
Bull
Technical Reference

Base Operating System and Extensions

Volume 1/2

AIX

86 A2 81AP 05

ORDER REFERENCE

Bull
Technical Reference

Base Operating System and Extensions

Volume 1/2

AIX

Software

February 1999

BULL ELECTRONICS ANGERS

CEDOC

34 Rue du Nid de Pie – BP 428

49004 ANGERS CEDEX 01

FRANCE

86 A2 81AP 05

ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States of America

and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and

making derivative works.

Copyright Bull S.A. 1992, 1999

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of

this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you

are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under

licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through

the Open Group.

Year 2000

The product documented is this manual is Year 2000 Ready.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors

contained herein, or for incidental or consequential damages in connection with the use of this material.

iiiPreface

Table of Contents

About This Book xiii.

Base Operating System (BOS) Runtime Services (A–P) 1-1.

a64l or l64a Subroutine 1-3.

abort Subroutine 1-5.

abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv Subroutine 1-6.

access, accessx, or faccessx Subroutine 1-8.

acct Subroutine 1-11.

acl_chg or acl_fchg Subroutine 1-12.

acl_get or acl_fget Subroutine 1-15.

acl_put or acl_fput Subroutine 1-17.

acl_set or acl_fset Subroutine 1-19.

addssys Subroutine 1-21.

adjtime Subroutine 1-23.

aio_cancel or aio_cancel64 Subroutine 1-24.

aio_error or aio_error64 Subroutine 1-26.

aio_read or aio_read64 Subroutine 1-28.

aio_return or aio_return64 Subroutine 1-30.

aio_suspend or aio_suspend64 Subroutine 1-32.

aio_write or aio_write64 Subroutine 1-34.

asin, asinl, acos, acosl, atan, atanl, atan2, or atan2l Subroutine 1-36.

asinh, acosh, or atanh Subroutine 1-38.

assert Macro 1-39.

atof, strtod, strtold, atoff, or strtof Subroutine 1-40.

audit Subroutine 1-42.

auditbin Subroutine 1-44.

auditevents Subroutine 1-46.

auditlog Subroutine 1-48.

auditobj Subroutine 1-50.

auditpack Subroutine 1-53.

auditproc Subroutine 1-54.

auditread, auditread_r Subroutines 1-57.

auditwrite Subroutine 1-59.

authenticate Subroutine 1-60.

basename Subroutine 1-62.

bcopy, bcmp, bzero or ffs Subroutine 1-63.

bessel: j0, j1, jn, y0, y1, or yn Subroutine 1-64.

bindprocessor Subroutine 1-66.

brk or sbrk Subroutine 1-68.

bsearch Subroutine 1-70.

btowc Subroutine 1-72.

_check_lock Subroutine 1-73.

_clear_lock Subroutine 1-74.

catclose Subroutine 1-75.

catgets Subroutine 1-76.

catopen Subroutine 1-77.

ccsidtocs or cstoccsid Subroutine 1-79.

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine 1-80.

chacl or fchacl Subroutine 1-82.

iv Technical Reference: Base Operating System

chdir Subroutine 1-85.

chmod or fchmod Subroutine 1-87.

chown, fchown, lchown, chownx, or fchownx Subroutine 1-90.

chpass Subroutine 1-93.

chroot Subroutine 1-95.

chssys Subroutine 1-97.

ckuseracct Subroutine 1-99.

ckuserID Subroutine 1-101.

class, _class, finite, isnan, or unordered Subroutines 1-103.

clock Subroutine 1-105.

close Subroutine 1-106.

compare_and_swap Subroutine 1-108.

compile, step, or advance Subroutine 1-109.

confstr Subroutine 1-113.

conv Subroutines 1-115.

copysign, nextafter, scalb, logb, or ilogb Subroutine 1-118.

crypt, encrypt, or setkey Subroutine 1-120.

cs Subroutine 1-122.

csid Subroutine 1-124.

ctermid Subroutine 1-125.

ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine 1-126.

ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine 1-129.

ctype Subroutines 1-131.

cuserid Subroutine 1-134.

defssys Subroutine 1-135.

delssys Subroutine 1-136.

dirname Subroutine 1-138.

disclaim Subroutine 1-140.

dlclose Subroutine 1-141.

dlerror Subroutine 1-142.

dlopen Subroutine 1-143.

dlsym Subroutine 1-146.

drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, or srand48
Subroutine 1-147.

drem or remainder Subroutine 1-150.

_end, _etext, or _edata Identifier 1-151.

ecvt, fcvt, or gcvt Subroutine 1-152.

erf, erfl, erfc, or erfcl Subroutine 1-154.

errlog Subroutine 1-155.

exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine 1-158.

exit, atexit, or _exit Subroutine 1-165.

exp, expl, expm1, log, logl, log10, log10l, log1p, pow, or powl Subroutine 1-167.

fattach Subroutine 1-170.

fchdir Subroutine 1-172.

fclear or fclear64 Subroutine 1-173.

fclose or fflush Subroutine 1-175.

fcntl, dup, or dup2 Subroutine 1-177.

fdetach Subroutine 1-184.

feof, ferror, clearerr, or fileno Macro 1-186.

fetch_and_add Subroutine 1-187.

fetch_and_and or fetch_and_or Subroutine 1-188.

finfo or ffinfo Subroutine 1-189.

flockfile, ftrylockfile, funlockfile Subroutine 1-191.

floor, floorl, ceil, ceill, nearest, trunc, rint, itrunc, uitrunc, fmod, fmodl, fabs, or fabsl
Subroutine 1-193.

vPreface

fmtmsg Subroutine 1-196.

fnmatch Subroutine 1-199.

fopen, fopen64, freopen, freopen64 or fdopen Subroutine 1-201.

fork or vfork Subroutine 1-205.

fork, f_fork, or vfork Subroutine 1-205.

fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable
Subroutine 1-208.

fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine 1-210.

fp_cpusync Subroutine 1-212.

fp_flush_imprecise Subroutine 1-214.

fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp Subroutine
1-215.

fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp,
fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft Subroutines 1-217.

fp_raise_xcp Subroutine 1-219.

fp_read_rnd or fp_swap_rnd Subroutine 1-220.

fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine 1-222.

fp_trap Subroutine 1-225.

fp_trapstate Subroutine 1-227.

fread or fwrite Subroutine 1-229.

freeaddrinfoSubroutine 1-232.

frevoke Subroutine 1-233.

frexp, frexpl, ldexp, ldexpl, modf, or modfl Subroutine 1-234.

fscntl Subroutine 1-236.

fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos, fgetpos64, fsetpos, or
fsetpos64 Subroutine 1-237.

fsync Subroutine 1-241.

ftok Subroutine 1-242.

ftw or ftw64 Subroutine 1-244.

fwide Subroutine 1-247.

fwprintf, wprintf, swprintf Subroutines 1-248.

fwscanf, wscanf, swscanf Subroutines 1-253.

gai_strerror Subroutine 1-258.

get_speed, set_speed, or reset_speed Subroutines 1-259.

getaddrinfo Subroutine 1-261.

getargs Subroutine 1-264.

getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr Subroutine 1-266.

getc, getchar, fgetc, or getw Subroutine 1-268.

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked Subroutines 1-271

getconfattr Subroutine 1-272.

getcontext or setcontext Subroutine 1-277.

getcwd Subroutine 1-278.

 getdate Subroutine 1-280.

getdtablesize Subroutine 1-284.

getenv Subroutine 1-285.

getevars Subroutine 1-286.

getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent Subroutine 1-288.

getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or endfsent_r Subroutine
1-290

getgid or getegid Subroutine 1-292.

getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine 1-293.

getgrgid_r Subroutine 1-295.

getgrnam_r Subroutine 1-296.

getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine 1-297.

getgroups Subroutine 1-301.

getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine 1-302.

vi Technical Reference: Base Operating System

getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer
Subroutine 1-304.

getlogin Subroutine 1-307.

getlogin_r Subroutine 1-309.

getnameinfo Subroutine 1-311.

getopt Subroutine 1-313.

getpagesize Subroutine 1-316.

getpass Subroutine 1-317.

getpcred Subroutine 1-318.

getpenv Subroutine 1-320.

getpgid Subroutine 1-322.

getpid, getpgrp, or getppid Subroutine 1-323.

 getportattr or putportattr Subroutine 1-324.

getpri Subroutine 1-328.

getpriority, setpriority, or nice Subroutine 1-329.

getprocs Subroutine 1-331.

getpw Subroutine 1-333.

getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine 1-334. . .

getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine 1-336.

 getroleattr, nextrole or putroleattr Subroutine 1-339.

getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent Subroutine 1-342. .

getrusage, getrusage64, times, or vtimes Subroutine 1-344.

gets or fgets Subroutine 1-348.

getsid Subroutine 1-350.

getssys Subroutine 1-351.

getsubopt Subroutine 1-352.

getsubsvr Subroutine 1-353.

getthrds Subroutine 1-354.

gettimeofday, settimeofday, or ftime Subroutine 1-356.

gettimer, settimer, restimer, stime, or time Subroutine 1-358.

gettimerid Subroutine 1-361.

getttyent, getttynam, setttyent, or endttyent Subroutine 1-363.

getuid or geteuid Subroutine 1-365.

getuinfo Subroutine 1-366.

getuserattr, IDtouser, nextuser, or putuserattr Subroutine 1-367.

GetUserAuths Subroutine 1-374.

getuserpw, putuserpw, or putuserpwhist Subroutine 1-375.

getusraclattr, nextusracl or putusraclattr Subroutine 1-378.

getutent, getutid, getutline, pututline, setutent, endutent, or utmpname Subroutine 1-381

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine . . .
1-384

getwc, fgetwc, or getwchar Subroutine 1-386.

getwd Subroutine 1-388.

getws or fgetws Subroutine 1-389.

glob Subroutine 1-391.

globfree Subroutine 1-395.

grantpt Subroutine 1-396.

hsearch, hcreate, or hdestroy Subroutine 1-397.

hypot Subroutine 1-399.

iconv_close Subroutine 1-400.

iconv Subroutine 1-401.

iconv_open Subroutine 1-403.

if_freenameindex Subroutine 1-405.

if_indextoname Subroutine 1-406.

if_nameindex Subroutine 1-407.

viiPreface

if_nametoindex Subroutine 1-408.

IMAIXMapping Subroutine 1-409.

IMAuxCreate Callback Subroutine 1-410.

IMAuxDestroy Callback Subroutine 1-411.

IMAuxDraw Callback Subroutine 1-412.

IMAuxHide Callback Subroutine 1-413.

IMBeep Callback Subroutine 1-414.

IMClose Subroutine 1-415.

IMCreate Subroutine 1-416.

IMDestroy Subroutine 1-417.

IMFilter Subroutine 1-418.

IMFreeKeymap Subroutine 1-419.

IMIndicatorDraw Callback Subroutine 1-420.

IMIndicatorHide Callback Subroutine 1-421.

IMInitialize Subroutine 1-422.

IMInitializeKeymap Subroutine 1-424.

IMIoctl Subroutine 1-425.

IMLookupString Subroutine 1-427.

IMProcess Subroutine 1-428.

IMProcessAuxiliary Subroutine 1-430.

IMQueryLanguage Subroutine 1-432.

IMSimpleMapping Subroutine 1-433.

IMTextCursor Callback Subroutine 1-434.

IMTextDraw Callback Subroutine 1-435.

IMTextHide Callback Subroutine 1-436.

IMTextStart Callback Subroutine 1-437.

inet_net_ntop Subroutine 1-438.

inet_net_pton Subroutine 1-439.

inet_ntop Subroutine 1-440.

inet_pton Subroutine 1-441.

initgroups Subroutine 1-442.

initialize Subroutine 1-443.

insque or remque Subroutine 1-444.

ioctl, ioctlx, ioctl32, or ioctl32x Subroutine 1-445.

isendwin Subroutine 1-449.

iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace,
iswupper, or iswxdigit Subroutine 1-450.

 iswctype or is_wctype Subroutine 1-452.

jcode Subroutines 1-453.

Japanese conv Subroutines 1-455.

Japanese ctype Subroutines 1-457.

kill or killpg Subroutine 1-459.

kleenup Subroutine 1-462.

knlist Subroutine 1-463.

_lazySetErrorHandler Subroutine 1-465.

l3tol or ltol3 Subroutine 1-467.

l64a_r Subroutine 1-468.

layout_object_create Subroutine 1-470.

layout_object_editshape or wcslayout_object_editshape Subroutine 1-472.

layout_object_free Subroutine 1-476.

layout_object_getvalue Subroutine 1-477.

layout_object_setvalue Subroutine 1-479.

layout_object_shapeboxchars Subroutine 1-481.

layout_object_transform or wcslayout_object_transform Subroutine 1-483.

ldahread Subroutine 1-487.

viii Technical Reference: Base Operating System

ldclose or ldaclose Subroutine 1-488.

ldfhread Subroutine 1-490.

ldgetname Subroutine 1-492.

ldlread, ldlinit, or ldlitem Subroutine 1-494.

ldlseek or ldnlseek Subroutine 1-496.

ldohseek Subroutine 1-498.

ldopen or ldaopen Subroutine 1-499.

ldrseek or ldnrseek Subroutine 1-501.

ldshread or ldnshread Subroutine 1-503.

ldsseek or ldnsseek Subroutine 1-505.

ldtbindex Subroutine 1-507.

ldtbread Subroutine 1-508.

ldtbseek Subroutine 1-510.

lgamma, lgammal, or gamma Subroutine 1-511.

lineout Subroutine 1-513.

link Subroutine 1-515.

lio_listio or lio_listio64 Subroutine 1-517.

load Subroutine 1-520.

loadbind Subroutine 1-524.

loadquery Subroutine 1-526.

localeconv Subroutine 1-528.

lockfx, lockf, flock, or lockf64 Subroutine 1-532.

loginfailed Subroutine 1-536.

loginrestrictions Subroutine 1-538.

loginsuccess Subroutine 1-541.

lsearch or lfind Subroutine 1-543.

lseek, llseek or lseek64 Subroutine 1-545.

lvm_changelv Subroutine 1-547.

lvm_changepv Subroutine 1-550.

lvm_createlv Subroutine 1-552.

lvm_createvg Subroutine 1-556.

lvm_deletelv Subroutine 1-559.

lvm_deletepv Subroutine 1-561.

lvm_extendlv Subroutine 1-563.

lvm_installpv Subroutine 1-567.

lvm_migratepp Subroutine 1-570.

lvm_querylv Subroutine 1-573.

lvm_querypv Subroutine 1-577.

lvm_queryvg Subroutine 1-581.

lvm_queryvgs Subroutine 1-584.

lvm_reducelv Subroutine 1-586.

lvm_resynclp Subroutine 1-589.

lvm_resynclv Subroutine 1-591.

lvm_resyncpv Subroutine 1-593.

lvm_varyoffvg Subroutine 1-595.

lvm_varyonvg Subroutine 1-597.

madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in,
mout, omout, fmout, m_out, sdiv, or itom Subroutine 1-602.

madvise Subroutine 1-605.

makecontext or swapcontext Subroutine 1-607.

malloc, free, realloc, calloc, mallopt, mallinfo, alloca, or valloc Subroutine 1-608.

 MatchAllAuths, , MatchAnyAuths, or MatchAnyAuthsList Subroutine 1-612.

matherr Subroutine 1-613.

mblen Subroutine 1-615.

mbrlen Subroutine 1-616.

ixPreface

mbrtowc Subroutine 1-618.

mbsadvance Subroutine 1-620.

mbscat, mbscmp, or mbscpy Subroutine 1-622.

mbschr Subroutine 1-623.

mbsinit Subroutine 1-624.

mbsinvalid Subroutine 1-625.

mbslen Subroutine 1-626.

mbsncat, mbsncmp, or mbsncpy Subroutine 1-627.

mbspbrk Subroutine 1-628.

mbsrchr Subroutine 1-629.

mbsrtowcs Subroutine 1-630.

mbstomb Subroutine 1-632.

mbstowcs Subroutine 1-633.

mbswidth Subroutine 1-634.

mbtowc Subroutine 1-635.

memccpy, memchr, memcmp, memcpy, memset or memmove Subroutine 1-636.

mincore Subroutine 1-638.

mkdir Subroutine 1-640.

mknod or mkfifo Subroutine 1-642.

mktemp or mkstemp Subroutine 1-644.

mmap or mmap64 Subroutine 1-646.

mntctl Subroutine 1-651.

moncontrol Subroutine 1-653.

monitor Subroutine 1-655.

monstartup Subroutine 1-662.

mprotect Subroutine 1-667.

msem_init Subroutine 1-669.

msem_lock Subroutine 1-671.

msem_remove Subroutine 1-673.

msem_unlock Subroutine 1-674.

msgctl Subroutine 1-676.

msgget Subroutine 1-679.

msgrcv Subroutine 1-681.

msgsnd Subroutine 1-684.

msgxrcv Subroutine 1-687.

msleep Subroutine 1-690.

msync Subroutine 1-691.

munmap Subroutine 1-693.

mwakeup Subroutine 1-694.

newpass Subroutine 1-695.

nftw or nftw64 Subroutine 1-698.

nl_langinfo Subroutine 1-701.

nlist64 Subroutine 1-703.

nlist Subroutine 1-705.

ns_addr Subroutine 1-707.

ns_ntoa Subroutine 1-708.

odm_add_obj Subroutine 1-709.

odm_change_obj Subroutine 1-711.

odm_close_class Subroutine 1-713.

odm_create_class Subroutine 1-715.

odm_err_msg Subroutine 1-716.

odm_free_list Subroutine 1-718.

odm_get_by_id Subroutine 1-720.

odm_get_list Subroutine 1-722.

odm_get_obj, odm_get_first, or odm_get_next Subroutine 1-724.

x Technical Reference: Base Operating System

odm_initialize Subroutine 1-727.

odm_lock Subroutine 1-728.

odm_mount_class Subroutine 1-730.

odm_open_class Subroutine 1-732.

odm_rm_by_id Subroutine 1-734.

odm_rm_class Subroutine 1-736.

odm_rm_obj Subroutine 1-738.

odm_run_method Subroutine 1-740.

odm_set_path Subroutine 1-742.

odm_set_perms Subroutine 1-743.

odm_terminate Subroutine 1-744.

odm_unlock Subroutine 1-746.

open, openx, open64, creat, or creat64 Subroutine 1-747.

opendir, readdir, telldir, seekdir, rewinddir, or closedir Subroutine 1-755.

passwdexpired Subroutine 1-758.

pathconf or fpathconf Subroutine 1-759.

pause Subroutine 1-762.

pclose Subroutine 1-763.

perror Subroutine 1-764.

pipe Subroutine 1-765.

plock Subroutine 1-767.

pm_battery_control Subroutine 1-769.

pm_control_parameter Subroutine 1-771.

pm_control_parameter System Call 1-774.

pm_control_state Subroutine 1-777.

pm_control_state System Call 1-779.

pm_event_query Subroutine 1-781.

pm_system_event_query System Call 1-783.

pmlib_get_event_notice Subroutine 1-784.

pmlib_register_application Subroutine 1-787.

pmlib_request_battery Subroutine 1-788.

pmlib_request_parameter Subroutine 1-790.

pmlib_request_state Subroutine 1-796.

poll Subroutine 1-798.

popen Subroutine 1-802.

printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine 1-804. . . .

profil Subroutine 1-813.

psdanger Subroutine 1-816.

psignal Subroutine or sys_siglist Vector 1-817.

pthread_atfork Subroutine 1-818.

pthread_attr_destroy Subroutine 1-820.

pthread_attr_getdetachstate or pthread_attr_setdetachstate Subroutines 1-821.

pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines 1-823.

pthread_attr_getschedparam Subroutine 1-825.

pthread_attr_getstackaddr Subroutine 1-826.

pthread_attr_getstacksize Subroutine 1-827.

pthread_attr_init Subroutine 1-828.

pthread_attr_setschedparam Subroutine 1-830.

pthread_attr_setstackaddr Subroutine 1-831.

pthread_attr_setstacksize Subroutine 1-832.

pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np Subroutine
1-834

pthread_cancel Subroutine 1-836.

pthread_cleanup_pop or pthread_cleanup_push Subroutine 1-837.

pthread_cond_destroy or pthread_cond_init Subroutine 1-838.

xiPreface

PTHREAD_COND_INITIALIZER Macro 1-840.

pthread_cond_signal or pthread_cond_broadcast Subroutine 1-841.

pthread_cond_wait or pthread_cond_timedwait Subroutine 1-843.

pthread_condattr_destroy or pthread_condattr_init Subroutine 1-845.

pthread_condattr_getpshared Subroutine 1-847.

pthread_condattr_setpshared Subroutine 1-849.

pthread_create Subroutine 1-851.

pthread_delay_np Subroutine 1-853.

pthread_equal Subroutine 1-854.

pthread_exit Subroutine 1-855.

pthread_get_expiration_np Subroutine 1-857.

pthread_getconcurrency or pthread_setconcurrency Subroutine 1-858.

pthread_getschedparam Subroutine 1-860.

pthread_getspecific or pthread_setspecific Subroutine 1-862.

pthread_getunique_np Subroutine 1-864.

pthread_join, or pthread_detach Subroutine 1-865.

pthread_key_create Subroutine 1-867.

pthread_key_delete Subroutine 1-869.

pthread_kill Subroutine 1-870.

pthread_lock_global_np Subroutine 1-871.

pthread_mutex_init or pthread_mutex_destroy Subroutine 1-872.

PTHREAD_MUTEX_INITIALIZER Macro 1-874.

pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine
1-875

pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine 1-877.

pthread_mutexattr_getkind_np Subroutine 1-879.

pthread_mutexattr_getpshared or pthread_mutexattr_setpshared Subroutine 1-881. . . .

pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutines 1-883.

pthread_mutexattr_setkind_np Subroutine 1-885.

pthread_once Subroutine 1-887.

PTHREAD_ONCE_INIT Macro 1-888.

pthread_rwlock_init, pthread_rwlock_destroy Subroutine 1-889.

pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines 1-891.

pthread_rwlock_unlock Subroutine 1-893.

pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines 1-895.

pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared Subroutines 1-897. .

pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines 1-899.

pthread_self Subroutine 1-901.

pthread_setcancelstate, pthread_setcanceltype or pthread_testcancel Subroutines
1-902

pthread_setschedparam Subroutine 1-904.

pthread_sigmask Subroutine 1-906.

pthread_signal_to_cancel_np Subroutine 1-907.

pthread_suspend_np and pthread_continue_np Subroutine 1-908.

pthread_unlock_global_np Subroutine 1-909.

pthread_yield Subroutine 1-910.

ptrace, ptracex Subroutine 1-911.

ptsname Subroutine 1-922.

putc, putchar, fputc, or putw Subroutine 1-923.

putenv Subroutine 1-926.

puts or fputs Subroutine 1-927.

putwc, putwchar, or fputwc Subroutine 1-929.

putws or fputws Subroutine 1-931.

pwdrestrict_method Subroutine 1-933.

xii Technical Reference: Base Operating System

Appendix A. Base Operating System Error Codes for Services That Require
Path–Name Resolution A-1.

Appendix B. ODM Error Codes B-1.

Index X-1.

xiiiPreface

About This Book

This book provides information on Technical Reference, Volumes 1 and 2: Base Operating
System and Extensions. Topics covered provide information on application programming
interfaces to the Advanced Interactive Executive Operating System (referred to in this text
as AIX).

These two books are part of the six–volume technical reference set, AIX Technical
Reference, 86 A2 81AP to 86 A2 91AP, which provides information on system calls, kernel
extension calls, and subroutines in the following volumes:

• Base Operating System and Extensions, Volumes 1 and 2 provide information on system
calls, subroutines, functions, macros, and statements associated with AIX base operating
system runtime services.

• Communications, Volumes 1 and 2 provide information on entry points, functions, system
calls, subroutines, and operations related to communications services.

• Kernel and Subsystems, Volumes 1 and 2provide information about kernel services,
device driver operations, file system operations, subroutines, the configuration
subsystem, the communications subsystem, the low function terminal (LFT) subsystem,
the logical volume subsystem, the M–audio capture and playback adapter subsystem, the
printer subsystem, the SCSI subsystem, and the serial DASD subsystem.

Who Should Use This Book
This book is intended for experienced C programmers. To use the book effectively, you
should be familiar with AIX or UNIX System V commands, system calls, subroutines, file
formats, and special files.

Before You Begin
Before you begin the tasks discussed in this book, you should see AIX 4.3 System
Management Guide: Operating System and Devices and AIX 4.3 System Management
Guide: Communications and Networks for more information.

How to Use This Book

Overview of Contents
This book contains the following chapters and appendixes:

• Base Operating System and Extension Technical Reference, Volumes 1 and 2 contain
alphabetically arranged system calls (called subroutines), subroutines, functions, macros,
and statements on Base Operating System Runtime (BOS) Services.

• Volume 2 also contains alphabetically arranged Fortran Basic Linear Algebra Subroutines
(BLAS).

Highlighting
The following highlighting conventions are used in this book:

xiv Technical Reference: Base Operating System

Bold Identifies commands, subroutines, keywords, files, structures,
directories, and other items whose names are predefined by the
system. Also identifies graphical objects such as buttons, labels, and
icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied
by the user.

Monospace Identifies examples of specific data values, examples of text similar to
what you might see displayed, examples of portions of program code
similar to what you might write as a programmer, messages from the
system, or information you should actually type.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of
this product.

AIX 32–Bit Support for the X/Open UNIX95 Specification
Beginning with AIX Version 4.2, the operating system is designed to support the X/Open
UNIX95 Specification for portability of UNIX–based operating systems. Many new
interfaces, and some current ones, have been added or enhanced to meet this specification.
Beginning with Version 4.2, AIX is even more open and portable for applications.

At the same time, compatibility with previous AIX releases is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the
system environment on a per–system, per–user, or per–process basis.

To determine the proper way to develop a UNIX95–portable application, you may need to
refer to the X/Open UNIX95 Specification, which can be obtained on a CD–ROM by
ordering the printed copy of AIX Commands Reference, order number 86 A2 38JX to 86 A2
43JX, or by ordering Go Solo: How to Implement and Go Solo with the Single Unix
Specification, a book which includes the X/Open UNIX95 Specification on a CD–ROM.

AIX 32–Bit and 64–Bit Support for the UNIX98 Specification
Beginning with AIX Version 4.3, the operating system is designed to support the X/Open
UNIX98 Specification for portability of UNIX–based operating systems. Many new
interfaces, and some current ones, have been added or enhanced to meet this specification.
Making AIX Version 4.3 even more open and portable for applications.

At the same time, compatibility with previous AIX releases is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the
system environment on a per–system, per–user, or per–process basis.

To determine the proper way to develop a UNIX98–portable application, you may need to
refer to the X/Open UNIX98 Specification, which can be obtained on a CD–ROM by
ordering the printed copy of AIX Commands Reference, order number 86 A2 38JX to 86 A2
43JX, or by ordering Go Solo: How to Implement and Go Solo with the Single Unix
Specification, order number SR28–5705, a book which includes the X/Open UNIX98
Specification on a CD–ROM.

Related Publications
The following books contain information about or related to application programming
interfaces:

• AIX General Programming Concepts : Writing and Debugging Programs, Order Number
86 A2 34JX.

• AIX Communications Programming Concepts, Order Number 86 A2 35JX.

• AIX Kernel Extensions and Device Support Programming Concepts, Order Number 86
A2 36JX.

xvPreface

• AIX Files Reference, Order Number 86 A2 79AP.

• AIX Version 4.3 Problem Solving Guide and Reference, Order Number 86 A2 32JX.

• Hardware Technical Information-General Architectures, Order Number 86 A1 09WD.

Ordering Publications
You can order publications from your sales representative or from your point of sale.

To order additional copies of this book, use the following order numbers:

• AIX Technical Reference, Volume 1: Base Operating System and Extensions Order
Number 86 A2 81AP.

• AIX Technical Reference, Volume 2: Base Operating System and Extensions, Order
Number 86 A2 82AP.

Use AIX and Related Products Documentation Overview, order number 86 A2 71WE, for
information on related publications and how to obtain them.

xvi Technical Reference: Base Operating System

1-1Base Operating System Runtime Services (A-P)

Base Operating System (BOS) Runtime Services (A–P)

1-2 Technical Reference: Base Operating System

1-3Base Operating System Runtime Services (A-P)

a64l or l64a Subroutine

Purpose
Converts between long integers and base–64 ASCII strings.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

long a64l (String)
char *String;

char *l64a (LongInteger)
long LongInteger;

Description
The a64l and l64a subroutines maintain numbers stored in base–64 ASCII characters. This
is a notation in which long integers are represented by up to 6 characters, each character
representing a digit in a base–64 notation.

The following characters are used to represent digits:

. Represents 0.

/ Represents 1.

0 –9 Represents the numbers 2–11.

A–Z Represents the numbers 12–37.

a–z Represents the numbers 38–63.

Parameters

String Specifies the address of a null–terminated character string.

LongInteger Specifies a long value to convert.

Return Values
The a64l subroutine takes a pointer to a null–terminated character string containing a value
in base–64 representation and returns the corresponding long value. If the string pointed to
by the String parameter contains more than 6 characters, the a64l subroutine uses only the
first 6.

Conversely, the l64a subroutine takes a long parameter and returns a pointer to the
corresponding base–64 representation. If the LongInteger parameter is a value of 0, the
l64a subroutine returns a pointer to a null string.

The value returned by the l64a subroutine is a pointer into a static buffer, the contents of
which are overwritten by each call.

If the *String parameter is a null string, the a64l subroutine returns a value of 0L.

If LongInteger is 0L, the l64a subroutine returns a pointer to a null string.

Implementation Specifics
These a64l and l64a subroutines are part of Base Operating System (BOS) Runtime.

1-4 Technical Reference: Base Operating System

Related Information
Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

List of Multithread Subroutines in AIX General Programming Concepts : Writing and
Debugging Programs.

1-5Base Operating System Runtime Services (A-P)

abort Subroutine

Purpose
Sends a SIGIOT signal to end the current process.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int abort (void)

Description
The abort subroutine sends a SIGIOT signal to the current process to terminate the process
and produce a memory dump. If the signal is caught and the signal handler does not return,
the abort subroutine does not produce a memory dump.

If the SIGIOT signal is neither caught nor ignored, and if the current directory is writable, the
system produces a memory dump in the core file in the current directory and prints an error
message.

The abnormal–termination processing includes the effect of the fclose subroutine on all
open streams and message–catalog descriptors, and the default actions defined as the
SIGIOT signal. The SIGIOT signal is sent in the same manner as that sent by the raise
subroutine with the argument SIGIOT.

The status made available to the wait or waitpid subroutine by the abort subroutine is the
same as a process terminated by the SIGIOT signal. The abort subroutine overrides
blocking or ignoring the SIGIOT signal.

Note: The SIGABRT signal is the same as the SIGIOT signal.

Return Values
The abort subroutine does not return a value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exit, atexit, or _exit subroutine, fclose subroutine, kill, or killpg subroutine, raise
subroutine, sigaction, sigvec, signal subroutine, wait or waidtpid subroutine.

The dbx command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-6 Technical Reference: Base Operating System

abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv
Subroutine

Purpose
Computes absolute value, division, and double precision multiplication of integers.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int abs (i)
int i;

#include <stdlib.h>

long labs (i)
long i;

#include <stdlib.h>

div_t div (Numerator, Denominator)
int Numerator: Denominator;

#include <stdlib.h>

void imul_dbl (i, j, Result)
long i, j;
long *Result;

#include <stdlib.h>

ldiv_t ldiv (Numerator, Denominator)
long Numerator: Denominator;

#include <stdlib.h>

void umul_dbl (i, j, Result)
unsigned long i, j;
unsigned long *Result;

#include <stdlib.h>

long long int llabs(i)
long long int i;

#include <stdlib.h>

lldiv_t lldiv (Numerator, Denominator)
long long int Numerator, Denominator;

1-7Base Operating System Runtime Services (A-P)

Description
The abs subroutine returns the absolute value of its integer operand.

Note: A twos–complement integer can hold a negative number whose absolute value is
too large for the integer to hold. When given this largest negative value, the abs
subroutine returns the same value.

The div subroutine computes the quotient and remainder of the division of the number
represented by the Numerator parameter by that specified by the Denominator parameter. If
the division is inexact, the sign of the resulting quotient is that of the algebraic quotient, and
the magnitude of the resulting quotient is the largest integer less than the magnitude of the
algebraic quotient. If the result cannot be represented (for example, if the denominator is 0),
the behavior is undefined.

The labs and ldiv subroutines are included for compatibility with the ANSI C library, and
accept long integers as parameters, rather than as integers.

The imul_dbl subroutine computes the product of two signed longs, i and j, and stores the
double long product into an array of two signed longs pointed to by the Result parameter.

The umul_dbl subroutine computes the product of two unsigned longs, i and j, and stores
the double unsigned long product into an array of two unsigned longs pointed to by the
Result parameter.

The llabs and lldiv subroutines compute the absolute value and division of long long
integers. These subroutines operate under the same restrictions as the abs and div
subroutines.

Note: When given the largest negative value, the llabs subroutine (like the abs
subroutine) returns the same value.

Parameters

i Specifies, for the abs subroutine, some integer; for labs
and imul_dbl, some long integer; for the umul_dbl
subroutine, some unsigned long integer; for the llabs
subroutine, some long long integer.

Numerator Specifies, for the div subroutine, some integer; for the ldiv
subroutine, some long integer; for lldiv, some long long
integer.

j Specifies, for the imul_dbl subroutine, some long integer;
for the umul_dbl subroutine, some unsigned long integer.

Denominator Specifies, for the div subroutine, some integer; for the ldiv
subroutine, some long integer; for lldiv, some long long
integer.

Result Specifies, for the imul_dbl subroutine, some long integer;
for the umul_dbl subroutine, some unsigned long integer.

Return Values
The abs, labs, and llabs subroutines return the absolute value. The imul_dbl and
umul_dbl subroutines have no return values. The div subroutine returns a structure of type
div_t. The ldiv subroutine returns a structure of type ldiv_t, comprising the quotient and the
remainder. The structure is displayed as:

struct ldiv_t {

 int quot; /* quotient */

 int rem; /* remainder */

};

The lldiv subroutine returns a structure of type lldiv_t, comprising the quotient and the
remainder.

1-8 Technical Reference: Base Operating System

access, accessx, or faccessx Subroutine

Purpose
Determines the accessibility of a file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int access (PathName, Mode)
char *PathName;
int Mode;

int accessx (PathName, Mode, Who)
char *PathName;
int Mode, Who;

int faccessx (FileDescriptor, Mode, Who)
int FileDescriptor;
int Mode, Who;

Description
The access, accessx, and faccessx subroutines determine the accessibility of a file
system object. The accessx and faccessx subroutines allow the specification of a class of
users or processes for whom access is to be checked.

The caller must have search permission for all components of the PathName parameter.

Parameters

PathName Specifies the path name of the file. If the PathName parameter refers to
a symbolic link, the access subroutine returns information about the file
pointed to by the symbolic link.

FileDescriptor Specifies the file descriptor of an open file.

Mode Specifies the access modes to be checked. This parameter is a bit
mask containing 0 or more of the following values, which are defined in
the sys/access.h file:

R_OK Check read permission.

W_OK Check write permission.

X_OK Check execute or search permission.

F_OK Check the existence of a file.

If none of these values are specified, the existence of a file is checked.

1-9Base Operating System Runtime Services (A-P)

Who Specifies the class of users for whom access is to be checked. This
parameter must be one of the following values, which are defined in the
sys/access.h file:

ACC_SELF Determines if access is permitted for the current
process. The effective user and group IDs, the
concurrent group set and the privilege of the current
process are used for the calculation.

ACC_INVOKER Determines if access is permitted for the invoker of
the current process. The real user and group IDs,
the concurrent group set, and the privilege of the
invoker are used for the calculation.

Note: The expression access (PathName, Mode) is equivalent to
accessx (PathName, Mode, ACC_INVOKER).

ACC_OTHERS Determines if the specified access is permitted for
any user other than the object owner. The Mode
parameter must contain only one of the valid modes.
Privilege is not considered in the calculation.

ACC_ALL Determines if the specified access is permitted for
all users. The Mode parameter must contain only
one of the valid modes. Privilege is not considered in
the calculation

Return Values
If the requested access is permitted, the access, accessx, and faccessx subroutines
return a value of 0. If the requested access is not permitted or the function call fails, a value
of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The access and accessx subroutines fail if one or more of the following are true:

EACCES Search permission is denied on a component of the PathName
prefix.

EFAULT The PathName parameter points to a location outside the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the
PathName parameter.

ENOENT A component of the PathName does not exist or the process has the
disallow truncation attribute set.

ENOTDIR A component of the PathName is not a directory.

ESTALE The process root or current directory is located in a virtual file
system that has been unmounted.

ENOENT The named file does not exist.

ENOENT The PathName parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENAMETOOLONG A component of the PathName parameter exceeded 255 characters
or the entire PathName parameter exceeded 1023 characters.

The faccessx subroutine fails if the following is true:

EBADF The value of the FileDescriptor parameter is not valid.

1-10 Technical Reference: Base Operating System

The access, accessx, and faccessx subroutines fail if one or more of the following is true:

EIO An I/O error occurred during the operation.

EACCES The file protection does not allow the requested access.

EROFS Write access is requested for a file on a read–only file system.

If Network File System (NFS) is installed on your system, the accessx and faccessx
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

ETXTBSY Write access is requested for a shared text file that is being executed.

EINVAL The value of the Mode argument is invalid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acl_get subroutine, chacl subroutine, statx subroutine, statacl subroutine.

The aclget command, aclput command, chmod command, chown command.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-11Base Operating System Runtime Services (A-P)

acct Subroutine

Purpose
Enables and disables process accounting.

Library
Standard C Library (libc.a)

Syntax
int acct (Path)
char *Path;

Description
The acct subroutine enables the accounting routine when the Path parameter specifies the
path name of the file to which an accounting record is written for each process that
terminates. When the Path parameter is a 0 or null value, the acct subroutine disables the
accounting routine.

If the Path parameter refers to a symbolic link, the acct subroutine causes records to be
written to the file pointed to by the symbolic link.

If Network File System (NFS) is installed on your system, the accounting file can reside on
another node.

Note: To ensure accurate accounting, each node must have its own accounting file.
Although no two nodes should share accounting files, a node’s accounting files can
be located on any node in the network.

The calling process must have root user authority to use the acct subroutine.

Parameters

Path Specifies a pointer to the path name of the file or a null pointer.

Return Values
Upon successful completion, the acct subroutine returns a value of 0. Otherwise, a value of
–1 is returned and the global variable errno is set to indicate the error.

Error Codes
The acct subroutine is unsuccessful if one or more of the following are true:

EACCES Write permission is denied for the named accounting file.

EACCES The file named by the Path parameter is not an ordinary file.

EBUSY An attempt is made to enable accounting when it is already enabled.

ENOENT The file named by the Path parameter does not exist.

EPERM The calling process does not have root user authority.

EROFS The named file resides on a read–only file system.

If NFS is installed on the system, the acct subroutine is unsuccessful if the following is true:

ETIMEDOUT The connection timed out.

1-12 Technical Reference: Base Operating System

acl_chg or acl_fchg Subroutine

Purpose
Changes the access control information on a file.

Library
Security Library (libc.a)

Syntax
#include <sys/access.h>

int acl_chg (Path, How, Mode, Who)
char *Path;
int How;
int Mode;
int Who;

int acl_fchg (FileDescriptor, How, Mode, Who)
int FileDescriptor;
int How;
int Mode;
int Who;

Description
The acl_chg and acl_fchg subroutines modify the access control information of a specified
file.

Parameters

FileDescriptor Specifies the file descriptor of an open file.

How Specifies how the permissions are to be altered for the affected entries
of the Access Control List (ACL). This parameter takes one of the
following values:

ACC_PERMIT Allows the types of access included in the Mode
parameter.

ACC_DENY Denies the types of access included in the Mode
parameter.

ACC_SPECIFY Grants the access modes included in the Mode
parameter and restricts the access modes not included
in the Mode parameter.

Mode Specifies the access modes to be changed. The Mode parameter is a
bit mask containing zero or more of the following values:

R_ACC Allows read permission.

W_ACC Allows write permission.

X_ACC Allows execute or search permission.

1-13Base Operating System Runtime Services (A-P)

Path Specifies a pointer to the path name of a file.

Who Specifies which entries in the ACL are affected. This parameter takes
one of the following values:

ACC_OBJ_OWNER
Changes the owner entry in the base ACL.

ACC_OBJ_GROUP
Changes the group entry in the base ACL.

ACC_OTHERS Changes all entries in the ACL except the base entry
for the owner.

ACC_ALL Changes all entries in the ACL.

Return Values
On successful completion, the acl_chg and acl_fchg subroutines return a value of 0.
Otherwise, a value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The acl_chg subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file
system that has been unmounted.

The acl_fchg subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The FileDescriptor value is not valid.

The acl_chg or acl_fchg subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EINVAL The How parameter is not one of ACC_PERMIT, ACC_DENY, or
ACC_SPECIFY.

EINVAL The Who parameter is not ACC_OWNER, ACC_GROUP,
ACC_OTHERS, or ACC_ALL.

EROFS The named file resides on a read–only file system.

The acl_chg or acl_fchg subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

1-14 Technical Reference: Base Operating System

EIO An I/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and
the invoker does not have root user authority.

If Network File System (NFS) is installed on your system, the acl_chg and acl_fchg
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acl_get subroutine, acl_put subroutine, acl_set subroutine, chacl subroutine, chmod
subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-15Base Operating System Runtime Services (A-P)

acl_get or acl_fget Subroutine

Purpose
Gets the access control information of a file.

Library
Security Library (libc.a)

Syntax
#include <sys/access.h>

char *acl_get (Path)
char *Path;

char *acl_fget (FileDescriptor)
int FileDescriptor;

Description
The acl_get and acl_fget subroutines retrieve the access control information for a file
system object. This information is returned in a buffer pointed to by the return value. The
structure of the data in this buffer is unspecified. The value returned by these subroutines
should be used only as an argument to the acl_put or acl_fput subroutines to copy or
restore the access control information.

Parameters

Path Specifies the path name of the file.

FileDescriptor Specifies the file descriptor of an open file.

Return Values
On successful completion, the acl_get and acl_fget subroutines return a pointer to the
buffer containing the access control information. Otherwise, a null pointer is returned and
the errno global variable is set to indicate the error.

Error Codes
The acl_get subroutine fails if one or more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or the process has the
disallow truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ESTALE The process’ root or current directory is located in a virtual file
system that has been unmounted.

1-16 Technical Reference: Base Operating System

The acl_fget subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_get or acl_fget subroutine fails if the following is true:

EIO An I/O error occurred during the operation.

If Network File System (NFS) is installed on your system, the acl_get and acl_fget
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

Security

Access Control The invoker must have search permission for all components of the
Path prefix.

Audit Events None.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acl_chg or acl_fchg subroutine, acl_put or acl_fput subroutine, acl_set or acl_fset
subroutine, chacl subroutine, chmod subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-17Base Operating System Runtime Services (A-P)

acl_put or acl_fput Subroutine

Purpose
Sets the access control information of a file.

Library
Security Library (libc.a)

Syntax
#include <sys/access.h>

int acl_put (Path, Access, Free)
char *Path;
char *Access;
int Free;

int acl_fput (FileDescriptor, Access, Free)
int FileDescriptor;
char *Access;
int Free;

Description
The acl_put and acl_fput subroutines set the access control information of a file system
object. This information is contained in a buffer returned by a call to the acl_get or acl_fget
subroutine. The structure of the data in this buffer is unspecified. However, the entire
Access Control List (ACL) for a file cannot exceed one memory page (4096 bytes) in size.

Parameters

Path Specifies the path name of a file.

FileDescriptor Specifies the file descriptor of an open file.

Access Specifies a pointer to the buffer containing the access control
information.

Free Specifies whether the buffer space is to be deallocated. The following
values are valid:

0 Space is not deallocated.

1 Space is deallocated.

Return Values
On successful completion, the acl_put and acl_fput subroutines return a value of 0.
Otherwise, –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The acl_put subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

1-18 Technical Reference: Base Operating System

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file
system that has been unmounted.

The acl_fput subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_put or acl_fput subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EINVAL The Access parameter does not point to a valid access control buffer.

EINVAL The Free parameter is not 0 or 1.

EIO An I/O error occurred during the operation.

EROFS The named file resides on a read–only file system.

If Network File System (NFS) is installed on your system, the acl_put and acl_fput
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path
prefix.

Auditing Events:

Event Information

chacl Path

fchacl FileDescriptor

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acl_chg subroutine, acl_get subroutine, acl_set subroutine, chacl subroutine, chmod
subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-19Base Operating System Runtime Services (A-P)

acl_set or acl_fset Subroutine

Purpose
Sets the access control information of a file.

Library
Security Library (libc.a)

Syntax
#include <sys/access.h>

int acl_set (Path, OwnerMode, GroupMode, DefaultMode)
char *Path;
int OwnerMode;
int GroupMode;
int DefaultMode;

int acl_fset (FileDescriptor, OwnerMode, GroupMode, DefaultMode)
int *FileDescriptor;
int OwnerMode;
int GroupMode;
int DefaultMode;

Description
The acl_set and acl_fset subroutines set the base entries of the Access Control List (ACL)
of the file. All other entries are discarded. Other access control attributes are left
unchanged.

Parameters

DefaultMode Specifies the access permissions for the default class.

FileDescriptor Specifies the file descriptor of an open file.

GroupMode Specifies the access permissions for the group of the file.

OwnerMode Specifies the access permissions for the owner of the file.

Path Specifies a pointer to the path name of a file.

The mode parameters specify the access permissions in a bit mask containing zero or more
of the following values:

R_ACC Authorize read permission.

W_ACC Authorize write permission.

X_ACC Authorize execute or search permission.

Return Values
Upon successful completion, the acl_set and acl_fset subroutines return the value 0.
Otherwise, the value –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The acl_set subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

1-20 Technical Reference: Base Operating System

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file
system that has been unmounted.

The acl_fset subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

The acl_set or acl_fset subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EIO An I/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and
the invoker does not have root user authority.

EROFS The named file resides on a read–only file system.

If Network File System (NFS) is installed on your system, the acl_set and acl_fset
subroutines can also fail if the following is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path
prefix.

Auditing Events:

Event Information

chacl Path

fchacl FileDescriptor

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acl_chg subroutine, acl_get subroutine, acl_put subroutine, chacl subroutine, chmod
subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-21Base Operating System Runtime Services (A-P)

addssys Subroutine

Purpose
Adds the SRCsubsys record to the subsystem object class.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

int addssys (SRCSubsystem)
struct SRCsubsys *SRCSubsystem;

Description
The addssys subroutine adds a record to the subsystem object class. You must call the
defssys subroutine to initialize the SRCSubsystem buffer before your application program
uses the SRCsubsys structure. The SRCsubsys structure is defined in the
/usr/include/sys/srcobj.h file.

The executable running with this subroutine must be running with the group system.

Parameters

SRCSubsystem A pointer to the SRCsubsys structure.

Return Values
Upon successful completion, the addssys subroutine returns a value of 0. Otherwise, it
returns a value of –1 and the odmerrno variable is set to indicate the error, or an SRC error
code is returned.

Error Codes
The addssys subroutine fails if one or more of the following are true:

SRC_BADFSIG Invalid stop force signal.

SRC_BADNSIG Invalid stop normal signal.

SRC_CMDARG2BIG Command arguments too long.

SRC_GRPNAM2BIG Group name too long.

SRC_NOCONTACT Contact not signal, sockets, or message queue.

SRC_NONAME No subsystem name specified.

SRC_NOPATH No subsystem path specified.

SRC_PATH2BIG Subsystem path too long.

SRC_STDERR2BIG stderr path too long.

SRC_STDIN2BIG stdin path too long.

SRC_STDOUT2BIG stdout path too long.

1-22 Technical Reference: Base Operating System

SRC_SUBEXIST New subsystem name already on file.

SRC_SUBSYS2BIG Subsystem name too long.

SRC_SYNEXIST New subsystem synonym name already on file.

SRC_SYN2BIG Synonym name too long.

Security
Privilege Control: This command has the Trusted Path attribute. It has the following kernel
privilege:

SET_PROC_AUDIT

Files Accessed:

Mode File

644 /etc/objrepos/SRCsubsys

Auditing Events:

If the auditing subsystem has been properly configured and is enabled, the addssys
subroutine generates the following audit record (event) each time the subroutine is
executed:

Event Information

SRC_addssys Lists the SRCsubsys records added.

See ”How to Set Up Auditing” in AIX 4.3 System Management Guide: Operating System
and Devices for details about selecting and grouping audit events, and configuring audit
event data collection.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

/usr/include/spc.h Defines external interfaces provided by the SRC
subroutines.

/usr/include/sys/srcobj.h Defines object structures used by the SRC.

Related Information
The chssys subroutine, defssys subroutine, delssys subroutine.

The auditpr command, chssys command, mkssys command, rmssys command.

Auditing Overview and System Resource Controller Overview in AIX 4.3 System
Management Guide: Operating System and Devices.

Defining Your Subsystem to the SRC, System Resource Controller (SRC) Overview for
Programmers in AIX General Programming Concepts : Writing and Debugging Programs.

1-23Base Operating System Runtime Services (A-P)

adjtime Subroutine

Purpose
Corrects the time to allow synchronization of the system clock.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
int adjtime (Delta, Olddelta)
struct timeval *Delta;
struct timeval *Olddelta;

Description
The adjtime subroutine makes small adjustments to the system time, as returned by the
gettimeofday subroutine, advancing or retarding it by the time specified by the Delta
parameter of the timeval structure. If the Delta parameter is negative, the clock is slowed
down by incrementing it more slowly than normal until the correction is complete. If the
Delta parameter is positive, a larger increment than normal is used. The skew used to
perform the correction is generally a fraction of one percent. Thus, the time is always a
monotonically increasing function, unless the clock is read more than 100 times per second.
A time correction from an earlier call to the adjtime subroutine may not be finished when
the adjtime subroutine is called again. If the Olddelta parameter is nonzero, then the
structure pointed to will contain, upon return, the number of microseconds still to be
corrected from the earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local
area network. Such time servers would slow down the clocks of some machines and speed
up the clocks of others to bring them to the average network time.

The adjtime subroutine is restricted to the users with root user authority.

Parameters

Delta Specifies the amount of time to be altered.

Olddelta Contains the number of microseconds still to be corrected from an
earlier call.

Return Values
A return value of 0 indicates that the adjtime subroutine succeeded. A return value of –1
indicates than an error occurred, and errno is set to indicate the error.

Error Codes

The adjtime subroutine fails if the following are true:

EFAULT An argument address referenced invalid memory.

EPERM The process’s effective user ID does not have root user authority.

1-24 Technical Reference: Base Operating System

aio_cancel or aio_cancel64 Subroutine

Purpose
Cancels one or more outstanding asynchronous I/O requests.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

aio_cancel (FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb *aiocbp;

aio_cancel64 (FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description
The aio_cancel subroutine attempts to cancel one or more outstanding asynchronous I/O
requests issued on the file associated with the FileDescriptor parameter. If the pointer to the
aio control block (aiocb) structure (the aiocbp parameter) is not null, then an attempt is
made to cancel the I/O request associated with this aiocb. If the aiocbp parameter is null,
then an attempt is made to cancel all outstanding asynchronous I/O requests associated
with the FileDescriptor parameter.

The aio_cancel64 subroutine is similar to the aio_cancel subroutine execpt that it attempts
to cancel outstanding large file enabled asynchronous I/O requests. Large file enabled
asynchronous I/O requests make use of the aiocb64 structure instead of the aiocb
structure. The aiocb64 structure allows asynchronous I/O requests to specify offsets in
excess of OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, aio_cancel is redefined to be
aio_cancel64.

When an I/O request is canceled, the aio_error subroutine called with the handle to the
corresponding aiocb structure returns ECANCELED.

1-25Base Operating System Runtime Services (A-P)

Parameters

FileDescriptor Identifies the object to which the outstanding asynchronous I/O
requests were originally queued.

aiocbp Points to the aiocb structure associated with the I/O operation. The
aiocb structure is defined in the /usr/include/sys/aio.h file and
contains the following members:

int aio_whence

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct event aio_event

struct osigevent aio_event

int aio_flag

aiohandle_t aio_handle

aiocbp64 Points to the aiocb64 structure associated with the I/O operation. The
aiocb structure is defined in the /usr/include/sys/aio.h file and the
same field as the aiocb structure with the execption that the aio_offset
field is a 64 bit (off64_t) quantity.

Execution Environment
The aio_cancel and aio_cancel64 subroutines can be called from the process environment
only.

Return Values

AIO_CANCELED Indicates that all of the asynchronous I/O requests were canceled
successfully. The aio_error subroutine call with the handle to the
aiocb structure of the request will return ECANCELED.

AIO_NOTCANCELED Indicates that the aio_cancel subroutine did not cancel one or
more outstanding I/O requests. This may happen if an I/O request
is already in progress. The corresponding error status of the I/O
request is not modified.

AIO_ALLDONE Indicates that none of the I/O requests is in the queue or in
progress.

–1 Indicates that the subroutine was not successful. Sets the errno
global variable to identify the error.

A return code can be set to the following errno value:

EBADF Indicates that the FileDescriptor parameter is not valid.

Implementation Specifics
The aio_cancel or aio_cancel64 subroutine is part of Base Operating System (BOS)
Runtime.

Related Information
The aio_error or aio_error64 subroutine, aio_read or aio_read64 subroutine, aio_return
or aio_return64 subroutine, aio_suspend or aio_suspend64 subroutine, aio_write or
aio_write64 subroutine, lio_listio or lio_listo64 subroutine.

The Asynchronous I/O Overview and The Communications I/O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low–level, stream, terminal, and asynchronous I/O interfaces.

1-26 Technical Reference: Base Operating System

aio_error or aio_error64 Subroutine

Purpose
Retrieves the error status of an asynchronous I/O request.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int
aio_error(handle)
aio_handle_t handle;

int aio_error64(handle)
aio_handle_t handle;

Description
The aio_error subroutine retrieves the error status of the asynchronous request associated
with the handle parameter. The error status is the errno value that would be set by the
corresponding I/O operation. The error status is EINPROG if the I/O operation is still in
progress.

The aio_error64 subroutine is similar to the aio_error subroutine except that it retrieves the
error status associated with an aiocb64 control block.

Parameters

 handle The handle field of an aio control block (aiocb or
aiocb64) structure set by a previous call of the aio_read,
aio_read64, aio_write, aio_write64, lio_listio,
aio_listio64 subroutine. If a random memory location is
passed in, random results are returned.

Execution Environment
The aio_error and aio_error64 subroutines can be called from the process environment
only.

1-27Base Operating System Runtime Services (A-P)

Return Values

0 Indicates that the operation completed successfully.

ECANCELED Indicates that the I/O request was canceled due to an
aio_cancel subroutine call.

EINPROG Indicates that the I/O request has not completed.

An errno value described in the aio_read, aio_write, and
lio_listio subroutines:
 Indicates that the operation was not queued successfully.
For example, if the aio_read subroutine is called with an
unusable file descriptor, it (aio_read) returns a value of –1
and sets the errno global variable to EBADF. A subsequent
call of the aio_error subroutine with the handle of the
unsuccessful aio control block (aiocb) structure returns
EBADF.

An errno value of the corresponding I/O operation:
 Indicates that the operation was initiated successfully, but
the actual I/O operation was unsuccessful. For example,
calling the aio_write subroutine on a file located in a full file
system returns a value of 0, which indicates the request
was queued successfully. However, when the I/O operation
is complete (that is, when the aio_error subroutine no
longer returns EINPROG), the aio_error subroutine returns
ENOSPC. This indicates that the I/O was unsuccessful.

Implementation Specifics
The aio_error and aio_error64 subroutines are part of Base Operating System (BOS)
Runtime.

Related Information
The aio_cancel or aio_cancel64 subroutine, aio_read or aio_read64 subroutine,
aio_return or aio_return64 subroutine, aio_suspend or aio_suspend64 subroutine,
aio_write or aio_write64 subroutine, lio_listio or lio_listio64 subroutine.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low–level, stream, terminal, and asynchronous I/O interfaces.

1-28 Technical Reference: Base Operating System

aio_read or aio_read64 Subroutine

Purpose
Reads asynchronously from a file.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_read(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb *aiocbp;

int aio_read64(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description
The aio_read subroutine reads asynchronously from a file. Specifically, the aio_read
subroutine reads from the file associated with the FileDescriptor parameter into a buffer.

The aio_read64 subroutine is similar to the aio_read subroutine execpt that it takes an
aiocb64 reference parameter. This allows the aio_read64 subroutine to specify offsets in
excess of OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64
.

The details of the read are provided by information in the aiocb structure, which is pointed
to by the aiocbp parameter. This information includes the following fields:

aio_buf Indicates the buffer to use.

aio_nbytes Indicates the number of bytes to read.

When the read request has been queued, the aio_read subroutine updates the file pointer
specified by the aio_whence and aio_offset fields in the aiocb structure as if the
requested I/O were already completed. It then returns to the calling program. The
aio_whence and aio_offset fields have the same meaning as the whence and offset
parameters in the lseek subroutine. The subroutine ignores them for file objects that are not
capable of seeking.

If an error occurs during the call, the read request is not queued. To determine the status of
a request, use the aio_error subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set
the AIO_SIGNAL bit in the aio_flag field in the aiocb structure.

Note: The SIGIO signal is replaced by real–time signals when they are available. The
event structure in the aiocb structure is currently not in use but is included for future
compatibility.

1-29Base Operating System Runtime Services (A-P)

Parameters

FileDescriptor Identifies the object to be read as returned from a call to open.

aiocbp Points to the asynchronous I/O control block structure associated with
the I/O operation. The aiocb and the aiocb64 structures are defined in
the aio.h file and contains the following members:

int aio_whence

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_flag

aio_handle_t aio_handle

Execution Environment
The aio_read and aio_read64 subroutines can be called from the process environment
only.

Return Values
When the read request queues successfully, the aio_read subroutine returns a value of 0.
Otherwise, it returns a value of –1 and sets the global variable errno to identify the error.

Return codes can be set to the following errno values:

EAGAIN Indicates that the system resources required to queue the request are
not available. Specifically, the transmit queue may be full, or the
maximum number of opens may be reached.

EBADF Indicates that the FileDescriptor parameter is not valid.

EFAULT Indicates that the address specified by the aiocbp parameter is not
valid.

EINVAL Indicates that the aio_whence field does not have a valid value, or that
the resulting pointer is not valid.

Note: Other error codes defined in the sys/errno.h file can be returned by aio_error if an
error during the I/O operation is encountered.

Implementation Specifics
The aio_read and aio_read64 subroutines are part of Base Operating System (BOS)
Runtime.

Related Information
The aio_cancel or aio_cancel64 subroutine, aio_error or aio_error64 subroutine,
aio_return or aio_return64 subroutine, aio_suspend or aio_suspend64 subroutine,
aio_write subroutine, lio_listio or lio_listo64 subroutine.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low–level, stream, terminal, and asynchronous I/O interfaces.

1-30 Technical Reference: Base Operating System

aio_return or aio_return64 Subroutine

Purpose
Retrieves the return status of an asynchronous I/O request.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_return(handle)
aio_handle_t handle;

int aio_return64(handle)
aio_handle_t handle;

Description
The aio_return subroutine retrieves the return status of the asynchronous I/O request
associated with the aio_handle_t handle if the I/O request has completed. The status
returned is the same as the status that would be returned by the corresponding read or
write function calls. If the I/O operation has not completed, the returned status is undefined.

The aio_return64 subroutine is similar to the aio_return subroutine except that it retrieves
the error status associated with an aiocb64 control block.

Parameters

handle The handle field of an aio control block (aiocb or
aiocb64) structure is set by a previous call of the aio_read,
aio_read64, aio_write, aio_write64, lio_listio,
aio_listio64 subroutine. If a random memory location is
passed in, random results are returned.

Execution Environment
The aio_return and aio_return64 subroutines can be called from the process environment
only.

Return Values
The aio_return subroutine returns the status of an asynchronous I/O request corresponding
to those returned by read or write functions. If the error status returned by the aio_error
subroutine call is EINPROG, the value returned by the aio_return subroutine is undefined.

Examples
An aio_read request to read 1000 bytes from a disk device eventually, when the aio_error
subroutine returns a 0, causes the aio_return subroutine to return 1000. An aio_read
request to read 1000 bytes from a 500 byte file eventually causes the aio_return subroutine
to return 500. An aio_write request to write to a read–only file system results in the

1-31Base Operating System Runtime Services (A-P)

aio_error subroutine eventually returning EROFS and the aio_return subroutine returning
a value of –1.

Implementation Specifics
The aio_return and aio_return64 subroutines are part of Base Operating System (BOS)
Runtime.

Related Information
The aio_cancel or aio_cancel64 subroutine, aio_error or aio_error64 subroutine,
aio_read or aio_read64 subroutine, aio_suspend or aio_suspend64 subroutine,
aio_write or aio_write64 subroutine, lio_listio or lio_listio64 subroutine.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low–level, stream, terminal, and asynchronous I/O interfaces.

1-32 Technical Reference: Base Operating System

aio_suspend or aio_suspend64 Subroutine

Purpose
Suspends the calling process until one or more asynchronous I/O requests is completed.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

aio_suspend(count, aiocbpa)
int count;
struct aiocb *aiocbpa[];

aio_suspend64(count, aiocbpa)
int count;
struct aiocb64 *aiocbpa[];

Description
The aio_suspend subroutine suspends the calling process until one or more of the count
parameter asynchronous I/O requests are completed or a signal interrupts the subroutine.
Specifically, the aio_suspend subroutine handles requests associated with the aio control
block (aiocb) structures pointed to by the aiocbpa parameter.

The aio_suspend64 subroutine is similar to the aio_suspend subroutine except that it
takes an array of pointers to aiocb64 structures. This allows the aio_suspend64 subroutine
to suspend on asynchronous I/O requests submitted by either the aio_read64, aio_write64,
or the lio_listio64 subroutines.

In the large file enabled programming environment, aio_suspend is redefined to be
aio_suspend64.

The array of aiocb pointers may include null pointers, which will be ignored. If one of the I/O
requests is already completed at the time of the aio_suspend call, the call immediately
returns.

1-33Base Operating System Runtime Services (A-P)

Parameters

count Specifies the number of entries in the aiocbpa array.

aiocbpa Points to the aiocb or aiocb64 structures associated with
the asynchronous I/O operations. The aiocb structure is
defined in the aio.h file and contains the following
members:

int aio_whence

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct event aio_event

struct osigevent aio_event

int aio_flag

aio_handle_t aio_handle

Execution Environment
The aio_suspend and aio_suspend64 subroutines can be called from the process
environment only.

Return Values
If one or more of the I/O requests completes, the aio_suspend subroutine returns the index
into the aiocbpa array of one of the completed requests. The index of the first element in
the aiocbpa array is 0. If more than one request has completed, the return value can be the
index of any of the completed requests.

In the event of an error, the aio_suspend subroutine returns a value of –1 and sets the
errno global variable to identify the error. Return codes can be set to the following errno
values:

EINTR Indicates that a signal or event interrupted the
aio_suspend subroutine call.

EINVAL Indicates that the aio_whence field does not have a
valid value or that the resulting pointer is not valid.

Implementation Specifics
The aio_suspend or aio_suspend64 subroutines are part of Base Operating System
(BOS) Runtime.

Related Information
The aio_cancel or aio_cancel64 subroutine, aio_error or aio_error64 subroutine,
aio_read or aio_read64 subroutine, aio_return or aio_return64 subroutine, aio_write or
aio_write64 subroutine, lio_listio or lio_listo64 subroutine.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low–level, stream, terminal, and asynchronous I/O interfaces.

1-34 Technical Reference: Base Operating System

aio_write or aio_write64 Subroutine

Purpose
Writes to a file asynchronously.

Library
Standard C Library (libc.a)

Syntax
#include <aio.h>

int aio_write(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb *aiocbp;

int aio_write64(FileDescriptor, aiocbp)
int FileDescriptor;
struct aiocb64 *aiocbp;

Description
The aio_write subroutine writes asynchronously to a file. Specifically, the aio_write
subroutine writes to the file associated with the FileDescriptor parameter from a buffer. To
handle this, the subroutine uses information from the aio control block (aiocb) structure,
which is pointed to by the aiocbp parameter. This information includes the following fields:

aio_buf Indicates the buffer to use.

aio_nbytes Indicates the number of bytes to write.

The aio_write64 subroutine is similar to the aio_write subroutine except that it takes an
aiocb64 reference parameter. This allows the aio_write64 subroutine to specify offsets in
excess of OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64.

When the write request has been queued, the aio_write subroutine updates the file pointer
specified by the aio_whence and aio_offset fields in the aiocb structure as if the
requested I/O completed. It then returns to the calling program. The aio_whence and
aio_offset fields have the same meaning as the whence and offset parameters in the
lseek subroutine. The subroutine ignores them for file objects that are not capable of
seeking.

If an error occurs during the call, the write request is not initiated or queued. To determine
the status of a request, use the aio_error subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set
the AIO_SIGNAL bit in the aio_flag field in the aiocb structure.

Note: The SIGIO signal will be replaced by real–time signals when they are available. The
event structure in the aiocb structure is currently not in use but is included for future
compatibility.

1-35Base Operating System Runtime Services (A-P)

Parameters

FileDescriptor Identifies the object to be written as returned from a call to open.

aiocbp Points to the asynchronous I/O control block structure associated with
the I/O operation.

The aiocb structure is defined in the aio.h file and contains the
following members:

int aio_whence

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct event aio_event

struct osigevent aio_event

int aio_flag

aio_handle_t aio_handle

Execution Environment
The aio_write and aio_write64 subroutines can be called from the process environment
only.

Return Values
When the write request queues successfully, the aio_write subroutine returns a value of 0.
Otherwise, it returns a value of –1 and sets the errno global variable to identify the error.

Return codes can be set to the following errno values:

EAGAIN Indicates that the system resources required to queue the request are
not available. Specifically, the transmit queue may be full, or the
maximum number of opens may have been reached.

EBADF Indicates that the FileDescriptor parameter is not valid.

EFAULT Indicates that the address specified by the aiocbp parameter is not
valid.

EINVAL Indicates that the aio_whence field does not have a valid value or that
the resulting pointer is not valid.

Note: Other error codes defined in the /usr/include/sys/errno.h file may be returned by
the aio_error subroutine if an error during the I/O operation is encountered.

Implementation Specifics
The aio_write or aio_write64 subroutines are part of Base Operating System (BOS)
Runtime.

Related Information
The aio_cancel or aio_cancel64 subroutine, aio_error or aio_error64 subroutine,
aio_read or aio_read64 subroutine, aio_return or aio_return64 subroutine, aio_suspend
or aio_suspend64 subroutine, lio_listio or lio_listio64 subroutine.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming
Introduction in AIX Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low–level, stream, terminal, and asynchronous I/O interfaces.

1-36 Technical Reference: Base Operating System

asin, asinl, acos, acosl, atan, atanl, atan2, or atan2l Subroutine

Purpose
Computes inverse trigonometric functions.

Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
double asin (x)
double x;

long double asinl (x)
long double x;

double acos (x)
double x;

long double acosl (x)
long double x;

double atan (x)
double x;

long double atanl (x)
long double x;

double atan2 (y, x)
double y, x;

long double atan2l (x,y)
long double y, x;

Description
The asin and asinl subroutines return the principal value of the arc sine of x, in the range
[–pi/2, pi/2].

The acos and acosl subroutines return the principal value of the arc cosine of x, in the
range [0, pi].

The atan and atanl subroutines return the principal value of the arc tangent of x, in the
range [–pi/2, pi/2].

The atan2 and atan2l subroutines return the principal value of the arc tangent of y/x, using
the signs of both parameters to determine the quadrant of the return value. The return
values are in the range [–pi, pi].

Parameters

x Specifies a double–precision floating–point value. For the asinl, acosl, atanl,
and atan2l subroutines, specifies a long double–precision floating–point value.

y Specifies a double–precision floating–point value. For the asinl, acosl, atanl,
and atan2l subroutines, specifies long double–precision floating–point value.

Error Codes
When using the libm.a (–lm) library:

1-37Base Operating System Runtime Services (A-P)

asin, asinl,
acos, acosl

Return a NaNQ and set the errno global variable to EDOM if the
absolute value of the parameter is greater than 1.

When using libmsaa.a (–lmsaa):

asin, acos,
atan2,

If the absolute value of the parameter of asin or acos is greater than 1,
or if both parameters of atan2 are 0, then 0 is returned and errno is set
to EDOM. In addition, a message indicating DOMAIN error is printed on
the standard output.

asinl, acosl,
atan2l

Return a NaNQ and set the errno global variable to EDOM if the
absolute value of the parameter is greater than 1.

These error–handling procedures may be changed with the matherr subroutine when using
the libmsaa.a (–lmsaa) library.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The asinh, acosh, or atanh subroutine, matherr subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128–Bit long double Floating–Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

1-38 Technical Reference: Base Operating System

asinh, acosh, or atanh Subroutine

Purpose
Computes inverse hyperbolic functions.

Libraries
IEEE Math Library (libm.a) or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double asinh (x)
double x;

double acosh (x)
double x;

double atanh (x)
double x;

Description
The asinh, acosh, and atanh subroutines compute the inverse hyperbolic functions.

The asinh subroutine returns the hyperbolic arc sine specified by the x parameter, in the
range of the –HUGE_VAL value to the +HUGE_VAL value. The acosh subroutine returns
the hyperbolic arc cosine specified by the x parameter, in the range 1 to the +HUGE_VAL
value. The atanh subroutine returns the hyperbolic arc tangent specified by the x
parameter, in the range of the –HUGE_VAL value to the +HUGE_VAL value.

Note: Compile any routine that uses subroutines from the libm.a library with the –lm flag.
For example: to compile the asinh.c file, enter:

cc asinh.c –lm

Parameters

x Specifies a double–precision floating–point value.

Error Codes
The acosh subroutine returns NaNQ (not–a–number) and sets errno to EDOM if the x
parameter is less than the value of 1.

The atanh subroutine returns NaNQ and sets errno to EDOM if the absolute value of x is
greater than 1.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The copysign, nextafter, scalb, logb, or ilogb subroutine, exp, expm1, log, log10, or
pow subroutine, sinh, cosh, or tanh subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-39Base Operating System Runtime Services (A-P)

assert Macro

Purpose
Verifies a program assertion.

Library
Standard C Library (libc.a)

Syntax
#include <assert.h>

void assert (Expression)
int Expression;

Description
The assert macro puts error messages into a program. If the specified expression is false,
the assert macro writes the following message to standard error and stops the program:

Assertion failed: Expression, file FileName, line LineNumber

In the error message, the FileName value is the name of the source file and the
LineNumber value is the source line number of the assert statement.

Parameters

Expression Specifies an expression that can be evaluated as true or false. This
expression is evaluated in the same manner as the C language IF
statement.

Implementation Specifics
This macro is part of Base Operating System (BOS) Runtime.

The assert macro uses the _assert subroutine.

Related Information
The abort subroutine.

The cpp command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-40 Technical Reference: Base Operating System

atof, strtod, strtold, atoff, or strtof Subroutine

Purpose
Converts an ASCII string to a floating–point or double floating–point number.

Libraries
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

double atof (NumberPointer)
const char *NumberPointer;

double strtod (NumberPointer, EndPointer)
const char *NumberPointer
char**EndPointer;

long double strtold (NumberPointer, EndPointer)
char *NumberPointer, **EndPointer;

float atoff (NumberPointer)
char *NumberPointer;

float strtof (NumberPointer, EndPointer)
char *NumberPointer, **EndPointer;

Description
The atof subroutine and strtod subroutine convert a character string, pointed to by the
NumberPointer parameter, to a double–precision floating–point number. Similarly, the
strtold subroutine converts a character string to a long double–precision floating–point
number. The atoff subroutine and strtof subroutine convert a character string, pointed to by
the NumberPointer parameter, to a single–precision floating–point number. The first
unrecognized character ends the conversion.

Except for behavior on error, the atof subroutine is equivalent to the strtod subroutine call,
with the EndPointer parameter set to (char**) NULL.

Except for behavior on error, the atoff subroutine is equivalent to the strtof subroutine call,
with the EndPointer parameter set to (char**) NULL.

These subroutines recognize a character string when the characters are in one of two
formats: numbers or numeric symbols.

• For a string to be recognized as a number, it should contain the following pieces in the
following order:

a. An optional string of white–space characters

b. An optional sign

c. A nonempty string of digits optionally containing a radix character

d. An optional exponent in E–format or e–format followed by an optionally signed
integer.

• For a string to be recognized as a numeric symbol, it should contain the following pieces
in the following order:

a. An optional string of white–space characters

b. An optional sign

c. One of the strings: INF, infinity, NaNQ, NaNS, or NaN (case insensitive)

1-41Base Operating System Runtime Services (A-P)

Parameters

NumberPointer Specifies a character string to convert.

EndPointer Specifies a pointer to the character that ended the scan or a null value.

Return Values
Upon successful completion, the atof, atoff, strtod, strtold, and strtof subroutines return
the converted value. If no conversion could be performed, a value of 0 is returned and the
errno global variable is set to indicate the error.

Error Codes
Note: Because a value of 0 can indicate either an error or a valid result, an application that

checks for errors with the strtod, strtof, and strtold subroutines should set the
errno global variable equal to 0 prior to the subroutine call. The application can
check the errno global variable after the subroutine call.

If the string pointed to by NumberPointer is empty or begins with an unrecognized character,
a value of 0 is returned for the strtod, strtof, and strtold subroutines.

If the conversion cannot be performed, a value of 0 is returned, and the errno global
variable is set to indicate the error.

If the conversion causes an overflow (that is, the value is outside the range of representable
values), +/– HUGE_VAL is returned with the sign indicating the direction of the overflow,
and the errno global variable is set to ERANGE.

If the conversion would cause an underflow, a properly signed value of 0 is returned and the
errno global variable is set to ERANGE.

For the strtod, strtof, and strtold subroutines, if the value of the EndPointer parameter is
not (char**) NULL, a pointer to the character that stopped the subroutine is stored in
*EndPointer. If a floating–point value cannot be formed, *EndPointer is set to
NumberPointer.

The atoff and strtof subroutines have only one rounding error. (If the atof or strtod
subroutines are used to create a double–precision floating–point number and then that
double–precision number is converted to a floating–point number, two rounding errors could
occur.)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The atoff and strtof subroutines are not part of the ANSI C Library. These subroutines are
at least as accurate as required by the IEEE Standard for Binary Floating–Point Arithmetic.
The atof and strtod subroutines accept at least 17 significant decimal digits. The atoff and
strtof subroutines accept at least 9 leading 0’s. Leading 0’s are not counted as significant
digits.

Related Information
The scanf subroutine, strtol, strtoul, atol, or atoi subroutine, wstrtol, watol, or watoi
subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128–Bit long double Floating–Point Format in AIX General Programming Concepts :
Writing and Debugging Programs.

1-42 Technical Reference: Base Operating System

audit Subroutine

Purpose
Enables and disables system auditing.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int audit (Command, Argument)
int Command;
int Argument;

Description
The audit subroutine enables or disables system auditing.

When auditing is enabled, audit records are created for security–relevant events. These
records can be collected through the auditbin subroutine, or through the /dev/audit special
file interface.

Parameters

Command Defined in the sys/audit.h file, can be one of the following values:

AUDIT_QUERY Returns a mask indicating the state of the auditing
subsystem. The mask is a logical ORing of the
AUDIT_ON, AUDIT_OFF, and AUDIT_PANIC flags.
The Argument parameter is ignored.

AUDIT_ON Enables auditing. If auditing is already enabled, only
the failure–mode behavior changes. The Argument
parameter specifies recovery behavior in the event of
 failure and may be either 0 or the value
AUDIT_PANIC.

Note: If AUDIT_PANIC is specified, bin–mode auditing must be
enabled before the audit subroutine call.

AUDIT_OFF Disables the auditing system if auditing is enabled. If
the auditing system is disabled, the audit subroutine
does nothing. The Argument parameter is ignored.

AUDIT_RESET Disables the auditing system (as does AUDIT_OFF)
and resets the auditing system. If auditing is already
disabled, only the system configuration is reset.
Resetting the audit configuration involves clearing the
audit events and audited objects table, and terminating
bin and stream auditing. The Argument parameter is
ignored.

AUDIT_EVENT_THRESHOLD
Audit event records will be buffered until a total of
Argument records have been saved, at which time the
audit event records will be flushed to disk. An Argument
value of zero disables this functionality. This parameter
only applies to AIX Version 4.1.4 and later.

1-43Base Operating System Runtime Services (A-P)

AUDIT_BYTE_THRESHOLD
Audit event data will be buffered until a total of
Argument bytes of data have been saved, at which time
the audit event data will be flushed to disk. An
Argument value of zero disables this functionality. This
parameter only applies to AIX Version 4.1.4 and later.

Argument Specifies the behavior when a bin write fails (for AUDIT_ON) or
specifies the size of the audit event buffer (for
AUDIT_EVENT_THRESHOLD and AUDIT_BYTE_THRESHOLD). For
all other commands, the value of Argument is ignored. The valid values
are:

AUDIT_PANIC The operating system shuts down if an audit record
cannot be written to a bin.

Note: If AUDIT_PANIC is specified, bin–mode auditing must be
enabled before the audit subroutine call.

BufferSize The number of bytes or audit event records which will
be buffered. This parameter is valid only with the
command AUDIT_BYTE_THRESHOLD and
AUDIT_EVENT_THRESHOLD. A value of zero will
disable either byte (for AUDIT_BYTE_THRESHOLD)
or event (for AUDIT_EVENT_THRESHOLD) buffering.

Return Values
For a Command value of AUDIT_QUERY, the audit subroutine returns, upon successful
completion, a mask indicating the state of the auditing subsystem. The mask is a logical
ORing of the AUDIT_ON, AUDIT_OFF, AUDIT_PANIC, and AUDIT_NO_PANIC flags. For
any other Command value, the audit subroutine returns 0 on successful completion.

If the audit subroutine fails, a value of –1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The audit subroutine fails if either of the following is true:

EINVAL The Command parameter is not one of AUDIT_ON, AUDIT_OFF,
AUDIT_RESET, or AUDIT_QUERY.

EINVAL The Command parameter is AUDIT_ON and the Argument parameter
specifies values other than AUDIT_PANIC.

EPERM The calling process does not have root user authority.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

dev/audit Specifies the audit pseudo–device from which the audit records are
read.

Related Information
The auditbin subroutine, auditevents subroutine, auditlog subroutine, auditobj
subroutine, auditproc subroutine.

The audit command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-44 Technical Reference: Base Operating System

auditbin Subroutine

Purpose
Defines files to contain audit records.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int auditbin (Command, Current, Next, Threshold)
int Command;
int Current;
int Next;
int Threshold;

Description
The auditbin subroutine establishes an audit bin file into which the kernel writes audit
records. Optionally, this subroutine can be used to establish an overflow bin into which
records are written when the current bin reaches the size specified by the Threshold
parameter.

Parameters

Command If nonzero, this parameter is a logical ORing of the following values, which
are defined in the sys/audit.h file:

AUDIT_EXCL Requests exclusive rights to the audit bin files. If the file
specified by the Current parameter is not the kernel’s
current bin file, the auditbin subroutine fails immediately
with the errno variable set to EBUSY.

AUDIT_WAIT The auditbin subroutine should not return until:

bin full The kernel writes the number of bytes specified by the
Threshold parameter to the file descriptor specified by
the Current parameter. Upon successful completion, the
auditbin subroutine returns a 0. The kernel writes
subsequent audit records to the file descriptor specified
by the Next parameter.

bin failure An attempt to write an audit record to the file specified
by the Current parameter fails. If this occurs, the
auditbin subroutine fails with the errno variable set to
the return code from the auditwrite subroutine.

bin contention Another process has already issued a successful call
to the auditbin subroutine. If this occurs, the auditbin
subroutine fails with the errno variable set to EBUSY.

system shutdown
The auditing system was shut down. If this occurs, the
auditbin subroutine fails with the errno variable set to
EINTR.

Current A file descriptor for a file to which the kernel should immediately write
audit records.

1-45Base Operating System Runtime Services (A-P)

Next Specifies the file descriptor that will be used as the current audit bin if the
value of the Threshold parameter is exceeded or if a write to the current
bin fails. If this value is –1, no switch occurs.

Threshold Specifies the maximum size of the current bin. If 0, the auditing subsystem
will not switch bins. If it is nonzero, the kernel begins writing records to the
file specified by the Next parameter, if writing a record to the file specified
by the Cur parameter would cause the size of this file to exceed the
number of bytes specified by the Threshold parameter. If no next bin is
defined and AUDIT_PANIC was specified when the auditing subsystem
was enabled, the system is shut down. If the size of the Threshold
parameter is too small to contain a bin header and a bin tail, the auditbin
subroutine fails and the errno variable is set to EINVAL.

Return Values
If the auditbin subroutine is successful, a value of 0 returns.

If the auditbin subroutine fails, a value of –1 returns and the errno global variable is set to
indicate the error. If this occurs, the result of the call does not indicate whether any records
were written to the bin.

Error Codes
The auditbin subroutine fails if any of the following is true:

EBADF The Current parameter is not a file descriptor for a regular
file open for writing, or the Next parameter is neither –1 nor
a file descriptor for a regular file open for writing.

EBUSY The Command parameter specifies AUDIT_EXCL and the
kernel is not writing audit records to the file specified by the
Current parameter.

EBUSY The Command parameter specifies AUDIT_WAIT and
another process has already registered a bin.

EINTR The auditing subsystem is shut down.

EINVAL The Command parameter specifies a nonzero value other
than AUDIT_EXCL or AUDIT_WAIT.

EINVAL The Threshold parameter value is less than the size of a
bin header and trailer.

EPERM The caller does not have root user authority.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The audit subroutine, auditevents subroutine, auditlog subroutine, auditobj subroutine,
auditproc subroutine.

The audit command.

The audit file format.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-46 Technical Reference: Base Operating System

auditevents Subroutine

Purpose
Gets or sets the status of system event auditing.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int auditevents (Command, Classes, NClasses)
int Command;
struct audit_class *Classes;
int NClasses;

Description
The auditevents subroutine queries or sets the audit class definitions that control event
auditing. Each audit class is a set of one or more audit events.

System auditing need not be enabled before calling the auditevents subroutine. The audit
subroutine can be directed with the AUDIT_RESET command to clear all event lists.

Parameters

Command Specifies whether the event lists are to be queried or set. The values,
defined in the sys/audit.h file, for the Command parameter are:

AUDIT_SET Sets the lists of audited events after first clearing all
previous definitions.

AUDIT_GET Queries the lists of audited events.

AUDIT_LOCK Queries the lists of audited events. This value also blocks
any other process attempting to set or lock the list of audit
events. The lock is released when the process holding the
lock dies or calls the auditevents subroutine with the
Command parameter set to AUDIT_SET.

Classes Specifies the array of a_event structures for the AUDIT_SET operation, or
after an AUDIT_GET or AUDIT_LOCK operation. The audit_class
structure is defined in the sys/audit.h file and contains the following
members:

ae_name A pointer to the name of the audit class.

ae_list A pointer to a list of null–terminated audit event names for
this audit class. The list is ended by a null name (a leading
null byte or two consecutive null bytes).

Note: Event and class names are limited to 15 significant characters.

ae_len The length of the event list in the ae_list member. This
length includes the terminating null bytes. On an
AUDIT_SET operation, the caller must set this member to
indicate the actual length of the list (in bytes) pointed to by
ae_list. On an AUDIT_GET or AUDIT_LOCK
operation, the auditevents subroutine sets this member to
indicate the actual size of the list.

NClasses Serves a dual purpose. For AUDIT_SET, the NClasses parameter
specifies the number of elements in the events array. For AUDIT_GET and
AUDIT_LOCK, the NClasses parameter specifies the size of the buffer
pointed to by the Classes parameter.

1-47Base Operating System Runtime Services (A-P)

Attention: Only 32 audit classes are supported. One class is implicitly defined by the
system to include all audit events (ALL). The administrator of your system should not
attempt to define more than 31 audit classes.

Security
The calling process must have root user authority in order to use the auditevents
subroutine.

Return Codes
If the auditevents subroutine completes successfully, the number of audit classes is
returned if the Command parameter is AUDIT_GET or AUDIT_LOCK. A value of 0 is
returned if the Command parameter is AUDIT_SET. If this call fails, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The auditevents subroutine fails if one or more of the following are true:

EPERM The calling process does not have root user authority.

EINVAL The value of Command is not AUDIT_SET, AUDIT_GET, or
AUDIT_LOCK.

EINVAL The Command parameter is AUDIT_SET, and the value of the NClasses
parameter is greater than or equal to 32.

EINVAL A class name or event name is longer than 15 significant characters.

ENOSPC The value of Command is AUDIT_GET or AUDIT_LOCK and the size of
the buffer specified by the NClasses parameter is not large enough to hold
the list of event structures and names. If this occurs, the first word of the
buffer is set to the required buffer size.

EFAULT The Classes parameter points outside of the process’ address space.

EFAULT The ae_list member of one or more audit_class structures passed for
an AUDIT_SET operation points outside of the process’ address space.

EFAULT The Command value is AUDIT_GET or AUDIT_LOCK and the size of the
Classes buffer is not large enough to hold an integer.

EBUSY Another process has already called the auditevents subroutine with
AUDIT_LOCK.

ENOMEM Memory allocation failed.

Implementation Specifications
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The audit subroutine, auditbin subroutine, auditlog subroutine, auditobj subroutine,
auditproc subroutine, auditread subroutine, auditwrite subroutine.

The audit command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-48 Technical Reference: Base Operating System

auditlog Subroutine

Purpose
Appends an audit record to the audit trail file.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int auditlog (Event, Result, Buffer, BufferSize)
char *Event;
int Result;
char *Buffer;
int BufferSize;

Description
The auditlog subroutine generates an audit record. The kernel audit–logging component
appends a record for the specified Event if system auditing is enabled, process auditing is
not suspended, and the Event parameter is in one or more of the audit classes for the
current process.

The audit logger generates the audit record by adding the Event and Result parameters to
the audit header and including the resulting information in the Buffer parameter as the audit
tail.

Parameters

Event The name of the audit event to be generated. This parameter should be
the name of an audit event. Audit event names are truncated to 15
characters plus null.

Result Describes the result of this event. Valid values are defined in the
sys/audit.h file and include the following:

AUDIT_OK The event was successful.

AUDIT_FAIL The event failed.

AUDIT_FAIL_ACCESS
The event failed because of any access control denial.

AUDIT_FAIL_DAC
The event failed because of a discretionary access
control denial.

AUDIT_FAIL_PRIV
The event failed because of a privilege control denial.

AUDIT_FAIL_AUTH
The event failed because of an authentication denial.

Other nonzero values of the Result parameter are converted into the
AUDIT_FAIL value.

Buffer Points to a buffer containing the tail of the audit record. The format of
the information in this buffer depends on the event name.

BufferSize Specifies the size of the Buffer parameter, including the terminating null.

1-49Base Operating System Runtime Services (A-P)

Return Values
Upon successful completion, the auditlog subroutine returns a value of 0. If auditlog fails,
a value of –1 is returned and the errno global variable is set to indicate the error.

The auditlog subroutine does not return any indication of failure to write the record where
this is due to inappropriate tailoring of auditing subsystem configuration files or user–written
code. Accidental omissions and typographical errors in the configuration are potential
causes of such a failure.

Error Codes
The auditlog subroutine fails if any of the following are true:

EFAULT The Event or Buffer parameter points outside of the process’ address
space.

EINVAL The auditing system is either interrupted or not initialized.

EINVAL The length of the audit record is greater than 32 kilobytes.

EPERM The process does not have root user authority.

ENOMEM Memory allocation failed.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The audit subroutine, auditbin subroutine, auditevents subroutine, auditobj subroutine,
auditproc subroutine, auditwrite subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-50 Technical Reference: Base Operating System

auditobj Subroutine

Purpose
Gets or sets the auditing mode of a system data object.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int auditobj (Command, Obj_Events, ObjSize)
int Command;
struct o_event *Obj_Events;
int ObjSize;

Description
The auditobj subroutine queries or sets the audit events to be generated by accessing
selected objects. For each object in the file system name space, it is possible to specify the
event generated for each access mode. Using the auditobj subroutine, an administrator
can define new audit events in the system that correspond to accesses to specified objects.
These events are treated the same as system–defined events.

System auditing need not be enabled to set or query the object audit events. The audit
subroutine can be directed with the AUDIT_RESET command to clear the definitions of
object audit events.

Parameters

Command Specifies whether the object audit event lists are to be read or written. The
valid values, defined in the sys/audit.h file, for the Command parameter
are:

AUDIT_SET Sets the list of object audit events, after first clearing all
previous definitions.

AUDIT_GET Queries the list of object audit events.

AUDIT_LOCK Queries the list of object audit events and also blocks any
other process attempting to set or lock the list of audit
events. The lock is released when the process holding the
lock dies or calls the auditobj subroutine with the
Command parameter set to AUDIT_SET.

1-51Base Operating System Runtime Services (A-P)

Obj_Events Specifies the array of o_event structures for the AUDIT_SET operation or
for after the AUDIT_GET or AUDIT_LOCK operation. The o_event
structure is defined in the sys/audit.h file and contains the following
members:

o_type Specifies the type of the object, in terms of naming space.
Currently, only one object–naming space is supported:

AUDIT_FILE Denotes the file system naming space.

o_name Specifies the name of the object.

o_event Specifies any array of event names to be generated when
the object is accessed. Note that event names in AIX are
currently limited to 16 bytes, including the trailing null. The
index of an event name in this array corresponds to an
access mode. Valid indexes are defined in the audit.h file
and include the following:

– AUDIT_READ

– AUDIT_WRITE

– AUDIT_EXEC

ObjSize For an AUDIT_SET operation, the ObjSize parameter specifies the number
of object audit event definitions in the array pointed to by the Obj_Events
parameter. For an AUDIT_GET or AUDIT_LOCK operation, the ObjSize
parameter specifies the size of the buffer pointed to by the Obj_Events
parameter.

Return Values
If the auditobj subroutine completes successfully, the number of object audit event
definitions is returned if the Command parameter is AUDIT_GET or AUDIT_LOCK. A value
of 0 is returned if the Command parameter is AUDIT_SET. If this call fails, a value of –1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The auditobj subroutine fails if any of the following are true:

EFAULT The Obj_Events parameter points outside the address space of the
process.

EFAULT The Command parameter is AUDIT_SET, and one or more of the
o_name members points outside the address space of the process.

EFAULT The Command parameter is AUDIT_GET or AUDIT_LOCK, and the
buffer size of the Obj_Events parameter is not large enough to hold the
integer.

EINVAL The value of the Command parameter is not AUDIT_SET, AUDIT_GET
or AUDIT_LOCK.

EINVAL The Command parameter is AUDIT_SET, and the value of one or more
of the o_type members is not AUDIT_FILE.

EINVAL An event name was longer than 15 significant characters.

ENOENT The Command parameter is AUDIT_SET, and the parent directory of
one of the file–system objects does not exist.

ENOSPC The value of the Command parameter is AUDIT_GET or
AUDIT_LOCK, and the size of the buffer as specified by the ObjSize
parameter is not large enough to hold the list of event structures and
names. If this occurs, the first word of the buffer is set to the required
buffer size.

1-52 Technical Reference: Base Operating System

ENOMEM Memory allocation failed.

EBUSY Another process has called the auditobj subroutine with
AUDIT_LOCK.

EPERM The caller does not have root user authority.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The audit subroutine, auditbin subroutine, auditevents subroutine, auditlog subroutine,
auditproc subroutine.

The audit command.

The audit.h file.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-53Base Operating System Runtime Services (A-P)

auditpack Subroutine

Purpose
Compresses and uncompresses audit bins.

Library
Security Library (libc.a)

Syntax
#include <sys/audit.h>
#include <stdio.h>

char *auditpack (Expand, Buffer)
int Expand;
char *Buffer;

Description
The auditpack subroutine can be used to compress or uncompress bins of audit records.

Parameters

Expand Specifies the operation. Valid values, as defined in the sys/audit.h header
file, are one of the following:

AUDIT_PACK Performs standard compression on the audit bin.

AUDIT_UNPACK Unpacks the compressed audit bin.

Buffer Specifies the buffer containing the bin to be compressed or uncompressed.
This buffer must contain a standard bin as described in the audit.h file.

Return Values
If the auditpack subroutine is successful, a pointer to a buffer containing the processed
audit bin is returned. If unsuccessful, a null pointer is returned and the errno global variable
is set to indicate the error.

Error Codes
The auditpack subroutine fails if one or more of the following values is true:

EINVAL The Expand parameter is not one of the valid values (AUDIT_PACK or
AUDIT_UNPACK).

EINVAL The Expand parameter is AUDIT_UNPACK and the packed data in Buffer
does not unpack to its original size.

EINVAL The Expand parameter is AUDIT_PACK and the bin in the Buffer
parameter is already compressed, or the Expand parameter is
AUDIT_UNPACK and the bin in the Buffer parameter is already unpacked.

ENOSPC The auditpack subroutine is unable to allocate space for a new buffer.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The auditread subroutine.

The auditcat command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-54 Technical Reference: Base Operating System

auditproc Subroutine

Purpose
Gets or sets the audit state of a process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>

int auditproc (ProcessID, Command, Argument, Length)
int ProcessID;
int Command;
char * Argument;
int Length;

Description
The auditproc subroutine queries or sets the auditing state of a process. There are two
parts to the auditing state of a process:

• The list of classes to be audited for this process. Classes are defined by the auditevents
subroutine. Each class includes a set of audit events. When a process causes an audit
event, that event may be logged in the audit trail if it is included in one or more of the
audit classes of the process.

• The audit status of the process. Auditing for a process may be suspended or resumed.
Functions that generate an audit record can first check to see whether auditing is
suspended. If process auditing is suspended, no audit events are logged for a process.
For more information, see the auditlog subroutine.

1-55Base Operating System Runtime Services (A-P)

Parameters

ProcessID The process ID of the process to be affected. If ProcessID is 0, the
auditproc subroutine affects the current process.

Command The action to be taken. Defined in the audit.h file, valid values include:

AUDIT_KLIST_EVENTS
Sets the list of audit classes to be audited for the
process and also sets the user’s default audit
classes definition within the kernel. The Argument
parameter is a pointer to a list of null–terminated
audit class names. The Length parameter is the
length of this list, including null bytes.

AUDIT_QEVENTS Returns the list of audit classes defined for the
current process if ProcessID is 0. Otherwise, it
returns the list of audit classes defined for the
specified process ID. The Argument parameter is a
pointer to a character buffer. The Length parameter
specifies the size of this buffer. On return, this buffer
contains a list of null–terminated audit class names.
A null name terminates the list.

AUDIT_EVENTS Sets the list of audit classes to be audited for the
process. The Argument parameter is a pointer to a
list of null–terminated audit class names. The Length
parameter is the length of this list, including null
bytes.

AUDIT_QSTATUS Returns the audit status of the current process. You
can only check the status of the current process. If
the ProcessID parameter is nonzero, a –1 is returned
and the errno global variable is set to EINVAL. The
Length and Argument parameters are ignored. A
return value of AUDIT_SUSPEND indicates that
auditing is suspended. A return value of
AUDIT_RESUME indicates normal auditing for this
process.

AUDIT_STATUS Sets the audit status of the current process. The
Length parameter is ignored, and the ProcessID
parameter must be zero. If Argument is
AUDIT_SUSPEND, the audit status is set to suspend
event auditing for this process. If the Argument
parameter is AUDIT_RESUME, the audit status is
set to resume event auditing for this process.

Argument A character pointer for the audit class buffer for an AUDIT_EVENT or
AUDIT_QEVENTS value of the Command parameter or an integer defining
the audit status to be set for an AUDIT_STATUS operation.

Length Size of the audit class character buffer.

Return Values
The auditproc subroutine returns the following values upon successful completion:

• The previous audit status (AUDIT_SUSPEND or AUDIT_RESUME), if the call queried or
set the audit status (the Command parameter specified AUDIT_QSTATUS or
AUDIT_STATUS)

• A value of 0 if the call queried or set audit events (the Command parameter specified
AUDIT_QEVENTS or AUDIT_EVENTS)

1-56 Technical Reference: Base Operating System

Error Codes
If the auditproc subroutine fails if one or more of the following are true:

EINVAL An invalid value was specified for the Command parameter.

EINVAL The Command parameter is set to the AUDIT_QSTATUS or
AUDIT_STATUS value and the pid value is nonzero.

EINVAL The Command parameter is set to the AUDIT_STATUS value and the
Argument parameter is not set to AUDIT_SUSPEND or AUDIT_RESUME.

ENOSPC The Command parameter is AUDIT_QEVENTS, and the buffer size is
insufficient. In this case, the first word of the Argument parameter is set to
the required size.

EFAULT The Command parameter is AUDIT_QEVENTS or AUDIT_EVENTS and
the Argument parameter points to a location outside of the process’
allocated address space.

ENOMEM Memory allocation failed.

EPERM The caller does not have root user authority.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The audit subroutine, auditbin subroutine, auditevents subroutine, auditlog subroutine,
auditobj subroutine, auditwrite subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-57Base Operating System Runtime Services (A-P)

auditread, auditread_r Subroutines

Purpose
Reads an audit record.

Library
Security Library (libc.a)

Syntax
#include <sys/audit.h>
#include <stdio.h>
char *auditread (FilePointer,AuditRecord)
FILE *FilePointer;
struct aud_rec *AuditRecord;

char *auditread_r (FilePointer,AuditRecord, RecordSize,
StreamInfo)
FILE *FilePointer;
struct aud_rec *AuditRecord;
size_t RecordSize;
void **StreamInfo;

Description
The auditread subroutine reads the next audit record from the specified file descriptor. Bins
on this input stream are unpacked and uncompressed if necessary.

The auditread subroutine can not be used on more than one FilePointer as the results can
be unpredictable. Use the auditread_r subroutine instead.

The auditread_r subroutine reads the next audit from the specified file descriptor. This
subroutine is thread safe and can be used to handle multiple open audit files simultaneously
by multiple threads of execution.

The auditread_r subroutine is able to read multiple versions of audit records. The version
information contained in an audit record is used to determine the correct size and format of
the record. When an input record header is larger than AuditRecord, an error is returned. In
order to provide for binary compatibility with previous versions, if RecordSize is the same
size as the original (struct aud_rec), the input record is converted to the original format and
returned to the caller.

Parameters

FilePointer Specifies the file descriptor from which to read.

AuditRecord Specifies the buffer to contain the header. The first short in this buffer
must contain a valid number for the header.

RecordSize The size of the buffer referenced by AuditRecord.

StreamInfo A pointer to an opaque datatype used to hold information related to the
current value of FilePointer. For each new value of FilePointer, a new
StreamInfo pointer must be used. StreamInfo must be initialized to
NULL by the user and is initialized by auditread_r when first used.
When FilePointer has been closed, the value of StreamInfo can be
passed to the free subroutine to be deallocated.

1-58 Technical Reference: Base Operating System

Return Values
If the auditread subroutine completes successfully, a pointer to a buffer containing the tail of
the audit record is returned. The length of this buffer is returned in the ah_length field of
the header file. If this subroutine is unsuccessful, a null pointer is returned and the errno
global variable is set to indicate the error.

Error Codes
The auditread subroutine fails if one or more of the following is true:

EBADF The FilePointer value is not valid.

ENOSPC The auditread subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the read subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The auditpack subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-59Base Operating System Runtime Services (A-P)

auditwrite Subroutine

Purpose
Writes an audit record.

Library
Security Library (libc.a)

Syntax
#include <sys/audit.h>
#include <stdio.h>

int auditwrite (Event, Result, Buffer1, Length1, Buffer2, Length2
, ...)
char *Event;
int Result;
char *Buffer1, *Buffer2 ...;
int Length1, Length2 ...;

Description
The auditwrite subroutine builds the tail of an audit record and then writes it with the
auditlog subroutine. The tail is built by gathering the specified buffers. The last buffer
pointer must be a null.

If the auditwrite subroutine is to be called from a program invoked from the inittab file, the
setpcred subroutine should be called first to establish the process’ credentials.

Parameters

Event Specifies the name of the event to be logged.

Result Specifies the audit status of the event. Valid values are defined in
the sys/audit.h file and are listed in the auditlog subroutine.

Buffer1, Buffer2 Specifies the character buffers containing audit tail information. Note
that numerical values must be passed by reference. The correct size
can be computed with the sizeof C function.

Length1, Length2 Specifies the lengths of the corresponding buffers.

Return Values
If the auditwrite subroutine completes successfully, a value of 0 is returned. Otherwise, a
value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The auditwrite subroutine fails if the following is true:

ENOSPC The auditwrite subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the auditlog subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The auditlog subroutine, setpcred subroutine.

The inittab file.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-60 Technical Reference: Base Operating System

authenticate Subroutine

Purpose
Verifies a user’s name and password.

Library
Security Library (libc.a)

Syntax
#include <stddef.h>

int authenticate (UserName, Response, Reenter, Message)
wchar_t *UserName;
wchar_t *Response;
int *Reenter;
wchar_t **Message;

Description
The authenticate subroutine maintains requirements users must satisfy to be authenticated
to the system. It is a recallable interface that prompts for the user’s name and password.
The user must supply a character string at the prompt issued by the Message parameter.
The Response parameter returns the user’s response to the authenticate subroutine. The
calling program makes no assumptions about the number of prompt messages the user
must satisfy for authentication.

The Reenter parameter remains a nonzero value until the user satisfies all prompt
messages or answers incorrectly. Once the Reenter parameter is zero, the return code
signals whether authentication passed or failed.

The authenticate subroutine ascertains the authentication domains the user can attempt.
The subroutine reads the SYSTEM line from the user’s stanza in the /etc/security/user file.
Each token that appears in the SYSTEM line corresponds to a method that can be
dynamically loaded and processed. Likewise, the system can provide multiple or alternate
authentication paths.

The authenticate routine maintains internal state information concerning the next prompt
message presented to the user. If the calling program supplies a different user name before
all prompts are complete for the user, the internal state information is reset and prompt
messages begin again.

If the user has no defined password, or the SYSTEM grammar explicitly specifies no
authentication required, the user is not required to respond to any prompt messages.
Otherwise, the user is always initially prompted to supply a password.

The authenticate subroutine can be called initially with the cleartext password in the
Response parameter. If the user supplies a password during the initial invocation but does
not have a password, authentication fails. If the user wants the authenticate subroutine to
supply a prompt message, the Response parameter is a null pointer on initial invocation.

The authenticate subroutine sets the AUTHSTATE environment variable used by name
resolution subroutines, such as the getpwnam subroutine. This environment variable
indicates the registry to which to user authenticated. Values for the AUTHSTATE
environment variable include DCE, compat, and token names that appear in a SYSTEM
grammar. A null value can exist if the cron daemon or other utilities that do not require
authentication is called.

1-61Base Operating System Runtime Services (A-P)

Parameters

UserName Points to the user’s name that is to be authenticated.

Response Specifies a character string containing the user’s response to an
authentication prompt.

Reenter Points to a Boolean value that signals whether the authenticate
subroutine has completed processing. If the Reenter parameter is a
nonzero value, the authenticate subroutine expects the user to satisfy
the prompt message provided by the Message parameter. If the
Reenter parameter is 0, the authenticate subroutine has completed
processing.

Message Points to a pointer that the authenticate subroutine allocates memory
for and fills in. This string is suitable for printing and issues prompt
messages (if the Reenter parameter is a nonzero value). It also issues
informational messages such as why the user failed authentication (if
the Reenter parameter is 0). The calling application is responsible for
freeing this memory.

Return Values
Upon successful completion, the authenticate subroutine returns a value of 0. If this
subroutine fails, it returns a value of 1.

Error Codes
The authenticate subroutine is unsuccessful if one of the following values is true:

ENOENT Indicates that the user is unknown to the system.

ESAD Indicates that authentication is denied.

EINVAL Indicates that the parameters are not valid.

ENOMEN Indicates that memory allocation (malloc) failed.

Note: The DCE mechanism requires credentials on successful authentication that apply
only to the authenticate process and its children.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ckuserID subroutine.

1-62 Technical Reference: Base Operating System

basename Subroutine

Purpose
Return the last element of a path name.

Library
Standard C Library (libc.a)

Syntax#include <libgen.h>char *basename (char *path)

Description
Given a pointer to a character string that contains a path name, the basename subroutine
deletes trailing ”/” characters from path, and then returns a pointer to the last component of
path. The ”/” character is defined as trailing if it is not the first character in the string.

If path is a null pointer or points to an empty string, a pointer to a static constant ”.” is
returned.

Return Values
The basename function returns a pointer to the last component of path.

The basename function returns a pointer to a static constant ”.” if path is a null pointer or
points to an empty string.

The basename function may modify the string pointed to by path and may return a pointer
to static storage that may then be overwritten by a subsequent call to the basename
subroutine.

Examples

Input string Output string

 ”/usr/lib” ”lib”

 ”/usr/” ”usr”

 ”/” ”/”

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The dirname subroutine.

1-63Base Operating System Runtime Services (A-P)

bcopy, bcmp, bzero or ffs Subroutine

Purpose
Performs bit and byte string operations.

Library
Standard C Library (libc.a)

Syntax
#include <strings.h>

void bcopy (Source, Destination, Length)
const void *Source,
char *Destination;
size_t Length;

int bcmp (String1, String2, Length)
const void *String1, *String2;
size_t Length;

void bzero (String,Length)
 char *String;
int Length;

int ffs (Index)
int Index;

Description
Note: The bcopy subroutine takes parameters backwards from the strcpy subroutine.

The bcopy, bcmp, and bzero subroutines operate on variable length strings of bytes. They
do not check for null bytes as do the string routines.

The bcopy subroutine copies the value of the Length parameter in bytes from the string in
the Source parameter to the string in the Destination parameter.

The bcmp subroutine compares the byte string in the String1 parameter against the byte
string of the String2 parameter, returning a zero value if the two strings are identical and a
nonzero value otherwise. Both strings are assumed to be Length bytes long.

The bzero subroutine zeroes out the string in the String parameter for the value of the
Length parameter in bytes.

The ffs subroutine finds the first bit set in the Index parameter passed to it and returns the
index of that bit. Bits are numbered starting at 1. A return value of 0 indicates that the value
passed is 0.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The memcmp, memccpy, memchr, memcpy, memmove, memset subroutines, strcat,
strncat, strxfrm, strcpy, strncpy, or strdup subroutine, strcmp, strncmp, strcasecmp,
strncasecmp, or strcoll subroutine, strlen, strchr, strrchr, strpbrk, strspn, strcspn,
strstr, or strtok subroutine, swab subroutine.

List of String Manipulation Services and Subroutines Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-64 Technical Reference: Base Operating System

bessel: j0, j1, jn, y0, y1, or yn Subroutine

Purpose
Computes Bessel functions.

Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double j0 (x)
double x;

double j1 (x)
double x;

double jn (n, x)
int n;
double x;

double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

Description
Bessel functions are used to compute wave variables, primarily in the field of
communications.

The j0 subroutine and j1 subroutine return Bessel functions of x of the first kind, of orders 0
and 1, respectively. The jn subroutine returns the Bessel function of x of the first kind of
order n.

The y0 subroutine and y1 subroutine return the Bessel functions of x of the second kind, of
orders 0 and 1, respectively. The yn subroutine returns the Bessel function of x of the
second kind of order n. The value of x must be positive.

Note: Compile any routine that uses subroutines from the libm.a library with the –lm flag.
To compile the j0.c file, for example:

cc j0.c –lm

Parameters

x Specifies some double–precision floating–point value.

n Specifies some integer value.

Return Values
When using libm.a (–lm), if x is negative, y0, y1, and yn return the value NaNQ. If x is 0,
y0, y1, and yn return the value –HUGE_VAL.

When using libmsaa.a (–lmsaa), values too large in magnitude cause the functions j0, j1,
y0, and y1 to return 0 and to set the errno global variable to ERANGE. In addition, a
message indicating TLOSS error is printed on the standard error output.

1-65Base Operating System Runtime Services (A-P)

Nonpositive values cause y0, y1, and yn to return the value –HUGE and to set the errno
global variable to EDOM. In addition, a message indicating argument DOMAIN error is
printed on the standard error output.

These error–handling procedures may be changed with the matherr subroutine when using
libmsaa.a (–lmsaa).

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The matherr subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-66 Technical Reference: Base Operating System

bindprocessor Subroutine

Purpose
Binds kernel threads to a processor.

Library
Standard C library (libc.a)

Syntax
#include <sys/processor.h>

int bindprocessor (What, Who, Where)
int What;
int Who;
cpu_t Where;

Description
The bindprocessor subroutine binds a single kernel thread, or all kernel threads in a
process, to a processor, forcing the bound threads to be scheduled to run on that processor.
It is important to understand that a process itself is not bound, but rather its kernel threads
are bound. Once kernel threads are bound, they are always scheduled to run on the chosen
processor, unless they are later unbound. When a new thread is created, it has the same
bind properties as its creator. This applies to the initial thread in the new process created by
the fork subroutine: the new thread inherits the bind properties of the thread which called
fork. When the exec subroutine is called, thread properties are left unchanged.

Parameters

What Specifies whether a process or a thread is being bound to a processor.
The What parameter can take one of the following values:

BINDPROCESS A process is being bound to a processor.

BINDTHREAD A thread is being bound to a processor.

Who Indicates a process or thread identifier, as appropriate for the What
parameter, specifying the process or thread which is to be bound to a
processor.

Where If the Where parameter is a logical processor identifier, it specifies the
processor to which the process or thread is to be bound. A value of
PROCESSOR_CLASS_ANY unbinds the specified process or thread,
which will then be able to run on any processor.

The sysconf subroutine can be used to retrieve information about the
number of processors in the system.

Return Values
On successful completion, the bindprocessor subroutine returns 0. Otherwise, a value of
–1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The bindprocessor subroutine is unsuccessful if one of the following is true:

1-67Base Operating System Runtime Services (A-P)

EINVAL The What parameter is invalid, or the Where parameter indicates an
invalid processor number or a processor class which is not currently
available.

ESRCH The specified process or thread does not exist.

EPERM The caller does not have root user authority, and the Who parameter
specifies either a process, or a thread belonging to a process, having a
real or effective user ID different from that of the calling process.

Implementation Specifics
The bindprocessor subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The bindprocessor command.

The exec subroutine, fork subroutine, sysconf subroutine, thread_self subroutine.

Controlling Processor Use in AIX General Programming Concepts : Writing and Debugging
Programs.

1-68 Technical Reference: Base Operating System

brk or sbrk Subroutine

Purpose
Changes data segment space allocation.

Library
Standard C Library (libc.a)

Syntax
#include <unistd .h>

int brk (EndDataSegment)
char *EndDataSegment;

void *sbrk (Increment)
intptr_t Increment;

Description
The brk and sbrk subroutines dynamically change the amount of space allocated for the
data segment of the calling process. (For information about segments, see the exec
subroutine. For information about the maximum amount of space that can be allocated, see
the ulimit and getrlimit subroutines.)

The change is made by resetting the break value of the process, which determines the
maximum space that can be allocated. The break value is the address of the first location
beyond the current end of the data region. The amount of available space increases as the
break value increases. The available space is initialized to a value of 0 at the time it is used.
The break value can be automatically rounded up to a size appropriate for the memory
management architecture.

The brk subroutine sets the break value to the value of the EndDataSegment parameter
and changes the amount of available space accordingly.

The sbrk subroutine adds to the break value the number of bytes contained in the
Increment parameter and changes the amount of available space accordingly. The
Increment parameter can be a negative number, in which case the amount of available
space is decreased.

Parameters

EndDataSegment Specifies the effective address of the maximum available data.

Increment Specifies any integer.

Return Values
Upon successful completion, the brk subroutine returns a value of 0, and the sbrk
subroutine returns the old break value. If either subroutine is unsuccessful, a value of –1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The brk subroutine and the sbrk subroutine are unsuccessful and the allocated space
remains unchanged if one or more of the following are true:

1-69Base Operating System Runtime Services (A-P)

ENOMEM The requested change allocates more space than is allowed by a
system–imposed maximum. (For information on the system–imposed
maximum on memory space, see the ulimit system call.)

ENOMEM The requested change sets the break value to a value greater than or
equal to the start address of any attached shared–memory segment.
(For information on shared memory operations, see the shmat
subroutine.)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutines, getrlimit subroutine, shmat subroutine, shmdt subroutine, ulimit
subroutine.

The _end, _etext, or _edata identifier.

Subroutine Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-70 Technical Reference: Base Operating System

bsearch Subroutine

Purpose
Performs a binary search.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

void *bsearch (Key, Base, NumberOfElements, Size,
ComparisonPointer)

const void *Key;
const void *Base;
size_t NumberOfElements;
size_t Size;
int (*ComparisonPointer) (const void *, const void *);

Description
The bsearch subroutine is a binary search routine.

The bsearch subroutine searches an array of NumberOfElements objects, the initial
member of which is pointed to by the Base parameter, for a member that matches the object
pointed to by the Key parameter. The size of each member in the array is specified by the
Size parameter.

The array must already be sorted in increasing order according to the provided comparison
function ComparisonPointer parameter.

Parameters

Key Points to the object to be sought in the array.

Base Points to the element at the base of the table.

NumberOfElements Specifies the number of elements in the array.

ComparisonPointer Points to the comparison function, which is called with two
arguments that point to the Key parameter object and to an array
member, in that order.

Size Specifies the size of each member in the array.

Return Values
If the Key parameter value is found in the table, the bsearch subroutine returns a pointer to
the element found.

If the Key parameter value is not found in the table, the bsearch subroutine returns the null
value. If two members compare as equal, the matching member is unspecified.

For the ComparisonPointer parameter, the comparison function compares its parameters
and returns a value as follows:

• If the first parameter is less than the second parameter, the ComparisonPointer
parameter returns a value less than 0.

• If the first parameter is equal to the second parameter, the ComparisonPointer parameter
returns a value of 0.

1-71Base Operating System Runtime Services (A-P)

• If the first parameter is greater than the second parameter, the ComparisonPointer
parameter returns a value greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained
in the elements in addition to the values being compared.

The Key and Base parameters should be of type pointer–to–element and cast to type
pointer–to–character. Although declared as type pointer–to–character, the value returned
should be cast into type pointer–to–element.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The hsearch subroutine, lsearch subroutine, qsort subroutine.

Knuth, Donald E.; The Art of Computer Programming, Volume 3. Reading, Massachusetts,
Addison–Wesley, 1981.

Searching and Sorting Example Program and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-72 Technical Reference: Base Operating System

btowc Subroutine

Purpose
Single–byte to wide–character conversion.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>
#include <wchar.h>

wint_t btowc (intc);

Description
The btowc function determines whether c constitutes a valid (one–byte) character in the
initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
The btowc function returns WEOF if c has the value EOF or if (unsigned char) c does not
constitute a valid (one–byte) character in the initial shift state. Otherwise, it returns the
wide–character representation of that character.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wctob subroutine, the wchar.h file.

1-73Base Operating System Runtime Services (A-P)

_check_lock Subroutine

Purpose
Conditionally updates a single word variable atomically.

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

boolean_t _check_lock (word_addr, old_val, new_val)
atomic_p word_addr;
int old_val;
int new_val;

Parameters

word_addr Specifies the address of the single word variable.

old_val Specifies the old value to be checked against the value of the single word
variable.

new_val Specifies the new value to be conditionally assigned to the single word
variable.

Description
The _check_lock subroutine performs an atomic (uninterruptible) sequence of operations.
The compare_and_swap subroutine is similar, but does not issue synchronization
instructions and therefore is inappropriate for updating lock words.

Note: The word variable must be aligned on a full word boundary.

Return Values

FALSE Indicates that the single word variable was equal to the old value and has
been set to the new value.

TRUE Indicates that the single word variable was not equal to the old value and has
been left unchanged.

Related Information
The _clear_lock subroutine, _safe_fetch subroutine.

1-74 Technical Reference: Base Operating System

_clear_lock Subroutine

Purpose
Stores a value in a single word variable atomically.

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

void _clear_lock (word_addr, value)
atomic_p word_addr;
int value

Parameters

word_addr Specifies the address of the single word variable.

value Specifies the value to store in the single word variable.

Description
The _clear_lock subroutine performs an atomic (uninterruptible) sequence of operations.

This subroutine has no return values.

Note: The word variable must be aligned on a full word boundary.

Related Information
The _check_lock subroutine, _safe_fetch subroutine.

1-75Base Operating System Runtime Services (A-P)

catclose Subroutine

Purpose
Closes a specified message catalog.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types.h>

int catclose (CatalogDescriptor)
nl_catd CatalogDescriptor;

Description
The catclose subroutine closes a specified message catalog. If your program accesses
several message catalogs and you reach the maximum number of opened catalogs
(specified by the NL_MAXOPEN constant), you must close some catalogs before opening
additional ones. If you use a file descriptor to implement the nl_catd data type, the catclose
subroutine closes that file descriptor.

The catclose subroutine closes a message catalog only when the number of calls it
receives matches the total number of calls to the catopen subroutine in an application. All
message buffer pointers obtained by prior calls to the catgets subroutine are not valid when
the message catalog is closed.

Parameters

CatalogDescriptor Points to the message catalog returned from a call to the
catopen subroutine.

Return Values
The catclose subroutine returns a value of 0 if it closes the catalog successfully, or if the
number of calls it receives is fewer than the number of calls to the catopen subroutine.

The catclose subroutine returns a value of –1 if it does not succeed in closing the catalog.
The catclose subroutine is unsuccessful if the number of calls it receives is greater than the
number of calls to the catopen subroutine, or if the value of the CatalogDescriptor
parameter is not valid.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The catgets subroutine, catopen subroutine.

For more information about the Message Facility, see Message Facility Overview for
Programming in AIX General Programming Concepts : Writing and Debugging Programs.

For more information about subroutines and libraries, see Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-76 Technical Reference: Base Operating System

catgets Subroutine

Purpose
Retrieves a message from a catalog.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types>

char *catgets (CatalogDescriptor, SetNumber, MessageNumber, Strin
g)
nl_catd CatalogDescriptor;
int SetNumber, MessageNumber;
const char *String;

Description
The catgets subroutine retrieves a message from a catalog after a successful call to the
catopen subroutine. If the catgets subroutine finds the specified message, it loads it into an
internal character string buffer, ends the message string with a null character, and returns a
pointer to the buffer.

The catgets subroutine uses the returned pointer to reference the buffer and display the
message. However, the buffer can not be referenced after the catalog is closed.

Parameters

CatalogDescriptor Specifies a catalog description that is returned by the catopen
subroutine.

SetNumber Specifies the set ID.

MessageNumber Specifies the message ID. The SetNumber and MessageNumber
parameters specify a particular message to retrieve in the catalog.

String Specifies the default character–string buffer.

Return Values
If the catgets subroutine is unsuccessful for any reason, it returns the user–supplied default
message string specified by the String parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The catclose subroutine, catopen subroutine.

For more information about the Message Facility, see Message Facility Overview for
Programming in AIX General Programming Concepts : Writing and Debugging Programs.

For more information about subroutines and libraries, see Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-77Base Operating System Runtime Services (A-P)

catopen Subroutine

Purpose
Opens a specified message catalog.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types.h>

nl_catd catopen (CatalogName, Parameter)
const char *CatalogName;
int Parameter;

Description
The catopen subroutine opens a specified message catalog and returns a catalog
descriptor used to retrieve messages from the catalog. The contents of the catalog
descriptor are complete when the catgets subroutine accesses the message catalog. The
nl_catd data type is used for catalog descriptors and is defined in the nl_types.h file.

If the catalog file name referred to by the CatalogName parameter contains a leading
/ (slash), it is assumed to be an absolute path name. If the catalog file name is not an
absolute path name, the user environment determines which directory paths to search. The
NLSPATH environment variable defines the directory search path. When this variable is
used, the setlocale subroutine must be called before the catopen subroutine.

A message catalog descriptor remains valid in a process until that process or a successful
call to one of the exec functions closes it.

You can use two special variables, %N and %L, in the NLSPATH environment variable. The
%N variable is replaced by the catalog name referred to by the call that opens the message
catalog. The %L variable is replaced by the value of the LC_MESSAGES category.

The value of the LC_MESSAGES category can be set by specifying values for the LANG,
LC_ALL, or LC_MESSAGES environment variable. The value of the LC_MESSAGES
category indicates which locale–specific directory to search for message catalogs. For
example, if the catopen subroutine specifies a catalog with the name mycmd, and the
environment variables are set as follows:

NLSPATH=../%N:./%N:/system/nls/%L/%N:/system/nls/%N LANG=fr_FR

then the application searches for the catalog in the following order:

../mycmd

./mycmd

/system/nls/fr_FR/mycmd

/system/nls/mycmd

If you omit the %N variable in a directory specification within the NLSPATH environment
variable, the application assumes that it defines a catalog name and opens it as such and
will not traverse the rest of the search path.

If the NLSPATH environment variable is not defined, the catopen subroutine uses the
default path. See the /etc/environment file for the NLSPATH default path. If the
LC_MESSAGES category is set to the default value C, and the LC__FASTMSG
environment variable is set to true, then subsequent calls to the catgets subroutine
generate pointers to the program–supplied default text.

The catopen subroutine treats the first file it finds as a message file. If you specify a
non–message file in a NLSPATH, for example, /usr/bin/ls, catopen treats /usr/bin/ls as a

1-78 Technical Reference: Base Operating System

message catalog. Thus no messages are found and default messages are returned. If you
specify /tmp in a NLSPATH, /tmp is opened and searched for messages and default
messages are displayed.

Parameters

CatalogName Specifies the catalog file to open.

Parameter Determines the environment variable to use in locating the message
catalog. If the value of the Parameter parameter is 0, use the LANG
environment variable without regard to the LC_MESSAGES category to
locate the catalog. If the value of the Parameter parameter is the
NL_CAT_LOCALE macro, use the LC_MESSAGES category to locate
the catalog.

Return Values
The catopen subroutine returns a catalog descriptor. If the LC_MESSAGES category is set
to the default value C, and the LC__FASTMSG environment variable is set to true, the
catopen subroutine returns a value of –1.

If the LC_MESSAGES category is not set to the default value C but the catopen subroutine
returns a value of –1, an error has occurred during creation of the structure of the nl_catd
data type or the catalog name referred to by the CatalogName parameter does not exist.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The catclose subroutine, catgets subroutine, exec subroutines, setlocale subroutine.

The environment file.

For more information about the Message Facility, see the Message Facility Overview for
Programming in AIX General Programming Concepts : Writing and Debugging Programs.

For more information about subroutines and libraries, see the Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-79Base Operating System Runtime Services (A-P)

ccsidtocs or cstoccsid Subroutine

Purpose
Provides conversion between coded character set IDs (CCSID) and code set names.

Library
The iconv Library (libiconv.a)

Syntax
#include <iconv.h>

CCSID cstoccsid (*Codeset)
const char *Codeset;

char *ccsidtocs (CCSID)
CCSID CCSID;

Description
The cstoccsid subroutine returns the CCSID of the code set specified by the Codeset
parameter. The ccsidtocs subroutine returns the code set name of the CCSID specified by
CCSID parameter. CCSIDs are registered Bull coded character set IDs.

Parameters

Codeset Specifies the code set name to be converted to its
corresponding CCSID.

CCSID Specifies the CCSID to be converted to its corresponding
code set name.

Return Values
If the code set is recognized by the system, the cstoccsid subroutine returns the
corresponding CCSID. Otherwise, null is returned.

If the CCSID is recognized by the system, the ccsidtocs subroutine returns the
corresponding code set name. Otherwise, a null pointer is returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
For more information about code set conversion, see Converters Overview for Programming
in AIX General Programming Concepts : Writing and Debugging Programs.

The National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-80 Technical Reference: Base Operating System

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed
Subroutine

Purpose
Gets and sets input and output baud rates.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

speed_t cfgetospeed (TermiosPointer)
const struct termios *TermiosPointer;

int cfsetospeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed;

speed_t cfgetispeed (TermiosPointer)
const struct termios *TermiosPointer;

int cfsetispeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed;

Description
The baud rate subroutines are provided for getting and setting the values of the input and
output baud rates in the termios structure. The effects on the terminal device described
below do not become effective and not all errors are detected until the tcsetattr function is
successfully called.

The input and output baud rates are stored in the termios structure. The supported values
for the baud rates are shown in the table that follows this discussion.

The termios.h file defines the type speed_t as an unsigned integral type.

The cfgetospeed subroutine returns the output baud rate stored in the termios structure
pointed to by the TermiosPointer parameter.

The cfsetospeed subroutine sets the output baud rate stored in the termios structure
pointed to by the TermiosPointer parameter to the value specified by the Speed parameter.

The cfgetispeed subroutine returns the input baud rate stored in the termios structure
pointed to by the TermiosPointer parameter.

The cfsetispeed subroutine sets the input baud rate stored in the termios structure pointed
to by the TermiosPointer parameter to the value specified by the Speed parameter.

