte
(symbolically defined as TIOCPKT_DATA) or by a single byte that reflects control-status
information. In the latter case, the byte is an inclusive OR of zero or more of the following bits:

TIOCPKT_FLUSHREAD
The read queue for the terminal is flushed.

TIOCPKT_FLUSHWRITE
The write queue for the terminal is flushed.

TIOCPKT_STOP
Output to the terminal is stopped with Ctrl-S.

TIOCPKT_START
Output to the terminal is restarted.

TIOCPKT_DOSTOP
The stop character defined by the current tty line discipline is Ctrl-S; the start character
defined by the line discipline is Ctrl-Q.

TIOCPKT_NOSTOP
The start and stop characters are not Ctrl-S and Ctrl-Q.

While this mode is in use, the presence of control-status information to be read from the control
side can be detected by a select for exceptional conditions.

This mode is used by the rlogin and rlogind commands to log in to a remote host and
implement remote echoing and local Ctrl-S and Ctrl-Q flow control with proper back-flushing of
output.

Chapter 3. Special Files 723

TIOCUCNTL Enables and disables a mode that allows a small number of simple user ioctl commands to be
passed through the pseudo-terminal, using a protocol similar to that of the TIOCPKT mode. The
TIOCUCNTL and TIOCPKT modes are mutually exclusive.

This mode is enabled from the control side of a pseudo-terminal by specifying (by reference) a
nonzero parameter. It is disabled by specifying (by reference) a zero parameter. Each
subsequent read from the control side will return data written on the slave part of the
pseudo-terminal, preceded either by a zero byte or by a single byte that reflects a user control
operation on the slave side.

A user-control command consists of a special ioctl operation with no data. That command is
issued as UIOCCMD(Value), where the Value parameter specifies a number in the range 1
through 255. The operation value is received as a single byte on the next read from the control
side.

A value of 0 can be used with the UIOCCMD ioctl operation to probe for the existence of this
facility. The zero is not made available for reading by the control side. Command operations can
be detected with a select for exceptional conditions.

TIOCREMOTE A mode for the control half of a pseudo-terminal, independent of TIOCPKT. This mode
implements flow control, rather than input editing, for input to the pseudo-terminal, regardless of
the terminal mode. Each write to the control terminal produces a record boundary for the process
reading the terminal. In normal usage, a write of data is like the data typed as a line on the
terminal, while a write of zero bytes is like typing an end-of-file character. This mode is used for
remote line editing in a window-manager and flow-controlled input.

Related Information
The rlogin command, rlogind command.

The ioctl subroutine, ttyname subroutine.

tty Subsystem Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

Understanding TTY Drivers in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

rcm Special File

Purpose
Provides the application interface to obtain and relinquish the status of a graphics process through the
Rendering Context Manager (RCM) device driver.

Description
The rcm is used by graphics systems to obtain a gsc_handle. This handle is required in the call to
aixgsc which is part of the procedure of becoming a graphics process.

Usage Considerations
The RCM device driver supports open, close, and ioctl subroutines.

A application uses the GSC_HANDLE ioctl command to get a gsc_handle as part of becoming a graphics
process. When it closes rcm, either normally, or by abnormal termination, the RCM releases any displays
which it owns. This is implemented as a LFT_REL_DISP ioctl command to the LFT device driver.

IOCINFO Returns devinfo structure.

724 Files Reference

GSC_HANDLE Returns a gsc_handle.
RCM_SET_DIAG_OWNER Obtain exclusive use of the display adapter for diagnostics.

Related Information
lft Special File.

Special Files Overview .

rhdisk Special File

Purpose
Provides raw I/O access to the physical volumes (fixed-disk) device driver.

Description
The rhdisk special file provides raw I/O access and control functions to physical-disk device drivers for
physical disks. Raw I/O access is provided through the /dev/rhdisk0, /dev/rhdisk1, ..., character special
files.

Direct access to physical disks through block special files should be avoided. Such access can impair
performance and also cause data consistency problems between data in the block I/O buffer cache and
data in system pages. The /dev/hdisk block special files are reserved for system use in managing file
systems, paging devices and logical volumes.

The r prefix on the special file name indicates that the drive is to be accessed as a raw device rather than
a block device. Performing raw I/O with a fixed disk requires that all data transfers be in multiples of the
disk block size. Also, all lseek subroutines that are made to the raw disk device driver must result in a
file-pointer value that is a multiple of the disk-block size.

Usage Considerations

Note: Data corruption, loss of data, or loss of system integrity (system crashes) will occur if devices
supporting paging, logical volumes, or mounted file systems are accessed using block special files.
Block special files are provided for logical volumes and disk devices on the operating system and
are solely for system use in managing file systems, paging devices, and logical volumes. They
should not be used for other purposes.

open and close Subroutines: The openx subroutine provides additional functions to the open
sequence. This subroutine requires appropriate permission to execute. Attempting to do so without the
proper permission results in a return value of -1, with the errno global variable set to EPERM.

read and write Subroutines: The readx and writex subroutines provide for additional parameters
affecting the raw data transfer. The ext parameter specifies certain options that apply to the request being
made. The options are constructed by logically ORing zero or more of the following values.

Note: The following operations can be used only with the writex subroutine.

WRITEV Perform physical write verification on this request.
HWRELOC Perform hardware relocation of the specified block before the block is written. This is done only if

the drive supports safe relocation. Safe relocation ensures that once the relocation is started, it will
complete safely regardless of power outages.

UNSAFEREL Perform hardware relocation of the specified block before the block is written. This is done if the
drive supports any kind of relocation (safe or unsafe).

Chapter 3. Special Files 725

ioctl Subroutine: Only one ioctl operation, IOCINFO, is defined for all device drivers that use the ioctl
subroutine. The remaining ioctl operations are all specific to physical-disk devices. Diagnostic mode is not
required for the IOCINFO operation.

The IOCINFO ioctl operation returns a structure for a device type of DD_DISK. This structure is defined in
the /usr/include/sys/devinfo.h file.

Error Codes
In addition to the errors listed for the ioctl, open, read, and write subroutines, the following other error
codes are also possible:

EACCES An open subroutine call has been made to a device in Diagnostic mode.
EACCES A diagnostic openx subroutine call has been made to a device already opened.
EACCES A diagnostic ioctl operation has been attempted when not in Diagnostic mode.
EINVAL An nbyte parameter to a read or write subroutine is not a multiple of the disk block size.
EINVAL An unsupported ioctl operation has been attempted.
EINVAL An unsupported readx or writex subroutine has been attempted.
EMEDIA The target device has indicated an unrecovered media error.
ENXIO A parameter to the ioctl subroutine is invalid.
ENXIO A read or write subroutine has been attempted beyond the end of the disk.
EIO The target device cannot be located or is not responding.
EIO The target device has indicated an unrecovered hardware error.
EMFILE An open subroutine has been attempted for an adapter that already has the maximum permissible

number of opened devices.
EPERM The caller lacks the appropriate privilege.

Files

/dev/hdisk0, /dev/hdisk1, ... /dev/hdiskn Provide block I/O access to the physical volumes
(fixed-disk) device driver.

Related Information
The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine, write
subroutine.

Direct Access Storage Device (DASD) Overview in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

SCSI Subsystem Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

scdisk SCSI Device Driver in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

Serial DASD Subsystem Device Driver in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems
Volume 1.

rmt Special File

Purpose
Provides access to the sequential-access bulk storage medium device driver.

726 Files Reference

Description
Magnetic tapes are used primarily for backup, file archives, and other off-line storage. Tapes are accessed
through the /dev/rmt0, ... , /dev/rmt255 special files. The r in the special file name indicates raw access
through the character special file interface. A tape device does not lend itself well to the category of a
block device. Thus, only character interface special files are provided.

Special files associated with each tape device determine which action is taken during open or close
operations. These files also dictate, for applicable devices, at what density data is to be written to tape.
The following table shows the names of these special files and their corresponding characteristics:

Tape Drive Special File Characteristics

Special File Name Rewind-on-Close Retension-on-Open Bytes per Inch

/dev/rmt* Yes No Density setting #1

/dev/rmt*.1 No No Density setting #1

/dev/rmt*.2 Yes Yes Density setting #1

/dev/rmt*.3 No Yes Density setting #1

/dev/rmt*.4 Yes No Density setting #2

/dev/rmt*.5 No No Density setting #2

/dev/rmt*.6 Yes Yes Density setting #2

/dev/rmt*.7 No Yes Density setting #2

1. The values of density setting #1 and density setting #2 come from tape drive attributes that can be set
using SMIT. Typically density setting #1 is set to the highest possible density for the tape drive while
density setting #2 is set to a lower density. However, density settings are not required to follow this
pattern.

2. The density value (bytes per inch) is ignored when using a magnetic tape device that does not support
multiple densities. For tape drives that do support multiple densities, the density value only applies
when writing to the tape. When reading, the drive defaults to the density at which the tape is written.

3. Most tape drives use 512-byte block size. The 8mm tape drive uses a minimum block size of 1024
bytes. Using SMIT to lower the block size, will waste space.

Usage Considerations
Most tape operations are implemented using the open, read, write, and close subroutines. However, for
diagnostic purposes, the openx subroutine is required.

open and close Subroutines: Care should be taken when closing a file after writing. If the application
reverses over the data just written, no file marks will be written. However, for tape devices that allow for
block update, unless the application spaces in the reverse direction or returns the tape position to the
beginning of tape (BOT), one or two file marks will be written upon closing the device. (The number of file
marks depends on the special file type.)

For multitape jobs, the special file must be opened and closed for each tape. The user is not allowed to
continue if the special file is opened and the tape has been changed.

The openx subroutine is intended primarily for use by the diagnostic commands and utilities. Appropriate
authority is required for execution. Executing this subroutine without the proper authority results in a return
value of -1, with the errno global variable set to EPERM.

read and write Subroutines: When opened for reading or writing, the tape is assumed to be positioned
as desired. When the tape is opened as no-rewind-on-close (/dev/rmt*.1) and a file is written, a single file
mark is written upon closing the tape. When the tape is opened as rewind-on-close (/dev/rmt*) and a file

Chapter 3. Special Files 727

is written, a double file mark is written upon closing the tape. When the tape is opened as
no-rewind-on-close and reads from a file, the tape is positioned upon closing after the end-of-file (EOF)
mark following the data just read.

By specifically choosing the rmt file, it is possible to create multiple file tapes.

Although tapes are accessed through character interface special files, the number of bytes required by
either a read or write operation must be a multiple of the block size defined for the magnetic tape device.
When the tape drive is in variable block mode, read requests for less than the tape’s block size return the
number of bytes requested and set the errno global variable to a value of 0. In this case, the readx
subroutine’s Extension parameter must be set to TAPE_SHORT_READ.

During a read, the record size is returned as the number of bytes read, up to the buffer size specified. If
an EOF condition is encountered, then a zero-length read is returned, with the tape positioned after the
EOF.

An end-of-media (EOM) condition encountered during a read or write operation results in the return of the
number of bytes successfully ready or written. When a write is attempted after the device has reached the
EOM, a value of -1 is returned with the errno global variable set to the ENXIO value. When a read is
attempted after the device has reached the EOM, a zero-length read is returned. Successive reads
continue to return a zero-length read.

Data Buffering With a Tape Device: Some tape devices contain a data buffer to maximize data transfer
speed when writing to tape. A write operation sent to tape is returned as complete when the data is
transferred to the data buffer of the tape device. The data in the buffer is then written to tape
asynchronously. As a result, data-transfer speed increases since the host need not wait for I/O completion.

Two modes are provided by the tape device driver to facilitate use of these data buffers. The non-buffered
mode causes writes to tape to bypass the data buffer and go directly to tape. In buffered mode, all write
subroutines are returned as complete when the transfer data has been successfully written to the tape
device buffer. The device driver does not flush the data buffer until the special file is closed or an EOM
condition is encountered.

If an EOM condition is encountered while running in buffered mode, the device attempts to flush the
device data buffer. The residual count can exceed the write transfer length in buffered mode. In some
cases, the flushing of residual data may actually run the tape off the reel. Either case is considered a
failure and results in a return value of -1, with the errno global variable set to EIO. These errors can
require the user to run in non-buffered mode.

rmt Special File Considerations: Failures that result in a device reset while reading or writing to tape
require the special file to be closed and the job restarted. Any commands issued after this condition occurs
and until the special file is closed result in a return value of -1, with the errno global variable set to EIO.
Non-reset type errors (that is, media or hardware errors) result in the tape being left positioned where the
error occurred.

For multi-tape jobs, the special file must be opened and closed for each tape. The user is not allowed to
continue if the special file is opened and the tape has been changed.

A signal received by the tape device driver will cause the current command to abort. As a result, the
application halts time-consuming commands (for instance, an erase operation) without recycling the drive
power or waiting for a timeout to occur.

Use of zero (0) as a block-size parameter indicates the blocksize is of variable length.

ioctl Subroutine: A single ioctl operation, IOCINFO, is defined for all device drivers that use the ioctl
subroutine. For the rmt special file, the STIOCTOP operation has also been defined.

728 Files Reference

The IOCINFO ioctl operation: The IOCINFO ioctl operation returns a structure defined in the
/usr/include/sys/devinfo.h file.

The STIOCTOP ioctl operation: The STIOCTOP ioctl operation provides for command execution
operations, such as erase and retension. The parameter to the ioctl subroutine using the STIOCTOP
operation specifies the address of a stop structure, as defined in the /usr/include/sys/tape.h file.

The operation found in the st_op field in the stop structure is performed st_count times, except for rewind,
erase, and retension operations. The available operations are:

STREW Rewind.
STOFFL Rewind and unload the tape. A tape must be inserted before the device can be used again.
STERASE Erase tape; leave at load point.
STRETEN Retension tape; leave at load point.
STWEOF Write and end-of-file mark.
STFSF Forward space file.
STFSR Forward space record.
STRSF Reverse space file.
STRSR Reverse space record.
STDEOF Disable end-of-file check.

Note: Use of the STDEOF command enables an application to write beyond the end of the tape.
When disabling end-of-file checking by issuing the STDEOF command, it is the responsibility of the
application to guard against error conditions that can arise from the use of this command.

Note: Execution of the preceding commands depends on the particular tape device and which commands
are supported. If the command is not supported on a particular device, a value of -1 is returned,
with the errno global variable set to EINVAL.

Error Codes
In addition to general error codes listed for ioctl, open, read, and write subroutines, the following specific
error codes may also occur:

EAGAIN An open operation was attempted to a device that is already open.
EBUSY The target device is reserved by another initiator.
EINVAL O_APPEND is supplied as a mode in which to open.
EINVAL An nbyte parameter to a read or write subroutine is not an even multiple of the blocksize.
EINVAL A parameter to the ioctl subroutine is invalid.
EINVAL The requested ioctl operation is not supported on the current device.
EIO Could not space forward or reverse st_count records before encountering an EOM condition or a

file mark.
EIO Could not space forward or reverse st_count file marks before encountering an EOM condition.
EMEDIA The tape device has encountered an unrecoverable media error.
ENOMEM The number of bytes requested for a read of a variable-length record on tape is less than the

actual size (in bytes) of the variable-length record.
ENOTREADY There is no tape in the drive or the drive is not ready.
ENXIO A write operation was attempted while the tape was at the EOM.
EPERM The requested subroutine requires appropriate authority.
ETIMEDOUT A command has timed out.
EWRPROTECT An open operation for read/write was attempted on a read-only tape.
EWRPROTECT An ioctl operation that effects media was attempted on a read-only tape.

Related Information
The rmt SCSI Device Driver in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume
1.

Chapter 3. Special Files 729

The close subroutine, ioctl subroutine, open subroutine, openx subroutine, read subroutine, write
subroutine.

scsi Special File

Purpose
Provides access to the SCSI adapter driver.

Description
The scsi special file provides an interface to an attached SCSI adapter. This special file should not be
opened directly by application programs (with the exception of diagnostics applications). The /dev/scsi0,
/dev/scsi1, ... /dev/scsin files are the scsi special files.

The description of the SCSI Adapter device driver in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 1 provides the implementation specifics for the SCSI adapter.

Related Information
SCSI Subsystem Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

Direct Access Storage Device (DASD) Overview in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

The scdisk SCSI Device Driver, and rmt SCSI Device Driver.

serdasda Special File

Purpose
Provides access to the serial DASD adapter.

Description
The serdasda special file provides an interface to an attached Serial DASD adapter. This special file
should not be opened directly by application programs (with the exception of diagnostics applications). The
/dev/serdasda0, /dev/serdasda1, ... /dev/serdasdan files are the serdasda special files.

Usage Considerations
The description of the Serial DASD Subsystem Device Driver in AIX 5L Version 5.2 Technical Reference:
Kernel and Subsystems Volume 1 provides information on using the Serial DASD adapter.

Related Information
The Direct Access Storage Device (DASD) Overview in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

Device-Dependent Subroutines for Serial DASD Adapter Operations in AIX 5L Version 5.2 Technical
Reference: Kernel and Subsystems Volume 1.

Error Conditions for Serial DASD Subroutines in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 1.

730 Files Reference

serdasdc Special File

Purpose
Provides access to the serial DASD subsystem controllers.

Description
The serdasdc special file provides an interface to an attached serial DASD subsystem controllers. This
special file should not be opened directly by application programs (with the exception of diagnostics
applications).The /dev/serdasdc0, /dev/serdasdc1, ... /dev/serdasdcn files provide access to the serial
DASD subsystem controllers.

Usage Considerations
The description of the Serial DASD subsystem device driver in AIX 5L Version 5.2 Technical Reference:
Kernel and Subsystems Volume 1 provides information on using the Serial DASD controllers.

Related Information
The Direct Access Storage Device (DASD) Overview in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

Device-D ependent Subroutines for Serial DASD Controller Operations in AIX 5L Version 5.2 Technical
Reference: Kernel and Subsystems Volume 1.

Error Conditions for Serial DASD Subroutines in AIX 5L Version 5.2 Technical Reference: Kernel and
Subsystems Volume 1.

tablet Special File

Purpose
Provides access to the tablet.

Description
The tablet special file is the application interface to the tablet. It provides the applications with the
capability of receiving input from the tablet and it allows the application to change the sampling rate, dead
zones, origin, resolution, and conversion mode.

Configuration
There are no user commands to change the configuration of the tablet device. Applications may use ioctl
commands to modify the configuration but these modifications are effective only until the tablet is closed.

Usage Considerations
The open subroutine call specifying the tablet special file is processed normally except that the Oflag and
Mode parameters are ignored. The open request is rejected if the special file is already opened or if a
kernel extension attempts to open the special file. All tablet inputs are flushed following an open
subroutine call until an input ring is established. The tablet device is reset to the default configuration when
an open request is made.

The tablet special file does not support the read or write subroutine calls. Instead, input data is obtained
from the tablet through the input ring. The read and write subroutine calls behave the same as read or
write subroutine calls to the /dev/null file.

Chapter 3. Special Files 731

The tablet special file supports the following functions with ioctl subroutines:

IOCINFO Returns devinfo structure.
TABCONVERSION Sets tablet conversion mode.
TABDEADZONE Sets tablet dead zones.
TABFLUSH Flushes input ring.
TABORIGIN Sets tablet origin.
TABQUERYID Queries tablet device identifier.
TABREGRING Registers input ring.
TABRESOLUTION Sets resolution.
TABSAMPELRATE Sets sample rate.

Error Codes
The error codes can be found in the /usr/include/sys/errno.h file.

EFAULT Indicates insufficient authority to access address or invalid address.
EIO Indicates an I/O error.
ENOMEM Indicates insufficient memory for required paging operation.
ENOSPC Indicates insufficient file system or paging space.
EINVAL Indicates an invalid argument.
EINTR Indicates the request was interrupted by signal.
EPERM Indicates a permanent error occurred.
EBUSY Indicates the device is busy.
ENXIO Indicates an unsupported device number was specified.
ENODEV Indicates an unsupported device or device type mismatch.
EACCES Indicates open is not allowed.

Files

/usr/include/sys/inputdd.h Contains declarations for ioctl commands and input ring report
format.

Related Information
LFT Input Devices in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

The close subroutine, ioctl subroutine, open subroutine, read subroutine, write subroutine.

The dials special file, GIO special file, kbd special file, lpfk special file, mouse special file.

Special Files Overview .

tmscsi Special File

Purpose
Provides access to the SCSI tmscsi device driver.

Description
The tmscsi special file provides an interface to allow processor-to-processor data transfer using the SCSI
send command. This single device driver handles both SCSI initiator and SCSI target mode roles.

732 Files Reference

The user accesses the data transfer functions through the special files /dev/tmscsi0.xx, /dev/tmscsi1.xx,
.... These are all character special files. The xx variable can be either im, initiator-mode interface, or tm,
target-mode interface. The initiator-mode interface transmits data, and the target-mode interface receives
data.

The least significant bit of the minor device number indicates to the device driver which mode interface is
selected by the caller. When the least significant bit of the minor device number is set to 1, the
target-mode interface is selected. When the least significant bit is set to 0, the initiator-mode interface is
selected.

When the caller opens the initiator-mode special file, a logical path is established allowing data to be
transmitted. The write, writex, writev, or writevx subroutine initiates data transmission for a user-mode
caller, and the fp_write or fp_rwuio kernel services initiate data transmission for a kernel-mode caller. The
SCSI target-mode device driver then builds a SCSI send command to describe the transfer, and the data
is sent to the device. Once the write entry point returns, the calling program can access the transmit
buffer.

When the caller opens the target-mode special file, a logical path is established allowing data to be
received. The read, readx, readv, or readvx subroutine initiates data reception for a user-mode caller,
and the fp_read or fp_rwuio kernel service initiates data reception for a kernel-mode caller. The SCSI
target-mode device driver then returns data received for the application.

Note: This operation is not supported by all SCSI I/O controllers.

Related Information
tmscsi

The close subroutine, open subroutine, read or readx subroutine, write or writex subroutine.

SCSI Target-Mode Overview in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

tokn Special File

Purpose
Provides access to the token-ring adapters by way of the token-ring device handler.

Description
The tokn character special file provides access to the token-ring device handler that provides access to a
token-ring local area network. The device handler supports up to four token-ring adapters.

Usage Considerations
When accessing the token-ring device handler, the following should be taken into account:

Driver initialization and termination: The device handler may be loaded and unloaded. The device
handler supports the configuration calls to initialize and terminate itself.

Special file support: Calls other than the open and close subroutines are discussed based on the
mode in which the device handler is operating.

Subroutine Support
The token-ring device handler provides specific support for the open, close, read, write, and ioctl
subroutines.

Chapter 3. Special Files 733

open and close Subroutines: The device handler supports the /dev/tokn special file as a
character-multiplex special file. The special file must be opened for both reading and writing (O_RDWR).
There are no particular considerations for closing the special file. The special file name used in an open
call depends upon how the device is to be opened. The three types of special file names are:

/dev/tokn Starts the device handler for the selected port, where the value of n is 0 <= n <= 7.
/dev/tokn/D Starts the device handler for the selected port in Diagnostic mode, where the value of n is

0 <= n <= 7.
/dev/tokn/W Starts the device handler for the selected port in Diagnostic Wrap mode, where the value of n

is 0 <= n <= 7.

read Subroutine: Can take the form of a read, readx, readv, or readvx subroutine. For this call, the
device handler copies the data into the buffer specified by the caller.

write Subroutine: Can take the form of a write, writex, writev, or writevx subroutine. For this call, the
device handler copies the user data into a kernel buffer and transmits the data on the LAN.

ioctl Subroutine: The token-ring device handler supports the following ioctl operations:

CIO_GET_STAT Returns current adapter and device handler status.
CIO_HALT Halts a session and removes a network ID from the network ID table.
CIO_QUERY Returns the current counter values, as defined in the /usr/include/sys/comio.h and

/usr/include/sys/tokuser.h files.
CIO_START Starts a session and registers a network ID.
IOCINFO Returns a structure of device information to the user specified area. The devtype field is

DD_NET_DH and the devsubtype field is DD_TR, as defined in the
/usr/include/sys/devinfo.h file.

TOK_GRP_ADDR Allows the setting of the active group address for the token-ring adapter.
TOK_FUNC_ADDR Allows the setting of a functional address for the token-ring adapter.
TOK_QVPD Returns adapter vital product data.
TOK_RING_INFO Returns information about the token-ring device.

Error Conditions
The following error conditions may be returned when accessing the device handler through the dev/tokn
special file:

EACCES Indicates that permission to access the adapter is denied for one of the following reasons:

v Device has not been configured.

v Diagnostic mode open request denied.

v The call is from a kernel-mode process.
EAGAIN Indicates that the transmit queue is full.
EBUSY Indicates one of the following:

v The device is already opened in Diagnostic mode.

v The maximum number of opens has already been reached.

v The request is denied.

v The device is in use.

v The device handler cannot terminate.
EEXIST Indicates that the device is already configured or the device handler is unable to remove the

device from switch table.
EFAULT Indicates that the an invalid address or parameter was specified.
EINTR Indicates that the subroutine was interrupted.

734 Files Reference

EINVAL Indicates one of the following:

v The parameters specified were invalid.

v The define device structure (DDS) is invalid.

v The device handler is not in Diagnostic mode.
ENOCONNECT Indicates that the device has not been started.
ENETDOWN Indicates that the network is down and the device handler is unable to process the command.
ENOENT Indicates that there was no DDS available.
ENOMEM Indicates that the device handler was unable to allocate required memory.
ENOMSG Indicates that there was no message of desired type.
ENOSPC Indicates that the network ID table is full or the maximum number of opens was exceeded.
EADDRINUSE Indicates that the specified network ID is in use.
ENXIO Indicates that the specified minor number was not valid.
ENETUNREACH Indicates that the device handler is in Network Recovery mode and is unable to process the

write operation.
EMSGSIZE Indicates that the data is too large for the supplied buffer.

Related Information
The close subroutine, open subroutine, read or readx subroutine, write or writex subroutine.

trace Special File

Purpose
Supports event tracing.

Description
The /dev/systrace and /dev/systrcctl special files support the monitoring and recording of selected
system events. Minor device 0 of the trace drivers is the interface between processes that record trace
events and the trace daemon. Write trace events to the /dev/systrace file by the trchk and trcgen
subroutines and the trcgenk kernel service. Minor devices 1 through 7 of the trace drivers support generic
trace channels for tracing system activities such as communications link activities.

The trace special file is part of Software Trace Service Aids package.

Related Information
The trcgenk kernel service.

RAS Kernel Services in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

tty Special File

Purpose
Supports the controlling terminal interface.

Description
For each process, the /dev/tty special file is a synonym for the controlling terminal associated with that
process. By directing messages to the tty file, application programs and shell sequences can ensure that
the messages are written to the terminal even if output is redirected. Programs can also direct their display
output to this file so that it is not necessary to identify the active terminal.

Chapter 3. Special Files 735

A terminal can belong to a process as its controlling terminal. Each process of a session that has a
controlling terminal has the same controlling terminal. A terminal can be the controlling terminal for one
session at most. If a session leader has no controlling terminal and opens a terminal device file that is not
already associated with a session (without using the O_NOCTTY option of the open subroutine), the
terminal becomes the controlling terminal of the session leader. If a process that is not a session leader
opens a terminal file or if the O_NOCTTY option is used, that terminal does not become the controlling
terminal of the calling process. When a controlling terminal becomes associated with a session, its
foreground process group is set to the process group of the session leader.

The controlling terminal is inherited by a child process during a fork subroutine. A process cannot end the
association with its controlling terminal by closing all of its file descriptors associated with the controlling
terminal if other processes continue to have the terminal file open. A process that is not already the
session leader or a group leader can break its association with its controlling terminal by using the setsid
subroutine. Other processes remaining in the old session retain their association with the controlling
terminal.

When the last file descriptor associated with a controlling terminal is closed (including file descriptors held
by processes that are not in the controlling terminal’s session), the controlling terminal is disassociated
from its current session. The disassociated controlling terminal can then be acquired by a new session
leader.

A process can also remove the association it has with its controlling terminal by opening the tty file and
issuing the following ioctl command:
ioctl (FileDescriptor, TIOCNOTTY, 0):

It is often useful to disassociate server processes from their controlling terminal so they cannot receive
input from or be stopped by the terminal.

This device driver also supports the POSIX and Berkeley line disciplines.

Related Information
The fork subroutine, open subroutine, setsid subroutine.

The tty Subsystem Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

urandom and random Devices

Purpose
Source of secure random output.

Description
The /dev/random and /dev/urandom character devices provide cryptographically secure random output
generated from interrupt timings or input written to the devices.

The /dev/random device is intended to provide high quality, cryptographically secure random output and
will only return output for which sufficient (an equal or greater amount) random input is available to
generate the output. If insufficient random input is available, reads from the /dev/random device will block
until the request can be fulfilled unless the O_NONBLOCK flag was specified when the device was
opened, in which case as much high quality output as could be generated is returned with the error code
EAGAIN.

The /dev/urandom device provides a reliable source of random output, however the output will not be
generated from an equal amount of random input if insufficient input is available. Reads from the

736 Files Reference

/dev/urandom device always return the quantity of output requested without blocking. If insufficient
random input is available, alternate input will be processed by the random number generator to provide
cryptographically secure output, the strength of which will reflect the strength of the algorithms used by the
random number generator. Output generated without random input is theoretically less secure than output
generated from random input, so /dev/random should be used for applications for which a high level of
confidence in the security of the output is required.

Data written to either device is added to the pool of stored random input and may be used for generating
output. Writes behave identically for both devices and will not block.

Implementation Specifics
The /dev/random and /dev/urandom devices are created from major and minor numbers assigned by the
device configuration subsystem when the random number generator is loaded, so the device names
should always be used when attempting to locate or open the devices. The devices are deleted when the
random number generator is unloaded. When the system is shut down using the shutdown command,
output is taken from the /dev/urandom device and is written back to the /dev/random device when the
random number generator is loaded on the next boot to provide starting entropy to the generator,
enhancing the quality of the stored random input after boot.

Input is gathered from interrupt timings when the pool of stored random input falls below half full and
continues to be gathered until the pool is again full. This process causes a minor performance impact to all
external interrupts while timings are being gathered, which ceases when timings cease to be gathered.
Data written to either of the random devices will also contribute to the pool of stored random input and can
influence the output, thus writing to these devices should be a privileged operation. This is enforced by the
permissions of the devices, so it can be changed by the administrator to be completely disallowed if
desired.

x25sn Special File

Purpose
Provides access to the X.25 Interface Co-Processor/2 adapters by way of the X.25 Interface
Co-Processor/2 device handler.

Description
The x25sn character special file provides access to the X.25 Interface Co-Processor/2 device handler,
which provides access to a X.25 packet switching network. The device handler supports up to four X.25
Interface Co-Processor/2 adapters.

Usage Considerations
When accessing the X.25 Interface Co-Processor/2 device handler, the following should be taken into
account:

Driver initialization and termination The device handler may be loaded and
unloaded. The device handler supports the
configuration calls to initialize and terminate
itself.

Special file support Calls other than the open and close
subroutines are discussed based on the
mode in which the device handler is
operating.

Subroutine Support
The X.25 Interface Co-Processor/2 device handler provides specific support for the open, close, read,
write, and ioctl subroutines.

Chapter 3. Special Files 737

open and close Subroutines: The device handler supports the /dev/x25sn special file as a
character-multiplex special file. The special file must be opened for both reading and writing (O_RDWR).
There are no particular considerations for closing the special file. The special file name used in an open
call differs depending upon how the device is to be opened. For each of the following types of special files,
the value n is 0 <= n <= 7:

/dev/x25sn Starts the device handler on the next available port.
/dev/x25sn/D Opens the device handler for the specified port in Diagnostic mode.
/dev/x25sn/M Opens the device handler for reading and writing data to the monitor facilities on the X.25

Interface Co-Processor/2.
/dev/x25sn/R Opens the device handler for updating the routing table.

read Subroutine: Can take the form of a read, readx, readv, or readvx subroutine. For this call, the
device handler copies the data into the buffer specified by the caller.

write Subroutine: Can take the form of a write, writex, writev, or writevx subroutine. For this call, the
device handler copies the user data into a kernel buffer and transmits the data on the network.

ioctl Subroutine: The device handler supports the following ioctl operations:

CIO_DNLD Downloads a task.
CIO_GET_STAT Gets device statistics.
CIO_HALT Halts a session.
CIO_QUERY Queries a device.
CIO_START Starts a session.
IOCINFO Identifies a device.
X25_ADD_ROUTER_ID Adds a router ID.
X25_COUNTER_GET Gets a counter.
X25_COUNTER_READ Reads the contents of a counter.
X25_COUNTER_REMOVE Removes a counter from the system.
X25_COUNTER_WAIT Waits for the contents of counters to change.
X25_DELETE_ROUTER_ID Deletes a router ID.
X25_DIAG_IO_READ Reads to an I/O register on the X.25 Interface Co-Processor/2.
X25_DIAG_IO_WRITE Writes to an I/O register on the X.25 Interface Co-Processor/2.
X25_DIAG_MEM_READ Reads memory from the X.25 Interface Co-Processor/2 into a user’s buffer.
X25_DIAG_MEM_WRITE Writes memory to the X.25 Interface Co-Processor/2 from a user’s buffer.
X25_DIAG_TASK Provides the means to download the diagnostics task on to the card.
X25_LINK_CONNECT Connects a link.
X25_LINK_DISCONNECT Disconnects a link.
X25_LINK_STATUS Returns the status of the link.

X25_LOCAL_BUSY
Enables or disables receiving of data packets on a port.

X25_REJECT
Rejects a call.

X25_QUERY_ROUTER_ID
Queries a router ID.

X25_QUERY_SESSION
Queries a session.

Error Conditions
The following error conditions may be returned when accessing the device handler through the /dev/x25sn
special file:

EACCES Indicates that the call application does not have the required authority.

738 Files Reference

EAGAIN Indicates there were no packets to be read or the transmit queue is full, and the device was opened
with the DNDELAY flag set.

EBUSY Indicates that the device was busy and could not accept the operation.
EFAULT Indicates that an invalid address was specified.
EIDRM Indicates that the counter has been removed.
EINTR Indicates that the subroutine call was interrupted.
EINVAL Indicates that an invalid parameter was passed to one of the subroutine calls.
EIO Indicates that an error has occurred. The status field in the status-control block contains more

information.
EMSGSIZE Indicates that the data to be given to the user was greater than the length of the buffer specified. The

data in the buffer is truncated.
ENOBUFS Indicates that no buffers are available.
ENODEV Indicates that the device requested does not exist.
ENOMEM Indicates that the X.25 device handler was unable to allocate space required for the open.
ENOSPC Indicates that there are no counters available to allocate.
ENXIO Indicates that the device was not completely configured. Initial configuration must be completed

before any starts can be issued.
EPERM Indicates the user does not have permission to perform the requested operation.

Related Information
The close subroutine, open subroutine, read or readx subroutine, write or writex subroutine.

Chapter 3. Special Files 739

740 Files Reference

Chapter 4. Header Files

Information that is needed by several different files or functions is collected into a header file. A header file
contains C-language definitions and structures. Centralizing information into a header file facilitates the
creation and update of programs. Because #include statements are used to insert header files into a
C-language program, header files are often referred to as include files.

Header files define the following functions:

v Structures of certain files and subroutines

v Type definition (typedef) synonyms for data types

v System parameters or implementation characteristics

v Constants and macros that are substituted during the C language preprocessing phase.

By convention, the names of header files end with .h (dot h). The .h suffix is used by header files that are
provided with the operating system; however, the suffix is not required for user-generated header files.

Note: Several of the header files provided with the operating system end with .inc (include file).

Additional header files are provided with the operating system. Most of these can be found in either the
/usr/include directory or the /usr/include/sys directory. Use the pg command to view the contents of a
header file.

More information about the following header files is provided in this documentation:

a.out.h Defines the structure of the standard a.out file.
acct.h Describes the format of the records in the system accounting files.
ar.h Describes the format of an archive file.
audit.h Defines values used by the auditing system as well as the structure of a bin.
core.h Describes the structures created as a result of a core dump.
dirent.h Describes the format of a file system-independent directory entry.
eucioctl.h Defines ioctl operations and data types for handling EUC code sets.
fcntl.h Defines values for the fcntl and open subroutines.
filsys.h Contains the format of a file system logical volume.
flock.h Defines the file control options.
fullstat.h Describes the data structure returned by the fullstat and ffullstat subroutines.
iconv.h Defines types, macros, and subroutines for character code set conversion.
ipc.h Defines structures used by the subroutines that perform interprocess communications

operations.
ldr.h Describes the ld_info data type and loader entry points.
libperfstst.h Describes the structures and constants used by the libperfstat API subroutines.
limits.h Defines implementation limits identified by the IEEE POSIX 1003 standard.
math.h Defines math subroutines and constants
mode.h Defines the interpretation of a file mode.
msg.h Defines structures used by the subroutines that perform message queueing operations.
param.h Defines certain hardware-dependent parameters.
poll.h Defines the pollfd structure used by the poll subroutine.
rset.h Contains enums and definitions to manipulate process partition rsets.
sem.h Defines the structures that are used by subroutines that perform semaphore operations.
sgtty.h Defines structures used by the Berkeley terminal interface.
shm.h Defines structures used by the subroutines that perform shared memory operations.
spc.h Defines external interfaces provided by the System Resource Controller (SRC) subroutines.
srcobj.h Defines structures used by the System Resource Controller (SRC) subsystem.
stat.h Describes the data structure returned by the status subroutines.
statfs.h Describes the structure of the statistics returned by the status subroutines.

© Copyright IBM Corp. 1997, 2002 741

statvfs.h Describes the structure of the statistics that are returned by the statvfs subroutines and
fsatvfs subroutines.

systemcfg.h Defines the _system_configuration structure.
tar.h Defines flags used in the tar archive header.
termio.h Defines structures used by the terminal interface for compatibility of Version 2 of the operating

system.
termios.h Defines structures used by the POSIX terminal interface.
termiox.h Defines the structure of the termiox file, which provides the extended terminal interface.
types.h Defines primitive system data types.
unistd.h Defines POSIX implementation characteristics.
utmp.h Defines the format of certain user and accounting information files.
values.h Defines hardware-dependent values.
vmount.h Describes the structure of a mounted file system.
x25sdefs.h Contains the structures used by the X.25 application programming interface.

3270 Host Connection Program (HCON) Header Files

HCON fxconst.inc Defines HCON fxter function constants for Pascal language file transfers.
HCON fxfer.h Defines HCON fxc and fxs data structures for C language file transfers.
HCON fxfer.inc Contains HCON fxc and fxs records for Pascal language file transfers.
HCON fxhfile.inc Contains HCON external declarations for Pascal language file transfers.
HCON g32_api.h Contains HCON API symbol definitions and data structures for the C language.
HCON g32const.inc Defines HCON API constants for the Pascal language.
HCON g32hfile.inc Contains HCON API external definitions for the Pascal language.
HCON g32_keys.h Enables HCON API in Mode_3270 for C language subroutines.
HCON g32keys.inc Contains common HCON API key value definitions for the Pascal language.
HCON g32types.inc Defines HCON API data types for the Pascal language.

Related Information
The pg command.

File Formats Overview defines and describes file formats in general and lists file formats discussed in this
documentation.

Special Files Overview defines and describes special files in general and lists special files discussed in
this documentation.

List of Major Control Block Header Files
The Base Operating System constants and control block structure definitions are contained in header files
in the /usr/include and /usr/include/sys directories. The following are the major constants and control
blocks and their corresponding header files:

/usr/include/a.out.h Common Object File Format (COFF) structures
/usr/include/core.h An include file for the /usr/include/sys/core.h header file
/usr/include/errno.h An include file for the /usr/include/sys/errno.h header file
/usr/include/lvmrec.h LVM record structure
/usr/include/sgtty.h Line discipline structures and constants for Berkeley compatibility
/usr/include/signal.h An include file for the /usr/include/sys/signal.h header file
/usr/include/termio.h An include file for the /usr/include/sys/termio.h header file
/usr/include/termios.h POSIX line-discipline structures and constants
/usr/include/xcoff.h Extended Common Object File Format structures
/usr/include/sys/acct.h Accounting structures

742 Files Reference

/usr/include/sys/badisk.h Bus-attached-disk structures
/usr/include/sys/bbdir.h Bad-block directory structure
/usr/include/sys/bootrecord.h Boot record structure
/usr/include/sys/buf.h Buffer header structures
/usr/include/sys/cdrom.h CD-ROM structures
/usr/include/sys/cfgodm.h Configuration object class structures
/usr/include/sys/configrec.h Disk configuration record structure
/usr/include/sys/core.h Core dump structure
/usr/include/sys/debug.h Traceback table or procedure-end table
/usr/include/sys/device.h Device switch table
/usr/include/sys/deviceq.h Device queue-management structures
/usr/include/sys/devinfo.h Device information structures
/usr/include/sys/dir.h Directory entry structures
/usr/include/sys/display.h Virtual display driver structures
/usr/include/sys/dump.h Component dump table structure
/usr/include/sys/entuser.h Ethernet device driver structures
/usr/include/sys/errids.h Error-log record identifiers
/usr/include/sys/errno.h Error codes
/usr/include/sys/fd.h Diskette device driver structures
/usr/include/sys/file.h File structure
/usr/include/sys/fstypes.h File-system parameter table
/usr/include/sys/hd_psn.h Layout of reserved space on the disk
/usr/include/sys/ide.h IDE device driver structures
/usr/include/sys/inode.h I-node structures
/usr/include/sys/intr.h Interrupt handler structures
/usr/include/sys/ipc.h Interprocess Communications (IPC) structures
/usr/include/sys/iplcb.h Initial Program Load (IPL) control block structure
/usr/include/sys/ldr.h Loader structures and constants
/usr/include/sys/low.h Kernel Page 0 definition
/usr/include/sys/machine.h Machine dependent control registers
/usr/include/sys/mbuf.h Memory buffer structures
/usr/include/sys/mdio.h Machine device driver structures
/usr/include/sys/mount.h Mount structures
/usr/include/sys/mpqp.h Multiprotocol Quad Port (MPQP) device-driver structures
/usr/include/sys/msg.h Message queue structures
/usr/include/sys/mstsave.h Machine State Save Area structures
/usr/include/sys/param.h Process management constants
/usr/include/sys/pri.h Constants for process priorities
/usr/include/sys/proc.h Process table structure
/usr/include/sys/pseg.h Process private segment layout
/usr/include/sys/reg.h Machine-dependent registers
/usr/include/sys/scdisk.h SCSI-disk device driver structures
/usr/include/sys/scsi.h SCSI device driver structures
/usr/include/sys/seg.h Memory management constants
/usr/include/sys/sem.h Semaphore structures
/usr/include/sys/shm.h Shared-memory facility structures
/usr/include/sys/signal.h Signal structures and constants
/usr/include/sys/socketvar.h Sockets structures
/usr/include/sys/stat.h File status structure
/usr/include/sys/systm.h System global declarations
/usr/include/sys/termio.h Line discipline structures and constants for compatibility of Version 2 of the

operating system
/usr/include/sys/timer.h Timer structures
/usr/include/sys/tokuser.h Token-ring device handler structures
/usr/include/sys/trchkid.h Trace hook IDs

Chapter 4. Header Files 743

/usr/include/sys/user.h User structure or user area (ublock)
/usr/include/sys/utsname.h UTSNAME structure (system name, node ID, machine ID)
/usr/include/sys/var.h Runtime system parameter structure
/usr/include/sys/vfs.h Virtual file system structures
/usr/include/sys/vnode.h Virtual i-node (v-node) structures
/usr/include/sys/xcoff.h Extended Common Object File Format structures
/usr/include/sys/xmalloc.h Heap structure
/usr/include/sys/xmem.h Cross memory service structures

Options and Flags for HCON File Transfer Header Files
The fxfer.h and fxfer.inc header files have the fxc structure in common. This structure defines options
used by both the C and Pascal header file.

C and Pascal Options
The options in the C structures and Pascal record declarations for the File Transfer Program Interface are:

f_logonid Contains the host login ID string. This value should contain the host login ID, the AUTOLOG
node ID, and two optional AUTOLOG parameters, all separated by commas. This list is
passed to the automatic login procedure.

At run time, the operator is asked to enter a password. The host login session is maintained
for subsequent file transfers, eliminating the need to log in again. The file transfer wait period
in the HCON session profile variable determines the length of time the login session is
maintained.

f_inputfld Specifies a host input field. This option enables the user to place host file transfer program
(IND$FILE) options on the host file-transfer program command line. It also allows the user to
place comments within the command. This option is valid only for CICS and VSE hosts.

f_aix_codepg Specifies an alternate code set to use for an ASCII-to-EBCDIC or EBCDIC-to-ASCII
translation. If this field is null, the ASCII code set is extracted from the system locale.

FXC_APPND Appends the file specified by the source file to the destination file if the destination file exists
when the FXC_APPND flag is set in the fxc_opts.f_flags field. This option is ignored if the
destination file does not exist. This option is not valid when uploading to a CICS or VSE host.

FXC_CICS Specifies the host as CICS/VS when the FXC_CICS flag is set. The user must specify the
correct host operating system. The file-transfer program does not distinguish between the
four host operating systems.

FXC_CMS Specifies the host as VM/CMS when the FXC_CMS flag is set in the fxc_opts.f_flags field.
The user must specify the correct host operating system. The file-transfer program does not
distinguish between the four host operating systems.

FXC_DOWN Downloads the file from a host file to a file when the FXC_DOWN flag is set in the
fxc_opts.f_flags field.

FXC_QUEUE Executes the file transfer asynchronously as a background process when set in the
fxc_opts.f_flags field. If any file transfers have not completed, the current transfer request
is queued. If this option is not specified, the file-transfer operation is synchronous.

FXC_REPL Replaces an existing file on the host (upload) or replaces an existing file (download) when
the FXC_REPL flag is set in the fxc_opts.f_flags field. When uploading to a CICS host, this
option is the default.

FXC_TSO Specifies the host as MVS/TSO (Multiple Virtual Storage/Time Sharing Option) when set in
the fxc_opts.f_flags field. The user must specify the correct host operating system. The
file-transfer program does not distinguish between the four host operating systems.

FXC_TNL Translates EBCDIC to ASCII when downloading files, if set in the fxc_opts.f_flags field.
During uploading, the FXC_TNL option translates ASCII to EBCDIC. This option assumes the
file is a text file and is used when transferring formatted text files. The default is no
translation. The new-line character is the line delimiter.

744 Files Reference

FXC_TCRLF Performs the same function as the FXC_TNL option when set in the fxc_opts.f_flags field,
except that the line delimiter is the carriage return/line-feed (CR-LF) character sequence. This
option is used to translate PC-DOS files. A PC-DOS end-of-file character is inserted at the
end of the downloaded file.
Note: If neither the FXC_TNL nor the FXC_TCRLF option is specified, the file transfer
assumes no translation and transfers the data in binary form. When transferring a binary file
to the host, the host file-transfer program defaults the host file to a fixed record format. If the
user wishes not to have the host file padded with blanks at the end, the FXC_VAR option
should be specified to delineate a variable record format.

FXC_UP Uploads the file from the operating system file to the host file when set in the
fxc_opts.f_flags field.

FXC_VSE Specifies the host as VSE/ESA (Virtual Storage Extended/Enterprise Systems Architecture) or
VSE/SP (VSE/System Product) when set in the fxc_opts.f_flags field. The user must
specify the correct host operating system. The file transfer program does not distinguish
between the four operating systems.

Host File Flags

The following flags specify host file characteristics. They can be used only to upload files, with the
exception of the FXC_FIXED option, which can be used when downloading from a VSE host.

f_blksize Specifies the nonzero block size of the host data set. This option is only used in the MVS/TSO
environment. For new files, the default is the logical record length. This flag is ignored if the file
is being appended.

f_lrecl Specifies the nonzero logical record length of the host file. For new files, the default is 80. For
variable-length records, the f_lrecl field is the maximum size of the record. This field is
ignored if the file is being appended. If using this option while uploading to a CICS or VSE
host, the FXC_FIXED option flag must also be specified.

FXC_FIXED Specifies fixed-length records when set in the fxc_opts.f_flags field. This is the default if none
of the following flags are set: FXC_VAR, FXC_TNL, and FXC_TCRLF. This flag is ignored if
the file is being appended. If specifying this option while uploading to a CICS or VSE host,
either the FXC_TNL or the FXC_TCRLF option flag must be specified. If this option is specified
when downloading from a VSE host, all trailing blanks are downloaded. The default option
when downloading a translatable file from a VSE host causes all trailing blanks to be deleted.

FXC_UNDEF Specifies records of undefined length when set in the fxc_opts.f_flags field. This option can
only be used in the MVS/TSO environment and is ignored if the file is being appended.

FXC_VAR Specifies variable-length records when set in the fxc_opts.f_flags field. This is the default if
the FXC_FIXED flag is not set and either the FXC_TNL or the FXC_TCRLF flag is set. This
flag is ignored if the file is being appended.

s_space Specifies the non-zero number of units of space to be allocated for a new data set. This option
can only be used in the MVS/TSO environment. The s_space field has the following optional
subfields:

s_increment Specifies the number of units of space to be added to the data set each time the previously
allocated space is filled.

s_unit Specifies the unit of space. A value of FXC_TRACKS indicates the unit of allocation is tracks. A
value of FXC_CYLINDERS indicates the unit of allocation is cylinders. Otherwise, the s_space
field specifies the average block size (in bytes) of the records to be written to the data set. If
the s_space field has a value of zero, the default unit of allocation is the value specified by the
f_blksize field. If the f_blksize field is not specified, the host file-transfer program uses the
default value of 80.

Related Information
The cfxfer function, fxfer function, g32_fxfer function.

The fxfer command.

Chapter 4. Header Files 745

dirent.h File

Purpose
Describes the format of a file system-independent directory entry.

Description
The /usr/include/dirent.h file describes the format of a directory entry without reference to the type of
underlying system.

The dirent structure, defined in the dirent.h file, is used for directory access operations. Using these
access operations and the dirent structure, along with its associated constants and macros, shields you
from the details of implementing a directory and provides a consistent interface to directories across all
types of file systems.

The dirent structure contains the following fields for each directory entry:
ulong_t d_offset; /* actual offset of this entry */
ino_t d_ino; /* inode number of entry */
ushort_t d_reclen; /* length of this entry */
ushort_t d_namlen; /* length of string in d_name */
char d_name[_D_NAME_MAX+1]; /* name of entry (filename) */

_D_NAME_MAX is a constant that indicates the maximum number of bytes in a file name for all file
systems. (Related to this constant is the PATH_MAX constant, which specifies the maximum number of
bytes in the full path name of a file, not including the terminating null byte.)

The value of the _D_NAME_MAX constant is specific to each type of filesystem type. It can be determined
by using the pathconf or fpathconf subroutine.

The size of a dirent structure depends on the number of bytes in the file name.

The _DNAME_MAX and PATH_MAX constants specify maximum file names and path names,
respectively, across all types of file systems. The constants defined by a particular file system are
applicable only to that file system. Using file system-specific constants and directory structures makes it
very difficult to port code across different types of file systems.