Certain values for speeds have special meanings when set in the termios structure and
passed to the tcsetattr function. These values are discussed in the tcsetattr subroutine.

The following table lists possible baud rates:

1-81Base Operating System Runtime Services (A-P)

Baud Rate Values

Name Description Name Description

B0 Hang up B600 600 baud

B5 50 baud B1200 1200 baud

B75 75 baud B1800 1800 baud

B110 110 baud B2400 2400 baud

B134 134 baud B4800 4800 baud

B150 150 baud B9600 9600 baud

B200 200 baud B19200 19200 baud

B300 300 baud B38400 38400 baud

The termios.h file defines the name symbols of the table.

Parameters

TermiosPointer Points to a termios structure.

Speed Specifies the baud rate.

Return Values
The cfgetospeed and cfgetispeed subroutines return exactly the value found in the
termios data structure, without interpretation.

Both the cfsetospeed and cfsetispeed subroutines return a value of 0 if successful and –1
if unsuccessful.

Examples
To set the output baud rate to 0 (which forces modem control lines to stop being asserted),
enter:

cfsetospeed (&my_termios, B0);

tcsetattr (stdout, TCSADRAIN, &my_termios);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The tcsetattr subroutine.

The termios.h file.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

1-82 Technical Reference: Base Operating System

chacl or fchacl Subroutine

Purpose
Changes the permissions on a file.

Library
Standard C Library (libc.a)

Syntax
#include <sys/acl.h>
#include <sys/mode.h>

int chacl (Path, ACL, ACLSize)
char *Path;
struct acl *ACL;
int ACLSize;

int fchacl (FileDescriptor, ACL, ACLSize)
int FileDescriptor;
struct acl *ACL;
int ACLSize;

Description
The chacl and fchacl subroutines set the access control attributes of a file according to the
Access Control List (ACL) structure pointed to by the ACL parameter.

Parameters

Path Specifies the path name of the file.

ACL Specifies the ACL to be established on the file. The format of an ACL is
defined in the sys/acl.h file and contains the following members:

acl_len Specifies the size of the ACL (Access Control List) in
bytes, including the base entries.

Note: The entire ACL for a file cannot exceed one memory page (4096
bytes).

acl_mode Specifies the file mode.

The following bits in the acl_mode member are defined in the
sys/mode.h file and are significant for this subroutine:

S_ISUID Enables the setuid attribute on an executable file.

S_ISGID Enables the setgid attribute on an executable file.
Enables the group–inheritance attribute on a directory.

S_ISVTX Enables linking restrictions on a directory.

S_IXACL Enables extended ACL entry processing. If this
attribute is not set, only the base entries (owner, group,
and default) are used for access authorization checks.

Other bits in the mode, including the following, are ignored:

u_access Specifies access permissions for the file owner.

g_access Specifies access permissions for the file group.

o_access Specifies access permissions for the default class of
others.

1-83Base Operating System Runtime Services (A-P)

acl_ext[] Specifies an array of the extended entries for this
access control list.

The members for the base ACL (owner, group, and others) can contain
the following bits, which are defined in the sys/access.h file:

R_ACC Allows read permission.

W_ACC Allows write permission.

X_ACC Allows execute or search permission.

FileDescriptor Specifies the file descriptor of an open file.

ACLSize Specifies the size of the buffer containing the ACL.

Note: The chacl subroutine requires the Path, ACL, and ACLSize parameters. The fchacl
subroutine requires the FileDescriptor, ACL, and ACLSize parameters.

ACL Data Structure for chacl
Each access control list structure consists of one struct acl structure containing one or
more struct acl_entry structures with one or more struct ace_id structures.

If the struct ace_id structure has id_type set to ACEID_USER or ACEID_GROUP, there is
only one id_data element. To add multiple IDs to an ACL you must specify multiple struct
ace_id structures when id_type is set to ACEID_USER or ACEID_GROUP. In this case, no
error is returned for the multiple elements, and the access checking examines only the first
element. Specifically, the errno value EINVAL is not returned for acl_len being incorrect in
the ACL structure although more than one uid or gid is specified.

Return Values
Upon successful completion, the chacl and fchacl subroutines return a value of 0. If the
chacl or fchacl subroutine fails, a value of –1 is returned, and the errno global variable is
set to indicate the error.

Error Codes
The chacl subroutine fails and the access control information for a file remains unchanged if
one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ESTALE The process’ root or current directory is located in a virtual file
system that has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

The chacl or fchacl subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

1-84 Technical Reference: Base Operating System

EROFS The file specified by the Path parameter resides on a read–only file
system.

EFAULT The ACL parameter points to a location outside of the allocated address
space of the process.

EINVAL The ACL parameter does not point to a valid ACL.

EINVAL The acl_len member in the ACL is not valid.

EIO An I/O error occurred during the operation.

ENOSPC The size of the ACL parameter exceeds the system limit of one memory
page (4KB).

EPERM The effective user ID does not match the ID of the owner of the file, and
the invoker does not have root user authority.

The fchacl subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

If Network File System (NFS) is installed on your system, the chacl and fchacl subroutines
can also fail if the following is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path
prefix.

Auditing Events:

Event Information

chacl Path

fchacl FileDescriptor

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acl_chg subroutine, acl_get subroutine, acl_put subroutine, acl_set subroutine,
chmod subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-85Base Operating System Runtime Services (A-P)

chdir Subroutine

Purpose
Changes the current directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int chdir (Path)
const char *Path;

Description
The chdir subroutine changes the current directory to the directory indicated by the Path
parameter.

Parameters

Path A pointer to the path name of the directory. If the Path parameter refers to a
symbolic link, the chdir subroutine sets the current directory to the directory
pointed to by the symbolic link. If Network File System (NFS) is installed on
the system, this path can cross into another node.

The current directory, also called the current working directory, is the starting point of
searches for path names that do not begin with a / (slash). The calling process must have
search access to the directory specified by the Path parameter.

Return Values
Upon successful completion, the chdir subroutine returns a value of 0. Otherwise, a value
of –1 is returned and the errno global variable is set to identify the error.

Error Codes
The chdir subroutine fails and the current directory remains unchanged if one or more of
the following are true:

EACCES Search access is denied for the named directory.

ENOENT The named directory does not exist.

ENOTDIR The path name is not a directory.

The chdir subroutine can also be unsuccessful for other reasons. See ”Appendix A. Base
Operating System Error Codes for Services That Require Path–Name Resolution”, on page
A-1 for a list of additional error codes.

If NFS is installed on the system, the chdir subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chroot subroutine.

1-86 Technical Reference: Base Operating System

The cd command.

Base Operating System Error Codes for Services That Require Path–Name Resolution, on
page A-1.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-87Base Operating System Runtime Services (A-P)

chmod or fchmod Subroutine

Purpose
Changes file access permissions.

Library
Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

int chmod (Path, Mode)
const char *Path;
mode_t Mode;

int fchmod (FileDescriptor, Mode)
int FileDescriptor;
mode_t Mode;

Description
The chmod subroutine sets the access permissions of the file specified by the Path
parameter. If Network File System (NFS) is installed on your system, this path can cross into
another node.

Use the fchmod subroutine to set the access permissions of an open file pointed to by the
FileDescriptor parameter.

The access control information is set according to the Mode parameter.

Parameters

FileDescriptor Specifies the file descriptor of an open file.

Mode Specifies the bit pattern that determines the access permissions. The
Mode parameter is constructed by logically ORing one or more of the
following values, which are defined in the sys/mode.h file:

S_ISUID Enables the setuid attribute for an executable file. A
process executing this program acquires the access
rights of the owner of the file.

S_ISGID Enables the setgid attribute for an executable file. A
process executing this program acquires the access
rights of the group of the file. Also, enables the
group–inheritance attribute for a directory. Files created
in this directory have a group equal to the group of the
directory.

The following attributes apply only to files that are directly executable.
They have no meaning when applied to executable text files such as
shell scripts and awk scripts.

S_ISVTX Enables the link/unlink attribute for a directory. Files
cannot be linked to in this directory. Files can only be
unlinked if the requesting process has write permission
for the directory and is either the owner of the file or the
directory.

S_ISVTX Enables the save text attribute for an executable file.
The program is not unmapped after usage.

1-88 Technical Reference: Base Operating System

S_ENFMT Enables enforcement–mode record locking for a
regular file. File locks requested with the lockf
subroutine are enforced.

S_IRUSR Permits the file’s owner to read it.

S_IWUSR Permits the file’s owner to write to it.

S_IXUSR Permits the file’s owner to execute it (or to search the
directory).

S_IRGRP Permits the file’s group to read it.

S_IWGRP Permits the file’s group to write to it.

S_IXGRP Permits the file’s group to execute it (or to search the
directory).

S_IROTH Permits others to read the file.

S_IWOTH Permits others to write to the file.

S_IXOTH Permits others to execute the file (or to search the
directory).

Other mode values exist that can be set with the mknod subroutine but
not with the chmod subroutine.

Path Specifies the full path name of the file.

Return Values
Upon successful completion, the chmod subroutine and fchmod subroutines return a value
of 0. If the chmod subroutine or fchmod subroutine is unsuccessful, a value of –1 is
returned, and the errno global variable is set to identify the error.

Error Codes
The chmod subroutine is unsuccessful and the file permissions remain unchanged if one of
the following is true:

ENOTDIR A component of the Path prefix is not a directory.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT The named file does not exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

The fchmod subroutine is unsuccessful and the file permissions remain unchanged if the
following is true:

EBADF The value of the FileDescriptor parameter is not valid.

The chmod or fchmod subroutine is unsuccessful and the access control information for
a file remains unchanged if one of the following is true:

EPERM The effective user ID does not match the owner of the file, and the
process does not have appropriate privileges.

EROFS The named file resides on a read–only file system.

EIO An I/O error occurred during the operation.

If NFS is installed on your system, the chmod and fchmod subroutines can also be
unsuccessful if the following is true:

1-89Base Operating System Runtime Services (A-P)

ESTALE The root or current directory of the process is located in a virtual file
system that has been unmounted.

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path
prefix.

If you receive the EBUSY error, toggle the enforced locking attribute in the Mode
parameter and retry your operation. The enforced locking attribute should never be used
on a file that is part of the Trusted Computing Base.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acl_chg subroutine, acl_get subroutine, acl_put subroutine, acl_set subroutine, chacl
subroutine, statacl subroutine, stat subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-90 Technical Reference: Base Operating System

chown, fchown, lchown, chownx, or fchownx Subroutine

Purpose
Changes file ownership.

Library
Standard C Library (libc.a)

Syntax
Syntax for the chown, fchown, and lchown Subroutines: #include <sys/types.h>
#include <unistd.h>

int chown (Path, Owner, Group)
const char *Path;
uid_t Owner;
gid_t Group;

int fchown (FileDescriptor, Owner, Group)
int FileDescriptor;
uid_t Owner;
gid_t Group;

int lchown (Path, Owner, Group)
const char *fname
uid_t uid
gid_tgid

Syntax for the chownx and fchownx Subroutines: #include <sys/types.h>
#include <sys/chownx.h>

int chownx (Path, Owner, Group, Flags)
char *Path;
uid_t Owner;
gid_t Group;
int Flags;

int fchownx (FileDescriptor, Owner, Group, Flags)
int FileDescriptor;
uid_t Owner;
gid_t Group;
int Flags;

Description
The chown, chownx, fchown, fchownx, and lchown subroutines set the file owner and
group IDs of the specified file system object. Root user authority is required to change the
owner of a file.

A function lchown function sets the owner ID and group ID of the named file similarity to
chown function except in the case where the named file is a symbolic link. In this case
lchown function changes the ownership of the symbolic link file itself, while chown function
changes the ownership of the file or directory to which the symbolic link refers.

1-91Base Operating System Runtime Services (A-P)

Parameters

FileDescriptor Specifies the file descriptor of an open file.

Flags Specifies whether the file owner ID or group ID should be changed. This
parameter is constructed by logically ORing the following values:

T_OWNER_AS_IS Ignores the value specified by the Owner
parameter and leaves the owner ID of the file
unaltered.

T_GROUP_AS_IS Ignores the value specified by the Group
parameter and leaves the group ID of the file
unaltered.

Group Specifies the new group of the file. If this value is –1, the group is not
changed. (A value of –1 indicates only that the group is not changed; it
does not indicate a group that is not valid. An owner or group ID cannot
be invalid.)

Owner Specifies the new owner of the file. If this value is –1, the owner is not
changed. (A value of –1 indicates only that the group is not changed; it
does not indicate a group that is not valid. An owner or group ID cannot
be invalid.)

Path Specifies the full path name of the file. If Path resolves to a symbolic
link, the ownership of the file or directory pointed to by the symbolic link
is changed.

Return Values
Upon successful completion, the chown, chownx, fchown, fchownx, and lchown
subroutines return a value of 0. If the chown, chownx, fchown, fchownx, or lchown
subroutine is unsuccessful, a value of –1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The chown, chownx, or lchown subroutine is unsuccessful and the owner and group of a
file remain unchanged if one of the following is true:

EACCESS Search permission is denied on a component of the Path parameter.

EDQUOT The new group for the file system object cannot be set because the
group’s quota of disk blocks or i–nodes has been exhausted on the
file system.

EFAULT The Path parameter points to a location outside of the allocated
address space of the process.

EINVAL The owner or group ID supplied is not valid.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

ENOENT A symbolic link was named, but the file to which it refers does not
exist; or a component of the Path parameter does not exist; or the
process has the disallow truncation attribute set; or the Path
parameter is null.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID does not match the owner of the file, and the
calling process does not have the appropriate privileges.

1-92 Technical Reference: Base Operating System

EROFS The named file resides on a read–only file system.

ESTALE The root or current directory of the process is located in a virtual file
system that has been unmounted.

The fchown or fchownx subroutine is unsuccessful and the file owner and group remain
unchanged if one of the following is true:

EBADF The named file resides on a read–only file system.

EDQUOT The new group for the file system object cannot be set because the
group’s quota of disk blocks or i–nodes has been exhausted on the file
system.

EIO An I/O error occurred during the operation.

Security
Access Control: The invoker must have search permission for all components of the Path
parameter.

1-93Base Operating System Runtime Services (A-P)

chpass Subroutine

Purpose
Changes file access permissions.

Library
Standard C Library (libc.a)

Thread Safe Security Library (libs_r.a)

Syntax
#include <stddef.h>

int chpass (UserName, Response, Reenter, Message)
wchar_t *UserName;
wchar_t *Response;
int *Reenter;
wchar_t **Message;

Description
The chpass subroutine maintains the requirements that the user must meet to change a
password. This subroutine is the basic building block for changing passwords and handles
password changes for local, NIS, and DCE user passwords.

The Message parameter provides a series of messages asking for old and new passwords,
or providing informational messages, such as the reason for a password change failing. The
first Message prompt is a prompt for the old password. This parameter does not prompt for
the old password if the user has a real user ID of 0 (zero) and is changing a local user, or if
the user has no current password. The chpass subroutine does not prompt a user with root
authority for an old password. It informs the program that no message was sent and that it
should invoke chpass again. If the user satisfies the first Message parameter’s prompt, the
system prompts the user to enter the new password. Each message is contained in the
Message parameter and is displayed to the user. The Response parameter returns the
user’s response to the chpass subroutine.

The Reenter parameter remains a nonzero value until the user satisfies all of the prompt
messages or until the user incorrectly responds to a prompt message. Once the Reenter
parameter is 0, the return code signals whether the password change completed or failed.

The chpass subroutine maintains internal state information concerning the next prompt
message to present to the user. If the calling program supplies a different user name before
all prompt messages are complete for the user, the internal state information is reset and
prompt messages begin again.

The chpass subroutine determines the administration domain to use during password
changes. It determines if the user is defined locally, defined in Network Information Service
(NIS), or defined in Distributed Computing Environment (DCE). Password changes occur
only in these domains. System administrators may override this convention with the registry
value in the /etc/security/user file. If the registry value is defined, the password change can
only occur in the specified domain. System administrators can use this registry value if the
user is administered on a remote machine that periodically goes down. If the user is allowed
to log in through some other authentication method while the server is down, password
changes remain to follow only the primary server.

The chpass subroutine allows the user to change passwords in two ways. For normal
(non–administrative) password changes, the user must supply the old password, either on
the first call to the chpass subroutine or in response to the first message from chpass. If
the user is root, real user ID of 0, local administrative password changes are handled by
supplying a null pointer for the Response parameter during the initial call

1-94 Technical Reference: Base Operating System

Users that are not administered locally are always queried for their old password.

The chpass subroutine is always in one of three states, entering the old password, entering
the new password, or entering the new password again. If any of these states need do not
need to be complied with, the chpass subroutine returns a null challenge.

Parameters

UserName Specifies the user’s name whose password is to be changed.

Response Specifies a character string containing the user’s response to the last
prompt.

Reenter Points to a Boolean value used to signal whether chpass subroutine
has completed processing. If the Reenter parameter is a nonzero
value, the chpass subroutine expects the user to satisfy the prompt
message provided by the Message parameter. If the Reenter
parameter is 0, the chpass subroutine has completed processing.

Message Points to a pointer that the chpass subroutine allocates memory for
and fills in. This replacement string is then suitable for printing and
issues challenge messages (if the Reenter parameter is a nonzero
value). The string can also issue informational messages such as
why the user failed to change the password (if the Reenter
parameter is 0). The calling application is responsible for freeing this
memory.

Return Values
Upon successful completion, the chpass subroutine returns a value of 0. If the chpass
subroutine is unsuccessful, it returns the following values:

–1 Indicates the call failed in the thread safe library libs_r.a. ERRNO
will indicate the failure code.

1 Indicates that the password change was unsuccessful and the user
should attempt again. This return value occurs if a password
restriction is not met, such as if the password is not long enough.

2 Indicates that the password change was unsuccessful and the user
should not attempt again. This return value occurs if the user enters
an incorrect old password or if the network is down (the password
change cannot occur).

Error Codes
The chpass subroutine is unsuccessful if one of the following values is true:

ENOENT Indicates that the user cannot be found.

ESAD Indicates that the user did not meet the criteria to change the password.

EPERM Indicates that the user did not have permission to change the password.

EINVAL Indicates that the parameters are not valid.

ENOMEM Indicates that memory allocation (malloc) failed.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The authenticate subroutine.

1-95Base Operating System Runtime Services (A-P)

chroot Subroutine

Purpose
Changes the effective root directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int chroot (const char *Path)
char *Path;

Description
The chroot subroutine causes the directory named by the Path parameter to become the
effective root directory. If the Path parameter refers to a symbolic link, the chroot subroutine
sets the effective root directory to the directory pointed to by the symbolic link. If Network
File System (NFS) is installed on your system, this path can cross into another node.

The effective root directory is the starting point when searching for a file’s path name that
begins with / (slash). The current directory is not affected by the chroot subroutine.

The calling process must have root user authority in order to change the effective root
directory. The calling process must also have search access to the new effective root
directory.

The .. (double period) entry in the effective root directory is interpreted to mean the effective
root directory itself. Thus, this directory cannot be used to access files outside the subtree
rooted at the effective root directory.

Parameters

Path Pointer to the new effective root directory.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The chroot subroutine fails and the effective root directory remains unchanged if one or
more of the following are true:

ENOENT The named directory does not exist.

EACCES The named directory denies search access.

EPERM The process does not have root user authority.

The chroot subroutine can be unsuccessful for other reasons. See Appendix A. Base
Operating System Error Codes for Services that Require Path–Name Resolution, on page
A-1 for a list of additional errors.

1-96 Technical Reference: Base Operating System

If NFS is installed on the system, the chroot subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chdir subroutine.

The chroot command.

Base Operating System Error Codes for Services that Require Path–Name Resolution.

Appendix A. Base Operating System Error Codes for Services that Require Path–Name
Resolution, on page A-1.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-97Base Operating System Runtime Services (A-P)

chssys Subroutine

Purpose
Modifies the subsystem objects associated with the SubsystemName parameter.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

int chssys(SubsystemName, SRCSubsystem)
char *SubsystemName;
struct SRCsubsys *SRCSubsystem;

Description
The chssys subroutine modifies the subsystem objects associated with the specified
subsystem with the values in the SRCsubsys structure. This action modifies the objects
associated with subsystem in the following object classes:

• Subsystem Environment

• Subserver Type

• Notify

The Subserver Type and Notify object classes are updated only if the subsystem name has
been changed.

The SRCsubsys structure is defined in the /usr/include/sys/srcobj.h file.

The program running with this subroutine must be running with the group system.

Parameters

SRCSubsystem Points to the SRCsubsys structure.

SubsystemName Specifies the name of the subsystem.

Return Values
Upon successful completion, the chssys subroutine returns a value of 0. Otherwise, it
returns a value of –1 and the odmerrno variable is set to indicate the error, or a System
Resource Controller (SRC) error code is returned.

Error Codes
The chssys subroutine is unsuccessful if one or more of the following are true:

SRC_NONAME No subsystem name is specified.

SRC_NOPATH No subsystem path is specified.

SRC_BADNSIG Invalid stop normal signal.

SRC_BADFSIG Invalid stop force signal.

SRC_NOCONTACT Contact not signal, sockets, or message queues.

SRC_SSME Subsystem name does not exist.

SRC_SUBEXIST New subsystem name is already on file.

1-98 Technical Reference: Base Operating System

SRC_SYNEXIST New subsystem synonym name is already on file.

SRC_NOREC The specified SRCsubsys record does not exist.

SRC_SUBSYS2BIG Subsystem name is too long.

SRC_SYN2BIG Synonym name is too long.

SRC_CMDARG2BIG Command arguments are too long.

SRC_PATH2BIG Subsystem path is too long.

SRC_STDIN2BIG stdin path is too long.

SRC_STDOUT2BIG stdout path is too long.

SRC_STDERR2BIG stderr path is too long.

SRC_GRPNAM2BIG Group name is too long.

Security
Privilege Control: This command has the Trusted Path attribute. It has the following kernel
privilege:

SET_PROC_AUDIT kernel privilege

Files Accessed:

Mode File

644 /etc/objrepos/SRCsubsys

644 /etc/objrepos/SRCsubsvr

644 /etc/objrepos/SRCnotify

Auditing Events:

Event Information

SRC_Chssys

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.

/etc/objrepos/SRCnotify SRC Notify Method object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

Related Information
The addssys subroutine, delssys subroutine.

The chssys command, mkssys command, rmssys command.

System Resource Controller Overview in AIX 4.3 System Management Guide: Operating
System and Devices.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller
(SRC) Overview for Programmers in AIX General Programming Concepts : Writing and
Debugging Programs.

1-99Base Operating System Runtime Services (A-P)

ckuseracct Subroutine

Purpose
Checks the validity of a user account.

Library
Security Library (libc.a)

Syntax
#include <login.h>

int ckuseracct (Name, Mode, TTY)
char *Name;
int Mode;
char *TTY;

Description
Note: This subroutine is obsolete and is provided only for backwards compatibility. Use the

loginrestrictions subroutine, which performs a superset of the functions of the
ckuseracct subroutine, instead.

The ckuseracct subroutine checks the validity of the user account specified by the Name
parameter. The Mode parameter gives the mode of the account usage, and the TTY
parameter defines the terminal being used for the access. The ckuseracct subroutine
checks for the following conditions:

• Account existence

• Account expiration

The Mode parameter specifies other mode–specific checks.

Parameters

Name Specifies the login name of the user whose account is to be validated.

Mode Specifies the manner of usage. Valid values as defined in the login.h
file are listed below. The Mode parameter must be one of these or 0:

S_LOGIN Verifies that local logins are permitted for this account.

S_SU Verifies that the su command is permitted and that the
current process has a group ID that can invoke the su
command to switch to the account.

S_DAEMON Verifies the account can be used to invoke daemon or
batch programs using the src or cron subsystems.

S_RLOGIN Verifies the account can be used for remote logins
using the rlogind or telnetd programs.

TTY Specifies the terminal of the originating activity. If this parameter is a
null pointer or a null string, no TTY origin checking is done.

Security

Files Accessed:

1-100 Technical Reference: Base Operating System

Mode File

r /etc/passwd

r /etc/security/user

Return Values
If the account is valid for the specified usage, the ckuseracct subroutine returns a value of
0. Otherwise, a value of –1 is returned and the errno global variable is set to the
appropriate error code.

Error Codes
The ckuseracct subroutine fails if one or more of the following are true:

ENOENT The user specified in the Name parameter does not have an account.

ESTALE The user’s account is expired.

EACCES The specified terminal does not have access to the specified account.

EACCES The Mode parameter is S_SU, and the current process is not permitted
to use the su command to access the specified user.

EACCES Access to the account is not permitted in the specified Mode.

EINVAL The Mode parameter is not one of S_LOGIN, S_SU, S_DAEMON,
S_RLOGIN.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ckuserID subroutine, getpcred subroutine, getpenv subroutine, setpcred subroutine,
setpenv subroutine.

The login command, rlogin command, su command, telnet command.

The cron daemon.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-101Base Operating System Runtime Services (A-P)

ckuserID Subroutine

Purpose
Authenticates the user.

Note: This subroutine is obsolete and is provided for backwards compatibility. Use the
authenticate subroutine, instead.

Library
Security Library (libc.a)

Syntax
#include <login.h>
int ckuserID (User, Mode)
int Mode;
char *User;

Description
The ckuserID subroutine authenticates the account specified by the User parameter. The
mode of the authentication is given by the Mode parameter. The login and su commands
continue to use the ckuserID subroutine to process the /etc/security/user auth1 and
auth2 authentication methods.

The ckuserID subroutine depends on the authenticate subroutine to process the SYSTEM
attribute in the /etc/security/user file. If authentication is successful, the passwdexpired
subroutine is called.

Errors caused by grammar or load modules during a call to the authenticate subroutine are
displayed to the user if the user was authenticated. These errors are audited with the
USER_Login audit event if the user failed authentication.

Parameters

User Specifies the name of the user to be authenticated.

Mode Specifies the mode of authentication. This parameter is a bit mask and
may contain one or more of the following values, which are defined in
the login.h file:

S_PRIMARY The primary authentication methods defined for the
User parameter are checked. All primary
authentication checks must be passed.

S_SECONDARY The secondary authentication methods defined for
the User parameter are checked. Secondary
authentication checks are not required to be
successful.

Primary and secondary authentication methods for each user are set in
the /etc/security/user file by defining the auth1 and auth2 attributes. If
no primary methods are defined for a user, the SYSTEM attribute is
assumed. If no secondary methods are defined, there is no default.

Security

Files Accessed:

1-102 Technical Reference: Base Operating System

Mode File

r /etc/passwd

r /etc/security/passwd

r /etc/security/user

r /etc/security/login.cfg

Return Values
If the account is valid for the specified usage, the ckuserID subroutine returns a value of 0.
Otherwise, a value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The ckuserID subroutine fails if one or more of the following are true:

ESAD Security authentication failed for the user.

EINVAL The Mode parameter is neither S_PRIMARY nor S_SECONDARY or
the Mode parameter is both S_PRIMARY and S_SECONDARY.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The authenticate subroutine, ckuseracct subroutine, getpcred subroutine,getpenv
subroutine, passwdexpired subroutine, setpcred subroutine, setpenv subroutine.

The login command, su command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-103Base Operating System Runtime Services (A-P)

class, _class, finite, isnan, or unordered Subroutines

Purpose
Determines classifications of floating–point numbers.

Libraries
IEEE Math Library (libm.a)
 or System V Math Library (libmsaa.a)

Syntax
#include <math.h>
#include <float.h>

int
class(x)
double x;

#include <math.h>
#include <float.h>

int
_class(x)
double x;

#include <math.h>

int finite(x)
double x;

#include <math.h>

int isnan(x)
double x;

#include <math.h>

int unordered(x, y)
double x, y;

Description
The class subroutine, _class subroutine, finite subroutine, isnan subroutine, and
unordered subroutine determine the classification of their floating–point value. The
unordered subroutine determines if a floating–point comparison involving x and y would
generate the IEEE floating–point unordered condition (such as whether x or y is a NaN).

The class subroutine returns an integer that represents the classification of the
floating–point x parameter. Since class is a reversed key word in C++. The class
subroutine can not be invoked in a C++ program. The _class subroutine is an interface for
C++ program using the class subroutine. The interface and the return value for class and
_class subroutines are identical. The values returned by the class subroutine are defined in
the float.h header file. The return values are the following:

1-104 Technical Reference: Base Operating System

FP_PLUS_NORM Positive normalized, nonzero x

FP_MINUS_NORM Negative normalized, nonzero x

FP_PLUS_DENORM Positive denormalized, nonzero x

FP_MINUS_DENORM Negative denormalized, nonzero x

FP_PLUS_ZERO x = +0.0

FP_MINUS_ZERO x = –0.0

FP_PLUS_INF x = +INF

FP_MINUS_INF x = –INF

FP_NANS x = Signaling Not a Number (NaNS)

FP_NANQ x = Quiet Not a Number (NaNQ)

Since class is a reserved keyword in C++, the class subroutine cannot be invoked in a C++
program. The _class subroutine is an interface for the C++ program using the class
subroutine. The interface and the return values for class and _class subroutines are
identical.

The finite subroutine returns a nonzero value if the x parameter is a finite number; that is, if
x is not +–, INF, NaNQ, or NaNS.

The isnan subroutine returns a nonzero value if the x parameter is an NaNS or a NaNQ.
Otherwise, it returns 0.

The unordered subroutine returns a nonzero value if a floating–point comparison between
x and y would be unordered. Otherwise, it returns 0.

Note: Compile any routine that uses subroutines from the libm.a library with the –lm
flag. To compile the class.c file, for example, enter:

cc class.c –lm

Parameters

x Specifies some double–precision floating–point value.

y Specifies some double–precision floating–point value.

Error Codes
The finite, isnan, and unordered subroutines neither return errors nor set bits in the
floating–point exception status, even if a parameter is an NaNS.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
IEEE Standard for Binary Floating–Point Arithmetic (ANSI/IEEE Standards 754–1985 and
854–1987).

List of Numerical Manipulation Services and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-105Base Operating System Runtime Services (A-P)

clock Subroutine

Purpose
Reports central processing unit (CPU) time used.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

clock_t clock (void);

Description
The clock subroutine reports the amount of CPU time used. The reported time is the sum of
the CPU time of the calling process and its terminated child processes for which it has
executed wait, system, or pclose subroutines. To measure the amount of time used by a
program, the clock subroutine should be called at the beginning of the program, and that
return value should be subtracted from the return value of subsequent calls to the clock
subroutine. To find the time in seconds, divide the value returned by the clock subroutine by
the value of the macro CLOCKS_PER_SEC, which is defined in the time.h file.

Return Values
The clock subroutine returns the amount of CPU time used.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getrusage, times subroutine, pclose subroutine, system subroutine, vtimes
subroutine, wait, waitpid, wait3 subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-106 Technical Reference: Base Operating System

close Subroutine

Purpose
Closes the file associated with a file descriptor.

Syntax
#include <unistd.h>

int close (
FileDescriptor)
int FileDescriptor;

Description
The close subroutine closes the file associated with the FileDescriptor parameter. If
Network File System (NFS) is installed on your system, this file can reside on another node.

All file regions associated with the file specified by the FileDescriptor parameter that this
process has previously locked with the lockf or fcntl subroutine are unlocked. This occurs
even if the process still has the file open by another file descriptor.

If the FileDescriptor parameter resulted from an open subroutine that specified O_DEFER,
and this was the last file descriptor, all changes made to the file since the last fsync
subroutine are discarded.

If the FileDescriptor parameter is associated with a mapped file, it is unmapped. The shmat
subroutine provides more information about mapped files.

The close subroutine attempts to cancel outstanding asynchronous I/O requests on this file
descriptor. If the asynchronous I/O requests cannot be canceled, the application is blocked
until the requests have completed.

The close subroutine is blocked when another thread of the same process is using the file
descriptor.

When all file descriptors associated with a pipe or FIFO special file have been closed, any
data remaining in the pipe or FIFO is discarded. If the link count of the file is 0 when all file
descriptors associated with the file have been closed, the space occupied by the file is
freed, and the file is no longer accessible.

Note: If the FileDescriptor parameter refers to a device and the close subroutine
actually results in a device close, and the device close routine returns an error, the error
is returned to the application. However, the FileDescriptor parameter is considered
closed and it may not be used in any subsequent calls.

All open file descriptors are closed when a process exits. In addition, file descriptors may be
closed during the exec subroutine if the close–on–exec flag has been set for that file
descriptor.

Parameters

FileDescriptor Specifies a valid open file descriptor.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to identify the error. If the close subroutine is interrupted

1-107Base Operating System Runtime Services (A-P)

by a signal that is caught, it returns a value of –1, the errno global variable is set to EINTR
and the state of the FileDescriptor parameter is closed.

Error Codes
The close subroutine is unsuccessful if the following is true:

EBADF The FileDescriptor parameter does not specify a valid open
file descriptor.

EINTR Specifies that the close subroutine was interrupted by a
signal.

The close subroutine may also be unsuccessful if the file being closed is NFS–mounted
and the server is down under the following conditions:

• The file is on a hard mount.

• The file is locked in any manner.

The close subroutine may also be unsuccessful if NFS is installed and the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutines, fcntl subroutine, ioctl subroutine, lockfx subroutine, open, openx,
or creat subroutine, pipe subroutine, socket subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-108 Technical Reference: Base Operating System

compare_and_swap Subroutine

Purpose
Conditionally updates or returns a single word variable atomically.

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

boolean_t compare_and_swap (word_addr, old_val_addr, new_val)
atomic_p word_addr;
int *old_val_addr;
int new_val;

Description
The compare_and_swap subroutine performs an atomic operation which compares the
contents of a single word variable with a stored old value. If the values are equal, a new
value is stored in the single word variable and TRUE is returned; otherwise, the old value is
set to the current value of the single word variable and FALSE is returned.

The compare_and_swap subroutine is useful when a word value must be updated only if it
has not been changed since it was last read.

Note: The word containing the single word variable must be aligned on a full word
boundary.

Note: If compare_and_swap is used as a locking primitive, insert an isync at the start of
any critical sections.

Parameters

word_addr Specifies the address of the single word variable.

old_val_addr Specifies the address of the old value to be checked against (and
conditionally updated with) the value of the single word variable.

new_val Specifies the new value to be conditionally assigned to the single word
variable.

Return Values

TRUE Indicates that the single word variable was equal to the old value, and
has been set to the new value.

FALSE Indicates that the single word variable was not equal to the old value,
and that its current value has been returned in the location where the
old value was previously stored.

Implementation Specifics
The compare_and_swap subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The fetch_and_add subroutine, fetch_and_and subroutine, fetch_and_or subroutine.

1-109Base Operating System Runtime Services (A-P)

compile, step, or advance Subroutine

Purpose
Compiles and matches regular–expression patterns.

Note: AIX commands use the regcomp, regexec, regfree, and regerror subroutines for
the functions described in this article.

Library
Standard C Library (libc.a)

Syntax
#define INIT declarations
#define GETC() getc_code
#define PEEKC() peekc_code
#define UNGETC(c) ungetc_code
#define RETURN(pointer) return_code
#define ERROR(val) error_code

#include <regexp.h>
#include <NLregexp.h>

char *compile (InString, ExpBuffer, EndBuffer, EndOfFile)
char *ExpBuffer;
char *InString, *EndBuffer;
int EndOfFile;

int step (String, ExpBuffer)
const char *String, *ExpBuffer;

int advance (String, ExpBuffer)
const char *String, *ExpBuffer;

Description
The /usr/include/regexp.h file contains subroutines that perform regular–expression
pattern matching. Programs that perform regular–expression pattern matching use this
source file. Thus, only the regexp.h file needs to be changed to maintain regular expression
compatibility between programs.

The interface to this file is complex. Programs that include this file define the following six
macros before the #include <regexp.h> statement. These macros are used by the
compile subroutine:

INIT This macro is used for dependent declarations and initializations. It is
placed right after the declaration and opening { (left brace) of the
compile subroutine. The definition of the INIT buffer must end with a ;
(semicolon). INIT is frequently used to set a register variable to point
to the beginning of the regular expression so that this register variable
can be used in the declarations for the GETC, PEEKC, and UNGETC
macros. Otherwise, you can use INIT to declare external variables that
GETC, PEEKC, and UNGETC require.

GETC() This macro returns the value of the next character in the regular
expression pattern. Successive calls to the GETC macro should return
successive characters of the pattern.

1-110 Technical Reference: Base Operating System

PEEKC() This macro returns the next character in the regular expression.
Successive calls to the PEEKC macro should return the same
character, which should also be the next character returned by the
GETC macro.

UNGETC(c) This macro causes the parameter c to be returned by the next call to
the GETC and PEEKC macros. No more than one character of
pushback is ever needed, and this character is guaranteed to be the
last character read by the GETC macro. The return value of the
UNGETC macro is always ignored.

RETURN(pointer) This macro is used for normal exit of the compile subroutine. The
pointer parameter points to the first character immediately following
the compiled regular expression. This is useful for programs that have
memory allocation to manage.

ERROR(val) This macro is used for abnormal exit from the compile subroutine. It
should never contain a return statement. The val parameter is an
error number. The error values and their meanings are:

Error Meaning

11 Interval end point too large

16 Bad number

25 \ digit out of range

36 Illegal or missing delimiter

41 No remembered search String

42 \ (?\) imbalance

43 Too many \.(

44 More than two numbers given in \{ \}

45 } expected after \.

46 First number exceeds second in \{ \}

49 [] imbalance

50 Regular expression overflow

70 Invalid endpoint in range

The compile subroutine compiles the regular expression for later use. The InString
parameter is never used explicitly by the compile subroutine, but you can use it in your
macros. For example, you can use the compile subroutine to pass the string containing the
pattern as the InString parameter to compile and use the INIT macro to set a pointer to the
beginning of this string. The example in the Examples section uses this technique. If your
macros do not use InString, then call compile with a value of ((char *) 0) for this parameter.

The ExpBuffer parameter points to a character array where the compiled regular expression
is to be placed. The EndBuffer parameter points to the location that immediately follows the
character array where the compiled regular expression is to be placed. If the compiled
expression cannot fit in (EndBuffer–ExpBuffer) bytes, the call ERROR(50) is made.

The EndOfFile parameter is the character that marks the end of the regular expression. For
example, in the ed command, this character is usually / (slash).

The regexp.h file defines other subroutines that perform actual regular–expression pattern
matching. One of these is the step subroutine.

The String parameter of the step subroutine is a pointer to a null–terminated string of
characters to be checked for a match.

1-111Base Operating System Runtime Services (A-P)

The Expbuffer parameter points to the compiled regular expression, obtained by a call to the
compile subroutine.

The step subroutine returns the value 1 if the given string matches the pattern, and 0 if it
does not match. If it matches, then step also sets two global character pointers: loc1, which
points to the first character that matches the pattern, and loc2, which points to the character
immediately following the last character that matches the pattern. Thus, if the regular
expression matches the entire string, loc1 points to the first character of the String
parameter and loc2 points to the null character at the end of the String parameter.

The step subroutine uses the global variable circf, which is set by the compile subroutine if
the regular expression begins with a ^ (circumflex). If this variable is set, step only tries to
match the regular expression to the beginning of the string. If you compile more than one
regular expression before executing the first one, save the value of circf for each compiled
expression and set circf to that saved value before each call to step.

Using the same parameters that were passed to it, the step subroutine calls a subroutine
named advance. The step function increments through the String parameter and calls the
advance subroutine until it returns a 1, indicating a match, or until the end of String is
reached. To constrain the String parameter to the beginning of the string in all cases, call
the advance subroutine directly instead of calling the step subroutine.

When the advance subroutine encounters an * (asterisk) or a \{ \} sequence in the regular
expression, it advances its pointer to the string to be matched as far as possible and
recursively calls itself, trying to match the rest of the string to the rest of the regular
expression. As long as there is no match, the advance subroutine backs up along the string
until it finds a match or reaches the point in the string that initially matched the * or \{ \}. You
can stop this backing–up before the initial point in the string is reached. If the locs global
character is equal to the point in the string sometime during the backing–up process, the
advance subroutine breaks out of the loop that backs up and returns 0. This is used for
global substitutions on the whole line so that expressions such as s/y*//g do not loop
forever.

Note: In 64–bit mode, these interfaces are not supported: they fail with a return
code of 0. In order to use the 64–bit version of this functionality,
applications should migrate to the fnmatch, glob, regcomp, and regexec
functions which provide full internationalized regular expression
functionality compatible with ISO 9945–1:1996 (IEEE POSIX 1003.1) and
with the UNIX98 specification.

Parameters

InString Specifies the string containing the pattern to be compiled. The InString
parameter is not used explicitly by the compile subroutine, but it may
be used in macros.

ExpBuffer Points to a character array where the compiled regular expression is to
be placed.

EndBuffer Points to the location that immediately follows the character array where
the compiled regular expression is to be placed.

EndOfFile Specifies the character that marks the end of the regular expression.

String Points to a null–terminated string of characters to be checked for a
match.

Examples
The following is an example of the regular expression macros and calls:

1-112 Technical Reference: Base Operating System

#define INIT register char *sp=instring;

#define GETC() (*sp++)

#define PEEKC() (*sp)

#define UNGETC(c) (––sp)

#define RETURN(c) return;

#define ERROR(c) regerr()

#include <regexp.h>

 . . .

compile (patstr,expbuf, &expbuf[ESIZE], ’\0’);

 . . .

if (step (linebuf, expbuf))

 succeed();

 . . .

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The regcmp or regex subroutine, regcomp subroutine, regerror subroutine, regexec
subroutine, regfree subroutine.

1-113Base Operating System Runtime Services (A-P)

confstr Subroutine

Purpose
Gets configurable variables.

Library
Standard C library (libc.a)

Syntax
#include <unistd.h>

size_t confstr (int name, char * buf, size_t len);

Description
The confstr subroutine determines the current setting of certain system parameters, limits,
or options that are defined by a string value. It is mainly used by applications to find the
system default value for the PATH environment variable. Its use and purpose are similar to
those of the sysconf subroutine, but it returns string values rather than numeric values.

If the Len parameter is not 0 and the Name parameter has a system–defined value, the
confstr subroutine copies that value into a Len–byte buffer pointed to by the Buf parameter.
If the string returns a value longer than the value specified by the Len parameter, including
the terminating null byte, then the confstr subroutine truncates the string to Len–1 bytes
and adds a terminating null byte to the result. The application can detect that the string was
truncated by comparing the value returned by the confstr subroutine with the value
specified by the Len parameter.

Parameters

Name Specifies the system variable setting to be returned. Valid values for the
Name parameter are defined in the unistd.h file.

Buf Points to the buffer into which the confstr subroutine copies the value
of the Name parameter.

Len Specifies the size of the buffer storing the value of the Name parameter.

Return Values
If the value specified by the Name parameter is system–defined, the confstr subroutine
returns the size of the buffer needed to hold the entire value. If this return value is greater
than the value specified by the Len parameter, the string returned as the Buf parameter is
truncated.

If the value of the Len parameter is set to 0 and the Buf parameter is a null value, the
confstr subroutine returns the size of the buffer needed to hold the entire system–defined
value, but does not copy the string value. If the value of the Len parameter is set to 0 but
the Buf parameter is not a null value, the result is unspecified.

Error Codes
The confstr subroutine will fail if:

EINVAL The value of the name argument is invalid.

Example
To find out what size buffer is needed to store the string value of the Name parameter, enter:

confstr(_CS_PATH, NULL, (size_t) 0)

1-114 Technical Reference: Base Operating System

The confstr subroutine returns the size of the buffer.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/usr/include/limits.h Contains system–defined limits.

/usr/include/unistd.h Contains system–defined environment variables.

Related Information
The pathconf subroutine, sysconf subroutine.

The unistd.h header file.

The XCU specification of getconf.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-115Base Operating System Runtime Services (A-P)

conv Subroutines

Purpose
Translates characters.

Library
Standard C Library (libc.a)

Syntax
#include <ctype.h>

int toupper (Character)
int Character;

int tolower (Character)
int Character;

int _toupper (Character)
int Character;

int _tolower (Character)
int Character;

int toascii (Character)
int Character;

int NCesc (Pointer, CharacterPointer)
NLchar *Pointer;
char *CharacterPointer;

int NCtoupper (Xcharacter)
int Xcharacter;

int NCtolower (Xcharacter)
int Xcharacter;

int _NCtoupper (Xcharacter)
int Xcharacter;

int _NCtolower (Xcharacter)
int Xcharacter;

int NCtoNLchar (Xcharacter)
int Xcharacter;

int NCunesc (CharacterPointer, Pointer)
char *CharacterPointer;
NLchar *Pointer;

int NCflatchr (Xcharacter)
int Xcharacter;

Description
The toupper and the tolower subroutines have as domain an int, which is representable as
an unsigned char or the value of EOF: –1 through 255.

If the parameter of the toupper subroutine represents a lowercase letter and there is a
corresponding uppercase letter (as defined by LC_CTYPE), the result is the corresponding
uppercase letter. If the parameter of the tolower subroutine represents an uppercase letter,
and there is a corresponding lowercase letter (as defined by LC_CTYPE), the result is the

1-116 Technical Reference: Base Operating System

corresponding lowercase letter. All other values in the domain are returned unchanged. If
case–conversion information is not defined in the current locale, these subroutines
determine character case according to the ”C” locale.

The _toupper and _tolower subroutines accomplish the same thing as the toupper and
tolower subroutines, but they have restricted domains. The _toupper routine requires a
lowercase letter as its parameter; its result is the corresponding uppercase letter. The
_tolower routine requires an uppercase letter as its parameter; its result is the
corresponding lowercase letter. Values outside the domain cause undefined results.

The NCxxxxxx subroutines translate all characters, including extended characters, as code
points. The other subroutines translate traditional ASCII characters only. The NCxxxxxx
subroutines are obsolete and should not be used if portability and future compatibility are a
concern.

The value of the Xcharacter parameter is in the domain of any legal NLchar data type. It
can also have a special value of –1, which represents the end of file (EOF).

If the parameter of the NCtoupper subroutine represents a lowercase letter according to the
current collating sequence configuration, the result is the corresponding uppercase letter. If
the parameter of the NCtolower subroutine represents an uppercase letter according to the
current collating sequence configuration, the result is the corresponding lowercase letter. All
other values in the domain are returned unchanged.

The _NCtoupper and _NCtolower routines are macros that perform the same function as
the NCtoupper and NCtolower subroutines, but have restricted domains and are faster.
The _NCtoupper macro requires a lowercase letter as its parameter; its result is the
corresponding uppercase letter. The _NCtolower macro requires an uppercase letter as its
parameter; its result is the corresponding lowercase letter. Values outside the domain cause
undefined results.

The NCtoNLchar subroutine yields the value of its parameter with all bits turned off that are
not part of an NLchar data type.

The NCesc subroutine converts the NLchar value of the Pointer parameter into one or
more ASCII bytes stored in the character array pointed to by the CharacterPointer
parameter. If the NLchar data type represents an extended character, it is converted into a
printable ASCII escape sequence that uniquely identifies the extended character. NCesc
returns the number of bytes it wrote. The display symbol table lists the escape sequence for
each character.

The opposite conversion is performed by the NCunesc macro, which translates an ordinary
ASCII byte or escape sequence starting at CharacterPointer into a single NLchar at Pointer.
NCunesc returns the number of bytes it read.

The NCflatchr subroutine converts its parameter value into the single ASCII byte that most
closely resembles the parameter character in appearance. If no ASCII equivalent exists, it
converts the parameter value to a ? (question mark).

Note: The setlocale subroutine may affect the conversion of the decimal point symbol and
the thousands separator.

Parameters

Character Specifies the character to be converted.

Xcharacter Specifies an NLchar value to be converted.

CharacterPointer Specifies a pointer to a single–byte character array.

Pointer Specifies a pointer to an escape sequence.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-117Base Operating System Runtime Services (A-P)

Related Information
The Japanese conv subroutines, ctype subroutines, getc, fgetc, getchar, or getw
subroutine, getwc, fgetwc, or getwchar subroutine, setlocale subroutine.

List of Character Manipulation Services, National Language Support Overview for
Programming, Subroutines Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

1-118 Technical Reference: Base Operating System

copysign, nextafter, scalb, logb, or ilogb Subroutine

Purpose
Computes certain binary floating–point arithmetic functions.

Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include <math.h>
#include <float.h>

double copysign (x, y)
double x, y;

double nextafter (x, y)
double x, y;

double scalb(x, y)
double x, y;

double logb(x)
double x;

int ilogb (x)
double x;

Description
These subroutines compute certain functions recommended in the IEEE Standard for Binary
Floating–Point Arithmetic. The other such recommended function is provided in the class
subroutine.

The copysign subroutine returns the x parameter with the same sign as the y parameter.

The nextafter subroutine returns the next representable neighbor of the x parameter in the
direction of the y parameter. If x equals y, the result is the x parameter.

The scalb subroutine returns the value of the x parameter times 2 to the power of the y
parameter.

The logb subroutine returns a floating–point double that is equal to the unbiased exponent
of the x parameter. Special cases are:

logb (NaN) = NaNQ
logb (infinity) = +INF
logb (0) = –INF

Note: When the x parameter is finite and not zero, then the logb (x) subroutine satisfies
the following equation:

1 < = scalb (|x|, –(int) logb (x)) < 2

The ilogb subroutine returns an integer that is equal to the unbiased exponent of the x
parameter. Special cases are:

ilogb (NaN) = LONG_MIN
ilogb (INF) = LONG_MAX
ilogb (0) = LONG_MIN

Compile any routine that uses subroutines from the libm.a library with the –lm flag. For
example: to compile the copysign.c file, enter:

cc copysign.c –lm

1-119Base Operating System Runtime Services (A-P)

Parameters

x Specifies a double–precision floating–point value.

y Specifies a double–precision floating–point value.

Return Values
The nextafter subroutine sets the overflow bit in the floating–point exception status when
the x parameter is finite but the nextafter (x, y) subroutine is infinite. Similarly, when the
nextafter subroutine is denormalized, the underflow exception status flag is set.

The logb(0) subroutine returns an –INF value and sets the division–by–zero exception
status flag.

The ilogb(0) subroutine returns a LONG_MIN value and sets the division–by–zero
exception status flag.

Error Codes
If the correct value would overflow, the scalb subroutine returns +/–INF (depending on a
negative or positive value of the x parameter) and sets errno to ERANGE.

If the correct value would underflow, the scalb subroutine returns a value of 0 and sets
errno to ERANGE.

The logb function returns –HUGE_VAL when the x parameter is set to a value of 0 and
sets errno to EDOM.

For the nextafter subroutine, if the x parameter is finite and the correct function value would
overflow, HUGE_VAL is returned and errno is set to ERANGE.

1-120 Technical Reference: Base Operating System

crypt, encrypt, or setkey Subroutine

Purpose
Encrypts or decrypts data.

Library
Standard C Library (libc.a)

Syntax
char *crypt (PW, Salt)
const char *PW, *Salt;

void encrypt (Block, EdFlag)
char Block[64];
int EdFlag;

void setkey (Key)
const char *Key;

Description
The crypt and encrypt subroutines encrypt or decrypt data. The crypt subroutine performs
a one–way encryption of a fixed data array with the supplied PW parameter. The subroutine
uses the Salt parameter to vary the encryption algorithm.

The encrypt subroutine encrypts or decrypts the data supplied in the Block parameter using
the key supplied by an earlier call to the setkey subroutine. The data in the Block parameter
on input must be an array of 64 characters. Each character must be an char 0 or char 1.

If you need to statically bind functions from libc.a for crypt do the following:

1. Create a file and add the following:

#!

___setkey

___encrypt

___crypt

2. Perform the linking.

3. Add the following to the make file:

–bI:YourFileName

 where YourFileName is the name of the file you created in step 1. It should look like the
following:

LDFLAGS=bnoautoimp –bI:/lib/syscalls.exp –bI:YourFileName –lc

Parameters

Block Identifies a 64–character array containing the values (char) 0 and
(char) 1. Upon return, this buffer contains the encrypted or decrypted
data.

EdFlag Determines whether the subroutine encrypts or decrypts the data. If this
parameter is 0, the data is encrypted. If this is a nonzero value, the data
is decrypted. If the /usr/lib/libdes.a file does not exist and the EdFlag
parameter is set to nonzero, the encrypt subroutine returns the
ENOSYS error code.

Key Specifies an 64–element array of 0’s and 1’s cast as a const char data
type. The Key parameter is used to encrypt or decrypt data.

1-121Base Operating System Runtime Services (A-P)

PW Specifies an 8–character string used to change the encryption
algorithm. The first two characters of the PW parameter are the same
as the Salt parameter.

Salt Specifies a 2–character string chosen from the following:

A–Z Uppercase alpha characters

0–9 Numeric characters

. Period

/ Slash

The Salt parameter is used to vary the hashing algorithm in one of 4096
different ways.

Return Values
The crypt subroutine returns a pointer to the encrypted password. The static area this
pointer indicates may be overwritten by subsequent calls.

Error Codes
The encrypt subroutine returns the following:

ENOSYS The encrypt subroutine was called with the EdFlag parameter which
was set to a nonzero value. Also, the /usr/lib/libdes.a file does not
exist.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

These subroutines are provided for compatibility with UNIX system implementations.

Related Information
 The newpass subroutine.

The login command, passwd command, su command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-122 Technical Reference: Base Operating System

cs Subroutine

Purpose
Compares and swaps data.

Library
Standard C Library (libc.a)

Syntax
int cs (Destination, Compare, Value)

int *Destination;
int Compare;
int Value;

Description
Note: The cs subroutine is only provided to support binary compatibility with AIX Version
3 applications. When writing new applications, it is not recommended to use this
subroutine; it may cause reduced performance in the future. Applications should use the
compare_and_swap subroutine, unless they need to use unaligned memory locations.

The cs subroutine compares the Compare value with the integer pointed to by Destination
address. If they are equal, Value is stored in the integer pointed to by the Destination
address and cs returns 0. If the values are different, the cs subroutine returns 1, and the
value pointed to by Destination address is not affected. The compare and store operations
are executed atomically. Therefore, no process switches occur between them.

The cs subroutine can be used to implement interprocess communication facilities or to
manipulate data structures shared among several processes, such as linked lists stored in
shared memory.

The following example shows how a new element can be inserted in a null–terminated list
that is stored in shared memory and maintained by several processes:

struct elem {

 struct elem *next;

 ...

};

struct elem *list, *new_elem;

do

 new_elem–>next = list;

while (cs((int *)&list, (int)(new_elem–>next),

 (int)new_elem));

Parameters

Destination Specifies the address of the integer to be compared with
the Compare value, and if need be, where Value will be
stored.

Compare Specifies the value to be compared with the integer pointed
by Destination parameter address.

Value Specifies the value stored in the integer pointed to by the
Destination address if the Destination and Compare values
are equal.

1-123Base Operating System Runtime Services (A-P)

Return Codes
The cs subroutine returns a value of 0 if the two values compared are equal. If the values
are not equal, the cs subroutine returns a value of 1.

Error Codes
If the integer pointed by the Destination parameter references memory that does not belong
to the process address space, the SIGSEGV signal is sent to the process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The shmat subroutine, shmctl subroutine, shmdt subroutine, shmget subroutine,
sigaction, signal, or sigvec.

Program Address Space Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-124 Technical Reference: Base Operating System

csid Subroutine

Purpose
Returns the character set ID (charsetID) of a multibyte character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int csid (String)
const char *String;

Description
The csid subroutine returns the charsetID of the multibyte character pointed to by the String
parameter. No validation of the character is performed. The parameter must point to a value
in the character range of the current code set defined in the current locale.

Parameters

String Specifies the character to be tested.

Return Values
Successful completion returns an integer value representing the charsetID of the character.
This integer can be a number from 0 through n, where n is the maximum character set
defined in the CHARSETID field of the charmap. See ”Understanding the Character Set
Description (charmap) Source File” in AIX 4.3 System Management Guide: Operating
System and Devices for more information.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbstowcs subroutine, wcsid subroutine.

National Language Support Overview for Programming and Understanding the Character
Set Description (charmap) Source File in AIX 4.3 System Management Guide: Operating
System and Devices.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-125Base Operating System Runtime Services (A-P)

ctermid Subroutine

Purpose
Generates the path name of the controlling terminal.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
char *ctermid (String)
char *String;

Description
The ctermid subroutine generates the path name of the controlling terminal for the current
process and stores it in a string.

Note: File access permissions depend on user access. Access to a file whose path name
the ctermid subroutine has returned is not guaranteed.

The difference between the ctermid and ttyname subroutines is that the ttyname
subroutine must be handed a file descriptor and returns the actual name of the terminal
associated with that file descriptor. The ctermid subroutine returns a string (the /dev/tty file)
that refers to the terminal if used as a file name. Thus, the ttyname subroutine is useful only
if the process already has at least one file open to a terminal.

Parameters

String If the String parameter is a null pointer, the string is stored in an internal
static area and the address is returned. The next call to the ctermid
subroutine overwrites the contents of the internal static area.

If the String parameter is not a null pointer, it points to a character array
of at least L_ctermid elements as defined in the stdio.h file. The path
name is placed in this array and the value of the String parameter is
returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The isatty or ttyname subroutine.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

1-126 Technical Reference: Base Operating System

ctime, localtime, gmtime, mktime, difftime, asctime, or tzset
Subroutine

Purpose
Converts the formats of date and time representations.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

char *ctime (Clock)
const time_t *Clock;

struct tm *localtime (Clock)
const time_t *Clock;

struct tm *gmtime (Clock)
const time_t *Clock;

time_t mktime(Timeptr)
struct tm *Timeptr;

double difftime(Time1, Time0)
time_t Time0, Time1;

char *asctime (Tm)
const struct tm *Tm;

void tzset ()
extern long int timezone;
extern int daylight;
extern char *tzname[];

Description
Attention: Do not use the tzset subroutine when linking with both libc.a and libbsd.a.
The tzset subroutine sets the global external variable called timezone, which conflicts
with the timezone subroutine in libbsd.a. This name collision may cause unpredictable
results.

Attention: Do not use the ctime, localtime, gmtime, or asctime subroutine in a
multithreaded environment. See the multithread alternatives in the ctime_r, localtime_r,
gmtime_r, or asctime_r subroutine article.

The ctime subroutine converts a time value pointed to by the Clock parameter, which
represents the time in seconds since 00:00:00 Coordinated Universal Time (UTC),
January 1, 1970, into a 26–character string in the following form:

Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime subroutine converts the long integer pointed to by the Clock parameter,
which contains the time in seconds since 00:00:00 UTC, 1 January 1970, into a tm
structure. The localtime subroutine adjusts for the time zone and for daylight–saving time, if
it is in effect. Use the time–zone information as though localtime called tzset.

The gmtime subroutine converts the long integer pointed to by the Clock parameter into a
tm structure containing the Coordinated Universal Time (UTC), which is the time standard
the operating system uses.

1-127Base Operating System Runtime Services (A-P)

Note: UTC is the international time standard intended to replace GMT.

The tm structure is defined in the time.h file, and it contains the following members:

int tm_sec; /* Seconds (0 – 59) */

int tm_min; /* Minutes (0 – 59) */

int tm_hour; /* Hours (0 – 23) */

int tm_mday; /* Day of month (1 – 31) */

int tm_mon; /* Month of year (0 – 11) */

int tm_year; /* Year – 1900 */

int tm_wday; /* Day of week (Sunday = 0) */

int tm_yday; /* Day of year (0 – 365) */

int tm_isdst; /* Nonzero = Daylight saving time */

The mktime subroutine is the reverse function of the localtime subroutine. The mktime
subroutine converts the tm structure into the time in seconds since 00:00:00 UTC,
1 January 1970. The tm_wday and tm_yday fields are ignored, and the other components
of the tm structure are not restricted to the ranges specified in the /usr/include/time.h file.
The value of the tm_isdst field determines the following actions of the mktime subroutine:

0 Initially presumes that Daylight Savings Time (DST) is not in effect.

>0 Initially presumes that DST is in effect.

–1 Actively determines whether DST is in effect from the specified time and
the local time zone. Local time zone information is set by the tzset
subroutine.

Upon successful completion, the mktime subroutine sets the values of the tm_wday and
tm_yday fields appropriately. Other fields are set to represent the specified time since
January 1, 1970. However, the values are forced to the ranges specified in the
/usr/include/time.h file. The final value of the tm_mday field is not set until the values of
the tm_mon and tm_year fields are determined.

The difftime subroutine computes the difference between two calendar times: the
Time1 and –Time0 parameters.

The asctime subroutine converts a tm structure to a 26–character string of the same format
as ctime.

If the TZ environment variable is defined, then its value overrides the default time zone,
which is the U.S. Eastern time zone. The environment facility contains the format of the
time zone information specified by TZ. TZ is usually set when the system is started with the
value that is defined in either the /etc/environment or /etc/profile files. However, it can also
be set by the user as a regular environment variable for performing alternate time zone
conversions.

The tzset subroutine sets the timezone, daylight, and tzname external variables to reflect
the setting of TZ. The tzset subroutine is called by ctime and localtime, and it can also be
called explicitly by an application program.

The timezone external variable contains the difference, in seconds, between UTC and local
standard time. For example, the value of timezone is 5 * 60 * 60 for U.S. Eastern Standard
Time.

The daylight external variable is nonzero when a daylight–saving time conversion should
be applied. By default, this conversion follows the standard U.S. conventions; other
conventions can be specified. The default conversion algorithm adjusts for the peculiarities
of U.S. daylight saving time in 1974 and 1975.

The tzname external variable contains the name of the standard time zone (tzname[0]) and
of the time zone when Daylight Savings Time is in effect (tzname[1]). For example:

char *tzname[2] = {”EST”, ”EDT”};

1-128 Technical Reference: Base Operating System

The time.h file contains declarations of all these subroutines and externals and the tm
structure.

Parameters

Clock Specifies the pointer to the time value in seconds.

Timeptr Specifies the pointer to a tm structure.

Time1 Specifies the pointer to a time_t structure.

Time0 Specifies the pointer to a time_t structure.

Tm Specifies the pointer to a tm structure.

Return Values
Attention: The return values point to static data that is overwritten by each call.

The tzset subroutine returns no value.

The mktime subroutine returns the specified time in seconds encoded as a value of type
time_t. If the time cannot be represented, the function returns the value (time_t)–1.

The localtime and gmtime subroutines return a pointer to the struct tm.

The ctime and asctime subroutines return a pointer to a 26–character string.

The difftime subroutine returns the difference expressed in seconds as a value of type
double.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getenv subroutine, gettimer subroutine, strftime subroutine.

List of Time Data Manipulation Services in AIX 4.3 System Management Guide: Operating
System and Devices.

National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-129Base Operating System Runtime Services (A-P)

ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine

Purpose
Converts the formats of date and time representations.

Library
Thread–Safe C Library (libc_r.a)

Syntax
#include <time.h>

char *ctime_r(Timer, BufferPointer)
const time_t *Timer;
char *BufferPointer;

struct tm *localtime_r(Timer, CurrentTime)
const time_t *Timer;
struct tm *CurrentTime;

struct tm *gmtime_r(Timer, XTime)
const time_t *Timer;
struct tm *XTime;

char *asctime_r(TimePointer, BufferPointer)
const struct tm *TimePointer;
char *BufferPointer;

Description
The ctime_r subroutine converts a time value pointed to by the Timer parameter, which
represents the time in seconds since 00:00:00 Coordinated Universal Time (UTC),
January 1, 1970, into the character array pointed to by the BufferPointer parameter. The
character array should have a length of at least 26 characters so the converted time value
fits without truncation. The converted time value string takes the form of the following
example:

Sun Sep 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime_r subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime_r subroutine converts the time_t structure pointed to by the Timer
parameter, which contains the time in seconds since 00:00:00 UTC, January 1, 1970, into
the tm structure pointed to by the CurrentTime parameter. The localtime_r subroutine
adjusts for the time zone and for daylight saving time, if it is in effect.

The gmtime_r subroutine converts the time_t structure pointed to by the Timer parameter
into the tm structure pointed to by the XTime parameter.

The tm structure is defined in the time.h header file. The time.h file contains declarations of
these subroutines, externals, and the tm structure.

The asctime_r subroutine converts the tm structure pointed to by the TimePointer
parameter into a 26–character string in the same format as the ctime_r subroutine. The
results are placed into the character array, BufferPointer. The BufferPointer parameter
points to the resulting character array, which takes the form of the following example:

char *tzname[2] = {”EST”, ”EDT”};

1-130 Technical Reference: Base Operating System

Parameters

Timer Points to a time_t structure, which contains the number of seconds
since 00:00:00 UTC, January 1, 1970.

BufferPointer Points to a character array at least 26 characters long.

CurrentTime Points to a tm structure. The result of the localtime_r subroutine is
placed here.

XTime Points to a tm structure used for the results of the gmtime_r
subroutine.

TimePointer Points to a tm structure used as input to the asctime_r subroutine.

Return Values
Attention: The return values point to static data that is overwritten by each call.

The localtime_r and gmtime_r subroutines return a pointer to the tm structure.

The ctime_r and asctime_r subroutines return a pointer to a 26–character string.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Programs using this subroutine must link to the libpthreads.a library.

Files

/usr/include/time.h

Defines time macros, data types, and structures.

Related Information
The ctime, localtime, gmtime, mktime, difftime, asctime, tzset, or timezone subroutine.

Subroutines Overview, List of Time Data Manipulation Services, List of Multithread
Subroutines, and National Language Support Overview for Programming in AIX General
Programming Concepts : Writing and Debugging Programs.

1-131Base Operating System Runtime Services (A-P)

ctype Subroutines

Purpose
Classifies characters.

Library
Standard Character Library (libc.a)

Syntax
#include <ctype.h>

int isalpha (Character)
int Character;

int isupper (Character)
int Character;

int islower (Character)
int Character;

int isdigit (Character)
int Character;

int isxdigit (Character)
int Character;

int isalnum (Character)
int Character;

int isspace (Character)
int Character;

int ispunct (Character)
int Character;

int isprint (Character)
int Character;

int isgraph (Character)
int Character;

int iscntrl (Character)
int Character;

int isascii (Character)
int Character;

Description
The ctype subroutines classify character–coded integer values specified in a table. Each of
these subroutines returns a nonzero value for True and 0 for False.

1-132 Technical Reference: Base Operating System

Note: The ctype subroutines should only be used on character data that can be
represented by a single byte value (0 through 255). Attempting to use the ctype
subroutines on multi–byte locale data may give inconsistent results. Wide character
classification routines (such as iswprint, iswlower, etc.) should be used with dealing with
multi–byte character data.

Locale Dependent Character Tests
The following subroutines return nonzero (True) based upon the character class definitions
for the current locale.

isalnum Returns nonzero for any character for which the isalpha or isdigit
subroutine would return nonzero. The isalnum subroutine tests whether
the character is of the alpha or digit class.

isalpha Returns nonzero for any character for which the isupper or islower
subroutines would return nonzero. The isalpha subroutine also returns
nonzero for any character defined as an alphabetic character in the current
locale, or for a character for which none of the iscntrl, isdigit, ispunct, or
isspace subroutines would return nonzero. The isalpha subroutine tests
whether the character is of the alpha class.

isupper Returns nonzero for any uppercase letter [A through Z]. The isupper
subroutine also returns nonzero for any character defined to be uppercase
in the current locale. The isupper subroutine tests whether the character is
of the upper class.

islower Returns nonzero for any lowercase letter [a through z]. The islower
subroutine also returns nonzero for any character defined to be lowercase
in the current locale. The islower subroutine tests whether the character is
of the lower class.

isspace Returns nonzero for any white–space character (space, form feed, new
line, carriage return, horizontal tab or vertical tab). The isspace subroutine
tests whether the character is of the space class.

ispunct Returns nonzero for any character for which the isprint subroutine returns
nonzero, except the space character and any character for which the
isalnum subroutine would return nonzero. The ispunct subroutine also
returns nonzero for any locale–defined character specified as a
punctuation character. The ispunct subroutine tests whether the character
is of the punct class.

isprint Returns nonzero for any printing character. Returns nonzero for any
locale–defined character that is designated a printing character. This
routine tests whether the character is of the print class.

isgraph Returns nonzero for any character for which the isprint character returns
nonzero, except the space character. The isgraph subroutine tests
whether the character is of the graph class.

iscntrl Returns nonzero for any character for which the isprint subroutine returns
a value of False (0) and any character that is designated a control
character in the current locale. For the C locale, control characters are the
ASCII delete character (0177 or 0x7F), or an ordinary control character
(less than 040 or 0x20). The iscntrl subroutine tests whether the character
is of the cntrl class.

Locale Independent Character Tests
The following subroutines return nonzero for the same characters, regardless of the locale:

1-133Base Operating System Runtime Services (A-P)

isdigit Character is a digit in the range [0 through 9].

isxdigit Character is a hexadecimal digit in the range [0 through 9],
[A through F], or [a through f].

isascii Character is an ASCII character whose value is in the
range 0 through 0177 (0 through 0x7F), inclusive.

Parameter

Character Indicates the character to be tested (integer value).

Return Codes
The ctype subroutines return nonzero (True) if the character specified by the Character
parameter is a member of the selected character class; otherwise, a 0 (False) is returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The setlocale subroutine.

List of Character Manipulation Services and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-134 Technical Reference: Base Operating System

cuserid Subroutine

Purpose
Gets the alphanumeric user name associated with the current process.

Library
Standard C Library (libc.a)

Use the libc_r.a library to access the thread–safe version of this subroutine.

Syntax
#include <stdio.h>

char *cuserid (Name)
char *Name;

Description
The cuserid subroutine gets the alphanumeric user name associated with the current
process. This subroutine generates a character string representing the name of a process’s
owner.

Note: The cuserid subroutine duplicates functionality available with the getpwuid and
getuid subroutines. Present applications should use the getpwuid and getuid
subroutines.

If the Name parameter is a null pointer, then a character string of size L_cuserid is
dynamically allocated with malloc, and the character string representing the name of the
process owner is stored in this area. The cuserid subroutine then returns the address of
this area. Multithreaded application programs should use this functionality to obtain thread
specific data, and then continue to use this pointer in subsequent calls to the curserid
subroutine. In any case, the application program must deallocate any dynamically allocated
space with the free subroutine when the data is no longer needed.

If the Name parameter is not a null pointer, the character string is stored into the array
pointed to by the Name parameter. This array must contain at least the number of
characters specified by the constant L_cuserid. This constant is defined in the stdio.h
file.

If the user name cannot be found, the cuserid subroutine returns a null pointer; if the Name
parameter is not a null pointer, a null character (’\0’) is stored in Name [0].

Parameter

Name Points to a character string representing a user name.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The endpwent subroutine, getlogin, getpwent, getpwnam, getpwuid, or putpwent
subroutine.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

1-135Base Operating System Runtime Services (A-P)

defssys Subroutine

Purpose
Initializes the SRCsubsys structure with default values.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

void defssys(SRCSubsystem)
struct SRCsubsys *SRCSubsystem;

Description
The defssys subroutine initializes the SRCsubsys structure of the
/usr/include/sys/srcobj.h file with the following default values:

Field Value

display SRCYES

multi SRCNO

contact SRCSOCKET

waittime TIMELIMIT

priority 20

action ONCE

standerr /dev/console

standin /dev/console

standout /dev/console

All other numeric fields are set to 0, and all other alphabetic fields are set to an empty string.

This function must be called to initialize the SRCsubsys structure before an application
program uses this structure to add records to the subsystem object class.

Parameters

SRCSubsystem Points to the SRCsubsys structure.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The addssys subroutine.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller
(SRC) Overview for Programmers in AIX General Programming Concepts : Writing and
Debugging Programs.

1-136 Technical Reference: Base Operating System

delssys Subroutine

Purpose
Removes the subsystem objects associated with the SubsystemName parameter.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

int delssys (SubsystemName)
char *SubsystemName;

Description
The delssys subroutine removes the subsystem objects associated with the specified
subsystem. This removes all objects associated with that subsystem from the following
object classes:

• Subsystem

• Subserver Type

• Notify

The program running with this subroutine must be running with the group system.

Parameter

SubsystemNam
e

 Specifies the name of the subsystem.

Return Values
Upon successful completion, the delssys subroutine returns a positive value. If no record is
found, a value of 0 is returned. Otherwise, –1 is returned and the odmerrno variable is set
to indicate the error. See ”Appendix B. ODM Error Codes”, on page B-1 for a description of
possible odmerrno values.

Security
Privilege Control:

SET_PROC_AUDIT kernel privilege

Files Accessed:

Mode File

644 /etc/objrepos/SRCsubsys

644 /etc/objrepos/SRCsubsvr

644 /etc/objrepos/SRCnotify

Auditing Events:

Event Information

SRC_Delssys Lists in an audit log the name of the subsystem being removed.

1-137Base Operating System Runtime Services (A-P)

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

/etc/objrepos/SRCsubsvr SRC Subsystem Configuration object class.

/etc/objrepos/SRCnotify SRC Notify Method object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC–unix Specifies the location for temporary socket files.

/usr/include/sys/srcobj.h Defines object structures used by the SRC.

/usr/include/spc.h Defines external interfaces provided by the SRC
subroutines.

Related Information
The addssys subroutine, chssys subroutine.

The chssys command, mkssys command, rmssys command.

List of SRC Subroutines and System Resource Controller (SRC) Overview for Programmers
in AIX General Programming Concepts : Writing and Debugging Programs.

1-138 Technical Reference: Base Operating System

dirname Subroutine

Purpose
Report the parent directory name of a file path name.

Library
Standard C Library (libc.a)

Syntax
#include <libgen.h>

char *dirname (path)
char *path

Description
Given a pointer to a character string that contains a file system path name, the dirname
subroutine returns a pointer to a string that is the parent directory of that file. Trailing ”/”
characters in the path are not counted as part of the path.

If path is a null pointer or points to an empty string, a pointer to a static constant ”.” is
returned.

The dirname and basename subroutines together yield a complete path name. dirname
(path) is the directory where basename (path) is found.

Parameters

path Character string containing a file system path name.

Return Values
The dirname subroutine returns a pointer to a string that is the parent directory of path. If
path or *path is a null pointer or points to an empty string, a pointer to a string ”.” is returned.
The dirname subroutine may modify the string pointed to by path and may return a pointer
to static storage that may then be overwritten by sequent calls to the dirname subroutine.

Examples
A simple file name and the strings ”.” and ”..” all have ”.” as their return value.

Input string Output string

 /usr/lib /usr

 /usr/ /

 usr .

 / /

 . .

 .. .

The following code reads a path name, changes directory to the appropriate directory, and
opens the file.

1-139Base Operating System Runtime Services (A-P)

char path [MAXPATHEN], *pathcopy;

int fd;

fgets (path, MAXPATHEN, stdin);

pathcopy = strdup (path);

chdir (dirname (pathcopy));

fd = open (basename (path), O_RDONLY);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The basename or chdir subroutine.

1-140 Technical Reference: Base Operating System

disclaim Subroutine

Purpose
Disclaims the content of a memory address range.

Syntax
#include <sys/shm.h>

int disclaim (Address, Length, Flag)
char *Address;
unsigned int Length, Flag;

Description
The disclaim subroutine marks an area of memory having content that is no longer needed.
The system then stops paging the memory area. This subroutine cannot be used on
memory that is mapped to a file by the shmat subroutine.

Parameters

Address Points to the beginning of the memory area.

Length Specifies the length of the memory area in bytes.

Flag Must be the value ZERO_MEM, which indicates that each memory
location in the address range should be set to 0.

Return Values
When successful, the disclaim subroutine returns a value of 0.

Error Codes
If the disclaim subroutine is unsuccessful, it returns a value of –1 and sets the errno global
variable to indicate the error. The disclaim subroutine is unsuccessful if one or more of the
following are true:

EFAULT The calling process does not have write access to the area of memory
that begins at the Address parameter and extends for the number of
bytes specified by the Length parameter.

EINVAL The value of the Flag parameter is not valid.

EINVAL The memory area is mapped to a file.

1-141Base Operating System Runtime Services (A-P)

dlclose Subroutine

Purpose
Closes and unloads a module loaded by the dlopen subroutine.

Syntax
#include <dlfcn.h>

int dlclose(Data);
void *Data;

Description
The dlclose subroutine is used to remove access to a module loaded with the dlopen
subroutine. In addition, access to dependent modules of the module being unloaded is
removed as well.

Modules being unloaded with the dlclose subroutine will not be removed from the process’s
address space if they are still required by other modules. Nevertheless, subsequent uses of
Data are invalid, and further uses of symbols that were exported by the module being
unloaded result in undefined behavior.

Parameters

Data A loaded module reference returned from a previous call to dlopen.

Return Values
Upon successful completion, 0 (zero) is returned. Otherwise, errno is set to EINVAL, and
the return value is also EINVAL. Even if the dlclose subroutine succeeds, the specified
module may still be part of the process’s address space if the module is still needed by
other modules.

Error Codes

EINVAL The Data parameter does not refer to a module opened by dlopen that
is still open. The parameter may be corrupt or the module may have
been unloaded by a previous call to dlclose.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The dlerror subroutine, dlopen subroutine, dlsym subroutine, load subroutine, loadquery
subroutine, unload subroutine, loadbind subroutine.

The ld command.

The Shared Libraries and Shared Memory Overview and Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-142 Technical Reference: Base Operating System

dlerror Subroutine

Purpose
Return a pointer to information about the last dlopen, dlsym, or dlclose error.

Syntax
#include <dlfcn.h>

char *dlerror(void);

Description
The dlerror subroutine is used to obtain information about the last error that occurred in a
dynamic loading routine (that is, dlopen , dlsym , or dlclose). The returned value is a
pointer to a null–terminated string without a final newline. Once a call is made to this
function, subsequent calls without any intervening dynamic loading errors will return NULL.

Applications can avoid calling the dlerror subroutine, in many cases, by examining errno
after a failed call to a dynamic loading routine. If errno is ENOEXEC, the dlerror subroutine
will return additional information. In all other cases, dlerror will return the string
corresponding to the value of errno.

The dlerror function may invoke loadquery to ascertain reasons for a failure. If a call is
made to load or unload between calls to dlopen and dlerror, incorrect information may be
returned.

Return Values
A pointer to a static buffer is returned; a NULL value is returned if there has been no error
since the last call to dlerror. Applications should not write to this buffer; they should make a
copy of the buffer if they wish to preserve the buffer’s contents.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The load subroutine, loadbind subroutine, loadquery subroutine, unload subroutine,
dlopen subroutine, dlclose subroutine, dlsym subroutine.

The ld command.

The Shared Libraries and Shared Memory Overview and Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-143Base Operating System Runtime Services (A-P)

dlopen Subroutine

Purpose
Dynamically load a module into the calling process.

Syntax
#include <dlfcn.h>

void *dlopen (FilePath, Flags);
const char *FilePath;
int Flags;

Description
The dlopen subroutine loads the module specified by FilePath into the executing process’s
address space. Dependents of the module are automatically loaded as well. If the module is
already loaded, i t is not loaded again, but a new, unique value will be returned by the
dlopen subroutine.

The value returned by dlopen may be used in subsequent calls to dlsym and dlclose. If an
error occurs during the operation, dlopen returns NULL.

If the main application was linked with the –brtl option, then the runtime linker is invoked by
dlopen. If the module being loaded was linked with runtime linking enabled, both
intra–module and inter–module references are overridden by any symbols available in the
main application. If runtime linking was enabled, but the module was not built enabled, then
all inter–module references will be overridden, but some intra–module references will not be
overridden.

If the module being opened with dlopen or any of its dependents is being loaded for the first
time, initialization routines for these newly–loaded routines are called (after runtime linking,
if applicable) before dlopen returns. Initialization routines are the functions specified with
the –binitfini: linker option when the module was built. (Refer to the ld command for more
information about this option.)

Notes:

1. The initialization functions need not have any special names, and multiple functions per
module are allowed.

2. If the module being loaded has read–other permission, the module is loaded into the
global shared library segment. Modules loaded into the global shared library segment
are not unloaded even if they are no longer being used. Use the slibclean command to
remove unused modules from the global shared library segment.

Use the environment variable LIBPATH to specify a list of directories in which dlopen
search es for the named module. The running application also contains a set of library
search paths that were specified when the application was linked; these paths are searched
after any paths found in LIBPATH. Also, the setenv subroutine

1-144 Technical Reference: Base Operating System

FilePath Specifies the name of a file containing the loadable module. This
parameter can be contain an absolute path, a relative path, or no path
component. If FilePath contains a slash character, FilePath is used
directly, and no directories are searched.

If the FilePath parameter is /unix, dlopen returns a value that can be
used to look up symbols in the current kernel image, including those
symbols found in any kernel extension that was available at the time the
process began execution.

If the value of FilePath is NULL, a value for the main application is
returned. This allows dynamically loaded objects to look up symbols in
the main executable, or for an application to examine symbols available
within itself.

Flags
Specifies variations of the behavior of dlopen. Either RTLD_NOW or RTLD_LAZY must
always be specified. Other flags may be OR’ed with RTLD_NOW or RTLD_LAZY.

RTLD_NOW Load all dependents of the module being loaded and resolve
all symbols.

RTLD_LAZY Specifies the same behavior as RTLD_NOW. In a future
release of AIX, the behavior of the RTLD_LAZY may change
so that loading of dependent modules is deferred of resolution
of some symbols is deferred.

RTLD_GLOBAL Allows symbols in the module being loaded to be visible when
resolving symbols used by other dlopen calls. These symbols
will also be visible when the main application is opened with
dlopen(NULL, mode).

RTLD_LOCAL Prevent symbols in the module being loaded from being used
when resolving symbols used by other dlopen calls. Symbols
in the module being loaded can only be accessed by calling
dlsym subroutine. If neither RTLD_GLOBAL nor
RTLD_LOCAL is specified, the default is RTLD_LOCAL. If
both flags are specified, RTLD_LOCAL is ignored.

RTLD_MEMBER The dlopen subroutine can be used to load a module that is a
member of an archive. The L_LOADMEMBER flag is used
when the load subroutine is called. The module name FilePath
names the archive and archive member according to the rules
outlined in the load subroutine.

RTLD_NOAUTODEFER Prevents deferred imports in the module being loaded from
being automatically resolved by subsequent loads. The
L_NOAUTODEFER flag is used when the load subroutine is
called.

Ordinarily, modules built for use by the dlopen and dlsym
sub routines will not contain deferred imports. However,
deferred imports can be still used. A module opened with
dlopen may provide definitions for deferred imports in the main
application, for modules loaded with the load subroutine (if the
L_NOAUTODEFER flag was not used), and for other modules
loaded with the dlopen subroutine (if the
RTLD_NOAUTODEFER flag was not used).

1-145Base Operating System Runtime Services (A-P)

Return Values
Upon successful completion, dlopen returns a value that can be used in calls to the dlsym
and dlclose subroutines. The value is not valid for use with the loadbind and unload
subroutines.

If the dlopen call fails, NULL (a value of 0) is returned and the global variable errno is set. If
errno contains the value ENOEXEC, further information is available via the dlerror function.

Error Codes
See the load subroutine for a list of possible errno values and their meanings.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The dlclose subroutine, dlerror subroutine, dlsym subroutine, load subroutine, loadbind
subroutine, loadquery subroutine, unload subroutine.

The ld command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-146 Technical Reference: Base Operating System

dlsym Subroutine

Purpose
Looks up the location of a symbol in a module that is loaded with dlopen.

Syntax
#include <dlfcn.h>

void *dlsym(Data, Symbol);
void *Data;
const char *Symbol;

Description
 The dlsym subroutine looks up a named symbol exported from a module loaded by a
previous call to the dlopen subroutine. Only exported symbols are found by dlsym. See the
ld command to see how to export symbols from a module.

Data Specifies a value returned by a previous call to dlopen.

Symbol Specifies the name of a symbol exported from the referenced module.
The form should be a NULL–terminated string.

Note: C++ symbol names should be passed to dlsym in mangled form; dlsym does not
perform any name demangling on behalf of the calling application.

A search for the named symbol is based upon breadth–first ordering of the module and its
dependants. If the module was constructed using the –G or –brtl linker option, the module’s
dependants will include all modules named on the ld command line, in the original order.
The dependants of a module that was not linked with the –G or –brtl linker option will be
listed in an unspecified order.

Return Values
If the named symbol is found, its address is returned. If the named symbol is not found,
NULL is returned and errno is set to 0. If Data or Symbol are invalid, NULL is returned and
errno is set to EINVAL .

If the first definition found is an export of an imported symbol, this definition will satisfy the
search. The address of the imported symbol is returned. If the first definition is a deferred
import, the definition is ignored and the search continues.

If the named symbol refers to a BSS symbol (uninitialized data structure), the search
continues until an initialized instance of the symbol is found or the module and all of its
dependants have been searched . If an initialized instance is found, its address is returned;
otherwise, the address of the first uninitialized instance is returned.

Error Codes

EINVAL If the Data parameter does not refer to a module opened by dlopen that
is still loaded or if the Symbol parameter points to an invalid address,
the dlsym subroutine returns NULL and errno is set to EINVAL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The dlclose subroutine, dlerror subroutine, dlopen subroutine, load subroutine, loadbind
subroutine, loadquery subroutine, unload subroutine.

The ld command.

1-147Base Operating System Runtime Services (A-P)

drand48, erand48, jrand48, lcong48, lrand48, mrand48,
nrand48, seed48, or srand48 Subroutine

Purpose
Generate uniformly distributed pseudo–random number sequences.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

double drand48 (void)

double erand48 (xsubi)
unsigned short int xsubi[3];

long int jrand48 (xsubi)
unsigned short int xsubi[3];

void lcong48 (Parameter)
unsigned short int Parameter[7];

long int lrand48 (void)

long int mrand48 (void)

long int nrand48 (xsubi)
unsigned short int xsubi[3];

unsigned short int *seed48 (Seed16v)
unsigned short int Seed16v[3];

void srand48 (SeedValue)
long int SeedValue;

Description
Attention: Do not use the drand48, erand48, jrand48, lcong48, lrand48, mrand48,
nrand48, seed48, or srand48 subroutine in a multithreaded environment.

This family of subroutines generates pseudo–random numbers using the linear congruential
algorithm and 48–bit integer arithmetic.

The drand48 subroutine and the erand48 subroutine return positive double–precision
floating–point values uniformly distributed over the interval [0.0, 1.0).

The lrand48 subroutine and the nrand48 subroutine return positive long integers uniformly
distributed over the interval [0,2**31).

The mrand48 subroutine and the jrand48 subroutine return signed long integers uniformly
distributed over the interval [–2**31, 2**31).

The srand48 subroutine, seed48 subroutine, and lcong48 subroutine initialize the
random–number generator. Programs must call one of them before calling the drand48,
lrand48 or mrand48 subroutines. (Although it is not recommended, constant default
initializer values are supplied if the drand48, lrand48 or mrand48 subroutines are called
without first calling an initialization subroutine.) The erand48, nrand48, and jrand48
subroutines do not require that an initialization subroutine be called first.

The previous value pointed to by the seed48 subroutine is stored in a 48–bit internal buffer,
and a pointer to the buffer is returned by the seed48 subroutine. This pointer can be ignored
if it is not needed, or it can be used to allow a program to restart from a given point at a later
time. In this case, the pointer is accessed to retrieve and store the last value pointed to by

1-148 Technical Reference: Base Operating System

the seed48 subroutine, and this value is then used to reinitialize, by means of the seed48
subroutine, when the program is restarted.

All the subroutines work by generating a sequence of 48–bit integer values, x[i], according
to the linear congruential formula:

x[n+1] = (ax[n] + c)mod m, n is > = 0

The parameter m = 248; hence 48–bit integer arithmetic is performed. Unless the lcong48
subroutine has been called, the multiplier value a and the addend value c are:

a = 5DEECE66D base 16 = 273673163155 base 8

c = B base 16 = 13 base 8

Parameters

xsubi Specifies an array of three shorts, which, when concatenated together,
form a 48–bit integer.

SeedValue Specifies the initialization value to begin randomization. Changing this
value changes the randomization pattern.

Seed16v Specifies another seed value; an array of three unsigned shorts that
form a 48–bit seed value.

Parameter Specifies an array of seven shorts, which specifies the initial xsubi
value, the multiplier value a and the add–in value c.

Return Values
The value returned by the drand48, erand48, jrand48, lrand48, nrand48, and mrand48
subroutines is computed by first generating the next 48–bit x[i] in the sequence. Then the
appropriate number of bits, according to the type of data item to be returned, are copied
from the high–order (most significant) bits of x[i] and transformed into the returned value.

The drand48, lrand48, and mrand48 subroutines store the last 48–bit x[i] generated into an
internal buffer; this is why they must be initialized prior to being invoked.

The erand48, jrand48, and nrand48 subroutines require the calling program to provide
storage for the successive x[i] values in the array pointed to by the xsubi parameter. This is
why these routines do not have to be initialized; the calling program places the desired initial
value of x[i] into the array and pass it as a parameter.

By using different parameters, the erand48, jrand48, and nrand48 subroutines allow
separate modules of a large program to generate independent sequences of
pseudo–random numbers. In other words, the sequence of numbers that one module
generates does not depend upon how many times the subroutines are called by other
modules.

The lcong48 subroutine specifies the initial x[i] value, the multiplier value a, and the addend
value c. The Parameter array elements Parameter[0–2] specify x[i], Parameter[3–5] specify
the multiplier a, and Parameter[6] specifies the 16–bit addend c. After lcong48 has been
called, a subsequent call to either the srand48 or seed48 subroutine restores the standard
a and c specified before.

The initializer subroutine seed48 sets the value of x[i] to the 48–bit value specified in the
array pointed to by the Seed16v parameter. In addition, seed48 returns a pointer to a 48–bit
internal buffer that contains the previous value of x[i] that is used only by seed48. The
returned pointer allows you to restart the pseudo–random sequence at a given point. Use
the pointer to copy the previous x[i] value into a temporary array. Then call seed48 with a
pointer to this array to resume processing where the original sequence stopped.

The initializer subroutine srand48 sets the high–order 32 bits of x[i] to the 32 bits contained
in its parameter. The low order 16 bits of x[i] are set to the arbitrary value 330E16.

1-149Base Operating System Runtime Services (A-P)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The rand, srand subroutine, random, srandom, initstate, or setstate subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-150 Technical Reference: Base Operating System

drem or remainder Subroutine

Purpose
Computes the IEEE Remainder as defined in the IEEE Floating–Point Standard.

Libraries
IEEE Math Library (libm.a)
 or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double drem (x, y)
double x, y;

double remainder (double x, double y);

Description
The drem or remainder subroutines calculate the remainder r equal to x minus n to the x
power multiplied by y (r = x – n * y), where the n parameter is the integer nearest the exact
value of x divided by y (x/y). If |n –x/y| = 1/2, then the n parameter is an even
value. Therefore, the remainder is computed exactly, and the absolute value of r (|r|) is
less than or equal to the absolute value of y divided by 2 (|y|/2).

The IEEE Remainder differs from the fmod subroutine in that the IEEE Remainder always
returns an r parameter such that |r| is less than or equal to |y|/2, while FMOD returns
an r such that |r| is less than or equal to |y|. The IEEE Remainder is useful for argument
reduction for transcendental functions.

Note: Compile any routine that uses subroutines from the libm.a library with the –lm flag.
For example: compile the drem.c file:

cc drem.c –lm

Parameters

x Specifies double–precision floating–point value.

y Specifies a double–precision floating–point value.

Return Values
The drem or remainder subroutines return a NaNQ value for (x, 0) and (+/–INF, y).

Error Codes
The remainder subroutine returns a NaNQ value for (x, 0.0) [x not equal to NaN] and
(+/–INF, y) [y not equal to NaN] and set errno to EDOM.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Note: For new development, the remainder subroutine is the preferred interface.

Related Information
The copysign, nextafter, scalb, logb, or ilog subroutine, floor, ceil, nearest, trunc, rint,
itrunc, fmod, fabs, or uitruns subroutine.

IEEE Standard for Binary Floating–Point Arithmetic (ANSI/IEEE Standards 754–1985 and
854–1987) describes the IEEE Remainder Function.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-151Base Operating System Runtime Services (A-P)

_end, _etext, or _edata Identifier

Purpose
Define the first addresses following the program, initialized data, and all data.

Syntax
extern _end;

extern _etext;

extern _edata;

Description
The external names _end, _etext, and _edata are defined by the loader for all programs.
They are not subroutines but identifiers associated with the following addresses:

_etext The first address following the program text.

_edata The first address following the initialized data region.

_end The first address following the data region that is not initialized. The
name end (with no underscore) defines the same address as does
_end (with underscore).

The break value of the program is the first location beyond the data. When a program
begins running, this location coincides with end. However, many factors can change the
break value, including:

• The brk or sbrk subroutine

• The malloc subroutine

• The standard I/O subroutines

• The –p flag with the cc command

Therefore, use the brk or sbrk(0) subroutine, not the end address, to determine the break
value of the program.

Implementation Specifics
These identifiers are part of Base Operating System (BOS) Runtime.

Related Information
The brk or sbrk subroutine, malloc subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-152 Technical Reference: Base Operating System

ecvt, fcvt, or gcvt Subroutine

Purpose
Converts a floating–point number to a string.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *ecvt (Value, NumberOfDigits, DecimalPointer, Sign;)
double Value;
int NumberOfDigits, *DecimalPointer, *Sign;

char *fcvt (Value, NumberOfDigits, DecimalPointer, Sign;)
double Value;
int NumberOfDigits, *DecimalPointer, *Sign;

char *gcvt (Value, NumberOfDigits, Buffer;)
double Value;
int NumberOfDigits;
char *Buffer;

Description
The ecvt, fcvt, and gcvt subroutines convert floating–point numbers to strings.

The ecvt subroutine converts the Value parameter to a null–terminated string and returns a
pointer to it. The NumberOfDigits parameter specifies the number of digits in the string. The
low–order digit is rounded according to the current rounding mode. The ecvt subroutine
sets the integer pointed to by the DecimalPointer parameter to the position of the decimal
point relative to the beginning of the string. (A negative number means the decimal point is
to the left of the digits given in the string.) The decimal point itself is not included in the
string. The ecvt subroutine also sets the integer pointed to by the Sign parameter to a
nonzero value if the Value parameter is negative and sets a value of 0 otherwise.

The fcvt subroutine operates identically to the ecvt subroutine, except that the correct digit
is rounded for C or FORTRAN F–format output of the number of digits specified by the
NumberOfDigits parameter.

Note: In the F–format, the NumberOfDigits parameter is the number of digits desired after
the decimal point. Large numbers produce a long string of digits before the decimal
point, and then NumberOfDigits digits after the decimal point. Generally, the gcvt
and ecvt subroutines are more useful for large numbers.

The gcvt subroutine converts the Value parameter to a null–terminated string, stores it in
the array pointed to by the Buffer parameter, and then returns the Buffer parameter. The
gcvt subroutine attempts to produce a string of the NumberOfDigits parameter significant
digits in FORTRAN F–format. If this is not possible, the E–format is used. The gcvt
subroutine suppresses trailing zeros. The string is ready for printing, complete with minus
sign, decimal point, or exponent, as appropriate. The radix character is determined by the
current locale (see setlocale subroutine). If the setlocale subroutine has not been called
successfully, the default locale, POSIX, is used. The default locale specifies a . (period) as
the radix character. The LC_NUMERIC category determines the value of the radix character
within the current locale.

The ecvt, fcvt, and gcvt subroutines represent the following special values that are
specified in ANSI/IEEE standards 754–1985 and 854–1987 for floating–point arithmetic:

1-153Base Operating System Runtime Services (A-P)

Quiet NaN Indicates a quiet not–a–number (NaNQ)

Signalling NaN Indicates a signaling NaNS

Infinity Indicates a INF value

The sign associated with each of these values is stored in the Sign parameter.

Note: A value of 0 can be positive or negative. In the IEEE floating–point, zeros also have
signs and set the Sign parameter appropriately.

Attention: All three subroutines store the strings in a static area of memory whose
contents are overwritten each time one of the subroutines is called.

Parameters

Value Specifies some double–precision floating–point value.

NumberOfDigits Specifies the number of digits in the string.

DecimalPointer Specifies the position of the decimal point relative to the beginning of
the string.

Sign Specifies that the sign associated with the return value is placed in the
Sign parameter. In IEEE floating–point, since 0 can be signed, the Sign
parameter is set appropriately for signed 0.

Buffer Specifies a character array for the string.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The atof, strtod, atoff, or strtof subroutine, fp_read_rnd, or fp_swap_rnd subroutine,
printf subroutine, scanf subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

IEEE Standard for Binary Floating–Point Arithmetic (ANSI/IEEE Standards 754–1985 and
854–1987).

1-154 Technical Reference: Base Operating System

erf, erfl, erfc, or erfcl Subroutine

Purpose
Computes the error and complementary error functions.

Libraries
IEEE Math Library (libm.a)
 or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double erf (x)
double x;

long double erfl (x)
long double x;

double erfc (x)
double x;

long double erfcl (x)
long double x;

Description
The erf and erfl subroutines return the error function of the x parameter, defined for the erf
subroutine as the following:

erf(x) = (2/sqrt(pi) * (integral [0 to x] of exp(–(t**2)) dt)

erfc(x) = 1.0 – erf(x)

The erfc and erfcl subroutines are provided because of the extreme loss of relative
accuracy if erf(x) is called for large values of the x parameter and the result is subtracted
from 1. For example, 12 decimal places are lost when calculating (1.0 – erf(5)).

Note: Compile any routine that uses subroutines from the libm.a library with the –lm flag.
To compile the erf.c file, for example, enter:

cc erf.c –lm

Parameters

x Specifies a double–precision floating–point value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The exp, expm1, log, log10, log1p, or pow subroutine, sqrt or cbrt subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128–Bit long double Floating–Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

1-155Base Operating System Runtime Services (A-P)

errlog Subroutine

Purpose
Logs an application error to the system error log.

Library
Run–Time Services Library (librts.a)

Syntax
#include <sys/errids.h>
int errlog (ErrorStructure, Length)
void *ErrorStructure;
unsigned int Length;

Description
The errlog subroutine writes an error log entry to the /dev/error file. The errlog subroutine
is used by application programs.

The transfer from the err_rec structure to the error log is by a write subroutine to the
/dev/error special file.

The errdemon process reads from the /dev/error file and writes the error log entry to the
system error log. The timestamp, machine ID, node ID, and Software Vital Product Data
associated with the resource name (if any) are added to the entry before going to the log.

1-156 Technical Reference: Base Operating System

Parameters

ErrorStructure Points to an error record structure containing an error
record. Valid error record structures are typed in the
/usr/include/sys/err_rec.h file. The two error record
structures available are err_rec and err_rec0. The err_rec
structure is used when the detail_data field is required.
When the detail_data field is not required, the
err_rec0 structure is used.

struct err_rec0 {

 unsigned int error_id;

 char resource_name[ERR_NAMESIZE];

};

struct err_rec {

 unsigned int error_id;

 char resource_name[ERR_NAMESIZE];

 char detail_data[1];

};

The fields of the structures err_rec and err_rec0 are:

error_id Specifies an index for the system error
template database, and is assigned by the
errupdate command when adding an error
template. Use the errupdate command
with the –h flag to get a #define
statement for this 8–digit hexadecimal
index.

resource_name

Specifies the name of the resource that
has detected the error. For software errors,
this is the name of a software component
or an executable program. For hardware
errors, this is the name of a device or
system component. It does not indicate
that the component is faulty or needs
replacement instead, it is used to
determine the appropriate diagnostic
modules to be used to analyze the error.

detail_data

Specifies an array from 0 to
ERR_REC_MAX bytes of user–supplied
data. This data may be displayed by the
errpt command in hexadecimal,
alphanumeric, or binary form, according to
the data_encoding fields in the error
log template for this error_id field.

Length Specifies the length in bytes of the err_rec structure, which
is equal to the size of the error_id and
resource_name fields plus the length in bytes of the
detail_data field.

1-157Base Operating System Runtime Services (A-P)

Return Values

0 The entry was logged successfully.

–1 The entry was not logged.

Implementation Specifics
The errlog subroutine is part of Base Operating System (BOS) Runtime.

Files

/dev/error Provides standard device driver interfaces required by the
error log component.

/usr/include/sys/errids.h Contains definitions for error IDs.

/usr/include/sys/err_rec.h Contains structures defined as arguments to the errsave
kernel service and the errlog subroutine.

/var/adm/ras/errlog Maintains the system error log.

Related Information
The errclear command, errdead command, errinstall command, errlogger command,
errmsg command, errpt command, errstop command, errupdate command.

The /dev/error special file.

The errdemon daemon.

The errsave kernel service.

Error Logging Overview in AIX Version 4.3 Problem Solving Guide and Reference.

1-158 Technical Reference: Base Operating System

exec: execl, execle, execlp, execv, execve, execvp, or exect
Subroutine

Purpose
Executes a file.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

extern
char **environ;

int execl (
Path,
Argument0 [, Argument1, ...], 0)
const char *Path, *Argument0, *Argument
1, ...;

int execle (
Path,

Argument0 [, Argument1, ...], 0,

EnvironmentPointer)
const
char *Path, *Argument0, *Argum
ent

1, ...;
char *const EnvironmentPointer[];

int execlp (
File,
Argument0 [, Argument1
, ...], 0)
const char *File, *Argument0, *Argument
1, ...;

int execv (
Path,
ArgumentV)
const char *Path;
char *const ArgumentV[];

1-159Base Operating System Runtime Services (A-P)

int execve (
Path,
ArgumentV,

EnvironmentPointer)
const char *Path;
char
*const ArgumentV[], *EnvironmentPointer

[];

int execvp (
File,
ArgumentV)
const char *File;
char *const ArgumentV[];

int exect (
Path,
ArgumentV,
EnvironmentPointer)
char *Path, *ArgumentV, *EnvironmentPointer [];

Description
The exec subroutine, in all its forms, executes a new program in the calling process. The
exec subroutine does not create a new process, but overlays the current program with a
new one, which is called the new–process image. The new–process image file can be one
of three file types:

• An executable binary file in XCOFF file format. .

• An executable text file that contains a shell procedure (only the execlp and execvp
subroutines allow this type of new–process image file).

• A file that names an executable binary file or shell procedure to be run.

The new–process image inherits the following attributes from the calling process image:
session membership, supplementary group IDs, process signal mask, and pending signals.

The last of the types mentioned is recognized by a header with the following syntax:

#! Path [String]

The #! is the file magic number, which identifies the file type. The path name of the file to be
executed is specified by the Path parameter. The String parameter is an optional character
string that contains no tab or space characters. If specified, this string is passed to the new
process as an argument in front of the name of the new–process image file. The header
must be terminated with a new–line character. When called, the new process passes the
Path parameter as ArgumentV[0]. If a String parameter is specified in the new process
image file, the exec subroutine sets ArgumentV[0] to the String and Path parameter values
concatenated together. The rest of the arguments passed are the same as those passed to
the exec subroutine.

1-160 Technical Reference: Base Operating System

The exec subroutine attempts to cancel outstanding asynchronous I/O requests by this
process. If the asynchronous I/O requests cannot be canceled, the application is blocked
until the requests have completed.

The exec subroutine is similar to the load subroutine, except that the exec subroutine does
not have an explicit library path parameter. Instead, the exec subroutine uses the LIBPATH
environment variable. The LIBPATH variable is ignored when the program that the exec
subroutine is run on has more privilege than the calling program, for example, the suid
program.

The exect subroutine is included for compatibility with older programs being traced with the
ptrace command. The program being executed is forced into hardware single–step mode.

Note: exect is not supported in 64–bit mode.

Parameters

Path Specifies a pointer to the path name of the new–process
image file. If Network File System (NFS) is installed on your
system, this path can cross into another node. Data is
copied into local virtual memory before proceeding.

File Specifies a pointer to the name of the new–process image
file. Unless the File parameter is a full path name, the path
prefix for the file is obtained by searching the directories
named in the PATH environment variable. The initial
environment is supplied by the shell.

Note: The execlp subroutine and the execvp
subroutine take File parameters, but the rest of the exec
subroutines take Path parameters. (For information
about the environment, see the environment
miscellaneous facility and the sh command.)

Argument0 [, Argument1, ...] Point to null–terminated character strings. The strings
constitute the argument list available to the new process.
By convention, at least the Argument0 parameter must be
present, and it must point to a string that is the same as the
Path parameter or its last component.

ArgumentV Specifies an array of pointers to null–terminated character
strings. These strings constitute the argument list available
to the new process. By convention, the ArgumentV
parameter must have at least one element, and it must
point to a string that is the same as the Path parameter or
its last component. The last element of the ArgumentV
parameter is a null pointer.

EnvironmentPointer An array of pointers to null–terminated character strings.
These strings constitute the environment for the new
process. The last element of the EnvironmentPointer
parameter is a null pointer.

When a C program is run, it receives the following parameters:

main (ArgumentCount,
ArgumentV, EnvironmentPointer)
int ArgumentCount;
char *ArgumentV[], *EnvironmentPointer[
];

In this example, the ArgumentCount parameter is the argument count, and the ArgumentV
parameter is an array of character pointers to the arguments themselves. By convention,

1-161Base Operating System Runtime Services (A-P)

the value of the ArgumentCount parameter is at least 1, and the ArgumentV[0] parameter
points to a string containing the name of the new–process image file.

The main routine of a C language program automatically begins with a runtime start–off
routine. This routine sets the environ global variable so that it points to the environment
array passed to the program in EnvironmentPointer. You can access this global variable by
including the following declaration in your program:

extern char **environ;

The execl, execv, execlp, and execvp subroutines use the environ global variable to pass
the calling process current environment to the new process.

File descriptors open in the calling process remain open, except for those whose
close–on–exec flag is set. For those file descriptors that remain open, the file pointer is
unchanged. (For information about file control, see the fcntl.h file.)

The state–of–conversion descriptors and message–catalog descriptors in the new process
image are undefined. For the new process, an equivalent of the setlocale subroutine,
specifying the LC_ALL value for its category and the ”C” value for its locale, is run at
startup.

If the new program requires shared libraries, the exec subroutine finds, opens, and loads
each of them into the new–process address space. The referenced counts for shared
libraries in use by the issuer of the exec are decremented. Shared libraries are searched for
in the directories listed in the LIBPATH environment variable. If any of these files is remote,
the data is copied into local virtual memory.

The exec subroutines reset all caught signals to the default action. Signals that cause the
default action continue to do so after the exec subroutines. Ignored signals remain ignored,
the signal mask remains the same, and the signal stack state is reset. (For information
about signals, see the sigaction subroutine.)

If the SetUserID mode bit of the new–process image file is set, the exec subroutine sets the
effective user ID of the new process to the owner ID of the new–process image file.
Similarly, if the SetGroupID mode bit of the new–process image file is set, the effective
group ID of the new process is set to the group ID of the new–process image file. The real
user ID and real group ID of the new process remain the same as those of the calling
process. (For information about the SetID modes, see the chmod subroutine.)

At the end of the exec operation the saved user ID and saved group ID of the process are
always set to the effective user ID and effective group ID, respectively, of the process.

When one or both of the set ID mode bits is set and the file to be executed is a remote file,
the file user and group IDs go through outbound translation at the server. Then they are
transmitted to the client node where they are translated according to the inbound translation
table. These translated IDs become the user and group IDs of the new process.

Note: setuid and setgid bids on shell scripts do not affect user or group IDs of the
process finally executed.

Profiling is disabled for the new process.

The new process inherits the following attributes from the calling process:

• Nice value (see the getpriority subroutine, setpriority subroutine, nice subroutine)

• Process ID

• Parent process ID

• Process group ID

• semadj values (see the semop subroutine)

• tty group ID (see the exit, atexit, or _exit subroutine, sigaction subroutine)

1-162 Technical Reference: Base Operating System

• trace flag (see request 0 of the ptrace subroutine)

• Time left until an alarm clock signal (see the incinterval subroutine, setitimer subroutine,
and alarm subroutine)

• Current directory

• Root directory

• File–mode creation mask (see the umask subroutine)

• File size limit (see the ulimit subroutine)

• Resource limits (see the getrlimit subroutine, setrlimit subroutine, and vlimit
subroutine)

• tms_utime , tms_stime , tms_cutime , and tms_ctime fields of the tms
structure (see the times subroutine)

• Login user ID

Upon successful completion, the exec subroutines mark for update the st_atime field of
the file.

Examples
1. To run a command and pass it a parameter, enter:

execlp(”li”, ”li”, ”–al”, 0);

 The execlp subroutine searches each of the directories listed in the PATH environment
variable for the li command, and then it overlays the current process image with this
command. The execlp subroutine is not returned, unless the li command cannot be
executed.

Note: This example does not run the shell command processor, so operations
interpreted by the shell, such as using wildcard characters in file names, are not valid.

2. To run the shell to interpret a command, enter:

execl(”/usr/bin/sh”, ”sh”, ”–c”, ”li –l *.c”,

0);

 This runs the sh command with the –c flag, which indicates that the following parameter
is the command to be interpreted. This example uses the execl subroutine instead of the
execlp subroutine because the full path name /usr/bin/sh is specified, making a path
search unnecessary.

Running a shell command in a child process is generally more useful than simply using
the exec subroutine, as shown in this example. The simplest way to do this is to use the
system subroutine.

3. The following is an example of a new–process file that names a program to be run:

#! /usr/bin/awk –f

{ for (i = NF; i > 0; ––i) print $i }

 If this file is named reverse , entering the following command on the command line:

reverse chapter1 chapter2

 This command runs the following command:

/usr/bin/awk –f reverse chapter1 chapter2

Note: The exec subroutines use only the first line of the new–process image file and
ignore the rest of it. Also, the awk command interprets the text that follows a # (pound
sign) as a comment.

1-163Base Operating System Runtime Services (A-P)

Return Values
Upon successful completion, the exec subroutines do not return because the calling
process image is overlaid by the new–process image. If the exec subroutines return to the
calling process, the value of –1 is returned and the errno global variable is set to identify the
error.

Error Codes
If the exec subroutine is unsuccessful, it returns one or more of the following error codes:

EACCES The new–process image file is not an ordinary file.

EACCES The mode of the new–process image file denies execution permission.

ENOEXEC The exec subroutine is neither an execlp subroutine nor an execvp
subroutine. The new–process image file has the appropriate access
permission, but the magic number in its header is not valid.

ENOEXEC The new–process image file has a valid magic number in its header, but
the header is damaged or is incorrect for the machine on which the file is to
be run.

ETXTBSY The new–process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

ENOMEM The new process requires more memory than is allowed by the
system–imposed maximum, the MAXMEM compiler option.

E2BIG The number of bytes in the new–process argument list is greater than the
system–imposed limit. This limit is defined as the NCARGS parameter
value in the sys/param.h file.

EFAULT The Path, ArgumentV, or EnviromentPointer parameter points outside of
the process address space.

EPERM The SetUserID or SetGroupID mode bit is set on the process image file.
The translation tables at the server or client do not allow translation of this
user or group ID.

If the exec subroutine is unsuccessful because of a condition requiring path name
resolution, it returns one or more of the following error codes:

EACCES Search permission is denied on a component of the path prefix.
Access could be denied due to a secure mount.

EFAULT The Path parameter points outside of the allocated address space
of the process.

EIO An input/output (I/O) error occurred during the operation.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of a path name exceeded 255 characters and the
process has the disallow truncation attribute (see the ulimit
subroutine), or an entire path name exceeded 1023 characters.

ENOENT A component of the path prefix does not exist.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENOENT The path name is null.

ENOTDIR A component of the path prefix is not a directory.

ESTALE The root or current directory of the process is located in a virtual
file system that has been unmounted.

1-164 Technical Reference: Base Operating System

In addition, some errors can occur when using the new–process file after the old process
image has been overwritten. These errors include problems in setting up new data and
stack registers, problems in mapping a shared library, or problems in reading the
new–process file. Because returning to the calling process is not possible, the system sends
the SIGKILL signal to the process when one of these errors occurs.

If an error occurred while mapping a shared library, an error message describing the reason
for error is written to standard error before the signal SIGKILL is sent to the process. If a
shared library cannot be mapped, the subroutine returns one of the following error codes:

ENOENT One or more components of the path name of the shared library
file do not exist.

ENOTDIR A component of the path prefix of the shared library file is not a
directory.

ENAMETOOLONG A component of a path name prefix of a shared library file
exceeded 255 characters, or an entire path name exceeded 1023
characters.

EACCES Search permission is denied for a directory listed in the path
prefix of the shared library file.

EACCES The shared library file mode denies execution permission.

ENOEXEC The shared library file has the appropriate access permission, but
a magic number in its header is not valid.

ETXTBSY The shared library file is currently open for writing by some other
process.

ENOMEM The shared library requires more memory than is allowed by the
system–imposed maximum.

ESTALE The process root or current directory is located in a virtual file
system that has been unmounted.

If NFS is installed on the system, the exec subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Note: Currently, a Graphics Library program cannot be overlaid with another Graphics
Library program. The overlaying program can be a nongraphics program. For additional
information, see the /usr/lpp/GL/README file.

Related Information
The alarm or incinterval subroutine, chmod or fchmod subroutine, exit subroutine, fcntl
subroutine, fork subroutine, getrusage or times subroutine, nice subroutine, profil
subroutine, ptrace subroutine.

The semop subroutine, settimer subroutine, sigaction, signal, or sigvec subroutine,
shmat subroutine, system subroutine, ulimit subroutine, umask subroutine.

The awk command, ksh command, sh command.

The environment file.

The XCOFF object (a.out) file format.

The varargs macros.

Asynchronous I/O Overview in AIX Kernel Extensions and Device Support Programming
Concepts.

1-165Base Operating System Runtime Services (A-P)

exit, atexit, or _exit Subroutine

Purpose
Terminates a process.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

void exit (Status)
int Status;

void _exit (Status)
int Status;

#include <sys/limits.h>

int atexit (Function)
void (*Function) (void);

Description
The exit subroutine terminates the calling process after calling the standard I/O library
_cleanup function to flush any buffered output. Also, it calls any functions registered
previously for the process by the atexit subroutine. The atexit subroutine registers functions
called at normal process termination for cleanup processing. Normal termination occurs as
a result of either a call to the exit subroutine or a return statement in the main function.

Each function a call to the atexit subroutine registers must return. This action ensures that
all registered functions are called.

Finally, the exit subroutine calls the _exit subroutine, which completes process termination
and does not return. The _exit subroutine terminates the calling process and causes the
following to occur:

• The _exit subroutine attempts to cancel outstanding asynchronous I/O requests by this
process. If the asynchronous I/O requests cannot be canceled, the application is blocked
until the requests have completed.

• All of the file descriptors open in the calling process are closed. If Network File System
(NFS) is installed on your system, some of these files can be remote. Because the _exit
subroutine terminates the process, any errors encountered during these close operations
go unreported.

• If the parent process of the calling process is running a wait call, it is notified of the
termination of the calling process and the low–order 8 bits (that is, bits 0377 or 0xFF) of
the Status parameter are made available to it.

• If the parent process is not running a wait call when the child process terminates, it may
still do so later on, and the child’s status is returned to it at that time.

• The parent process is sent a SIGCHLD signal when a child process terminates; however,
since the default action for this signal is to ignore it, the signal is usually not seen.

• Terminating a process by exiting does not terminate its child processes.

• Each attached shared memory segment is detached and the shm_nattch value in the
data structure associated with its shared memory identifier is decremented by 1.

• For each semaphore for which the calling process has set a semadj value, that semadj
value is added to the semval of the specified semaphore. (The semop subroutine
provides information about semaphore operations.)

1-166 Technical Reference: Base Operating System

• If the process has a process lock, text lock, or data lock, an unlock routine is performed.
(See the plock subroutine.)

• An accounting record is written on the accounting file if the system accounting routine is
enabled. (The acct subroutine provides information about enabling accounting routines.)

• Locks set by the fcntl, lockf, and flock subroutines are removed.

• If the parent process of the calling process is not ignoring a SIGCHLD signal, the calling
process is transformed into a zombie process, and its parent process is sent a SIGCHLD
signal to notify it of the end of a child process.

• A zombie process occupies a slot in the process table, but has no other space allocated
to it either in user or kernel space. The process table slot that it occupies is partially
overlaid with time–accounting information to be used by the times subroutine. (See the
sys/proc.h file.)

• A process remains a zombie until its parent issues one of the wait subroutines. At this
time, the zombie is laid to rest (deleted), and its process table entry is released.

• Terminating a process does not terminate its child processes. Instead, the parent process
ID of all of the calling–process child processes and zombie child processes is set to the
process ID of init. The init process inherits each of these processes, and catches their
SIGCHLD signals and calls the wait subroutine for each of them.

• If the process is a controlling process, the SIGHUP signal is sent to each process in the
foreground process group of the controlling terminal belonging to the calling process.

• If the process is a controlling process, the controlling terminal associated with the session
is disassociated from the session, allowing it to be acquired by a new controlling process.

• If the exit of the process causes a process group to become orphaned, and if any
member of the newly orphaned process group is stopped, a SIGHUP signal followed by a
SIGCONT signal will be sent to each process in the newly orphaned process group.

Note: The system init process is used to assist cleanup of terminating processes. If the
code for the init process is replaced, the program must be prepared to accept
SIGCHLD signals and issue a wait call for each.

Parameters

Status Indicates the status of the process.

Function Specifies a function to be called at normal process termination for
cleanup processing. You may specify a number of functions to the limit
set by the ATEXIT_MAX function, which is defined in the sys/limits.h
file. A pushdown stack of functions is kept so that the last function
registered is the first function called.

Return Values
Upon successful completion, the atexit subroutine returns a value of 0. Otherwise, a
nonzero value is returned. The exit and _exit subroutines do not return a value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acct subroutine, lockfx, lockf, or flock subroutines, sigaction, sigvec, or signal
subroutine, times subroutine, wait, waitpid, or wait3 subroutine.

Asynchronous I/O Overview in AIX Kernel Extensions and Device Support Programming
Concepts.

1-167Base Operating System Runtime Services (A-P)

exp, expl, expm1, log, logl, log10, log10l, log1p, pow, or powl
Subroutine

Purpose
Computes exponential, logarithm, and power functions.

Libraries
IEEE Math Library (libm.a)
 or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double exp (x)
double x;

long double expl (x)
long double x;

double expm1 (x)
double x;

double log (x)
double x;

long double logl (x)
long double x;

double log10 (x)
double x;

long double log10l (x)
long double x;

double log1p (x)
double x;

double pow (x, y)
double x, y;

long double powl (x, y)
long double x, y;

Description
These subroutines are used to compute exponential, logarithm, and power functions.

The exp and expl subroutines returns exp (x).

The expm1 subroutine returns exp (x)–1.

The log and logl subroutines return the natural logarithm of the x parameter. The value of
the x parameter must be positive.

The log10 and log10l subroutines return the logarithm base 10 of the x parameter . The
value of x must be positive.

The log1p subroutine returns log (1 + x).

The pow and powl subroutines return x**y. If the x parameter is negative or 0, then the y
parameter must be an integer. If the y parameter is 0, then the pow and powl subroutines
return 1.0 for all the x parameters.

The expm1 and log1p subroutines are useful to guarantee that financial calculations of (
(1+x**n) –1) / x, are accurate when the x parameter is small (for example, when calculating
small daily interest rates).

1-168 Technical Reference: Base Operating System

expm1(n * log1p(x))/x

 These subroutines also simplify writing accurate inverse hyperbolic functions.

Note: Compile any routine that uses subroutines from the libm.a library with the –lm flags.
For example: to compile the pow.c file, enter:

cc pow.c –lm

Parameters

x Specifies some double–precision floating–point value.

y Specifies some double–precision floating–point value.

Error Codes
When using the libm.a library:

exp If the correct value would overflow, the exp subroutine returns a
HUGE_VAL value and the errno global variable is set to a ERANGE
value.

log If the x parameter is less than 0, the log subroutine returns a NaNQ
value and sets errno to EDOM. If x= 0, the log subroutine returns a
–HUGE_VAL value but does not modify errno.

log10 If the x parameter is less than 0, the log10 subroutine returns a NaNQ
value and sets errno to EDOM. If x= 0, the log10 subroutine returns a
–HUGE_VAL value but does not modify errno.

pow If the correct value overflows, the powsubroutine returns a HUGE_VAL
value and sets errno to ERANGE. If the x parameter is negative and
the y parameter is not an integer, the pow subroutine returns a NaNQ
value and sets errno to EDOM. If x=0 and the y parameter is negative,
the pow subroutine returns a HUGE_VAL value but does not modify
errno.

powl If the correct value overflows, the powlsubroutine returns a HUGE_VAL
value and sets errno to ERANGE. If the x parameter is negative and
the y parameter is not an integer, the powl subroutine returns a NaNQ
value and sets errno to EDOM. If x=0 and the y parameter is negative,
the powl subroutine returns a HUGE_VAL value but does not modify
errno.

When using libmsaa.a(–lmsaa):

exp If the correct value would overflow, the exp subroutine returns a
HUGE_VAL value. If the correct value would underflow, the exp
subroutine returns 0. In both cases errno is set to ERANGE.

expl If the correct value would overflow, the expl subroutine returns a
HUGE_VAL value. If the correct value would underflow, the expl
subroutine returns 0. In both cases errno is set to ERANGE.

log If the x parameter is not positive, the log subroutine returns a
–HUGE_VAL value, and sets errno to a EDOM value. A message
indicating DOMAIN error (or SING error when x = 0) is output to
standard error.

logl If the x parameter is not positive, the logl subroutine returns the
–HUGE_VAL value, and sets errno to EDOM. A message indicating
DOMAIN error (or SING error when x = 0) is output to standard error.

1-169Base Operating System Runtime Services (A-P)

log10 If the x parameter is not positive, the log10 subroutine returns a
–HUGE_VAL value and sets errno to EDOM. A message indicating
DOMAIN error (or SING error when x = 0) is output to standard error.

log10l If the x parameter is not positive, the log10l subroutine returns a
–HUGE_VAL value and sets errno to EDOM. A message indicating
DOMAIN error (or SING error when x = 0) is output to standard error.

pow If x=0 and the y parameter is not positive, or if the x parameter is
negative and the y parameter is not an integer, the pow subroutine
returns 0 and sets errno to EDOM. In these cases a message indicating
DOMAIN error is output to standard error. When the correct value for
the pow subroutine would overflow or underflow, the pow subroutine
returns:

+HUGE_VAL

 OR

 –HUGE_VAL

 OR

 0

When using either the libm.a library or the libsaa.a library:

expl If the correct value overflows, the expl subroutine returns a HUGE_VAL
value and errno is set to ERANGE.

logl If x<0, the logl subroutine returns a NaNQ value

log10l If x < 0, log10l returns the value NaNQ and sets errno to EDOM. If x
equals 0, log10l returns the value –HUGE_VAL but does not modify
errno.

powl If the correct value overflows, powl returns HUGE_VAL and errno to
ERANGE. If x is negative and y is not an integer, powl returns NaNQ
and sets errno to EDOM. If x = zero and y is negative, powl returns a
HUGE_VAL value but does not modify errno.

These error–handling procedures may be changed with the matherr subroutine when using
the libmsaa.a library.

Implementation Specifics
The exp, expl, expm1, log, logl, log10, log10l, log1p, pow, or powl subroutines are part
of Base Operating System (BOS) Runtime.

The expm1 and log1p subroutines are not part of the ANSI C Library.

Related Information
The hypot or cabs subroutine, matherr subroutine, sinh, cosh, or tanh subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128–Bit long double Floating–Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

1-170 Technical Reference: Base Operating System

fattach Subroutine

Purpose
Attaches a STREAMS–based file descriptor to a file.

Library
Standard C Library (libc.a)

Syntax
#include <stropts.h>
int fattach(int fildes, const char *path);

Description
The fattach subroutine attaches a STREAMS–based file descriptor to a file, effectively
associating a pathname with fildes. The fildes argument must be a valid open file descriptor
associated with a STREAMS file. The path argument points to a pathname of an existing
file. The process must have appropriate privileges, or must be the owner of the file named
by path and have write permission. A successful call to fattach subroutine causes all
pathnames that name the file named by path to name the STREAMS file associated with
fildes, until the STEAMS file is detached from the file. A STREAMS file can be attached to
more than one file and can have several pathnames associated with it.

The attributes of the named STREAMS file are initialized as follows: the permissions, user
ID, group ID, and times are set to those of the file named by path, the number of links is set
to 1, and the size and device identifier are set to those of the STREAMS file associated with
fildes. If any attributes of the named STREAMS file are subsequently changed (for example,
by chmod subroutine), neither the attributes of the underlying file nor the attributes of the
STREAMS file to which fildes refers are affected.

File descriptors referring to the underlying file, opened prior to an fattach subroutine,
continue to refer to the underlying file.

Parameters

fildes A file descriptor identifying an open STREAMS–based object.

path An existing pathname which will be associated with fildes.

Return Value

0 Successful completion.

–1 Not successful and errno set to one of the following.

Errno Value

EACCES Search permission is denied for a component of the path prefix, or
the process is the owner of path but does not have write permission
on the file named by path.

EBADF The file referred to by fildes is not an open file descriptor.

ENOENT A component of path does not name an existing file or path is an
empty string.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID of the process is not the owner of the file
named by path and the process does not have appropriate privilege.

1-171Base Operating System Runtime Services (A-P)

EBUSY The file named by path is currently a mount point or has a
STREAMS file attached to it.

ENAMETOOLONG The size of path exceeds {PATH_MAX}, or a component of path is
longer than {NAME_MAX}.

ELOOP Too many symbolic links wer encountered in resolving path.

EINVAL The fildes argument does not refer to a STREAMS file.

ENOMEM Insufficient storage space is available.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Specifics
The fdetach subroutine, isastream subroutine.

1-172 Technical Reference: Base Operating System

fchdir Subroutine

Purpose
Directory pointed to by the file descriptor becomes the current working directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int fchdir (int Fildes)

Description
The fchdir subroutine causes the directory specified by the Fildes parameter to become the
current working directory.

Parameter

Fildes A file descriptor identifying an open directory obtained from a call to the
open subroutine.

Return Values

0 Successful completion

–1 Not successful and errno set to one of the following.

Error Codes

EACCES Search access if denied.

EBADF The file referred to by Fildes is not an open file descriptor.

ENOTDIR The open file descriptor does not refer to a directory.

Related Information
The chdir subroutine, chroot subroutine, open subroutine.

1-173Base Operating System Runtime Services (A-P)

fclear or fclear64 Subroutine

Purpose
Makes a hole in a file.

Library
Standard C Library (libc.a)

Syntax
off_t fclear (FileDescriptor, NumberOfBytes)
int FileDescriptor;
off_t NumberOfBytes;

Note: The fclear64 subroutine applies to Version 4.2 and later releases.

off64_t fclear64 (FileDescriptor, NumberOfBytes)
int FileDescriptor;
off64_t NumberOfBytes;

Description
Note: The fclear64 subroutine applies to Version 4.2 and later releases.

The fclear and fclear64 subroutines zero the number of bytes specified by the
NumberOfBytes parameter starting at the current file pointer for the file specified in the
FileDescriptor parameter. If Network File System (NFS) is installed on your system, this file
can reside on another node.

The fclear subroutine can only clear up to OFF_MAX bytes of the file while fclear64 can
clear up to the maximum file size.

The fclear and fclear64 subroutines cannot be applied to a file that a process has opened
with the O_DEFER mode.

Successful completion of the fclear and fclear64 subroutines clear the SetUserID bit
(S_ISUID) of the file if any of the following are true:

• The calling process does not have root user authority.

• The effective user ID of the calling process does not match the user ID of the file.

• The file is executable by the group (S_IXGRP) or others (S_IXOTH).

This subroutine also clears the SetGroupID bit (S_ISGID) if:

• The file does not match the effective group ID or one of the supplementary group IDs of
the process,

OR

• The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

Note: Clearing of the SetUserID and SetGroupID bits can occur even if the subroutine fails
because the data in the file was modified before the error was detected.

In the large file enabled programming environment, fclear is redefined to be fclear64.

1-174 Technical Reference: Base Operating System

Parameters

FileDescriptor Indicates the file specified by the FileDescriptor parameter must be
open for writing. The FileDescriptor is a small positive integer used
instead of the file name to identify a file. This function differs from the
logically equivalent write operation in that it returns full blocks of binary
zeros to the file system, constructing holes in the file.

NumberOfBytes Indicates the number of bytes that the seek pointer is advanced. If you
use the fclear and fclear64 subroutines past the end of a file, the rest
of the file is cleared and the seek pointer is advanced by
NumberOfBytes. The file size is updated to include this new hole, which
leaves the current file position at the byte immediately beyond the new
end–of–file pointer.

Return Values
Upon successful completion, a value of NumberOfBytes is returned. Otherwise, a value of
–1 is returned and the errno global variable is set to indicate the error.

Error Codes
The fclear and fclear64 subroutines fail if one or more of the following are true:

EIO I/O error.

EBADF The FileDescriptor value is not a valid file descriptor open for writing.

EINVAL The file is not a regular file.

EMFILE The file is mapped O_DEFER by one or more processes.

EAGAIN The write operation in the fclear subroutine failed due to an enforced
write lock on the file.

EFBIG The current offset plus NumberOfBytes is exceeds the offset maximum
established in the open file description associated with FileDescriptor.

EFBIG An attempt was made to write a file that exceeds the process’ file size
limit or the maximum file size. If the user has set the environment
variable XPG_SUS_ENV=ON prior to execution of the process, then the
SIGXFSZ signal is posted to the process when exceeding the process’
file size limit.

If NFS is installed on the system the fclear and fclear64 subroutines can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The open, openx, or creat subroutine, truncate or ftruncate subroutines.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-175Base Operating System Runtime Services (A-P)

fclose or fflush Subroutine

Purpose
Closes or flushes a stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int fclose (Stream)
FILE *Stream;

int fflush (Stream)
FILE *Stream;

Description
The fclose subroutine writes buffered data to the stream specified by the Stream
parameter, and then closes the stream. The fclose subroutine is automatically called for all
open files when the exit subroutine is invoked.

The fflush subroutine writes any buffered data for the stream specified by the Stream
parameter and leaves the stream open. The fflush subroutine marks the st_ctime and
st_mtime fields of the underlying file for update.

If the Stream parameter is a null pointer, the fflush subroutine performs this flushing action
on all streams for which the behavior is defined.

Parameters

Stream Specifies the output stream.

Return Values
Upon successful completion, the fclose and fflush subroutines return a value of 0.
Otherwise, a value of EOF is returned.

Error Codes
If the fclose and fflush subroutines are unsuccessful, the following errors are returned
through the errno global variable:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the
Stream parameter and the process would be delayed in the write
operation.

EBADF The file descriptor underlying Stream is not valid.

EFBIG An attempt was made to write a file that exceeds the process’ file size
limit or the maximum file size. See the ulimit subroutine.

EFBIG The file is a regular file and an attempt was made to write at or beyond
the offset maximum associated with the corresponding stream.

EINTR The fflush subroutine was interrupted by a signal.

1-176 Technical Reference: Base Operating System

EIO The process is a member of a background process group attempting to
write to its controlling terminal, the TOSTOP signal is set, the process is
neither ignoring nor blocking the SIGTTOU signal and the process
group of the process is orphaned. This error may also be returned
under implementation–dependent conditions.

ENOSPC No free space remained on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for
reading by any process. A SIGPIPE signal is sent to the process.

ENXIO A request was made of a non–existent device, or the request was
outside the capabilities of the device

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The close subroutine, exit, atexit, or _exit subroutine, fopen, freopen, or fdopen
subroutine, setbuf, setvbuf, setbuffer, or setlinebuf subroutine.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

1-177Base Operating System Runtime Services (A-P)

fcntl, dup, or dup2 Subroutine

Purpose
Controls open file descriptors.

Library
Standard C Library (libc.a)

Syntax #include <fcntl.h>
int fcntl (FileDescriptor, Command, Argument)
int FileDescriptor, Command, Argument;

#include <unistd.h>

int dup2(Old, New)
int Old, New;

int dup(FileDescriptor)
int FileDescriptor;

Description
The fcntl subroutine performs controlling operations on the open file specified by the
FileDescriptor parameter. If Network File System (NFS) is installed on your system, the
open file can reside on another node. The fcntl subroutine is used to:

• Duplicate open file descriptors.

• Set and get the file–descriptor flags.

• Set and get the file–status flags.

• Manage record locks.

• Manage asynchronous I/O ownership.

• Close multiple files.

The fcntl subroutine can provide the same functions as the dup and dup2 subroutines.

General Record Locking Information
A lock is either an enforced or advisory lock and either a read or a write lock.

Attention: Buffered I/O does not work properly when used with file locking. Do not use
the standard I/O package routines on files that are going to be locked.

For a lock to be an enforced lock, the Enforced Locking attribute of the file must be set; for
example, the S_ENFMT bit must be set, but the S_IXGRP, S_IXUSR, and S_IXOTH bits
must be clear. Otherwise, the lock is an advisory lock. A given file can have advisory or
enforced locks, but not both. The description of the sys/mode.h file includes a description
of file attributes.

When a process holds an enforced lock on a section of a file, no other process can access
that section of the file with the read or write subroutine. In addition, the open and ftruncate
subroutines cannot truncate the locked section of the file, and the fclear subroutine cannot
modify the locked section of the file. If another process attempts to read or modify the
locked section of the file, the process either sleeps until the section is unlocked or returns
with an error indication.

When a process holds an advisory lock on a section of a file, no other process can lock that
section of the file (or an overlapping section) with the fcntl subroutine. (No other
subroutines are affected.) As a result, processes must voluntarily call the fcntl subroutine in
order to make advisory locks effective.

1-178 Technical Reference: Base Operating System

When a process holds a read lock on a section of a file, other processes can also set read
locks on that section or on subsets of it. Read locks are also called shared locks.

A read lock prevents any other process from setting a write lock on any part of the protected
area. If the read lock is also an enforced lock, no other process can modify the protected
area.

The file descriptor on which a read lock is being placed must have been opened with read
access.

When a process holds a write lock on a section of a file, no other process can set a read
lock or a write lock on that section. Write locks are also called exclusive locks. Only one
write lock and no read locks can exist for a specific section of a file at any time.

If the lock is also an enforced lock, no other process can read or modify the protected area.

The following general rules about file locking apply:

• Changing or unlocking part of a file in the middle of a locked section leaves two smaller
sections locked at each end of the originally locked section.

• If the calling process holds a lock on a file, that lock can be replaced by later calls to the
fcntl subroutine.

• All locks associated with a file for a given process are removed when the process closes
any file descriptor for that file.

• Locks are not inherited by a child process after a fork subroutine is run.

Note: Deadlocks due to file locks in a distributed system are not always detected. When
such deadlocks can possibly occur, the programs requesting the locks should set
time–out timers.

Locks can start and extend beyond the current end of a file but cannot be negative relative
to the beginning of the file. A lock can be set to extend to the end of the file by setting the
l_len field to 0. If such a lock also has the l_start and l_whence fields set to 0, the
whole file is locked. The l_len, l_start, and l_whence locking fields are part of the
flock structure.

Note: The following description applies to AIX Version 4.3 and later releases.

 When an application locks a region of a file using the 32 bit locking interface (F_SETLK),
and the last byte of the lock range includes MAX_OFF (2 Gb – 1), then the lock range for
the unlock request will be extended to include MAX_END (2 ^ ^ 63 – 1).

Parameters

FileDescriptor Specifies an open file descriptor obtained from a successful call to the
open, fcntl, or pipe subroutine. File descriptors are small positive
integers used (instead of file names) to identify files.

Argument Specifies a variable whose value sets the function specified by the
Command parameter. When dealing with file locks, the Argument
parameter must be a pointer to the FLOCK structure.

Command Specifies the operation performed by the fcntl subroutine. The fcntl
subroutine can duplicate open file descriptors, set file–descriptor flags,
set file descriptor locks, set process IDs, and close open file descriptors.

Duplicating File Descriptors

1-179Base Operating System Runtime Services (A-P)

F_DUPFD Returns a new file descriptor as follows:

• Lowest–numbered available file descriptor greater than or equal to
the Argument parameter

• Same object references as the original file

• Same file pointer as the original file (that is, both file descriptors
share one file pointer if the object is a file)

• Same access mode (read, write, or read–write)

• Same file status flags (That is, both file descriptors share the same
file status flags.)

• The close–on–exec flag (FD_CLOEXEC bit) associated with the
new file descriptor is cleared

Setting File–Descriptor Flags

F_GETFD Gets the close–on–exec flag (FD_CLOEXEC bit) that is associated
with the file descriptor specified by the FileDescriptor parameter. The
Argument parameter is ignored. File descriptor flags are associated with
a single file descriptor, and do not affect others associated with the
same file.

F_SETFD Assigns the value of the Argument parameter to the close–on–exec
flag (FD_CLOEXEC bit) that is associated with the FileDescriptor
parameter. If the FD_CLOEXEC flag value is 0, the file remains open
across any calls to exec subroutines; otherwise, the file will close upon
the successful execution of an exec subroutine.

F_GETFL Gets the file–status flags and file–access modes for the open file
description associated with the file descriptor specified by the
FileDescriptor parameter. The open file description is set at the time the
file is opened and applies only to those file descriptors associated with
that particular call to the file. This open file descriptor does not affect
other file descriptors that refer to the same file with different open file
descriptions.

The file–status flags have the following values:

O_APPEND Set append mode.

O_NONBLOCK No delay.

The file–access modes have the following values:

O_RDONLY Open for reading only.

O_RDWR Open for reading and writing.

O_WRONLY Open for writing only.

The file access flags can be extracted from the return value using the
O_ACCMODE mask, which is defined in the fcntl.h file.

F_SETFL Sets the file status flags from the corresponding bits specified by the
Argument parameter. The file–status flags are set for the open file
description associated with the file descriptor specified by the
FileDescriptor parameter. The following flags may be set:

1-180 Technical Reference: Base Operating System

• O_APPEND or FAPPEND

• O_NDELAY or FNDELAY

• O_NONBLOCK or FNONBLOCK

• O_SYNC or FSYNC

• FASYNC

The O_NDELAY and O_NONBLOCK flags affect only operations
against file descriptors derived from the same open subroutine. In BSD,
these operations apply to all file descriptors that refer to the object.

Setting File Locks

F_GETLK Gets information on the first lock that blocks the lock described in the
flock structure. The Argument parameter should be a pointer to a type
struct flock, as defined in the flock.h file. The information retrieved by
the fcntl subroutine overwrites the information in the struct flock
pointed to by the Argument parameter. If no lock is found that would
prevent this lock from being created, the structure is left unchanged,
except for lock type (l_type) which is set to F_UNLCK.

F_SETLK Sets or clears a file–segment lock according to the lock description
pointed to by the Argument parameter. The Argument parameter should
be a pointer to a type struct flock, which is defined in the flock.h file.
The F_SETLK option is used to establish read (or shared) locks
(F_RDLCK), or write (or exclusive) locks (F_WRLCK), as well as to
remove either type of lock (F_UNLCK). The lock types are defined by
the fcntl.h file. If a shared or exclusive lock cannot be set, the fcntl
subroutine returns immediately.

F_SETLKW Performs the same function as the F_SETLK option unless a read or
write lock is blocked by existing locks, in which case the process sleeps
until the section of the file is free to be locked. If a signal that is to be
caught is received while the fcntl subroutine is waiting for a region, the
fcntl subroutine is interrupted, returns a –1, sets the errno global
variable to EINTR. The lock operation is not done.

Note: F_GETLK64, F_SETLK64, and F_SETLKW64 apply to Version 4.2 and later
releases.

1-181Base Operating System Runtime Services (A-P)

F_GETLK64 Gets information on the first lock that blocks the lock described in the
flock64 structure. The Argument parameter should be a pointer to an
object of the type struct flock64, as defined in the flock.h file. The
information retrieved by the fcntl subroutine overwrites the information
in the struct flock64 pointed to by the Argument parameter. If no lock is
found that would prevent this lock from being created, the structure is
left unchanged, except for lock type (l_type) which is set to
F_UNLCK.

F_SETLK64 Sets or clears a file–segment lock according to the lock description
pointed to by the Argument parameter. The Argument parameter should
be a pointer to a type struct flock64, which is defined in the flock.h
file. The F_SETLK option is used to establish read (or shared) locks
(F_RDLCK), or write (or exclusive) locks (F_WRLCK), as well as to
remove either type of lock (F_UNLCK). The lock types are defined by
the fcntl.h file. If a shared or exclusive lock cannot be set, the fcntl
subroutine returns immediately.

F_SETLKW64 Performs the same function as the F_SETLK option unless a read or
write lock is blocked by existing locks, in which case the process sleeps
until the section of the file is free to be locked. If a signal that is to be
caught is received while the fcntl subroutine is waiting for a region, the
fcntl subroutine is interrupted, returns a –1, sets the errno global
variable to EINTR. The lock operation is not done.

Setting Process ID

F_GETOWN Gets the process ID or process group currently receiving SIGIO and
SIGURG signals. Process groups are returned as negative values.

F_SETOWN Sets the process or process group to receive SIGIO and SIGURG
signals. Process groups are specified by supplying a negative Argument
value. Otherwise, the Argument parameter is interpreted as a process
ID.

Closing File Descriptors

F_CLOSEM Closes all file descriptors from FileDescriptor up to the number specified
by the OPEN_MAX value.

Old Specifies an open file descriptor.

New Specifies an open file descriptor that is returned by the dup2
subroutine.

Compatibility Interfaces

The lockfx Subroutine
The fcntl subroutine functions similar to the lockfx subroutine, when the Command
parameter is F_SETLK, F_SETLKW, or F_GETLK, and when used in the following way:

fcntl (FileDescriptor, Command, Argument)

is equivalent to:

lockfx (FileDescriptor, Command, Argument)

The dup and dup2 Subroutines
The fcntl subroutine functions similar to the dup and dup2 subroutines, when used in the
following way:

dup (FileDescriptor)

is equivalent to:

1-182 Technical Reference: Base Operating System

fcntl (FileDescriptor, F_DUPFD, 0)

dup2 (Old, New)

is equivalent to:

close (New);

fcntl(Old, F_DUPFD, New)

The dup and dup2 subroutines differ from the fcntl subroutine in the following ways:

• If the file descriptor specified by the New parameter is greater than or equal to
OPEN_MAX, the dup2 subroutine returns a –1 and sets the errno variable to EBADF.

• If the file descriptor specified by the Old parameter is valid and equal to the file descriptor
specified by the New parameter, the dup2 subroutine will return the file descriptor
specified by the New parameter, without closing it.

• If the file descriptor specified by the Old parameter is not valid, the dup2 subroutine will
be unsuccessful and will not close the file descriptor specified by the New parameter.

• The value returned by the dup and dup2 subroutines is equal to the New parameter
upon successful completion; otherwise, the return value is –1.

Return Values
Upon successful completion, the value returned depends on the value of the Command
parameter, as follows:

Command Return Value

F_DUPFD A new file descriptor

F_GETFD The value of the flag (only the FD_CLOEXEC bit is defined)

F_SETFD A value other than –1

F_GETFL The value of file flags

F_SETFL A value other than –1

F_GETOWN The value of descriptor owner

F_SETOWN A value other than –1

F_GETLK A value other than –1

F_SETLK A value other than –1

F_SETLKW A value other than –1

F_CLOSEM A value other than –1.

If the fcntl subroutine fails, a value of –1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The fcntl subroutine is unsuccessful if one or more of the following are true:

EACCES The Command argument is F_SETLK; the type of lock is a shared or
exclusive lock and the segment of a file to be locked is already
exclusively–locked by another process, or the type is an exclusive lock
and some portion of the segment of a file to be locked is already
shared–locked or exclusive–locked by another process.

EBADF The FileDescriptor parameter is not a valid open file descriptor.

EDEADLK The Command argument is F_SETLKW; the lock is blocked by some
lock from another process and putting the calling process to sleep,
waiting for that lock to become free would cause a deadlock.

1-183Base Operating System Runtime Services (A-P)

EMFILE The Command parameter is F_DUPFD, and the maximum number of
file descriptors are currently open (OPEN_MAX).

EINVAL The Command parameter is F_DUPFD, and the Argument parameter is
negative or greater than or equal to OPEN_MAX.

EINVAL An illegal value was provided for the Command parameter.

EINVAL An attempt was made to lock a fifo or pipe.

ESRCH The value of the Command parameter is F_SETOWN, and the process
ID specified as the Argument parameter is not in use.

EINTR The Command parameter was F_SETLKW and the process received a
signal while waiting to acquire the lock.

EOVERFLOW The Command parameter was F_GETLK and the block lock could not
be represented in the flock structure.

The dup and dup2 subroutines fail if one or both of the following are true:

EBADF The Old parameter specifies an invalid open file descriptor or the New
parameter specifies a file descriptor that is out of range.

EMFILE The number of file descriptors exceeds the OPEN_MAX value or there
is no file descriptor above the value of the New parameter.

If NFS is installed on the system, the fcntl subroutine can fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

If FileDescriptor refers to a terminal device or socket, then asynchronous I/O facilities can
be used. These facilities are normally enabled by using the ioctl subroutine with the
FIOASYNC, FIOSETOWN, and FIOGETOWN commands. However, a BSD–compatible
mechanism is also available if the application is linked with the libbsd.a library.

 When using the libbsd.a library, asynchronous I/O is enabled by using the F_SETFL
command with the FASYNC flag set in the Argument parameter. The F_GETOWN and
F_SETOWN commands get the current asynchronous I/O owner and set the asynchronous
I/O owner.

All applications containing the fcntl subroutine must be complied with _BSD set to a specific
value. Acceptable values are 43 and 44. In addition, all socket applications must include the
BSD libbsd.a library.

Related Information
The close subroutine, execl, excecv, execle, execve, execlp, execvp, or exect
subroutines, fork subroutine, ioctl or ioctlx subroutine, lockf subroutine, open, openx, or
creat subroutines, read subroutine, write subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-184 Technical Reference: Base Operating System

fdetach Subroutine

Purpose
Detaches STREAMS–based file from the file to which it was attached.

Library
Standard C Library (libc.a)

Syntax
#include <stropts.h>
int fdetach(const char *path);

Parameters

path Pathname of a file previous associated with a STREAMS–based object
using the fattach subroutine.

Description
The fdetach subroutine detaches a STREAMS–based file from the file to which it was
attached by a previous call to fattach subroutine. The path argument points to the
pathname of the attached STREAMS file. The process must have appropriate privileges or
be the owner of the file. A successful call to fdetach subroutine causes all pathnames that
named the attached STREAMS file to again name the file to which the STREAMS file was
attached. All subsequent operations on path will operate on the underlying file and not on
the STREAMS file.

All open file descriptors established while the STREAMS file was attached to the file
referenced by path will still refer to the STREAMS file after the fdetach subroutine has
taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a
successful call to fdetach subroutine has the same effect as performing the last close
subroutine on the attached file.

The umount command may be used to detach a file name if an | application exits before
performing fdetach subroutine.

Return Value

0 Successful completion.

–1 Not successful and errno set to one of the following.

Errno Value

EACCES Search permission is denied on a component of the path prefix.

EPERM The effective user ID is not the owner of path and the process does
not have appropriate privileges.

ENOTDIR A component of the path prefix is not a directory.

ENOENT A component of path parameter does not name an existing file or
path is an empty string.

EINVAL The path parameter names a file that is not currently attached.

ENAMETOOLONG The size of path parameter exceeds {PATH_MAX}, or a component
of path is longer than {NAME_MAX}.

1-185Base Operating System Runtime Services (A-P)

ELOOP Too many symbolic links were encountered in resolving the path
parameter.

ENOMEM Insufficient storage space is available.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fattach subroutine, isastream subroutine.

1-186 Technical Reference: Base Operating System

feof, ferror, clearerr, or fileno Macro

Purpose
Checks the status of a stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int feof (Stream)
FILE *Stream;

int ferror (Stream)
FILE *Stream;

void clearerr (Stream)
FILE *Stream;

int fileno (Stream)
FILE *Stream;

Description
The feof macro inquires about the end–of–file character (EOF). If EOF has previously been
detected reading the input stream specified by the Stream parameter, a nonzero value is
returned. Otherwise, a value of 0 is returned.

The ferror macro inquires about input or output errors. If an I/O error has previously
occurred when reading from or writing to the stream specified by the Stream parameter, a
nonzero value is returned. Otherwise, a value of 0 is returned.

The clearerr macro inquires about the status of a stream. The clearerr macro resets the
error indicator and the EOF indicator to a value of 0 for the stream specified by the Stream
parameter.

The fileno macro inquires about the status of a stream. The fileno macro returns the
integer file descriptor associated with the stream pointed to by the Stream parameter.
Otherwise a value of –1 is returned.

Parameters

Stream Specifies the input or output stream.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fopen, freopen, or fdopen subroutine, open subroutine.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

1-187Base Operating System Runtime Services (A-P)

fetch_and_add Subroutine

Purpose
Updates a single word variable atomically.

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

int fetch_and_add (word_addr, value)
atomic_p word_addr;
int value;

Description
The fetch_and_add subroutine increments one word in a single atomic operation. This
operation is useful when a counter variable is shared between several threads or
processes. When updating such a counter variable, it is important to make sure that the
fetch, update, and store operations occur atomically (are not interruptible). For example,
consider the sequence of events which could occur if the operations were interruptible:

1. A process fetches the counter value and adds one to it.

2. A second process fetches the counter value, adds one, and stores it.

3. The first process stores its value.

The result of this is that the update made by the second process is lost.

Traditionally, atomic access to a shared variable would be controlled by a mechanism such
as semaphores. Compared to such mechanisms, the fetch_and_add subroutine requires
very little overhead, and provided that the counter variable fits in a single machine word, this
subroutine provides a highly efficient way of performing this operation.

Note: The word containing the counter variable must be aligned on a full word boundary.

Parameters

word_addr Specifies the address of the word variable to be incremented.

value Specifies the value to be added to the word variable.

Return Values
This subroutine returns the original value of the word.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The fetch_and_and subroutine, fetch_and_or subroutine, compare_and_swap
subroutine.

1-188 Technical Reference: Base Operating System

fetch_and_and or fetch_and_or Subroutine

Purpose
Sets or clears bits in a single word variable atomically.

Library
Standard C library (libc.a)

Syntax
#include <sys/atomic_op.h>

uint fetch_and_and (word_addr, mask)
atomic_p word_addr;
int mask;

uint fetch_and_or (word_addr, mask)
atomic_p word_addr;
int mask;

Description
The fetch_and_and and fetch_and_or subroutines respectively clear and set bits in one
word, according to a bit mask, in a single atomic operation. The fetch_and_and subroutine
clears bits in the word which correspond to clear bits in the bit mask, and the fetch_and_or
subroutine sets bits in the word which correspond to set bits in the bit mask.

These operations are useful when a variable containing bit flags is shared between several
threads or processes. When updating such a variable, it is important that the fetch, bit clear
or set, and store operations occur atomically (are not interruptible). For example, consider
the sequence of events which could occur if the operations were interruptible:

1. A process fetches the flags variable and sets a bit in it.

2. A second process fetches the flags variable, sets a different bit, and stores it.

3. The first process stores its value.

The result is that the update made by the second process is lost.

Traditionally, atomic access to a shared variable would be controlled by a mechanism such
as semaphores. Compared to such mechanisms, the fetch_and_and and fetch_and_or
subroutines require very little overhead, and provided that the flags variable fits in a single
machine word, they provide a highly efficient way of performing this operation.

Note: The word containing the flag bits must be aligned on a full word boundary.

Parameters

word_addr Specifies the address of the single word variable whose bits are to be
cleared or set.

mask Specifies the bit mask which is to be applied to the single word variable.

Return Values
These subroutines return the original value of the word.

Implementation Specifics
These subroutines are part of the Base Operating System (BOS) Runtime.

Related Information
The fetch_and_add subroutine, compare_and_swap subroutine.

1-189Base Operating System Runtime Services (A-P)

finfo or ffinfo Subroutine

Purpose
Returns file information.

Library
Standard C library (libc.a)

Syntax
#include <sys/finfo.h>

int finfo(Path1, cmd, buffer, length)
const char *Path1;
int cmd;
void *buffer;
int length;

int ffinfo (fd, cmd, buffer, length)
int fd;
int cmd;
void *buffer;
int length;

Description
The finfo and ffinfo subroutines return specific file information for the specified file.

Parameters

Path1 Path name of a file system object to query.

fd File descriptor for an open file to query.

cmd Specifies the type of file information to be returned.

buffer User supplied buffer which contains the file information upon
successful return. /usr/include/sys/finfo.h describes the buffer.

length Length of the query buffer.

Commands

F_PATHCONF When the F_PATHCONF command is specified, a file’s implementation
information is returned.

Note: AIX provides another subroutine which retrieves file
implementation characteristics, pathconf command. While the
finfo and ffinfo subroutines can be used to retrieve file
information, it is preferred that programs use the pathconf
interface.

F_DIOCAP When the F_DIOCAP command is specified, the file’s direct 1/0
capability information is returned. The buffer supplied by the application
is of type struct diocapbuf *.

Return Values
Upon successful completion, the finfo and ffinfo subroutines return a value of 0 and the user
supplied buffer is correctly filled in with the file information requested. If the finfo or ffinfo
subroutines were unsuccessful, a value of –1 is returned and the global errno variable is set
to indicate the error.

1-190 Technical Reference: Base Operating System

Error Codes

EACCES Search permission is denied for a component of the path prefix.

EINVAL If the length specified for the user buffer is greater than
MAX_FINFO_BUF.

If the command argument is not supported. If F_DIOCAP command
is specified and the file object does not support Direct I/O.

ENAMETOOLONG The length of the Path parameter string exceeds the PATH_MAX
value.

ENOENT The named file does not exist or the Path parameter points to an
empty string.

ENOTDIR A component of the path prefix is not a directory.

EBADF File descriptor provided is not valid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The pathconf subroutine.

 Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and
Debugging Programs.

1-191Base Operating System Runtime Services (A-P)

flockfile, ftrylockfile, funlockfile Subroutine

Purpose
Provides for explicit application–level locking of stdio (FILE*) objects.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>
void flockfile (FILE * file)
int ftrylockfile (FILE * file)
void funlockfile (FILE * file)

Description
The flockfile, ftrylockfile and funlockfile functions provide for explicit application–level
locking of stdio (FILE*) objects. These functions can be used by a thread to delineate a
sequence of I/O statements that are to be executed as a unit.

 The flockfile function is used by a thread to acquire ownership of a (FILE*) object.

 The ftrylockfile function is used by a thread to acquire ownership of a (FILE*) object if the
object is available; ftrylockfile is a non–blocking version of flockfile. The funlockfile
function is used to relinquish the ownership granted to the thread. The behavior is undefined
if a thread other than the current owner calls the funlockfile function.

Logically, there is a lock count associated with each (FILE*) object. This count is implicitly
initialised to zero when the (FILE*) object is created. The (FILE*) object is unlocked when
the count is zero. When the count is positive, a single thread owns the (FILE*) object. When
the flockfile function is called, if the count is zero or if the count is positive and the caller
owns the (FILE*) object, the count is incremented. Otherwise, the calling thread is
suspended, waiting for the count to return to zero. Each call to funlockfile decrements the
count. This allows matching calls to flockfile (or successful calls to ftrylockfile) and
funlockfile to be nested.

 All functions that reference (FILE*) objects behave as if they use flockfile and funlockfile
internally to obtain ownership of these (FILE*) objects.

Return Values
None for flockfile and funlockfile. The function ftrylock returns zero for success and
non–zero to indicate that the lock cannot be acquired.

Implementation Specifics
Realtime applications may encounter priority inversion when using FILE locks. The problem
occurs when a high priority thread ’’locks’’ a FILE that is about to be ’’unlocked’’ by a low
priority thread, but the low priority thread is preempted by a medium priority thread. This
scenario leads to priority inversion; a high priority thread is blocked by lower priority threads
for an unlimited period of time. During system design, realtime programmers must take into
account the possibility of this kind of priority inversion. They can deal with it in a number of
7434 ways, such as by having critical sections that are guarded by FILE locks execute at a
high priority, so that a thread cannot be preempted while executing in its critical section.

Future Directions
These subroutines are part of Base Operating System (BOS) suroutines.

1-192 Technical Reference: Base Operating System

Related Information
The getc_unlocked subroutine.

The getchar_unlocked subroutine.

The putc_unlocked subroutine.

The putchar_unlocked subroutine.

The stdio.h file.

1-193Base Operating System Runtime Services (A-P)

floor, floorl, ceil, ceill, nearest, trunc, rint, itrunc, uitrunc, fmod,
fmodl, fabs, or fabsl Subroutine

Purpose
Thefloor subroutine, floorl subroutine, ceil subroutine, ceill subroutine, nearest
subroutine, trunc subroutine, and rint subroutine round floating–point numbers to
floating–point integer values.

The itrunc subroutine and uitrunc subroutine round floating–point numbers to signed and
unsigned integers, respectively.

The fmod subroutine and fmodl subroutine compute the modulo remainder. The fabs
subroutine and fabsl subroutine compute the floating–point absolute value.

Libraries
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
 Standard C Library (libc.a) (separate syntax follows)

Syntax
#include <math.h>

double floor (x)
double x;

long double floorl (x)
long double x;

double ceil (x)
double x;

long double ceill (x)
long double x;

double nearest (x)
double x;

double trunc (x)
double x;

double fmod (x,y)
double x, y;

long double fmodl (x)
long double x, y;

double fabs (x)
double x;

long double fabsl (x)
long double x;

Standard C Library (libc.a)

#include <stdlib.h>
#include <limits.h>

double rint (x)
double x;

int itrunc (x)
double x;

unsigned int uitrunc (x)
double x;

1-194 Technical Reference: Base Operating System

Description
The floor subroutine and floorl subroutines return the largest floating–point integer value
not greater than the x parameter.

The ceil subroutine and ceill subroutine return the smallest floating–point integer value not
less than the x parameter.

The nearest subroutine returns the nearest floating–point integer value to the x parameter.
If x lies exactly halfway between the two nearest floating–point integer values, an even
floating–point integer is returned.

The trunc subroutine returns the nearest floating–point integer value to the x parameter in
the direction of 0. This is equivalent to truncating off the fraction bits of the x parameter.

The rint subroutine returns one of the two nearest floating–point integer values to the x
parameter. To determine which integer is returned, use the current floating–point rounding
mode as described in the IEEE Standard for Binary Floating–Point Arithmetic.

If the current rounding mode is round toward –INF, rint(x) is identical to floor(x).

If the current rounding mode is round toward +INF, rint(x) is identical to ceil(x).

If the current rounding mode is round to nearest, rint(x) is identical to nearest(x).

If the current rounding mode is round toward zero, rint(x) is identical to trunc(x).

Note: The default floating–point rounding mode is round to nearest. All C main programs
begin with the rounding mode set to round to nearest.

The itrunc subroutine returns the nearest signed integer to the x parameter in the direction
of 0. This is equivalent to truncating the fraction bits from the x parameter and then
converting x to a signed integer.

The uitrunc subroutine returns the nearest unsigned integer to the x parameter in the
direction of 0. This action is equivalent to truncating off the fraction bits of the x parameter
and then converting x to an unsigned integer.

The fmod subroutine and fmodl subroutine compute the modulo floating–point remainder of
x/y. The fmod and fmodl subroutines return the value x–iy for a i such that if y is nonzero,
the result has the same sign as x and magnitude less than the magnitude of y.

The fabs and fabsl subroutines return the absolute value of x, |x|.

Note: Compile any routine that uses subroutines from the libm.a library with the –la flag.
To compile the floor.c file, for example, enter:

 cc floor.c –lm

Parameters

x Specifies a double–precision floating–point value. For the floorl, ceill,
fmodl, and fabsl subroutines, specifies a long double–precision
floating–point value.

y Specifies a double–precision floating–point value. For the floorl, ceill,
fmodl, and fabsl subroutines, specifies some long double–precision
floating–point value.

Error Codes
The itrunc and uitrunc subroutines return the INT_MAX value if x is greater than or equal
to the INT_MAX value and the INT_MIN value if x is equal to or less than the INT_MIN
value. The itrunc subroutine returns the INT_MIN value if x is a Quiet NaN(not–a–number)
or Silent NaN. The uitrunc subroutine returns 0 if x is a Quiet NaN or Silent NaN. (The
INT_MAX and INT_MIN values are defined in the limits.h file.) The uitrunc subroutine
INT_MAX if x is greater than INT_MAX and 0 if x is less than or equal 0.0

1-195Base Operating System Runtime Services (A-P)

The fmod and fmodl subroutines for (x/0) return a Quiet NaN and set the errno global
variable to a EDOM value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The itrunc, uitrunc, trunc, nearest, and rint subroutines are not part of the ANSI C Library.

Files

float.h Contains the ANSI C FLT_ROUNDS macro.

Related Information
The fp_read_rnd on fp_swap_rnd subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128–Bit long double Floating–Point Format in AIX General Programming Concepts :
Writing and Debugging Programs.

IEEE Standard for Binary Floating–Point Arithmetic (ANSI/IEEE Standards 754–1985 and
854–1987).

1-196 Technical Reference: Base Operating System

fmtmsg Subroutine

Purpose
Display a message in the specified format on standard error, the console, or both.

Library
Standard C Library (libc.a)

Syntax
#include <fmtmsg.h>

int fmtmsg (long Classification,
const char *Label,
int Severity,
cont char *Text;
cont char *Action,
cont char *Tag)

Description
The fmtmsg subroutine can be used to display messages in a specified format instead of
the traditional printf subroutine interface.

Base on a message’s classification component, the fmtmsg subroutine either writes a
formatted message to standard error, the console, or both.

A formatted message consists of up to five parameters. The Classification parameter is not
part of a message displayed to the user, but defines the source of the message and directs
the display of the formatted message.

Parameters

Classification Contains identifiers from the following groups of major classifications
and subclassifications. Any one identifier from a subclass may be used
in combination with a single identifier from a different subclass. Two or
more identifiers from the same subclass should not be used together,
with the exception of identifiers from the display subclass. (Both display
subclass identifiers may be used so that messages can be displayed to
both standard error and system console).

major classifications
Identifies the source of the condition. Identifiers are:
MM_HARD (hardware), MM_SOFT (software), and
MM_FIRM (firmware).

message source subclassifications
Identifies the type of software in which the problem is
detected. Identifiers are: MM_APPL (application),
MM_UTIL (utility), and MM_OPSYS (operating
system).

display subclassification
Indicates where the message is to be displayed.
Identifiers are: MM_PRINT to display the message on
the standard error stream, MM_CONSOLE to display
the message on the system console. One or both
identifiers may be used.

1-197Base Operating System Runtime Services (A-P)

status subclassifications
Indicates whether the application will recover from the
condition. Identifiers are:MM_RECOVER (recoverable)
and MM_RECOV (non–recoverable).

An additional identifier, MM_NULLMC, identifies that no classification
component is supplied for the message.

Label Identifies the source to the message. The format is two fields separated
by a colon. The first field is up to 10 bytes, the second field is up to 14
bytes.

Severity

Text Describes the error condition that produced the message. The
character string is not limited to a specific size. If the character string is
null then a message will be issued stating that no text has been
provided.

Action Describes the first step to be taken in the error–recovery process. The
fmtmsg subroutine precedes the action string with the prefix: TO FIX:.
The Action string is not limited to a specific size.

Tag An identifier which references online documentation for the message.
Suggested usage is that tag includes the Label and a unique identifying
number. A sample tag is UX:cat:146.

Environment Variables
The MSGVERB (message verbosity) environment variable controls the behavior of the
fmtmsg subroutine.

MSGVERB tells the fmtmsg subroutine which message components it is to select when
writing messages to standard error. The value of MSGVERB is a colon–separated list of
optional keywords. MSGVERB can be set as follows:

MSGVERB=[keyword[:keyword[:...]]]

export MSGVERB

Valid keywords are: Label, Severity, Text, Action, and Tag. If MSGVERB contains a keyword
for a component and the component’s value is not the component’s null value, fmtmsg
subroutine includes that component in the message when writing the message to standard
error. If MSGVERB does not include a keyword for a message component, that component
is not included in the display of the message. The keywords may appear in any order. If
MSGVERB is not defined, if its value is the null string, if its value is not of the correct format,
of if it contains keywords other than the valid ones listed previously, the fmtmsg subroutine
selects all components.

MSGVERB affects only which components are selected for display to standard error. All
message components are included in console messages.

Application Usage
One or more message components may be systematically omitted from messages
generated by an application by using the null value of the parameter for that component.
The table below indicates the null values and identifiers for fmtmsg subroutine parameters.

Parameter Type Null–Value Identifier

label char* (char*)0 MM_NULLLBL

severity int 0 MM_NULLSEV

class long 0L MM_NULLMC

text char* (char*)0 MM_NULLTXT

1-198 Technical Reference: Base Operating System

action char* (char*)0 MM_NULLACT

tag char* (char*)0 MM_NULLTAG

Another means of systematically omitting a component is by omitting the component
keywords when defining the MSGVERB environment variable.

Return Values
The exit codes for the fmtmsg subroutine are the following:

MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_MOMSG The function was unable to generate a message on standard error.

MM_NOCON The function was unable to generate a console message.

Examples
1. The following example of the fmtmsg subroutine:

fmtmsg(MM_PRINT, ”UX:cat”, MM_ERROR, ”illegal option”,

”refer tp cat in user’s reference manual”, ”UX:cat:001”)

 produces a complete message in the specified message format:

UX:cat ERROR: illegal option

TO FIX: refer to cat in user’s reference manual UX:cat:001

2. When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

 and the Example 1 is used, the fmtmsg subroutine produces:

ERROR: illegal option

TO FIX: refer to cat in user’s reference manual UX:cat:001

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The printf routine.

1-199Base Operating System Runtime Services (A-P)

fnmatch Subroutine

Purpose
Matches file name patterns.

Library
Standard C Library (libc. a)

Syntax
#include <fnmatch.h>

int fnmatch (Pattern, String, Flags);
int Flags;
const char *Pattern, *String;

Description
The fnmatch subroutine checks the string specified by the String parameter to see if it
matches the pattern specified by the Pattern parameter.

The fnmatch subroutine can be used by an application or command that needs to read a
dictionary and apply a pattern against each entry; the find command is an example of this.
It can also be used by the pax command to process its Pattern variables, or by applications
that need to match strings in a similar manner.

Parameters

Pattern Contains the pattern to which the String parameter is to be compared.
The Pattern parameter can include the following special characters:

* (asterisk) Matches zero, one, or more characters.

? (question mark) Matches any single character, but will not match 0
(zero) characters.

[] (brackets) Matches any one of the characters enclosed
within the brackets. If a pair of characters
separated by a dash are contained within the
brackets, the pattern matches any character that
lexically falls between the two characters in the
current locale.

String Contains the string to be compared against the Pattern parameter.

Flags Contains a bit flag specifying the configurable attributes of the
comparison to be performed by the fnmatch subroutine.

The Flags parameter modifies the interpretation of the Pattern and
String parameters. It is the bitwise inclusive OR of zero or more of the
following flags (defined in the fnmatch.h file):

FNM_PATHNAME Indicates the / (slash) in the String parameter
matches a / in the Pattern parameter.

FNM_PERIOD Indicates a leading period in the String parameter
matches a period in the Pattern parameter.

FNM_NOESCAPE Enables quoting of special characters using the \
(backslash).

If the FNM_ PATHNAME flag is set in the Flags parameter, a / (slash) in the String
parameter is explicitly matched by a / in the Pattern parameter. It is not matched by either

1-200 Technical Reference: Base Operating System

the * (asterisk) or ? (question–mark) special characters, nor by a bracket expression. If the
FNM_PATHNAME flag is not set, the / is treated as an ordinary character.

If the FNM_PERIOD flag is set in the Flags parameter, then a leading period in the String
parameter only matches a period in the Pattern parameter; it is not matched by either the
asterisk or question–mark special characters, nor by a bracket expression. The setting of
the FNM_PATHNAME flag determines a period to be leading, according to the following
rules:

• If the FNM_PATHNAME flag is set, a . (period) is leading only if it is the first character in
the String parameter or if it immediately follows a /.

• If the FNM_PATHNAME flag is not set, a . (period) is leading only if it is the first character
of the String parameter. If FNM_PERIOD is not set, no special restrictions are placed on
matching a period.

If the FNM_NOESCAPE flag is not set in the Flags parameter, a \ (backslash) character in
the Pattern parameter, followed by any other character, will match that second character in
the String parameter. For example, \\ will match a backslash in the String parameter. If the
FNM_NOESCAPE flag is set, a \ (backslash) will be treated as an ordinary character.

Return Values
If the value in the String parameter matches the pattern specified by the Pattern parameter,
the fnmatch subroutine returns 0. If there is no match, the fnmatch subroutine returns the
FNM_NOMATCH constant, which is defined in the fnmatch.h file. If an error occurs, the
fnmatch subroutine returns a nonzero value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/usr/include/fnmatch.h Contains system–defined flags and constants.

Related Information
The glob subroutine, globfree subroutine, regcomp subroutine, regfree subroutine,
regerror subroutine, regexec subroutine.

The find command, pax command.

Files, Directories, and File Systems for Programmers and Understanding Internationalized
Regular Expression Subroutines Ln AIX General Programming Concepts : Writing and
Debugging Programs

1-201Base Operating System Runtime Services (A-P)

fopen, fopen64, freopen, freopen64 or fdopen Subroutine

Purpose
Opens a stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
FILE *fopen (Path, Type)
const char *Path, *Type;

FILE *fopen64 (Path, Type)
char *Path, *Type;

FILE *freopen (Path, Type, Stream)
const char *Path, *Type;
FILE *Stream;

FILE *freopen64 (Path, Type, Stream)
char *Path, *Type;
FILE *Stream;

FILE *fdopen (FileDescriptor, Type)
int FileDescriptor;
const char *Type;

Description
The fopen and fopen64 subroutines open the file named by the Path parameter and
associate a stream with it and return a pointer to the FILE structure of this stream.

When you open a file for update, you can perform both input and output operations on the
resulting stream. However, an output operation cannot be directly followed by an input
operation without an intervening fflush subroutine call or a file positioning operation (fseek,
fseeko, fseeko64, fsetpos, fsetpos64 or rewind subroutine). Also, an input operation
cannot be directly followed by an output operation without an intervening flush or file
positioning operation, unless the input operation encounters the end of the file.

When you open a file for appending (that is, when the Type parameter is set to a), it is
impossible to overwrite information already in the file.

If two separate processes open the same file for append, each process can write freely to
the file without destroying the output being written by the other. The output from the two
processes is intermixed in the order in which it is written to the file.

Note: If the data is buffered, it is not actually written until it is flushed.

The freopen and freopen64 subroutines first attempt to flush the stream and close any file
descriptor associated with the Stream parameter. Failure to flush the stream or close the file
descriptor is ignored.

The freopen and freopen64 subroutines substitute the named file in place of the open
stream. The original stream is closed regardless of whether the subsequent open succeeds.
The freopen and freopen64 subroutines returns a pointer to the FILE structure associated
with the Stream parameter. The freopen and freopen64 subroutines is typically used to
attach the pre–opened streams associated with standard input (stdin), standard output
(stdout), and standard error (stderr) streams to other files.

1-202 Technical Reference: Base Operating System

The fdopen subroutine associates a stream with a file descriptor obtained from an openx
subroutine, dup subroutine, creat subroutine, or pipe subroutine. These subroutines open
files but do not return pointers to FILE structures. Many of the standard I/O package
subroutines require pointers to FILE structures.

The Type parameter for the fdopen subroutine specifies the mode of the stream, such as r
to open a file for reading, or a to open a file for appending (writing at the end of the file). The
mode value of the Type parameter specified with the fdopen subroutine must agree with the
mode of the file specified when the file was originally opened or created.

The largest value that can be represented correctly in an object of type off_t will be
established as the offset maximum in the open file description.

Parameters

Path Points to a character string that contains the name of the file to be
opened.

Type Points to a character string that has one of the following values:

r Opens a text file for reading.

w Creates a new text file for writing, or opens and
truncates a file to 0 length.

a Appends (opens a text file for writing at the end of the
file, or creates a file for writing).

rb Opens a binary file for reading.

wb Creates a binary file for writing, or opens and truncates
a file to 0.

ab Appends (opens a binary file for writing at the end of
the file, or creates a file for writing).

r+ Opens a file for update (reading and writing).

w+ Truncates or creates a file for update.

a+ Appends (opens a text file for writing at end of file, or
creates a file for writing).

r+b , rb+ Opens a binary file for update (reading and writing).

w+b , wb+ Creates a binary file for update, or opens and truncates
a file to 0 length.

a+b , ab+ Appends (opens a binary file for update, writing at the
end of the file, or creates a file for writing).

Note: The operating system does not distinguish between text and
binary files. The b value in the Type parameter value is ignored.

Stream Specifies the input stream.

FileDescriptor Specifies a valid open file descriptor.

Return Values
If the fdopen, fopen, fopen64, freopen or freopen64 subroutine is unsuccessful, a null
pointer is returned and the errno global variable is set to indicate the error.

Error Codes
The fopen, fopen64, freopen and freopen64 subroutines are unsuccessful if the following
is true:

1-203Base Operating System Runtime Services (A-P)

EACCES Search permission is denied on a component of the path prefix, the
file exists and the permissions specified by the mode are denied, or
the file does not exist and write permission is denied for the parent
directory of the file to be created.

ELOOP Too many symbolic links were encountered in resolving path.

EINTR A signal was received during the process.

EISDIR The named file is a directory and the process does not have write
access to it.

ENAMETOOLONG The length of the filename exceeds PATH_MAX or a pathname
component is longer than NAME_MAX.

ENFILE The maximum number of files allowed are currently open.

ENOENT The named file does not exist or the File Descriptor parameter points
to an empty string.

ENOSPC The file is not yet created and the directory or file system to contain
the new file cannot be expanded.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character– or block–special file, and the device
associated with this special file does not exist.

EOVERFLOW The named file is a regular file and the size of the file cannot be
represented correctly in an object of type off_t.

EROFS The named file resides on a read–only file system and does not
have write access.

ETXTBSY The file is a pure–procedure (shared–text) file that is being executed
and the process does not have write access.

The fdopen, fopen, fopen64, freopen and freopen64 subroutines are unsuccessful if the
following is true:

EINVAL The value of the Type argument is not valid.

EINVAL The value of the mode argument is not valid.

EMFILE FOPEN_MAX streams are currently open in the calling process.

EMFILE STREAM_MAX streams are currently open in the calling process.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ENOMEM Insufficient storage space is available.

The freopen and fopen subroutines are unsuccessful if the following is true:

EOVERFLOW The named file is a size larger than 2 Gigabytes.

The fdopen subroutine is unsuccessful if the following is true:

EBADF The value of the File Descriptor parameter is not valid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

POSIX

w Truncates to 0 length or creates text file for writing.

w+ Truncates to 0 length or creates text file for update.

1-204 Technical Reference: Base Operating System

a Opens or creates text file for writing at end of file.

a+ Opens or creates text file for update, writing at end of file.

SAA
At least eight streams, including three standard text streams, can open simultaneously. Both
binary and text modes are supported.

Related Information
The fclose or fflush subroutine, fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64,
fgetpos, fgetpos64 or fsetpos subroutine, open, open64, openx, or creat subroutine,
setbuf, setvbuf, setbuffer, or setlinebuf subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-205Base Operating System Runtime Services (A-P)

fork or vfork Subroutine

fork, f_fork, or vfork Subroutine

Purpose
Creates a new process.

Libraries
fork and vfork: Standard C Library (libc.a)

fork, f_fork, and vfork: Standard C Library (libc.a)

Syntax
#include <unistd.h>

pid_t fork(void)

pid_t f_fork(void)

int vfork(void)

Description
The fork subroutine creates a new process. The new process (child process) is an almost
exact copy of the calling process (parent process). The child process inherits the following
attributes from the parent process:

• Environment

• Close–on–exec flags (described in the exec subroutine)

• Signal handling settings (such as the SIG_DFL value, the SIG_IGN value, and the
Function Address parameter)

• Set user ID mode bit

• Set group ID mode bit

• Profiling on and off status

• Nice value

• All attached shared libraries

• Process group ID

• tty group ID (described in the exit, atexit, or _exit subroutine, signal subroutine, and
raise subroutine)

• Current directory

• Root directory

• File–mode creation mask (described in the umask subroutine)

• File size limit (described in the ulimit subroutine)

• Attached shared memory segments (described in the shmat subroutine)

• Attached mapped file segments (described in the shmat subroutine)

• Debugger process ID and multiprocess flag if the parent process has multiprocess
debugging enabled (described in the ptrace subroutine).

The child process differs from the parent process in the following ways:

• The child process has only one user thread; it is the one that called the fork subroutine.

1-206 Technical Reference: Base Operating System

• The child process has a unique process ID.

• The child process ID does not match any active process group ID.

• The child process has a different parent process ID.

• The child process has its own copy of the file descriptors for the parent process.
However, each file descriptor of the child process shares a common file pointer with the
corresponding file descriptor of the parent process.

• All semadj values are cleared. For information about semadj values, see the semop
subroutine.

• Process locks, text locks, and data locks are not inherited by the child process. For
information about locks, see the plock subroutine.

• If multiprocess debugging is turned on, the trace flags are inherited from the parent;
otherwise, the trace flags are reset. For information about request 0, see the ptrace
subroutine.

• The child process utime, stime, cutime, and cstime subroutines are set to 0. (For more
information, see the getrusage, times, and vtimes subroutines.)

• Any pending alarms are cleared in the child process. (For more information, see the
incinterval, setitimer, and alarm subroutines.)

• The set of signals pending for the child process is initialized to the empty set.

• The child process can have its own copy of the message catalogue for the parent
process.

• The set of signals pending for the child process is initialized as an empty set.

Attention: If you are using the fork or vfork subroutines with an Enhanced X-Windows,
X Toolkit, or Motif application, open a separate display connection (socket) for the forked
process. If the child process uses the same display connection as the parent, the X
Server will not be able to interpret the resulting data. See the Implementation Specifics
section for more information.

The f_fork subroutine is similar to fork, except for:

• It is required that the child process calls one of the exec functions immediately after it is
created. Since the fork handlers are never called, the application data, mutexes and the
locks are all undefined in the child process.

Return Values
Upon successful completion, the fork subroutine returns a value of 0 to the child process
and returns the process ID of the child process to the parent process. Otherwise, a value of
–1 is returned to the parent process, no child process is created, and the errno global
variable is set to indicate the error.

Error Codes
The fork subroutine is unsuccessful if one or more of the following are true:

EAGAIN Exceeds the limit on the total number of processes running either
systemwide or by a single user, or the system does not have the
resources necessary to create another process.

ENOMEM Not enough space exists for this process.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-207Base Operating System Runtime Services (A-P)

The vfork subroutine is supported as a compatibility interface for older Berkeley Software
Distribution (BSD) system programs and can be used by compiling with the Berkeley
Compatibility Library (libbsd.a).

In the Version 4 of the operating system, the parent process does not have to wait until the
child either exits or executes, as it does in BSD systems. The child process is given a new
address space, as in the fork subroutine. The child process does not share any parent
address space.

Attention: When using the fork or vfork subroutines with an Enhanced X-Windows, X
Toolkit, or Motif application, a separate display connection (socket) should be opened for
the forked process. Use the XOpenDisplay or the XtOpenDisplay subroutines to open
the separate connection. The child process should never use the same display
connection as the parent. Display connections are embodied with sockets, and sockets
are inherited by the child process. Any attempt to have multiple processes writing to the
same display connection results in the random interleaving of X protocol packets at the
word level. The resulting data written to the socket will not be valid or undefined X
protocol packets, and the X Server will not be able to interpret it.

Attention: Although the fork and vfork subroutine may be used with Graphics Library
applications, the child process must not make any additional Graphics Library subroutine
calls. The child application inherits some, but not all of the graphics hardware resources
of the parent. Drawing by the child process may hang the graphics adapter, the
Enhanced X Server, or may cause unpredictable results and place the system into an
unpredictable state.

Note: Some Graphics Library subroutines, such as the winopen subroutine, implicitly
create an X display connection. This connection may be obtained with the getXdpy
subroutine.

For additional information, see the /usr/lpp/GL/README file.

Related Information
The alarm subroutine, bindprocessor subroutine, exec subroutine, exit, atexit, or _exit
subroutine, getrusage or times subroutine, getXdpy subroutine, incinterval subroutine,
nice subroutine, plock subroutine, pthread_atfork subroutine, ptrace subroutine, raise
subroutine, semop subroutine, setitimer subroutine, shmat subroutine, setpriority or
getpriority subroutine, sigaction, sigvec, or signal subroutine, ulimit subroutine, umask
subroutine, wait, waitpid, or wait3 subroutine, winopen subroutine, XOpenDisplay
subroutine, XtOpenDisplay subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

Process Duplication and Termination in AIX General Programming Concepts : Writing and
Debugging ProgramsLK provides more information about forking a multi–threaded process.

1-208 Technical Reference: Base Operating System

fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,
fp_disable_all, or fp_disable Subroutine

Purpose
These subroutines allow operations on the floating–point trap control.

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

int fp_any_enable()
int fp_is_enabled(Mask)
fptrap_t Mask;

void fp_enable_all()
void fp_enable(Mask)
fptrap_t Mask;

void fp_disable_all()
void fp_disable(Mask)
fptrap_t Mask;

Description
Floating point traps must be enabled before traps can be generated. These subroutines aid
in manipulating floating–point traps and identifying the trap state and type.

In order to take traps on floating point exceptions, the fp_trap subroutine must first be
called to put the process in serialized state, and the fp_enable subroutine or fp_enable_all
subroutine must be called to enable the appropriate traps.

The header file fptrap.h defines the following names for the individual bits in the
floating–point trap control:

TRP_INVALID Invalid Operation Summary

TRP_DIV_BY_ZERO Divide by Zero

TRP_OVERFLOW Overflow

TRP_UNDERFLOW Underflow

TRP_INEXACT Inexact Result

Parameters

Mask A 32–bit pattern that identifies floating–point traps.

Return Values
The fp_any_enable subroutine returns 1 if any floating–point traps are enabled. Otherwise,
0 is returned.

The fp_is_enabled subroutine returns 1 if the floating–point traps specified by the Mask
parameter are enabled. Otherwise, 0 is returned.

The fp_enable_all subroutine enables all floating–point traps.

The fp_enable subroutine enables all floating–point traps specified by the Mask parameter.

The fp_disable_all subroutine disables all floating–point traps.

1-209Base Operating System Runtime Services (A-P)

The fp_disable subroutine disables all floating–point traps specified by the Mask
parameter.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fp_clr_flag, fp_set_flag, fp_read_flag, fp_swap_flag subroutine, fp_invalid_op,
fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp subroutines,
fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr,
fp_iop_invcmp subroutines, fp_read_rnd, and fp_swap_rnd subroutines, fp_trap
subroutine.

Floating–Point Processor Overview in Hardware Technical Information-General
Architectures.

The IEEE Standard for Binary Floating–Point Arithmetic (ANSI/IEEE Standards 754–1985
and 854–1987).

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-210 Technical Reference: Base Operating System

fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag
Subroutine

Purpose
Allows operations on the floating–point exception flags.

Library
Standard C Library (libc.a)

Syntax
#include <float.h>
#include <fpxcp.h>

void fp_clr_flag(Mask)
fpflag_t Mask;

void fp_set_flag(Mask)
fpflag_t Mask;

fpflag_t fp_read_flag()

fpflag_t fp_swap_flag(Mask)
fpflag_t Mask;

Description
These subroutines aid in determining both when an exception has occurred and the
exception type. These subroutines can be called explicitly around blocks of code that may
cause a floating–point exception.

According to the IEEE Standard for Binary Floating–Point Arithmetic, the following types of
floating–point operations must be signaled when detected in a floating–point operation:

• Invalid operation

• Division by zero

• Overflow

• Underflow

• Inexact

An invalid operation occurs when the result cannot be represented (for example, a sqrt
operation on a number less than 0).

The IEEE Standard for Binary Floating–Point Arithmetic states: ”For each type of exception,
the implementation shall provide a status flag that shall be set on any occurrence of the
corresponding exception when no corresponding trap occurs. It shall be reset only at the
user’s request. The user shall be able to test and to alter the status flags individually, and
should further be able to save and restore all five at one time.”

Floating–point operations can set flags in the floating–point exception status but cannot
clear them. Users can clear a flag in the floating–point exception status using an explicit
software action such as the fp_swap_flag (0) subroutine.

The fpxcp.h file defines the following names for the flags indicating floating–point exception
status:

FP_INVALID Invalid operation summary

FP_OVERFLOW Overflow

FP_UNDERFLOW Underflow

FP_DIV_BY_ZERO Division by 0

FP_INEXACT Inexact result

1-211Base Operating System Runtime Services (A-P)

In addition to these flags, the operating system supports additional information about the
cause of an invalid operation exception. The following flags also indicate floating–point
exception status and defined in the fpxcp.h file. The flag number for each exception type
varies, but the mnemonics are the same for all ports. The following invalid operation detail
flags are not required for conformance to the IEEE floating–point exceptions standard:

FP_INV_SNAN Signaling NaN

FP_INV_ISI INF – INF

FP_INV_IDI INF / INF

FP_INV_ZDZ 0 / 0

FP_INV_IMZ INF x 0

FP_INV_CMP Unordered compare

FP_INV_SQRT Square root of a negative number

FP_INV_CVI Conversion to integer error

FP_INV_VXSOFT Software request

Parameters

Mask A 32–bit pattern that identifies floating–point exception flags.

Return Values
The fp_clr_flag subroutine resets the exception status flags defined by the Mask parameter
to 0 (false). The remaining flags in the exception status are unchanged.

The fp_set_flag subroutine sets the exception status flags defined by the Mask parameter
to 1 (true). The remaining flags in the exception status are unchanged.

The fp_read_flag subroutine returns the current floating–point exception status. The flags
in the returned exception status can be tested using the flag definitions above. You can test
individual flags or sets of flags.

The fp_swap_flag subroutine writes the Mask parameter into the floating–point status and
returns the floating–point exception status from before the write.

Users set or reset multiple exception flags using fp_set_flag and fp_clr_flag by ANDing or
ORing definitions for individual flags. For example, the following resets both the overflow
and inexact flags:

fp_clr_flag (FP_OVERFLOW | FP_INEXACT)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable, or
fp_disable_all subroutine, fp_any_xcp, fp_divbyzero, fp_inexact, fp_invalid_op,
fp_overflow, fp_underflow subroutines, fp_iop_infdinf, fp_iop_infmzr, fp_iop_infsinf,
fp_iop_invcmp, fp_iop_snan, or fp_iop_zrdzr subroutines, fp_read_rnd or fp_swap_rnd
subroutine.

IEEE Standard for Binary Floating–Point Arithmetic (ANSI/IEEE Standards 754–1985 and
854–1987) describes the IEEE floating–point exceptions.

Floating–Point Exceptions Overview and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-212 Technical Reference: Base Operating System

fp_cpusync Subroutine

Purpose
Queries or changes the floating–point exception enable (FE) bit in the Machine Status
register (MSR).

Note: This subroutine has been replaced by the fp_trapstate subroutine. The
fp_cpusync subroutine is supported for compatibility, but the fp_trapstate subroutine
should be used for development.

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

int fp_cpusync (Flag);
int Flag;

Description
The fp_cpusync subroutine is a service routine used to query, set, or reset the Machine
Status Register (MSR) floating–point exception enable (FE) bit. The MSR FE bit determines
whether a processor runs in pipeline or serial mode. Floating–point traps can only be
generated by the hardware when the processor is in synchronous mode.

The fp_cpusync subroutine changes only the MSR FE bit. It is a service routine for use in
developing custom floating–point exception–handling software. If you are using the
fp_enable or fp_enable_all subroutine or the fp_sh_trap_info or fp_sh_set_stat
subroutine, you must use the fp_trap subroutine to place the process in serial mode.

Parameters

Flag Specifies to query or modify the MSR FE bit:

FP_SYNC_OFF Sets the FE bit in the MSR to Off, which disables
floating–point exception processing immediately.

FP_SYNC_ON Sets the FE bit in the MSR to On, which enables
floating–exception processing for the next
floating–point operation.

FP_SYNC_QUERY Returns the current state of the process (either
FP_SYNC_ON or FP_SYNC_OFF) without
modifying it.

If called with any other value, the fp_cpusync subroutine returns FP_SYNC_ERROR.

Return Values
If called with the FP_SYNC_OFF or FP_SYNC_ON flag, the fp_cpusync subroutine returns
a value indicating which flag was in the previous state of the process.

If called with the FP_SYNC _QUERY flag, the fp_cpusync subroutine returns a value
indicating the current state of the process, either the FP_SYNC_OFF or FP_SYNC_ON flag.

Error Codes
If the fp_cpusync subroutine is called with an invalid parameter, the subroutine returns
FP_SYNC_ERROR. No other errors are reported.

1-213Base Operating System Runtime Services (A-P)

Related Information
The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or
fp_disable subroutine, fp_clr_flag, fpset_flag, fp_read_flag, or fp_swap_flag subroutine,
sigaction, sigvec, or signal subroutine.

Floating–Point Processor Overview in Hardware Technical Information-General
Architectures.

Floating–Point Exceptions Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

1-214 Technical Reference: Base Operating System

fp_flush_imprecise Subroutine

Purpose
Forces imprecise signal delivery.

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

void fp_flush_imprecise ()

Description
The fp_flush_imprecise subroutine forces any imprecise interrupts to be reported. To
ensure that no signals are lost when a program voluntarily exits, use this subroutine in
combination with the atexit subroutine.

Example
The following example illustrates using the atexit subroutine to run the fp_flush_imprecise
subroutine before a program exits:

#include <fptrap.h>

#include <stdlib.h>

#include <stdio.h>

 if (0!=atexit(fp_flush_imprecise))

 puts (”Failure in atexit(fp_flush_imprecise) ”);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The atexit subroutine, fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,
fp_disable_all, or fp_disable subroutine, fp_clr_flag, fp_read_flag, fp_swap_flag, or
fpset_flag subroutine, fp_cpusync subroutine, fp_trap subroutine sigaction subroutine.

Floating–Point Exceptions Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

1-215Base Operating System Runtime Services (A-P)

fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow,
fp_inexact, fp_any_xcp Subroutine

Purpose
Tests to see if a floating–point exception has occurred.

Library
Standard C Library (libc.a)

Syntax
#include <float.h>
#include <fpxcp.h>

int
fp_invalid_op()
int fp_divbyzero()

int fp_overflow()

int fp_underflow()

int
fp_inexact()
int fp_any_xcp()

Description
These subroutines aid in determining when an exception has occurred and the exception
type. These subroutines can be called explicitly after blocks of code that may cause a
floating–point exception.

Return Values
The fp_invalid_op subroutine returns a value of 1 if a floating–point invalid–operation
exception status flag is set. Otherwise, a value of 0 is returned.

The fp_divbyzero subroutine returns a value of 1 if a floating–point divide–by–zero
exception status flag is set. Otherwise, a value of 0 is returned.

The fp_overflow subroutine returns a value of 1 if a floating–point overflow exception status
flag is set. Otherwise, a value of 0 is returned.

The fp_underflow subroutine returns a value of 1 if a floating–point underflow exception
status flag is set. Otherwise, a value of 0 is returned.

The fp_inexact subroutine returns a value of 1 if a floating–point inexact exception status
flag is set. Otherwise, a value of 0 is returned.

The fp_any_xcp subroutine returns a value of 1 if a floating–point invalid operation,
divide–by–zero, overflow, underflow, or inexact exception status flag is set. Otherwise, a
value of 0 is returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable fp_disable_all, or
fp_disable subroutine, fp_clr_flag, fp_read_flag, fp_set_flag, or fp_swap_flag
subroutine, fp_read_rnd or fp_swap_rnd subroutine.

1-216 Technical Reference: Base Operating System

Floating–Point Processor Overview in Hardware Technical Information-General
Architectures.

Floating–Poin t Exceptions Overview and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-217Base Operating System Runtime Services (A-P)

fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr,
fp_iop_infmzr, fp_iop_invcmp, fp_iop_sqrt, fp_iop_convert, or
fp_iop_vxsoft Subroutines

Purpose
Tests to see if a floating–point exception has occurred.

Library
Standard C Library (libc.a)

Syntax
#include <float.h>
#include <fpxcp.h>

int fp_iop_snan()
int fp_iop_infsinf()

int
fp_iop_infdinf()
int fp_iop_zrdzr()

int
fp_iop_infmzr()
int fp_iop_invcmp()

int
fp_iop_sqrt()
int fp_iop_convert()

int
fp_iop_vxsoft ();

Description
These subroutines aid in determining when an exception has occurred and the exception
type. These subroutines can be called explicitly after blocks of code that may cause a
floating–point exception.

Return Values
The fp_iop_snan subroutine returns a value of 1 if a floating–point invalid–operation
exception status flag is set due to a signaling NaN (NaNS) flag. Otherwise, a value of 0 is
returned.

The fp_iop_infsinf subroutine returns a value of 1 if a floating–point invalid–operation
exception status flag is set due to an INF–INF flag. Otherwise, a value of 0 is returned.

The fp_iop_infdinf subroutine returns a value of 1 if a floating–point invalid–operation
exception status flag is set due to an INF/INF flag. Otherwise, a value of 0 is returned.

The fp_iop_zrdzr subroutine returns a value of 1 if a floating–point invalid–operation
exception status flag is set due to a 0.0/0.0 flag. Otherwise, a value of 0 is returned.

The fp_iop_infmzr subroutine returns a value of 1 if a floating–point invalid–operation
exception status flag is set due to an INF*0.0 flag. Otherwise, a value of 0 is returned.

The fp_iop_invcmp subroutine returns a value of 1 if a floating–point invalid–operation
exception status flag is set due to a compare involving a NaN. Otherwise, a value of 0 is
returned.

The fp_iop_sqrt subroutine returns a value of 1 if a floating–point invalid–operation
exception status flag is set due to the calculation of a square root of a negative number.
Otherwise, a value of 0 is returned.

1-218 Technical Reference: Base Operating System

The fp_iop_convert subroutine returns a value of 1 if a floating–point invalid–operation
exception status flag is set due to the conversion of a floating–point number to an integer,
where the floating–point number was a NaN, an INF, or was outside the range of the integer.
Otherwise, a value of 0 is returned.

The fp_iop_vxsoft subroutine returns a value of 1 if the VXSOFT detail bit is on. Otherwise,
a value of 0 is returned.

1-219Base Operating System Runtime Services (A-P)

fp_raise_xcp Subroutine

Purpose
Generates a floating–point exception.

Library
Standard C Library (libc.a)

Syntax
#include <fpxcp.h>

int fp_raise_xcp(
mask)
fpflag_t mask;

Description
The fp_raise_xcp subroutine causes any floating–point exceptions defined by the mask
parameter to be raised immediately. If the exceptions defined by the mask parameter are
enabled and the program is running in serial mode, the signal for floating–point exceptions,
SIGFPE, is raised.

If more than one exception is included in the mask variable, the exceptions are raised in the
following order:

1. Invalid

2. Dividebyzero

3. Underflow

4. Overflow

5. Inexact

Thus, if the user exception handler does not disable further exceptions, one call to the
fp_raise_xcp subroutine can cause the exception handler to be entered many times.

Parameters

mask Specifies a 32–bit pattern that identifies floating–point traps.

Return Values
The fp_raise_xcp subroutine returns 0 for normal completion and returns a nonzero value if
an error occurs.

Related Information
The fp_any_enable, fp_clr_flag, fp_read_flag, fp_swap_flag, or fpset_flag subroutine,
fp_cpusync subroutine, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or
fp_disable subroutine, fp_trap subroutine, sigaction subroutine.

1-220 Technical Reference: Base Operating System

fp_read_rnd or fp_swap_rnd Subroutine

Purpose
Read and set the IEEE floating–point rounding mode.

Library
Standard C Library (libc.a)

Syntax
#include <float.h>

fprnd_t fp_read_rnd()
fprnd_t fp_swap_rnd(RoundMode)
fprnd_t RoundMode;

Description
The fp_read_rnd subroutine returns the current rounding mode. The fp_swap_rnd
subroutine changes the rounding mode to the RoundMode parameter and returns the value
of the rounding mode before the change.

Floating–point rounding occurs when the infinitely precise result of a floating–point operation
cannot be represented exactly in the destination floating–point format (such as
double–precision format).

The IEEE Standard for Binary Floating–Point Arithmetic allows floating–point numbers to be
rounded in four different ways: round toward zero, round to nearest, round toward +INF, and
round toward –INF. Once a rounding mode is selected it affects all subsequent
floating–point operations until another rounding mode is selected.

Note: The default floating–point rounding mode is round to nearest. All C main programs
begin with the rounding mode set to round to nearest.

The encodings of the rounding modes are those defined in the ANSI C Standard. The
float.h file contains definitions for the rounding modes. Below is the float.h definition, the
ANSI C Standard value, and a description of each rounding mode.

float.h Definition ANSI Value Description

FP_RND_RZ 0 Round toward 0

FP_RND_RN 1 Round to nearest

FP_RND_RP 2 Round toward +INF

FP_RND_RM 3 Round toward –INF

The fp_swap_rnd subroutine can be used to swap rounding modes by saving the return
value from fp_swap_rnd(RoundMode). This can be useful in functions that need to force a
specific rounding mode for use during the function but wish to restore the caller’s rounding
mode on exit. Below is a code fragment that accomplishes this action:

save_mode = fp_swap_rnd (new_mode);

....desired code using new_mode

(void) fp_swap_rnd(save_mode); /*restore caller’s mode*/

Parameters

RoundMode Specifies one of the following modes: FP_RND_RZ, FP_RND_RN,
FP_RND_RP, or FP_RND_RM.

1-221Base Operating System Runtime Services (A-P)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The floor, ceil, nearest, trunc, rint, itrunc, uitrunc, fmod, or fabs subroutine,
fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,fp_disable_all, or fp_disable
subroutine, fp_clr_flag, fp_read_flag, fp_set_flag, or fp_swap_flag subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-222 Technical Reference: Base Operating System

fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine

Purpose
From within a floating–point signal handler, determines any floating–point exception that
caused the trap in the process and changes the state of the Floating–Point Status and
Control register (FPSCR) in the user process.

Library
Standard C Library (libc.a)

Syntax
#include <fpxcp.h>
#include <fptrap.h>
#include <signal.h>

void fp_sh_info(scp, fcp, struct_size)
struct sigcontext *scp;
struct fp_sh_info *fcp;
size_t struct_size;

void fp_sh_trap_info(scp, fcp)
struct sigcontext *scp;
struct fp_ctx *fcp;

void fp_sh_set_stat(scp, fpscr)
struct sigcontext *scp;
fpstat_t fpscr;

Description
These subroutines are for use within a user–written signal handler. They return information
about the process that was running at the time the signal occurred, and they update the
Floating–Point Status and Control register for the process.

Note: The fp_sh_trap_info subroutine is maintained for compatibility only. It has been
replaced by the fp_sh_info subroutine, which should be used for development.

These subroutines operate only on the state of the user process that was running at the
time the signal was delivered. They read and write the sigcontext structure. They do not
change the state of the signal handler process itself.

The state of the signal handler process can be modified by the fp_any_enable,
fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable subroutine.

fp_sh_info
The fp_sh_info subroutine returns information about the process that caused the trap by
means of a floating–point context (fp_sh_info) structure. This structure contains the
following information:

typedef struct fp_sh_info {

fpstat_t fpscr;

fpflag_t trap;

short trap_mode;

char flags;

char extra;

} fp_sh_info_t;

The fields are:

1-223Base Operating System Runtime Services (A-P)

fpscr The Floating–Point Status and Control register (FPSCR) in the user
process at the time the interrupt occurred.

trap A mask indicating the trap or traps that caused the signal handler to be
entered. This mask is the logical OR operator of the enabled
floating–point exceptions that occurred to cause the trap. This mask can
have up to two exceptions; if there are two, the INEXACT signal must
be one of them. If the mask is 0, the SIGFPE signal was raised not by a
floating–point operation, but by the kill or raise subroutine or the kill
command.

trap_mode The trap mode in effect in the process at the time the signal handler
was entered. The values returned in the fp_sh_info.trap_mode file use
the following argument definitions:

FP_TRAP_OFF Trapping off

FP_TRAP_SYNC Precise trapping on

FP_TRAP_IMP_REC Recoverable imprecise trapping on

FP_TRAP_IMP Non–recoverable imprecise trapping on

flags This field is interpreted as an array of bits and should be accessed with
masks. The following mask is defined:

FP_IAR_STAT If the value of the bit at this mask is 1, the
exception was precise and the IAR points to
the instruction that caused the exception. If the
value bit at this mask is 0, the exception was
imprecise.

fp_sh_trap_info
The fp_sh_trap_info subroutine is maintained for compatibility only. The fp_sh_trap_info
subroutine returns information about the process that caused the trap by means of a
floating–point context (fp_ctx) structure. This structure contains the following information:

fpstat_t fpscr;

fpflag_t trap;

The fields are:

fpscr The Floating–Point Status and Control register (FPSCR) in the user
process at the time the interrupt occurred.

trap A mask indicating the trap or traps that caused the signal handler to be
entered. This mask is the logical OR operator of the enabled
floating–point exceptions that occurred to cause the trap. This mask can
have up to two exceptions; if there are two, the INEXACT signal must
be one of them. If the mask is 0, the SIGFPE signal was raised not by a
floating–point operation, but by the kill or raise subroutine or the kill
command.

fp_sh_set_stat
The fp_sh_set_stat subroutine updates the Floating–Point Status and Control register
(FPSCR) in the user process with the value in the fpscr field.

The signal handler must either clear the exception bit that caused the trap to occur or
disable the trap to prevent a recurrence. If the instruction generated more than one
exception, and the signal handler clears only one of these exceptions, a signal is raised for
the remaining exception when the next floating–point instruction is executed in the user
process.

1-224 Technical Reference: Base Operating System

Parameters

fcp Specifies a floating–point context structure.

scp Specifies a sigcontext structure for the interrupt.

struct_size Specifies the size of the fp_sh_info structure.

fpscr Specifies which Floating–Point Status and Control register to update.

Related Information
The fp_any_enable, fp_disable_all, fp_disable, fp_enable_all, fp_enable, or
fp_is_enabled subroutine, fp_clr_flag, fp_read_flag, fp_set_flag, or fp_swap_flag
subroutine, fp_trap subroutine.

Floating–Point Exceptions Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

1-225Base Operating System Runtime Services (A-P)

fp_trap Subroutine

Purpose
Queries or changes the mode of the user process to allow floating–point exceptions to
generate traps.

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

int fp_trap(flag)
int flag;

Description
The fp_trap subroutine queries and changes the mode of the user process to allow or
disallow floating–point exception trapping. Floating–point traps can only be generated when
a process is executing in a traps–enabled mode.

The default state is to execute in pipelined mode and not to generate floating–point traps.

Note: The fp_trap routines only change the execution state of the process. To generate
floating–point traps, you must also enable traps. Use the fp_enable and
fp_enable_all subroutines to enable traps.

Before calling the fp_trap(FP_TRAP_SYNC) routine, previous floating–point operations can
set to True certain exception bits in the Floating–Point Status and Control register (FPSCR).
Enabling these exceptions and calling the fp_trap(FP_TRAP_SYNC) routine does not
cause an immediate trap to occur. That is, the operation of these traps is edge–sensitive,
not level–sensitive.

The fp_trap subroutine does not clear the exception history. You can query this history by
using any of the following subroutines:

• fp_any_xcp

• fp_divbyzero

• fp_iop_convert

• fp_iop_infdinf

• fp_iop_infmzr

• fp_iop_infsinf

• fp_iop_invcmp

• fp_iop_snan

• fp_iop_sqrt

• fp_iop_vxsoft

• fp_iop_zrdzr

• fp_inexact

• fp_invalid_op

• fp_overflow

• fp_underflow

1-226 Technical Reference: Base Operating System

Parameters

flag Specifies a query of or change in the mode of the user process:

FP_TRAP_OFF Puts the user process into trapping–off mode
and returns the previous mode of the process,
either FP_TRAP_SYNC, FP_TRAP_IMP,
FP_TRAP_IMP_REC, or FP_TRAP_OFF.

FP_TRAP_QUERY Returns the current mode of the user process.

FP_TRAP_SYNC Puts the user process into precise trapping
mode and returns the previous mode of the
process.

FP_TRAP_IMP Puts the user process into non–recoverable
imprecise trapping mode and returns the
previous mode.

FP_TRAP_IMP_REC Puts the user process into recoverable
imprecise trapping mode and returns the
previous mode.

FP_TRAP_FASTMODEPuts the user process into the fastest trapping
mode available on the hardware platform.

Note: Some hardware models do not support all modes. If an
unsupported mode is requested, the fp_trap subroutine returns
FP_TRAP_UNIMPL.

Return Values
If called with the FP_TRAP_OFF, FP_TRAP_IMP, FP_TRAP_IMP_REC, or
FP_TRAP_SYNC flag, the fp_trap subroutine returns a value indicating which flag was in
the previous mode of the process if the hardware supports the requested mode. If the
hardware does not support the requested mode, the fp_trap subroutine returns
FP_TRAP_UNIMPL.

If called with the FP_TRAP_QUERY flag, the fp_trap subroutine returns a value indicating
the current mode of the process, either the FP_TRAP_OFF, FP_TRAP_IMP,
FP_TRAP_IMP_REC, or FP_TRAP_SYNC flag.

If called with FP_TRAP_FASTMODE, the fp_trap subroutine sets the fastest mode
available and returns the mode selected.

Error Codes
If the fp_trap subroutine is called with an invalid parameter, the subroutine returns
FP_TRAP_ERROR.

If the requested mode is not supported on the hardware platform, the subroutine returns
FP_TRAP_UNIMPL.

1-227Base Operating System Runtime Services (A-P)

fp_trapstate Subroutine

Purpose
Queries or changes the trapping mode in the Machine Status register (MSR).

Note: This subroutine replaces the fp_cpusync subroutine. The fp_cpusync subroutine
is supported for compatibility, but the fp_trapstate subroutine should be used for
development.

Library
Standard C Library (libc.a)

Syntax
#include <fptrap.h>

int fp_trapstate (int)

Description
The fp_trapstate subroutine is a service routine used to query or set the trapping mode.
The trapping mode determines whether floating–point exceptions can generate traps, and
can affect execution speed. See Floating–Point Exceptions Overview in AIX General
Programming Concepts : Writing and Debugging Programs for a description of precise and
imprecise trapping modes. Floating–point traps can be generated by the hardware only
when the processor is in a traps–enabled mode.

The fp_trapstate subroutine changes only the trapping mode. It is a service routine for use
in developing custom floating–point exception–handling software. If you are using the
fp_enable or fp_enable_all subroutine or the fp_sh_info or fp_sh_set_stat subroutine,
you must use the fp_trap subroutine to change the process’ trapping mode.

Parameters

flag Specifies a query of, or change in, the trap mode:

FP_TRAPSTATE_OFF Sets the trapping mode to Off and returns the
previous mode.

FP_TRAPSTATE_QUERY Returns the current trapping mode without
modifying it.

FP_TRAPSTATE_IMP Puts the process in non–recoverable imprecise
trapping mode and returns the previous state.

FP_TRAPSTATE_IMP_REC
Puts the process in recoverable imprecise trapping
mode and returns the previous state.

FP_TRAPSTATE_PRECISE
Puts the process in precise trapping mode and
returns the previous state.

FP_TRAPSTATE_FASTMODE
Puts the process in the fastest trap–generating
mode available on the hardware platform and
returns the state selected.

Note: Some hardware models do not support all modes. If an unsupported
mode is requested, the fp_trapstate subroutine returns
FP_TRAP_UNIMPL and the trapping mode is not changed.

1-228 Technical Reference: Base Operating System

Return Values
If called with the FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP,
FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE flag, the fp_trapstate
subroutine returns a value indicating the previous mode of the process. The value may be
FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP, FP_TRAPSTATE_IMP_REC, or
FP_TRAPSTATE_PRECISE. If the hardware does not support the requested mode, the
fp_trapstate subroutine returns FP_TRAP_UNIMPL.

If called with the FP_TRAP_QUERY flag, the fp_trapstate subroutine returns a value
indicating the current mode of the process. The value may be FP_TRAPSTATE_OFF,
FP_TRAPSTATE_IMP, FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE.

If called with the FP_TRAPSTATE_FASTMODE flag, the fp_trapstate subroutine returns a
value indicating which mode was selected. The value may be FP_TRAPSTATE_OFF,
FP_TRAPSTATE_IMP, FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The fp_any_enable, fp_disable_all, fp_disable, fp_enable_all, fp_enable, or
fp_is_enabled subroutine, fp_clr_flag, fp_read_flag, fpset_flag, or fp_swap_flag
subroutine, sigaction, signal, or sigvec subroutine.

The Floating–Point Processor Overview in Hardware Technical Information-General
Architectures.

Floating–Point Exceptions Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

1-229Base Operating System Runtime Services (A-P)

fread or fwrite Subroutine

Purpose
Reads and writes binary files.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
size_t fread ((void *)
Pointer, Size, NumberOfItems, Stream)
size_t Size, NumberOfItems;
FILE *Stream;
size_t fwrite (Pointer, Size, NumberOfItems, Stream)
const void *Pointer;
size_t Size, NumberOfItems;
FILE *Stream;

Description
The fread subroutine copies the number of data items specified by the NumberOfItems
parameter from the input stream into an array beginning at the location pointed to by the
Pointer parameter. Each data item has the form *Pointer.

The fread subroutine stops copying bytes if an end–of–file (EOF) or error condition is
encountered while reading from the input specified by the Stream parameter, or when the
number of data items specified by the NumberOfItems parameter have been copied. This
subroutine leaves the file pointer of the Stream parameter, if defined, pointing to the byte
following the last byte read. The fread subroutine does not change the contents of the
Stream parameter.

The st_atime field will be marked for update by the first successful run of the fgetc, fgets,
fgetwc, fgetws, fread, fscanf, getc, getchar, gets, or scanf subroutine using a stream
that returns data not supplied by a prior call to the ungetc or ungetwc subroutine.

Note: The fread subroutine is a buffered read subroutine library call. It reads data in 4KB
blocks. For tape block sizes greater than 4KB, use the open subroutine and read
subroutine.

The fwrite subroutine writes items from the array pointed to by the Pointer parameter to the
stream pointed to by the Stream parameter. Each item’s size is specified by the Size
parameter. The fwrite subroutine writes the number of items specified by the
NumberOfItems parameter. The file–position indicator for the stream is advanced by the
number of bytes successfully written. If an error occurs, the resulting value of the
file–position indicator for the stream is indeterminate.

The fwrite subroutine appends items to the output stream from the array pointed to by the
Pointer parameter. The fwrite subroutine appends as many items as specified in the
NumberOfItems parameter.

The fwrite subroutine stops writing bytes if an error condition is encountered on the stream,
or when the number of items of data specified by the NumberOfItems parameter have been
written. The fwrite subroutine does not change the contents of the array pointed to by the
Pointer parameter.

The st_ctime and st_mtime fields will be marked for update between the successful run
of the fwrite subroutine and the next completion of a call to the fflush or fclose subroutine
on the same stream, the next call to the exit subroutine, or the next call to the abort
subroutine.

1-230 Technical Reference: Base Operating System

Parameters

Pointer Points to an array.

Size Specifies the size of the variable type of the array pointed to by the
Pointer parameter. The Size parameter can be considered the same as
a call to sizeof subroutine.

NumberOfItems Specifies the number of items of data.

Stream Specifies the input or output stream.

Return Values
The fread and fwrite subroutines return the number of items actually transferred. If the
NumberOfItems parameter contains a 0, no characters are transferred, and a value of 0 is
returned. If the NumberOfItems parameter contains a negative number, it is translated to a
positive number, since the NumberOfItems parameter is of the unsigned type.

Error Codes
If the fread subroutine is unsuccessful because the I/O stream is unbuffered or data needs
to be read into the I/O stream’s buffer, it returns one or more of the following error codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor
specified by the Stream parameter, and the process would be delayed
in the fread operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is
not a valid file descriptor open for reading.

EINTR Indicates that the read operation was terminated due to receipt of a
signal, and no data was transferred.

Note: Depending upon which library routine the application binds to, this subroutine may
return EINTR. Refer to the signal subroutine regarding sa_restart.

EIO Indicates that the process is a member of a background process group
attempting to perform a read from its controlling terminal, and either the
process is ignoring or blocking the SIGTTIN signal or the process group
has no parent process.

ENOMEM Indicates that insufficient storage space is available.

ENXIO Indicates that a request was made of a nonexistent device.

If the fwrite subroutine is unsuccessful because the I/O stream is unbuffered or the I/O
stream’s buffer needs to be flushed, it returns one or more of the following error codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor
specified by the Stream parameter, and the process is delayed in the
write operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is
not a valid file descriptor open for writing.

EFBIG Indicates that an attempt was made to write a file that exceeds the file
size of the process limit or the systemwide maximum file size.

EINTR Indicates that the write operation was terminated due to the receipt of a
signal, and no data was transferred.

EIO Indicates that the process is a member of a background process group
attempting to perform a write to its controlling terminal, the TOSTOP
signal is set, the process is neither ignoring nor blocking the SIGTTOU
signal, and the process group of the process is orphaned.

1-231Base Operating System Runtime Services (A-P)

ENOSPC Indicates that there was no free space remaining on the device
containing the file.

EPIPE Indicates that an attempt is made to write to a pipe or first–in–first–out
(FIFO) process that is not open for reading by any process. A SIGPIPE
signal is sent to the process.

The fwrite subroutine is also unsuccessful due to the following error conditions:

ENOMEM Indicates that insufficient storage space is available.

ENXIO Indicates that a request was made of a nonexistent device, or the
request was outside the capabilities of the device.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The abort subroutine, exit subroutine, fflush or fclose subroutine, fopen, freopen, or
fdopen subroutine, getc, getchar, fgetc, or getw subroutine, getwc, fgetwc, or getwchar
subroutine, gets or fgets subroutine, getws or fgetws subroutine, open subroutine, print,
fprintf, or sprintf subroutine, putc, putchar, fputc, or putw subroutine, putwc, putwchar,
or fputwc subroutine, puts or fputs subroutine, putws or fputws subroutine, read
subroutine, scanf, fscanf, sscanf, or wsscanf subroutine, ungetc or ungetwc subroutine,
write subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-232 Technical Reference: Base Operating System

freeaddrinfoSubroutine

Purpose
To free memory allocated by getaddrinfo. This includes the addrinfo structures, the socket
address structures, and canonical host name strings pointed to by the addrinfo structures.

Library
 Library (libc.a)

Syntax
#include <sys/socket.h>
#include <netdb.h>
void freeaddrinfo (ai)

struct addrinfo *ai;

 Description
 This function frees any dynamic storage pointed to by elements of ai, as well as the space
for ai itself. Also, it will descend the linked list, repeating this process for all nodes in the list
until a NULL ai_next pointer is encountered.

 Related Information
The getaddrinfo subroutine, gai_strerror, and getnameinfo subroutine.

1-233Base Operating System Runtime Services (A-P)

frevoke Subroutine

Purpose
Revokes access to a file by other processes.

Library
Standard C Library (libc.a)

Syntax
int frevoke (FileDescriptor)
int FileDescriptor;

Description
The frevoke subroutine revokes access to a file by other processes.

All accesses to the file are revoked, except through the file descriptor specified by the
FileDescriptor parameter to the frevoke subroutine. Subsequent attempts to access the file,
using another file descriptor established before the frevoke subroutine was called, fail and
cause the process to receive a return value of –1, and the errno global variable is set to
EBADF.

A process can revoke access to a file only if its effective user ID is the same as the file
owner ID or if the invoker has root user authority.

Note: The frevoke subroutine has no affect on subsequent attempts to open the file. To
ensure exclusive access to the file, the caller should change the mode of the file
before issuing the frevoke subroutine. Currently the frevoke subroutine works only
on terminal devices.

Parameters

FileDescriptor A file descriptor returned by a successful open subroutine.

Return Values
Upon successful completion, the frevoke subroutine returns a value of 0.

If the frevoke subroutine fails, it returns a value of –1 and the errno global variable is set to
indicate the error.

Error Codes
The frevoke subroutine fails if the following is true:

EBADF The FileDescriptor value is not the valid file descriptor of a terminal.

EPERM The effective user ID of the calling process is not the same as the file
owner ID.

EINVAL Revocation of access rights is not implemented for this file.

1-234 Technical Reference: Base Operating System

frexp, frexpl, ldexp, ldexpl, modf, or modfl Subroutine

Purpose
Manipulates floating–point numbers.

Library
Standard C Library (libc.a)

Syntax
#include <math.h>

double frexp (Value, Exponent)
double Value;
int *Exponent;

long double frexpl (Value, Exponent)
long double Value;
int Exponent;

double ldexp (Mantissa, Exponent)
double Mantissa;
int Exponent ;

long double ldexpl (Mantissa, Exponent)
long double Mantissa;
int Exponent;

double modf (Value, IntegerPointer)
double Value, *IntegerPointer;

long double modfl (Value, IntegerPointer)
long double Value, *IntegerPointer;

Description
Every nonzero number can be written uniquely as x * 2**n, where the mantissa (fractional
part) x is in the range 0.5 <= |x| < 1.0, and the exponent n is an integer.

The frexp subroutine breaks a floating–point number into a normalized fraction and an
integral power of 2. It stores the integer in the object pointed to by the Exponent parameter
and returns the fraction part. The frexpl subroutine performs the same function for numbers
in the long double data type.

The ldexp subroutine multiplies a floating–point number by an integral power of 2. The
ldexpl subroutine performs the same function for numbers in the long double data type.

The modf subroutine breaks the Value parameter into an integral and fractional part, each
of which has the same sign as the value. It stores the integral part in a double variable at
the location pointed to by the IntegerPointer parameter. The modfl subroutine performs the
same function for numbers in the long double data type.

Parameters

Value Specifies a double–precision floating–point value.

Exponent For the frexp subroutine, specifies an integer pointer to store the
exponent; for the ldexp subroutine, specifies an integer value.

Mantissa Specifies a double–precision floating–point value.

IntegerPointer Specifies a pointer to the double variable in which to store the signed
integral part.

1-235Base Operating System Runtime Services (A-P)

Return Values
The frexp and frexpl subroutines return a value x such that x is in the range 0.5 <= |x| < 1.0
or is 0, and the Value parameter equals x * 2**(*Exponent). If the Value parameter is 0, the
object pointed to by the *Exponent parameter and x are also 0. If the Value parameter is a
NaN (not–a–number), x is a NaNQ, and the object pointed to by the *Exponent parameter is
set to LONG_MIN. If the Value parameter is +INF, then +INF is returned and the object
pointed to by the *Exponent parameter is set to INT_MAX. If the Value parameter is –INF,
then –INF is returned and the object pointed to by the *Exponent parameter is set to
INT_MIN.

The ldexp and ldexpl subroutines return the value x * 2**(Exponent).

The modf and modfl subroutines return the signed fractional part of the Value parameter
and stores the signed integral part in the object pointed to by the IntegerPointer parameter.
If the Value parameter is a NaN value, then a NaNQ value is returned, and a NaNQ is
stored in the object pointed to by the IntegerPointer parameter. If the Value parameter is
+/–INF, then +/– 0.0 is returned, and +/–INF is stored in the object pointed to by the
IntegerPointer parameter.

Error Codes
If the result of the ldexp or ldexpl subroutine overflows, then +/– HUGE_VAL is returned,
and the global variable errno is set to ERANGE.

If the result of the ldexp or ldexpl subroutine underflows, 0 is returned, and the errno
global variable is set to a ERANGE value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The scanf, fscanf, or sscanf subroutine, sgetl or sputl subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128–Bit long Double Floating–Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

1-236 Technical Reference: Base Operating System

fscntl Subroutine

Purpose
Controls file system control operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>

int fscntl (vfs_id, Command, Argument, ArgumentSize)
int vfs_id;
int Command;
char *Argument;
int ArgumentSize;

Description
The fscntl subroutine performs a variety of file system–specific functions. These functions
typically require root user authority.

At present, only one file system, the Journaled File System, supports any commands via the
fscntl subroutine.

Note: Application programs should not call this function, which is reserved for system
management commands such as the chfs command.

Parameters

vfs_id Identifies the file system to be acted upon. This information is returned
by the stat subroutine in the st_vfs field of the stat.h file.

Command Identifies the operation to be performed.

Argument Specifies a pointer to a block of file system specific information that
defines how the operation is to be performed.

ArgumentSize Defines the size of the buffer pointed to by the Argument parameter.

Return Values
Upon successful completion, the fscntl subroutine returns a value of 0. Otherwise, a value
of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The fscntl subroutine fails if one or both of the following are true:

EINVAL The vfs_id parameter does not identify a valid file system.

EINVAL The Command parameter is not recognized by the file system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chfs command.

The stat.h file.

Understanding File–System Helpers in AIX General Programming Concepts : Writing and
Debugging Programs explains file system helpers and examines file system–helper
execution syntax.

1-237Base Operating System Runtime Services (A-P)

fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos,
fgetpos64, fsetpos, or fsetpos64 Subroutine

Purpose
Repositions the file pointer of a stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int fseek (Stream, Offset, Whence)
FILE *Stream;
long int Offset;
int Whence;

void rewind (Stream)
FILE *Stream;

long int ftell (Stream)
FILE *Stream;

int fgetpos (Stream, Position)
FILE *Stream;
fpos_t *Position;

int fsetpos (Stream, Position)
FILE *Stream;
const fpos_t *Position;

Note: The fseeko, fseeko64, ftello, ftello64, fgetpos64, and fsetpot64 subroutines
apply to Version 4.2 and later releases.

int fseeko (Stream, Offset, Whence)
FILE *Stream;
off_t Offset;
int Whence;

int fseeko64 (Stream, Offset, Whence)
FILE *Stream;
off64_t Offset;
int Whence;

off_t int ftello (Stream)
FILE *Stream;

off64_t int ftello64 (Stream)
FILE *Stream;

int fgetpos64 (Stream, Position)
FILE *Stream;
fpos64_t *Position;

int fsetpos64 (Stream, Position)
FILE *Stream;
const fpos64_t *Position;

Description
Note: The fseeko, fseeko64, ftello, ftello64, fgetpos64, and fsetpot64 subroutines apply

to Version 4.2 and later releases.

1-238 Technical Reference: Base Operating System

The fseek, fseeko and fseeko64 subroutines set the position of the next input or output
operation on the I/O stream specified by the Stream parameter. The position if the next
operation is determined by the Offset parameter, which can be either positive or negative.

The fseek, fseeko and fseeko64 subroutines set the file pointer associated with the
specified Stream as follows:

• If the Whence parameter is set to the SEEK_SET value, the pointer is set to the value of
the Offset parameter.

• If the Whence parameter is set to the SEEK_CUR value, the pointer is set to its current
location plus the value of the Offset parameter.

• If the Whence parameter is set to the SEEK_END value, the pointer is set to the size of
the file plus the value of the Offset parameter.

The fseek, fseeko, and fseeko64 subroutine are unsuccessful if attempted on a file that
has not been opened using the fopen subroutine. In particular, the fseek subroutine cannot
be used on a terminal or on a file opened with the popen subroutine. The fseek and fseeko
subroutines will also fail when the resulting offset is larger than can be properly returned.

The rewind subroutine is equivalent to calling the fseek subroutine using parameter values
of (Stream,SEEK_SET,SEEK_SET), except that the rewind subroutine does not return a
value.

The fseek, fseeko, fseeko64 and rewind subroutines undo any effects of the ungetc and
ungetwc subroutines and clear the end–of–file (EOF) indicator on the same stream.

The fseek, fseeko, and fseeko64 function allows the file–position indicator to be set
beyond the end of existing data in the file. If data is written later at this point, subsequent
reads of data in the gap will return bytes of the value 0 until data is actually written into the
gap.

A successful calls to the fsetpos or fsetpos64 subroutines clear the EOF indicator and
undoes any effects of the ungetc and ungetwc subroutines.

After an fseek, fseeko, fseeko64 or a rewind subroutine, the next operation on a file
opened for update can be either input or output.

ftell, ftello and ftello64 subroutines return the position current value of the file–position
indicator for the stream pointed to by the Stream parameter. ftell and ftello will fail if the
resulting offset is larger than can be properly returned.

The fgetpos and fgetpos64 subroutines store the current value of the file–position indicator
for the stream pointed to by the Stream parameter in the object pointed to by the Position
parameter. The fsetpos and fsetpos64 set the file–position indicator for Stream according
to the value of the Position parameter, which must be the result of a prior call to fgetpos or
fgetpos64 subroutine. fgetpos and fsetpos will fail if the resulting offset is larger than can
be properly returned.

Parameters

Stream Specifies the input/output (I/O) stream.

Offset Determines the position of the next operation.

Whence Determines the value for the file pointer associated with the Stream
parameter.

 Position Specifies the value of the file–position indicator.

Return Values
Upon successful completion, the fseek, fseeko and fseeko64 subroutine return a value of
0. Otherwise, it returns a value of –1.

1-239Base Operating System Runtime Services (A-P)

Upon successful completion, the ftell, ftello and ftello64 subroutine return the offset of the
current byte relative to the beginning of the file associated with the named stream.
Otherwise, a long int value of –1 is returned and the errno global variable is set.

Upon successful completion, the fgetpos, fgetpos64, fsetpos and fsetpos64 subroutines
return a value of 0. Otherwise, a nonzero value is returned and the errno global variable is
set to the specific error.

The errno global variable is used to determine if an error occurred during a rewind
subroutine call.

Error Codes
If the fseek, fseeko, fseeko64, ftell, ftello, ftello64 or rewind subroutine are unsuccessful
because the stream is unbuffered or the stream buffer needs to be flushed and the call to
the subroutine causes an underlying lseek or write subroutine to be invoked, it returns one
or more of the following error codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor,
delaying the process in the write operation.

EBADF Indicates that the file descriptor underlying the Stream parameter is not
open for writing.

EFBIG Indicates that an attempt has been made to write to a file that exceeds
the file–size limit of the process or the maximum file size.

EFBIG Indicates that the file is a regular file and that an attempt was made to
write at or beyond the offset maximum associated with the
corresponding stream.

EINTR Indicates that the write operation has been terminated because the
process has received a signal, and either no data was transferred, or
the implementation does not report partial transfers for this file.

EIO Indicates that the process is a member of a background process group
attempting to perform a write subroutine to its controlling terminal, the
TOSTOP flag is set, the process is not ignoring or blocking the
SIGTTOU signal, and the process group of the process is orphaned.
This error may also be returned under implementation–dependent
conditions.

ENOSPC Indicates that no remaining free space exists on the device containing
the file.

EPIPE Indicates that an attempt has been made to write to a pipe or FIFO that
is not open for reading by any process. A SIGPIPE signal will also be
sent to the process.

EINVAL Indicates that the Whence parameter is not valid. The resulting
file–position indicator will be set to a negative value. The EINVAL error
code does not apply to the ftell and rewind subroutines.

ESPIPE Indicates that the file descriptor underlying the Stream parameter is
associated with a pipe or FIFO.

EOVERFLOW Indicates that for fseek, the resulting file offset would be a value that
cannot be represented correctly in an object of type long.

EOVERFLOW Indicates that for fseeko, the resulting file offset would be a value that
cannot be represented correctly in an object of type off_t.

ENXIO Indicates that a request was made of a non–existent device, or the
request was outside the capabilities of the device.

The fgetpos and fsetpos subroutines are unsuccessful due to the following conditions:

1-240 Technical Reference: Base Operating System

EINVAL Indicates that either the Stream or the Position parameter is not valid.
The EINVAL error code does not apply to the fgetpos subroutine.

EBADF Indicates that the file descriptor underlying the Stream parameter is not
open for writing.

ESPIPE Indicates that the file descriptor underlying the Stream parameter is
associated with a pipe or FIFO.

The fseek, fseeko, ftell, ftello, fgetpos, and fsetpos subroutines are unsucessful under
the following condition:

EOVERFLOW The resulting could not be returned properly.

Implementation Specifics
These subroutines are part of Base Operating system (BOS) Runtime.

Related Information
The closedir subroutine, fopen, fopen64, freopen, freopen64 or fdopen subroutine,
lseek or lseek64 subroutine, opendir, readdir, rewinddir, seekdir, or telldir subroutine,
popen subroutine, ungetc or ungetwc subroutine, write, writex, writev, or writevx
subroutine.

Input and Output Handling Programmer’s Overview in AIX General Programming Concepts
: Writing and Debugging Programs.

1-241Base Operating System Runtime Services (A-P)

fsync Subroutine

Purpose
Writes changes in a file to permanent storage.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int fsync (FileDescriptor)
int FileDescriptor;

Description
The fsync subroutine causes all modified data in the open file specified by the
FileDescriptor parameter to be saved to permanent storage. On return from the fsync
subroutine, all updates have been saved on permanent storage.

Data written to a file that a process has opened for deferred update (with the O_DEFER
flag) is not written to permanent storage until another process issues an fsync subroutine
against this file or runs a synchronous write subroutine (with the O_SYNC flag) on this file.
See the fcntl.h file and the open subroutine for descriptions of the O_DEFER and O_SYNC
flags respectively.

Note: The file identified by the FileDescriptor parameter must be open for writing when the
fsync subroutine is issued or the call is unsuccessful. This restriction was not
enforced in BSD systems.

Parameters

FileDescriptor A valid, open file descriptor.

Return Values
Upon successful completion, the fsync subroutine returns a value of 0. Otherwise, a value
of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The fsync subroutine is unsuccessful if one or more of the following are true:

EIO An I/O error occurred while reading from or writing to the file system.

EBADF The FileDescriptor parameter is not a valid file descriptor open for
writing.

EINVAL The file is not a regular file.

EINTR The fsync subroutine was interrupted by a signal.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The open, openx, or creat subroutine, sync subroutine, write, writex, writev, or writevx
subroutine.

The fcntl.h file.

Files, Directories, and File Systems Overview for Programmers in AIX General
Programming Concepts : Writing and Debugging Programs contains information about
i–nodes, file descriptors, file–space allocation, and more.

1-242 Technical Reference: Base Operating System

ftok Subroutine

Purpose
Generates a standard interprocess communication key.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok (Path, ID)
char *Path;
int ID;

Description
Attention: If the Path parameter of the ftok subroutine names a file that has been
removed while keys still refer to it, the ftok subroutine returns an error. If that file is then
re–created, the ftok subroutine will probably return a key different from the original one.

Attention: Each installation should define standards for forming keys. If standards are
not adhered to, unrelated processes may interfere with each other’s operation.

The ftok subroutine returns a key, based on the Path and ID parameters, to be used to
obtain interprocess communication identifiers. The ftok subroutine returns the same key for
linked files if called with the same ID parameter. Different keys are returned for the same file
if different ID parameters are used.

All interprocess communication facilities require you to supply a key to the msgget,
semget, and shmget subroutines in order to obtain interprocess communication identifiers.
The ftok subroutine provides one method for creating keys, but other methods are possible.
For example, you can use the project ID as the most significant byte of the key, and use the
remaining portion as a sequence number.

Parameters

Path Specifies the path name of an existing file that is accessible to the
process.

ID Specifies a character that uniquely identifies a project.

Return Values
When successful, the ftok subroutine returns a key that can be passed to the msgget,
semget, or shmget subroutine.

Error Codes
The ftok subroutine returns the value (key_t)–1 if one or more of the following are true:

• The file named by the Path parameter does not exist.

• The file named by the Path parameter is not accessible to the process.

• The ID parameter has a value of 0.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-243Base Operating System Runtime Services (A-P)

Related Information
The msgget subroutine, semget subroutine, shmget subroutine.

Subroutines Overview and Understanding Memory Mapping in AIX General Programming
Concepts : Writing and Debugging Programs.

1-244 Technical Reference: Base Operating System

ftw or ftw64 Subroutine

Purpose
Walks a file tree.

Library
Standard C Library (libc.a)

Syntax
#include <ftw.h>

int ftw (Path, Function, Depth)
char *Path;
int (*Function(const char*, const struct stat*, int);
int Depth;

int ftw64 (Path, Function, Depth)
char *Path;
int (*Function(const char*, const struct stat64*, int);
int Depth;

Description
The ftw and ftw64 subroutines recursively searches the directory hierarchy that descends
from the directory specified by the Path parameter.

For each file in the hierarchy, the ftw and ftw64 subroutines call the function specified by
the Function parameter. ftw passes it a pointer to a null–terminated character string
containing the name of the file, a pointer to a stat structure containing information about the
file, and an integer. ftw64 passes it a pointer to a null–terminated character string containing
the name of the file, a pointer to a stat64 structure containing information about the file, and
an integer.

The integer passed to the Function parameter identifies the file type with one of the
following values:

FTW_F Regular file

FTW_D Directory

FTW_DNR Directory that cannot be read

FTW_SL Symbolic Link

FTW_NS File for which the stat structure could not be executed successfully

If the integer is FTW–DNR, the files and subdirectories contained in that directory are not
processed.

If the integer is FTW–NS, the stat structure contents are meaningless. An example of a file
that causes FTW–NS to be passed to the Function parameter is a file in a directory for
which you have read permission but not execute (search) permission.

The ftw and ftw64 subroutines finish processing a directory before processing any of its
files or subdirectories.

The ftw and ftw64 subroutines continue the search until the directory hierarchy specified by
the Path parameter is completed, an invocation of the function specified by the Function
parameter returns a nonzero value, or an error is detected within the ftw and ftw64
subroutines, such as an I/O error.

1-245Base Operating System Runtime Services (A-P)

The ftw and ftw64 subroutines traverse symbolic links encountered in the resolution of the
Path parameter, including the final component. Symbolic links encountered while walking
the directory tree rooted at the Path parameter are not traversed.

The ftw and ftw64 subroutines use one file descriptor for each level in the tree. The Depth
parameter specifies the maximum number of file descriptors to be used. In general, the ftw
and ftw64 subroutines runs faster if the value of the Depth parameter is at least as large as
the number of levels in the tree. However, the value of the Depth parameter must not be
greater than the number of file descriptors currently available for use. If the value of the
Depth parameter is 0 or a negative number, the effect is the same as if it were 1.

Because the ftw and ftw64 subroutines are recursive, it is possible for it to terminate with a
memory fault due to stack overflow when applied to very deep file structures.

The ftw and ftw64 subroutines use the malloc subroutine to allocate dynamic storage
during its operation. If the ftw and ftw64 subroutined is terminated prior to its completion,
such as by the longjmp subroutine being executed by the function specified by the Function
parameter or by an interrupt routine, the ftw and ftw64 subroutines cannot free that storage.
The storage remains allocated. A safe way to handle interrupts is to store the fact that an
interrupt has occurred, and arrange to have the function specified by the Function
parameter return a nonzero value the next time it is called.

Parameters

Path Specifies the directory hierarchy to be searched.

Function Specifies the file type.

Depth Specifies the maximum number of file descriptors to be used. Depth
cannot be greater than OPEN_MAX which is described in the
sys/limits.h header file.

Return Values
If the tree is exhausted, the ftw and ftw64 subroutines returns a value of 0. If the subroutine
pointed to by fn returns a nonzero value, ftw and ftw64 subroutines stops its tree traversal
and returns whatever value was returned by the subroutine pointed to by fn. If the ftw and
ftw64 subroutines detects an error, it returns a –1 and sets the errno global variable to
indicate the error.

Error Codes
If the ftw or ftw64 subroutines detect an error, a value of –1 is returned and the errno
global variable is set to indicate the error.

The ftw and ftw64 subroutine are unsuccessful if:

EACCES Search permission is denied for any component of the Path
parameter or read permission is denied for Path.

ENAMETOOLONG The length of the path exceeds PATH_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT The Path parameter points to the name of a file that does not exist
or points to an empty string.

ENOTDIR A component of the Path parameter is not a directory.

The ftw subroutine is unsuccessful if:

EOVERFLOW A file in Path is of a size larger than 2 Gigabytes.

Implementation Specifics
This subroutines is part of Base Operating System (BOS) Runtime.

1-246 Technical Reference: Base Operating System

Related Information
The malloc, free, realloc, calloc, mallopt, mallinfo, or alloca subroutine, setjmp or
longjmp subroutine, signal subroutine, stat subroutine.

Searching and Sorting Example Program and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-247Base Operating System Runtime Services (A-P)

fwide Subroutine

Purpose
Set stream orientation.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>
#include <wchar.h>

int fwid (FILE * stream, int mode),

Description
The fwide function determines the orientation of the stream pointed to by stream. If mode is
greater than zero, the function first attempts to make the stream wide–orientated. If mode is
less than zero, the function first attempts to make the stream byte–orientated. Otherwise,
mode is zero and the function does not alter the orientation of the stream.

If the orientation of the stream has already been determined, fwide does not change it.

Because no return value is reserved to indicate an error, an application wishing to check for
error situations should set errno to 0, then call fwide, then check errno and if it is non–zero,
assume an error has occurred.

Return Values
The fwide function returns a value greater than zero if, after the call, the stream has
wide–orientation, a value less than zero if the stream has byte–orientation, or zero if the
stream has no orientation.

Errors
The fwide function may fail if:

EBADF The stream argument is not a valid stream.

Implementation Specifics
A call to fwide with mode set to zero can be used to determine the current orientation of a
stream.

Related Information
The wchar.h file

1-248 Technical Reference: Base Operating System

fwprintf, wprintf, swprintf Subroutines

Purpose
Print formatted wide–character output.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>
#include <wchar.h>

int fwprintf (FILE * stream, const wchar_t * format,...)
int wprintf (const wchar_t * format,..)
int swprintf (wchar_t *s, size_t n, const wchar_t * format,...)

Description
The fwprintf function places output on the named output stream. The wprintf function
places output on the standard output stream stdout. The swprintf function places output
followed by the null wide–character in consecutive wide–characters starting at *s; no more
than n wide–characters are written, including a terminating null wide–character, which is
always added (unless n is zero).

Each of these functions converts, formats and prints its arguments under control of the
format wide–character string. The format is composed of zero or more directives: ordinary
wide–characters, which are simply copied to the output stream and conversion
specifications , each of which results in the fetching of zero or more arguments. The
results are undefined if there are insufficient arguments for the format. If the format is
exhausted while arguments remain, the excess arguments are evaluated but are otherwise
ignored.

EX Conversions can be applied to the nth argument after the format in the argument list,
rather than to the next unused argument. In this case, the conversion wide–character %
(see below) is replaced by the sequence %n$, where n is a decimal integer in the range [1,
{NL_ARGMAX}], giving the position of the argument in the argument list. This feature
provides for the definition of format wide–character strings that select arguments in an order
appropriate to specific languages (see the EXAMPLES section).

In format wide–character strings containing the %n$ form of conversion specifications,
numbered arguments in the argument list can be referenced from the format wide–character
string as many times as required.

In format wide–character strings containing the % form of conversion specifications, each
argument in the argument list is used exactly once.

All forms of the fwprintf functions allow for the insertion of a language–dependent radix
character in the output string, output as a wide–character value. The radix character is
defined in the program’s locale (category LC_NUMERIC). In the POSIX locale, or in a locale
where the radix character is not defined, the radix character defaults to a period (.).

EX Each conversion specification is introduced by the % wide–character or by the
wide–character sequence %n$,after which the following appear in sequence:

• Zero or more flags (in any order), which modify the meaning of the conversion
specification.

• An optional minimum field width. If the converted value has fewer wide–characters than
the field width, it will be padded with spaces by default on the left; it will be padded on the
right, if the left–adjustment flag (–), described below, is given to the field width. The field
width takes the form of an asterisk (*), described below, or a decimal integer.

1-249Base Operating System Runtime Services (A-P)

• An optional precision that gives the minimum number of digits to appear for the d, i, o, u,
x and X conversions; the number of digits to appear after the radix character for the e, E
and f conversions; the maximum number of significant digits for the g and G conversions;
or the maximum number of wide–characters to be printed from a string in s conversions.
The precision takes the form of a period (.) followed either by an asterisk (*), described
below, or an optional decimal digit string, where a null digit string is treated as 0. If a
precision appears with any other conversion wide–character, the behaviour is undefined.

• An optional l (ell) specifying that a following c conversion wide–character applies to a
wint_t argument; an optional l specifying that a following s conversion wide–character
applies to a wchar_t argument; an optional h specifying that a following d, i, o, u, x or X
conversion wide–character applies to a type short int or type unsigned short int
argument (the argument will have been promoted according to the integral promotions,
and its value will be converted to type short int or unsigned short int before printing);
an optional h specifying that a following n conversion wide–character applies to a pointer
to a type short int argument; an optional l (ell) specifying that a following d, i, o, u, x or X
conversion wide–character applies to a type long int or unsigned long int argument; an
optional l (ell) specifying that a following n conversion wide–character applies to a pointer
to a type long int argument; or an optional L specifying that a following e, E, f, g or G
conversion wide–character applies to a type long double argument. If an h, l or L
appears with any other conversion wide–character, the behavior is undefined.

• A conversion wide–character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an
argument of type int supplies the field width or precision. Arguments specifying field width,
or precision, or both must appear in that order before the argument, if any, to be converted.
A negative field width is taken as a – flag followed by a positive field width. A negative
precision is taken as if EX the precision were omitted. In format wide–character strings
containing the %n$ form of a conversion specification, a field width or precision may be
indicated by the sequence *m$, where m is a decimal integer in the range [1,
{NL_ARGMAX}] giving the position in the argument list (after the format argument) of an
integer argument containing the field width or precision, for example:

 wprintf(L”%1$d:%2$.*3$d:%4$.*3$d\n”, hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and *m$), or
unnumbered argument specifications (that is, % and *), but normally not both. The only
exception to this is that %% can be mixed with the %n$ form. The results of mixing
numbered and unnumbered argument specifications in a format wide–character string are
undefined. When numbered argument specifications are used, specifying the Nth argument
requires that all the leading arguments, from the first to the (N–1)th, are specified in the
format wide–character string.

The flag wide–characters and their meanings are:

’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g
or %G) will be formatted with thousands’ grouping wide–characters. For other
conversions the behaviour is undefined. The non–monetary grouping
wide–character is used.

– The result of the conversion will be left–justified within the field. The
conversion will be right–justified if this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or –). The
conversion will begin with a sign only when a negative value is converted if
this flag is not specified.

space If the first wide–character of a signed conversion is not a sign or if a signed
conversion results in no wide–characters, a space will be prefixed to the
result. This means that if the space and + flags both appear, the space flag will
be ignored.

1-250 Technical Reference: Base Operating System

This flag specifies that the value is to be converted to an alternative form. For
o conversion, it increases the precision (if necessary) to force the first digit of
the result to be 0. For x or X conversions, a non–zero result will have 0x (or
0X) prefixed to it. For e, E, f, g or G conversions, the result will always contain
a radix character, even if no digits follow it. Without this flag, a radix character
appears in the result of these conversions only if a digit follows it. For g and G
conversions, trailing zeros will not be removed from the result as they
normally are. For other conversions, the behavior is undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding
is performed. If the 0 and – flags both appear, the 0 flag will be ignored. For d,
i, o, u, x and X conversions, if a precision is specified, the 0 flag will be
ignored. If the 0 and ’ flags both appear, the grouping wide–characters are
inserted before zero padding. For other conversions, the behavior is
undefined.

The conversion wide–characters and their meanings are:

d,i The int argument is converted to a signed decimal in the style [–] dddd. The
precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading
zeros. The default precision is 1. The result of converting 0 with an explicit
precision of 0 is no wide–characters.

o The unsigned int argument is converted to unsigned octal format in the style
dddd. The precision specifies the minimum number of digits to appear; if the
value being converted can be represented in fewer digits, it will be expanded
with leading zeros. The default precision is 1. The result of converting 0 with
an explicit precision of 0 is no wide–characters.

u The unsigned int argument is converted to unsigned decimal format in the
style dddd. The precision specifies the minimum number of digits to appear; if
the value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of
converting 0 with an explicit precision of 0 is no wide–characters.

x The unsigned int argument is converted to unsigned hexadecimal format in
the style dddd; the letters abcdef are used. The precision specifies the
minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The default
precision is 1. The result of converting 0 with an explicit precision of 0 is no
wide–characters.

X Behaves the same as the x conversion wide–character except that letters
ABCDEF are used instead of abcdef.

f The double argument is converted to decimal notation in the style [–]
ddd.ddd, where the number of digits after the radix character is equal to the
precision specification. If the precision is missing, it is taken as 6; if the
precision is explicitly 0 and no # flag is present, no radix character appears. If
a radix character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.

The fwprintf family of functions may make available wide–character string
representations for infinity and NaN.

1-251Base Operating System Runtime Services (A-P)

e, E The double argument is converted in the style [–] d.ddde +/– dd, where there
is one digit before the radix character (which is non–zero if the argument is
non–zero) and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is 0 and no # flag is
present, no radix character appears. The value is rounded to the appropriate
number of digits. The E conversion wide–character will produce a number with
E instead of e introducing the exponent. The exponent always contains at
least two digits. If the value is 0, the exponent is 0.

The fwprintf family of functions may make available wide–character string
representations for infinity and NaN.

g, G The double argument is converted in the style f or e (or in the style E in the
case of a G conversion wide–character), with the precision specifying the
number of significant digits. If an explicit precision is 0, it is taken as 1. The
style used depends on the value converted; style e (or E) will be used only if
the exponent resulting from such a conversion is less than –4 or greater than
or equal to the precision. Trailing zeros are removed from the fractional portion
of the result; a radix character appears only if it is followed by a digit.

The fwprintf family of functions may make available wide–character string
representations for infinity and NaN.

c If no l (ell) qualifier is present, the int argument is converted to a
wide–character as if by calling the btowc function and the resulting
wide–character is written. Otherwise the wint_t argument is converted to
wchar_t, and written.

s If no l (ell) qualifier is present, the argument must be a pointer to a character
array containing a character sequence beginning in the initial shift state.
Characters from the array are converted as if by repeated calls to the
mbrtowc function, with the conversion state described by an mbstate_t
object initialised to zero before the first character is converted, and written up
to (but not including) the terminating null wide–character. If the precision is
specified, no more than that many wide–characters are written. If the precision
is not specified or is greater than the size of the array, the array must contain a
null wide–character.

If an l (ell) qualifier is present, the argument must be a pointer to an array of
type wchar_t. Wide characters from the array are written up to (but not
including) a terminating null wide–character. If no precision is specified or is
greater than the size of the array, the array must contain a null
wide–character. If a precision is specified, no more than that many
wide–characters are written.

p The argument must be a pointer to void. The value of the pointer is converted
to a sequence of printable wide–characters, in an implementation–dependent
manner. The argument must be a pointer to an integer into which is written the
number of wide–characters written to the output so far by this call to one of the
fwprintf functions. No argument is converted.

C Same as lc.

S Same as ls.

% Output a % wide–character; no argument is converted. The entire conversion
specification must be %%.

If a conversion specification does not match one of the above forms, the behavior is
undefined.

In no case does a non–existent or small field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the
conversion result. Characters generated by fwprintf and wprintf are printed as if fputwc
had been called.

1-252 Technical Reference: Base Operating System

The st_ctime and st_mtime fields of the file will be marked for update between the call to a
successful execution of fwprintf or wprintf and the next successful completion of a call to
fflush or fclose on the same stream or a call to exit or abort.

Return Values
Upon successful completion, these functions return the number of wide–characters
transmitted excluding the terminating null wide–character in the case of swprintf or a
negative value if an output error was encountered.

Error Codes
For the conditions under which fwprintf and wprintf will fail and may fail, refer to fputwc .In
addition, all forms of fwprintf may fail if:

EILSEQ A wide–character code that does not correspond to a valid character
has been detected

EINVAL There are insufficient arguments.

In addition, wprintf and fwprintf may fail if:

ENOMEM Insufficient storage space is available.

Examples
To print the language–independent date and time format, the following statement could be
used:

 wprintf (format, weekday, month, day, hour, min);

 For American usage, format could be a pointer to the wide–character string:

 L”%s, %s %d, %d:%.2d\n”

 producing the message:

 Sunday, July 3, 10:02

 whereas for German usage, format could be a pointer to the wide–character string:

L”%1$s, %3$d. %2$s, %4$d:%5$.2d\n”

 producing the message:

 Sonntag, 3. July, 10:02

Implementation Specifics
These subroutines are part of Base Operating System (BOS) subroutines.

Related Information
The btowc subroutine.

The fputwc subroutine.

The fwscanf subroutine.

The setlocale subroutine.

The mbrtowc subroutine.

The stdio.h file.

 The wchar.h file.

The XBD specification, Chapter 5, Locale.

1-253Base Operating System Runtime Services (A-P)

fwscanf, wscanf, swscanf Subroutines

Purpose
Convert formatted wide–character input

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>
#include <wchar.h>

int fwscanf (FILE * stream, const wchar_t * format, ...);
int wscanf (const wchar_t * format, ...);
int swscanf (const wchar_t * s, const wchar_t * format, ...);

Description
The fwscanf function reads from the named input stream. The wscanf function reads from
the standard input stream stdin. The swscanf function reads from the wide–character string
s. Each function reads wide–characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control wide–character string
format described below, and a set of pointer arguments indicating where the converted input
should be stored. The result is undefined if there are insufficient arguments for the format. If
the format is exhausted while arguments remain, the excess arguments are evaluated but
are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather
than to the next unused argument. In this case, the conversion wide–character % (see
below) is replaced by the sequence %n$, where n is a decimal integer in the range [1,
{NL_ARGMAX}]. This feature provides for the definition of format wide–character strings
that select arguments in an order appropriate to specific languages. In format
wide–character strings containing the %n$ form of conversion specifications, it is
unspecified whether numbered arguments in the argument list can be referenced from the
format wide–character string more than once.

The format can contain either form of a conversion specification, that is, % or %n$, but the
two forms cannot normally be mixed within a single format wide–character string. The only
exception to this is that %% or %* can be mixed with the %n$ form.

The fwscanf function in all its forms allows for detection of a language–dependent radix
character in the input string, encoded as a wide–character value. The radix character is
defined in the program’s locale (category LC_NUMERIC). In the POSIX locale, or in a locale
where the radix character is not defined, the radix character defaults to a period (.).

The format is a wide–character string composed of zero or more directives. Each directive is
composed of one of the following: one or more white–space wide–characters (space, tab,
newline, vertical–tab or form–feed characters); an ordinary wide–character (neither % nor a
white–space character); or a conversion specification. Each conversion specification is
introduced by a % or the sequence %n$ after which the following appear in sequence:

• An optional assignment–suppressing character *.