Related Information
The dir file, sys/types.h file.

The pathconf or fpathconf subroutine.

Understanding JFS i-nodes in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs explains how the operating system uses i-nodes.

dlfcn.h File

Purpose
Describes dynamic linking.

Syntax
#include <dlfcn.h>

746 Files Reference

Description
The <dlfcn.h> header defines at least the following macros for use in the construction of a dlopen mode
argument:

RTLD_LAZY Relocations are performed at an implementation-dependent time.
RTLD_NOW Relocations are performed when the object is loaded.
RTLD_GLOBAL All symbols are available for relocation processing of other modules
RTLD_LOCAL All symbols are not made available for relocation processing by other modules.

The header <dlfcn.h> declares the following functions, which may also be defined as macros:
void *dlopen(const char *, int);
void *dlsym(void *, const char *);
int dlclose(void *);
char *dlerror(void);

Related Information
The dlopen, dlclose, dlsym, dlerror subroutines.

eucioctl.h File

Purpose
Defines ioctl operations and data types for handling EUC code sets.

Description
The eucioctl.h file contains information used for handling Extended UNIX Code (EUC) multibyte code
sets. It consists of ioctl operations and the related data structure.

The eucioc structure contains the following fields:

eucw[4] Specifies the memory width of the code set. It indicates the number of bytes used to store the multibyte
characters of each of the four classes.

scrw[4] Specifies the screen width of the code set. It indicates the number of columns used to display the
multibyte characters of each of the four classes.

This structure is used in the following ioctl operations:

EUC_WGET Returns the EUC character widths. The eucioc structure is filled with the memory and screen widths
of the current EUC code set.

EUC_WSET Sets the EUC character widths. The eucioc structure is used to set the memory and screen widths of
the current EUC code set.

Related Information
The ioctl subroutine.

tty Subsystem Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

Understanding Converter Modules in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

Chapter 4. Header Files 747

fcntl.h File

Purpose
Defines file control options.

Description
The /usr/include/fcntl.h file defines the values that can be specified for the Command and Argument
parameters of the fcntl subroutine and for the Oflag parameter of the open subroutine. The file-status
flags of an open file are described in the following information.

Flag Values for open Subroutine
The following flag values are accessible only to the open subroutine:

O_RDONLY Read-only
O_WRONLY Write-only
O_RDWR Read and write
O_CREAT Open with file create (uses the third open argument)
O_TRUNC Open with truncation
O_DIRECT Open for Direct I/O
O_EXCL Exclusive open

Note: The O_EXCL flag is not fully supported for Network File Systems (NFS). The NFS protocol
does not guarantee the designed function of the O_EXCL flag.

O_NOCTTY Do not assign a controlling terminal
O_RSHARE Read shared open
O_NSHARE Read shared open

File Access Mode Mask
The O_ACCMODE mask is used to determine the file access mode.

File Status flags for open and fcntl Subroutines
The following file status flags are accessible to both the open and fcntl subroutines:

O_NONBLOCK POSIX nonblocking I/O
FNONBLOCK POSIX nonblocking I/O
O_APPEND An append with writes guaranteed at the end
FAPPEND An append with writes guaranteed at the end
O_SYNC Synchronous write option
FSYNC Synchronous write option
O_DSYNC Synchronous write option (file data only).
FDATASYNC Synchronous write option (file data only).
O_RSYNC Synchronous file attributes on read.
FREADSYNC Synchronous file attributes on read.
FASYNC Asynchronous I/O
O_NDELAY Nonblocking I/O
FNDELAY Nonblocking I/O
O_LARGEFILE Access to large files enabled .

File Status Flags for open Subroutine
The following file status flags are accessible to the open subroutine:

O_DEFER Deferred update
O_DELAY Open with delay
O_DIRECT Open for Direct I/O

748 Files Reference

File Descriptor Flags for fcntl Subroutine
The following file descriptor flag is accessible to the fcntl subroutine:

FD_CLOEXEC Close this file during an exec.

File flag values corresponding to file access modes are as follows:

FREAD File is open for read.
FWRITE File is open for write.

Notes:

1. The FREAD and FWRITE flags cannot be used unless the _KERNEL flag has been defined.

2. The ldfcn.h file also assigns values to the FREAD and FWRITE options. If you use the ldfcn.h and
fcntl.h files together, directly or indirectly, you should use the #undef statement on the FREAD and
FWRITE options of one of the header files. If you do not, the compiler will return a warning about using
duplicate definitions.

Command Values for fcntl Subroutine
The Command values for the fcntl subroutine (that is, for fcntl subroutine requests) are:

F_DUPFD Duplicate the file description.
F_GETFD Get the file description flags.
F_SETFD Set the file description flags.
F_GETFL Get the file status flags and file access modes.
F_SETFL Set the file flags.
F_GETLK Return information about an existing file lock.
F_GETLK64 Return information about an existing file lock.
F_SETLK Set or clear a file lock.
F_SETLK64 Set or clear a file lock.
F_SETLKW Set or clear a file lock and wait if blocked.
F_SETLKW64 Set or clear a file lock and wait if blocked.
F_GETOWN Get the descriptor owner.
F_SETOWN Set the descriptor owner.

Related Information
The fcntl subroutine, open, openx, or creat subroutine.

The sys/types.h file, unistd.h file.

The Header Files Overview defines header files, describes how they are used, and lists several header
files for which information is provided.

filsys.h File

Purpose
Contains the format of a Journaled File System (JFS) logical volume.

Syntax
#include <sys/filsys.h>

Chapter 4. Header Files 749

Description
The filsys.h file contains the format of a JFS file system. A JFS file system has a common format for vital
information and is divided into a number of fixed-sized units, or fragments. Fragments serve as the basic
unit of file system disk space allocation and can be smaller than the file system logical block size, which is
4096 bytes. The file system superblock records the logical block size and fragment size, as well as the
size of the entire file system.

A unique feature of the JFS is the implementation of file system metadata as unnamed files that reside in
that file system. For example, the disk i-nodes for any file system are contained in the blocks fragments
allocated to the file described by the INODES_I i-node. The i-node number for the boot file is 0. Each of
the following reserved i-nodes corresponds to a file system metadata file:

SUPER_I Superblock file
INODES_I Disk i-nodes
INDIR_I Indirect file blocks, double and single
INOMAP_I i-node allocation bit map
ROOTDIR_I Root directory i-node
DISKMAP_I Block Fragment allocation bit map
INODEX_I i-node extensions
INODEXMAP_I Allocation map for i-node extensions

The first 4096 bytes of the file system are unused and available to contain a bootstrap program or other
information. The second 4096 bytes of the file system are used to hold the file system superblock. The
structure of a JFS superblock follows:
/* The following disk-blocks are formatted or reserved:
*
* ipl block 0 - not changed by filesystem.
*
* superblocks at 1 x 4096 (primary superblock) and 31 x
* 4096 (secondary superblock). the secondary super-block
* location is likely to be on a different disk-surface than
* the primary super-block. both structures are allocated as
* fragments in ".superblock".
*
* fragments for .inodes according to BSD layout. each
* allocation group contains a fixed number of disk inodes.
* for fsv3 file systems, each allocation group contains one
* inode per 4096 byte fragment of the allocation group,
* with the number of fragments within each group described
* by the s_agsize field of the superblock. for fsv3p file
* systems, the number of inodes per group is described by
* the s_iagsize field of the superblock and may be less
* than or greater than the number of fragments per group.
* for these file systems, s_agsize describes the number of
* s_fragsize fragments contained within each allocation
* group.
*
* the first allocation group inodes starts at 32 x
* 4096 bytes and consumes consecutive fragments sufficient
* to hold the group’s inodes. the inode fragments for all
* other allocation groups start in the first fragments of
* the allocation group and continue in consecutive
* fragments sufficient to hold the group’s inodes.
*
* other fragments are allocated for .indirect, .diskmap,
* .inodemap, and their indirect blocks starting in the
* first allocation-group.
*
* The special fs inodes formatted and their usage is as follows:
*
* inode 0 - never allocated - reserved by setting

750 Files Reference

* n_link = 1
* inode 1 - inode for .superblock
* inode 2 - inode for root directory
* inode 3 - inode for .inodes
* inode 4 - inode for .indirect
* inode 5 - inode for .inodemap - allocation map for
* .inodes
* inode 6 - inode for .diskmap - disk allocation map
* inode 7 - inode for .inodex - inode extensions
* inode 8 - inode for .inodexmap - allocation map for
* .inodex
* inode 9 - 16 - reserved for future extensions
*
* except for the root directory, the special inodes are not in
* any directory.
*
*/

#define
IPL_B 0
#define SUPER_B 1
#define SUPER_B1 31
#define INODES_B 32
#define NON_B 0
#define SUPER_I 1
#define ROOTDIR_I 2
#define INODES_I 3
#define INDIR_I 4
#define INOMAP_I 5
#define DISKMAP_I 6
#define INODEX_I 7
#define INDOESMAP_I 8

/*
* super block format. primary superblock is located in the
* second 4096 bytes of the file system.
* the secondary super-block is not used except for disaster
* recovery.
*/
struct superblock
{

char s_magic[4]; /* magic number */
char s_flag[4]; /* flag word (see below) */
int s_agsize; /* fragments per allocation group */
int s_logserial; /* serial number of log when fs mounted */
daddr_t s_fsize; /* size (in 512 bytes) of entire fs */
short s_bsize; /* block size (in bytes) for this

system */
short s_spare; /* unused. */
char s_fname[6]; /* name of this file system */
char s_fpack[6]; /* name of this volume */
dev_t s_logdev; /* device address of log */

/* current file system state information, values change over
time */
char s_fmod; /* flag: set when file system is mounted */
char s_ronly; /*flag: file system is read only */
time_t s_time; /* time of last superblock update */

/* more persistent
information &
nbsp; &
nbsp;*/

int s_version; /* version
number

*/
int s_fragsize; /* fragment size in bytes (fsv3p only) */

Chapter 4. Header Files 751

int s_iagsize; /* disk inodes per alloc grp (fsv3p only) */
int s_compress; /* > 0 if data compression */

};

/* Version 4 fs magic number */
#define fsv4magic "\102\041\207\145"
/* Version 4p fs magic number */
#define fsv4pmagic "\145\207\041\102"
/* Version 4p version number */
#define fsv4pvers 1

The path name of this file is /usr/include/jfs/filsys.h. But, if the /usr/include/sys/filsys.h file is included,
the /usr/include/jfs/filsys.h file is included by default.

The fields of the superblock structure have the following functions:

s_fname Specifies the name of the file system.
s_fpack Specifies the name of the volume on which the file system resides.
s_fsize Specifies the entire file system size in 512-byte units.
s_bsize Specifies the file-system logical block size in bytes.
s_fragsize Specifies the file system fragment size and is only valid for fsv3p file systems. For fsv3 file

systems, the file-system fragment size is logically defined as the file-system logical block size.
s_agsize Specifies the number of fragments per file system allocation group. For fsv3 file systems, this

field also specifies the number of disk i-nodes per file system allocation group.
s_iagsize Specifies the number of disk i-nodes per file system allocation group for fsv3p file systems. The

s_iagsize field is only valid for fsv3p file systems.
s_magic Specifies the file-system magic number and is used to validate file systems. The magic number

is encoded as a 4-byte character string to make it possible to validate the superblock without
knowing the byte order of the remaining fields. To check for a valid fsv3 superblock, use a
condition similar to:

if (strncmp(sp->s_magic,fsv3magic,4) == 0)

For fsv3p file systems, superblock validation is made by checking both the s_magic and
s_version fields.

s_version Specifies the file-system version number and is only valid for fsv3p file systems. To check for a
valid fsv3p superblock, use a condition similar to:

if (strncmp(sp->s_magic,fsv3pmagic,4) == 0 &&
sp->s_version == fsv3pvers)

s_logdev Specifies the device ID of the file system log device.
s_logserial Records the serial number of the log device at the time the file system was last mounted as

modifiable.
s_fmod Contains a flag to indicate the cleanliness of the file system. Whenever a file system is

mounted, this flag is checked and a warning message is printed if the s_fmod field is equal to
nonzero. A file system whose s_fmod field is equal to 0 is very likely to be clean, and a file
system whose s_fmod field is equal to 2 is likely to have problems. The s_fmod field is intended
to be a three-state flag with the third state being a sticky state. The three states are:

v 0 = File system is clean and unmounted.

v 1 = File system is clean and mounted.

v 2 = File system was mounted dirty.

If you only mount and unmount the file system, the flag toggles back and forth between states
0 and 1. If you mount the file system while the flag is in state 1, the flag goes to state 2 and
stays there until you run the fsck command. The only way to clean up a corrupted file system
(change the flag from state 2 back to state 0) is to run the fsck command.

s_ronly Contains a flag indicating that the file system is mounted read-only. This flag is maintained in
memory only; its value on disk is not valid.

s_time Specifies the last time the superblock of the file system was changed (in seconds since 00:00
Jan. 1, 1970 (GMT)).

752 Files Reference

Related Information
The param.h file format.

The fsck command, fsdb command, mkfs command.

The File Systems Overview for System Management in AIX 5L Version 5.2 System Management
Concepts: Operating System and Devices explains file system types, management, and structure.

The Mounting Overview in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices explains mounting files and directories, mount points, and automatic mounts.

The Logical Volume Storage Overview in AIX 5L Version 5.2 System Management Concepts: Operating
System and Devices explains the Logical Volume Manager, physical volumes, logical volumes, volume
groups, organization, ensuring data integrity, and understanding the allocation characteristics.

flock.h File

Purpose
Defines file control options.

Description
The flock structure in the /usr/include/sys/flock.h file, which describes a lock, contains the following
fields:

l_type Describes the type of lock. If the value of the Command parameter to the fcntl subroutine is
F_SETLK or F_SETLKW, the l_type field indicates the type of lock to be created. Possible values
are:

F_RDLCK
A read lock is requested.

F_WRLCK
A write lock is requested.

F_UNLCK
Unlock. An existing lock is to be removed.

If the value of the Command parameter to the fcntl subroutine is F_GETLK, the l_type field
describes an existing lock. Possible values are:

F_RDLCK
A conflicting read lock exists.

F_WRLCK
A conflicting write lock exists.

F_UNLCK
No conflicting lock exists.

l_whence Defines the starting offset. The value of this field indicates the point from which the relative offset, the
l_start field, is measured. Possible values are:

SEEK_SET
The relative offset is measured from the start of the file.

SEEK_CUR
The relative offset is measured from the current position.

SEEK_END
The relative offset is measured from the end of the file.

These values are defined in the unistd.h file.

Chapter 4. Header Files 753

l_start Defines the relative offset in bytes, measured from the starting point in the l_whence field.
l_len Specifies the number of consecutive bytes to be locked.
l_sysid Contains the ID of the node that already has a lock placed on the area defined by the fcntl

subroutine. This field is returned only when the value of the Command parameter is F_GETLK.
l_pid Contains the ID of a process that already has a lock placed on the area defined by the fcntl

subroutine. This field is returned only when the value of the Command parameter is F_GETLK.
l_vfs Specifies the file system type of the node identified in the l_sysid field.

Although the flock structure is used by application programs to make file lock requests, the extended
flock structure, struct eflock, is used internally by the kernel. The eflock structure is identical to the flock
structure in that it has the same fields. The differences are that the l_len and l_start fields are 64 bit
integers.

The flock64 structure in the /usr/include/sys/flock.h file, which describes a lock, contains the following
fields:

l_type Describes the type of lock. If the value of the Command parameter to the fcntl subroutine is
F_SETLK or F_SETLKW, the l_type field indicates the type of lock to be created. Possible values
are:

F_RDLCK
A read lock is requested.

F_WRLCK
A write lock is requested.

F_UNLCK
Unlock. An existing lock is to be removed.

If the value of the Command parameter to the fcntl subroutine is F_GETLK, the l_type field
describes an existing lock. Possible values are:

F_RDLCK
A conflicting read lock exists.

F_WRLCK
A conflicting write lock exists.

F_UNLCK
No conflicting lock exists.

l_whence Defines the starting offset. The value of this field indicates the point from which the relative offset, the
l_start field, is measured. Possible values are:

SEEK_SET
The relative offset is measured from the start of the file.

SEEK_CUR
The relative offset is measured from the current position.

SEEK_END
The relative offset is measured from the end of the file.

These values are defined in the unistd.h file.
l_start Defines the relative offset in bytes, measured from the starting point in the l_whence field. This field is

of the type off64_t.
l_len Specifies the number of consecutive bytes to be locked. This field is of the type off64_t.
l_sysid Contains the ID of the node that already has a lock placed on the area defined by the fcntl

subroutine. This field is returned only when the value of the Command parameter is F_GETLK.
l_pid Contains the ID of a process that already has a lock placed on the area defined by the fcntl

subroutine. This field is returned only when the value of the Command parameter is F_GETLK.
l_vfs Specifies the file system type of the node identified in the l_sysid field.

754 Files Reference

Related Information
The unistd.h file.

The fcntl subroutine, lockfx, lock, or flock subroutine, open,openx, or creat subroutine.

Header Files Overview defines header files, describes how they are used, and lists several of the header
files for which information is provided in this documentation.

fullstat.h File

Purpose
Defines the data structure returned by the fullstat subroutine.

Description
The /usr/include/sys/fullstat.h file defines the data structure returned by the fullstat and ffullstat
subroutines. This file also defines the Command parameters used by the fullstat and ffullstat subroutines.
The fullstat structure contains the following fields:

Note: Time is measured in seconds since 00:00:00 GMT, January 1, 1970.

st_dev ID of device containing a directory entry for this file. The file serial number and the
device ID uniquely identify the file within the system.

st_ino File serial number.
st_mode The mode of the file, as defined in the /usr/include/sys/mode.h file.
st_nlink Number of links to file.
st_uid User ID of the owner of the file.
st_gid Group ID of the file owner group.
st_rdev ID of this device. This field is defined only for character or block special files.
st_size File size in bytes.
st_atime Time of last access.
st_mtime Time of last data modification.
st_ctime Time of last file status change.
st_blksize Optimal block size for the file system.
st_blocks Number of blocks actually allocated to the file.
st_vfstype File-system type as defined in the vmount.h file.
fst_type Type of v-node.
fst_vfs Virtual file system ID.
fst_flag Indicates whether directory or file is a virtual mount point.
fst_i_gen Generation number of the i-node.
fst_reserved[8] Reserved.

The following fields are maintained for source-level compatibility with previous versions of the operating
system:
fst_uid_rev_tag
fst_gid_rev_tag
fst_nid

Related Information
The mode.h file, stat.h file, statfs.h file, types.h file, vmount.h file.

The statx, stat, lstat, fstax, fstat, fullstat, or ffullstat subroutine.

Chapter 4. Header Files 755

fxconst.inc File

Purpose
Provides fxfer function constants for a Pascal file-transfer program.

Description
The /usr/include/fxconst.inc file contains the constants used in a programmatical Pascal file-transfer
program. Each module that uses the Pascal file-transfer program must include the fxconst.inc file. The
constants are for use with the Pascal program interface to the HCON File Transfer Program.

The following constants are for the f_flags variable:
FXC_UP = 1; /* `0001’x */
FXC_DOWN = 2; /* `0002’x */
FXC_TNL = 4; /* `0004’x */
FXC_TCRLF = 8; /* `0008’x */
FXC_REPL = 16; /* `0010’x */
FXC_APPND = 32; /* `0020’x */
FXC_QUEUE = 64; /* `0040’x */
FXC_FIXED = 128; /* `0080’x */
FXC_FIXED = 256; /* `0100’x */
FXC_UNDEF = 512; /* `0200’x */
FXC_TSO = 1024; /* `0400’x */
FXC_CMS = 2048; /* `0800’x */
FXC_CICS = 4096; /* `1000’x */
FXC_VSE = 8192; /* `2000’x */

The following constants are for the allocation variables:
FXC_TRACKS = -1; /* Tracks */
FXC_CYLINDERS = -2; /* Cylinder */

Related Information
The cfxfer function, fxfer function, and g32_fxfer function.

fxfer.h File

Purpose
Contains the fxc and fxs data structures for the C file-transfer functions.

Description
The /usr/include/fxfer.h file defines the C program interface fxc structure for the fxfer file-transfer
function. The Xfer parameter of the fxfer function specifies a pointer to the fxc structure. Each C program
module that uses the fxfer function must include the fxfer.h file. The structures are for use with the C
program interface to the HCON file-transfer program.

The C program interface fxc structure is defined as follows:

struct fxc {
char *fxc_src; /* Source file name */
int srclength; /* Put here for Pascal stringptr */
char *fxc_dst; /* Destination file name */
int dstlength; /* Put here for Pascal stringptr */
struct fxcf {

int f_flags; /* Option flags */

756 Files Reference

#define FXC_UP 0x0001
#define FXC_DOWN 0x0002
#define FXC_TNL 0x0004
#define FXC_TCRLF 0x0008
#define FXC_REPL 0x0010
#define FXC_APPND 0x0020
#define FXC_QUEUE 0x0040
#define FXC_FIXED 0x0080

#define FXC_VAR 0x0100
#define FXC_UNDEF 0x0200
#define FXC_TSO 0x0400
#define FXC_CMS 0x0800
#define FXC_CICS 0x1000
#define FXC_VSE 0x2000

char *f_logonid; /* Logon id */
int loglength; /* Put here for Pascal stringptr */
int f_lrecl; /* Logical record length */
int f_blksize; /* Block size */
char *f_inputfld;

/* Input field for VSE or CICS */
int length; /* Put here for Pascal */
struct fxcs {

int s_space; /* Allocation space */
int s_increment; /* Allocation space increment */
int s_unit; /* Unit of allocation */

#define FXC_TRACKS -1 /* Tracks */
#define FXC_CYLINDERS -2 /* Cylinder */

} f_s;
char *f_aix_codepg; /* Override default AIX codeset name*/
int codepglength; /* Put here for Pascal stringptr */

} fxc_opts;
};

struct fxs {
int fxs_bytcnt; /* Byte count */
char *fxs_src; /* Source file name */
int srclen; /* Put here for Pascal stringptr */
char *fxs_dst; /* Destination file name */
int dstlen; /* Put here for Pascal stringptr */
char *fxs_ctime; /* Destination file creation time */
int timelen; /* Put here for Pascal stringptr */
int fxs_stat; /* Status code */
int fxs_errno; /* Errno */

};

struct fxp {
char *prof_id; /* Profile id */
int proflen; /* Put here for Pascal stringptr */

};

The fxfer.h file is part of the Host Connection Program (HCON).

This file requires the use of a C compiler.

Chapter 4. Header Files 757

Note: The integer length values are placed within the /usr/include/fxfer.h file to allow for the direct
conversion of a Pascal stringptr to a C program character pointer value. The integer value
specifies the actual length of the string as defined in Pascal.

Related Information
The cfxfer function, fxfer function, and g32_fxfer function.

fxfer.inc File

Purpose
Contains the fxc and fxs records for Pascal file-transfer functions.

Description
The /usr/include/fxfer.inc file defines the fxc record format for the Pascal program interface and is used
by the fxfer file transfer function. Each Pascal program module that uses the pfxfer function must include
the fxfer.inc file, the fxconst.inc file, and the fxhfile.inc file. These record formats are for use with the
Pascal program interface to the HCON programmatic file transfer.

The fxconst.inc file includes the external declarations for the file-transfer Pascal interface routines: pfxfer
and pcfxfer. The fxhfile.inc is the Pascal file-transfer invocation file for pfxfer and pcfxfer. The fxfer.inc
file contains the fxs and fxc declarations for the Pascal interface routines.

The fx_statxxxxxx status file, placed in the $HOME directory, contains the status of each file-transfer
request made by the application program. The fxs record fields are as follows:
fxs = record

fxs_bytcnt : integer; /* Byte count */
fxs_src : stringptr; /* Source file name */
fxs_dst : stringptr; /* Destination file name */
fxs_ctime : stringptr; /* Destination file creation time */
fxs_stat : integer; /* Status code */
fxs_errno : integer; /* Errno */

end; /* Record fxs */

The fx_s and fxc_opt record fields are as follows:
fx_s = record

s_space : integer; /* Allocation space */
s_increment : integer; /* Alloction space increment */
s_unit : integer; /* Unit of allocation */

end; /* Record f_s */

fxc_opt = record /* Options record */
f_flags : integer; /* Flags options */
f_logonid : stringptr; /* Address of logon id string */
f_lrecl : integer; /* Logical record length */
f_blksize : integer; /* Block size */
f_inputfld : stringptr; /* input mode for VSE or CICS */
f_s : fx_s; /* S option record */
f_aix_codepg : stringptr; /* Override default AIX codeset name */

end; /* Record fxc_opts */

The fxc record fields are as follows:
fxc = record

fxc_src : stringptr; /* Source file name */
fxc_dst : stringptr; /* Destination file name */
fxc_opts : fxc_opt; /* Options record */

end; /* Record fxc */

758 Files Reference

Related Information
The cfxfer function, fxfer function, g32_fxfer function.

fxhfile.inc File

Purpose
Contains external declarations for Pascal file transfer.

Description
The /usr/include/fxhfile.inc file provides external definitions for the Pascal pfxfer and pcfxfer file-transfer
program functions. The fxhfile.inc file is the Pascal file-transfer invocation file. Each module that uses the
Pascal file-transfer function must include the fxhfile.inc file. The fields in the fxhfile.inc file are:
function pfxfer(var xfer : fxc;

comm : stringptr):integer;external;

function pcfxfer(var sfer : fxs):integer;external;

Related Information
The cfxfer function, fxfer function, g32_fxfer function.

g32_api.h File

Purpose
Contains associated API symbol definitions and data structures.

Description
The /usr/include/g32_api.h file provides data definitions and structures for use with HCON C language
subroutines. Each module that uses the HCON API must include the g32_api.h file.

The constants in the g32_api file are:
#define H3270DEV 0
#define SS1 0x19
/*
* Range for logical path ID’s.
*/
#define MIN_LPID 0
#define MAX_LPID 25
#define NUM_LPS 26
/*
* maximum sessions allowed for single user
*/

#define G32OK 0
#define G32ERROR -1
#define NO_SESSION 0
#define MODE_3270 1
#define MODE_API 2
#define MODE_API_T 4
#define PEND_DEALLOC 8

The g32_api structure is:
struct g32_api { /* information and parameter structure */

int lpid; /* logical path id */
int errcode; /* error code indicator */
int xerrinfo; /* extra error information */
int row; /* row number */

Chapter 4. Header Files 759

int column; /* column number */
int length; /* length for patterns */
int eventf; /* message queue ID/file descriptor */
int maxbuf; /* maximum buffer size */
int timeout; /* timeout of host response */

};
/*
* This structure
* directly corresponded to a Pascal stringptr
* (which equals a char * and int).
*/

struct g32_str {
char *g_strval;
int g_strlength;

};
extern int errno;
/*
* Error codes used by the API routines
*/

#define G32_SESS_EXIST -1 /* A session exists on the logical */
/*path */

#define G32_NO_LA -2 /* There are no free link addresses */
#define G32_NO_LOG -5 /* An error occurred while attempting*/

/* log onto the host */
#define G32_NO_LP -6 /* No logical path was available */
#define G32_NO_SESS -7 /* No session exists for application */
#define G32_EEMU -8 /* Error starting emulator */
#define G32_EMALLOC -9 /* Unable to malloc memory */
#define G32_EFORK -10 /* fork failed */
#define G32_ENDSESS -12 /* The host application wishes to */

/* end the session */
#define G32_INV_MODE -13 /* The application is not in */

/* API/API or API/API_T mode */
#define G32_PARMERR -15 /* No host application name was */

/* specified for an API or API_T mode*/
/*application */

#define G32_LINK_CTL -16 /* The api was unable to get control */
/* or the specified logical path */

#define G32_EREAD -17 /* An error occurred on a ’read’ */
/* system call */

#define G32_EWRITE -18 /* An error occurred on a ’write’ */
/* system call */

#define G32_ELENGTH -19 /* The message is more than 32000 */
/* bytes long, or negative */

#define G32_INV_POSITION -20 /* The row or column specification */
/* was invalid */

#define G32_INV_PATTERN -21 /* The pattern presented to a */
/* G32_search was invalid */

#define G32_SEARCH_FAIL -23 /* The string was not found in the */
/* presentation space */

#define G32_EMSGSND -24 /* The API was not able to send a msg*/
/* to the emulator */

#define G32_EMSGRCV -25 /* The API was not able to receive a */
/* msg from the emulator */

#define G32_EIOCTL -30 /* The ioctl call to driver failed */
#define G32_NOTACK -32 /* The synchronization problem, is */

/* missing g32write function in */
/* the host application */

#define G32_TIMEOUT -33 /* Timeout occurred waiting for host */
#define G32_NOATTACH -34 /* data. API could not allocate or */

/* attach to shared buffers */
#define G32_OVERRUN -35 /* Host application overran buffer */
#define G32_CONN_FAIL -36 /* Daemon call connect link failed */

/* Probably means the session name is*/
/* already in use */

#define G32_ATTN -37 /* The host application was inter- */
/* rupted with either a SYSREQ or an */

760 Files Reference

/*ATTN key. */
/* The application should clean */
/*up and exit. */

/*
* Codes returned by g32_get_status
*/
#define G32_NO_ERROR 0
#define G32_COMM_CHK -1
#define G32_PROG_CHK -2
#define G32_MACH_CHK -3
#define G32_FATAL_ERROR -4
#define G32_COMM_REM -5
/*
* constants used in g32_openx
*/
#define ASCII_1 061
#define ASCII_9 071
/*
* length of header
*/
#define HEADER_LENGTH 12
/*
* values for emulator quit message
*/
#define QUIT_BYTE1 0x03
#define QUIT_BYTE2 0x01
#define QUIT_BYTE3 0x00
/*
* values used in g_sea_xlate
*/
#define HEXa0 0xa0
#define HEXb4 0xb4
#define HEXb5 0xb5
#define HEXc0 0xc0
#define HEXe6 0xe6
/*
* values used in g32_alloc and g32_write
*/
#define MAX_BUF_DIV_256 7
#define MAX_BUF_MOD_256 8

g32const.inc File

Purpose
Defines Pascal HCON API constants.

Description
The /usr/include/g32const.inc file contains definitions for API constants to use with HCON
Pascal-language subroutines. Each module that uses the Pascal API must include the g32const.inc file.

The constants in the g32const.inc file are:
H3270DEV = 0;
SS1 = ’19’x;

/*
* Range for logical path IDs.
*/

MIN_LPID = 0;
MAX_LPID = 15;
NUM_LPS = 16;

G32OK = 0;
G32ERROR = -1;

Chapter 4. Header Files 761

NO_SESSION = 0;
MODE_3270 = 1;
MODE_API = 2;
MODE_API_T = 4;
PEND_DEALLOC = 8;

MAX_MSG_LEN = 60000;

API_USER_MSG = ’01’x;
API_START_MSG = ’02’x;
API_TERM_MSG = ’03’x;
WSF = ’11’x;
API_SMSG_LEN = 11;
API_TMSG_LEN = 11;
API_NMSG_LEN = 11;
API_HDR_LEN = 11;

/*
* Error codes used by the API routines
*/

G32_SESS_EXIST = -1;
G32_NO_LA = -2;
G32_EOPEN = -3;
G32_NO_LOGON = -5;
G32_NO_LP = -6;
G32_NO_SESS = -7;
G32_EEMU = -8;
G32_EMALLOC = -9;
G32_EFORK = -10;
G32_ENDSESS = -12;
G32_INV_MODE = -13;
G32_PARMERR = -15;
G32_LINK_CTL = -16;
G32_EREAD = -17;
G32_EWRITE = -18;
G32_ELENGTH = -19;
G32_INV_POSITION = -20;
G32_INV_PATTERN = -21;
G32_SEARCH_FAIL = -23;
G32_EMSGSND = -24;
G32_EMSGRCV = -25;
G32_PROMPT = -29;
G32_EIOCTL = -30;
G32_ESELECT = -31;
G32_NOTACK = -32;
G32_TIMEOUT = -33;
G32_NOATTACH = -34;
G32_OVERRUN = -35;
G32_CONN_FAIL = -36;
G32_ATTN = -37;

/*
* Codes returned by g32stat
*/

G32_NO_ERROR = 0;
G32_COMM_CHK = -1;
G32_PROG_CHK = -2;
G32_MACH_CHK = -3;
G32_FATAL_ERROR = -4;
G32_COMM_REM = -5;

g32hfile.inc File

Purpose
Contains HCON API external definitions for Pascal language.

762 Files Reference

Description
The /usr/include/g32hfile.inc file provides external definitions for use with HCON Pascal-language
subroutines. Each module that uses the Pascal API must include the g32hfile.inc file.

The function declarations in the g32hfile.inc file are:
function g32allc(var as : g32_api;

appl_name : stringptr;
session_mode : integer):integer;external;

function g32clse(var as : g32_api):integer;external;
function g32curs(var as : g32_api):integer;external;
function g32deal(var as : g32_api):integer;external;
function g32data(var as : g32_api;

buffer : integer):integer;external;
function g32fxfer(var as : g32_api;

xfer : fxc):integer;external;
function g32note(var as : g32_api;

note : integer):integer;external;
function g32open(var as : g32_api;

flag : integer;
uid : stringptr;
pw : stringptr;
comm : stringptr):integer;external;

function g32openx(var as : g32_api;
flag : integer;
uid : stringptr;
pw : stringptr;
comm : stringptr;
timeout : stringptr):integer;external;

function g32read(var as : g32_api;
var buffer : stringptr;
var msg_len : integer):integer;external;

function g32sdky(var as : g32_api;
buffer : stringptr):integer;external;

function g32srch(var as : g32_api;
pattern : stringptr):integer;external;

function g32stat(var as : g32_api):integer;external;
function g32wrte(var as : g32_api;

buffer : integer;
msg_len : integer):integer;external;

g32_keys.h File

Purpose
Contains common API key value definitions.

Description
The /usr/include/g32_keys.h file provides key definitions for use with the HCON C language
g32_send_keys function. Each module that uses the HCON Pascal g32_send_keys function must
include the g32_keys.h file.

The constants in the g32_keys.h file are:
#define ENTER "\002\061" /* enter */
#define PA1 "\002\055" /* PA1 */
#define PA2 "\002\056" /* PA2 */
#define PA3 "\002\057" /* PA3 */
#define PF1 "\002\025" /* PF1 */
#define PF2 "\002\026" /* PF2 */
#define PF3 "\002\027" /* PF3 */
#define PF4 "\002\030" /* PF4 */
#define PF5 "\002\031" /* PF5 */

Chapter 4. Header Files 763

#define PF6 "\002\032" /* PF6 */
#define PF7 "\002\033" /* PF7 */
#define PF8 "\002\034" /* PF8 */
#define PF9 "\002\035" /* PF9 */
#define PF10 "\002\036" /* PF10 */
#define PF11 "\002\037" /* PF11 */
#define PF12 "\002\040" /* PF12 */
#define PF13 "\002\041" /* PF13 */
#define PF14 "\002\042" /* PF14 */
#define PF15 "\002\043" /* PF15 */
#define PF16 "\002\044" /* PF16 */
#define PF17 "\002\045" /* PF17 */
#define PF18 "\002\046" /* PF18 */
#define PF19 "\002\047" /* PF19 */
#define PF20 "\002\050" /* PF20 */
#define PF21 "\002\051" /* PF21 */
#define PF22 "\002\052" /* PF22 */
#define PF23 "\002\053" /* PF23 */
#define PF24 "\002\054" /* PF24 */
#define CLEAR "\002\060" /* clear */
#define DUP "\002\066" /* dup */
#define FM "\002\067" /* field mark */
#define INS "\002\024" /* insert */
#define DEL "\002\021" /* delete */
#define C_UP "\002\002" /* cursor up */
#define C_DN "\002\003" /* cursor down */
#define C_LT "\002\001" /* cursor left */
#define C_RT "\002\004" /* cursor right */
#define C_UUP "\002\006" /* cursor up fast */
#define C_DDN "\002\007" /* cursor down fast */
#define C_LLT "\002\005" /* cursor left fast */
#define C_RRT "\002\010" /* cursor right fast */
#define TAB "\002\013" /* tab */
#define B_TAB "\002\014" /* back tab */
#define CR "\002\012" /* carriage return */
#define RESET "\003\002" /* reset */
#define E_INP "\002\022" /* erase input */
#define E_EOF "\002\023" /* erase to end of field */
#define SYSREQ "\003\033" /* sys req (SNA only) */
#define ATTN "\003\022" /* attn key (SNA only) */
#define T_REQ SYSREQ /* test/sys req */
#define HOME "\002\015" /* home cursor */
#define CURSEL "\002\070" /* cursor select */

Related Information
The g32_send_keys function.

g32keys.inc File

Purpose
Contains common API key-value definitions.

Description
The /usr/include/g32keys.inc file provides key definitions for use with the HCON Pascal-language
g32_send_keys function. Each module that uses the HCON Pascal g32_send_keys function must
include the g32keys.inc file.

The key-value definitions in the g32keys.inc file are:
ENTER = chr(2) || chr(49); /* enter key (host) */
PA1 = chr(2) || chr(45); /* PA1 */
PA2 = chr(2) || chr(46); /* PA2 */

764 Files Reference

PA3 = chr(2) || chr(47); /* PA3 */
PF1 = chr(2) || chr(21); /* PF1 */
PF2 = chr(2) || chr(22); /* PF2 */
PF3 = chr(2) || chr(23); /* PF3 */
PF4 = chr(2) || chr(24); /* PF4 */
PF5 = chr(2) || chr(25); /* PF5 */
PF6 = chr(2) || chr(26); /* PF6 */
PF7 = chr(2) || chr(27); /* PF7 */
PF8 = chr(2) || chr(28); /* PF8 */
PF9 = chr(2) || chr(29); /* PF9 */
PF10 = chr(2) || chr(30); /* PF10 */
PF11 = chr(2) || chr(31); /* PF11 */
PF12 = chr(2) || chr(32); /* PF12 */
PF13 = chr(2) || chr(33); /* PF13 */
PF14 = chr(2) || chr(34); /* PF14 */
PF15 = chr(2) || chr(35); /* PF15 */
PF16 = chr(2) || chr(36); /* PF16 */
PF17 = chr(2) || chr(37); /* PF17 */
PF18 = chr(2) || chr(38); /* PF18 */
PF19 = chr(2) || chr(39); /* PF19 */
PF20 = chr(2) || chr(40); /* PF20 */
PF21 = chr(2) || chr(41); /* PF21 */
PF22 = chr(2) || chr(42); /* PF22 */
PF23 = chr(2) || chr(43); /* PF23 */
PF24 = chr(2) || chr(44); /* PF24 */
CLEAR = chr(2) || chr(48); /* clear */
DUP = chr(2) || chr(54); /* dup */
FM = chr(2) || chr(55); /* field mark */
INS = chr(2) || chr(20); /* insert */
DEL = chr(2) || chr(17); /* delete */
C_UP = chr(2) || chr(2); /* cursor up */
C_DN = chr(2) || chr(3); /* cursor down */
C_LT = chr(2) || chr(1); /* cursor left */
C_RT = chr(2) || chr(4); /* cursor right */
C_UUP = chr(2) || chr(6); /* cursor up fast */
C_DDN = chr(2) || chr(7); /* cursor right fast */
C_LLT = chr(2) || chr(5); /* cursor left fast */
C_RRT = chr(2) || chr(8); /* cursor right fast */
TAB = chr(2) || chr(11); /* tab */
B_TAB = chr(2) || chr(12); /* back tab */
CR = chr(2) || chr(10); /* carriage return */
RESET = chr(3) || chr(2); /* reset */
E_INP = chr(2) || chr(18); /* erase input */
E_EOF = chr(2) || chr(19); /* erase to end of field */
SYSREQ = chr(3) || chr(27); /* sys request(SNA only) */
ATTN = chr(3) || chr(18); /* attN key (SNA only) */
T_REQ = chr(3) || chr(27); /* test/sys request */
HOME = chr(2) || chr(13); /* home cursor */
CURSEL = chr(2) || chr(56); /* cursor select */

Related Information
The g32_send_keys function.

g32types.inc File

Purpose
Contains Pascal API data types.

Description
The /usr/include/g32types.inc file provides data types and structures for use with HCON
Pascal-language functions. The g32types.inc file is an include file that contains the g32_api record. Each
module that uses the HCON Pascal API must include the g32types.inc file.

Chapter 4. Header Files 765

The fields in the g32types.inc file are:
g32_api = record /* information and parameter structure */

lpid : integer; /* logical path id */
errcode : integer; /* error code indicator */
xerrinfo : integer; /* extra error information */
row : integer; /* row number */
column : integer; /* column number */
length : integer; /* length for patterns */
eventf : integer; /* message queue ID/file descriptor */
maxbuf : integer; /* the maximum transfer message size */

/* from the maximum IO buffer size */
/* characteristic in the HCON profile. */
/* The user may override the default */
/* value only during a call to */
/* g32allc */

timeout : integer; /* the amount of time, in seconds, */
/* to wait for data from the host */
/* computer. The default value is */
/* 15 seconds. The user may override */
/* the default value at anytime. */

end; /* record g32_api */
fxs = record

fxs_bytcnt : integer; /* Byte count */
fxs_src : stringptr; /* Source file name */
fxs_dst : stringptr; /* Destination file name */
fxs_ctime : stringptr; /* Destination file creation time */
fxs_stat : integer; /* Status code */
fxs_errno : integer; /* Errno */

end;
/* Record fxs */

fx_s = record
s_space : integer; /* Allocation space */
s_increment : integer; /* Alloction space increment */
s_unit : integer; /* Unit of allocation */

end; /* Record f_s */
fxc_opt = record /* Options record */

f_flags : integer; /* Flags options */
f_logonid : stringptr; /* Address of logon id string */
f_lrecl : integer; /* Logical record length */
f_blksize : integer; /* Block size */
f_inputfld : stringptr; /* Input mode for VSE or CICS */
f_s : fx_s; /* S option record */

end; /* Record fxc_opts */
fxc = record

fxc_src : stringptr; /* Source file name */
fxc_dst : stringptr; /* Destination file name */
fxc_opts : fxc_opt; /* Options record */

end;

Examples
The following example illustrates the use of the Pascal header files:
program example(input, output);

const
%include /usr/include/g32const.inc
{ user’s constant definitions }

type
%include /usr/include/g32types.inc
{ user’s type definitions }

var
User_Buffer : packed array[k.1..100]k. of char;
API_BUF_PTR : integer;
{ user’s variable declarations }

%include /usr/include/g32hfile.inc
{ user’s external function declarations }

766 Files Reference

begin
API_BUF_PTR = addr(User_Buffer);
{ user’s program }

end

The API_BUF_PTR declaration must be an integer and must be assigned the address of the User_Buffer
declaration.

Related Information
Other HCON Pascal header files are /usr/include/g32const.inc, /usr/include/g32hfile.inc, and
/usr/include/g32keys.inc.

grp.h File

Purpose
Describes group structure.

Syntax
#include <grp.h>

Description
The grp.h header declares the structure group that includes the following members:
char *gr_name the name of the group
gid_t gr_gid numerical group ID
char **gr_mem pointer to a null-terminated array of character pointers to member names

The gid_t type is defined as described in the sys/types.h header file.

The following are declared as functions and may also be defined as macros. Function prototypes must be
provided for use with an ISO C compiler.
struct group *getgrgid(gid_t);
struct group *getgrnam(const char *);
int getgrgid_r(gid_t, struct group *, char *, size_t, struct group **);
int getgrnam_r(const char *, struct group *, char *, size_t, struct group **);
struct group *getgrent(void);
void endgrent(void);
void setgrent(void);

Related Information
The getgrent, endgrent, getgrnam, getgrgid, and getgrgid_r subroutines.

The types.h header file.

iconv.h File

Purpose
Defines types, macros, and subroutines for character code set conversion.

Description
The /usr/include/iconv.h file defines types, subroutines, and macros used in character code-set
conversion by the iconv family of subroutines and commands. The iconv.h file defines the iconv_t data
type.

Chapter 4. Header Files 767

Related Information
The genxlt command, iconv command.

The iconv subroutine, iconv_close subroutine, iconv_open subroutine.

National Language Support Overview for Programming in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

Converters Overview for Programming in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

List of PC, ISO, and EBCDIC Code Set Converters in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

inode.h File

Purpose
Describes a file system file or directory entry as it is listed on a disk.

Syntax
#include <sys/types.h>
#include <sys/ino.h>

Description
The inode file for an ordinary file or directory in a file system has the following structure defined by the
sys/ino.h file format:
struct dinode
{

/* generation number */
ulong di_gen;
/* mode_t returned by stat () */
/* format,attributes and permission bits */

mode_t di_mode;

/* number of links to file(if 0,inode is available) */
ushort di_nlink;

/* accounting ID */
ushort di_acct;

/* user id of owner */
uid_t di_uid;

/* group id of owner */
gid_t di_gid;

/* size of file */
off_t di_size;

/* number of blocks actually used by file */
ulong di_nblocks;

/* time last modified */
struct timestruc_t di_mtime_ts;

/* time last accessed */
struct timestruc_t di_atime_ts;

/* time last changed inode */

768 Files Reference

struct timestruc_t di_ctime_ts;

/*defines for old time_t names */
#define di_mtime di_mtime_ts.tv_sec
#define di_atime di_atime_ts.tv_sec
#define di_ctime di_ctime_ts.tv_sec

/* extended access control information */
long di_acl; /* acl pointer */
#define ACL_INCORE (1<<31)
ulong di_sec; /* reserved */

/* spares */
ulong di_rsrvd[5];

/***** file type-dependent information ****/
/* size of private data in disk inode is D_PRIVATE.
* location and size of fields depend on object type.
*/
define D_PRIVATE 48

union di_info
{

/* all types must fit within d_private */
char d_private[D_PRIVATE];
/* jfs regular file or directory. */
struct regdir
{

/*privilege vector-only for non-directory */
struct
{

ulong_di_offset;
ulong_di_flags;
define;PCL_ENABLED(1<<31)
define PCL_EXTENDED(1<<30)
define PCL_FLAGS\

(PCL_ENABLED|PCL_EXTENDED)
}_di_privingo;
priv_t_di_priv;
/* ACL templates - only for directory */
struct
{

ulong_di_aclf;
ulong_di_acld;
{_di_aclingo;

} _di_sec;
} _di_file;

/* offsets of regular file or directory private data. */
define di_rdaddr _di_info._di_file._di_rdaddr

define di_vindirect _di_info._di_file._di_vinderect
define di_rinderect _di_info._di_file._di_rinderect
define di_privinfo _di_info._di_file._di_sec._di_privinfo
define di_privoffset _di_privinfo._di_privoffset
define di_privflags _di_privinfo._di_privflags
define di_priv _di_info._di_file._di_sec._di_priv
define di_aclf _di_info._di_file._di_sec._di_aclinfo._di_aclf
define di_acld _di_info._di_file._di_sec._di_aclinfo._di_acld

/*special file (device) /*
struct
}

dev_t_di_rdev;
}_di_dev;

/* offsets of special file private data. */
define di_rdev _di_infor._di_dev._di_rdev
define di_bnlastr _di_info._di_dev._di_bnlastr

Chapter 4. Header Files 769

define di_dgp _di_info._di_dev._di_dgp
define di_pino _di_info._di_dev._di_pino

/*
* symbolic link.link is stored inode if its
* length is less than D_PRIVATE. Otherwise like
* regular file.
*/
union

{
char _s_private[D_PRIVATE];
struct regdir_s_symfile;
}_di_sym;

/* offset of symbolic link private data */
define di_symlink _di_info._di_sym._s_private

/*
*data for mounted filesystem. kept in inode = 0
*and dev = devt of mounted filesystem in inode table.
*/
struct mountnode

{
struct inode *_iplog; /*itab of log*/
struct inode *_ipinode; /*itab of .inodes*/
struct inode *_ipind; /*itab of .indirect*/
struct inode *_ipinomap; /*itab of inode map*/
struct inode *_ipdmap; /*itab of disk map*/
struct inode *_ipsuper; /*itab of super blk*/
struct inode *_ipinodex; /*itab of .inodex*/
struct jfsmount *_jfsmnt; /* ptr to mount data*/
ushort _fperpage; /* frag per block */
ushort _agsize; /* frags per ag */
ushort _iagsize; /* inodes per ag */

}_mt_info;

/*
* data for mounted filesystem. kept in inode = 0
* and dev = devt of mounted filesystem in inode table.
*/
struct mountnode
{

struct inode *_iplog; /*itab of log*/
struct inode *_ipinode; /*itab of .inodes*/
struct inode *_ipind; /*itab of .indirect*/
struct inode *_ipinomap; /*itab of inode map*/
struct inode *_ipdmap; /*itab of disk map*/
struct inode *_ipsuper; /*itab of super blk*/
struct inode *_ipinodex; /*itab of .inodex*/
struct jfsmount *_jfsmnt; /* ptr to mount data*/
ushort _fperpage; /* frag per block */
ushort _agsize; /* frags per ag */
ushort _iagsize; /* inodes per ag */
ushort _compress /* > 0 if data comp */

}_mt_info;

/* offsets of MOUNT data */
define di_iplog _di_info._mt_info._iplog
define di_ipinode _di_info._mt_info._ipinode
define di_ipind _di_info._mt_info._ipind
define di_ipinomap _di_info._mt_info._ipinomap
define di_ipdmap _di_info._mt_info._ipdmap
define di_ipsuper _di_info._mt_info._ipsuper
define di_ipinodex _di_info._mt_info._ipinodex
define di_jfsmnt _di_info._mt_info._jfsmnt
define di_fperpage _di_info._mt_info._fperpage

770 Files Reference

define di_agsize _di_info._mt_info._agsize
define di_iagsize _di_info._mt_info._iagsize

/*
* log info. kept in inode = 0 and dev = devt of
* log device filesystem in inode table.
*/
struct lognode
{

int _logptr /* page number end of log */
int _logsize /* log size in pages */
int _logend /* eor in page _logptr */
int _logsync /* addr in last syncpt record */
int _nextsync /* bytes to next logsyncpt */

struct gnode * _logdgp; /* pointer to device gnode */
}_di_log;

/* offsets of MOUNT data */
define di_iplog _di_info._mt_info._iplog
define di_ipinode _di_info._mt_info._ipinode
define di_ipind _di_info._mt_info._ipind
define di_ipinomap _di_info._mt_info._ipinomap
define di_ipdmap _di_info._mt_info._ipdmap
define di_ipsuper _di_info._mt_info._ipsuper
define di_ipinodex _di_info._mt_info._ipinodex
define di_jfsmnt _di_info._mt_info._jfsmnt
define di_fperpage _di_info._mt_info._fperpage
define di_agsize _di_info._mt_info._agsize
define di_iagsize _di_info._mt_info._iagsize
define di_compress _di_info._mt_info._compress

/*
* log info. kept in inode = 0 and dev = devt of
* log device filesystem in inode table.
*/
struct lognode
{

int _logptr /* page number end of log */
int _logsize /* log size in pages */
int _logend /* eor in page _logptr */
int _logsync /* addr in last syncpt record */
int _nextsync /* bytes to next logsyncpt */

struct gnode * _logdgp; /* pointer to device gnode */
}_di_log;

/* offsets of LOG data */
define di_logptr _di_info._di_log._logptr
define di_logsize _di_info._di_log._logsize
define di_logend _di_info._di_log._logend
define di_logsync _di_info._di_log._logsync
define di_nextsync _di_info._di_log._nextsync
define di_logdgp _di_info._di_log._logdgp

}_di_info;
};

Related Information
The filsys.h file, stat.h file, types.h file.