• An optional non–zero decimal integer that specifies the maximum field width.

• An optional size modifier h, l (ell) or L indicating the size of the receiving object. The
conversion wide–characters c, s and [must be preceded by l (ell) if the corresponding
argument is a pointer to wchar_t rather than a pointer to a character type. The
conversion wide–characters d, i and n must be preceded by h if the corresponding
argument is a pointer to short int rather than a pointer to int, or by l (ell) if it is a pointer
to long int. Similarly, the conversion wide–characters o, u and x must be preceded by h if

1-254 Technical Reference: Base Operating System

the corresponding argument is a pointer to unsigned short int rather than a pointer to
unsigned int, or by l (ell) if it is a pointer to unsigned long int. The conversion
wide–characters e, f and g must be preceded by l (ell) if the corresponding argument is a
pointer to double rather than a pointer to float,or by L if it is a pointer to long double. If
an h, l (ell) or L appears with any other conversion wide–character, the behavior is
undefined.

• A conversion wide–character that specifies the type of conversion to be applied. The
valid conversion wide–characters are described below.

The fwscanf functions execute each directive of the format in turn. If a directive fails, as
detailed below, the function returns. Failures are described as input failures (due to the
unavailability of input bytes) or matching failures (due to inappropriate input).

A directive composed of one or more white–space wide–characters is executed by reading
input until no more valid input can be read, or up to the first wide–character which is not a
white–space wide–character, which remains unread.

A directive that is an ordinary wide–character is executed as follows. The next
wide–character is read from the input and compared with the wide–character that comprises
the directive; if the comparison shows that they are not equivalent, the directive fails, and
the differing and subsequent wide–characters remain unread.

 A directive that is a conversion specification defines a set of matching input sequences, as
described below for each conversion wide–character. A conversion specification is executed
in the following steps:

 Input white–space wide–characters (as specified by iswspace) are skipped, unless the
conversion specification includes a [, c or n conversion character.

 An item is read from the input, unless the conversion specification includes an n conversion
wide–character. An input item is defined as the longest sequence of input wide–characters,
not exceeding any specified field width, which is an initial subsequence of a matching
sequence. The first wide–character, if any, after the input item remains unread. If the length
of the input item is 0, the execution of the conversion specification fails; this condition is a
matching failure, unless end–of–file, an encoding error, or a read error prevented input from
the stream, in which case it is an input failure.

 Except in the case of a % conversion wide–character, the input item (or, in the case of a %n
conversion specification, the count of input wide–characters) is converted to a type
appropriate to the conversion wide–character. If the input item is not a matching sequence,
the execution of the conversion specification fails; this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the conversion is placed
in the object pointed to by the first argument following the format argument that has not
already received a conversion result if the conversion specification is introduced by %, or in
the nth argument if introduced by the wide–character sequence %n$. If this object does not
have an appropriate type, or if the result of the conversion cannot be represented in the
space provided, the behavior is undefined. The following conversion wide–characters are
valid:

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of wcstol with the value 10 for the base
argument. In the absence of a size modifier, the corresponding argument must be
a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for
the subject sequence of wcstol with 0 for the base argument. In the absence of a
size modifier, the corresponding argument must be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected
for the subject sequence of wcstoul with the value 8 for the base argument. In
the absence of a size modifier, the corresponding argument must be a pointer to
unsigned int.

1-255Base Operating System Runtime Services (A-P)

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of wcstoul with the value 10 for the base
argument. In the absence of a size modifier, the corresponding argument must be
a pointer to unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of wcstoul with the value 16 for the base
argument. In the absence of a size modifier, the corresponding argument must be
a pointer to unsigned int.

e, f, g Matches an optionally signed floating–point number, whose format is the same as
expected for the subject sequence of wcstod . In the absence of a size modifier,
the corresponding argument must be a pointer to float.

If the fwprintf family of functions generates character string representations for
infinity and NaN (a 7858 symbolic entity encoded in floating–point format) to
support the ANSI/IEEE Std 754:1985 standard, the fwscanf5 family of functions
will recognise them as input.

s Matches a sequence of non white–space wide–characters. If no l (ell) qualifier is
present, characters from the input field are converted as if by repeated calls to the
wcrtomb function, with the conversion state described by an mbstate_t object
initialised to zero before the first wide–character is converted. The corresponding
argument must be a pointer to a character array large enough to accept the
sequence and the terminating null character, which will be added automatically.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t
large enough to accept the sequence and the terminating null wide–character,
which will be added automatically.

[Matches a non–empty sequence of wide–characters from a set of expected
wide–characters (the scanset). If no l (ell) qualifier is present, wide–characters
from the input field are converted as if by repeated calls to the wcrtomb function,
with the conversion state described by an mbstate_t object initialised to zero
before the first wide–character is converted. The corresponding argument must
be a pointer to a character array large enough to accept the sequence and the
terminating null character, which will be added automatically.

If an l (ell) qualifier is present, the corresponding argument must be a pointer to
an array of wchar_t large enough to accept the sequence and the terminating null
wide–character, which will be added automatically

The conversion specification includes all subsequent widw characters in the
format string up to and including the matching right square bracket (]). The
wide–characters between the square brackets (the scanlist) comprise the
scanset, unless the wide–character after the left square bracket is a circumflex
(^), in which case the scanset contains all wide–characters that do not appear in
the scanlist between the circumflex and the right square bracket. If the conversion
specification begins with [] or [^], the right square bracket is included in the
scanlist and the next right square bracket is the matching right square bracket that
ends the conversion specification; otherwise the first right square bracket is the
one that ends the conversion specification. If a – is in the scanlist and is not the
first wide–character, nor the second where the first wide–character is a ^;, nor the
last wide–character, the behavior is implementation–dependent.

c Matches a sequence of wide–characters of the number specified by the field width
(1 if no field width is present in the conversion specification). If no l (ell) qualifier is
present, wide–characters from the input field are converted as if by repeated calls
to the wcrtomb function, with the conversion state described by an mbstate_t
object initialised to zero before the first wide–character is converted. The
corresponding argument must be a pointer to a character array large enough to
accept the sequence. No null character is added.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t
large enough to accept the sequence. No null wide–character is added.

1-256 Technical Reference: Base Operating System

p Matches an implementation–dependent set of sequences, which must be the
same as the set of sequences that is produced by the %p conversion of the
corresponding fwprintf functions. The corresponding argument must be a pointer
to a pointer to void. The interpretation of the input item is
implementation–dependent. If the input item is a value converted earlier during
the same program execution, the pointer that results will compare equal to that
value; otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument must be a pointer to the
integer into which is to be written the number of wide–characters read from the
input so far by this call to the fwscanf functions. Execution of a %n conversion
specification does not increment the assignment count returned at the completion
of execution of the function.

C Same as lc.

S Same as ls.

% Matches a single %; no conversion or assignment occurs. The complete
conversion specification must be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion characters E, G and X are also valid and behave the same as, respectively,
e, g and x.

 If end–of–file is encountered during input, conversion is terminated. If end–of–file occurs
before any wide–characters matching the current conversion specification (except for %n)
have been read (other than leading white–space, where permitted), execution of the current
conversion specification terminates with an input failure. Otherwise, unless execution of the
current conversion specification is terminated with a matching failure, execution of the
following conversion specification (if any) is terminated with an input failure.

Reaching the end of the string in swscanf is equivalent to encountering end–of–file for
fwscanf.

If conversion terminates on a conflicting input, the offending input is left unread in the input.
Any trailing white space (including newline) is left unread unless matched by a conversion
specification. The success of literal matches and suppressed assignments is only directly
determinable via the %n conversion specification.

 The fwscanf and wscanf functions may mark the st_atime field of the file associated with
stream for update. The st_atime field will be marked for update by the first successful
execution of fgetc, fgetwc, fgets, fgetws, fread, getc, getwc, getchar, getwchar, gets,
fscanf or fwscanf using stream that returns data not supplied by a prior call to ungetc.

Return Values
Upon successful completion, these functions return the number of successfully matched
and assigned input items; this number can be 0 in the event of an early matching failure. If
the input ends before the first matching failure or conversion, EOF is returned. If a read
error occurs the error indicator for the stream is set, EOF is returned, and errno is set to
indicate the error.

Error Codes
For the conditions under which the fwscanf functions will fail and may fail, refer to fgetwc.
In addition, fwscanf may fail if:

EILSEQ Input byte sequence does not form a valid character.

EINVAL There are insufficient arguments.

Examples
The call:

1-257Base Operating System Runtime Services (A-P)

 int i, n; float x; char name[50];

 n = wscanf(L”%d%f%s”, &i, &x, name);

 with the input line:

 25 54.32E–1 Hamster

 will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain the
string Hamster.

The call:

 int i; float x; char name[50];

 (void) wscanf(L”%2d%f%*d %[0123456789]”, &i, &x, name);

 with input:

 56789 0123 56a72

 will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to
getchar will return the character a.

Implementation Specifics
In format strings containing the % form of conversion specifications, each argument in the
argument list is used exactly once.

Related Information
The getwc subroutine.

The fwprintf subroutine.

The setlocale subroutine.

The wcstod subroutine.

The wcstol subroutine.

The wcstoul subroutine.

The wcrtomb subroutine.

The langinfo.h file.

The stdio.h file.

The wchar.h file.

The XBD specification, Chapter 5, Locale.

1-258 Technical Reference: Base Operating System

gai_strerror Subroutine

Purpose
 Facilitates consistent error information from EAI_* values returned by getaddrinfo.

Library
Library (libc.a)

Syntax
#include <sys/socket.h>
#include <netdb.h>
char *
gai_strerror (ecode)
int ecode;
int
gai_strerror_r (ecode, buf, buflen)
int ecode;
char *buf;
int buflen;

 Description
Facilitates consistent error information from EAI_* values returned by getaddrinfo.

 For multithreaded environments, the second version should be used. In gai_strerror_r, buf
is a pointer to a data area to be filled in. buflen is the length (in bytes) available in buf.

 It is the caller’s responsibility to insure that buf is sufficiently large to store the requested
information, including a trailing null character. It is the responsibility of the function to insure
that no more than buflen bytes are written into buf.

 Return Values
 If successful, a pointer to a string containing an error message appropriate for the EAI_*
errors is returned. If ecode is not one of the EAI_* values, a pointer to a string indicating an
unknown error is returned.

 Related Information
The getaddrinfo subroutine, freeaddrinfo subroutine, and getnameinfo subroutine.

Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and
Debugging Programs.

1-259Base Operating System Runtime Services (A-P)

get_speed, set_speed, or reset_speed Subroutines

Purpose
Set and get the terminal baud rate.

Library
Standard C Library (libc.a)

Syntax
#include <sys/str_tty.h>

int get_speed (FileDescriptor)
int FileDescriptor;

int set_speed (FileDescriptor, Speed)
int FileDescriptor;
int Speed;

int reset_speed (FileDescriptor)
int FileDescriptor;

Description
The baud rate functions set_speed subroutine and get_speed subroutine are provided top
allow the user applications to program any value of the baud rate that is supported by the
asynchronous adapter, but that cannot be expressed using the termios subroutines
cfsetospeed, cfsetispeed, cfgetospeed, and cfsgetispeed. Those subroutines are indeed
limited to the set values {BO, B50, ..., B38400} described in <termios.h>.

Interaction with the termios Baud flags:

If the terminal’s device driver supports these subroutines, it has two interfaces for baud rate
manipulation.

Operation for Baud Rate:

normal mode: This is the default mode, in which a termios supported speed is in use.

speed–extended mode: This mode is entered either by calling set_speed subroutine a
non–termios supported speed at the configuration of the line.

In this mode, all the calls to tcgetattr subroutine or TCGETS ioctl subroutine will have B50
in the returned termios structure.

If tcsetatt subroutine or TCSETS, TCSETAF, or TCSETAW ioctl subroutines is called and
attempt to set B50, the actual baud rate is not changed. If is attempts to set any other
termios–supported speed, the driver will switch back to the normal mode and the requested
baud rate is set. Calling reset_speed subroutine is another way to switch back to the
normal mode.

Parameters

FileDescriptor Specifies an open file descriptor.

Speed The integer value of the requested speed.

Return Values
Upon successful completion, set_speed and reset_speed return a value of 0, and
get_speed returns a positive integer specifying the current speed of the line. Otherwise, a
value of –1 is returned and the errno global variable is set to indicate the error.

1-260 Technical Reference: Base Operating System

Error Codes

EINVAL The FileDescriptor parameter does not specify a valid file descriptor for
a tty the recognizes the set_speed, get_speed and reset_speed
subroutines, or the Speed parameter of set_speed is not supported by
the terminal.

Plus all the errno codes that may be set in case of failure in an ioctl subroutine issued to a
streams based tty.

Related Information
cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed subroutines.

1-261Base Operating System Runtime Services (A-P)

getaddrinfo Subroutine

Purpose Protocol–independent hostname–to–address translation.
Note: Hostname–to–address translation is done in a protocol–independent fashion using

this function.

Attention: This specification is taken from IEEE POSIX 1003.1g (Protocol Independent
Interfaces) DRAFT 6.3. This function may be modified to match that specification as it
develops. Should there be any discrepancies between this description and the POSIX
description, the POSIX description takes precedence.

Library
Library (libinet.x)

Syntax
#include=<sys/socket.h>
#include=<netdb.h>
int getaddrinfo (hostname, servname, hints, res)

const char *hostname;

const char *servname;

const struct addrinfo *hints

struct addrinfo **res;

Description
The first two arguments describe the hostname and/or service name to be referenced. 0
(zero) or 1 (one) of these arguments may be NULL. A non–NULLhostname may be either a
hostname or a numeric host address string (a dotted–decimal for IPv4 or hex for IPv6). A
non–NULL servname may be either a service name or a decimal port number.

 The third argument specifies hints concerning the desired return information. To be valid,
the hints structure must contain zero (or NULL) values for all members, with the exceptions
of: ai_flags, ai_family, ai_socktype, and ai_protocol. These members may be set to a
specific value to indicate desired results (ai_family may be set to PF_INET6 to indicate only
IPv6 sockets), or to zero (or the appropriate unspecified value (PF_UNSPEC for ai_family))
to indicate that any type will be accepted.

The addrinfo structure is defined as:

struct addrinfo {

 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */

 int ai_family; /* PF_xxx */

 int ai_socktype; /* SOCK_xxx */

 int ai_protocol; /* 0 or IP=PROTO_xxx for IPv4 and IPv6

*/

 size_t *ai_addrlen; /* length of ai_addr */

 char *ai_canonname; /* canoncial name for hostname */

 struct sockaddr *ai_addr; /* binary address */

 struct addrinfo *ai_next; /* next structure in linked list */

Return Values
If the query is successful, a pointer to a linked list of one or more addrinfo structures is
returned via the fourth argument. If the query fails, a non–zero error code will be returned.

Error Codes
 The following names are the non–zero error codes. See netdb.h for further definition.

EAI_ADDRFAMILY address family for hostname not supported

EAI_AGAIN temporary failure in name resolution

1-262 Technical Reference: Base Operating System

EAI_BADFLAGS invalid value for ai_flags

EAI_FAIL non–recoverable failure in name resolution

EAI_FAMILY ai_family not supported

EAI_MEMORY memory allocation failure

EAI_NODATA no address associated with hostname

EAI_NONAME hostname nor servname provided, or not known

EAI_SERVICE servname not supported for ai_socktype

EAI_SOCKTYPE ai_socktype not supported

EAI_SYSTEM system error returned in errno

Implementation Specifics
 The hostname and servname arguments are pointers to null–terminated strings or NULL.
One or both of these two arguments must be a non–NULL pointer. In the normal client
scenario, both the hostname and servname are specified. In the normal server scenario,
only the servname is specified. A non–NULL hostname string can be either a host name or
a numeric host address string (i.e., a dotted–decimal IPv4 address or an IPv6 hex address)
2E A non–NULL servname string can be either a service name or a decimal port number.

 The caller can optionally pass an addrinfo structure, pointed to by the third argument, to
provide hints concerning the type of socket that the caller supports. In this hints structure all
members other than ai_flags, ai_family, ai_socktype, and ai_protocol must be zero or a
NULL pointer. A value of PF_UNSPEC for ai_family means the caller will accept any
protocol family. A value of 0 for ai_socktype means the caller will accept any socket type. A
value of 0 for ai_protocol means the caller will accept any protocol. For example, if the caller
handles only TCP and not UDP, then the ai_socktype member of the hints structure should
be set to SOCK_STREAM when getaddrinfo() is called. If the caller handles only IPv4 and
not IPv6, then the ai_family member of the hints structure should be set to PF_INET when
getaddrinfo() is called. If the third argument to getad drinfo() is a NULL pointer, this is the
same as if the caller had filled in an addrinfo structure initialized to zero with ai_family set to
PF_UNSPEC.

 Upon successful return a pointer to a linked list of one or more addrinfo structures is
returned through the final argument. The caller can process each addrinfo structure in this
list by following the ai_next pointer, until a NULL pointer is encountered. In each returned
addrinfo structure the three members ai_family, ai_socktype, and ai_protocol are the
corresponding arguments for a call to the socket() function. In each addrinfo structure the
ai_addr member points to a filled–in socket address structure whose length is specified by
the ai_addrlen member.

 If the AI_PASSIVE bit is set in the ai_flags member of the hints structure, then the caller
plans to use the returned socket address structure in a call to bind(). In this case, if the
hostname argument is a NULL pointer, then the IP address portion of the socket address
structure will be set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an
IPv6 address.

 If the AI_PASSIVE bit is not set in the ai_flags member of the hints structure, then the
returned socket address structure will be ready for a call to connect() (for a
connection–oriented protocol) or either connect(), sendto(), or sendmsg() (for a
connectionless protocol). In this case, if the hostname argument is a NULL pointer, then the
IP address portion of the socket address structure will be set to the loopback address.

 If the AI_CANONNAME bit is set in the ai_flags member of the hints structure, then upon
successful return the ai_canonname member of the first addrinfo structure in the linked list
will point to a null–terminated string containing the canonical name of the specified
hostname.

 All of the information returned by getaddrinfo() is dynamically allocated: the addrinfo
structures, the socket address structures, and canonical host name strings pointed to by the

1-263Base Operating System Runtime Services (A-P)

addrinfo structures. To return this information to the system the function freeaddrinfo is
called.

Related Information
The freeaddrinfo subroutine.

1-264 Technical Reference: Base Operating System

getargs Subroutine

Purpose
Gets arguments of a process.

Library
Standard C library (libc.a)

Syntax
#include <procinfo.h>
#include <sys/types.h>

int getargs (processBuffer, bufferLen, argsBuffer, argsLen)
struct procsinfo *processBuffer;
int bufferLen;
char *argsBuffer;
int argsLen;

Description
The getargs subroutine returns a list of parameters that were passed to a command when it
was started. Only one process can be examined per call to getargs.

The getargs subroutine uses the pi_pid field of processBuffer to determine which process
to look for. bufferLen should be set to size of struct procsinfo. Parameters are returned in
argsBuffer, which should be allocated by the caller. The size of this array must be given in
argsLen.

On return, argsBuffer consists of a succession of strings, each terminated with a null
character (ascii ‘\0’). Hence, two consecutive NULLs indicate the end of the list.

Note: The arguments may be changed asynchronously by the process, but results are not
guaranteed to be consistent.

Parameters

processBuffer Specifies the address of a procsinfo structure, whose pi_pid field
should contain the pid of the process that is to be looked for.

bufferLen Specifies the size of a single procsinfo structure,

argsBuffer Specifies the address of an array of characters to be filled with a series
of strings representing the parameters that are needed. An extra NULL
character marks the end of the list. This array must be allocated by the
caller.

argsLen Specifies the size of the argsBuffer array. No more than argsLen
characters are returned.

Return Values
If successful, the getargs subroutine returns zero. Otherwise, a value of –1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The getargs subroutine does not succeed if the following are true:

1-265Base Operating System Runtime Services (A-P)

EBADF The specified process does not exist.

EFAULT The copy operation to the buffer was not successful or the
processBuffer or argsBuffer parameters are invalid.

EINVAL The bufferLen parameter does not contain the size of a single
procsinfo structure.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The getevars, getpid, getpgrp, getppid, or getthrds subroutines.

The ps command.

1-266 Technical Reference: Base Operating System

getaudithostattr, IDtohost, hosttoID, nexthost or
putaudithostattr Subroutine

Purpose
Accesses the host information in the audit host database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int getaudithostattr (Hostname, Attribute, Value, Type)
char *Hostname;
char *Attribute;
void *Value;
int Type;

char *IDtohost (ID);
char *ID;

char *hosttoID (Hostname, Count);
char *Hostname;
int Count;

char *nexthost (void);

int putaudithostattr (Hostname, Attribute, Value, Type);
char *Hostname;
char *Attribute;
void *Value;
int Type;

Description
These subroutines access the audit host information.

The getaudithostattr subroutine reads a specified attribute from the host database. If the
database is not already open, this subroutine does an implicit open for reading.

Similarly the putaudithostattr subroutine writes a specified attribute into the host database.
If the database is not already open, this subroutine does an implicit open for reading and
writing. Data changed by the putaudithostattr must be explicitly committed by calling the
putaudithostattr subroutine with a Type of SEC_COMMIT. Until all the data is committed,
only these subroutines within the process return written data.

New entries in the host database must first be created by invoking putaudithostattr with
the SEC_NEW type.

The IDtohost subroutine converts an 8 byte host identifier into a hostname.

The hosttoID subroutine converts a hostname to a pointer to an array of valid 8 byte host
identifiers. A pointer to the array of identifiers is returned on success. A NULL pointer is
returned on failure. The number of known host identifiers is returned in *Count.

1-267Base Operating System Runtime Services (A-P)

The nexthost subroutine returns a pointer to the name of the next host in the audit host
database.

Parameters

Attribute

Specifies which attribute is read. The following possible attributes are
defined in the usersec.h file:

S_AUD_CPUIDHost identifier list. The attribute type is SEC_LIST.

Count Specifies the number of 8 byte host identifier entries that are available in
the IDarray parameter or that have been returned in the IDarray parameter.

Hostname Specifies the name of the host for the operation.

ID An 8 byte host identifier.

IDarray Specifies a pointer to an array of 1 or more 8 byte host identifiers.

Type Specifies the type of attribute expected. Valid types are defined in
usersec.h. The only valid Type value is SEC_LIST.

Value The return value for read operations and the new value for write
operations.

Return Values
On successful completion, the getaudithostattr, IDtohost, hosttoID, nexthost, or
putaudithostattr subroutine returns 0. If unsuccessful, the subroutine returns non–zero.

Error Codes
The getaudithostattr, IDtohost, hosttoID, nexthost, or putaudithostattr subroutine fails if
the following is true:

EINVAL If invalid attribute Name or if Count is equal to zero for the
hosttoID subroutine.

ENOENT If there is no matching Hostname entry in the database.

Related Information
The auditmerge command, auditpr command, auditselect command, auditstream
command.

The auditread subroutine, setaudithostdb or endaudithostdb subroutine.

1-268 Technical Reference: Base Operating System

getc, getchar, fgetc, or getw Subroutine

Purpose
Gets a character or word from an input stream.

Library
Standard I/O Package (libc.a)

Syntax
#include <stdio.h>

int getc (Stream)
FILE *Stream;

int fgetc (Stream)
FILE *Stream;

int getchar (void)

int getw (Stream)
FILE *Stream;

Description
The getc macro returns the next byte as an unsigned char data type converted to an int
data type from the input specified by the Stream parameter and moves the file pointer, if
defined, ahead one byte in the Stream parameter. The getc macro cannot be used where a
subroutine is necessary; for example, a subroutine pointer cannot point to it.

Because it is implemented as a macro, the getc macro does not work correctly with a
Stream parameter value that has side effects. In particular, the following does not work:

getc(*f++)

In such cases, use the fgetc subroutine.

The fgetc subroutine performs the same function as the getc macro, but fgetc is a true
subroutine, not a macro. The fgetc subroutine runs more slowly than getc but takes less
disk space.

The getchar macro returns the next byte from stdin (the standard input stream). The
getchar macro is equivalent to getc(stdin).

The first successful run of the fgetc, fgets, fgetwc, fgetws, fread, fscanf, getc, getchar,
gets or scanf subroutine using a stream that returns data not supplied by a prior call to the
ungetc or ungetwc subroutine marks the st_atime field for update.

The getc and getchar macros have also been implemented as subroutines for ANSI
compatibility. To access the subroutines instead of the macros, insert #undef getc or
#undef getchar at the beginning of the source file.

The getw subroutine returns the next word (int) from the input specified by the Stream
parameter and increments the associated file pointer, if defined, to point to the next word.
The size of a word varies from one machine architecture to another. The getw subroutine
returns the constant EOF at the end of the file or when an error occurs. Since EOF is a valid
integer value, the feof and ferror subroutines should be used to check the success of getw.
The getw subroutine assumes no special alignment in the file.

Because of additional differences in word length and byte ordering from one machine
architecture to another, files written using the putw subroutine are machine–dependent and
may not be readable using the getw macro on a different type of processor.

1-269Base Operating System Runtime Services (A-P)

Parameters

Stream Points to the file structure of an open file.

Return Values
Upon successful completion, the getc, fgetc, getchar, and getw subroutines return the next
byte or int data type from the input stream pointed by the Stream parameter. If the stream is
at the end of the file, an end–of–file indicator is set for the stream and the integer constant
EOF is returned. If a read error occurs, the errno global variable is set to reflect the error,
and a value of EOF is returned. The ferror and feof subroutines should be used to
distinguish between the end of the file and an error condition.

Error Codes
If the stream specified by the Stream parameter is unbuffered or data needs to be read into
the stream’s buffer, the getc, getchar, fgetc, or getw subroutine is unsuccessful under the
following error conditions:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor
underlying the stream specified by the Stream parameter. The process
would be delayed in the fgetc subroutine operation.

EBADF Indicates that the file descriptor underlying the stream specified by the
Stream parameter is not a valid file descriptor opened for reading.

EFBIG Indicates that an attempt was made to read a file that exceeds the
process’ file–size limit or the maximum file size. See the ulimit
subroutine.

EINTR Indicates that the read operation was terminated due to the receipt of a
signal, and either no data was transferred, or the implementation does
not report partial transfer for this file.

Note: Depending upon which library routine the application binds to,
this subroutine may return EINTR. Refer to the signal
subroutine regarding sa_restart.

EIO Indicates that a physical error has occurred, or the process is in a
background process group attempting to perform a read subroutine call
from its controlling terminal, and either the process is ignoring (or
blocking) the SIGTTIN signal or the process group is orphaned.

EPIPE Indicates that an attempt is made to read from a pipe or
first–in–first–out (FIFO) that is not open for reading by any process. A
SIGPIPE signal will also be sent to the process.

EOVERFLOW Indicates that the file is a regular file and an attempt was made to read
at or beyond the offset maximum associated with the corresponding
stream.

The getc, getchar, fgetc, or getw subroutine is also unsuccessful under the following error
conditions:

ENOMEM Indicates insufficient storage space is available.

ENXIO Indicates either a request was made of a nonexistent device or the
request was outside the capabilities of the device.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-270 Technical Reference: Base Operating System

Related Information
The feof, ferror, clearerr, or fileno subroutine, freopen, fopen, or fdopen subroutine,
fread or fwrite subroutine, getwc, fgetwc, or getwchar subroutine, get or fgets
subroutine, putc, putchar, fputc, or putw subroutine, scanf, sscanf, fscanf, or wsscanf
subroutine.

List of Character Manipulation Services, Subroutines Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-271Base Operating System Runtime Services (A-P)

getc_unlocked, getchar_unlocked, putc_unlocked,
putchar_unlocked Subroutines

Purpose
stdio with explicit client locking.

Library
Standard Library (libc.a)

Syntax
#include <stdio.h>

int getc_unlocked (FILE * stream);
int getchar_unlocked (void);
int putc_unlocked (int c, FILE * stream);
int putchar_unlocked (int c);

Description
Versions of the functions getc, getchar, putc, and putchar respectively named
getc_unlocked, getchar_unlocked, putc_unlocked, and putchar_unlocked are provided
which are functionally identical to the original versions with the exception that they are not
required to be implemented in a thread–safe manner. They may only safely be used within a
scope protected by flockfile (or ftrylockfile) and funlockfile. These functions may safely
be used in a multi–threaded program if and only if they are called while the invoking thread
owns the (FILE*) object, as is the case after a successful call of the flockfile or ftrylockfile
functions.

Return Values
See getc, getchar, putc, and putchar.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) subroutine.

Related Information
The getc subroutine.

The getchar subroutine.

The putc subroutine.

The putchar subroutine.

The stdio.h file.

1-272 Technical Reference: Base Operating System

getconfattr Subroutine

Purpose
Accesses the user information in the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
#include <userconf.h>

int getconfattr (sys, Attribute, Value, Type)
char *sys;
char *Attribute;
void *Value;
int Type;

Description
The getconfattr subroutine reads a specified attribute from the user database.

Parameters

sys System attribute. The following possible attributes are defined in the
userconf.h file.

• SC_SYS_LOGIN

• SC_SYS_USER

• SC_SYS_ADMUSER

• SC_SYS_AUDIT SEC_LIST

• SC_SYS_AUSERS SEC_LIST

• SC_SYS_ASYS SEC_LIST

• SC_SYS_ABIN SEC_LIST

• SC_SYS_ASTREAM SEC_LIST

Attribute Specifies which attribute is read. The following possible attributes are
defined in the usersec.h file:

S_ID User ID. The attribute type is SEC_INT.

S_PGRP Principle group name. The attribute type is
SEC_CHAR.

S_GROUPS Groups to which the user belongs. The attribute type
is SEC_LIST.

S_ADMGROUPS Groups for which the user is an administrator. The
attribute type is SEC_LIST.

S_ADMIN Administrative status of a user. The attribute type is
SEC_BOOL.

S_AUDITCLASSES
Audit classes to which the user belongs. The
attribute type is SEC_LIST.

1-273Base Operating System Runtime Services (A-P)

S_AUTHSYSTEM Defines the user’s authentication method. The
attribute type is SEC_CHAR.

S_HOME Home directory. The attribute type is SEC_CHAR.

S_SHELL Initial program run by a user. The attribute type is
SEC_CHAR.

S_GECOS Personal information for a user. The attribute type is
SEC_CHAR.

S_USRENV User–state environment variables. The attribute type
is SEC_LIST.

S_SYSENV Protected–state environment variables. The attribute
type is SEC_LIST.

S_LOGINCHK Specifies whether the user account can be used for
local logins. The attribute type is SEC_BOOL.

S_HISTEXPIRE Defines the period of time (in weeks) that a user
cannot reuse a password. The attribute type is
SEC_INT.

S_HISTSIZE Specifies the number of previous passwords that the
user cannot reuse. The attribute type is SEC_INT.

S_MAXREPEAT Defines the maximum number of times a user can
repeat a character in a new password. The attribute
type is SEC_INT.

S_MINAGE Defines the minimum age in weeks that the user’s
password must exist before the user can change it.
The attribute type is SEC_INT.

S_PWDCHECKS Defines the password restriction methods for this
account. The attribute type is SEC_LIST.

S_MINALPHA Defines the minimum number of alphabetic
characters required in a new user’s password. The
attribute type is SEC_INT.

S_MINDIFF Defines the minimum number of characters required
in a new password that were not in the old
password. The attribute type is SEC_INT.

S_MINLEN Defines the minimum length of a user’s password.
The attribute type is SEC_INT.

S_MINOTHER Defines the minimum number of non–alphabetic
characters required in a new user’s password. The
attribute type is SEC_INT.

S_DICTIONLIST Defines the password dictionaries for this account.
The attribute type is SEC_LIST.

S_SUCHK Specifies whether the user account can be accessed
with the su command. Type SEC_BOOL.

S_REGISTRY Defines the user’s authentication registry. The
attribute type is SEC_CHAR.

1-274 Technical Reference: Base Operating System

S_RLOGINCHK Specifies whether the user account can be used for
remote logins using the telnet or rlogin commands.
The attribute type is SEC_BOOL.

S_DAEMONCHK Specifies whether the user account can be used for
daemon execution of programs and subsystems
using the cron daemon or src. The attribute type is
SEC_BOOL.

S_TPATH Defines how the account may be used on the trusted
path. The attribute type is SEC_CHAR. This attribute
must be one of the following values:

nosak The secure attention key is not enabled for this
account.

notsh The trusted shell cannot be accessed from this
account.

always This account may only run trusted programs.

on Normal trusted–path processing applies.

S_TTYS List of ttys that can or cannot be used to access this
account. The attribute type is SEC_LIST.

S_SUGROUPS Groups that can or cannot access this account. The
attribute type is SEC_LIST.

S_EXPIRATION Expiration date for this account, in seconds since the
epoch. The attribute type is SEC_CHAR.

S_AUTH1 Primary authentication methods for this account. The
attribute type is SEC_LIST.

S_AUTH2 Secondary authentication methods for this account.
The attribute type is SEC_LIST.

S_UFSIZE Process file size soft limit. The attribute type is
SEC_INT.

S_UCPU Process CPU time soft limit. The attribute type is
SEC_INT.

S_UDATA Process data segment size soft limit. The attribute
type is SEC_INT.

S_USTACK Process stack segment size soft limit.
Type: SEC_INT.

S_URSS Process real memory size soft limit. Type: SEC_INT.

S_UCORE Process core file size soft limit. The attribute type is
SEC_INT.

S_PWD Specifies the value of the passwd field in the
/etc/passwd file. The attribute type is SEC_CHAR.

S_UMASK File creation mask for a user. The attribute type is
SEC_INT.

S_LOCKED Specifies whether the user’s account can be logged
into. The attribute type is SEC_BOOL.

S_UFSIZE_HARD Process file size hard limit. The attribute type is
SEC_INT.

1-275Base Operating System Runtime Services (A-P)

S_UCPU_HARD Process CPU time hard limit. The attribute type is
SEC_INT.

S_UDATA_HARD Process data segment size hard limit. The attribute
type is SEC_INT.

S_USTACK_HARD
Process stack segment size hard limit. Type:
SEC_INT.

S_URSS_HARD Process real memory size hard limit. Type:
SEC_INT.

S_UCORE_HARDProcess core file size hard limit. The attribute type is
SEC_INT.

Note: These values are string constants that should be used by
applications both for convenience and to permit optimization in
latter implementations.

Type Specifies the type of attribute expected. Valid types are defined in the
usersec.h file and include:

SEC_INT The format of the attribute is an integer.

For the getuserattr subroutine, the user should supply a pointer to a
defined integer variable. For the putuserattr subroutine, the user
should supply an integer.

SEC_CHAR The format of the attribute is a null–terminated
character string.

SEC_LIST The format of the attribute is a series of
concatenated strings, each null–terminated. The last
string in the series is terminated by two successive
null characters.

SEC_BOOL The format of the attribute from getuserattr is an
integer with the value of either 0 (false) or 1 (true).
The format of the attribute for putuserattr is a
null–terminated string containing one of the following
strings: true, false, yes, no, always, or never.

SEC_COMMIT For the putuserattr subroutine, this value specified
by itself indicates that changes to the named user
are to be committed to permanent storage. The
Attribute and Value parameters are ignored. If no
user is specified, the changes to all modified users
are committed to permanent storage.

SEC_DELETE The corresponding attribute is deleted from the
database.

SEC_NEW Updates all the user database files with the new user
name when using the putuserattr subroutine.

Security

Files Accessed:

Mode File

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/login.cfg

1-276 Technical Reference: Base Operating System

Return Values
If successful, returns 0

If successful, returns –1

Error Codes

ENOENT The specified User parameter does not exist or the attribute is not
defined for this user.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/etc/passwd Contains user IDs.

Related Information
 The getuserattr subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-277Base Operating System Runtime Services (A-P)

getcontext or setcontext Subroutine

Purpose
Initializes the structure pointed to by ucp to the context of the calling process.

Library
(libc.a)

Syntax
#include <ucontext.h>

int getcontext (ucontext_t *ucp);

int setcontext (const uncontext_t *ucp);

Description
The getcontext subroutine initalizes the structure pointed to by ucp to the current user
context of the calling process. The ucontext_t type that ucp points to defines the user
context and includes the contents of the calling process’ machine registers, the signal mask,
and the current execution stack.

The setcontext subroutine restores the user context pointed to by ucp. A successful call to
setcontext subroutine does not return; program execution resumes at the point specified by
the upc argument passed to setcontext subroutine. The ucp argument should be created
either by a prior call to getcontext subroutine, or by being passed as an argument to a signal
handler. If the ucp argument was created with getcontext subroutine, program execution
continues as if the corresponding call of getcontext subroutine had just returned. If the ucp
argument was created with makecontext subroutine, program execution continues with the
function passed to makecontext subroutine. When that function returns, the process
continues as if after a call to setcontext subroutine with the ucp argument that was input to
makecontext subroutine. If the ucp argument was passed to a signal handler, program
execution continues with the program instruction following the instruction interrupted by the
signal. If the uc_link member of the ucontext_t structure pointed to by the ucp arguement is
equal to 0, then this context is the main context, and the process will exit when this context
returns.

Parameters

ucp A pointer to a user stucture.

Return Values
Upon successful completion, setcontext subroutine does not return and getcontext
subroutine returns 0. Otherwise, a value –1 is returned.

–1 Not successful and the errno global variable is set to one of the
following error codes.

Related Information
The makecontext subroutine, setjmp subroutine, sigaltstack subroutine, sigaction
subroutine, sigprocmask subroutine, and sigsetjmp subroutine.

1-278 Technical Reference: Base Operating System

getcwd Subroutine

Purpose
Gets the path name of the current directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

char *getcwd (Buffer, Size)
char *Buffer;
size_t Size;

Description
The getcwd subroutine places the absolute path name of the current working directory in
the array pointed to by the Buffer parameter, and returns that path name. The size
parameter specifies the size in bytes of the character array pointed to by the Buffer
parameter.

Parameters

Buffer Points to string space that will contain the path name. If the Buffer
parameter value is a null pointer, the getcwd subroutine, using the
malloc subroutine, obtains the number of bytes of free space as
specified by the Size parameter. In this case, the pointer returned by the
getcwd subroutine can be used as the parameter in a subsequent call
to the free subroutine. Starting the getcwd subroutine with a null
pointer as the Buffer parameter value is not recommended.

Size Specifies the length of the string space. The value of the Size
parameter must be at least 1 greater than the length of the path name
to be returned.

Return Values
If the getcwd subroutine is unsuccessful, a null value is returned and the errno global
variable is set to indicate the error. The getcwd subroutine is unsuccessful if the Size
parameter is not large enough or if an error occurs in a lower–level function.

Error Codes
If the getcwd subroutine is unsuccessful, it returns one or more of the following error codes:

EACCES Indicates that read or search permission was denied for a component of
the path name

EINVAL Indicates that the Size parameter is 0 or a negative number.

ENOMEM Indicates that insufficient storage space is available.

ERANGE Indicates that the Size parameter is greater than 0, but is smaller than
the length of the path name plus 1.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-279Base Operating System Runtime Services (A-P)

Related Information
The getwd subroutine, malloc subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-280 Technical Reference: Base Operating System

getdate Subroutine

Purpose
Convert user format date and time.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

struct tm *getdate (const char *string)

extern int getdate_err

Description
The getdate subroutine converts user definable date and/or time specifications pointed to
by string, into a struct tm. The structure declaration is in the time.h header file (see ctime
subroutine).

User supplied templates are used to parse and interpret the input string. The templates are
contained in text files created by the user and identified by the environment variable
DATEMSK. The DATEMSK variable should be set to indicate the full pathname of the file
that contains the templates. The first line in the template that matches the input specification
is used for interpretation and conversation into the internal time format.

The following field descriptors are supported:

%% Same as %.

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Locale’s appropriate date and time representation.

%C Century number (00–99; leading zeros are permitted but not required)

%d Day of month (01 – 31: the leading zero is optional.

%e Same as %d.

%D Date as %m/%d/%y.

%h Abbreviated month name.

%H Hour (00 – 23)

%I Hour (01 – 12)

%m Month number (01 – 12)

%M Minute (00 – 59)

%n Same as \n.

%p Locale’s equivalent of either AM or PM.

%r Time as %I:%M:%S %p

%R Time as %H: %M

%S Seconds (00 – 61) Leap seconds are allowed but are not predictable
through use of algorithms.

1-281Base Operating System Runtime Services (A-P)

%t Same as tab.

%T Time as %H: %M:%S

%w Weekday number (Sunday = 0 – 6)

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year within century.

Note: When the environment variable XPG_TIME_FMT=ON, %y is the
year within the century. When a century is not otherwise specified,
values in the range 69–99 refer to years in the twentieth century (1969
to 1999, inclusive); values in the range 00–68 refer to 2000 to 2068,
inclusive.

%Y Year as ccyy (such as 1986)

%Z Time zone name or no characters if no time zone exists. If the time zone
supplied by %Z is not the same as the time zone getdate subroutine
expects, an invalid input specification error will result. The getdate
subroutine calculates an expected time zone based on information
supplied to the interface (such as hour, day, and month).

The match between the template and input specification performed by the getdate
subroutine is case sensitive.

The month and weekday names can consist of any combination of upper and lower case
letters. The used can request that the input date or time specification be in a specific
language by setting the LC_TIME category (See the setlocale subroutine).

Leading zero’s are not necessary for the descriptors that allow leading zero’s. However, at
most two digits are allowed for those descriptors, including leading zero’s. Extra whitespace
in either the template file or in string is ignored.

The field descriptors %c, %x, and %X will not be supported if they include unsupported field
descriptors.

Example 1 is an example of a template. Example 2 contains valid input specifications for the
template. Example 3 shows how local date and time specifications can be defined in the
template.

The following rules apply for converting the input specification into the internal format:

• If only the weekday is given, today is assumed if the given month is equal to the current
day and next week if it is less.

• If only the month is given, the current month is assumed if the given month is equal to the
current month and next year if it is less and no year is given (the first day of month is
assumed if no day is given).

• If no hour, minute, and second are given, the current hour, minute and second are
assumed.

• If no date is given, today is assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less.

See Example 4 for examples illustrating the use of the above rules.

Return Values
Upon successful completion, the getdate subroutine returns a pointer to struct tm;
otherwise, it returns a null pointer and the external variable getdate_err is set to indicate
the error.

1-282 Technical Reference: Base Operating System

Error Codes
Upon failure, a null pointer is returned and the variable getdate_err is set to indicate the
error.

The following is a complete list of the getdate_err settings and their corresponding
descriptions:

1 The DATEMSK environment variable is null or undefined.

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 An error is encountered while reading the template file.

6 Memory allocation failed (not enough memory available.

7 There is no line in the template that matches the input.

8 Invalid input specification, Example: February 31 or a time is specified that
can not be represented in a time_t (representing the time in seconds since
00:00:00 UTC, January 1, 1970).

Examples
1. The following example shows the possible contents of a template:

%m

%A %B %d, %Y, %H:%M:%S

%A

%B

%m/%d/%y %I %p

%d, %m, %Y %H:%M

at %A the %dst of %B in %Y

run job at %I %p, %B %dnd

&A den %d. %B %Y %H.%M Uhr

2. The following are examples of valid input specifications for the template in Example 1:

getdate (”10/1/87 4 PM”)

getdate (”Friday”)

getdate (”Friday September 18, 1987, 10:30:30”)

getdate (”24,9,1986 10:30”)

getdate (”at monday the 1st of december in 1986”)

getdate (”run job at 3 PM. december 2nd”)

 If the LC_TIME category is set to a German locale that includes freitag as a
weekday name and oktober as a month name, the following would be valid:

getdate (”freitag den 10. oktober 1986 10.30 Uhr”)

3. The following examples shows how local date and time specification can be defined in
the template.

Invocation Line in Template

getdate (”11/27/86”) %m/%d/%y

getdate (”27.11.86”0 %d.%m.%y

getdate (”86–11–27”) %y–%m–%d

getdate (”Friday 12:00:00”) %A %H:%M:%S

1-283Base Operating System Runtime Services (A-P)

4. The following examples help to illustrate the above rules assuming that the current date
Mon Sep 22 12:19:47 EDT 1986 and the LC_TIME category is set to the default ”C”
locale.

Input Line in Template Date

Mon %a Mon Sep 22 12:19:47 EDT 1986

Sun %a Sun Sep 28 12:19:47 EDT 1986

Fri %a Fri Sep 26 12:19:47 EDT 1986

September %B Mon Sep1 12:19:47 EDT 1986

January %B Thu Jan 1 12:19:47 EDT 1986

December %B Mon Dec 1 12:19:47 EDT 1986

Sep Mon %b %a Mon Sep 1 12:19:47 EDT 1986

Jan Fri %b %a Fri Jan 2 12:19:47 EDT 1986

Dec Mon %b %a Mon Dec 1 12:19:47 EDT 1986

Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:47 EDT 1986

Fri 9 %a %H Fri Sep 26 12:19:47 EDT 1986

Feb 10:30 %b %H: %S Sun Feb 1 12:19:47 EDT 1986

10:30 %H: %M Tue Sep 23 12:19:47 EDT 1986

13:30 %H: %M Mon Sep 22 12:19:47 EDT 1986

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ctime, ctype, setlocale, strftime, and times subroutines.

1-284 Technical Reference: Base Operating System

getdtablesize Subroutine

Purpose
Gets the descriptor table size.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int getdtablesize (void)

Description
The getdtablesize subroutine is used to determine the size of the file descriptor table.

The size of the file descriptor table for a process is set by the ulimit command or by the
setrlimit subroutine. The getdtablesize subroutine returns the current size of the table as
reported by the getrlimit subroutine. If getrlimit reports that the table size is unlimited,
getdtablesize instead returns the value of OPEN_MAX, which is the largest possible size of
the table.

Note: The getdtablesize subroutine returns a runtime value that is specific to the version of
AIX on which the application is running. In AIX 4.3.1, getdtablesize returns a value that is
set in the limits file, which can be different from system to system.

Return Values
The getdtablesize subroutine returns the size of the descriptor table.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The close subroutine, open subroutine, select subroutine.

1-285Base Operating System Runtime Services (A-P)

getenv Subroutine

Purpose
Returns the value of an environment variable.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *getenv (Name)
const char *Name;

Description
The getenv subroutine searches the environment list for a string of the form Name=Value.
Environment variables are sometimes called shell variables because they are frequently set
with shell commands.

Parameters

Name Specifies the name of an environment variable. If a string of the proper
form is not present in the current environment, the getenv subroutine
returns a null pointer.

Return Values
The getenv subroutine returns a pointer to the value in the current environment, if such a
string is present. If such a string is not present, a null pointer is returned. The getenv
subroutine normally does not modify the returned string. The putenv subroutine, however,
may overwrite or change the returned string. Do not attempt to free the returned pointer.
The getenv subroutine returns a pointer to the user’s copy of the environment (which is
static), until the first invocation of the putenv subroutine that adds a new environment
variable. The putenv subroutine allocates an area of memory large enough to hold both the
user’s environment and the new variable. The next call to the getenv subroutine returns a
pointer to this newly allocated space that is not static. Subsequent calls by the putenv
subroutine use the realloc subroutine to make space for new variables. Unsuccessful
completion returns a null pointer.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The putenv subroutine.

1-286 Technical Reference: Base Operating System

getevars Subroutine

Purpose
Gets environment of a process.

Library
Standard C library (libc.a)

Syntax
#include <procinfo.h>
#include <sys/types.h>

int getevars (processBuffer, bufferLen, argsBuffer, argsLen)
struct procsinfo *processBuffer;
int bufferLen;
char *argsBuffer;
int argsLen;

Description
The getevars subroutine returns the environment that was passed to a command when it
was started. Only one process can be examined per call to getevars.

The getevars subroutine uses the pi_pid field of processBuffer to determine which process
to look for. bufferLen should be set to size of struct procsinfo. Parameters are returned in
argsBuffer, which should be allocated by the caller. The size of this array must be given in
argsLen.

On return, argsBuffer consists of a succession of strings, each terminated with a null
character (ascii ‘\0’). Hence, two consecutive NULLs indicate the end of the list.

Note: The arguments may be changed asynchronously by the process, but results are not
guaranteed to be consistent.

Parameters

processBuffer Specifies the address of a procsinfo structure, whose pi_pid field
should contain the pid of the process that is to be looked for.

bufferLen Specifies the size of a single procsinfo structure,

argsBuffer Specifies the address of an array of characters to be filled with a series
of strings representing the parameters that are needed. An extra NULL
character marks the end of the list. This array must be allocated by the
caller.

argsLen Specifies the size of the argsBuffer array. No more than argsLen
characters are returned.

Return Values
If successful, the getevars subroutine returns zero. Otherwise, a value of –1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The getevars subroutine does not succeed if the following are true:

1-287Base Operating System Runtime Services (A-P)

EBADF The specified process does not exist.

EFAULT The copy operation to the buffer was not successful or the
processBuffer or argsBuffer parameters are invalid.

EINVAL The bufferLen parameter does not contain the size of a single
procsinfo structure.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The getargs, getpid, getpgrp, getppid, or getthrds subroutines.

The ps command.

1-288 Technical Reference: Base Operating System

getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent
Subroutine

Purpose
Gets information about a file system.

Library
Standard C Library (libc.a)

Syntax
#include <fstab.h>

struct fstab *getfsent()

struct fstab *getfsspec (Special)
char *Special;

struct fstab *getfsfile(File)
char *File;

struct fstab *getfstype(Type)
char *Type;

void setfsent()

void endfsent()

Description
The getfsent subroutine reads the next line of the /etc/filesystems file, opening the file if
necessary.

The setfsent subroutine opens the /etc/filesystems file and positions to the first record.

The endfsent subroutine closes the /etc/filesystems file.

The getfsspec and getfsfile subroutines sequentially search from the beginning of the file
until a matching special file name or file–system file name is found, or until the end of the
file is encountered. The getfstype subroutine does likewise, matching on the file–system
type field.

Note: All information is contained in a static area, which must be copied to be saved.

Parameters

Special Specifies the file–system file name.

File Specifies the file name.

Type Specifies the file–system type.

Return Values
The getfsent, getfsspec, getfstype, and getfsfile subroutines return a pointer to a
structure that contains information about a file system. The header file fstab.h describes the
structure. A null pointer is returned when the end of file (EOF) is reached or if an error
occurs.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-289Base Operating System Runtime Services (A-P)

Files

/etc/filesystems Centralizes file system characteristics.

Related Information
The getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent
subroutine.

The filesystems file.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-290 Technical Reference: Base Operating System

getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or
endfsent_r Subroutine

Purpose
Gets information about a file system.

Library
Thread–Safe C Library (libc_r.a)

Syntax
#include <fstab.h>

int getfsent_r (FSSent, FSFile, PassNo)
struct fstab *FSSent;
AFILE_t *FSFile;
int *PassNo;

int getfsspec_r (Special, FSSent, FSFile, PassNo)
const char *Special;
struct fstab *FSSent;
AFILE_t *FSFile;
int *PassNo;

int getfsfile_r (File, FSSent, FSFile, PassNo)
const char *File;
struct fstab *FSSent;
AFILE_t *FSFile;
int *PassNo;

int getfstype_r (Type, FSSent, FSFile, PassNo)
const char *Type;
struct fstab *FSSent;
AFILE_t *FSFile;
int *PassNo;

int setfsent_r (FSFile, PassNo)
AFILE_t * FSFile;
int *PassNo;

int endfsent_r (FSFile)
AFILE_t *FSFile;

Description
The getfsent_r subroutine reads the next line of the /etc/filesystems file, opening it
necessary.

The setfsent_r subroutine opens the filesystems file and positions to the first record.

The endfsent_r subroutine closes the filesystems file.

The getfsspec_r and getfsfile_r subroutines search sequentially from the beginning of the
file until a matching special file name or file–system file name is found, or until the end of
the file is encountered. The getfstype_r subroutine behaves similarly, matching on the
file–system type field.

1-291Base Operating System Runtime Services (A-P)

Parameters

FSSent Points to a structure containing information about the file system. The
FSSent parameter must be allocated by the caller. It cannot be a null
value.

FSFile Points to an attribute structure. The FSFile parameter is used to pass
values between subroutines.

PassNo Points to an integer. The setfsent_r subroutine initializes the PassNo
parameter.

Special Specifies a special file name to search for in the filesystems file.

File Specifies a file name to search for in the filesystems file.

Type Specifies a type to search for in the filesystems file.

Return Values

0 Indicates that the subroutine was successful.

–1 Indicates that the subroutine was not successful.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Programs using this subroutine must link to the libpthreads.a library.

Files

/etc/filesystems Centralizes file–system characteristics.

Related Information
The getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent
subroutine.

The filesystems file in AIX Files Reference.

List of Multithread Subroutines in AIX General Programming Concepts : Writing and
Debugging Programs.

1-292 Technical Reference: Base Operating System

getgid or getegid Subroutine

Purpose
Gets the process group IDs.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
#include <sys/types.h>

gid_t getgid (void);

gid_t getegid (void);

Description
The getgid subroutine returns the real group ID of the calling process.

The getegid subroutine returns the effective group ID of the calling process.

Return Values
The getgid and getegid subroutines return the requested group ID. The getgid and
getegid subroutines are always successful.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getgroups subroutine, initgroups subroutine, setgid subroutine, setgroups
subroutine.

The groups command, setgroups command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-293Base Operating System Runtime Services (A-P)

getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine

Purpose
Accesses the basic group information in the user database.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <grp.h>

struct group *getgrent ();

struct group *getgrgid (GID)
gid_t GID;

struct group *getgrnam (Name)
const char *Name;

void setgrent ();

void endgrent ();

Description
Attention: The information returned by the getgrent, getgrnam, and getgrgid
subroutines is stored in a static area and is overwritten on subsequent calls. You must
copy this information to save it.

Attention: These subroutines should not be used with the getgroupattr subroutine. The
results are unpredictable.

The setgrent subroutine opens the user database if it is not already open. Then, this
subroutine sets the cursor to point to the first group entry in the database.

The getgrent, getgrnam, and getgrgid subroutines return information about the requested
group. The getgrent subroutine returns the next group in the sequential search. The
getgrnam subroutine returns the first group in the database whose name matches that of
the Name parameter. The getgrgid subroutine returns the first group in the database whose
group ID matches the GID parameter. The endgrent subroutine closes the user database.

Note: An ! (exclamation mark) is written into the gr_passwd field. This field is ignored and
is present only for compatibility with older versions of UNIX.

The Group Structure
The group structure is defined in the grp.h file and has the following fields:

gr_name Contains the name of the group.

gr_passwd Contains the password of the group.

Note: This field is no longer used.

gr_gid Contains the ID of the group.

gr_mem Contains the members of the group.

If the Network Information Service (NIS) is enabled on the system, these subroutines
attempt to retrieve the group information from the NIS authentication server.

1-294 Technical Reference: Base Operating System

Parameters

GID Specifies the group ID.

Name Specifies the group name.

Group Specifies the basic group information to enter into the user database.

Return Values
If successful, the getgrent, getgrnam, and getgrgid subroutines return a pointer to a valid
group structure. Otherwise, a null pointer is returned.

Error Codes
These subroutines fail if one or more of the following are returned:

EIO Indicates that an input/output (I/O) error has occurred.

EINTR Indicates that a signal was caught during the getgrnam or getgrgid
subroutine.

EMFILE Indicates that the maximum number of file descriptors specified by the
OPEN_MAX value are currently open in the calling process.

ENFILE Indicates that the maximum allowable number of files is currently open
in the system.

To check an application for error situations, set the errno global variable to a value of 0
before calling the getgrgid subroutine. If the errno global variable is set on return, an error
occurred.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

File

/etc/group Contains basic group attributes.

Related Information
List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-295Base Operating System Runtime Services (A-P)

getgrgid_r Subroutine

Purpose
Gets a group database entry for a group ID.

Library
Thread–Safe C Library (libc_r.a)

Syntax

#include <sys/types.h>
#include <grp.h>
int getgrgid_r(gid_t gid,
struct group *grp,
char *buffer,
size_t bufsize,
struct group **result);

Description
The getgrgid_r subroutine updates the group structure pointed to by grp and stores a
pointer to that structure at the location pointed to by result. The structure contains an entry
from the group database with a matching gid. Storage referenced by the group structure is
allocated from the memory provided with the buffer parameter, which is bufsize characters
in size. The maximum size needed for this buffer can be determined with the
{_SC_GETGR_R_SIZE_MAX} sysconf parameter. A NULL pointer is returned at the
location pointed to by result on error or if the requested entry is not found.

Return Values
Upon successful completion, getgrgid_r returns a pointer to a struct group with the
structure defined in <grp.h> with a matching entry if one is found. The getgrgid_r function
returns a null pointer if either the requested entry was not found, or an error occurred. On
error, errno will be set to indicate the error.

The return value points to a static area that is overwritten by a subsequent call to the
getgrent, getgrgid, or getgrnam subroutine.

If successful, the getgrgid_r function returns zero. Otherwise, an error number is returned
to indicate the error.

Error Codes
The getgrgid_r function fails if:

ERANGE Insufficient storage was supplied via buffer and bufsize to contain the data
to be referenced by the resulting group structure.

Applications wishing to check for error situations should set errno to 0 before calling
getgrgid_r. If errno is set on return, an error occurred.

Implementation Specifics
The getgrent, getgrgid, getgrnam, setgrent, endgrent subroutine.

The <grp.h>, <limits.h>, and <sys/types.h> header files.

1-296 Technical Reference: Base Operating System

getgrnam_r Subroutine

Purpose
Search a group database for a name.

Library
Thread–Safe C Library (libc_r.a)

Syntax

#include <sys/types.h>
#include <grp.h>
int getgrnam_r (const char **name,
struct group *grp,
char *buffer,
size_t bufsize,
struct group **result);

Description
The getgrnam_r function updates the group structure pointed to by grp and stores pointer
to that structure at the location pointed to by result. The structure contains an entry from the
group database with a matching gid or name. Storage referenced by the group structure is
allocated from the memory provided with the buffer parameter, which is bufsize characters
in size. The maximum size needed for this buffer can be determined with the
{_SC_GETGR_R_SIZE_MAX} sysconf parameter. A NULL pointer is returned at the
location pointed to by result on error or if the requested entry is not found.

Return Values
The getgrnam_r function returns a pointer to a struct group with the structure defined in
<grp.h> with a matching entry if one is found. The getgrnam_r function returns a null
pointer if either the requested entry was not found, or an error occurred. On error, errno will
be set to indicate the error.

The return value points to a static area that is overwritten by a subsequent call to the
getgrent, getgrgid, or getgrnam subroutine.

If successful, the getgrnam_r function returns zero. Otherwise, an error number is returned
to indicate the error.

Error Codes
The getgrnam_r function fails if:

ERANGE Insufficient storage was supplied via buffer and bufsize to contain the data
to be referenced by the resulting group structure.

Applications wishing to check for error situations should set errno to 0 before calling
getgrnam_r. If errno is set on return, an error occurred.

Implementation Specifics
The getgrent, getgrgid, getgrnam, setgrent, endgrent subroutine.

The <grp.h>, <limits.h>, and <sys/types.h> header files.

1-297Base Operating System Runtime Services (A-P)

getgroupattr, IDtogroup, nextgroup, or putgroupattr
Subroutine

Purpose
Accesses the group information in the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getgroupattr (Group, Attribute, Value, Type)
char *Group;
char *Attribute;
void *Value;
int Type;

int putgroupattr (Group, Attribute, Value, Type)
char *Group;
char *Attribute;
void *Value;
int Type;

char *IDtogroup (GID)
gid_t GID;

char *nextgroup (Mode, Argument)
int Mode, Argument;

Description
Attention: These subroutines and the setpwent and setgrent subroutines should not
be used simultaneously. The results can be unpredictable.

These subroutines access group information. Because of their greater granularity and
extensibility, you should use them instead of the getgrent, putgrent, getgrnam, getgrgid,
setgrent, and endgrent subroutines.

The getgroupattr subroutine reads a specified attribute from the group database. If the
database is not already open, the subroutine will do an implicit open for reading.

Similarly, the putgroupattr subroutine writes a specified attribute into the group database. If
the database is not already open, the subroutine does an implicit open for reading and
writing. Data changed by putgroupattr must be explicitly committed by calling the
putgroupattr subroutine with a Type parameter specifying the SEC_COMMIT value. Until
the data is committed, only get subroutine calls within the process will return the written
data.

New entries in the user and group databases must first be created by invoking
putgroupattr with the SEC_NEW type.

The IDtogroup subroutine translates a group ID into a group name.

The nextgroup subroutine returns the next group in a linear search of the group database.
The consistency of consecutive searches depends upon the underlying storage–access
mechanism and is not guaranteed by this subroutine.

The setuserdb and enduserdb subroutines should be used to open and close the user
database.

1-298 Technical Reference: Base Operating System

Parameters

Argument Presently unused and must be specified as null.

Attribute Specifies which attribute is read. The following possible values are
defined in the usersec.h file:

S_ID Group ID. The attribute type is SEC_INT.

S_USERS Members of the group. The attribute type is
SEC_LIST.

S_ADMS Administrators of the group. The attribute type is
SEC_LIST.

S_ADMIN Administrative status of a group. Type: SEC_BOOL.

S_GRPEXPORT Specifies if the DCE registry can overwrite the local
group information with the DCE group information
during a DCE export operation. The attribute type is
SEC_BOOL.

Additional user–defined attributes may be used and will be stored in the
format specified by the Type parameter.

GID Specifies the group ID to be translated into a group name.

Group Specifies the name of the group for which an attribute is to be read.

Mode Specifies the search mode. Also can be used to delimit the search to
one or more user credential databases. Specifying a non–null Mode
value implicitly rewinds the search. A null mode continues the search
sequentially through the database. This parameter specifies one of the
following values as a bit mask (defined in the usersec.h file):

S_LOCAL The local database of groups are included in the
search.

S_SYSTEM All credentials servers for the system are searched.

Type Specifies the type of attribute expected. Valid values are defined in the
usersec.h file and include:

SEC_INT The format of the attribute is an integer. The buffer
returned by the getgroupattr subroutine and the
buffer supplied by the putgroupattr subroutine are
defined to contain an integer.

SEC_CHAR The format of the attribute is a null–terminated
character string.

SEC_LIST The format of the attribute is a series of
concatenated strings, each null–terminated. The last
string in the series is terminated by two successive
null characters.

SEC_BOOL A pointer to an integer (int *) that has been cast to a
null pointer.

SEC_COMMIT For the putgroupattr subroutine, this value specified
by itself indicates that changes to the named group
are committed to permanent storage. The Attribute
and Value parameters are ignored. If no group is
specified, changes to all modified groups are
committed to permanent storage.

1-299Base Operating System Runtime Services (A-P)

SEC_DELETE The corresponding attribute is deleted from the
database.

SEC_NEW If using the putgroupattr subroutine, updates all the
group database files with the new group name.

Value Specifies the address of a pointer for the getgroupattr subroutine. The
getgroupattr subroutine will return the address of a buffer in the
pointer. For the putgroupattr subroutine, the Value parameter specifies
the address of a buffer in which the attribute is stored. See the Type
parameter for more details.

Security

Files Accessed:

Mode File

rw /etc/group (write access for putgroupattr)

rw /etc/security/group (write access for putgroupattr)

Return Values
The getgroupattr and putgroupattr subroutines, when successfully completed, return a
value of 0. Otherwise, a value of –1 is returned and the errno global variable is set to
indicate the error.

The IDtogroup and nextgroup subroutines return a character pointer to a buffer containing
the requested group name, if successfully completed. Otherwise, a null pointer is returned
and the errno global variable is set to indicate the error.

Error Codes
Note: All of these subroutines return errors from other subroutines.

These subroutines fail if the following is true:

EACCES Access permission is denied for the data request.

The getgroupattr and putgroupattr subroutines fail if one or more of the following are true:

EINVAL The Value parameter does not point to a valid buffer or to valid data for
this type of attribute. Limited testing is possible and all errors may not
be detected.

EINVAL The Group parameter is null or contains a pointer to a null string.

EINVAL The Type parameter contains more than one of the SEC_INT,
SEC_BOOL, SEC_CHAR, SEC_LIST, or SEC_COMMIT attributes.

EINVAL The Type parameter specifies that an individual attribute is to be
committed, and the Group parameter is null.

ENOENT The specified Group parameter does not exist or the attribute is not
defined for this group.

EPERM Operation is not permitted.

The IDtogroup subroutine fails if the following is true:

ENOENT The GID parameter could not be translated into a valid group name on
the system.

The nextgroup subroutine fails if one or more of the following are true:

1-300 Technical Reference: Base Operating System

EINVAL The Mode parameter is not null, and does not specify either S_LOCAL
or S_SYSTEM.

EINVAL The Argument parameter is not null.

ENOENT The end of the search was reached.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getuserattr subroutine, getuserpw subroutine, setpwdb subroutine, setuserdb
subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-301Base Operating System Runtime Services (A-P)

getgroups Subroutine

Purpose
Gets the supplementary group ID of the current process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <unistd.h>

int getgroups (NGroups, GIDSet)
int NGroups;
gid_t GIDSet [];

Description
The getgroups subroutine gets the supplementary group ID of the process. The list is
stored in the array pointed to by the GIDSet parameter. The NGroups parameter indicates
the number of entries that can be stored in this array. The getgroups subroutine never
returns more than the number of entries specified by the NGROUPS_MAX constant. (The
NGROUPS_MAX constant is defined in the limits.h file.) If the value in the NGroups
parameter is 0, the getgroups subroutine returns the number of groups in the
supplementary group.

Parameters

GIDSet Points to the array in which the supplementary group ID of the user’s
process is stored.

NGroups Indicates the number of entries that can be stored in the array pointed
to by the GIDSet parameter.

Return Values
Upon successful completion, the getgroups subroutine returns the number of elements
stored into the array pointed to by the GIDSet parameter. If the getgroups subroutine is
unsuccessful, a value of –1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The getgroups subroutine is unsuccessful if either of the following error codes is true:

EFAULT The NGroups and GIDSet parameters specify an array that is partially
or completely outside of the allocated address space of the process.

EINVAL The NGroups parameter is smaller than the number of groups in the
supplementary group.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getgid subroutine, initgroups subroutine, setgid subroutine, setgroups subroutine.

The groups command, setgroups command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-302 Technical Reference: Base Operating System

getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine

Purpose
Accesses the group screen information in the SMIT ACL database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getgrpaclattr (Group, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

char *nextgrpacl(void)

int putgrpaclattr (Group, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

Description
The getgrpaclattr subroutine reads a specified group attribute from the SMIT ACL
database. If the database is not already open, this subroutine does an implicit open for
reading.

Similarly, the putgrpaclattr subroutine writes a specified attribute into the user SMIT ACL
database. If the database is not already open, this subroutine does an implicit open for
reading and writing. Data changed by the putgrpaclattr subroutine must be explicitly
committed by calling the putgrpaclattr subroutine with a Type parameter specifying
SEC_COMMIT. Until all the data is committed, only the getgrpaclattr subroutine within the
process returns written data.

The nextgrpacl subroutine returns the next group in a linear search of the group SMIT ACL
database. The consistency of consecutive searches depends upon the underlying
storage–access mechanism and is not guaranteed by this subroutine.

The setacldb and endacldb subroutines should be used to open and close the database.

1-303Base Operating System Runtime Services (A-P)

Parameters

Attribute Specifies which attribute is read. The following possible attributes are
defined in the usersec.h file:

S_SCREENS String of SMIT screens. The attribute type is
SEC_LIST.

Type Specifies the type of attribute expected. Valid types are defined in the
usersec.h file and include:

SEC_LIST The format of the attribute is a series of concatenated
strings, each null–terminated. The last string in the
series must be an empty (zero character count) string.

For the getgrpaclattr subroutine, the user should
supply a pointer to a defined character pointer variable.
For the putgrpaclattr subroutine, the user should
supply a character pointer.

SEC_COMMIT For the putgrpaclattr subroutine, this value specified
by itself indicates that changes to the named group are
to be committed to permanent storage. The Attribute
and Value parameters are ignored. If no group is
specified, the changes to all modified groups are
committed to permanent storage.

SEC_DELETE The corresponding attribute is deleted from the group
SMIT ACL database.

SEC_NEW Updates the group SMIT ACL database file with the
new group name when using the putgrpaclattr
subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer
depending on the Attribute and Type parameters. See the Type
parameter for more details.

Return Values
If successful, the getgrpaclattr returns 0. Otherwise, a value of –1 is returned and the
errno global variable is set to indicate the error.

Error Codes
Possible return codes are:

EACCES Access permission is denied for the data request.

ENOENT The specified Group parameter does not exist or the attribute is not
defined for this group.

ENOATTR The specified user attribute does not exist for this group.

EINVAL The Attribute parameter does not contain one of the defined attributes
or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for
this type of attribute.

EPERM Operation is not permitted.

Related Information
The getgrpaclattr, nextgrpacl, or putgrpaclattr subroutine, setacldb, or endacldb
subroutine.

1-304 Technical Reference: Base Operating System

getinterval, incinterval, absinterval, resinc, resabs, alarm,
ualarm, getitimer or setitimer Subroutine

Purpose
Manipulates the expiration time of interval timers.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>

int getinterval (TimerID, Value)
timer_t TimerID;
struct itimerstruc_t *Value;

int incinterval (TimerID, Value, OValue)
timer_t TimerID;
struct itimerstruc_t *Value, *OValue;

int absinterval (TimerID, Value, OValue)
timer_t TimerID;
struct itimerstruc_t *Value, *OValue;

int resabs (TimerID, Resolution, Maximum)
timer_t TimerID;
struct timestruc_t *Resolution, *Maximum;

int resinc (TimerID, Resolution, Maximum)
timer_t TimerID;
struct timestruc_t *Resolution, *Maximum;

#include <unistd.h>

unsigned int alarm (Seconds)
unsigned int Seconds;

useconds_t ualarm (Value, Interval)
useconds_t Value, Interval;

int setitimer (Which, Value, OValue)
int Which;
struct itimerval *Value, *OValue;

int getitimer (Which, Value)
int Which;
struct itimerval *Value;

Description
The getinterval, incinterval, and absinterval subroutines manipulate the expiration time of
interval timers. These functions use a timer value defined by the struct itimerstruc_t
structure, which includes the following fields:

struct timestruc_t it_interval; /* timer interval period

*/

struct timestruc_t it_value; /* timer interval expiration

*/

1-305Base Operating System Runtime Services (A-P)

If the it_value field is nonzero, it indicates the time to the next timer expiration. If
it_value is 0, the per–process timer is disabled. If the it_interval member is nonzero,
it specifies a value to be used in reloading the it_value field when the timer expires. If
it_interval is 0, the timer is to be disabled after its next expiration (assuming it_value
is nonzero).

The getinterval subroutine returns a value from the struct itimerstruc_t structure to the
Value parameter. The it_value field of this structure represents the amount of time in the
current interval before the timer expires, should one exist for the per–process timer
specified in the TimerID parameter. The it_interval field has the value last set by the
incinterval or absinterval subroutine. The fields of the Value parameter are subject to the
resolution of the timer.

The incinterval subroutine sets the value of a per–process timer to a given offset from the
current timer setting. The absinterval subroutine sets the value of the per–process timer to
a given absolute value. If the specified absolute time has already expired, the absinterval
subroutine will succeed and the expiration notification will be made. Both subroutines
update the interval timer period. Time values smaller than the resolution of the specified
timer are rounded up to this resolution. Time values larger than the maximum value of the
specified timer are rounded down to the maximum value.

The resinc and resabs subroutines return the resolution and maximum value of the interval
timer contained in the TimerID parameter. The resolution of the interval timer is contained in
the Resolution parameter, and the maximum value is contained in the Maximum parameter.
These values might not be the same as the values returned by the corresponding system
timer, the gettimer subroutine. In addition, it is likely that the maximum values returned by
the resinc and resabs subroutines will be different.

Note: If a nonprivileged user attempts to submit a fine granularity timer (that is, a timer
request of less than 10 milliseconds), the timer request is raised to 10 milliseconds.

The alarm subroutine causes the system to send the calling thread’s process a SIGALRM
signal after the number of real–time seconds specified by the Seconds parameter have
elapsed. Since the signal is sent to the process, in a multi–threaded process another thread
than the one that called the alarm subroutine may receive the SIGALRM signal. Processor
scheduling delays may prevent the process from handling the signal as soon as it is
generated. If the value of the Seconds parameter is 0, a pending alarm request, if any, is
canceled. Alarm requests are not stacked. Only one SIGALRM generation can be
scheduled in this manner. If the SIGALRM signal has not yet been generated, the call
results in rescheduling the time at which the SIGALRM signal is generated. If several
threads in a process call the alarm subroutine, only the last call will be effective.

The ualarm subroutine sends a SIGALRM signal to the invoking process in a specified
number of seconds. The getitimer subroutine gets the value of an interval timer. The
setitimer subroutine sets the value of an interval timer.

Parameters

TimerID Specifies the ID of the interval timer.

Value Points to a struct itimerstruc_t structure.

OValue Represents the previous time–out period.

Resolution Resolution of the timer.

Maximum Indicates the maximum value of the interval timer.

Seconds Specifies the number of real–time seconds to elapse before the first
SIGALRM signal.

1-306 Technical Reference: Base Operating System

Interval Specifies the number of microseconds between subsequent periodic
SIGALRM signals. If a nonprivileged user attempts to submit a fine
granularity timer (that is, a timer request of less than 10 milliseconds),
the timer request interval is automatically raised to 10 milliseconds.

Which Identifies the type of timer. Valid values are:

ITIMER_REAL Decrements in real time. A SIGALRM signal occurs
when this timer expires.

ITIMER_VIRTUALDecrements in process virtual time. It runs only
during process execution. A SIGVTALRM signal
occurs when it expires.

ITIMER_PROF Decrements in process virtual time and when the
system runs on behalf of the process. It is designed
for use by interpreters in statistically profiling the
execution of interpreted programs. Each time the
ITIMER_PROF timer expires, the SIGPROF signal
occurs. Because this signal may interrupt
in–progress system calls, programs using this timer
must be prepared to restart interrupted system calls.

Return Values
If these subroutines are successful, a value of 0 is returned. If an error occurs, a value of –1
is returned and the errno global variable is set.

The alarm subroutine returns the amount of time (in seconds) remaining before the system
is scheduled to generate the SIGALARM signal from the previous call to alarm. It returns a
0 if there was no previous alarm request.

The ualarm subroutine returns the number of microseconds previously remaining in the
alarm clock.

Error Codes
If the getinterval, incinterval, absinterval, resinc, resabs, setitimer, getitimer, or
setitimer subroutine is unsuccessful , a value of –1 is returned and the errno global
variable is set to one of the following error codes:

EINVAL Indicates that the TimerID parameter does not correspond to an ID
returned by the gettimerid subroutine, or a value structure specified a
nanosecond value less than 0 or greater than or equal to one thousand
million (1,000,000,000).

EIO Indicates that an error occurred while accessing the timer device.

EFAULT Indicates that a parameter address has referenced invalid memory.

The alarm subroutine is always successful. No return value is reserved to indicate an error
for it.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The gettimer subroutine, gettimerid subroutine, sigaction, sigvec, or signal subroutine.

List of Time Data Manipulation Services, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

Signal Management in AIX General Programming Concepts : Writing and Debugging
Programs provides more information about signal management in multi–threaded
processes.

1-307Base Operating System Runtime Services (A-P)

getlogin Subroutine

Purpose
Gets a user’s login name.

Library
Standard C Library (libc.a)

Syntax
include <sys/types.h>
include <unistd.h>
include <limits.h>

char *getlogin (void)

Description
Attention: Do not use the getlogin subroutine in a multithreaded environment. To
access the thread–safe version of this subroutines, see the getlogin_r subroutine.

Attention: The getlogin subroutine returns a pointer to an area that may be overwritten
by successive calls.

The getlogin subroutine returns a pointer to the login name in the /etc/utmp file. You can
use the getlogin subroutine with the getpwnam subroutine to locate the correct password
file entry when the same user ID is shared by several login names.

If the getlogin subroutine cannot find the login name in the /etc/utmp file, it returns the
process LOGNAME environment variable. If the getlogin subroutine is called within a
process that is not attached to a terminal, it returns the value of the LOGNAME environment
variable. If the LOGNAME environment variable does not exist, a null pointer is returned.

Return Values
The return value can point to static data whose content is overwritten by each call. If the
login name is not found, the getlogin subroutine returns a null pointer.

Error Codes
If the getlogin function is unsuccessful, it returns one or more of the following error codes:

EMFILE Indicates that the OPEN_MAX file descriptors are currently open in the
calling process.

ENFILE Indicates that the maximum allowable number of files is currently open
in the system.

ENXIO Indicates that the calling process has no controlling terminal.

Files

/etc/utmp Contains a record of users logged into the system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getgrent, getgrgid, getgrnam, putgrent, setgrent, or endgrent subroutine,
getlogin_r subroutine, getpwent, getpwuid, setpwent, or endpwent subroutine,
getpwnam subroutine.

1-308 Technical Reference: Base Operating System

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-309Base Operating System Runtime Services (A-P)

getlogin_r Subroutine

Purpose
Gets a user’s login name.

Library
Thread–Safe C Library (libc_r.a)

Syntax
int getlogin_r (Name, Length)
char *Name;
size_t Length;

Description
The getlogin_r subroutine gets a user’s login name from the /etc/utmp file and places it in
the Name parameter. Only the number of bytes specified by the Length parameter
(including the ending null value) are placed in the Name parameter.

Applications that call the getlogin_r subroutine must allocate memory for the login name
before calling the subroutine. The name buffer must be the length of the Name parameter
plus an ending null value.

If the getlogin_r subroutine cannot find the login name in the utmp file or the process is not
attached to a terminal, it places the LOGNAME environment variable in the name buffer. If
the LOGNAME environment variable does not exist, the Name parameter is set to null and
the getlogin_r subroutine returns a –1.

Parameters

Name Specifies a buffer for the login name. This buffer should be the length of
the Length parameter plus an ending null value.

Length Specifies the total length in bytes of the Name parameter. No more
bytes than the number specified by the Length parameter are placed in
the Name parameter, including the ending null value.

Return Values

0 Indicates that the subroutine was successful.

–1 Indicates that the subroutine was not successful.

Error Codes
If the getlogin_r subroutine does not succeed, it returns one of the following error codes:

EMFILE Indicates that the OPEN_MAX file descriptors are currently open in the
calling process.

ENFILE Indicates that the maximum allowable number of files are currently open
in the system.

ENXIO Indicates that the calling process has no controlling terminal.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime. Programs using this
subroutine must link to the libpthreads.a library.

1-310 Technical Reference: Base Operating System

File

/etc/utmp Contains a record of users logged into the system.

Related Information
The getgrent_r, getgrgid_r, getgrnam_r, setgrent_r, or endgrent_r subroutine, getlogin
subroutine, getpwent_r, getpwnam_r, putpwent_r, getpwuid_r, setpwent_r, or
endpwent_r subroutine.

List of Security and Auditing Subroutines, List of Multithread Subroutines, and Subroutines
Overview in AIX General Programming Concepts : Writing and Debugging Programs.

1-311Base Operating System Runtime Services (A-P)

getnameinfo Subroutine

Purpose Hostname–to–service name translation [given the binary
address and port].

Note: This is the reverse functionality of getaddrinfo: hostname–to–address translation.

Attention: This is not a POSIX (1003.1g) specified function.

Library
Library (libc.a)

Syntax
#include <sys/socket.h>
#include <netdb.h>
int
getnameinfo (sa, salen, host, hostlen,
serv, servlen, flags)

const struct sockaddr *sa;
char *host;
size_t hostlen;
char *serv;
size_t servlen;
int flags;

Description
The first argument, sa, points to either a sockaddr_in structure (for IPv4) or a sockaddr_in6
structure (for IPv6) that holds the IP address and port number. The argument, salen, gives
the length of the sockaddr_in or sockaddr_in6 structure.

Note: A reverse lookup is performed on the IP address and port number provided in sa.

 The argument, host, copies the hostname associated with the IP address into a buffer. The
argument, hostlen, provides the length of this buffer. The service name associated with the
port number is copied into the buffer pointed to by the argument serv. The argument,
servlen, provides the length of this buffer.

 The final argument defines flags that may be used to modify the default actions of this
function. By default, the fully–qualified domain name (FQDN) for the host is looked up in the
DNS and returned.

NI_NOFQDN If set, return only the hostname portion of the FQDN. If clear,
return the FQDN.

NI_NUMERICHOST If set, return the numeric form of the host address. If clear, return
the name.

NI_NAMEREQD If set, return an error if the host’s name cannot be determined. If
clear, return the numeric form of the host’s address (as if
NI_NUMERICHOST had been set).

NI_NUMERICSERV If set, return the numeric form of the desired service. If clear,
return the service name.

NI_DGRAM If set, consider the desired service to be a datagram service, (i.e.,
call getservbyport with an agrument of udp). If clear, consider the
desired service to be a stream service (i.e., call getserbyport with
an argument of tcp).

1-312 Technical Reference: Base Operating System

 Return Values
If successful, the strings for hostname and service are copied into host and serv,
respectively. If unsuccessful, zero values for either hostlen or servlen will suppress the
associated lookup; in this case no data is copied into the applicable buffer.

 Related Information
The getaddrinfo subroutine, freeaddrinfo subroutine, and gai_strerror
subroutine.Subroutines Overview in AIX Version 4 General Programming Concepts:
Writing and Debugging Programs.

1-313Base Operating System Runtime Services (A-P)

getopt Subroutine

Purpose
Returns the next flag letter specified on the command line.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int getopt (ArgumentC, ArgumentV, OptionString)
int ArgumentC;
char *const ArgumentV [];
const char *OptionString;

extern int Optind;
extern int Optopt;
extern int Opterr;
extern char *Optarg;

Description
The getopt subroutine helps programs interpret shell–command–line flags that are passed
to it. The ArgumentC and ArgumentV parameters are the argument count and argument
array, respectively, as passed to the main program. The OptionString parameter is a string
of recognized flag letters. If a letter is followed by a : (colon), the flag takes an argument.

The Optind parameter indexes the next element of the ArgumentV parameter to be
processed. It is initialized to 1 and the getopt subroutine updates it after calling each
element of the ArgumentV parameter.

The getopt subroutine returns the next flag letter in the ArgumentV parameter list that
matches a letter in the OptionString parameter. If the flag takes an argument, the getopt
subroutine sets the Optarg parameter to point to the argument as follows:

• If the flag was the last letter in the string pointed to by an element of the ArgumentV
parameter, the Optarg parameter contains the next element of the ArgumentV parameter
and the Optind parameter is incremented by 2. If the resulting value of the Optind
parameter is not less than the ArgumentC parameter, this indicates a missing flag
argument, and the getopt subroutine returns an error message.

• Otherwise, the Optarg parameter points to the string following the flag letter in that
element of the ArgumentV parameter and the Optind parameter is incremented by 1.

Parameters

ArgumentC Specifies the number of parameters passed to the routine.

ArgumentV Specifies the list of parameters passed to the routine.

OptionString Specifies a string of recognized flag letters. If a letter is followed by a :
(colon), the flag is expected to take a parameter that may or may not be
separated from it by white space.

Optind Specifies the next element of the ArgumentV array to be processed.

Optopt Specifies any erroneous character in the OptionString parameter.

Opterr Indicates that an error has occurred when set to a value other than 0.

Optarg Points to the next option flag argument.

1-314 Technical Reference: Base Operating System

Return Values
The getopt subroutine returns the next flag letter specified on the command line. A value of
–1 is returned when all command line flags have been parsed. When the value of the
ArgumentV [Optind] parameter is null, *ArgumentV [Optind] is not the – (minus) character,
or ArgumentV [Optind] points to the ”–” (minus) string, the getopt subroutine returns a value
of –1 without changing the value. If ArgumentV [Optind] points to the ”– –” (double minus)
string, the getopt subroutine returns a value of –1 after incrementing the value of the Optind
parameter.

Error Codes
If the getopt subroutine encounters an option character that is not specified by the
OptionString parameter, a ? (question mark) character is returned. If it detects a missing
option argument and the first character of OptionString is a : (colon), then a : (colon)
character is returned. If this subroutine detects a missing option argument and the first
character of OptionString is not a colon, it returns a ? (question mark). In either case, the
getopt subroutine sets the Optopt parameter to the option character that caused the error. If
the application has not set the Opterr parameter to 0 and the first character of OptionString
is not a : (colon), the getopt subroutine also prints a diagnostic message to standard error.

Examples
The following code fragment processes the flags for a command that can take the mutually
exclusive flags a and b, and the flags f and o, both of which require parameters.

#include <unistd.h> /*Needed for access subroutine constants*/

main (argc, argv)

int argc;

char **argv;

{

 int c;

 extern int optind;

 extern char *optarg;

 .

 .

 .

 while ((c = getopt(argc, argv, ”abf:o:”)) != EOF)

 {

 switch (c)

 {

 case ’a’:

 if (bflg)

 errflg++;

 else

 aflg++;

 break;

 case ’b’:

 if (aflg)

 errflg++;

 else

 bflg++;

 break;

 case ’f’:

 ifile = optarg;

 break;

 case ’o’:

 ofile = optarg;

 break;

1-315Base Operating System Runtime Services (A-P)

 case ’?’:

 errflg++;

 } /* case */

 if (errflg)

 {

 fprintf(stderr, ”usage: . . . ”);

 exit(2);

 }

 } /* while */

 for (; optind < argc; optind++)

 {

 if (access(argv[optind], R_OK))

 {

 .

 .

 .

 }

 } /* for */

} /* main */

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getopt command.

List of Executable Program Creation Subroutines, Subroutines Overview, and List of
Multithread Subroutines in AIX General Programming Concepts : Writing and Debugging
Programs.

1-316 Technical Reference: Base Operating System

getpagesize Subroutine

Purpose
Gets the system page size.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int getpagesize()

Description
The getpagesize subroutine returns the number of bytes in a page. Page granularity is the
granularity for many of the memory management calls.

The page size is determined by the system and may not be the same as the underlying
hardware page size.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The brk or sbrk subroutine.

The pagesize command.

Program Address Space Overview and Subroutines Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-317Base Operating System Runtime Services (A-P)

getpass Subroutine

Purpose
Reads a password.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *getpass (Prompt)
char *Prompt;

Description
Attention: The characters are returned in a static data area. Subsequent calls to this
subroutine overwrite the static data area.

The getpass subroutine does the following:

• Opens the controlling terminal of the current process.

• Writes the characters specified by the Prompt parameter to that device.

• Reads from that device the number of characters up to the value of the PASS_MAX
constant until a new–line or end–of–file (EOF) character is detected.

• Restores the terminal state and closes the controlling terminal.

During the read operation, character echoing is disabled.

The getpass subroutine is not safe in a multithreaded environment. To use the getpass
subroutine in a threaded application, the application must keep the integrity of each thread.

Parameters

Prompt Specifies a prompt to display on the terminal.

Return Values
If this subroutine is successful, it returns a pointer to the string. If an error occurs, the
subroutine returns a null pointer and sets the errno global variable to indicate the error.

Error Codes
If the getpass subroutine is unsuccessful, it returns one or more of the following error
codes:

EINTR Indicates that an interrupt occurred while the getpass subroutine was reading
the terminal device. If a SIGINT or SIGQUIT signal is received, the getpass
subroutine terminates input and sends the signal to the calling process.

ENXIO Indicates that the process does not have a controlling terminal.

Note: Any subroutines called by the getpass subroutine may set other error codes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getuserpw subroutine, newpass subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-318 Technical Reference: Base Operating System

getpcred Subroutine

Purpose
Reads the current process credentials.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

char **getpcred (Which)
int Which;

Description
 The getpcred subroutine reads the specified process security credentials and returns them
in a character buffer. It is the calling application’s responsibility to free this memory.

The getpcred subroutine reads the specified process security credentials and returns them
in a character buffer.

Parameters

Which Specifies which credentials are read. This parameter is a bit mask and can
contain one or more of the following values, as defined in the usersec.h
file:

CRED_RUID Real user name

CRED_LUID Login user name

CRED_RGID Real group name

CRED_GROUPS Supplementary group ID

CRED_AUDIT Audit class of the current process

Note: A process must have root user authority to retrieve this credential.
Otherwise, the getpcred subroutine returns a null pointer and the
errno global variable is set to EPERM.

CRED_RLIMITS BSD resource limits

Note: Use the getrlimit subroutine to control resource consumption.

CRED_UMASK The umask.If the Which parameter is null, all
credentials are returned.

Return Values
When successful, the getpcred subroutine returns a pointer to a string containing the
requested values. If the getpcred subroutine is unsuccessful, a null pointer is returned and
the errno global variable is set to indicate the error.

Error Codes
The getpcred subroutine fails if either of the following are true:

1-319Base Operating System Runtime Services (A-P)

EINVAL The Which parameter contains invalid credentials requests.

EPERM The process does not have the proper authority to retrieve the
requested credentials.

Other errors can also be set by any subroutines invoked by the getpcred subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ckuseracct subroutine, ckuserID subroutine, getpenv subroutine, setpenv
subroutine, setpcred subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-320 Technical Reference: Base Operating System

getpenv Subroutine

Purpose
Reads the current process environment.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

char **getpenv (Which)
int Which;

Description
The getpenv subroutine reads the specified environment variables and returns them in a
character buffer.

Parameters

Which Specifies which environment variables are to be returned. This
parameter is a bit mask and may contain one or more of the following
values, as defined in the usersec.h file:

PENV_USR The normal user–state environment. Typically, the shell
variables are contained here.

PENV_SYS The system–state environment. This data is located in
system space and protected from unauthorized access.

All variables are returned by setting the Which parameter to logically
OR the PENV_USER and PENV_SYSTEM values.

The variables are returned in a null–terminated array of character
pointers in the form var=val. The user–state environment variables
are prefaced by the string USRENVIRON:, and the system–state
variables are prefaced with SYSENVIRON:. If a user–state environment
is requested, the current directory is always returned in the PWD
variable. If this variable is not present in the existing environment, the
getpenv subroutine adds it to the returned string.

Return Values
Upon successful return, the getpenv subroutine returns the environment values. If the
getpenv subroutine fails, a null value is returned and the errno global variable is set to
indicate the error.

Note: This subroutine can partially succeed, returning only the values that the process
permits it to read.

Error Codes
The getpenv subroutine fails if one or more of the following are true:

EINVAL The Which parameter contains values other than PENV_USR or
PENV_SYS.

Other errors can also be set by subroutines invoked by the getpenv subroutine.

1-321Base Operating System Runtime Services (A-P)

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ckuseracct subroutine, ckuserID subroutine, getpcred subroutine, setpenv
subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-322 Technical Reference: Base Operating System

getpgid Subroutine

Purpose
Returns the process group ID of the calling process.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

pid_t getpgid (Pid)
(pid_ Pid)

Description
The getpgid subroutine returns the process group ID of the process whose process ID is
equal to that specified by the Pid parameter. If the value of the Pid parameter is equal to
(pid_t)0, the getpgid subroutine returns the process group ID of the calling process.

Parameter

Pid The process ID of the process to return the process group ID for.

Return Values

id The process group ID of the requested process

–1 Not successful and errno set to one of the following.

Error Code

ESRCH There is no process with a process ID equal to Pid.

EPERM The process whose process ID is equal to Pid is not in the same
session as the calling process.

EINVAL The value of the Pid argument is invalid.

Related Information
The exec subroutine, fork subroutine, getpid subroutine, getsid subroutine, setpgid
subroutine, setsid subroutine.

1-323Base Operating System Runtime Services (A-P)

getpid, getpgrp, or getppid Subroutine

Purpose
Returns the process ID, process group ID, and parent process ID.

Syntax
#include <unistd.h>

pid_t getpid (void)

pid_t getpgrp (void)

pid_t getppid (void)

Description
The getpid subroutine returns the process ID of the calling process.

The getpgrp subroutine returns the process group ID of the calling process.

The getppid subroutine returns the process ID of the calling process’ parent process.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutines, fork subroutine, setpgid subroutine, setpgrp subroutine, sigaction,
sigvec, or signal subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-324 Technical Reference: Base Operating System

getportattr or putportattr Subroutine

Purpose
Accesses the port information in the port database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getportattr (Port, Attribute, Value, Type)
char *Port;
char *Attribute;
void *Value;
int Type;

int putportattr (Port, Attribute, Value, Type)
char *Port;
char *Attribute;
void *Value;
int Type;

Description
The getportattr or putportattr subroutine accesses port information. The getportattr
subroutine reads a specified attribute from the port database. If the database is not already
open, the getportattr subroutine implicitly opens the database for reading. The putportattr
subroutine writes a specified attribute into the port database. If the database is not already
open, the putportattr subroutine implicitly opens the database for reading and writing. The
data changed by the putportattr subroutine must be explicitly committed by calling the
putportattr subroutine with a Type parameter equal to the SEC_COMMIT value. Until all
the data is committed, only these subroutines within the process return the written data.

Values returned by these subroutines are in dynamically allocated buffers. You do not need
to move the values prior to the next call.

Use the setuserdb or enduserdb subroutine to open and close the port database.

1-325Base Operating System Runtime Services (A-P)

Parameters

Port Specifies the name of the port for which an attribute is read.

Attribute Specifies the name of the attribute read. This attribute can be one of the
following values defined in the usersec.h file:

S_HERALD Defines the initial message printed when the getty or
login command prompts for a login name. This value is
of the type SEC_CHAR.

S_SAKENABLED Indicates whether or not trusted path processing is
allowed on this port. This value is of the type
SEC_BOOL.

S_SYNONYM Defines the set of ports that are synonym attributes for
the given port. This value is of the type SEC_LIST.

S_LOGTIMES Defines when the user can access the port. This value is
of the type SEC_LIST.

S_LOGDISABLE Defines the number of unsuccessful login attempts that
result in the system locking the port. This value is of the
type SEC_INT.

S_LOGINTERVAL Defines the time interval in seconds within which
S_LOGDISABLE number of unsuccessful login attempts
must occur before the system locks the port. This value
is of the type SEC_INT.

S_LOGREENABLE Defines the time interval in minutes after which a
system–locked port is unlocked. This value is of the type
SEC_INT.

S_LOGDELAY Defines the delay factor in seconds between
unsuccessful login attempts. This value is of the type
SEC_INT.

S_LOCKTIME Defines the time in seconds since the epoch (zero time,
January 1, 1970) that the port was locked. This value is
of the type SEC_INT.

S_ULOGTIMES Lists the times in seconds since the epoch (midnight,
January 1, 1970) when unsuccessful login attempts
occurred. This value is of the type SEC_LIST.

Value Specifies the address of a buffer in which the attribute is stored with
putportattr or is to be read getportattr.

Type Specifies the type of attribute expected. The following types are valid and
defined in the usersec.h file:

SEC_INT Indicates the format of the attribute is an integer. The
buffer returned by the getportattr subroutine and the
buffer supplied by the putportattr subroutine are
defined to contain an integer.

SEC_CHAR Indicates the format of the attribute is a null–terminated
character string.

SEC_LIST Indicates the format of the attribute is a list of
null–terminated character strings. The list itself is null
terminated.

1-326 Technical Reference: Base Operating System

SEC_BOOL An integer with a value of either 0 or 1, or a pointer to a
character pointing to one of the following strings:

– True

– Yes

– Always

– False

– No

– Never

SEC_COMMIT Indicates that changes to the specified port are
committed to permanent storage if specified alone for
the putportattr subroutine. The Attribute and Value
parameters are ignored. If no port is specified, changes
to all modified ports are committed.

SEC_DELETE Deletes the corresponding attribute from the database.

SEC_NEW Updates all of the port database files with the new port
name when using the putportattr subroutine.

Security
Access Control: The calling process must have access to the port information in the port
database.

File Accessed:

Modes File

rw /etc/security/login.cfg

rw /etc/security/portlog

Return Values
The getportattr and putportattr subroutines return a value of 0 if completed successfully.
Otherwise, a value of –1 is returned and the errno global value is set to indicate the error.

Error Codes
These subroutines are unsuccessful if the following values are true:

EACCES Indicates that access permission is denied for the data requested.

ENOENT Indicates that the Port parameter does not exist or the attribute is not
defined for the specified port.

ENOATTR Indicates that the specified port attribute does not exist for the specified port.

EINVAL Indicates that the Attribute parameter does not contain one of the defined
attributes or is a null value.

EINVAL Indicates that the Value parameter does not point to a valid buffer or to valid
data for this type of attribute.

EPERM Operation is not permitted.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-327Base Operating System Runtime Services (A-P)

Related Information
The setuserdb or enduserdb subroutine.

List of Security and Auditing Services in AIX General Programming Concepts : Writing and
Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-328 Technical Reference: Base Operating System

getpri Subroutine

Purpose
Returns the scheduling priority of a process.

Library
Standard C Library (libc.a)

Syntax
int getpri (ProcessID)
pid_t ProcessID;

Description
The getpri subroutine returns the scheduling priority of a process.

Parameters

ProcessID Specifies the process ID. If this value is 0, the current process
scheduling priority is returned.

Return Values
Upon successful completion, the getpri subroutine returns the scheduling priority of a
thread in the process. Otherwise, a value of –1 is returned and the errno global variable is
set to indicate the error.

Error Codes
The getpri subroutine is unsuccessful if one of the following is true:

EPERM A process was located, but its effective and real user ID did not match
those of the process executing the getpri subroutine, and the calling
process did not have root user authority.

ESRCH No process can be found corresponding to that specified by the
ProcessID parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The setpri subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-329Base Operating System Runtime Services (A-P)

getpriority, setpriority, or nice Subroutine

Purpose
Gets or sets the nice value.

Libraries
getpriority, setpriority: Standard C Library (libc.a)

nice: Standard C Library (libc.a)

Berkeley Compatibility Library (libbsd.a)

Syntax
#include <sys/resource.h>

int getpriority(Which, Who)
int Which;
int Who;

int setpriority(Which, Who, Priority)
int Which;
int Who;
int Priority;

#include <unistd.h>

int nice(Increment)
int Increment;

Description
The nice value of the process, process group, or user, as indicated by the Which and Who
parameters is obtained with the getpriority subroutine and set with the setpriority
subroutine.

The getpriority subroutine returns the highest priority nice value (lowest numerical value)
pertaining to any of the specified processes. The setpriority subroutine sets the nice values
of all of the specified processes to the specified value. If the specified value is less than –20,
a value of –20 is used; if it is greater than 20, a value of 20 is used. Only processes that
have root user authority can lower nice values.

The nice subroutine increments the nice value by the value of the Increment parameter.

Note: Nice values are only used for the scheduling policy SCHED_OTHER, where they are
combined with a calculation of recent cpu usage to determine the priority value.

Parameters

Which Specifies one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

Who Interpreted relative to the Which parameter (a process identifier,
process group identifier, and a user ID, respectively). A zero value for
the Who parameter denotes the current process, process group, or
user.

Priority Specifies a value in the range –20 to 20. Negative nice values cause
more favorable scheduling.

Increment Specifies a value that is added to the current process nice value.
Negative values can be specified, although values exceeding either the
high or low limit are truncated.

1-330 Technical Reference: Base Operating System

Return Values
On successful completion, the getpriority subroutine returns an integer in the range –20 to
20. A return value of –1 can also indicate an error, and in this case the errno global variable
is set.

On successful completion, the setpriority subroutine returns 0. Otherwise, –1 is returned
and the global variable errno is set to indicate the error.

On successful completion, the nice subroutine returns the new nice value minus {NZERO}.
Otherwise, a value of –1 is returned and the errno global variable is set to indicate the error.

Note: A value of –1 can also be returned. In that case, the calling process should also
check the errno global variable.

Error Codes
The getpriority and setpriority subroutines are unsuccessful if one of the following is true:

ESRCH No process was located using the Which and Who parameter values
specified.

EINVAL The Which parameter was not recognized.

In addition to the errors indicated above, the setpriority subroutine is unsuccessful if one of
the following is true:

EPERM A process was located, but neither the effective nor real user ID of the
caller of the process executing the setpriority subroutine has root user
authority.

EACCESS The call to setpriority would have changed the priority of a process to a
value lower than its current value, and the effective user ID of the
process executing the call did not have root user authority.

The nice subroutine is unsuccessful if the following is true:

EPERM The Increment parameter is negative or greater than 2 * {NZERO} and
the calling process does not have appropriate privileges.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

To provide upward compatibility with older programs, the nice interface, originally found in
AT&T System V, is supported.

Note: Process priorities in AT&T System V are defined in the range of 0 to 39, rather than
–20 to 20 as in BSD, and the nice library routine is supported by both. Accordingly,
two versions of the nice are supported by Version 3 of the operating system. The
default version behaves like the AT&T System V version, with the Increment
parameter treated as the modifier of a value in the range of 0 to 39 (0 corresponds to
–20, 39 corresponds to 9, and priority 20 is not reachable with this interface).

If the behavior of the BSD version is desired, compile with the Berkeley Compatibility Library
(libbsd.a). The Increment parameter is treated as the modifier of a value in the range
–20 to 20.

Related Information
The exec subroutines.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-331Base Operating System Runtime Services (A-P)

getprocs Subroutine

Purpose
Gets process table entries.

Library
Standard C library (libc.a)

Syntax
#include <procinfo.h>
#include <sys/types.h>

int
getprocs (ProcessBuffer, ProcessSize, FileBuffer, FileSize,
IndexPointer, Count)
struct procsinfo *ProcessBuffer;
or struct procsinfo64 *ProcessBuffer;
int ProcessSize;
struct fdsinfo *FileBuffer;
int FileSize;
pid_t *IndexPointer;
int Count;

Description
The getprocs subroutine returns information about processes, including process table
information defined by the procsinfo structure, and information about the per–process file
descriptors defined by the fdsinfo structure.

The getprocs subroutine retrieves up to Count process table entries, starting with the
process table entry corresponding to the process identifier indicated by IndexPointer, and
places them in the array of procsinfo structures indicated by the ProcessBuffer parameter.
File descriptor information corresponding to the retrieved processes are stored in the array
of fdsinfo structures indicated by the FileBuffer parameter.

On return, the process identifier referenced by IndexPointer is updated to indicate the next
process table entry to be retrieved. The getprocs subroutine returns the number of process
table entries retrieved.

The getprocs subroutine is normally called repeatedly in a loop, starting with a process
identifier of zero, and looping until the return value is less than Count, indicating that there
are no more entries to retrieve.

Note: The process table may change while the getprocs subroutine is accessing it.
Returned entries will always be consistent, but since processes can be created or
destroyed while the getprocs subroutine is running, there is no guarantee that
retrieved entries will still exist, or that all existing processes have been retrieved.

 When used in 32–bit mode, limits larger than can be represented in 32 bits are truncated to
RLIM_INFINITY. Large rusage and other values are truncated to INT_MAX. Alternatively,
the struct procsinfo64 and sizeof (struct procsinfo64) can be used by 32–bit getprocs to
return full 64–bit process information. Note that the procsinfo structure not only increases
certain procsinfo fields from 32 to 64 bits, but that it contains additional information not
present in procsinfo. The struct procsinfo64 contains the same data as struct procsinfo
when compiled ina 64–bit program.

 When used in 64–bit mode, the struct procsinfo contains 64–bit rusage and rlimit
structures.

1-332 Technical Reference: Base Operating System

Parameters

ProcessBuffer Specifies the starting address of an array of procsinfo or procsinfo64
structures to be filled in with process table entries. If a value of NULL is
passed for this parameter, the getprocs subroutine scans the process
table and sets return values as normal, but no process entries are
retrieved.

Note: The ProcessBuffer parameter of getprocs subroutine contains
two struct rusage fields named pi_ru and pi_cru. Each of these
fields contains two struct timeval fields named ru_utime and
ru_stime. The tv_usec field in both of the struct timeval contain
nanoseconds instead of microseconds. These values cone from
the struct user fields named U_ru and U_cru.

ProcessSize Specifies the size of a single procsinfo or procsinfo64 structure.

FileBuffer Specifies the starting address of an array of fdsinfo structures to be
filled in with per–process file descriptor information. If a value of NULL
is passed for this parameter, the getprocs subroutine scans the
process table and sets return values as normal, but no file descriptor
entries are retrieved.

FileSize Specifies the size of a single fdsinfo structure.

IndexPointer Specifies the address of a process identifier which indicates the
required process table entry (this does not have to correspond to an
existing process). A process identifier of zero selects the first entry in
the table. The process identifier is updated to indicate the next entry to
be retrieved.

Count Specifies the number of process table entries requested.

Return Values
If successful, the getprocs subroutine returns the number of process table entries retrieved;
if this is less than the number requested, the end of the process table has been reached.
Otherwise, a value of –1 is returned, and the errno global variable is set to indicate the
error.

Error Codes
The getprocs subroutine does not succeed if the following are true:

EINVAL The ProcessSize or FileSize parameters are invalid, or the IndexPointer
parameter does not point to a valid process identifier, or the Count
parameter is not greater than zero.

EFAULT The copy operation to one of the buffers was not successful.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The getpid, getpgrp, or getppid subroutines, the getthrds subroutine

The ps command.

1-333Base Operating System Runtime Services (A-P)

getpw Subroutine

Purpose
Retrieves a user’s /etc/passwd file entry.

Library
Standard C Library (libc.a)

Syntax
int getpw (UserID, Buffer)

uid_t UserID
char *Buffer

Description
The getpw subroutine opens the /etc/passwd file and returns, in the Buffer parameter, the
/etc/passwd file entry of the user specified by the UserID parameter.

Parameters

Buffer Specifies a character buffer large enough to hold any /etc/passwd
entry.

UserID Specifies the ID of the user for which the entry is desired.

Return Values
The getpw subroutine returns:

0 Successful completion

–1 Not successful.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-334 Technical Reference: Base Operating System

getpwent, getpwuid, getpwnam, putpwent, setpwent, or
endpwent Subroutine

Purpose
Accesses the basic user information in the user database.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwent ()

struct passwd *getpwuid (UserID)
uid_t UserID;

struct passwd *getpwnam (Name)
char *Name;

int putpwent (Password, File)
struct passwd *Password;
FILE *File;

void setpwent ()

void endpwent ()

Description
Attention: All information generated by the getpwent, getpwnam, and getpwuid
subroutines is stored in a static area. Subsequent calls to these subroutines overwrite
this static area. To save the information in the static area, applications should copy it.

These subroutines access the basic user attributes.

The setpwent subroutine opens the user database if it is not already open. Then, this
subroutine sets the cursor to point to the first user entry in the database. The endpwent
subroutine closes the user database.

The getpwent, getpwnam, and getpwuid subroutines return information about a user.
These subroutines do the following:

getpwent Returns the next user entry in the sequential search.

getpwnam Returns the first user entry in the database whose name matches the
Name parameter.

getpwuid Returns the first user entry in the database whose ID matches the
UserID parameter.

The putpwent subroutine writes a password entry into a file in the colon–separated format
of the /etc/passwd file.

The user Structure
The getpwent, getpwnam, and getpwuid subroutines return a user structure. This
structure The user structure is defined in the pwd.h file and has the following fields:

1-335Base Operating System Runtime Services (A-P)

pw_name Contains the name of the user name.

pw_passwd Contains the user’s encrypted password.

Note: If the password is not stored in the /etc/passwd file and the
invoker does not have access to the shadow file that contains
passwords, this field contains an undecryptable string, usually
an * (asterisk).

pw_uid Contains the user’s ID.

pw_gid Identifies the user’s principal group ID.

pw_gecos Contains general user information.

pw_dir Identifies the user’s home directory.

pw_shell Identifies the user’s login shell.

Note: If Network Information Services (NIS) is enabled on the system, these subroutines
attempt to retrieve the information from the NIS authentication server before
attempting to retrieve the information locally.

Parameters

File Points to an open file whose format is similar to the /etc/passwd file
format.

Name Specifies the user name.

Password Points to a password structure. This structure contains user attributes.

UserID Specifies the user ID.

Security

Files Accessed:

Mode File

rw /etc/passwd (write access for the putpwent subroutine only)

r /etc/security/passwd (if the password is desired)

Return Values
The getpwent, getpwnam, and getpwuid subroutines return a pointer to a valid password
structure if successful. Otherwise, a null pointer is returned.

The getpwent subroutine will return a null pointer and an errno value of ENOATTR when it
detects a corrupt entry. To get subsequent entries following the corrupt entry, call the
getpwent subroutine again.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/etc/passwd Contains user IDs and their passwords

Related Information
 The getgrent subroutine, getgroupattr subroutine, getpwuid_r, getuserattr subroutine,
getuserpw, putuserpw, or putuserpwhist subroutine, setuserdb subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-336 Technical Reference: Base Operating System

getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine

Purpose
Controls maximum system resource consumption.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/resource.h>

int setrlimit(Resource1, RLP)
int Resource1;
struct rlimit *RLP;

int setrlimit64 (Resource1, RLP)
int Resource1;
struct rlimit64 *RLP;

int getrlimit (Resource1, RLP)
int Resource1;
struct rlimit *RLP;

int getrlimit64 (Resource1, RLP)
int Resource1;
struct rlimit64 *RLP;

#include <sys/vlimit.h>

vlimit (Resource2,Value)
int Resource2, Value;

Description
The getrlimit subroutine returns the values of limits on system resources used by the
current process and its children processes. The setrlimit subroutine sets these limits. The
vlimit subroutine is also supported, but the getrlimit subroutine replaces it.

A resource limit is specified as either a soft (current) or hard limit. A calling process can
raise or lower its own soft limits, but it cannot raise its soft limits above its hard limits. A
calling process must have root user authority to raise a hard limit.

The rlimit structure specifies the hard and soft limits for a resource, as defined in the
sys/resource.h file. The RLIM_INFINITY value defines an infinite value for a limit.

 When compiled in 32–bit mode, RLIM_INFINITY is a 32–bit value; when compiled in 64–bit
mode, it is a 64–bit value. 32–bit routines should use RLIM64_INFINITY when setting 64–bit
limits with the setrlimit64 routine, and recognize this value when returned by getrlimit64.

This information is stored as per–process information. This subroutine must be executed
directly by the shell if it is to affect all future processes created by the shell.

Note: Raising the data limit does not raise the program break value. Use the brk/sbrk
subroutines to raise the break value. If the proper memory segments are not
initialized at program load time, raising your memory limit will not allow access to this
memory. Use the –bmaxdata flag of the ld command to set up these segments at
load time.

 When compiled in 32–bit mode, the struct rlimit values may be returned as
RLIM_SAVED_MAX or RLIM_SAVED_CUR when the actual resource limit is too large to
represent as a 32–bit rlim_t.

1-337Base Operating System Runtime Services (A-P)

 These values can be used by library routines which set their own rlimits to save off
potentially 64–bit rlimit values (and prevent them from being truncated by the 32–bit struct
rlimit). Unless the library routine intends to permanently change the rlimits, the
RLIM_SAVED_MAX and RLIM_SAVED_CUR values can be used to restore the 64–bit
rlimits.

Parameters

Resource1 Can be one of the following values:

RLIMIT_AS The maximum size of a process’ total available
memory, in bytes. This limit is not enforced.

RLIMIT_CORE The largest size, in bytes, of a core file that can be
created. This limit is enforced by the kernel. If the
value of the RLIMIT_FSIZE limit is less than the
value of the RLIMIT_CORE limit, the system uses
the RLIMIT_FSIZE limit value as the soft limit.

RLIMIT_CPU The maximum amount of central processing unit
(CPU) time, in seconds, to be used by each process.
If a process exceeds its soft CPU limit, the kernel will
send a SIGXCPU signal to the process.

RLIMIT_DATA The maximum size, in bytes, of the data region for a
process. This limit defines how far a program can
extend its break value with the sbrk subroutine. This
limit is enforced by the kernel.

RLIMIT_FSIZE The largest size, in bytes, of any single file that can
be created. When a process attempts to write,
truncate, or clear beyond its soft RLIMIT_FSIZE
limit, the operation will fail with errno set to EFBIG. If
the environment variable XPG_SUS_ENV=ON is set
in the user’s environment before the process is
executed, then the SIGXFSZ signal is also
generated.

RLIMIT_NOFILE This is a number one greater than the maximum
value that the system may assign to a newly–created
descriptor.

RLIMIT_STACK The maximum size, in bytes, of the stack region for a
process. This limit defines how far a program stack
region can be extended. Stack extension is
performed automatically by the system. This limit is
enforced by the kernel. When the stack limit is
reached, the process receives a SIGSEGV signal. If
this signal is not caught by a handler using the signal
stack, the signal ends the process.

RLIMIT_RSS The maximum size, in bytes, to which the resident
set size of a process can grow. This limit is not
enforced by the kernel. A process may exceed its
soft limit size without being ended.

RLP Points to the rlimit or rlimit64 structure, which contains the soft
(current) and hard limits. For the getrlimit subroutine, the requested
limits are returned in this structure. For the setrlimit subroutine, the
desired new limits are specified here.

1-338 Technical Reference: Base Operating System

Resource2 The flags for this parameter are defined in the sys/vlimit.h, and are
mapped to corresponding flags for the setrlimit subroutine.

Value Specifies an integer used as a soft–limit parameter to the vlimit
subroutine.

Return Values
On successful completion, a return value of 0 is returned, changing or returning the
resource limit. Otherwise, a value of –1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit subroutine is unsuccessful if one
of the following is true:

EFAULT The address specified for the RLP parameter is not valid.

EINVAL The Resource1 parameter is not a valid resource, or the limit specified
in the RLP parameter is invalid.

EPERM The limit specified to the setrlimit subroutine would have raised the
maximum limit value, and the caller does not have root user authority.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Application limits may be further constrained by available memory or implementation
defined constants such as OPEN_MAX (maximum available open files).

Related Information
The sigaction, sigvec, or signal subroutines, sigstack subroutine, ulimit subroutine.

1-339Base Operating System Runtime Services (A-P)

getroleattr, nextrole or putroleattr Subroutine

Purpose
Accesses the role information in the roles database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getroleattr(Role, Attribute, Value, Type)
char *Role;
char *Attribute;
void *Value;
int Type;

char *nextrole(void)

int putroleattr(Role, Attribute, Value, Type)
char *Role;
char *Attribute;
void *Value;
int Type;

Description
The getroleattr subroutine reads a specified attribute from the role database. If the
database is not already open, this subroutine does an implicit open for reading.

Similarly, the putroleattr subroutine writes a specified attribute into the role database. If the
database is not already open, this subroutine does an implicit open for reading and writing.
Data changed by the putroleattr subroutine must be explicitly committed by calling the
putroleattr subroutine with a Type parameter specifying SEC_COMMIT. Until all the data is
committed, only the getroleattr subroutine within the process returns written data.

The nextrole subroutine returns the next role in a linear search of the role database. The
consistency of consecutive searches depends upon the underlying storage–access
mechanism and is not guaranteed by this subroutine.

The setroledb and endroledb subroutines should be used to open and close the role
database.

Parameters

Attribute Specifies which attribute is read. The following possible attributes are
defined in the usersec.h file:

S_ROLELIST List of roles included by this role. The attribute type is
SEC_LIST.

S_AUTHORIZATIONS
List of authorizations included by this role. The attribute
type is SEC_LIST.

S_GROUPS List of groups required for this role. The attribute type is
SEC_LIST.

S_SCREENS List of SMIT screens required for this role. The attribute
type is SEC_LIST.

1-340 Technical Reference: Base Operating System

S_VISIBILITY Number value stating the visibility of the role. The
attribute type is SEC_INT.

S_MSGCAT Message catalog number. The attribute type is
SEC_INT.

S_MSGNUMBER
Message number within the catalog. The attribute type
is SEC_INT.

Type Specifies the type of attribute expected. Valid types are defined in the
usersec.h file and include:

SEC_INT The format of the attribute is an integer.

For the getroleattr subroutine, the user should supply
a pointer to a defined integer variable.

For the putroleattr subroutine, the user should supply
an integer.

SEC_CHAR The format of the attribute is a null–terminated
character string.

For the getroleattr subroutine, the user should supply
a pointer to a defined character pointer variable. For
the putroleattr subroutine, the user should supply a
character pointer.

SEC_LIST The format of the attribute is a series of concatenated
strings, each null–terminated. The last string in the
series must be an empty (zero character count) string.

For the getroleattr subroutine, the user should supply
a pointer to a defined character pointer variable. For
the putroleattr subroutine, the user should supply a
character pointer.

SEC_COMMIT For the putroleattr subroutine, this value specified by
itself indicates that changes to the named role are to be
committed to permanent storage. The Attribute and
Value parameters are ignored. If no role is specified,
the changes to all modified roles are committed to
permanent storage.

SEC_DELETE The corresponding attribute is deleted from the
database.

SEC_NEW Updates the role database file with the new role name
when using the putroleattr subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer
depending on the Attribute and Type parameters. See the Type
parameter for more details.

Return Values
If successful, the getroleattr returns 0. Otherwise, a value of –1 is returned and the errno
global variables is set to indicate the error.

Error Codes
Possible return codes are:

1-341Base Operating System Runtime Services (A-P)

EACCES Access permission is denied for the data request.

ENOENT The specified Role parameter does not exist or the attribute is not
defined for this user.

ENOATTR The specified role attribute does not exist for this role.

EINVAL The Attribute parameter does not contain one of the defined attributes
or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for
this type of attribute.

EPERM Operation is not permitted.

Related Information
The getuserattr, nextusracl, or putusraclattr subroutine, setroledb, or endacldb
subroutine.

1-342 Technical Reference: Base Operating System

getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or
endrpcent Subroutine

Purpose
Accesses the /etc/rpc file.

Library
Standard C Library (libc.a)

Syntax
#include <netdb.h>

struct rpcent *getrpcent ()
struct rpcent *getrpcbyname (Name)
char *Name;
struct rpcent *getrpcbynumber (Number)
int Number;
void setrpcent (StayOpen)
int StayOpen
void endrpcent

Description
Attention: Do not use the getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or
endrpcent subroutine in a multithreaded environment.

Attention: The information returned by the getrpcbyname, and getrpcbynumber
subroutines is stored in a static area and is overwritten on subsequent calls. Copy the
information to save it.

The getprcbyname and getrpcbynumber subroutines each return a pointer to an object
with the rpcent structure. This structure contains the broken–out fields of a line from the
/etc/rpc file. The getprcbyname and getrpcbynumber subroutines searches the rpc file
sequentially from the beginning of the file until it finds a matching RPC program name or
number, or until it reaches the end of the file. The getrpcent subroutine reads the next line
of the file, opening the file if necessary.

The setrpcent subroutine opens and rewinds the /etc/rpc file. If the StayOpen parameter
does not equal 0, the rpc file is not closed after a call to the getrpcent subroutine.

The setrpcent subroutine rewinds the rpc file. The endrpcent subroutine closes it.

The rpc file contains information about Remote Procedure Call (RPC) programs. The
rpcent structure is in the /usr/include/sys/rpcent.h file and contains the following fields:

r_name Contains the name of the server for an RPC program

r_aliases Contains an alternate list of names for RPC programs. This list ends with
a 0.

r_number Contains a number associated with an RPC program.

Parameters

Name Specifies the name of a server for rpc program.

Number Specifies the rpc program number for service.

StayOpen Contains a value used to indicate whether to close the rpc file.

1-343Base Operating System Runtime Services (A-P)

Return Values
These subroutines return a null pointer when they encounter the end of a file or an error.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/etc/rpc Contains information about Remote Procedure Call (RPC) programs.

Related Information
Remote Procedure Call (RPC) for Programming in AIX General Programming Concepts :
Writing and Debugging Programs

1-344 Technical Reference: Base Operating System

getrusage, getrusage64, times, or vtimes Subroutine

Purpose
Displays information about resource use.

Libraries
getrusage, getrusage64, times: Standard C Library (libc.a)

vtimes: Berkeley Compatibility Library (libbsd.a)

Syntax
#include <sys/times.h>
#include <sys/resource.h>

int getrusage (Who, RUsage)
int Who;
struct rusage *RUsage;

int getrusage64 (Who, RUsage)
int Who;
struct rusage64 *RUsage;

#include <sys/types.h>
#include <sys/times.h>

clock_t times (Buffer)
struct tms *Buffer;

#include <sys/times.h>

vtimes (ParentVM, ChildVM)
struct vtimes *ParentVm, ChildVm;

Description
The getrusage subroutine displays information about how resources are used by the
current process or all completed child processes.

 When compiled in 64–bit mode, rusage counters are 64 bits. If getrusage is compiled in
32–bit mode, rusage counters are 32 bits. If the kernel’s value of a usage counter has
exceeded the capacity of the corresponding 32–bit rusage value being returned, the
rusage value is set to INT_MAX.

 The getrusage64 subroutine can be called to make 64–bit rusage counters explicitly
available in a 32–bit environment.

The times subroutine fills the structure pointed to by the Buffer parameter with
time–accounting information. All time values reported by the times subroutine are
measured in terms of the number of clock ticks used. Applications should use sysconf
(_SC_CLK_TCK) to determine the number of clock ticks per second.

The tms structure defined in the /usr/include/sys/times.h file contains the following fields:

time_t tms_utime;

time_t tms_stime;

time_t tms_cutime;

time_t tms_cstime;

This information is read from the calling process as well as from each completed child
process for which the calling process executed a wait subroutine.

1-345Base Operating System Runtime Services (A-P)

tms_utime The CPU time used for executing instructions in the user space of the
calling process

tms_stime The CPU time used by the system on behalf of the calling process.

tms_cutime The sum of the tms_utime and the tms_cutime values for all the
child processes.

tms_cstime The sum of the tms_stime and the tms_cstime values for all the
child processes.

Note: The system measures time by counting clock interrupts. The precision of the values
reported by the times subroutine depends on the rate at which the clock interrupts
occur.

1-346 Technical Reference: Base Operating System

Parameters

Who Specifies a value of either RUSAGE_SELF or RUSAGE_CHILDREN.

RUsage Points to a buffer described in the /usr/include/sys/resource.h file.
The fields are interpreted as follows:

ru_utime The total amount of time running in user mode.

ru_stime The total amount of time spent in the system executing
on behalf of the processes.

ru_maxrss The maximum size, in kilobytes, of the used resident
set size.

ru_ixrss An integral value indicating the amount of memory
used by the text segment that was also shared among
other processes. This value is expressed in units of
kilobytes * seconds–of–execution and is calculated by
adding the number of shared memory pages in use
each time the internal system clock ticks, and then
averaging over one–second intervals.

ru_idrss An integral value of the amount of unshared memory in
the data segment of a process (expressed in units of
kilobytes * seconds–of–execution).

ru_minflt The number of page faults serviced without any I/O
activity. In this case, I/O activity is avoided by
reclaiming a page frame from the list of pages awaiting
reallocation.

ru_majflt The number of page faults serviced that required I/O
activity.

ru_nswap The number of times a process was swapped out of
main memory.

ru_inblock The number of times the file system performed input.

ru_oublock The number of times the file system performed output.

Note: The numbers that the ru_inblock and
ru_oublock fields display account for real I/O
only; data supplied by the caching mechanism
is charged only to the first process to read or
write the data.

ru_msgsnd The number of IPC messages sent.

ru_msgrcv The number of IPC messages received.

ru_nsignals The number of signals delivered.

ru_nvcsw The number of times a context switch resulted because
a process voluntarily gave up the processor before its
time slice was completed. This usually occurs while the
process waits for availability of a resource.

ru_nivcsw The number of times a context switch resulted because
a higher priority process ran or because the current
process exceeded its time slice.

Buffer Points to a tms structure.

1-347Base Operating System Runtime Services (A-P)

ParentVm Points to a vtimes structure that contains the accounting information for
the current process.

ChildVm Points to a vtimes structure that contains the accounting information for
the terminated child processes of the current process.

Return Values
Upon successful completion, the getrusage and getrusage64 subroutines return a value of
0. Otherwise, a value of –1 is returned and the errno global variable is set to indicate the
error.

Upon successful completion, the times subroutine returns the elapsed real time in units of
ticks, whether profiling is enabled or disabled. This reference time does not change from
one call of the times subroutine to another. If the times subroutine fails, it returns a value of
–1 and sets the errno global variable to indicate the error.

Error Codes

The getrusage and getrusage64 subroutines do not run successfully if either of the
following is true:

EINVAL The Who parameter is not a valid value.

EFAULT The address specified for RUsage is not valid.

The times subroutine does not run successfully if the following is true:

EFAULT The address specified by the buffer parameter is not valid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The vtimes subroutine is supported to provide compatibility with earlier programs.

The vtimes subroutine returns accounting information for the current process and for the
completed child processes of the current process. Either the ParentVm parameter, the
ChildVm parameter, or both may be 0. In that case, only the information for the nonzero
pointers is returned.

After a call to the vtimes subroutine, each buffer contains information as defined by the
contents of the /usr/include/sys/vtimes.h file.

Related Information
The gettimer, settimer, restimer, stime, or time subroutine, wait, waitpid, or wait3
subroutine.

1-348 Technical Reference: Base Operating System

gets or fgets Subroutine

Purpose
Gets a string from a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>
char *gets (String)
char *String;

char *fgets (String, Number, Stream)
char *String;
int Number;
FILE *Stream;

Description
The gets subroutine reads bytes from the standard input stream, stdin, into the array
pointed to by the String parameter. It reads data until it reaches a new–line character or an
end–of–file condition. If a new–line character stops the reading process, the gets subroutine
discards the new–line character and terminates the string with a null character.

The fgets subroutine reads bytes from the data pointed to by the Stream parameter into the
array pointed to by the String parameter. The fgets subroutine reads data up to the number
of bytes specified by the Number parameter minus 1, or until it reads a new–line character
and transfers that character to the String parameter, or until it encounters an end–of–file
condition. The fgets subroutine then terminates the data string with a null character.

The first successful run of the fgetc, fgets, fgetwc, fgetws, fread, fscanf, getc, getchar,
gets or scanf subroutine using a stream that returns data not supplied by a prior call to the
ungetc or ungetwc subroutine marks the st_atime field for update.

Parameters

String Points to a string to receive bytes.

Stream Points to the FILE structure of an open file.

Number Specifies the upper bound on the number of bytes to read.

Return Values
If the gets or fgets subroutine encounters the end of the file without reading any bytes, it
transfers no bytes to the String parameter and returns a null pointer. If a read error occurs,
the gets or fgets subroutine returns a null pointer and sets the errno global variable (errors
are the same as for the fgetc subroutine). Otherwise, the gets or fgets subroutine returns
the value of the String parameter.

Note: Depending upon which library routine the application binds to, this subroutine may
return EINTR. Refer to the signal subroutine regarding the SA_RESTART value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-349Base Operating System Runtime Services (A-P)

Related Information
The feof, ferror, clearerr, or fileno macro, fopen, freopen, or fdopen subroutine, fread
subroutine, getc, getchar, fgetc, or getw subroutine, getwc, fgetwc, or getwchar
subroutine, getws or fgetws subroutine, puts or fputs subroutine, putws or fputws
subroutine, scanf, fscanf, or sscanf subroutine, ungetc or ungetwc subroutine.

List of String Manipulation Services, Subroutines Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-350 Technical Reference: Base Operating System

getsid Subroutine

Purpose
Returns the session ID of the calling process.

Library
(libc.a)

Syntax
#include <unistd.h>

pid_t getsid (pid_ t pid)

Description
The getsid subroutine returns the process group ID of the process that is the session leader
of the process specified by pid. If pid is equal to pid_t subroutine, it specifies the calling
process.

Parameters

pid A process ID of the process being queried.

Return Values
Upon successful completion, getsid subroutine returns the process group ID of the session
leaded of the specified process. Otherwise, it returns (pid_t)–1 and set errno to indicate the
error.

id The session ID of the requested process.

–1 Not successful and the errno global variable is set to one of the
following error codes.

Error Codes

ESRCH There is no process with a process ID equal to pid.

EPERM The process specified by pid is not in the same session as the calling
process.

ESRCH There is no process with a process ID equal to pid.

Related Information
The exec subroutines, fork subroutines, getpid subroutines, setpgid subroutines.

1-351Base Operating System Runtime Services (A-P)

getssys Subroutine

Purpose
Reads a subsystem record.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

int getssys(SubsystemName, SRCSubsystem)
char *SubsystemName;
struct SRCsubsys *SRCSubsystem;

Description
The getssys subroutine reads a subsystem record associated with the specified subsystem
and returns the ODM record in the SRCsubsys structure.

The SRCsubsys structure is defined in the sys/srcobj.h file.

Parameters

SRCSubsystem Points to the SRCsubsys structure.

SubsystemNam
e

 Specifies the name of the subsystem to be read.

Return Values
Upon successful completion, the getssys subroutine returns a value of 0. Otherwise, it
returns a value of –1 and the odmerrno variable is set to indicate the error, or an SRC error
code is returned.

Error Codes
If the getssys subroutine fails, the following is returned:

SRC_NOREC Subsystem name does not exist.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

Related Information
The addssys subroutine, delssys subroutine, getsubsvr subroutine.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller
(SRC) Overview for Programmers in AIX General Programming Concepts : Writing and
Debugging Programs.

1-352 Technical Reference: Base Operating System

getsubopt Subroutine

Purpose
Parse suboptions from a string.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int getsubopt (char **optionp,
char * const * tokens,
char ** valuep)

Description
The getsubopt subroutine parses suboptions in a flag parameter that were initially parsed
by the getopt subroutine. These suboptions are separated by commas and may consist of
either a single token, or a token–value pair separated by an equal sign. Because commas
delimit suboptions in the option string, they are not allowed to be part of the suboption or the
value of a suboption. similarly, because the equal sign separates a token from its value, a
token must not contain an equal sign.

The getsubopt subroutine takes the address of a pointer to the option string, a vector of
possible tokens, and the address of a value string pointer. It returns the index of the token
that matched the suboption in the input string or –1 if there was no match. If the option
string at *optionp contains only one suboption, the getsubopt subroutine updates *optionp
to point to the start of the next suboption. It the suboption has an associated value, the
getsubopt subroutine updates *valuep to point to the value’s first character. Otherwise it
sets *valuep to a NULL pointer.

The token vector is organized as a series of pointers to strings. The end of the token vector
is identified by a NULL pointer.

When the getsubopt subroutine returns, if *valuep is not a NULL pointer then the suboption
processed included a value. The calling program may use this information to determine if
the presence or lack of a value for this suboption is an error.

Additionally, when the getsubopt subroutine fails to match the suboption with the tokens in
the tokens array, the calling program should decide if this is an error, or if the unrecognized
option should be passed on to another program.

Return Values
The getsubopt subroutine returns the index of the matched token string, or –1 if no token
strings were matched.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getopt subroutine.

1-353Base Operating System Runtime Services (A-P)

getsubsvr Subroutine

Purpose
Reads a subsystem record.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <spc.h>

int getsubsvr(SubserverName, SRCSubserver)
char *SubserverName;
struct SRCSubsvr *SRCSubserver;

Description
The getsubsvr subroutine reads a subsystem record associated with the specified
subserver and returns the ODM record in the SRCsubsvr structure.

The SRCsubsvr structure is defined in the sys/srcobj.h file and includes the following
fields:

char sub_type[30];

char subsysname[30];

short sub_code;

Parameters

SRCSubserver Points to the SRCsubsvr structure.

SubserverName Specifies the subserver to be read.

Return Values
Upon successful completion, the getsubsvr subroutine returns a value of 0. Otherwise, it
returns a value of –1 and the odmerrno variable is set to indicate the error, or an SRC error
code is returned.

Error Codes
If the getsubsvr subroutine fails, the following is returned:

SRC_NOREC The specified SRCsubsvr record does not exist.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.

Related Information
The getssys subroutine.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller
(SRC) Overview for Programmers in AIX General Programming Concepts : Writing and
Debugging Programs.

1-354 Technical Reference: Base Operating System

getthrds Subroutine

Purpose
Gets kernel thread table entries.

Library
Standard C library (libc.a)

Syntax
#include <procinfo.h>
#include <sys/types.h>

int
getthrds (ProcessIdentifier, ThreadBuffer, ThreadSize,
IndexPointer, Count)
pid_t ProcessIdentifier;
struct thrdsinfo *ThreadBuffer;
or struct thrdsinfo64 *ThreadBuffer;
int ThreadSize;
tid_t *IndexPointer;
int Count;

Description
The getthrds subroutine returns information about kernel threads, including kernel thread
table information defined by the thrdsinfo or thrdsinfo64 structure.

The getthrds subroutine retrieves up to Count kernel thread table entries, starting with the
entry corresponding to the thread identifier indicated by IndexPointer, and places them in
the array of thrdsinfo or thrdsinfo64 structures indicated by the ThreadBuffer parameter.

On return, the kernel thread identifier referenced by IndexPointer is updated to indicate the
next kernel thread table entry to be retrieved. The getthrds subroutine returns the number
of kernel thread table entries retrieved.

If the ProcessIdentifier parameter indicates a process identifier, only kernel threads
belonging to that process are considered. If this parameter is set to –1, all kernel threads
are considered.

The getthrds subroutine is normally called repeatedly in a loop, starting with a kernel thread
identifier of zero, and looping until the return value is less than Count, indicating that there
are no more entries to retrieve.

1. Do not use information from the procsinfo structure (see the getprocs subroutine) to
determine the value of the Count parameter; a process may create or destroy kernel
threads in the interval between a call to getprocs and a subsequent call to getthrds.

2. The kernel thread table may change while the getthrds subroutine is accessing it.
Returned entries will always be consistent, but since kernel threads can be created or
destroyed while the getthrds subroutine is running, there is no guarantee that retrieved
entries will still exist, or that all existing kernel threads have been retrieved.

 When used in 32–bit mode, limits larger than can be represented in 32 bits are truncated to
RLIM_INFINITY. Large values are truncated to INT_MAX. Alternatively, the struct
thrdsinfo64 and sizeof (struct thrdsinfo64) can be used by 32–bit getthrds to return full
64–bit thread information. Note that the thrdsinfo64 structure not only inceases certain
thrdsinfo fields from 32 to 64 bits, but that it contains additional information not present in
thrdsinfo. The struct thrdsinfo64 contains the same data as struct thrdsinfo when
compiled in a 64–bit program.

1-355Base Operating System Runtime Services (A-P)

Parameters

ProcessIdentifier Specifies the process identifier of the process whose kernel threads are
to be retrieved. If this parameter is set to –1, all kernel threads in the
kernel thread table are retrieved.

ThreadBuffer Specifies the starting address of an array of thrdsinfo or thrdsinfo64
structures which will be filled in with kernel thread table entries. If a
value of NULL is passed for this parameter, the getthrds subroutine
scans the kernel thread table and sets return values as normal, but no
kernel thread table entries are retrieved.

ThreadSize Specifies the size of a single thrdsinfo or thrdsinfo64 structure.

IndexPointer Specifies the address of a kernel thread identifier which indicates the
required kernel thread table entry (this does not have to correspond to
an existing kernel thread). A kernel thread identifier of zero selects the
first entry in the table. The kernel thread identifier is updated to indicate
the next entry to be retrieved.

Count Specifies the number of kernel thread table entries requested.

Return Value
If successful, the getthrds subroutine returns the number of kernel thread table entries
retrieved; if this is less than the number requested, the end of the kernel thread table has
been reached. Otherwise, a value of –1 is returned, and the errno global variable is set to
indicate the error.

Error Codes
The getthrds subroutine fails if the following are true:

EINVAL The ThreadSize is invalid, or the IndexPointer parameter does not point
to a valid kernel thread identifier, or the Count parameter is not greater
than zero.

ESRCH The process specified by the ProcessIdentifier parameter does not
exist.

EFAULT The copy operation to one of the buffers failed.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The getpid, getpgrp, or getppid subroutines, the getprocs subroutine.

The ps command.

1-356 Technical Reference: Base Operating System

gettimeofday, settimeofday, or ftime Subroutine

Purpose
Displays, gets and sets date and time.

Libraries
gettimeofday, settimeofday: Standard C Library (libc.a)

ftime: Berkeley Compatibility Library (libbsd.a)

Syntax
#include <sys/time.h>
int gettimeofday (Tp, Tzp)
struct timeval *Tp;
void *Tzp;
int settimeofday (Tp, Tzp)
struct timeval *Tp;
struct timezone *Tzp;

#include <sys/types.h>
#include <sys/timeb.h>
int ftime (Tp)
struct timeb *Tp;

Description
Current Greenwich time and the current time zone are displayed with the gettimeofday
subroutine, and set with the settimeofday subroutine. The time is expressed in seconds
and microseconds since midnight (0 hour), January 1, 1970. The resolution of the system
clock is hardware–dependent, and the time may be updated either continuously or in ”ticks.”
If the Tzp parameter has a value of 0, the time zone information is not returned or set.

The Tp parameter returns a pointer to a timeval structure that contains the time since the
epoch began in seconds and microseconds.

The timezone structure indicates both the local time zone (measured in minutes of time
westward from Greenwich) and a flag that, if nonzero, indicates that daylight saving time
applies locally during the appropriate part of the year.

In addition to the difference in timer granularity, the timezone structure distinguishes these
subroutines from the POSIX gettimer and settimer subroutines, which deal strictly with
Greenwich Mean Time.

The ftime subroutine fills in a structure pointed to by its argument, as defined by
<sys/timeb.h>. The structure contains the time in seconds since 00:00:00 UTC
(Coordinated Universal Time), January 1, 1970, up to 1000 milliseconds of more–precise
interval, the local timezone (measured in minutes of time westward from UTC), and a flag
that, if nonzero, indicates that Daylight Saving time is in effect, and the values stored in the
timeb structure have been adjusted accordingly.

Parameters

Tp Pointer to a timeval structure, defined in the sys/time.h file.

Tzp Pointer to a timezone structure, defined in the sys/time.h file.

Return Values
If the subroutine succeeds, a value of 0 is returned. If an error occurs, a value of –1 is
returned and errno is set to indicate the error.

1-357Base Operating System Runtime Services (A-P)

Error Codes
If the settimeofday subroutine is unsuccessful, the errno value is set to EPERM to indicate
that the process’s effective user ID does not have root user authority.

No errors are defined for the gettimeofday or ftime subroutine.

1-358 Technical Reference: Base Operating System

gettimer, settimer, restimer, stime, or time Subroutine

Purpose
Gets or sets the current value for the specified systemwide timer.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/types.h>

int gettimer(TimerType, Value)
timer_t TimerType;
struct timestruc_t * Value;

#include <sys/timers.h>
#include <sys/types.h>

int gettimer(TimerType, Value)
timer_t TimerType;
struct itimerspec * Value;

int settimer(TimerType, TimePointer)
int TimerType;
const struct timestruc_t *TimePointer;

int restimer(TimerType, Resolution, MaximumValue)
int TimerType;
struct timestruc_t *Resolution, *MaximumValue;

int stime(Tp)
long *Tp;

#include <sys/types.h>

time_t time(Tp)
time_t *Tp;

Description
The settimer subroutine is used to set the current value of the TimePointer parameter for
the systemwide timer, specified by the TimerType parameter.

When the gettimer subroutine is used with the function prototype in sys/timers.h, then
except for the parameters, the gettimer subroutine is identical to the getinterval
subroutine. Use of the getinterval subroutine is recommended, unless the gettimer
subroutine is required for a standards–conformant application. The description and
semantics of the gettimer subroutine are subject to change between releases, pending
changes in the draft standard upon which the current gettimer subroutine description is
based.

When the gettimer subroutine is used with the function prototype in /sys/timers.h, the
gettimer subroutine returns an itimerspec structure to the pointer specified by the Value
parameter. The it_value member of the itimerspec structure represents the amount of time
in the current interval before the timer (specified by the TimerType parameter) expires, or a
zero interval if the timer is disabled. The members of the pointer specified by the Value
parameter are subject to the resolution of the timer.

When the gettimer subroutine is used with the function prototype in sys/time.h, the
gettimer subroutine returns a timestruc structure to the pointer specified by the Value
parameter. This structure holds the current value of the system wide timer specified by the
Value parameter.

1-359Base Operating System Runtime Services (A-P)

The resolution of any timer can be obtained by the restimer subroutine. The Resolution
parameter represents the resolution of the specified timer. The MaximumValue parameter
represents the maximum possible timer value. The value of these parameters are the
resolution accepted by the settimer subroutine.

Note: If a nonprivileged user attempts to submit a fine granularity timer (that is, a timer
request of less than 10 milliseconds), the timer request is raised to 10 milliseconds.

The time subroutine returns the time in seconds since the Epoch (that is, 00:00:00 GMT,
January 1, 1970). The Tp parameter points to an area where the return value is also stored.
If the Tp parameter is a null pointer, no value is stored.

Parameters

Value Points to a structure of type itimerspec.

TimerType Specifies the systemwide timer:

TIMEOFDAY (POSIX system clock timer) This timer represents the
time–of–day clock for the system. For this timer, the
values returned by the gettimer subroutine and
specified by the settimer subroutine represent the
amount of time since 00:00:00 GMT, January 1, 1970.

TimePointer Points to a structure of type struct timestruc_t.

Resolution The resolution of a specified timer.

MaximumValue The maximum possible timer value.

Tp Points to a structure containing the time in seconds.

Return Values
The gettimer, settimer, restimer, and stime subroutines return a value of 0 (zero) if the call
is successful. A return value of –1 indicates an error occurred, and errno is set.

The time subroutine returns the value of time in seconds since Epoch. Otherwise, a value of
((time_t) – 1) is returned and the errno global variable is set to indicate the error.

Error Codes
If an error occurs in the gettimer, settimer, restimer, or stime subroutine, a return value of
– 1 is received and the errno global variable is set to one of the following error codes:

EINVAL The TimerType parameter does not specify a known systemwide timer,
or the TimePointer parameter of the settimer subroutine is outside the
range for the specified systemwide timer.

EFAULT A parameter address referenced memory that was not valid.

EIO An error occurred while accessing the timer device.

EPERM The requesting process does not have the appropriate privilege to set
the specified timer.

If the time subroutine is unsuccessful, a return value of –1 is received and the errno global
variable is set to the following:

EFAULT A parameter address referenced memory that was not valid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The stime subroutine is implemented to provide compatibility with older AIX, AT&T System
V, and BSD systems. It calls the settimer subroutine using the TIMEOFDAY timer.

1-360 Technical Reference: Base Operating System

Related Information
The asctime subroutine, clock subroutine, ctime subroutine, difftime subroutine,
getinterval subroutine, gmtime subroutine, localtime subroutine, mktime subroutine,
strftime subroutine, strptime subroutine, utime subroutine.

List of Time Data Manipulation Services and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-361Base Operating System Runtime Services (A-P)

gettimerid Subroutine

Purpose
Allocates a per–process interval timer.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/events.h>

timer_t gettimerid(TimerType, NotifyType)
int TimerType;
int NotifyType;

Description
The gettimerid subroutine is used to allocate a per–process interval timer based on the
timer with the given timer type. The unique ID is used to identify the interval timer in interval
timer requests. (See getinterval subroutine). The particular timer type, the TimerType
parameter, is defined in the sys/time.h file and can identify either a systemwide timer or a
per–process timer. The mechanism by which the process is to be notified of the expiration of
the timer event is the NotifyType parameter, which is defined in the sys/events.h file.

The TimerType parameter represents one of the following timer types:

TIMEOFDAY (POSIX system clock timer) This timer represents the time–of–day
clock for the system. For this timer, the values returned by the
gettimer subroutine and specified by the settimer subroutine
represent the amount of time since 00:00:00 GMT, January 1,
1970, in nanoseconds.

TIMERID_ALRM (Alarm timer) This timer schedules the delivery of a SIGALRM
signal at a timer specified in the call to the settimer subroutine.

TIMERID_REAL (Real–time timer) The real–time timer decrements in real time. A
SIGALRM signal is delivered when this timer expires.

TIMERID_VIRTUAL (Virtual timer) The virtual timer decrements in process virtual time.
it runs only when the process is executing in user mode. A
SIGVTALRM signal is delivered when it expires.

TIMERID_PROF (Profiling timer) The profiling timer decrements both when running
in user mode and when the system is running for the process. It is
designed to be used by processes to profile their execution
statistically. A SIGPROF signal is delivered when the profiling timer
expires.

Interval timers with a notification value of DELIVERY_SIGNAL are inherited across an exec
subroutine.

Parameters

NotifyType Notifies the process of the expiration of the timer event.

TimerType Identifies either a systemwide timer or a per–process timer.

1-362 Technical Reference: Base Operating System

Return Values
If the gettimerid subroutine succeeds, it returns a timer_t structure that can be passed to
the per–process interval timer subroutines, such as the getinterval subroutine. If an error
occurs, the value –1 is returned and errno is set.

Error Codes
If the gettimerid subroutine fails, the value –1 is returned and errno is set to one of the
following error codes:

EAGAIN The calling process has already allocated all of the interval timers
associated with the specified timer type for this implementation.

EINVAL The specified timer type is not defined.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, fork subroutine, getinterval, incinterval, absinterval, resinc, or
resabs subroutine, gettimer, settimer, or restimer subroutine, reltimerid subroutine.

List of Time Data Manipulation Services and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-363Base Operating System Runtime Services (A-P)

getttyent, getttynam, setttyent, or endttyent Subroutine

Purpose
Gets a tty description file entry.

Library
Standard C Library (libc.a)

Syntax
#include <ttyent.h>

struct ttyent *getttyent()
struct ttyent *getttynam(Name)
char *Name;
void setttyent()
void endttyent()

Description
Attention: Do not use the getttyent, getttynam, setttyent, or endttyent subroutine in a
multithreaded environment.

The getttyent and getttynam subroutines each return a pointer to an object with the ttyent
structure. This structure contains the broken–out fields of a line from the tty description file.
The ttyent structure is in the /usr/include/sys/ttyent.h file and contains the following fields:

tty_name The name of the character special file in the /dev directory. The
character special file must reside in the /dev directory.

ty_getty The command that is called by the init process to initialize tty line
characteristics. This is usually the getty command, but any arbitrary
command can be used. A typical use is to initiate a terminal emulator in
a window system.

ty_type The name of the default terminal type connected to this tty line. This is
typically a name from the termcap database. The TERM environment
variable is initialized with this name by the getty or login command.

ty_status A mask of bit fields that indicate various actions to be allowed on this tty
line. The following is a description of each flag:

TTY_ON Enables logins (that is, the init process starts the
specified getty command on this entry).

TTY_SECURE Allows a user with root user authority to log in to this
terminal. The TTY_ON flag must be included.

ty_window The command to execute for a window system associated with the line.
The window system is started before the command specified in the
ty_getty field is executed. If none is specified, this is null.

ty_comment The trailing comment field. A leading delimiter and white space is
removed.

The getttyent subroutine reads the next line from the tty file, opening the file if necessary.
The setttyent subroutine rewinds the file. The endttyent subroutine closes it.

The getttynam subroutine searches from the beginning of the file until a matching name
(specified by the Name parameter) is found (or until the EOF is encountered).

1-364 Technical Reference: Base Operating System

Parameters

Name Specifies the name of a tty description file.

Return Values
These subroutines return a null pointer when they encounter an EOF (end–of–file) character
or an error.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/usr/lib/libodm.a Specifies the ODM (Object Data Manager) library.

/usr/lib/libcfg.a Archives device configuration subroutines.

/etc/termcap Defines terminal capabilities.

Related Information
The ttyslot subroutine.

The getty command, init command, login command.

List of Files and Directories Subroutines in AIX General Programming Concepts : Writing
and Debugging Programs.

1-365Base Operating System Runtime Services (A-P)

getuid or geteuid Subroutine

Purpose
Gets the real or effective user ID of the current process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <unistd.h>

uid_t getuid(void)

uid_t geteuid(void)

Description
The getuid subroutine returns the real user ID of the current process. The geteuid
subroutine returns the effective user ID of the current process.

Return Values
The getuid and geteuid subroutines return the corresponding user ID.

Note: The getuid and geteuid subroutines always succeed.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The setuid subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-366 Technical Reference: Base Operating System

getuinfo Subroutine

Purpose
Finds a value associated with a user.

Library
Standard C Library (libc.a)

Syntax
char *getuinfo (Name)
char *Name;

Description
The getuinfo subroutine finds a value associated with a user. This subroutine searches a
user information buffer for a string of the form Name=Value and returns a pointer to the
Value substring if the Name value is found. A null value is returned if the Name value is not
found.

The INuibp global variable points to the user information buffer:

extern char *INuibp;

This variable is initialized to a null value.

If the INuibp global variable is null when the getuinfo subroutine is called, the usrinfo
subroutine is called to read user information from the kernel into a local buffer. The INUuibp
is set to the address of the local buffer. If the INuibp external variable is not set, the usrinfo
subroutine is automatically called the first time the getuinfo subroutine is called.

Parameter

Name Specifies a user name.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-367Base Operating System Runtime Services (A-P)

getuserattr, IDtouser, nextuser, or putuserattr Subroutine

Purpose
Accesses the user information in the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getuserattr (User, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

char *IDtouser(UID)
uid__t UID;

char *nextuser (Mode, Argument)
int Mode, Argument;

int putuserattr (User, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

Description
Attention: These subroutines and the setpwent and setgrent subroutines should not
be used simultaneously. The results can be unpredictable.

These subroutines access user information. Because of their greater granularity and
extensibility, you should use them instead of the getpwent routines.

The getuserattr subroutine reads a specified attribute from the user database. If the
database is not already open, this subroutine does an implicit open for reading. A call to the
getuserattr subroutine for every new user verifies that the user exists.

Similarly, the putuserattr subroutine writes a specified attribute into the user database. If
the database is not already open, this subroutine does an implicit open for reading and
writing. Data changed by the putuserattr subroutine must be explicitly committed by calling
the putuserattr subroutine with a Type parameter specifying SEC_COMMIT. Until all the
data is committed, only these subroutines within the process return written data.

New entries in the user and group databases must first be created by invoking putuserattr
with the SEC_NEW type.

The IDtouser subroutine translates a user ID into a user name.

The nextuser subroutine returns the next user in a linear search of the user database. The
consistency of consecutive searches depends upon the underlying storage–access
mechanism and is not guaranteed by this subroutine.

The setuserdb and enduserdb subroutines should be used to open and close the user
database.

1-368 Technical Reference: Base Operating System

Parameters

Argument Presently unused and must be specified as null.

Attribute Specifies which attribute is read. The following possible attributes are
defined in the usersec.h file:

S_ID User ID. The attribute type is SEC_INT.

S_PGRP Principle group name. The attribute type is
SEC_CHAR.

S_GROUPS Groups to which the user belongs. The attribute type
is SEC_LIST.

S_ADMGROUPS Groups for which the user is an administrator. The
attribute type is SEC_LIST.

S_ADMIN Administrative status of a user. The attribute type is
SEC_BOOL.

S_AUDITCLASSES
Audit classes to which the user belongs. The
attribute type is SEC_LIST.

S_AUTHSYSTEM Defines the user’s authentication method. The
attribute type is SEC_CHAR.

S_HOME Home directory. The attribute type is SEC_CHAR.

S_SHELL Initial program run by a user. The attribute type is
SEC_CHAR.

S_GECOS Personal information for a user. The attribute type is
SEC_CHAR.

S_USRENV User–state environment variables. The attribute type
is SEC_LIST.

S_SYSENV Protected–state environment variables. The attribute
type is SEC_LIST.

S_LOGINCHK Specifies whether the user account can be used for
local logins. The attribute type is SEC_BOOL.

S_HISTEXPIRE Defines the period of time (in weeks) that a user
cannot reuse a password. The attribute type is
SEC_INT.

S_HISTSIZE Specifies the number of previous passwords that the
user cannot reuse. The attribute type is SEC_INT.

S_MAXREPEAT Defines the maximum number of times a user can
repeat a character in a new password. The attribute
type is SEC_INT.

S_MINAGE Defines the minimum age in weeks that the user’s
password must exist before the user can change it.
The attribute type is SEC_INT.

S_PWDCHECKS Defines the password restriction methods for this
account. The attribute type is SEC_LIST.

1-369Base Operating System Runtime Services (A-P)

S_MINALPHA Defines the minimum number of alphabetic
characters required in a new user’s password. The
attribute type is SEC_INT.

S_MINDIFF Defines the minimum number of characters required
in a new password that were not in the old
password. The attribute type is SEC_INT.

S_MINLEN Defines the minimum length of a user’s password.
The attribute type is SEC_INT.

S_MINOTHER Defines the minimum number of non–alphabetic
characters required in a new user’s password. The
attribute type is SEC_INT.

S_DICTIONLIST Defines the password dictionaries for this account.
The attribute type is SEC_LIST.

S_SUCHK Specifies whether the user account can be accessed
with the su command. Type SEC_BOOL.

S_REGISTRY Defines the user’s authentication registry. The
attribute type is SEC_CHAR.

S_RLOGINCHK Specifies whether the user account can be used for
remote logins using the telnet or rlogin commands.
The attribute type is SEC_BOOL.

S_DAEMONCHK Specifies whether the user account can be used for
daemon execution of programs and subsystems
using the cron daemon or src. The attribute type is
SEC_BOOL.

S_TPATH Defines how the account may be used on the trusted
path. The attribute type is SEC_CHAR. This attribute
must be one of the following values:

nosak The secure attention key is not enabled for this
account.

notsh The trusted shell cannot be accessed from this
account.

always This account may only run trusted programs.

on Normal trusted–path processing applies.

S_TTYS List of ttys that can or cannot be used to access this
account. The attribute type is SEC_LIST.

S_SUGROUPS Groups that can or cannot access this account. The
attribute type is SEC_LIST.

S_EXPIRATION Expiration date for this account is a string in the form
MMDDhhmmyy, where MM is the month, DD is the
day, hh is the hour in 0 to 24 hour notation, mm is
the minutes past the hour, and yy is the last two
digits of the year. The attribute type is SEC_CHAR.

S_AUTH1 Primary authentication methods for this account. The
attribute type is SEC_LIST.

S_AUTH2 Secondary authentication methods for this account.
The attribute type is SEC_LIST.

S_UFSIZE Process file size soft limit. The attribute type is
SEC_INT.

1-370 Technical Reference: Base Operating System

S_UCPU Process CPU time soft limit. The attribute type is
SEC_INT.

S_UDATA Process data segment size soft limit. The attribute
type is SEC_INT.

S_USTACK Process stack segment size soft limit. Type:
SEC_INT.

S_URSS Process real memory size soft limit. Type: SEC_INT.

S_UCORE Process core file size soft limit. The attribute type is
SEC_INT.

S_UNOFILE Process file descriptor table size soft limit. The
attribute type is SEC_INT.

S_PWD Specifies the value of the passwd field in the
/etc/passwd file. The attribute type is SEC_CHAR.

S_UMASK File creation mask for a user. The attribute type is
SEC_INT.

S_LOCKED Specifies whether the user’s account can be logged
into. The attribute type is SEC_BOOL.

S_ROLES Defines the administrative roles for this account. The
attribute type is SEC_LIST.

S_UFSIZE_HARD Process file size hard limit. The attribute type is
SEC_INT.

S_UCPU_HARD Process CPU time hard limit. The attribute type is
SEC_INT.

S_UDATA_HARD Process data segment size hard limit. The attribute
type is SEC_INT.

S_USREXPORT Specifies if the DCE registry can overwrite the local
user information with the DCE user information
during a DCE export operation. The attribute type is
SEC_BOOL.

S_USTACK_HARD
Process stack segment size hard limit. Type:
SEC_INT.

S_URSS_HARD Process real memory size hard limit. Type:
SEC_INT.

S_UCORE_HARDProcess core file size hard limit. The attribute type is
SEC_INT.

S_UNOFILE_HARD
Process file descriptor table size hard limit. The
attribute type is SEC_INT.

Note: These values are string constants that should be used by
applications both for convenience and to permit optimization in
latter implementations.

Additional user–defined attributes may be used and will be stored in the
format specified by the Type parameter.

1-371Base Operating System Runtime Services (A-P)

Mode Specifies the search mode. This parameter can be used to delimit the
search to one or more user credentials databases. Specifying a
non–null Mode value also implicitly rewinds the search. A null Mode
value continues the search sequentially through the database. This
parameter must include one of the following values specified as a bit
mask; these are defined in the usersec.h file:

S_LOCAL Locally defined users are included in the search.

S_SYSTEM All credentials servers for the system are searched.

Type Specifies the type of attribute expected. Valid types are defined in the
usersec.h file and include:

SEC_INT The format of the attribute is an integer.

For the getuserattr subroutine, the user should
supply a pointer to a defined integer variable. For the
putuserattr subroutine, the user should supply an
integer.

SEC_CHAR The format of the attribute is a null–terminated
character string.

For the getuserattr subroutine, the user should
supply a pointer to a defined character pointer
variable. For the putuserattr subroutine, the user
should supply a character pointer.

SEC_LIST The format of the attribute is a series of
concatenated strings, each null–terminated. The last
string in the series is terminated by two successive
null characters.

For the getuserattr subroutine, the user should
supply a pointer to a defined character pointer
variable. For the putuserattr subroutine, the user
should supply a character pointer.

SEC_BOOL The format of the attribute from getuserattr is an
integer with the value of either 0 (false) or 1 (true).
The format of the attribute for putuserattr is a
null–terminated string containing one of the following
strings: true, false, yes, no, always, or never.

For the getuserattr subroutine, the user should
supply a pointer to a defined integer variable. For the
putuserattr subroutine, the user should supply a
character pointer.

SEC_COMMIT For the putuserattr subroutine, this value specified
by itself indicates that changes to the named user
are to be committed to permanent storage. The
Attribute and Value parameters are ignored. If no
user is specified, the changes to all modified users
are committed to permanent storage.

SEC_DELETE The corresponding attribute is deleted from the
database.

SEC_NEW Updates all the user database files with the new user
name when using the putuserattr subroutine.

UID Specifies the user ID to be translated into a user name.

1-372 Technical Reference: Base Operating System

User Specifies the name of the user for which an attribute is to be read.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer
depending on the Attribute and Type parameters. See the Type
parameter for more details.

Security

Files Accessed:

Mode File

rw /etc/passwd

rw /etc/group

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/group

rw /etc/security/environ

Return Values
If successful, the getuserattr subroutine with the S_LOGINCHK or S_RLOGINCHK
attribute specified and the putuserattr subroutine return 0. Otherwise, a value of –1 is
returned and the errno global variable is set to indicate the error. For all other attributes, the
getuserattr subroutine returns 0.

If successful, the IDtouser and nextuser subroutines return a character pointer to a buffer
containing the requested user name. Otherwise, a null pointer is returned and the errno
global variable is set to indicate the error.

Error Codes
If any of these subroutines fail, the following is returned:

EACCES Access permission is denied for the data request.

If the getuserattr and putuserattr subroutines fail, one or more of the following is returned:

ENOENT The specified User parameter does not exist or the attribute is not
defined for this user.

EINVAL The Attribute parameter does not contain one of the defined attributes
or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for
this type of attribute. Limited testing is possible and all errors may not
be detected.

EPERM Operation is not permitted.

If the IDtouser subroutine fails, one or more of the following is returned:

ENOENT The UID parameter could not be translated into a valid user name on
the system.

If the nextuser subroutine fails, one or more of the following is returned:

EINVAL The Mode parameter is not one of null, S_LOCAL, or S_SYSTEM.

EINVAL The Argument parameter is not null.

ENOENT The end of the search was reached.

1-373Base Operating System Runtime Services (A-P)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/etc/passwd Contains user IDs.

Related Information
The getgroupattr subroutine, getuserpw subroutine, setpwdb subroutine, setuserdb
subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-374 Technical Reference: Base Operating System

GetUserAuths Subroutine

Purpose
Accesses the set of authorizations of a user.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

char *GetUserAuths(void);

Description
The GetUserAuths subroutine returns the list of authorizations associated with the real
user ID and group set of the process. By default, the ALL authorization is returned for the
root user.

Return Values
If successful, the GetUserAuths subroutine returns a list of authorizations associated with
the user. The format of the list is a series of concatenated strings, each null–terminated. A
null string terminates the list. Otherwise, a null pointer is returned and the errno global
variable is set to indicate the error.

1-375Base Operating System Runtime Services (A-P)

getuserpw, putuserpw, or putuserpwhist Subroutine

Purpose
Accesses the user authentication data.

Library
Security Library (libc.a)

Syntax
#include <userpw.h>

struct userpw *getuserpw (User)
char *User;

int putuserpw (Password)
struct userpw *Password;

int putuserpwhist (Password, Message)
struct userpw *Password;
char **Message;

Description
These subroutines may be used to access user authentication information. Because of their
greater granularity and extensibility, you should use them instead of the getpwent routines.

The getuserpw subroutine reads the user’s locally defined password information. If the
setpwdb subroutine has not been called, the getuserpw subroutine will call it as
setpwdb (S_READ). This can cause problems if the putuserpw subroutine is called later
in the program.

The putuserpw subroutine updates or creates a locally defined password information
stanza in the /etc/security/passwd file. The password entry created by the putuserpw
subroutine is used only if there is an ! (exclamation point) in the /etc/passwd file’s
password field. The user application can use the putuserattr subroutine to add an ! to this
field.

The putuserpw subroutine will open the authentication database read/write if no other
access has taken place, but the program should call setpwdb (S_READ | S_WRITE)
before calling the putuserpw subroutine.

The putuserpwhist subroutine updates or creates a locally defined password information
stanza in the etc/security/passwd file. The subroutine also manages a database of
previous passwords used for password reuse restriction checking. It is recommended to use
the putuserpwhist subroutine, rather than the putuserpw subroutine, to ensure the
password is added to the password history database.

1-376 Technical Reference: Base Operating System

Parameters

Password Specifies the password structure used to update the password
information for this user. This structure is defined in the userpw.h file
and contains the following members:

upw_name Specifies the user’s name. (The first eight characters
must be unique, since longer names are truncated.)

upw_passwd Specifies the user’s password.

upw_lastupdate
Specifies the time, in seconds, since the epoch (that is,
00:00:00 GMT, January 1, 1970), when the password
was last updated.

upw_flags Specifies attributes of the password. This member is a
bit mask of one or more of the following values, defined
in the userpw.h file.

PW_NOCHECK
Specifies that new passwords need not meet
password restrictions in effect for the system.

PW_ADMCHG Specifies that the password was last set by an
administrator and must be changed at the next
successful use of the login or su command.

PW_ADMIN Specifies that password information for this user may
only be changed by the root user.

Message Indicates a message that specifies an error occurred while updating the
password history database. Upon return, the value is either a pointer to
a valid string within the memory allocated storage or a null pointer.

User Specifies the name of the user for which password information is read.
(The first eight characters must be unique, since longer names are
truncated.)

Security
Files Accessed:

Mode File

rw /etc/security/passwd

Return Values
If successful, the getuserpw subroutine returns a valid pointer to a pw structure. Otherwise,
a null pointer is returned and the errno global variable is set to indicate the error.

If successful, the putuserpwhist subroutine returns a value of 0. If the subroutine failed to
update or create a locally defined password information stanza in the /etc/security/
passwd file, the putuserpwhist subroutine returns a nonzero value. If the subroutine was
unable to update the password history database, a message is returned in the Message
parameter and a return code of 0 is returned.

Error Codes
If the getuserpw, putuserpw, and putuserpwhist subroutines fail if one of the following
values is true:

ENOENT The user does not have an entry in the /etc/security/passwd file.

1-377Base Operating System Runtime Services (A-P)

Subroutines invoked by the getuserpw, putuserpw, or putuserpwhist subroutines can
also set errors.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/etc/security/passwd Contains user passwords.

Related Information
The getgroupattr subroutine, getuserattr, IDtouser, nextuser, or putuserattr subroutine,
setpwdb or endpwdb subroutine, setuserdb subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-378 Technical Reference: Base Operating System

getusraclattr, nextusracl or putusraclattr Subroutine

Purpose
Accesses the user screen information in the SMIT ACL database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int getusraclattr(User, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

char *nextusracl(void)

int putusraclattr(User, Attribute, Value, Type)
char *User;
char *Attribute;
void *Value;
int Type;

Description
The getusraclattr subroutine reads a specified user attribute from the SMIT ACL database.
If the database is not already open, this subroutine does an implicit open for reading.

Similarly, the putusraclattr subroutine writes a specified attribute into the user SMIT ACL
database. If the database is not already open, this subroutine does an implicit open for
reading and writing. Data changed by the putusraclattr subroutine must be explicitly
committed by calling the putusraclattr subroutine with a Type parameter specifying
SEC_COMMIT. Until all the data is committed, only the getusraclattr subroutine within the
process returns written data.

The nextusracl subroutine returns the next user in a linear search of the user SMIT ACL
database. The consistency of consecutive searches depends upon the underlying
storage–access mechanism and is not guaranteed by this subroutine.

The setacldb and endacldb subroutines should be used to open and close the database.

1-379Base Operating System Runtime Services (A-P)

Parameters

Attribute Specifies which attribute is read. The following possible attributes are
defined in the usersec.h file:

S_SCREENS String of SMIT screens. The attribute type is
SEC_LIST.

S_ACLMODE String specifying the SMIT ACL database search
scope. The attribute type is SEC_CHAR.

S_FUNCMODE String specifying the databases to be searched. The
attribute type is SEC_CHAR.

Type Specifies the type of attribute expected. Valid types are defined in the
usersec.h file and include:

SEC_CHAR The format of the attribute is a null–terminated
character string.

For the getusraclattr subroutine, the user should
supply a pointer to a defined character pointer variable.
For the putusraclattr subroutine, the user should
supply a character pointer.

SEC_LIST The format of the attribute is a series of concatenated
strings, each null–terminated. The last string in the
series must be an empty (zero character count) string.

For the getusraclattr subroutine, the user should
supply a pointer to a defined character pointer variable.
For the putusraclattr subroutine, the user should
supply a character pointer.

SEC_COMMIT For the putusraclattr subroutine, this value specified
by itself indicates that changes to the named user are
to be committed to permanent storage. The Attribute
and Value parameters are ignored. If no user is
specified, the changes to all modified users are
committed to permanent storage.

SEC_DELETE The corresponding attribute is deleted from the user
SMIT ACL database.

SEC_NEW Updates the user SMIT ACL database file with the new
user name when using the putusraclattr subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer
depending on the Attribute and Type parameters. See the Type
parameter for more details.

Return Values
If successful, the getusraclattr returns 0. Otherwise, a value of –1 is returned and the
errno global variable is set to indicate the error.

Error Codes
Possible return codes are:

EACCES Access permission is denied for the data request.

ENOENT The specified User parameter does not exist or the attribute is not
defined for this user.

ENOATTR The specified user attribute does not exist for this user.

1-380 Technical Reference: Base Operating System

EINVAL The Attribute parameter does not contain one of the defined attributes
or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for
this type of attribute.

EPERM Operation is not permitted.

Related Information
The getgrpaclattr, nextgrpacl, or putgrpaclattr subroutine, setacldb, or endacldb
subroutine.

1-381Base Operating System Runtime Services (A-P)

getutent, getutid, getutline, pututline, setutent, endutent, or
utmpname Subroutine

Purpose
Accesses utmp file entries.

Library
Standard C Library (libc.a)

Syntax
#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (ID)
struct utmp *ID;

struct utmp *getutline (Line)
struct utmp *Line;

void pututline (Utmp)
struct utmp *Utmp;

void setutent ()

void endutent ()

void utmpname (File)
char *File;

Description
The getutent, getutid, and getutline subroutines return a pointer to a structure of the
following type:

#define ut_name ut_user

#define ut_id ut_line

struct utmp

{

char ut_user[8]; /* User name */

char ut_id[14]; /* /etc/inittab ID */

char ut_line[12]; /* Device name (console, lnxx) */

short ut_pid; /* Process ID */

short ut_type; /* Type of entry */

struct exit_status

{

short e_termination; /* Process termination status */

short e_exit; /* Process exit status */

} ut_exit; /* Exit status of a DEAD_PROCESS */

time_t ut_time; /* Time entry was made */

char ut_host[16]; /* Host name */

};

The getutent subroutine reads the next entry from a utmp–like file. If the file is not open,
this subroutine opens it. If the end of the file is reached, the getutent subroutine fails.

The pututline subroutine writes the supplied Utmp parameter structure into the utmp file. It
is assumed that the user of the pututline subroutine has searched for the proper entry point
using one of the getut subroutines. If not, the pututline subroutine calls getutid to search

1-382 Technical Reference: Base Operating System

forward for the proper place. If so, pututline does not search. If the pututline subroutine
does not find a matching slot for the entry, it adds a new entry to the end of the file.

The setutent subroutine resets the input stream to the beginning of the file. Issue a setuid
call before each search for a new entry if you want to examine the entire file.

The endutent subroutine closes the file currently open.

The utmpname subroutine changes the name of a file to be examined from /etc/utmp to
any other file. The name specified is usually /var/adm/wtmp. If the specified file does not
exist, no indication is given. You are not aware of this fact until your first attempt to
reference the file. The utmpname subroutine does not open the file. It closes the old file, if
currently open, and saves the new file name.

The most current entry is saved in a static structure. To make multiple accesses, you must
copy or use the structure between each access. The getutid and getutline subroutines
examine the static structure first. If the contents of the static structure match what they are
searching for, they do not read the utmp file. Therefore, you must fill the static structure with
zeros after each use if you want to use these subroutines to search for multiple
occurrences.

If the pututline subroutine finds that it is not already at the correct place in the file, the
implicit read it performs does not overwrite the contents of the static structure returned by
the getutent subroutine, the getuid subroutine, or the getutline subroutine. This allows you
to get an entry with one of these subroutines, modify the structure, and pass the pointer
back to the pututline subroutine for writing.

These subroutines use buffered standard I/O for input. However, the pututline subroutine
uses an unbuffered nonstandard write to avoid race conditions between processes trying to
modify the utmp and wtmp files.

Parameters

ID If you specify a type of RUN_LVL, BOOT_TIME, OLD_TIME, or
NEW_TIME in the ID parameter, the getutid subroutine searches
forward from the current point in the utmp file until an entry with a
ut_type matching ID–>ut_type is found.

If you specify a type of INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS, or DEAD_PROCESS in the ID parameter, the
getutid subroutine returns a pointer to the first entry whose type is one
of these four and whose ut_id field matches Id–>ut_id. If the end
of the file is reached without a match, the getutid subroutine fails.

Line The getutline subroutine searches forward from the current point in the
utmp file until it finds an entry of type LOGIN_PROCESS or
USER_PROCESS that also has a ut_line string matching the
Line–>ut_line parameter string. If the end of file is reached without
a match, the getutline subroutine fails.

Utmp Points to the utmp structure.

File Specifies the name of the file to be examined.

Return Values
These subroutines fail and return a null pointer if a read or write fails due to a permission
conflict or because the end of the file is reached.

1-383Base Operating System Runtime Services (A-P)

Files

/etc/utmp Path to the utmp file, which contains a record of users logged into the
system.

/var/adm/wtmp Path to the wtmp file, which contains accounting information about
users logged in.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ttyslot subroutine.

The failedlogin, utmp, or wtmp file.

1-384 Technical Reference: Base Operating System

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag,
setvfsent, or endvfsent Subroutine

Purpose
Gets a vfs file entry.

Library
Standard C Library(libc.a)

Syntax
#include <sys/vfs.h>
#include <sys/vmount.h>

struct vfs_ent *getvfsent()

struct vfs_ent *getvfsbytype(vfsType)
int vfsType;

struct vfs_ent *getvfsbyname(vfsName)
char *vfsName;

struct vfs_ent *getvfsbyflag(vfsFlag)
int vfsFlag;

void setvfsent()

void endvfsent()

Description
Attention: All information is contained in a static area and so must be copied to be
saved.

The getvfsent subroutine, when first called, returns a pointer to the first vfs_ent structure in
the file. On the next call, it returns a pointer to the next vfs_ent structure in the file.
Successive calls are used to search the entire file.

The vfs_ent structure is defined in the vfs.h file and it contains the following fields:

char vfsent_name;

int vfsent_type;

int vfsent_flags;

char *vfsent_mnt_hlpr;

char *vfsent_fs_hlpr;

The getvfsbytype subroutine searches from the beginning of the file until it finds a vfs type
matching the vfsType parameter. The subroutine then returns a pointer to the structure in
which it was found.

The getvfsbyname subroutine searches from the beginning of the file until it finds a vfs
name matching the vfsName parameter. The search is made using flattened names; the
search–string uses ASCII equivalent characters.

The getvfsbytype subroutine searches from the beginning of the file until it finds a type
matching the vfsType parameter.

The getvfsbyflag subroutine searches from the beginning of the file until it finds the entry
whose flag corresponds flags defined in the vfs.h file. Currently, these are
VFS_DFLT_LOCAL and VFS_DFLT_REMOTE.

The setvfsent subroutine rewinds the vfs file to allow repeated searches.

The endvfsent subroutine closes the vfs file when processing is complete.

1-385Base Operating System Runtime Services (A-P)

Parameters

vfsType Specifies a vfs type.

vfsName Specifies a vfs name.

vfsFlag Specifies either VFS_DFLT_LOCAL or VFS_DFLT_REMOTE.

Return Values
The getvfsent, getvfsbytype, getvfsbyname, and getvfsbyflag subroutines return a
pointer to a vfs_ent structure containing the broken–out fields of a line in the /etc/vfs file. If
an end–of–file character or an error is encountered on reading, a null pointer is returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/etc/vfs Describes the virtual file system (VFS) installed on the system.

Related Information
The getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent subroutine.

National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

1-386 Technical Reference: Base Operating System

getwc, fgetwc, or getwchar Subroutine

Purpose
Gets a wide character from an input stream.

Library
Standard I/O Package (libc.a)

Syntax
#include <stdio.h>

win_t getwc (Stream)
FILE *Stream;

win_t fgetwc (Stream)
FILE *Stream;

win_t getwchar (void)

Description
The fgetwc subroutine obtains the next wide character from the input stream specified by
the Stream parameter, converts it to the corresponding wide character code, and advances
the file position indicator the number of bytes corresponding to the obtained multibyte
character. The getwc subroutine is equivalent to the fgetwc subroutine, except that when
implemented as a macro, it may evaluate the Stream parameter more than once. The
getwchar subroutine is equivalent to the getwc subroutine with stdin (the standard input
stream).

The first successful run of the fgetc, fgets, fgetwc, fgetws, fread, fscanf, getc, getchar,
gets, or scanf subroutine using a stream that returns data not supplied by a prior call to the
ungetc or ungetwc subroutine marks the st_atime field for update.

Parameters

Stream Specifies input data.

Return Values
Upon successful completion, the getwc and fgetwc subroutines return the next wide
character from the input stream pointed to by the Stream parameter. The getwchar
subroutine returns the next wide character from the input stream pointed to by stdin.

If the end of the file is reached, an indicator is set and WEOF is returned. If a read error
occurs, an error indicator is set, WEOF is returned, and the errno global variable is set to
indicate the error.

Error Codes
If the getwc, fgetwc, or getwchar subroutine is unsuccessful because the stream is not
buffered or data needs to be read into the buffer, it returns one of the following error codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor
underlying the Stream parameter, delaying the process.

EBADF Indicates that the file descriptor underlying the Stream parameter is not
valid and cannot be opened for reading.

EINTR Indicates that the process has received a signal that terminates the
read operation.

1-387Base Operating System Runtime Services (A-P)

EIO Indicates that a physical error has occurred, or the process is in a
background process group attempting to read from the controlling
terminal, and either the process is ignoring or blocking the SIGTTIN
signal or the process group is orphaned.

EOVERFLOW Indicates that the file is a regular file and an attempt has been made to
read at or beyond the offset maximum associated with the
corresponding stream.

The getwc, fgetwc, or getwchar subroutine is also unsuccessful due to the following error
conditions:

ENOMEM Indicates that storage space is insufficient.

ENXIO Indicates that the process sent a request to a nonexistent device, or the
device cannot handle the request.

EILSEQ Indicates that the wc wide–character code does not correspond to a
valid character.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Other wide character I/O subroutines: getws or fgetws subroutine, putwc, putwchar, or
fputwc subroutine, putws or fputws subroutine, ungetwc subroutine.

Related standard I/O subroutines: fopen, freopen, or fdopen subroutine, gets or fgets
subroutine, fread subroutine, fwrite subroutine, printf, fprintf, sprintf, wsprintf, vprintf,
vfprintf, vsprintf, or vwsprintf subroutine, putc, putchar, fputc, or putw subroutine, puts
or fputs subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character Input/Output Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

1-388 Technical Reference: Base Operating System

getwd Subroutine

Purpose
Gets current directory path name.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

char *getwd (PathName)
char *PathName;

Description
The getwd subroutine determines the absolute path name of the current directory, then
copies that path name into the area pointed to by the PathName parameter.

The maximum path–name length, in characters, is set by the PATH_MAX value, as
specified in the limits.h file.

Parameters

PathName Points to the full path name.

Return Values
If the call to the getwd subroutine is successful, a pointer to the absolute path name of the
current directory is returned. If an error occurs, the getwd subroutine returns a null value
and places an error message in the PathName parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getcwd subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-389Base Operating System Runtime Services (A-P)

getws or fgetws Subroutine

Purpose
Gets a string from a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>

wchar_t *fgetws (WString, Number, Stream)
wchar_t *WString;
int Number;
FILE *Stream;

wchar_t *getws (WString)
wchar_t *WString;

Description
The fgetws subroutine reads characters from the input stream, converts them to the
corresponding wide character codes, and places them in the array pointed to by the WString
parameter. The subroutine continues until either the number of characters specified by the
Number parameter minus 1 are read or the subroutine encounters a new–line or end–of–file
character. The fgetws subroutine terminates the wide character string specified by the
WString parameter with a null wide character.

The getws subroutine reads wide characters from the input stream pointed to by the
standard input stream (stdin) into the array pointed to by the WString parameter. The
subroutine continues until it encounters a new–line or the end–of–file character, then it
discards any new–line character and places a null wide character after the last character
read into the array.

Parameters

WString Points to a string to receive characters.

Stream Points to the FILE structure of an open file.

Number Specifies the maximum number of characters to read.

Return Values
If the getws or fgetws subroutine reaches the end of the file without reading any
characters, it transfers no characters to the String parameter and returns a null pointer. If a
read error occurs, the getws or fgetws subroutine returns a null pointer and sets the errno
global variable to indicate the error.

Error Codes
If the getws or fgetws subroutine is unsuccessful because the stream is not buffered or
data needs to be read into the stream’s buffer, it returns one or more of the following error
codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor
underlying the Stream parameter, and the process is delayed in the
fgetws subroutine.

EBADF Indicates that the file descriptor specifying the Stream parameter is not
a read–access file.

1-390 Technical Reference: Base Operating System

EINTR Indicates that the read operation is terminated due to the receipt of a
signal, and either no data was transferred or the implementation does
not report partial transfer for this file.

EIO Indicates that insufficient storage space is available.

ENOMEM Indicates that insufficient storage space is available.

EILSEQ Indicates that the data read from the input stream does not form a valid
character.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Other wide character I/O subroutines: fgetwc subroutine, fputwc subroutine, fputws
subroutine, getwc subroutine, getwchar subroutine, putwc subroutine, putwchar
subroutine, putws subroutine, ungetwc subroutine.

Related standard I/O subroutines: fdopen subroutine, fgetc subroutine, fgets subroutine,
fopen subroutine, fprintf subroutine, fputc subroutine, fputs subroutine, fread subroutine,
freopen subroutine, fscanf subroutine, fwrite subroutine, getc subroutine, getchar
subroutine, gets subroutine, printf subroutine, putc subroutine, putchar subroutine, puts
subroutine, putw subroutine, scanf subroutine, sprintf subroutine, ungetc subroutine.

National Language Support Overview for Programming, Understanding Wide Character
Input/Output Subroutines, Subroutines Overview in AIX General Programming Concepts :
Writing and Debugging Programs.

1-391Base Operating System Runtime Services (A-P)

glob Subroutine

Purpose
Generates path names.

Library
Standard C Library (libc.a)

Syntax
#include <glob.h>

int glob (Pattern, Flags, (Errfunc)(), Pglob)
const char *Pattern;
int Flags;
int *Errfunc (Epath, Eerrno)
const char *Epath;
int Eerrno;
glob_t *Pglob;

Description
The glob subroutine constructs a list of accessible files that match the Pattern parameter.

The glob subroutine matches all accessible path names against this pattern and develops a
list of all matching path names. To have access to a path name, the glob subroutine
requires search permission on every component of a path except the last, and read
permission on each directory of any file name component of the Pattern parameter that
contains any of the special characters * (asterisk), ? (question mark), or [(left bracket). The
glob subroutine stores the number of matched path names and a pointer to a list of pointers
to path names in the Pglob parameter. The path names are in sort order, based on the
setting of the LC_COLLATE category in the current locale. The first pointer after the last
path name is a null character. If the pattern does not match any path names, the returned
number of matched paths is zero.

1-392 Technical Reference: Base Operating System

Parameters

Pattern Contains the file name pattern to compare against accessible path names.

Flags Controls the customizable behavior of the glob subroutine.

The Flags parameter controls the behavior of the glob subroutine. The Flags
value is the bitwise inclusive OR of any of the following constants, which are
defined in the glob.h file:

GLOB_APPEND Appends path names located with this call to any path
names previously located. If the GLOB_APPEND
constant is not set, new path names overwrite previous
entries in the Pglob array. The GLOB_APPEND
constant should not be set on the first call to the glob
subroutine. It may, however, be set on subsequent
calls.

The GLOB_APPEND flag can be used to append a
new set of path names to those found in a previous call
to the glob subroutine. If the GLOB_APPEND flag is
specified in the Flags parameter, the following rules
apply:

– If the application sets the GLOB_DOOFFS flag in
the first call to the glob subroutine, it is also set in
the second. The value of the Pglob parameter is not
modified between the calls.

– If the application did not set the GLOB_DOOFFS
flag in the first call to the glob subroutine, it is not
set in the second.

– After the second call, the Pglob parameter points to
a list containing the following:

– Zero or more null characters, as specified by the
GLOB_DOOFFS flag.

– Pointers to the path names that were in the Pglob
list before the call, in the same order as after the
first call to the glob subroutine.

– Pointers to the new path names generated by the
second call, in the specified order.

– The count returned in the Pglob parameter is the
total number of path names from the two calls.

– The application should not modify the Pglob
parameter between the two calls.

It is the caller’s responsibility to create the structure
pointed to by the Pglob parameter. The glob
subroutine allocates other space as needed.

GLOB_DOOFFS Uses the gl_offs structure to specify the number of null
pointers to add to the beginning of the gl_pathv
component of the Pglob parameter.

GLOB_ERR Causes the glob subroutine to return when it
encounters a directory that it cannot open or read. If
the GLOB_ERR flag is not set, the glob subroutine
continues to find matches if it encounters a directory
that it cannot open or read.

1-393Base Operating System Runtime Services (A-P)

GLOB_MARK Specifies that each path name that is a directory
should have a / (slash) appended.

GLOB_NOCHECK If the Pattern parameter does not match any path
name, the glob subroutine returns a list consisting only
of the Pattern parameter, and the number of matched
patterns is one.

GLOB_NOSORT Specifies that the list of path names need not be
sorted. If the GLOB_NOSORT flag is not set, path
names are collated according to the current locale.

GLOB_QUOTE If the GLOB_QUOTE flag is set, a \ (backslash) can
be used to escape metacharacters.

Errfunc Specifies an optional subroutine that, if specified, is called when the glob
subroutine detects an error condition.

Pglob Contains a pointer to a glob_t structure. The structure is allocated by the
caller. The array of structures containing the file names matching the Pattern
parameter are defined by the glob subroutine. The last entry is a null pointer.

Epath Specifies the path that failed because a directory could not be opened or
read.

Eerrno Specifies the errno value of the failure indicated by the Epath parameter.
This value is set by the opendir, readdir, or stat subroutines.

Return Values
On successful completion, the glob subroutine returns a value of 0. The Pglob parameter
returns the number of matched path names and a pointer to a null–terminated list of
matched and sorted path names. If the number of matched path names in the Pglob
parameter is zero, the pointer in the Pglob parameter is undefined.

Error Codes
If the glob subroutine terminates due to an error, it returns one of the nonzero constants
below. These are defined in the glob.h file. In this case, the Pglob values are still set as
defined in the Return Values section.

GLOB_ABORTED Indicates the scan was stopped because the GLOB_ERROR flag
was set or the subroutine specified by the errfunc parameter
returned a nonzero value.

GLOB_NOSPACE Indicates a failed attempt to allocate memory.

If, during the search, a directory is encountered that cannot be opened or read and the
Errfunc parameter is not a null value, the glob subroutine calls the subroutine specified by
the errfunc parameter with two arguments:

• The Epath parameter specifies the path that failed.

• The Eerrno parameter specifies the value of the errno global variable from the failure, as
set by the opendir, readdir, or stat subroutine.

If the subroutine specified by the Errfunc parameter is called and returns nonzero, or if the
GLOB_ERR flag is set in the Flags parameter, the glob subroutine stops the scan and
returns GLOB_ABORTED after setting the Pglob parameter to reflect the paths already
scanned. If GLOB_ERR is not set and either the Errfunc parameter is null or *errfunc
returns zero, the error is ignored.

The Pglob parameter has meaning even if the glob subroutine fails. Therefore, the glob
subroutine can report partial results in the event of an error. However, if the number of
matched path names is 0, the pointer in the Pglob parameter is unspecified even if the glob
subroutine did not return an error.

1-394 Technical Reference: Base Operating System

Examples
The GLOB_NOCHECK flag can be used with an application to expand any path name
using wildcard characters. However, the GLOB_NOCHECK flag treats the pattern as just a
string by default. The sh command can use this facility for option parameters, for example.

The GLOB_DOOFFS flag can be used by applications that build an argument list for use
with the execv, execve, or execvp subroutine. For example, an application needs to do the
equivalent of ls –l *.c, but for some reason cannot. The application could still obtain
approximately the same result using the sequence:

globbuf.gl_offs = 2;

glob (”*.c”, GLOB_DOOFFS, NULL, &globbuf);

globbuf.gl_pathv[0] = ”ls”;

globbuf.gl_pathv[1] =”–l”;

execvp (”ls”, &globbuf.gl_pathv[0]);

Using the same example, ls –l *.c *.h could be approximated using the
GLOB_APPEND flag as follows:

globbuf.gl_offs = 2;

glob (”*.c”, GLOB_DOOFFS, NULL, &globbuf);

glob (”*.h”, GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);

The new path names generated by a subsequent call with the GLOB_APPEND flag set are
not sorted together with the previous path names. This is the same way the shell handles
path name expansion when multiple expansions are done on a command line.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec: execl, execv, execle, execve, execlp, execvp, or exect subroutine, fnmatch
subroutine, opendir, readdir, telldir, seekdir, rewinddir, or closedir subroutine, statx,
stat, lstat, fstatx, fstat, fullstat, or ffullstat subroutine.

The ls command.

National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

1-395Base Operating System Runtime Services (A-P)

globfree Subroutine

Purpose
Frees all memory associated with the pglob parameter.

Library
Standard C Library (libc.a)

Syntax
#include <glob.h>

void globfree (pglob)
glob_t *pglob;

Description
The globfree subroutine frees any memory associated with the pglob parameter due to a
previous call to the glob subroutine.

Parameters

pglob Structure containing the results of a previous call to the glob
subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The glob subroutine.

National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

1-396 Technical Reference: Base Operating System

grantpt Subroutine

Purpose
Changes the mode and ownership of a pseudo–terminal device.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int grantpt (FileDescriptor)
int FileDescriptor;

Description
The grantpt subroutine changes the mode and the ownership of the slave pseudo–terminal
associated with the master pseudo–terminal device defined by the FileDescriptor parameter.
The user ID of the slave pseudo–terminal is set to the real UID of the calling process. The
group ID of the slave pseudo–terminal is set to an unspecified group ID. The permission
mode of the slave pseudo–terminal is set to readable and writeable by the owner, and
writeable by the group.

Parameters

FileDescriptor Specifies the file descriptor of the master pseudo–terminal device.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The grantpt function may fail if:

EBADF The fildes argument is not a valid open file descriptor.

EINVAL The fildes argument is not associated with a master pseudo–terminal
device.

EACCES The corresponding slave pseudo–terminal device could not be
accessed.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The unlockpt subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-397Base Operating System Runtime Services (A-P)

hsearch, hcreate, or hdestroy Subroutine

Purpose
Manages hash tables.

Library
Standard C Library (libc.a)

Syntax
#include <search.h>

ENTRY *hsearch (Item, Action)
ENTRY Item;
Action Action;

int hcreate (NumberOfElements)
size_t NumberOfElements;
void hdestroy ()

Description
Attention: Do not use the hsearch, hcreate, or hdestroy subroutine in a multithreaded
environment.

The hsearch subroutine searches a hash table. It returns a pointer into a hash table that
indicates the location of the given item. The hsearch subroutine uses open addressing with
a multiplicative hash function.

The hcreate subroutine allocates sufficient space for the table. You must call the hcreate
subroutine before calling the hsearch subroutine. The NumberOfElements parameter is an
estimate of the maximum number of entries that the table will contain. This number may be
adjusted upward by the algorithm in order to obtain certain mathematically favorable
circumstances.

The hdestroy subroutine deletes the hash table. This action allows you to start a new hash
table since only one table can be active at a time. After the call to the hdestroy subroutine,
the data can no longer be considered accessible.

1-398 Technical Reference: Base Operating System

Parameters

Item Identifies a structure of the type ENTRY as defined in the search.h
file. It contains two pointers:

Item.key Points to the comparison key. The key field is of the
char type.

Item.data Points to any other data associated with that key.
The data field is of the void type.

Pointers to data types other than the char type should be declared
to pointer–to–character.

Action Specifies the value of the Action enumeration parameter that
indicates what is to be done with an entry if it cannot be found in the
table. Values are:

ENTER Enters the value of the Item parameter into the
table at the appropriate point. If the table is full, the
hsearch subroutine returns a null pointer.

FIND Does not enter the value of the Item parameter into
the table. If the value of the Item parameter cannot
be found, the hsearch subroutine returns a null
pointer. If the value of the Item parameter is found,
the subroutine returns the address of the item in the
hash table.

NumberOfElements Provides an estimate of the maximum number of entries that the
table contains. Under some circumstances, the hcreate subroutine
may actually make the table larger than specified.

Return Values
The hcreate subroutine returns a value of 0 if it cannot allocate sufficient space for the
table.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The bsearch subroutine, lsearch subroutine, malloc subroutine, strcmp subroutine,
tsearch subroutine.

Searching and Sorting Example Program and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-399Base Operating System Runtime Services (A-P)

hypot Subroutine

Purpose
Computes the Euclidean distance function and complex absolute value.

Libraries
IEEE Math Library (libm.a)
 System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double hypot (x, y)
double x, y;

Description
Computes the square root of (x**2 + y**2) so that underflow does not occur and overflow
occurs only if the final result warrants it.

Note: Compile any routine that uses subroutines from the libm.a library with the –lm flag.
To compile the hypot.c file, for example:

cc hypot.c –lm

Parameters

x Specifies some double–precision floating–point value.

y Specifies some double–precision floating–point value.

z Specifies a structure that has two double elements (z = xi + yj).

Error Codes
When using the libm.a (–lm) library, if the correct value overflows, the hypot subroutine
returns a HUGE_VAL value.

Note: (hypot (INF, value) and hypot (value, INF) are both equal to +INF for all values,
even if value = NaN.

When using libmsaa.a (–lmsaa), if the correct value overflows, the hypot subroutine
returns HUGE_VAL and sets the global variable errno to ERANGE.

These error–handling procedures may be changed with the matherr subroutine when using
the libmsaa.a (–lmsaa) library.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The matherr subroutine, sqrt subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-400 Technical Reference: Base Operating System

iconv_close Subroutine

Purpose
Closes a specified code set converter.

Library
iconv Library (libiconv.a)

Syntax
#include <iconv.h>

int iconv_close (CD)
iconv_t CD;

Description
The iconv_close subroutine closes a specified code set converter and deallocates any
resources used by the converter.

Parameters

CD Specifies the conversion descriptor to be closed.

Return Values
When successful, the iconv_close subroutine returns a value of 0. Otherwise, it returns a
value of –1 and sets the errno global variable to indicate the error.

Error Codes
The following error code is defined for the iconv_close subroutine:

EBADF The conversion descriptor is not valid.

Implementation Specifics
This command is part of Base Operating System (BOS) Runtime.

Related Information
The iconv subroutine, iconv_open subroutine.

The genxlt command, iconv command.

Converters Overview for Programming and the National Language Support Overview for
Programming in AIX General Programming Concepts : Writing and Debugging Programs.

1-401Base Operating System Runtime Services (A-P)

iconv Subroutine

Purpose
Converts a string of characters in one character code set to another character code set.

Library
The iconv Library (libiconv.a)

Syntax
#include <iconv.h>

size_t iconv (CD, InBuf, InBytesLeft, OutBuf, OutBytesLeft)
iconv_t CD;
char **OutBuf, **InBuf;
size_t *OutBytesLeft, *InBytesLeft;

Description
The iconv subroutine converts the string specified by the InBuf parameter into a different
code set and returns the results in the OutBuf parameter. The required conversion method
is identified by the CD parameter, which must be valid conversion descriptor returned by a
previous, successful call to the iconv_open subroutine.

On calling, the InBytesLeft parameter indicates the number of bytes in the InBuf buffer to be
converted, and the OutBytesLeft parameter indicates the number of available bytes in the
OutBuf buffer. These values are updated upon return so they indicate the new state of their
associated buffers.

For state–dependent encodings, calling the iconv subroutine with the InBuf buffer set to null
will reset the conversion descriptor in the CD parameter to its initial state. Subsequent calls
with the InBuf buffer, specifying other than a null pointer, may cause the internal state of the
subroutine to be altered a necessary.

Parameters

CD Specifies the conversion descriptor that points to the correct code set
converter.

InBuf Points to a buffer that contains the number of bytes in the InBytesLeft
parameter to be converted.

InBytesLeft Points to an integer that contains the number of bytes in the InBuf
parameter.

OutBuf Points to a buffer that contains the number of bytes in the OutBytesLeft
parameter that has been converted.

OutBytesLeft Points to an integer that contains the number of bytes in the OutBuf
parameter.

Return Values
Upon successful conversion of all the characters in the InBuf buffer and after placing the
converted characters in the OutBuf buffer, the iconv subroutine returns 0, updates the
InBytesLeft and OutBytesLeft parameters, and increments the InBuf and OutBuf pointers.
Otherwise, it updates the varibles pointed to by the parameters to indicate the extent to the
conversion, returns the number of bytes still left to be converted in the input buffer, and sets
the errno global variable to indicate the error.

1-402 Technical Reference: Base Operating System

Error Codes
If the iconv subroutine is unsuccessful, it updates the variables to reflect the extent of the
conversion before it stopped and sets the errno global variable to one of the following
values:

EILSEQ Indicates an unusable character. If an input character does not belong
to the input code set, no conversion is attempted on the unusable on
the character. In InBytesLeft parameters indicates the bytes left to be
converted, including the first byte of the unusable character. InBuf
parameter points to the first byte of the unusable character sequence.

The values of OutBuf and OutBytesLeft are updated according to the
number of bytes that were previously converted.

E2BIG Indicates an output buffer overflow. If the OutBuf buffer is too small to
contain all the converted characters, the character that causes the
overflow is not converted. The InBytesLeft parameter indicates the
bytes left to be converted (including the character that caused the
overflow). The InBuf parameter points to the first byte of the characters
left to convert.

EINVAL Indicates the input buffer was truncated. If the original value of
InBytesLeft is exhausted in the middle of a character conversion or
shift/lock block, the InBytesLeft parameter indicates the number of
bytes undefined in the character being converted.

If an input character of shift sequence is truncated by the InBuf buffer,
no conversion is attempted on the truncated data, and the InBytesLeft
parameter indicates the bytes left to be converted. The InBuf parameter
points to the first bytes if the truncated sequence. The OutBuf and
OutBytesLeft values are updated according to the number of characters
that were previously0 converted. Because some encoding may have
ambiguous data, the EINVAL return value has a special meaning at the
end of stream conversion. As such, if a user detects an EOF character
on a stream that is being converted and the last return code from the
iconv subroutine was EINVAL, the iconv subroutine should be called
again, with the same InBytesLeft parameter and the same character
string pointed to by the InBuf parameter as when the EINVAL return
occurred. As a result, the converter will either convert the string as is or
declare it an unusable sequence (EILSEQ).

Implementation Specifics
The iconv subroutine is part of Base Operating System (BOS) Runtime.

Files

/usr/lib/nls/loc/iconv/* Contains code set converter methods.

Related Information
The iconv command, genxlt command.

The iconv_close subroutine, iconv_open subroutine.

1-403Base Operating System Runtime Services (A-P)

iconv_open Subroutine

Purpose
Opens a character code set converter.

Library
iconv Library (libiconv.a)

Syntax
#include <iconv.h>

iconv_t iconv_open (ToCode, FromCode)
const char *ToCode, *FromCode;

Description
The iconv_open subroutine initializes a code set converter. The code set converter is used
by the iconv subroutine to convert characters from one code set to another. The
iconv_open subroutine finds the converter that performs the character code set conversion
specified by the FromCode and ToCode parameters, initializes that converter, and returns a
conversion descriptor of type iconv_t to identify the code set converter.

The iconv_open subroutine first searches the LOCPATH environment variable for a
converter, using the two user–provided code set names, based on the file name convention
that follows:

FromCode: ”IBM–850”

ToCode: ”ISO8859–1”

conversion file: ”IBM–850_ISO8859–1”

The conversion file name is formed by concatenating the ToCode code set name onto the
FromCode code set name, with an _ (underscore) between them.

The LOCPATH environment variable contains a list of colon–separated directory names.
The system default for the LOCPATH environment variable is:

LOCPATH=/usr/lib/nls/loc

See the ”Locale Overview for System Management” in AIX 4.3 System Management Guide:
Operating System and Devices for more information on the LOCPATH environment
variable.

The iconv_open subroutine first attempts to find the specified converter in an iconv
subdirectory under any of the directories specified by the LOCPATH environmental variable,
for example, /usr/lib/nls/loc/iconv. If the iconv_open subroutine cannot find a converter in
any of these directories, it looks for a conversion table in an iconvTable subdirectory under
any of the directories specified by the LOCPATH environment variable, for example,
/usr/lib/nls/loc/iconvTable.

If the iconv_open subroutine cannot find the specified converter in either of these locations,
it returns (iconv_t) –1 to the calling process and sets the errno global variable.

The iconvTable directories are expected to contain conversion tables that are the output of
the genxlt command. The conversion tables are limited to single–byte stateless code sets.
See the ”List of PC, ISO, and EBCDIC Code Set Converters” in AIX General Programming
Concepts : Writing and Debugging Programs for more information.

If the named converter is found, the iconv_open subroutine will perform the load
subroutine operation and initialize the converter. A converter descriptor (iconv_t) is
returned.

Note: When a process calls the exec subroutine or a fork subroutine, all of the opened
converters are discarded.

1-404 Technical Reference: Base Operating System

The iconv_open subroutine links the converter function using the load subroutine, which is
similar to the exec subroutine and effectively performs a run–time linking of the converter
program. Since the iconv_open subroutine is called as a library function, it must ensure
that security is preserved for certain programs. Thus, when the iconv_open subroutine is
called from a set root ID program (a program with permission –––s––s––x), it will ignore the
LOCPATH environment variable and search for converters only in the /usr/lib/nls/loc/iconv
directory.

Parameters

ToCode Specifies the destination code set.

FromCode Specifies the originating code set.

Return Values
A conversion descriptor (iconv_t) is returned if successful. Otherwise, the subroutine
returns –1, and the errno global variable is set to indicate the error.

Error Codes

EINVAL The conversion specified by the FromCode and ToCode parameters is
not supported by the implementation.

EMFILE The number of file descriptors specified by the OPEN_MAX
configuration variable is currently open in the calling process.

ENFILE Too many files are currently open in the system.

ENOMEM Insufficient storage space is available.

Implementation Specifics
This command is part of Base Operating System (BOS) Runtime.

Files

/usr/lib/nls/loc/iconv Contains loadable method converters.

/usr/lib/nls/loc/iconvTable Contains conversion tables for single–byte stateless code
sets.

Related Information
The iconv subroutine, iconv_close subroutine.

The genxlt command, iconv command.

Code Set Overview in AIX Kernel Extensions and Device Support Programming Concepts.

The List of PC, ISO, and EBCDIC Code Set Converters, the National Language Support
Overview for Programming, Converters Overview for Programming in AIX General
Programming Concepts : Writing and Debugging Programs.

1-405Base Operating System Runtime Services (A-P)

if_freenameindex Subroutine

Purpose Frees memory allocated by if_nameindex

Library
Library (libinet.a)

Syntax
#include <net/if.h>

void if_freenameindex (struct if_nameindex *ptr);

 Description
 The argument to this function must be a pointer that was returned by if_nameindex.

 Related Information
The if_nametoindex subroutine, if_indextoname subroutine, and if_nameindex
subroutine.

Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and
Debugging Programs.

1-406 Technical Reference: Base Operating System

if_indextoname Subroutine

Purpose
Determines the interface name associated with a particular index. The second of four
functions, if_indextoname maps an interface index into its corresponding name.

Library
Library (libinet.a)

Syntax
#include <net/if.h>>
char *

if_indextoname (index, ifname)

unsigned int index;

char *ifname;

Description
The second of four functions for Interface Identification. The first argument is the interface
index whose name is to be retrieved. The second argument is a buffer of at least IFNAMSIZ
bytes, into which the name is to be copied.

Note: The if_indextoname argument must point to a buffer of at least IFNAMESIZ bytes
into which the interface name corresponding to the specified index is returned.
IFNAMSIZ is also defined in <net/if.h> and its value includes a terminating null byte
at the end of the interface name.

Return Values
If successful, if_indextoname returns a pointer to a valid name corresponding to the
specified index. A null pointer is returned if no interface name corresponds to the specified
index.

Related Information
The if_nametoindex subroutine, if_nameindex subroutine, and if_freenameindex
subroutine.

Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and
Debugging Programs.

1-407Base Operating System Runtime Services (A-P)

if_nameindex Subroutine

Purpose
Retrieves index and name information for all interfaces.

Library
Library (libinet.a)

Syntax
#include <net/if.h>

struct if_nameindex {

unsigned int if_index; /* 1, 2, ... */

char * if_name; /* null terminated name: ”le0”, ... */

};

struct if_nameindex *if_nameindex (void);

Description
The final function of four for interface identification. The if_nameindex subroutine returns
an array of if_nameindex structures, one structure per interface.

Note: The memory used for this array of structures along with the interface names pointed
to by the if_name members is obtained dynamically. Use if_freenameindex to free
memory allocated by if_nameindex.

Return Values
If successful, the end of the array of structures is indicated by a structure with an if_index of
0 and an if_name of NULL. The function returns a NULL pointer upon an error.

 Related Information
The if_nametoindex subroutine, if_indextoname subroutine, and if_freenameindex
subroutine.

Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and
Debugging Programs.

1-408 Technical Reference: Base Operating System

if_nametoindex Subroutine

Purpose
Retrieves the interface index associated with a particular interface name. The first of four
functions, if_nametoindex maps an interface name into its corresponding index.

Library
Library (libinet.a)

Syntax
#include <net/if.h>
unsigned int

if_nametoindex (ifname)

const char *ifname

Description
The first of four functions for Interface Identification. The argument is a null–terminated
interface name (for example, en0, tr1,).

Return Values
If successful, if_nametoindex returns the interface index associated with the name. If
unsuccessful, 0 (zero) is returned.

Related Information
The if_indextoname subroutine, if_nameindex subroutine, and if_freenameindex
subroutine.

Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and
Debugging Programs.

1-409Base Operating System Runtime Services (A-P)

IMAIXMapping Subroutine

Purpose
Translates a pair of Key and State parameters to a string and returns a pointer to this string.

Library
Input Method Library (libIM.a)

Syntax
caddr_t IMAIXMapping(IMMap, Key, State, NBytes)
IMMap IMMap;
KeySym Key;
uint State;
int *NBytes;

Description
The IMAIXMapping subroutine translates a pair of Key and State parameters to a string
and returns a pointer to this string.

This function handles the diacritic character sequence and Alt–NumPad key sequence.

Parameters

IMMap Identifies the keymap.

Key Specifies the key symbol to which the string is mapped.

State Specifies the state to which the string is mapped.

NBytes Returns the length of the returning string.

Return Values
If the length set by the NBytes parameter has a positive value, the IMAIXMapping
subroutine returns a pointer to the returning string.

Note: The returning string is not null–terminated.

1-410 Technical Reference: Base Operating System

IMAuxCreate Callback Subroutine

Purpose
Tells the application program to create an auxiliary area.

Syntax
int IMAuxCreate(IM, AuxiliaryID, UData)
IMObject IM;
caddr_t *AuxiliaryID;
caddr_t UData;

Description
The IMAuxCreate subroutine is invoked by the input method of the operating system to
create an auxiliary area. The auxiliary area can contain several different forms of data and is
not restricted by the interface.

Most input methods display one auxiliary area at a time, but callbacks must be capable of
handling multiple auxiliary areas.

Parameters

IM Indicates the input method instance.

AuxiliaryID Identifies the newly created auxiliary area.

UData Identifies an argument passed by the IMCreate subroutine.

Return Values
On successful return of the IMAuxCreate subroutine, a newly created auxiliary area is set
to the AuxiliaryID value and the IMError global variable is returned. Otherwise, the
IMNoError value is returned.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMCreate subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-411Base Operating System Runtime Services (A-P)

IMAuxDestroy Callback Subroutine

Purpose
Tells the application to destroy the auxiliary area.

Syntax
int IMAuxDestroy(IM, AuxiliaryID, UData)
IMObject IM;
caddr_t AuxiliaryID;
caddr_t UData;

Description
The IMAuxDestroy subroutine is called by the input method of the operating system to tell
the application to destroy an auxiliary area.

Parameters

IM Indicates the input method instance.

AuxiliaryID Identifies the auxiliary area to be destroyed.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxDestroy subroutine returns the IMError global variable.
Otherwise, the IMNoError value is returned.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMCreate subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-412 Technical Reference: Base Operating System

IMAuxDraw Callback Subroutine

Purpose
Tells the application program to draw the auxiliary area.

Syntax
int IMAuxDraw(IM, AuxiliaryID, AuxiliaryInformation, UData)
IMObject IM;
caddr_t AuxiliaryID;
IMAuxInfo *AuxiliaryInformation;
caddr_t UData;

Description
The IMAuxDraw subroutine is invoked by the input method to draw an auxiliary area. The
auxiliary area should have been previously created.

Parameters

IM Indicates the input method instance.

AuxiliaryID Identifies the auxiliary area.

AuxiliaryInformation Points to the IMAuxInfo structure.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxDraw subroutine returns the IMError global variable.
Otherwise, the IMNoError value is returned.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMAuxCreate subroutine, IMCreate subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-413Base Operating System Runtime Services (A-P)

IMAuxHide Callback Subroutine

Purpose
Tells the application program to hide an auxiliary area.

Syntax
int IMAuxHide(IM, AuxiliaryID, UData)

IMObject IM;
caddr_t AuxiliaryID;
caddr_t UData;

Description
The IMAuxHide subroutine is called by the input method to hide an auxiliary area.

Parameters

IM Indicates the input method instance.

AuxiliaryID Identifies the auxiliary area to be hidden.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxHide subroutine returns the IMError global variable.
Otherwise, the IMNoError value is returned.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMAuxCreate subroutine, IMCreate subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-414 Technical Reference: Base Operating System

IMBeep Callback Subroutine

Purpose
Tells the application program to emit a beep sound.

Syntax
int IMBeep(IM, Percent, UData)
IMObject IM;
int Percent;
caddr_t UData;

Description
The IMBeep subroutine tells the application program to emit a beep sound.

Parameters

IM Indicates the input method instance.

Percent Specifies the beep level. The value range is from –100 to 100,
inclusively. A –100 value means no beep.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMBeep subroutine returns the IMError global variable. Otherwise,
the IMNoError value is returned.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMCreate subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-415Base Operating System Runtime Services (A-P)

IMClose Subroutine

Purpose
Closes the input method.

Library
Input Method Library (libIM.a)

Syntax
void IMClose(IMfep)
IMFep IMfep;

Description
The IMClose subroutine closes the input method. Before the IMClose subroutine is called,
all previously created input method instances must be destroyed with the IMDestroy
subroutine, or memory will not be cleared.

Parameters

IMfep Specifies the input method.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The IMDestroy subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

1-416 Technical Reference: Base Operating System

IMCreate Subroutine

Purpose
Creates one instance of an IMObject object for a particular input method.

Library
Input Method Library (libIM.a)

Syntax
IMObject IMCreate(IMfep, IMCallback, UData)
IMFep IMfep;
IMCallback *IMCallback;
caddr_t UData;

Description
The IMCreate subroutine creates one instance of a particular input method. Several input
method instances can be created under one input method.

Parameters

IMfep Specifies the input method.

IMCallback Specifies a pointer to the caller–supplied IMCallback structure.

UData Optionally specifies an application’s own information to the callback
functions. With this information, the application can avoid external
references from the callback functions. The input method does not
change this parameter, but merely passes it to the callback functions.
The UData parameter is usually a pointer to the application data
structure, which contains the information about location, font ID, and so
forth.

Return Values
The IMCreate subroutine returns a pointer to the created input method instance of type
IMObject. If the subroutine is unsuccessful, a null value is returned and the imerrno global
variable is set to indicate the error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The IMDestroy subroutine, IMFilter subroutine, IMLookupString subroutine, IMProcess
subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

1-417Base Operating System Runtime Services (A-P)

IMDestroy Subroutine

Purpose
Destroys an input method instance.

Library
Input Method Library (libIM.a)

Syntax
void IMDestroy(IM)
IMObject IM;

Description
The IMDestroy subroutine destroys an input method instance.

Parameters

IM Specifies the input method instance to be destroyed.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The IMClose subroutine, IMCreate subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

1-418 Technical Reference: Base Operating System

IMFilter Subroutine

Purpose
Determines if a keyboard event is used by the input method for internal processing.

Library
Input Method Library (libIM.a)

Syntax
int IMFilter(Im, Key, State, String, Length)
IMObect Im;
Keysym Key;
uint State, *Length;
caddr_t *String;

Description
The IMFilter subroutine is used to process a keyboard event and determine if the input
method for this operating system uses this event. The return value indicates:

• The event is filtered (used by the input method) if the return value is IMInputUsed.
Otherwise, the input method did not accept the event.

• Independent of the return value, a string may be generated by the keyboard event if
pre–editing is complete.

Note: The buffer returned from the IMFilter subroutine is owned by the input method editor
and can not continue between calls.

Parameters

Im Specifies the input method instance.

Key Specifies the keysym for the event.

State Defines the state of the keysym. A value of 0 means that the keysym is
not redefined.

String Holds the returned string if one exists. A null value means that no
composed string is ready.

Length Defines the length of the input string. If the string is not null, returns the
length.

Return Values

IMInputUsed The input method for this operating system filtered the event.

IMInputNotUsed The input method for this operating system did not use the event.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Input Method Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

1-419Base Operating System Runtime Services (A-P)

IMFreeKeymap Subroutine

Purpose
Frees resources allocated by the IMInitializeKeymap subroutine.

Library
Input Method Library (libIM.a)

Syntax
void IMFreeKeymap(IMMap)
IMMap IMMap;

Description
The IMFreeKeymap subroutine frees resources allocated by the IMInitializeKeymap
subroutine.

Parameters

IMMap Identifies the keymap.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The IMInitializeKeymap subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

1-420 Technical Reference: Base Operating System

IMIndicatorDraw Callback Subroutine

Purpose
Tells the application program to draw the indicator.

Syntax
int IMIndicatorDraw(IM, IndicatorInformation, UData)
IMObject IM;
IMIndicatorInfo *IndicatorInformation;
caddr_t UData;

Description
The IMIndicatorDraw callback subroutine is called by the input method when the value of
the indicator is changed. The application program then draws the indicator.

Parameters

IM Indicates the input method instance.

IndicatorInformation Points to the IMIndicatorInfo structure that holds the current value
of the indicator. The interpretation of this value varies among phonic
languages. However, the input method provides a function to
interpret this value.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error happens, the IMIndicatorDraw subroutine returns the IMError global variable.
Otherwise, the IMNoError value is returned.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMCreate subroutine, IMIndicatorHide subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-421Base Operating System Runtime Services (A-P)

IMIndicatorHide Callback Subroutine

Purpose
Tells the application program to hide the indicator.

Syntax
int IMIndicatorHide(IM, UData)
IMObject IM;
caddr_t UData;

Description
The IMIndicatorHide subroutine is called by the input method to tell the application
program to hide the indicator.

Parameters

IM Indicates the input method instance.

UData Specifies an argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMIndicatorHide subroutine returns the IMError global variable.
Otherwise, the IMNoError value is returned.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMCreate subroutine, IMIndicatorDraw subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-422 Technical Reference: Base Operating System

IMInitialize Subroutine

Purpose
Initializes the input method for a particular language.

Library
Input Method Library (libIM.a)

Syntax
IMFep IMInitialize(Name)
char *Name;

Description
The IMInitialize subroutine initializes an input method. The IMCreate, IMFilter, and
IMLookupString subroutines use the input method to perform input processing of keyboard
events in the form of keysym state modifiers. The IMInitialize subroutine finds the input
method that performs the input processing specified by the Name parameter and returns an
Input Method Front End Processor (IMFep) descriptor.

Before calling any of the key event–handling functions, the application must create an
instance of an IMObject object using the IMFep descriptor. Each input method can produce
one or more instances of IMObject object with the IMCreate subroutine.

When the IMInitialize subroutine is called, strings returned from the input method are
encoded in the code set of the locale. Each IMFep description inherits the code set of the
locale when the input method is initialized. The locale setting does not change the code set
of the IMFep description after it is created.

The IMInitialize subroutine calls the load subroutine to load a file whose name is in the
form Name.im. The Name parameter is passed to the IMInitialize subroutine. The loadable
input method file is accessed in the directories specified by the LOCPATH environment
variable. The default location for loadable input–method files is the /usr/lib/nls/loc directory.
If none of the LOCPATH directories contain the input method specified by the Name
parameter, the default location is searched.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The name of the input method file usually corresponds to the locale name, which is in the
form Language_territory.codesest@modifier. In the environment, the modifier is in the
form @im=modifier. The IMInitialize subroutine converts the @im= substring to @ when
searching for loadable input–method files.

Parameters

Name Specifies the language to be used. Each input method is dynamically
linked to the application program.

Return Values
If IMInitialize succeeds, it returns an IMFep handle. Otherwise, null is returned and the
imerrno global variable is set to indicate the error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-423Base Operating System Runtime Services (A-P)

Files

/usr/lib/nls/loc Contains loadable input–method files.

Related Information
The IMCreate subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

1-424 Technical Reference: Base Operating System

IMInitializeKeymap Subroutine

Purpose
Initializes the keymap associated with a specified language.

Library
Input Method Library (libIM.a)

Syntax
IMMap IMInitalizeKeymap(Name)
char *Name;

Description
The IMInitializeKeymap subroutine initializes an input method keymap (imkeymap). The
IMAIXMapping and IMSimpleMapping subroutines use the imkeymap to perform mapping
of keysym state modifiers to strings. The IMInitializeKeymap subroutine finds the
imkeymap that performs the keysym mapping and returns an imkeymap descriptor, IMMap.
The strings returned by the imkeymap mapping functions are treated as unsigned bytes.

The applications that use input methods usually do not need to manage imkeymaps
separately. The imkeymaps are managed internally by input methods.

The IMInitializeKeymap subroutine searches for an imkeymap file whose name is in the
form Name.im. The Name parameter is passed to the IMInitializeKeymap subroutine. The
imkeymap file is accessed in the directories specified by the LOCPATH environment
variable. The default location for input method files is the /usr/lib/nls/loc directory. If none of
the LOCPATH directories contain the keymap method specified by the Name parameter, the
default location is searched.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The name of the imkeymap file usually corresponds to the locale name, which is in the form
Language_territory.codesest@modifier. In the AIXwindows environment, the modifier is in
the form @im=modifier. The IMInitializeKeymap subroutine converts the @im= substring
to @ (at sign) when searching for loadable input method files.

Parameters

Name Specifies the name of the imkeymap.

Return Values
The IMInitializeKeymap subroutine returns a descriptor of type IMMap. Returning a null
value indicates the occurrence of an error. The IMMap descriptor is defined in the im.h file
as the caddr_t structure. This descriptor is used for keymap manipulation functions.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/usr/lib/nls/loc Contains loadable input–method files.

Related Information
The IMFreeKeymap, IMQueryLanguage subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

1-425Base Operating System Runtime Services (A-P)

IMIoctl Subroutine

Purpose
Performs a variety of control or query operations on the input method.

Library
Input Method Library (libIM.a)

Syntax
int IMIoctl(IM, Operation, Argument)
IMObject IM;
int Operation;
char *Argument;

Description
The IMIoctl subroutine performs a variety of control or query operations on the input
method specified by the IM parameter. In addition, this subroutine can be used to control the
unique function of each language input method because it provides input method–specific
extensions. Each input method defines its own function.

Parameters

IM Specifies the input method instance.

Operation Specifies the operation.

Argument The use of this parameter depends on which of the following
operations is performed.

IM_Refresh Refreshes the text area, auxiliary areas, and indicator
by calling the needed callback functions if these areas
are not empty. The Argument parameter is not used.

IM_GetString Gets the current pre–editing string. The Argument
parameter specifies the address of the IMSTR structure
supplied by the caller. The callback function is invoked
to clear the pre–editing if it exists.

IM_Clear Clears the text and auxiliary areas if they exist. If the
Argument parameter is not a null value, this operation
invokes the callback functions to clear the screen. The
keyboard state remains the same.

IM_Reset Clears the auxiliary area if it currently exists. If the
Argument parameter is a null value, this operation
clears only the internal buffer of the input method.
Otherwise, the IMAuxHide subroutine is called, and the
input method returns to its initial state.

IM_ChangeLength
Changes the maximum length of the pre–editing string.

IMNormalMode Specifies the normal mode of pre–editing.

IMSuppressedMode
Suppresses pre–editing.

1-426 Technical Reference: Base Operating System

IM_QueryState Returns the status of the text area, the auxiliary area,
and the indicator. It also returns the beep status and
the processing mode. The results are stored into the
caller–supplied IMQueryState structure pointed to by
the Argument parameter.

IM_QueryText Returns detailed information about the text area. The
results are stored in the caller–supplied IMQueryText
structure pointed to by the Argument parameter.

IM_QueryAuxiliary
Returns detailed information about the auxiliary area.
The results are stored in the caller–supplied
IMQueryAuxiliary structure pointed to by the
Argument parameter.

IM_QueryIndicator
Returns detailed information about the indicator. The
results are stored in the caller–supplied
IMQueryIndicator structure pointed to by the
Argument parameter.

IM_QueryIndicatorString
Returns an indicator string corresponding to the current
indicator. Results are stored in the caller–supplied
IMQueryIndicatorString structure pointed to by the
Argument parameter. The caller can request either a
short or long form with the format member of the
IMQueryIndicatorString structure.

IM_SupportSelection
Informs the input method whether or not an application
supports an auxiliary area selection list. The application
must support selections inside the auxiliary area and
determine how selections are displayed. If this
operation is not performed, the input method assumes
the application does not support an auxiliary area
selection list.

Return Values
The IMIoctl subroutine returns a value to the IMError global variable that indicates the type
of error encountered. Some error types are provided in the /usr/include/imerrno.h file.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The IMFilter subroutine, IMLookupString subroutine, IMProcess subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

1-427Base Operating System Runtime Services (A-P)

IMLookupString Subroutine

Purpose
Maps a Key/State (key symbol/state) pair to a string.

Library
Input Method Library (libIM.a)

Syntax
int IMLookupString(Im, Key, State, String, Length)
IMObject Im;
KeySym Key;
uint State, *Length;
caddr_t *String;

Description
The IMLookupString subroutine is used to map a Key/State pair to a localized string. It
uses an internal input method keymap (imkeymap) file to map a keysym/modifier to a
string. The string returned is encoded in the same code set as the locale of IMObject and
IM Front End Processor.

Note: The buffer returned from the IMLookupString subroutine is owned by the input
method editor and can not continue between calls.

Parameters

Im Specifies the input method instance.

Key Specifies the key symbol for the event.

State Defines the state for the event. A value of 0 means that the key is not
redefined.

String Holds the returned string, if one exists. A null value means that no
composed string is ready.

Length Defines the length string on input. If the string is not null, identifies the
length returned.

Return Values

IMError Error encountered.

IMReturnNothing No string or keysym was returned.

IMReturnString String returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Input Method Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

1-428 Technical Reference: Base Operating System

IMProcess Subroutine

Purpose
Processes keyboard events and language–specific input.

Library
Input Method Library (libIM.a)

Note: This subroutine will be removed in future releases. Use the IMFilter and
IMLookupString subroutines to process keyboard events.

Syntax
int IMProcess (IM, KeySymbol, State, String, Length)
IMObject IM;
KeySym KeySymbol;
uint State;
caddr_t *String;
uint *Length;

Description
This subroutine is a main entry point to the input method of the operating system. The
IMProcess subroutine processes one keyboard event at a time. Processing proceeds as
follows:

• Validates the IM parameter.

• Performs keyboard translation for all supported modifier states.

• Invokes internal function to do language–dependent processing.

• Performs any necessary callback functions depending on the internal state.

• Returns to application, setting the String and Length parameters appropriately.

Parameters

IM Specifies the input method instance.

KeySymbol Defines the set of keyboard symbols that will be handled.

State Specifies the state of the keyboard.

String Holds the returned string. Returning a null value means that the input is
used or discarded by the input method.

Note: The String parameter is not a null–terminated string.

Length Stores the length, in bytes, of the String parameter.

Return Values
This subroutine returns the IMError global variable if an error occurs. The IMerrno global
variable is set to indicate the error. Some of the variable values include:

IMError Error occurred during this subroutine.

IMTextAndAuxiliaryOff No text string in the Text area, and the Auxiliary area is not
shown.

IMTextOn Text string in the Text area, but no Auxiliary area.

IMAuxiliaryOn No text string in the Text area, and the Auxiliary area is shown.

IMTextAndAuxiliaryOn Text string in the Text area, and the Auxiliary is shown.

1-429Base Operating System Runtime Services (A-P)

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The IMClose subroutine, IMCreate subroutine IMFilter subroutine, IMLookupString
subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

1-430 Technical Reference: Base Operating System

IMProcessAuxiliary Subroutine

Purpose
Notifies the input method of input for an auxiliary area.

Library
Input Method Library (libIM.a)

Syntax
int IMProcessAuxiliary(IM, AuxiliaryID, Button, PanelRow
 PanelColumn, ItemRow, ItemColumn, String, Length)

IMObject IM;
caddr_t AuxiliaryID;
uint Button;
uint PanelRow;
uint PanelColumn;
uint ItemRow;
uint ItemColumn;
caddr_t *String;
uint *Length;

Description
The IMProcessAuxiliary subroutine notifies the input method instance of input for an
auxiliary area.

Parameters

IM Specifies the input method instance.

AuxiliaryID Identifies the auxiliary area.

Button Specifies one of the following types of input:

IM_ABORT Abort button is pushed.

IM_CANCEL Cancel button is pushed.

IM_ENTER Enter button is pushed.

IM_HELP Help button is pushed.

IM_IGNORE Ignore button is pushed.

IM_NO No button is pushed.

IM_OK OK button is pushed.

IM_RETRY Retry button is pushed.

IM_SELECTED Selection has been made. Only in this case do the
PanelRow, PanelColumn, ItemRow, and ItemColumn
parameters have meaningful values.

IM_YES Yes button is pushed.

PanelRow Indicates the panel on which the selection event occurred.

PanelColumn Indicates the panel on which the selection event occurred.

ItemRow Indicates the selected item.

ItemColumn Indicates the selected item.

1-431Base Operating System Runtime Services (A-P)

String Holds the returned string. If a null value is returned, the input is used or
discarded by the input method. Note that the String parameter is not a
null–terminated string.

Length Stores the length, in bytes, of the String parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The IMAuxCreate subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

1-432 Technical Reference: Base Operating System

IMQueryLanguage Subroutine

Purpose
Checks to see if the specified input method is supported.

Library
Input Method Library (libIM.a)

Syntax
uint IMQueryLanguage(Name)
IMLanguage Name;

Description
The IMQueryLanguage subroutine checks to see if the input method specified by the Name
parameter is supported.

Parameters

Name Specifies the input method.

Return Values
The IMQueryLanguage subroutine returns a true value if the specified input method is
supported, a false value if not.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The IMClose subroutine, IMInitialize subroutine.

Input Method Overview, National Language Support Overview for Programming,
Understanding Keyboard Mapping contains a list of supported languages in AIX General
Programming Concepts : Writing and Debugging Programs.

1-433Base Operating System Runtime Services (A-P)

IMSimpleMapping Subroutine

Purpose
Translates a pair of KeySymbol and State parameters to a string and returns a pointer to
this string.

Library
Input Method Library (libIM.a)

Syntax
caddr_t IMSimpleMapping (IMMap, KeySymbol, State, NBytes)
IMMap IMMap;
KeySym KeySymbol;
uint State;
int *NBytes;

Description
Like the IMAIXMapping subroutine, the IMSimpleMapping subroutine translates a pair of
KeySymbol and State parameters to a string and returns a pointer to this string. The
parameters have the same meaning as those in the IMAIXMapping subroutine.

The IMSimpleMapping subroutine differs from the IMAIXMapping subroutine in that it does
not support the diacritic character sequence or the Alt–NumPad key sequence.

Parameters

IMMap Identifies the keymap.

KeySymbol Key symbol to which the string is mapped.

State Specifies the state to which the string is mapped.

NBytes Returns the length of the returning string.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The IMAIXMapping subroutine, IMFreeKeymap subroutine, IMInitializeKeymap
subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

1-434 Technical Reference: Base Operating System

IMTextCursor Callback Subroutine

Purpose
Asks the application to move the text cursor.

Syntax
int IMTextCursor(IM, Direction, Cursor, UData)
IMObject IM;
uint Direction;
int *Cursor;
caddr_t UData;

Description
The IMTextCursor subroutine is called by the Input Method when the Cursor Up or Cursor
Down key is input to the IMFilter and IMLookupString subroutines.

This subroutine sets the new display cursor position in the text area to the integer pointed to
by the Cursor parameter. The cursor position is relative to the top of the text area. A value of
–1 indicates the cursor should not be moved.

Because the input method does not know the actual length of the screen it always treats a
text string as one–dimensional (a single line). However, in the terminal emulator, the text
string sometimes wraps to the next line. The IMTextCursor subroutine performs this
conversion from single–line to multiline text strings. When you move the cursor up or down,
the subroutine interprets the cursor position on the text string relative to the input method.

Parameters

IM Indicates the Input Method instance.

Direction Specifies up or down.

Cursor Specifies the new cursor position or –1.

UData Specifies an argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMTextCursor subroutine returns the IMError global variable.
Otherwise, the IMNoError value is returned.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMCreate subroutine, IMFilter subroutine, IMLookupString subroutine, IMTextDraw
subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-435Base Operating System Runtime Services (A-P)

IMTextDraw Callback Subroutine

Purpose
Tells the application program to draw the text string.

Syntax
int IMTextDraw(IM, TextInfo, UData)
IMObject IM;
IMTextInfo *TextInfo;
caddr_t UData;

Description
The IMTextDraw subroutine is invoked by the Input Method whenever it needs to update
the screen with its internal string. This subroutine tells the application program to draw the
text string.

Parameters

IM Indicates the input method instance.

TextInfo Points to the IMTextInfo structure.

UData An argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMTextDraw subroutine returns the IMError global variable.
Otherwise, the IMNoError value is returned.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMCreate subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-436 Technical Reference: Base Operating System

IMTextHide Callback Subroutine

Purpose
Tells the application program to hide the text area.

Syntax
int IMTextHide(IM, UData)
IMObject IM;
caddr_t UData;

Description
The IMTextHide subroutine is called by the input method when the text area should be
cleared. This subroutine tells the application program to hide the text area.

Parameters

IM Indicates the input method instance.

UData Specifies an argument passed by the IMCreate subroutine.

Return Values
If an error occurs, the IMTextHide subroutine returns an IMError value. Otherwise, an
IMNoError value is returned.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMTextDraw subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-437Base Operating System Runtime Services (A-P)

IMTextStart Callback Subroutine

Purpose
Notifies the application program of the length of the pre–editing space.

Syntax
int IMTextStart(IM, Space, UData)
IMObject IM;
int *Space;
caddr_t UData;

Description
The IMTextStart subroutine is called by the input method when the pre–editing is started,
but prior to calling the IMTextDraw callback subroutine. This subroutine notifies the input
method of the length, in terms of bytes, of pre–editing space. It sets the length of the
available space (>=0) on the display to the integer pointed to by the Space parameter. A
value of –1 indicates that the pre–editing space is dynamic and has no limit.

Parameters

IM Indicates the input method instance.

Space Maximum length of pre–editing string.

UData An argument passed by the IMCreate subroutine.

Implementation Specifics
This subroutine is provided by applications that use input methods.

Related Information
The IMCreate subroutine, IMTextDraw subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX
General Programming Concepts : Writing and Debugging Programs.

Understanding Callbacks in AIX General Programming Concepts : Writing and Debugging
Programs.

1-438 Technical Reference: Base Operating System

inet_net_ntop Subroutine

Purpose
Converts between binary and text address formats.

Library
Library (libc.a)

Syntax
char *inet_net_ntop
int af;
const void *src;
int bits;
char *dst;
size_t size;

 Description
This function converts a network address and the number of bits in the network part of the
address into the CIDR format ascii text (for example, 9.3.149.0/24). The argument, af,
specifies the family of the address. The argument, src, points to a buffer holding an IPv4
address if the af argument is AF_INET. The argument, dst, points to a buffer where the
function stores the resulting text string.

 Return Values
 If successful, a pointer to a buffer containing the text string is returned. If unsuccessful,
NULL is returned. Upon failure, errno is set to EAFNOSUPPORT if the af argument is
invalid or ENOSPC if the size of the result buffer is inadquate.

 Related Information
The inet_net_pton subroutine, inet_ntop subroutine, inet_pton subroutine.

Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and
Debugging Programs.

1-439Base Operating System Runtime Services (A-P)

inet_net_pton Subroutine

Purpose
Converts between text and binary address formats.

Library
Library (libc.a)

Syntax
char *inet_net_ntop
int af;
const char *src;
void *dst;
size_t size;

 Description
This function converts a network address in ascii into the binary network address. The ascii
representation can be CIDR–based (for example, 9.3.149.0/24) or class–based (for
example, 9.3.149.0). The argument, af, specifies the family of the address. The argument,
src, points the string being passed in. The argument, dst, points to a buffer where the
function will store the resulting numeric address.

 Return Values
If successful, 1 (one) is returned. If unseccessful, 0 (zero) is returned if the input is not a
valid IPv4 string; or a –1 (negative one) with errno set to EAFNOSUPPORT if the af
argument is unknown.

 Related Information
The inet_net_ntop subroutine, inet_ntop subroutine, inet_pton subroutine.

Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and
Debugging Programs.

1-440 Technical Reference: Base Operating System

inet_ntop Subroutine

Purpose
Converts between binary and text address formats.

Library
Library (libc.a)

Syntax
char *inet_ntop
int af;
const void *src;
char *dst;
size_t size;

 Description
 This function converts from an address in binary format (as specified by src) to standard
text format, and places the result in dst (if size, which specifies the space available in dst, is
sufficient). The argument af specifies the family of the address. This can be AF_INET or
AF_INET6.

 The argument, src, points to a buffer holding an IPv4 address if the af argument is
AF_INET, or an IPv6 address if the af argument is AF_INET6. The argument dst points to a
buffer where the function will store the resulting text string. The size argument specifies the
size of this buffer. The application must specify a non–NULL dst argument. For IPv6
addresses, the buffer must be at least 46–octets. For IPv4 addresses, the buffer must be at
least 16–octets.

 In order to allow applications to easily declare buffers of the proper size to store IPv4 and
IPv6 addresses in string form, the following two constants are defined in <netinet/in.h>:

#define INET_ADDRSTRLEN 16
#define INET6_ADDRSTRLEN 46

 Return Values
If successful, a pointer to the buffer containing the converted address is returned. If
unsuccessful, NULL is returned. Upon failure, errno is set to EAFNOSUPPORT if the
specified address family (af) is unsupported, or to ENOSPC if the size indicates the
destination buffer is too small.

 Related Information
The inet_net_ntop subroutine, inet_net_pton subroutine, and inet_pton subroutine.

Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and
Debugging Programs.

1-441Base Operating System Runtime Services (A-P)

inet_pton Subroutine

Purpose
Converts between text and binary address formats.

Library
Library (libc.a)

Syntax
char *inet_net_ntop
int af;
const char *src;
void *dst;

 Description
This function converts an address in its standard text format into its numeric binary form.
The argument af specifies the family of the address. Note, AF_INET and AF_INET6 address
families are currently supported.

The argument src points to the string being passed in. The argument dst points to a buffer
into which the function stores the numeric address. The address is returned in network byte
order.

 Return Values
If successful, 1 (one) is returned. If unseccessful, 0 (zero) is returned if the input is not a
valid IPv4 dotted–decimal string or a valid IPv6 address string; or a –1 (negative one) with
errno set to EAFNOSUPPORT if the af argument is unknown. The calling application must
ensure that the buffer referred to by dst is large enough to hold the numeric address (4
bytes for AF_INET or 16 bytes for AF_INET6). If the af argument is AF_INET, the function
accepts a string in the standard IPv4 dotted–decimal form:

ddd.ddd.ddd.ddd

where ddd is a one to three digit decimal number between 0 and 255. Note that many
implementations of the existing inet_addr and inet_aton functions accept nonstandard input:
octal numbers, hexadecimal numbers, and fewer than four numbers. inet_pton does not
accept these formats.

If the af argument is AF_INET6, then the function acdepts a string in one of the standard
IPv6 text forms defined the addressing architecture specification..

 Related Information
 The inet_net_ntop subroutine, inet_net_pton subroutine, and inet_ntop subroutine.

Subroutines Overview in AIX Version 4 General Programming Concepts: Writing and
Debugging Programs.

1-442 Technical Reference: Base Operating System

initgroups Subroutine

Purpose
Initializes supplementary group ID.

Library
Standard C Library (libc.a)

Syntax
int initgroups (User, BaseGID)
char *User;
int BaseGID;

Description
Attention: The initgroups subroutine uses the getgrent and getpwent family of
subroutines. If the program that invokes the initgroups subroutine uses any of these
subroutines, calling the initgroups subroutine overwrites the static storage areas used
by these subroutines.

The initgroups subroutine reads the defined group membership of the specified User
parameter and sets the supplementary group ID of the current process to that value. The
BaseGID parameter is always included in the supplementary group ID. The supplementary
group is normally the principal user’s group. If the user is in more than NGROUPS_MAX
groups, set in the limits.h file, only NGROUPS_MAX groups are set, including the BaseGID
group.

Parameters

User Identifies a user.

BaseGID Specifies an additional group to include in the group set.

Return Values

0 Indicates that the subroutine was success.

–1 Indicates that the subroutine failed. The errno global variable is set to
indicate the error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getgid subroutine, getgrent, getgrgid, getgrnam, putgrent, setgrent, or endgrent
subroutine, getgroups subroutine, setgroups subroutine.

The groups command, setgroups command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-443Base Operating System Runtime Services (A-P)

initialize Subroutine

Purpose
Performs printer initialization.

Library
None (provided by the formatter).

Syntax
#include <piostruct.h>

int initialize ()

Description
The initialize subroutine is invoked by the formatter driver after the setup subroutine
returns.

If the –j flag passed from the qprt command has a nonzero value (true), the initialize
subroutine uses the piocmdout subroutine to send a command string to the printer. This
action initializes the printer to the proper state for printing the file. Any variables referenced
by the command string should be the attribute values from the database, overridden by
values from the command line.

If the –j flag passed from the qprt command has a nonzero value (true), any necessary
fonts should be downloaded.

Return Values

0 Indicates a successful operation.

If the initialize subroutine detects an error, it uses the piomsgout subroutine to invoke an
error message. It then invokes the pioexit subroutine with a value of PIOEXITBAD.

Note: If either the piocmdout or piogetstr subroutine detects an error, it issues its own
error messages and terminates the print job.

Related Information
The piocmdout subroutine, pioexit subroutine, piogetstr subroutine, piomsgout
subroutine, setup subroutine.

Adding a New Printer Type to Your System, Printer Addition Management Subsystem:
Programming Overview, Understanding Embedded References in Printer Attribute Strings in
AIX Kernel Extensions and Device Support Programming Concepts.

Example of Print Formatter in AIX General Programming Concepts : Writing and Debugging
Programs.

1-444 Technical Reference: Base Operating System

insque or remque Subroutine

Purpose
Inserts or removes an element in a queue.

Library
Standard C Library (libc.a)

Syntax
#include <search.h>

insque (Element, Pred)
void *Element, *Pred;

remque (Element)
void *Element;

Description
The insque and remque subroutines manipulate queues built from double–linked lists.
Each element in the queue must be in the form of a qelem structure. The next and prev
elements of that structure must point to the elements in the queue immediately before and
after the element to be inserted or deleted.

The insque subroutine inserts the element pointed to by the Element parameter into a
queue immediately after the element pointed to by the Pred parameter.

The remque subroutine removes the element defined by the Element parameter from a
queue.

Parameters

Pred Points to the element in the queue immediately before the element to
be inserted or deleted.

Element Points to the element in the queue immediately after the element to be
inserted or deleted.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Searching and Sorting Example Program in AIX General Programming Concepts : Writing
and Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-445Base Operating System Runtime Services (A-P)

ioctl, ioctlx, ioctl32, or ioctl32x Subroutine

Purpose
Performs control functions associated with open file descriptors.

Library
Standard C Library (libc.a)

BSD Library (libbsd.a)

Syntax
#include <sys/ioctl.h>
#include <sys/types.h>
#include <unistd.h>

int ioctl (FileDescriptor, Command, Argument)
int FileDescriptor, Command;
void *Argument;

int ioctlx (FileDescriptor, Command, Argument, Ext)
int FileDescriptor, Command;
void *Argument;
int Ext;

int ioct132 (FileDescriptor, Command, Argument)
int FileDescriptor, Command;
unsigned int Argument;

int ioct132x (FileDescriptor, Command, Argument, Ext)
int FileDescriptor, Command;
unsigned int Argument;
unsigned int Ext;

Description
The ioctl subroutine performs a variety of control operations on the object associated with
the specified open file descriptor. This function is typically used with character or block
special files, sockets, or generic device support such as the termio general terminal
interface.

The control operation provided by this function call is specific to the object being addressed,
as are the data type and contents of the Argument parameter. The ioctlx form of this
function can be used to pass an additional extension parameter to objects supporting it.

The control operation provided by this function call is specific to the object being addressed,
as are the data type and contents of the Argument parameter. The ioctlx form of this
function can be used to pass an additional extension parameter to objects supporting it. The
ioct132 and ioct132x forms of this function behave in the same way as ioctl and ioctlx, but
allow 64–bit applications to call the ioctl routine for an object that does not normally work
with 64–bit applications.

Performing an ioctl function on a file descriptor associated with an ordinary file results in an
error being returned.

1-446 Technical Reference: Base Operating System

Parameters

FileDescriptor Specifies the open file descriptor for which the control operation is to be
performed.

Command Specifies the control function to be performed. The value of this
parameter depends on which object is specified by the FileDescriptor
parameter.

Argument Specifies additional information required by the function requested in the
Command parameter. The data type of this parameter (a void pointer) is
object–specific, and is typically used to point to an object device–specific
data structure. However, in some device–specific instances, this
parameter is used as an integer.

Ext Specifies an extension parameter used with the ioctlx subroutine. This
parameter is passed on to the object associated with the specified open
file descriptor. Although normally of type int, this parameter can be used
as a pointer to a device–specific structure for some devices.

File Input/Output (FIO) ioctl Command Values
A number of file input/output (FIO) ioctl commands are available to enable the ioctl
subroutine to function similar to the fcntl subroutine:

FIOCLEX and
FIONCLEX

Manipulate the close–on–exec flag to determine if a file descriptor
should be closed as part of the normal processing of the exec subroutine.
If the flag is set, the file descriptor is closed. If the flag is clear, the file
descriptor is left open.

The following code sample illustrates the use of the fcntl subroutine to
set and clear the close–on–exec flag:

/* set the close–on–exec flag for fd1 */

fcntl(fd1,F_SETFD,FD_CLOEXEC);

/* clear the close–on–exec flag for fd2 */

fcntl(fd2,F_SETFD,0);

Although the fcntl subroutine is normally used to set the close–on–exec
flag, the ioctl subroutine may be used if the application program is linked
with the Berkeley Compatibility Library (libbsd.a) or the Berkeley Thread
Safe Library (libbsd_r.a) (4.2.1 and later versions). The following ioctl
code fragment is equivalent to the preceding fcntl fragment:

/* set the close–on–exec flag for fd1 */

ioctl(fd1,FIOCLEX,0);

/* clear the close–on–exec flag for fd2 */

ioctl(fd2,FIONCLEX,0);

The third parameter to the ioctl subroutine is not used for the FIOCLEX
and FIONCLEX ioctl commands.

1-447Base Operating System Runtime Services (A-P)

FIONBIO Enables nonblocking I/O. The effect is similar to setting the
O_NONBLOCK flag with the fcntl subroutine. The third parameter to the
ioctl subroutine for this command is a pointer to an integer that indicates
whether nonblocking I/O is being enabled or disabled. A value of 0
disables non–blocking I/O. Any nonzero value enables nonblocking I/O. A
sample code fragment follows:

int flag;

/* enable NBIO for fd1 */

flag = 1;

ioctl(fd1,FIONBIO,&flag);

/* disable NBIO for fd2 */

flag = 0;

ioctl(fd2,FIONBIO,&flag);

FIONREAD Determines the number of bytes that are immediately available to be read
on a file descriptor. The third parameter to the ioctl subroutine for this
command is a pointer to an integer variable where the byte count is to be
returned. The following sample code illustrates the proper use of the
FIONREAD ioctl command:

int nbytes;

ioctl(fd,FIONREAD,&nbytes);

FIOASYNC Enables a simple form of asynchronous I/O notification. This command
causes the kernel to send SIGIO signal to a process or a process group
when I/O is possible. Only sockets, ttys, and pseudo–ttys implement this
functionality.

The third parameter of the ioctl subroutine for this command is a pointer
to an integer variable that indicates whether the asynchronous I/O
notification should be enabled or disabled. A value of 0 disables I/O
notification; any nonzero value enables I/O notification. A sample code
segment follows:

int flag;

/* enable ASYNC on fd1 */

flag = 1;

ioctl(fd, FIOASYNC,&flag);

/* disable ASYNC on fd2 */

flag = 0;

ioctl(fd,FIOASYNC,&flag);

FIOSETOWN Sets the recipient of the SIGIO signals when asynchronous I/O
notification (FIOASYNC) is enabled. The third parameter to the ioctl
subroutine for this command is a pointer to an integer that contains the
recipient identifier. If the value of the integer pointed to by the third
parameter is negative, the value is assumed to be a process group
identifier. If the value is positive, it is assumed to be a process identifier.

Sockets support both process groups and individual process recipients,
while ttys and psuedo–ttys support only process groups. Attempts to
specify an individual process as the recipient will be converted to the
process group to which the process belongs. The following code example
illustrates how to set the recipient identifier:

int owner;

owner = –getpgrp();

ioctl(fd,FIOSETOWN,&owner);

Note: In this example, the asynchronous I/O signals are being enabled
on a process group basis. Therefore, the value passed through
the owner parameter must be a negative number.

1-448 Technical Reference: Base Operating System

The following code sample illustrates enabling asynchronous I/O signals
to an individual process:

int owner;

owner = getpid();

ioctl(fd,FIOSETOWN,&owner);

FIOGETOWN Determines the current recipient of the asynchronous I/O signals of an
object that has asynchronous I/O notification (FIOASYNC) enabled. The
third parameter to the ioctl subroutine for this command is a pointer to an
integer used to return the owner ID. For example:

int owner;

ioctl(fd,FIOGETOWN,&owner);

If the owner of the asynchronous I/O capability is a process group, the
value returned in the reference parameter is negative. If the owner is an
individual process, the value is positive.

Return Values
If the ioctl subroutine fails, a value of –1 is returned. The errno global variable is set to
indicate the error.

The ioctl subroutine fails if one or more of the following are true:

EBADF The FileDescriptor parameter is not a valid open file descriptor.

EFAULT The Argument or Ext parameter is used to point to data outside of the
process address space.

EINTR A signal was caught during the ioctl or ioctlx subroutine and the process
had not enabled re–startable subroutines for the signal.

EINTR A signal was caught during the ioctl , ioctlx , ioctl32 , or ioct132x
subroutine and the process had not enabled re–startable subroutines for
the signal.

EINVAL The Command or Argument parameter is not valid for the specified object.

ENOTTY The FileDescriptor parameter is not associated with an object that accepts
control functions.

ENODEV The FileDescriptor parameter is associated with a valid character or block
special file, but the supporting device driver does not support the ioctl
function.

ENXIO The FileDescriptor parameter is associated with a valid character or block
special file, but the supporting device driver is not in the configured state.

Object–specific error codes are defined in the documentation for associated objects.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ddioctl device driver entry point and the fp_ioctl kernel service in AIX Technical
Reference: Kernel and Subsystems.

The Special Files Overview in AIX Files Reference.

The Input and Output Handling Programmer’s Overview, the tty Subsystem Overview, in AIX
General Programming Concepts : Writing and Debugging Programs.

The Sockets Overview and Understanding Socket Data Transfer in AIX Communications
Programming Concepts.

1-449Base Operating System Runtime Services (A-P)

isendwin Subroutine

Purpose
Determines whether the endwin subroutine was called without any subsequent refresh
calls.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

isendwin()

Description
The isendwin subroutine determines whether the endwin subroutine was called without
any subsequent refresh calls. If the endwin was called without any subsequent calls to the
wrefresh or doupdate subroutines, the isendwin subroutine returns TRUE.

Return Values

TRUE Indicates the endwin subroutine was called without any subsequent
calls to the wrefresh or doupdate subroutines.

FALSE Indicates subsequest calls to the refresh subroutines.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate subroutine, endwin subroutine, wrefresh subroutine.

Curses Overview for Programming, Initializing Curses, List of Curses Subroutines in AIX
General Programming Concepts : Writing and Debugging Programs.

1-450 Technical Reference: Base Operating System

iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower,
iswprint, iswpunct, iswspace, iswupper, or iswxdigit
Subroutine

Purpose
Tests a wide character for membership in a specific character class.

Library
Standard C Library (libc.a)

Syntax
#include <wchar.h>

int iswalnum (WC)
wint_t WC;

int iswalpha (WC)
wint_t WC;

int iswcntrl (WC)
wint_t WC;

int iswdigit (WC)
wint_t WC;

int iswgraph (WC)
wint_t WC;

int iswlower (WC)
wint_t WC;

int iswprint (WC)
wint_t WC;

int iswpunct (WC)
wint_t WC;

int iswspace (WC)
wint_t WC;

int iswupper (WC)
wint_t WC;

int iswxdigit (WC)
wint_t WC;

Description
The isw subroutines check the character class status of the wide character code specified
by the WC parameter. Each subroutine tests to see if a wide character is part of a different
character class. If the wide character is part of the character class, the isw subroutine
returns true; otherwise, it returns false.

Each subroutine is named by adding the isw prefix to the name of the character class that
the subroutine tests. For example, the iswalpha subroutine tests whether the wide
character specified by the WC parameter is an alphabetic character. The character classes
are defined as follows:

alnum Alphanumeric character.

alpha Alphabetic character.

cntrl Control character. No characters in the alpha or print classes are
included.

1-451Base Operating System Runtime Services (A-P)

digit Numeric digit character.

graph Graphic character for printing, not including the space character or cntrl
characters. Includes all characters in the digit and punct classes.

lower Lowercase character. No characters in cntrl, digit, punct, or space are
included.

print Print character. All characters in the graph class are included, but no
characters in cntrl are included.

punct Punctuation character. No characters in the alpha, digit, or cntrl
classes, or the space character are included.

space Space characters.

upper Uppercase character.

xdigit Hexadecimal character.

Parameters

WC Specifies a wide character for testing.

Return Values
If the wide character tested is part of the particular character class, the isw subroutine
returns a nonzero value; otherwise it returns a value of 0.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The iswctype subroutine, setlocale subroutine, towlower subroutine, towupper
subroutine wctype subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character Classification Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

1-452 Technical Reference: Base Operating System

iswctype or is_wctype Subroutine

Purpose
Determines properties of a wide character.

Library
Standard C Library (libc. a)

Syntax
#include <wchar.h>

int iswctype (WC, Property)
wint_t WC;
wctype_t Property;

int is_wctype (WC, Property)
wint_t WC;
wctype_t Property;

Description
The iswctype subroutine tests the wide character specified by the WC parameter to
determine if it has the property specified by the Property parameter. The iswctype
subroutine is defined for the wide–character null value and for values in the character range
of the current code set, defined in the current locale. The is_wctype subroutine is identical
to the iswctype subroutine.

Parameters

WC Specifies the wide character to be tested.

Property Specifies the property for which to test.

Return Values
If the WC parameter has the property specified by the Property parameter, the iswctype
subroutine returns a nonzero value. If the value specified by the WC parameter does not
have the property specified by the Property parameter, the iswctype subroutine returns a
value of zero. If the value specified by the WC parameter is not in the subroutine’s domain,
the result is undefined. If the value specified by the Property parameter is not valid (that is,
not obtained by a call to the wctype subroutine, or the Property parameter has been
invalidated by a subsequent call to the setlocale subroutine that has affected the
LC_CTYPE category), the result is undefined.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The iswctype subroutine adheres to Systems Interface and Headers, Issue 4 of X/Open.

Related Information
The iswalnum subroutine, iswalpha subroutine, iswcntrl subroutine, iswdigit subroutine,
iswgraph subroutine, iswlower subroutine, iswprint subroutine, iswpunct subroutine,
iswspace subroutine, iswupper subroutine, iswxdigit subroutine, setlocale subroutine,
towlower subroutine, towupper subroutine, wctype subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character Classification Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

1-453Base Operating System Runtime Services (A-P)

jcode Subroutines

Purpose
Perform string conversion on 8–bit processing codes.