Directory Overview and File Systems Overview for System Management in AIX 5L Version 5.2 System
Management Concepts: Operating System and Devices.

Chapter 4. Header Files 771

inttypes.h File

Purpose
Contains fixed size integral types.

Syntax
#include <inttypes.h>

Description
The inttypes.h header includes definitions of, at least, the following types:

int8_t 8-bit signed integral type.
int16_t 16-bit signed integral type.
int32_t 32-bit signed integral type.
int64_t 64-bit signed integral type.
uint8_t 8-bit unsigned integral type.
uint16_t 16-bit unsigned integral type.
uint32_t 32-bit unsigned integral type.
uint64_t 64-bit unsigned integral type.
intptr_t Signed integral type large enough to hold any pointer.
uintptr_t Unsigned integral type large enough to hold any pointer.

ipc.h File

Purpose
Describes the structures that are used by the subroutines that perform interprocess communications
operations.

Syntax
#include <sys/ipc.h>

Description
The ipc.h file defines the following symbolic constants, types, and structures:

Symbolic Constants:
IPC_CREAT create entry if key doesn’t exist
IPC_EXCL fail if key exists
IPC_NOWAIT error if request must wait
IPC_PRIVATE private key
IPC_RMID remove identifier
IPC_SET set options
IPC_STAT get options
IPC_ALLO Centry currently allocated
IPC_R read or receive permission
IPC_W write or send permission
IPC_NOERROR truncates a message if too long
SHM_SIZE change segment size (shared mem only)

The structure ipc_perm contains the following members:
uid_t uid owner’s user id
gid_t gid owner’s group id
uid_t cuid creator’s user id

772 Files Reference

gid_t cgid creator’s group id
mode_t mode access modes
unsigned short seq slot usage sequence number
key_t key key

The types uid_t, gid_t, mode_t, and key_t are as defined in <sys/types.h>.

The following is declared as a function:
key_t ftok(const char *, int);

Related Information
The types.h file.

The ftok subroutine.

iso646.h File

Purpose
Provides alternate spellings.

Syntax
#include <iso646.h>

Description
The iso646.h header file defines the following eleven macros (on the left) that expand to the
corresponding tokens (on the right):
and &&
and_eq &=
bitand &
bitor |
compl ~
not !
not_eq !=
or ||
or_eq |=
xor ^
xor_eq ^=

ldr.h File

Purpose
Describes the ld_info data type and loader entry points.

Syntax
#include <sys/ldr.h

Description
The /usr/include/sys/ldr.h header file contains declarations of the ld_info structure and the system loader
entry points available to processes and kernel extensions.

The ld_info structure describes an XCOFF object file in the context of either tracing a process (with the
ptrace system call) or examining a core file. The ldr.h file can define 2 variants of the ld_info structure,
one for describing 32-bit processes (__ld_info32) and one for describing 64-bit processes (__ld_info64). If

Chapter 4. Header Files 773

the __LDINFO_PTRACE32__ symbol is defined, so is the struct __ld_info32 type. If the
__LDINFO_PTRACE64__ symbol is defined, so is the struct __ld_info64 type. If the compilation mode is
32-bit and the __LDINFO_PTRACE32__ symbol is defined, the struct __ld_info32 and struct ld_info types
are equivalent. If the compilation mode is 64-bit and the __LDINFO_PTRACE64__ symbol is defined, the
struct __ld_info64 and struct ld_info types are equivalent.

When using ptrace in a 32-bit program to debug a 64-bit process, define __LDINFO_PTRACE64__. When
using ptrace in a 64-bit program to debug a 32-bit process, define __LDINFO_PTRACE32__. (This is not
supported in AIX 4.3.)

The types and sizes of these structures’ fields depend on whether the compilation mode is 32-bit or 64-bit.
The same field names are generated in both structure modes, with the exception that the 64-bit structure
has an ldinfo_flags field, which is reserved for future use.

The __ld_info32 and __ld_info64 structures contain the following fields of the indicated sizes and types;
when two types are listed, the first is used when the compilation mode is 32-bit and the second is used
when the mode is 64-bit:

Field Description __ld_info32 __ld_info64

Size Type(s) Size Type(s)

ldinfo_next Offset from current entry of
next entry, or zero if last entry.

4 uint 4 uint

ldinfo_flags Reserved for future use. N/A N/A 4 uint

ldinfo_fd File descriptor returned by
ptrace to debugger.

4 int 4 int

ldinfo_fp File pointer returned by loader
to ptrace.

4 struct file *,
uint

4 struct file *,
uint

ldinfo_core Offset into core file of object. 4 int 8 long long,
long

ldinfo_textorg Offset to loaded program
image, including the XCOFF
headers.

4 void *, uint 8 unsigned long
long, void *

ldinfo_textsize Length of loaded program
image.

4 int 8 long long,
long

ldinfo_dataorg Start of data. 4 void *, uint 8 unsigned long
long, void *

ldinfo_datasize Size of data. 4 int 8 long long,
long

ldinfo_filename Nul-terminated path name
followed by nul-terminated
member name; member name
is empty if not an archive.

variable char[2] variable char[2]

The ldr.h header declares the following functions:
int kmod_load(caddr_t path, uint flags, caddr_t libpath, mid_t *kmid);
int kmod_unload(mid_t kmid, uint flags);
void (*(kmod_entrypt(mid_t kmid, uint flags)))();
int ld_info(int __flags, pid_t __pid, void *__buffer, unsigned int __length);
__LOAD_T *load(char *__filenameparm, uint __flags, char *__libpathparm);
int loadbind(int __lflags, void *__exporter, void *__importer);
int unload(void *__function);
int loadquery(int __lflags, void *__buffer, unsigned int __length);
__handler_t *__lazySetErrorHandler(__handler_t *fp);

774 Files Reference

Related Information
The load, loadbind, loadquery, and unload subroutines.

limits.h File

Purpose
Defines implementation limits identified by IEEE POSIX 1003.

Description
The limits.h file contains definitions required by the ANSI X3.159-198x Programming Language C
Standard and the Institute of Electrical and Electronics Engineers (IEEE) P1003.1 Portable Operating
System Interface for Computer Environments (POSIX) standard.

The constants required by the ANSI C Standard describe the sizes of basic data types, as follows:

Symbol Value Explanation

CHAR_BIT 8 Number of bits in a variable of type char

CHAR_MAX 255 Maximum value of a variable of type char

CHAR_MIN 0 Minimum value of a variable of type char

INT_MAX 2,147,483,647 Maximum value of a variable of type int

INT_MIN -2,147,483,648 Minimum value of a variable of type int

LONG_MAX 2,147,483,647 Maximum value of a variable of type long

LONG_MIN -2,147,483,648 Maximum value of a variable of type long

SCHAR_MAX 127 Maximum value of a variable of type signed char

SCHAR_MIN -128 Minimum value of a variable of type signed char

SHRT_MAX 32,767 Maximum value of a variable of type short

SHRT_MIN -32,768 Maximum value of a variable of type short

UCHAR_MAX 255 Maximum value of a variable of type unsigned char

UINT_MAX 4,294,967,295 Maximum value of a variable of type unsigned int

ULONG_MAX 4,294,967,295 Maximum value of a variable of type unsigned long

USHRT_MAX 65,535 Maximum value of a variable of type unsigned short

Run-Time Invariant Values
The first set of values required by POSIX, run-time invariant values, are simple constants determined by
basic operating system data-structure sizes.

Symbol Value Explanation

MAX_INPUT 512 No fewer than the number of bytes
specified by the MAX_INPUT symbol
are allowed in a terminal input queue.

NGROUPS_MAX 64 Maximum size of the concurrent
group list.

PASS_MAX 32 Maximum number of bytes in a
password (not including the null
terminator).Only eight characters of
password information are significant.

PID_MAX INT_MAX Maximum value for a processID.

Chapter 4. Header Files 775

Symbol Value Explanation

UID_MAX ULONG_MAX Maximum value for a user or group
ID.

Run-Time Invariant Values (Possibly Indeterminate)
The second set of run-time invariant values required by POSIX specify values that might vary, especially
due to system load, but that can be attained on a lightly loaded system.

Symbol Value Explanation

ARG_MAX 24,576> Maximum length (in bytes) of
arguments for the exec subroutine,
including the environment

Note: The argument list and environment are allowed to consume all of the user data segment.

Symbol Value Explanation

CHILD_MAX 40 Maximum number of simultaneous
processes per user ID

MAX_CANON 256 Maximum number of bytes in a
canonical input line

OPEN_MAX 65534 Maximum number of files that one
process can have open at any given
time

CHRS_OPEN_MAX 65000 The maximum number of file
descriptors to fit in the
checkpoint/restart segment.

Path-Name Variable Values
The third set of values required by POSIX, path-name variable values, represent constraints imposed by
the file system on file path names. Further constraints on these values might be imposed by the underlying
file-system implementation. Use the pathconf or fpathconf subroutine to determine any
file-implementation characteristics specific to the underlying file system.

Symbol Value Explanation

NAME_MAX Undefined Maximum number of bytes in a file
component name (not including the
null terminator)

PATH_MAX 512 Maximum number of bytes in a path
name (not including the null
terminator)

Run-Time Increasable Values
The fourth set of values required by POSIX specify values that might be increased at run time. Use the
pathconf or fpathconf subroutine to determine any file-implementation characteristics specific to the
underlying file system.

Symbol Value Explanation

LINK_MAX 32,767 Maximum value of a file’s link count
(SHRT_MAX).

776 Files Reference

PIPE_BUF 32,768 Maximum number of bytes
guaranteed to be written automatically
to a pipe.

Related Information
The values.h file.

The exec subroutine, pathconf or fpathconf subroutine.

libperfstat.h File

Purpose
Describes the structures and constants used by the libperfstat API subroutines.

Syntax
#include <libperfstat.h>

Description
The libperfstat.h file defines the following symbolic constants, types, and structures:

IDENTIFIER_LENGTH length of strings included in the structures

FIRST_CPU pseudo-name for the first logical cpu

FIRST_DISK pseudo-name for the first disk

FIRST_DISKADAPTER pseudo-name for the first disk adpate

FIRST_NETINTERFACE pseudo-name for the first network interface

FIRST_PAGINGSPACE pseudo-name for the first paging space

FIRST_PROTOCOL pseudo-name for the first protocol

FIRST_NETBUFFER pseudo-name for the first network buffer size

The perfstat_id_t structure contains the following members:

char name [IDENTIFIER_LENGTH] name of the identifier

The perfstat_cpu_t structure contains the following members:

char name [IDENTIFIER_LENGTH] logical processor name (cpu0, cpu1, ..)

u_longlong_t user raw number of clock ticks spent in user mode

u_longlong_t sys raw number of clock ticks spent in system mode

u_longlong_t idle raw number of clock ticks spent idle

u_longlong_t wait raw number of clock ticks spent waiting for I/O

_longlong_t pswitch number of context switches (changes of currently running process)

u_longlong_t syscall number of system calls executed

u_longlong_t sysread number of read system calls executed

u_longlong_t syswrite number of write system calls executed

u_longlong_t sysfork number of fork system call executed

Chapter 4. Header Files 777

u_longlong_t sysexec number of exec system call executed

u_longlong_t readch number of characters tranferred with read system call

u_longlong_t writech number of characters tranferred with write system ca

u_longlong_t bread number of block reads

u_longlong_t bwrite number of block writes

u_longlong_t lread number of logical read requests

u_longlong_t lwrite number of logical write requests

u_longlong_t phread number of physical reads (reads on raw device)

u_longlong_t phwrite number of physical writes (writes on raw device)

u_longlong_t iget number of inode lookups

u_longlong_t namei number of vnode lookup from a path name

u_longlong_t dirblk number of 512-byte block reads by the directory search routine to locate an
entry for a file

u_longlong_t msg number of IPC message operations

u_longlong_t sema number of IPC semaphore operations

The perfstat_cpu_total_t structure contains the following members:

int ncpus number of active logical processors

int ncpus_cfg number of configured processors

char description
[IDENTIFIER_LENGTH]

processor description (type/official name)

u_longlong_t processorHZ processor speed in Hz

u_longlong_t user raw total number of clock ticks spent in user mode

u_longlong_t sys raw total number of clock ticks spent in system mode

u_longlong_t idle raw total number of clock ticks spent idle

u_longlong_t wait raw total number of clock ticks spent waiting for I/O

u_longlong_t pswitch number of process switches (change in currently running process)

u_longlong_t syscall number of syscalls executed

u_longlong_t sysread number of read system calls executed

u_longlong_t syswrite number of write system calls executed

u_longlong_t sysfork number of forks system calls executed

u_longlong_t sysexec number of execs system calls executed

u_longlong_t readch number of characters tranferred with read system call

u_longlong_t writech number of characters tranferred with write system call

u_longlong_t devintrs number of device interrupts

u_longlong_t softintrs number of software interrupts

ime_t lbolt number of ticks since last reboot

u_longlong_t loadavg[3] (1<< SBITS) times the average number of runnables processes during the last
1, 5 and 15 minutes. To calculate the load average, divide the numbers by
(1<< SBITS). SBITS is defined in <sys/proc.h>.

u_longlong_t runque length of the run queue (processes ready)

u_longlong_t swpque length of the swap queue (processes waiting to be paged in)

778 Files Reference

u_longlong_t bread number of blocks read

u_longlong_t bwrite number of blocks written

u_longlong_t lread number of logical read requests

u_longlong_t lwrite number of logical write requests

u_longlong_t phread number of physical reads (reads on raw devices)

u_longlong_t phwrite number of physical writes (writes on raw devices)

u_longlong_t runocc updated whenever runque is updated, i.e. the runqueue is occupied. This can
be used to compute the simple average of ready processes

u_longlong_t swpocc updated whenever swpque is updated. i.e. the swpqueue is occupied. This
can be used to compute the simple average processes waiting to be paged in

u_longlong_t iget number of inode lookups

u_longlong_t namei number of vnode lookup from a path name

u_longlong_t dirblk number of 512-byte block reads by the directory search routine to locate an
entry for a file

u_longlong_t msg number of IPC message operations

u_longlong_t sema number of IPC semaphore operations

u_longlong_t rcvint number of tty receive interrupts

u_longlong_t xmtint number of tyy transmit interrupts

u_longlong_t mdmint number of modem interrupts

u_longlong_t tty_rawinch number of raw input characters

u_longlong_t tty_caninch number of canonical input characters (always zero)

u_longlong_t tty_rawoutch number of raw output characters

u_longlong_t ksched number of kernel processes created

u_longlong_t koverf number of kernel process creation attempts where:

v the user has forked to their maximum limit

v the configuration limit of processes has been reached

u_longlong_t kexit number of kernel processes that became zombies

u_longlong_t rbread number of remote read requests

u_longlong_t rbread number of remote read requests

u_longlong_t rbwrt number of remote writes

u_longlong_t rcwrt number of cached remote writes

u_longlong_t traps number of traps

nt ncpus_high index of highest procssor online

The perfstat_disk_t structure contains the following members:
char name[IDENTIFIER_LENGTH] name of the disk
char description[IDENTIFIER_LENGTH] disk description (from ODM)
char vgname[IDENTIFIER_LENGTH] volume group name (from ODM)
u_longlong_t size size of the disk (in MB)
u_longlong_t free free portion of the disk (in MB)
u_longlong_t bsize disk block size(in bytes)
u_longlong_t xrate kbytes/sec xfer rate capability
u_longlong_t xfers number of transfers to/from disk
u_longlong_t wblks number of blocks written to disk
u_longlong_t rblks number of blocks read from disk

Chapter 4. Header Files 779

u_longlong_t qdepth queue depth
u_longlong_t time amount of time disk is active
char adapter[IDENTIFIER_LENGTH] disk adapter name (from ODM)

The perfstat_disk_total_t structure contains the following members:
int number total number of disks
u_longlong_t size total size of all disks (in MB)
u_longlong_t free free portion of all disks (in MB)
u_longlong_t xrate total kbytes/sec xfer rate capability
u_longlong_t xfers total number of transfers to/from disk
u_longlong_t wblks blocks written to all disks
u_longlong_t rblks blocks read from all disks
u_longlong_t time amount of time disks are active

The perfstat_diskadapter_t structure contains the following members:
char name[IDENTIFIER_LENGTH] name of the adapter (from ODM)
char description[IDENTIFIER_LENGTH] adapter description (from ODM)
int number number of disks connected to adapter
u_longlong_t size total size of all disks (in MB)
u_longlong_t free free portion of all disks (in MB)
u_longlong_t xrate total kbytes/sec xfer rate capability
u_longlong_t xfers total number of transfers to/from disk
u_longlong_t wblks blocks written via adapter
u_longlong_t rblks blocks read via adapter
u_longlong_t time amount of time disks are active

The perfstat_memory_total_t structure contains the following members:
u_longlong_t virt_total total virtual memory (in 4KB pages)
u_longlong_t real_total total real memory (in 4KB pages)
u_longlong_t real_free free real memory (in 4KB pages)
u_longlong_t real_pinned real memory which is pinned (in 4KB pages)
u_longlong_t real_inuse real memory which is in use (in 4KB pages)
u_longlong_t pgbad number of bad pages
u_longlong_t pgexct number of page faults
u_longlong_t pgins number of pages paged in
u_longlong_t pgouts number of pages paged out
u_longlong_t pgspins number of page ins from paging space
u_longlong_t pgspouts number of page outs from paging space
u_longlong_t scans number of page scans by clock
u_longlong_t cycles number of page replacement cycles
u_longlong_t pgsteals number of page steals
u_longlong_t numperm number of frames used for files (in 4KB pages)
u_longlong_t pgsp_total total paging space (in 4KB pages)
u_longlong_t pgsp_free free paging space (in 4KB pages)
u_longlong_t pgsp_rsvd reserved paging space (in 4KB pages)
u_longlong_t real_system real memory used by system segments (in 4KB pages).

This is the sum of all the used pages in segment marked
for system usage.
Since segment classifications are not always guaranteed to be accurate,
this number is only an approximation.

u_longlong_t real_user real memory used by non-system segments (in 4KB pages).
This is the sum of all pages used in segments not marked
for system usage.
Since segment classifications are not always guaranteed to be accurate,
this number is only an approximation.

u_longlong_t real_process real memory used by process segments (in 4KB pages).
This is real_total-real_free-numperm-real_system.
Since real_system is an approximation, this number is as well.

The perfstat_netinterface_t structure contains the following members:
char name[IDENTIFIER_LENGTH] name of the interface
char description[IDENTIFIER_LENGTH] interface description (from ODM, similar to lscfg output)
uchar type ethernet, tokenring, etc. interpretation can be done using

780 Files Reference

/usr/include/net/if_types.h
u_longlong_t mtu network frame size
u_longlong_t ipacets number of packets received on interface
u_longlong_t ibytes number of bytes received on interface
u_longlong_t ierrors number of input errors on interface
u_longlong_t opackets number of packets sent on interface
u_longlong_t obytes number of bytes sent on interface
u_longlong_t oerrors number of output errors on interface
u_longlong_t collisions number of collisions on csma interface
u_longlong_t bitrate adapter rating in bit per second

The perfstat_netinterface_total_t structure contains the following members:
int number number of network interfaces
u_longlong_t ipackets number of packets received on interface
u_longlong_t ibytes number of bytes received on interface
u_longlong_t ierrors number of input errors on interface
u_longlong_t opackets number of packets sent on interface
u_longlong_t obytes number of bytes sent on interface
u_longlong_t oerrors number of output errors on interface
u_longlong_t collisions number of collisions on csma interface

The perfstat_pagingspace_t structure contains the following members:
char name[IDENTIFIER_LENGTH] paging space name
char type type of paging device.

Possible values are:
LV_PAGING logical volume
NFS_PAGING NFS file

The nfs_paging union has the following fields:
char nfs_paging.hostname[IDENTIFIER_LENGTH] host name of paging server
char nfs_paging.filename[IDENTIFIER_LENGTH] swap file name on server

The lv_paging union has the following fields:
char lv_paging.vgname[IDENTIFIER_LENGTH] volume group name

longlong_t lp_size size in number of logical partitions
longlong_t mb_size size in megabytes
longlong_t mb_used portion used in megabytes
longlong_t io_pending number of pending I/O
char active indicates if active (1 if so, 0 if not)
char automatic indicates if automatic (1 if so, 0 if not)

The perfstat_netbuffer_t structure contains the following members:
char name[IDENTIFIER_LENGTH] size in ascii, always power of 2 (ex: "32", "64", "128")
u_longlong_t inuse number of buffer currently allocated
u_longlong_t calls number of buffer allocations since last reset
u_longlong_t delayed number of delayed allocations
u_longlong_t free number of free calls
u_longlong_t failed number of failed allocations
u_longlong_t highwatermark high threshold for number of buffer allocated
u_longlong_t freed number of buffers freed

The perfstat_protool_t structure contains the following members:
char name[IDENTIFIER_LENGTH] ip, ipv6, icmp, icmpv6, udp, tcp, rpc, nfs, nfsv2, nfsv8

The ip union contains the following fields:
u_longlong_t ip.ipackets number of input packets
u_longlong_t ip.ierrors number of input errors
u_longlong_t ip.iqueueoverflow number of input queue overflows
u_longlong_t ip.opackets number of output packets
u_longlong_t ip.oerrors number of output errors

Chapter 4. Header Files 781

The ipv6 union contains the following fields:
_longlong_t ipv6.ipackets number of input packets
u_longlong_t ipv6.ierrors number of input errors
u_longlong_t ipv6.iqueueoverflow number of input queue overflows
u_longlong_t ipv6.opackets number of output packets
u_longlong_t ipv6.oerrors number of output errors

The icmp union contains the following fields:

u_longlong_t icmp.received number of packets received
u_longlong_t icmp.sent number of packets sent
u_longlong_t icmp.errors number of errors

The icmpv6 union contains the following fields:

u_longlong_t icmpv6.received number of packets received
u_longlong_t icmpv6.sent number of packets sent
u_longlong_t icmpv6.errors number of errors

The udp union contains the following fields:

u_longlong_t udp.ipackets number of input packets
u_longlong_t udp.ierrors number of input errors
u_longlong_t udp.opackets number of output packets
u_longlong_t udp.no_socket number of packets dropped due to no socket

The tcp union contains the following fields:

u_longlong_t tcp.ipackets number of input packets
u_longlong_t tcp.ierrors number of input errors
u_longlong_t tcp.opackets number of output packets
u_longlong_t tcp.initiated number of connections initiated
u_longlong_t tcp.accepted number of connections accepted
u_longlong_t tcp.established number of connections established
u_longlong_t tcp.dropped number of connections dropped

The rpc union contains the following fields:

u_longlong_t rpc.client.stream.calls total NFS client RPC connection-oriented calls
u_longlong_t rpc.client.stream.badcalls rejected NFS client RPC calls
u_longlong_t rpc.client.stream.badxids bad NFS client RPC call responses
u_longlong_t rpc.client.stream.timeouts timed out NFS client RPC calls with no reply
u_longlong_t rpc.client.stream.newcreds total NFS client RPC authentication refreshes
u_longlong_t rpc.client.stream.badverfs total NFS client RPC bad verifier in response
u_longlong_t rpc.client.stream.timers NFS client RPC timout greater than timeout value
u_longlong_t rpc.client.stream.nomem NFS client RPC calls memory allocation failure
u_longlong_t rpc.client.stream.cantconn failed NFS client RPC calls
u_longlong_t rpc.client.stream.interrupts NFS client RPC calls fail due to interrupt

u_longlong_t rpc.client.dgram.calls total NFS client RPC connectionless calls
u_longlong_t rpc.client.dgram.badcalls rejected NFS client RPC calls
u_longlong_t rpc.client.dgram.retrans retransmitted NFS client RPC calls
u_longlong_t rpc.client.dgram.badxids bad NFS client RPC call responses
u_longlong_t rpc.client.dgram.timeouts timed out NFS client RPC calls with no reply
u_longlong_t rpc.client.dgram.newcreds total NFS client RPC authentication refreshes
u_longlong_t rpc.client.dgram.badverfs total NFS client RPC bad verifier in response
u_longlong_t rpc.client.dgram.timers NFS client RPC timout greater than timeout value
u_longlong_t rpc.client.dgram.nomem NFS client RPC calls memory allocation failure
u_longlong_t rpc.client.dgram.cantsend NFS client RPC calls not sent

u_longlong_t rpc.server.stream.calls total NFS server RPC connection-oriented requests
u_longlong_t rpc.server.stream.badcalls rejected NFS server RPC requests
u_longlong_t rpc.server.stream.nullrecv NFS server RPC calls failed due to unavailable packet
u_longlong_t rpc.server.stream.badlen NFS server RPC requests failed due to bad length
u_longlong_t rpc.server.stream.xdrcall NFS server RPC requests failed due to bad header
u_longlong_t rpc.server.stream.dupchecks NFS server RPC calls found in request cache
u_longlong_t rpc.server.stream.dupreqs total NFS server RPC call duplicates

782 Files Reference

u_longlong_t rpc.server.dgram.calls total NFS server RPC connectionless requests
u_longlong_t rpc.server.dgram.badcalls rejected NFS server RPC requests
u_longlong_t rpc.server.dgram.nullrecv NFS server RPC calls failed due to unavailable packet
u_longlong_t rpc.server.dgram.badlen NFS server RPC requests failed due to bad length
u_longlong_t rpc.server.dgram.xdrcall NFS server RPC requests failed due to bad header
u_longlong_t rpc.server.dgram.dupchecks NFS server RPC calls found in request cache
u_longlong_t rpc.server.dgram.dupreqs total NFS server RPC call duplicates

The nfs union contains the following fields:

u_longlong_t nfs.client.calls total NFS client requests
u_longlong_t nfs.client.badcalls total NFS client failed calls
u_longlong_t nfs.client.clgets total number of client nfs clgets
u_longlong_t nfs.client.cltoomany total number of client nfs cltoomany

u_longlong_t nfs.server.calls total NFS server requests
u_longlong_t nfs.server.badcalls total NFS server failed calls
u_longlong_t nfs.server.public_v2 total number of nfs version 2 server calls
u_longlong_t nfs.server.public_v3 total number of nfs version 3 server calls

The nfsv2 union contains the following fields:

u_longlong_t nfsv2.client.calls NFS V2 client requests
u_longlong_t nfsv2.client.null NFS V2 client null requests
u_longlong_t nfsv2.client.getattr NFS V2 client getattr requests
u_longlong_t nfsv2.client.setattr NFS V2 client setattr requests
u_longlong_t nfsv2.client.root NFS V2 client root requests
u_longlong_t nfsv2.client.lookup NFS V2 client file name lookup requests
u_longlong_t nfsv2.client.readlink NFS V2 client readlink requests
u_longlong_t nfsv2.client.read NFS V2 client read requests
u_longlong_t nfsv2.client.writecache NFS V2 client write cache requests
u_longlong_t nfsv2.client.write NFS V2 client write requests
u_longlong_t nfsv2.client.create NFS V2 client file creation requests
u_longlong_t nfsv2.client.remove NFS V2 client file removal requests
u_longlong_t nfsv2.client.rename NFS V2 client file rename requests
u_longlong_t nfsv2.client.link NFS V2 client link creation requests
u_longlong_t nfsv2.client.symlink NFS V2 client symbolic link creation requests
u_longlong_t nfsv2.client.mkdir NFS V2 client directory creation requests
u_longlong_t nfsv2.client.rmdir NFS V2 client directory removal requests
u_longlong_t nfsv2.client.readdir NFS V2 client read-directory requests
u_longlong_t nfsv2.client.statfs NFS V2 client file stat requests

u_longlong_t nfsv2.server.calls NFS V2 server requests
u_longlong_t nfsv2.server.null NFS V2 server null requests
u_longlong_t nfsv2.server.getattr NFS V2 server getattr requests
u_longlong_t nfsv2.server.setattr NFS V2 server setattr requests
u_longlong_t nfsv2.server.root NFS V2 server root requests
u_longlong_t nfsv2.server.lookup NFS V2 server file name lookup requests
u_longlong_t nfsv2.server.readlink NFS V2 server readlink requests
u_longlong_t nfsv2.server.read NFS V2 server read requests
u_longlong_t nfsv2.server.writecache NFS V2 server cache requests
u_longlong_t nfsv2.server.write NFS V2 server write requests
u_longlong_t nfsv2.server.create NFS V2 server file creation requests
u_longlong_t nfsv2.server.remove NFS V2 server file removal requests
u_longlong_t nfsv2.server.rename NFS V2 server file rename requests
u_longlong_t nfsv2.server.link NFS V2 server link creation requests
u_longlong_t nfsv2.server.symlink NFS V2 server symbolic link creation requests
u_longlong_t nfsv2.server.mkdir NFS V2 server directory creation requests
u_longlong_t nfsv2.server.rmdir NFS V2 server directory removal requests
u_longlong_t nfsv2.server.readdir NFS V2 server read-directory requests
u_longlong_t nfsv2.server.statfs NFS V2 server file stat requests

The nfsv3 union contains the following fields:

u_longlong_t nfsv3.client.calls NFS V3 client calls
u_longlong_t nfsv3.client.null NFS V3 client null requests

Chapter 4. Header Files 783

u_longlong_t nfsv3.client.getattr NFS V3 client getattr requests
u_longlong_t nfsv3.client.setattr NFS V3 client setattr requests
u_longlong_t nfsv3.client.lookup NFS V3 client file name lookup requests
u_longlong_t nfsv3.client.access NFS V3 client access requests
u_longlong_t nfsv3.client.readlink NFS V3 client readlink requests
u_longlong_t nfsv3.client.read NFS V3 client read requests
u_longlong_t nfsv3.client.write NFS V3 client write requests
u_longlong_t nfsv3.client.create NFS V3 client file creation requests
u_longlong_t nfsv3.client.mkdir NFS V3 client directory creation requests
u_longlong_t nfsv3.client.symlink NFS V3 client symbolic link creation requests
u_longlong_t nfsv3.client.mknod NFS V3 client mknod creation requests
u_longlong_t nfsv3.client.remove NFS V3 client file removal requests
u_longlong_t nfsv3.client.rmdir NFS V3 client directory removal requests
u_longlong_t nfsv3.client.rename NFS V3 client file rename requests
u_longlong_t nfsv3.client.link NFS V3 client link creation requests
u_longlong_t nfsv3.client.readdir NFS V3 client read-directory requests
u_longlong_t nfsv3.client.readdirplus NFS V3 client read-directory plus requests
u_longlong_t nfsv3.client.fsstat NFS V3 client file stat requests
u_longlong_t nfsv3.client.fsinfo NFS V3 client file info requests
u_longlong_t nfsv3.client.pathconf NFS V3 client path configure requests
u_longlong_t nfsv3.client.commit NFS V3 client commit requests

u_longlong_t nfsv3.server.calls NFS V3 server requests
u_longlong_t nfsv3.server.null NFS V3 server null requests
u_longlong_t nfsv3.server.getattr NFS V3 server getattr requests
u_longlong_t nfsv3.server.setattr NFS V3 server setattr requests
u_longlong_t nfsv3.server.lookup NFS V3 server file name lookup requests
u_longlong_t nfsv3.server.access NFS V3 server file access requests
u_longlong_t nfsv3.server.readlink NFS V3 server readlink requests
u_longlong_t nfsv3.server.read NFS V3 server read requests
u_longlong_t nfsv3.server.write NFS V3 server write requests
u_longlong_t nfsv3.server.create NFS V3 server file creation requests
u_longlong_t nfsv3.server.mkdir NFS V3 server director6 creation requests
u_longlong_t nfsv3.server.symlink NFS V3 server symbolic link creation requests
u_longlong_t nfsv3.server.mknod NFS V3 server mknode creation requests
u_longlong_t nfsv3.server.remove NFS V3 server file removal requests
u_longlong_t nfsv3.server.rmdir NFS V3 server directory removal requests
u_longlong_t nfsv3.server.rename NFS V3 server file rename requests
u_longlong_t nfsv3.server.link NFS V3 server link creation requests
u_longlong_t nfsv3.server.readdir NFS V3 server read-directory requests
u_longlong_t nfsv3.server.readdirplus NFS V3 server read-directory plus requests
u_longlong_t nfsv3.server.fsstat NFS V3 server file stat requests
u_longlong_t nfsv3.server.fsinfo NFS V3 server file info requests
u_longlong_t nfsv3.server.pathconf NFS V3 server path configure requests
u_longlong_t nfsv3.server.commit NFS V3 server commit requests

The following are declared as functions:

int perfstat_cpu(perfstat_id_t *name,
perfstat_cpu_t *userbuff,
int sizeof_userbuff,
int desired_number)

int perfstat_cpu_total(perfstat_id_t *name,
perfstat_cpu_total_t *userbuff,
int sizeof_userbuff,
int desired_number)

int perfstat_disk(perfstat_id_t *name,
perfstat_disk_t *userbuff,
int sizeof_userbuff,
int desired_number)

int perfstat_disk_total(perfstat_id_t *name,
perfstat_disk_total_t *userbuff,
int sizeof_userbuff,
int desired_number)

int perfstat_diskadapter(perfstat_id_t *name,
perfstat_diskadapter_t *userbuff,
int sizeof_userbuff,

784 Files Reference

int desired_number)
int perfstat_memory_total(perfstat_id_t *name,

perfstat_memory_total_t *userbuff,
int sizeof_userbuff,
int desired_number)

int perfstat_netinterface(perfstat_id_t *name,
perfstat_netinterface_t *userbuff,
int sizeof_userbuff,
int desired_number)

int perfstat_netinterface_total(perfstat_id_t *name,
perfstat_netinterface_total_t *userbuff,
int sizeof_userbuff,
int desired_number)

int perfstat_pagingspace(perfstat_id_t *name,
perfstat_pagingspace_t *userbuff,
int sizeof_userbuff,
int desired_number)

int perfstat_netbuffer(perfstat_id_t *name,
perfstat_netbuffer_t *userbuff,
int sizeof_userbuff,
int desired_number)

int perfstat_protocol(perfstat_id_t *name,
perfstat_protocol_t *userbuff,
int sizeof_userbuff,
int desired_number)

void perfsta_reset(void)

Related Information

Related Information
The perfstat_cpu subroutine, perfstat_cpu_total subroutine, perfstat_memory_total subroutine,
perfstat_disk subroutine, perfstat_disk_total subroutine, perfstat_diskadapter subroutine,
perfstat_netinterface subroutine, and perfstat_netinterface_total subroutine, perfstat_pagingspace
subroutine, perfstat_netbuffer subroutine, perfstat_protocol, and perfstat_reset subroutines.

Perfstat API tool in AIX 5L Version 5.2 Performance Tools Guide and Reference

math.h File

Purpose
Defines math subroutines and constants.

Description
The /usr/include/math.h header file contains declarations of all the subroutines in the Math library
(libm.a) and of various subroutines in the Standard C Library (libc.a) that return floating-point values.

Among other things, the math.h file defines the following macro, which is used as an error-return value:

HUGE_VAL Specifies the maximum value of a double-precision floating-point number: +infinity on machines that
support IEEE-754 and DBL_MAX otherwise.

If you define the __MATH__ preprocessor variable before including the math.h file, the math.h file defines
macros that make the names of certain math subroutines appear to the compiler as __xxxx. The following
names are redefined to have the __ (double underscore) prefix:

exp sin
asin log
cos acos

Chapter 4. Header Files 785

log10 tan
atan sqrt
fabs atan2

These special names instruct the C compiler to generate code that avoids the overhead of the Math library
subroutines and issues compatible-mode floating-point subroutines directly. The __MATH__ variable is
defined by default.

If _XOPEN_SOURCE variable is defined, the following mathematical constants are defined for your
convenience. The values are of type double and are accurate to the precision of this type. That is, the
machine value is the mathematical value rounded to double precision.

M_E Base of natural logarithms (e)
M_LOG2E Base-2 logarithm of e
M_LOG10E Base-10 logarithm of e
M_LN2 Natural logarithm of 2
M_LN10 Natural logarithm of 10
M_PI Pi, the ratio of the circumference of a circle to its diameter
M_PI_2 Value of pi divided by 2
M_PI_4 Value of pi divided by 4
M_1_PI Value of 1 divided by pi
M_2_PI Value of 2 divided by pi
M_2_SQRTPI Value of 2 divided by the positive square root of pi
M_SQRT2 Positive square root of 2
M_SQRT1_2 Positive square root of 1/2

Related Information
The values.h file.

mode.h File

Purpose
Defines the interpretation of a file mode.

Description
This version of the operating system supports a 32-bit mode, which is divided into 3 parts. The 16 most
significant bits are reserved by the system. The least significant 16 bits define the type of file (S_IFMT)
and the permission bits. The 12 permission bits can be changed by using the chmod or chacl subroutine.
The file type cannot be changed.

File-Type Bits
The file type determines the operations that can be applied to the file (including implicit operations, such
as searching a directory or following a symbolic link). The file type is established when the file is created,
and cannot be changed. The following file types are supported:

S_IFDIR Defines a directory.
S_IFREG Defines a regular file.
S_IFIFO Defines a pipe.
S_IFCHR Defines a character device.
S_IFBLK Defines a block device.
S_IFLNK Defines a symbolic link.
S_IFSOCK Defines a socket.

786 Files Reference

The S_IFMT format mask constant can be used to mask off a file type from the mode.

File-Attribute Bits
The file-attribute bits affect the interpretation of a particular file. With some restrictions, file attributes can
be changed by the owner of a file or by a privileged user. The file-attribute bits are:

Attribute Description

S_ISUID Bit:

setuid When a process runs a regular file that has the S_ISUID bit set, the effective user ID of the process is
set to the owner ID of the file. The setuid attribute can be set only by a process on a trusted path. If the
file or its access permissions are altered, the S_ISUID bit is cleared.

S_ISGID (S_ENFMT) Bit:

setgid When a process runs a regular file that has both the S_ISGID bit and the S_IXGRP
permission bit set, the effective user ID of the process is set to the group ID of the
file. The setgid attribute can be set only by a process on a trusted path. If the owner
is establishing this attribute, the group of the file must be the effective group ID or in
the supplementary group ID of the process. If the file or its access permissions are
altered, the S_ISGID bit is cleared.

enforced locking If a regular file has the S_ISGID bit set and the S_IXGRP permission bit cleared,
locks placed on the file with the lockfx subroutine are enforced locks.

S_IFMPX Bit:

multiplexed A character device with the S_IFMPX attribute bit set is a multiplexed device. This attribute is
established when the device is created.

S_ISVTX Bit:

sticky If a directory has the S_SVTX bit set, only the owner of the file or the owner of the directory can remove
a file from the directory.

S_IXACL Bit:

access control list Any file that has the S_IXACL bit set can have an extended access control list
(ACL). Specifying this bit when setting the mode with the chmod command
causes the permission bits information in the mode to be ignored. Extended
ACL entries are ignored if this bit is cleared. This bit can be implicitly cleared by
the chmod subroutine. The /usr/include/sys/acl.h file defines the format of the
ACL.

S_ITCB Bit:

trusted Any file that has the S_ITCB bit set is part of the Trusted Computing Base (TCB). Only files in the TCB
can acquire privilege on a trusted path. Only files in the TCB are run by the trusted shell (which is
invoked with the tsh command). This attribute can be established or cleared only by a process running
on the trusted path.

Chapter 4. Header Files 787

S_IJRNL Bit:

journaled Any file that has the S_IJRNL bit set is defined as a journaled file. Updates to a journaled file are
added to a log atomically. All directories and system files have the journaled attribute, which cannot
be reset.

File-Permission Bits
The file-permission bits control which processes can perform operations on a file. This includes read, write,
and execute bits for the file owner, the file group, and the default. These bits should not be used to set
access-control information; the ACL should be used instead. The file-permission bits are:

S_IRWXU Permits the owner of a file to read, write, and execute the file.
S_IRUSR Permits the owner of a file to read the file.
S_IREAD Permits the owner of a file to read the file.
S_IWUSR Permits the owner of a file to write to the file.
S_IWRITE Permits the owner of a file to write to the file.
S_IXUSR Permits the owner of a file to execute the file or to search the file’s directory.
S_IEXEC Permits the owner of a file to execute the file or to search the file’s directory.
S_IRWXG Permits a file’s group to read, write, and execute the file.
S_IRGRP Permits a file’s group to read the file.
S_IWGRP Permits a file’s group to write to the file.
S_IXGRP Permits a file’s group to execute the file or to search the file’s directory.
S_IRWXO Permits others to read, write, and execute the file.
S_IROTH Permits others to read the file.
S_IWOTH Permits others to write to the file.
S_IXOTH Permits others to execute the file or to search the file’s directory.

Related Information
The stat.h file, types.h file.

The chmod command, tsh command.

msg.h File

Purpose
Describes the structures that are used by the subroutines that perform message queueing operations.

Syntax
#include <sys/msg.h>

Description
The msg.h file defines the following symbolic constants, types, and structures:

Types:
unsigned int msgqnum_t;
unsigned int msglen_t;

Symbolic Constants:

MSG_NOERROR no error if big message */
MSG_R read permission */
MSG_W write permission */
MSG_RWAIT a reader is waiting for a message */

788 Files Reference

MSG_WWAIT a writer is waiting to send */
MSG_STAT Number of bytes to copy for IPC_STAT command
MSGXBUFSIZE the length of everything but mtext[1] and padding
MSG_SYSSPACE for rmsgsnd() flags
XMSG for rmsgrcv() flags

There is one msg queue id data structure for each q in the system. The msqid_ds structure contains the
following members:
struct ipc_perm msg_perm; operation permission
struct
void *__msg_first; ptr to first message on q
void *__msg_last; ptr to last message on q
unsigned int __msg_cbytes; current # bytes on q
msgqnum_t msg_qnum; # of messages on q
msglen_t msg_qbytes; max # of bytes on q
pid_t msg_lspid; pid of last msgsnd
pid_t msg_lrpid; pid of last msgrcv
time_t msg_stime; last msgsnd time
time_t msg_rtime; last msgrcv time
time_t msg_ctime; last change time
int __msg_rwait; wait list for message
receive
int __msg_wwait; wait list for message send
unsigned short __msg_reqevents; select/poll requested
events

The msg_hdr struct contains the following members:
time_t mtime; time message was sent
uid_t muid; author’s effective uid
gid_t mgid; author’s effective gid
pid_t mpid; author’s process id
mtyp_t mtype; message type

There is one msg structure for each message that may be in the system. The msg structure contains the
following members:
struct msg *msg_next; ptr to next message on q
struct msg_hdr msg_attr; message attributes
unsigned int msg_ts; message text size
char *msg_spot; pointer to message text

The structure msgbuf is the user message buffer template for msgsnd and msgrcv system calls and
contains the following members:
mtyp_t mtype; message type
char mtext[1]; message text

The msgxbuf structure is the user message buffer template for the msgxrcv system call and contains the
following members:
time_t mtime; time message was sent
uid_t muid; author’s effective uid
gid_t mgid; author’s effective gid
pid_t mpid; author’s process id
mtyp_t mtype; Message type
char mtext[1]; Message text

The msginfo structure contains the following members:
int msgmax, max message size
int msgmnb, max # bytes on queue
int msgmni, # of message queue identifiers
int msgmnm; max # messages per queue identifier

Chapter 4. Header Files 789

The time_t, size_t, off_t, mtyp_t, pid_t, and gid_t types are as defined in <sys/types.h>.

The following are declared as functions:
int msgget(key_t, int);
int msgrcv(int, void *, size_t, long, int);
int msgsnd(int, const void *, size_t, int);
int msgctl(int, int, struct msqid_ds *);
int msgxrcv(int, struct msgxbuf*, int, long, int);

In addition, all of the symbols from <sys/ipc.h> will be defined when this header is included.

Related Information
The mmap, mprotect, msync, and munmap subroutines.

param.h File

Purpose
Describes system parameters.

Description
Certain parameters vary for different hardware that uses the operating system. These parameters are
defined in the /usr/include/sys/param.h file. The most significant parameters are:

NCARGS Indicates the default number of characters, including terminating null
characters, that can be passed using the exec subroutine.

UBSIZE The unit used by the statistics subroutines for returning block sizes of
files.

This file also contains macros for manipulating machine-dependent fields.

Programs that are intended to comply with the POSIX standard should include the
/usr/include/sys/limits.h file rather than the param.h file.

Related Information
The exec subroutine.

The Header Files Overview defines header files, describes how they are used, and lists several of the
header files for which information is provided in this documentation.

The Kernel Tunable Parameters in AIX 5L Version 5.2 Performance Management Guidefor information on
tuning the System Configuration value of the argument list.

pmapi.h File

Purpose
Describes the structures and constants used by the Performance Monitor APIs subroutines.

Syntax
#include <pmapi.h>

790 Files Reference

Description
The pmapi.h file defines the following symbolic constants, types, and structures:

Symbolic Constants

MAX_COUNTERS Maximum number of supported counters
MIN_THRESH_VALUE Specifies the minimum threshold value
MAX_THRESH_VALUE Specifies the maximum threshold value
THRESH_SHIFT_MODE Specifies the shift to use to put threshold into pm_mode_t.b.threshold
COUNT_NOTHING Specifies to not count event

Constants for event filters

PM_VERIFIED Specifies events that have been verified
PM_UNVERIFIED Specifies events that have not been verified
PM_CAVEAT Specifies events that work with caveats
PM_GET_GROUPS Not a filter; specifies that supported event groups are to be returned.

Constants for setting mode bits

PM_PROCTREE Turns process tree counting on
PM_COUNT Turns counting on immediately
PM_USER Turns user mode counting on
PM_KERNEL Turns kernel mode counting on
PM_PROCESS Creates a process level group

The structure pm_info_t contains the following members:
int maxpmcs /* number of available counters
int *maxevents /* number of events for each hw counter
pm_events_t **list_events /* list of available events
int thresholdmult /* threshold multiplier
char *proc_name /* processor name
int hthresholdmult upper threshold multiplier

The structure pm_events_t contains the following members:
int event_id event number
char status ’v’: verified

’u’: unverified
’c’: caveat

char threshold ’y’: thresholdable
’g’: group-only
’G’: thresholdable group-only

char *short_name mnemonic name
char *long_name long name
char *description full description

The structure pm_groups_info_t contains the following members:
int maxgroups number of available groups
pm_groups_t *event_groups list of event groups

The structure pm_groups_t contains the following members:

Chapter 4. Header Files 791

int group_id group number
int *events events in this group, by ID #
char *short_name mnemonic name
char *long_name long name
char *description full description

The structure pm_prog_t contains the following members:
unsigned:6 mode.b.threshold threshold value
unsigned:1 mode.b.thresh_res use upper threshold mutiplier if set
unsigned:1 mode.b.is_group is an event group
unsigned:1 mode.b.process process level group indicator
unsigned:1 mode.b.kernel turns kernel mode counting on
unsigned:1 mode.b.user turns user mode counting on
unsigned:1 mode.b.count counting state
unsigned:1 mode.b.proctree turns process tree counting on
int events[MAX_COUNTERS] list of counted events

The structure pm_data_t contains the following members:
pm_ginfo_t ginfo group information
long long accu[MAX_COUNTERS] accumulated data

The structure pm_ginfo_t contains the following members:
int members; /* number of threads in group
unsigned:1 flags.b.process /* process level group indicator
unsigned:1 flags.b.consistent /* group data consistent with members

The following are declared as functions:
double pm_cycles(void)

void pm_error(char *where, int error)

int pm_init(int filter, pm_info_t *pminfo, pm_groups_info_t *pmgroupsinfo)

int pm_set_program(pm_prog_t *prog)
int pm_get_program(pm_prog_t *prog)
int pm_start(void)
int pm_stop(void)
int pm_reset_data(void)
int pm_get_data(pm_data_t *data)
int pm_get_tdata(pm_data_t *data, timebasestruct_t *time)
int pm_get_data_cpu(int cpuid, pm_data_t *data)
int pm_get_tdata_cpu(int cpuid, pm_data_t *data, timebasestruct_t *time)
int pm_delete_program(void)

int pm_set_program_mythread(pm_prog_t *prog)
int pm_get_program_mythread(pm_prog_t *prog)
int pm_start_mythread(void)
int pm_stop_mythread(void)
int pm_reset_data_mythread(void)
int pm_get_data_mythread(pm_data_t *data)
int pm_get_tdata_mythread(pm_data_t *data, timebasestruct_t *time)
int pm_delete_program_mythread(void)

int pm_set_program_thread(pid_t pid, tid_t tid, pm_prog_t *prog)
int pm_get_program_thread(pid_t pid, tid_t tid, pm_prog_t *prog)
int pm_start_thread(pid_t pid, tid_t tid)
int pm_stop_thread(pid_t pid, tid_t tid)
int pm_reset_data_thread(pid_t pid, tid_t tid)
int pm_get_data_thread(pid_t pid, tid_t tid, pm_data_t *data)
int pm_get_tdata_thread(pid_t pid, tid_t tid, pm_data_t *data, timebasestruct_t *time)
int pm_delete_program_thread(pid_t pid, tid_t tid)

792 Files Reference

int pm_set_program_mygroup(pm_prog_t *prog)
int pm_get_program_mygroup(pm_prog_t *prog)
int pm_start_mygroup(void)
int pm_stop_mygroup(void)
int pm_reset_data_mygroup(void)
int pm_get_data_mygroup(pm_data_t *data)
int pm_get_tdata_mygroup(pm_data_t *data, timebasestruct_t *time)
int pm_delete_program_mygroup(void)

int pm_set_program_group(pid_t pid, tid_t tid, pm_prog_t *prog)
int pm_get_program_group(pid_t pid, tid_t tid, pm_prog_t *prog)
int pm_start_group(pid_t pid, tid_t tid)
int pm_stop_group(pid_t pid, tid_t tid)
int pm_reset_data_group(pid_t pid, tid_t tid)
int pm_get_data_group(pid_t pid, tid_t tid, pm_data_t *data)
int pm_get_tdata_group(pid_t pid, tid_t tid, pm_data_t *data, timebasestruct_t *time)
int pm_delete_program_group(pid_t pid, tid_t tid)

Related Information
The pm_cycles subroutine, pm_error subroutine, pm_init subroutine.

The pm_set_program subroutine, pm_get_program subroutine, pm_delete_program subroutine,
pm_get_data subroutine, pm_get_tdata subroutine, pm_get_data_cpu subroutine, pm_get_tdata_cpu
subroutine, pm_start subroutine, pm_stop subroutine, pm_reset_data subroutine.

The pm_set_program_mythread subroutine, pm_get_program_mythread subroutine,
pm_delete_program_mythread subroutine, pm_get_data_mythread subroutine,
pm_get_tdata_mythread subroutine, pm_start_mythread subroutine, pm_stop_mythread subroutine,
pm_reset_data_mythread subroutine.