Library
Standard C Library (libc.a)

Syntax
#include <jcode.h>

char *jistosj(String1, String2)
char *String1, *String2;

char *jistouj(String1, String2)
char *String1, *String2;

char *sjtojis(String1, String2)
char *String1, *String2;

char *sjtouj(String1, String2)
char *String1, *String2;

char *ujtojis(String1, String2)
char *String1, *String2;

char *ujtosj(String1, String2)
char *String1, *String2;

char *cjistosj(String1, String2)
char *String1, *String2;

char *cjistouj(String1, String2)
char *String1, *String2;

char *csjtojis(String1, String2)
char *String1, *String2;

char *csjtouj(String1, String2)
char *String1, *String2;

char *cujtojis(String1, String2)
char *String1, *String2;

char *cujtosj(String1, String2)
char *String1, *String2;

Description
The jistosj, jistouj, sjtojis, sjtouj, ujtojis, and ujtosj subroutines perform string conversion
on 8–bit processing codes. The String2 parameter is converted and the converted string is
stored in the String1 parameter. The overflow of the String1 parameter is not checked. Also,
the String2 parameter must be a valid string. Code validation is not permitted.

The jistosj subroutine converts JIS to SJIS. The jistouj subroutine converts JIS to UJIS.
The sjtojis subroutine converts SJIS to JIS. The sjtouj subroutine converts SJIS to UJIS.
The ujtojis subroutine converts UJIS to JIS. The ujtosj subroutine converts UJIS to SJIS.

The cjistosj, cjistouj, csjtojis, csjtouj, cujtojis, and cujtosj macros perform code
conversion on 8–bit processing JIS Kanji characters. A character is removed from the
String2 parameter, and its code is converted and stored in the String1 parameter. The
String1 parameter is returned. The validity of the String2 parameter is not checked.

The cjistosj macro converts from JIS to SJIS. The cjistouj macro converts from JIS to
UJIS. The csjtojis macro converts from SJIS to JIS. The csjtouj macro converts from SJIS

1-454 Technical Reference: Base Operating System

to UJIS. The cujtojis macro converts from UJIS to JIS. The cujtosj macro converts from
UJIS to SJIS.

Parameters

String1 Stores converted string or code.

String2 Stores string or code to be converted.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The Japanese conv subroutines, Japanese ctype subroutines.

List of String Manipulation Services in AIX General Programming Concepts : Writing and
Debugging Programs.

National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-455Base Operating System Runtime Services (A-P)

Japanese conv Subroutines

Purpose
Translates predefined Japanese character classes.

Library
Standard C Library (libc.a)

Syntax
#include <ctype.h>
int atojis (Character)
int Character;

int jistoa (Character)
int Character;

int _atojis (Character)
int Character;

int _jistoa (Character)
int Character;

int tojupper (Character)
int Character;

int tojlower (Character)
int Character;

int _tojupper (Character)
int Character;

int _tojlower (Character)
int Character;

int toujis (Character)
int Character;

int kutentojis (Character)
int Character;

int tojhira (Character)
int Character;

int tojkata (Character)
int Character;

Description
When running AIX with Japanese Language Support on your system, the legal value of the
Character parameter is in the range from 0 to NLCOLMAX.

The jistoa subroutine converts an SJIS ASCII equivalent to the corresponding ASCII
equivalent. The atojis subroutine converts an ASCII character to the corresponding SJIS
equivalent. Other values are returned unchanged.

The _jistoa and _atojis routines are macros that function like the jistoa and atojis
subroutines, but are faster and have no error checking function.

The tojlower subroutine converts a SJIS uppercase letter to the corresponding SJIS
lowercase letter. The tojupper subroutine converts an SJIS lowercase letter to the
corresponding SJIS uppercase letter. All other values are returned unchanged.

1-456 Technical Reference: Base Operating System

The _tojlower and _tojupper routines are macros that function like the tojlower and
tojupper subroutines, but are faster and have no error–checking function.

The toujis subroutine sets all parameter bits that are not 16–bit SJIS code to 0.

The kutentojis subroutine converts a kuten code to the corresponding SJIS code. The
kutentojis routine returns 0 if the given kuten code is invalid.

The tojhira subroutine converts an SJIS katakana character to its SJIS hiragana equivalent.
Any value that is not an SJIS katakana character is returned unchanged.

The tojkata subroutine converts an SJIS hiragana character to its SJIS katakana
equivalent. Any value that is not an SJIS hiragana character is returned unchanged.

The _tojhira and _tojkata subroutines attempt the same conversions without checking for
valid input.

For all functions except the toujis subroutine, the out–of–range parameter values are
returned without conversion.

Parameters

Character Character to be converted.

Pointer Pointer to the escape sequence.

CharacterPointer Pointer to a single NLchar data type.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ctype subroutine, conv subroutine, getc, getchar, fgetc, or getw subroutine, getwc,
fgetwc, or getwchar subroutine, setlocale subroutine.

List of Character Manipulation Services, National Language Support Overview for
Programming, Subroutines Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

1-457Base Operating System Runtime Services (A-P)

Japanese ctype Subroutines

Purpose
Classify characters.

Library
Standard Character Library (libc.a)

Syntax
#include <ctype.h>

int isjalpha (Character)
int Character;

int isjupper (Character)
int Character;

int isjlower (Character)
int Character;

int isjlbytekana (Character)
int Character;

int isjdigit (Character)
int Character;

int isjxdigit (Character)
int Character;

int isjalnum (Character)
int Character;

int isjspace (Character)
int Character;

int isjpunct (Character)
int Character;

int isjparen (Character)
int Character;

int isparent (Character)
intCharacter;

int isjprint (Character)
int Character;

int isjgraph (Character)
int Character;

int isjis (Character)
int Character;

int isjhira (wc)
wchar_t wc;

int isjkanji (wc)
wchar_wc;

int isjkata (wc)
wchar_t wc;

1-458 Technical Reference: Base Operating System

Description
The Japanese ctype subroutines classify character–coded integer values specified in a
table. Each of these subroutines returns a nonzero value for True and 0 for False.

Parameters

Character Character to be tested.

Return Values
The isjprint and isjgraph subroutines return a 0 value for user–defined characters.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ctype subroutines, setlocale subroutine.

List of Character Manipulation Services, National Language Support Overview for
Programming, Subroutines Overview in AIX General Programming Concepts : Writing and
Debugging Programs.

1-459Base Operating System Runtime Services (A-P)

kill or killpg Subroutine

Purpose
Sends a signal to a process or to a group of processes.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <signal.h>

int kill(
Process,
Signal)
pid_t Process;
int Signal;

killpg(
ProcessGroup, Signal)
int ProcessGroup, Signal;

Description
The kill subroutine sends the signal specified by the Signal parameter to the process or
group of processes specified by the Process parameter.

To send a signal to another process, either the real or the effective user ID of the sending
process must match the real or effective user ID of the receiving process, and the calling
process must have root user authority.

The processes that have the process IDs of 0 and 1 are special processes and are
sometimes referred to here as proc0 and proc1, respectively.

Processes can send signals to themselves.

Note: Sending a signal does not imply that the operation is successful. All signal
operations must pass the access checks prescribed by each enforced access
control policy on the system.

1-460 Technical Reference: Base Operating System

Parameters

Process Specifies the ID of a process or group of processes.

If the Process parameter is greater than 0, the signal specified by the
Signal parameter is sent to the process identified by the Process
parameter.

If the Process parameter is 0, the signal specified by the Signal
parameter is sent to all processes, excluding proc0 and proc1, whose
process group ID matches the process group ID of the sender.

If the value of the Process parameter is a negative value other than –1
and if the calling process passes the access checks for the process to
be signaled, the signal specified by the Signal parameter is sent to all
the processes, excluding proc0 and proc1. If the user ID of the calling
process has root user authority, all processes, excluding proc0 and
proc1, are signaled.

If the value of the Process parameter is a negative value other than –1,
the signal specified by the Signal parameter is sent to all processes
having a process group ID equal to the absolute value of the Process
parameter.

If the value of the Process parameter is –1, the signal specified by the
Signal parameter is sent to all processes which the process has
permission to send that signal.

If pid is –1, sig will be sent to all processes (excluding an unspecified
set of system processes) for which the process has permission to send
that signal.

Signal Specifies the signal. If the Signal parameter is a null value, error
checking is performed but no signal is sent. This parameter is used to
check the validity of the Process parameter.

ProcessGroup Specifies the process group.

Return Values
Upon successful completion, the kill subroutine returns a value of 0. Otherwise, a value of
–1 is returned and the errno global variable is set to indicate the error.

Error Codes
The kill subroutine is unsuccessful and no signal is sent if one or more of the following are
true:

EINVAL The Signal parameter is not a valid signal number.

EINVAL The Signal parameter specifies the SIGKILL, SIGSTOP, SIGTSTP, or
SIGCONT signal, and the Process parameter is 1 (proc1).

ESRCH No process can be found corresponding to that specified by the
Process parameter.

EPERM The real or effective user ID does not match the real or effective user ID
of the receiving process, or else the calling process does not have root
user authority.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The following interface is provided for BSD Compatibility:

1-461Base Operating System Runtime Services (A-P)

killpg(ProcessGroup, Signal)
int ProcessGroup; Signal;

This interface is equivalent to:

if (ProcessGroup < 0)

{

 errno = ESRCH;

 return (–1);

}

return (kill(–ProcessGroup, Signal));

Related Information
The getpid, getpgrp, or getppid subroutine, setpgid or setpgrp subroutine, sigaction,
sigvec, or signal subroutine.

The kill command.

Signal Management in AIX General Programming Concepts : Writing and Debugging
Programs provides more information about signal management in multi–threaded
processes.

1-462 Technical Reference: Base Operating System

kleenup Subroutine

Purpose
Cleans up the run–time environment of a process.

Library

Syntax
int kleenup(FileDescriptor, SigIgn, SigKeep)
int FileDescriptor;
int SigIgn[];
int SigKeep[];

Description
The kleenup subroutine cleans up the run–time environment for a trusted process by:

• Closing unnecessary file descriptors.

• Resetting the alarm time.

• Resetting signal handlers.

• Clearing the value of the real directory read flag described in the ulimit subroutine.

• Resetting the ulimit value, if it is less than a reasonable value (8192).

Parameters

FileDescriptor Specifies a file descriptor. The kleenup subroutine closes all file
descriptors greater than or equal to the FileDescriptor parameter.

SigIgn Points to a list of signal numbers. If these are nonnull values, this list is
terminated by 0s. Any signals specified by the SigIgn parameter are set
to SIG_IGN. The handling of all signals not specified by either this list or
the SigKeep list are set to SIG_DFL. Some signals cannot be reset and
are left unchanged.

SigKeep Points to a list of signal numbers. If these are nonnull values, this list is
terminated by 0s. The handling of any signals specified by the SigKeep
parameter is left unchanged. The handling of all signals not specified by
either this list or the SigIgn list are set to SIG_DFL. Some signals
cannot be reset and are left unchanged.

Return Values
The kleenup subroutine is always successful and returns a value of 0. Errors in closing files
are not reported. It is not an error to attempt to modify a signal that the process is not
allowed to handle.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ulimit subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-463Base Operating System Runtime Services (A-P)

knlist Subroutine

Purpose
Translates names to addresses in the running system.

Syntax
#include <nlist.h>

int knlist(NList, NumberOfElements, Size)
struct nlist *NList;
int NumberOfElements;
int Size;

Description
The knlist subroutine allows a program to examine the list of symbols exported by kernel
routines to other kernel modules.

The first field in the nlist structure is an input parameter to the knlist subroutine. The
n_value field is modified by the knlist subroutine, and all the others remain unchanged.
The nlist structure consists of the following fields:

char *n_name Specifies the name of the symbol whose attributes are to be retrieved.

long n_value Indicates the virtual address of the object. This will also be the offset
when using segment descriptor 0 as the extension parameter of the
readx or writex subroutines against the /dev/mem file.

If the name is not found, all fields, other than n_name, are set to 0.

The nlist.h file is automatically included by the a.out.h file for compatibility. However, do not
include the a.out.h file if you only need the information necessary to use the knlist
subroutine. If you do include the a.out.h file, follow the #include statement with the line:

#undef n_name

Notes:

1. If both the nlist.h and netdb.h files are to be included, the netdb.h file should be
included before the nlist.h file in order to avoid a conflict with the n_name structure
member. Likewise, if both the a.out.h and netdb.h files are to be included, the netdb.h
file should be included before the a.out.h file to avoid a conflict with the n_name
structure.

2. If the netdb.h file and either the nlist.h or syms.h file are included, the n_name field will
be defined as _n._n_name. This definition allows you to access the n_name field in the
nlist or syment structure. If you need to access the n_name field in the netent structure,
undefine the n_name field by entering:

#undef n_name

 before accessing the n_name field in the netent structure. If you need to access the
n_name field in a syment or nlist structure after undefining it, redefine the n_name field
with:

#define n_name _n._n_name

Parameters

NList Points to an array of nlist structures.

NumberOfElements Specifies the number of structures in the array of nlist structures.

Size Specifies the size of each structure.

1-464 Technical Reference: Base Operating System

Return Values
Upon successful completion, knlist returns a value of 0. Otherwise, a value of –1 is
returned, and the errno global variable is set to indicate the error.

Error Codes
The knlist subroutine fails when the following is true:

EFAULT Indicates that the NList parameter points outside the limit of the array of
nlist structures.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The nlist subroutine.

1-465Base Operating System Runtime Services (A-P)

_lazySetErrorHandler Subroutine

Purpose
Installs an error handler into the lazy loading runtime system for the current process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/ldr.h>
#include <sys/errno.h>

typedef void (*_handler_t(
char *_module,
char *_symbol,
unsigned int _errVal))();

handler_t *_lazySetErrorHandler(err_handler)
handler_t *err_handler;

Description
This function allows a process to install a custom error handler to be called when a lazy
loading reference fails to find the required module or function. This function should only be
used when the main program or one of its dependent modules was linked with the –blazy
option. To call _lazySetErrorHandler from a module that is not linked with the –blazy
option, you must use the –lrtl option. If you use –blazy, you do not need to specify –lrtl.

This function is not thread safe. The calling program should ensure that
_lazySetErrorHandler is not called by multiple threads at the same time.

The user–supplied error handler may print its own error message, provide a substitute
function to be used in place of the called function, or call the longjmp subroutine. To
provide a substitute function that will be called instead of the originally referenced function,
the error handler should return a pointer to the substitute function. This substitute function
will be called by all subsequent calls to the intended function from the same module. If the
value returned by the error handler appears to be invalid (for example, a NULL pointer), the
default error handler will be used.

Each calling module resolves its lazy references independent of other modules. That is, if
module A and B both call foo subroutine in module C, but module C does not export foo
subroutine, the error handler will be called once when foo subroutine is called for the first
time from A, and once when foo subroutine is called for the first time from B.

The default lazy loading error handler will print a message containing: the name of module
that the program required; the name of the symbol being accessed; and the error value
generated by the failure. Since the default handler considers a lazy load error to be fatal, the
process will exit with a status of 1.

During execution of a program that utilizes lazy loading, there are a few conditions that may
cause an error to occur. In all cases the current error handler will be called.

1. The referenced module (which is to be loaded upon function invocation) is unavailable or
cannot be loaded. The errVal parameter will probably indicate the reason for the error if a
system call failed.

2. A function is referenced, but the loaded module does not contain a definition for the
function. In this case, errVal parameter will be EINVAL.

Some possibilities as to why either of these errors might occur:

1-466 Technical Reference: Base Operating System

1. The LIBPATH environment variable may contain a set of search paths that cause the
application to load the wrong version of a module.

2. A module has been changed and no longer provides the same set of symbols that it did
when the application was built.

3. The load subroutine fails due to a lack of resources available to the process.

Parameters

err_handler A pointer to the new error handler function. The new function should
accept 3 arguments:

module The name of the referenced module.

symbol The name of the function being called at the time the
failure occurred.

errVal The value of errno at the time the failure occurred, if a
system call used to load the module fails. For other
failures, errval may be EINVAL or ENOMEM.

Note that the value of module or symbol may be NULL if the calling module has somehow
been corrupted.

If the err_handler parameter is NULL, the default error handler is restored.

Return Value
The function returns a pointer to the previous user–supplied error handler, or NULL if the
default error handler was in effect.

Implementation Specifics
The _lazySetErrorHandler subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The load subroutine.

The ld command.

The Shared Library Overview and Subroutines Overview in AIX Version 4.2 General
Programming Concepts.

The Shared Library and Lazy Loading in AIX Version 4.2 General Programming Concepts.

1-467Base Operating System Runtime Services (A-P)

l3tol or ltol3 Subroutine

Purpose
Converts between 3–byte integers and long integers.

Library
Standard C Library (libc.a)

Syntax
void l3tol (LongPointer, CharacterPointer, Number)
long *LongPointer;
char *CharacterPointer;
int Number;

void ltol3 (CharacterPointer, LongPointer, Number)
char *CharacterPointer;
long *LongPointer;
int Number;

Description
The l3tol subroutine converts a list of the number of 3–byte integers specified by the
Number parameter packed into a character string pointed to by the CharacterPointer
parameter into a list of long integers pointed to by the LongPointer parameter.

The ltol3 subroutine performs the reverse conversion, from long integers (the LongPointer
parameter) to 3–byte integers (the CharacterPointer parameter).

These functions are useful for file system maintenance where the block numbers are 3
bytes long.

Parameters

LongPointer Specifies the address of a list of long integers.

CharacterPointer Specifies the address of a list of 3–byte integers.

Number Specifies the number of list elements to convert.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The filsys.h file format.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-468 Technical Reference: Base Operating System

l64a_r Subroutine

Purpose
Converts base–64 long integers to strings.

Library
Thread–Safe C Library (libc_r.a)

Syntax
#include <stdlib.h>

int l64a_r (Convert, Buffer, Length)
long Convert;
char *Buffer;
int Length;

Description
The l64a_r subroutine converts a given long integer into a base–64 string.

For base–64 characters, the following ASCII characters are used:

. Represents 0.

/ Represents 1.

0 –9 Represents the numbers 2–11.

A–Z Represents the numbers 12–37.

a–z Represents the numbers 38–63.

The l64a_r subroutine places the converted base–64 string in the buffer pointed to by the
Buffer parameter.

Parameters

Convert Specifies the long integer that is to be converted into a base–64 ASCII
string.

Buffer Specifies a working buffer to hold the converted long integer.

Length Specifies the length of the Buffer parameter.

Return Values

0 Indicates that the subroutine was successful.

–1 Indicates that the subroutine was not successful. If the l64a_r
subroutine is not successful, the errno global variable is set to indicate
the error.

Error Codes
If the l64a_r subroutine is not successful, it returns the following error code:

EINVAL The Buffer parameter value is invalid or too small to hold the resulting
ASCII string.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-469Base Operating System Runtime Services (A-P)

Programs using this subroutine must link to the libpthreads.a library.

Related Information
Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

List of Multithread Subroutines in AIX General Programming Concepts : Writing and
Debugging Programs.

1-470 Technical Reference: Base Operating System

layout_object_create Subroutine

Purpose
Initializes a layout context.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_object_create (locale_name, layout_object)
const char *locale_name;
LayoutObject *layout_object;

Description
The layout_object_create subroutine creates the LayoutObject structure associated with
the locale specified by the locale_name parameter. The LayoutObject structure is a
symbolic link containing all the data and methods necessary to perform the layout
operations on context dependent and bidirectional characters of the locale specified.

When the layout_object_create subroutine completes without errors, the layout_object
parameter points to a valid LayoutObject structure that can be used by other BIDI
subroutines. The returned LayoutObject structure is initialized to an initial state that defines
the behavior of the BIDI subroutines. This initial state is locale dependent and is described
by the layout values returned by the layout_ object_getvalue subroutine. You can change
the layout values of the LayoutObject structure using the layout_object_setvalue
subroutine. Any state maintained by the LayoutObject structure is independent of the
current global locale set with the setlocale subroutine.

Note: If you are developing internationalized applications that may support multibyte
locales, please see Use of the libcur Package in AIX General Programming
Concepts : Writing and Debugging Programs

Parameters

locale_name Specifies a locale. It is recommended that you use the LC_CTYPE
category by calling the setlocale (LC_CTYPE,NULL) subroutine.

layout_object Points to a valid LayoutObject structure that can be used by other
layout subroutines. This parameter is used only when the
layout_object_create subroutine completes without errors.

The layout_object parameter is not set and a non–zero value is
returned if a valid LayoutObject structure cannot be created.

Return Values
Upon successful completion, the layout_object_create subroutine returns a value of 0. The
layout_object parameter points to a valid handle.

Error Codes
If the layout_object_create subroutine fails, it returns the following error codes:

1-471Base Operating System Runtime Services (A-P)

LAYOUT_EINVAL The locale specified by the locale_name parameter is not
available.

LAYOUT_EMFILE The OPEN_MAX value of files descriptors are currently open in
the calling process.

LAYOUT_ENOMEM Insufficient storage space is available.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The layout_object_editshape subroutine, layout_object_free subroutine,
layout_object_getvalue subroutine, layout_object_setvalue subroutine,
layout_object_shapeboxchars subroutine, layout_object_transform subroutine.

Bidirectionality and Arabic Character Shaping Overview, and National Language Support
Overview for Programming in AIX General Programming Concepts : Writing and Debugging
Programs.

1-472 Technical Reference: Base Operating System

layout_object_editshape or wcslayout_object_editshape
Subroutine

Purpose
Edits the shape of the context text.

Library
Layout library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_editshape (layout_object, EditType, index, InpBuf,
Inpsize, OutBuf, OutSize)
LayoutObject layout_object;
BooleanValue EditType;
size_t *index;
const char *InpBuf;
size_t *Inpsize;
void *OutBuf;
size_t *OutSize;

int wcslayout_object_editshape(layout_object, EditType, index,
InpBuf, Inpsize, OutBuf, OutSize)
LayoutObject layout_object;
BooleanValue EditType;
size_t *index;
const wchar t *InpBuf;
size_t *InpSize;
void *OutBuf;
size_t *OutSize;

Description
The layout_object_editshape and wcslayout_object_editshape subroutines provide the
shapes of the context text. The shapes are defined by the code element specified by the
index parameter and any surrounding code elements specified by the ShapeContextSize
layout value of the LayoutObject structure. The layout_object parameter specifies this
LayoutObject structure.

Use the layout_object_editshape subroutine when editing code elements of one byte. Use
the wcslayout_object_editshape subroutine when editing single code elements of
multibytes. These subroutines do not affect any state maintained by the
layout_object_transform or wcslayout_object_transform subroutine.

Note: If you are developing internationalized applications that may support multibyte
locales, please see Use of the libcur Package in AIX General Programming
Concepts : Writing and Debugging Programs

1-473Base Operating System Runtime Services (A-P)

Parameters

layout_object Specifies the LayoutObject structure created by the
layout_object_create subroutine.

EditType Specifies the type of edit shaping. When the EditType parameter
stipulates the EditInput field, the subroutine reads the current code
element defined by the index parameter and any preceding code
elements defined by ShapeContextSize layout value of the
LayoutObject structure. When the EditType parameter stipulates the
EditReplace field, the subroutine reads the current code element
defined by the index parameter and any surrounding code elements
defined by ShapeContextSize layout value of the LayoutObject
structure.

Note: The editing direction defined by the Orientation and
TEXT_VISUAL of the TypeOfText layout values of the
LayoutObject structure determines which code elements are
preceding and succeeding.

When the ActiveShapeEditing layout value of the LayoutObject
structure is set to True, the LayoutObject structure maintains the state
of the EditInput field that may affect subsequent calls to these
subroutines with the EditInput field defined by the EditType
parameter. The state of the EditInput field of LayoutObject structure
is not affected when the EditType parameter is set to the EditReplace
field. To reset the state of the EditInput field to its initial state, call
these subroutines with the InpBuf parameter set to NULL. The state of
the EditInput field is not affected if errors occur within the
subroutines.

index Specifies an offset (in bytes) to the start of a code element in the InpBuf
parameter on input. The InpBuf parameter provides the base text to be
edited. In addition, the context of the surrounding code elements is
considered where the minimum set of code elements needed for the
specific context dependent script(s) is identified by the
ShapeContextSize layout value.

If the set of surrounding code elements defined by the index, InpBuf,
and InpSize parameters is less than the size of front and back of the
ShapeContextSize layout value, these subroutines assume there is no
additional context available. The caller must provide the minimum
context if it is available. The index parameter is in units associated with
the type of the InpBuf parameter.

On return, the index parameter is modified to indicate the offset to the
first code element of the InpBuf parameter that required shaping. The
number of code elements that required shaping is indicated on return by
the InpSize parameter.

InpBuf Specifies the source to be processed. A Null value with the EditInput
field in the EditType parameter indicates a request to reset the state of
the EditInput field to its initial state.

Any portion of the InpBuf parameter indicates the necessity for
redrawing or shaping.

1-474 Technical Reference: Base Operating System

InpSize Specifies the number of code elements to be processed in units on
input. These units are associated with the types for these subroutines.
A value of –1 indicates that the input is delimited by a Null code
element.

On return, the value is modified to the actual number of code elements
needed by the InpBuf parameter. A value of 0 when the value of the
EditType parameter is the EditInput field indicates that the state of
the EditInput field is reset to its initial state. If the OutBuf parameter
is not NULL, the respective shaped code elements are written into the
OutBuf parameter.

OutBuf Contains the shaped output text. You can specify this parameter as a
Null pointer to indicate that no transformed text is required. If Null, the
subroutines return the index and InpSize parameters, which specify the
amount of text required, to be redrawn.

The encoding of the OutBuf parameter depends on the ShapeCharset
layout value defined in layout_object parameter. If the
ActiveShapeEditing layout value is set to False, the encoding of the
OutBuf parameter is to be the same as the code set of the locale
associated with the specified LayoutObject structure.

OutSize Specifies the size of the output buffer on input in number of bytes. Only
the code elements required to be shaped are written into the OutBuf
parameter.

The output buffer should be large enough to contain the shaped result;
otherwise, only partial shaping is performed. If the ActiveShapeEditing
layout value is set to True, the OutBuf parameter should be allocated to
contain at least the number of code elements in the InpBuf parameter
multiplied by the value of the ShapeCharsetSize layout value.

On return, the OutSize parameter is modified to the actual number of
bytes placed in the output buffer.

When the OutSize parameter is specified as 0, the subroutines
calculate the size of an output buffer large enough to contain the
transformed text from the input buffer. The result will be returned in this
field. The content of the buffers specifies by the InpBuf and OutBuf
parameters, and the value of the InpSize parameter, remain
unchanged.

Return Values
Upon successful completion, these subroutines return a value of 0. The index and InpSize
parameters return the minimum set of code elements required to be redrawn.

Error Codes
If these subroutines fail, they return the following error codes:

1-475Base Operating System Runtime Services (A-P)

LAYOUT_EILSEQ Shaping stopped due to an input code element that cannot be
shaped. The index parameter indicates the code element that
caused the error. This code element is either a valid code element
that cannot be shaped according to the ShapeCharset layout
value or an invalid code element not defined by the code set
defined in the LayoutObject structure. Use the mbtowc or
wctomb subroutine in the same locale as the LayoutObject
structure to determine if the code element is valid.

LAYOUT_E2BIG The output buffer is too small and the source text was not
processed. The index and InpSize parameters are not guaranteed
on return.

LAYOUT_EINVAL Shaping stopped due to an incomplete code element or shift
sequence at the end of input buffer. The InpSize parameter
indicates the number of code elements successfully transformed.

Note: You can use this error code to determine the code element
causing the error.

LAYOUT_ERANGE Either the index parameter is outside the range as defined by the
InpSize parameter, more than 15 embedding levels are in the
source text, or the InpBuf parameter contains unbalanced
Directional Format (Push/Pop).

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The layout_object_create subroutine, layout_object_free subroutine,
layout_object_getvalue subroutine, layout_object_setvalue subroutine,
layout_object_shapeboxchars subroutine, layout_object_transform subroutine.

Bidirectionality and Arabic Character Shaping Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-476 Technical Reference: Base Operating System

layout_object_free Subroutine

Purpose
Frees a LayoutObject structure.

Library
Layout library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_object_free(layout_object)
LayoutObject layout_object;

Description
The layout_object_free subroutine releases all the resources of the LayoutObject
structure created by the layout_object_create subroutine. The layout_object parameter
specifies this LayoutObject structure.

Note: If you are developing internationalized applications that may support multibyte
locales, please see Use of the libcur Package in AIX General Programming
Concepts : Writing and Debugging Programs

Parameters

layout_object Specifies a LayoutObject structure returned by the
layout_object_create subroutine.

Return Values
Upon successful completion, the layout_object_free subroutine returns a value of 0. All
resources associated with the layout_object parameter are successfully deallocated.

Error Codes
If the layout_object_free subroutine fails, it returns the following error code:

LAYOUT_EFAULT Errors occurred while processing the request.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The layout_object_create subroutine, layout_object_editshape subroutine,
layout_object_getvalue subroutine, layout_object_setvalue subroutine,
layout_object_shapeboxchars subroutine, layout_object_transform subroutine.

Bidirectionality and Arabic Character Shaping Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-477Base Operating System Runtime Services (A-P)

layout_object_getvalue Subroutine

Purpose
Queries the current layout values of a LayoutObject structure.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_object_getvalue(layout_object, values, index)
LayoutObject layout_object;
LayoutValues values;
int *index;

Description
The layout_object_getvalue subroutine queries the current setting of layout values within
the LayoutObject structure. The layout_object parameter specifies the LayoutObject
structure created by the layout_object_create subroutine.

The name field of the LayoutValues structure contains the name of the layout value to be
queried. The value field is a pointer to where the layout value is stored. The values are
queried from the LayoutObject structure and represent its current state.

For example, if the layout value to be queried is of type T, the value parameter must be of
type T*. If T itself is a pointer, the layout_object_getvalue subroutine allocates space to
store the actual data. The caller must free this data by calling the free(T) subroutine with the
returned pointer.

When setting the value field, an extra level of indirection is present that is not present using
the layout_object_setvalue parameter. When you set a layout value of type T, the value
field contains T. However, when querying the same layout value, the value field contains &T.

Note: If you are developing internationalized applications that may support multibyte
locales, please see Use of the libcur Package in AIX General Programming
Concepts : Writing and Debugging Programs

Parameters

layout_object Specifies the LayoutObject structure created by the
layout_object_create subroutine.

values Specifies an array of layout values of type LayoutValueRec that are to
be queried in the LayoutObject structure. The end of the array is
indicated by name=0.

index Specifies a layout value to be queried. If the value cannot be queried,
the index parameter causing the error is returned and the subroutine
returns a non–zero value.

Return Values
Upon successful completion, the layout_object_getvalue subroutine returns a value of 0.
All layout values were successfully queried.

Error Codes
If the layout_object_getvalue subroutine fails, it returns the following values:

1-478 Technical Reference: Base Operating System

LAYOUT_EINVAL The layout value specified by the index parameter is unknown or
the layout_object parameter is invalid.

LAYOUT_EMOMEM Insufficient storage space is available.

Examples
The following example queries whether the locale is bidirectional and gets the values of the
in and out orienations.

#include <sys/lc_layout.h>

#include <locale.h>

main()

{

LayoutObject plh;

int RC=0;

LayoutValues layout;

LayoutTextDescriptor Descr;

int index;

RC=layout_object_create(setlocale(LC_CTYPE,””),&plh); /* create

object */

if (RC) {printf(”Create error !!\n”); exit(0);}

layout=malloc(3*sizeof(LayoutValueRec));

 /* allocate layout array

*/

layout[0].name=ActiveBidirection; /* set name */

layout[1].name=Orientation; /* set name */

layout[1].value=(caddr_t)&Descr;

 /* send address of memory to be allocated by function

*/

layout[2].name=0; /* indicate end of array */

RC=layout_object_getvalue(plh,layout,&index);

if (RC) {printf(”Getvalue error at %d !!\n”,index); exit(0);}

printf(”ActiveBidirection = %d \n”,*(layout[0].value));

 /*print

output*/

printf(”Orientation in = %x out = %x \n”, Descr–>>in,

Descr–>>out);

free(layout); /* free layout array */

free (Descr); /* free memory allocated by function */

RC=layout_object_free(plh); /* free layout object */

if (RC) printf(”Free error !!\n”);

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The layout_object_create subroutine, layout_object_editshape subroutine,
layout_object_free subroutine, layout_object_setvalue subroutine,
layout_object_shapeboxchars subroutine, layout_object_transform subroutine.

Bidirectionality and Arabic Character Shaping Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-479Base Operating System Runtime Services (A-P)

layout_object_setvalue Subroutine

Purpose
Sets the layout values of a LayoutObject structure.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_object_setvalue(layout_object, values, index)
LayoutObject layout_object;
LayoutValues values;
int *index;

Description
The layout_object_setvalue subroutine changes the current layout values of the
LayoutObject structure. The layout_object parameter specifies the LayoutObject structure
created by the layout_object_create subroutine. The values are written into the
LayoutObject structure and may affect the behavior of subsequent layout functions.

Note: Some layout values do alter internal states maintained by a LayoutObject structure.

The name field of the LayoutValueRec structure contains the name of the layout value to be
set. The value field contains the actual value to be set. The value field is large enough to
support all types of layout values. For more information on layout value types, see ”Layout
Values for the Layout Library” in AIX General Programming Concepts : Writing and
Debugging Programs.

Note: If you are developing internationalized applications that may support multibyte
locales, please see Use of the libcur Package in AIX General Programming
Concepts : Writing and Debugging Programs

Parameters

layout_object Specifies the LayoutObject structure returned by the
layout_object_create subroutine.

values Specifies an array of layout values of the type LayoutValueRec that this
subroutine sets. The end of the array is indicated by name=0.

index Specifies a layout value to be queried. If the value cannot be queried,
the index parameter causing the error is returned and the subroutine
returns a non–zero value. If an error is generated, a subset of the
values may have been previously set.

Return Values
Upon successful completion, the layout_object_setvalue subroutine returns a value of 0.
All layout values were successfully set.

Error Codes
If the layout_object_setvalue subroutine fails, it returns the following values:

1-480 Technical Reference: Base Operating System

LAYOUT_EINVAL The layout value specified by the index parameter is unknown, its
value is invalid, or the layout_object parameter is invalid.

LAYOUT_EMFILE The (OPEN_MAX) file descriptors are currently open in the calling
process.

LAYOUT_ENOMEM Insufficient storage space is available.

Examples
The following example sets the TypeofText value to Implicit and the out value to Visual.

#include <sys/lc_layout.h>

#include <locale.h>

main()

{

LayoutObject plh;

int RC=0;

LayoutValues layout;

LayoutTextDescriptor Descr;

int index;

RC=layout_object_create(setlocale(LC_CTYPE,””),&plh); /* create

object */

if (RC) {printf(”Create error !!\n”); exit(0);}

layout=malloc(2*sizeof(LayoutValueRec)); /*allocate layout

array*/ Descr=malloc(sizeof(LayoutTextDescriptorRec)); /*

allocate text descriptor */

layout[0].name=TypeOfText; /* set name */

layout[0].value=(caddr_t)Descr; /* set value */

layout[1].name=0; /* indicate end of array */

Descr–>in=TEXT_IMPLICIT;

Descr–>out=TEXT_VISUAL;

RC=layout_object_setvalue(plh,layout,&index);

if (RC) printf(”SetValue error at %d!!\n”,index); /* check return

code */

free(layout); /* free alllocated memory */

free (Descr);

RC=layout_object_free(plh); /* free layout object */

if (RC) printf(”Free error !!\n”);

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The layout_object_create subroutine, layout_object_editshape subroutine,
layout_object_free subroutine, layout_object_getvalue subroutine,
layout_object_shapeboxchars subroutine, layout_object_transform subroutine.

Bidirectionality and Character Shaping Overview in AIX General Programming Concepts :
Writing and Debugging Programs.

1-481Base Operating System Runtime Services (A-P)

layout_object_shapeboxchars Subroutine

Purpose
Shapes box characters.

Library
Layout Library (libi18n.a)

Syntax

#include <sys/lc_layout.h>

int layout_object_shapeboxchars(layout_object, InpBuf, InpSize,
OutBuf)
LayoutObject layout_object;
const char *InpBuf;
const size_t InpSize;
char *OutBuf;

Description
The layout_object_shapeboxchars subroutine shapes box characters into the VT100 box
character set.

Note: If you are developing internationalized applications that may support multibyte
locales, please see Use of the libcur Package in AIX General Programming Concepts :
Writing and Debugging Programs

Parameters

layout_object Specifies the LayoutObject structure created by the
layout_object_create subroutine.

InpBuf Specifies the source text to be processed.

InpSize Specifies the number of code elements to be processed.

OutBuf Contains the shaped output text.

Return Values
Upon successful completion, this subroutine returns a value of 0.

Error Codes
If this subroutine fails, it returns the following values:

LAYOUT_EILSEQ Shaping stopped due to an input code element that cannot
be mapped into the VT100 box character set.

LAYOUT_EINVAL Shaping stopped due to an incomplete code element or
shift sequence at the end of the input buffer.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-482 Technical Reference: Base Operating System

Related Information
The layout_object_create subroutine, layout_object_editshape subroutine,
layout_object_free subroutine, layout_object_getvalue subroutine,
layout_object_setvalue subroutine, layout_object_transform subroutine.

Bidirectionalit y and Character Shaping Overview in AIX General Programming Concepts :
Writing and Debugging Programs.

1-483Base Operating System Runtime Services (A-P)

layout_object_transform or wcslayout_object_transform
Subroutine

Purpose
Transforms text according to the current layout values of a LayoutObject structure.

Library
Layout Library (libi18n.a)

Syntax
#include <sys/lc_layout.h>

int layout_object_transform(layout_object, InpBuf, InpSize,
OutBuf, OutSize, InpToOut, OutToInp, BidiLvl)
LayoutObject layout_object;
const char *InpBuf;
size_t *InpSize;
void * OutBuf;
size_t *OutSize;
size_t *InpToOut;
size_t *OutToInp;
unsigned char *BidiLvl;

int wcslayout_object_transform (layout_object, InpBuf, InpSize,
OutBuf, OutSize, InpToOut, OutToInp, BidiLvl)
LayoutObject layout_object;
const char *InpBuf;
size_t *InpSize;
void *OutBuf;
Size_t *OutSize;
size_t *InpToOut;
size_t *OutToInp;
unsigned char *BidiLvl;

Description
The layout_object_transform and wcslayout_object_transform subroutines transform
the text specified by the InpBuf parameter according to the current layout values in the
LayoutObject structure. Any layout value whose type is LayoutTextDescriptor describes the
attributes within the InpBuf and OutBuf parameters. If the attributes are the same as the
InpBuf and OutBuf parameters themselves, a null transformation is done with respect to that
specific layout value.

The output of these subroutines may be one or more of the following results depending on
the setting of the respective parameters:

OutBuf, OutSize Any transformed data is stored in the OutBuf parameter.

InpToOut A cross reference from each code element of the InpBuf parameter to
the transformed data.

OutToInp A cross reference to each code element of the InpBuf parameter from
the transformed data.

BidiLvl A weighted value that represents the directional level of each code
element of the InpBuf parameter. The level is dependent on the internal
directional algorithm of the LayoutObject structure.

You can specify each of these output parameters as Null to indicate that no output is
needed for the specific parameter. However, you should set at least one of these
parameters to a nonNULL value to perform any significant work.

1-484 Technical Reference: Base Operating System

To perform shaping of a text string without reordering of code elements, set the TypeOfText
layout value to TEXT_VISUAL and the in and out values of the Orientation layout value
alike. These layout values are in the LayoutObject structure.

Note: If you are developing internationalized applications that may support multibyte
locales, please see Use of the libcur Package in AIX General Programming
Concepts : Writing and Debugging Programs

Parameters

layout_object Specifies the LayoutObject structure created by the
layout_object_create subroutine.

InpBuf Specifies the source text to be processed. This parameter cannot be
null.

InpSize Specifies the units of code elements processed associated with the
bytes for the layout_object_transform and
wcslayout_object_transform subroutines. A value of –1 indicates that
the input is delimited by a null code element. On return, the value is
modified to the actual number of code elements processed in the InBuf
parameter. However, if the value in the OutSize parameter is zero, the
value of the InpSize parameter is not changed.

OutBuf Contains the transformed data. You can specify this parameter as a null
pointer to indicate that no transformed data is required.

The encoding of the OutBuf parameter depends on the ShapeCharset
layout value defined in the LayoutObject structure. If the
ActiveShapeEditing layout value is set to True, the encoding of the
OutBuf parameter is the same as the code set of the locale associated
with the LayoutObject structure.

OutSize Specifies the size of the output buffer in number of bytes. The output
buffer should be large enough to contain the transformed result;
otherwise, only a partial transformation is performed. If the
ActiveShapeEditing layout value is set to True, the OutBuf parameter
should be allocated to contain at least the number of code elements
multiplied by the ShapeCharsetSize layout value.

On return, the OutSize parameter is modified to the actual number of
bytes placed in this parameter.

When you specify the OutSize parameter as 0, the subroutine
calculates the size of an output buffer to be large enough to contain the
transformed text. The result is returned in this field. The content of the
buffers specified by the InpBuf and OutBuf parameters, and a value of
the InpSize parameter remains unchanged.

InpToOut Represents an array of values with the same number of code elements
as the InpBuf parameter if InpToOut parameter is not a null pointer.

On output, the nth value in InpToOut parameter corresponds to the nth
code element in InpBuf parameter. This value is the index in OutBuf
parameter which identifies the transformed ShapeCharset element of
the nth code element in InpBuf parameter. You can specify the InpToOut
parameter as null if no index array from the InpBuf to OutBuf
parameters is desired.

1-485Base Operating System Runtime Services (A-P)

OutTolnp Represents an array of values with the same number of code elements
as contained in the OutBuf parameter if the OutToInp parameter is not a
null pointer.

On output, the nth value in the OutTolnp parameter corresponds to the
nth ShapeCharset element in the OutBuf parameter. This value is the
index in the InpBuf parameter which identifies the original code element
of the nth ShapeCharset element in the OutBuf parameter. You can
specify the OutTolnp parameter as NULL if no index array from the
OutBuf to InpBuf parameters is desired.

BidiLvl Represents an array of values with the same number of elements as
the source text if the BidiLvl parameter is not a null pointer. The nth
value in the BidiLvl parameter corresponds to the nth code element in
the InpBuf parameter. This value is the level of this code element as
determined by the bidirectional algorithm. You can specify the BidiLvl
parameter as null if a levels array is not desired.

Return Values
Upon successful completion, these subroutines return a value of 0.

Error Codes
If these subroutines fail, they return the following values:

LAYOUT_EILSEQ Transformation stopped due to an input code element that cannot
be shaped or is invalid. The InpSize parameter indicates the
number of the code element successfully transformed.

Note: You can use this error code to determine the code element
causing the error.

This code element is either a valid code element but cannot be
shaped into the ShapeCharset layout value or is an invalid code
element not defined by the code set of the locale of the
LayoutObject structure. You can use the mbtowc and wctomb
subroutines to determine if the code element is valid when used in
the same locale as the LayoutObject structure.

LAYOUT_E2BIG The output buffer is full and the source text is not entirely
processed.

LAYOUT_EINVAL Transformation stopped due to an incomplete code element or
shift sequence at the end of the input buffer. The InpSize
parameter indicates the number of the code elements
successfully transformed.

Note: You can use this error code to determine the code element
causing the error.

LAYOUT_ERANGE More than 15 embedding levels are in the source text or the
InpBuf parameter contains unbalanced Directional Format
(Push/Pop).

When the size of OutBuf parameter is not large enough to contain
the entire transformed text, the input text state at the end of the
LAYOUT_E2BIG error code is returned. To resume the
transformation on the remaining text, the application calls the
layout_object_transform subroutine with the same
LayoutObject structure, the same InpBuf parameter, and InpSize
parameter set to 0.

1-486 Technical Reference: Base Operating System

Examples
The following is an example of transformation of both directional re–ordering and shaping.

Notes:

1. Uppercase represent left–to–right characters; lowercase represent right–to–left
characters.

2. xyz represent the shapes of cde.

Position: 0123456789

InpBuf: AB cde 12Z

Position: 0123456789

OutBuf: AB 12 zyxZ

Position: 0123456789

ToTarget: 0128765349

Position: 0123456789

ToSource: 0127865439

Position: 0123456789

BidiLevel: 0001111220

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The layout_object_create subroutine, layout_object_editshape subroutine,
layout_object_free subroutine, layout_object_getvalue subroutine,
layout_object_setvalue subroutine, layout_object_shapeboxchars subroutine.

Bidirectionality and Character Shaping Overview in AIX General Programming Concepts :
Writing and Debugging Programs.

1-487Base Operating System Runtime Services (A-P)

ldahread Subroutine

Purpose
Reads the archive header of a member of an archive file.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <ar.h>
#include <ldfcn.h>

int ldahread(ldPointer, ArchiveHeader)
LDFILE *ldPointer;
ARCHDR *ArchiveHeader;

Description
If the TYPE(ldPointer) macro from the ldfcn.h file is the archive file magic number, the
ldahread subroutine reads the archive header of the extended common object file currently
associated with the ldPointer parameter into the area of memory beginning at the
ArchiveHeader parameter.

Parameters

ldPointer Points to the LDFILE structure that was returned as the
result of a successful call to ldopen or ldaopen.

ArchiveHeader Points to a ARCHDR structure.

Return Values
The ldahread subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldahread routine fails if the TYPE(ldPointer) macro does not represent an archive file,
or if it cannot read the archive header.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ldfhread subroutine, ldgetname subroutine, ldlread, ldlinit, or ldlitem subroutine,
ldshread or ldnshread subroutine, ldtbread subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-488 Technical Reference: Base Operating System

ldclose or ldaclose Subroutine

Purpose
Closes a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <ldfcn.h>

int ldclose(ldPointer)
LDFILE *ldPointer;

int ldaclose(ldPointer)
LDFILE *ldPointer;

Description
The ldopen and ldclose subroutines provide uniform access to both simple object files and
object files that are members of archive files. Thus, an archive of common object files can
be processed as if it were a series of simple common object files.

If the ldfcn.h file TYPE(ldPointer) macro is the magic number of an archive file, and if there
are any more files in the archive, the ldclose subroutine reinitializes the ldfcn.h file
OFFSET(ldPointer) macro to the file address of the next archive member and returns a
failure value. The ldfile structure is prepared for a subsequent ldopen.

If the TYPE(ldPointer) macro does not represent an archive file, the ldclose subroutine
closes the file and frees the memory allocated to the ldfile structure associated with
ldPointer.

The ldaclose subroutine closes the file and frees the memory allocated to the ldfile
structure associated with the ldPointer parameter regardless of the value of the
TYPE(ldPointer) macro.

Parameters

ldPointer Pointer to the LDFILE structure that was returned as the
result of a successful call to ldopen or ldaopen.

Return Values
The ldclose subroutine returns a SUCCESS or FAILURE value.

The ldaclose subroutine always returns a SUCCESS value and is often used in conjunction
with the ldaopen subroutine.

Error Codes
The ldclose subroutine returns a failure value if there are more files to archive.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-489Base Operating System Runtime Services (A-P)

Related Information
The ldaopen or ldopen subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-490 Technical Reference: Base Operating System

ldfhread Subroutine

Purpose
Reads the file header of an XCOFF file.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <ldfcn.h>

int ldfhread (ldPointer, FileHeader)
LDFILE *ldPointer;
void *FileHeader;

Description
The ldfhread subroutine reads the file header of the object file currently associated with the
ldPointer parameter into the area of memory beginning at the FileHeader parameter. For
AIX 4.3.2 and above it is the responsibility of the calling routine to provide a pointer to a
buffer large enough to contain the file header of the associated object file. Since the ldopen
subroutine provides magic number information (via the HEADER(ldPointer).f_magic
macro), the calling application can always determine whether the FileHeader pointer should
refer to a 32–bit FILHDR or 64–bit FILHDR_64 structure.

Parameters

ldPointer Points to the LDFILE structure that was returned as the
result of a successful call to ldopen or ldaopen subroutine.

FileHeader Points to a buffer large enough to accommodate a FILHDR
structure, according to the object mode of the file being
read.

Return Values
The ldfhread subroutine returns Success or Failure.

Error Codes
The ldfhread subroutine fails if it cannot read the file header.

Note: In most cases, the use of ldfhread can be avoided by using the HEADER
(ldPointer) macro defined in the ldfcn.h file. The information in any field or fieldname of
the header file may be accessed using the header (ldPointer) fieldname macro.

Examples
The following is an example of code that opens an object file, determines its mode, and
uses the ldfhread subroutine to acquire the file header. This code would be compiled with
both _XCOFF32_ and _XCOFF64_ defined:

1-491Base Operating System Runtime Services (A-P)

#define __XCOFF32__

#define __XCOFF64__

#include <ldfcn.h>

/* for each FileName to be processed */

if ((ldPointer = ldopen(fileName, ldPointer)) != NULL)

{

 FILHDR FileHead32;

 FILHDR_64 FileHead64;

 void *FileHeader;

 if (HEADER(ldPointer).f_magic == U802TOCMAGIC)

 FileHeader = &FileHead32;

 else if (HEADER(ldPointer).f_magic == U803XTOCMAGIC)

 FileHeader = &FileHead64;

 else

 FileHeader = NULL;

 if (FileHeader && (ldfhread(ldPointer, &FileHeader) ==

SUCCESS))

 {

 /* ...successfully read header... */

 /* ...process according to magic number... */

 }

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ldahread subroutine, ldgetname subroutine, ldlread, ldlinit, or ldlitem subroutine,
ldopen subroutine, ldshread or ldnshread subroutine, ldtbread subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-492 Technical Reference: Base Operating System

ldgetname Subroutine

Purpose
Retrieves symbol name for common object file symbol table entry.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <ldfcn.h>

char *ldgetname (ldPointer, Symbol)
LDFILE *ldPointer;
void *Symbol;

Description
The ldgetname subroutine returns a pointer to the name associated with Symbol as a
string. The string is in a static buffer local to the ldgetname subroutine that is overwritten by
each call to the ldgetname subroutine and must therefore be copied by the caller if the
name is to be saved.

The common object file format handles arbitrary length symbol names with the addition of a
string table. The ldgetname subroutine returns the symbol name associated with a symbol
table entry for an XCOFF–format object file.

The calling routine to provide a pointer to a buffer large enough to contain a symbol table
entry for the associated object file. Since the ldopen subroutine provides magic number
information (via the HEADER(ldPointer).f_magic macro), the calling application can always
determine whether the Symbol pointer should refer to a 32–bit SYMENT or 64–bit
SYMENT_64 structure.

The maximum length of a symbol name is BUFSIZ, defined in the stdio.h file.

Parameters

ldPointer Points to an LDFILE structure that was returned as the
result of a successful call to the ldopen or ldaopen
subroutine.

Symbol Points to an initialized 32–bit or 64–bit SYMENT structure.

Error Codes
The ldgetname subroutine returns a null value (defined in the stdio.h file) for a
COFF–format object file if the name cannot be retrieved. This situation can occur if one of
the following is true:

• The string table cannot be found.

• The string table appears invalid (for example, if an auxiliary entry is handed to the
ldgetname subroutine wherein the name offset lies outside the boundaries of the string
table).

• The name’s offset into the string table is past the end of the string table.

1-493Base Operating System Runtime Services (A-P)

Typically, the ldgetname subroutine is called immediately after a successful call to the
ldtbread subroutine to retrieve the name associated with the symbol table entry filled by the
ldtbread subroutine.

Examples
The following is an example of code that determines the object file type before making a call
to the ldtbread and ldgetname subroutines.

#define __XCOFF32__

#define __XCOFF64__

#include <ldfcn.h>

SYMENT Symbol32;

SYMENT_64 Symbol64;

void *Symbol;

if (HEADER(ldPointer).f_magic == U802TOCMAGIC)

 Symbol = &Symbol32;

else if (HEADER(ldPointer).f_magic == U803XTOCMAGIC)

 Symbol = &Symbol64;

else

 Symbol = NULL;

if (Symbol)

 /* for each symbol in the symbol table */

 for (symnum = 0 ; symnum < HEADER(ldPointer).f_nsyms ;

symnum++) { if (ldtbread(ldPointer,symnum,Symbol) ==

SUCCESS) { char *name =

ldgetname(ldPointer,Symbol) if (name) {

 /* Got the name... */ .

 . } /* Increment symnum by the number of

auxiliary entries */ if (HEADER(ldPointer).f_magic ==

U802TOCMAGIC) symnum += Symbol32.n_numaux;

 else if (HEADER(ldPointer).f_magic == U803XTOCMAGIC)

 symnum += Symbol64.n_numaux; } else

{ /* Should have been a symbol...indicate the error */

 . . } }

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ldahread subroutine, ldfhread subroutine, ldlread, ldlinit, or ldlitem subroutine,
ldshread or ldnshread subroutine, ldtbread subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-494 Technical Reference: Base Operating System

ldlread, ldlinit, or ldlitem Subroutine

Purpose
Manipulates line number entries of a common object file function.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <ldfcn.h>

int ldlread (ldPointer, FunctionIndex, LineNumber, LineEntry)
LDFILE *ldPointer;
int FunctionIndex;
unsigned short LineNumber;
void *LineEntry;

int ldlinit (ldPointer, FunctionIndex)
LDFILE *ldPointer;
int FunctionIndex;

int ldlitem (ldPointer, LineNumber, LineEntry)
LDFILE *ldPointer;
unsigned short LineNumber;
void *LineEntry;

Description
The ldlread subroutine searches the line number entries of the XCOFF file currently
associated with the ldPointer parameter. The ldlread subroutine begins its search with the
line number entry for the beginning of a function and confines its search to the line numbers
associated with a single function. The function is identified by the FunctionIndex parameter,
the index of its entry in the object file symbol table. The ldlread subroutine reads the entry
with the smallest line number equal to or greater than the LineNumber parameter into the
memory beginning at the LineEntry parameter. It is the responsibility of the calling routine to
provide a pointer to a buffer large enough to contain the line number entry for the
associated object file type. Since the ldopen subroutine provides magic number information
(via the HEADER(ldPointer).f_magic macro), the calling application can always determine
whether the LineEntry pointer should refer to a 32–bit LINENO or 64–bit LINENO_64
structure.

The ldlinit and ldlitem subroutines together perform the same function as the ldlread
subroutine. After an initial call to the ldlread or ldlinit subroutine, the ldlitem subroutine
may be used to retrieve successive line number entries associated with a single function.
The ldlinit subroutine simply locates the line number entries for the function identified by
the FunctionIndex parameter. The ldlitem subroutine finds and reads the entry with the
smallest line number equal to or greater than the LineNumber parameter into the memory
beginning at the LineEntry parameter.

1-495Base Operating System Runtime Services (A-P)

Parameters

ldPointer Points to the LDFILE structure that was returned as the
result of a successful call to the ldopen , lddopen,or
ldaopen subroutine.

LineNumber Specifies the index of the first LineNumber parameter entry
to be read.

LineEntry Points to a buffer that will be filled in with a LINENO
structure from the object file.

FunctionIndex Points to the symbol table index of a function.

Return Values
The ldlread, ldlinit, and ldlitem subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldlread subroutine fails if there are no line number entries in the object file, if the
FunctionIndex parameter does not index a function entry in the symbol table, or if it finds no
line number equal to or greater than the LineNumber parameter. The ldlinit subroutine fails
if there are no line number entries in the object file or if the FunctionIndex parameter does
not index a function entry in the symbol table. The ldlitem subroutine fails if it finds no line
number equal to or greater than the LineNumber parameter.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ldahread subroutine, ldfhread subroutine, ldgetname subroutine, ldshread or
ldnshread subroutine, ldtbread subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-496 Technical Reference: Base Operating System

ldlseek or ldnlseek Subroutine

Purpose
Seeks to line number entries of a section of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldlseek (ldPointer, SectionIndex)
LDFILE *ldPointer;
unsigned short SectionIndex;

int ldnlseek (ldPointer, SectionName)
LDFILE *ldPointer;
char *SectionName;

Description
The ldlseek subroutine seeks to the line number entries of the section specified by the
SectionIndex parameter of the common object file currently associated with the ldPointer
parameter. The first section has an index of 1.

The ldnlseek subroutine seeks to the line number entries of the section specified by the
SectionName parameter.

Both subroutines determine the object mode of the associated file before seeking to the
relocation entries of the indicated section.

Parameters

ldPointer Points to the LDFILE structure that was returned as the result of a
successful call to the ldopen or ldaopen subroutine.

SectionIndex Specifies the index of the section whose line number entries are to be
seeked to.

SectionName Specifies the name of the section whose line number entries are to be
seeked to.

Return Values
The ldlseek and ldnlseek subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldlseek subroutine fails if the SectionIndex parameter is greater than the number of
sections in the object file. The ldnlseek subroutine fails if there is no section name
corresponding with the SectionName parameter. Either function fails if the specified section
has no line number entries or if it cannot seek to the specified line number entries.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-497Base Operating System Runtime Services (A-P)

Related Information
The ldohseek subroutine, ldrseek or ldnrseek subroutine, ldsseek or ldnsseek
subroutine, ldtbseek subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-498 Technical Reference: Base Operating System

ldohseek Subroutine

Purpose
Seeks to the optional file header of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldohseek (ldPointer)
LDFILE *ldPointer;

Description
The ldohseek subroutine seeks to the optional auxiliary header of the common object file
currently associated with the ldPointer parameter. The subroutine determines the object
mode of the associated file before seeking to the end of its file header.

Parameters

ldPointer Points to the LDFILE structure that was returned as the
result of a successful call to ldopen or ldaopen subroutine.

Return Values
The ldohseek subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldohseek subroutine fails if the object file has no optional header, if the file is not a
32–bit or 64–bit object file, or if it cannot seek to the optional header.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ldlseek or ldnlseek subroutine, ldrseek or ldnrseek subroutine, ldsseek or ldnsseek
subroutine, ldtbseek subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-499Base Operating System Runtime Services (A-P)

ldopen or ldaopen Subroutine

Purpose
Opens an object or archive file for reading.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

LDFILE *ldopen(FileName, ldPointer)
char *FileName;
LDFILE *ldPointer;

LDFILE *ldaopen(FileName, ldPointer)
char *FileName;
LDFILE *ldPointer;

LDFILE *lddopen(FileDescriptor, type, ldPointer)
int FileDescriptor;
char *type;
LDFILE *ldPointer;

Description
The ldopen and ldclose subroutines provide uniform access to both simple object files and
object files that are members of archive files. Thus, an archive of object files can be
processed as if it were a series of ordinary object files.

If the ldPointer is null, the ldopen subroutine opens the file named by the FileName
parameter and allocates and initializes an LDFILE structure, and returns a pointer to the
structure.

If the ldPointer parameter is not null and refers to an LDFILE for an archive, the structure is
updated for reading the next archive member. In this case, and if the value of the
TYPE(ldPointer) macro is the archive magic number ARTYPE.

The ldopen and ldclose subroutines are designed to work in concert. The ldclose
subroutine returns failure only when the ldPointer refers to an archive containing additional
members. Only then should the ldopen subroutine be called with a num–null ldPointer
argument. In all other cases, in particular whenever a new FileName parameter is opened,
the ldopen subroutine should be called with a null ldPointer argument.

If the value of the ldPointer parameter is not null, the ldaopen subroutine opens the
FileName parameter again and allocates and initializes a new LDFILE structure, copying
the TYPE, OFFSET, and HEADER fields from the ldPointer parameter. The ldaopen
subroutine returns a pointer to the new ldfile structure. This new pointer is independent of
the old pointer, ldPointer. The two pointers may be used concurrently to read separate parts
of the object file. For example, one pointer may be used to step sequentially through the
relocation information, while the other is used to read indexed symbol table entries.

The lddopen function accesses the previously opened file referenced by the FileDescriptor
parameter. In all other respects, it functions the same as the ldopen subroutine.

1-500 Technical Reference: Base Operating System

For AIX 4.3.2 and above, the functions transparently open both 32–bit and 64–bit object
files, as well as both small format and large format archive files. Once a file or archive is
successfully opened, the calling application can examine the HEADER(ldPointer).f_magic
field to check the magic number of the file or archive member associated with ldPointer.
(This is necessary due to an archive potentially containing members that are not object
files.) The magic numbers U802TOCMAGIC and (for AIX 4.3.2 and above)
U803XTOCMAGIC are defined in the ldfcn.h file. If the value of TYPE(ldPointer) is the
archive magic numberARTYPE, the flags field can be checked for the archive type. Large
format archives will have the flag bit AR_TYPE_BIG set in LDFLAGS(ldPointer). Large
format archives are available on AIX 4.3 and later.

Parameters

FileName Specifies the file name of an object file or archive.

ldPointer Points to an LDFILE structure.

FileDescriptor Specifies a valid open file descriptor.

type Points to a character string specifying the mode for the
open file. The fdopen function is used to open the file.

Error Codes
Both the ldopen and ldaopen subroutines open the file named by the FileName parameter
for reading. Both functions return a null value if the FileName parameter cannot be opened,
or if memory for the LDFILE structure cannot be allocated.

A successful open does not ensure that the given file is a common object file or an archived
object file.

Examples
The following is an example of code that uses the ldopen and ldclose subroutines:

/* for each FileName to be processed */

 ldPointer = NULL;

 do

 if((ldPointer = ldopen(FileName, ldPointer)) != NULL)

 /* check magic number */

 /* process the file */

 ”

 ”

 while(ldclose(ldPointer) == FAILURE);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ldclose or ldaclose subroutine.

The fopen, fopen64, freopen, freopen64, or fdopen subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-501Base Operating System Runtime Services (A-P)

ldrseek or ldnrseek Subroutine

Purpose
Seeks to the relocation entries of a section of an XCOFF file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ldfcn.h>

int ldrseek (ldPointer, SectionIndex)
ldfile *ldPointer;
unsigned short SectionIndex;

int ldnrseek (ldPointer, SectionName)
ldfile *ldPointer;
char *SectionName;

Description
The ldrseek subroutine seeks to the relocation entries of the section specified by the
SectionIndex parameter of the common object file currently associated with the ldPointer
parameter.

The ldnrseek subroutine seeks to the relocation entries of the section specified by the
SectionName parameter.

For AIX 4.3.2 and above, both subroutines determine the object mode of the associated file
before seeking to the relocation entries of the indicated section.

Parameters

ldPointer Points to an LDFILE structure that was returned as the
result of a successful call to the ldopen, lddopen, or
ldaopen subroutines.

SectionIndex Specifies an index for the section whose relocation entries
are to be sought.

SectionName Specifies the name of the section whose relocation entries
are to be sought.

Return Values
The ldrseek and ldnrseek subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldrseek subroutine fails if the contents of the SectionIndex parameter are greater than
the number of sections in the object file. The ldnrseek subroutine fails if there is no section
name corresponding with the SectionName parameter. Either function fails if the specified
section has no relocation entries or if it cannot seek to the specified relocation entries.

Note: The first section has an index of 1.

1-502 Technical Reference: Base Operating System

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ldohseek subroutine, ldlseek or ldnlseek subroutine, ldsseek or ldnsseek
subroutine, ldtbseek subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-503Base Operating System Runtime Services (A-P)

ldshread or ldnshread Subroutine

Purpose
Reads a section header of an XCOFF file.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <ldfcn.h>

int ldshread (ldPointer, SectionIndex, SectionHead)
LDFILE *ldPointer;
unsigned short SectionIndex;
void *SectionHead;

int ldnshread (ldPointer, SectionName, SectionHead)
LDFILE *ldPointer;
char *SectionName;
void *SectionHead;

Description
The ldshread subroutine reads the section header specified by the SectionIndex parameter
of the common object file currently associated with the ldPointer parameter into the area of
memory beginning at the location specified by the SectionHead parameter.

The ldnshread subroutine reads the section header named by the SectionName argument
into the area of memory beginning at the location specified by the SectionHead parameter.
It is the responsibility of the calling routine to provide a pointer to a buffer large enough to
contain the section header of the associated object file. Since the ldopen subroutine
provides magic number information (via the HEADER(ldPointer).f_magic macro), the
calling application can always determine whether the SectionHead pointer should refer to a
32–bit SCNHDR or 64–bit SCNHDR_64 structure.

Only the first section header named by the SectionName argument is returned by the
ldshread subroutine.

Parameters

ldPointer Points to an LDFILE structure that was returned as the
result of a successful call to the ldopen, lldopen, or
ldaopen subroutine.

SectionIndex Specifies the index of the section header to be read.

Note: The first section has an index of 1.

SectionHead Points to a buffer large enough to accept either a 32–bit or
a 64–bit SCNHDR structure, according to the object mode
of the file being read.

SectionName Specifies the name of the section header to be read.

Return Values
The ldshread and ldnshread subroutines return a SUCCESS or FAILURE value.

1-504 Technical Reference: Base Operating System

Error Codes
The ldshread subroutine fails if the SectionIndex parameter is greater than the number of
sections in the object file. The ldnshread subroutine fails if there is no section with the
name specified by the SectionName parameter. Either function fails if it cannot read the
specified section header.

Examples
The following is an example of code that opens an object file, determines its mode, and
uses the ldnshread subroutine to acquire the .text section header. This code would be
compiled with both __XCOFF32__ and __XCOFF64__ defined:

#define __XCOFF32__

#define __XCOFF64__

#include <ldfcn.h>

/* for each FileName to be processed */

if ((ldPointer = ldopen(FileName, ldPointer)) != NULL)

{

 SCNHDR SectionHead32;

 SCNHDR_64 SectionHead64;

 void *SectionHeader;

 if (HEADER(ldPointer).f_magic == U802TOCMAGIC)

 SectionHeader = &SectionHead32;

 else if (HEADER(ldPointer).f_magic == U803XTOCMAGIC)

 SectionHeader = &SectionHead64;

 else

 SectionHeader = NULL;

 if (SectionHeader && (ldnshread(ldPointer, ”.text”,

&SectionHeader) == SUCCESS))

 {

 /* ...successfully read header... */

 /* ...process according to magic number... */

 }

}

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ldahread subroutine, ldfhread subroutine, ldgetname subroutine, ldlread, ldlinit, or
ldlitem subroutine, ldtbread subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-505Base Operating System Runtime Services (A-P)

ldsseek or ldnsseek Subroutine

Purpose
Seeks to an indexed or named section of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <ldfcn.h>

int ldsseek (ldPointer, SectionIndex)
LDFILE *ldPointer;
unsigned short SectionIndex;

int ldnsseek (ldPointer, SectionName)
LDFILE *ldPointer;
char *SectionName;

Description
The ldsseek subroutine seeks to the section specified by the SectionIndex parameter of the
common object file currently associated with the ldPointer parameter. The subroutine
determines the object mode of the associated file before seeking to the indicated section.

The ldnsseek subroutine seeks to the section specified by the SectionName parameter.

Parameters

ldPointer Points to the LDFILE structure that was returned as the
result of a successful call to the ldopen or ldaopen
subroutine.

SectionIndex Specifies the index of the section whose line number
entries are to be seeked to.

SectionName Specifies the name of the section whose line number
entries are to be seeked to.

Return Values
The ldsseek and ldnsseek subroutines return a SUCCESS or FAILURE value.

Error Codes
The ldsseek subroutine fails if the SectionIndex parameter is greater than the number of
sections in the object file. The ldnsseek subroutine fails if there is no section name
corresponding with the SectionName parameter. Either function fails if there is no section
data for the specified section or if it cannot seek to the specified section.

Note: The first section has an index of 1.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

1-506 Technical Reference: Base Operating System

Related Information
The ldlseek or ldnlseek subroutine, ldohseek subroutine, ldrseek or ldnrseek subroutine,
ldtbseek subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-507Base Operating System Runtime Services (A-P)

ldtbindex Subroutine

Purpose
Computes the index of a symbol table entry of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <ldfcn.h>

long ldtbindex (ldPointer)
LDFILE *ldPointer;

Description
The ldtbindex subroutine returns the index of the symbol table entry at the current position
of the common object file associated with the ldPointer parameter.

The index returned by the ldtbindex subroutine may be used in subsequent calls to the
ldtbread subroutine. However, since the ldtbindex subroutine returns the index of the
symbol table entry that begins at the current position of the object file, if the ldtbindex
subroutine is called immediately after a particular symbol table entry has been read, it
returns the index of the next entry.

Parameters

ldPointer Points to the LDFILE structure that was returned as a
result of a successful call to the ldopen or ldaopen
subroutine.

Return Values
The ldtbindex subroutine returns the value BADINDEX upon failure. Otherwise a value
greater than or equal to zero is returned.

Error Codes
The ldtbindex subroutine fails if there are no symbols in the object file or if the object file is
not positioned at the beginning of a symbol table entry.

Note: The first symbol in the symbol table has an index of 0.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ldtbread subroutine, ldtbseek subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-508 Technical Reference: Base Operating System

ldtbread Subroutine

Purpose
Reads an indexed symbol table entry of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <ldfcn.h>

int ldtbread (ldPointer, SymbolIndex, Symbol)
LDFILE *ldPointer;
long SymbolIndex;
void *Symbol;

Description
The ldtbread subroutine reads the symbol table entry specified by the SymbolIndex
parameter of the common object file currently associated with the ldPointer parameter into
the area of memory beginning at the Symbol parameter. It is the responsibility of the calling
routine to provide a pointer to a buffer large enough to contain the symbol table entry of the
associated object file. Since the ldopen subroutine provides magic number information (via
the HEADER(ldPointer).f_magic macro), the calling application can always determine
whether the Symbol pointer should refer to a 32–bit SYMENT or 64–bit SYMENT_64
structure.

Parameters

ldPointer Points to the LDFILE structure that was returned as the
result of a successful call to the ldopen or ldaopen
subroutine.

SymbolIndex Specifies the index of the symbol table entry to be read.

Symbol Points to a either a 32–bit or a 64–bit SYMENT structure.

Return Values
The ldtbread subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldtbread subroutine fails if the SymbolIndex parameter is greater than or equal to the
number of symbols in the object file, or if it cannot read the specified symbol table entry.

Note: The first symbol in the symbol table has an index of 0.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-509Base Operating System Runtime Services (A-P)

Related Information
The ldahread subroutine, ldfhread subroutine, ldgetname subroutine, ldlread, ldlinit, or
ldlitem subroutine, ldshread or ldnshread subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-510 Technical Reference: Base Operating System

ldtbseek Subroutine

Purpose
Seeks to the symbol table of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <ldfcn.h>

int ldtbseek (ldPointer)
LDFILE *ldPointer;

Description
The ldtbseek subroutine seeks to the symbol table of the common object file currently
associated with the ldPointer parameter.

Parameters

ldPointer Points to the LDFILE structure that was returned as the
result of a successful call to the ldopen or ldaopen
subroutine.

Return Values
The ldtbseek subroutine returns a SUCCESS or FAILURE value.

Error Codes
The ldtbseek subroutine fails if the symbol table has been stripped from the object file or if
the subroutine cannot seek to the symbol table.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ldlseek or ldnlseek subroutine, ldohseek subroutine, ldrseek or ldnrseek subroutine,
ldsseek or ldnsseek subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-511Base Operating System Runtime Services (A-P)

lgamma, lgammal, or gamma Subroutine

Purpose
Computes the natural logarithm of the gamma function.

Libraries
lgamma, lgammal, and gamma:
 IEEE Math Library (libm.a)
 or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

extern int signgam;

double lgamma (x)
double x;

long double lgammal (x)
long double x;

double gamma (x)
double x;

Description
The subroutine names lgamma and gamma are different names for the same function. The
lgammal subroutine provides the same function for numbers in long double format.

The lgamma subroutine returns the natural logarithm of the absolute value of the gamma
function of the x parameter.

G(x) = integral [0 to INF] of ((e**(–t) * t**(x–1) dt)

The sign of lgamma of x is stored in the external integer variable signgam. The x
parameter may not be a non–positive integer.

Do not use the expression:

g = exp(lgamma(x)) * signgam

to compute g = G(x). Instead, use a sequence such as:

lg = lgamma(x);

g = exp(lg) * signgam;

Note: Compile any routine that uses subroutines from the libm.a with the –lm flag. To
compile the lgamma.c file, enter:

cc lgamma.c –lm

Parameters

 x For the lgamma and gamma subroutines, specifies a double–precision
floating–point value. For the lgammal subroutine, specifies a long
double–precision floating–point value.

Error Codes
• For non–positive integer arguments, the lgamma and lgammal subroutines return NaNQ

and set the division–by–zero bit in the floating–point exception status.

1-512 Technical Reference: Base Operating System

• If the correct value overflows, the lgamma and lgammal subroutines return a
HUGE_VAL value. If the correct value underflows, the lgamma and lgammal
subroutines return 0.

When using the libmsaa.a library with the –lmsaa flag:

• For non–positive integer arguments, the lgamma subroutine returns a HUGE_VAL value
and set the errno global variable to a EDOM value. A message indicating SING error is
printed on the standard error output.

• If the correct value overflows, the lgamma and lgammal subroutines and lgammal
subroutine return a HUGE_VAL value and sets the errno global variable to a ERANGE
value.

Note: These error–handling procedures may be changed with the matherr subroutine
when using libmsaa.a (–lmsaa).

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The exp, expm1, log, log10, log1p or pow subroutine, matherr subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

128–Bit long double Floating–Point Format in AIX General Programming Concepts : Writing
and Debugging Programs.

1-513Base Operating System Runtime Services (A-P)

lineout Subroutine

Purpose
Formats a print line.

Library
None (provided by the print formatter)

Syntax
#include <piostruct.h>

int lineout (fileptr)
FILE *fileptr;

Description
The lineout subroutine is invoked by the formatter driver only if the setup subroutine
returns a non–null pointer. This subroutine is invoked for each line of the document being
formatted. The lineout subroutine reads the input data stream from the fileptr parameter. It
then formats and outputs the print line until it recognizes a situation that causes vertical
movement on the page.

The lineout subroutine should process all characters to be printed and all printer
commands related to horizontal movement on the page.

The lineout subroutine should not output any printer commands that cause vertical
movement on the page. Instead, it should update the vpos (new vertical position) variable
pointed to by the shars_vars structure that it shares with the formatter driver to indicate the
new vertical position on the page. It should also refresh the shar_vars variables for vertical
increment and vertical decrement (reverse line–feed) commands.

When the lineout subroutine returns, the formatter driver sends the necessary commands
to the printer to advance to the new vertical position on the page. This position is specified
by the vpos variable. The formatter driver automatically handles top and bottom margins,
new pages, initial pages to be skipped, and progress reports to the qdaemon daemon.

The following conditions can cause vertical movements:

• Line–feed control character or variable line–feed control sequence

• Vertical–tab control character

• Form–feed control character

• Reverse line–feed control character

• A line too long for the printer that wraps to the next line

Other conditions unique to a specific printer also cause vertical movement.

Parameters

fileptr Specifies a file structure for the input data stream.

Return Values
Upon successful completion, the lineout subroutine returns the number of bytes processed
from the input data stream. It excludes the end–of–file character and any control characters
or escape sequences that result only in vertical movement on the page (for example, line
feed or vertical tab).

1-514 Technical Reference: Base Operating System

If a value of 0 is returned and the value in the vpos variable pointed to by the shars_vars
structure has not changed, or there are no more data bytes in the input data stream, the
formatter driver assumes that printing is complete.

If the lineout subroutine detects an error, it uses the piomsgout subroutine to issue an
error message. It then invokes the pioexit subroutine with a value of PIOEXITBAD.

Note: If either the piocmdout or piogetstr subroutine detects an error, it automatically
issues its own error messages and terminates the print job.

Related Information
The piocmdout subroutine, pioexit subroutine, piogetstr subroutine, piomsgout
subroutine, setup subroutine.

Adding a New Printer Type to Your System and Printer Addition Management Subsystem:
Programming Overview in AIX Kernel Extensions and Device Support Programming
Concepts.

Example of Print Formatter in AIX General Programming Concepts : Writing and Debugging
Programs.

1-515Base Operating System Runtime Services (A-P)

link Subroutine

Purpose
Creates an additional directory entry for an existing file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int link (Path1,
Path2)
const char *Path1, *Path2;

Description
The link subroutine creates an additional hard link (directory entry) for an existing file. Both
the old and the new links share equal access rights to the underlying object.

Parameters

Path1 Points to the path name of an existing file.

Path2 Points to the path name of the directory entry to be created.

Notes:

1. If Network File System (NFS) is installed on your system, these paths can cross into
another node.

2. With hard links, both the Path1 and Path2 parameters must reside on the same file
system. If Path1 is a symbolic link, an error is returned. Creating links to directories
requires root user authority.

Return Values
Upon successful completion, the link subroutine returns a value of 0. Otherwise, a value of
–1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The link subroutine is unsuccessful if one of the following is true:

EACCES Indicates the requested link requires writing in a directory that denies
write permission.

EDQUOT Indicates the directory in which the entry for the new link is being placed
cannot be extended, or disk blocks could not be allocated for the link
because the user or group quota of disk blocks or i–nodes on the file
system containing the directory has been exhausted.

EEXIST Indicates the link named by the Path2 parameter already exists.

EMLINK Indicates the file already has the maximum number of links.

ENOENT Indicates the file named by the Path1 parameter does not exist.

ENOSPC Indicates the directory in which the entry for the new link is being placed
cannot be extended because there is no space left on the file system
containing the directory.

1-516 Technical Reference: Base Operating System

EPERM Indicates the file named by the Path1 parameter is a directory, and the
calling process does not have root user authority.

EROFS Indicates the requested link requires writing in a directory on a
read–only file system.

EXDEV Indicates the link named by the Path2 parameter and the file named by
the Path1 parameter are on different file systems, or the file named by
Path1 refers to a named STREAM.

The link subroutine can be unsuccessful for other reasons. See ”Base Operating System
Error Codes For Services That Require Path–Name Resolution” for a list of additional
errors.

If NFS is installed on the system, the link subroutine is unsuccessful if the following is true:

ETIMEDOUT Indicates the connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The symlink subroutine, unlink subroutine.

The link or unlink command, ln command, rm command.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-517Base Operating System Runtime Services (A-P)

lio_listio or lio_listio64 Subroutine

Purpose
Initiates a list of asynchronous I/O requests with a single call.

Syntax
#include <aio.h>

int lio_listio (cmd,
list, nent, eventp)
int cmd, nent;
struct liocb *list[];
struct event *eventp;

int lio_listio64
(cmd, list,nent, eventp)

int cmd, nent; struct liocb64 *list;
struct event *eventp;

Description
The lio_listio subroutine allows the calling process to initiate the nent parameter
asynchronous I/O requests. These requests are specified in the liocb structures pointed to
by the elements of the list array. The call may block or return immediately depending on the
cmd parameter. If the cmd parameter requests that I/O completion be asynchronously
notified, a SIGIO signal is delivered when all I/O operations are completed.

The lio_listio64 subroutine is similar to the lio_listio subroutine except that it takes an
array of pointers to liocb64 structures. This allows the lio_listio64 subroutine to specify
offsets in excess of OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, lio_listio is redefined to be lio_listio64.

Note: The SIGIO signal will be replaced by real–time signals when they are available. The
pointer to the event structure eventp parameter is currently not in use but is included
for future compatibility.

1-518 Technical Reference: Base Operating System

Parameters

cmd The cmd parameter takes one of the following values:

LIO_WAIT Queues the requests and waits until they are complete
before returning.

LIO_NOWAIT Queues the requests and returns immediately, without
waiting for them to complete. The event parameter is
ignored.

LIO_ASYNC Queues the requests and returns immediately, without
waiting for them to complete. An enhanced signal is
delivered when all the operations are completed.
Currently this command is not implemented.

LIO_ASIG Queues the requests and returns immediately, without
waiting for them to complete. A SIGIO signal is
generated when all the I/O operations are completed.

list Points to an array of pointers to liocb structures. The structure array
contains nent elements:

lio_aiocb The asynchronous I/O control block associated with
this I/O request. This is an actual aiocb structure, not a
pointer to one.

lio_fildes Identifies the file object on which the I/O is to be
performed.

lio_opcode This field may have one of the following values defined
in the /usr/include/sys/aio.h file:

LIO_READ Indicates that the read I/O operation is
requested.

LIO_WRITE Indicates that the write I/O operation is
requested.

LIO_NOP Specifies that no I/O is requested (that
is, this element will be ignored).

nent Specifies the number of entries in the array of pointers to listio
structures.

eventp Points to an event structure to be used when the cmd parameter is set
to the LIO_ASYNC value. This parameter is currently ignored.

Execution Environment The lio_listio and lio_listio64 subroutines can
be called from the process environment only.

Return Values
When the lio_listio subroutine is successful, it returns a value of 0. Otherwise, it returns a
value of –1 and sets the errno global variable to identify the error. The returned value
indicates the success or failure of the lio_listio subroutine itself and not of the
asynchronous I/O requests (except when the command is LIO_WAIT). The aio_error
subroutine returns the status of each I/O request.

Return codes can be set to the following errno values:

EAGAIN Indicates that the system resources required to queue the request are
not available. Specifically, the transmit queue may be full, or the
maximum number of opens may have been reached.

EFAIL Indicates that one or more I/O operations was not successful. This error
can be received only if the cmd parameter has a LIO_WAIT value.

1-519Base Operating System Runtime Services (A-P)

EINTR Indicates that a signal or event interrupted the lio_listio subroutine call.

EINVAL Indicates that the aio_whence field does not have a valid value or that
the resulting pointer is not valid.

Implementation Specifics
The lio_listio and lio_listio64 subroutines are part of the Base Operating System (BOS)
Runtime.

Related Information
The aio_cancel or aio_cancel64 subroutine, aio_error or aio_error64 subroutine,
aio_read or aio_read64 subroutine, aio_return or aio_return64 subroutine, aio_suspend
or aio_suspend64 subroutine, aio_write or aio_write64 subroutine.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming
Introduction in AIX General Programming Concepts : Writing and Debugging Programs.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs describes the files, commands, and
subroutines used for low–level, stream, terminal, and asynchronous I/O interfaces.

1-520 Technical Reference: Base Operating System

load Subroutine

Purpose
Loads and binds an object module into the current process.

Syntax
int *load (FilePath, Flags, LibraryPath)
char *FilePath;
uint Flags;
char *LibraryPath;

Description
The load subroutine loads the specified module into the calling process’s address space. A
module is an object file that may be a member of an archive. Unlike the exec subroutine,
the load subroutine does not replace the current program with a new one. Instead, it loads
the new module into the process private segment at the current break value and the break
value is updated to point past the new module.

The exec subroutine is similar to the load subroutine, except that the exec subroutine does
not have an explicit library path parameter; it has only the LIBPATH environment variable.
Also, the LIBPATH variable is ignored when the program using the exec subroutine has
more privilege than the caller, for example, in the case of an suid program.

If the calling process later uses the unload subroutine to unload the object file, the space is
unusable by the process except through another call to the load subroutine. If the kernel
finds an unused space created by a previous unload, it reuses this space rather than
loading the new module at the break value. Space for loaded programs is managed by the
kernel and not by any user–level storage–management routine.

A large application can be split up into one or more module s in one of two ways that allow
execution within the same process. The first way is to create each of the application’s
modules separately and use load to explicitly load a module when it is needed. The other
way is to specify the relationship between the modules when they are created by defining
imported and exported symbols.

Modules can import symbols from other modules. Whenever symbols are imported from one
or more other modules, these modules are automatically loaded to resolve the symbol
references if the required modules are not already loaded, and if the imported symbols are
not specified as deferred imports .These modules can be archive members in libraries or
separate object files and can have either shared or private object file characteristics that
control how and where they are loaded.

Shared modules (typically members of a shared library archive) are loaded into the shared
library region, when their access permissions allow sharing, that is, when they have
read–other permission . Shared modules without the required permissions for sharing and
private modules are loaded into the process private region.

When the loader resolves a symbol, it uses the file name recorded with that symbol to find
the module that exports the symbol. If the file name contains any / (slash) characters, it is
used directly and must name an appropriate object file (or archive). However, if the file
name is a base name (contains no / characters), the loader searches the directories
specified in the default library path for an object file (or archive) with that base name.

The LibraryPath is a string containing one or more directory path names separated by colon
s . If the base name is not found, the search continues, using the library path specified in
the object file containing the symbol being resolved (normally the library path specified to
the ld command that created the object file). The first instance of the base name found is

1-521Base Operating System Runtime Services (A-P)

used. An error occurs if this module cannot be loaded or does not export a definition of the
symbol being resolved.

The default library path may be specified using the LibraryPath parameter. If not explicitly
set, the default library path may be obtained from the LIBPATH environment variable or
from the module specified by the FilePath parameter. If the L_LIBPATH_EXEC flag is
specified, then the library path used at process exec time is prepended to any other library
path specified in the load call.

(This paragraph only applies to AIX 4.3.1 and previous releases.) When a process is
executing under ptrace control, portions of the process’s address space are recopied after
the load processing completes. For a 32–bit process, the main program text (loaded in
segment 1) and shared library modules (loaded in segment 13) are recopied. Any
breakpoints or other modifications to these segments must be reinserted after the load call.
For a 64–bit process, shared library modules are recopied after a load call. The debugger
will be notified by setting the W_SLWTED flag in the status returned by wait, so that it can
reinsert breakpoints.

(This paragraph only applies to AIX 4.3.2 and later releases.) When a process executing
under ptrace control calls load, the debugger is notified by setting the W_SLWTED flag in
the status returned by wait. Any modules newly loaded into the shared library segments will
be copied to the process’s private copy of these segments, so that they can be examined or
modified by the debugger.

If the program calling the load subroutine was linked on 4.2 or a later release, the load
subroutine will call initialization routines (init routines) for the new module and any of its
dependents if they were not already loaded.

Modules loaded by this subroutine are automatically unloaded when the process terminates
or when the exec subroutine is executed. They are explicitly unloaded by calling the unload
subroutine.

1-522 Technical Reference: Base Operating System

Parameters

FilePath Points to the name of the object file to be loaded. If the FilePath name
contains no / (slash) symbols, it is treated as a base name, and should be
in one of the directories listed in the library path.

The library path is either the value of the LibraryPath parameter if not a null
value, or the value of the LIBPATH environment variable (if set) or the
library path used at process exec time (if the L_LIBPATH_EXEC is set). If
no library path is provided, the object file should be in the current directory.

If the FilePath parameter is not a base name (if it contains at least one /
character), the name is used as it is, and no library path searches are
performed to locate the object file. However, the library path is used to
locate dependent modules.

Flags Modifies the behavior of the load service as follows (see the ldr.h file). If
no special behavior is required, set the value of the flags parameter to 0
(zero) . For compatibility, a value of 1 (one) may also be specified.

L_LIBPATH_EXEC
Specifies that the library path used at process exec time
should be prepended to any library path specified in the
load call (either as an argument or environment variable).
It is recommended that this flag be specified in all calls to
the load subroutine.

L_NOAUTODEFER
Specifies that any deferred imports must be explicitly
resolved by use of the loadbind subroutine. This allows
unresolved imports to be explicitly resolved at a later time
with a specified module. If this flag is not specified,
deferred imports (marked for deferred resolution) are
resolved at the earliest opportunity when any module is
loaded that has exported symbols matching unresolved
imports.

LibraryPath Points to a character string that specifies the default library search path.

If the LibraryPath parameter is a null value and the LIBPATH environment
variable is set, the LIBPATH value is used as the default load path. If
neither default library path option is provided, the library path specified in
the loader section of the object file specified in the FilePath parameter is
used as the default library path. If the L_LIBPATH_EXEC flag is specified,
then the library path used at process exec time is prepended to the above
specified default library path.

Note the difference between setting the LibraryPath parameter to null, and
having the LibraryPath parameter point to a null string (” ”). A null string is
a valid library path which consists of a single directory: the current
directory.

If the module is not in the LibraryPath parameter or the LIBPATH
environmental variable (if the LibraryPath parameter was null), then the
library path specified in the loader section of the module importing the
symbol is used to locate the module exporting the required symbol. The
library path in the importing module was specified when the module was
link–edited (by the ld command).

The library path search is not performed when either a relative or an
absolute path name is specified for the module exporting the symbol.

1-523Base Operating System Runtime Services (A-P)

Return Values
Upon successful completion, the load subroutine returns the pointer to function for the entry
point of the module. If the module has no entry point, the address of the data section of the
module is returned.

Error Codes
If the load subroutine fails, a null pointer is returned, the module is not loaded, and errno
global variable is set to indicate the error. The load subroutine fails if one or more of the
following are true of a module to be explicitly or automatically loaded:

EACCES Indicates the file is not an ordinary file, or the mode of the
program file denies execution permission, or search permission is
denied on a component of the path prefix.

EINVAL Indicates the file or archive member has a valid magic number in
its header, but the header is damaged or is incorrect for the
machine on which the file is to be run.

ELOOP Indicates too many symbolic links were encountered in translating
the path name.

ENOEXEC Indicates an error occurred when loading or resolving symbols for
the specified module. This can be due to an attempt to load a
module with an invalid XCOFF header, a failure to resolve
symbols that were not defined as deferred imports or several other
load time related problems. The loadquery subroutine can be
used to return more information about the load failure. If the main
program was linked on a 4.2 or later system, and if runtime linking
is used, the load subroutine will fail if the runtime linker could not
resolve some symbols. In this case, errno will be set to
ENOEXEC , but the loadquery subroutine will not return any
additional information.

ENOMEM Indicates the program requires more memory than is allowed by
the system–imposed maximum.

ETXTBSY Indicates the file is currently open for writing by some process.

ENAMETOOLONG Indicates a component of a path name exceeded 255 characters,
or an entire path name exceeded 1023 characters.

ENOENT Indicates a component of the path prefix does not exist, or the
path name is a null value.

ENOTDIR Indicates a component of the path prefix is not a directory.

ESTALE Indicates the process root or current directory is located in a
virtual file system that has been unmounted.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The dlopen subroutine, exec subroutine, loadbind subroutine, loadquery subroutine,
ptrace subroutine, unload subroutine.

The ld command.

The Shared Library Overview and Subroutines Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-524 Technical Reference: Base Operating System

loadbind Subroutine

Purpose
Provides specific run–time resolution of a module’s deferred symbols.

Syntax
int loadbind(Flag, ExportPointer, ImportPointer)
int Flag;
void *ExportPointer, *ImportPointer;

Description
The loadbind subroutine controls the run–time resolution of a previously loaded object
module’s unresolved imported symbols.

The loadbind subroutine is used when two modules are loaded. Module A, an object
module loaded at run time with the load subroutine, has designated that some of its
imported symbols be resolved at a later time. Module B contains exported symbols to
resolve module A’s unresolved imports.

To keep module A’s imported symbols from being resolved until the loadbind service is
called, you can specify the load subroutine flag, L_NOAUTODEFER, when loading module
A.

(This paragraph only applies to AIX 4.3.1 and previous releases.) When a 32–bit process is
executing under ptrace control, portions of the process’s address space are recopied after
the loadbind processing completes. The main program text (loaded in segment 1) and
shared library modules (loaded in segment 13) are recopied. Any breakpoints or other
modifications to these segments must be reinserted after the loadbind call.

(This paragraph only applies to AIX 4.3.2 and later releases.) When a 32–bit process
executing under ptrace control calls loadbind, the debugger is notified by setting the
W_SLWTED flag in the status returned by wait.

When a 64–bit process under ptrace control calls loadbind, the debugger is not notified
and execution of the process being debugged continues normally.

Parameters

Flag Currently not used.

ExportPointer Specifies the function pointer returned by the load
subroutine when module B was loaded.

ImportPointer Specifies the function pointer returned by the load
subroutine when module A was loaded.

Note: The ImportPointer or ExportPointer parameter may also be set to any exported
static data area symbol or function pointer contained in the associated module. This
would typically be the function pointer returned from the load of the specified module.

Return Values
A 0 is returned if the loadbind subroutine is successful.

Error Codes
 A –1 is returned if an error is detected, with the errno global variable set to an associated
error code:

1-525Base Operating System Runtime Services (A-P)

EINVAL Indicates that either the ImportPointer or ExportPointer
parameter is not valid (the pointer to the ExportPointer or
ImportPointer parameter does not correspond to a loaded
program module or library).

ENOMEM Indicates that the program requires more memory than
allowed by the system–imposed maximum.

After an error is returned by the loadbind subroutine, you may also use the loadquery
subroutine to obtain additional information about the loadbind error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The load subroutine, loadquery subroutine, unload subroutine.

The ld command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-526 Technical Reference: Base Operating System

loadquery Subroutine

Purpose
Returns error information from the load or exec subroutine; also provides a list of object
files loaded for the current process.

Syntax
int loadquery(Flags, Buffer, BufferLength)
int Flags;
void *Buffer;
unsigned int BufferLength;

Description
The loadquery subroutine obtains detailed information about an error reported on the last
load or exec subroutine executed by a calling process. The loadquery subroutine may also
be used to obtain a list of object file names for all object files that have been loaded for the
current process, or the library path that was used at process exec time.

Parameters

Buffer Points to a Buffer in which to store the information.

BufferLength Specifies the number of bytes available in the Buffer parameter.

Flags Specifies the action of the loadquery subroutine as follows:

L_GETINFO Returns a list of all object files loaded for the
current process, and stores the list in the Buffer
parameter. The object file information is contained
in a sequence of LD_INFO structures as defined
in the sys/ldr.h file. Each structure contains the
module location in virtual memory and the path
name that was used to load it into memory. The
file descriptor field in the LD_INFO structure is not
filled in by this function.

L_GETMESSAGE Returns detailed error information describing the
failure of a previously invoked load or exec
function, and stores the error message
information in Buffer. Upon successful return from
this function the beginning of the Buffer contains
an array of character pointers. Each character
pointer points to a string in the buffer containing a
loader error message. The character array ends
with a null character pointer. Each error message
string consists of an ASCII message number
followed by zero or more characters of
error–specific message data. Valid message
numbers are listed in the sys/ldr.h file.

1-527Base Operating System Runtime Services (A-P)

You can format the error messages returned by the L_GETMESSAGE
function and write them to standard error using the standard system
command /usr/sbin/execerror as follows:

char *buffer[1024];

buffer[0] = ”execerror”;

buffer[1] =”name of program that failed\ to

load”;

loadquery(L_GETMESSAGES, &buffer[2],\

 sizeof buffer –8);

execvp(”/usr/sbin/execerror”,buffer);

This sample code causes the application to terminate after the
messages are written to standard error.

L_GETLIBPATH Returns the library path that was used at process
exec time. The library path is a null terminated
character string.

Return Values
Upon successful completion, loadquery returns the requested information in the caller’s
buffer specified by the Buffer and BufferLength parameters.

Error Codes
The loadquery subroutine returns with a return code of –1 and the errno global variable is
set to one of the following when an error condition is detected:

ENOMEM Indicates that the caller’s buffer specified by the Buffer and
BufferLength parameters is too small to return the information
requested. When this occurs, the information in the buffer is undefined.

EINVAL Indicates the function specified in the Flags parameter is not valid.

EFAULT Indicates the address specified in the Buffer parameter is not valid.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, load subroutine, loadbind subroutine, unload subroutine.

The ld command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-528 Technical Reference: Base Operating System

localeconv Subroutine

Purpose
Sets the locale–dependent conventions of an object.

Library
Standard C Library (libc.a)

Syntax
#include <locale.h>

struct lconv *localeconv ()

Description
The localeconv subroutine sets the components of an object using the lconv structure. The
lconv structure contains values appropriate for the formatting of numeric quantities
(monetary and otherwise) according to the rules of the current locale.

The fields of the structure with the type char * are strings, any of which (except
decimal_point) can point to a null string, which indicates that the value is not available in
the current locale or is of zero length. The fields with type char are nonnegative numbers,
any of which can be the CHAR_MAX value which indicates that the value is not available in
the current locale. The fields of the Iconv structure include the following:

char *decimal_point The decimal–point character used to format
non–monetary quantities.

char *thousands_sep The character used to separate groups of digits to the
left of the decimal point in formatted non–monetary
quantities.

char *grouping A string whose elements indicate the size of each
group of digits in formatted non–monetary quantities.

The value of the grouping field is interpreted
according to the following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be
repeatedly used for the remainder of
the digits.

other The value is the number of digits that
comprise the current group. The next
element is examined to determine the
size of the next group of digits to the
left of the current group.

char *int_curr_symbol The international currency symbol applicable to the
current locale, left–justified within a four–character
space–padded field. The character sequences are in
accordance with those specified in ISO 4217, ”Codes
for the Representation of Currency and Funds.”

char *currency_symbol The local currency symbol applicable to the current
locale.

char *mon_decimal_point The decimal point used to format monetary quantities.

char *mon_thousands_sep The separator for groups of digits to the left of the
decimal point in formatted monetary quantities.

1-529Base Operating System Runtime Services (A-P)

char *mon_grouping A string whose elements indicate the size of each
group of digits in formatted monetary quantities.

The value of the mon_grouping field is interpreted
according to the following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be
repeatedly used for the remainder of
the digits.

other The value is the number of digits that
comprise the current group. The next
element is examined to determine the
size of the next group of digits to the
left of the current group.

char *positive_sign The string used to indicate a nonnegative formatted
monetary quantity.

char *negative_sign The string used to indicate a negative formatted
monetary quantity.

char int_frac_digits The number of fractional digits (those to the right of the
decimal point) to be displayed in a formatted monetary
quantity.

char p_cs_precedes Set to 1 if the specified currency symbol (the
currency_symbol or int_curr_symbol field)
precedes the value for a nonnegative formatted
monetary quantity and set to 0 if the specified currency
symbol follows the value for a nonnegative formatted
monetary quantity.

char p_sep_by_space Set to 1 if the currency_symbol or
int_curr_symbol field is separated by a space from
the value for a nonnegative formatted monetary
quantity and set to 0 if the currency_symbol or
int_curr_symbol field is not separated by a space
from the value for a nonnegative formatted monetary
quantity.

char n_cs_precedes Set to 1 if the currency_symbol or
int_curr_symbol field precedes the value for a
negative formatted monetary quantity and set to 0 if the
currency_symbol or int_curr_symbol field
follows the value for a negative formatted monetary
quantity.

char n_sep_by_space Set to 1 if the currency_symbol or
int_curr_symbol field is separated by a space from
the value for a negative formatted monetary quantity
and set to 0 if the currency_symbol or
int_curr_symbol field is not separated by a space
from the value for a negative formatted monetary
quantity. Set to 2 if the symbol and the sign string are
adjacent and separated by a blank character.

1-530 Technical Reference: Base Operating System

char p_sign_posn Set to a value indicating the positioning of the positive
sign (the positive_sign fields) for nonnegative
formatted monetary quantity.

char n_sign_posn Set to a value indicating the positioning of the negative
sign (the negative_sign fields) for a negative
formatted monetary quantity.

The values of the p_sign_posn and n_sign_posn
fields are interpreted according to the following
definitions:

0 Parentheses surround the quantity and
the specified currency symbol or
international currency symbol.

1 The sign string precedes the quantity
and the currency symbol or
international currency symbol.

2 The sign string follows the quantity
and currency symbol or international
currency symbol.

3 The sign string immediately precedes
the currency symbol or international
currency symbol.

4 The sign string immediately follows the
currency symbol or international
currency symbol.

The following table illustrates the rules that can be used by three countries to format
monetary quantities:

Country Positive Format Negative Format International
Format

Italy L.1234 –L.1234 ITL.1234

Norway krl.234.56 krl.234.56– NOK 1.234.56

Switzerland SFrs.1.234.56 SFrs.1.234.56C CHF 1.234.56

The following table shows the values of the monetary members of the structure returned by
the localeconv subroutine for these countries:

struct localeconv Italy Norway Switzerland

char *in_curr_symbol ”ITL.” ”NOK” ”CHF”

char *currency_symbol ”L.” ”kr” ”SFrs.”

char *mon_decimal_point ” ” ”.” ”.”

char *mon_thousands_sep ”.” ”.” ”.”

char *mon_grouping ”\3” ”\3” ”\3”

char *positive_sign ” ” ” ” ” ”

char *negative_sign ”_” ”_” ”C”

char int_frac_digits 0 2 2

char frac_digits 0 2 2

char p_cs_precedes 1 1 1

char p_sep_by_space 0 0 0

1-531Base Operating System Runtime Services (A-P)

char n_cs_precedes 1 1 1

char n_sep_by_space 0 0 0

char p_sign_posn 1 1 1

char n_sign_posn 1 2 2

Return Values
A pointer to the filled–in object is returned. In addition, calls to the setlocale subroutine with
the LC_ALL, LC_MONETARY or LC_NUMERIC categories may cause subsequent calls to
the localeconv subroutine to return different values based on the selection of the locale.

Note: The structure pointed to by the return value is not modified by the program but may
be overwritten by a subsequent call to the localeconv subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The nl_langinfo subroutine, rpmatch subroutine, setlocale subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Locale Subroutines in AIX General Programming Concepts : Writing and
Debugging Programs.

1-532 Technical Reference: Base Operating System

lockfx, lockf, flock, or lockf64 Subroutine

Purpose
Locks and unlocks sections of open files.

Libraries

flock: Berkeley Compatibility Library (libbsd.a)
Berkeley Thread Safe Library (libbsd_r.a) (4.2.1 and later versions)

flock: Berkeley Compatibility Library (libbsd.a)

Syntax
#include <fcntl.h>

int lockfx (FileDescriptor,
Command, Argument)
int FileDescriptor;
int Command;
struct flock *Argument;

#include <sys/lockf.h>
#include <unistd.h>

int lockf
(FileDescriptor, Request, Size)
int FileDescriptor;
int Request;
off_t Size;

Note: The lockf64 subroutine applies to Version 4.2 and later releases.

int lockf64 (FileDescriptor,
Request, Size)
int FileDescriptor;
int Request;
off64_t Size;

#include <sys/file.h>

int flock (FileDescriptor, Operation)
int FileDescriptor;
int Operation;

Description
Note: The lockf64 subroutine applies to Version 4.2 and later releases.

Attention: Buffered I/O does not work properly when used with file locking. Do not use
the standard I/O package routines on files that are going to be locked.

The lockfx subroutine locks and unlocks sections of an open file. The lockfx subroutine
provides a subset of the locking function provided by the fcntl subroutine.

The lockf subroutine also locks and unlocks sections of an open file. However, its interface
is limited to setting only write (exclusive) locks.

Although the lockfx, lockf, flock, and fcntl interfaces are all different, their implementations
are fully integrated. Therefore, locks obtained from one subroutine are honored and
enforced by any of the lock subroutines.

The Operation parameter to the lockfx subroutine, which creates the lock, determines
whether it is a read lock or a write lock.

1-533Base Operating System Runtime Services (A-P)

The file descriptor on which a write lock is being placed must have been opened with write
access.

lockf64 is equivalent to lockf except that a 64–bit lock request size can be given. For lockf,
the largest value which can be used is OFF_MAX, for lockf64, the largest value is
LONGLONG_MAX.

In the large file enabled programming environment, lockf is redefined to be lock64.

Parameters

Argument A pointer to a structure of type flock, defined in the flock.h file.

Command Specifies one of the following constants for the lockfx subroutine:

F_SETLK Sets or clears a file lock. The l_type field of the flock
structure indicates whether to establish or remove a
read or write lock. If a read or write lock cannot be set,
the lockfx subroutine returns immediately with an error
value of –1.

F_SETLKW Performs the same function as F_SETLK unless a read
or write lock is blocked by existing locks. In that case,
the process sleeps until the section of the file is free to
be locked.

F_GETLK Gets the first lock that blocks the lock described in the
flock structure. If a lock is found, the retrieved
information overwrites the information in the flock
structure. If no lock is found that would prevent this lock
from being created, the structure is passed back
unchanged except that the l_type field is set to
F_UNLCK.

FileDescriptor A file descriptor returned by a successful open or fcntl subroutine,
identifying the file to which the lock is to be applied or removed.

Operation Specifies one of the following constants for the flock subroutine:

LOCK_SH Apply a shared (read) lock.

LOCK_EX Apply an exclusive (write) lock.

LOCK_NB Do not block when locking. This value can be logically
ORed with either LOCK_SH or LOCK_EX.

LOCK_UN Remove a lock.

1-534 Technical Reference: Base Operating System

Request Specifies one of the following constants for the lockf subroutine:

F_ULOCK Unlocks a previously locked region in the file.

F_LOCK Locks the region for exclusive (write) use. This request
causes the calling process to sleep if the requested
region overlaps a locked region, and to resume when
granted the lock.

F_TEST Tests to see if another process has already locked a
region. The lockf subroutine returns 0 if the region is
unlocked. If the region is locked, then –1 is returned
and the errno global variable is set to EACCES.

F_TLOCK Locks the region for exclusive use if another process
has not already locked the region. If the region has
already been locked by another process, the lockf
subroutine returns a –1 and the errno global variable is
set to EACCES.

Size The number of bytes to be locked or unlocked for the lockf subroutine.
The region starts at the current location in the open file, and extends
forward if the Size value is positive and backward if the Size value is
negative. If the Size value is 0, the region starts at the current location
and extends forward to the maximum possible file size, including the
unallocated space after the end of the file.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The lockfx, lockf, and flock subroutines fail if one of the following is true:

EBADF The FileDescriptor parameter is not a valid open file descriptor.

EINVAL The function argument is not one of F_LOCK, F_TLOCK, F_TEST or
F_ULOCK; or size plus the current file offset is less than 0.

EINVAL An attempt was made to lock a fifo or pipe.

EDEADLK The lock is blocked by a lock from another process. Putting the calling
process to sleep while waiting for the other lock to become free would
cause a deadlock.

ENOLCK The lock table is full. Too many regions are already locked.

EINTR The command parameter was F_SETLKW and the process received a
signal while waiting to acquire the lock.

EOVERFLOW The offset of the first, or if size is not 0 then the last, byte in the
requested section cannot be represented correctly in an object of type
off_t.

The lockfx and lockf subroutines fail if one of the following is true:

EACCES The Command parameter is F_SETLK, the l_type field is F_RDLCK,
and the segment of the file to be locked is already write–locked by
another process.

EACCES The Command parameter is F_SETLK, the l_type field is F_WRLCK,
and the segment of a file to be locked is already read–locked or
write–locked by another process.

The flock subroutine fails if the following is true:

1-535Base Operating System Runtime Services (A-P)

EWOULDBLOCK The file is locked and the LOCK_NB option was specified.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The flock subroutine locks and unlocks entire files. This is a limited interface maintained for
BSD compatibility, although its behavior differs from BSD in a few subtle ways. To apply a
shared lock, the file must be opened for reading. To apply an exclusive lock, the file must be
opened for writing.

Locks are not inherited. Therefore, a child process cannot unlock a file locked by the parent
process.

Related Information
The close subroutine, exec: execl, execv, execle, execlp, execvp, or exect subroutine,
fcntl subroutine, fork subroutine, open, openx, or creat subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-536 Technical Reference: Base Operating System

loginfailed Subroutine

Purpose
Records an unsuccessful login attempt.

Library
Security Library (libc.a)

Syntax
int loginfailed (User, Host, Tty)
char *User;
char *Host;
char *Tty;

Note: This subroutine is not thread–safe.

Description
The loginfailed subroutine performs the processing necessary when an unsuccessful login
attempt occurs. If the specified user name is not valid, the UNKNOWN_USER value is
substituted for the user name. This substitution prevents passwords entered as the user
name from appearing on screen.

The following attributes in /etc/security/lastlog file are updated for the specified user, if the
user name is valid:

time_last_unsuccessful_login Contains the current time.

tty_last_unsuccessful_login Contains the value specified by the Tty parameter.

host_last_unsuccessful_login Contains the value specified by the Host parameter, or
the local hostname if the Host parameter is a null value.

unsuccessful_login_count Indicates the number of unsuccessful login attempts.
The loginfailed subroutine increments this attribute by
one for each failed attempt.

A login failure audit record is cut to indicate that an unsuccessful login attempt occurred. A
utmp entry is appended to /etc/security/failedlogin file, which tracks all failed login
attempts.

If the current unsuccessful login and the previously recorded unsuccessful logins constitute
too many unsuccessful login attempts within too short of a time period (as specified by the
logindisable and logininterval port attributes), the port is locked. When a port is locked, a
PORT_Locked audit record is written to inform the system administrator that the port has
been locked.

If the login retry delay is enabled (as specified by the logindelay port attribute), a sleep
occurs before this subroutine returns. The length of the sleep (in seconds) is determined by
the logindelay value multiplied by the number of unsuccessful login attempts that occurred
in this process.

Parameters

User Specifies the user’s login name who has unsuccessfully attempted to
login.

Host Specifies the name of the host from which the user attempted to login. If
the Host parameter is Null, the name of the local host is used.

Tty Specifies the name of the terminal on which the user attempted to login.

1-537Base Operating System Runtime Services (A-P)

Security
Access Control: The calling process must have access to the account information in the
user database and the port information in the port database.

File Accessed:

Mode File

r /etc/security/user

rw /etc/security/lastlog

r /etc/security/login.cfg

rw /etc/security/portlog

w /etc/security/failedlogin

Auditing Events:

Event Information

USER_Login username

PORT_Locked portname

Return Values
Upon successful completion, the loginfailed subroutine returns a value of 0. If an error
occurs, a value of –1 is returned and errno is set to indicate the error.

Error Codes
The loginfailed subroutine fails if one or more of the following values is true:

EACCES The current process does not have access to the user or port
database.

EPERM The current process does not have permission to write an audit record.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The authenticate subroutine, getpcred subroutine, getpenv subroutine, loginrestrictions
subroutine, loginsuccess subroutine, setpcred subroutine, setpenv subroutine.

List of Security and Auditing Services in AIX General Programming Concepts : Writing and
Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-538 Technical Reference: Base Operating System

loginrestrictions Subroutine

Purpose
Determines if a user is allowed to access the system.

Library
Security Library (libc.a)

Syntax
#include <login.h>

int loginrestrictions (Name, Mode, Tty, Msg)
char *Name;
int Mode;
char *Tty;
char **Msg;

Note: This subroutine is not thread–safe.

Description
The loginrestrictions subroutine determines if the user specified by the Name parameter is
allowed to access the system. The Mode parameter gives the mode of account usage and
the Tty parameter defines the terminal used for access. The Msg parameter returns an
informational message explaining why the loginrestrictions subroutine failed.

This subroutine is unsuccessful if any of the following conditions exists:

• The user’s account has expired as defined by the expires user attribute.

• The user’s account has been locked as defined by the account_locked user attribute.

• The user attempted too many unsuccessful logins as defined by the loginretries user
attribute.

• The user is not allowed to access the given terminal as defined by the ttys user attribute.

• The user is not allowed to access the system at the present time as defined by the
logintimes user attribute.

• The Mode parameter is set to the S_LOGIN value or the S_RLOGIN value, and too many
users are logged in as defined by the maxlogins system attribute.

• The Mode parameter is set to the S_LOGIN value and the user is not allowed to log in as
defined by the login user attribute.

• The Mode parameter is set to the S_RLOGIN value and the user is not allowed to log in
from the network as defined by the rlogin user attribute.

• The Mode parameter is set to the S_SU value and other users are not allowed to use the
su command as defined by the su user attribute, or the group ID of the current process
cannot use the su command to switch to this user as defined by the sugroups user
attribute.

• The Mode parameter is set to the S_DAEMON value and the user is not allowed to run
processes from the cron or src subsystem as defined by the daemon user attribute.

• The terminal is locked as defined by the locktime port attribute.

• The user cannot use the terminal to access the system at the present time as defined by
the logintimes port attribute.

• The user is not the root user and the /etc/nologin file exists.

1-539Base Operating System Runtime Services (A-P)

Note: The loginrestrictions subroutine is not safe in a multi–threaded environment. To
use loginrestrictions in a threaded application, the application must keep the
integrity of each thread.

Parameters

Name Specifies the user’s login name whose account is to be validated.

Mode Specifies the mode of usage. Valid values as defined in the login.h file are
listed below. The Mode parameter has a value of 0 or one of the following
values:

S_LOGIN Verifies that local logins are permitted for this account.

S_SU Verifies that the su command is permitted and the current
process has a group ID that can invoke the su command
to switch to the account.

S_DAEMON Verifies the account can invoke daemon or batch
programs through the src or cron subsystems.

S_RLOGIN Verifies the account can be used for remote logins through
the rlogind or telnetd programs.

Tty Specifies the terminal of the originating activity. If this parameter is a null
pointer or a null string, no tty origin checking is done.

Msg Returns an informative message indicating why the loginrestrictions
subroutine failed. Upon return, the value is either a pointer to a valid string
within memory allocated storage or a null value. If a message is displayed,
it is provided based on the user interface.

Security
Access Control:The calling process must have access to the account information in the user
database and the port information in the port database.

File Accessed:

Mode Files

r /etc/security/user

r /etc/security/login.cfg

r /etc/security/portlog

r /etc/passwd

Return Values
If the account is valid for the specified usage, the loginrestrictions subroutine returns a
value of 0. Otherwise, a value of –1 is returned, the errno global value is set to the
appropriate error code, and the Msg parameter returns an informative message explaining
why the specified account usage is invalid.

Error Codes
The loginrestrictions subroutine fails if one or more of the following values is true:

ENOENT The user specified does not have an account.

ESTALE The user’s account is expired.

EPERM The user’s account is locked, the specified terminal is locked, the user has
had too many unsuccessful login attempts, or the user cannot log in
because the /etc/nologin file exists.

1-540 Technical Reference: Base Operating System

EACCES One of the following conditions exists:

• The specified terminal does not have access to the specified account.

• The Mode parameter is the S_SU value and the current process is not
permitted to use the su command to access the specified user.

• Access to the account is not permitted in the specified mode.

• Access to the account is not permitted at the current time.

• Access to the system with the specified terminal is not permitted at the
current time.

EAGAIN The Mode parameter is neither the S_LOGIN value nor the S_RLOGIN
value, and all the user licenses are in use.

EINVAL The Mode parameter has a value other than S_LOGIN, S_SU,
S_DAEMON, S_RLOGIN, or 0.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The authenticate subroutine, getpcred subroutine, getpenv subroutine, loginfailed
subroutine, loginsuccess subroutine, setpcred subroutine, setpenv subroutine.

The cron daemon.

The login command, rlogin command, telnet, tn, or tn3270 command, su command.

List of Security and Auditing Services in AIX General Programming Concepts : Writing and
Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-541Base Operating System Runtime Services (A-P)

loginsuccess Subroutine

Purpose
Records a successful log in.

Library
Security Library (libc.a)

Syntax
int loginsuccess (User, Host, Tty, Msg)
char *User;
char *Host;
char *Tty;
char **Msg;

Note: This subroutine is not thread–safe.

Description
The loginsuccess subroutine performs the processing necessary when a user successfully
logs into the system. This subroutine updates the following attributes in the
/etc/security/lastlog file for the specified user:

time_last_login Contains the current time.

tty_last_login Contains the value specified by the Tty parameter.

host_last_login Contains the value specified by the Host parameter or the local
host name if the Host parameter is a null value.

unsuccessful_login
_count

Indicates the number of unsuccessful login attempts. The
loginsuccess subroutine resets this attribute to a value of 0.

Additionally, a login success audit record is cut to indicate in the audit trail that this user has
successfully logged in.

A message is returned in the Msg parameter that indicates the time, host, and port of the
last successful and unsuccessful login. The number of unsuccessful login attempts since the
last successful login is also provided to the user.

Parameters

User Specifies the login name of the user who has successfully logged in.

Host Specifies the name of the host from which the user logged in. If the
Host parameter is a null value, the name of the local host is used.

Tty Specifies the name of the terminal which the user used to log in.

Msg Returns a message indicating the delete time, host, and port of the last
successful and unsuccessful logins. The number of unsuccessful login
attempts since the last successful login is also provided. Upon return,
the value is either a pointer to a valid string within memory allocated
storage or a null pointer. It is the responsibility of the calling program to
free() the returned storage.

Security
Access Control: The calling process must have access to the account information in the
user database.

File Accessed:

1-542 Technical Reference: Base Operating System

Mode File

rw /etc/security/lastlog

Auditing Events:

Event Information

USER_Login username

Return Values
Upon successful completion, the loginsuccess subroutine returns a value of 0. Otherwise,
a value of –1 is returned and the errno global value is set to indicate the error.

Error Codes
The loginsuccess subroutine fails if one or more of the following values is true:

ENOENT The specified user does not exist.

EACCES The current process does not have write access to the user database.

EPERM The current process does not have permission to write an audit record.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The authenticate subroutine, getpcred subroutine, getpenv subroutine, loginfailed
subroutine, loginrestrictions subroutine, setpcred subroutine, setpenv subroutine.

List of Security and Auditing Services in AIX General Programming Concepts : Writing and
Debugging Programs.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-543Base Operating System Runtime Services (A-P)

lsearch or lfind Subroutine

Purpose
Performs a linear search and update.

Library
Standard C Library (libc.a)

Syntax
void *lsearch (Key, Base, NumberOfElementsPointer, Width,
ComparisonPointer)
const void *Key;
void *Base;
size_t Width, *NumberOfElementsPointer;
int (*ComparisonPointer) (cont void*, const void*);

void *lfind (Key, Base, NumberOfElementsPointer, Width,
ComparisonPointer)
const void *Key, Base;
size_t Width, *NumberOfElementsPointer;
int (*ComparisonPointer) (cont void*, const void*);

Description
Warning: Undefined results can occur if there is not enough room in the table for the
lsearch subroutine to add a new item.

The lsearch subroutine performs a linear search.

The algorithm returns a pointer to a table where data can be found. If the data is not in the
table, the program adds it at the end of the table.

The lfind subroutine is identical to the lsearch subroutine, except that if the data is not
found, it is not added to the table. In this case, a NULL pointer is returned.

The pointers to the Key parameter and the element at the base of the table should be of
type pointer–to–element and cast to type pointer–to–character. The value returned should
be cast into type pointer–to–element.

The comparison function need not compare every byte; therefore, the elements can contain
arbitrary data in addition to the values being compared.

Parameters

Base Points to the first element in the table.

ComparisonPointer Specifies the name (that you supply) of the comparison
function (strcmp, for example). It is called with two
parameters that point to the elements being compared.

Key Specifies the data to be sought in the table.

NumberOfElementsPointer Points to an integer containing the current number of
elements in the table. This integer is incremented if the data
is added to the table.

Width Specifies the size of an element in bytes.

The comparison function compares its parameters and returns a value as follows:

• If the first parameter equals the second parameter, the ComparisonPointer parameter
returns a value of 0.

1-544 Technical Reference: Base Operating System

• If the first parameter does not equal the second parameter, the ComparisonPointer
parameter returns a value of 1.

Return Values
If the sought entry is found, both the lsearch and lfind subroutines return a pointer to it.
Otherwise, the lfind subroutine returns a null pointer and the lsearch subroutine returns a
pointer to the newly added element.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The bsearch subroutine, hsearch subroutine, qsort subroutine, tsearch subroutine.

Donald E. Knuth. The Art of Computer Programming, Volume 3, 6.1, Algorithm S. Reading,
Massachusetts: Addison–Wesley, 1981.

Searching and Sorting Example Program and Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-545Base Operating System Runtime Services (A-P)

lseek, llseek or lseek64 Subroutine

Purpose
Moves the read–write file pointer.

Library
Standard C Library (libc.a)

Syntax
off_t lseek (FileDescriptor, Offset, Whence)
int FileDescriptor, Whence;
off_t Offset;

offset_t llseek (FileDescriptor, Offset, Whence)
int FileDescriptor, Whence;
offset_t Offset;

Note: The lseek64 subroutine applies to Version 4.2 and later releases.

off64_t lseek64 (FileDescriptor, Offset, Whence)
int FileDescriptor, Whence;
off64_t Offset;

Description
Note: The lseek64 subroutine applies to Version 4.2 and later releases.

The lseek, llseek, and lseek64 subroutines set the read–write file pointer for the open file
specified by the FileDescriptor parameter. The lseek subroutine limits the Offset to
OFF_MAX.

In AIX Version 4.1, the llseek subroutine limits the Offset to OFF_MAX if the file associated
with FileDescriptor is a regular file or a directory and to DEV_OFF_MAX if the file
associated with FileDescriptor is a block special or character special file.

In Version 4.2, both the llseek subroutine and the lseek64 subroutine limit the Offset to the
maximum file size for the file size for the file associated with FileDescriptor and to
DEV_OFF_MAX if the file associated with FileDescriptor is a block special or character
special file.

In the large file enabled programming environment, lseek subroutine is redefined to
lseek64.

1-546 Technical Reference: Base Operating System

Parameters

FileDescriptor Specifies a file descriptor obtained from a successful open
or fcntl subroutine.

Offset Specifies a value, in bytes, that is used in conjunction with
the Whence parameter to set the file pointer. A negative
value causes seeking in the reverse direction.

Whence Specifies how to interpret the Offset parameter by setting
the file pointer associated with the FileDescriptor parameter
to one of the following variables:

SEEK_SET Sets the file pointer to the value of the
Offset parameter.

SEEK_CUR Sets the file pointer to its current location
plus the value of the Offset parameter.

SEEK_END Sets the file pointer to the size of the file
plus the value of the Offset parameter.

Return Values
Upon successful completion, the resulting pointer location, measured in bytes from the
beginning of the file, is returned. If either the lseek or llseek subroutines are unsuccessful,
a value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The lseek or llseek subroutines are unsuccessful and the file pointer remains unchanged if
any of the following are true:

EBADF The FileDescriptor parameter is not an open file descriptor.

ESPIPE The FileDescriptor parameter is associated with a pipe
(FIFO) or a socket.

EINVAL The resulting offset would be greater than the maximum
offset allowed for the file or device associated with
FileDescriptor.

EOVERFLOW The resulting offset is larger than can be returned properly.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/usr/include/unistd.h Defines standard macros, data types and subroutines.

Related Information
The fcntl subroutine, fseek, rewind, ftell, fgetpos, or fsetpos subroutine, open, openx, or
creat subroutine, read, readx, readv, or readvx subroutine, write, writex, writev, or
writevx subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-547Base Operating System Runtime Services (A-P)

lvm_changelv Subroutine

Purpose
Changes the attributes of a logical volume.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_changelv (ChangeLV)
struct changelv *ChangeLV;

Description
Note: You must have root user authority to use this subroutine.

The lvm_changelv subroutine changes the attributes of an existing logical volume.

The changelv structure pointed to by the ChangeLV parameter is defined in the lvm.h file
and contains the following fields:

struct changelv{

 struct lv_id lv_id;

 char *lvname;

 long maxsize;

 long permissions;

 long bb_relocation;

 long mirror_policy;

 long write_verify;

 long mirwrt_consist;

 }

struct lv_id{

 struct unique_id vg_id;

 long minor_num;}

Field Definition

lv_id Specifies the logical volume to be changed.

lvname Specifies either the full path name of the logical volume or a single
file name that must reside in the /dev directory, for example rhd1.
This field must be a null–terminated string that ranges from 1 to
LVM_NAMESIZ bytes, including the null byte, and must be the name
of a raw or character device. If a raw or character device is not
specified for the lvname field, the Logical Volume Manager (LVM)
adds an r to the file name to have a raw device name. If there is no
raw device entry for this name, the LVM returns the
LVM_NOTCHARDEV error code.

maxsize Specifies the new maximum size of the logical volume in number of
logical partitions (1 – LVM_MAXLPS). A change in the maxsize
field does not change the existing size of the logical volume.

permissions Specifies that the permission assigned to the logical volume is either
read–only or read/write.

bb_relocation Specifies if bad block relocation is desired.

mirror_policy Specifies how the copies of the logical partition should be written.
The values for this field can be either LVM_SEQUENTIAL or
LVM_PARALLEL.

1-548 Technical Reference: Base Operating System

Field Definition

write_verify Specifies if writes to the logical volume should be checked for
successful completion. The value for this field is either LVM_VERIFY
or LVM_NOVERIFY. Any other fields in the parameter list that are
not to be changed should either contain a 0 or be set to null if they
are pointers.

mirwrt_consist Tells whether mirror–write consistency recovery will be performed for
this logical volume. The LVM always insures data consistency
among mirrored copies of a logical volume during normal I/O
processing. For every write to a logical volume, the LVM generates a
write request for every mirror copy. A problem arises if the system
crashes in the middle of processing a mirrored write before all
copies are written. If mirror–write consistency recovery is requested
for a logical volume, the LVM keeps additional information to allow
recovery of these inconsistent mirrors. Mirror–write consistency
recovery should be performed for most mirrored logical volumes.
Logical volumes, such as page space, that do not use the existing
data when the volume group is re–varied on do not need this
protection.

The logical volume must not be open when trying to change the permissions,
bb_relocation, write_verify, mirror_policy, or mirwrt_consist fields. If the
volume group that contains the logical volume to be changed is not on–line, an error will be
returned.

Parameters

ChangeLV Points to the changelv structure.

Return Values
Upon successful completion, a value of 0 is returned.

Error Codes
If the changelv subroutine does not complete successfully it returns one of the following
values:

LVM_ALLOCERR A memory allocation error occurred.

LVM_DALVOPN The volume group reserved logical volume could not be
opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

LVM_INVALID_MIN_NUM The minor number received was not valid.

LVM_INVALID_PARAM A field in the changelv structure is not valid, or the pointer to
the changelv structure is not valid.

LVM_INVCONFIG An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module ID is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

LVM_INV_DEVENT The logical volume device entry is not valid and cannot be
checked to determine if it is raw.