The pm_set_program_mygroup subroutine, pm_get_program_mygroup subroutine,
pm_delete_program_mygroup subroutine, pm_get_data_mygroup subroutine, pm_start_mygroup
subroutine, pm_stop_mygroup subroutine, pm_reset_data_mygroup subroutine.

The pm_set_program_thread subroutine, pm_get_program_thread subroutine,
pm_delete_program_thread subroutine, pm_get_data_thread subroutine, pm_get_tdata_thread
subroutine, pm_start_thread subroutine, pm_stop_thread subroutine, pm_reset_data_thread
subroutine.

The pm_set_program_group subroutine, pm_get_program_group subroutine,
pm_delete_program_group subroutine, pm_get_data_group subroutine, pm_get_tdata_group
subroutine.pm_start_group subroutine, pm_stop_group subroutine, pm_reset_data_group subroutine.

poll.h File

Purpose
Defines the structures and flags used by the poll subroutine.

Description
The /usr/include/sys/poll.h file defines several structures used by the poll subroutine. An array of pollfd
or pollmsg structures or a pollist structure specify the file descriptors or pointers and message queues for
which the poll subroutine checks the I/O status. This file also defines the returned events flags, error
returned events flags, device-type flags and input flags used in polling operations.

Chapter 4. Header Files 793

During a polling operation on both file descriptors and message queues, the ListPointer parameter points
to a pollist structure, which can specify either file descriptors or pointers and message queues. The
program must define the pollist structure in the following form:
struct pollist {

struct pollfd fdlist[f];
struct pollmsg msglist[m];

};

The pollfd structure and the pollmsg structure in the pollist structure perform the following functions:

pollfd[f] This structure defines an array of file descriptors or file pointers. The f variable specifies the
number of elements in the array.

pollmsg[m] This structure defines an array of message queue identifiers. The m variable specifies the
number of elements in the array.

A POLLIST macro is also defined in the poll.h file to define the pollist structure. The format of the macro
is:
POLLIST(f, m) Declarator . . . ;

The Declarator parameter is the name of the variable that is declared as having this type.

The pollfd and pollmsg structures defined in the poll.h file contain the following fields:

fd Specifies a valid file descriptor or file pointer to the poll subroutine. If the value of this field is negative,
this element is skipped.

msgid Specifies a valid message queue ID to the poll subroutine. If the value of this field is negative, this
element is skipped.

events The events being tracked. This is any combination of the following flags:

POLLIN
Input is present on the file or message queue.

POLLOUT
The file or message queue is capable of accepting output.

POLLPRI
An exceptional condition is present on the file or message queue.

revents Returned events. This field specifies the events that have occurred. This can be any combination of the
events requested by the events field. This field can also contain one of the following flags:

POLLNVAL
The value specified by the fd field or the msgid field is neither a valid file descriptor or pointer
nor the identifier of an accessible message queue.

POLLERR
An error condition arose on the specified file or message queue.

Related Information
The fp_poll kernel service, fp_select kernel service, selnotify kernel service.

The poll subroutine, select subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

794 Files Reference

pthread.h File

Purpose
Lists threads.

Syntax
#include <pthread.h>

Description
The pthread.h header defines the following symbols:
PTHREAD_CANCEL_ASYNCHRONOUS
PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DEFERRED
PTHREAD_CANCEL_DISABLE
PTHREAD_CANCELED
PTHREAD_COND_INITIALIZER
PTHREAD_CREATE_DETACHED
PTHREAD_CREATE_JOINABLE
PTHREAD_EXPLICIT_SCHED
PTHREAD_INHERIT_SCHED
PTHREAD_MUTEX_DEFAULT
PTHREAD_MUTEX_ERRORCHECK
PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_INITIALIZER
PTHREAD_MUTEX_RECURSIVE
PTHREAD_ONCE_INIT
PTHREAD_PRIO_INHERIT
PTHREAD_PRIO_NONE
PTHREAD_PRIO_PROTECT
PTHREAD_PROCESS_SHARED
PTHREAD_PROCESS_PRIVATE
PTHREAD_RWLOCK_INITIALIZER
PTHREAD_SCOPE_PROCESS
PTHREAD_SCOPE_SYSTEM

The pthread_attr_t, pthread_cond_t, pthread_condattr_t, pthread_key_t, pthread_mutex_t,
pthread_mutexattr_t, pthread_once_t, pthread_rwlock_t, pthread_rwlockattr_t, and pthread_t types
are defined as described in sys/types.h.

The following are declared as functions and may also be declared as macros. Function prototypes must be
provided for use with an ISO C compiler.
int pthread_attr_destroy (pthread_attr_t *);
int pthread_attr_getdetachstate (const pthread_attr_t *, int *);
int pthread_attr_getguardsize (const pthread_attr_t *, size_t *);
int pthread_attr_getinheritsched (const pthread_attr_t *, int *);
int pthread_attr_getschedparam (const pthread_attr_t *, struct sched_param*);
int pthread_attr_getschedpolicy (const pthread_attr_t *, int *);
int pthread_attr_getscope (const pthread_attr_t *, int *);
int pthread_attr_getstackaddr (const pthread_attr_t *, void **);
int pthread_attr_getstacksize (const pthread_attr_t *, size_t *);
int pthread_attr_init (pthread_attr_t *);
int pthread_attr_setdetachstate (pthread_attr_t *, int);
int pthread_attr_setguardsize (pthread_attr_t *, size_t);
int pthread_attr_setinheritsched (pthread_attr_t *, int);
int pthread_attr_setschedparam (pthread_attr_t *, const struct sched_param *);
int pthread_attr_setschedpolicy (pthread_attr_t *, int);
int pthread_attr_setscope (pthread_attr_t *, int);
int pthread_attr_setstackaddr (pthread_attr_t *, void *);
int pthread_attr_setstacksize (pthread_attr_t *, size_t);
int pthread_cancel(pthread_t);

Chapter 4. Header Files 795

void pthread_cleanup_push (void (*)(void*), void *);
void pthread_cleanup_pop (int);
int pthread_cond_broadcast (pthread_cond_t *);
int pthread_cond_destroy (pthread_cond_t *);
int pthread_cond_init (pthread_cond_t *, const pthread_condattr_t *);
int pthread_cond_signal (pthread_cond_t *);
int pthread_cond_timedwait (pthread_cond_t *, pthread_mutex_t *, const struct timespec *);
int pthread_cond_wait (pthread_cond_t *);
int pthread_condattr_destroy (pthread_condattr_t *);
int pthread_condattr_getpshared (const pthread_condattr_t *, int *);
int pthread_condattr_init (pthread_condattr_t *);
int pthread_condattr_setpshared (pthread_condattr_t *, int);
int pthread_create (pthread_t *, const pthread_attr_t *, void *(*)(void*), void *);
int pthread_detach (pthread_t);
int pthread_equal (pthread_t, pthread_t);
void pthread_exit (void *);
int pthread_getconcurrency (void);
int pthread_getschedparam (pthread_t, int *, struct sched_param *);
void *pthread_getspecific (pthread_key_t);
int pthread_join (pthread_t, void **);
int pthread_key_create (pthread_key_t *, void (*)(void*));
int pthread_key_delete (pthread_key_t);
int pthread_mutex_destroy (pthread_mutex_t *);
int pthread_mutex_getprioceiling (const pthread_mutex_t *, int *);
int pthread_mutex_init (pthread_mutex_t *, const pthread_mutexattr_t *);
int pthread_mutex_lock (pthread_mutex_t *);
int pthread_mutex_setprioceiling (pthread_mutex_t *, int, int *);
int pthread_mutex_trylock (pthread_mutex_t *);
int pthread_mutex_unlock (pthread_mutex_t *);
int pthread_mutexattr_destroy (pthread_mutexattr_t *);
int pthread_mutexattr_getprioceiling (const pthread_mutexattr_t *, int *);
int pthread_mutexattr_getprotocol (const pthread_mutexattr_t *, int *);
int pthread_mutexattr_getpshared (const pthread_mutexattr_t *, int *);
int pthread_mutexattr_gettype (pthread_mutexattr_t *, int *);
int pthread_mutexattr_init (pthread_mutexattr_t *);
int pthread_mutexattr_setprioceiling (pthread_mutexattr_t *, int);
int pthread_mutexattr_setprotocol (pthread_mutexattr_t *, int);
int pthread_mutexattr_setpshared (pthread_mutexattr_t *, int);
int pthread_mutexattr_settype (pthread_mutexattr_t *, int);
int pthread_once (pthread_once_t *, void (*)(void));
int pthread_rwlock_destroy (pthread_rwlock_t *);
int pthread_rwlock_init (pthread_rwlock_t *, const pthread_rwlockattr_t *);
int pthread_rwlock_rdlock(pthread_rwlock_t *);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
int pthread_rwlock_trywrlock(pthread_rwlock_t *);
int pthread_rwlock_unlock(pthread_rwlock_t *);
int pthread_rwlock_wrlock(pthread_rwlock_t *);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t *, int *);
int pthread_rwlockattr_init(pthread_rwlockattr_t *);
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *, int);
pthread_t pthread_self(void);
int pthread_setcancelstate(int, int *);
int pthread_setcanceltype(int, int *);
int pthread_setconcurrency(int);
int pthread_setschedparam(pthread_t, int *,
const struct sched_param *);
int pthread_setspecific(pthread_key_t, const void *);
void pthread_testcancel(void);

Inclusion of the pthread.h header will make visible symbols defined in the headers sched.h and time.h.

Related Information
The pthread_attr_init, pthread_attr_getguardsize, pthread_attr_setscope, pthread_cancel,
pthread_cleanup_push, pthread_cond_init, pthread_cond_signal, pthread_cond_wait,

796 Files Reference

pthread_condattr_init, pthread_create, pthread_detach, pthread_equal, pthread_exit,
pthread_getconcurrency, pthread_getschedparam, pthread_join, pthread_key_create,
pthread_key_delete, pthread_mutex_init, pthread_mutex_lock, pthread_mutex_setprioceiling,
pthread_mutexattr_init, pthread_mutexattr_gettype, pthread_mutexattr_setprotocol, pthread_once,
pthread_self, pthread_setcancelstate, pthread_setspecific, pthread_rwlock_init,
pthread_rwlock_rdlock, pthread_rwlock_unlock, pthread_rwlock_wrlock, pthread_rwlockattr_init
subroutines.

The sched.h and time.h header files.

pwd.h File

Purpose
Describes password structure.

Syntax
#include <pwd.h>

Description
The pwd.h header provides a definition for struct passwd, which includes at least the following members:
char *pw_name user’s login name
uid_t pw_uid numerical user ID
gid_t pw_gid numerical group ID
char *pw_dir initial working directory
char *pw_shell program to use as shell

The gid_t and uid_t types are defined as described in sys/types.h.

The following are declared as functions and may also be defined as macros. Function prototypes must be
provided for use with an ISO C compiler.

struct passwd *getpwuid(uid_t);
int getpwnam_r(const char *, struct passwd *, char *, size_t, struct passwd **);
int getpwuid_r(uid_t, struct passwd *, char *, size_t, struct passwd **);
void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

Related Information
The endpwent, getpwnam, getpwuid, and getpwuid_r subroutines.

The sys/types.h header file.

rset.h File

Purpose
Contains enums and definitions to manipulate process’ partition rsets.

Syntax
#include <pwd.h>

Description
The rset.h header contains enums and definitions to manipulate process’ partition resource sets.

Chapter 4. Header Files 797

char *pw_name user’s login name
uid_t pw_uid numerical user ID
gid_t pw_gid numerical group ID
char *pw_dir initial working directory
char *pw_shell program to use as shell

The gid_t and uid_t types are defined as described in sys/types.h.

The following are declared as functions and may also be defined as macros. Function prototypes must be
provided for use with an ISO C compiler.

struct passwd *getpwuid(uid_t);
int getpwnam_r(const char *, struct passwd *, char *, size_t, struct passwd **);
int getpwuid_r(uid_t, struct passwd *, char *, size_t, struct passwd **);
void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

The following resource set APIs are exported by the kernel to kernel extensions. They will continue to be
exported with semantics similar to the corresponding user space APIs.

v krs_numrads

v krs_getrad

v krs_getinfo

v krs_alloc

v krs_free

v krs_op

v kra_creatp

The following new kernel exported kernel extension APIs will be provided. Their APIs will be similar to the
corresponding user space APIs.

v krs_init

v kra_attachrset

v kra_detachrset

v kra_getrset

There are currently no exported kernel extension services for getting or setting a process’s partition rset.
The following new kernel extension APIs will be provided to manipulate process’s partition rsets:

v krs_getpartition

v krs_setpartition

There are currently no exported kernel extension services to access the rset registry. Kernel extension
APIs will not be provided.

Related Information
The endpwent, getpwnam, getpwuid, and getpwuid_r subroutines.

The sys/types.h header file.

sem.h File

Purpose
Describes the structures that are used by subroutines that perform semaphore operations.

798 Files Reference

Description
The /usr/include/sys/sem.h file defines the structures that are used by the semop subroutine and the
semctl subroutine to perform various semaphore operations.

The sem structure stores the values that the Commands parameter of the semctl subroutine gets and
sets. This structure contains the following fields:

semval Specifies the operation permission structure of a semaphore. The data type of this field is unsigned
short.

sempid Specifies the last process that performed a semop subroutine. The data type of this field is pid_t.
semncnt Specifies the number of processes awaiting semval > cval. The data type of this field is unsigned short.
semzcnt Specifies the number of processes awaiting semval = 0. The data type of this field is unsigned short.

The sembuf structure stores semaphore information used by the semop subroutine. This structure
contains the following fields:

sem_num
Specifies a semaphore on which to perform some semaphore operation. The data type of this field
is unsigned short.

sem_op Specifies a semaphore operation to be performed on the semaphore specified by the sem_num field
and the SemaphoreID parameter of the semop subroutine. This value can be a positive integer, a
negative integer, or 0:

i If the current process has write permission, the positive integer value of this field is added
to the value of the semval field of the semaphore.

- i If the current process has write permission, a negative integer value in this field causes
one of the following actions:

If the semval field is greater than or equal to the absolute value of the sem_op field, the
absolute value of the sem_op field is subtracted from the value of the semval field.

If the semval field is less than the absolute value of the sem_op field and the IPC_NOWAIT
flag is set, the semop subroutine returns a value of -1 and sets the errno global variable
to EAGAIN.

If the value of the semval field is less than the absolute value of the sem_op field and the
IPC_NOWAIT flag is not set, the semop subroutine increments the semncnt field
associated with the specified semaphore and suspends execution of the calling process
until one of the following conditions is met:

v The value of the semval field becomes greater than or equal to the absolute value of the
sem_op field. When this occurs, the value of the semncnt vield associated with the
specified semaphore is decremented, the absolute value of the sem_op field is
subtracted from semval value and, if the SEM_UNDO flag is set in the sem_flg field, the
absolute value of the sem_op field is added to the Semadj value of the calling process
for the specified semaphore.

v The semaphore specified by the SemaphoreID parameter for which the calling process
is awaiting action is removed from the system (see the semctl subroutine). When this
occurs, the errno global variable is set equal to EIDRM, and a value of -1 is returned.

v The calling process receives a signal that is to be caught. When this occurs, the value
of the semncnt field associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in the sigaction
subroutine.

0 If the current process has read permission, a value of 0 in this field causes one of the
following actions:

v If the semval field is 0, the semop subroutine returns a value of 0.

Chapter 4. Header Files 799

v If the semval field is not equal to 0 and the IPC_NOWAIT flag is set, the semop
subroutine returns a value of -1 and sets the errno global variable to EAGAIN.

v If semval is not equal to 0 and the IPC_NOWAIT flag is not set, the semop subroutine
increments the semzcnt field associated with the specified semaphore and suspends
execution of the calling process until one of the following conditions is met:

– The value of the semval field becomes 0, at which time the value of the semzcnt field
associated with the specified semaphore is decremented.

– The semaphore specified by the SemaphoreID parameter for which the calling
process is awaiting action is removed from the system. When this occurs, the errno
global variable is set equal to EIDRM, and a value of -1 is returned.

– The calling process receives a signal that is to be caught. When this occurs, the
value of the semzcnt field associated with the specified semaphore is decremented,
and the calling process resumes execution in the manner prescribed in the
sigaction subroutine.

The data type of the sem_op field is short.

sem_flg
If the value of this field is not 0 for an operation, the value is constructed by logically ORing one or
more of the following values:

SEM_UNDO
Specifies whether to modify the Semadj values of the calling process.

If this value is set for an operation and the value of the sem_op field is a positive integer,
the value of the sem_op field is subtracted from the Semadj value of the calling process.

If this value is set for an operation and the value of the sem_op field is a negative integer,
the absolute value of the sem_op field is added to the Semadj value of the calling process.
The exit subroutine adds the Semadj value to the value of the semval field of the
semaphore when the process terminates.

SEM_ORDER
Specifies whether to perform atomically or individually the operations specified by the
SemaphoreOperations array of the semop subroutine. (This flag is valid only when
included in the SemaphoreOperations[0].sem_flg parameter, the first operation in the
SemaphoreOperations array.)

If the SEM_ORDER flag is not set (the default), the specified operations are performed
atomically. That is, none of the semval values in the array are modified until all of the
semaphore operations are completed. If the calling process must wait until some semval
requirement is met, the semop subroutine does so before performing any of the
operations. If any semaphore operation would cause an error to occur, none of the
operations are performed.

If the SEM_ORDER flag is set, the operations are performed individually in the order that
they appear in the array, regardless of whether any of the operations require the process
to wait. If an operation encounters an error condition, the semop subroutine sets the
SEM_ERR flag in the sem_flg field of the failing operation; neither the failing operation nor
the following operations in the array are performed.

IPC_NOWAIT
Specifies whether to wait or to return immediately when the semval of a semaphore is not
a certain value.

The data type of the sem_flg field is short.

The semid_ds structure stores semaphore status information used by the semctl subroutine and pointed
to by the Buffer parameter. This structure contains the following fields:

800 Files Reference

sem_perm Specifies the operation permission structure of a semaphore. The data type of this field is struct
ipc_perm.

sem_nsems Specifies the number of semaphores in the set. The data type of this field is unsigned short.
sem_otime Specifies the time at which a semop subroutine was last performed. The data type of this field is

time_t.
sem_ctime Specifies the time at which this structure was last changed with a semctl subroutine. The data type

of this field is time_t.

Related Information
The atexit subroutine, exec subroutines, exit subroutine fork subroutine, semctl subroutine, semget
subroutine, semop subroutine, sigaction subroutine.

sgtty.h File

Purpose
Provides the terminal interface for the Berkeley line discipline.

Description
The sgtty.h file defines the structures used by ioctl subroutines that apply to terminal files. The structures,
definitions, and values in this file are provided for compatibility with the Berkeley user interface for
asynchronous communication. Window and terminal size operations use the winsize structure, which is
defined in the ioctl.h file. The winsize structure and the ioctl functions that use it are described in tty
Subsystem Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

Note: Version 4 supports the Berkeley line discipline for compatibility with older applications. However, it
is strongly recommended to use the POSIX compliant line discipline, which interface is described in
the termios.h file.

Basic sgtty.h Modes
Basic ioctl functions use the sgttyb structure defined in the sgtty.h file. This structure contains the
following fields:

sg_ispeed
Specifies the input speed of the device. For any particular hardware, impossible speed changes
are ignored. Symbolic values in the table are as defined in the sgtty.h file.

B0 Hangs up. The zero baud rate is used to hang up the connection. If B0 is specified, the
`data terminal ready’ signal is dropped. As a result, the line is usually disconnected.

B50 50 baud.

B75 75 baud.

B110 110 baud.

B134 134.5 baud.

B150 150 baud.

B200 200 baud.

B300 300 baud.

B600 600 baud.

B1200 1200 baud.

B1800 1800 baud.

Chapter 4. Header Files 801

B2400 2400 baud.

B4800 4800 baud.

B9600 9600 baud.

EXTA External A.

EXTB External B.

sg_ospeed
Specifies the output speed of the device. Refer to the description of the sg_ispeed field. The
sg_ospeed field has the same values as the sg_ispeed field.

sg_erase
Specifies the erase character. (The default is Backspace.)

sg_kill
Specifies the kill character. (The default is Ctrl-U.)

sg_flags
Specifies how the system treats output. The initial output-control value is all bits clear. The
possible output modes are:

ALLDELAY
Delays algorithm selection.

BSDELAY
Selects backspace delays. Backspace delays are currently ignored. Possible values are
BS0 or BS1.

VTDELAY
Selects form-feed and vertical-tab delays:

FF0 Specifies no delay.

FF1 Specifies one delay of approximately 2 seconds.

CRDELAY
Selects carriage-return delays:

CR0 Specifies no delay.

CR1 Specifies one delay. The delay lasts approximately 0.08 seconds.

CR2 Specifies one delay. The delay lasts approximately 0.16 seconds.

CR3 Specifies one delay. The delay pads lines to be at least 9 characters at 9600
baud.

TBDELAY
Selects tab delays:

TAB0 Specifies no delay.

TAB1 Specifies one delay. The delay is dependent on the amount of movement.

TAB2 Specifies one delay. The delay lasts about 0.10 seconds.

XTABS
Specifies that tabs are to be replaced by the appropriate number of spaces on
output.

NLDELAY
Selects the new-line character delays. This is a mask to use before comparing to NL0 and
NL1.

NL0 Specifies no delay.

802 Files Reference

NL1 Specifies one delay. The delay is dependent on the current column.

NL2 Specifies one delay. The delay lasts about 0.10 seconds.

The delay bits specify how long transmission stops to allow for mechanical or other
movement when certain characters are sent to the terminal. The actual delays depend on
line speed and system load.

EVENP
Allows even parity on input.

The EVENP and ODDP flags control both parity checking on input and parity generation
on output in COOKED and CBREAK mode (unless the LPASS8 bit is enabled). Even
parity is generated on output unless the ODDP flag is set and the EVENP flag is clear, in
which case odd parity is generated. Input characters with the wrong parity, as determined
by the EVENP and ODDP flags, are ignored in COOKED and CBREAK mode.

ODDP Allows odd parity on input. Refer to the description of the EVENP flag.

RAW Indicates the RAW mode, which features a wake up on all characters and an 8-bit
interface.

The RAW mode disables all processing except output flushing specified by the LFLUSHO
bit. The full 8 bits of input are given as soon as they are available; all 8 bits are passed on
output. A break condition in the input is reported as a null character. If the input queue
overflows in RAW mode, all data in the input and output queues is discarded; this applies
to both the new and old drivers.

CRMOD
Maps a carriage return into a new line on input and outputs a new line as a carriage return
and a new line.

ECHO Echo (full duplex).

LCASE
Maps uppercase to lowercase on input and lowercase to uppercase on output on
uppercase terminals.

CBREAK
Enables a half-cooked mode. Programs can read each character as it is typed instead of
waiting for a full line. All processing is done except input editing. Character and word
erase, line kill, input reprint, and special treatment of the backslash character and the EOT
character are disabled.

TANDEM
Enables automatic flow control (TANDEM mode), which causes the system to produce a
stop character (Ctrl-S) when the input queue is in danger of overflowing, and a start
character (Ctrl-Q) when the input queue has drained sufficiently. This mode is useful for
flow control when the terminal is actually another computer that understands the
conventions.

Note: The same stop and start characters are used for both directions of flow control. The
character specified by the t_stopc field is accepted on input as the character that
stops output and is produced on output as the character to stop input. The
character specified by the t_startc field is accepted on input as the character that
restarts output and is produced on output as the character to restart input.

Basic ioctl Operations
A large number of ioctl commands apply to terminals. Some have the general form:
#include <sgtty.h>
ioctl(FileDescriptor, Code, Value)
struct sgttyb *Value;

Chapter 4. Header Files 803

The applicable values for the Code parameter are:

TIOCGETP Fetches the basic parameters associated with the terminal and stores them in the sgttyb structure
that is pointed to.

TIOCSETP Sets the parameters according to the sgttyb structure that is pointed to. The interface delays until
output stops, then throws away any unread characters before changing the modes.

TIOCSETN Has the same effect as the TIOCSETP value but does not delay or flush input. Input is not
preserved, however, when changing to or from the RAW mode.

For the following codes, the Value parameter is ignored:

TIOCEXCL Sets exclusive-use mode; no further opens are permitted until the file is closed.
TIOCNXCL Turns off exclusive-use mode.
TIOCHPCL When the file is closed for the last time, hangs up the terminal. This is useful when the line is

associated with a modem used to place outgoing calls.

For the following code, the Value parameter is a pointer to an integer.

TIOCFLUSH If the integer pointed to by the Value parameter has a zero value, all characters waiting in input or
output queues are flushed. Otherwise, the value of the integer applies to the FREAD and FWRITE
bits defined in the fcntl.h file. If the FREAD bit is set, all characters waiting in input queues are
flushed. If the FWRITE bit is set, all characters waiting in output queues are flushed.
Note: The FREAD and FWRITE bits cannot be used unless the _KERNEL flag is set.

In the following codes, the argument is 0 unless specified otherwise:

TIOCSTI The Value parameter points to a character that the system pretends has been typed on the
terminal.

TIOCSBRK The break bit is set in the terminal.
TIOCCBRK The break bit is cleared.
TIOCSDTR Data terminal ready is set.
TIOCCDTR Data terminal ready is cleared.
TIOCSTOP Output is stopped as if the stop character had been typed.
TIOCSTART Output is restarted as if the start character had been typed.
TIOCGPGRP The Value parameter is a pointer to an integer into which is placed the process group ID of the

process group for which this terminal is the control terminal.
TIOCSPGRP The Value parameter is a pointer to an integer which is the value to which the process group ID for

this terminal will be set.
TIOCOUTQ Returns in the integer pointed to by the Value parameter the number of characters queued for

output to the terminal.
TIONREAD Returns in the integer pointed to by the Value parameter the number of characters immediately

readable from the argument descriptor. This works for files, pipes, and terminals.

Uppercase Terminals
If the LCASE output-mode bit is set, all uppercase letters are mapped into the corresponding lowercase
letter. The uppercase letter can be generated by preceding it with a \ (backslash). Uppercase letters are
preceded by a backslash when they are output. In addition, the following escape sequences can be
generated on output and accepted on input:

For Use
` (grave) \’
| \!
~ \^
{ \(
} \)

804 Files Reference

To deal with terminals that do not understand that the ~ (tilde) has been made into an ASCII character, the
LTILDE bit can be set in the local-mode word. When the LTILDE bit is set, the ~ (tilde) character will be
replaced with the ` (grave) character on output.

Special Characters
A tchars structure associated with each terminal specifies special characters for both the old and new
terminal interfaces. This structure is defined in the ioctl.h file, for which the sgtty.h file contains an
#include statement. The tchars structure contains the following fields:

t_intrc The interrupt character (Ctrl-C, by default) generates a SIGINT signal. This is the normal way to stop
a process that is no longer needed or to regain control in an interactive program.

t_quitc The quit character (Ctrl-\, by default) generates a SIGQUIT signal. This is used to end a program and
produce a core image, if possible, in a core file in the current directory.

t_startc The start-output character (Ctrl-Q, by default).
t_stopc The stop-output character (Ctrl-S, by default).
t_eofc The end-of-file character (Ctrl-D, by default).
t_brkc The input delimiter (-1, by default). This character acts like a newline in that it ends a line, is echoed,

and is passed to the program.

The stop and start characters can be the same to produce a toggle effect. The applicable ioctl functions
are:

TIOCGETC Gets the special characters and puts them in the specified structure.
TIOCSETC Sets the special characters to those given in the structure.

Local Mode
Associated with each terminal is a local-mode word. The bits of the local-mode word are:

LCRTBS Backspaces on erase rather than echoing erase.
LPRTERA Printing terminal erase mode.
LCRTERA Erases character echoes as Backspace-Space-Backspace.
LTILDE Converts ~ (tilde) to ` (grave) on output (for terminals that do not recognize the tilde as an ASCII

character).
LMDMBUF Stops and starts output when carrier drops.
LLITOUT Suppresses output translations.
LTOSTOP Sends a SIGTTOU signal for background output.
LFLUSHO Output is being flushed.
LNOHANG Do not send hang up when carrier drops.
LCRTKIL Backspace-Space-Backspace to erase the entire line on line kill.
LPASS8 Passes all 8 bits through on input, in any mode.
LCTLECH Echoes input control characters as Ctrl-X, delete as Ctrl-?.
LPENDIN Retypes pending input at next read or input character.
LDECCTQ Only Ctrl-Q restarts output after a Ctrl-S.
LNOFLSH Inhibits flushing of pending I/O when an interrupt character is typed.

The following ioctl functions operate on the local-mode word structure:

TIOCLBIS The Value parameter is a pointer to an integer whose value is a mask containing the bits to be set in
the local-mode word.

TIOCLBIC The Value parameter is a pointer to an integer whose value is a mask containing the bits to be
cleared in the local-mode word.

TIOCLSET The Value parameter is a pointer to an integer whose value is stored in the local-mode word.
TIOCLGET The Value parameter is a pointer to an integer into which the current local-mode word is placed.

Chapter 4. Header Files 805

Local Special Characters
The ltchars structure associated with each terminal defines control characters for the new terminal driver.
This structure contains the following fields:

t_suspc The suspend-process character (Ctrl-Z, by default). This sends a SIGTSTP signal to suspend the
current process group. This character is recognized during input.

t_dsuspc The delayed suspend-process character (Ctrl-Y, by default). This sends a SIGTSTP signal to suspend
the current process group. This character is recognized when the process attempts to read the
control character rather than when the character is typed.

t_rprntc The reprint line-control character (Ctrl-R, by default). This reprints all characters that are preceded by
a new-line character and have not been read.

t_flushc The flush-output character (Ctrl-O, by default). This flushes data that is written but not transmitted.
t_werasc The word-erase character (Ctrl-W, by default). This erases the preceding word. This does not erase

beyond the beginning of the line.
t_lnextc The literal-next character (Ctrl-V, by default). This causes the special meaning of the next character

to be ignored so that characters can be input without being interpreted by the system.

The following ioctl functions, which use the ltchars structure, are supported by the terminal interface for
the definition of local special characters for a terminal:

TIOCSLTC Sets local characters. The argument to this function is a pointer to an ltchars structure, which
defines the new local special characters.

TIOCGLTC Sets local characters. The argument to this function is a pointer to an ltchars structure into which is
placed the current set of local special characters.

The winsize structure and the ioctl functions that use it are described in the discussion of the tty common
code in ″tty Subsystem Overview″ in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

File

/dev/tty The tty special file, which is a synonym for the controlling terminal.

Related Information
The csh command, getty command, stty command, tset command.

The ioctl subroutine, sigvec subroutine.

tty Subsystem Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

shm.h File

Purpose
Describes the structures that are used by the subroutines that perform shared memory operations.

Syntax
#include <sys/shm.h>

Description
The shm.h header file defines the following symbolic constants, types, and structures:

806 Files Reference

Types:
typedef unsigned short shmatt_t;

Symbolic Constants:
SHMLBA segment low boundary address multiple
SHMLBA_EXTSHM SHMLBA value when environment variable EXTSHM=ON
SHM_RDONLY attach read-only (else read-write)
SHM_RND round attach address to SHMLBA
SHM_MAP map a file instead of share a segment
SHM_FMAP fast file map
SHM_COPY deferred update
SHM_R read permission
SHM_W write permission
SHM_DEST destroy segment when # attached = 0
ZERO_MEM for disclaim
SHMHISEG highest shared memory segment allowed
SHMLOSEG lowest shared memory segment allowed
NSHMSEGS number of shared memory segments allowed

There is a shared mem id data structure for each shared memory and mapped file segment in the system.

Structures
The structure shmid_ds contains the following members:
struct ipc_perm shm_perm operation permission struct
size_t shm_segsz size of segment in bytes
pid_t shm_lpid process ID of last shared memory operation
pid_t shm_cpid pid of creator
shmatt_t shm_nattch number of current attaches
time_t shm_atime last shmat time
time_t shm_dtime time of last shmdt
time_t shm_ctime time of last change by shmctl

The structure shminfo contains the following members:
unsigned int shmmax max shared memory segment size
int shmmin min shared memory segment size
int shmmni # of shared memory identifiers

The types pid_t, time_t, key_t, and size_t are defined as described in <sys/types.h>. The following are
declared as functions:
void *shmat(int, const void *, int);
int shmctl(int, int, struct shmid_ds *);
int shmdt(const void *);
int shmget(key_t, size_t, int);

In addition, all of the symbols from <sys/ipc.h> will be defined when this header is included.

Related Information
The types.h file.

The shmat, shmctl, shmdt, and shmget subroutines.

spc.h File

Purpose
Defines external interfaces provided by the System Resource Controller (SRC) subroutines.

Chapter 4. Header Files 807

Description
The /usr/include/spc.h file defines data structures and symbolic constants that are used when calling the
SRC subroutines. All subsystems that are controlled by the SRC via sockets or message queues should
include this header file.

The scrreq data structure in the spc.h file defines the format of requests sent to a subsystem by the
srcmstr daemon. This format is also used by SRC subroutines that send requests to the srcmstr
daemon.

The srcreq data structure contains the following fields:

mtype The message type for the message queue. This field should be included only for message queue
subsystems. Programs should be compiled with the -DSRCBYQUEUE flag to generate the mtype field.

srchdr The SRC header that must be included in all packets sent to and received from an SRC subsystem.
subreq The request to be processed by the SRC subsystem.

The srchdr data structure in the srcreq data structure contains the return address that is needed to reply
to the request. The srcrrqs subroutine can be used to extract this information from the request. The
srchdr data structure is also part of the reply structure returned by a subsystem.

The srchdr data structure contains the following fields:

retaddr The return address
dversion The SRC packet version.
cont The continuation indicator. The possible values are:

NEWREQUEST
Used in a request to the srcmstr daemon.

CONTINUED
Used in a reply returned by a subsystem, indicating another packet follows.

STATCONTINUED
Used in a status reply returned by a subsystem, indicating another packet follows.

END Used in a request seen by a subsystem or the last packet in reply sequence.

The subreq data structure contains the request to be processed by the subsystem. This same structure is
used when calling the srcsrqt subroutine to send a request to a subsystem. The srcsrqt subroutine
formats the required srchdr structure. The request is processed by the srcmstr daemon and passed on to
a subsystem.

The subreq data structure contains the following fields:

object Defines the object on which to act. The possible values are either the SUBSYSTEM constant, or a
subserver code point. If the object is a subsystem, the value of this field is the SUBSYSTEM constant
as defined in the spc.h file and the objname field contains either a null value or the subsystem name. If
the object is a subserver, the object field value is the code point from the subserver object definition,
and the objname field is subsystem-defined. The objname field can be null, the subserver name, or the
subserver process ID. The object value for the subserver cannot equal the value reserved for the
subsystem.

808 Files Reference

action SRC action to perform. Possible types are:

START

STOP

STATUS or SRCSTATUS

TRACE

REFRESH

The values 0-255 are reserved for use by the SRC.
parm1 Modifies the SRC action type by indicating a variable associated with an action. This field is used in a

different manner by each of the actions.
parm2 Modifies the SRC action type by indicating a variable associated with an action. This field is used in a

different manner by each of the actions.
objname Name of the object that the request applies to. This can be a subsystem name, a subserver object, or

a subserver process ID.

The srcrep and statrep structures in the spc.h file define formats for the replies returned by a subsystem.
For more information, see the srcsrpy subroutine.

The srcrep data structure must be used for replies to start, stop, refresh, and trace requests. It contains
the following fields:

srchdr Specifies the SRC request/reply (srchdr) header.
svrreply A reply structure containing the following fields:
rtncode Subsystem response to the request. This response is negative on error or subsystem unique

message.
objtype The object type. This is one of the following:

v SUBSYSTEM

v Subserver code point

v Error code
objtext Text description.
objname Name of the object (subsystem/subserver).
rtnmsg Subsystem unique message.

The statrep data structure is used for replies to status requests. It contains the following fields:

srchdr Specifies the SRC request/reply (srchdr) header.
statcode A status structure containing the following fields. There may be an array of these structures. This

structure contains the following fields:
objtype The object type. This is one of the following:

v SUBSYSTEM

v Subserver code point

v Error code
status Status code. See the spc.h file for the symbolic constants that may be used with this field.
objtext Text description.
objname Name of the object (subsystem/subserver) this reply belongs to.

The spc.h file also defines the following constants that are useful in communicating with the srcmstr
daemon:

SRCNAMESZ The maximum length of an SRC object name (30 bytes, including the null terminator).
SRCPKTMAX The maximum packet size (8192 bytes).

Chapter 4. Header Files 809

There are also SRC subroutines to manage SRC objects, including subsystems and subservers. The
spc.h file defines certain symbolic constants which are useful when defining object attributes. The
following SRC object descriptors are defined in the /usr/include/sys/srcobj.h file:

Respawn action:

RESPAWN=1

ONCE=2

Contact options:

SRCIPC=1

SRCSIGNAL=2

SRCSOCKET=3

Multiple instances of a subsystem are allowed:

SRCYES=1

SRCNO=0

Display subsystem status under certain conditions:

SRCYES=1

SRCNO=0

Default time limit:

TIMELIMIT=20 (seconds)

The spc.h file also includes the /usr/include/srcerrno.h file, which contains symbolic constants for the
errors returned by the SRC library subroutines. The src_err_msg subroutine can be used to retrieve the
corresponding error message.

SRC Request Structure Example
The following program excerpt is an example of the SRC request (srcreq) structure.
struct srcreq
{

long mtype; /*Contains the message type in the IPC buffer*/
/*This field is included if IPC is used and a

message queue is expected*/

struct srchdr srchdr; /*src header table entry - defined below*/
struct subreq subreq; /*the request passed to the subsystem*/

};

struct srchdr /*srchdr structure is used by SRC routines*/
/*subsystems are not responsible for setting \

this*/
{

810 Files Reference

struct sockaddr_un retaddr;
short dversion; /*the version of the data format*/
short cont; /*used to indicate message is continued*/
};

struct subreq
{
short object; /*object to act on*/
short action; /*action START, STOP, STATUS,TRACE,REFRESH*/
short parm1; /* */
short parm2; /* */
char objname[SRCNAMES]; /*object name*/
};

Related Information
The srcobj.h file.

The srcrrqs subroutine, srcsrpy subroutine, srcsrqt subroutine, srcstat subroutine, srcstathdr
subroutine, srcsbuf subroutine, srcstattxt subroutine, src_err_msg subroutine.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

Programming Subsystem Communication with the SRC in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

srcobj.h File

Purpose
Defines object structures used by the System Resource Controller (SRC) subsystem.

Description
The /usr/include/sys/srcobj.h header file contains the structures defining SRC objects. The SRCsubsys
structure contains the following fields:

subsysname String that contains the subsystem name. This string can contain 30 bytes, including the null
terminator.

synonym String that contains the subsystem synonym. This string can contain 30 bytes, including the null
terminator.

cmdargs String that contains the subsystem command arguments. This string can contain 200 bytes,
including the null terminator.

path String that contains the path to the executable files. This string can contain 200 bytes, including
the null terminator.

uid User ID for the subsystem.
auditid Audit ID for the subsystem. This value is supplied by the system and cannot be changed by an

SRC subroutine.
standin String that contains the path for standard input. This string can contain 200 bytes, including the

null terminator.
standout String that contains the path for standard output. This string can contain 200 bytes, including the

null terminator.
standerr String that contains the path for standard error. This string can contain 200 bytes, including the

null terminator.
action Respawn action. The value of this field can be either ONCE or RESPAWN.
multi Multiple instance support. The value of this field can be either SRCYES or SRCNO.
contact Contact type. The value of this field indicates either a signal (SRCSIGNAL), a message queue

(SRCIPC), or a socket (SRCSOCKET).
srvkey IPC message queue key.

Chapter 4. Header Files 811

svrmtype IPC message type (mtype) for the subsystem.
priority Nice value, a number from 1 to 40.
signorm Stop normal signal.
sigforce Stop force signal.
display Display inactive subsystem on all or group status. The value of this field can be either SRCYES

or SRCNO.
waittime Stop cancel time to wait before sending a SIGKILL signal to the subsystem restart time period.

(A subsystem can be restarted only twice in this time period if it does not terminate normally.
grpname String that contains the group name of the subsystem. This string can contain 30 bytes, including

the null terminator.

The SRCsubsvr structure contains the following fields:

sub_type String that contains the type of the subsystem. This string can contain 30 bytes, including the null
terminator.

subsysname String that contains the subsystem name. This string can contain 30 bytes, including the null
terminator.

sub_code Subsystem code. This is a decimal number.

The SRCnotify structure contains the following fields:

notifyname String that contains the name of the subsystem or group to which the notify method applies.
This string can contain 30 bytes, including the null terminator.

notifymethod String that is executed when the SRC detects abnormal termination of the subsystem or
group. This string can contain 256 bytes, including the null terminator.

The possible values indicated for the fields are predefined.

Related Information
The spc.h file.

The getssys subroutine.

Defining Your Subsystem to the SRC in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

List of SRC Subroutines in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

stat.h File

Purpose
Defines the data structures returned by the stat family of subroutines.

Description
The stat data structure in the /usr/include/sys/stat.h file returns information for the stat, fstat, lstat,
statx, and fstatx subroutines.

812 Files Reference

The stat data structure contains the following fields:

st_dev Device that contains a directory entry for this file.
st_ino Index of this file on its device. A file is uniquely identified by specifying the device on which it

resides and its index on that device.
st_mode File mode. The possible file mode values are given in the description of the

/usr/include/sys/mode.h file.
st_nlink Number of hard links (alternate directory entries) to the file created using the link subroutine.
st_access Field is not implemented. All bits are returned as zero.
st_size Number of bytes in a file (including any holes). This field also defines the position of the

end-of-file mark for the file. The end-of-file mark is updated only by subroutines, for example the
write subroutine. If the file is mapped by the shmat subroutine and a value is stored into a page
past the end-of-file mark, that mark will be updated to include this page when the file is closed or
forced to permanent storage.

st_rdev ID of the device. This field is defined only for block or character special files.
st_atime Time when file data was last accessed.
st_mtime Time when file data was last modified.
st_ctime Time when the file status was last changed.
st_blksize Size, in bytes of each block of the file.
st_blocks Number of blocks actually used by the file (measured in the units specified by the DEV_BSIZE

constant).
st_gen Generation number of this i-node.
st_type Type of the v-node for the object. This is one of the following values, which are defined in the

/usr/include/sys/vnode.h file:

VNON Unallocated object; this should not occur

VBAD Unknown type of object

VREG Regular file

VDIR Directory file

VBLK Block device

VCHR Character device

VLNK Symbolic link

VSOCK
Socket

VFIFO FIFO

VMPC Multiplexed character device.
st_vfs Virtual file system (VFS) ID, which identifies the VFS that contains the file. By comparing this

value with the VFS numbers returned by the mntctl subroutine, the name of the host where the
file resides can be identified.

st_vfstype File-system type, as defined in the /usr/include/sys/vmount.h file.
st_flag Flag indicating whether the file or the directory is a virtual mount point. This flag can have the

following values:

FS_VMP
Indicates that the file is a virtual mount point.

FS_MOUNT
Indicates that the file is a virtual mount point.

FS_REMOTE
Indicates that the file resides on another machine.

st_uid File owner ID.
st_gid File group ID.

Chapter 4. Header Files 813

The stat64 data structure in the /usr/include/sys/stat.h file returns information for the stat64, fstat64, and
lstat64 subroutines. The stat64 structure contains the same fields as the stat structure, with the exception
of the following field:

st_size Number of bytes in a file. The st_size field is a 64-bit quantity, allowing file sizes greater than OFF_MAX.
The st_size field of the stat64 structure is of the type off64_t.

For remote files, the st_atime, st_mtime, and st_ctime fields contain the time at the server.

The value of the st_atime field can be changed by the following subroutines:

v read, readx, readv, readvx

v readlink

v shmdt

v utime, utimes

The values of the st_ctime and st_mtime fields can be set by the following subroutines:

v write, writex, writev, writevx

v open, openx, creat

v link

v symlink

v unlink

v mknod

v mkdir

v rmdir

v rename

v truncate, ftruncate

v utime, utimes

In addition, the shmdt subroutine can change the st_mtime field, and the chmod, fchmod, chown,
chownx, fchown, and fchownx subroutines can change the st_ctime field.

Because they can create a new object, the open, openx, creat, symlink, mknod, mkdir, and pipe
subroutines can set the st_atime, st_ctime, and st_mtime fields.

Related Information
The mode.h file, types.h file, vmount.h file.

The chmod subroutine, chownx subroutine, link subroutine, mknod or mkfifo subroutine, openx, open,
or creat subroutine, pipe subroutine, read subroutine, shmat subroutine, statx, stat, fstatx, fstat,
fullstat, or ffullstat subroutine, unlink subroutine, utime subroutine, write, writex, writev, or writevx
subroutine.

statfs.h File

Purpose
Describes the structure of the statistics returned by the statfs, fstatfs, or ustat subroutine.

Description
The statfs and fstatfs subroutines return information on a mounted (virtual) file system in the form of a
statfs structure. The /usr/include/sys/statfs.h file describes the statfs structure, which contains the

814 Files Reference

following fields:

f_version Version number of the statfs structure. This value is currently 0.
f_length Length of the buffer that contains the returned information. This value is currently 0.
f_type Type of information returned. This value is currently 0.
f_bsize Optimal block size of the file system.
f_blocks Total number of blocks in the system.
f_bfree Number of free blocks in the file system. The size of a free block is given in the f_bsize field.
f_bavail Number of free blocks available to a nonroot user.
f_files Total number of file nodes in the file system.
f_ffree Number of free file nodes in the file system.
f_fsid File system ID.
f_vfstype Type of this virtual file system. Possible values are:

MNT_JFS
Journaled File System (JFS) of the operating system

MNT_NFS
SUN network file system

MNT_CDROM
CD-ROM file system.

f_fsize Fundamental block size of the file system.
f_fname File system name. The value returned by this field depends on the type of file system:

JFS Value returned is copied from the s_fname field of the superblock (see the filsys.h file
format). You can set this value at the time the file system is created by using the mkfs
command with the -l flag. This field gives the preferred mount point for the file system.
Note: The s_fname field in the superblock is only 6 bytes wide. Longer names are
truncated to fit.

CD-ROM
The field is filled with null bytes because the f_fname field is not implemented.

NFS The field is filled with null bytes because the f_fname field is not implemented.
f_fpack File system pack name. The value returned by this field depends on the file system type:

JFS The value returned is copied from the s_fpack field of the superblock (see the filsys.h
file format). You can set this value at the time the file system is created using the mkfs
command with the -v flag.
Note: The s_fpack field in the superblock is only 6 bytes wide. Longer pack names are
truncated to fit.

CD-ROM
The value is copied from the volume identifier field in the primary volume descriptor.

NFS The field is filled with null bytes because the f_fname field is not implemented.
f_name_max Maximum length of a component name for this file system.

Note: Fields that are not defined for a particular file system are set to a value of -1.

The ustat system returns information on a mounted file system in the form of a ustat structure. The ustat
structure, which is defined in the /usr/include/ustat.h file, contains the following fields:

f_tfree Total number of free blocks in the file system. The size of a free block is given in by the UBSIZE
constant. See the param.h file for a description of UBSIZE.

f_inode Number of free i-nodes in the file system.
f_fname File system name.
f_fpack File system pack name.

Chapter 4. Header Files 815

Files

statfs.h Path to the statfs.h file.
ustat.h Path to the ustat.h file.

Related Information
The filsys.h file format, param.h file, vmount.h file.

The statfs, fstatfs, or ustat subroutine.

statvfs.h File

Purpose
Describes the structure of the statistics that are returned by the statvfs subroutines and fsatvfs
subroutines.

Description
The statvfs subroutines and fsatvfs subroutines return information on a mounted filesystem in the form of
statvfs. The /usr/include/sys/statvfs.h file describes the following fields in the statvfs subroutine:

f_bsize Preferred file system block size
f_frsize Fundamental file system block size
f_block Total number of block f_frsize in the file system.
f_bfree Total number of free blocks of f_frsize in the file system.
f_bavail Total number of available blocks of f_frsize that can be used by users without root access.
f_files Total number of file nodes in the file system
f_ffree Number of free file nodes in the file system.
f_favail Number of free file nodes that can be user without root access.
f_fsid File system ID.
f_basetype File system type name
f_flag File system flags:

ST_RDONLY
File system is mounted read only

ST_NOSUID
File system does not support set used ID file modes

ST_NODEV
Device opens are not allowed through mounts.

f_namemax Maximum length of a component name for this file system
f_fstr File system specific string.

The following prototypes also appear in the /usr/include/sys/statvfs.h file:
extern int statvfs(const char *, struct statvfs *);

extern int fsatvfs(int, struct statvfs *);

Related Information
The ststvfs subroutine, fstatvfs subroutine.

816 Files Reference

syslog.conf File

Purpose
The syslog.conf file provides configuration information for the syslogd daemon.

Description
Informs the syslogd daemon where to send a system message, depending on the message’s priority level
and the facility that generated it.

The syslogd daemon reads the configuration file when it is activated and when it receives a hang up. The
syslog.conf file can be changed while the syslogd daemon is running by issuing a refresh command to
the syslogd subsystem:
refresh -s syslogd

Format
If you do not use the -f flag with the syslogd daemon, it reads the default /etc/syslog.conf configuration
file.

The syslogd daemon ignores blank lines and lines beginning with a # (pound sign). Lines in the
configuration file for the syslogd daemon contain a selector field, an action field, and an optional
rotation field, separated by one or more tabs.

The selector field names a facility and a priority level. Separate facility names with a , (comma). Separate
the facility and priority-level portions of the selector field with a . (period). Separate multiple entries in the
same selector field with a ; (semicolon). To select all facilities, use an * (asterisk).

The action field identifies a destination (file, host, or user) to receive the messages. If routed to a remote
host, the remote system will handle the message as indicated in its own configuration file. To display
messages on a user’s terminal, the destination field must contain the name of a valid, logged-in system
user.

The rotation field identifies how rotation is used. If the action field is a file, then rotation can be based on
size or time, or both. One can also compress and/or archive the rotated files.

Facilities
Use the following system facility names in the selector field:

Table 33. Facility Names

Facility Description

kern Kernel

user User level

mail Mail subsystem

daemon System daemons

auth Security or authorization

syslog syslogd daemon

lpr Line-printer subsystem

news News subsystem

uucp uucp subsystem

* All facilities

Chapter 4. Header Files 817

Priority Levels
Use the following message priority levels in the selector field. Messages of the specified priority level and
all levels above it are sent as directed.