LVM_LVEXIST A logical volume already exists with the name passed into
the routine.

1-549Base Operating System Runtime Services (A-P)

LVM_LVOPEN The logical volume was open. It must be closed to change
the permissions, bb_relocation, write_verify,
mirror_policy, or mirwrt_consist field.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_NOTCHARDEV The device is not a raw or character device.

LVM_OFFLINE A routine that requires a volume group to be online has
encountered an offline volume group.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_querylv subroutine, lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-550 Technical Reference: Base Operating System

lvm_changepv Subroutine

Purpose
Changes the attributes of a physical volume in a volume group.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_changepv (ChangePV)
struct changepv *ChangePV;

Description
Note: You must have root user authority to use this subroutine.

The lvm_changepv subroutine changes the state of the specified physical volume.

The changepv structure pointed to by the ChangePV parameter is defined in the lvm.h file
and contains the following fields:

struct changepv{

 struct unique_id vg_id;

 struct unique_id pv_id;

 long rem_ret;

 long allocation;}

Field Definition

pv_id Specifies the state of the physical volume to be changed

rem_ret Should be set to either LVM_REMOVEPV or LVM_RETURNPV value.
The LVM_REMOVEPV value temporarily removes the physical volume
from the volume group. The LVM_RETURNPV returns the physical
volume to the volume group.

When a physical volume is temporarily removed from the volume group, there will be no
access to that physical volume through the Logical Volume Manager (LVM) while that
physical volume is in the removed state. Also, when a physical volume is removed from the
volume group, any copies of the volume group descriptor area which are contained on that
physical volume are removed from the volume group. Therefore, copies of the volume group
descriptor area will not be counted in the quorum count of descriptor area copies which are
needed for a volume group to be varied on.

The allocation field should be set to LVM_NOALLOCPV to disallow the allocation of
physical partitions to the physical volume, or LVM_ALLOCPV to allow the allocation of
physical partitions to the physical volume. It is not necessary to change both state fields; for
example, the allocation field could be set to LVM_NOALLOCPV and the rem_ret field
could simply be set to 0 to indicate no change is desired. The vg_id field identifies the
volume group that contains the physical volume to be changed. The volume group must be
online, or an error is returned.

Parameters

ChangePV Specifies a pointer to the changepv structure.

1-551Base Operating System Runtime Services (A-P)

Return Values
Upon successful completion, the lvm_changepv subroutine returns one of the following
positive values:

LVM_REMRET_INCOMP The physical volume was removed or returned in the volume
group descriptor area but not in the kernel. The change will
take effect at the next varyon.

LVM_SUCCESS The physical volume was changed successfully.

Error Codes
If the lvm_changepv subroutine fails, it returns one of the following values:

LVM_ALLOCERR A memory allocation error occurred.

LVM_BELOW_QRMCNT The physical volume cannot be removed because there
would not be a quorum of available physical volumes.

LVM_DALVOPN The logical volume reserved by the volume group could not
be opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

LVM_INVALID_PARAM A field in the changepv structure is invalid, or the pointer to
the changepv structure is invalid.

LVM_INVCONFIG An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module ID is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

LVM_INV_DEVENT The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_NOTCHARDEV The device specified is not a raw or character device.

LVM_OFFLINE The volume group containing the physical volume to be
changed is offline and should be online.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_querypv subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-552 Technical Reference: Base Operating System

lvm_createlv Subroutine

Purpose
Creates an empty logical volume in a specified volume group.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_createlv
(CreateLV)
struct createlv *CreateLV;

Description
Note: You must have root user authority to use this subroutine.

The lvm_createlv subroutine creates an empty logical volume in an existing volume group
with the information supplied. The lvm_extendlv subroutine should be called to allocate
partitions once the logical volume is created.

The createlv structure pointed to by the CreateLV parameter is defined in the lvm.h file and
contains the following fields:

struct createlv {

 char *lvname;

 struct unique_id vg_id;

 long minor_num;

 long maxsize;

 long mirror_policy;

 long permissions;

 long bb_relocation;

 long write_verify;

 long mirwrt_consist;

}

struct unique_id{

#ifndef_64BIT_

 unsigned long word1;

 unsigned long word2;

 unsigned long word3;

 unsigned long word4;

#else

 unsigned int word1;

 unsigned int word2;

 unsigned int word3;

 unsigned int word4;

#endif

};

1-553Base Operating System Runtime Services (A-P)

Field Definition

lvname Specifies the special file name of the logical volume, and can be
either the full path name or a single file name that must reside in the
/dev directory (for example, rhd1). All name fields must be
null–terminated strings of from 1 to LVM_NAMESIZ bytes, including
the null byte. If a raw or character device is not specified for
the lvname field, the Logical Volume Manager (LVM) will add an r
to the file name in order to have a raw device name. If there is no
raw device entry for this name, the LVM will return the
LVM_NOTCHARDEV error code.

vg_id Specifies the unique ID of the volume group that will contain the
logical volume.

minor_num Must be in the range from 1 to the maxlvs value. The maxlvs field
is set when a volume group is created and is returned by the
lvm_queryvg subroutine.

maxsize Indicates the maximum size in logical partitions for the logical
volume and must be in the range of 1 to LVM_MAXLPS.

mirror_policy Specifies how the physical copies will be written. The mirror_policy
field should be either LVM_SEQUENTIAL or LVM_PARALLEL to
indicate how the physical copies of a logical partition are to be
written when there is more than one copy.

permissions Indicates read/write or read only permission for the logical volume.

bb_relocation Indicates that bad block relocation is desired.

write_verify Indicates that writes to the logical volume are to be verified as
successful.

mirwrt_consist Indicates whether mirror write consistency recovery will be
performed for this logical volume.

The LVM always ensures data consistency among mirrored copies of a logical volume
during normal I/O processing. For every write to a logical volume, the LVM generates a write
request for every mirror copy. A problem arises if the system crashes in the middle of
processing a mirrored write (before all copies are written). If mirror–write consistency
recovery is requested for a logical volume, the LVM keeps additional information to allow
recovery of these inconsistent mirrors. Mirror write consistency recovery should be
performed for most mirrored logical volumes. Logical volumes, such as the page space, that
do not use the existing data when the volume group is re–varied on do not need this
protection.

All fields in the createlv structure must have a valid value in them, or an error will be
returned.

The lvm_createlv subroutine uses the createlv structure to build an information area for
the logical volume. If the volume group that is to contain this logical volume is not varied
on–line, the LVM_OFFLINE error code is returned.

Possible values for the mirror_policy field are:

LVM_SEQUENTIAL For this logical volume, use a sequential method of writing the
physical copies (if more than one) of a logical partition.

LVM_PARALLEL For this logical volume, use a parallel method of writing the
physical copies (if more than one) of a logical partition.

Possible values for the permissions field are:

LVM_RDONLY Create the logical volume with read only permission.

LVM_RDWR Create the logical volume with read/write permission.

1-554 Technical Reference: Base Operating System

Possible values for the bb_relocation field are:

LVM_RELOC Bad block relocation is desired.

LVM_NORELOC Bad block relocation is not desired.

Possible values for the write_verify field are:

LVM_VERIFY Write verification is desired.

LVM_NOVERIFY Write verification is not desired.

Possible values for the mirwrt_consist field are:

LVM_CONSIST Mirror write consistency recovery will be done for this logical
volume.

LVM_NOCONSIST Mirror write consistency recovery will not be done for this logical
volume.

Parameters

CreateLV Points to the createlv structure.

Return Values
The lvm_createlv subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_createlv subroutine fails, it returns one of the following values:

LVM_ALLOCERR A memory allocation error has occurred.

LVM_DALVOPN The descriptor area logical volume could not be opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

LVM_INVALID_MIN_NUM A minor number passed into the routine is invalid.

LVM_INVALID_PARAM A field in the createlv structure is invalid, or the pointer to
the createlv structure is invalid.

LVM_INV_DEVENT The logical volume device entry is invalid and cannot be
checked to determine if it is raw.

LVM_LVEXIST A logical volume already exists with the name passed into
the routine.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_NOTCHARDEV The lvname name given does not represent a raw or
character device.

1-555Base Operating System Runtime Services (A-P)

LVM_OFFLINE A routine that requires a volume group to be online has
encountered one that is offline.

LVM_VGFULL The volume group that the logical volume was requested to
be a member of already has the maximum number of logical
volumes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_extendlv subroutine, lvm_querylv subroutine, lvm_queryvg subroutine,
lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-556 Technical Reference: Base Operating System

lvm_createvg Subroutine

Purpose
Creates a new volume group and installs the first physical volume.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_createvg (CreateVG)
struct createvg *CreateVG;

Description
Note: You must have root user authority to use this subroutine.

The lvm_createvg subroutine creates a new volume group and installs its first physical
volume. The physical volume must not exist in another volume group.

The createvg structure pointed to by the CreateVG parameter is found in the lvm.h file and
defined as follows:

struct createvg

 {

 mid_t kmid;

 char *vgname;

 long vg_major;

 char *pvname;

 long maxlvs;

 long ppsize;

 long vgda_size;

 short int override;

 struct unique_id vg_id;

 };

Field Definition

kmid Specifies the module ID that identifies the entry point of the logical
volume device driver module. The module ID is returned when the
logical volume device driver is loaded into the kernel.

vgname Specifies the character special file name that is either the full path name
or a file name that resides in the /dev directory (for example, rvg13) of
the volume group device. This device is actually a logical volume with
the minor number 0, which is reserved for use by the Logical Volume
Manager (LVM).

vg_major Specifies the major number for the volume group that is to be created.

pvname Specifies the character special file name, which is either the full path
name or a single file name that resides in the /dev directory (for
example, rhdisk0) of the physical volume being installed in the new
volume group.

maxlvs Specifies the maximum number of logical volumes allowed in the
volume group. Minor number 0 is reserved for the LVM. User logical
volumes can range from minor number 1 through LVM_MAXLVS – 1.

1-557Base Operating System Runtime Services (A-P)

Field Definition

ppsize Specifies the size of the physical partitions in the volume group. The
range is LVM_MINPPSIZ to LVM_MAXPPSIZ. The size in bytes of
every physical partition in the volume group is 2 to the power of the
ppsize field.

vgda_size Indicates the number of 512–byte blocks which are to be reserved for
one copy of the volume group descriptor area. The range is from
LVM_MINVGDASIZ to LVM_MAXVGDASIZ. Twice this amount of
space is reserved on each physical volume in the volume group so that
two copies of the volume group descriptor area can be saved when
needed.

override Specifies whether or not the LVM_VGMEMBER error code should be
ignored. If the override field is TRUE, the LVM creates the volume
group with the specified physical volume even if it appears to belong to
another volume group, as long as that volume group is not varied on. If
the volume group is varied on, the LVM_MEMACTVVG error code is
returned. If the override field is FALSE, the LVM returns the
LVM_VGMEMBER error code, if the specified physical volume is a
member of another volume group whether that volume group is varied
on or off. If the LVM_MEMACTVVG or LVM_VGMEMBER error code is
returned, the vg_id field contains the ID of the volume group of which
the specified physical volume is a member.

The vg_id field is an output field in which the ID of the newly created volume group will be
returned upon successful completion.

The physical volume installed into the new volume group contains two copies of the volume
group descriptor area in the reserved area at the beginning of the physical volume, since
this is the first physical volume installed. The volume group descriptor area contains
information about the physical and logical volumes in the volume group. This descriptor
area is used by the LVM to manage the logical volumes and physical volumes in the volume
group.

Parameters

CreateVG Points to the createvg structure.

Return Values
The lvm_createvg subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_createvg subroutine fails, it returns one of the following values:

LVM_ALLOCERR A memory allocation error occurred.

LVM_BADBBDIR The physical volume could not be installed into the volume
group because the bad–block directory could not be read from
and or written to.

LVM_DALVOPN The logical volume reserved by the volume group could not be
opened.

LVM_INVALID_PARAM A field in the createvg structure is not valid.

LVM_INV_DEVENT A device entry is invalid and cannot be checked to determine if
it is raw.

LVM_LVMRECERR The LVM record, which contains information about the volume
group descriptor area, could not be read or written.

1-558 Technical Reference: Base Operating System

LVM_MAJINUSE The specified major number is already being used by another
device.

LVM_MEMACTVVG The physical volume specified is a member of another volume
group that is varied on. This value is returned only when the
override field is set to TRUE.

LVM_NOTCHARDEV The device specified is not a raw or character device.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_RDPVID The record that contains the physical volume ID could not be
read.

LVM_VGDASPACE The physical volume cannot be installed into the specified
volume group because there is not enough space in the
volume group descriptor area to add a description of the
physical volume and its partitions.

LVM_VGMEMBER The physical volume cannot be installed into the specified
volume group because its LVM record indicates it is already a
member of another volume group. If the caller feels that the
information in the LVM record is incorrect, the override field
can be set to TRUE in order to override this error. This error is
only returned when the override field is set to FALSE.

LVM_WRTDAERR An error occurred while trying to initialize either the volume
group descriptor area, the volume group status area, or the
mirror write consistency cache area on the physical volume.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-559Base Operating System Runtime Services (A-P)

lvm_deletelv Subroutine

Purpose
Deletes a logical volume from its volume group.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_deletelv (LV_ID)
struct lv_id *LV_ID;

Description
The lvm_deletelv subroutine deletes the logical volume specified by the LV_ID parameter
from its volume group. The logical volume must not be opened, and the volume group must
be online, or an error is returned. Also, all logical partitions belonging to this logical volume
must be removed using the lvm_reducelv subroutine before the logical volume can be
deleted.

Note: You must have root user authority to use this subroutine.

Parameters

LV_ID Specifies the logical volume to be deleted.

Return Values
The lvm_deletelv subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_deletelv subroutine fails, it returns one of the following values:

LVM_ALLOCERR A memory allocation error occurred.

LVM_DALVOPN The logical volume reserved by the volume group could not
be opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

LVM_INVALID_MIN_NUM An invalid minor number was received.

LVM_INVALID_PARAM The logical volume ID passed in is not a valid logical volume,
or the pointer to the logical volume is invalid.

LVM_INVCONFIG An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
major number in the mapped file is invalid.

LVM_INV_DEVENT The device entry for the logical volume is invalid and cannot
be checked to determine if it is raw.

LVM_LVOPEN An open logical volume was encountered when it should be
closed.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

1-560 Technical Reference: Base Operating System

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_NODELLV The logical volume cannot be deleted because there are
existing logical partitions.

LVM_NOTCHARDEV The device specified is not a raw or character device.

LVM_OFFLINE A routine that requires a volume group to be online has
encountered one that is offline.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-561Base Operating System Runtime Services (A-P)

lvm_deletepv Subroutine

Purpose
Deletes a physical volume from a volume group.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_deletepv (PV_ID, VG_ID)
struct unique_id *VG_ID;
struct unique_id *PV_ID;

Description
The lvm_deletepv subroutine deletes the physical volume specified by the PV_ID
parameter from its volume group. The VG_ID parameter indicates the volume group that
contains the physical volume to be deleted. The physical volume must not contain any
partitions of a logical volume, or the LVM_PARTFND error code is returned. In this case, the
user must delete logical volumes or relocate the partitions that reside on the physical
volume. The volume group containing the physical volume to be deleted must be varied on
or an error is returned.

Note: You must have root user authority to use this subroutine.

Parameters

PV_ID Specifies the physical volume to be deleted.

VG_ID Specifies the volume group that contains the physical volume to be
deleted.

Return Values
The lvm_deletepv subroutine returns one of the following values upon successful
completion:

LVM_SUCCESS The physical volume was successfully deleted.

LVM_VGDELETED The physical volume was successfully deleted, and the volume
group was also deleted because that physical volume was the last
one in the volume group.

Error Codes
If the lvm_deletepv subroutine does not complete successfully, it returns one of the
following values:

LVM_ALLOCERR A memory allocation error occurred.

LVM_BELOW_QRMCNT The physical volume could not be removed or deleted
because there would no longer be a quorum of available
physical volumes.

LVM_DALVOPN The descriptor area logical volume could not be opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

1-562 Technical Reference: Base Operating System

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INVCONFIG An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module ID is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

LVM_INV_DEVENT The physical volume specified has an invalid device entry
and cannot be checked to determine if it is raw.

LVM_LVMRECERR The Logical Volume Manager record could not be read or
written.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_NOTCHARDEV The physical volume to be deleted does not have a raw
device entry.

LVM_OFFLINE The volume group which contains the physical volume to be
deleted is off–line and should be on–line.

LVM_PARTFND This routine cannot delete the specified physical volume
because it contains physical partitions allocated to a logical
volume.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_deletelv subroutine, lvm_migratepp subroutine, lvm_queryvg subroutine,
lvm_reducelv subroutine, lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-563Base Operating System Runtime Services (A-P)

lvm_extendlv Subroutine

Purpose
Extends a logical volume by a specified number of partitions.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_extendlv (LV_ID, ExtendLV)
struct Lv_id *LV_ID;
struct ext_redlv *ExtendLV;

Description
Note: You must have root user authority to use this subroutine.

The lvm_extendlv subroutine extends a logical volume specified by the LV_ID parameter
by adding a completely new logical partition or by adding another copy to an existing logical
partition.

The ext_redlv structure pointed to by the ExtendLV parameter is defined in the lvm.h file
and contains the following fields:

struct ext_redlv{

 long size;

 struct pp *parts;

 }

struct pp {

 struct unique_id pv_id;

 long lp_num;

 long pp_num;

 }

Field Description

parts Points to an array of pp structures. The parts array should have one
entry for each physical partition being allocated. The parts field is in
the ext_redlv structure.

size Specifies the number of entries in the array pointed to by the parts
variable. The parts array should have one entry for each physical
partition being allocated, and the size field should reflect a total of
these entries. The size field should never be 0; if it is, an error will be
returned. The size field is in the ext_redlv structure.

lp_num Indicates the number of the logical partition that you are extending. The
lp_numb value must range from 1 to the maximum number of logical
partitions allowed in the logical volume being extended. The maximum
number of logical partitions allowed on the logical volume is the
maxsize field returned from a query of the logical volume, and must
range from 1 to LVM_MAXLPS. The lp_num field is in the pp structure.

1-564 Technical Reference: Base Operating System

Field Description

pv_id Contains the valid ID of a physical volume that is a member of the same
volume group as the logical volume being extended. The volume group
should be varied on, or an error is returned. The pp_id field is in the pp
structure.

pp_num Specifies the number of the physical partition to be allocated as a copy
of the logical partition. This number must range from 1 to the number of
physical partitions allowed on the physical volume specified by the
pv_id field. (The pp_count field returned from a query of the physical
volume. This field ranges from 1 to LVM_MAXPPS). The physical
partition specified by the pp_num should have a state of LVM_PPFREE
(that is, should not be allocated). The pp_num field is in the pp
structure.

An example of a correct parts array and size value follows:

size = 4 (The size field is set to 4 because there are 4 struct

 pp entries.)

 parts:

 entry1 pv_id = 4321

 lp_num = 2

 pp_num = 1

 entry2 pv_id = 1234

 lp_num = 2

 pp_num = 3

 entry3 pv_id = 5432

 lp_num = 3

 pp_num = 5

 entry4 pv_id = 4242

 lp_num = 2

 pp_num = 12

Up to three copies (physical partitions) can be allocated to the same logical partition. An
error is returned if an attempt is made to add more. It is also possible to have entries with a
valid lp_num field and zeroes for the pv_id and pp_num fields; this type of entry specifies
that this logical partition should be ignored (nothing will be allocated for the logical partition).
Another way to have a logical partition ignored is simply to skip an entry for it.

EXAMPLE 1

 size = 2

 parts:

 entry1 pv_id = 0 (Entry 1 would indicate that lp 3

 lp_num = 3 should be ignored.)

 pp_num = 0

 entry2 pv_id = 4467

 lp_num = 5

 pp_num = 3

EXAMPLE 2

 size = 3

 parts:

 entry1 pv_id = 5347

 lp_num = 1

 pp_num = 1

 entry2 pv_id = 8790

 lp_num = 3

 pp_num = 3

 entry3 pv_id = 2938

 lp_num = 6

 pp_num = 6

Logical partition numbers 2, 4, and 5 are ignored since there were no entries for them in the
array.

1-565Base Operating System Runtime Services (A-P)

Parameters

ExtendLV Points to the ext_redlv structure.

LV_ID Points to the lv_id structure, which specifies the logical volume to
extend.

Return Values
The lvm_extendlv subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_extendlv subroutine fails, it returns one of the following values:

LVM_ALLOCERR A memory allocation error occurred.

LVM_DALVOPN The logical volume reserved by the volume group could not
be opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

LVM_INRESYNC The logical partition to be extended is being resynced and
cannot be extended while the resync is in progress.

LVM_INVALID_MIN_NUM An invalid minor number was received.

LVM_INVALID_PARAM One or both of the ExtendLV or LV_ID parameters are
invalid, or the LV_ID parameter is not a valid logical volume.
This could also mean that one of the fields in the ext_redlv
structure is not valid.

LVM_INVCONFIG An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
major number in the mapped file is not valid.

LVM_INV_DEVENT The device entry for the physical volume is not valid and
cannot be checked to determine if it is raw.

LVM_LPNUM_INVAL A logical partition number passed in is not valid.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_NOALLOCLP The specified logical partition already has three copies.

LVM_NOTCHARDEV The specified device is not a raw or character device.

LVM_OFFLINE The volume group is offline and should be online.

LVM_PPNUM_INVAL A physical partition number passed in is not valid.

LVM_PVSTATE_INVAL A physical volume ID sent in specifies a physical volume
with a state of LVM_PVNOALLOC.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-566 Technical Reference: Base Operating System

Related Information
The lvm_changelv subroutine, lvm_createlv subroutine, lvm_reducelv subroutine,
lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-567Base Operating System Runtime Services (A-P)

lvm_installpv Subroutine

Purpose
Installs a physical volume into a volume group.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_installpv (InstallPV)
struct installpv *InstallPV;

Description
Note: You must have root user authority to use this subroutine.

The lvm_installpv subroutine installs a physical volume into a specified volume group. The
physical volume must not exist in another volume group.

The installpv structure pointed to by the InstallPV parameter is found in the lvm.h file and
is defined as follows:

struct installpv

{

 char *pvname;

 struct unique_id vg_id;

 short int override;

 struct unique_id out_vg_id;

};

Field Description

pvname Specifies the character special file name, which can be either a full path
name or a single file name that resides in the /dev directory (for
example, rhdisk0) of the physical volume being installed into the
volume group specified by the vg_id field. The pvname field must be a
null–terminated string that ranges from 1 to LVM_NAMESIZ bytes,
including the null byte, and must be the name of a raw character device.
If a raw device is not specified for the pvname field, the Logical Volume
Manager (LVM) will add an r to the file name in order to have a raw
device name. If there is no raw device entry for this name, the LVM
returns an LVM_NOTCHARDEV error code.

override Specifies whether or not the LVM_VGMEMBER error code should be
ignored. If the override field is TRUE, the LVM installs the physical
volume into the specified volume group even if the physical volume is a
member of another volume group. This is done only if the other volume
group is not varied on. If it is varied on, an LVM_MEMACTVVG error
code is returned. If the override field is FALSE, an
LVM_VGMEMBER error code is returned if the physical volume
belongs to another volume group, whether that volume group is varied
on or varied off. The LVM_ALRDYMEM error code is returned if the
physical volume is already a member of the specified volume group.
This error is returned regardless of the setting of the override field.

out_vg_id Contains the ID of the volume group that the physical volume is a
member of. If either the LVM_MEMACTVVG or LVM_VGMEMBER
error code is returned.

1-568 Technical Reference: Base Operating System

Each physical volume installed into a volume group contains a volume group descriptor
area in the reserved area at the beginning of the physical volume. The volume group
descriptor area contains information about the physical and logical volumes in the volume
group. This descriptor area is used by the LVM to manage the logical and physical volumes
in the volume group.

Parameters

InstallPV Points to the installpv structure.

Return Values
The lvm_installpv subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_installpv subroutine fails, it returns one of the following values:

LVM_ALLOCERR A memory allocation error occurred.

LVM_ALRDYMEM The physical volume is already a member of the specified
volume group.

LVM_BADBBDIR The physical volume could not be installed into the volume
group because the bad block directory could not be read from
or written to.

LVM_DALVOPN The logical volume reserved by the volume group could not be
opened.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INV_DEVENT A device entry is invalid and cannot be checked to determine if
it is raw.

LVM_LVMRECERR The LVM record, which contains information about the volume
group descriptor area, could not be read or written.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume group,
could not be opened.

LVM_MAPFRDWR An error occurred while trying to write to the mapped file.

LVM_MEMACTVVG The physical volume specified is a member of another volume
group that is varied on. This error is returned when the
override field is TRUE.

LVM_NOTCHARDEV The device specified is not a raw or character device.

LVM_OFFLINE The volume group specified is offline. It must be varied on to
perform this operation.

LVM_PVMAXERR The physical volume cannot be installed into the specified
volume group because the maximum allowed number of
physical volumes are already installed in the volume group.
The maximum number of physical volumes is LVM_MAXPVS.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_RDPVID The record which contains the physical volume ID could not be
read.

LVM_VGDASPACE The physical volume cannot be installed into the specified
volume group because there is not enough space in the
volume group descriptor area to add a description of the
physical volume and its partitions.

1-569Base Operating System Runtime Services (A-P)

LVM_VGMEMBER The physical volume cannot be installed into the specified
volume group because its LVM record indicates it is already a
member of another volume group. If the caller feels that the
information in the LVM record is incorrect, the override field
can be set to TRUE in order to override this error. This error is
only returned when the override field is set to FALSE.

LVM_WRTDAERR An error occurred while trying to initialize either the Volume
Group Descriptor Area, the Volume Group Status Area, or the
Mirror–Write Consistency Cache Area on the physical volume.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-570 Technical Reference: Base Operating System

lvm_migratepp Subroutine

Purpose
Moves a physical partition to a specified physical volume.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_migratepp (MigratePP)
struct migratepp *MigratePP;

Description
Note: You must have root user authority to use this subroutine.

The lvm_migratepp subroutine moves the physical partition specified by the oldpp_num
field from the physical volume specified by the oldpv_id field to the physical partition, the
newpp_num field, located on the physical volume given in the newpv_id field. The vg_id
field specifies the volume group that contains both the old physical volume and the new
physical volume. This volume group should be varied on, or an error is returned.

The migratepp structure pointed to by the MigratePP parameter is defined in the lvm.h file
and contains the following fields:

struct migratepp{

 struct unique_id vg_id;

 long oldpp_num;

 long newpp_num;

 struct unique_id oldpv_id;

 struct unique_id newpv_id;

 }

Migration with Two Physical Copies
If the logical partition to which the old physical partition is allocated has two physical copies,
the migration takes place in the following sequence:

1. Extend the logical partition to add the new physical partition copy.

2. Resynchronize the logical partition in an attempt to make the new physical partition
non–stale.

3. Reduce the logical partition to delete the old physical partition copy.

For the migration to complete successfully, it is not necessary for the resynchronization
phase to complete successfully. However, it is always necessary that each logical partition
have at least one good physical copy.

If the phase 1 extension of the new physical partition fails, you will receive the error code
from the extension.

In general, if the extension in phase 1 succeeds, the migration will usually be successful.
The migration might not be successful even if the phase 1 extension is successful when the
old physical partition being migrated from is the only good physical copy of the logical
partition. If the phase 2 resynchronization fails, and the phase 3 reduction fails because the
old partition is still the only good physical copy of the logical partition, an
LVM_MIGRATE_FAIL error code is returned.

It is very unlikely for the phase 3 reduction to fail, but failure is possible if an error occurs,
such as being unable to allocate memory in the kernel due to a lack of system resources.

1-571Base Operating System Runtime Services (A-P)

If the phase 2 resynchronization fails, but the phase 3 reduction of the old partition is
successful, you will receive the LVM_RESYNC_FAILED return code to indicate the
migration was successful, but the resynchronization of the logical partition was not.

If the phase 2 resynchronization completes successfully, the migration is successful. The
LVM_SUCCESS return code is returned whether or not the phase 3 reduction of the old
physical partition is successful.

Migration with Three Physical Copies
If the logical partition to which the old physical partition is allocated has three physical
copies, the migration will take place in the following sequence:

1. Reduce the logical partition to delete the old physical partition copy.

2. Extend the logical partition to add the new physical partition copy.

3. Resynchronize the logical partition.

If the phase 1 reduction of the old physical partition fails, you will receive the error code from
the reduction. If the reduction fails because the old partition is the only good physical copy
of the logical partition, an LVM_INVLPRED error code is returned. In this case, you should
attempt to resynchronize the logical partition in question. If the resynchronization succeeds,
you should attempt the migration again.

In order for the migration to be successful, both the phase 1 reduction and the phase 2
extension must be successful. If the phase 2 extension fails, an attempt will be made to
extend and add back the old physical partition. If the old physical partition can be added
back and the logical partition is back to its original configuration, you will receive the
LVM_MIGRATE_FAIL error code to indicate that the migration failed. If the old partition
cannot be added back, you will receive an LVM_LOSTPP error code to indicate that a
physical partition copy has been lost and the logical partition does not have its original
number of copies. It is not very likely for either of the extensions described above to fail, but
it is possible to have a failure due to an error such as being unable to allocate memory in
the kernel due to a lack of system resources.

If the phase 2 extension completes successfully, the migration is successful. If the phase 3
resynchronization completes successfully, you will receive a return code of
LVM_SUCCESS. If the resynchronization is not successful, you will receive the
LVM_RESYNC_FAILED error code to indicating that although the migration was successful,
the resynchronization of the logical partition was not.

Parameters

MigratePP Points to the migratepp structure.

Return Values
When successful, the lvm_migratepp subroutine returns the following return code:

LVM_RESYNC_FAILED The migrate succeeded, but all physical copies of the logical
partition could not be resynchronized.

Error Codes
If the lvm_migratepp subroutine fails, it returns one of the following values:

LVM_ALLOCERR A memory allocation error occurred.

LVM_DALVOPN The logical volume reserved by the volume group could not
be opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

1-572 Technical Reference: Base Operating System

LVM_INRESYNC The physical partition being migrated is allocated to a logical
partition that is being resynced. The migration cannot be
completed while the resync is in progress.

LVM_INVALID_MIN_NUM A minor number that is not valid was received.

LVM_INVALID_PARAM One of the parameters passed in did not have a valid value.

LVM_INVCONFIG An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module ID is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

LVM_INV_DEVENT A device has a major number that does not correspond to
the volume group being worked in.

LVM_INVLPRED A reduction was requested that would leave a logical
partition with no good copies.

LVM_LOSTPP The migration failed and the logical partition could not be
restored to its original configuration.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_MIGRATE_FAIL The migration failed because the requested move would
leave the logical partition without a good physical copy.

LVM_NOTCHARDEV A device is not a raw or character device.

LVM_NOTSYNCED The resync involving the physical partitions of the migratepp
call was not complete.

LVM_OFFLINE The volume group is offline and should be online.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_querypv subroutine, lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-573Base Operating System Runtime Services (A-P)

lvm_querylv Subroutine

Purposes
Queries a logical volume and returns all pertinent information.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_querylv (LV_ID, QueryLV, PVName)
struct lv_id *LV_ID;
struct querylv **QueryLV;
char *PVName;

Description
Note: You must have root user authority to use this subroutine.

The lvm_querylv subroutine returns information for the logical volume specified by the
LV_ID parameter.

The querylv structure, found in the lvm.h file, is defined as follows:

struct querylv {

 char lvname[LVM_NAMESIZ];

 struct unique_id vg_id;

 long maxsize;

 long mirror_policy;

 long lv_state;

 long currentsize;

 long ppsize;

 long permissions;

 long bb_relocation;

 long write_verify;

 long mirwrt_consist;

 long open_close;

 struct pp *mirrors[LVM_NUMCOPIES]

}

struct pp {

 struct unique_id pv_id;

 long lp_num;

 long pp_num;

 long ppstate;

 }

Field Description

lv_state Specifies the current state of the logical volume and can have any of
the following bit–specific values ORed together:

LVM_LVDEFINED The logical volume is defined.

LVM_LVSTALE The logical volume contains stale partitions.

currentsize Indicates the current size in logical partitions of the logical volume.
The size, in bytes, of every physical partition is 2 to the power of the
ppsize field.

ppsize Specifies the size of the physical partitions of all physical volumes in
the volume group.

1-574 Technical Reference: Base Operating System

Field Description

permissions Specifies the permission assigned to the logical volume and can be
one of the following values:

LVM_RDONLY Access to this logical volume is read only.

LVM_RDWR Access to this logical volume is read/write.

bb_relocation Specifies if bad block relocation is desired and is one of the following
values:

LVM_NORELOC Bad blocks will not be relocated.

LVM_RELOC Bad blocks will be relocated.

write_verify Specifies if write verification for the logical volume is desired and
returns one of the following values:

LVM_NOVERIFY Write verification is not performed for this
logical volume.

LVM_VERIFY Write verification is performed on all writes to
the logical volume.

mirwrt_consist Indicates whether mirror–write consistency recovery will be
performed for this logical volume.

The LVM always insures data consistency among mirrored copies of
a logical volume during normal I/O processing. For every write to a
logical volume, the LVM generates a write request for every mirror
copy. A problem arises if the system crashes in the middle of
processing a mirrored write (before all copies are written). If mirror
write consistency recovery is requested for a logical volume, the
LVM keeps additional information to allow recovery of these
inconsistent mirrors. Mirror write consistency recovery should be
performed for most mirrored logical volumes. Logical volumes, such
as page space, that do not use the existing data when the volume
group is re–varied on do not need this protection.

Values for the mirwrt_consist field are:

LVM_CONSIST Mirror–write consistency recovery will be done
for this logical volume.

LVM_NOCONSIST Mirror–write consistency recovery will not be
done for this logical volume.

open_close Specifies if the logical volume is opened or closed. Values for this
field are:

LVM_QLV_NOTOPEN
The logical volume is closed.

LVM_QLVOPEN The logical volume is opened by one or more
processes.

mirrors Specifies an array of pointers to partition map lists (physical volume
id, logical partition number, physical partition number, and physical
partition state for each copy of the logical partitions for the logical
volume). The ppstate field can be LVM_PPFREE,
LVM_PPALLOC, or LVM_PPSTALE. If a logical partition does not
contain any copies, its pv_id, lp_num, and pp_num fields will
contain zeros.

All other fields are described in the lvm_createlv subroutine.

The PVName parameter enables the user to query from a volume group descriptor area on
a specific physical volume instead of from the Logical Volume Manager’s (LVM) most

1-575Base Operating System Runtime Services (A-P)

recent, in–memory copy of the descriptor area. This method should only be used if the
volume group is varied off.

Note: The data returned is not guaranteed to be the most recent or correct, and it can
reflect a back–level descriptor area.

The PVName parameter should specify either the full path name of the physical volume that
contains the descriptor area to query, or a single file name that must reside in the /dev
directory (for example, rhdisk1). This parameter must be a null–terminated string between
1 and LVM_NAMESIZ bytes, including the null byte, and must represent a raw device entry.
If a raw or character device is not specified for the PVName parameter, the LVM adds an r
to the file name to have a raw device name. If there is no raw device entry for this name, the
LVM returns the LVM_NOTCHARDEV error code.

If a PVName parameter is specified, only the minor_num field of the LV_ID parameter need
be supplied. The LVM fills in the vg_id field and returns it to the user. If the user wishes to
query from the LVM’s in–memory copy, the PVName parameter should be set to null. When
using this method of query, the volume group must be varied on, or an error is returned.

Note: As long as the PVName parameter is not null, the LVM will attempt a query from a
physical volume and not from its in–memory copy of data.

In addition to the PVName parameter, the caller passes the ID of the logical volume to be
queried (LV_ID parameter) and the address of a pointer to the querylv structure, specified
by the QueryLV parameter. The LVM separately allocates the space needed for the querylv
structure and the struct pp arrays, and returns the querylv structure’s address in the pointer
variable passed in by the user. The user is responsible for freeing the space by first freeing
the struct pp pointers in the mirrors array and then freeing the querylv structure.

Parameters

LV_ID Points to an lv_id structure that specifies the logical volume to query.

QueryLV Contains the address of a pointer to the querylv structure.

PVName Names the physical volume from which to use the volume group
descriptor for the query. This parameter can also be null.

Return Values
If the lvm_querylv subroutine is successful, it returns a value of 0.

Error Codes
If the lvm_querylv subroutine does not complete successfully, it returns one of the following
values:

LVM_ALLOCERR The subroutine could not allocate enough space for the
complete buffer.

LVM_INVALID_MIN_NUM The minor number of the logical volume is not valid.

LVM_INVALID_PARAM A parameter passed into the routine is not valid.

LVM_INV_DEVENT The device entry for the physical volume specified by the
Pvname parameter is not valid and cannot be checked to
determine if it is raw.

LVM_NOTCHARDEV The physical volume name given does not represent a raw
or character device.

LVM_OFFLINE The volume group containing the logical volume to query
was offline.

If the query originates from the varied–on volume group’s
current volume group descriptor area, one of the following
error codes is returned:

1-576 Technical Reference: Base Operating System

LVM_DALVOPN The volume group reserved logical volume could not be
opened.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR The mapped file could not be read or written.

If a physical volume name has been passed, requesting that the query originate from a
specific physical volume, one of the following error codes is returned:

LVM_BADBBDIR The bad–block directory could not be read or written.

LVM_LVMRECERR The LVM record, which contains information about the
volume group descriptor area, could not be read.

LVM_NOPVVGDA There are no volume group descriptor areas on the physical
volume specified.

LVM_NOTVGMEM The physical volume specified is not a member of a volume
group.

LVM_PVDAREAD An error occurred while trying to read the volume group
descriptor area from the specified physical volume.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_VGDA_BB A bad block was found in the volume group descriptor area
located on the physical volume that was specified for the
query. Therefore, a query cannot be done from the specified
physical volume.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_varyonvg subroutine, lvm_createlv subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-577Base Operating System Runtime Services (A-P)

lvm_querypv Subroutine

Purpose
Queries a physical volume and returns all pertinent information.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_querypv (VG_ID, PV_ID, QueryPV, PVName)
struct unique_id *VG_ID;
struct unique_id *PV_ID;
struct querypv **QueryPV;
char *PVName;

Description
Note: You must have root user authority to use the lvm_querypv subroutine.

The lvm_querypv subroutine returns information on the physical volume specified by the
PV_ID parameter.

The querypv structure, defined in the lvm.h file, contains the following fields:

struct querypv {

 long ppsize;

 long pv_state;

 long pp_count;

 long alloc_ppcount;

 struct pp_map *pp_map;

 long pvnum_vgdas;

 }

 struct pp_map {

 long pp_state;

 struct lv_id lv_id;

 long lp_num;

 long copy;

 struct unique_id fst_alt_vol;

 long fst_alt_part;

 struct unique_id snd_alt_vol;

 long snd_alt_part;

 }

Field Description

ppsize Specifies the size of the physical partitions, which is the same for all
partitions within a volume group. The size in bytes of a physical
partition is 2 to the power of ppsize.

pv_state Contains the current state of the physical volume.

pp_count Contains the total number of physical partitions on the physical
volume.

alloc_ppcount Contains the number of allocated physical partitions on the physical
volume.

1-578 Technical Reference: Base Operating System

Field Description

pp_map Points to an array that has entries for each physical partition of the
physical volume. Each entry in this array will contain the pp_state
that specifies the state of the physical partition (LVM_PPFREE,
LVM_PPALLOC, or LVM_PPSTALE) and the lv_id, field, the ID of
the logical volume that it is a member of. The pp_map array also
contains the physical volume IDs (fst_alt_vol and
snd_alt_vol) and the physical partition numbers (fst_alt_part
and snd_alt_part) for the first and second alternate copies of the
physical partition, and the logical partition number (lp_num) that the
physical partition corresponds to.

If the physical partition is free (that is, not allocated), all of its
pp_map fields will be zero.

fst_alt_vol Contains zeros if the logical partition has only one
physical copy.

fst_alt_part Contains zeros if the logical partition has only one
physical copy.

snd_alt_vol Contains zeros if the logical partition has only one
or two physical copies.

snd_alt_part Contains zeros if the logical partition has only one
or two physical copies.

copy Specifies which copy of a logical partition this
physical partition is allocated to. This field will
contain one of the following values:

LVM_PRIMARY Primary and only copy of a
logical partition

LVM_PRIMOF2 Primary copy of a logical
partition with two physical
copies

LVM_PRIMOF3 Primary copy of a logical
partition with three physical
copies

LVM_SCNDOF2 Secondary copy of a logical
partition with two physical
copies

LVM_SCNDOF3 Secondary copy of a logical
partition with three physical
copies

LVM_TERTOF3 Tertiary copy of a logical
partition with three physical
copies.

pvnum_vgdas Contains the number of volume group descriptor areas (0, 1, or 2)
that are on the specified physical volume.

The PVName parameter enables the user to query from a volume group descriptor area on
a specific physical volume instead of from the Logical Volume Manager’s (LVM) most
recent, in–memory copy of the descriptor area. This method should only be used if the
volume group is varied off. The data returned is not guaranteed to be most recent or correct,
and it can reflect a back level descriptor area.

The PVname parameter should specify either the full path name of the physical volume that
contains the descriptor area to query or a single file name that must reside in the /dev
directory (for example, rhdisk1). This field must be a null–terminated string of from 1 to

1-579Base Operating System Runtime Services (A-P)

LVM_NAMESIZ bytes, including the null byte, and represent a raw or character device. If a
raw or character device is not specified for the PVName parameter, the LVM will add an r to
the file name in order to have a raw device name. If there is no raw device entry for this
name, the LVM will return the LVM_NOTCHARDEV error code. If a PVName is specified,
the volume group identifier, VG_ID, will be returned by the LVM through the VG_ID
parameter passed in by the user. If the user wishes to query from the LVM in–memory copy,
the PVName parameter should be set to null. When using this method of query, the volume
group must be varied on, or an error will be returned.

Note: As long as the PVName is not null, the LVM will attempt a query from a physical
volume and not from its in–memory copy of data.

In addition to the PVName parameter, the caller passes the VG_ID parameter, indicating the
volume group that contains the physical volume to be queried, the unique ID of the physical
volume to be queried, the PV_ID parameter, and the address of a pointer of the type
QueryPV. The LVM will separately allocate enough space for the querypv structure and the
struct pp_map array and return the address of the querypv structure in the QueryPV pointer
passed in. The user is responsible for freeing the space by freeing the struct pp_map
pointer and then freeing the QueryPV pointer.

Parameters

VG_ID Points to a unique_id structure that specifies the volume group of
which the physical volume to query is a member.

PV_ID Points to a unique_id structure that specifies the physical volume to
query.

QueryPV Specifies the address of a pointer to a querypv structure.

PVName Names a physical volume from which to use the volume group
descriptor area for the query. This parameter can be null.

Return Values
The lvm_querypv subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_querypv subroutine fails it returns one of the following error codes:

LVM_ALLOCERR The routine cannot allocate enough space for a complete
buffer.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INV_DEVENT The device entry for the physical volume is invalid and cannot
be checked to determine if it is raw.

LVM_OFFLINE The volume group specified is offline and should be online.

If the query originates from the varied–on volume group’s current volume group descriptor
area, one of the following error codes may be returned:

LVM_DALVOPN The volume group reserved logical volume could not be
opened.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

1-580 Technical Reference: Base Operating System

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume group,
could not be opened.

LVM_MAPFRDWR Either the mapped file could not be read, or it could not be
written.

If a physical volume name has been passed, requesting that the query originate from a
specific physical volume, then one of the following error codes may be returned:

LVM_BADBBDIR The bad–block directory could not be read or written.

LVM_LVMRECERR The LVM record, which contains information about the volume
group descriptor area, could not be read.

LVM_NOPVVGDA There are no volume group descriptor areas on this physical
volume.

LVM_NOTCHARDEV A device is not a raw or character device.

LVM_NOTVGMEM The physical volume is not a member of a volume group.

LVM_PVDAREAD An error occurred while trying to read the volume group
descriptor area from the specified physical volume.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_VGDA_BB A bad block was found in the volume group descriptor area
located on the physical volume that was specified for the query.
Therefore, a query cannot be done from the specified physical
volume.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-581Base Operating System Runtime Services (A-P)

lvm_queryvg Subroutine

Purpose
Queries a volume group and returns pertinent information.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_queryvg (VG_ID, QueryVG, PVName)
struct unique_id *VG_ID;
struct queryvg **QueryVG;
char *PVName;

Description
Note: You must have root user authority to use this subroutine.

The lvm_queryvg subroutine returns information on the volume group specified by the
VG_ID parameter.

The queryvg structure , found in the lvm.h file, contains the following fields:

struct queryvg {

 long maxlvs;

 long ppsize;

 long freespace;

 long num_lvs;

 long num_pvs;

 long total_vgdas;

 struct lv_array *lvs;

 struct pv_array *pvs;

 }

 struct pv_array {

 struct unique_id pv_id;

 long pvnum_vgdas;

 char state;

 char res[3];

 }

 struct lv_array {

 struct lv_id lv_id;

 char lvname[LVM_NAMESIZ];

 char state;

 char res[3];

 }

Field Description

maxlvs Specifies the maximum number of logical volumes allowed in the
volume group.

ppsize Specifies the size of all physical partitions in the volume group. The size
in bytes of each physical partitions is 2 to the power of the ppsize field.

freespace Contains the number of free physical partitions in this volume group.

num_lvs Indicates the number of logical volumes.

num_pvs Indicates the number of physical volumes.

total_vgdas Specifies the total number of volume group descriptor areas for the
entire volume group.

1-582 Technical Reference: Base Operating System

Field Description

lvs Points to an array of unique IDs, names, and states of the logical
volumes in the volume group.

pvs Points to an array of unique IDs, states, and the number of volume
group descriptor areas for each of the physical volumes in the volume
group.

The PVName parameter enables the user to query from a descriptor area on a specific
physical volume instead of from the Logical Volume Manager’s (LVM) most recent,
in–memory copy of the descriptor area. This method should only be used if the volume
group is varied off. The data returned is not guaranteed to be most recent or correct, and it
can reflect a back level descriptor area. The Pvname parameter should specify either the
full path name of the physical volume that contains the descriptor area to query or a single
file name that must reside in the /dev directory (for example, rhdisk1). The name must
represent a raw device. If a raw or character device is not specified for the PVName
parameter, the Logical Volume Manager will add an r to the file name in order to have a raw
device name. If there is no raw device entry for this name, the LVM returns the
LVM_NOTCHARDEV error code. This field must be a null–terminated string of from 1 to
LVM_NAMESIZ bytes, including the null byte. If a PVName is specified, the LVM will return
the VG_ID to the user through the VG_ID pointer passed in. If the user wishes to query from
the LVM in–memory copy, the PVName parameter should be set to null. When using this
method of query, the volume group must be varied on, or an error will be returned.

Note: As long as the PVName parameter is not null, the LVM will attempt a query from a
physical volume and not its in–memory copy of data.

In addition to the PVName parameter, the caller passes the unique ID of the volume group
to be queried (VG_ID) and the address of a pointer to a queryvg structure. The LVM will
separately allocate enough space for the queryvg structure, as well as the lv_array and
pv_array structures, and return the address of the completed structure in the QueryVG
parameter passed in by the user. The user is responsible for freeing the space by freeing
the lv and pv pointers and then freeing the QueryVG pointer.

Parameters

VG_ID Points to a unique_id structure that specifies the volume group to be
queried.

QueryVG Specifies the address of a pointer to the queryvg structure.

PVName Specifies the name of the physical volume that contains the descriptor
area to query and must be the name of a raw device.

Return Values
The lvm_queryvgn subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_queryvg subroutine fails it returns one of the following error codes:

LVM_ALLOCERR The subroutine cannot allocate enough space for a complete
buffer.

LVM_FORCEOFF The volume group has been forcefully varied off due to a loss
of quorum.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_OFFLINE The volume group is offline and should be online.

If the query originates from the varied–on volume group’s current volume group descriptor
area, one of the following error codes may be returned:

1-583Base Operating System Runtime Services (A-P)

LVM_DALVOPN The volume group reserved logical volume could not be
opened.

LVM_INV_DEVENT The device entry for the physical volume specified by the
PVName parameter is invalid and cannot be checked to
determine if it is raw.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume group,
could not be opened.

LVM_MAPFRDWR Either the mapped file could not be read, or it could not be
written.

LVM_NOTCHARDEV A device is not a raw or character device.

If a physical volume name has been passed, requesting that the query originate from a
specific physical volume, one of the following error codes may be returned:

LVM_BADBBDIR The bad–block directory could not be read or written.

LVM_LVMRECERR The LVM record, which contains information about the volume
group descriptor area, could not be read.

LVM_NOPVVGDA There are no volume group descriptor areas on this physical
volume.

LVM_NOTVGMEM The physical volume is not a member of a volume group.

LVM_PVDAREAD An error occurred while trying to read the volume group
descriptor area from the specified physical volume.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_VGDA_BB A bad block was found in the volume group descriptor area
located on the physical volume that was specified for the query.
Therefore, a query cannot be done from this physical volume.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-584 Technical Reference: Base Operating System

lvm_queryvgs Subroutine

Purpose
Queries volume groups and returns information to online volume groups.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_queryvgs (QueryVGS, Kmid)
struct queryvgs **QueryVGS;
mid_t Kmid;

Description
Note: You must have root user authority to use this subroutine.

The lvm_queryvgs subroutine returns the volume group IDs and major numbers for all
volume groups in the system that are online.

The caller passes the address of a pointer to a queryvgs structure, and the Logical Volume
Manager (LVM) allocates enough space for the structure and returns the address of the
structure in the pointer passed in by the user. The caller also passes in a Kmid parameter,
which identifies the entry point of the logical device driver module:

struct queryvgs {

 long num_vgs;

 struct {

 long major_num

 struct unique_id vg_id;

 } vgs [LVM_MAXVGS];

 }

Field Description

num_vgs Contains the number of online volume groups on the system. The vgs
is an array of the volume group IDs and major numbers of all online
volume groups in the system.

Parameters

QueryVGS Points to the queryvgs structure.

Kmid Identifies the address of the entry point of the logical volume device
driver module.

Return Values
The lvm_queryvgs subroutine returns a value of 0 upon successful completion.

Error Codes
If the lvm_queryvgs subroutine fails, it returns one of the following error codes:

1-585Base Operating System Runtime Services (A-P)

LVM_ALLOCERR The routine cannot allocate enough space for the complete
buffer.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INVCONFIG An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module ID is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-586 Technical Reference: Base Operating System

lvm_reducelv Subroutine

Purpose
Reduces the size of a logical volume by a specified number of partitions.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_reducelv (LV_ID, ReduceLV)
struct lv_id *LV_ID;
struct ext_redlv *ReduceLV;

Description
Note: You must have root user authority to use this subroutine.

The lvm_reducelv subroutine reduces a logical volume specified by the LV_ID parameter.
This logical volume should be closed and should be a member of an online volume group.
On partial reductions of a logical volume, all remaining logical partitions must have one
good (non–stale) copy allocated to them. The Logical Volume Manager (LVM) does not
reduce the last good (non–stale) copy of a logical partition on partial reductions to a logical
volume. If a reduction is refused for this reason, the resync routines can be used to make all
stale copies of a logical partition good so that a reduction can then be performed.

The ext_redlv structure, pointed to by the ReduceLV parameter, is found in the lvm.h file
and is defined as follows:

struct ext_redlv{

 long size;

 struct pp *parts;

}

struct pp {

 struct unique_id pv_id;

 long lp_num;

 long pp_num;

}

Following is an example of a correct parts array and size value:

size = 4 (The size field is set to 4 because

 there are 4 struct pp entries.)

parts:

 entry1 pv_id = 4321

 lp_num = 2

 pp_num = 1

 entry2 pv_id = 1234

 lp_num = 2

 pp_num = 3

 entry3 pv_id = 5432

 lp_num = 3

 pp_num = 5

 entry4 pv_id = 4242

 lp_num = 2

 pp_num = 12

The ReduceLV parameter is a pointer to an ext_redlv structure. Within this structure is the
parts field, which is a pointer to an array of pp structures. Also in the ext_redlv structure
is the size field, which is the number of entries in the array that is pointed to by the parts
field. The parts array should have one entry for each physical partition being deallocated,

1-587Base Operating System Runtime Services (A-P)

and the size field should reflect a total of these entries. Also, the size field should never
be 0; if it is, an error code is returned.

Within the pp structure is a lp_num field which is the number of the logical partitions that
you are reducing. This number should be between 1 and the value of the maxsize field.
The maxsize field is returned from the lvm_querylv subroutine and is the maximum
number of logical partitions allowed for a logical volume. Also in the pp structure are the
pp_num and pv_id fields. The pp_num field is the number of the physical partition to be
deallocated as a copy of the logical partition. This number must range from 1 to the value of
the pp_count field. The pp_count field is returned from the lvm_querypv subroutine and
is the maximum number of physical partitions allowed on a physical volume. Also, the
physical partition specified by the pp_num field should have a state of LVM_PPALLOC (that
is, should be allocated). The pv_id field should contain the valid ID of a physical volume
that is a member of the same volume group as the logical volume being reduced.

Parameters

LV_ID Specifies the logical volume to be reduced.

ReduceLV Points to the ext_redlv structure.

Return Values
Upon successful completion, a value of 0 is returned.

Error Codes
If the lvm_reducelv subroutine does not complete successfully, it returns one of the
following error codes:

LVM_ALLOCERR A memory allocation error occurred.

LVM_DALVOPN The volume group reserved logical volume could not be
opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

LVM_INVALID_MIN_NUM A minor number received was not valid.

LVM_INVALID_PARAM One of the parameters passed in is not valid, or one of the
fields in the structures pointed to by one of the parameters is
not valid.

LVM_INVCONFIG An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module ID is not valid, the major number given is already in
use, or the volume group device could not be opened.

LVM_INV_DEVENT The device entry for the physical volume is not valid and
cannot be checked to determine if it is raw.

LVM_INVLPRED The reduction cannot be completed because a logical
partition would exist with only stale copies remaining.

LVM_LPNUM_INVAL A logical partition number passed in is not valid.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

1-588 Technical Reference: Base Operating System

LVM_NOTCHARDEV The device specified is not a raw or character device.

LVM_OFFLINE The volume group is offline and should be online.

LVM_PPNUM_INVAL A physical partition number passed in is not valid.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_createlv subroutine, lvm_deletelv subroutine, lvm_extendlv subroutine,
lvm_resynclp subroutine, lvm_resynclv subroutine, lvm_resyncpv subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-589Base Operating System Runtime Services (A-P)

lvm_resynclp Subroutine

Purpose
Synchronizes all physical partitions for a logical partition.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_resynclp (LV_ID, LP_Num, Force)
struct Lv_id *LV_ID;
long LP_Num;
int Force;

Description
Note: You must have root user authority to use this subroutine.

The lvm_resynclp subroutine initiates resynchronization for all the existing physical
partition copies of the specified logical partition, if required.

The LV_ID parameter specifies the logical volume that contains the logical partition needing
resynchronization. The LP_Num parameter is the logical partition number within the logical
volume to be resynchronized. The volume group must be varied on, or an error is returned.

The Force parameter is used to specify whether all physical copies or only stale physical
copies of a logical partition are to be resynchronized. When the Force parameter is False, a
good physical copy is propagated only to the stale physical copies. This is sufficient for most
logical volumes.

If the Force parameter is True, a good physical copy is chosen and propagated to all other
copies of the logical partition whether or not they are stale. Setting the Force parameter to
True is sometimes necessary in cases where mirror–write consistency recovery was not
specified for the logical volume. This is especially important after a crash occurs while
writing to the logical volume. It is recommended that mirror write consistency be selected for
most mirrored logical volumes. For more information on mirror write consistency, see the
lvm_createlv and lvm_changelv subroutines.

Parameters

LP_Num Specifies the logical partition number within the logical volume to be
resynchronized.

LV_ID Specifies the logical volume that contains the logical partition needing
resynchronization.

Force Specifies whether all physical copies or only stale physical copies of a
logical partition are to be resynchronized.

Return Values
Upon successful completion, the lvm_resynclp subroutine returns a value of 0.

Error Codes
If the lvm_resynclp subroutine fails, it returns one of the following error codes:

1-590 Technical Reference: Base Operating System

LVM_ALLOCERR A memory allocation error occurred.

LVM_DALVOPN The logical volume reserved by the volume group could not
be opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

LVM_INVALID_PARAM One of the fields passed in did not have a valid value.

LVM_INV_DEVENT A device has a major number that does not correspond to
the volume group being worked in.

LVM_INVALID_MIN_NUM An invalid minor number was received.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_NOTCHARDEV A device is not a raw or character device.

LVM_NOTSYNCED The logical partition was not completely resynced.

LVM_OFFLINE The volume group is offline and should be online.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_changelv subroutine, lvm_createlv subroutine, lvm_extendlv subroutine,
lvm_resynclv subroutine, lvm_resyncpv subroutine, lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-591Base Operating System Runtime Services (A-P)

lvm_resynclv Subroutine

Purpose
Synchronizes all physical copies of all of the logical partitions for a logical volume.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_resynclv (LV_ID, Force)
struct Lv_id *LV_ID;
int Force;

Description
Note: You must have root user authority to use this subroutine.

The lvm_resynclv subroutine synchronizes all physical copies of a logical partition for each
logical partition of the logical volume specified by the LV_ID parameter. The volume group
must be varied on or an error is returned.

The Force parameter is used to specify whether all physical copies or only stale physical
copies of a logical partition are to be resynchronized. When the Force parameter is False, a
good physical copy is propagated only to the stale physical copies. This is sufficient for most
logical volumes.

If the Force parameter is True, a good physical copy is chosen and propagated to all other
copies of the logical partition whether or not they are stale. Setting the Force parameter to
True is sometimes necessary in cases in which mirror–write consistency recovery was not
specified for the logical volume. This is especially important after a crash occurs while
writing to the logical volume. It is recommended that mirror write consistency be selected for
most mirrored logical volumes. For more information on mirror write consistency, see the
lvm_createlv and lvm_changelv subroutines.

Parameters

LV_ID Specifies the logical volume name.

Force Specifies which physical copies of a logical partition will be
resynchronized.

Return Values
Upon successful completion, the lvm_resynclv subroutine returns a value of 0.

Error Codes
If the lvm_resynclv subroutine fails, it returns one of the following error codes:

LVM_ALLOCERR A memory allocation error occurred.

LVM_DALVOPN The logical volume reserved by the volume group could not
be opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

LVM_INVALID_MIN_NUM An invalid minor number was received.

LVM_INVALID_PARAM One of the fields passed in did not have a valid value.

1-592 Technical Reference: Base Operating System

LVM_INV_DEVENT A device has a major number that does not correspond to
the volume group being worked in.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_NOTCHARDEV A device is not a raw or character device.

LVM_NOTSYNCED The logical volume could not be completely resynced.

LVM_OFFLINE The volume group is offline and should be online.

LVM_WRTDAERR An error occurred while trying to initialize either the Volume
Group Descriptor Area, the Volume Group Status Area, or
the Mirror–Write Consistency Cache Area on the physical
volume.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_changelv subroutine, lvm_createlv subroutine, lvm_resynclp subroutine,
lvm_resyncpv subroutine, lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-593Base Operating System Runtime Services (A-P)

lvm_resyncpv Subroutine

Purpose
Synchronizes all physical partitions on a physical volume with the related copies of the
logical partition to which they correspond.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_resyncpv (VG_ID, PV_ID, Force)
struct unique_id *VG_ID;
struct unique_id *PV_ID;
int Force;

Description
The lvm_resyncpv subroutine synchronizes all copies of the corresponding logical partition
for each physical partition on the physical volume specified by the PV_ID parameter. The
VG_ID parameter specifies the volume group that contains the physical volume to be
resynced. The volume group must be varied on, or the LVM_OFFLINE error code is
returned.

The Force parameter is used to specify whether all physical copies or only stale physical
copies of a logical partition are to be resynchronized. When the Force parameter is False, a
good physical copy is propagated only to the stale physical copies. This is sufficient for most
logical volumes.

If the Force parameter is True, a good physical copy is chosen and propagated to all other
copies of the logical partition regardless of whether they are stale. Setting the Force
parameter to True is sometimes necessary in cases where mirror write consistency recovery
was not specified for the logical volume. This is especially important after a crash occurs
while writing to the logical volume. It is recommended that mirror write consistency be
selected for most mirrored logical volumes. For more information on mirror–write
consistency, see the lvm_createlv and lvm_changelv subroutines.

Notes:

1. The resync of the physical volume is done by resyncing entire logical partitions to which
any stale physical partitions belong on the physical volume. Because a complete logical
partition is resynced, other physical volumes other than the one specified may be
partially or completely resynced.

2. You must have root user authority to use this subroutine.

Parameters

VG_ID Specifies the volume group that contains the physical volume to be
resynced.

PV_ID Specifies the physical volume.

Force Specifies the physical copies of a logical partition to be synchronized.

Return Values
The lvm_resyncpv subroutine returns a value of 0 upon successful completion.

1-594 Technical Reference: Base Operating System

Error Codes
If the lvm_resyncpv subroutine fails, it returns one of the following error codes:

LVM_ALLOCERR A memory allocation error occurred.

LVM_DALVOPN The logical volume reserved by the volume group could not
be opened.

LVM_FORCEOFF The volume group has been forcefully varied off due to a
loss of quorum.

LVM_INVALID_PARAM One of the fields passed in did not have a valid value.

LVM_INV_DEVENT A device has a major number that does not correspond to
the volume group being worked in.

LVM_MAPFBSY The volume group is currently locked because system
management on the volume group is being done by another
process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_NOTCHARDEV A device is not a raw or character device.

LVM_NOTSYNCED The physical volume could not be completely resynced.

LVM_OFFLINE The volume group is offline and should be online.

LVM_WRTDAERR An error occurred while trying to initialize either the volume
group descriptor area, the volume group status area, or the
mirror write consistency cache area on the physical volume.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_changelv subroutine, lvm_createlv subroutine, lvm_resynclv subroutine,
lvm_resynclp subroutine, lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-595Base Operating System Runtime Services (A-P)

lvm_varyoffvg Subroutine

Purpose
Varies off a volume group.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_varyoffvg (VaryOffVG)
struct varyoffvg *VaryOffVG;

Description
Note: You must have root user authority to use this subroutine.

The lvm_varyoffvg subroutine varies off a specified volume group. All logical volumes in
the volume group to be varied off must be closed.

The varyoffvg structure pointed to by the VaryOffVG parameter is found in the lvm.h file
and defined as follows:

struct varyoffvg

 {

 struct unique_id vg_id;

 long lvs_only;

 } * Varyoffvg;

Field Description

lvs_only Indicates whether the volume group is to be varied off entirely or
whether system management commands, which act on the volume
group, are still permitted. If the lvs_only field is True, then all logical
volumes in the volume group will be varied off, but the volume group is
still available for system management commands that act on the
volume group. If the lvs_only field is False, then the entire volume
group is varied off, and system management commands cannot be
performed on the volume group. The normal value for this flag is False.

vg_id Specifies the volume group to be varied off.

Parameters

VaryOfFVG Points to the varyoffvg structure.

Return Values
Upon successful completion, the lvm_varyoffvg subroutine returns a value of 0.

Error Codes
If the lvm_varyoffvg subroutine fails, it returns one of the following error codes:

LVM_ALLOCERR A memory allocation error occurred.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INV_DEVENT A device entry is invalid and cannot be checked to determine
if it is raw.

1-596 Technical Reference: Base Operating System

LVM_LVOPEN An open logical volume was encountered when it should be
closed.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to write to the mapped file.

LVM_NOTCHARDEV The device specified is not a raw or character device.

LVM_OFFLINE The volume group specified is offline. It must be varied on to
perform this operation.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_varyonvg subroutine.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-597Base Operating System Runtime Services (A-P)

lvm_varyonvg Subroutine

Purpose
Varies a volume group on–line.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>

int lvm_varyonvg (VaryOnVG)
struct varyonvg *VaryOnVG;

Description
Note: You must have root user authority to use this subroutine.

The lvm_varyonvg subroutine varies on the specified volume group. The lvm_varyonvg
subroutine contacts the physical volumes in the volume group and recovers the volume
group descriptor area if necessary.

The varyonvg structure pointed to by the VaryOnVG parameter is found in the lvm.h file
and is defined as follows:

struct varyonvg

 {

 mid_t kmid;

 char *vgname;

 long vg_major;

 struct unique_id vg_id;

 long noopen_lvs;

 long reserved;

 long auto_resync;

 long misspv_von;

 long missname_von;

 short int override;

 struct {

 long num_pvs;

 struct {

 struct unique_id pv_id;

 char *pvname;

 } pv [LVM_MAXPVS];

 } vvg_in;

 struct {

 long num_pvs;

 struct {

 struct unique_id pv_id;

 char *pvname;

 long pv_status;

 } pv [2 * LVM_MAXPVS];

 } vvg_out;

 };

1-598 Technical Reference: Base Operating System

Field Description

kmid Specifies the module ID that identifies the entry point of the logical
volume device driver module.

vgname Specifies the character special file name, which is either the full path
name or a file name that resides in the /dev directory (for example
rvg13) of the volume group device. This device is actually a logical
volume with a minor number reserved for use by the Logical Volume
Manager (LVM).

vg_major Specifies the major number of the volume group to be varied on.

noopen_lvs Contains either a True or False value. If this field is False, the
lvm_varyonvg subroutine builds and sends data structures describing
all logical volumes in the volume group to the logical volume device
driver. This enables those logical volumes to be opened and accessed.
If the noopen_lvs flag is True, then queries to the volume group and
other system management functions can be performed, but opens to
the logical volumes in the volume group are not allowed.
Resynchronization and migrate commands cannot be used because
they require the presence of the logical volumes.

auto_resync Contains either a True or False value. If this field is False, then
resynchronization of physical and logical volumes containing stale
partitions will not be performed and should be initiated by the caller at
some other time. The LVM subroutines lvm_resyncpv and
lvm_resynclv are provided to perform resynchronization of physical
and logical volumes, respectively. The recommended value for the
auto_resync field is True.

pvname Contains the character special file name, which is either the full path
name or a single file name that resides in the /dev directory (for
example, rhdisk0) of the physical volume being installed in the new
volume group.

The vvg_in structure contains input from the caller to the lvm_varyonvg subroutine which
describes the physical volumes in the volume group. The num_pvs field is the number of
entries in the pv array of structures. Each entry in the pv array contains the ID (pv_id) and
name (pvname) of a physical volume in the volume group. Unless the volume group is
already varied on, this array should contain an entry for each physical volume in the volume
group.

The vvg_out structure contains output from the lvm_varyonvg subroutine to the user. This
subroutine describes the status of the physical volumes in the caller’s input list and any
additional physical volumes in the volume group, but not included in the input list. The
num_pvs field is the number of entries in the pv array of structures. Each entry in the pv
array contains the ID (pv_id), the name (pvname), and the status (pv_status) of a
physical volume contained in the input list or the volume group.

The pv_status field contains one of the following values for each physical volume in the
vvg_out structure if either the volume group is varied on successfully or an
LVM_MISSPVNAME or LVM_MISSINGPV error is returned:

LVM_PVACTIVE This physical volume is currently an active member of the
volume group.

LVM_PVMISSING This physical volume is currently unavailable and missing
from the volume group.

LVM_PVREMOVED This physical volume has been temporarily removed from
the volume group by user request or by virtue of its being
missing at the time of a forced vary–on.

1-599Base Operating System Runtime Services (A-P)

LVM_INVPVID This physical volume is not a member of the specified
volume group.

LVM_NONAME This physical volume is a member of the volume group, but
its name was not passed in the input list.

LVM_DUPPVID A physical volume with the same pv_id field value as this
physical volume has already appeared earlier in the input
list.

LVM_LVMRECNMTCH This physical volume needs to be deleted from the volume
group because it has invalid or non matching data in its LVM
record. This may mean that the physical volume has been
installed into another volume group.

LVM_NAMIDNMTCH The pv_id for this physical volume was passed in the input
list, but it does not match the pv_id of the specified physical
volume device name.

For physical volumes in the input list that are found to be members of the specified volume
group, the pv_status field contains the physical volume state of either LVM_PVACTIVE,
LVM_PVMISSING, or LVM_PVREMOVED. If a physical volume with the same pv_id has
appeared previously in the input list, the pv_status field contains LVM_DUPPVID. For
physical volumes in the list which are not members of the volume group, the pv_status
field will be LVM_INVPVID.

In some cases, a physical volume that is a member of the volume group might have a
pv_status field value of LVM_LVMRECNMTCH. This means that the LVM record on the
physical volume has either invalid or nonmatching data and that the physical volume cannot
be brought on line. If this happens, it is most likely because the physical volume has been
installed into another volume group without first deleting it from this one. The user should
now delete this physical volume from this volume group, since it can no longer be accessed
as a member of this volume group.

For physical volumes that are members of the volume group but were not in the input list,
the pv_status field value will be LVM_NONAME or LVM_NAMIDNMTCH. In this case the
pv_id field contains the ID of the physical volume, and the pvname field contains a null
pointer. An error code of LVM_MISSPVNAME is returned to the caller unless the subroutine
was called with a value of TRUE for the missname_von field.

The pv_status field for each physical volume in the vvg_out structure contains one of the
following values if either the LVM_NOQUORUM or LVM_NOVGDAS error is returned.

LVM_PVNOTFND Either the physical volume device could not be opened or
necessary information in the IPL or LVM record could not be
read.

LVM_PVNOTINVG The LVM record for this physical volume indicates that it is
not a member of the specified volume group.

LVM_PVINVG The LVM record for this physical volume indicates that it is a
member of the specified volume group.

It is recommended that the missname_von field contain a value of FALSE for the first call
to the lvm_varyonvg subroutine since a value of TRUE means that any physical volume for
which a name was not passed in the input list is given a state of LVM_PVMISSING. Users
of the volume group cannot have access to that physical volume until a subsequent call is
made to the lvm_varyonvg subroutine for that volume group.

If the misspv_von field is TRUE, the volume group is varied on (provided a quorum exists)
even if some of the physical volumes in the volume group have a state of
LVM_PVMISSING. If the flag is FALSE, the volume group is varied on only if all physical
volumes in the volume group that do not have a state of LVM_PVREMOVED are in the
active state (LVM_PVACTIVE). The value recommended for this flag is TRUE. For any
physical volume with a state of LVM_PVMISSING or LVM_PVREMOVED when the volume

1-600 Technical Reference: Base Operating System

group is varied on, access to that physical volume is not available through LVM. If the state
of a physical volume is changed from LVM_PVREMOVED to LVM_PVACTIVE through a
call to the lvm_changepv subroutine, then that physical volume is available to LVM,
provided that it is not missing at the time.

If the override field is TRUE, an attempt is made to vary on the volume group even if
access to a quorum (or majority) of volume group descriptor area copies or a quorum of the
volume group status area copies cannot be obtained. Provided that there is at least one
valid copy of the descriptor area and at least one valid copy of the status area, the vary–on
of the volume group will proceed with the latest available copies of the volume group
descriptor area and status area.

If the volume group is forcefully varied on by overriding the absence of a quorum, the
PV state of all missing physical volumes is changed to LVM_PVREMOVED. When a
physical volume’s state is changed to LVM_PVREMOVED, any copies of the volume group
descriptor area and status area that it contains are removed. The physical volume no longer
takes part in quorum checking until it is returned to the volume group. Also, the physical
volume cannot become an active member of the volume group until it is returned. See the
lvm_changepv subroutine for more information about removing and returning physical
volumes.

The recommended value for the override field is FALSE. If the user chooses to override
the LVM_NOQUORUM error and artificially force a quorum, LVM does not guarantee the
data integrity of the data contained in the chosen copies of the volume group descriptor
area and status area. For more information about quorums and quorum checking, see the
”Logical Volume Storage Overview” in AIX 4.3 System Management Guide: Operating
System and Devices.

If a physical volume’s state is LVM_PVMISSING when the volume group is varied on, then
access to that physical volume can be made available to the LVM only by again calling the
lvm_varyonvg subroutine for that volume group. When the lvm_varyonvg subroutine is
called for a volume group that is already varied on, a check is made for any physical
volumes in the volume group with a state of LVM_PVMISSING, and an attempt will be made
to open those physical volumes. Any previously missing physical volumes that are
successfully opened are defined to the logical volume device driver, and access to those
physical volumes will again be available through the LVM.

When the lvm_varyonvg subroutine is called for an already varied–on volume group for the
purpose of changing previously missing physical volumes back to the active state, the caller
does not need to pass an entire list of physical volumes in the vvg_in structure. The caller
needs to pass only information for missing physical volumes that the caller is attempting to
return to the LVM_PVACTIVE state.

Parameters

VaryOnVG Points to the varyonvg structure.

Return Values
Upon successful completion, the subroutine returns one or more of the following return
codes:

LVM_SUCCESS The volume group was successfully varied on.

LVM_CHKVVGOUT The volume group was varied on successfully, but there is
information in the vvg_out structure that should be checked.

Error Codes
If the lvm_varyonvg subroutine does not complete successfully, it returns one of the
following error codes:

1-601Base Operating System Runtime Services (A-P)

LVM_ALLOCERR A memory allocation error has occurred.

LVM_INVALID_PARAM A field in the varyongvg structure is invalid or the pointer
structure is invalid.

LVM_INVCONFIG An error occurred while attempting to configure this volume
group into the kernel.

LVM_INV_DEVENT The device entry for a specified device is not valid and
cannot be checked to determine if it is raw.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group
descriptor area used for making changes to the volume
group, could not be opened.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_MISSINGPV The volume group was not varied on because one of the
physical volumes in the volume group has a state of
LVM_PVMISSING. This error will be returned only if the
misspv_von field has a value of FALSE; otherwise, the
volume group is varied on if a quorum is obtained.

LVM_MISSPVNAME The volume group was not varied on because the volume
group contains a physical volume ID for which no name was
passed. The vvg_out structure contains the pv_id field, a
null pointer for the pvname field, and a pv_status field
value of LVM_NONAME for any physical volume in the
volume group for which a name was not passed in the
vvg_in structure. This error is returned only if the
missname_von field has a value of FALSE. Otherwise, the
volume group is varied on if a quorum is obtained.

LVM_NOQUORUM The volume group could not be varied on because access to
a quorum, or majority, of all volume group descriptor areas
or access to a quorum of all volume group status areas
could not be obtained.

LVM_NOTCHARDEV The device specified is not a raw or character device.

LVM_NOVGDAS The volume group could not be varied on because access to
a valid copy of the volume group descriptor area could not
be obtained or access to a valid copy of the volume group
status area could not be obtained.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The lvm_changepv subroutine, lvm_varyoffvg subroutine.

Logical Volume Storage Overview in AIX 4.3 System Management Guide: Operating
System and Devices.

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-602 Technical Reference: Base Operating System

madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp,
move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv,
or itom Subroutine

Purpose
Multiple–precision integer arithmetic.

Library
Berkeley Compatibility Library (libbsd.a)

Syntax
#include <mp.h>
#include <stdio.h>

typedef struct mint {int Length; short *Value} MINT;

madd(a,b,c)
msub(a,b,c)
mult(a,b,c)
mdiv(a,b,q,r)
pow(a,b,m,c)
gcd(a,b,c)
invert(a,b,c)
rpow(a,n,c)
msqrt(a,b,r)
mcmp(a,b)
move(a,b)
min(a)
omin(a)
fmin(a,f)
m_in(a,n,f)
mout(a)
omout(a)
fmout(a,f)
m_out(a,n,f)
MINT *a, *b, *c, *m, *q, *r;
FILE *f;
int n;

sdiv(a,n,q,r)
MINT *a, *q;
short n;
short *r;

MINT *itom(n)

Description
These subroutines perform arithmetic on integers of arbitrary Length. The integers are
stored using the defined type MINT. Pointers to a MINT can be initialized using the itom
subroutine, which sets the initial Value to n. After that, space is managed automatically by
the subroutines.

The madd subroutine, msub subroutine, and mult subroutine assign to c the sum,
difference, and product, respectively, of a and b.

The mdiv subroutine assigns to q and r the quotient and remainder obtained from dividing a
by b.

The sdiv subroutine is like the mdiv subroutine except that the divisor is a short integer n
and the remainder is placed in a short whose address is given as r.

1-603Base Operating System Runtime Services (A-P)

The msqrt subroutine produces the integer square root of a in b and places the remainder
in r.

The rpow subroutine calculates in c the value of a raised to the (regular integral) power n,
while the pow subroutine calculates this with a full multiple precision exponent b and the
result is reduced modulo m.

Note: The pow subroutine is also present in the IEEE Math Library, libm.a, and the
System V Math Library, libmsaa.a. The pow subroutine in libm.a or libmsaa.a may
be loaded in error unless the libbsd.a library is listed before the libm.a or libmsaa.a
library on the command line.

The gcd subroutine returns the greatest common denominator of a and b in c, and the
invert subroutine computes c such that a*c mod b=1, for a and b relatively prime.

The mcmp subroutine returns a negative, 0, or positive integer value when a is less than,
equal to, or greater than b, respectively.

The move subroutine copies a to b. The min subroutine and mout subroutine do decimal
input and output while the omin subroutine and omout subroutine do octal input and output.
More generally, the fmin subroutine and fmout subroutine do decimal input and output
using file f, and the m_in subroutine and m_out subroutine do inputs and outputs with
arbitrary radix n. On input, records should have the form of strings of digits terminated by a
new line; output records have a similar form.

Parameters

Length Specifies the length of an integer.

Value Specifies the initial value to be used in the routine.

a Specifies the first operand of the multiple–precision routines.

b Specifies the second operand of the multiple–precision routines.

c Contains the integer result.

f A pointer of the type FILE that points to input and output files used with
input/output routines.

m Indicates modulo.

n Provides a value used to specify radix with m_in and m_out, power
with rpow, and divisor with sdiv.

q Contains the quotient obtained from mdiv.

r Contains the remainder obtained from mdiv, sdiv, and msqrt.

Error Codes
Error messages and core images are displayed as a result of illegal operations and running
out of memory.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Programs that use the multiple–precision arithmetic functions must link with the libbsd.a
library.

Bases for input and output should be less than or equal to 10.

pow is also the name of a standard math library routine.

Files

/usr/lib/libbsd.a Object code library.

1-604 Technical Reference: Base Operating System

Related Information
The bc command, dc command.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-605Base Operating System Runtime Services (A-P)

madvise Subroutine

Purpose
Advises the system of expected paging behavior.

Library
Standard C Library (libc.a).

Syntax
#include <sys/types.h>
#include <sys/mman.h>

int madvise(addr, len, behav)
caddr_t addr;
size_t len;
int behav;

Description
The madvise subroutine permits a process to advise the system about its expected future
behavior in referencing a mapped file region or anonymous memory region.

Parameters

addr Specifies the starting address of the memory region. Must be a multiple of
the page size returned by the sysconf subroutine using the
_SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the memory region. If the len value is not a
multiple of page size as returned by the sysconf subroutine using the
_SC_PAGE_SIZE value for the Name parameter, the length of the region will
be rounded up to the next multiple of the page size.

behav Specifies the future behavior of the memory region. The following values for
the behav parameter are defined in the /usr/include/sys/mman.h file:

Value Paging Behavior Message

MADV_NORMAL The system provides no further special treatment for
the memory region.

MADV_RANDOM The system expects random page references to that
memory region.

MADV_SEQUENTIAL The system expects sequential page references to
that memory region.

MADV_WILLNEED The system expects the process will need these
pages.

MADV_DONTNEED The system expects the process does not need these
pages.

MADV_SPACEAVAIL The system will ensure that memory resources are
reserved.

Return Values
When successful, the madvise subroutine returns 0. Otherwise, it returns –1 and sets the
errno global variable to indicate the error.

1-606 Technical Reference: Base Operating System

Error Codes
If the madvise subroutine is unsuccessful, the errno global variable can be set to one of the
following values:

EINVAL The behav parameter is invalid.

ENOSPC The behav parameter specifies MADV_SPACEAVAIL and resources
cannot be reserved.

Implementation Specifics
The madvise subroutine has no functionality and is supported for compatibility only. It is
part of Base Operating System (BOS) Runtime.

Related Information
The mmap subroutine, sysconf subroutine.

List of Memory Manipulation Services and Understanding Paging Space Programming
Requirements in AIX General Programming Concepts : Writing and Debugging Programs.

1-607Base Operating System Runtime Services (A-P)

makecontext or swapcontext Subroutine

Purpose
Modifies the context specified by ucp.

Library
(libc.a)

Syntax
#include <ucontext.h>

void makecontext (ucontext_t *ucp, (void *func) (), int argc, ...);
int swapcontext (uncontext_t *oucp, const uncontext_t *ucp);

Description
The makecontext subroutine modifies the context specified by ucp, which has been
initialized using getcontext subroutine. When this context is resumed using swapcontext
subroutine or setcontext subroutine, program execution continues by calling func
parameter, passing it the arguments that follow argc in the makecontext subroutine.

Before a call is made to makecontext subroutine, the context being modified should have a
stack allocated for it. The value of argc must match the number of integer argument passed
to func parameter, otherwise the behavior is undefined.

The uc_link member is used to determine the context that will be resumed when the
context being modified by makecontext subroutine returns. The uc_link member should be
initialized prior to the call to makecontext subroutine.

The swapcontext subroutine function saves the current context in the context structure
pointed to by oucp parameter and sets the context to the context structure pointed to by
ucp.

Parameters

ucp A pointer to a user structure.

oucp A pointer to a user structure.

func A pointer to a function to be called when ucp is restored.

argc The number of arguments being passed to func parameter.

Return Values
On successful completion, swapcontext subroutine returns 0. Otherwise, a value of –1 is
returned and errno is set to indicate the error.

–1 Not successful and the errno global variable is set to one of the following error
codes.

Error Codes

ENOMEM The ucp argument does not have enough stack left to complete the
operation.

Related Information
The exec subroutine, exit subroutine, wait subroutine, getcontext subroutine, sigaction
subroutine, and sigprocmask subroutine.

1-608 Technical Reference: Base Operating System

malloc, free, realloc, calloc, mallopt, mallinfo, alloca, or valloc
Subroutine

Purpose
Provides a memory allocator.

Libraries
Berkeley Compatibility Library (libbsd.a)

Standard C Library (libc.a)

Syntax
#include <stdlib.h>

void *malloc (Size)
size_t Size;

void free (Pointer)
void *Pointer;

void *realloc (Pointer, Size)
void *Pointer;
size_t Size;

void *calloc (NumberOfElements, ElementSize)
size_t NumberOfElements;
size_t ElementSize;

char *alloca (Size)
int Size;

void *valloc (Size)
size_t Size;

#include <malloc.h>
#include <stdlib.h>

int mallopt (Command, Value)
int Command;
int Value;

struct mallinfo mallinfo()

Description
The malloc and free subroutines provide a general–purpose memory allocation package.

The malloc subroutine returns a pointer to a block of memory of at least the number of
bytes specified by the Size parameter. The block is aligned so that it can be used for any
type of data. Undefined results occur if the space assigned by the malloc subroutine is
overrun.

The free subroutine frees a block of memory previously allocated by the malloc subroutine.
Undefined results occur if the Pointer parameter is not a valid pointer. If the Pointer
parameter is a null value, no action will occur.

1-609Base Operating System Runtime Services (A-P)

The realloc subroutine changes the size of the block of memory pointed to by the Pointer
parameter to the number of bytes specified by the Size parameter and returns a new pointer
to the block. The pointer specified by the Pointer parameter must have been created with
the malloc, calloc, or realloc subroutines and not been deallocated with the free or realloc
subroutines. Undefined results occur if the Pointer parameter is not a valid pointer

The contents of the block returned by the realloc subroutine remain unchanged up to the
lesser of the old and new sizes. If a large enough block of memory is not available, the
realloc subroutine acquires a new area and moves the data to the new space. The realloc
subroutine supports the old realloc protocol wherein the realloc protocol returns a pointer
to a previously freed block of memory if that block satisfies the realloc request. The realloc
subroutine searches a list, maintained by the free subroutine, of the ten most recently freed
blocks of memory. If the list does not contain a memory block that satisfies the specified
Size parameter, the realloc subroutine calls the malloc subroutine. This list is cleared by
calls to the malloc, calloc, valloc, or realloc subroutines.

The calloc subroutine allocates space for an array with the number of elements specified by
the NumberOfElements parameter. The ElementSize parameter specifies in bytes each
element, and initializes space to zeros. The order and contiguity of storage allocated by
successive calls to the calloc subroutine is unspecified. The pointer returned points to the
first (lowest) byte address of the allocated space.

The alloca subroutine allocates the number of bytes of space specified by the Size
parameter in the stack frame of the caller. This space is automatically freed when the
subroutine that called the alloca subroutine returns to its caller.

The valloc subroutine has the same effect as malloc, except that the allocated memory is
aligned to a multiple of the value returned by sysconf(_ SC_PAGESIZE).

The mallopt and mallinfo subroutines are provided for source–level compatibility with the
System V malloc subroutine. Nothing done with the mallopt subroutine affects how
memory is allocated by the system.

The mallinfo subroutine can be used to obtain information about the heap managed by the
malloc subroutine. Refer to the malloc.h file for details of the mallinfo structure.

Note: AIX Version 3 uses a delayed paging slot allocation technique for storage
allocated to applications. When storage is allocated to an application with a subroutine
such as malloc, no paging space is assigned to that storage until the storage is
referenced. This technique is useful for applications that allocate large sparse memory
segments. However, this technique may affect portability of applications that allocate
very large amounts of memory. If the application expects that calls to malloc will fail
when there is not enough backing storage to support the memory request, the
application may allocate too much memory. When this memory is referenced later, the
machine quickly runs out of paging space and the operating system kills processes so
that the system is not completely exhausted of virtual memory.The application that
allocates memory must ensure that backing storage exists for the storage being
allocated.To deal with this style of allocation, sample code is provided in
/usr/lpp/bos/samples.

Parameters

Size Specifies a number of bytes of memory.

Pointer Points to the block of memory that was returned by the malloc or
calloc subroutines. The Pointer parameter points to the first
(lowest) byte address of the block.

1-610 Technical Reference: Base Operating System

Command Specifies a mallopt subroutine command. If M_DISCLAIM is
used, then the paging space and physical memory in use by freed
malloc space is returned to the system resource pool. If they are
needed to fullfill a malloc request, they will be allocated to the
process as needed. The address space is not altered. This will
only release whole pages at a time.

Value Specifies the value to which the M_MXFAST, M_NLBLKS,
M_GRAIN, or M_KEEP label is to be set. These constants are
provided only for source code compatibility. They do not affect the
operation of subsequent calls to the malloc subroutine.

NumberOfElements Specifies the number of elements in the array.

ElementSize Specifies the size of each element in the array.

Return Values
Each of the allocation subroutines returns a pointer to space suitably aligned for storage of
any type of object. Cast the pointer to the pointer–to–element type before using it.

The malloc, realloc, calloc , and valloc subroutines return a null pointer if there is no
available memory, or if the memory arena has been corrupted by being stored outside the
bounds of a block. When this happens, the block pointed to by the Pointer parameter may
be destroyed.

If the malloc or valloc subroutine is called with a size of 0, the subroutine returns a null
pointer. If the realloc subroutine is called with a nonnull pointer and a size of 0, the realloc
subroutine attempts to free the pointer and return a null pointer. If the realloc subroutine is
called with a null pointer, it calls the malloc subroutine for the specified size and returns the
null pointer.

Error Codes
When the memory allocation subroutines are unsuccessful, the global variable errno may
be set to the following values:

EINVAL Indicates a call has requested 0 bytes.

ENOMEM Indicates that not enough storage space was available.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The valloc subroutine, found in many BSD systems, is supported as a compatibility
interface in the Berkeley Compatibility Library (libbsd.a). The valloc subroutine calls the
malloc subroutine and automatically page–aligns requests that are greater than one page.

The valloc subroutine, found in many BSD systems, is supported as a compatibility
interface in the Berkeley Compatibility Library (libbsd.a). The valloc subroutine calls the
malloc subroutine and automatically page–aligns requests that are greater than one page.
The only difference between the valloc subroutine in the libbsd.a library and the one in the
standard C library (described above) is in the value returned when the size parameter is
zero.

The following is the syntax for the valloc subroutine:

char *valloc (Size)
unsigned int Size;

1-611Base Operating System Runtime Services (A-P)

Related Information
The _end, _etext, or _edata identifier.

The #pragma compiler instruction.

Subroutines Overview and Understanding System Memory Allocation in AIX General
Programming Concepts : Writing and Debugging Programs.

1-612 Technical Reference: Base Operating System

MatchAllAuths, , MatchAnyAuths, or MatchAnyAuthsList
Subroutine

Purpose
Compare authorizations.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int MatchAllAuths(CommaListOfAuths)
char *CommaListOfAuths;

int MatchAllAuthsList(CommaListOfAuths, NSListOfAuths)
char *CommaListOfAuths;
char *NSListOfAuths;

int MatchAnyAuths(CommaListOfAuths)
char *CommaListOfAuths;

int MatchAnyAuthsList(CommaListOfAuths, NSListOfAuths)
char *CommaListOfAuths;
char *NSListOfAuths;

Description
The MatchAllAuthsList subroutine compares the CommaListOfAuths against the
NSListOfAuths. It returns a non–zero value if all the authorizations in CommaListOfAuths
are contained in NSListOfAuths. The MatchAllAuths subroutine calls the
MatchAllAuthsList subroutine passing in the results of the GetUserAuths subroutine in
place of NSListOfAuths. If NSListOfAuths contains the OFF keyword, MatchAllAuthsList
will return a zero value. If NSListOfAuths contains the ALL keyword and not the OFF
keyword, MatchAllAuthsList will return a non–zero value.

The MatchAnyAuthsList subroutine compares the CommaListOfAuths against the
NSListOfAuths. It returns a non–zero value if one or more of the authorizations in
CommaListOfAuths are contained in NSListOfAuths. The MatchAnyAuths subroutine calls
the MatchAnyAuthsList subroutine passing in the results of the GetUserAuths subroutine
in place of NSListOfAuths. If NSListOfAuths contains the OFF keyword,
MatchAnyAuthsList will return a zero value. If NSListOfAuths contains the ALL keyword
and not the OFF keyword, MatchAnyAuthsList will return a non–zero value.

Parameters

CommaListOfAuths Specifies one or more authorizations, each separated by a comma.

NSListOfAuths Specifies zero or more authorizations. Each authorization is null
terminated. The last entry in the list must be a null string.

Return Values
The subroutines return a non–zero value if a proper match was found. Otherwise, they will
return zero. If an error occurs, the subroutines will return zero and set errno to indicate the
error. If the subroutine returns zero and no error occurred, errno is set to zero.

1-613Base Operating System Runtime Services (A-P)

matherr Subroutine

Purpose
Math error handling function.

Library
System V Math Library (libmsaa.a)

Syntax
#include <math.h>

int matherr (x)
struct exception *x;

Description
The matherr subroutine is called by math library routines when errors are detected.

You can use matherr or define your own procedure for handling errors by creating a
function named matherr in your program. Such a user–designed function must follow the
same syntax as matherr. When an error occurs, a pointer to the exception structure will be
passed to the user–supplied matherr function. This structure, which is defined in the
math.h file, includes:

int type;

char *name;

double arg1, arg2, retval;

Parameters

type Specifies an integer describing the type of error that has occurred from
the following list defined by the math.h file:

DOMAIN Argument domain error

SING Argument singularity

OVERFLOW Overflow range error

UNDERFLOW Underflow range error

TLOSS Total loss of significance

PLOSS Partial loss of significance.

name Points to a string containing the name of the routine that caused the
error.

arg1 Points to the first argument with which the routine was invoked.

arg2 Points to the second argument with which the routine was invoked.

retval Specifies the default value that is returned by the routine unless the
user’s matherr function sets it to a different value.

Return Values
If the user’s matherr function returns a non–zero value, no error message is printed, and
the errno global variable will not be set.

Error Codes
If the function matherr is not supplied by the user, the default error–handling procedures,
described with the math library routines involved, will be invoked upon error. In every case,
the errno global variable is set to EDOM or ERANGE and the program continues.

1-614 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The bessel: j0, j1, jn, y0, y1, yn subroutine, exp, expm1, log, log10, log1p, pow
subroutine, lgamma subroutine, hypot, cabs subroutine, sin, cos, tan, asin, acos,
atan,atan2 subroutine, sinh, cosh, tanh subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-615Base Operating System Runtime Services (A-P)

mblen Subroutine

Purpose
Determines the length in bytes of a multibyte character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int mblen(MbString, Number)
const char *MbString;
size_t Number;

Description
The mblen subroutine determines the length, in bytes, of a multibyte character.

Parameters

Mbstring Points to a multibyte character string.

Number Specifies the maximum number of bytes to consider.

Return Values
The mblen subroutine returns 0 if the MbString parameter points to a null character. It
returns –1 if a character cannot be formed from the number of bytes specified by the
Number parameter. If MbString is a null pointer, 0 is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbslen subroutine, mbstowcs subroutine, mbtowc subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Multibyte Code and Wide Character Code Conversion Subroutines in AIX
General Programming Concepts : Writing and Debugging Programs.

1-616 Technical Reference: Base Operating System

mbrlen Subroutine

Purpose
Get number of bytes in a character (restartable).

Library
Standard Library (libc.a)

Syntax
#include <wchar.h>

size_t mbrlen (const char *s, size_t n, mbstate_t *ps)

Description
If s is not a null pointer, mbrlen determines the number of bytes constituting the character
pointed to by s. It is equivalent to:

 mbstate_t internal;

 mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

 If ps is a null pointer, the mbrlen function uses its own internal mbstate_t object, which is
initialized at program startup to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps is used to completely describe the current conversion state of the
associated character sequence. The implementation will behave as if no function defined in
this specification calls mbrlen.

 The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
The mbrlen function returns the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to
the null wide–character

positive If the next n or fewer bytes complete a valid character; the value
returned is the number of bytes that complete the character.

(size_t)–2 If the next n bytes contribute to an incomplete but potentially valid
character, and all n bytes have been processed. When n has at least
the value of the MB_CUR_MAX macro, this case can only occur if s
points at a sequence of redundant shift sequences (for implementations
with state–dependent encodings).

 (size_t)–1 If an encoding error occurs, in which case the next n or fewer bytes do
not contribute to a complete and valid character. In this case, EILSEQ is
stored in errno and the conversion state is undefined.

Error Codes
The mbrlen function may fail if:

EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

Implementation Specifics
 This subroutine is part of Base Operating System (BOS) subroutine.

1-617Base Operating System Runtime Services (A-P)

Related Information
The mbsinit subroutine.

The mbrtowc subroutine.

The wchar.h file.

1-618 Technical Reference: Base Operating System

mbrtowc Subroutine

Purpose
Convert a character to a wide–character code (restartable)

Library
Standard Library (libc.a)

Syntax
#include <wchar.h>

size_t mbrtowc (wchar_t * pwc, const char * s, size_t n,
mbstate_t * ps) ;

Description
If s is a null pointer, the mbrtowc function is equivalent to the call:

mbrtowc(NULL, ’’’’, 1, ps)

 In this case, the values of the arguments pwc and n are ignored.

 If s is not a null pointer, the mbrtowc function inspects at most n bytes beginning at the
byte pointed to by s to determine the number of bytes needed to complete the next
character (including any shift sequences). If the function determines that the next character
is completed, it determines the value of the corresponding wide–character and then, if pwc
is not a null pointer, stores that value in the object pointed to by pwc. If the corresponding
wide–character is the null wide–character, the resulting state described is the initial
conversion state.

 If ps is a null pointer, the mbrtowc function uses its own internal mbstate_t object, which is
initialized at program startup to the initial conversion state. Otherwise, the mbstate_t object
pointed to by ps is used to completely describe the current conversion state of the
associated character sequence. The implementation will behave as if no function defined in
this specification calls mbrtowc.

 The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
The mbrtowc function returns the first of the following that applies:

0 If the next n or fewer bytes complete the character that corresponds to
the null wide–character (which is the value stored).

positive If the next n or fewer bytes complete a valid character (which is the
value stored); the value returned is the number of bytes that complete
the character.

(size_t)–2 If the next n bytes contribute to an incomplete but potentially valid
character, and all n bytes have been processed (no value is stored).
When n has at least the value of the MB_CUR_MAX macro, this case
can only occur if s points at a sequence of redundant shift sequences
(for implementations with state–dependent encodings).

 (size_t)–1 If an encoding error occurs, in which case the next n or fewer bytes do
not contribute to a complete and valid character (no value is stored). In
this case, EILSEQ is stored in errno and the conversion state is
undefined.

1-619Base Operating System Runtime Services (A-P)

Error Codes
The mbrtowc function may fail if:

EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The mbsinit subroutine.

The wchar.h file.

1-620 Technical Reference: Base Operating System

mbsadvance Subroutine

Purpose
Advances to the next multibyte character.

Note: The mbsadvance subroutine is specific to the manufacturer. It is not defined in
the POSIX, ANSI, or X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbsadvance (S)
const char *S;

Description
The mbsadvance subroutine locates the next character in a multibyte character string. The
LC_CTYPE category affects the behavior of the mbsadvance subroutine.

Parameters

S Contains a multibyte character string.

Return Values
If the S parameter is not a null pointer, the mbsadvance subroutine returns a pointer to the
next multibyte character in the string pointed to by the S parameter. The character at the
head of the string pointed to by the S parameter is skipped. If the S parameter is a null
pointer or points to a null string, a null pointer is returned.

Examples
To find the next character in a multibyte string, use the following:

#include <mbstr.h>

#include <locale.h>

#include <stdlib.h>

main()

{

 char *mbs, *pmbs;

 (void) setlocale(LC_ALL, ””);

 /*

 ** Let mbs point to the beginning of a multi–byte string.

 */

 pmbs = mbs;

 while(pmbs){

 pmbs = mbsadvance(mbs);

 /* pmbs points to the next multi–byte character

 ** in mbs */

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-621Base Operating System Runtime Services (A-P)

Related Information
The mbsinvalid subroutine.

National Language Support Overview for Programming, Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-622 Technical Reference: Base Operating System

mbscat, mbscmp, or mbscpy Subroutine

Purpose
Performs operations on multibyte character strings.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbscat(MbString1, MbString2)
char *MbString1, *MbString2;

int mbscmp(MbString1, MbString2)
char *MbString1, *MbString2;

char *mbscpy(MbString1, MbString2)
char *MbString1, *MbString2;

Description
The mbscat, mbscmp, and mbscpy subroutines operate on null–terminated multibyte
character strings.

The mbscat subroutine appends multibyte characters from the MbString2 parameter to the
end of the MbString1 parameter, appends a null character to the result, and returns
MbString1.

The mbscmp subroutine compares multibyte characters based on their collation weights as
specified in the LC_COLLATE category. The mbscmp subroutine compares the MbString1
parameter to the MbString2 parameter, and returns an integer greater than 0 if MbString1 is
greater than MbString2. It returns 0 if the strings are equivalent and returns an integer less
than 0 if MbString1 is less than MbString2.

The mbscpy subroutine copies multibyte characters from the MbString2 parameter to the
MbString1 parameter and returns MbString1. The copy operation terminates with the
copying of a null character.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The mbsncat, mbsncmp, mbsncpy subroutine, wcscat, wcscmp, wcscpy subroutine.

National Language Support Overview for Programming, Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-623Base Operating System Runtime Services (A-P)

mbschr Subroutine

Purpose
Locates a character in a multibyte character string.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbschr(MbString, MbCharacter)
char *MbString;
mbchar_t MbCharacter;

Description
The mbschr subroutine locates the first occurrence of the value specified by the
MbCharacter parameter in the string pointed to by the MbString parameter. The
MbCharacter parameter specifies a multibyte character represented as an integer. The
terminating null character is considered to be part of the string.

The LC_CTYPE category affects the behavior of the mbschr subroutine.

Parameters

MbString Points to a multibyte character string.

MbCharacter Specifies a multibyte character represented as an integer.

Return Values
The mbschr subroutine returns a pointer to the value specified by the MbCharacter
parameter within the multibyte character string, or a null pointer if that value does not occur
in the string.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbspbrk subroutine, mbsrchr subroutine, mbstomb subroutine, wcschr subroutine.

National Language Support Overview for Programming, Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-624 Technical Reference: Base Operating System

mbsinit Subroutine

Purpose
Determine conversion object status.

Library
Standard Library (libc.a)

Syntax
#include <wchar.h>

int mbsinit (const mbstate_t * p) ;

Description
If ps is not a null pointer, the mbsinit function determines whether the object pointed to by
ps describes an initial conversion state.

Return Values
The mbsinit function returns non–zero if ps is a null pointer, or if the pointed–to object
describes an initial conversion state; otherwise, it returns zero.

If an mbstate_t object is altered by any of the functions described as restartable , and
is then used with a different character sequence, or in the other conversion direction, or with
a different LC_CTYPE category setting than on earlier function calls, the behavior is
undefined.

Implementation Specifics
The mbstate_t object is used to describe the current conversion state from a particular
character sequence to a wide–character sequence (or vice versa) under the rules of a
particular setting of the LC_CTYPE category of the current locale.

 The initial conversion state corresponds, for a conversion in either direction, to the
beginning of a new character sequence in the initial shift state. A zero valued mbstate_t
object is at least one way to describe an initial conversion state. A zero valued mbstate_t
object can be used to initiate conversion involving any character sequence, in any
LC_CTYPE category setting.

Related Information
The mbrlen subroutine, mbrtowc subroutine, wcrtomb subroutine, mbsrtowcs subroutine,
wcsrtombs subroutine.

The wchar.h file.

1-625Base Operating System Runtime Services (A-P)

mbsinvalid Subroutine

Purpose
Validates characters of multibyte character strings.

Note: The mbsinvalid subroutine is specific to the manufacturer. It is not defined in the
POSIX, ANSI, or X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbsinvalid (S)
const char *S;

Description
The mbsinvalid subroutine examines the string pointed to by the S parameter to determine
the validity of characters. The LC_CTYPE category affects the behavior of the mbsinvalid
subroutine.

Parameters

S Contains a multibyte character string.

Return Values
The mbsinvalid subroutine returns a pointer to the byte following the last valid multibyte
character in the S parameter. If all characters in the S parameter are valid multibyte
characters, a null pointer is returned. If the S parameter is a null pointer, the behavior of the
mbsinvalid subroutine is unspecified.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbsadvance subroutine.

National Language Support Overview for Programming, Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-626 Technical Reference: Base Operating System

mbslen Subroutine

Purpose
Determines the number of characters (code points) in a multibyte character string.

Note: The mbslen subroutine is specific to the manufacturer. It is not defined in the
POSIX, ANSI, or X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

size_t mbslen(MbString)
char *mbs;

Description
The mbslen subroutine determines the number of characters (code points) in a multibyte
character string. The LC_CTYPE category affects the behavior of the mbslen subroutine.

Parameters

MbString Points to a multibyte character string.

Return Values
The mbslen subroutine returns the number of multibyte characters in a multibyte character
string. It returns 0 if the MbString parameter points to a null character or if a character
cannot be formed from the string pointed to by this parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mblen subroutine, mbstowcs subroutine, mbtowc subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Multibyte Code and Wide Character Code Conversion Subroutines in AIX
General Programming Concepts : Writing and Debugging Programs.

1-627Base Operating System Runtime Services (A-P)

mbsncat, mbsncmp, or mbsncpy Subroutine

Purpose
Performs operations on a specified number of null–terminated multibyte characters.

Note: These subroutines are specific to the manufacturer. They are not defined in the
POSIX, ANSI, or X/Open standards. Use of these subroutines may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbsncat(MbString1, MbString2, Number)
char *MbString1, *MbString2;
size_t Number;

int mbsncmp(MbString1, MbString2, Number)
char *MbString1, *MbString2;
size_t Number;

char *mbsncpy(MbString1, MbString2, Number)
char *MbString1, *MbString2;
size_t Number;

Description
The mbsncat, mbsncmp, and mbsncpy subroutines operate on null–terminated multibyte
character strings.

The mbsncat subroutine appends up to the specified maximum number of multibyte
characters from the MbString2 parameter to the end of the MbString1 parameter, appends a
null character to the result, and then returns the MbString1 parameter.

The mbsncmp subroutine compares the collation weights of multibyte characters. The
LC_COLLATE category specifies the collation weights for all characters in a locale. The
mbsncmp subroutine compares up to the specified maximum number of multibyte
characters from the MbString1 parameter to the MbString2 parameter. It then returns an
integer greater than 0 if MbString1 is greater than MbString2. It returns 0 if the strings are
equivalent. It returns an integer less than 0 if MbString1 is less than MbString2.

The mbsncpy subroutine copies up to the value of the Number parameter of multibyte
characters from the MbString2 parameter to the MbString1 parameter and returns
MbString1. If MbString2 is shorter than Number multi–byte characters, MbString1 is padded
out to Number characters with null characters.

Parameters

MbString1 Contains a multibyte character string.

MbString2 Contains a multibyte character string.

Number Specifies a maximum number of characters.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The mbscat subroutine, mbscmp subroutine, mbscpy subroutine, wcsncat subroutine,
wcsncmp subroutine, wcsncpy subroutine.

National Language Support Overview for Programming, Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-628 Technical Reference: Base Operating System

mbspbrk Subroutine

Purpose
Locates the first occurrence of multibyte characters or code points in a string.

Note: The mbspbrk subroutine is specific to the manufacturer. It is not defined in the
POSIX, ANSI, or X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbspbrk(MbString1, MbString2)
char *MbString1, *MbString2;

Description
The mbspbrk subroutine locates the first occurrence in the string pointed to by the
MbString1 parameter, of any character of the string pointed to by the MbString2 parameter.

Parameters

MbString1 Points to the string being searched.

MbString2 Pointer to a set of characters in a string.

Return Values
The mbspbrk subroutine returns a pointer to the character. Otherwise, it returns a null
character if no character from the string pointed to by the MbString2 parameter occurs in the
string pointed to by the MbString1 parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbschr subroutine, mbsrchr subroutine, mbstomb subroutine, wcspbrk subroutine,
wcswcs subroutine.

National Language Support Overview for Programming, Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-629Base Operating System Runtime Services (A-P)

mbsrchr Subroutine

Purpose
Locates a character or code point in a multibyte character string.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

char *mbsrchr(MbString, MbCharacter)
char *MbString;
int MbCharacter;

Description
The mbschr subroutine locates the last occurrence of the MbCharacter parameter in the
string pointed to by the MbString parameter. The MbCharacter parameter is a multibyte
character represented as an integer. The terminating null character is considered to be part
of the string.

Parameters

MbString Points to a multibyte character string.

MbCharacter Specifies a multibyte character represented as an integer.

Return Values
The mbsrchr subroutine returns a pointer to the MbCharacter parameter within the
multibyte character string. It returns a null pointer if MbCharacter does not occur in the
string.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbschr subroutine, mbspbrk subroutine, mbstomb subroutine, wcsrchr subroutine.

National Language Support Overview for Programming, Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-630 Technical Reference: Base Operating System

mbsrtowcs Subroutine

Purpose
Convert a character string to a wide–character string (restartable).

Library
Standard Library (libc.a)

Syntax
#include <wchar.h>

size_t mbsrtowcs ((wchar_t * dst, const char ** src, size_t len,
mbstate_t * ps) ;

Description
The mbsrtowcs function converts a sequence of characters, beginning in the conversion
state described by the object pointed to by ps, from the array indirectly pointed to by src into
a sequence of corresponding wide–characters. If dst is not a null pointer, the converted
characters are stored into the array pointed to by dst. Conversion continues up to and
including a terminating null character, which is also stored. Conversion stops early in either
of the following cases:

• When a sequence of bytes is encountered that does not form a valid character.

• When len codes have been stored into the array pointed to by dst (and dst is not a null
pointer).

Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer
(if conversion stopped due to reaching a terminating null character) or the address just past
the last character converted (if any). If conversion stopped due to reaching a terminating
null character, and if dst is not a null pointer, the resulting state described is the initial
conversion state.

If ps is a null pointer, the mbsrtowcs function uses its own internal mbstate_t object, which
is initialised at program startup to the initial conversion state. Otherwise, the mbstate_t
object pointed to by ps is used to completely describe the current conversion state of the
associated character sequence. The implementation will behave as if no function defined in
this specification calls mbsrtowcs.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
If the input conversion encounters a sequence of bytes that do not form a valid character, an
encoding error occurs. In this case, the mbsrtowcs function stores the value of the macro
EILSEQ in errno and returns (size_t)–1); the conversion state is undefined. Otherwise, it
returns the number of characters successfully converted, not including the terminating null
(if any).

Error Codes
The mbsrtowcs function may fail if:

EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

1-631Base Operating System Runtime Services (A-P)

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The mbsinit subroutine.

The mbrtowc subroutine.

The wchar.h file.

1-632 Technical Reference: Base Operating System

mbstomb Subroutine

Purpose
Extracts a multibyte character from a multibyte character string.

Note: The mbstomb subroutine is specific to the manufacturer. It is not defined in the
POSIX, ANSI, or X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

mbchar_t mbstomb (MbString)
const char *MbString;

Description
The mbstomb subroutine extracts the multibyte character pointed to by the MbString
parameter from the multibyte character string. The LC_CTYPE category affects the
behavior of the mbstomb subroutine.

Parameters

MbString Contains a multibyte character string.

Return Values
The mbstomb subroutine returns the code point of the multibyte character as a mbchar_t
data type. If an unusable multibyte character is encountered, a value of 0 is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbschr subroutine, mbspbrk subroutine, mbsrchr subroutine.

National Language Support Overview for Programming, Subroutines Overview in AIX
General Programming Concepts : Writing and Debugging Programs.

1-633Base Operating System Runtime Services (A-P)

mbstowcs Subroutine

Purpose
Converts a multibyte character string to a wide character string.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

size_t mbstowcs(WcString, String, Number)
wchar_t *WcString;
const char *String;
size_t Number;

Description
The mbstowcs subroutine converts the sequence of multibyte characters pointed to by the
String parameter to wide characters and places the results in the buffer pointed to by the
WcString parameter. The multibyte characters are converted until a null character is
reached or until the number of wide characters specified by the Number parameter have
been processed.

Parameters

WcString Points to the area where the result of the conversion is stored.

String Points to a multibyte character string.

Number Specifies the maximum number of wide characters to be converted.

Return Values
The mbstowcs subroutine returns the number of wide characters converted, not including a
null terminator, if any. If an invalid multibyte character is encountered, a value of –1 is
returned. The WcString parameter does not include a null terminator if the value Number is
returned.

If WcString is a null wide character pointer, the mbstowcs subroutine returns the number of
elements required to store the wide character codes in an array.

Error Codes
The mbstowcs subroutine fails if the following occurs:

EILSEQ Invalid byte sequence is detected.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mblen subroutine, mbslen subroutine, mbtowc subroutine, wcstombs subroutine,
wctomb subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Multibyte Code and Wide Character Code Conversion Subroutines in AIX
General Programming Concepts : Writing and Debugging Programs.

1-634 Technical Reference: Base Operating System

mbswidth Subroutine

Purpose
Determines the number of multibyte character string display columns.

Note: The mbswidth subroutine is specific to this manufacturer. It is not defined in the
POSIX, ANSI, or X/Open standards. Use of this subroutine may affect portability.

Library
Standard C Library (libc.a)

Syntax
#include <mbstr.h>

int mbswidth (MbString, Number)
const char *MbString;
size_t Number;

Description
The mbswidth subroutine determines the number of display columns required for a
multibyte character string.

Parameters

MbString Contains a multibyte character string.

Number Specifies the number of bytes to read from the s parameter.

Return Values
The mbswidth subroutine returns the number of display columns that will be occupied by
the MbString parameter if the number of bytes (specified by the Number parameter) read
from the MbString parameter form valid multibyte characters. If the MbString parameter
points to a null character, a value of 0 is returned. If the MbString parameter does not point
to valid multibyte characters, –1 is returned. If the MbString parameter is a null pointer, the
behavior of the mbswidth subroutine is unspecified.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcswidth subroutine, wcwidth subroutine.

National Language Support Overview for Programming in AIX General Programming
Concepts : Writing and Debugging Programs.

1-635Base Operating System Runtime Services (A-P)

mbtowc Subroutine

Purpose
Converts a multibyte character to a wide character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int mbtowc (WideCharacter, String, Number)
wchar_t *WideCharacter;
const char *String;
size_t Number;

Description
The mbtowc subroutine converts a multibyte character to a wide character and returns the
number of bytes of the multibyte character.

The mbtowc subroutine determines the number of bytes that comprise the multibyte
character pointed to by the String parameter. It then converts the multibyte character to a
corresponding wide character and, if the WideCharacter parameter is not a null pointer,
places it in the location pointed to by the WideCharacter parameter. If the WideCharacter
parameter is a null pointer, the mbtowc subroutine returns the number of converted bytes
but does not change the WideCharacter parameter value. If the WideCharacter parameter
returns a null value, the multibyte character is not converted.

Parameters

WideCharacter Specifies the location where a wide character is to be placed.

String Specifies a multibyte character.

Number Specifies the maximum number of bytes of a multibyte character.

Return Values
The mbtowc subroutine returns a value of 0 if the String parameter is a null pointer. The
subroutine returns a value of –1 if the bytes pointed to by the String parameter do not form a
valid multibyte character before the number of bytes specified by the Number parameter (or
fewer) have been processed. It then sets the errno global variable to indicate the error.
Otherwise, the number of bytes comprising the multibyte character is returned.

Error Codes
The mbtowc subroutine fails if the following occurs:

EILSEQ Invalid byte sequence is detected.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mblen subroutine, mbslen subroutine, mbstowcs subroutine, wcstombs subroutine,
wctomb subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Multibyte Code, Wide Character Code Conversion Subroutines in AIX
General Programming Concepts : Writing and Debugging Programs.

1-636 Technical Reference: Base Operating System

memccpy, memchr, memcmp, memcpy, memset or memmove
Subroutine

Purpose
Performs memory operations.

Library
Standard C Library (libc.a)

Syntax
#include <memory.h>

void *memccpy (Target, Source, C, N)
void *Target;
const void *Source;
int C;
size_t N;

void *memchr (S, C, N)
const void *S;
int C;
size_t N;

int memcmp (Target, Source, N)
const void *Target, *Source;
size_t N;

void *memcpy (Target, Source, N)
void *Target;
const void *Source;
size_t N;

void *memset (S, C, N)
void *S;
int C;
size_t N;

void *memmove (Target, Source, N)
void *Source;
const void *Target;
size_t N;

Description
The memory subroutines operate on memory areas. A memory area is an array of
characters bounded by a count. The memory subroutines do not check for the overflow of
any receiving memory area. All of the memory subroutines are declared in the memory.h
file.

The memccpy subroutine copies characters from the memory area specified by the Source
parameter into the memory area specified by the Target parameter. The memccpy
subroutine stops after the first character specified by the C parameter (converted to the
unsigned char data type) is copied, or after N characters are copied, whichever comes
first. If copying takes place between objects that overlap, the behavior is undefined.

The memcmp subroutine compares the first N characters as the unsigned char data type
in the memory area specified by the Target parameter to the first N characters as the
unsigned char data type in the memory area specified by the Source parameter.

The memcpy subroutine copies N characters from the memory area specified by the
Source parameter to the area specified by the Target parameter and then returns the value
of the Target parameter.

1-637Base Operating System Runtime Services (A-P)

The memset subroutine sets the first N characters in the memory area specified by the S
parameter to the value of character C and then returns the value of the S parameter.

Like the memcpy subroutine, the memmove subroutine copies N characters from the
memory area specified by the Source parameter to the area specified by the Target
parameter. However, if the areas of the Source and Target parameters overlap, the move is
performed nondestructively, proceeding from right to left.

Parameters

Target Points to the start of a memory area.

Source Points to the start of a memory area.

C Specifies a character to search.

N Specifies the number of characters to search.

S Points to the start of a memory area.

Return Values
The memccpy subroutine returns a pointer to character C after it is copied into the area
specified by the Target parameter, or a null pointer if the C character is not found in the first
N characters of the area specified by the Source parameter.

The memchr subroutine returns a pointer to the first occurrence of the C character in the
first N characters of the memory area specified by the S parameter, or a null pointer if the C
character is not found.

The memcmp subroutine returns the following values:

Less than 0 If the value of the Target parameter is less than the values of the
Source parameter.

Equal to 0 If the value of the Target parameter equals the value of the Source
parameter.

Greater than 0 If the value of the Target parameter is greater than the value of the
Source parameter.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The memccpy subroutine is not in the ANSI C library.

Related Information
The swab subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-638 Technical Reference: Base Operating System

mincore Subroutine

Purpose
Determines residency of memory pages.

Library
Standard C Library (libc.a).

Syntax
int mincore (addr, len, *vec)
caddr_t addr;
size_t len;
char *vec;

Description
The mincore subroutine returns the primary–memory residency status for regions created
from calls made to the mmap subroutine. The status is returned as a character for each
memory page in the range specified by the addr and len parameters. The least significant
bit of each character returned is set to 1 if the referenced page is in primary memory.
Otherwise, the bit is set to 0. The settings of the other bits in each character are undefined.

Parameters

addr Specifies the starting address of the memory pages whose residency is
to be determined. Must be a multiple of the page size returned by the
sysconf subroutine using the _SC_PAGE_SIZE value for the Name
parameter.

len Specifies the length, in bytes, of the memory region whose residency is
to be determined. If the len value is not a multiple of the page size as
returned by the sysconf subroutine using the _SC_PAGE_SIZE value
for the Name parameter, the length of the region is rounded up to the
next multiple of the page size.

vec Specifies the character array where the residency status is returned.
The system assumes that the character array specified by the vec
parameter is large enough to encompass a returned character for each
page specified.

Return Values
When successful, the mincore subroutine returns 0. Otherwise, it returns –1 and sets the
errno global variable to indicate the error.

Error Codes
If the mincore subroutine is unsuccessful, the errno global variable is set to one of the
following values:

1-639Base Operating System Runtime Services (A-P)

EFAULT A part of the buffer pointed to by the vec parameter is out of range or
otherwise inaccessible.

EINVAL The addr parameter is not a multiple of the page size as returned by the
sysconf subroutine using the _SC_PAGE_SIZE value for the Name
parameter.

ENOMEM Addresses in the (addr, addr + len) range are invalid for the address
space of the process, or specify one or more pages that are not
mapped.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mmap subroutine, sysconf subroutine.

List of Memory Manipulation Services in AIX General Programming Concepts : Writing and
Debugging Programs.

1-640 Technical Reference: Base Operating System

mkdir Subroutine

Purpose
Creates a directory.

Library
Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

int mkdir (Path, Mode)
const char *Path;
mode_t Mode;

Description
The mkdir subroutine creates a new directory.

The new directory has the following:

• The owner ID is set to the process–effective user ID.

• If the parent directory has the SetFileGroupID (S_ISGID) attribute set, the new directory
inherits the group ID of the parent directory. Otherwise, the group ID of the new directory
is set to the effective group ID of the calling process.

• Permission and attribute bits are set according to the value of the Mode parameter, with
the following modifications:

– All bits set in the process–file mode–creation mask are cleared.

– The SetFileUserID and Sticky (S_ISVTX) attributes are cleared.

• If the Path variable names a symbolic link, the link is followed. The new directory is
created where the variable pointed.

Parameters

Path Specifies the name of the new directory. If Network File System (NFS)
is installed on your system, this path can cross into another node. In
this case, the new directory is created at that node.

To execute the mkdir subroutine, a process must have search
permission to get to the parent directory of the Path parameter as well
as write permission in the parent directory itself.

Mode Specifies the mask for the read, write, and execute flags for owner,
group, and others. The Mode parameter specifies directory permissions
and attributes. This parameter is constructed by logically ORing values
described in the sys/mode.h file.

Return Values
Upon successful completion, the mkdir subroutine returns a value of 0. Otherwise, a value
of –1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The mkdir subroutine is unsuccessful and the directory is not created if one or more of the
following are true:

1-641Base Operating System Runtime Services (A-P)

EACCES Creating the requested directory requires writing in a directory
with a mode that denies write permission.

EEXIST The named file already exists.

EROFS The named file resides on a read–only file system.

ENOSPC The file system does not contain enough space to hold the
contents of the new directory or to extend the parent directory
of the new directory.

EMLINK The link count of the parent directory exceeds the maximum
(LINK_MAX) number. (LINK_MAX) is defined in limits.h file.

ENAMETOOLONG The Path parameter or a path component is too long and
cannot be truncated.

ENOENT A component of the path prefix does not exist or the Path
parameter points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

EDQUOT The directory in which the entry for the new directory is being
placed cannot be extended, or an i–node or disk blocks could
not be allocated for the new directory because the user’s or
group’s quota of disk blocks or i–nodes on the file system
containing the directory is exhausted.

The mkdir subroutine can be unsuccessful for other reasons. See ”Appendix A. Base
Operating System Error Codes for Services That Require Path–Name Resolution”, on page
A-1 for a list of additional errors.

If NFS is installed on the system, the mkdir subroutine is also unsuccessful if the following
is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine, mknod subroutine, rmdir subroutine, umask subroutine.

The chmod command, mkdir command, mknod command.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-642 Technical Reference: Base Operating System

mknod or mkfifo Subroutine

Purpose
Creates an ordinary file, first–in–first–out (FIFO), or special file.

Library
Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

int mknod (const char *Path, mode_t Mode, dev_t Device)
char *Path;
int Mode;
dev_t Device;

int mkfifo (const char *Path, mode_t Mode)
const char *Path;
int Mode;

Description
The mknod subroutine creates a new regular file, special file, or FIFO file. Using the
mknod subroutine to create file types (other than FIFO or special files) requires root user
authority.

For the mknod subroutine to complete successfully, a process must have both search and
write permission in the parent directory of the Path parameter.

The mkfifo subroutine is an interface to the mknod subroutine, where the new file to be
created is a FIFO or special file. No special system privileges are required.

The new file has the following characteristics:

• File type is specified by the Mode parameter.

• Owner ID is set to the effective user ID of the process.

• Group ID of the file is set to the group ID of the parent directory if the SetGroupID
attribute (S_ISGID) of the parent directory is set. Otherwise, the group ID of the file is set
to the effective group ID of the calling process.

• Permission and attribute bits are set according to the value of the Mode parameter. All
bits set in the file–mode creation mask of the process are cleared.

Upon successful completion, the mkfifo subroutine marks for update the st_atime,
st_ctime, and st_mtime fields of the file. It also marks for update the st_ctime and
st_mtime fields of the directory that contains the new entry.

If the new file is a character special file having the S_IMPX attribute (multiplexed character
special file), when the file is used, additional path–name components can appear after the
path name as if it were a directory. The additional part of the path name is available to the
device driver of the file for interpretation. This feature provides a multiplexed interface to the
device driver.

1-643Base Operating System Runtime Services (A-P)

Parameters

Path Names the new file. If Network File System (NFS) is installed on your
system, this path can cross into another node.

Mode Specifies the file type, attributes, and access permissions. This
parameter is constructed by logically ORing values described in the
sys/mode.h file.

Device Specifies the ID of the device, which corresponds to the st_rdev
member of the structure returned by the statx subroutine. This
parameter is configuration–dependent and used only if the Mode
parameter specifies a block or character special file. If the file you
specify is a remote file, the value of the Device parameter must be
meaningful on the node where the file resides.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned
and the errno global variable is set to indicate the error.

Error Codes
The mknod subroutine fails and the new file is not created if one or more of the following
are true:

EEXIST The named file exists.

EDQUOT The directory in which the entry for the new file is being placed cannot
be extended, or an i–node could not be allocated for the file because
the user’s or group’s quota of disk blocks or i–nodes on the file system
is exhausted.

EISDIR The Mode parameter specifies a directory. Use the mkdir subroutine
instead.

ENOSPC The directory that would contain the new file cannot be extended, or the
file system is out of file–allocation resources.

EPERM The Mode parameter specifies a file type other than S_IFIFO, and the
calling process does not have root user authority.

EROFS The directory in which the file is to be created is located on a read–only
file system.

The mknod and mkfifo subroutine can be unsuccessful for other reasons. See
”Appendix. A Base Operating System Error Codes for Services That Require Path–Name
Resolution”, on page A-1 for a list of additional errors.

If NFS is installed on the system, the mknod subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine, mkdir subroutine, open, openx, or creat subroutine, statx
subroutine, umask subroutine.

The chmod command, mkdir command, mknod command.

The mode.h file, types.h file.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-644 Technical Reference: Base Operating System

mktemp or mkstemp Subroutine

Purpose
Constructs a unique file name.

Libraries
Standard C Library (libc.a)

Berkeley Compatibility Library (libbsd.a)

Syntax
#include <stdlib.h>

char *mktemp (Template)
char *Template;

int mkstemp (Template)
char *Template;

Description
The mktemp subroutine replaces the contents of the string pointed to by the Template
parameter with a unique file name.

Note: The mktemp subroutine creates a filename and checks to see if the file exist. It that
file does not exist, the name is returned. If the user calls mktemp twice without
creating a file using the name returned by the first call to mktemp, then the second
mktemp call may return the same name as the first mktemp call since the name
does not exist.

To avoid this, either create the file after calling mktemp or use the mkstemp subroutine.
The mkstemp subroutine creates the file for you.