Table 34. Priority Levels

Priority Level Description

emerg Specifies emergency messages (LOG_EMERG). These messages are not distributed to all
users. LOG_EMERG priority messages can be logged into a separate file for reviewing.

alert Specifies important messages (LOG_ALERT), such as a serious hardware error. These
messages are distributed to all users.

crit Specifies critical messages not classified as errors (LOG_CRIT), such as improper login
attempts. LOG_CRIT and higher-priority messages are sent to the system console.

err Specifies messages that represent error conditions (LOG_ERR), such as an unsuccessful
disk write.

warning Specifies messages for abnormal, but recoverable, conditions (LOG_WARNING).

notice Specifies important informational messages (LOG_NOTICE). Messages without a priority
designation are mapped into this priority message.

info Specifies informational messages (LOG_INFO). These messages can be discarded, but are
useful in analyzing the system.

debug Specifies debugging messages (LOG_DEBUG). These messages may be discarded.

none Excludes the selected facility. This priority level is useful only if preceded by an entry with an
* (asterisk) in the same selector field.

Destinations
Use the following message destinations in the action field.

Table 35. Message Destinations

Destination Description

File Name Full path name of a file opened in append mode

@Host Host name, preceded by @ (at sign)

User[, User][...] User names

* All users

Rotation
Use the following rotation keywords in the rotation field.

Table 36. Rotation Keywords

Keyword Description

rotate This keyword must be specified after the action field.

size This keyword specifies that rotation is based on size. It is followed by a number and either a k
(kilobytes) or m (megabytes).

time This keyword specifies that rotation is based on time. It is followed by a number and either a h
(hour) or d (day) or w (week) or m (month) or y (year).

files This keyword specifies the total number of rotated files. It is followed by a number. If not
specified, then there are unlimited number of rotated files.

compress This keyword specifies that the saved rotated files will be compressed.

818 Files Reference

Table 36. Rotation Keywords (continued)

Keyword Description

archive This keyword specifies that the saved rotated files will be copied to a directory. It is followed by
the directory name.

Examples
1. To log all mail facility messages at the debug level or above to the file /tmp/mailsyslog, type:

mail.debug /tmp/mailsyslog

2. To send all system messages except those from the mail facility to a host named rigil, type:
*.debug;mail.none @rigil

3. To send messages at the emerg priority level from all facilities, and messages at the crit priority level
and above from the mail and daemon facilities, to users nick and jam, type:
*.emerg;mail,daemon.crit nick, jam

4. To send all mail facility messages to all users’ terminal screens, type:
mail.debug *

5. To log all facility messages (at the debug level or above) to the file /tmp/syslog.out, and have the file
rotated when it gets larger then 500 kilobytes or if a week passes, limit the number of rotated files to
10, use compression and also use /syslogfiles as the archive directory, type:
*.debug /tmp/syslog.out rotate size 500k time 1w files 10 compress archive /syslogfiles

Files

/etc/syslog.conf Controls the output of syslogd.

/etc/syslog.pid Contains the process ID.

Related Information
The syslog subroutine.

systemcfg.h File

Purpose
Defines the _system_configuration structure.

Description
The systemcfg.h file defines the _system_configuration structure. This is a global structure that
identifies system characteristics. The system_configuration structure is provided in read-only system
memory. New fields will be added to the structure in future releases. The attributes in the
_system_configuration structure have the following values:

architecture Identifies the processor architecture. Valid values for Version 4 are:

POWER_RS
Indicates a POWER family machine.

POWER_PC
Indicates a POWER-based.

Chapter 4. Header Files 819

implementation Identifies the specific version of the processor. Each implementation is assigned a unique
bit to allow for efficient checking of implementation sets. The following are examples of
valid values (the header file contains more values):

POWER_RS1

POWER_RS2

POWER_RSC

POWER_601

Two special values are also defined: POWER_RS_ALL and POWER_PC_ALL. These
labels are defined as the bit OR of all members of their architecture.

version Identifies the central processing unit (CPU) version number. The following are examples
of valid values (the header file contains more values):

PV_RS1
Identifies a POWER family RS1 machine.

PV_RS2
Identifies a POWER family RS2 machine.

PV_RS2G
Identifies a POWER family RS2 machine with graphics assist.

PV_RSC
Identifies a POWER family RSC machine.

PV_601
Identifies a PowerPC 601 RISC Microprocessor machine.

width Contains the processor data-word size. Valid values are 32 or 64. This value is the
maximum data-word size and should not be confused with the current execution mode.

ncpus Identifies the number of CPUs active on a machine. Uniprocessor (UP) machines are
identified by a 1. Values greater than 1 indicate multiprocessor (MP) machines.

cache_attr Specifies the cache attributes. Bit 31 determines if the cache is present. If this bit is 1,
the cache is present. If bit 31 is 0, then no cache is present and all other cache
characteristics are 0. Bit 30 indicates the type of cache. If bit 30 is 1, the cache is
combined. Otherwise, if bit 30 is 0 the instruction and data caches are separate.

icache_size Contains the L1 instruction-cache size in bytes. For combined caches, this value is the
total cache size.

dcache_size Contains the size of the L1 data-cache size in bytes. For combined caches this the total
cache size.

icache_asc Contains the L1 instruction-cache associativity. For a combined cache, this is the
combined caches’ associativity.

dcache_asc Contains the L1 data-cache associativity. For a combined cache, this is the combined
caches’ associativity.

icache_line Contains the line size in bytes of the L1 instruction cache.
dcache_line Contains the line size in bytes of L1 data cache.
L2_cache_size Contains the size of the L2 cache in bytes. A value of 0 indicates no L2 cache is present.
L2_cache_asc Identifies the associativity of the L2 cache.
tlb_comb Identifies the type of Transaction Lookaside Buffer (TLB) attributes. If the TLB is present,

bit 31 is 1. Otherwise, if bit 31 is less than 0, the TLB does not exist and all other TLB
characteristics are 0. Bit 30 is 1 if the TLB is combined. If the TLB is separate for the
instruction and data cache, bit 30 is 0.

itlb_size Specifies the number of entries in the instruction TLB. For combined TLBs, this is the size
of the combined TLB.

dtlb_size Specifies the number of entries in the data TLB. For combined TLBs, this is the size of
the combined TLB.

itlb_asc Contains the associativity of the instruction TLB. This attribute’s value is equal to the
itlb_size attribute if the system is fully associative.

dtlb_asc Contains the associativity of the instruction TLB. This attribute’s value is equal to the
value of the dtlb_size attribute if the system is fully associative.

820 Files Reference

resv_size Contains the POWER-based reservation granule size. This field is a 0 on POWER family
machines.

priv_ick_cnt Contains the number of times lock services attempt to lock a spin lock before blocking AP
process/thread in supervisor mode. This a 0 on UP machine. This parameter is used by
system-locking services.

prob_lck_cnt Contains the number of times lock services attempt to lock a spin lock before blocking a
process or thread in problem state. This a 0 on a UP machine. This parameter is used by
system-locking services.

virt_alias Indicates virtual memory aliasing. If 1, the hardware is available for virtual memory
aliasing and this ability is used by the system. Virtual memory aliasing is the mapping of
one real address to more than one virtual address.

cach_cong Contains the number page index bits that can result in a cache synonym. For machines
without cache synonyms, this field is 0.

tar.h File

Purpose
Contains definitions for flags used in the tar archive header.

Description
The /usr/include/tar.h file contains extended definitions used in the typeflag and mode fields of the tar
archive header block. The file also provides values for the required POSIX entries.

tar Archive Header Block
Every file archived using the tar command is represented by a header block describing the file, followed
by zero or more blocks that give the contents of the file. The end-of-archive indicator consists of two
blocks filled with binary zeros. Each block is a fixed size of 512 bytes.

Blocks are grouped for physical I/O operations and groups can be written using a single write subroutine
operation. On magnetic tape, the result of this write operation is a single tape record. The last record is
always a full 512 bytes. Blocks after the end-of-archive zeros contain undefined data.

The header block structure is shown in the following table. All lengths and offsets are in decimal.

Table 37. Header Block Structure

Field Name Offset Length in Bytes Contents

name 0 100 File name without a / (slash)

mode 100 8 File mode

uid 108 8 User ID

gid 116 8 Group ID

size 124 12 Size in bytes

mtime 136 12 Latest modification time

cksum 148 8 File and header checksum

typeflag 156 1 File type

linkname 157 100 Linked path name or file name

magic 257 6 Format representation for tar

version 263 2 Version representation for tar

uname 265 32 User name

gname 297 32 Group name

Chapter 4. Header Files 821

Table 37. Header Block Structure (continued)

Field Name Offset Length in Bytes Contents

devmajor 329 8 Major device representation

devminor 337 8 Minor device representation

prefix 345 155 Path name without trailing slashes

Names are preserved only if the characters are chosen from the POSIX portable file-name character set or
if the same extended character set is used between systems. During a read operation, a file can be
created only if the original file can be accessed using the open, stat, chdir, fcntl, or opendir subroutine.

Header Block Fields
Each field within the header block and each character on the archive medium are contiguous. There is no
padding between fields. More information about the specific fields and their values follows:

name The file’s path name is created using this field, or by using this field in connection with the prefix
field. If the prefix field is included, the name of the file is prefix/name. This field is null-terminated
unless every character is non-null.

mode Provides 9 bits for file permissions and 3 bits for SUID, SGID, and SVTX modes. All values for this
field are in octal. During a read operation, the designated mode bits are ignored if the user does
not have equal (or higher) permissions or if the modes are not supported. Numeric fields are
terminated with a space and a null byte. The tar.h file contains the following possible values for
this field:

Flag Octal Description

TSUID 04000 Set user ID on execution.

TSGID 02000 Set group ID on execution.

TSVTX 01000 Reserved.

TUREAD 00400 Read by owner.

TUWRITE 00200 Write by owner.

TUEXEC 00100 Execute or search by owner.

TGREAD 00040 Read by group.

TGWRITE 00020 Write by group.

TGEXEC 00010 Execute or search by group.

TOREAD 00004 Read by others.

TOWRITE 00002 Write by others.

TOEXEC 00001 Execute or search by other.

uid Extracted from the corresponding archive fields unless a user with appropriate privileges restores
the file. In that case, the field value is extracted from the password and group files instead.
Numeric fields are terminated with a space and a null byte.

gid Extracted from the corresponding archive fields unless a user with appropriate privileges restores
the file. In that case, the field value is extracted from the password and group files instead.
Numeric fields are terminated with a space and a null byte.

size Value is 0 when the typeflag field is set to LNKTYPE. This field is terminated with a space only.

mtime Value is obtained from the modification-time field of the stat subroutine. This field is terminated
with a space only.

822 Files Reference

chksum On calculation, the sum of all bytes in the header structure are treated as spaces. Each unsigned
byte is added to an unsigned integer (initialized to 0) with at least 17-bits precision. Numeric fields
are terminated with a space and a null byte.

typeflag
The tar.h file contains the following possible values for this field:

Flag Value Description

REGTYPE ’0’ Regular file.

AREGTYPE ’\0’ Regular file.

LNKTYPE ’1’ Link.

SYMTYPE ’2’ Reserved.

CHRTYPE ’3’ Character special.

BLKTYPE ’4’ Block special.

DIRTYPE ’5’ Directory. In this case, the size field
has no meaning.

FIFOTYPE ’6’ FIFO special. Archiving a FIFO file
archives its existence, not contents.

CONTTYPE ’7’ Reserved.

If other values are used, the file is extracted as a regular file and a warning issued to the standard
error output. Numeric fields are terminated with a space and a null byte.

The LNKTYPE flag represents a link to another file, of any type, previously archived. Such
linked-to files are identified by each file having the same device and file serial number. The
linked-to name is specified in the linkname field, including a trailing null byte.

linkname
Does not use the prefix field to produce a path name. If the path name or linkname value is too
long, an error message is returned and any action on that file or directory is canceled. This field is
null-terminated unless every character is non-null.

magic Contains the TMAGIC value, reflecting the extended tar archive format. In this case, the uname
and gname fields will contain the ASCII representation for the file owner and the file group. If a file
is restored by a user with the appropriate privileges, the uid and gid fields are extracted from the
password and group files (instead of the corresponding archive fields). This field is null-terminated.

version
Represents the version of the tar command used to archive the file. This field is terminated with a
space only.

uname Contains the ASCII representation of the file owner. This field is null-terminated.

gname Contains the ASCII representation of the file group. This field is null-terminated.

devmajor
Contains the device major number. Terminated with a space and a null byte.

devminor
Contains the device minor number. Terminated with a space and a null byte.

prefix If this field is non-null, the file’s path name is created using the prefix/name values together.
Null-terminated unless every character is non-null.

Related Information
The tar command.

Chapter 4. Header Files 823

termio.h File

Purpose
Defines the structure of the termio file, which provides the terminal interface for Version 2 compatibility.

Description
The /usr/include/sys/termio.h file contains the termio structure, which defines special characters as well
as the basic input, output, control, and line discipline modes. The termio.h file is provided for compatibility
with Version 2 applications.

Version 2 applications that include the termio.h file can use the Version 2 terminal interface provided by
the POSIX line discipline. The following Version 2 terminal interface operations are not supported by the
POSIX line discipline:

v Terminal Paging (TCGLEN ioctl and TCSLEN ioctl)

v Terminal Logging (TCLOG ioctl)

v Enhanced Edit Line Discipline (LDSETDT ioctl and LDGETDT ioctl)

The termio structure in the termio.h file contains the following fields:

v c_iflag

v c_oflag

v c_cflag

v c_lflag

v c_cc

Field Descriptions
c_iflag

Describes the basic terminal input control. The initial input-control value is all bits clear. The
possible input modes are:

IGNBRK
Ignores the break condition. In the context of asynchronous serial data transmission, a
break condition is defined as a sequence of zero-valued bits that continues for more than
the time required to send 1 byte. The entire sequence of zero-valued bits is interpreted as
a single break condition, even if it continues for an amount of time equivalent to more than
one byte. If the IGNBRK flag is set, a break condition detected on input is ignored, which
means that the break condition is not put on the input queue and therefore not read by
any process.

BRKINT
Interrupts the signal on the break condition. If the IGNBRK flag is not set and the BRKINT
flag is set, the break condition flushes the input and output queues. If the terminal is the
controlling terminal of a foreground process group, the break condition generates a single
SIGINT signal to that foreground process group. If neither the IGNBRK nor the BRKINT
flag is set, a break condition is read as a single \0. If the PARMRK flag is set, a break
condition is read as \377, \0, \0.

IGNPAR
Ignores characters with parity errors. If this flag is set, a byte with a framing or parity error
(other than break) is ignored.

PARMRK
Marks parity errors. If the PARMRK flag is set and the IGNPAR flag is not set, a byte with
a framing or parity error (other than break) is given to the application as the
three-character sequence \377, \0, x, where \377, \0 is a two-character flag preceding

824 Files Reference

each sequence and x is the data of the character received in error. To avoid ambiguity in
this case, if the ISTRIP flag is not set, a valid character of \377 is given to the application
as \377, \377. If neither the IGNPAR nor the PARMRK flag is set, a framing or parity error
(other than break) is given to the application as a single character, \0.

INPCK
Enables input parity checking. If this flag is set, input parity checking is enabled. If not set,
input parity checking is disabled. This allows for output parity generation without input
parity errors.

ISTRIP
Strips characters. If this flag is set, valid input characters are first stripped to 7 bits;
otherwise, all 8 bits are processed.

INLCR
Maps a new-line character (NL) to a carriage return (CR) on input. If this flag is set, a
received NL character is translated into a CR character.

IGNCR
Ignores a CR character. If this flag is set, a received CR character is ignored and not read.

ICRNL
Maps a CR character to an NL character on input. If the ICRNL flag is set and the IGNCR
flag is not set, a received CR character is translated into an NL character.

IUCLC
Maps uppercase to lowercase on input. If this flag is set, a received uppercase, alphabetic
character is translated into the corresponding lowercase character.

IXON Enables start and stop output control. If this flag is set, a received STOP character
suspends output and a received START character restarts output. When the IXON flag is
set, START and STOP characters are not read, but merely perform flow-control functions.
When the IXON flag is not set, the START and STOP characters are read.

IXANY
Enables any character to restart output. If this flag is set, any input character restarts
output that was suspended.

IXOFF Enables start-and-stop input control. If this flag is set, the system transmits a STOP
character when the input queue is nearly full and a START character when enough input
has been read that the queue is nearly empty again.

c_oflag
Specifies how the system treats output. The initial output-control value is ″all bits clear″. The
possible output modes are:

OPOST
Post processes output. If this flag is set, output characters are post-processed as indicated
by the remaining flags; otherwise, characters are transmitted without change.

OLCUC
Maps lowercase to uppercase on output. If this flag is set, a lowercase alphabetic
character is transmitted as the corresponding uppercase character. This function is often
used in conjunction with the IUCLC input mode.

ONLCR
Maps NL to CR-NL on output. If this flag is set, the NL character is transmitted as the
CR-NL character pair.

OCRNL
Maps CR to NL on output. If this flag is set, the CR character is transmitted as the NL
character.

Chapter 4. Header Files 825

ONOCR
Indicates no CR output at column 0 (first position). If this flag is set, no CR character is
transmitted when at column 0 (first position).

ONLRET
NL performs the CR function. If this flag is set, the NL character is assumed to do the
carriage-return function. The column pointer is set to 0, and the delay specified for
carriage return is used. If neither the ONLCR, OCRNL, ONOCR, nor ONLRET flag is set,
the NL character is assumed to do the line-feed function only. The column pointer remains
unchanged. The column pointer is also set to 0 if the CR character is actually transmitted.

The delay bits specify how long a transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. The actual delays depend on line speed and
system load.

OFILL Uses fill characters for delay. If this flag is set, fill characters are transmitted for a delay
instead of a timed delay. This is useful for high baud rate terminals that need only a
minimal delay.

OFDEL
If this flag is set, the fill character is DEL. If this flag is not set, the fill character is NULL.

NLDLY
Selects the new-line character delays. This is the mask to use before comparing to NL0
and NL1:

NL0 Specifies no delay.

NL1 Specifies one delay of approximately 0.10 seconds. If the ONLRET flag is set, the
carriage-return delays are used instead of the new-line delays. If the OFILL flag is
set, two fill characters are transmitted.

CRDLY
Selects the carriage-return delays. This is the mask to use before comparing to CR0, CR1,
CR2, and CR3:

CR0 Specifies no delay.

CR1 Specifies that the delay is dependent on the current column position. If the OFILL
flag is set, two fill characters are transmitted.

CR2 Specifies a delay of approximately 0.10 seconds. If the OFILL flag is set, this
delay transmits four fill characters.

CR3 Specifies one delay of approximately 0.15 seconds.

TABDLY
Selects the horizontal-tab delays. This is the mask to use before comparing to TAB0,
TAB1, TAB2, and TAB3. If the OFILL flag is set, any of these delays (except TAB3)
transmit two fill characters:

TAB0 Specifies no delay.

TAB1 Specifies that the delay is dependent on the current column position. If the OFILL
flag is set, two fill characters are transmitted.

TAB2 Specifies a delay of approximately 0.10 seconds.

TAB3 Specifies that tabs are to be expanded into spaces.

BSDLY
Selects the backspace delays. This is the mask to use before comparing to BS0 and BS1:

BS0 Specifies no delay.

826 Files Reference

BS1 Specifies a delay of approximately 0.05 seconds. If the OFILL flag is set, this
delay transmits one fill character.

VTDLY
Selects the vertical-tab delays. This is the mask to use before comparing to VT0 and VT1:

VT0 Specifies no delay.

VT1 Specifies one delay of approximately 2 seconds.

FFDLY
Selects the form-feed delays. This is a mask to use before comparing to FF0 and FF1:

FF0 Specifies no delay.

FF1 Specifies a delay of approximately 2 seconds.

c_cflag
Describes the hardware control of the terminal. In addition to the basic control modes, this field
uses the following control characters:

CBAUD
Specifies baud rate. These bits specify the baud rate for a connection. For any particular
hardware, impossible speed changes are ignored.

B0 Specifies a zero baud rate which is used to hang up the connection. If B0 is
specified, the `data terminal ready’ signal is not asserted. As a result, the line is
usually disconnected. This delay transmits two fill characters. Normally, this
disconnects the line.

B50 Specifies 50 baud.

B75 Specifies 75 baud.

B110 Specifies 110 baud.

B134 Specifies 134.5 baud.

B150 Specifies 150 baud.

B200 Specifies 200 baud.

B300 Specifies 300 baud.

B600 Specifies 600 baud.

B1200 Specifies 1200 baud.

B1800 Specifies 1800 baud.

B2400 Specifies 2400 baud.

B4800 Specifies 4800 baud.

B9600 Specifies 9600 baud.

B19200
Specifies 19,200 baud.

B38400
Specifies 38,400 baud.

EXTA Specifies External A.

EXTB Specifies External B.

CSIZE Specifies the character size. These bits specify the character size, in bits, for both transmit
and receive operations. The character size does not include the parity bit, if one is used:

CS5 5 bits

Chapter 4. Header Files 827

CS6 6 bits

CS7 7 bits

CS8 8 bits

CSTOPB
Specifies the number of stop bits. If this flag is set, 2 stop bits are sent; otherwise, only 1
stop bit is sent.

CREAD
Enables the receiver. If this flag is set, the receiver is enabled. Otherwise, characters are
not received.

PARENB
Enables parity. If this flag is set, parity generation and detection is enabled and a parity bit
is added to each character.

PARODD
Specifies odd parity. If parity is enabled, the PARODD flag specifies odd parity if set. If
parity is enabled and the PARODD flag is not set, even parity is used.

HUPCL
Hangs up on last close. If this flag is set, the line is disconnected when the last process
closes the line or when the process terminates (when the `data terminal ready’ signal
drops).

CLOCAL
Specifies a local line. If this flag is set, the line is assumed to have a local, direct
connection with no modem control. If not set, modem control (dial-up) is assumed.

c_lflag
Controls various terminal functions. The initial value after an open is ″all bits clear.″ This field uses
the following mask name symbols:

ISIG Enables signals. If this flag is set, each input character is checked against the INTR and
QUIT special control characters. If an input character matches one of these control
characters, the function associated with that character is performed. If the ISIG function is
not set, checking is not done.

ICANON
Enables canonical input. If this flag is set, it turns on canonical processing, which enables
the erase and kill edit functions as well as the assembly of input characters into lines
delimited by NL, EOF, and EOL characters. If the ICANON flag is not set, read requests
are satisfied directly from the input queue. In this case, a read request is not satisfied until
one of the following conditions is met:

v The minimum number of characters specified by the MIN value are received.

v The time-out value specified by the TIME value has expired since the last character
was received.

As a result bursts of input can be read, while still allowing single-character input. The MIN
and TIME values are stored in the positions for the EOF and EOL characters, respectively.
The character values of MIN and TIME are converted to their ascii equivalents to get the
numeric value. The time value represents tenths of seconds.

XCASE
Enables canonical uppercase and lowercase presentation. If this flag is set along with the
ICANON flag, an uppercase letter (or the uppercase letter translated to lowercase by the
IUCLC input mode) is accepted on input by preceding it with a \ (backslash) character.
The output is then also preceded by a backslash character. In this mode, the output
generates and the input accepts the following escape sequences:

828 Files Reference

For Use

` (grave)
\ `

| \ !

~ \ ^

{ \ (

} \)

\ \ \

For example, A is input as \a, \n as \\n, and \N as \\\n.

NOFLSH
Disables queue flushing. If this flag is set, the normal flushing of the input and output
queues associated with the INTR and QUIT characters is not done.

ECHO Enables echo. If this flag is set, characters are echoed as they are received.

When the ICANON flag is set, the following echo functions are possible:

ECHOE
Echoes the erase character as Backspace-Space-Backspace. If the ECHO and ECHOE
flags are both set, the ERASE character is echoed as one or more ASCII
Backspace-Space-Backspace sequences, which clears the last characters from the
screen.

ECHOK
Echoes the NL character after kill. If the ECHOK flag is set, the NL character is echoed
after the kill character is received. This emphasizes that the line is deleted.

ECHONL
Echoes the NL character. If the ECHONL flag is set, the NL character is echoed even if
the ECHO flag is not set. This is useful for terminals that are set to ″local echo″ (also
referred to as ″half-duplex″).

c_cc Specifies an array that defines the special control characters. The relative positions and initial
values for each function are:

VINTR Indexes the INTR special character (Ctrl-c), which is recognized on input if the ISIG flag is
set. The INTR character generates a SIGINT signal, which is sent to all processes in the
foreground process group for which the terminal is the controlling terminal. If the ISIG flag
is set, the INTR character is discarded when processed.

VQUIT
Indexes the QUIT special character (Ctrl-\), which is recognized on input if the ISIG flag is
set. The QUIT character generates a SIGQUIT signal, which is sent to all processes in the
foreground process group for which the terminal is the controlling terminal, and writes a
core image file into the current working directory. If the ISIG flag is set, the QUIT
character is discarded when processed.

VERASE
Indexes the ERASE special character (Backspace), which is recognized on input if the
ICANON flag is set. The ERASE character does not erase beyond the beginning of the
line as delimited by a NL, EOL, EOF, or EOL2 character. If the ICANON flag is set, the
ERASE character is discarded when processed.

VKILL Indexes the KILL special character (Ctrl-u), which is recognized on input if the ICANON

Chapter 4. Header Files 829

flag is set. The KILL character deletes the entire line, as delimited by an NL, EOL, EOF, or
EOL2 character. If the ICANON flag is set, the KILL character is discarded when
processed.

VEOF Indexes the EOF special character (Ctrl-d), which is recognized on input if the ICANON
flag is set. When EOF is received, all the characters waiting to be read are immediately
passed to the process, without waiting for a new line, and the EOF is discarded. If the
EOF is received at the beginning of a line (no characters are waiting), a character count of
zero is returned from the read, indicating an end-of-file. If the ICANON flag is set, the EOF
character is discarded when processed.

VEOL Indexes the EOL special character (Ctrl-@ or ASCII NULL), which is recognized on input if
the ICANON flag is set. EOL is an additional line delimiter, like NL, and is not normally
used.

VEOL2
Indexes the EOL2 special character (Ctrl-@ or ASCII NULL), which is recognized on input
if the ICANON flag is set. EOL2 is another additional line delimiter, like NL, and is not
normally used.

VMIN Indexes the MIN value, which is not a special character. The use of the MIN value is
described in the discussion of non-canonical mode input processing in ″POSIX (termios.h
File) Line Discipline″ in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

VTIME
Indexes the TIME value, which is not a special character. The use of the TIME value is
described in the discussion of non-canonical mode input processing in ″POSIX (termios.h
File) Line Discipline″ in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

The character values for the following control characters can be changed:

INTR ERASE EOF EOL2

QUIT KILL EOL

The ERASE, KILL, and EOF characters can also be escaped (preceded with a backslash) so that
no special processing is done.

The primary ioctl subroutines have the form:
ioctl (FileDescriptor, Command, Structure)
struct termio *Structure;

The operations using this form are:

TCGETA
Gets the parameters associated with the terminal and stores them in the termio structure
referenced by the Structure parameter.

TCSETA
Sets the parameters associated with the terminal from the structure referenced by the Structure
parameter. The change is immediate.

TCSETAF
Waits for the output to drain, and then flushes the input queue and sets the new parameters.

TCSETAW
Waits for the output to drain before setting the new parameters. This form should be used when
changing parameters that will affect output.

830 Files Reference

Other ioctl subroutines have the form:
ioctl (FileDescriptor, Command, Value)
int Value;

The operations using this form are:

Note: If the user writes an application that performs a TCSBRK operation followed by a TCFLSH
operation prior to closing a port, the last data left in the concentrator box on the 64-port adapter is
lost. However, no problem occurs if an SIO, 8-port, or 16-port adapter is used.

TCSBRK
Waits for the output to drain. If the Value parameter has a value of 0, it sends a break of 0.25
seconds. A nonzero value causes a break condition of that many milliseconds.

TCSBREAK
Waits for the output to drain. If the Value parameter has a value of 0, it sends a break of .25
seconds. A nonzero value causes a break condition of that many milliseconds.

TCXONC
Starts and stops control. If the Value parameter has a value of 0, it suspends output. If the Value
parameter has a value of 1, it restarts suspended output. If the Value parameter has a value of 2,
it blocks input. If the Value parameter has a value of 3, it unblocks input.

TCFLSH
If the Value parameter has a value of 0, it flushes the input queue. If the Value parameter has a
value of 1, it flushes the output queue. If the Value parameter has a value of 2, it flushes both the
input and output queues.

Another form for ioctl subroutines is:
ioctl (FileDescriptor, Command, Structure)
struct csmap* Structure;

TCSCSMAP
Sets the code set map from the structure referenced by the structure parameter and rejects any
invalid map (any map with 0 length/width or a length greater than MB_LEN_MAX). The
/usr/include/sys/tty.h file contains the structure used for TCSCSMAP and TCGCSMAP
operations.

TCGCSMAP
Returns a copy of the current code set map in the structure referenced by the structure parameter.
The /usr/include/sys/tty.h file contains the structure used for TCSCSMAP and TCGCSMAP
operations.

The following ioctl operations are used for trusted communications path operations:

TCSAK
Points to an integer that enables the Secure Attention Key (SAK) sequence (Ctrl-X, Ctrl-R) to
provide a clean terminal to which only trusted processes can read or write. When SAK is enabled
and the user types this sequence, all processes that are currently running are ended. The
TCSAKON operation turns the SAK sequence on; the TCSAKOFF operation turns the SAK
sequence off.

TCQSAK
Queries the state (TCSAKON or TCSAKOFF) of the SAK sequence.

TCTRUST
Sets a bit by which another process can query, (with the TCQTRUST operation), the state of the
terminal, (TCTRUSTED or TCUNTRUSTED).

TCQTRUST
Queries the state of the terminal (TCTRUSTED or TCUNTRUSTED).

Chapter 4. Header Files 831

Related Information
The fork subroutine, ioctl subroutine, setpgrp subroutine, sigvec subroutine.

The csh command, getty command, stty command, tset command.

The tty Subsystem Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

termios.h File

Purpose
Defines the structure of the termios file, which provides the terminal interface for POSIX compatibility.

Description
The /usr/include/termios.h file contains information used by subroutines that apply to terminal files. The
definitions, values, and structures in this file are required for compatibility with the POSIX standard. The
termios.h file also supports ioctl modem-control operations.

The general terminal interface information is contained in the termio.h file. The termio structure in the
termio.h file defines the basic input, output, control, and line discipline modes. If a calling program is
identified as requiring POSIX compatibility, the termios structure and additional POSIX control-packet
information in the termios.h file is implemented. Window and terminal size operations use the winsize
structure, which is defined in the ioctl.h file. The termios structure in the termios.h file contains the
following fields:

v c_iflag

v c_oflag

v c_cflag

v c_lflag

v c_cc

The termios.h file also defines the values for the following parameters of the tcsetattr subroutine:

v OptionalActions

v QueueSelector

v Action

The termios.h file also supports ioctl modem-control operations.

Field Descriptions

c_iflag
Describes the basic terminal input control. The initial input-control value is all bits clear. The
possible input modes are:

IGNBRK
Ignores the break condition. In the context of asynchronous serial data transmission, a
break condition is defined as a sequence of zero-valued bits that continues for more than
the time required to send one byte. The entire sequence of zero-valued bits is interpreted
as a single break condition, even if it continues for an amount of time equivalent to more
than one byte. If the IGNBRK flag is set, a break condition detected on input is ignored,
which means that it is not put on the input queue and therefore not read by any process.

BRKINT
Signal interrupt on the break condition. If the IGNBRK flag is not set and the BRKINT flag

832 Files Reference

is set, the break condition flushes the input and output queues. If the terminal is the
controlling terminal of a foreground process group, the break condition generates a
SIGINT signal to that foreground process group. If neither the IGNBRK nor the BRKINT
flag is set, a break condition is read as a single \0, or if the PARMRK flag is set, as \377,
\0, \0.

IGNPAR
Ignores characters with parity errors. If this flag is set, a byte with a framing or parity error
(other than break) is ignored.

PARMRK
Marks parity errors. If the PARMRK flag is set, and the IGNPAR flag is not set, a byte with
a framing or parity error (other than break) is given to the application as the
three-character sequence \377, \0, x, where \377, \0 is a two-character flag preceding
each sequence and x is the data of the character received in error. To avoid ambiguity in
this case, if the ISTRIP flag is not set, a valid character of \377 is given to the application
as \377, \377. If neither the IGNPAR nor the PARMRK flag is set, a framing or parity error
(other than break) is given to the application as a single character \0.

INPCK
Enables input parity checking. If this flag is set, input parity checking is enabled. If not set,
input parity checking is disabled. This allows for output parity generation without input
parity errors.

ISTRIP
Strips characters. If this flag is set, valid input characters are first stripped to 7 bits.
Otherwise, all 8 bits are processed.

INLCR
Maps a new-line character (NL) to a carriage return (CR) on input. If this flag is set, a
received NL character is translated into a CR character.

IGNCR
Ignores CR character. If this flag is set, a received CR character is ignored and not read.

ICRNL
Maps a CR character to the NL character on input. If the ICRNL flag is set and the IGNCR
flag is not set, a received CR character is translated into a NL character.

IUCLC
Maps uppercase to lowercase on input. If this flag is set, a received uppercase, alphabetic
character is translated into the corresponding lowercase character.

IXON Enables start and stop output control. If this flag is set, a received STOP character
suspends output and a received START character restarts output. When the IXON flag is
set, START and STOP characters are not read, but merely perform flow-control functions.
When the IXON flag is not set, the START and STOP characters are read.

IXANY
Enables any character to restart output. If this flag is set, any input character restarts
output that was suspended.

IXOFF Enables start-and-stop input control. If this flag is set, the system transmits a STOP
character when the input queue is nearly full and a START character when enough input
has been read that the queue is nearly empty again.

IMAXBEL
Echoes the ASCII BEL character if the input stream overflows. Further input is not stored,
but input already present in the input stream is not lost. If this flag is not set, no BEL
character is echoed; the input in the input queue is discarded if the input stream overflows.
This function also requires the IEXTEN bit to be set.

Chapter 4. Header Files 833

c_oflag
Specifies how the system treats output. The initial output-control value is ″all bits clear.″ The
possible output modes are:

OPOST
Post-processes output. If this flag is set, output characters are post-processed as indicated
by the remaining flags. Otherwise, characters are transmitted without change.

OLCUC
Maps lowercase to uppercase on output. If this flag is set, a lowercase alphabetic
character is transmitted as the corresponding uppercase character. This flag is often used
in conjunction with the IUCLC input mode.

ONLCR
Maps NL to CR-NL on output. If this flag is set, the NL character is transmitted as the
CR-NL character pair.

OCRNL
Maps CR to NL on output. If this flag is set, the CR character is transmitted as the NL
character.

ONOCR
Indicates no CR output at column 0. If this flag is set, no CR character is transmitted when
at column 0 (first position).

ONLRET
NL performs CR function. If this flag is set, the NL character is assumed to do the
carriage-return function. The column pointer is set to 0, and the delay specified for
carriage return is used. If neither the ONLCR, OCRNL, ONOCR, nor ONLRET flag is set,
the NL character is assumed to do the line-feed function only. The column pointer remains
unchanged. The column pointer is set to 0 if the CR character is actually transmitted.

The delay bits specify how long a transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. The actual delays depend on line speed and
system load.

OFILL Uses fill characters for delay. If this flag is set, fill characters are transmitted for a delay instead of
a timed delay. This is useful for high baud rate terminals that need only a minimal delay.

OFDEL
If this flag is set, the fill character is DEL. If this flag is not set, the fill character is NULL.

NLDLY
Selects the new-line character delays. This is the mask to use before comparing to NL0 and NL1:

NL0 Specifies no delay.

NL1 Specifies a delay of approximately 0.10 seconds. If the ONLRET flag is set, the
carriage-return delays are used instead of the new-line delays. If the OFILL flag is set, two
fill characters are transmitted.

CRDLY
Selects the carriage-return delays. This is the mask to use before comparing to CR0, CR1, CR2,
and CR3:

CR0 Specifies no delay.

CR1 Specifies that the delay is dependent on the current column position. If the OFILL flag is
set, this delay transmits two fill characters.

CR2 Specifies a delay of approximately 0.10 seconds. If the OFILL flag is set, this delay
transmits four fill characters.

CR3 Specifies a delay of approximately 0.15 seconds.

834 Files Reference

TABDLY
Selects the horizontal-tab delays. This is the mask to use before comparing to TAB0, TAB1, TAB2,
and TAB3. If the OFILL flag is set, any of these delays (except TAB3) transmit two fill characters.

TAB0 Specifies no delay.

TAB1 Specifies that the delay is dependent on the current column position. If the OFILL flag is
set, two fill characters are transmitted.

TAB2 Specifies a delay of approximately 0.10 seconds.

TAB3 Specifies that tabs are to be expanded into spaces.

BSDLY
Selects the backspace delays. This is the mask to use before comparing to BS0 and BS1:

BS0 Specifies no delay.

BS1 Specifies a delay of approximately 0.05 seconds. If the OFILL flag is set, this delay
transmits one fill character.

VTDLY
Selects the vertical-tab delays. This is the mask to use before comparing to VT0 and VT1:

VT0 Specifies no delay.

VT1 Specifies a delay of approximately 2 seconds.

FFDLY
Selects the form-feed delays. This is the mask to use before comparing to FF0 and FF1:

FF0 Specifies no delay.

FF1 Specifies a delay of approximately 2 seconds.

c_cflag
Describes the hardware control of the terminal. In addition to the basic control modes, this field
uses the following control characters:

CBAUD
Specifies baud rate. These bits specify the baud rate for a connection. For any particular
hardware, impossible speed changes are ignored.

B50 50 baud.

B75 75 baud.

B110 110 baud.

B134 134.5 baud.

B150 150 baud.

B200 200 baud.

B300 300 baud.

B600 600 baud.

B1200 1200 baud.

B1800 1800 baud.

B2400 2400 baud.

B4800 4800 baud.

B9600 9600 baud.

Chapter 4. Header Files 835

B19200
19200 baud.

B38400
38400 baud.

EXTA External A.

EXTB External B.

CSIZE Specifies the character size. These bits specify the character size, in bits, for both transmit
and receive operations. The character size does not include the parity bit, if one is used:

CS5 5 bits

CS6 6 bits

CS7 7 bits

CS8 8 bits.

CSTOPB
Specifies number of stop bits. If this flag is set, 2 stop bits are sent; otherwise, only 1 stop
bit is sent.

CREAD
Enables receiver. If this flag is set, the receiver is enabled. Otherwise, characters are not
received.

PARENB
Enables parity. If this flag is set, parity generation and detection is enabled and a parity bit
is added to each character.

PARODD
Specifies odd parity. If parity is enabled, the PARODD flag specifies odd parity if set. If
parity is enabled and the PARODD flag is not set, even parity is used.

HUPCL
Hangs up on last close. If this flag is set, the line is disconnected when the last process
closes the line or when the process terminates (when the `data terminal ready’ signal
drops).

CLOCAL
Specifies a local line. If this flag is set, the line is assumed to have a local, direct
connection with no modem control. If not set, modem control (dial-up) is assumed.

CIBAUD
Specifies the input baud rate if different from the output rate.

PAREXT
Specifies extended parity for mark and space parity.

c_lflag
Controls various terminal functions. The initial value after an open is ″all bits clear.″ In addition to
the basic modes, this field uses the following mask name symbols:

ISIG Enables signals. If this flag is set, each input character is checked against the INTR, QUIT,
SUSP, and DSUSP special control characters. If an input character matches one of these
control characters, the function associated with that character is performed. If the ISIG flag
is not set, checking is not done.

ICANON
Enables canonical input. If this flag is set, it turns on canonical processing, which enables
the erase and kill edit functions as well as the assembly of input characters into lines

836 Files Reference

delimited by NL, EOF, and EOL characters. If the ICANON flag is not set, read requests
are satisfied directly from the input queue. In this case, a read request is not satisfied until
one of the following conditions is met:

v The minimum number of characters specified by MIN are received.

v The time-out value specified by TIME has expired since the last character was received.
This allows bursts of input to be read, while still allowing single-character input.

The MIN and TIME values are stored in the positions for the EOF and EOL characters,
respectively. The character values of MIN and TIME are converted to their ascii
equivalents to get the numeric value. The time value represents tenths of seconds.

XCASE
Enables canonical uppercase and lowercase presentation. If this flag is set along with the
ICANON flag, an uppercase letter (or the uppercase letter translated to lowercase by the
IUCLC input mode) is accepted on input by preceding it with a \ (backslash) character.
The output is then also preceded by a backslash character. In this mode, the output
generates and the input accepts the following escape sequences:

For Use

` (grave)
\ `

| \ !

~ \ ^

{ \ (

} \)

\ \ \

For example, A is input as \a, \n as \\n, and \N as \\\n.

NOFLSH
Disables queue flushing. If this flag is set, the normal flushing of the input and output
queues associated with the INTR, QUIT, and SUSP characters is not done.

FLUSHO
Flushes the output. When this bit is set by typing the FLUSH character, data written to the
terminal is discarded. A terminal can cancel the effect of typing the FLUSH character by
clearing this bit.

PENDIN
Reprints pending input. If this flag is set, any input that is pending after a switch from raw
to canonical mode is re-input the next time a read operation becomes pending or the next
time input arrives. The PENDIN flag is an internal-state bit.

IEXTEN
Enables extended (implementation-defined) functions to be recognized from the input data.
If this flag is not set, implementation-defined functions are not recognized, and the
corresponding input characters are processed as described for the ICANON, ISIG, IXON,
and IXOFF flags. Recognition of the following special control characters requires the
IEXTEN flag to be set:

v VEOL2

v VDSUSP

v VREPRINT

v VDISCRD

v VWERSE

Chapter 4. Header Files 837

v VLNEXT

The functions associated with the following bits also require the IEXTEN flag to be set:

v IMAXBEL

v ECHOKE

v ECHOPRT

v ECHOCTL

TOSTOP
Sends a SIGTTOU signal when a process in a background process group tries to write to
its controlling terminal. The SIGTTOU signal stops the members of the process group.

ECHO Enables echo. If this flag is set, characters are echoed as they are received.

When the ICANON is set, the following echo functions are also possible:

ECHOE
Echoes the erase character as Backspace-Space-Backspace. If the ECHO and ECHOE
flags are both set and the ECHOPRT flag is not set, the ERASE and WERASE characters
are echoed as one or more ASCII Backspace-Space-Backspace sequences, which clears
the last characters from the screen.

ECHOPRT
If the ECHO and ECHOPRT flags are both set, the first ERASE and WERASE character
in a sequence are echoed as a \ (backslash), followed by the characters being erased.
Subsequent ERASE and WERASE characters echo the characters being erased, in
reverse order. The next non-erase character causes a / (slash) to be typed before the
nonerase character is echoed. This function also requires the IEXTEN bit to be set.

ECHOKE
Backspace-Space-Backspace entire line on line kill. If this flag is set, the kill character is
echoed by erasing the entire line from the screen (using the mechanism selected by the
ECHOE and ECHOPRT flags). This function also requires the IEXTEN flag to be set.

ECHOK
Echoes the NL character after kill. If the ECHOK flag is set and the ECHOKE flag is not
set, the NL character is echoed after the kill character is received. This emphasizes that
the line is deleted.

ECHONL
Echoes the NL character. If the ECHONL flag is set, the NL character is echoed even if
the ECHO flag is not set. This is useful for terminals that are set to ″local echo″ (also
referred to as ″half-duplex″).

ECHOCTL
Echoes control characters (with codes between 0 and 37 octal) as ^X, where X is the
character that results from adding 100 octal to the code of the control character. (For
example, the character with octal code 1 is echoed as ^A). The ASCII DEL character (code
177 octal) is echoed as ^?. The ASCII TAB, NL, and START characters are not echoed.
Unless escaped (preceded by a backslash), the EOF character is not echoed. As a result,
because EOT is the default EOF character, terminals that respond to EOT are prevented
from hanging up. This function also requires the IEXTEN flag to be set.

c_cc Specifies an array that defines the special control characters. The relative positions and initial
values for each function are:

VINTR Indexes the INTR special character (Ctrl-c), which is recognized on input if the ISIG flag is
set. The INTR character generates a SIGINT signal, which is sent to all processes in the
foreground process group for which the terminal is the controlling terminal. If the ISIG flag
is set, the INTR character is discarded when processed.

838 Files Reference

VQUIT
Indexes the QUIT special character (Ctrl-\), which is recognized on input if the ISIG flag is
set. The QUIT character generates a SIGQUIT signal, which is sent to all processes in the
foreground process group for which the terminal is the controlling terminal, and writes a
core image file into the current working directory. If the ISIG flag is set, the QUIT
character is discarded when processed.

VERASE
Indexes the ERASE special character (Backspace), which is recognized on input if the
ICANON flag is set. The ERASE character does not erase beyond the beginning of the
line as delimited by a NL, EOL, EOF, or EOL2 character. If the ICANON flag is set, the
ERASE character is discarded when processed.

VKILL Indexes the KILL special character (Ctrl-u), which is recognized on input if the ICANON
flag is set. The KILL character deletes the entire line, as delimited by a NL, EOL, EOF, or
EOL2 character. If the ICANON flag is set, the KILL character is discarded when
processed.

VEOF Indexes the EOF special character (Ctrl-d), which is recognized on input if the ICANON
flag is set. When EOF is received, all the characters waiting to be read are immediately
passed to the process, without waiting for a new line, and the EOF is discarded. If the
EOF is received at the beginning of a line (no characters are waiting), a character count of
zero is returned from the read, indicating an end-of-file. If the ICANON flag is set, the EOF
character is discarded when processed.

VEOL Indexes the EOL special character (Ctrl-@ or ASCII NULL), which is recognized on input if
the ICANON flag is set. EOL is an additional line delimiter, like NL, and is not normally
used.

VEOL2
Indexes the EOL2 special character (Ctrl-@ or ASCII NULL), which is recognized on input
if the ICANON and IEXTEN flags are set. EOL2 is an additional line delimiter, like NL, and
is not normally used.

VSTART
Indexes the START special character (Ctrl-q), which is recognized on input if the IXON flag
is set, and generated on output if the IXOFF flag is set. The START character can be used
to resume output that has been suspended by a STOP character. If the IXON flag is set,
the START character is discarded when processed. While output is not suspended, START
characters are ignored and not read. VSTRT is an alias for VSTART.

VSTOP
Indexes the STOP special character (Ctrl-s), which is recognized on input if the IXON flag
is set, and generated on output if the IXOFF flag is set. The STOP character can be used
to with terminals to prevent output from disappearing before it can be read. If the IXON
flag is set, the STOP character is discarded when processed. While output is suspended,
STOP characters are ignored and not read.

VSUSP
Indexes the SUSP special character (Ctrl-z), which is recognized on input if the ISIG flag
is set. The SUSP character generates a SIGTSTP signal, which is sent to all processes in
the foreground process group for which the terminal is the controlling terminal. If the ISIG
flag is set, the SUSP character is discarded when processed.

VDSUSP
Indexes the DSUSP special character (Ctrl-y), which is recognized on input if the ISIG and
IEXTEN flags are set. The DSUSP character generates a SIGTSTP signal as the SUSP
character does, but the signal is sent when a process in the foreground process group
attempts to read the DSUSP character, rather than when DSUSP is typed. If the ISIG and
IEXTEN flags are set, the DSUSP character is discarded when processed.

Chapter 4. Header Files 839

VREPRINT
Indexes the REPRINT special character (Ctrl-r), which is recognized on input if the
ICANON and IEXTEN flags are set. The REPRINT character reprints all characters,
preceded by a new line, that have not been read. If the ICANON and IEXTEN flags are
set, the REPRINT character is discarded when processed.

VDISCRD
Indexes the DISCARD special character (Ctrl-o), which is recognized on input if the
ICANON and IEXTEN flags are set. The DISCARD character causes subsequent output to
be discarded until another DISCARD character is typed, more input arrives, or the
condition is cleared by a program. If the ICANON and IEXTEN flags are set, the
DISCARD character is discarded when processed.

VWERSE
Indexes the WERASE special character (Ctrl-w), which is recognized on input if the
ICANON and IEXTEN flags are set. The WERASE character causes the preceding word
to be erased. The WERASE character does not erase beyond the beginning of the line as
delimited by a NL, EOL, EOF, or EOL2 character. If the ICANON and IEXTEN flags are
set, the WERASE character is discarded when processed.

VLNEXT
Indexes the LNEXT (literal next) special character (Ctrl-v), which is recognized on input if
the ICANON and IEXTEN flags are set. The LNEXT character causes the special meaning
of the next character to be ignored so that characters can be input without being
interpreted by the system. If the ICANON, ECHO, and IEXTEN flags are set, the LNEXT
character is replaced by a ^-Backspace sequence when processed.

VMIN Indexes the MIN value, which is not a special character. The use of the MIN value is
described in the discussion of noncanonical mode input processing in ″ldterm Line
Discipline″ in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

VTIME
Indexes the TIME value, which is not a special character. The use of the TIME value is
described in the discussion of noncanonical mode input processing in ″ldterm Line
Discipline″ in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

The character values for the following control characters can be changed:

INTR EOF STOP DISCARD
QUIT EOL SUSP WERASE
ERASE EOL2 DSUSP LNEXT
KILL START REPRINT

The ERASE, KILL, and EOF characters can also be escaped (preceded by a backslash) so that
no special processing is done.

Parameter Value Definitions
The following values for the OptionalActions parameter of the tcsetattr subroutine are also defined in the
termios.h file:

TCSANOW Immediately sets the parameters associated with the terminal from the referenced termios
structure.

TCSADRAIN Waits until all output written to the object file has been transmitted before setting the terminal
parameters from the termios structure.

TCSAFLUSH Waits until all output written to the object file has been transmitted and until all input received but
not read has been discarded before setting the terminal parameters from the termios structure.

840 Files Reference

The following values for the QueueSelector parameter of the tcflush subroutine are also defined in this
header file:

TCIFLUSH Flushes data that is received but not read.
TCOFLUSH Flushes data that is written but not transmitted.
TCIOFLUSH Flushes data that is received but not read as well as data that is written but not transmitted.

The following values for the Action parameter of the tcflow subroutine are also defined in the termios.h
file:

TCOOFF Suspends the output of data by the object file named in the tcflow subroutine.
TCOON Restarts data output that was suspended by the TCOOFF action.
TCIOFF Transmits a stop character to stop data transmission by the terminal device.
TCION Transmits a start character to start or restart data transmission by the terminal device.

Modem Control Operations
The following ioctl operations, used for modem control, are an extension to the POSIX line discipline
interface. To use these operations in a program, the program must contain an #include statement for the
ioctl.h file.

TIOCMBIS The argument to this command is a pointer to an integer that turns on the control lines specified by
the integer mask value. No other control lines are affected.

TIOCMBIC The argument to this command is a pointer to an integer that turns off the control lines specified by
the integer mask value. No other control lines are affected.

TIOCMGET Gets all modem bits. The argument to this command is a pointer to an integer where the current
state of the modem status lines is stored. Which modem status and modem control lines are
supported depends on the capabilities of the hardware and the hardware’s device driver.

Chapter 4. Header Files 841

TIOCMSET Sets all modem bits. The argument to this command is a pointer to an integer containing a new set
of modem bits. The modem control bits use these bits to turn the modem control lines on or off,
depending on whether the bit for that line is set or clear. Any modem status bits are ignored. The
actual modem control lines which are supported depend on the capabilities of the hardware and the
hardware’s device driver.

The integer specifies one of the following modem control or status lines on which the modem control
ioctl command operates:

TIOCM_LE
Line enable

TIOCM_DTR
Data terminal ready

TIOCM_RTS
Request to send

TIOCM_ST
Secondary transmit

TIOCM_SR
Secondary receive

TIOCM_CTS
Clear to send

TIOCM_CAR
Carrier detect

TIOCM_CD
TIOCM_CAR

TIOCM_RNG
Ring

TIOCM_RI
TIOCM_RNG

TIOCM_DSR
Data set ready.

842 Files Reference

TIOCMIWAIT Wait for modem status line to change status.

The argument is a pointer to an integer mask value specifying the modem status line(s) on which to
wait for a status change, and can consist of one or more of the following values:

TIOCM_CTS
Clear to send

TIOCM_CAR
Carrier detect

TIOCM_CD
TIOCM_CAR

TIOCM_RNG
Ring

TIOCM_RI
TIOCM_RNG

TIOCM_DSR
Data set ready.

The request blocks until one of the specified lines changes status, then returns to the caller. Note
that this ioctl blocks even if O_NDELAY or O_NONBLOCK is set.

If none of the specified lines changes status, the ioctl can block indefinitely, so it should be used in
conjunction with an alarm() timer.

If TIOCM_RNG or TIOCM_RI is specified, the transition is reported only when the status line
transitions from on to off due to hardware restrictions.
Note: Correct operation of this ioctl depends on correct cabling.

Related Information
The termiox.h file, types.h file.

The csh command, getty command, ksh command, stty command, tset command.

The cfgetispeed, cfgetospeed, cfsetispeed, cfsetospeed subroutine, ioctl subroutine, sigvec
subroutine, tcdrain subroutine, tcflow subroutine, tcflush subroutine, tcgetattr subroutine, tcsendbreak
subroutine, tcsetattr subroutine.

tty Subsystem Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

termiox.h File

Purpose
Defines the structure of the termiox file, which provides the extended terminal interface.

Description
The termiox.h file contains an extended terminal interface to support asynchronous hardware flow control.
It defines the termiox structure and ioctl operations using this structure. The termiox structure in the
termiox.h file contains the following fields:

v x_hflag

v x_cflag

v x_rflag

Chapter 4. Header Files 843

v x_sflag

The termiox.h file also supports ioctl hardware flow control operations.

Field Descriptions
x_hflag Describes the hardware flow control mode. The possible modes are:

CDXON
Enables CD hardware flow control on output. When set, output will occur only if the `receive
line signal detector’ (CD) line is raised by the connected device. If the CD line is dropped by
the connected device, output is suspended until the CD line is raised.

CTSXON
Enables CTS hardware flow control on output. When set, output will occur only if the `clear to
send’ (CTS) line is raised by the connected device. If the CTS line is dropped by the
connected device, output is suspended until the CTS line is raised.

DTRXOFF
Enables DTR hardware flow control on input. When set, the `data terminal ready’ (DTR) line is
raised. If the port needs to have its input stopped, it will drop the DTR line. It is assumed that
the connected device will stop its output until DTR is raised.

RTSXOFF
Enables RTS hardware flow control on input. When set, the `request to send’ (RTS) line is
raised. If the port needs to have its input stopped, it will drop the RTS line. It is assumed that
the connected device will stop its output until RTS is raised.

It is not possible to use simultaneously the following flow control modes:

v RTS and DTR

v CTS and CD.

Different hardware flow control modes may be selected by setting the appropriate flags. For example:

v Bi-directional RTS/CTS flow control by setting RTSXOFF and CTSXON

v Bi-directional DTR/CTS flow control by setting DTRXOFF and CTSXON

v Modem control or uni-directional CTS flow control by setting CTSXON.
x_cflag Reserved for future use.
x_rflag Reserved for future use.
x_sflag Describes the open discipline. This field must be set before the first open; it is usually done at

configuration time. The possible disciplines are:

DTR_OPEN
DTR open discipline. On open, the discipline raises the `data terminal ready’ (DTR) and
`request to send’ (RTS) lines, and waits for the `data carrier detect’ (DCD) line to be raised. If
the port is opened with the O_NDELAY or O_NONBLOCK flags, the wait is not done. The
DTR and RTS lines are dropped at close time.

WT_OPEN
World trade open discipline. On open, the discipline behaves like the DTR open discipline if
not in CDSTL mode. In CDSTL mode, the discipline does not raise the DTR line until the `ring
indicate’ (RI) line is raised. The DTR line is dropped when the DSR line drops for more than
20 milliseconds.

Hardware Flow Control Operations

The following ioctl operations are used for hardware flow control. To use these operations in a program,
the program must contain an #include statement for the ioctl.h file. The argument to these operations is a
pointer to a termiox structure.

TCGETX Gets the terminal parameters. The current terminal parameters are stored in the structure.
TCSETX Sets the terminal parameters immediately. The current terminal parameters are set according to the

structure. The change is immediate.

844 Files Reference

TCSETXW Sets the terminal parameters after end of output. The current terminal parameters are set according to
the structure. The change occurs after all characters queued for output have been transmitted. This
operation should be used when changing parameters will affect output.

TCSETXF Sets the terminal parameters after end of output and flushes input. The current terminal parameters are
set according to the structure. All characters queued for output are first transmitted, then all characters
queued for input are discarded, and then the change occurs.

Related Information
The termios.h file.

The ioctl subroutine.

tty Subsystem Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

types.h File

Purpose
Defines primitive system data types.

Description
The /usr/include/sys/types.h file defines data types used in system source code. Since some system
data types are accessible to user code, they can be used to enhance portability across different machines
and operating systems. For example, the pid_t type allows for more processes than the unsigned short
(ushort_t) type, and the dev_t type can be 16 bits rather than 32 bits.

Standard Type Definitions
The types.h file includes the following standard type definitions, which are defined with a typedef
statement:

daddr_t Used for disk addresses, except in i-nodes on disk. The /usr/include/sys/filsys.h file format
describes the format of disk addresses used in i-nodes.

caddr_t Core (memory) address.
clock_t Used for system times as specified in CLK_TCKs.
ino_t File system i-node number.
cnt_t File system reference count type.
dev_t Major and minor parts of a device code specify the kind of device and unit number of the device and

depend on how the system is customized.
chan_t Channel number (the minor’s minor).
off_t File offset, measured in bytes from the beginning of a file or device. off_t is normally defined as a

signed, 32-bit integer. In the programming environment which enables large files, off_t is defined to
be a signed, 64-bit integer.

offset_t 64-bit file offset, measured in bytes from the beginning of a file or device.
off64_t 64-bit file offset, measured in bytes from the beginning of a file or device.
soff_t 32-bit file offset, measured in bytes from the beginning of a file or device.
paddr_t Real address.
key_t IPC key.
time_t Timer ID. Times are encoded in seconds, since 00:00:00 UCT, January 1, 1970.
nlink_t Number of file links.
mode_t File mode.
uid_t User ID.
gid_t Group ID.
mid_t Module ID.
pid_t Process ID.

Chapter 4. Header Files 845

slab_t Security label.
mtyp_t Interprocess communication (IPC) message type.
size_t Data type is used for sizes of objects.
ssize_t Data type is used for a count of bytes or an error indication.
uchar_t Unsigned char.
ushort_t Unsigned short.
uint_t Unsigned int.
ulong_t Unsigned long.

Unsigned Integers and Addresses
The types.h file also includes the following type definitions for unsigned integers and addresses:
typedef struct _quad { long val[2]; } quad;
typedef long swblk_t;
typedef unsigned long size_t;

The following type definitions are for BSD compatibility only:
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;

Related Information
The values.h file.

The filsys.h file format.

unistd.h File

Purpose
Defines implementation characteristics identified by POSIX standard.

Description
The /usr/include/unistd.h file includes files that contain definitions that are required for compatibility with
the POSIX standard:

access.h Defines symbolic constants for the access subroutine.

The unistd.h file also defines symbolic constants for the pathconf, fpathconf, and sysconf subroutines.
The unistd.h file also defines the following symbols, which are used by POSIX applications to determine
implementation characteristics:

_POSIX_JOB_CONTROL POSIX-compatible job control is supported.
_POSIX_SAVED_IDS An exec subroutine saves the effective user and group IDs.
_POSIX_VERSION The version of the POSIX standard with which this version of the

operating system complies. The value of this symbol is 198808L.
_POSIX_CHOWN_RESTRICTED The use of the chown function is restricted to a process with the

appropriate privileges. The group ID of a file can be changed only to the
effective group ID or a supplementary group ID of the process. The
value of this symbol is -1.

_POSIX_VDISABLE The terminal special characters, which are defined in the termios.h file,
can be disabled if this character value is defined by the tcsetattr
subroutine. The value of this symbol is -1.

846 Files Reference

_POSIX_NO_TRUNC Path name components that are longer than NAME_MAX will generate
an error.

The unistd.h file also defines the following symbol, which is used by X/OPEN applications:

_XOPEN_VERSION The version of the X/OPEN standard with which this version of the operating system
complies.

Related Information
The limits.h file, sys/types.h file, termios.h file, values.h file.

The access subroutine, exec subroutine.

utmp.h File

Purpose
Defines the structures of certain user and accounting information files.

Description
The structure of the records in the utmp, wtmp, and failedlogin files is defined in the
/usr/include/utmp.h file. The utmp structure in this header file contains the following fields:

ut_user User login name.
ut_line Device name (console or lnxx). The maximum length of a string in this field is 11 characters plus a null

character. When accounting for something other than a process, the following special strings or formats
are allowed:

RUNLVL_MSG
Run level: specifically, the run level of the process.

BOOT_MSG
System boot: specifically, the time of the initial program load (IPL).

OTIME_MSG
Old time: specifically, the time of login.

NTIME_MSG
New time: specifically, the time idle.

ut_pid Process ID.

Chapter 4. Header Files 847

ut_type Type of entry, which can be one of the following values:

EMPTY
Unused space in file.

RUN_LVL
The run level of the process, as defined in the inittab file.

BOOT_TIME
The time at which the system was started.

OLD_TIME
The time at which a user logged on to the system.

NEW_TIME
The amount of time the user is idle.

INIT_PROCESS
A process spawned by the init command.

LOGIN_PROCESS
A getty process waiting for a login.

USER_PROCESS
A user process.

DEAD_PROCESS
A zombie process.

ACCOUNTING
A system accounting process.

UTMAXTYPE ACCOUNTING
The largest legal value allowed in the ut_type field.

Embedded within the utmp structure is the exit_status structure, which contains the following fields:

e_termination Termination status of a process.
e_exit Exit status of a process, marked as the DEAD_PROCESS value.
ut_time Time at which the entry was made.

Examples
#ifndef -H-UTMP
#define _H_UTMP
#define UTMP_FILE "/etc/utmp"
#define WTMP_FILE "/var/adm/wtmp"
#define ILOG_FILE "/etc/.ilog"
#define ut_name ut_user

struct utmp
{

char ut_user[256]; /* User login name */
char ut_id[14]; /* /etc/inittab id */
char ut_line[64]; /* device name (console, lnxx) */
pid_t ut_pid; /* process id */
short ut_type; /* type of entry */

#if !defined(__64BIT__)
int __time_t_space; /* for 32vs64-bit time_t PPC */

#endif
time_t ut_time; /* time entry was made */
struct exit_status
{

short e_termination; /* Process termination status */
short e_exit; /* Process exit status */

}

848 Files Reference

ut_exit; /* The exit status of a process
* marked as DEAD_PROCESS.
*/

char ut_host[256]; /* host name */
int __dbl_word_pad; /* for double word alignment */
int __reservedA[2];
int __reservedV[6];

};
/* Definitions for ut_type */

#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5 /* Process spawned by "init" */
#define LOGIN_PROCESS 6 /* A "getty" process */

/* waitingforlogin */
#define USER_PROCESS 7 /* A user process */
#define DEAD_PROCESS 8
#define ACCOUNTING 9
#define UTMAXTYPE ACCOUNTING /* Largest legal value */

/* of ut_type */

/* Special strings or formats used in the */
/* "ut_line" field when accounting for */
/* something other than a process. */
/* No string for the ut_line field can be more */
/* than 11 chars + a NULL in length. */

#define RUNLVL_MSG "run-level %c"
#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define TIME_MSG "new time"

#endif /* _H_UTMP */

Note: The who command extracts information from the /etc/utmp, /var/adm/wtmp, and
/etc/security/failedlogin files.

Files

/etc/utmp The path to the utmp file, which contains a record of users logged
in to the system.

/var/adm/wtmp The path to the wtmp file, which contains accounting information
about logged-in users.

/etc/security/failedlogin The path to the failedlogin file, which contains a list of invalid login
attempts.

Related Information
The getty command, init command, login command, who command, write command.

The utmp, wtmp, failedlogin file format.

values.h File

Purpose
Defines machine-dependent values.

Chapter 4. Header Files 849

Description
The /usr/include/values.h file contains a set of constants that are conditionally defined for particular
processor architectures. The model for integers is assumed to be a ones or twos complement binary
representation, in which the sign is represented by the value of the high-order bit.

BITS(type) Number of bits in the specified data type
HIBITS Short integer with only the high-order bit set (0x8000)
HIBITL Long integer with only the high-order bit set (0x80000000)
HIBITI Regular integer with only the high-order bit set (same as the HIBITL value)
MAXSHORT Maximum value of a signed short integer (0x7FFF = 32,767)
MAXLONG Maximum value of a signed long integer (0x7FFFFFFF = 2,147,483,647)
MAXINT Maximum value of a signed regular integer (same as the MAXLONG value)
MAXFLOAT Maximum value of a single-precision floating-point number
MAXDOUBLE Maximum value of a double-precision floating-point number
LN_MAXDOUBLE Natural logarithm of the MAXDOUBLE value
MINFLOAT Minimum positive value of a single-precision floating-point number
MINDOUBLE Minimum positive value of a double-precision floating-point number
FSIGNIF Number of significant bits in the mantissa of a single-precision floating-point number
DSIGNIF Number of significant bits in the mantissa of a double-precision floating-point number
FMAXEXP Maximum exponent of a single-precision floating-point number
DMAXEXP Maximum exponent of a double-precision floating-point number
FMINEXP Minimum exponent of a single-precision floating-point number
DMINEXP Minimum exponent of a double-precision floating-point number
FMAXPOWTWO Largest power of two that can be exactly represented as a single-precision floating-point

number
DMAXPOWTWO Largest power of two that can be exactly represented as a double-precision floating-point

number

Related Information
The math.h file, types.h file.

vmount.h File

Purpose
Defines the structure of the data associated with a virtual file system.

Description
The /usr/include/sys/vmount.h file defines the vmount structure. Each active virtual file system (VFS)
has a vmount structure associated with it. The vmount structure contains the mount parameters (such as
the mount object and the mounted-over object) for that VFS. The vmount data is created when the VFS is
mounted. The mntctl subroutine returns the VFS data.

The vmount structure contains the following fields to describe fixed-length data:

vmt_revision The revision code in effect when the program that created this VFS was compiled.
vmt_length The total length of the structure and data. This will always be a multiple of the word size (4

bytes).
vmt_fsid The two-word file system identifier; the interpretation of this identifier depends on the

vmt_gfstype field.
vmt_vfsnumber The unique identifier of the VFS. Virtual file systems and their identifiers are deleted at IPL

(initial program load).
vmt_time The time at which the VFS was created.
vmt_flags The general mount flags, for example: READONLY, REMOVABLE, DEVICE, REMOTE.

850 Files Reference

vmt_gfstype The type of the general file system. Possible values are:

MNT_JFS
Journaled file system (JFS)

MNT_NFS
SUN network file system

MNT_CDROM
CD-ROM file system

The remaining fields in the vmount structure describe variable-length data. Each entry in the vmt_data
array specifies the offset from the start of the vmount structure at which a data item appears, as well as
the length of the data item.

vmt_off Offset of the data, aligned on a word (32-bit) boundary.
vmt_size Actual size of the data in bytes.
vmt_data[VMT_OBJECT] Name of the device, directory, or file that is mounted.
vmt_data[VMT_STUB] Name of the device, directory, or file that is mounted over.
vmt_data[VMT_HOST] Short (binary) name of the host that owns the mounted object.
vmt_data[VMT_HOSTNAME] Long (character) name of the host that owns the mounted object.
vmt_data[VMT_INFO] Binary information passed to the file system implementation that supports

this object; the contents of this field are specific to the generic file system
(GFS) type defined by the vmt_gfstype field.

vmt_data[VMT_ARGS] Character-string representation of the arguments supplied when the VFS
was created.

Related Information
The mntctl subroutine, umount or uvmount subroutine, vmount or mount subroutine.

wctype.h File

Purpose
Contains wide-character classification and mapping utilities.

Syntax
#include <wctype.h>

Description
The wctype.h header defines the following data types through typedef:

wint_t As described in wchar.h.
wctrans_t A scalar type that can hold values that represent locale-specific character mappings.
wctype_t As described in wchar.h.

The wctype.h header declares the following as functions and may also define them as macros. Function
prototypes must be provided for use with an ISO C compiler.
int iswalnum(wint_t);
int iswalpha(wint_t);
int iswcntrl(wint_t);
int iswdigit(wint_t);
int iswgraph(wint_t);
int iswlower(wint_t);
int iswprint(wint_t);

Chapter 4. Header Files 851

int iswpunct(wint_t);
int iswspace(wint_t);
int iswupper(wint_t);
int iswxdigit(wint_t);
int iswctype(wint_t, wctype_t);
wint_t towctrans(wint_t, wctrans_t);
wint_t towlower(wint_t);
wint_t towupper(wint_t);
wctrans_t wctrans(const char *);
wctype_t wctype(const char *);

The wctype.h defines the following macro name:

WEOF Constant expression of type wint_t that is returned by several MSE functions to indicate end-of-file.

For all functions described in this header that accept an argument of type wint_t, the value will be
representable as a wchar_t or will equal the value of WEOF. If this argument has any other value, the
behaviour is undefined.

The behaviour of these functions is affected by the LC_CTYPE category of the current locale.

Inclusion of the wctype.h header may make visible all symbols from the headers ctype.h, stdio.h,
stdarg.h, stdlib.h, string.h, stddef.h time.h and wchar.h.

Related Information
The iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace,
iswupper, iswxdigit, iswctype, setlocale, towctrans, towlower, towupper, wctrans, and wctype
subroutines.

The locale.h and wchar.h header files.

wlm.h File

Purpose
Defines the constants, data structures and function prototypes used by the Workload Manager (WLM)
Application Programming Interface (API) subroutines.

Description
The wlm.h file defines the wlm_args, wlm_assign, wlm_info, wlm_bio_class_info_t, and
wlm_bio_dev_info_t, and wlm_proc_info structures. These structures are used by the WLM API
functions in the libwlm.a library.

The wlm_args Structure
The wlm_args structure is used to pass class information to WLM when using the API functions to create,
modify or delete a class. The wlm_args structure contains the following fields:

versflags
Specifies the 4 high-order bits that contain a version number used by the API to maintain binary
compatibility if the data structures are ever modified. The rest of the integer is used to pass flags
to the subroutines when needed.

This field should be initialized with a logical OR operation between the version number
WLM_VERSION and whatever flags are needed by the target subroutine. One flag common to all
the API calls is WLM_MUTE, which is used to suppress the output of error messages from the
WLM library to STDERR.

852 Files Reference

confdir
Specifies a null-terminated string. This field must be initialized with the name of the WLM
configuration to which the target subroutine applies (when applicable, depending on the particular
one).

Alternatively, this field can be set to a null string (\0). The null string indicates that the class
addition or modification is to be applied only to the WLM kernel data, not to the class description
files.

class This field is a structure of type struct class_definition that contains all the information pertaining
to the superclass or subclass that is needed by the target subroutine. The fields in this structure
can be initialized by a call to the wlm_init_class_definition subroutine so that you only need to
initialize the fields you wish to modify.

The main structure in the wlm_init_class_definition subroutine is the class description, struct
class_descr, with the following fields:

res Specifies an array of type struct wlm_bounds that contains the following fields for each
resource type and for each total limit:

min Specifies the minimum value, which is between 0 (the default) and 100 (unused
for total limits).

shares
Specifies the shares number, which is a value between 1 and 65535. The value -1
(default) indicates that the given resource is not managed by WLM for the class
(unused for total limits).

wlmu The union which contains the softmax (for all resources but total limits) and unit
(for total limits only) fields:

softmax
Specifies the soft maximum limit, which is a value between 0 and 100
(default). The value must be greater than or equal to the value of the min
field.

unit A string (3 characters maximum) which specifies the unit which apply to
the hardmax value for total limits. To let the unit undefined, set the softmax
field to WLM_UNIT_UNDEF. For WLM_RES_TOTALCONNECT and
WLM_RES_TOTALCPU, default unit is ″s″ (seconds) and other values are
″m″ (minutes), ″h″ (hours), ″d″ (days), ″w″ (weeks). For
WLM_RES_TOTALDISKIO, default unit is ″KB″ (kilobytes) and other
values are ″MB″ (megabytes), ″GB″ (gigabytes), ″TB″ (terabytes), ″PB″
(petabytes), ″EB″ (exabytes). The other total limits do not have units.

hardmax
For all resources but total limits. Specifies the hard maximum limit, which is a
value between 0 and 100 (default). The value must be greater than or equal to
each of the values of the min and softmax fields. For total limits, specifies their
value, possibly along with the unit field. The default (total limit unspecified) is
WLM_HARDMAX_UNDEF.

The resource types are defined as WLM_RES_CPU, WLM_RES_MEM, WLM_RES_BIO,
and total limits are defined as WLM_RES_TOTALCPU (total CPU time for a process),
WLM_RES_TOTALDISKIO (total disk IOs for a process), WLM_RES_TOTALCONNECT
(total Connection time), WLM_RES_TOTALPROC (total number of processes),
WLM_RES_TOTALTHRD (total number of Threads), WLM_RES_TOTALLOGIN (total
number of login sessions). Each value represents the index in the array of the element,
corresponding to the type of resource or total limit.

tier Specifies the tier number for the class, which is a value between 0 (default) and 9

Chapter 4. Header Files 853

inheritance
Specifies how a new process is classified. A value of 0 (the default) indicates that a new
process should be classified using the class assignment rules when calling the exec
subroutine. A value of 1 indicates that the process inherits the class assignment from its
parent process.

localshm
Indicates whether memory segments in this class remain local to the class (value 1) or if
they go to the Shared class (value 0, the default), when accessed by a process belonging
to another class.

assign_uid
Specifies the user ID of the user allowed to manually assign processes to the class. The
value must be a valid user ID.

The default when this attribute is not specified is that no user is authorized
(WLM_NOGUID).

assign_gid
Specifies the group ID of the users allowed to manually assign processes to the class.
The value must be a valid group ID. The value must be a valid group ID. The default when
this attribute is not specified is that no group is authorized (WLM_NOGUID).

If both the assign_uid and assign_gid fields are the default value, only the root user can
assign processes to the class.

admin_uid
Specifies the user ID of the user allowed to administer the subclasses of the superclass
(this attribute is valid only for superclasses)

admin_gid
Specifies the group ID of the users allowed to administer the subclasses of the superclass
(this attribute is valid only for superclasses)

If both the admin_uid and admin_gid fields are left to their default value
(WLM_NOGUID), only the root user can administer the subclasses of this superclass.

name Specifies the null-terminated full name of the class. The value must be in the format
super_name for a superclass and super_name.sub_name for a subclass. The superclass
name and subclass name are limited to 16 characters each. This field has no default
value.

In addition to the class description fields, the class_definition structure adds two more fields:

rset_name
Specifies a null-terminated character string containing the name of the resource set
(partition) that the class is restricted to, when applicable. The default is that the class can
access all the resources on the system.

descr_field
Specifies a null-terminated character string containing the description text of the class.
This field is optional and has no default.

The wlm_assign Structure
The wlm_assign structure is used to manually assign processes or groups of processes to a specified
superclass or subclass using the wlm_assign subroutine. The wlm_assign structure contains the
following fields:

854 Files Reference

wa_versflags Specifies the 4 high-order bits containing a version number. This version number is used by
the API to maintain binary compatibility if the data structures are ever modified. The rest of
the integer is used to pass flags to the subroutines when needed.

This field should be initialized with the version number WLM_VERSION. The flag
WLM_MUTE can be used to suppress the output of error messages from the WLM library
on stderr.

wa_pids Specifies the address of an array containing the process identifiers (PIDs) of the processes
to be manually assigned

wa_pid_count Specifies the number of PIDs in the array above
wa_pgids Specifies the address of an array containing the process group IDs (PGIDs) of the process

groups to be manually assigned
wa_pgid_count Specifies the number of PGIDs in the array above
wa_classname Specifies the full name of the superclass or the subclass of the class to which you want to

manually assign processes

The wlm_info Structure
The wlm_info structure is used to extract information about the current configuration parameters and
current resource utilization of the active classes using the wlm_get_info subroutine. The wlm_info
structure contains the following fields:

i_descr Specifies the class description of type struct class_descr
i_regul Specifies the per-resource-type array of structures, which are of the type struct wlm_regul,

containing the following fields:

consum
Specifies the resource consumption of the class. This value is expressed as a
percentage of the total resource available.

total Specifies the 64-bit number that represents the total amount of the resource
consumed by the class since its creation (or since WLM was started). The value can
be the number of milliseconds for CPU or the total number of 512-byte blocks for
disk I/O. This field is left null (not significant) for memory.

The indexes into the array of the various resources are defined as WLM_RES_CPU,
WLM_RES_MEM and WLM_RES_BIO.

i_class_id Specifies the class identifier (index of the class in the kernel class_control_block (ccb) table)
i_cl_pri Specifies the priority delta applied to the threads in the class for CPU regulation
i_cl_inuse Specifies the current number of processes in the class
i_cl_nblogins Specifies the current number of logins in the class.
i_cl_nbthreads Specifies the current number of threads in the class.
i_cl_npages Specifies the number of memory pages currently allocated to the class
i_cl_mem_hwm Specifies the maximum number of resident memory pages this class had since its creation

(memory high water mark)
i_cl_change_level Specifies the number of increments each time a change in the current WLM configuration

occurs. This field is used by the WLM monitoring tools.

The wlm_bio_class_info_t and wlm_bio_dev_info_t Structures
Two structures can be used to get the I/O statistics using the wlm_get_bio_stats subroutine, depending
on whether the application wants per-class or per-device statistics.

The wlm_bio_class_info_t structure is used to gather I/O statistics per class and per device. The
wlm_bio_class_info_t structure contains the following fields:

wbc_dev Specifies the device identifier (dev_t)

Chapter 4. Header Files 855

wbc_cid Specifies the class identifier (index of the class in the kernel class_control_block table).
Connecting the class ID and the class name can be performed by using the wlm_get_info
subroutine. This subroutine returns the class name (in the i_descr field) and the class ID (in
the i_class_id field) in the wlm_info structure.

wbc_regul Specifies a structure of type struct wlm_regul, which contains for the given class and device
the following disk I/O statistics:

v Resource utilization, which is expressed as a percentage of the total available throughput
of the device (consum)

v Total number of 512-byte blocks read/written from and to the device by processes in the
class since it was created, or since WLM started, whichever happened most recently

wbc_delay Specifies in milliseconds the delay imposed on the I/Os of the processes in the class to the
device. This delay is intended to limit utilization by class when it is consuming more than its
entitled share.

The wlm_bio_dev_info_t structure is used to gather the global statistics for a given device, taking into
account all I/Os to and from the device by all the classes accessing the device. This structure contains the
following fields:

wbd_dev Specifies the device identifier (dev_t)
wbd_active_cntrl Specifies the number of classes actively accessing the device
wbd_in_queue Specifies the number of requests in the device queue
wbd_last Specifies the device statistics for IOs that occurred during the last second.

This field is an array of integer values. The following symbolic values defined in the
wlm.h file describe each index in the array:

Index Description

WBS_OUT_RTHRPUT
Specifies the number of blocks actually read from the device (I/O
completed)

WBS_OUT_WTHRPUT
Specifies the number of blocks actually written to the device (I/O completed)

WBS_IN_RTHRPUT
Specifies the requested number of blocks to be read from the device

WBS_IN_WTHRPUT
Specifies the requested number of blocks to write to the device

WBS_REQUESTS
Specifies the number of read/write requests

WBS_QUEUED
Specifies the number of requests queued

WBS_STARVED
Specifies the number of requests starved (not serviced during the time
interval)

wbd_max Contains the maximum values observed since the device was first used (after WLM
was started) for all the entries of the array being described. For instance, the
wbd_max field could contain the maximum number of blocks actually read from the
device in one second since the device was first accessed.

wbd_av Contains the average values for all the entries in the array, such as the average
number of requests in the device queue

wbd_total Specifies an array of 64-bit integers. This array is parallel to the arrays that, for every
entry, contain the total of all the values measured every second since the device was
first accessed. For instance, the value could represent the total number of blocks
written to the device since the device was first accessed.

856 Files Reference

The wlm_proc_info Structure
The wlm_proc_info structure is used to extract Workload Manager information about a process using the
wlm_get_procinfo subroutine. The totalconnecttime, termtime, totalcputime, totaldiskio fields are only
meaningful when the total process limits are enabled. The wlm_proc_info structure contains the following
fields:

version
This field should be initialized with WLM_VERSION.

wlmflags
Specifies some Workload Manager properties of the process, such as process with a rset
SWLMRSET or as tag inheritance on fork SWLMTAGINHERITFORK or on exec
SWLMTAGINHERITEXEC.

totalconnecttime
Specifies the 64-bit number that represents the amount of time (in seconds) for which the login
session has been active.

termtime
Specifies the 64-bit number that represents the time (in seconds from 1970) when the process has
been requested to terminate.

totalcputime
Specifies the 64-bit number that represents the amount of the CPU consumption (in microseconds)
of the process.

totaldiskio
Specifies the 64-bit number that represents the amount of IO (in 512 bytes blocks) the process
has run.

classname
Specifies the full name of the superclass or the subclass in which the process is classified.

tag Specifies the character string associated with the process, if any (see wlm_set_tag subroutine).

Error Codes
The various WLM API subroutines may return one or several of the following error codes:

WLM_ALREADYINIT A call to the wlm_initialize subroutine has already been made
WLM_ATTERR Attribute format error
WLM_ATTGPATTR Attribute Value Grouping not allowed in attributes
WLM_ATTGPMISS Cannot find Attribute Value Grouping definition
WLM_ATTGPTOOLNG Attribute Value Grouping too long
WLM_BADATTAPP Could not access file (application field of attributes)
WLM_BADATTGP Bad format for Attribute Value Grouping
WLM_BADATTGRP Unknown group in attributes
WLM_BADATTTAG Invalid tag in attributes
WLM_BADATTTYP Invalid process type in attributes
WLM_BADATTUSR Unknown user in attributes
WLM_BADCLNAME Bad class name
WLM_BADCNAME Class names must be alphanumeric
WLM_BADCONFIG Invalid configuration name
WLM_BADDEFLIM Default limits value that is specified in the limits file is invalid
WLM_BADDEFSHR Default shares value that is specified in the shares file is invalid
WLM_BADFLAGS Invalid flags value
WLM_BADGID The specified group ID is not valid on the system
WLM_BADGRP The specified group ID is not valid on the system
WLM_BADINHER The value specified for the class inheritance attribute is invalid
WLM_BADHARDTOTALLIMIT Invalid total limit (under minimum)

Chapter 4. Header Files 857

WLM_BADHMAX The hard maximum limit values must be between 1 and 100
WLM_BADLIMFMT Value specified for minimum or maximum resource limit is invalid
WLM_BADLISATT Invalid list in attributes
WLM_BADLIST The process attribute list of an assignment rules is invalid
WLM_BADLOCALSHM Bad localshm value
WLM_BADMIN Minimum resource limits values must be between 0 and 100
WLM_BADRANGEF Invalid format for a time range
WLM_BADRGRP A group name specified in the rules file is invalid on the system
WLM_BADRSET Bad Rset attribute for a class
WLM_BADRUSR A user name specified in the rules file is invalid on the system
WLM_BADSHARES Shares values must be between 1 and 65535
WLM_BADSMAX The soft maximum limit values must be between 1 and 100
WLM_BADSHRFMT Value specified for resource shares is invalid
WLM_BADSUBLIMIT A subclass total limit exceeds its superclass limit: The superclass limit will be

used (warning)
WLM_BADSUPER Bad superclass for subclass assignment
WLM_BADTIER Tier values must be between 0 and 9
WLM_BADTAG An invalid tag is specified in a rule
WLM_BADTYP Invalid process type in rules
WLM_BADUID The specified user ID is not valid on the system
WLM_BADUSR The specified user ID is not valid on the system
WLM_BADVERS Bad version number passed in the versflags field
WLM_CANTASSIGN Could not make assignment (Internal error)
WLM_CANTCHECK Unable to check the configuration
WLM_CANTSETTAG Could not set tag (Internal error)
WLM_CHOWNERR Cannot change file ownership
WLM_CLASSMIS No class description found
WLM_CONFNOTFND No configuration found for this time
WLM_CONFNOTINSET Configuration not found in the set
WLM_CREATERR A file could not be created
WLM_DAEMONCMD Invalid WLM daemon command
WLM_DAEMONFAIL WLM daemon failed to update configuration
WLM_DUPKEY 2 classes have the same key (warning)
WLM_EFAULT Bad parameter address
WLM_EMPTYATTR No valid process attributes found
WLM_EMPTYRULE None of the file names specified in the application field of an assignment rule

could be accessed. The rule is ignored (warning).
WLM_EPERM Permission denied
WLM_ESRCH No such processes
WLM_EXCLATTR Exclusions not allowed in attributes
WLM_EXISTS The specified class already exists
WLM_HASSUBS The target superclass has subclasses
WLM_IGNRULE This rule is likely to be ignored (warning)
WLM_ISCONFSET This operation cannot apply to a configuration set
WLM_INVRANGE Invalid time range
WLM_ISLOCKED WLM configuration is locked: retry the operation later
WLM_LOADERR A class cannot be loaded into the kernel
WLM_LOCKERR Cannot lock file
WLM_MANYRULES Too many assignment rules
WLM_MANYITEMS Too many items in an assignment rule
WLM_MAXCLASSES The maximum number of classes has been reached
WLM_MINSMAX The minimum limit cannot be greater than the soft maximum limit
WLM_MKDIRERR A directory could not be created
WLM_MULTATTGP Attribute Value Grouping already defined
WLM_MULTATTR Multiple specifications not allowed in attributes
WLM_NOADMINSUB Admin attributes not applicable to subclasses

858 Files Reference

WLM_NOCLASS The specified class does not exist
WLM_NOCONFIG Missing configuration name
WLM_NOCONFINSET No configuration in the set
WLM_NOCONNECT Failure to connect to WLM daemon
WLM_NODAEMON Failure to start WLM daemon
WLM_NOMEM Not enough memory
WLM_NOSHRRULE Cannot specify rule for Shared class
WLM_NOSUBS The target superclass has no subclasses
WLM_NOSYSMAX Hardmax not allowed on memory for System class
WLM_NOTASSGND Process is not assigned
WLM_NOTCOMPLETE Could not assign all processes (warning)
WLM_NOTCURRENT Superclass update only applies to current configuration
WLM_NOTINITED No prior call to the wlm_initialize subroutine
WLM_NOTRUNNING WLM is not running
WLM_NOWILDCRD Wildcards not allowed in this field
WLM_ONEDEFAULT Only one default time range allowed in a set
WLM_OPENERR A file could not be opened
WLM_QUERYERR Cannot query WLM state
WLM_READERR Cannot read file
WLM_REFRULE A class is still referred to by rules
WLM_REMERR An attempt to remove a file did not succeed
WLM_RENAMERR An attempt to rename a file did not succeed
WLM_RMPREDEF Predefined classes (such as Default and System) cannot be removed
WLM_RNOCLASS A class specified in the rules file does not exist
WLM_RSVDNAME Predefined classes cannot be redefined
WLM_RULERR An assignment rule has an invalid format
WLM_RULESERR The assignment rules table cannot be loaded into the kernel
WLM_RULTOOLNG Rule too long
WLM_RUNERR The WLM library was not able to execute a command needed for the specific

function. This is not an application error, but most likely a system
administration problem. The commands used by the library are basic
operating system commands such as the lsuser, lsgroup, echo, and grep
commands.

WLM_RUNERRATT Cannot expand attribute
WLM_SETERR The WLM state transition requested is illegal
WLM_SHAREDLIM Shared class can have shares and limits set only for memory
WLM_SHAREDSUB Shared superclass cannot have subclasses
WLM_SMAXHMAX The soft maximum limit cannot be greater than the hard maximum limit
WLM_STATERR One or more file name(s) specified in the application field of an assignment

rule could not be accessed. The corresponding name(s) are ignored
(warning)

WLM_SUBINVALID No subclass specification allowed for this operation
WLM_SUMMINS The sum that the minimum limits for a given resource and a given tier cannot

exceed 100%
WLM_SYMLERR An attempt to create a symbolic link did not succeed
WLM_TAGTOOLONG Tag is too long
WLM_TOOLONG The specified class name is too long
WLM_TOOLONGATT Attribute list too long
WLM_TOOMANYATT Too many items in attributes
WLM_TOOMANYPID Process ID list too long
WLM_TOOSMALL Output buffer too small
WLM_TOTALLIMITOUTOFRANGE Invalid total limit (outside allowed range)
WLM_TRGAPS Gaps between time ranges in a configuration set
WLM_TRINDEFAULT Time range not allowed in default stanza
WLM_TROVERLAP Time ranges overlap in a configuration set
WLM_UNLOADERR Cannot unload class

Chapter 4. Header Files 859

WLM_UNSUPP Operation or flags value not supported
WLM_WILDCRDATT Wildcards not allowed in this attribute field
WLM_WRITERR An attempt to write to a file did not succeed

Related Information
The wlm_init_class_definition subroutine, wlm_assign subroutine, wlm_get_info subroutine.

Chapter 13. Workload Management in AIX 5L Version 5.2 System Management Concepts: Operating
System and Devices

x25sdefs.h File for X.25

Purpose
Contains the structures used by the X.25 application programming interface (API).

Description
The /usr/include/x25sdefs.h file defines the following structures used by X.25 subroutines.

Miscellaneous Structures

cb_link_name_struct Used to indicate the name of the X.25 port.
cb_msg_struct Used to indicate the type of message being received.
ctr_array_struct Used to store the counter values and identifiers for use with the x25_ctr_wait

structure.

Structures Used to Establish Calls and Transfer Data

cb_call_struct Used for calls made and accepted.
cb_data_struct Used for data transferred during a call.
cb_fac_struct Used for information about optional facilities being used.
cb_pvc_alloc_struct Used to indicate the logical channel number and port assigned to a permanent

virtual circuit (PVC).

Structures Used to Clear, Interrupt and Reset Calls

cb_clear_struct Used for calls being cleared.
cb_int_data_struct Used for data sent or received in an interrupt packet.
cb_res_struct Used for data sent or received in a reset-request packet.

Structures Used to Manage X.25 Communications

cb_circuit_info_struct Used for information about a virtual circuit.
Used for information about an X.25 adapter.

cb_link_stats_struct, x25_query_data, and x25_stats Used for statistics for an X.25 port.

For more information, see the individual descriptions of these structures.

Related Information
Using the X.25 Subroutines in AIX 5L Version 5.2 Communications Programming Concepts.

860 Files Reference

cb_call_struct Structure for X.25

Purpose
Used by the x25_call, x25_call_accept, and x25_receive subroutines to pass the X.25 port name, called
and calling addresses, facilities, and user data.

Syntax
#define X25FLG_D_BIT
0x00000001
#define X25FLG_LINK_NAME 0x00000002
#define X25FLG_CALLED_ADDR 0x00000004
#define X25FLG_CALLING_ADDR 0x00000008
#define X25FLG_CB_FAC 0x00000010
#define X25FLG_USER_DATA 0x00000020

struct cb_call_struct
{

unsigned long flags;
char *link_name;
char *called_addr;
char *calling_addr;
struct cb_fac_struct *cb_fac;
int user_data_len;
unsigned char *user_data;

} ;

Flags

X25_FLG_D_BIT Indicates that the call uses D-bit procedures.
X25_FLG_LINK_NAME Indicates that the link_name field is used.
X25_FLG_CALLED_ADDR Indicates that the called_addr field is used.
X25_FLG_CALLING_ADDR Indicates that the calling_addr field is used.
X25_FLG_CB_FAC Indicates that the cb_fac field is used.
X25_FLG_USER_DATA Indicates that the user_data field is used.

Fields

flags Notification to the API that the associated field has been used.
link_name Name of the X.25 port used for an incoming call.

Note: This is set to null on received packets.
called_addr Pointer to the network user address (NUA) of the called data terminal equipment (DTE).

The address is given in ASCIIZ format.
calling_addr Pointer to the NUA of the calling DTE. The address is given in ASCIIZ format.
cb_fac Pointer to the facilities information in the cb_fac_struct structure.
user_data_len Field length for call user data (CUD).
user_data Pointer to call user data (CUD).

cb_circuit_info_struct Structure for X.25

Purpose
Used by the x25_circuit_query subroutine to return information about the circuit.

Chapter 4. Header Files 861

Syntax
#define X25FLG_INCOMING_PACKET_SIZE

0x00000001
#define X25FLG_OUTGOING_PACKET_SIZE
0x00000002

#define X25FLG_INCOMING_THROUGHPUT_CLASS 0x00000004
#define X25FLG_OUTGOING_THROUGHPUT_CLASS 0x00000008
#define X25FLG_INCOMING_WINDOW_SIZE
0x00000010

#define X25FLG_OUTGOING_WINDOW_SIZE
0x00000020

struct cb_circuit_info_struct
{

unsigned long flags;
unsigned short lcn;
unsigned int incoming_packet_size;
unsigned int outgoing_packet_size;
unsigned int incoming_throughput_class;
unsigned int outgoing_throughput_class;
unsigned int incoming_window_size;
unsigned int outgoing_window_size;

} ;

Flags

X25_FLG_INCOMING_PACKET_SIZE Indicates that the incoming_packet_size field is
used.

X25_FLG_OUTGOING_PACKET_SIZE Indicates that the outgoing_packet_size field is
used.

X25_FLG_INCOMING_THROUGHPUT_CLASS Indicates that the incoming_throughput_class field
is used.

X25_FLG_OUTGOING_THROUGHPUT_CLASS Indicates that the outgoing_throughput_class field
is used.

X25_FLG_INCOMING_WINDOW_SIZE Indicates that the incoming_window_size field is
used.

X25_FLG_OUTGOING_WINDOW_SIZE Indicates that the outgoing_window_size field is
used.

Fields

flags Notification to the API that the associated field has been used.
lcn Logical channel number.
incoming_packet_size Actual size for incoming packets.
outgoing_packet_size Actual size for outgoing packets.
incoming_throughput_class Throughput class for incoming calls.
outgoing_throughput_class Throughput class for outgoing calls.
incoming_window_size Number of incoming packets that can be sent without confirmation.
outgoing_window_size Number of outgoing packets that can be sent without confirmation.

cb_clear_struct Structure for X.25

Purpose
Used by the x25_call_clear and x25_receive subroutines to pass the clear cause and diagnostic values,
called and calling addresses, facilities information, and user data.

862 Files Reference

Syntax
#define X25FLG_CAUSE ;0x00000001
#define X25FLG_DIAGNOSTIC 0x00000002
#define X25FLG_CALLED_ADDR 0x00000004
#define X25FLG_CALLING_ADDR 0x00000008
#define X25FLG_CB_FAC 0x00000010
#define X25FLG_USER_DATA 0x00000020

struct cb_clear_struct
{

unsigned long flags;
u_char cause;
u_char diagnostic;
char *called_addr;
char *calling_addr;
struct cb_fac_struct *cb_fac;
int user_data_len;
u_char *user_data;

};

Flags

X25_FLG_CAUSE Indicates that the cause field is used.
X25_FLG_DIAGNOSTIC Indicates that the diagnostic field is used.
X25_FLG_CALLED_ADDR Indicates that the called_addr field is used.
X25_FLG_CALLING_ADDR Indicates that the calling_addr field is used.
X25_FLG_CB_FAC Indicates that the cb_fac field is used.
X25_FLG_USER_DATA Indicates that the user_data field is used.

Fields

flags Notification to the API that the associated field has been used.
cause Cause value to be inserted in clear packet.
diagnostic Diagnostic reason to be inserted in packet.
called_addr Pointer to the network user address (NUA) of the called data terminal equipment (DTE).

The address is given in ASCIIZ format.
calling_addr Pointer to the NUA of the calling DTE. The address is given in ASCIIZ format.
cb_fac Pointer to the facilities information in the cb_fac_struct structure.
user_data_len Length of user-data field.
user_data Pointer to user data. This can be used only if ″fast select″ has been requested in the

call-request packet.

cb_data_struct Structure for X.25

Purpose
Used by the x25_send and x25_receive subroutines to pass data control information.

Syntax
#define X25FLG_D_BIT 0x00000001
#define X25FLG_Q_BIT 0x00000002
#define X25FLG_M_BIT 0x00000004
#define X25FLG_DATA 0x00000008

struct cb_data_struct

Chapter 4. Header Files 863

{
unsigned long flags;
int data_len;
unsigned char *data;

} ;

Flags

X25FLG_D_BIT If the D-bit has been set in the call packet, and the value is not zero, the remote data
terminal equipment (DTE) must acknowledge the packet.

X25FLG_Q_BIT Sets the Q-bit in the packet. A nonzero value is converted to a single 1-bit in the packet.
X25FLG_M_BIT Sets the M-bit in the packet. A nonzero value is converted to a single 1-bit in the packet.
X25_FLG_DATA Indicates that the data field is used.

Fields

flags Notification to the API that the associated field has been used.
data_len Length of data.
data Pointer to actual data.

cb_dev_info_struct Structure for X.25

Purpose
Used by the x25_device_query subroutine to pass device information.

Syntax
#define X25FLG_NUA 0x00000001
#define X25FLG_NO_OF_VCS 0x00000002
#define X25FLG_MAX_RX_PACKET_SIZE 0x00000004
#define X25FLG_MAX_TX_PACKET_SIZE 0x00000008
#define X25FLG_DEFAULT_SVC_RX_PACKET_SIZE 0x00000010
#define X25FLG_DEFAULT_SVC_TX_PACKET_SIZE 0x00000020

struct cb_dev_info_struct
{

unsigned long flags;
char *nua;
unsigned int no_of_vcs;
unsigned int max_rx_packet_size;
unsigned int max_tx_packet_size;
unsigned int default_svc_rx_packet_size;
unsigned int default_svc_tx_packet_size;

} ;

Flags

X25_FLG_NUA Indicates that the nua field is used.
X25_FLG_NO_OF_VCS Indicates that the no_of_vcs field is used.
X25_FLG_MAX_RX_PACKET_SIZE Indicates that the max_rx_packet_size field is

used.
X25_FLG_MAX_TX_PACKET_SIZE Indicates that the max_tx_packet_size field is

used.
X25_FLG_DEFAULT_SVC_RX_PACKET_SIZE Indicates that the default_svc_rx_packet_size

field is used.

864 Files Reference

X25_FLG_DEFAULT_SVC_TX_PACKET_SIZE Indicates that the default_svc_tx_packet_size
field is used.

Fields

flags Notification to the API that the associated field has been used.
nua Pointer to the network user address (NUA) recorded for the

device in ASCIIZ format.
no_of_vcs Number of permanent virtual circuits (PVCs) configured on this

device.
max_rx_packet_size Maximum receive packet size in bytes.
max_tx_packet_size Maximum transmit packet size in bytes.
default_svc_rx_packet_size Default receive packet size in bytes.
default_svc_tx_packet_size Default transmit packet size in bytes.

cb_fac_struct Structure for X.25

Purpose
Used by the x25_call and x25_call_accept subroutines to pass facilities information.

Syntax
#define X25FLG_RPOA

0x00000001

#define X25FLG_PSIZ
0x00000002

#define X25FLG_WSIZ
0x00000004

#define X25FLG_TCLS
0x00000008

#define X25FLG_REV_CHRG
0x00000010
#define X25FLG_FASTSEL

0x000000
20
#define X25FLG_FASTSEL_RSP 0x00000040
#define X25FLG_CUG

0x00000080

#define X25FLG_OA_CUG 0x0
0000100
#define X25FLG_BI_CUG 0x0
0000200
#define X25FLG_NUI_DATA 0x00000400
#define X25FLG_CI_SEG_CNT 0x00000800
#define X25FLG_CI_MON_UNT 0x00001000
#define X25FLG_CI_CALL_DUR 0x00002000
#define X25FLG_CI_REQUEST 0x00004000
#define X25FLG_CLAMN

0x00008000

#define X25FLG_CALL_REDR 0x00010000
#define X25FLG_TRAN_DEL 0x00020000
#define X25FLG_CALLING_ADDR_EXT 0x00040000
#define X25FLG_CALLED_ADDR_EXT 0x00080000
#define X25FLG_MIN_TCLS 0x00100000

Chapter 4. Header Files 865

#define X25FLG_END_TO_END_DEL 0x00200000
#define X25FLG_EXP_DATA 0x00400000
#define X25FLG_FACEXT 0x0
0800000

struct cb_fac_struct
{

u_long flags ;
unsigned fac_ext_len;
u_char *fac_ext; /*

for non-X.25 facilities */
u_char psiz_clg;
u_char psiz_cld;
u_char wsiz_clg;
u_char wsiz_cld;
u_char tcls_clg;
u_char tcls_cld;
unsigned rpoa_id_len;
ushort *rpoa_id;
ushort cug_id;
unsigned nui_data_len;
u_char *nui_data;
unsigned ci_seg_cnt_len;
u_char *ci_seg_cnt;
unsigned ci_mon_unt_len;
u_char *ci_mon_unt;
unsigned ci_cal_dur_len;
u_char *ci_cal_dur;
u_char call_redr_addr[X25_MAX_ASCII_ADDRESS_LENGTH];
u_char call_redr_reason;
short tran_del;
u_char calling_addr_ext_use;
char calling_addr_ext[X25_MAX_EXT_ADDR_DIGITS+1];
u_char called_addr_ext_use;
char called_addr_ext[X25_MAX_EXT_ADDR_DIGITS+1];
u_char clamn;
u_char min_tcls_clg;
u_char min_tcls_cld;
unsigned end_to_end_del_len;
ushort end_to_end_del[3];

};

Note: The example shows how to code the cb_fac_struct structure.

Flags

X25FLG_RPOA Recognized private operating agency selection required (rpoa_id).
X25FLG_PSIZ Packet size selection (psiz_clg, psiz_cld).
X25FLG_WSIZ Window size selection (wsiz_clg, wsiz_cld).
X25FLG_TCLS Throughput class required (tcls_clg, tcls_cld).
X25FLG_REV_CHRG Reverse Charge required (no corresponding field).
X25FLG_FASTSEL Fast select (no corresponding field).
X25FLG_FASTSEL_RSP Indicates whether a restricted response is required when the

X25FLG_FASTSEL flag is also requested (no corresponding field).
X25FLG_CUG Closed user group selection required (cug_id).
X25FLG_OA_CUG Closed user group with outgoing access (basic format) selection

required (cug_id).
X25FLG_BI_CUG Bilateral closed user group selection required (cug_id).
X25FLG_NUI_DATA Network user identification (nui_data).
X25FLG_CI_SEG_CNT Charging information: segment count (ci_seg_cnt).
X25FLG_CI_MON_UNT Charging information: monetary unit (ci_mon_unt).
X25FLG_CI_CAL_DUR Charging information: call duration (ci_cal_dur).

866 Files Reference

X25FLG_CI_REQUEST Charging information is required (no corresponding field).
X25FLG_CLAMN Called line address modified notification (clamn).
X25FLG_CALL_REDR Call redirection notification (call_redr_addr, call_redr_reason).
X25FLG_TRAN_DEL Transit delay selection and notification (tran_del).
X25FLG_CALLING_ADDR_EXT Calling address extension (calling_addr_ext_use, calling_addr_ext).
X25FLG_CALLED_ADDR_EXT Called address extension (called_addr_ext_use, called_addr_ext).
X25FLG_MIN_TCLS Quality of service negotiation: minimum throughput class (

min_tcls_clg, min_tcls_cld).
X25FLG_END_TO_END_DEL Quality of service negotiation: end-to-end transit delay (

end_to_end_del).
X25FLG_EXP_DATA Expedited data negotiation (no corresponding field).
X25FLG_FACEXT Facilities extension: for all other facilities, including national options (

fac_ext).

Fields
This section explains the meanings of structure fields but not the lengths associated with individual pointer
fields.

flags Notification to the API that the associated field has been used.
fac_ext Pointer to the facilities extension array (extra facility information provided by

the user or network). No checking is made on the validity of this information.
It allows extra facilities that the main cb_fac structure does not include. The
elements of the fac_ext field are copied directly into the facility field.

When the information is provided by the X.25 network or by the remote data
terminal equipment (DTE), it is the responsibility of the application to interpret
the field.

Only elements up to the first non-X.25 facility are decoded by the API. Facility
markers must be used in the fac_ext field if such facilities are required.

psiz_clg Indicates the requested size for packets transmitted from the calling DTE. The
following are supported values:

v 0x04 = 16 octets

v 0x05 = 32 octets

v 0x06 = 64 octets

v 0x07 = 128 octets

v 0x08 = 256 octets

v 0x09 = 512 octets

v 0x0A = 1024 octets

v 0x0B = 2048 octets

v 0x0C = 4096 octets

v
psiz_cld Requested size for packets transmitted from the called DTE. Supported

values are the same as for the psiz_clg field.
wsiz_clg Requested size for the window for packets transmitted by the calling DTE.

Values range from 0x01 to 0x07 inclusive.
wsiz_cld Requested size for the window for packets to be transmitted by the called

DTE. Values range from 0x01 to 0x07 inclusive.

Chapter 4. Header Files 867

tcls_clg Throughput class requested for data to be sent by the calling DTE. The
following are supported values:

v 0x07 = 1200 bits per second

v 0x08 = 2400 bits per second

v 0x09 = 4800 bits per second

v 0x0A = 9600 bits per second

v 0x0B = 19,200 bits per second

v 0x0C = 48,000 bits per second
tcls_cld Throughput class request for data sent from the called DTE. Supported

values are the same as for the tcls_clg field.
rpoa_id Indicates the requested RPOA (Requested Private Operating Agency) transit

network. Each element of the array is an RPOA identifier.
cug_id Indicates the identifier of a closed user group (CUG). Used for all modes of

CUG and also for bilateral CUGs.
nui_data Network user identification data in a format specified by the network

administrator.
ci_seg_cnt Charging information: segment count data.
ci_mon_unt Charging information: monetary unit data.
ci_cal_dur Charging information: call-duration data.
call_redr_addr The address to which the call has been redirected. The address is stored in

ASCIIZ format.
call_redr_reason Contains reason for call redirection.
tran_del Transit delay in milliseconds.
calling_addr_ext_use Indicates the use of the calling address extension.
calling_addr_ext Up to 40 digits containing the calling address extension. The address

extension is stored in ASCIIZ format. The following are values for the
extended calling and called address flags:

#DEFINE X25_FAC_ADDR_EXT_USE_ENTIRE_OSI_NSAP(0)
#DEFINE X25_FAC_ADDR_EXT_USE_PARTIAL_OSI_NSAP(1)
#DEFINE X25_FAC_ADDR_EXT_USE_NON_OSI(2)

called_addr_ext_use Indicates the use of the called address extension.
called_addr_ext Up to 40 digits containing the called address extension. The address

extension is stored in ASCIIZ format. See the calling_addr_ext field for
values.

clamn Called line address modified notification. Contains the reason for redirection.
min_tcls_clg Throughput class requested for data to be sent by the calling DTE. The

following are supported values:

v 0x07 = 1200 bits per second

v 0x08 = 2400 bits per second

v 0x09 = 4800 bits per second

v 0x0A = 9600 bits per second

v 0x0B = 19,200 bits per second

v 0x0C = 48,000 bits per second
min_tcls_cld Throughput class request for data sent from the called DTE. Supported

values are the same as for the min_tcls_clg field.
end_to_end_del Specifies cumulative requested end-to-end and maximum-acceptable transit

delays. Requested end-to-end and maximum-acceptable values are optional.

Examples
This is a simple example of the use of the cb_fac_struct structure:
/*

868 Files Reference

&
*/

struct cb_call_struct cb_call;
struct cb_fac_struct fac_struct;
u_char facilities_extension[10],facilities_extension[8];
ushort rpoa_ext_id[3] = {7,8,9};
char extended_calling_addr[]= "1234567890"; /* extension */
/* Initialize flags

*/
fac_struct.flags = 0;
/* Use of RPOAE

*/
fac_struct.rpoa_id = rpoa_ext_id;
fac_struct.rpoa_id_len = 3;
fac_struct.flags |= X25FLG_RPOA;
/* Use of extended addressing

*/
fac_struct.calling_addr_ext = extended_calling_addr;
fac_struct.flags |= X25FLG_CALLING_ADDR_EXT;
/* Use of extended facilities

*/
facilities_extension[0] = 0x00; /*
start of a Facility Marker */
facilities_extension[1] = 0x00; /*
non_X25 facility supported */

/* by
calling DTE

*/
facilities_extension[2] = 0x55; /*
a facility

*/
facilities_extension[3] = 0x66; /*
a facility

*/facilities_extension[4] = 0x00;
/* start of a Facility Marker */
facilities_extension[5] = 0xFF; /*
non_X25 facility supported */

/* by
called DTE

*/
facilities_extension[6] = 0x88; /*
a facility

*/
facilities_extension[7] = 0x99; /*
a facility

*/
strcpy(fac_struct.fac_ext, facilities_extension);
fac_struct.fac_ext_len = 8;
fac_struct.flags |= X25FLG_FACEXT;
/***/
/* In this example a cb_call structure
is initialized

*/

Chapter 4. Header Files 869

/* with a cb_fac structure.

*/
/***/
cb_call.cb_fac = &fac_struct;
cb_call.flags = X25FLG_CB_FAC;

cb_int_data_struct Structure for X.25

Purpose
Used by the x25_interrupt and x25_receive subroutines to pass the interrupt data.

Syntax
#define X25FLG_INT_DATA 0x00000001

struct cb_int_struct
{

unsigned long flags ;
unsigned char int_data_len;
unsigned char *int_data;

} ;

Flags

X25FLG_INT_DATA A non-zero value indicates the presence of data in the cb_int_data structure.

Fields

flags Notification to the API that the associated field has been used.
int_data_len Length of data in the cb_int_data structure.
int_data Interrupt data.

cb_link_name_struct Structure for X.25

Purpose
Used by the X25_init, x25_link_connect, x25_link_disconnect, x25_link_monitor, x25_device_query,
and x25_term subroutines to pass the name of the X.25 port.

Syntax
#define X25FLG_LINK_NAME 0x00000002

struct cb_link_name_struct
{

unsigned long flags;
char *link_name;

};

Flags

X25_FLG_LINK_NAME Indicates that the link_name field is used.

870 Files Reference

Fields

flags Notification to the API that the associated field has been used.
link_name Name of the X.25 port.

cb_link_stats_struct, x25_query_data, or x25_stats Structure for X.25

cb_links_stats_struct Structure
Used by the x25_link_statistics subroutine to pass statistics about an X.25 port.
#define X25FLG_NO_OF_VCS 0x00000008
#define X25FLG_LINK_STATS 0x00000020

struct cb_link_stats_struct
{

unsigned long flags;
unsigned int no_of_vcs;
struct x25_query_data x25_stats;

} ;

Flags

X25_FLG_NO_OF_VCS Indicates that the no_of_vcs field is used.
X25_FLG_LINK_STATS Indicates that the x25_stats structure is being used.

Fields

flags Notification to the API that the associated field has been used
no_of_vcs Number of virtual circuits currently in use for the X.25 port specified
x25_stats Pointer to an x25_query_data structure containing CIO and X.25 statistics

x25_query_data Structure
The x25_query_data structure is returned from the CIO_QUERY ioctl operation. It includes two structures:
the cio_stats structure containing standard statistics values found in the sys/comio.h file, and the
x25_stats structure containing specific X.25 statistics.
struct x25_query_data
{

struct cio_stats cc;
struct x25_stats ds;

};

x25_stats Structure
The x25_stats structure contains specific X.25 statistics.

Note: Flags are not used with this structure.
typedef unsigned short x25_stat_value_t;
struct x25_stats
{

Frame Level
x25_stat_value_t ignored_f_tx;
x25_stat_value_t rr_f_tx;
x25_stat_value_t rnr_f_tx;
x25_stat_value_t rej_f_tx;
x25_stat_value_t info_f_tx;
x25_stat_value_t sabm_f_tx;
x25_stat_value_t sarm_dm_f_tx;

Chapter 4. Header Files 871

x25_stat_value_t disc_f_tx;
x25_stat_value_t ua_f_tx;
x25_stat_value_t frmr_f_tx;
x25_stat_value_t bad_nr_f_tx;
x25_stat_value_t unknown_f_tx;
x25_stat_value_t xid_f_tx;
x25_stat_value_t bad_length_f_tx;
x25_stat_value_t t1_expirations;
x25_stat_value_t lvl2_connects;
x25_stat_value_t lvl2_disconnects;
x25_stat_value_t carrier_loss;
x25_stat_value_t connect_time; /* In seconds */
x25_stat_value_t t4_expirations;
x25_stat_value_t t4_n2_times;
x25_stat_value_t ignored_f_rx;
x25_stat_value_t rr_f_rx;
x25_stat_value_t rnr_f_rx;
x25_stat_value_t rej_f_rx;
x25_stat_value_t info_f_rx;
x25_stat_value_t sabm_f_rx;
x25_stat_value_t sarm_dm_f_rx;
x25_stat_value_t disc_f_rx;
x25_stat_value_t ua_f_rx;
x25_stat_value_t frmr_f_rx;
x25_stat_value_t bad_nr_f_rx;
x25_stat_value_t unknown_f_rx;
x25_stat_value_t xid_f_rx;
x25_stat_value_t bad_length_f_rx;
x25_stat_value_t data_p_tx;
x25_stat_value_t rr_p_tx;
x25_stat_value_t rnr_p_tx;
x25_stat_value_t interrupt_p_tx;
x25_stat_value_t interrupt_confirm_p_tx;
x25_stat_value_t call_request_p_tx;
x25_stat_value_t call_accept_p_tx;
x25_stat_value_t clear_request_p_tx;
x25_stat_value_t clear_confirm_p_tx;
x25_stat_value_t reset_request_p_tx;
x25_stat_value_t reset_confirm_p_tx;
x25_stat_value_t diagnostic_p_tx;
x25_stat_value_t registration_p_tx;
x25_stat_value_t registration_confirm_p_tx;
x25_stat_value_t restart_p_tx;
x25_stat_value_t restart_confirm_p_tx;
x25_stat_value_t error_p_tx;
x25_stat_value_t t20_expirations;
x25_stat_value_t t21_expirations;
x25_stat_value_t t22_expirations;
x25_stat_value_t t23_expirations;
x25_stat_value_t vc_establishments;
x25_stat_value_t t24_expirations;
x25_stat_value_t t25_expirations;
x25_stat_value_t t26_expirations;
x25_stat_value_t t28_expirations;
x25_stat_value_t data_p_rx;
x25_stat_value_t rr_p_rx;
x25_stat_value_t rnr_p_rx;
x25_stat_value_t interrupt_p_rx;
x25_stat_value_t interrupt_confirm_p_rx;
x25_stat_value_t incoming_call_p_rx;
x25_stat_value_t call_connected_p_rx;
x25_stat_value_t clear_indication_p_rx;
x25_stat_value_t clear_confirm_p_rx;
x25_stat_value_t reset_indication_p_rx;
x25_stat_value_t reset_confirm_p_rx;
x25_stat_value_t diagnostic_p_rx;
x25_stat_value_t registration_p_rx;

872 Files Reference

x25_stat_value_t registration_confirm_p_rx;
x25_stat_value_t restart_p_rx;
x25_stat_value_t restart_confirm_p_rx;
int transmit_profile [16];
int receive_profile [16];

};

Fields

ignored_f_tx Number of transmitted frames that have been ignored instead of
being transmitted.

rr_f_tx Number of RR (receive ready) frames transmitted.
rnr_f_tx Number of RNR (receive not ready) frames transmitted.
rej_f_tx Number of REJ (reject) frames transmitted.
info_f_tx Number of INFO (information) frames transmitted.
sabm_f_tx Number of SABM (set asynchronous balanced mode) frames

transmitted.
sarm_dm_f_tx Number of SARM/DM frames transmitted.
disc_f_tx Number of DISC (disconnect) frames transmitted.
ua_f_tx Number of UA (unnumbered acknowledgment) frames transmitted.
frmr_f_tx Number of FRMR (frame received) frames transmitted.
bad_nr_f_tx Number of frames transmitted with a bad N(R) value.
unknown_f_tx Number of unknown frames transmitted.
xid_f_tx Number of XID frames transmitted.
bad_length_f_tx Number of bad length frames transmitted.
t1_expirations Number of times the T1 timer has timed out.
lvl2_connects Number of times the frame level has been connected.
lvl2_disconnects Number of times the frame level has been disconnected.
carrier_loss Number of times the carrier signal was lost.
connect_time Number of seconds that the link has been connected.
t4_expirations Number of times the T4 timer has timed out.
t4_n2_expirations Number of times the T4 timer has timed out N2 times.
ignored_f_rx Number of received frames that have been ignored instead of being

received.
rr_f_rx Number of RR frames received.
rnr_f_rx Number of RNR frames received.
rej_f_rx Number of REJ frames received.
info_f_rx Number of INFO frames received.
sabm_f_rx Number of SABM frames received.
sarm_dm_f_rx Number of SARM/DM frames received.
disc_f_rx Number of DISC frames received.
ua_f_rx Number of UA frames received.
frmr_f_rx Number of FRMR frames received.
bad_nr_f_rx Number of frames received with a bad N(R) value.
unknown_f_rx Number of unknown frames received.
xid_f_rx Number of XID frames received.
bad_length_f_rx Number of bad length frames received.
data_p_tx Number of data packets transmitted.
rr_p_tx Number of RR packets transmitted.
rnr_p_tx Number of RNR packets transmitted.
interrupt_p_tx Number of interrupt packets transmitted.
interrupt_confirm_p_tx Number of interrupt-confirmation packets transmitted.
call-request_p_tx Number of call-request packets transmitted.
call_accept_p_tx Number of call-accept packets transmitted.
clear_request_p_tx Number of clear-request packets transmitted.
clear_confirm_p_tx Number of clear-confirm packets transmitted.
reset_request_p_tx Number of reset-request packets transmitted.

Chapter 4. Header Files 873

reset_confirm_p_tx Number of reset-confirm packets transmitted.
diagnostic_p_tx Number of diagnostic packets transmitted.
registration_p_tx Number of registration packets transmitted.
registration_confirm_p_tx Number of registration-confirmation packets transmitted.
restart_p_tx Number of restart packets transmitted.
restart_confirm_p_tx Number of restart-confirmation packets transmitted.
error_p_tx Number of error packets transmitted.
t20_expirations Number of times the T20 timer has timed out.
t21_expirations Number of times the T21 timer has timed out.
t22_expirations Number of times the T22 timer has timed out.
t23_expirations Number of times the T23 timer has timed out.
vc_establishments Number of times a virtual circuit has been established.
t24_expirations Number of times the T24 timer has timed out.
t25_expirations Number of times the T25 timer has timed out.
t26_expirations Number of times the T26 timer has timed out.
t28_expirations Number of times the T28 timer has timed out.
data_p_rx Number of data packets received.
rr_p_rx Number of RR packets received.
rnr_p_rx Number of RNR packets received.
interrupt_p_rx Number of interrupt packets received.
interrupt_confirm_p_rx Number of interrupt-confirmation packets received.
call-request_p_rx Number of call-request packets received.
call_accept_p_rx Number of call-accept packets received.
clear_request_p_rx Number of clear-request packets received.
clear_confirm_p_rx Number of clear-confirm packets received.
reset_request_p_rx Number of reset-request packets received.
reset_confirm_p_rx Number of reset-confirm packets received.
diagnostic_p_rx Number of diagnostic packets received.
registration_p_rx Number of registration packets received.
registration_confirm_p_rx Number of registration-confirmation packets received.
restart_p_rx Number of restart packets received.
restart_confirm_p_rx Number of restart-confirmation packets received.
receive_profile[16] A profile of the receive packet sizes in use on this X.25 port. Each

element of the array contains a count of the number of packets
received, since the X.25 adapter was last configured, whose sizes
are in the range specified. See the transmit_profile field for a list
of these size values.

874 Files Reference

transmit_profile[16] A profile of the transmission packet sizes used on this X.25 port.
Each element of the array contains a count of the number of
packets sent, since the X.25 adapter was last configured, whose
sizes are in the range specified:

Element
Packet Size

0 Packet size not known

1 Reserved

2 Reserved

3 Reserved

4 0-15

5 16-31

6 32-63

7 64-127

8 128-255

9 256-511

10 512-1023

11 1024-2047

12 2048-4095

13 -16 Reserved

cb_msg_struct Structure for X.25

Purpose
Used by the x25_receive and x25_call_clear subroutines to pass the contents of a received packet to an
application.

Syntax
struct cb_msg_struct
{

int msg_type;
union
{

struct cb_call_struct *cb_call;
struct cb_data_struct *cb_data;
struct cb_clear_struct *cb_clear;
struct cb_res_struct *cb_res;
struct cb_int_struct *int_data;

} msg_point;
};

Chapter 4. Header Files 875

Fields

msg_type Type of message being returned, as follows:

X25_CALL_CONNECTED
Call connected: The cb_call field points to the cb_call_struct structure.

X25_INCOMING_CALL
Incoming call: The cb_call field points to the cb_call_struct structure.

X25_DATA
Data: The cb_data field points to the cb_data_struct structure.

X25_DATA_ACK
Data acknowledgment: no buffer.

X25_INTERRUPT
Interrupt: Theint_data field points to the cb_int_data_struct structure.

X25_INTERRUPT_CONFIRMATION
Confirmation of a previously issued interrupt request: no data is returned.

X25_CLEAR_INDICATION
Indication that call has been cleared.

X25_CLEAR_CONFIRM
Confirmation that the call has been cleared. The cb_clear field points to the
cb_clear_struct structure. (This should only be received on a x25_call_clear call.)

X25_RESET_INDICATION
Reset indication: The cb_res field points to the cb_res_struct structure.

X25_RESET_CONFIRM
Reset confirmation: no data is returned.

X25_UNKNOWN_PACKET
Allow for packets in future CCITT releases. These packets can be safely ignored by
the application.

cb_call Pointer to the call structure, cb_call_struct.
cb_data Pointer to the data structure, cb_data_struct.
cb_clear Pointer to the clear structure, cb_clear_struct.
cb_res Pointer to the reset structure, cb_res_struct.
int_data Pointer to the interrupt data structure, cb_int_data_struct.

cb_pvc_alloc_struct Structure for X.25

Purpose
Used by the x25_pvc_alloc subroutine to pass the name of the X.25 port and the logical channel number.

Syntax
#define X25FLG_LINK_NAME 0x00000002
#define X25FLG_LCN 0x00000040

struct cb_pvc_alloc_struct
{

unsigned long flags;
char *link_name;
unsigned int lcn;

} ;

876 Files Reference

Flags

X25_FLG_LCN Indicates that the lcn field is used.
X25_FLG_LINK_NAME Indicates that the link_name field is used.

Fields

flags Notification to the API that the associated field has been used.
link_name The name of the X.25 port.
lcn Logical channel number of the permanent virtual circuit (PVC) to be allocated to the call.

cb_res_struct Structure for X.25

Purpose
Used by the x25_reset and x25_receive subroutines to pass the reset cause and diagnostic codes.

Syntax
#define X25FLG_CAUSE 0x00000001
#define X25FLG_DIAGNOSTIC 0x00000002

struct cb_res_struct
{

unsigned long flags;
unsigned char cause;
unsigned char diagnostic;

};

Flags

X25_FLG_CAUSE Indicates that the cause field is used.
X25_FLG_DIAGNOSTIC Indicates that the diagnostic field is used.

Fields
Structure field definitions are as follows:

Element Description
flags Notification to the API that the associated field has been used.
cause Cause value of either 0 or in the range 0x80-0xFF, to be inserted in the reset packet.
diagnostic Diagnostic reason to be inserted in the packet. The CCITT default value is 0.

ctr_array_struct Structure for X.25

Purpose
Used by the x25_ctr_wait subroutine to pass the counter identifier and a value to be exceeded.

Syntax
#define X25FLG_CTR_ID 0x00000001
#define X25FLG_CTR_VALUE 0x00000002

struct ctr_array_struct

Chapter 4. Header Files 877

{
unsigned long flags;
int ctr_id;
int ctr_value;

} ;

Flags

X25_FLG_CTR_ID Indicates that the ctr_id field is used.
X25_FLG_CTR_VALUE Indicates that the ctr_value field is used.

Fields

flags Notification to the API that the associated field has been used.
ctr_id Counter identifier.
ctr_value Value to be exceeded by the counter specified by the counter identifier. The counter is incremented

each time a message for the associated call or PVC arrives. When the number of messages
exceeds the value, the x25_ctr_wait subroutine returns control to the calling program.

878 Files Reference

Chapter 5. Directories

Directories contain directory entries. Each entry contains a file or subdirectory name and an i-node (index
node reference) number. To increase speed and enhance the use of disk space, the data in a file is stored
at various locations throughout the computer’s memory. The i-node contains the addresses used to locate
all of the scattered blocks of data associated with a file. The i-node also records other information about
the file, including time of modification and access, access modes, number of links, file owner, and file type.
It is possible to link several names for a file to the same i-node by creating directory entries with the ln
command.

Because directories often contain information that should not be available to all users of the system,
directory access can be protected. See ″File Ownership and User Groups″ in AIX 5L Version 5.2 System
User’s Guide: Operating System and Devices for more information.

Understanding Types of Directories
Directories can be defined by the system or the system administrator, or you can define your own
directories. The system-defined directories contain specific kinds of system files, such as commands. At
the top of the file system hierarchy is the system-defined root directory. The root directory is represented
by a / (slash) and usually contains the following standard system-related directories:

/bin Symbolic link to the /usr/bin directory. In prior UNIX file systems, the /bin directory contained user
commands that now reside in /usr/bin in the new file structure.

/dev Contains device nodes for special files for local devices. The /dev directory contains special files for
tape drives, printers, disk partitions, and terminals.

/etc Contains configuration files that vary for each machine. Examples include:

v /etc/hosts

v /etc/passwd

The /etc directory contains the files generally used in system administration. Most of the commands
that used to reside in the /etc directory now reside in the /usr/sbin directory. However, for compatibility,
it contains symbolic links to the new locations of some executable files. Examples include:

v /etc/chown is a symbolic link to the /usr/bin/chown.

v /etc/exportvg is a symbolic link to the /usr/sbin/exportvg.
/export Contains the directories and files on a server that are for remote clients.
/home Serves as a mount point for a file system containing user home directories. The /home file system

contains per-user files and directories.

In a standalone machine, a separate local file system is mounted over the /home directory. In a
network, a server might contain user files that should be accessible from several machines. In this
case, the server’s copy of the /home directory is remotely mounted onto a local /home file system.

/lib Symbolic link to the /usr/lib directory, which contains architecture-independent libraries with names in
the form lib*.a.

/proc/sys Files in /proc/sys are used internally for kernel tuning and statistics gathering.
/sbin Contains files needed to boot the machine and mount the /usr file system. Most of the commands used

during booting come from the boot image’s RAM disk file system; therefore, very few commands reside
in the /sbin directory.

/tmp Serves as a mount point for a file system that contains system-generated temporary files.
/u Symbolic link to the /home directory.
/usr Serves as a mount point for a file system containing files that do not change and can be shared by

machines (such as executables and ASCII documentation).

Standalone machines mount a separate local file system over the /usr directory. Diskless and disk-poor
machines mount a directory from a remote server over the /usr file system.

© Copyright IBM Corp. 1997, 2002 879

/var Serves as a mount point for files that vary on each machine. The /var file system is configured as a file
system since the files it contains tend to grow. For example, it is a symbolic link to the /usr/tmp
directory, which contains temporary work files.

Some directories, such as your login or home directory ($HOME), are defined and customized by the
system administrator. When you log in to the operating system, the login directory is the current directory.
If you change directories using the cd command without specifying a directory name, the login directory
becomes the current directory.

Related Information
Files, Directories, and File Systems for Programmers in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs introduces i-nodes, file space allocation, and file, directory,
and file system subroutines.

File Systems and Directories Overview in AIX 5L Version 5.2 System User’s Guide: Operating System and
Devices introduces files and directories and the commands that control them.

/etc/locks Directory

Purpose
Contains lock files that prevent multiple uses of communications devices and multiple calls to remote
systems.

Description
The /etc/locks directory contains files that lock communications devices and remote systems so that
another user cannot access them when they are already in use. Other programs check the /etc/locks
directory for lock files before attempting to use a particular device or call a specific system.

A lock file is a file placed in the /etc/locks directory when a program uses a communications device or
contacts a remote system. The file contains the process ID number (PID) of the process that creates it.

The Basic Networking Utilities (BNU) program and other communications programs create a device lock
file whenever a connection to a remote system, established over the specified device, is actually in use.
The full path name of a device lock file is:

/etc/locks/DeviceName

where the DeviceName extension is the name of a device, such as tty3.

When the BNU uucico daemon, cu command, or tip command places a call to a remote system, it puts a
system lock file in the /etc/locks directory. The full path name of a system lock file is:

/etc/locks/SystemName

where the SystemName extension is the name of a remote system, such as hera. The system lock file
prevents more than one connection at a time to the same remote system.

Under normal circumstances, the communications software automatically removes the lock file when the
user or program ends the connection to a remote system. However, if a process executing on the specified
device or system does not complete its run (for example, if the computer crashes), the lock file remains in
the /etc/locks directory either until the file is removed manually or until the system is restarted after a
shutdown.

880 Files Reference

Related Information
The connect subcommand for the ATE command, ct command, cu command, pdelay command, pshare
command, slattach command, tip command.

The uucico daemon.

/usr/lib/hcon Directory

Purpose
Contains files used by the Host Connection Program (HCON).

Description
The /usr/lib/hcon directory contains files used by the Host Connection Program (HCON). It contains color
and keyboard definition files, terminal definition files, HCON API subdirectories, AUTOLOG example
scripts, configuration data base files, and the command to start the HCON subsystem.

Color and Keyboard Definition Files
The following files contain data used to define and customize the HCON color and keyboard definition
tables:

File Contents
e789_ctbl Default binary color-definition table
e789_ktbl Default binary keyboard-definition table

The color and keyboard definition tables in the /usr/lib/hcon directory specify defaults for use by HCON
emulator sessions. The hconutil command allows users to customize color and keyboard definition tables.

Terminal Definition Files
The HCON installation process creates a terminfo subdirectory in the /usr/lib/hcon directory. The
/usr/lib/hcon/terminfo directory contains terminal definition files that are specific to HCON. When HCON
is installed, the terminfo directory contains the following files:

File Contents
ibm.ti.H Terminal definitions for LFT, 5081, 3151, 3161, 3162, 3163, and 3164 terminals.
dec.ti.H Terminal definitions for DEC VT100 and DEC VT220 terminals.
wyse.ti.H Terminal definition for the WYSE WY-50 and WYSE WY-60 terminals.

The terminfo binary files for HCON terminal definitions are in subdirectories of the /usr/lib/hcon/terminfo
directory. Each subdirectory is named with the first letter of the terminal name. When HCON is installed,
the terminfo directory contains the following subdirectories:

Subdirectory Contents
a Binary terminal definition file for running within the operating system windows
h Binary terminal definition files for color and monochrome LFT
i Binary terminal definition files for the 5081, 3151, 3161, 3162, and 3163 terminals
j Binary terminal definition file for use with operating system windows
v Binary terminal definition files for the DEC VT100 and DEC VT220 terminals
w Binary terminal definition files for the WYSE WY-50 and WYSE WY-60 terminals

In addition to those delivered with HCON, the /usr/lib/hcon/terminfo subdirectory can contain customized
terminal definitions.

Chapter 5. Directories 881

HCON API Subdirectories
The HCON installation process creates two subdirectories in the /usr/lib/hcon directory that contain files
used by the HCON API:

Directory Contents
mvs API programs to use in interfacing to MVS/TSO host systems, including the instalapi program
vm API programs to use in interfacing to VM/CMS host systems, including the instalapi program

AUTOLOG Example Scripts
The /usr/lib/hcon directory contains several example files for the AUTOLOG facility. These files are:

File Contents
logform Example genprof form for creating AUTOLOG procedures
SYStso Example AUTOLOG script for MVS/TSO host
SYSvm1 Example AUTOLOG script for VM/CMS host
SYSvm2 Example AUTOLOG script for VM/CMS host

Configuration Data Base Files
The following files contain HCON configuration information. This information is used by HCON programs,
by the Object Data Manager (ODM), and by the HCON configuration commands, which are called by the
System Management Interface Tool (SMIT).

File Contents
sysdflts HCON database system defaults
sysdflts.vc HCON database system defaults
users HCON users database

Command to Start the HCON Subsystem
The sthcondmn command is used to start the hcondmn subsystem after HCON has been installed.

Files

/usr/lib/hcon/terminfo directory Contains terminal definitions.

/var/spool/mqueue Directory for Mail

Purpose
Contains the log file and temporary files associated with the messages in the mail queue.

Description
The /var/spool/mqueue directory contains temporary files associated with the messages in the mail queue
and may contain the log file. For further information, see the syslogd daemon.

Temporary files have names that include the mail queue ID (MQID) of the message for which the file was
created:

dfMQID Data file
lfMQID Lock file
nfMQID Backup file
qfMQID Queue control file
tfMQID Temporary control file
xfMQID Transcript file for session

882 Files Reference

Related Information
The sendmail command.

The syslogd daemon.

Managing the Mail Queue Files and Directories in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

/var/spool/uucp Directory for BNU

Purpose
Stores Basic Networking Utilities (BNU) log, administrative, command, data, and execute files in multiple
subdirectories.

Description
The /var/spool/uucp directory, also known as the BNU spooling directory, is the parent directory for
multiple work directories created by the Basic Networking Utilities (BNU) program to facilitate file transfers
among systems.

The following directories are subdirectories of the /var/spool/uucp directory:

.Admin Contains four administrative files, including:

v audit

v Foreign

v errors

v xferstats
.Corrupt Contains copies of files that could not be processed by the BNU program.
.Log Contains log files for the uucico and uuxqt daemons.
.Old Contains old log files for the uucico and uuxqt daemons.
.Status Records the last time the uucico daemon tried to contact remote systems.
.Workspace Holds temporary files that the file transport programs use internally.
.Xqtdir Contains execute files with lists of commands that remote systems can run.
SystemName Contains files used by file transport programs, including:

v Command (C.*)

v Data (D.*)

v Execute (X.*)

v Temporary (TM.*)

Related Information
The uuclean command, uucp command, uudemon.cleanu command, uupick command, uuq command,
uuto command, uux command.

The uucico daemon, uuxqt daemon.

Understanding the BNU File and Directory Structure in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

Chapter 5. Directories 883

/var/spool/uucp/.Admin Directory for BNU

Purpose
Contains administrative files used by BNU.

Description
The /var/spool/uucp/.Admin directory contains administrative files used by the Basic Networking Utilities
(BNU) program to facilitate remote communications among systems. The .Admin directory contains the
following files:

File Description
audit Contains debug messages from the uucico daemon.
Foreign Logs contact attempts from unknown remote systems.
errors Records uucico daemon errors.
xferstats Records the status of file transfers.

Related Information
The uudemon.cleanu command.

The cron daemon, uucico daemon.

Understanding the BNU File and Directory Structure, Maintaining BNU in AIX 5L Version 5.2 System
Management Guide: Communications and Networks.

/var/spool/uucp/.Corrupt Directory for BNU

Purpose
Contains copies of files that could not be processed.

Description
The /var/spool/uucp/.Corrupt directory contains copies of files that could not be processed by the Basic
Networking Utilities (BNU) program. For example, if a file is not in the correct form for transfer, the BNU
program places a copy of that file in the .Corrupt directory for later handling. This directory is rarely used.

The files in the .Corrupt directory are removed periodically by the uudemon.cleanu command, a shell
procedure.

Related Information
The uudemon.cleanu command.

The uucico daemon, uuxqt daemon.

Understanding the BNU File and Directory Structure, Maintaining BNU in AIX 5L Version 5.2 System
Management Guide: Communications and Networks.

/var/spool/uucp/.Log Directories for BNU

Purpose
Contain the BNU program log files.

884 Files Reference

Description
The /var/spool/uucp/.Log directories contain Basic Networking Utilities (BNU) program log files. The BNU
program normally places status information about each transaction in the appropriate log file each time
you use the networking utilities facility.

All transactions of the uucico and uuxqt daemons as well as the uux and uucp commands are logged in
files named for the remote system concerned. Each file is stored in a subdirectory of the
/var/spool/uucp/.Log directory, named for the daemon or command involved. Each subdirectory contains
a separate file for each remote system contacted. Thus, the log files are named according to one of the
following formats:

/var/spool/uucp/.Log/DaemonName/SystemName

OR

/var/spool/uucp/.Log/CommandName/SystemName

All activities of the uucp command are logged in the SystemName file in the /var/spool/uucp/.Log/uucp
directory. All activities of the uux command are logged in the SystemName file in the
/var/spool/uucp/.Log/uux directory.

The uucp and uuto commands call the uucico daemon. The uucico daemon activities for a particular
remote system are logged in the SystemName file in the /var/spool/uucp/.Log/uucico directory on the
local system.

The uux command calls the uuxqt daemon. The uuxqt daemon activities for a particular remote system
are logged in the SystemName file in the /var/spool/uucp/.Log/uuxqt directory on the local system.

When more than one BNU process is running, however, the system cannot access the standard log file, so
it places the status information in a file with a .Log prefix. The file covers that single transaction.

The BNU program can automatically append the temporary log files to a primary log file. This is called
compacting the log files and is handled by the uudemon.cleanu command, a shell procedure. The
procedure combines the log files of the activities of the uucico and uuxqt daemons on a particular system
and stores the files in the /var/spool/uucp/.Old directory.

The default is for the uudemon.cleanu command to save log files that are two days old. This default can
be changed by modifying the appropriate line in the shell procedure. If storage space is a problem on a
particular system, reduce the number of days that the files are kept in their individual log files.

The uulog command can be used to view the BNU program log files.

Related Information
The uucp command, uudemon.cleanu command, uulog command, uuto command, uux command.

The cron daemon, uucico daemon, uusched daemon, uuxqt daemon.

Working with BNU Log Files in AIX 5L Version 5.2 System Management Guide: Communications and
Networks.

Understanding the BNU File and Directory Structure in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

Chapter 5. Directories 885

/var/spool/uucp/.Old Directory for BNU

Purpose
Contains the combined BNU program log files.

Description
The /var/spool/uucp/.Old directory contains the combined Basic Networking Utilities (BNU) program log
files.

The BNU program creates log files of the activities of the uucico and uuxqt daemons in the
/var/spool/uucp/.Log directory. The log files are compacted by the /usr/sbin/uucp/uudemon.cleanu
command, a shell procedure, which combines the files and stores them in the .Old directory.

By default, the uudemon.cleanu command removes log files after two weeks. The length of time log files
are kept can be changed to suit the needs of an individual system.

The log files can be viewed using the uulog command.

Files

/var/spool/uucp/.Log directory Contains BNU program log files.

Related Information
The uucp command, uudemon.cleanu command, uulog command, uux command.

The cron daemon, uucico daemon, uuxqt daemon.

Working with BNU Log Files in AIX 5L Version 5.2 System Management Guide: Communications and
Networks.

Understanding the BNU File and Directory Structure in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

/var/spool/uucp/.Status Directory for BNU

Purpose
Contains information about the status of the BNU program contacts with remote systems.

Description
The /var/spool/uucp/.Status directory contains information about the status of the Basic Networking
Utilities (BNU) program contacts with remote systems.

For each remote system contacted, the BNU program creates a file in the .Status directory called
SystemName, which is named for the remote system being contacted. In the .Status/SystemName file, the
BNU program stores:

v Time of the last call in seconds

v Status of the last call

v Number of retries

v Retry time, in seconds, of the next call

886 Files Reference

Note: The times given in the .Status/SystemName file are expressed as seconds elapsed since
midnight of January 1, 1970 (the output of a time subroutine). Thus, the retry time is in the form
of the number of seconds that must have expired since midnight of January 1, 1970, before the
system can retry. To make this entry in the .Status/SystemName file, BNU performs a time
subroutine, adds 600 seconds, and places the resulting number of seconds in the file.

If the last call was unsuccessful, the uucico daemon will wait until the time specified by the retry time
before attempting to contact the system again. The retry time in the .Status/SystemName file can be
overridden using the -r flag of the uutry or Uutry command.

Related Information
The uutry command, Uutry command.

The uucico daemon.

The time subroutine.

Understanding the BNU File and Directory Structure, Understanding the BNU Daemons in AIX 5L Version
5.2 System Management Guide: Communications and Networks.

/var/spool/uucp/SystemName Directories for BNU

Purpose
Contain queued requests for file transfers and command executions on remote systems.

Description
The /var/spool/uucp/SystemName directories are the Basic Networking Utilities (BNU) spooling directories
on the local system. The BNU program creates a SystemName directory for each system listed in the
/etc/uucp/Systems file, including the local system.

Each SystemName directory contains queued requests issued by local users for file transfers to remote
systems and for command executions on remote systems.

The BNU program uses several types of administrative files to transfer data between systems. The files
are stored in the SystemName directories:

command (C.*) Contain directions for the uucico daemon concerning file transfers.
data (D.*) Contain data to be sent to remote systems by the uucico daemon.
execute (X.*) Contain instructions for running commands on remote systems.
temporary (TM.*) Contain data files after their transfer to the remote system until the BNU program can

deliver them to their final destinations (usually the /var/spool/uucppublic directory).

Related Information
The uucp command, uux command.

The uucico daemon, uusched daemon, uuxqt daemon.

Understanding the BNU Daemons, Understanding the BNU File and Directory Structure and Using BNU
Maintenance Commands in AIX 5L Version 5.2 System Management Guide: Communications and
Networks.

Chapter 5. Directories 887

/var/spool/uucp/.Workspace Directory for BNU

Purpose
Holds temporary files used internally by file transport programs.

Description
The /var/spool/uucp/.Workspace directory holds temporary files of various kinds used internally by BNU
file transport programs.

Related Information
The uucico daemon, uuxqt daemon.

Understanding the BNU File and Directory Structure in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

/var/spool/uucp/.Xqtdir Directory for BNU

Purpose
Contains temporary files used by the uuxqt daemon to execute remote command requests.

Description
The /var/spool/uucp/.Xqtdir directory contains temporary files used by the Basic Networking Utilities
(BNU) uuxqt daemon to execute remote command requests.

Related Information
The uux command.

The uuxqt daemon.

Understanding the BNU File and Directory Structure in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

/var/spool/uucppublic Directory for BNU

Purpose
Stores BNU files until they can be delivered.

Description
The /var/spool/uucppublic directory is the public directory for the Basic Networking Utilities (BNU) facility.
One of these directories exists on every system connected by the BNU utilities.

When a user transfers a file to a remote system or issues a request to execute a command on another
system, the files generated by these BNU commands are stored in the public directory on the designated
system until the destination directory is ready to receive them. (A user can also specify a destination other
than the public directory when issuing the uucp, uuto, or uux command.) The transferred files remain in
the uucppublic directory until they are removed manually or automatically.

Note: The files are stored in the uucppublic/SystemName subdirectory of the uucppublic directory,
where the SystemName directory is named for the remote system where the files originated.

888 Files Reference

All spooling directories are dynamic, including the public directory. Depending on the size of your
installation and the number of files sent to the local /var/spool/uucppublic directory by users on remote
systems, this directory can become quite large.

The uudemon.cleanu command, a shell procedure, cleans up all the BNU spooling directories, including
the public directories. Use the uucleanup command with the -sSystemName flag to clean up the
directories on a specific system.

Related Information
The uuclean command, uucleanup command, uucp command, uudemon.cleanu command, uuto
command, uux command.

Understanding the BNU File and Directory Structure in AIX 5L Version 5.2 System Management Guide:
Communications and Networks.

Chapter 5. Directories 889

890 Files Reference

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 003
11400 Burnet Road
Austin, TX 78758-3498
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1997, 2002 891

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
(c) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (c)
Copyright IBM Corp. _enter the year or years_. All rights reserved.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

AIX

IBM

PAL

RS/6000

SAA

System Application Architecture

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

892 Files Reference

Index

Special characters
/dev/error special file 690
/dev/errorctl special file 690
/dev/hty file 29
/dev/rhp file 29
/etc/group file 68
/etc/hty_config file format 377
/etc/locks directory 880
/etc/mail/aliases file (mail) 5
/etc/map3270 file format 412
/etc/mrouted.conf file 115
/etc/passwd file 134
/etc/rc.ntx file format 501
/etc/security/audit/config file 22
/etc/security/audit/objects file 133
/etc/security/audit/streamcmds file 252
/etc/security/environ file 50
/etc/security/group file 70
/etc/security/lastlog file 380
/etc/security/limits file 92
/etc/security/passwd file 136
/etc/security/roles file 174
/etc/security/smitacl.group file 225
/etc/security/smitacl.user file 226
/etc/security/sysck.cfg file 253

setting file definitions 253
/etc/security/user file 258
/etc/security/user.roles file 264
/usr/include/fxconst.inc (HCON) 756
/usr/include/fxfer.h (HCON) 756
/usr/include/fxfer.inc (HCON) 758
/usr/include/fxhfile.inc (HCON) 759
/usr/include/g32_api (HCON) 759
/usr/include/g32_keys.h (HCON) 763
/usr/include/g32const.inc (HCON) 761
/usr/include/g32hfile.inc (HCON) 762
/usr/include/g32keys.inc (HCON) 764
/usr/include/g32types.inc (HCON) 765
/usr/lib/hcon directory 881
/usr/lib/security/audit/bincmds file 9
/usr/lib/security/audit/events file 57
/usr/lib/security/mkuser.default file 113
/usr/lib/sendmail.cf file (Mail) 179
/usr/spool/mqueue directory (Mail) 882
/usr/spool/uucp directory 883

.Admin directory 884
audit file 6
errors file 56
Foreign file 66
xferstats file 275

.Corrupt directory 884

.Status directory 886

.Workspace directory 888

.Xqtdir directory 888
SystemName directories 19, 28, 59, 255, 887

/usr/spool/uucppublic directory 888

/var/spool/uucp directory
.Log directories 884
.Old directory 886

.3270keys file format 279

.3270keys.hft file format 279

.Admin directory (BNU) 884

.fig file 63

.forward file 66

.info file 79

.kshrc file 90

.Log directory (BNU) 884

.maildelivery file 98

.mailrc file
setting defaults for mail command 409

.mh_profile file 106

.netrc file format 478

.Old directory (BNU) 886

.rhosts file format 509

.srf files
overview 252

.Status directory (BNU) 886

.times 256

.tiprc file format 577

.Workspace directory 888

.Xqtdir directory (BNU) 888
$HOME/.kshrc file 90

Numerics
32-bit file formats

ar_small 284
3270 connection adapter 676
3270 Host Connection Program/6000 881
400ap111845 262

A
a.out file format

standard common object file 621
accounting information

acct file format 281
acct.h file 281

accounting system
failed login file format 612
utmp file format 612
wtmp file format 612

acct file format 281
acct.cfg 2
acct.h file 281
administrative directory (BNU) 884
AIX V2 line discipline compatibility mode (termio.h

file) 824
aliases

defining (MH) 418
definitions for sendmail command 5
file (mail) 5

ANY data type 605

© Copyright IBM Corp. 1997, 2002 893

API directories (HCON) 882
API include file (HCON)

data definitions and structures for C 759
external Pascal declarations 762
Pascal data types 765
Pascal HCON API constants 761

Application Programming Interface 759
ar file format 282
arguments list structure

syntax 596
artwork

files
intermediate 63

ASCII
file

.fig 63
asinfo file 46
Asynchronous Terminal Emulation 287
ATE

ate.def file format 287
default file format 287
dialing directory file format 316
phone numbers for remote connections 316

ate.def file format 287
attributes

setting 68
user 134

audit data structures 291
audit events 57
audit file 6
auditing system

defining audit events 57
defining auditstream commands 252
defining commands to process bin files 9
defining files for an audit 133
defining the system configuration 22

audits
defining the structure of accounting information

files 847
defining the structure of user information files 847
describing auditing data structures 291

AUTOLOG example files (HCON) 882
auxiliary header (XCOFF) 625
auxiliary information

symbol table (XCOFF) 649

B
backup file 7

header records 7
Basic Networking Utilities 306
Berkeley line discipline (sgtty.h file) 801
bin files

defining commands to process 9
bin stanza 23
binary

file
.srf 252

bincmds file 9
BNU

/etc/locks directory 880

BNU (continued)
/usr/spool/uucp directory 883

.Admin directory 6, 56, 66, 275, 884

.Corrupt directory 884

.Status directory 886

.Workspace directory 888

.Xqtdir directory 888
SystemName directories 19, 28, 59, 255, 887

/usr/spool/uucppublic directory 888
/var/spool/uucp directory

.Log directories 884

.Old directory 886
administrative directory 884
audit file 6
command (C.*) files 19
configuring 527
cycling multispeed modems 533
data (D.*) files 28
data transferred from remote systems 255
defining

devices 306
devices for remote communications 306
dialcodes 310
modems and dialers 312

devices file format 306
dialcodes file format 310
dialers file format 312
errors file 56
execute (X.*) files 59
expect-send sequences 532
foreign file 66
limiting instances of

uusched daemon 417
uuxqt daemon 417

listing remote systems for communications 528
log access attempts by unknown systems 170
Maxuuscheds file format 417
Maxuuxqts file format 417
Permissions file format 484
poll file format 494
providing initial variable settings for the tip

command 577
public directory 888
remote systems 28
remote systems for communications 312
remote.unknown file 170
specifying permissions for remote

communications 484
specifying when to poll remote systems 494
spooling directory 883
systems file format 528
temporary (TM.*) files 255
tip command

.tiprc file format 577
phones file format 493
remote file format 502

tunables file format 588
xferstats file 275

BNU file formats
Sysfiles 527

boolean literal 604

894 Files Reference

BOOTP relay agent configuration file 10
bootparams file (NFS) 12
bootptab file format 293
buttons

navigation
labeling 90

C
C_BLOCK symbol

XCOFF block auxiliary entry 656
C_EXT symbol

XCOFF csect auxiliary entry 651
XCOFF function auxiliary entry 655

C_FCN symbol
XCOFF block auxiliary entry 656

C_FILE symbol
XCOFF file auxiliary entry 649

C_HIDEXT symbol
XCOFF csect auxiliary entry 651
XCOFF function auxiliary entry 655

C_STAT
section auxiliary entry 657

C_WEAKEXT symbol 651, 655
ca.cfg 12
callbacks list structure

description 596
syntax 596

cb_call_struct Structure for X.25 861
cb_circuit_info_struct Structure for X.25 861
cb_clear_struct Structure for X.25 862
cb_data_struct Structure for X.25 863
cb_dev_info_struct Structure for X.25 864
cb_fac_struct Structure for X.25 865
cb_int_data_struct Structure for X.25 870
cb_link_name_struct Structure for X.25 870
cb_link_stats_struct Structure for X.25 871
cb_msg_struct Structure for X.25 875
cb_pvc_alloc_struct Structue for X.25 876
cb_res_struct Structure for X.25 877
CD-ROM device driver 683
cdromd daemon 14
cdromd.conf 14
character set definition source file format

CHARMAP section 294
CHARSETID section 298

character set definitions
CharacterSet keyword 616
syntax 616

character set description 294
character sets

parsing rules 602
charmap 294
CHARMAP section 294
CHARSETID section 298
child definitions

Children keyword 620
syntax 620

class definitions
Class keyword 618
control definition list 619

class definitions (continued)
modifications 618
syntax 618

classes stanza 24
clsnmp.conf 17
code set

code set converter
define types for iconv character converters 767

code set maps
file format 515

color definition table (HCON)
default 49
storing files 881

combine file 282
command (C.*) files 19
compacted log files (BNU) 886
composite file header (XCOFF) 623
compound string literals 603
compver file 22
config file 22
configuration files

BOOTP relay agent 10
database (HCON) 882
DHCP client 30
DHCP server 33
mrouted.conf 115
NFS 138
ntp.conf 123

configuration information
for gated daemon (TCP/IP) 327
login authentication 95
NIM 79
user authentication 95

configure
/etc/rc.ntx file 501

configuring for BNU 527
consdef file

enabling asynchronous tty devices
as console candidates 26

console special file 684
constants

machine-defined 849
constraint arguments 596
control list definitions

ControlList keyword 618
syntax 618

control options
file

defining 753
controlling terminal interface

supporting 735
controls list structure

ChildName 597
syntax 597

copyright file 27
copyright information file 27
core dump

file format 299
core file format 302
ctr_array_struct Structure for X.25 877
customizes the Korn-shell 90

Index 895

customizing the MH package (MH) 106
cycling multispeed modems (BNU) 533

D
daemons (TCP/IP) 169
data (D.*) files 28
data storage consumption for string literals

private, exported, and imported 603
data type definitions

DataType keyword 616
syntax 616

data types 600
standard type definitions 845
unsigned integers and addresses 846

databases
defining locations of 87

dbx stabstrings
XCOFF section 661

debug section (XCOFF) 637
defines character symbols as character encodings 294
delta tables 511
describe the format of a compatible versions file 22
describing connections used by the tip command to

contact remote systems (BNU) 493
describing remote systems contacted by the tip

command (BNU) 502
description file

legal lines of
for troff command 585

description of management information base
variables 420

determining default settings for ATE connections 287
device drivers

error special files 690
devices

preventing multiple uses of 880
devices file format 306
DHCP (dynamic host configuration protocol)

BOOTP relay agent configuration file 10
client configuration file 30
server configuration file 33

DHCP client configuration file 30
DHCP server configuration file 33
dialcodes (BNU) 310
dialcodes file format 310
dialers file format 312
dialing directory file format 316
dials Special File 687
dir file 45, 149
directories

description 879
dir file 45
entries 879
file system independent 746
formats 45
formatting entries 746
HCON files 881
i-node files 768
naming 2
types 879

diskette device-driver
accessing 691

Display menu options
specifying 90

dlfcn.h 746
dlfcn.h header file

dynamic linking 746
DOMAIN files

cache files
file format 317
standard resource record format 519

data file
format 318
standard resource record 519

local data files
format 321
standard resource record format 519

reverse data files
standard resource record format 519

dumpdates file 49
holding date information for backup command 49
holding date information for rdump command 49

DVD device driver
mounting UDFS file system 14

Dynamic Host Configuration Protocol 30

E
e789_ctbl file 49
e789_ktbl file 50
enumeration set definitions

EnumerationSet keyword 617
syntax 617

environ file 50
environment

file 52
setting by user 52
variables

defining 223, 224
setting at login 495

eqn command
special character definitions for 325

eqnchar file format 325
error image 302
error logging special files 690
errors file 56
Ethernet device handler

accessing 689
ethers file for NIS 56
ethers files

ethernet host addresses 56
eucioctl.h file 747
eucioctl.h files

defining ioctl operations 747
exception section (XCOFF) 638, 640
executable file (XCOFF) 622
execute (X.*) files 59
expect-send sequences (BNU) 532
exports file (NFS) 61
expressions

description 605

896 Files Reference

expressions (continued)
set of operators in UIL 605

F
failedlogin file format 612
fig file 63
file definition

setting 253
file formats 277

acct 281
bootptab 293
core 299
cpio 305
failed login file format 612
utmp file format 612
widget meta-language 615
WML 615
wtmp file format 612

file header
composite (XCOFF) 623

file mode interpretation
using mode.h file 786

file system
centralizing characteristics

using filesystems file 63
containing format of a logical volume

using fs file 749
copying into storage

using backup file 7
describing

using inode file 768
log attribute 64
node name attribute 64
size attribute 64
type attribute 64

file systems
/proc 149

file transfer (BNU)
directions for the uucico daemon 19
queued requests 887

file transfer header files (HCON)
host file flags 745
options and flags 744

file transfer include files (HCON)
external Pascal declarations 758, 759
fxc and fxs C data structures 756

files
.fig 63
.srf 252
archiving 284, 305
backing-up 305
ClientHostName.info 15
containing text components 252
control options

defining 748, 753
data types

defining primitive system 845
dir 45
dlfcn.h 746
environment 52

files (continued)
ethers 56
eucioctl.h 747
filsys.h 749
format

setmaps 515
terminfo 535

formats 277
grp.h 767
header 739
inode.h 768
intermediate 63, 252
inttypes.h 772
iso646.h 773
locking 753
mode interpretation 786
naming 2
NFS

exports 61
permissions 1
pmapi.h 790
pthread.h 795
pwd.h 797
recovering 305
Resource Data Input File 179
rset.h 797
special I/O 674
specifying formats for 276
status 755
status subroutines

header file 812
syslog.conf 817
system 1, 2
systemcfg.h 819
TCP/IP

hosts 371
types 1
wctype.h 851
wlm.h 852
workload manager classes 266
x25sdefs.h 860

Files
libperfstat.h 777

filesystems file 63
floating-point literal 604

range 604
foreign file 66
format of a package characteristics file 141
format of SCCS files 511
forward mail 66
fs file 749
ftpaccess.ctl file 67
ftpusers file format 326
functions

keywords 607
user-specified names 607
value types 607

fxc Pascal declarations (HCON) 758

Index 897

G
gateways file format 369
groupings file format 72
groups

setting basic attributes 68
setting extended attributes 70

grp.h file 767
declaring structure groups 767

H
hardware buses

accessing 682
hardware flow control operations 844
hardware parameters 790
HCON

/usr/lib/hcon directory 881
API subdirectories 882
AUTOLOG example files 882
configuration database files 882
directory 881
e789_ctbl file 49
e789_ktbl file 50
files 881
LAF example files 882
storing color definition table files 881
terminal definition files 881

HCON programming header files
/usr/include/fxconst.inc 756
/usr/include/fxfer.h 756
/usr/include/fxhfile.inc 758, 759
/usr/include/g32_api.h 759
/usr/include/g32_keys.h 763
/usr/include/g32const.inc 761
/usr/include/g32hfile.inc 762
/usr/include/g32keys.inc 764
/usr/include/g32types.inc 765
API key values definitions (C) 763
API key values definitions (Pascal) 764

header files 806
acct.h 281
control block

list of 742
fcntl.h 748
flock.h 753
fullstat.h 755
ipc.h 772
limits.h 775
math.h 785
mode.h 786
msg.h 788
param.h 790
poll subroutine structures 793
sem.h 798
sgtty.h 801
shm.h 806
spc.h 807
srcobj.h 811
stat.h 812
statfs.h 814

header files (continued)
statvfs.h 816
termio.h 824
termios.h 832
termiox.h 843
types.h 845
unistd.h 846
value.h 849
vmount.h 850
XCOFF 623

holding internal files for remote communications
(BNU) 888

host names and addresses (TCP/IP) 371
host-adapter raw interface

defining 29
hostmibd.conf 73
hosts file format 371
hosts.equiv file format 373
hosts.lpd file format 376
hty configuration

hty_config file format 377

I
i-nodes 879
i-numbers 879
iconv.h file

defining iconv character converters 767
IDE adapter driver

accessing 696
identifier sections

identifier 598
syntax 598

image.data file 74
describing installed images 74

include directives
description 599
syntax 599

indexed archives 284
INed files

programs and data used 78
inetd.conf file format

service requests 378
initialization process 80
inittab file 80
inode.h file 768
integer literals

data storage consumption 604
description 604

intermediate files
.fig 63
.srf (text) 252

inttypes.h file 772
fixed size integral types 771

ipc.h File 772
irs.conf file 83
iso646.h file 773

providing alternate spellings 773
ispaths file 87
isprime file 90

creating for library 90

898 Files Reference

isprime file (continued)
overview 90

K
kbd Special File

accessing natively attached keyboards 696
keyboard definition table (HCON)

default 50
storing files 881

Korn-shell
customizes 90

L
labels

for navigation buttons
specifying 90

LAF (Login Assist Facility) example files (HCON) 882
language syntax 599
lastlog file format 380
LC_COLLATE category 384, 386
LC_CTYPE category 384, 389
LC_MESSAGES category 384, 392
LC_MONETARY category 384, 393
LC_NUMERIC category 384, 397
LC_TIME category 384, 398
LDAP Attribute Mapping 383
ldap.cfg file format 381
ldr.h 773
lft special file 698

providing character-based terminal support
for local graphics displays and keyboards 697

libperfstat.h file 777
Libraries

libperfstat.h 777
library

location of databases in 87
limits file 92
line disciplines

AIX V2 compatibility mode (termio.h file) 824
Berkeley (sgtty.h file) 801
POSIX (termios.h file) 832

line number (XCOFF) 645
line printer device driver

accessing 699
links

to navigation articles
specifying 90

list
F files

.fig file 63
list groups of users 117
list package contents 143
list sections

arguments list structure 596
syntax 595

loadable authentication module configuration
information 102

loader section (XCOFF) 632
local loopback information for named (TCP/IP) 321

local user name 326
locale definition source file format 384

LC_COLLATE category 384, 386
LC_CTYPE category 384, 389
LC_MESSAGES category 384, 392
LC_MONETARY category 384, 393
LC_NUMERIC category 384, 397
LC_TIME category 384, 398

locale method source file format 402
lock files

storing devices and remote systems 880
log access attempts by unknown systems (BNU) 170
log files (BNU)

access attempts by unknown systems 66
compacted 886
directory 884

logical volume
containing format of a file system 749

logical volume device driver
accessing 703

login attempt information 148
login authentication

configuration information 95
login.cfg file 95
lp special file 699
lpfk special file 702

M
machine boot process 169
magic file

defining file types
/etc/magic file 408

mail
/etc/mail/sendmail.cf file

classes 195, 196
macros 186, 187
message headings 200
rewrite rules 180
rule sets 180

automatically forwards 66
mail command default settings 409
Mail files

/etc/mail/aliases 5
/usr/lib/sendmail.cf 179
/usr/spool/mqueue directory 882

mail queue files directory 882
management information base variables 420
mapping

UCS-2 conversion 590
maps

public and secret keys 165
math constants

defined in the math.h file 785
math.h file 785
Maxuuscheds file format 417
Maxuuxqts file format 417
menu options

Display
specifying 90

Message Handler 114

Index 899

methods.cfg File 102
MH

.mh_profile file 106
maildelivery file 98
mh_alias file format 418
mhl.format file 104
mtstailor file 114

mh_alias file format 418
mhl.format file 104
mib.defs file format 420
mibII file 110

mosy command 110
mkuser.default file 113
modem control operations 841
modems (BNU)

cycling multispeed modems 533
expect-send sequences 532

mouse special file 709
mpcn special file 710

error codes 711
mpqi special file 712
MPQP device handler

accessing 713
error conditions 714
system call support 713

mqueue directory (Mail) 882
mrouted.conf file 115
msg.h File 788
mtstailor file 114
multiple screen utility

terminal descriptions (asinfo file) 46
MultiProtocol Quad Port device handler 713

N
name resolution

DOMAIN cache file format 317
DOMAIN data file format 318
DOMAIN local data file format 321
DOMAIN reverse data file format 323
named.conf file format 422
standard resource record format 519

name resolution services 83
ordering 119

name table
XCOFF loader import file ID 635

named.conf file format 422
names and strings

object types 599
reserved keywords 599

navigation article
links to

specifying labels for 90
primary

specifying labels for links 90
specifying labels for buttons 90

neqn command
special character definitions for 325

netgroup file
/etc/netgroup

network users list 117

netmasks file 118
network masks

implementing IP standard subnetting 118
netsvc.conf file 119
netsvc.conf file format

specifying name resolution service order 118
Network File System 888
Network Information Service 888
network masks 118
Network Terminal Accelerator files 29, 377, 501
networks file (NFS) 120
networks file format 479
NFS files

bootparams 12
exports 61
networks 120
pcnfsd configuration 138
rpc 179
xtab 276

NIM
configuration information 79

NIS
netmask 118

NLSvec file
encoding PostScript fonts 121

nonvolatile RAM
platform-specific

accessing 715
nroff command

setting terminal driving tables 481
nterm file format 481
ntp.conf file 123
ntp.keys file

authentication of NTP transactions
key and key identifiers 132

null device
accessing 715

null special file 715

O
object file (XCOFF) 622
object file format 621
object sections

description 598
forward-referenced 598
ObjectType 598
syntax 598
TagValue 598

objects file 133
optical media device driver

accessing 718
output format control for the mhl command (MH) 104

P
package characteristics file

format 141
parameters

hardware 790

900 Files Reference

Pascal
external declarations 762

password 102
setting attributes 136

password file 134
password history information 164
Permissions file format

formatting entries 485
formatting option/value pairs 487

phone number abbreviations (BNU) 310
phones file format 493
physical volumes device driver

accessing 725
pkginfo file 141
pkgmap file 143
pmapi.h file 790
policy.cfg 146
poll file format 494
polling operations

defining structures in the header file 793
polling systems

specifying times (BNU) 494
Portable Operating System Interface for Computer

Environments 775
portlog file 148

/etc/security/portlog
per-port unsuccessful login attempt

information 148
POSIX

implementation characteristics 846
implementation limits 775

PostScript fonts
encoding 121

primitive systems
defining data types 845

printer
configuring a queuing system for 166

printer capabilities 566
procedure sections

callback tag 595
syntax 595

procedures list structure
description 597
syntax 597

process file system 149
processes

controlling initialization 80
image at time of error 299
setting resource hard limits 92

profile file format 495
programming interface

special file 693
protocols file format 496
providing diagnostic interface 720
pseudo-terminal device driver 722
pthread.h file 794, 795
public directory (BNU) 888
public key maps 165
publickey file

public or secret keys for maps 165
pwd.h file 797

pwd.h file (continued)
struct passwd

description 796
pwdhist file

password history 164

Q
qconfig file 166
queued requests for

file transfers
storage (BNU) 887

remote command execution
storage (BNU) 887

queuedefs file
daemon events 497

R
RAM

accessing platform-specific 715
random 717, 736
rc.boot file

machine boot process 169
rc.net file format 498

setting default gateway 498
setting host ID 498
setting host name 498
setting static route 498

rc.tcpip file 169
rcm special file

using graphic systems
gsc_handle access 724

received mail, actions on (MH) 98
record contacts from unknown systems (BNU) 66
record uucico daemon errors (BNU) 56
relocation information (XCOFF) 635, 641
remote command executions

queued requests (BNU) 887
remote commands (BNU) 59
remote file format 502
remote file transfers

status of
xferstats file 275

remote systems
BNU

list of 528
data transferred from 255
preventing multiple calls to 880
specifying permissions for remote communications

(BNU) 484
specifying when to poll (BNU) 494

remote systems (BNU) 28
remote.unknown file 170
remote.unknown shell script 170
resolv.conf file format 506
Resource Data Input File 179
resource definitions

class definitions 620
Resource keyword 620
syntax 620

Index 901

retry time
before calling a remote system (BNU) 886

reverse data file format 323
rewrite rules

mail 180
roles file 174
routed daemon

gateways file format 369
rpc file (NFS) 179
rset.h file 797
rule sets

mail 180

S
sample input to mosy 110
sample snmpd agent configuration 228
SCSI adapter driver

accessing 730
SCSI tmscsi device driver

accessing 732
secret key maps 165
section headers (XCOFF) 628, 630
sections (XCOFF) 630
security (BNU)

logging access attempts by unknown systems 66
recording access attempts by unknown

systems 170
specifying permissions for remote

communications 484
semaphore operations

sem.h file 798
sendmail command

alias definitions 5
sendmail configuration data 179
sendmail.cf file (Mail) 179
serial DASD adapter

accessing 730
serial DASD subsystem controller

accessing 731
Serial Optical Link

accessing 720
Serial Optical Link device driver

opn special file 720
services file format 514
setmaps file format 515
sets up user environment 52
setting

default gateway 500
host ID 500
host name 500
static route 500

setting defaults for mail command 409
setup.csh file 223
setup.sh file 224
sgtty.h file 801
shm.h File 806
simprof file format 517
Small Computer System Interface 730

smi.my file
sample SMI input

mosy command 225
smitacl.group file

group access control list definitions 225
smitacl.user file 226
snmpd.conf file 228
snmpdv3.conf 238
snmpmibd.conf 249
snmpt.boots

machine boot process 236
Source Code Control System (SCCS) 511
special files 684

3270 connection adapter 676
accessing tablet file 731
CD-ROM device driver 683
cdromd.conf 14
controlling terminal interfaces with 735
dials 687
diskette device-driver 691
error 690
errorctl 690
Ethernet adapter 689
hardware buses 682
IDE adapter driver 696
line printer device driver 699
logical volume device driver 703
lp 699
lpfk 702
mouse 709
mpcn 710
mpqi 712
mpqn 713
nonvolatile RAM 715
null device 715
opn 720
optical media device driver 718
physical volumes device driver 725
privileged virtual memory

read access 707
write access 707

SCSI adapter driver 730
SCSI tmscsi device driver 732
sequential-access bulk storage medium device

driver 726
serial DASD adapter 730
serial DASD subsystem controller 731
Serial Optical Link 720
system dump 688
token-ring device handler 733
X.25 co-processor/2 adapter 737

spooling directory (BNU) 883
SRC

SRC process structures 811
subsystem process structures 807

SRC subsystem programming requirements
SRC request packets

SRC request structure example 810
srf file 252
stabstrings section (XCOFF) 661

902 Files Reference

standard resource record format
address records 522
canonical name records 523
domain name pointer records 524
gateway ptr records 524
host information records 522
IN-ADDR.ARPA record 523
mail exchanger records 526
mail group member records 526
mail rename name records 525
mailbox information records 525
mailbox records 525
name server records 521
start of authority records 521
well-known services records 523

standards
environment implementation 846
implementation limits

ANSI C 775
IEEE P1003 POSIX 775

start-up file format 517
statistics

returning file 814
statistics about status of file transfer requests

(BNU) 275
statistics subroutines

structuring of returned data 814
status of calls to remote systems (BNU) 886
status subroutines

header file structure 812
statvfs subroutine statistics

structure 816
storage

combined log files (BNU) 886
debugging messages form the uucico daemon

(BNU) 6
files awaiting transfer 883
files that cannot be transferred (BNU) 884
lock files that prevent multiple uses of communication

devices 880
log and administrative files (BNU) 883
reverse name resolution information for named

(TCP/IP) 323
transferred files until delivered (BNU) 888

stream stanza 24
streamcmds file 252
string literals

escape sequences 603
supported character sets 601
syntax 601

string table 660
XCOFF 660
XCOFF loader section 636

symbol table 657
XCOFF 657
XCOFF loader section 633

symbol table (XCOFF) 646
sysck.cfg file 253
Sysfiles file format 527
syslog.conf file 817

system consoles
accessing 684

system files 1, 2
System Resource Controller 807
systemcfg.h file 819

defining _system_configuration structure 816
SystemName directories (BNU) 887
Systems file format 528

T
tablet special file 731
tailoring MH environments (MH) 114
tar.h file

/usr/include/tar.h 821
tar archive header 821

TCP/IP 514
BNU with

entries in the Dialers file 314
entries in the Systems file 533

file formats
/etc/map3270 412
.3270 keys 279
.netrc 478
.rhosts 509
DOMAIN cache 317
DOMAIN data 318
DOMAIN local data 321
DOMAIN reverse data 323
ftpusers 326
gated.conf 327
gateways 369
hosts 371
hosts.equiv 373
hosts.lpd 376
inetd.conf 378
Internet services 514
named.conf 422
networks 479
protocols 496
rc.net 498
resolv.conf 506

files
mrouted.conf 115
rc.tcpip 169

remote hosts
specifying to print on a local host 376

standard resource record format 519
telnet.conf file (TCP/IP) 534
temporary (TM.*) files 255
temporary uuxqt daemon work files, directory for

BNU 888
terminal capabilities

color manipulation 564
functions

area clears 555
basic 552
cursor motions 555
highlighting, underlining, and visual bells 557
insert or delete line character 556
insert or delete lines 555

Index 903

terminal capabilities (continued)
functions (continued)

keypad 560
parameterized strings 553
scrolling 555

general 537
line graphics 563
miscellaneous strings 562
status lines 563
tabs and initialization 561
types

Boolean 537
numeric 539
string 540

terminal definition files (HCON) 881
terminal descriptions

asinfo file 46
terminfo database 535

terminal interface 801
controlling 735
pseudo terminal 722

terminal map
file format 515

terminfo
database 535
entry 575
file format 535
file names 575
preparing descriptions 552
printers and 566
similar terminals and 565
source file entries 536
special cases 565

termio.h file 824
termios.h file 832
termiox.h file 843
threads list 794
tip command

.tiprc file format 577
contacting remote systems 493, 502
phones file format 493
providing initial variable settings 577
remote file format 502

tmscsi device driver
accessing 732

token-ring adapter 733
Token-Ring device handler

subroutine support 733
using 733

trace special file
event tracing 735

translating terminal_type strings 534
trcfmt file format

storing trace templates 578
troff

command
specifying description files 585

file format 582
font file format 585

troff command 582
troff file format 583

trusted computing base 253
TTY interface

defining 29
TTY subsystem 535, 824

controlling terminal 735
tuables file format 588
type-check section (XCOFF) 637

U
uconvdef Source File Format 590
UDFS

mounting options 14
UIL file format

compiler 592
description 592

UNIX-to-UNIX Copy Program (UUCP) 306
updaters file

updating NIS maps 256
urandom 717, 736
user

environment
setting at login 495

file 258
interface language file format 592
keyboard mapping and colors

telnet command 279
tn3270 command 412

setting
basic attributes 134
default attributes 113
environment attributes 50
extended attributes 258
password attributes 136
process resource hard limits 92

user ACL definitions list 226
user authentication

configuration information 95
user.roles file 264
users stanza 24
utmp file format 612
uucico daemon

debugging messages from 6
file transfer directions

files of 19
limiting instances of 417
log files 884
recording errors from 56

UUCP 306
uucp command

log files 884
uusched daemon

limiting instances of 417
uux command

executing log files 884
uuxqt daemon

executing log files 884
limiting instances of 417
storing temporary work files 888

904 Files Reference

V
value declaration 606
value sections

supported value types 594
syntax 594
ValueExpression 594
ValueName 594
ValueType 594

value selections 594
variables

environment 224
versions file, describe the format 22
VFS

data structure definitions 850
executing the vfs file 265

vfs file 265
vgrind command

language definition database 613
vgrindefs file format 613
Virtual File Systems 265

W
wctype.h file 851

wide-character classification list 851
widget meta-language 615

comments syntax 616
syntax elements 615

WLM
.times file 256
groupings file format 72

wlm.h file 852
WML file format

comments syntax 616
description 615
syntax elements 615

wtmp file format 612

X
X.25 cb_call_struct structure 860
X.25 cb_circuit_info_struct structure 861
X.25 cb_clear_struct structure 862
X.25 cb_data_struct structure 863
X.25 cb_dev_info_struct structure 864
X.25 cb_fac_struct structure 865
X.25 cb_int_data_struct structure 870
X.25 cb_lin_stats_struct structure 871
X.25 cb_link_name_struct structure 870
X.25 cb_msg_struc structure 875
X.25 cb_pvc_alloc_struct structure 876
X.25 cb_res_struct structure 877
X.25 ctr_array_struct structure 877
X.25 interface co-processor/2

accessing 737
x25_query_data structure for X.25 871
x25_stats structure for X.25 871
X25sdefs.h file

API X.25 structures 860
x25sdefs.h file for X.25 860

XCOFF 622
dbx stabstrings section 661
executable files 622
header files 623
headers

auxiliary 625
composite file 623
section 628

line number information 645
object files 622
section headers 630
sections 630

dbx stabstrings 661
debug 637
exception 638, 640
loader 632
type-check 637

string table 660
symbol table 646

auxiliary information 649
xferstats file 275
xtab file (NFS) 276

Index 905

906 Files Reference

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull AIX 5L Files Reference

Nº Reférence / Reference Nº : 86 A2 46EF 01 Daté / Dated : September 2002

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.
Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Technical Publications Ordering Form
Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:
Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL CEDOC
ATTN / Mr. L. CHERUBIN
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone / Téléphone : +33 (0) 2 41 73 63 96
FAX / Télécopie +33 (0) 2 41 73 60 19
E–Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web sites at: / Ou visitez nos sites web à:
http://www.logistics.bull.net/cedoc
http://www–frec.bull.com http://www.bull.com

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

[_ _] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E–MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander à votre contact Bull.

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

86 A2 46EF 01
ORDER REFERENCE

P
LA

C
E

 B
A

R
 C

O
D

E
 IN

 L
O

W
E

R
LE

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.
Use the cut marks to get the labels.

AIX

86 A2 46EF 01

AIX 5L Files
Reference

AIX

86 A2 46EF 01

AIX 5L Files
Reference

AIX

86 A2 46EF 01

AIX 5L Files
Reference

	Contents
	About This Book
	Who Should Use This Book
	How to Use This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. System Files
	Types of Files
	File-Naming Conventions
	System Files
	Related Information
	acct.cfg File
	Purpose
	Description
	Examples
	File
	Related Information

	admin File
	Purpose
	Description
	Related Information

	aliases File for Mail
	Purpose
	Description
	Files
	Related Information

	audit File for BNU
	Purpose
	Description
	Files
	Related Information

	backup File
	Purpose
	Description
	Header Records
	By-Name Format
	By-Inode Format
	Constants
	Related Information

	bincmds File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	BOOTP Relay Agent Configuration File
	Purpose
	Description
	Example
	Related Information

	bootparams File for NFS
	Purpose
	Description
	Examples
	Files
	Related Information

	ca.cfg File
	Purpose
	Description
	Examples
	File
	Related Information

	cdromd.conf File Format
	Purpose
	Description
	Examples
	Related Information

	ClientHostName.info File
	Purpose
	Description
	Example
	Files
	Related Information

	clsnmp.conf File
	Purpose
	Description
	Related Information

	Command (C.*) Files for BNU
	Purpose
	Description
	Examples
	Files
	Related Information

	compver File
	Purpose
	Description
	Examples
	Related Information

	config File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	consdef File
	Purpose
	Description
	Examples
	Files
	Related Information

	copyright File
	Purpose
	Description

	Data (D.*) Files for BNU
	Purpose
	Description
	Files
	Related Information

	/dev/hty File
	Purpose
	Description
	Files
	Related Information

	/dev/rhp File
	Purpose
	Description
	Files
	Related Information

	DHCP Client Configuration File
	Purpose
	Description
	Example
	Related Information

	DHCP Server Configuration File
	Purpose
	Description
	Examples
	Related Information

	depend File
	Purpose
	Description
	Examples
	Related Information

	dir File
	Purpose
	Syntax
	Description
	Related Information

	dsinfo File
	Purpose
	Description
	Examples
	Files
	Related Information

	dumpdates File
	Purpose
	Description
	Files
	Related Information

	e789_ctbl File for HCON
	Purpose
	Description
	Files
	Related Information

	e789_ktbl File for HCON
	Purpose
	Description
	Files
	Related Information

	environ File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	environment File
	Purpose
	Description
	The Basic Environment
	Files
	Related Information

	errors File for BNU
	Purpose
	Description
	Examples
	Files
	Related Information

	ethers File for NIS
	Purpose
	Description
	Files
	Related Information

	events File
	Purpose
	Description
	Audit Event Formatting Information
	Security
	Examples
	Files
	Related Information

	Execute (X.*) Files for BNU
	Purpose
	Description
	Examples
	Files
	Related Information

	exports File for NFS
	Purpose
	Description
	Examples
	Files
	Related Information

	.fig File
	Purpose
	Description
	Files
	Related Information

	filesystems File
	Purpose
	Description
	Examples
	Files
	Related Information

	Foreign File for BNU
	Purpose
	Description
	Examples
	Files
	Related Information

	.forward File
	Purpose
	Description
	Files
	Related Information

	ftpaccess.ctl File
	Purpose
	Description
	Syntax

	/etc/group File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	/etc/security/group File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	Workload Manager groupings File
	Purpose
	Description
	Syntax
	Example
	Files
	Related Information

	hostmibd.conf File
	Purpose
	Description
	Example
	Files
	Related Information

	image.data File
	Purpose
	Description
	Related Information

	INed Files
	Purpose
	Description
	Files
	Related Information

	.info File
	Purpose
	Description
	Examples
	Related Information

	inittab File
	Purpose
	Description
	Examples
	Files
	Related Information

	irs.conf File
	Purpose
	Description
	Examples
	Files
	Related Information

	ispaths File
	Purpose
	Description
	Examples
	Files
	Related Information

	isprime File
	Purpose
	Description
	Examples
	Files
	Related Information

	.kshrc File
	Purpose
	Description
	Examples
	Files
	Related Information

	limits File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	login.cfg File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	.maildelivery File for MH
	Purpose
	Description
	Parameters
	Examples
	Files
	Related Information

	/usr/lib/security/methods.cfg File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	mhl.format File
	Purpose
	Description
	Examples
	Files
	Related Information

	.mh_profile File
	Purpose
	Description
	Profile Entries
	Profile Elements
	Environment Variables
	Examples
	Files
	Related Information

	mibII.my File
	Purpose
	Description
	Examples
	Files
	Related Information

	mkuser.default File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	mtstailor File for MH
	Purpose
	Description
	Files
	Related Information

	mrouted.conf File
	Purpose
	Description
	Example

	netgroup File for NIS
	Purpose
	Description
	Examples
	Files
	Related Information

	netmasks File for NIS
	Purpose
	Description
	Files
	Related Information

	netsvc.conf File
	Purpose
	Description
	Examples
	Files
	Related Information

	networks File for NFS
	Purpose
	Description
	Files
	Related Information

	NLSvec File
	Purpose
	Description
	Examples
	International Character Support
	Files
	Related Information

	ntp.conf File
	Purpose
	Description
	Configuration Options
	Configuration Authentication Options
	Configuration Access Control Options
	Configuration Monitoring Options
	Miscellaneous Configuration Options
	Files
	Related Information

	ntp.keys File
	Purpose
	Description
	Authentication Key File Format
	Files
	Related Information

	objects File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	/etc/passwd File
	Purpose
	Description
	Changing the User File
	Security
	Examples
	Files
	Related Information

	/etc/security/passwd File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	pcnfsd.conf Configuration File
	Purpose
	Description
	Examples
	Files
	Related Information

	pkginfo File
	Purpose
	Description
	Examples
	Related Information

	pkgmap File
	Purpose
	Description
	Examples
	Related Information

	policy.cfg File
	Purpose
	Description
	Examples
	File
	Related Information

	portlog File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	/proc File
	Purpose
	Syntax
	Description
	Files
	Error Codes
	Security

	pwdhist File
	Purpose
	Description
	Security
	Examples
	Related Information

	publickey File for NIS
	Purpose
	Description
	Related Information

	qconfig File
	Purpose
	Description
	Examples
	Files
	Related Information

	rc.boot File
	Purpose
	Description
	Files
	Related Information

	rc.tcpip File for TCP/IP
	Purpose
	Description
	Examples
	Related Information

	remote.unknown File for BNU
	Purpose
	Description
	Files
	Related Information

	Resource Data Input File
	Purpose
	Description
	Examples
	Related Information

	roles File
	Purpose
	Description
	Changing the roles File
	Security
	Examples
	Files
	Related Information

	rmccli General Information File
	Purpose
	Description
	Flags
	Related Information

	rpc File for NFS
	Purpose
	Description
	Examples
	Related Information

	sendmail.cf File
	Purpose
	Description
	Related Information

	setinfo File
	Purpose
	Description
	Examples
	Related Information

	setup.csh File
	Purpose
	Description
	Examples
	Files
	Related Information

	setup.sh File
	Purpose
	Description
	Examples
	Files
	Related Information

	smi.my File
	Purpose
	Description
	Files
	Related Information

	smitacl.group File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	smitacl.user File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	snmpd.conf File
	Purpose
	Description
	Examples
	Related Information

	snmpd.boots File
	Purpose
	Description
	Syntax
	Example
	Files
	Related Information

	snmpdv3.conf File
	Purpose
	Description
	Related Information

	snmpmibd.conf File
	Purpose
	Description
	Example
	File
	Related Information

	socks5c.conf File
	Purpose
	Description
	Security
	Examples
	Related Information

	space File
	Purpose
	Description
	Examples

	.srf File
	Purpose
	Description
	Files
	Related Information

	streamcmds File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	sysck.cfg File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	Temporary (TM.*) Files for BNU
	Purpose
	Description
	Files
	Related Information

	Workload Manager .times File
	Purpose
	Description
	Syntax
	Example
	Files
	Related Information

	updaters File for NIS
	Purpose
	Description
	Related Information

	user File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	user.roles File
	Purpose
	Description
	Changing the user.roles File
	Security
	Examples
	Files
	Related Information

	vfs File
	Purpose
	Description
	Files
	Related Information

	Workload Manager classes File
	Purpose
	Description
	Files
	Security
	Example
	Related Information

	Workload Manager limits File
	Purpose
	Description
	Security
	Example
	Files
	Related Information

	Workload Manager rules File
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	Workload Manager shares File
	Purpose
	Description
	Security
	Example
	Files
	Related Information

	xferstats File for BNU
	Purpose
	Description
	Examples
	Files
	Related Information

	xtab File for NFS
	Purpose
	Description
	Files
	Related Information

	Chapter 2. File Formats
	Asynchronous Terminal Emulation (ATE) File Formats
	Basic Networking Utilities (BNU) File Formats
	tip File Formats
	TCP/IP System Management File Formats
	.3270keys File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	acct File Format
	Purpose
	Description
	Related Information

	ar File Format (Big)
	Purpose
	Description
	Related Information

	ar File Format (Small)
	Purpose
	Description
	Related Information

	ate.def File Format
	Purpose
	Description
	Examples
	Files
	Related Information

	audit File Format
	Purpose
	Description
	Related Information

	bootptab File Format
	Purpose
	Description
	Guidelines and Restrictions
	Related Information

	Character Set Description (charmap) Source File Format
	Purpose
	Description
	Examples
	Related Information

	core File Format
	Purpose
	Description
	Related Information

	core File Format (AIX 4.2)
	Purpose
	Description
	Related Information

	core File Format (AIX 4.3)
	Purpose
	Description
	Related Information

	cpio File Format
	Purpose
	Description
	Related Information

	Devices File Format for BNU
	Purpose
	Description
	Examples
	Files
	Related Information

	Dialcodes File Format for BNU
	Purpose
	Description
	Example
	Files
	Related Information

	Dialers File Format for BNU
	Purpose
	Description
	Examples
	Files
	Related Information

	Dialing Directory File Format for ATE
	Purpose
	Description
	Examples
	Files
	Related Information

	DOMAIN Cache File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	DOMAIN Data File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	DOMAIN Local Data File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	DOMAIN Reverse Data File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	eqnchar File Format
	Purpose
	Description
	Files
	Related Information

	ftpusers File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	gated.conf File Format for TCP/IP
	Purpose
	Description
	Directive Statements
	Trace Statements
	Global tracing options
	Packet tracing
	Traceoptions syntax
	Options Statements
	Interface Statement
	Interface Lists
	IP Interface Addresses and Routes
	Definition Statements
	Autonomous System Configuration
	Router ID Configuration
	Martian Configuration
	Sample Definition Statements
	The RIP Statement
	Tracing options
	The RIPNG Statement
	The Hello Statement
	Tracing options
	The IS-IS Statement
	Tracing options
	The OSPF Statement
	The EGP Statement
	The BGP Statement
	Group parameters
	Specifying peers
	Peer parameters
	The BGP4+ Statement
	The ICMP Statement
	The SNMP Statement
	Tracing options
	Static Statements
	The Import Statement
	Specifying preferences
	Route Filters
	Importing Routes from BGP and EGP
	Importing Routes from RIP, HELLO and Redirects
	Importing Routes from OSPF
	The Export Statement
	Specifying Metrics
	Route Filters
	Specifying the Destination
	Exporting to EGP and BGP
	Exporting to RIP and HELLO
	Exporting to OSPF
	Specifying the Source
	Exporting BGP and EGP Routes
	Exporting RIP and HELLO Routes
	Exporting OSPF Routes
	Exporting Routes from Non-routing Protocols
	Exporting by AS Path
	Exporting by Route Tag
	Route Aggregation
	Aggregation and Generation syntax
	Route Filters
	Preference
	Selecting a Route
	Assigning Preferences
	Sample Preference Specifications
	The Router Discovery Protocol
	The Router Discovery Server
	The Router Discovery Server Statement
	The Router Discovery Client
	The Router Discovery Client Statement
	Route Filtering
	Matching AS Paths
	AS Path Matching Syntax
	AS Path Regular Expressions
	AS Path Terms
	AS Path Operators

	gateways File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	hosts File Format for TCP/IP
	Purpose
	Description
	Examples
	Related Information

	hosts.equiv File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	hosts.lpd File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	hty_config File Format
	Purpose
	Description
	Related Information

	inetd.conf File Format for TCP/IP
	Purpose
	Description
	Service Requests
	Examples
	Files
	Related Information

	lastlog File Format
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	ldap.cfg File Format
	Purpose
	Description
	Related Information

	LDAP Attribute Mapping File Format
	Purpose
	Description
	Files
	Related Information

	Locale Definition Source File Format
	Purpose
	Description
	Files
	Related Information

	LC_COLLATE Category for the Locale Definition Source File Format
	Purpose
	Description
	Examples
	Files
	Related Information

	LC_CTYPE Category for the Locale Definition Source File Format
	Purpose
	Description
	Examples
	Files
	Related Information

	LC_MESSAGES Category for the Locale Definition Source File Format
	Purpose
	Description
	Examples
	Files
	Related Information

	LC_MONETARY Category for the Locale Definition Source File Format
	Purpose
	Description
	Example
	Files
	Related Information

	LC_NUMERIC Category for the Locale Definition Source File Format
	Purpose
	Description
	Examples
	Files
	Related Information

	LC_TIME Category for the Locale Definition Source File Format
	Purpose
	Description
	Keywords
	Field Descriptors
	Example
	Files
	Related Information

	Locale Method Source File Format
	Purpose
	Description
	Files
	Related Information

	magic File Format
	Purpose
	Description
	Examples
	Related Information

	.mailrc File Format
	Purpose
	Description
	Examples
	Files
	Related Information

	map3270 File Format for TCP/IP
	Purpose
	Description
	3270 Keys Supported
	A Sample Entry
	3270 Key Definitions
	Files
	Related Information

	Maxuuscheds File Format for BNU
	Purpose
	Description
	Files
	Related Information

	Maxuuxqts File Format for BNU
	Purpose
	Description
	Files
	Related Information

	.mh_alias File Format
	Purpose
	Description
	Examples
	Files
	Related Information

	mib.defs File Format
	Purpose
	Description
	Files
	Related Information

	named.conf File Format for TCP/IP
	Purpose
	Description
	Format of the named.conf file when configuring named8
	Examples
	Format of the named.conf file when configuring named9

	.netrc File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	networks File Format for TCP/IP
	Purpose
	Description
	Files
	Related Information

	nroff or troff Input File Format
	Purpose
	Description
	Examples
	Related Information

	nterm File Format
	Purpose
	Description
	Files
	Related Information

	Permissions File Format for BNU
	Purpose
	Description
	LOGNAME and MACHINE Entries
	Option/Value Pairs
	Security
	Examples
	Files
	Related Information

	phones File Format for tip
	Purpose
	Description
	Examples
	Files
	Related Information

	Poll File Format for BNU
	Purpose
	Description
	Examples
	Files
	Related Information

	profile File Format
	Purpose
	Description
	Examples
	Files
	Related Information

	protocols File Format for TCP/IP
	Purpose
	Description
	Related Information

	queuedefs File Format
	Purpose
	Description
	Examples
	Related Information

	rc.net File Format for TCP/IP
	Purpose
	Description
	Using the Configuration Methods
	Using Traditional Configuration Commands
	Miscellaneous Functions
	Load Network File System (NFS)
	Examples
	Files
	Related Information

	rc.ntx File Format
	Purpose
	Description
	Related Information

	remote File Format for tip
	Purpose
	Description
	Examples
	Files
	Related Information

	resolv.conf File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	resolv.ldap File Format for TCP/IP
	Purpose
	Description
	Example
	Files
	Related Information

	.rhosts File Format for TCP/IP
	Purpose
	Description
	Examples
	Files
	Related Information

	sccsfile File Format
	Purpose
	Description
	Related Information

	services File Format for TCP/IP
	Purpose
	Description
	Examples
	Related Information

	setmaps File Format
	Purpose
	Description
	Files
	Related Information

	simprof File Format
	Purpose
	Description
	Examples
	Files

	Standard Resource Record Format for TCP/IP
	Purpose
	Description
	Resource Record Types
	Examples
	Related Information

	Sysfiles File Format for BNU
	Purpose
	Description
	Examples
	Files
	Related Information

	Systems File Format for BNU
	Purpose
	Description
	Fields in a Systems File
	Entries for Use with TCP/IP
	Examples
	Files
	Related Information

	telnet.conf File Format for TCP/IP
	Purpose
	Description
	Security
	Examples
	Files
	Related Information

	terminfo Directory
	Purpose
	Description
	Source File Entries
	Types of Capabilities
	Preparing Descriptions
	Basic Capabilities
	Parameterized Strings
	Cursor Motions
	Area Clears
	Scrolling
	Insert or Delete Character
	Highlighting, Underlining, and Visual Bells
	Keypad
	Tabs and Initialization
	Miscellaneous Strings
	Status Lines
	Line Graphics
	Color Manipulation
	Special Cases
	Similar Terminals
	Printer Capabilities
	Database File Names
	Example
	Files
	Related Information

	.tiprc File Format for tip
	Purpose
	Description
	Examples
	Files
	Related Information

	trcfmt File Format
	Purpose
	Description
	Trace Entries
	Trace Data Formatting
	Format Codes
	Switch Statements
	LOOP Statements
	Macros
	Files
	Related Information

	troff File Format
	Purpose
	Description
	Files
	Related Information

	troff Font File Format
	Purpose
	Description
	Files
	Related Information

	tunables File Format
	Purpose
	Description
	Examples
	Files
	Related Information

	uconvdef Source File Format
	Purpose
	Description
	Related Information

	UIL File Format
	Purpose
	Description
	File Format
	Language Syntax
	Files
	Related Information

	utmp, wtmp, failedlogin File Format
	Purpose
	Description
	Files
	Related Information

	vgrindefs File Format
	Purpose
	Description
	Files
	Related Information

	WML File Format
	Purpose
	Description
	File Format
	Related Information

	XCOFF Object File Format
	Purpose
	Writing Applications that Use XCOFF Declarations
	Understanding XCOFF
	Composite File Header
	Sections and Section Headers
	Loader Section (loader.h)
	Debug Section
	Type-Check Section
	Exception Section
	Comment Section
	Relocation Information for XCOFF File (reloc.h)
	Line Number Information for XCOFF File (linenum.h)
	Symbol Table Information
	Symbol Table Auxiliary Information
	Symbol Table Field Contents by Storage Class
	String Table
	dbx Stabstrings
	Related Information

	Chapter 3. Special Files
	Related Information
	3270cn Special File
	Purpose
	Description
	Related Information

	bus Special File
	Purpose
	Description
	Related Information

	cd Special File
	Purpose
	Description
	Related Information

	console Special File
	Purpose
	Description
	Console Output Logging
	Console Output Tagging
	Files
	Related Information

	dials Special File
	Purpose
	Description
	Error Codes
	Files
	Related Information

	dump Special File
	Purpose
	Syntax
	Description
	Related Information

	entn Special File
	Purpose
	Description
	Error Codes
	Related Information

	Error Logging Special Files
	Purpose
	Description
	Related Information

	fd Special File
	Purpose
	Description
	Related Information

	fddin Special File
	Purpose
	Description
	Error Codes
	Related Information

	GIO Special File
	Purpose
	Description
	Configuration
	Usage Considerations
	Error Codes
	Files
	Related Information

	ide Special File
	Purpose
	Description
	Related Information

	kbd Special File
	Purpose
	Description
	Configuration
	Usage Considerations
	Error Codes
	Files
	Related Information

	lft Special File
	Purpose
	Description
	Usage Considerations
	Related Information

	lp Special File
	Purpose
	Description
	Related Information

	lpfk Special File
	Purpose
	Description
	Error Codes
	Files
	Related Information

	lvdd Special File
	Purpose
	Description
	Error Codes
	Related Information

	mem or kmem Special File
	Purpose
	Description
	Process Address Space Regions for the /dev/kmem Special File
	Implementation of mem Special File Access
	Files
	Related Information

	mouse Special File
	Purpose
	Description
	Configuration
	Usage Considerations
	Error Codes
	Files
	Related Information

	mpcn Special File
	Purpose
	Description
	Usage Considerations
	Error Codes
	Related Information

	mpqi Special File
	Purpose
	Description
	Related Information

	mpqn Special File
	Purpose
	Description
	Error Codes
	Related Information

	null Special File
	Purpose
	Description
	Usage Considerations
	Related Information

	nvram Special File
	Purpose
	Description
	Security
	Files
	Related Information

	random and urandom Devices
	Purpose
	Description
	Implementation Specifics

	omd Special File
	Purpose
	Description
	Device-Dependent Subroutines
	Error Conditions
	Files
	Related Information

	opn Special File
	Purpose
	Description
	Related Information

	ops0 Special File
	Purpose
	Description
	Related Information

	pty Special File
	Purpose
	Description
	Related Information

	rcm Special File
	Purpose
	Description
	Usage Considerations
	Related Information

	rhdisk Special File
	Purpose
	Description
	Error Codes
	Files
	Related Information

	rmt Special File
	Purpose
	Description
	Related Information

	scsi Special File
	Purpose
	Description
	Related Information

	serdasda Special File
	Purpose
	Description
	Usage Considerations
	Related Information

	serdasdc Special File
	Purpose
	Description
	Usage Considerations
	Related Information

	tablet Special File
	Purpose
	Description
	Configuration
	Usage Considerations
	Error Codes
	Files
	Related Information

	tmscsi Special File
	Purpose
	Description
	Related Information

	tokn Special File
	Purpose
	Description
	Related Information

	trace Special File
	Purpose
	Description
	Related Information

	tty Special File
	Purpose
	Description
	Related Information

	urandom and random Devices
	Purpose
	Description
	Implementation Specifics

	x25sn Special File
	Purpose
	Description
	Related Information

	Chapter 4. Header Files
	3270 Host Connection Program (HCON) Header Files
	Related Information
	List of Major Control Block Header Files
	Options and Flags for HCON File Transfer Header Files
	C and Pascal Options
	Host File Flags
	Related Information

	dirent.h File
	Purpose
	Description
	Related Information

	dlfcn.h File
	Purpose
	Syntax
	Description

	eucioctl.h File
	Purpose
	Description
	Related Information

	fcntl.h File
	Purpose
	Description
	Related Information

	filsys.h File
	Purpose
	Syntax
	Description
	Related Information

	flock.h File
	Purpose
	Description
	Related Information

	fullstat.h File
	Purpose
	Description
	Related Information

	fxconst.inc File
	Purpose
	Description
	Related Information

	fxfer.h File
	Purpose
	Description
	Related Information

	fxfer.inc File
	Purpose
	Description
	Related Information

	fxhfile.inc File
	Purpose
	Description
	Related Information

	g32_api.h File
	Purpose
	Description

	g32const.inc File
	Purpose
	Description

	g32hfile.inc File
	Purpose
	Description

	g32_keys.h File
	Purpose
	Description
	Related Information

	g32keys.inc File
	Purpose
	Description
	Related Information

	g32types.inc File
	Purpose
	Description
	Examples
	Related Information

	grp.h File
	Purpose
	Syntax
	Description
	Related Information

	iconv.h File
	Purpose
	Description
	Related Information

	inode.h File
	Purpose
	Syntax
	Description
	Related Information

	inttypes.h File
	Purpose
	Syntax
	Description

	ipc.h File
	Purpose
	Syntax
	Description
	Symbolic Constants:
	Related Information

	iso646.h File
	Purpose
	Syntax
	Description

	ldr.h File
	Purpose
	Syntax
	Description
	Related Information

	limits.h File
	Purpose
	Description
	Related Information

	libperfstat.h File
	Purpose
	Syntax
	Description
	Related Information

	math.h File
	Purpose
	Description
	Related Information

	mode.h File
	Purpose
	Description
	Related Information

	msg.h File
	Purpose
	Syntax
	Description
	Related Information

	param.h File
	Purpose
	Description
	Related Information

	pmapi.h File
	Purpose
	Syntax
	Description
	Related Information

	poll.h File
	Purpose
	Description
	Related Information

	pthread.h File
	Purpose
	Syntax
	Description
	Related Information

	pwd.h File
	Purpose
	Syntax
	Description
	Related Information

	rset.h File
	Purpose
	Syntax
	Description
	Related Information

	sem.h File
	Purpose
	Description
	Related Information

	sgtty.h File
	Purpose
	Description
	File
	Related Information

	shm.h File
	Purpose
	Syntax
	Description
	Related Information

	spc.h File
	Purpose
	Description
	SRC Request Structure Example
	Related Information

	srcobj.h File
	Purpose
	Description
	Related Information

	stat.h File
	Purpose
	Description
	Related Information

	statfs.h File
	Purpose
	Description
	Files
	Related Information

	statvfs.h File
	Purpose
	Description
	Related Information

	syslog.conf File
	Purpose
	Description
	Format
	Facilities
	Priority Levels
	Destinations
	Rotation
	Examples
	Files
	Related Information

	systemcfg.h File
	Purpose
	Description

	tar.h File
	Purpose
	Description
	Related Information

	termio.h File
	Purpose
	Description
	Related Information

	termios.h File
	Purpose
	Description
	Related Information

	termiox.h File
	Purpose
	Description
	Related Information

	types.h File
	Purpose
	Description
	Related Information

	unistd.h File
	Purpose
	Description
	Related Information

	utmp.h File
	Purpose
	Description
	Examples
	Files
	Related Information

	values.h File
	Purpose
	Description
	Related Information

	vmount.h File
	Purpose
	Description
	Related Information

	wctype.h File
	Purpose
	Syntax
	Description
	Related Information

	wlm.h File
	Purpose
	Description
	Error Codes
	Related Information

	x25sdefs.h File for X.25
	Purpose
	Description
	Related Information

	cb_call_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields

	cb_circuit_info_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields

	cb_clear_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields

	cb_data_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields

	cb_dev_info_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields

	cb_fac_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields
	Examples

	cb_int_data_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields

	cb_link_name_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields

	cb_link_stats_struct, x25_query_data, or x25_stats Structure for X.25
	cb_links_stats_struct Structure
	x25_query_data Structure
	x25_stats Structure

	cb_msg_struct Structure for X.25
	Purpose
	Syntax
	Fields

	cb_pvc_alloc_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields

	cb_res_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields

	ctr_array_struct Structure for X.25
	Purpose
	Syntax
	Flags
	Fields

	Chapter 5. Directories
	Understanding Types of Directories
	Related Information
	/etc/locks Directory
	Purpose
	Description
	Related Information

	/usr/lib/hcon Directory
	Purpose
	Description
	Files

	/var/spool/mqueue Directory for Mail
	Purpose
	Description
	Related Information

	/var/spool/uucp Directory for BNU
	Purpose
	Description
	Related Information

	/var/spool/uucp/.Admin Directory for BNU
	Purpose
	Description
	Related Information

	/var/spool/uucp/.Corrupt Directory for BNU
	Purpose
	Description
	Related Information

	/var/spool/uucp/.Log Directories for BNU
	Purpose
	Description
	Related Information

	/var/spool/uucp/.Old Directory for BNU
	Purpose
	Description
	Files
	Related Information

	/var/spool/uucp/.Status Directory for BNU
	Purpose
	Description
	Related Information

	/var/spool/uucp/SystemName Directories for BNU
	Purpose
	Description
	Related Information

	/var/spool/uucp/.Workspace Directory for BNU
	Purpose
	Description
	Related Information

	/var/spool/uucp/.Xqtdir Directory for BNU
	Purpose
	Description
	Related Information

	/var/spool/uucppublic Directory for BNU
	Purpose
	Description
	Related Information

	Appendix. Notices
	Trademarks

	Index