Parameters

Template Points to a string to be replaced with a unique file name. The string in
the Template parameter is a file name with up to six trailing X’s. Since
the system randomly generates a six–character string to replace the
X’s, it is recommended that six trailing X’s be used.

Return Values
Upon successful completion, the mktemp subroutine returns the address of the string
pointed to by the Template parameter.

If the string pointed to by the Template parameter contains no X’s, and if it is an existing file
name, the Template parameter is set to a null character, and a null pointer is returned; if the
string does not match any existing file name, the exact string is returned.

Upon successful completion, the mkstemp subroutine returns an open file descriptor. If the
mkstemp subroutine fails, it returns a value of –1.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

To get the BSD version of this subroutine, compile with Berkeley Compatibility Library
(libbsd.a).

The mkstemp subroutine performs the same substitution to the template name and also
opens the file for reading and writing.

1-645Base Operating System Runtime Services (A-P)

In BSD systems, the mkstemp subroutine was intended to avoid a race condition between
generating a temporary name and creating the file. Because the name generation in the
operating system is more random, this race condition is less likely. BSD returns a file name
of / (slash).

Former implementations created a unique name by replacing X’s with the process ID and a
unique letter.

Related Information
The getpid subroutine, tmpfile subroutine, tmpnam or tempnam subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-646 Technical Reference: Base Operating System

mmap or mmap64 Subroutine

Purpose
Maps a file–system object into virtual memory.

Library
Standard C library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/mman.h>

void *mmap (addr, len, prot, flags, fildes, off)
void *addr;
size_t len;
int prot, flags, fildes;
off_t off;

Note: The mmap64 subroutine applies to Version 4.2 and later releases.

void *mmap64 (addr, len, prot, flags, fildes, off)
void *addr;
size_t len;
int prot, flags, fildes;
off64_t off;

Description
Note: The mmap64 subroutine applies to Version 4.2 and later releases.

Attention: A file–system object should not be simultaneously mapped using both the
mmap and shmat subroutines. Unexpected results may occur when references are
made beyond the end of the object.

The mmap subroutine creates a new mapped file or anonymous memory region by
establishing a mapping between a process–address space and a file–system object. Care
needs to be taken when using the mmap subroutine if the program attempts to map itself. If
the page containing executing instructions is currently referenced as data through an mmap
mapping, the program will hang. Use the –H4096 binder option, and that will put the
executable text on page boundries. Then reset the file that contains the executable material,
and view via an mmap mapping.

A region created by the mmap subroutine cannot be used as the buffer for read or write
operations that involve a device. Similarly, an mmap region cannot be used as the buffer for
operations that require either a pin or xmattach operation on the buffer.

Modifications to a file–system object are seen consistently, whether accessed from a
mapped file region or from the read or write subroutine.

Child processes inherit all mapped regions from the parent process when the fork
subroutine is called. The child process also inherits the same sharing and protection
attributes for these mapped regions. A successful call to any exec subroutine will unmap all
mapped regions created with the mmap subroutine.

The mmap64 subroutine is identical to the mmap subroutine except that the starting offset
for the file mapping is specified as a 64–bit value. This permits file mappings which start
beyond OFF_MAX.

In the large file enabled programming environment, mmap is redefined to be mmap64.

If the application has requested SPEC1170 compliant behavior then the st_atime field of
the mapped file is marked for update upon successful completion of the mmap call.

1-647Base Operating System Runtime Services (A-P)

If the application has requested SPEC1170 compliant behavior then the st_ctime and
st_mtime fields of a file that is mapped with MAP_SHARED and PROT_WRITE are marked
for update at the next call to msync subroutine or munmap subroutine if the file has been
modified.

Parameters

addr Specifies the starting address of the memory region to be mapped.
When the MAP_FIXED flag is specified, this address must be a multiple
of the page size returned by the sysconf subroutine using the
_SC_PAGE_SIZE value for the Name parameter. A region is never
placed at address zero, or at an address where it would overlap an
existing region.

len Specifies the length, in bytes, of the memory region to be mapped. The
system performs mapping operations over whole pages only. If the len
parameter is not a multiple of the page size, the system will include in
any mapping operation the address range between the end of the
region and the end of the page containing the end of the region.

prot Specifies the access permissions for the mapped region. The
sys/mman.h file defines the following access options:

PROT_READ Region can be read.

PROT_WRITE Region can be written.

PROT_EXEC Region can be executed.

PROT_NONE Region cannot be accessed.

The prot parameter can be the PROT_NONE flag, or any combination
of the PROT_READ flag, PROT_WRITE flag, and PROT_EXEC flag
logically ORed together. If the PROT_NONE flag is not specified,
access permissions may be granted to the region in addition to those
explicitly requested. However, write access will not be granted unless
the PROT_WRITE flag is specified.

Note: The operating system generates a SIGSEGV signal if a program
attempts an access that exceeds the access permission given to
a memory region. For example, if the PROT_WRITE flag is not
specified and a program attempts a write access, a SIGSEGV
signal results.

If the region is a mapped file that was mapped with the MAP_SHARED
flag, the mmap subroutine grants read or execute access permission
only if the file descriptor used to map the file was opened for reading. It
grants write access permission only if the file descriptor was opened for
writing.

If the region is a mapped file that was mapped with the MAP_PRIVATE
flag, the mmap subroutine grants read, write, or execute access
permission only if the file descriptor used to map the file was opened for
reading. If the region is an anonymous memory region, the mmap
subroutine grants all requested access permissions.

1-648 Technical Reference: Base Operating System

fildes Specifies the file descriptor of the file–system object to be mapped. If
the MAP_ANONYMOUS flag is set, the fildes parameter must be –1.
After the successful completion of the mmap subroutine, the file
specified by the fildes parameter may be closed without effecting the
mapped region or the contents of the mapped file. Each mapped region
creates a file reference, similar to an open file descriptor, which
prevents the file data from being deallocated.

Note: The mmap subroutine supports the mapping of regular files
only. An mmap call that specifies a file descriptor for a special
file fails, returning the ENODEV error. An example of a file
descriptor for a special file is one that might be used for
mapping either I/O or device memory.

off Specifies the file byte offset at which the mapping starts. This offset
must be a multiple of the page size returned by the sysconf subroutine
using the _SC_PAGE_SIZE value for the Name parameter.

flags Specifies attributes of the mapped region. Values for the flags
parameter are constructed by a bitwise–inclusive ORing of values from
the following list of symbolic names defined in the sys/mman.h file:

MAP_FILE Specifies the creation of a new mapped file region
by mapping the file associated with the fildes file
descriptor. The mapped region can extend
beyond the end of the file, both at the time when
the mmap subroutine is called and while the
mapping persists. This situation could occur if a
file with no contents was created just before the
call to the mmap subroutine, or if a file was later
truncated. However, references to whole pages
following the end of the file result in the delivery of
a SIGBUS signal. Only one of the MAP_FILE and
MAP_ANONYMOUS flags must be specified with
the mmap subroutine.

MAP_ANONYMOUS Specifies the creation of a new, anonymous
memory region that is initialized to all zeros. This
memory region can be shared only with the
descendants of the current process. When using
this flag, the fildes parameter must be –1. Only
one of the MAP_FILE and MAP_ANONYMOUS
flags must be specified with the mmap
subroutine.

MAP_ VARIABLE Specifies that the system select an address for
the new memory region if the new memory region
cannot be mapped at the address specified by the
addr parameter, or if the addr parameter is null.
Only one of the MAP_VARIABLE and
MAP_FIXED flags must be specified with the
mmap subroutine.

1-649Base Operating System Runtime Services (A-P)

MAP_FIXED Specifies that the mapped region be placed exactly at
the address specified by the addr parameter. If the
application has requested SPEC1170 complaint
behavior and the mmap request is successful, the
mapping replaces any previous mappings for the
process’ pages in the specified range. If the application
has not requested SPEC1170 compliant behavior and a
previous mapping exists in the range then the request
fails. Only one of the MAP_VARIABLE and
MAP_FIXED flags must be specified with the mmap
subroutine.

MAP_SHARED When the MAP_SHARED flag is set, modifications to
the mapped memory region will be visible to other
processes that have mapped the same region using
this flag. If the region is a mapped file region,
modifications to the region will be written to the file.

Only one of the MAP_SHARED or MAP_PRIVATE flags can be
specified with the mmap subroutine. MAP_PRIVATE is the default
setting when neither flag is specified.

MAP_PRIVATE When the MAP_PRIVATE flag is specified,
modifications to the mapped region by the calling
process are not visible to other processes that have
mapped the same region. If the region is a mapped file
region, modifications to the region are not written to the
file.

If this flag is specified, the initial write reference to an object page
creates a private copy of that page and redirects the mapping to the
copy. Until then, modifications to the page by processes that have
mapped the same region with the MAP_SHARED flag are visible.

Only one of the MAP_SHARED or MAP_PRIVATE flags can be
specified with the mmap subroutine. MAP_PRIVATE is the default
setting when neither flag is specified.

Return Values
If successful, the mmap subroutine returns the address at which the mapping was placed.
Otherwise, it returns –1 and sets the errno global variable to indicate the error.

Error Codes
Under the following conditions, the mmap subroutine fails and sets the errno global variable
to:

EACCES The file referred to by the fildes parameter is not open for read access,
or the file is not open for write access and the PROT_WRITE flag was
specified for a MAP_SHARED mapping operation. Or, the file to be
mapped has enforced locking enabled and the file is currently locked.

EBADF The fildes parameter is not a valid file descriptor, or the
MAP_ANONYMOUS flag was set and the fildes parameter is not –1.

EFBIG The mapping requested extends beyond the maximum file size
associated with fildes.

EINVAL The flags or prot parameter is invalid, or the addr parameter or off
parameter is not a multiple of the page size returned by the sysconf
subroutine using the _SC_PAGE_SIZE value for the Name parameter.

1-650 Technical Reference: Base Operating System

EINVAL The application has requested SPEC1170 compliant behavior and the
value of flags is invalid (neither MAP_PRIVATE nor MAP_SHARED is
set).

EMFILE The application has requested SPEC1170 compliant behavior and the
number of mapped regions would excedd and
implementation–dependent limit (per process or per system).

ENODEV The fildes parameter refers to an object that cannot be mapped, such
as a terminal.

ENOMEM There is not enough address space to map len bytes, or the application
has not requested X/Open UNIX95 Specification compliant bahavior
and the MAP_FIXED flag was set and part of the address–space range
(addr, addr+len) is already allocated.

ENXIO The addresses specified by the range (off, off+len) are invalid for the
fildes parameter.

EOVERFLOW The mapping requested extends beyond the offset maximum for the file
description associated with fildes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, fork subroutine, read subroutine, shmat subroutine, sysconf
subroutine, write subroutine.

The pin kernel service, xmattach kernel service.

List of Memory Manipulation Services, List of Memory Mapping Services, Understanding
Memory Mapping in AIX General Programming Concepts : Writing and Debugging
Programs.

1-651Base Operating System Runtime Services (A-P)

mntctl Subroutine

Purpose
Returns information about the mount status of the system.

Library
Standard C Library (libc.a)

Syntax

#include <sys/mntctl.h>
#include <sys/vmount.h>

int mntctl (Command, Size, Buffer)
int Command;
int Size;
char *Buffer;

Description
The mntctl subroutine is used to query the status of virtual file systems (also known as
mounted file systems).

Each virtual file system (VFS) is described by a vmount structure. This structure is supplied
when the VFS is created by the vmount subroutine. The vmount structure is defined in the
sys/vmount.h file.

Parameters

Command Specifies the operation to be performed. Valid commands
are defined in the sys/vmount.h file. At present, the only
command is:

MCTL_QUERY Query mount information.

Buffer Points to a data area that will contain an array of vmount
structures. This data area holds the information returned by
the query command. Since the vmount structure is
variable–length, it is necessary to reference the
vmt_length field of each structure to determine where in
the Buffer area the next structure begins.

Size Specifies the length, in bytes, of the buffer pointed to by
the Buffer parameter.

Return Values
If the mntctl subroutine is successful, the number of vmount structures copied into the
Buffer parameter is returned. If the Size parameter indicates the supplied buffer is too small
to hold the vmount structures for all the current VFSs, the mntctl subroutine sets the first
word of the Buffer parameter to the required size (in bytes) and returns the value 0. If the
mntctl subroutine otherwise fails, a value of –1 is returned, and the errno global variable is
set to indicate the error.

Error Codes
The mntctl subroutine fails and the requested operation is not performed if one or both of
the following are true:

1-652 Technical Reference: Base Operating System

EINVAL The Command parameter is not MCTL_QUERY, or the
Size parameter is not a positive value.

EFAULT The Buffer parameter points to a location outside of the
allocated address space of the process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The uvmount or umount subroutine, vmount or mount subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-653Base Operating System Runtime Services (A-P)

moncontrol Subroutine

Purpose
Starts and stops execution profiling after initialization by the monitor subroutine.

Library
Standard C Library (libc.a)

Syntax
#include <mon.h>

int moncontrol (Mode)
int Mode;

Description
The moncontrol subroutine starts and stops profiling after profiling has been initialized by
the monitor subroutine. It may be used with either –p or –pg profiling. When moncontrol
stops profiling, no output data file is produced. When profiling has been started by the
monitor subroutine and the exit subroutine is called, or when the monitor subroutine is
called with a value of 0, then profiling is stopped, and an output file is produced, regardless
of the state of profiling as set by the moncontrol subroutine.

The moncontrol subroutine examines global and parameter data in the following order:

1. When the _mondata.prof_type global variable is neither –1 (–p profiling defined) nor +1
(–pg profiling defined), no action is performed, 0 is returned, and the function is
considered complete.

The global variable is set to –1 in the mcrt0.o file and to +1 in the gcrt0.o file and
defaults to 0 when the crt0.o file is used.

2. When the Mode parameter is 0, profiling is stopped. For any other value, profiling is
started.

The following global variables are used in a call to the profil subroutine:

_mondata.ProfBuf Buffer address

_mondata.ProfBufSiz Buffer size/multirange flag

_mondata.ProfLoPC PC offset for hist buffer – I/O limit

_mondata.ProfScale PC scale/compute scale flag.

These variables are initialized by the monitor subroutine each time it is called to start
profiling.

Parameters

Mode Specifies whether to start (resume) or stop profiling.

Return Values
The moncontrol subroutine returns the previous state of profiling. When the previous state
was STOPPED, a 0 is returned. When the previous state was STARTED, a 1 is returned.

Error Codes
When the moncontrol subroutine detects an error from the call to the profil subroutine, a
–1 is returned.

1-654 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The monitor subroutine, monstartup subroutine, profil subroutine.

List of Memory Manipulation Services in AIX General Programming Concepts : Writing and
Debugging Programs.

1-655Base Operating System Runtime Services (A-P)

monitor Subroutine

Purpose
Starts and stops execution profiling using data areas defined in the function parameters.

Library
Standard C Library (libc.a)

Syntax

#include <mon.h>

int monitor (LowProgramCounter, HighProgramCounter, Buffer,
BufferSize, NFunction)

OR

int monitor (NotZeroA, DoNotCareA, Buffer,–1, NFunction)

OR

int monitor((caddr_t)0)

caddr_t LowProgramCounter, HighProgramCounter;
HISTCOUNTER *Buffer;
int BufferSize, NFunction;
caddr_t NotZeroA, DoNotCareA;

Description
The monitor subroutine initializes the buffer area and starts profiling, or else stops profiling
and writes out the accumulated profiling data. Profiling, when started, causes periodic
sampling and recording of the program location within the program address ranges
specified. Profiling also accumulates function call count data compiled with the –p or –pg
option.

Executable programs created with the cc –p or cc –pg command automatically include calls
to the monitor subroutine (through the monstartup and exit subroutines) to profile the
complete user program, including system libraries. In this case, you do not need to call the
monitor subroutine.

The monitor subroutine is called by the monstartup subroutine to begin profiling and by
the exit subroutine to end profiling. The monitor subroutine requires a global data variable
to define which kind of profiling, –p or –pg, is in effect. The monitor subroutine initializes
four global variables that are used as parameters to the profil subroutine by the
moncontrol subroutine:

• The monitor subroutine calls the moncontrol subroutine to start the profiling data
gathering.

• The moncontrol subroutine calls the profil subroutine to start the system timer–driven
program address sampling.

• The prof command processes the data file produced by –p profiling.

• The gprof command processes the data file produced by –pg profiling.

The monitor subroutine examines the global data and parameter data in this order:

1-656 Technical Reference: Base Operating System

1. When the _mondata.prof_type global variable is neither –1 (–p profiling defined) nor +1
(–pg profiling defined), an error is returned, and the function is considered complete.

The global variable is set to –1 in the mcrt0.o file and to +1 in the gcrt0.o file, and
defaults to 0 when the crt0.o file is used.

2. When the first parameter to the monitor subroutine is 0, profiling is stopped and the data
file is written out.

If –p profiling was in effect, then the file is named mon.out. If –pg profiling was in effect,
the file is named gmon.out. The function is complete.

3. When the first parameter to the monitor subroutine is not , the monitor parameters and
the profiling global variable, _mondata.prof_type, are examined to determine how to
start profiling.

4.

When the BufferSize parameter is not –1, a single program address range is defined for
profiling, and the first monitor definition in the syntax is used to define the single
program range.

5.

When the BufferSize parameter is –1, multiple program address ranges are defined for
profiling, and the second monitor definition in the syntax is used to define the multiple
ranges. In this case, the ProfileBuffer value is the address of an array of prof structures.
The size of the prof array is denoted by a zero value for the HighProgramCounter (
p_high) field of the last element of the array. Each element in the array, except the
last, defines a single programming address range to be profiled. Programming ranges
must be in ascending order of the program addresses with ascending order of the prof
array index. Program ranges may not overlap.

The buffer space defined by the p_buff and p_bufsize fields of all of the prof
entries must define a single contiguous buffer area. Space for the function–count data is
included in the first range buffer. Its size is defined by the NFunction parameter. The
p_scale entry in the prof structure is ignored. The prof structure is defined in the
mon.h file. It contains the following fields:

caddr_t p_low; /* low sampling address */
caddr_t p_high; /* high sampling address */
HISTCOUNTER *p_buff; /* address of sampling buffer */

int p_bufsize; /* buffer size– monitor/HISTCOUNTERs,\

 profil/bytes */

uint p_scale; /* scale factor */

1-657Base Operating System Runtime Services (A-P)

Parameters

LowProgramCounter
 (prof name: p_low)

 Defines the lowest execution–time program address in the
range to be profiled. The value of the LowProgramCounter
parameter cannot be 0 when using the monitor subroutine
to begin profiling.

HighProgramCounter
 (prof name: p_high)

 Defines the next address after the highest–execution time
program address in the range to be profiled.

The program address parameters may be defined by
function names or address expressions. If defined by a
function name, then a function name expression must be
used to dereference the function pointer to get the address
of the first instruction in the function. This is required
because the function reference in this context produces the
address of the function descriptor. The first field of the
descriptor is the address of the function code. See the
examples for typical expressions to use.

Buffer (prof name: p_buff
)

 Defines the beginning address of an array of BufferSize
HISTCOUNTER s to be used for data collection. This buffer
includes the space for the program address–sampling
counters and the function–count data areas. In the case of
a multiple range specification, the space for the
function–count data area is included at the beginning of the
first range in the BufferSize specification.

BufferSize
(prof name: p_bufsize)

 Defines the size of the buffer in number of HISTCOUNTER
s. Each counter is of type HISTCOUNTER (defined as short
in the mon.h file). When the buffer includes space for the
function–count data area (single range specification and
first range of a multi–range specification) the NFunction
parameter defines the space to be used for the function
count data, and the remainder is used for program–address
sampling counters for the range defined. The scale for the
profil call is calculated from the number of counters
available for program address–sample counting and the
address range defined by the LowProgramCounter and
HighProgramCounter parameters. See the mon.h file.

1-658 Technical Reference: Base Operating System

NFunction Defines the size of the space to be used for the
function–count data area. The space is included as part of
the first (or only) range buffer.

When –p profiling is defined, the NFunction parameter
defines the maximum number of functions to be counted.
The space required for each function is defined to be:

sizeof(struct poutcnt)

The poutcnt structure is defined in the mon.h file. The total
function–count space required is:

NFunction * sizeof(struct poutcnt)

When –pg profiling is defined, the NFunction parameter
defines the size of the space (in bytes) available for the
function–count data structures, as follows:

 range = HighProgramCounter –

LowProgramCounter;

 tonum = TO_NUM_ELEMENTS(range);

 if (tonum < MINARCS) tonum = MINARCS;

 if (tonum > TO_MAX–1) tonum = TO_MAX–1;

 tosize = tonum * sizeof(struct tostruct);

 fromsize = FROM_STG_SIZE(range);

 rangesize = tosize + fromsize +

sizeof(struct gfctl);

This is computed and summed for all defined ranges. In this
expression, the functions and variables in capital letters as
well as the structures are defined in the mon.h file.

NotZeroA Specifies a value of parameter 1, which is any value except
0. Ignored when it is not zero.

DoNotCareA Specifies a value of parameter 2, of any value, which is
ignored.

Return Values
The monitor subroutine returns 0 upon successful completion.

Error Codes
If an error is found, the monitor subroutine sends an error message to stderr and returns
–1.

1-659Base Operating System Runtime Services (A-P)

Examples
1. This example shows how to profile the main load module of a program with –p profiling:

#include <sys/types.h>

#include <mon.h>

main()

{

extern caddr_t etext; /*system end of main module text symbol*/

extern int start(); /*first function in main program*/

extern struct monglobal _mondata; /*profiling global variables*/

struct desc { /*function descriptor fields*/

 caddr_t begin; /*initial code address*/

 caddr_t toc; /*table of contents address*/

 caddr_t env; /*environment pointer*/

} ; /*function descriptor structure*/

struct desc *fd; /*pointer to function descriptor*/

int rc; /*monitor return code*/

int range; /*program address range for profiling*/

int numfunc; /*number of functions*/

HISTCOUNTER *buffer; /*buffer address*/

int numtics; /*number of program address sample counters*/

int BufferSize; /*total buffer size in numbers of HISTCOUNTERs*/

fd = (struct desc*)start; /*init descriptor pointer to start\

 function*/

numfunc = 300; /*arbitrary number for example*/

range = etext – fd–>begin; /*compute program address range*/

numtics =NUM_HIST_COUNTERS(range); /*one counter for each 4 byte\

 inst*/

BufferSize = numtics + (numfunc*sizeof (struct poutcnt) \

 HIST_COUNTER_SIZE); /*allocate buffer space*/

buffer = (HISTCOUNTER *) malloc (BufferSize * HIST_COUNTER_SIZE);

if (buffer == NULL) /*didn’t get space, do error recovery\

 here*/

 return(–1);

_mondata.prof_type = _PROF_TYPE_IS_P; /*define –p profiling*/

rc = monitor(fd–>begin, (caddr_t)etext, buffer, BufferSize, \

 numfunc);

/*start*/

if (rc != 0) /*profiling did not start, do error recovery\

 here*/

 return(–1);

/*other code for analysis*/

rc = monitor((caddr_t)0); /*stop profiling and write data file\

 mon.out*/

if (rc != 0) /*did not stop correctly, do error recovery here*/

 return (–1);

}

2. This example profiles the main program and the libc.a shared library with –p profiling.
The range of addresses for the shared libc.a is assumed to be:

low = d0300000

high = d0312244

1-660 Technical Reference: Base Operating System

These two values can be determined from the loadquery subroutine at execution time,
or by using a debugger to view the loaded programs’ execution addresses and the
loader map.

#include <sys/types.h>

#include <mon.h>

main()

{

extern caddr_t etext; /*system end of text symbol*/

extern int start(); /*first function in main program*/

extern struct monglobal _mondata; /*profiling global variables*/

struct prof pb[3]; /*prof array of 3 to define 2 ranges*/

int rc; /*monitor return code*/

int range; /*program address range for profiling*/

int numfunc; /*number of functions to count (max)*/

int numtics; /*number of sample counters*/

int num4fcnt; /*number of HISTCOUNTERs used for fun cnt space*/

int BufferSize1; /*first range BufferSize*/

int BufferSize2; /*second range BufferSize*/

caddr_t liblo=0xd0300000; /*lib low address (example only)*/

caddr_t libhi=0xd0312244; /*lib high address (example only)*/

numfunc = 400; /*arbitrary number for example*/

/*compute first range buffer size*/

range = etext – *(uint *) start; /*init range*/

numtics = NUM_HIST_COUNTERS(range);

/*one counter for each 4 byte inst*/

num4fcnt = numfunc*sizeof(struct poutcnt)/HIST_COUNTER_SIZE;

BufferSize1 = numtics + num4fcnt;

/*compute second range buffer size*/

range = libhi–liblo;

BufferSize2 = range / 12; /*counter for every 12 inst bytes for\

 a change*/

/*allocate buffer space – note: must be single contiguous\

 buffer*/

pb[0].p_buff = (HISTCOUNTER *)malloc((BufferSize1 +BufferSize2)\

 *HIST_COUNTER_SIZE);

if (pb[0].p_buff == NULL) /*didn’t get space – do error\

 recovery here* ;/

 return(–1);

/*set up the first range values*/

pb[0].p_low = *(uint*)start; /*start of main module*/

pb[0].p_high = (caddr_t)etext; /*end of main module*/

pb[0].p_BufferSize = BufferSize1; /*prog addr cnt space + \

func cnt space*/

/*set up last element marker*/

pb[2].p_high = (caddr_t)0;

_mondata.prof_type = _PROF_TYPE_IS_P; /*define –p\

profiling*/

rc = monitor((caddr_t)1, (caddr_t)1, pb, –1, numfunc); \

 /*start*/

if (rc != 0) /*profiling did not start – do error recovery\

 here*/

 return (–1);

/*other code for analysis ...*/

rc = monitor((caddr_t)0); /*stop profiling and write data \

file mon.out*/

if (rc != 0) /*did not stop correctly – do error recovery\

 here*/

 return (–1);

1-661Base Operating System Runtime Services (A-P)

3. This example shows how to profile contiguously loaded functions beginning at zit up
to but not including zot with –pg profiling:

#include <sys/types.h>

#include <mon.h>

main()

{

extern zit(); /*first function to profile*/

extern zot(); /*upper bound function*/

extern struct monglobal _mondata; /*profiling global variables*/

int rc; /*monstartup return code*/

_mondata.prof_type = _PROF_TYPE_IS_PG; /*define –pg profiling*/

/*Note cast used to obtain function code addresses*/

rc = monstartup(*(uint *)zit,*(uint *)zot); /*start*/

if (rc != 0) /*profiling did not start, do error recovery\

 here*/

 return(–1);

/*other code for analysis ...*/

exit(0); /*stop profiling and write data file gmon.out*/

}

Files

mon.out Data file for –p profiling.

gmon.out Data file for –pg profiling.

/usr/include/mon.h Defines the _mondata.prof_type global variable in the
monglobal data structure, the prof structure, and the
functions referred to in the previous examples.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The moncontrol subroutine, monstartup subroutine, profil subroutine.

The gprof command, prof command.

The _end, _etext, or _edata Identifier.

List of Memory Manipulation Services in AIX General Programming Concepts : Writing and
Debugging Programs.

1-662 Technical Reference: Base Operating System

monstartup Subroutine

Purpose
Starts and stops execution profiling using default–sized data areas.

Library
Standard C Library (libc.a)

Syntax
#include <mon.h>

int monstartup (LowProgramCounter, HighProgramCounter)

OR

int monstartup((caddr_t)–1), (caddr_t) FragBuffer)

OR

int monstartup((caddr_t)–1, (caddr_t)0)

caddr_t LowProgramCounter;
caddr_t HighProgramCounter;

Description
The monstartup subroutine allocates data areas of default size and starts profiling. Profiling
causes periodic sampling and recording of the program location within the program address
ranges specified, and accumulation of function–call count data for functions that have been
compiled with the –p or –pg option.

Executable programs created with the cc –p or cc –pg command automatically include a
call to the monstartup subroutine to profile the complete user program, including system
libraries. In this case, you do not need to call the monstartup subroutine.

The monstartup subroutine is called by the mcrt0.o (–p) file or the gcrt0.o (–pg) file to
begin profiling. The monstartup subroutine requires a global data variable to define
whether –p or –pg profiling is to be in effect. The monstartup subroutine calls the monitor
subroutine to initialize the data areas and start profiling.

The prof command is used to process the data file produced by –p profiling. The gprof
command is used to process the data file produced by –pg profiling.

The monstartup subroutine examines the global and parameter data in the following order:

1. When the _mondata.prof_type global variable is neither –1 (–p profiling defined) nor +1
(–pg profiling defined), an error is returned and the function is considered complete.

The global variable is set to –1 in the mcrt0.o file and to +1 in the gcrt0.o file, and
defaults to 0 when crt0.o is used.

2. When the LowProgramCounter value is not –1:

– A single program address range is defined for profiling

 AND

– The first monstartup definition in the syntax is used to define the program range.

3. When the LowProgramCounter value is –1 and the HighProgramCounter value is not 0:

– Multiple program address ranges are defined for profiling

 AND

1-663Base Operating System Runtime Services (A-P)

– The second monstartup definition in the syntax is used to define multiple ranges. The
HighProgramCounter parameter, in this case, is the address of a frag structure array.
The frag array size is denoted by a zero value for the HighProgramCounter (p_high)
field of the last element of the array. Each array element except the last defines one
programming address range to be profiled. Programming ranges must be in ascending
order of the program addresses with ascending order of the prof array index. Program
ranges may not overlap.

4. When the LowProgramCounter value is –1 and the HighProgramCounter value is 0:

– The whole program is defined for profiling

 AND

– The third monstartup definition in the syntax is used. The program ranges are
determined by monstartup and may be single range or multirange.

Parameters

LowProgramCounter (frag name:
p_low)

Defines the lowest execution–time program
address in the range to be profiled.

HighProgramCounter(frag name:
p_high)

Defines the next address after the highest
execution–time program address in the range to
be profiled.

The program address parameters may be
defined by function names or address
expressions. If defined by a function name, then
a function name expression must be used to
dereference the function pointer to get the
address of the first instruction in the function.
This is required because the function reference in
this context produces the address of the function
descriptor. The first field of the descriptor is the
address of the function code. See the examples
for typical expressions to use.

FragBuffer Specifies the address of a frag structure array.

1-664 Technical Reference: Base Operating System

Examples
1. This example shows how to profile the main load module of a program with –p profiling:

#include <sys/types.h>

#include <mon.h>

main()

{

extern caddr_t etext; /*system end of text

symbol*/

extern int start(); /*first function in main\

 program*/

extern struct monglobal _mondata; /*profiling global variables*/

struct desc { /*function

descriptor fields*/

 caddr_t begin; /*initial code

address*/

 caddr_t toc; /*table of contents

address*/

 caddr_t env; /*environment

pointer*/

 }

; /*function

descriptor structure*/

struct desc *fd; /*pointer to function\

 descriptor*/

int rc; /*monstartup

return code*/

fd = (struct desc *)start; /*init descriptor pointer to\

 start

function*/

_mondata.prof_type = _PROF_TYPE_IS_P; /*define –p profiling*/

rc = monstartup(fd–>begin, (caddr_t) &etext); /*start*/

if (rc != 0) /*profiling did

not start – do\

 error

recovery here*/ return(–1);

 /*other code

for analysis ...*/

return(0); /*stop profiling and

write data\

 file

mon.out*/

}

1-665Base Operating System Runtime Services (A-P)

2. This example shows how to profile the complete program with –p profiling:

#include <sys/types.h>

#include <mon.h>

main()

{

extern struct monglobal _mondata; /*profiling global\

 &

nbsp; variables*/

int rc; /*monstartup

return code*/

_mondata.prof_type = _PROF_TYPE_IS_P; /*define –p profiling*/

rc = monstartup((caddr_t)–1, (caddr_t)0); /*start*/

if (rc != 0) /*profiling did

not start –\

 &

nbsp; do error recovery here*/

 return (–1);

 /*other code

for analysis ...*/

return(0); /*stop profiling and

write data\

 file

mon.out*/

}

3. This example shows how to profile contiguously loaded functions beginning at zit up to
but not including zot with –pg profiling:

#include <sys/types.h>

#include <mon.h>

main()

{

extern zit(); /*first function

to profile*/

extern zot(); /*upper bound

function*/

extern struct monglobal _mondata; /*profiling global variables*/

int rc; /*monstartup

return code*/

_mondata.prof_type = _PROF_TYPE_IS_PG; /*define –pg profiling*/

/*Note cast used to obtain function code addresses*/

rc = monstartup(*(uint *)zit,*(uint *)zot); /*start*/

if (rc != 0) /*profiling did

not start – do\

 error

recovery here*/

 return(–1);

 /*other code

for analysis ...*/

exit(0); /*stop profiling and write data file gmon.out*/

}

Return Values
The monstartup subroutine returns 0 upon successful completion.

Error Codes
If an error is found, the monstartup subroutine outputs an error message to stderr and
returns –1.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-666 Technical Reference: Base Operating System

Files

mon.out Data file for –p profiling.

gmon.out Data file for –pg profiling.

mon.h Defines the _mondata.prof_type variable in the monglobal data
structure, the prof structure, and the functions referred to in the
examples.

Related Information
The moncontrol subroutine, monitor subroutine, profil subroutine.

The gprof command, prof command.

The _edata _end, _etext, or _edata Identifier.

List of Memory Manipulation Services in AIX General Programming Concepts : Writing and
Debugging Programs.

1-667Base Operating System Runtime Services (A-P)

mprotect Subroutine

Purpose
Modifies access protections for memory mapping.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/mman.h>

int mprotect (addr, len, prot)
void *addr;
size_t len;
int prot;

Description
The mprotect subroutine modifies the access protection of a mapped file region or
anonymous memory region created by the mmap subroutine.

Parameters
addr Specifies the address of the region to be modified. Must be a multiple of the

page size returned by the sysconf subroutine using the _SC_PAGE_SIZE
value for the Name parameter.

len Specifies the length, in bytes, of the region to be modified. If the len
parameter is not a multiple of the page size returned by the sysconf
subroutine using the _SC_PAGE_SIZE value for the Name parameter, the
length of the region will be rounded off to the next multiple of the page size.

prot Specifies the new access permissions for the mapped region. Legitimate
values for the prot parameter are the same as those permitted for the
mmap subroutine, as follows:

PROT_READ Region can be read.

PROT_WRITE Region can be written.

PROT_EXEC Region can be executed.

PROT_NONE Region cannot be accessed.

Return Values
When successful, the mprotect subroutine returns 0. Otherwise, it returns –1 and sets the
errno global variable to indicate the error.

Error Codes
Attention: If the mprotect subroutine is unsuccessful because of a condition other than
that specified by the EINVAL error code, the access protection for some pages in the
(addr, addr + len) range may have been changed.

If the mprotect subroutine is unsuccessful, the errno global variable may be set to one of
the following values:

1-668 Technical Reference: Base Operating System

EACCES The prot parameter specifies a protection that conflicts with the access
permission set for the underlying file.

EINVAL The prot parameter is invalid, or the addr parameter is not a multiple of
the page size as returned by the sysconf subroutine using the
_SC_PAGE_SIZE value for the Name parameter.

ENOMEM The application has requested X/Open UNIX95 Specification compliant
behavior and addresses in the range are invalid for the address space
of the process or specify one or more pages which are not mapped.

1-669Base Operating System Runtime Services (A-P)

msem_init Subroutine

Purpose
Initializes a semaphore in a mapped file or shared memory region.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

msemaphore *msem_init (Sem, InitialValue)
msemaphore *Sem;
int InitialValue;

Description
The msem_init subroutine allocates a new binary semaphore and initializes the state of the
new semaphore.

If the value of the InitialValue parameter is MSEM_LOCKED, the new semaphore is
initialized in the locked state. If the value of the InitialValue parameter is
MSEM_UNLOCKED, the new semaphore is initialized in the unlocked state.

The msemaphore structure is located within a mapped file or shared memory region
created by a successful call to the mmap subroutine and having both read and write
access.

Whether a semaphore is created in a mapped file or in an anonymous shared memory
region, any reference by a process that has mapped the same file or shared region, using
an msemaphore structure pointer that resolved to the same file or start of region offset, is
taken as a reference to the same semaphore.

Any previous semaphore state stored in the msemaphore structure is ignored and
overwritten.

Parameters

Sem Points to an msemaphore structure in which the state of the
semaphore is stored.

Initial Value Determines whether the semaphore is locked or unlocked at allocation.

Return Values
When successful, the msem_init subroutine returns a pointer to the initialized
msemaphore structure. Otherwise, it returns a null value and sets the errno global variable
to indicate the error.

Error Codes
If the msem_init subroutine is unsuccessful, the errno global variable is set to one of the
following values:

EINVAL Indicates the InitialValue parameter is not valid.

ENOMEM Indicates a new semaphore could not be created.

Implementation Specifics
The msem_init subroutine is part of Base Operating System (BOS) Runtime.

1-670 Technical Reference: Base Operating System

Related Information
The mmap subroutine, msem_lock subroutine, msem_remove subroutine, msem_unlock
subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX General
Programming Concepts : Writing and Debugging Programs.

1-671Base Operating System Runtime Services (A-P)

msem_lock Subroutine

Purpose
Locks a semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int msem_lock (Sem, Condition)
msemaphore *Sem;
int Condition;

Description
The msem_lock subroutine attempts to lock a binary semaphore.

If the semaphore is not currently locked, it is locked and the msem_lock subroutine
completes successfully.

If the semaphore is currently locked, and the value of the Condition parameter is
MSEM_IF_NOWAIT, the msem_lock subroutine returns with an error. If the semaphore is
currently locked, and the value of the Condition parameter is 0, the msem_lock subroutine
does not return until either the calling process is able to successfully lock the semaphore or
an error condition occurs.

All calls to the msem_lock and msem_unlock subroutines by multiple processes sharing a
common msemaphore structure behave as if the call were serialized.

If the msemaphore structure contains any value not resulting from a call to the msem_init
subroutine, followed by a (possibly empty) sequence of calls to the msem_lock and
msem_unlock subroutines, the results are undefined. The address of an msemaphore
structure is significant. If the msemaphore structure contains any value copied from an
msemaphore structure at a different address, the result is undefined.

Parameters

Sem Points to an msemaphore structure that specifies the semaphore to be
locked.

Condition Determines whether the msem_lock subroutine waits for a currently
locked semaphore to unlock.

Return Values
When successful, the msem_lock subroutine returns a value of 0. Otherwise, it returns a
value of –1 and sets the errno global variable to indicate the error.

Error Codes
If the msem_lock subroutine is unsuccessful, the errno global variable is set to one of the
following values:

1-672 Technical Reference: Base Operating System

EAGAIN Indicates a value of MSEM_IF_NOWAIT is specified for the Condition
parameter and the semaphore is already locked.

EINVAL Indicates the Sem parameter points to an msemaphore structure
specifying a semaphore that has been removed, or the Condition
parameter is invalid.

EINTR Indicates the msem_lock subroutine was interrupted by a signal that
was caught.

Implementation Specifics
The msem_lock subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The msem_init subroutine, msem_remove subroutine, msem_unlock subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX General
Programming Concepts : Writing and Debugging Programs.

1-673Base Operating System Runtime Services (A-P)

msem_remove Subroutine

Purpose
Removes a semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int msem_remove (Sem)
msemaphore *Sem;

Description
The msem_remove subroutine removes a binary semaphore. Any subsequent use of the
msemaphore structure before it is again initialized by calling the msem_init subroutine will
have undefined results.

The msem_remove subroutine also causes any process waiting in the msem_lock
subroutine on the removed semaphore to return with an error.

If the msemaphore structure contains any value not resulting from a call to the msem_init
subroutine, followed by a (possibly empty) sequence of calls to the msem_lock and
msem_unlock subroutines, the result is undefined. The address of an msemaphore
structure is significant. If the msemaphore structure contains any value copied from an
msemaphore structure at a different address, the result is undefined.

Parameters

Sem Points to an msemaphore structure that specifies the semaphore to be
removed.

Return Values
When successful, the msem_remove subroutine returns a value of 0. Otherwise, it returns
a –1 and sets the errno global variable to indicate the error.

Error Codes
If the msem_remove subroutine is unsuccessful, the errno global variable is set to the
following value:

EINVAL Indicates the Sem parameter points to an msemaphore structure that
specifies a semaphore that has been removed.

Implementation Specifics
The msem_remove subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The msem_init subroutine, msem_lock subroutine, msem_unlock subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX General
Programming Concepts : Writing and Debugging Programs.

1-674 Technical Reference: Base Operating System

msem_unlock Subroutine

Purpose
Unlocks a semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int msem_unlock (Sem, Condition)
msemaphore *Sem;
int Condition;

Description
The msem_unlock subroutine attempts to unlock a binary semaphore.

If the semaphore is currently locked, it is unlocked and the msem_unlock subroutine
completes successfully.

If the Condition parameter is 0, the semaphore is unlocked, regardless of whether or not
any other processes are currently attempting to lock it. If the Condition parameter is set to
the MSEM_IF_WAITERS value, and another process is waiting to lock the semaphore or it
cannot be reliably determined whether some process is waiting to lock the semaphore, the
semaphore is unlocked by the calling process. If the Condition parameter is set to the
MSEM_IF_WAITERS value and no process is waiting to lock the semaphore, the
semaphore will not be unlocked and an error will be returned.

Parameters

Sem Points to an msemaphore structure that specifies the semaphore to be
unlocked.

Condition Determines whether the msem_unlock subroutine unlocks the
semaphore if no other processes are waiting to lock it.

Return Values
When successful, the msem_unlock subroutine returns a value of 0. Otherwise, it returns a
value of –1 and sets the errno global variable to indicate the error.

Error Codes
If the msem_unlock subroutine is unsuccessful, the errno global variable is set to one of
the following values:

EAGAIN Indicates a Condition value of MSEM_IF_WAITERS was specified and
there were no waiters.

EINVAL Indicates the Sem parameter points to an msemaphore structure
specifying a semaphore that has been removed, or the Condition
parameter is not valid.

Implementation Specifics
The msem_unlock subroutine is part of Base Operating System (BOS) Runtime.

1-675Base Operating System Runtime Services (A-P)

Related Information
The msem_init subroutine, msem_lock subroutine, msem_remove subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX General
Programming Concepts : Writing and Debugging Programs.

1-676 Technical Reference: Base Operating System

msgctl Subroutine

Purpose
Provides message control operations.

Library
Standard C Library (libc.a)

Syntax

#include <sys/msg.h>

int msgctl (MessageQueueID,Command,Buffer)
int MessageQueueID, Command;
struct msqid_ds *Buffer;

Description
The msgctl subroutine provides a variety of message control operations as specified by the
Command parameter and stored in the structure pointed to by the Buffer parameter. The
msqid_ds structure is defined in the sys/msg.h file.

The following limits apply to the message queue:

• Maximum message size is 65,535 bytes for releases prior to AIX 4.1.5 and is 4
Megabytes for release 4.1.5 and later releases.

• Maximum number of messages per queue is 8192.

• Maximum number of message queue IDs is 4096 for AIX releases before 4.3.2 and
131072 for AIX 4.3.2 and following.

• Maximum number of bytes in a queue is 4 65,535 for releases prior to AIX 4.1.5 and is 4
Megabytes for release 4.1.5 and later releases.

1-677Base Operating System Runtime Services (A-P)

Parameters

MessageQueueID Specifies the message queue identifier.

Command The following values for the Command parameter are
available:

IPC_STAT Stores the current value of the above
fields of the data structure associated with
the MessageQueueID parameter into the
msqid_ds structure pointed to by the
Buffer parameter.

The current process must have read permission in order
to perform this operation.

IPC_SET Sets the value of the following fields of the
data structure associated with the
MessageQueueID parameter to the
corresponding values found in the structure
pointed to by the Buffer parameter:

msg_perm.uid

msg_perm.gid

msg_perm.mode/*Only the low–order

nine bits*/

msg_qbytes

The effective user ID of the current process must have
root user authority or its process ID must equal the value
of the msg_perm.uid or msg_perm.cuid field in
the data structure associated with the MessageQueueID
parameter in order to perform this operation. To raise the
value of the msg_qbytes field, the effective user ID
of the current process must have root user authority.

IPC_RMID Removes the message queue identifier
specified by the MessageQueueID
parameter from the system and destroys
the message queue and data structure
associated with it. The effective user ID of
the current process must have root user
authority or be equal to the value of the
msg_perm.uid or msg_perm.cuid
field in the data structure associated with
the MessageQueueID parameter to
perform this operation.

Buffer Points to a msqid_ds structure.

Return Values
Upon successful completion, the msgctl subroutine returns a value of 0. Otherwise, a value
of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The msgctl subroutine is unsuccessful if any of the following conditions is true:

1-678 Technical Reference: Base Operating System

EINVAL The Command or MessageQueueID parameter is not valid.

EACCES The Command parameter is equal to the IPC_STAT value,
and the calling process was denied read permission.

EPERM The Command parameter is equal to the IPC_RMID value
and the effective user ID of the calling process does not
have root user authority. Or, the Command parameter is
equal to the IPC_SET value, and the effective user ID of the
calling process is not equal to the value of the
msg_perm.uid field or the msg_perm.cuid field in the
data structure associated with the MessageQueueID
parameter.

EPERM The Command parameter is equal to the IPC_SET value,
an attempt was made to increase the value of the
msg_qbytes field, and the effective user ID of the calling
process does not have root user authority.

EFAULT The Buffer parameter points outside of the process
address space.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The msgget subroutine, msgrcv subroutine, msgsnd subroutine, msgxrcv subroutine.

1-679Base Operating System Runtime Services (A-P)

msgget Subroutine

Purpose
Gets a message queue identifier.

Library
Standard C Library (libc.a)

Syntax
#include <sys/msg.h>

int msgget (Key, MessageFlag)
key_t Key;
int MessageFlag;

Description
The msgget subroutine returns the message queue identifier associated with the specified
Key parameter.

A message queue identifier, associated message queue, and data structure are created for
the value of the Key parameter if one of the following conditions is true:

• The Key parameter is equal to the IPC_PRIVATE value.

• The Key parameter does not already have a message queue identifier associated with it,
and the IPC_CREAT value is set.

Upon creation, the data structure associated with the new message queue identifier is
initialized as follows:

• The msg_perm.cuid , msg_perm.uid , msg_perm.cgid , and msg_perm.gid
fields are set equal to the effective user ID and effective group ID, respectively, of the
calling process.

• The low–order 9 bits of the msg_perm.mode field are set equal to the low–order 9 bits
of the MessageFlag parameter.

• The msg_qnum , msg_lspid , msg_lrpid , msg_stime , and msg_rtime fields
are set equal to 0.

• The msg_ctime field is set equal to the current time.

• The msg_qbytes field is set equal to the system limit.

The msgget subroutine performs the following actions:

• The msgget subroutine either finds or creates (depending on the value of the
MessageFlag parameter) a queue with the Key parameter.

• The msgget subroutine returns the ID of the queue header to its caller.

The following limits apply to the message queue:

• Maximum message size is 4 Mega bytes.

• Maximum number of messages per queue is 8192.

• Maximum number of message queue IDs is 4096 for AIX releases before 4.3.2 and
131072 for AIX 4.3.2 and following.

1-680 Technical Reference: Base Operating System

Parameters

Key Specifies either the value IPC_PRIVATE or an Interprocess
Communication (IPC) key constructed by the ftok subroutine (or by a
similar algorithm).

MessageFlag Constructed by logically ORing one or more of the following values:

IPC_CREAT Creates the data structure if it does not already exist.

IPC_EXCL Causes the msgget subroutine to fail if the
IPC_CREAT value is also set and the data structure
already exists.

S_IRUSR Permits the process that owns the data structure to
read it.

S_IWUSR Permits the process that owns the data structure to
modify it.

S_IRGRP Permits the group associated with the data structure to
read it.

S_IWGRP Permits the group associated with the data structure to
modify it.

S_IROTH Permits others to read the data structure.

S_IWOTH Permits others to modify the data structure.

Values that begin with S_I are defined in the sys/mode.h file and are a
subset of the access permissions that apply to files.

Return Values
Upon successful completion, the msgget subroutine returns a message queue identifier.
Otherwise, a value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The msgget subroutine is unsuccessful if any of the following conditions is true:

EACCES A message queue identifier exists for the Key parameter,
but operation permission as specified by the low–order 9
bits of the MessageFlag parameter is not granted.

ENOENT A message queue identifier does not exist for the Key
parameter and the IPC_CREAT value is not set.

ENOSPC A message queue identifier is to be created, but the
system–imposed limit on the maximum number of allowed
message queue identifiers system–wide would be
exceeded.

EEXIST A message queue identifier exists for the Key parameter,
and both IPC_CREAT and IPC_EXCL values are set.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ftok subroutine, msgctl subroutine, msgrcv subroutine, msgsnd subroutine, msgxrcv
subroutine.

The mode.h file.

1-681Base Operating System Runtime Services (A-P)

msgrcv Subroutine

Purpose
Reads a message from a queue.

Library
Standard C Library (libc.a)

Syntax
#include <sys/msg.h>

int msgrcv (MessageQueueID,
MessagePointer,MessageSize,MessageType, MessageFlag)
int MessageQueueID, MessageFlag;
void *MessagePointer;
size_t MessageSize;
long int MessageType;

Description
The msgrcv subroutine reads a message from the queue specified by the
MessageQueueID parameter and stores it into the structure pointed to by the
MessagePointer parameter. The current process must have read permission in order to
perform this operation.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is
passed in case of 64–bit application calling 32–bit kernel interface.

The following limits apply to the message queue:

• Maximum message size is 65,535 bytes for releases prior to AIX 4.1.5 and is 4
Megabytes for release 4.1.5 and later releases.

• Maximum number of messages per queue is 8192.

• Maximum number of message queue IDs is 4096 for AIX releases before 4.3.2 and
131072 for AIX 4.3.2 and following.

• Maximum number of bytes in a queue is 4 65,535 for releases prior to AIX 4.1.5 and is 4
Megabytes for release 4.1.5 and later releases.

Note: For a 64–bit process, the mtype field is 64 bits long. However, for compatibility
with 32–bit processes, the most significant 32 bits must be 0 and will not be put on the
message queue. For a 64–bit receiver process, the mtype will again be extended to 64
bits with the most significant bits 0.

Parameters

MessageQueueID Specifies the message queue identifier.

1-682 Technical Reference: Base Operating System

MessagePointer Points to a msgbuf structure containing the message. The msgbuf
structure is defined in the sys/msg.h file and contains the following
fields:

mtyp_t mtype; /* Message type */

char mtext[1]; /* Beginning of message

text */

The mtype field contains the type of the received message as
specified by the sending process. The mtext field is the text of the
message.

MessageSize Specifies the size of the mtext field in bytes. The received
message is truncated to the size specified by the MessageSize
parameter if it is longer than the size specified by the MessageSize
parameter and if the MSG_NOERROR value is set in the
MessageFlag parameter. The truncated part of the message is lost
and no indication of the truncation is given to the calling process.

MessageType Specifies the type of message requested as follows:

• If equal to the value of 0, the first message on the
queue is received.

• If greater than 0, the first message of the type
specified by the MessageType parameter is
received.

• If less than 0, the first message of the lowest type
that is less than or equal to the absolute value of
the MessageType parameter is received.

MessageFlag Specifies either a value of 0 or is constructed by logically ORing one
or more of the following values:

MSG_NOERROR
Truncates the message if it is longer than the
MessageSize parameter.

IPC_NOWAIT Specifies the action to take if a message of the
desired type is not on the queue:

– If the IPC_NOWAIT value is set, the calling process returns a
value of –1 and sets the errno global variable to the ENOMSG
error code.

– If the IPC_NOWAIT value is not set, the calling process
suspends execution until one of the following occurs:

– A message of the desired type is placed
on the queue.

– The message queue identifier specified
by the MessageQueueID parameter is
removed from the system. When this
occurs, the errno global variable is set to
the EIDRM error code, and a value of –1
is returned.

– The calling process receives a signal that
is to be caught. In this case, a message is
not received and the calling process
resumes in the manner described in the
sigaction subroutine.

1-683Base Operating System Runtime Services (A-P)

Return Values
Upon successful completion, the msgrcv subroutine returns a value equal to the number of
bytes actually stored into the mtext field and the following actions are taken with respect
to fields of the data structure associated with the MessageQueueID parameter:

• The msg_qnum field is decremented by 1.

• The msg_lrpid field is set equal to the process ID of the calling process.

• The msg_rtime field is set equal to the current time.

If the msgrcv subroutine is unsuccessful, a value of –1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The msgrcv subroutine is unsuccessful if any of the following conditions is true:

EINVAL The MessageQueueID parameter is not a valid message
queue identifier.

EACCES The calling process is denied permission for the specified
operation.

EINVAL The MessageSize parameter is less than 0.

E2BIG The mtext field is greater than the MessageSize
parameter, and the MSG_NOERROR value is not set.

ENOMSG The queue does not contain a message of the desired type
and the IPC_NOWAIT value is set.

EFAULT The MessagePointer parameter points outside of the
allocated address space of the process.

EINTR The msgrcv subroutine is interrupted by a signal.

EIDRM The message queue identifier specified by the
MessageQueueID parameter has been removed from the
system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The msgctl subroutine, msgget subroutine, msgsnd subroutine, msgxrcv subroutine,
sigaction subroutine.

1-684 Technical Reference: Base Operating System

msgsnd Subroutine

Purpose
Sends a message.

Library
Standard C Library (libc.a)

Syntax
#include <sys/msg.h>

int msgsnd (MessageQueueID, MessagePointer,MessageSize,
MessageFlag)
int MessageQueueID, MessageFlag;
const void *MessagePointer;
size_t MessageSize;

Description
The msgsnd subroutine sends a message to the queue specified by the MessageQueueID
parameter. The current process must have write permission to perform this operation. The
MessagePointer parameter points to an msgbuf structure containing the message. The
sys/msg.h file defines the msgbuf structure. The structure contains the following fields:

mtyp_t mtype; /* Message type */

char mtext[1]; /* Beginning of message text */

The mtype field specifies a positive integer used by the receiving process for message
selection. The mtext field can be any text of the length in bytes specified by the
MessageSize parameter. The MessageSize parameter can range from 0 to the maximum
limit imposed by the system.

The following example shows a typical user–defined msgbuf structure that includes
sufficient space for the largest message: struct my_msgbuf
 mtyp_t mtype;

 char mtext[MSGSIZ]; /* MSGSIZ is the size of the largest message

*/

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is
passed in case of 64–bit application calling 32–bit kernel interface.

The following system limits apply to the message queue:

• Maximum message size is 65,535 bytes for releases prior to AIX 4.1.5 and is 4
Megabytes for release 4.1.5 and later releases.

• Maximum number of messages per queue is 8192.

• Maximum number of message queue IDs is 4096 for AIX releases before 4.3.2 and
131072 for AIX 4.3.2 and following.

• Maximum number of bytes in a queue is 4 65,535 bytes for releases prior to AIX 4.1.5 is
4 Megabytes for release 4.1.5 and later releases.

1-685Base Operating System Runtime Services (A-P)

Note: For a 64–bit process, the mtype field is 64 bits long. However, for compatibility
with 32–bit processes, the most significant 32 bits must be 0 and will not be put on the
message queue. For a 64–bit receiver process, the mtype will again be extended to 64
bits with the most significant bits 0.

The MessageFlag parameter specifies the action to be taken if the message cannot be sent
for one of the following reasons:

• The number of bytes already on the queue is equal to the number of bytes defined by the
msg_qbytes structure.

• The total number of messages on the queue is equal to a system–imposed limit.

These actions are as follows:

• If the MessageFlag parameter is set to the IPC_NOWAIT value, the message is not sent,
and the msgsnd subroutine returns a value of –1 and sets the errno global variable to
the EAGAIN error code.

• If the MessageFlag parameter is set to 0, the calling process suspends execution until
one of the following occurs:

– The condition responsible for the suspension no longer exists, in which case the
message is sent.

– The MessageQueueID parameter is removed from the system. (For information on
how to remove the MessageQueueID parameter, see the msgctl subroutine.) When
this occurs, the errno global variable is set equal to the EIDRM error code, and a
value of –1 is returned.

– The calling process receives a signal that is to be caught. In this case the message is
not sent and the calling process resumes execution in the manner prescribed in the
sigaction subroutine.

Parameters

MessageQueueID Specifies the queue to which the message is sent.

MessagePointer Points to a msgbuf structure containing the message.

MessageSize Specifies the length, in bytes, of the message text.

MessageFlag Specifies the action to be taken if the message cannot be
sent.

Return Values
Upon successful completion, a value of 0 is returned and the following actions are taken
with respect to the data structure associated with the MessageQueueID parameter:

• The msg_qnum field is incremented by 1.

• The msg_lspid field is set equal to the process ID of the calling process.

• The msg_stime field is set equal to the current time.

If the msgsnd subroutine is unsuccessful, a value of –1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The msgsnd subroutine is unsuccessful and no message is sent if one or more of the
following conditions is true:

EINVAL The MessageQueueID parameter is not a valid message queue identifier.

EACCES The calling process is denied permission for the specified operation.

EINVAL The mtype field is less than 1.

1-686 Technical Reference: Base Operating System

EAGAIN The message cannot be sent for one of the reasons stated previously, and
the MessageFlag parameter is set to the IPC_NOWAIT value.

EINVAL The MessageSize parameter is less than 0 or greater than the
system–imposed limit.

EFAULT The MessagePointer parameter points outside of the address space of the
process.

EINTR The msgsnd subroutine received a signal.

EIDRM The message queue identifier specified by the MessageQueueID
parameter has been removed from the system.

ENOMEM The message could not be sent because not enough storage space was
available.

EINVAL The upper 32–bits of the 64–bit mtype field for a 64–bit process is not 0.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The msgctl subroutine, msgget subroutine, msgrcv subroutine, msgxrcv subroutine,
sigaction subroutine.

1-687Base Operating System Runtime Services (A-P)

msgxrcv Subroutine

Purpose
Receives an extended message.

Library
Standard C Library (libc.a)

Syntax
For releases prior to AIX 4.3.0:

#include <sys/msg.h>int msgxrcv (MessageQueueID, MessagePointer,
MessageSize, MessageType, MessageFlag) int MessageQueueID,
MessageFlag, MessageSize; struct msgxbuf * MessagePointer; long
MessageType;

For AIX 4.3.0 and later releases:#include <sys/msg.h>int msgxrcv
(MessageQueueID, MessagePointer, MessageSize, MessageType,

MessageFlag) int MessageQueueID, MessageFlag; size_t MessageSize;

struct msgxbuf * MessagePointer; long MessageType;

Description
The msgxrcv subroutine reads a message from the queue specified by the
MessageQueueID parameter and stores it into the extended message receive buffer pointed
to by the MessagePointer parameter. The current process must have read permission in
order to perform this operation. The msgxbuf structure is defined in the sys/msg.h file.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is
passed in case of 64–bit application calling 32–bit kernel interface.

The following limits apply to the message queue:

• Maximum message size is 65,535 bytes for releases prior to AIX 4.1.5 and is 4
Megabytes for release 4.1.5 and later releases.

• Maximum number of messages per queue is 8192.

• Maximum number of message queue IDs is 4096 for AIX releases before 4.3.2 and
131072 for AIX 4.3.2 and following.

• Maximum number of bytes in a queue is 4 65,535 for releases prior to AIX 4.1.5 and is 4
Megabytes for release 4.1.5 and later releases.

Note: For a 64–bit process, the mtype field is 64 bits long. However, for compatibility
with 32–bit processes, the most significant 32 bits must be 0 and will not be put on the
message queue. For a 64–bit receiver process, the mtype will again be extended to 64
bits with the most significant bits 0.

Parameters

MessageQueueID Specifies the message queue identifier.

MessagePointer Specifies a pointer to an extended message receive buffer where a
message is stored.

1-688 Technical Reference: Base Operating System

MessageSize Specifies the size of the mtext field in bytes. The receive
message is truncated to the size specified by the MessageSize
parameter if it is larger than the MessageSize parameter and the
MSG_NOERROR value is true. The truncated part of the message is
lost and no indication of the truncation is given to the calling process.
If the message is longer than the number of bytes specified by the
MessageSize parameter and the MSG_NOERROR value is not set,
the msgxrcv subroutine is unsuccessful and sets the errno global
variable to the E2BIG error code.

MessageType Specifies the type of message requested as follows:

• If the MessageType parameter is equal to 0, the
first message on the queue is received.

• If the MessageType parameter is greater than 0,
the first message of the type specified by the
MessageType parameter is received.

• If the MessageType parameter is less than 0, the
first message of the lowest type that is less than
or equal to the absolute value of the
MessageType parameter is received.

MessageFlag Specifies a value of 0 or a value constructed by logically ORing one
or more of the following values:

MSG_NOERROR
Truncates the message if it is longer than the
number of bytes specified by the MessageSize
parameter.

IPC_NOWAIT Specifies the action to take if a message of the
desired type is not on the queue:

– If the IPC_NOWAIT value is set, the calling process returns a
value of –1 and sets the errno global variable to the ENOMSG
error code.

– If the IPC_NOWAIT value is not set, the calling process
suspends execution until one of the following occurs:

– A message of the desired type is placed
on the queue.

– The message queue identifier specified
by the MessageQueueID parameter is
removed from the system. When this
occurs, the errno global variable is set to
the EIDRM error code, and a value of –1
is returned.

– The calling process receives a signal that
is to be caught. In this case, a message is
not received and the calling process
resumes in the manner prescribed in the
sigaction subroutine.

Return Values
Upon successful completion, the msgxrcv subroutine returns a value equal to the number
of bytes actually stored into the mtext field, and the following actions are taken with
respect to the data structure associated with the MessageQueueID parameter:

• The msg_qnum field is decremented by 1.

1-689Base Operating System Runtime Services (A-P)

• The msg_lrpid field is set equal to the process ID of the calling process.

• The msg_rtime field is set equal to the current time.

If the msgxrcv subroutine is unsuccessful, a value of –1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The msgxrcv subroutine is unsuccessful if any of the following conditions is true:

EINVAL The MessageQueueID parameter is not a valid message
queue identifier.

EACCES The calling process is denied permission for the specified
operation.

EINVAL The MessageSize parameter is less than 0.

E2BIG The mtext field is greater than the MessageSize
parameter, and the MSG_NOERROR value is not set.

ENOMSG The queue does not contain a message of the desired type
and the IPC_NOWAIT value is set.

EFAULT The MessagePointer parameter points outside of the
process address space.

EINTR The msgxrcv subroutine was interrupted by a signal.

EIDRM The message queue identifier specified by the
MessageQueueID parameter is removed from the system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The msgctl subroutine, msgget subroutine, msgrcv subroutine, msgsnd subroutine,
sigaction subroutine.

1-690 Technical Reference: Base Operating System

msleep Subroutine

Purpose
Puts a process to sleep when a semaphore is busy.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>

int msleep (Sem)
msemaphore *Sem;

Description
The msleep subroutine puts a calling process to sleep when a semaphore is busy. The
semaphore should be located in a shared memory region. Use the mmap subroutine to
create the shared memory section.

All of the values in the msemaphore structure must result from a msem_init subroutine
call. This call may or may not be followed by a sequence of calls to the msem_lock
subroutine or the msem_unlock subroutine. If the msemaphore structure value originates
in another manner, the results of the msleep subroutine are undefined.

The address of the msemaphore structure is significant. You should be careful not to
modify the structure’s address. If the structure contains values copied from a msemaphore
structure at another address, the results of the msleep subroutine are undefined.

Parameters

Sem Points to the msemaphore structure that specifies the semaphore.

Error Codes
If the msleep subroutine is unsuccessful, the errno global variable is set to one of the
following values:

EFAULT Indicates that the Sem parameter points to an invalid address or the
address does not contain a valid msemaphore structure.

EINTR Indicates that the process calling the msleep subroutine was
interrupted by a signal while sleeping.

Implementation Specifics
The msleep subroutine is part of the Base Operating System (BOS) Runtime calls.

Related Information
The mmap subroutine, msem_init subroutine, msem_lock subroutine, msem_unlock
subroutine, mwakeup subroutine.

Understanding Memory Mapping in AIX General Programming Concepts : Writing and
Debugging Programs.

1-691Base Operating System Runtime Services (A-P)

msync Subroutine

Purpose
Synchronizes a mapped file.

Library
Standard C Library (libc.a).

Syntax
#include <sys/types.h>
#include <sys/mman.h>

int msync (addr, len, flags)
void *addr;
size_t len;
int flags;

Description
The msync subroutine controls the caching operations of a mapped file region. Use the
msync subroutine to transfer modified pages in the region to the underlying file storage
device.

If the application has requested X/Open UNIX95 Specification compliant behavior then the
st_ctime and st_mtime fields of the mapped file are marked for update upon successful
completion of the msync subroutine call if the file has been modified.

1-692 Technical Reference: Base Operating System

Parameters

addr Specifies the address of the region to be synchronized. Must be a
multiple of the page size returned by the sysconf subroutine using the
_SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the region to be synchronized. If the
len parameter is not a multiple of the page size returned by the sysconf
subroutine using the _SC_PAGE_SIZE value for the Name parameter,
the length of the region is rounded up to the next multiple of the page
size.

flags Specifies one or more of the following symbolic constants that
determine the way caching operations are performed:

MS_SYNC Specifies synchronous cache flush. The msync
subroutine does not return until the system completes
all I/O operations.

This flag is invalid when the MAP_PRIVATE flag is
used with the mmap subroutine. MAP_PRIVATE is the
default privacy setting. When the MS_SYNC and
MAP_PRIVATE flags both are used, the msync
subroutine returns an errno value of EINVAL.

MS_ASYNC Specifies an asynchronous cache flush. The msync
subroutine returns after the system schedules all I/O
operations.

This flag is invalid when the MAP_PRIVATE flag is
used with the mmap subroutine. MAP_PRIVATE is the
default privacy setting. When the MS_SYNC and
MAP_PRIVATE flags both are used, the msync
subroutine returns an errno value of EINVAL.

MS_INVALIDATE
Specifies that the msync subroutine invalidates all
cached copies of the pages. New copies of the pages
must then be obtained from the file system the next
time they are referenced.

Return Values
When successful, the msync subroutine returns 0. Otherwise, it returns –1 and sets the
errno global variable to indicate the error.

Error Codes
If the msync subroutine is unsuccessful, the errno global variable is set to one of the
following values:

EIO An I/O error occurred while reading from or writing to the file system.

ENOMEM The range specified by (addr, addr + len) is invalid for a process’
address space, or the range specifies one or more unmapped pages.

EINVAL The addr argument is not a multiple of the page size as returned by the
sysconf subroutine using the _SC_PAGE_SIZE value for the Name
parameter, or the flags parameter is invalid. The address of the region
is within the process’ inheritable address space.

1-693Base Operating System Runtime Services (A-P)

munmap Subroutine

Purpose
Unmaps a mapped region.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/mman.h>

int munmap (addr, len)
void *addr;
size_t len;

Description
The munmap subroutine unmaps a mapped file region or anonymous memory region. The
munmap subroutine unmaps regions created from calls to the mmap subroutine only.

If an address lies in a region that is unmapped by the munmap subroutine and that region
is not subsequently mapped again, any reference to that address will result in the delivery of
a SIGSEGV signal to the process.

Parameters

addr Specifies the address of the region to be unmapped. Must be a multiple
of the page size returned by the sysconf subroutine using the
_SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the region to be unmapped. If the len
parameter is not a multiple of the page size returned by the sysconf
subroutine using the _SC_PAGE_SIZE value for the Name parameter,
the length of the region is rounded up to the next multiple of the page
size.

Return Values
When successful, the munmap subroutine returns 0. Otherwise, it returns –1 and sets the
errno global variable to indicate the error.

Error Codes
If the munmap subroutine is unsuccessful, the errno global variable is set to the following
value:

EINVAL The addr parameter is not a multiple of the page size as returned by the
sysconf subroutine using the _SC_PAGE_SIZE value for the Name
parameter.

EINVAL The application has requested X/Open UNIX95 Specification compliant
behavior and the len arguement is 0.

1-694 Technical Reference: Base Operating System

mwakeup Subroutine

Purpose
Wakes up a process that is waiting on a semaphore.

Library
Standard C Library (libc.a)

Syntax
#include <sys/mman.h>
int mwakeup (Sem)
msemaphore *Sem;

Description
The mwakeup subroutine wakes up a process that is sleeping and waiting for an idle
semaphore. The semaphore should be located in a shared memory region. Use the mmap
subroutine to create the shared memory section.

All of the values in the msemaphore structure must result from a msem_init subroutine
call. This call may or may not be followed by a sequence of calls to the msem_lock
subroutine or the msem_unlock subroutine. If the msemaphore structure value originates
in another manner, the results of the mwakeup subroutine are undefined.

The address of the msemaphore structure is significant. You should be careful not to
modify the structure’s address. If the structure contains values copied from a msemaphore
structure at another address, the results of the mwakeup subroutine are undefined.

Parameters

Sem Points to the msemaphore structure that specifies the semaphore.

Return Values
When successful, the mwakeup subroutine returns a value of 0. Otherwise, this routine
returns a value of –1 and sets the errno global variable to EFAULT.

Error Codes
A value of EFAULT indicates that the Sem parameter points to an invalid address or that the
address does not contain a valid msemaphore structure.

Implementation Specifics
The mwakeup subroutine is part of the Base Operating System (BOS) runtime calls.

Related Information
The mmap subroutine, msem_init subroutine, msem_lock subroutine, msem_unlock
subroutine, and the msleep subroutine.

Understanding Memory Mapping in AIX General Programming Concepts : Writing and
Debugging Programs.

1-695Base Operating System Runtime Services (A-P)

newpass Subroutine

Purpose
Generates a new password for a user.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
#include <userpw.h>

char *newpass(Password)
struct userpw *Password;

Description
The newpass subroutine generates a new password for the user specified by the Password
parameter. The new password is then checked to ensure that it meets the password rules
on the system unless the user is exempted from these restrictions. Users must have root
user authority to invoke this subroutine. The password rules are defined in the
/etc/security/user file and are described in both the user file and the passwd command.

Passwords can contain almost any legal value for a character but cannot contain (National
Language Support (NLS) code points. Passwords cannot have more than the value
specified by MAX_PASS.

The newpass subroutine authenticates the user prior to changing the password. If the
PW_ADMCHG flag is set in the upw_flags member of the Password parameter, the
supplied password is checked against the password to determine the user corresponding to
the real user ID of the process instead of the user specified by the upw_name member of
the Password parameter structure.

If a password is successfully generated, a pointer to a buffer containing the new password is
returned and the last update time is reset.

Note: The newpass subroutine is not safe in a multi–threaded environment. To use
newpass in a threaded application, the application must keep the integrity of each
thread.

1-696 Technical Reference: Base Operating System

Parameters

Password Specifies a user password structure. This structure is defined in the
userpw.h file and contains the following members:

upw_name A pointer to a character buffer containing the user
name.

upw_passwd A pointer to a character buffer containing the current
password.

upw_lastupdate The time the password was last changed, in
seconds since the epoch.

upw_flags A bit mask containing 0 or more of the following
values:

PW_NOCHECK This bit indicates that new
passwords need not meet the
composition criteria for
passwords on the system.

PW_ADMIN This bit indicates that password
information for this user may only
be changed by the root user.

PW_ADMCHG This bit indicates that the
password is being changed by an
administrator and the password
will have to be changed upon the
next successful running of the
login or su commands to this
account.

Security

Policy:
Authentication

 To change a password, the invoker must be properly authenticated.

Note: Programs that invoke the newpass subroutine should be written to conform to the
authentication rules enforced by newpass. The PW_ADMCHG flag should always be
explicitly cleared unless the invoker of the command is an administrator.

Return Values
If a new password is successfully generated, a pointer to the new encrypted password is
returned. If an error occurs, a null pointer is returned and the errno global variable is set to
indicate the error.

Error Codes
The newpass subroutine fails if one or more of the following are true;

EINVAL The structure passed to the newpass subroutine is invalid.

ESAD Security authentication is denied for the invoker.

EPERM The user is unable to change the password of a user with the PW_ADMCHG
bit set, and the real user ID of the process is not the root user.

ENOENT The user is not properly defined in the database.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-697Base Operating System Runtime Services (A-P)

Related Information
The getpass subroutine, getuserpw subroutine.

The login command, passwd command, pwdadm command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-698 Technical Reference: Base Operating System

nftw or nftw64 Subroutine

Purpose
Walks a file tree.

Library
Standard C Library (libc.a)

Syntax
#include <ftw.h>

int nftw (Path, Function, Depth, Flags)
const char *Path;
int *(*Function) ();
int Depth;
int Flags;

int nftw64(Path,Function,Depth)
const char *Path;
int *(*Function) ();
int Depth;
int Flags;

Description
The nftw and nftw64 subroutines recursively descend the directory hierarchy rooted in the
Path parameter. The nftw and nftw64 subroutines have a similar effect to ftw and ftw64
except that they take an additional argument flags, which is a bitwise inclusive–OR of zero
or more of the following flags:

FTW_CHDIR If set, the current working directory will change to each directory as files
are reported. If clear, the current working directory will not change.

FTW_DEPTH If set, all files in a directory will be reported before the directory itself. If
clear, the directory will be reported before any files.

FTW_MOUNT If set, symbolic links will not be followed. If clear the links will be
followed.

FTW_PHYS If set, symbolic links will not be followed. If clear the links will be
followed, and will not report the same file more than once.

For each file in the hierarchy, the nftw and nftw64 subroutines call the function specified by
the Function parameter. The nftw subroutine passes a pointer to a null–terminated character
string containing the name of the file, a pointer to a stat structure containing information
about the file, an integer and a pointer to an FTW structure. The nftw64 subroutine passes a
pointer to a null–terminated character string containing the name of the file, a pointer to a
stat64 structure containing information about the file, an integer and a pointer to an FTW
structure.

The nftw subroutine uses the stat system call which will fail on files of size larger than 2
Gigabytes. The nftw64 subroutine must be used if there is a possibility of files of size larger
than 2 Gigabytes.

The integer passed to the Function parameter identifies the file type with one of the
following values:

FTW_F Regular file

FTW_D Directory

FTW_DNR Directory that cannot be read

1-699Base Operating System Runtime Services (A-P)

FTW_DP The Object is a directory and subdirectories have been visited. (This
condition will only occur if FTW_DEPTH is included in flags).

FTW_SL Symbolic Link

FTW_SLN Symbolic Link that does not name an existin file. (This condition will only
occur if the FTW_PHYS flag is not included in flags).

FTW_NS File for which the stat structure could not be executed successfully

If the integer is FTW_DNR, the files and subdirectories contained in that directory are not
processed.

If the integer is FTW_NS, the stat structure contents are meaningless. An example of a file
that causes FTW_NS to be passed to the Function parameter is a file in a directory for
which you have read permission but not execute (search) permission.

The FTW structure pointer passed to the Function parameter contains base which is the
offset of the object’s filename in the pathname passed as the first argument to Function. The
value of level indicates depth relative to the root of the walk.

The nftw and nftw64 subroutines use one file descriptor for each level in the tree. The
Depth parameter specifies the maximum number of file descriptors to be used. In general,
the nftw and nftw64 run faster of the value of the Depth parameter is at least as large as
the number of levels in the tree. However, the value of the Depth parameter must not be
greater than the number of file descriptors currently available for use. If the value of the
Depth parameter is 0 or a negative number, the effect is the same as if it were 1.

Because the nftw and nftw64 subroutines are recursive, it is possible for it to terminate with
a memory fault due to stack overflow when applied to very deep file structures.

The nftw and nftw64 subroutines use the malloc subroutine to allocate dynamic storage
during its operation. If the nftw subroutine is terminated prior to its completion, such as by
the longjmp subroutine being executed by the function specified by the Function parameter
or by an interrupt routine, the nftw subroutine cannot free that storage. The storage remains
allocated. A safe way to handle interrupts is to store the fact that an interrupt has occurred,
and arrange to have the function specified by the Function parameter return a nonzero
value the next time it is called.

Parameters

Path Specifies the directory hierarchy to be searched.

Function User supplied function that is called for each file encountered.

Depth Specifies the maximum number of file descriptors to be used. Depth cannot
be greater than OPEN_MAX which is described in the sys/limits.h header
file.

Return Values
If the tree is exhausted, the nftw and nftw64 subroutine returns a value of 0. If the
subroutine pointed to by fn returns a nonzero value, nftw and nftw64 stops its tree traversal
and returns whatever value was returned by the subroutine pointed to by fn. If the nftw and
nftw64 subroutine detects an error, it returns a –1 and sets the errno global variable to
indicate the error.

Error Codes
If the nftw or nftw64 subroutines detect an error, a value of –1 is returned and the errno
global variable is set to indicate the error.

The nftw and nftw64 subroutine are unsuccessful if:

1-700 Technical Reference: Base Operating System

EACCES Search permission is denied for any component of the Path
parameter or read permission is denied for Path.

ENAMETOOLONG The length of the path exceeds PATH_MAX while
_POSIX_NO_TRUNC is in effect.

ENOENT The Path parameter points to the name of a file that does not exist
or points to an empty string.

ENOTDIR A component of the Path parameter is not a directory.

The nftw subroutine is unsuccessful if:

EOVERFLOW A file in Path is of a size larger than 2 Gigabytes.

Implementation Specifics
This subroutines is part of Base Operating System (BOS) Runtime.

Related Information
The stat or malloc subroutine.

The ftw subroutine.

1-701Base Operating System Runtime Services (A-P)

nl_langinfo Subroutine

Purpose
Returns information on the language or cultural area in a program’s locale.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types.h>
#include <langinfo.h>

char *nl_langinfo (Item)
nl_item Item;

Description
The nl_langinfo subroutine returns a pointer to a string containing information relevant to
the particular language or cultural area defined in the program’s locale and corresponding to
the Item parameter. The active language or cultural area is determined by the default value
of the environment variables or by the most recent call to the setlocale subroutine. If the
setlocale subroutine has not been called in the program, then the default C locale values
will be returned from nl_langinfo.

Values for the Item parameter are defined in the langinfo.h file.

The following table summarizes the categories for which nl_langinfo() returns information,
the values the Item parameter can take, and descriptions of the returned strings. In the
table, radix character refers to the character that separates whole and fractional numeric or
monetary quantities. For example, a period (.) is used as the radix character in the U.S., and
a comma (,) is used as the radix character in France.

Category Value of item Returned Result

LC_MONETARY CRNCYSTR Currency symbol and its position.

LC_NUMERIC RADIXCHAR Radix character.

LC_NUMERIC THOUSEP Separator for the thousands.

LC_MESSAGES YESSTR Affirmative response for yes/no queries.

LC_MESSAGES NOSTR Negative response for yes/no queries.

LC_TIME D_T_FMT String for formatting date and time.

LC_TIME D_FMT String for formatting date.

LC_TIME T_FMT String for formatting time.

LC_TIME AM_STR Antemeridian affix.

LC_TIME PM_STR Postmeridian affix.

LC_TIME DAY_1 through DAY_7 Name of the first day of the week to the
seventh day of the week.

LC_TIME ABDAY_1 through
ABDAY–7

Abbreviated name of the first day of the
week to the seventh day of the week.

LC_TIME MON_1 through MON_12 Name of the first month of the year to the
twelfth month of the year.

LC_TIME ABMON_1 through
ABMON_12

Abbreviated name of the first month of
the year to the twelfth month.

LC_CTYPE CODESET Code set currently in use in the program.

1-702 Technical Reference: Base Operating System

Note: The information returned by the nl_langinfo subroutine is located in a static buffer.
The contents of this buffer are overwritten in subsequent calls to the nl_langinfo
subroutine. Therefore, you should save the returned information.

Parameter

Item Information needed from locale.

Return Values
In a locale where language information data is not defined, the nl_langinfo subroutine
returns a pointer to the corresponding string in the C locale. In all locales, the nl_langinfo
subroutine returns a pointer to an empty string if the Item parameter contains an invalid
setting.

The nl_langinfo subroutine returns a pointer to a static area. Subsequent calls to the
nl_langinfo subroutine overwrite the results of a previous call.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The localeconv subroutine, rpmatch subroutine, setlocale subroutine.

Subroutines Overview, National Language Support Overview for Programming, and
Understanding Locale Subroutines in AIX General Programming Concepts : Writing and
Debugging Programs.

1-703Base Operating System Runtime Services (A-P)

nlist64 Subroutine

Purpose
Gets entries from a name list.

Library
Standard C Library [libc.a]

Syntax
#include <nlist.h>

int nlist64(FileName, N1)
const char *FileName;
struct nlist64 *N1;

Description
The nlist64 subroutine allows a program to examine the name list in the executable file
named by the FileName parameter. It selectively extracts a list of values and places them in
the array of nlist64 structures pointed to by the N1 parameter.

The name list specified by the N1 parameter consists of an array of structures containing
names of variables, types, and values. The list is terminated with an element that has a null
string in the name structure member. Each variable name is looked up in the name list of
the file. If the name is found, the type and value of the name are inserted in the next two
fields. The type field is set to 0 unless the file was compiled with the –g option. If the name
is not found, both the type and value entries are set to 0.

All entries are set to 0 if the specified file cannot be read or if it does not contain a valid
name list.

The nlist64 subroutine runs in both 32–bit and 64–bit mode. The nlist64 subroutine runs in
both 32–bit and 64–bit mode. nlist64 can read both 32–bit XCOFF and 64–bit XCOFF files
in both 32–bit and 64–bit modes.

In 32–bit mode, the _n_name pointer variable in the nlist64 structure is 4 bytes wide. In the
64–bit mode, it is 8 bytes wide. In both 32–bit mode and 64–bit mode, the n_value variable
(long long) is 8 bytes wide.

You can use the nlist64 subroutine to examine the system name list kept in the /unix file.
By examining this list, you can ensure that your programs obtain current system addresses.

The nlist.h file is automatically included by a.out.h for compatibility. However, do not
include the a.out.h file if you only need the information necessary to use the nlist64
subroutine. If you do include a.out.h, follow the #include statement with the line:

#undef n_name

Notes:

1. If both the nlist.h and netdb.h files are to be included, the netdb.h file should be
included before the nlist.h file in order to avoid a conflict with the n_name structure
member. Likewise, if both the a.out.h and netdb.h files are to be included, the netdb.h
file should be included before the a.out.h file to avoid a conflict with the n_name
structure.

2. If the netdb.h file and either the nlist.h or syms.h file are included, n_name will be
defined as _n._n_name. This definition allows you to access the n_name field in the
nlist64 or syment structure. If you need to access the n_name filed in the netent
structure, undefine n_name by including:

#undef n_name

1-704 Technical Reference: Base Operating System

 in your code before accessing the n_name field in the netent structure. If you need to
access the n_name field in a syment or nlist64 structure after undefining n_name,
redefine n_name with:

#define n_name _n._n_name

3. There is no nlist64 subroutine in libbsd.a

Parameters

FileName Specifies the name of the file containing a name list.

N1 Points to the array of nlist64 structures.

Return Values
Upon successful completion, a 0 is returned.

If the file cannot be found or if it is not a valid name list, a value of –1 is returned.

To obtain the BSD–compatible version of the subroutine, compile with the libbsd.a library.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The knlist subroutine.

The a.out file.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-705Base Operating System Runtime Services (A-P)

nlist Subroutine

Purpose
Gets entries from a name list.

Library
Standard C Library [libc.a]

Berkeley Compatibility Library [libbsd.a]

Syntax
#include <nlist.h>

int nlist(FileName, N1)
const char *FileName;
struct nlist *N1;

Description
The nlist subroutine allows a program to examine the name list in the executable file named
by the FileName parameter. It selectively extracts a list of values and places them in the
array of nlist structures pointed to by the N1 parameter.

The name list specified by the N1 parameter consists of an array of structures containing
names of variables, types, and values. The list is terminated with an element that has a null
string in the name structure member. Each variable name is looked up in the name list of
the file. If the name is found, the type and value of the name are inserted in the next two
fields. The type field is set to 0 unless the file was compiled with the –g option. If the name
is not found, both the type and value entries are set to 0.

All entries are set to 0 if the specified file cannot be read or if it does not contain a valid
name list.

 The nlist subroutine runs in both 32–bit and 64–bit mode. In 32–bit mode, nlist can read
only 32–bit XCOFF format files and will give a –1 return code on a 64–bit XCOFF file. In
64–bit mode, nlist can read both 32–bit XCOFF format files and 64–bit XCOFF files.

 In 32–bit mode, the _n_name pointer and the n_value variable in the nlist structure are 4
bytes wide, while in the 64–bit mode, they are both 8 bytes wide.

 The nlist subroutine in libbsd.a is only supported in 32–bit mode.

You can use the nlist subroutine to examine the system name list kept in the /unix file. By
examining this list, you can ensure that your programs obtain current system addresses.

The nlist.h file is automatically included by a.out.h for compatibility. However, do not
include the a.out.h file if you only need the information necessary to use the nlist
subroutine. If you do include a.out.h, follow the #include statement with the line:

#undef n_name

Notes:

1. If both the nlist.h and netdb.h files are to be included, the netdb.h file should be
included before the nlist.h file in order to avoid a conflict with the n_name structure
member. Likewise, if both the a.out.h and netdb.h files are to be included, the netdb.h
file should be included before the a.out.h file to avoid a conflict with the n_name
structure.

2. If the netdb.h file and either the nlist.h or syms.h file are included, n_name will be
defined as _n._n_name. This definition allows you to access the n_name field in the
nlist or syment structure. If you need to access the n_name field in the netent structure,
undefine n_name by including:

1-706 Technical Reference: Base Operating System

#undef n_name

 in your code before accessing the n_name field in the netent structure. If you need to
access the n_name field in a syment or nlist structure after undefining n_name, redefine
n_name with:

#define n_name _n._n_name

Parameters

FileName Specifies the name of the file containing a name list.

N1 Points to the array of nlist structures.

Return Values
Upon successful completion, a 0 is returned. In BSD, the number of unfound namelist
entries is returned. If the file cannot be found or if it is not a valid name list, a value of –1 is
returned.

Compatibility Interfaces
To obtain the BSD–compatible version of the subroutine, compile with the libbsd.a library.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The knlist, nlist64 subroutine.

The a.out file.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-707Base Operating System Runtime Services (A-P)

ns_addr Subroutine

Purpose
XNS address conversion routines.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <netns/ns.h>

struct ns_addr(char *cp)

Description
The ns_addr subroutine interprets character strings representing XNS addresses, returning
binary information suitable for use in system calls.

The ns_addr subroutine separates an address into one to three fields using a single
delimiter and examines each field for byte separators (colon or period). The delimiters are:

. period

: colon

pound sign.

 If byte separators are found, each subfield separated is taken to be a small hexadecimal
number, and the entirety is taken as a network–byte–ordered quantity to be zero extended
in the high–networked–order bytes. Next, the field is inspected for hyphens, which would
indicate the field is a number in decimal notation with hyphens separating the millenia. The
field is assumed to be a number, interpreted as hexadecimal, if a leading 0x (as in C), a
trailing H, (as in Mesa), or any super–octal digits are present. The field is interpreted as
octal if a leading 0 is present and there are no super–octal digits. Otherwise, the field is
converted as a decimal number.

Parameter

cp Returns a pointer to the address of a ns_addr structure.

Implementation Specifics
The ns_addr subroutine is part of Base Operating System (BOS) Runtime.

1-708 Technical Reference: Base Operating System

ns_ntoa Subroutine

Purpose
XNS address conversion routines.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <netns/ns.h>

char *ns_ntoa (
struct ns_addr ns)

Description
The ns_ntoa subroutine takes XNS addresses and returns ASCII strings representing the
address in a notation in common use in the Xerox Development Environment:

<network number> <host number> <port number>

Trailing zero fields are suppressed, and each number is printed in hexadecimal, in a format
suitable for input to the ns_addr subroutine. Any fields lacking super–decimal digits will
have a trailing H appended.

Note: The string returned by ns_ntoa resides in static memory.

Parameter

ns Returns a pointer to a string.

Implementation Specifics
The ns_ntoa subroutine is part of Base Operating System (BOS) Runtime.

1-709Base Operating System Runtime Services (A-P)

odm_add_obj Subroutine

Purpose
Adds a new object into an object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_add_obj (ClassSymbol, DataStructure)
CLASS_SYMBOL ClassSymbol;
struct ClassName *DataStructure;

Description
The odm_add_obj subroutine takes as input the class symbol that identifies both the object
class to add and a pointer to the data structure containing the object to be added.

The odm_add_obj subroutine opens and closes the object class around the subroutine if
the object class was not previously opened. If the object class was previously opened, the
subroutine leaves the object class open when it returns.

Parameters

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class
subroutine. If the odm_open_class subroutine has not been called,
then this identifier is the ClassName_CLASS structure that was created
by the odmcreate command.

DataStructure Specifies a pointer to an instance of the C language structure
corresponding to the object class referenced by the ClassSymbol
parameter. The structure is declared in the .h file created by the
odmcreate command and has the same name as the object class.

Return Values
Upon successful completion, an identifier for the object that was added is returned. If the
odm_add_obj subroutine is unsuccessful, a value of –1 is returned and the odmerrno
variable is set to an error code.

Error Codes
Failure of the odm_add_obj subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_INVALID_CLXN

 Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMI_INVALID_PATH

1-710 Technical Reference: Base Operating System

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_PARAMS

 The parameters passed to the subroutine were not correct. Make sure
there are the correct number of parameters and that they are valid.

ODMI_READ_ONLY

 The specified object class is opened as read–only and cannot be
modified.

ODMI_TOOMANYCLASSES

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_create_class subroutine, odm_open_class subroutine, odm_rm_obj
subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX General Programming Concepts : Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-711Base Operating System Runtime Services (A-P)

odm_change_obj Subroutine

Purpose
Changes an object in the object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_change_obj (ClassSymbol, DataStructure)
CLASS_SYMBOL ClassSymbol;
struct ClassName *DataStructure;

Description
The odm_change_obj subroutine takes as input the class symbol that identifies both the
object class to change and a pointer to the data structure containing the object to be
changed. The application program must first retrieve the object with an odm_get_obj
subroutine call, change the data values in the returned structure, and then pass that
structure to the odm_change_obj subroutine.

The odm_change_obj subroutine opens and closes the object class around the change if
the object class was not previously opened. If the object class was previously opened, then
the subroutine leaves the object class open when it returns.

Parameters

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class
subroutine. If the odm_open_class subroutine has not been called,
then this identifier is the ClassName_CLASS structure that is created
by the odmcreate command.

DataStructure Specifies a pointer to an instance of the C language structure
corresponding to the object class referenced by the ClassSymbol
parameter. The structure is declared in the .h file created by the
odmcreate command and has the same name as the object class.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_change_obj subroutine
fails, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_change_obj subroutine sets the odmerrno variable to one of the
following error codes:

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_INVALID_CLXN

 Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

1-712 Technical Reference: Base Operating System

ODMI_INVALID_PATH

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_NO_OBJECT

 The specified object identifier did not refer to a valid object.

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_PARAMS

 The parameters passed to the subroutine were not correct. Make sure
there are the correct number of parameters and that they are valid.

ODMI_READ_ONLY

 The specified object class is opened as read–only and cannot be
modified.

ODMI_TOOMANYCLASSES

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_get_obj subroutine.

The odmchange command, odmcreate command.

See ODM Example Code and Output in AIX General Programming Concepts : Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-713Base Operating System Runtime Services (A-P)

odm_close_class Subroutine

Purpose
Closes an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_close_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_close_class subroutine closes the specified object class.

Parameters

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class
subroutine. If the odm_open_class subroutine has not been called,
then this identifier is the ClassName_CLASS structure that was created
by the odmcreate command.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_close_class subroutine is
unsuccessful, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_close_class subroutine sets the odmerrno variable to one of the
following error codes:

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_INVALID_CLXN

 Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMI_INVALID_PATH

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_TOOMANYCLASSES

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

1-714 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_open_class subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-715Base Operating System Runtime Services (A-P)

odm_create_class Subroutine

Purpose
Creates an object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_create_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_create_class subroutine creates an object class. However, the .c and .h files
generated by the odmcreate command are required to be part of the application.

Parameters

ClassSymbol Specifies a class symbol of the form ClassName_CLASS, which is
declared in the .h file created by the odmcreate command.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_create_class subroutine
is unsuccessful, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_create_class subroutine sets the odmerrno variable to one of the
following error codes:

• ODMI_CLASS_EXISTS

• ODMI_CLASS_PERMS

• ODMI_INVALID_CLXN

• ODMI_INVALID_PATH

• ODMI_MAGICNO_ERR

• ODMI_OPEN_ERR

See Appendix B, ”ODM Error Codes” for explanations of the ODM error codes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_mount_class subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX General Programming Concepts : Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-716 Technical Reference: Base Operating System

odm_err_msg Subroutine

Purpose
Returns an error message string.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_err_msg (ODMErrno, MessageString)
long ODMErrno;
char **MessageString;

Description
The odm_err_msg subroutine takes as input an ODMErrno parameter and an address in
which to put the string pointer of the message string that corresponds to the input ODM
error number. If no corresponding message is found for the input error number, a null string
is returned and the subroutine is unsuccessful.

Parameters

ODMErrno Specifies the error code for which the message string is retrieved.

MessageString Specifies the address of a string pointer that will point to the returned
error message string.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_err_msg subroutine is
unsuccessful, a value of –1 is returned, and the MessageString value returned is a null
string.

Examples
The following example shows the use of the odm_err_msg subroutine:

#include <odmi.h>

char *error_message;

...

/*––*

/

/*ODMErrno was returned from a previous ODM subroutine call.

*/

/*––*

/

returnstatus = odm_err_msg (odmerrno, &error_message);

if (returnstatus < 0)

 printf (”Retrieval of error message failed\n”);

else

 printf (error_message);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-717Base Operating System Runtime Services (A-P)

Related Information
See Appendix B, ”ODM Error Codes” for explanations of the ODM error codes.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-718 Technical Reference: Base Operating System

odm_free_list Subroutine

Purpose
Frees memory previously allocated for an odm_get_list subroutine.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_free_list (ReturnData, DataInfo)
struct ClassName *ReturnData;
struct listinfo *DataInfo;

Description
The odm_free_list subroutine recursively frees up a tree of memory object lists that were
allocated for an odm_get_list subroutine.

Parameters

ReturnData Points to the array of ClassName structures returned from the
odm_get_list subroutine.

DataInfo Points to the listinfo structure that was returned from the odm_get_list
subroutine. The listinfo structure has the following form:

struct listinfo {

char ClassName[16]; /* class name for query *

/

char criteria[256]; /* query criteria */

int num; /* number of matches foun

d */

int valid; /* for ODM use */

CLASS_SYMBOL class; /* symbol for queried cla

ss */

};

Return Values
Upon successful completion, a value of 0 is returned. If the odm_free_list subroutine is
unsuccessful, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_free_list subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_PARAMS

 The parameters passed to the subroutine were not correct. Make sure
there are the correct number of parameters and that they are valid.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-719Base Operating System Runtime Services (A-P)

Related Information
The odm_get_list subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-720 Technical Reference: Base Operating System

odm_get_by_id Subroutine

Purpose
Retrieves an object from an ODM object class by its ID.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

struct ClassName *odm_get_by_id(ClassSymbol, ObjectID, ReturnData
)
CLASS_SYMBOL ClassSymbol;
int ObjectID;
struct ClassName *ReturnData;

Description
The odm_get_by_id subroutine retrieves an object from an object class. The object to be
retrieved is specified by passing its ObjectID parameter from its corresponding ClassName
structure.

Parameters

ClassSymbol Specifies a class symbol identifier of the form ClassName_CLASS,
which is declared in the .h file created by the odmcreate command.

ObjectID Specifies an identifier retrieved from the corresponding ClassName
structure of the object class.

ReturnData Specifies a pointer to an instance of the C language structure
corresponding to the object class referenced by the ClassSymbol
parameter. The structure is declared in the .h file created by the
odmcreate command and has the same name as the object class.

Return Values
Upon successful completion, a pointer to the ClassName structure containing the object is
returned. If the odm_get_by_id subroutine is unsuccessful, a value of –1 is returned and
the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_get_by_id subroutine sets the odmerrno variable to one of the
following error codes:

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_INVALID_CLXN

 Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMI_INVALID_PATH

1-721Base Operating System Runtime Services (A-P)

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR

 Cannot allocate sufficient storage. Try again later or contact the person
responsible for the system.

ODMI_NO_OBJECT

 The specified object identifier did not refer to a valid object.

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_PARAMS

 The parameters passed to the subroutine were not correct. Make sure
there are the correct number of parameters and that they are valid.

ODMI_TOOMANYCLASSES

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_get_obj, odm_get_first, or odm_get_next subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX General Programming Concepts : Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-722 Technical Reference: Base Operating System

odm_get_list Subroutine

Purpose
Retrieves all objects in an object class that match the specified criteria.

Library
Object Data Manager Library (libodm.a)

Syntax
 #include <odmi.h>

struct ClassName *odm_get_list (ClasSymbol, Criteria, ListInfo, MaxReturn , LinkDepth)
struct ClassName_CLASS ClassSymbol;
char *Criteria;
struct listinfo *ListInfo;
int MaxReturn, LinkDepth;

Description
The odm_get_list subroutine takes an object class and criteria as input, and returns a list of
objects that satisfy the input criteria. The subroutine opens and closes the object class
around the subroutine if the object class was not previously opened. If the object class was
previously opened, the subroutine leaves the object class open when it returns.

Parameters

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class
subroutine. If the odm_open_class subroutine has not been called, then
this is the ClassName_CLASS structure created by the odmcreate
command.

Criteria Specifies a string that contains the qualifying criteria for selecting the
objects to remove.

ListInfo Specifies a structure containing information about the retrieval of the
objects. The listinfo structure has the following form:

struct listinfo {

char ClassName[16]; /* class name used for query */

char criteria[256]; /* query criteria */

int num; /* number of matches found */

int valid; /* for ODM use */

CLASS_SYMBOL class; /* symbol for queried class */

};

MaxReturn Specifies the expected number of objects to be returned. This is used to
control the increments in which storage for structures is allocated, to
reduce the realloc subroutine copy overhead.

LinkDepth Specifies the number of levels to recurse for objects with ODM_LINK
descriptors. A setting of 1 indicates only the top level is retrieved; 2
indicates ODM_LINKs will be followed from the top/first level only: 3
indicates ODM_LINKs will be followed at the first and second level, and
so on.

Return Values
Upon successful completion, a pointer to an array of C language structures containing the
objects is returned. This structure matches that described in the .h file that is returned from
the odmcreate command. If no match is found, null is returned. If the odm_get_list
subroutine fails, a value of –1 is returned and the odmerrno variable is set to an error code.

1-723Base Operating System Runtime Services (A-P)

Error Codes
Failure of the odm_get_list subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_BAD_CRIT The specified search criteria is incorrectly formed. Make
sure the criteria contains only valid descriptor names and
the search values are correct.

ODMI_CLASS_DNE The specified object class does not exist. Check path
name and permissions.

ODMI_CLASS_PERMS The object class cannot be opened because of the file
permissions.

ODMI_INTERNAL_ERR An internal consistency problem occurred. Make sure the
object class is valid or contact the person responsible for
the system.

ODMI_INVALID_CLXN Either the specified collection is not a valid object class
collection or the collection does not contain consistent
data.

ODMI_INVALID_PATH The specified path does not exist on the file system. Make
sure the path is accessible.

ODMI_LINK_NOT_FOUND The object class that is accessed could not be opened.
Make sure the linked object class is accessible.

ODMI_MAGICNO_ERR The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR Cannot allocate sufficient storage. Try again later or
contact the person responsible for the system.

ODMI_OPEN_ERR Cannot open the object class. Check path name and
permissions.

ODMI_PARAMS The parameters passed to the subroutine were not
correct. Make sure there are the correct number of
parameters and that they are valid.

ODMI_TOOMANYCLASSES Too many object classes have been accessed. An
application can only access less than 1024 object
classes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_get_by_id subroutine, odm_get_obj subroutine, odm_open_class subroutine,
or odm_free_list subroutine.

The odmcreate command, odmget command.

For information on qualifying criteria, see ”Understanding ODM Object Searches” in AIX
General Programming Concepts : Writing and Debugging Programs.

See ODM Example Code and Output in AIX General Programming Concepts : Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-724 Technical Reference: Base Operating System

odm_get_obj, odm_get_first, or odm_get_next Subroutine

Purpose
Retrieves objects, one object at a time, from an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

struct ClassName *odm_get_obj (ClassSymbol, Criteria, ReturnData,
 FIRST_NEXT)

struct ClassName *odm_get_first (ClassSymbol, Criteria, ReturnDat
a)

struct ClassName *odm_get_next (ClassSymbol, ReturnData)

CLASS_SYMBOL ClassSymbol;
char *Criteria;
struct ClassName *ReturnData;
int FIRST_NEXT;

Description
The odm_get_obj, odm_get_first, and odm_get_next subroutines retrieve objects from
ODM object classes and return the objects into C language structures defined by the .h file
produced by the odmcreate command.

The odm_get_obj, odm_get_first, and odm_get_next subroutines open and close the
specified object class if the object class was not previously opened. If the object class was
previously opened, the subroutines leave the object class open upon return.

Parameters

ClassSymbol Specifies a class symbol identifier returned from an odm_open_class
subroutine. If the odm_open_class subroutine has not been called,
then this identifier is the ClassName_CLASS structure that was created
by the odmcreate command.

Criteria Specifies the string that contains the qualifying criteria for retrieval of
the objects.

1-725Base Operating System Runtime Services (A-P)

ReturnData Specifies the pointer to the data structure in the .h file created by the
odmcreate command. The name of the structure in the .h file is
ClassName. If the ReturnData parameter is null (ReturnData ==
null), space is allocated for the parameter and the calling application
is responsible for freeing this space at a later time.

If variable length character strings (vchar) are returned, they are
referenced by pointers in the ReturnData structure. Calling applications
must free each vchar between each call to the odm_get subroutines;
otherwise storage will be lost.

FIRST_NEXT Specifies whether to get the first object that matches the criteria or the
next object. Valid values are:

ODM_FIRST Retrieve the first object that matches the search
criteria.

ODM_NEXT Retrieve the next object that matches the search
criteria. The Criteria parameter is ignored if the
FIRST_NEXT parameter is set to ODM_NEXT.

Return Values
Upon successful completion, a pointer to the retrieved object is returned. If no match is
found, null is returned. If an odm_get_obj, odm_get_first, or odm_get_next subroutine is
unsuccessful, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_get_obj, odm_get_first or odm_get_next subroutine sets the
odmerrno variable to one of the following error codes:

ODMI_BAD_CRIT

 The specified search criteria is incorrectly formed. Make sure the
criteria contains only valid descriptor names and the search values are
correct.

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_INTERNAL_ERR

 An internal consistency problem occurred. Make sure the object class is
valid or contact the person responsible for the system.

ODMI_INVALID_CLXN

 Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMI_INVALID_PATH

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR

 Cannot allocate sufficient storage. Try again later or contact the person
responsible for the system.

1-726 Technical Reference: Base Operating System

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_TOOMANYCLASSES

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The odm_get_list subroutine, odm_open_class subroutine, odm_rm_by_id subroutine,
odm_rm_obj subroutine.

The odmcreate command, odmget command.

For more information about qualifying criteria, see ”Understanding ODM Object Searches”
in AIX General Programming Concepts : Writing and Debugging Programs.

See ODM Example Code and Output in AIX General Programming Concepts : Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-727Base Operating System Runtime Services (A-P)

odm_initialize Subroutine

Purpose
Prepares ODM for use by an application.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_initialize()

Description
The odm_initialize subroutine starts ODM for use with an application program.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_initialize subroutine is
unsuccessful, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_initialize subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_INVALID_PATH

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_MALLOC_ERR

 Cannot allocate sufficient storage. Try again later or contact the person
responsible for the system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_terminate subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-728 Technical Reference: Base Operating System

odm_lock Subroutine

Purpose
Puts an exclusive lock on the requested path name.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_lock (LockPath, TimeOut)
char *LockPath;
int TimeOut;

Description
The odm_lock subroutine is used by an application to prevent other applications or
methods from accessing an object class or group of object classes. A lock on a directory
path name does not prevent another application from acquiring a lock on a subdirectory or
object class within that directory.

Note: Coordination of locking is the responsibility of the application accessing the object
classes.

The odm_lock subroutine returns a lock identifier that is used to call the odm_unlock
subroutine.

Parameters

LockPath Specifies a string containing the path name in the file system in which to
locate object classes or the path name to an object class to lock.

TimeOut Specifies the amount of time, in seconds, to wait if another application or
method holds a lock on the requested object class or classes. The possible
values for the TimeOut parameter are:

TimeOut = ODM_NOWAIT
The odm_lock subroutine is unsuccessful if the lock cannot
be granted immediately.

TimeOut = Integer
The odm_lock subroutine waits the specified amount of
seconds to retry an unsuccessful lock request.

TimeOut = ODM_WAIT
The odm_lock subroutine waits until the locked path name
is freed from its current lock and then locks it.

Return Values
Upon successful completion, a lock identifier is returned. If the odm_lock subroutine is
unsuccessful, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_lock subroutine sets the odmerrno variable to one of the following error
codes:

1-729Base Operating System Runtime Services (A-P)

ODMI_BAD_LOCK

 Cannot set a lock on the file. Check path name and permissions.

ODMI_BAD_TIMEOUT

 The time–out value was not valid. It must be a positive integer.

ODMI_BAD_TOKEN

 Cannot create or open the lock file. Check path name and permissions.

ODMI_LOCK_BLOCKED

 Cannot grant the lock. Another process already has the lock.

ODMI_LOCK_ENV

 Cannot retrieve or set the lock environment variable. Remove some
environment variables and try again.

ODMI_MALLOC_ERR

 Cannot allocate sufficient storage. Try again later or contact the person
responsible for the system.

ODMI_UNLOCK

 Cannot unlock the lock file. Make sure the lock file exists.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_unlock subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-730 Technical Reference: Base Operating System

odm_mount_class Subroutine

Purpose
Retrieves the class symbol structure for the specified object class name.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

CLASS_SYMBOL odm_mount_class (ClassName)
char *ClassName;

Description
The odm_mount_class subroutine retrieves the class symbol structure for a specified
object class. The subroutine can be called by applications (for example, the ODM
commands) that have no previous knowledge of the structure of an object class before
trying to access that class. The odm_mount_class subroutine determines the class
description from the object class header information and creates a CLASS_SYMBOL object
class that is returned to the caller.

The object class is not opened by the odm_mount_class subroutine. Calling the subroutine
subsequent times for an object class that is already open or mounted returns the same
CLASS_SYMBOL object class.

Mounting a class that links to another object class recursively mounts to the linked class.
However, if the recursive mount is unsuccessful, the original odm_mount_class subroutine
does not fail; the CLASS_SYMBOL object class is set up with a null link.

Parameters

ClassName Specifies the name of an object class from which to retrieve the class
description.

Return Values
Upon successful completion, a CLASS_SYMBOL is returned. If the odm_mount_class
subroutine is unsuccessful, a value of –1 is returned and the odmerrno variable is set to an
error code.

Error Codes
Failure of the odm_mount_class subroutine sets the odmerrno variable to one of the
following error codes:

ODMI_BAD_CLASSNAME

 The specified object class name does not match the object class name
in the file. Check path name and permissions.

ODMI_BAD_CLXNNAME

 The specified collection name does not match the collection name in
the file.

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

1-731Base Operating System Runtime Services (A-P)

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_CLXNMAGICNO_ERR

 The specified collection is not a valid object class collection.

ODMI_INVALID_CLASS

 The specified file is not an object class.

ODMI_INVALID_CLXN

 Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR

 Cannot allocate sufficient storage. Try again later or contact the person
responsible for the system.

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_PARAMS

 The parameters passed to the subroutine were not correct. Make sure
there are the correct number of parameters and that they are valid.

ODMI_TOOMANYCLASSES

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_create_class subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-732 Technical Reference: Base Operating System

odm_open_class Subroutine

Purpose
Opens an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

CLASS_SYMBOL odm_open_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_open_class subroutine can be called to open an object class. Most subroutines
implicitly open a class if the class is not already open. However, an application may find it
useful to perform an explicit open if, for example, several operations must be done on one
object class before closing the class.

Parameter

ClassSymbol Specifies a class symbol of the form ClassName_CLASS that is
declared in the .h file created by the odmcreate command.

Return Values
Upon successful completion, a ClassSymbol parameter for the object class is returned. If
the odm_open_class subroutine is unsuccessful, a value of –1 is returned and the
odmerrno variable is set to an error code.

Error Codes
Failure of the odm_open_class subroutine sets the odmerrno variable to one of the
following error codes:

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_INVALID_PATH

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_TOOMANYCLASSES

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

1-733Base Operating System Runtime Services (A-P)

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_close_class subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX General Programming Concepts : Writing and
Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-734 Technical Reference: Base Operating System

odm_rm_by_id Subroutine

Purpose
Removes objects specified by their IDs from an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_rm_by_id(ClassSymbol, ObjectID)
CLASS_SYMBOL ClassSymbol;
int ObjectID;

Description
The odm_rm_by_id subroutine is called to delete an object from an object class. The
object to be deleted is specified by passing its object ID from its corresponding ClassName
structure.

Parameters

ClassSymbol Identifies a class symbol returned from an odm_open_class
subroutine. If the odm_open_class subroutine has not been called, this
is the ClassName_CLASS structure that was created by the odmcreate
command.

ObjectID Identifies the object. This information is retrieved from the
corresponding ClassName structure of the object class.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_rm_by_id subroutine is
unsuccessful, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_by_id subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_FORK

 Cannot fork the child process. Make sure the child process is
executable and try again.

ODMI_INVALID_CLXN

 Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMI_INVALID_PATH

 The specified path does not exist on the file system. Make sure the path
is accessible.

1-735Base Operating System Runtime Services (A-P)

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR

 Cannot allocate sufficient storage. Try again later or contact the person
responsible for the system.

ODMI_NO_OBJECT

 The specified object identifier did not refer to a valid object.

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_OPEN_PIPE

 Cannot open a pipe to a child process. Make sure the child process is
executable and try again.

ODMI_PARAMS

 The parameters passed to the subroutine were not correct. Make sure
there are the correct number of parameters and that they are valid.

ODMI_READ_ONLY

 The specified object class is opened as read–only and cannot be
modified.

ODMI_READ_PIPE

 Cannot read from the pipe of the child process. Make sure the child
process is executable and try again.

ODMI_TOOMANYCLASSES

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_get_obj subroutine, odm_open_class subroutine.

The odmdelete command.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-736 Technical Reference: Base Operating System

odm_rm_class Subroutine

Purpose
Removes an object class from the file system.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_rm_class (ClassSymbol)
CLASS_SYMBOL ClassSymbol;

Description
The odm_rm_class subroutine removes an object class from the file system. All objects in
the specified class are deleted.

Parameter

ClassSymbol Identifies a class symbol returned from the odm_open_class
subroutine. If the odm_open_class subroutine has not been called, this
is the ClassName_CLASS structure created by the odmcreate
command.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_rm_class subroutine is
unsuccessful, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_class subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_INVALID_CLXN

 Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMI_INVALID_PATH

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_TOOMANYCLASSES

1-737Base Operating System Runtime Services (A-P)

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

ODMI_UNLINKCLASS_ERR

 Cannot remove the object class from the file system. Check path name
and permissions.

ODMI_UNLINKCLXN_ERR

 Cannot remove the object class collection from the file system. Check
path name and permissions.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_open_class subroutine.

The odmcreate command, odmdrop command.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-738 Technical Reference: Base Operating System

odm_rm_obj Subroutine

Purpose
Removes objects from an ODM object class.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_rm_obj (ClassSymbol, Criteria)
CLASS_SYMBOL ClassSymbol;
char *Criteria;

Description
The odm_rm_obj subroutine deletes objects from an object class.

Parameters

ClassSymbol Identifies a class symbol returned from an odm_open_class
subroutine. If the odm_open_class subroutine has not been called, this
is the ClassName_CLASS structure that was created by the odmcreate
command.

Criteria Contains as a string the qualifying criteria for selecting the objects to
remove.

Return Values
Upon successful completion, the number of objects deleted is returned. If the odm_rm_obj
subroutine is unsuccessful, a value of –1 is returned and the odmerrno variable is set to an
error code.

Error Codes
Failure of the odm_rm_obj subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_BAD_CRIT

 The specified search criteria is incorrectly formed. Make sure the
criteria contains only valid descriptor names and the search values are
correct.

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_FORK

 Cannot fork the child process. Make sure the child process is
executable and try again.

ODMI_INTERNAL_ERR

 An internal consistency problem occurred. Make sure the object class is
valid or contact the person responsible for the system.

1-739Base Operating System Runtime Services (A-P)

ODMI_INVALID_CLXN

 Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMI_INVALID_PATH

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR

 Cannot allocate sufficient storage. Try again later or contact the person
responsible for the system.

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_OPEN_PIPE

 Cannot open a pipe to a child process. Make sure the child process is
executable and try again.

ODMI_PARAMS

 The parameters passed to the subroutine were not correct. Make sure
there are the correct number of parameters and that they are valid.

ODMI_READ_ONLY

 The specified object class is opened as read–only and cannot be
modified.

ODMI_READ_PIPE

 Cannot read from the pipe of the child process. Make sure the child
process is executable and try again.

ODMI_TOOMANYCLASSES

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_add_obj subroutine, odm_open_class subroutine.

The odmcreate command, odmdelete command.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

For information on qualifying criteria, see ”Understanding ODM Object Searches” in AIX
General Programming Concepts : Writing and Debugging Programs.

1-740 Technical Reference: Base Operating System

odm_run_method Subroutine

Purpose
Runs a specified method.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_run_method(MethodName, MethodParameters, NewStdOut, NewSt
dError)
char *MethodName, *MethodParameters;
char **NewStdOut, **NewStdError;

Description
The odm_run_method subroutine takes as input the name of the method to run, any
parameters for the method, and addresses of locations for the odm_run_method
subroutine to store pointers to the stdout (standard output) and stderr (standard error
output) buffers. The application uses the pointers to access the stdout and stderr
information generated by the method.

Parameters

MethodName Indicates the method to execute. The method can already be known
by the applications, or can be retrieved as part of an odm_get_obj
subroutine call.

MethodParameters Specifies a list of parameters for the specified method.

NewStdOut Specifies the address of a pointer to the memory where the standard
output of the method is stored. If the NewStdOut parameter points to
a null value (*NewStdOut == NULL), standard output is not
captured.

NewStdError Specifies the address of a pointer to the memory where the standard
error output of the method will be stored. If the NewStdError
parameter points to a null value (*NewStdError == NULL),
standard error output is not captured.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_run_method subroutine
fails, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_run_method subroutine sets the odmerrno variable to one of the
following error codes:

ODMI_FORK

 Cannot fork the child process. Make sure the child process is
executable and try again.

ODMI_MALLOC_ERR

 Cannot allocate sufficient storage. Try again later or contact the person
responsible for the system.

1-741Base Operating System Runtime Services (A-P)

ODMI_OPEN_PIPE

 Cannot open a pipe to a child process. Make sure the child process is
executable and try again.

ODMI_PARAMS

 The parameters passed to the subroutine were not correct. Make sure
there are the correct number of parameters and that they are valid.

ODMI_READ_PIPE

 Cannot read from the pipe of the child process. Make sure the child
process is executable and try again.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_get_obj subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-742 Technical Reference: Base Operating System

odm_set_path Subroutine

Purpose
Sets the default path for locating object classes.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

char *odm_set_path (NewPath)
char *NewPath;

Description
The odm_set_path subroutine is used to set the default path for locating object classes.
The subroutine allocates memory, sets the default path, and returns the pointer to memory.
Once the operation is complete, the calling application should free the pointer using the free
subroutine.

Parameters

NewPath Contains, as a string, the path name in the file system in which to locate
object classes.

Return Values
Upon successful completion, a string pointing to the previous default path is returned. If the
odm_set_path subroutine is unsuccessful, a value of –1 is returned and the odmerrno
variable is set to an error code.

Error Codes
Failure of the odm_set_path subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_INVALID_PATH

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_MALLOC_ERR

 Cannot allocate sufficient storage. Try again later or contact the person
responsible for the system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The free subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-743Base Operating System Runtime Services (A-P)

odm_set_perms Subroutine

Purpose
Sets the default permissions for an ODM object class at creation time.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_set_perms (NewPermissions)
int NewPermissions;

Description
The odm_set_perms subroutine defines the default permissions to assign to object classes
at creation.

Parameters

NewPermission
s

 Specifies the new default permissions parameter as an integer.

Return Values
Upon successful completion, the current default permissions are returned. If the
odm_set_perms subroutine is unsuccessful, a value of –1 is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
See Appendix B, ”ODM Error Codes” for explanations of the ODM error codes.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-744 Technical Reference: Base Operating System

odm_terminate Subroutine

Purpose
Terminates an ODM session.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_terminate ()

Description
The odm_terminate subroutine performs the cleanup necessary to terminate an ODM
session. After running an odm_terminate subroutine, an application must issue an
odm_initialize subroutine to resume ODM operations.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_terminate subroutine is
unsuccessful, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_terminate subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_CLASS_DNE

 The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_PERMS

 The object class cannot be opened because of the file permissions.

ODMI_INVALID_CLXN

 Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMI_INVALID_PATH

 The specified path does not exist on the file system. Make sure the path
is accessible.

ODMI_LOCK_ID

 The lock identifier does not refer to a valid lock. The lock identifier must
be the same as what was returned from the odm_lock subroutine.

ODMI_MAGICNO_ERR

 The class symbol does not identify a valid object class.

ODMI_OPEN_ERR

 Cannot open the object class. Check path name and permissions.

ODMI_TOOMANYCLASSES

 Too many object classes have been accessed. An application can only
access less than 1024 object classes.

1-745Base Operating System Runtime Services (A-P)

ODMI_UNLOCK

 Cannot unlock the lock file. Make sure the lock file exists.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_initialize subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-746 Technical Reference: Base Operating System

odm_unlock Subroutine

Purpose
Releases a lock put on a path name.

Library
Object Data Manager Library (libodm.a)

Syntax
#include <odmi.h>

int odm_unlock (LockID)
int LockID;

Description
The odm_unlock subroutine releases a previously granted lock on a path name. This path
name can be a directory containing subdirectories and object classes.

Parameters

LockID Identifies the lock returned from the odm_lock subroutine.

Return Values
Upon successful completion a value of 0 is returned. If the odm_unlock subroutine is
unsuccessful, a value of –1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_unlock subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_LOCK_ID

 The lock identifier does not refer to a valid lock. The lock identifier must
be the same as what was returned from the odm_lock subroutine.

ODMI_UNLOCK

 Cannot unlock the lock file. Make sure the lock file exists.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The odm_lock subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-747Base Operating System Runtime Services (A-P)

open, openx, open64, creat, or creat64 Subroutine

Purpose
Opens a file for reading or writing.

Syntax
#include <fcntl.h>

int open (Path, OFlag, [Mode])
const char *Path;
int OFlag;
mode_t Mode;

int openx (Path, OFlag, Mode, Extension)
const char *Path;
int OFlag;
mode_t Mode;
int Extension;

int creat (Path, [Mode])
const char *Path;
mode_t Mode;

Note: The open64 and creat64 subroutines apply to Version 4.2 and later releases.

int open64 (Path, [Mode])
const char *Path;
int OFlag;
mode_t Mode;

int creat64 (Path, [Mode])
const char *Path;
mode_t Mode;

Description
Note: The open64 and creat64 subroutines apply to Version 4.2 and later releases.

The open, openx, and creat subroutines establish a connection between the file named by
the Path parameter and a file descriptor. The opened file descriptor is used by subsequent
I/O subroutines, such as read and write, to access that file.

The openx subroutine is the same as the open subroutine, with the addition of an
Extension parameter, which is provided for device driver use. The creat subroutine is
equivalent to the open subroutine with the O_WRONLY, O_CREAT, and O_TRUNC flags
set.

The returned file descriptor is the lowest file descriptor not previously open for that process.
No process can have more than OPEN_MAX file descriptors open simultaneously.

The file offset, marking the current position within the file, is set to the beginning of the file.
The new file descriptor is set to remain open across exec subroutines.

The open64 and creat64 subroutines are equivalent to the open and creat subroutines
except that the O_LARGEFILE flag is set in the open file description associated with the
returned file descriptor. This flag allows files larger than OFF_MAX to be accessed. If the
caller attempts to open a file larger than OFF_MAX and O_LARGEFILE is not set, the open
will fail and errno will be set to EOVERFLOW.

1-748 Technical Reference: Base Operating System

In the large file enabled programming environment, open is redefined to be open64 and
creat is redefined to be creat64.

Parameters

Path Specifies the file to be opened.

Mode Specifies the read, write, and execute permissions of the file to be created
(requested by the O_CREAT flag). If the file already exists, this parameter
is ignored. The Mode parameter is constructed by logically ORing one or
more of the following values, which are defined in the sys/mode.h file:

S_ISUID Enables the setuid attribute for an executable file. A
process executing this program acquires the access rights
of the owner of the file.

S_ISGID Enables the setgid attribute for an executable file. A
process executing this program acquires the access rights
of the group of the file. Also, enables the
group–inheritance attribute for a directory. Files created in
this directory have a group equal to the group of the
directory.

The following attributes apply only to files that are directly executable. They
have no meaning when applied to executable text files such as shell scripts
and awk scripts.

S_ISVTX Enables the link/unlink attribute for a directory. Files
cannot be linked to in this directory. Files can only be
unlinked if the requesting process has write permission for
the directory and is either the owner of the file or the
directory.

S_ISVTX Enables the save text attribute for an executable file. The
program is not unmapped after usage.

S_ENFMT Enables enforcement–mode record locking for a regular
file. File locks requested with the lockf subroutine are
enforced.

S_IRUSR Permits the file’s owner to read it.

S_IWUSR Permits the file’s owner to write to it.

S_IXUSR Permits the file’s owner to execute it (or to search the
directory).

S_IRGRP Permits the file’s group to read it.

S_IWGRP Permits the file’s group to write to it.

S_IXGRP Permits the file’s group to execute it (or to search the
directory).

S_IROTH Permits others to read the file.

S_IWOTH Permits others to write to the file.

S_IXOTH Permits others to execute the file (or to search the
directory).

Other mode values exist that can be set with the mknod subroutine but
not with the chmod subroutine.

1-749Base Operating System Runtime Services (A-P)

Extension Provides communication with character device drivers that require
additional information or return additional status. Each driver interprets the
Extension parameter in a device–dependent way, either as a value or as a
pointer to a communication area. Drivers must apply reasonable defaults
when the Extension parameter value is 0.

OFlag Specifies the type of access, special open processing, the type of update,
and the initial state of the open file. The parameter value is constructed by
logically ORing special open processing flags. These flags are defined in
the fcntl.h file and are described in the following flags.

Flags That Specify Access Type
The following OFlag parameter flag values specify type of access:

O_RDONLY The file is opened for reading only.

O_WRONLY The file is opened for writing only.

O_RDWR The file is opened for both reading and writing.

Note: One of the file access values must be specified. Do not use O_RDONLY,
O_WRONLY, or O_RDWR together. If none is set, none is used, and the results are
unpredictable.

Flags That Specify Special Open Processing
The following OFlag parameter flag values specify special open processing:

O_CREAT If the file exists, this flag has no effect, except as noted under the
O_EXCL flag. If the file does not exist, a regular file is created with the
following characteristics:

• The owner ID of the file is set to the effective user ID
of the process.

• The group ID of the file is set to the group ID of the
parent directory if the parent directory has the
SetGroupID attribute (S_ISGID bit) set. Otherwise,
the group ID of the file is set to the effective group ID
of the calling process.

• The file permission and attribute bits are set to the
value of the Mode parameter, modified as follows:

– All bits set in the process file mode creation mask are cleared.
(The file creation mask is described in the umask subroutine.)

– The S_ISVTX attribute bit is cleared.

O_EXCL If the O_EXCL and O_CREAT flags are set, the open is unsuccessful if
the file exists.

Note: The O_EXCL flag is not fully supported for Network File
Systems (NFS). The NFS protocol does not guarantee the designed
function of the O_EXCL flag.

O_NSHARE Assures that no process has this file open and precludes subsequent
opens. If the file is on a physical file system and is already open, this
open is unsuccessful and returns immediately unless the OFlag
parameter also specifies the O_DELAY flag. This flag is effective only
with physical file systems.

Note: This flag is not supported by NFS.

1-750 Technical Reference: Base Operating System

O_RSHARE Assures that no process has this file open for writing and precludes
subsequent opens for writing. The calling process can request write
access. If the file is on a physical file system and is open for writing or
open with the O_NSHARE flag, this open fails and returns immediately
unless the OFlag parameter also specifies the O_DELAY flag.

Note: This flag is not supported by NFS.

O_DEFER The file is opened for deferred update. Changes to the file are not
reflected on permanent storage until an fsync subroutine operation is
performed. If no fsync subroutine operation is performed, the changes
are discarded when the file is closed.

Note: This flag is not supported by NFS.

Note: This flag causes modified pages to be backed by paging
space. Before using this flag make sure there is sufficient paging
space.

O_NOCTTY This flag specifies that the controlling terminal should not be assigned
during this open.

O_TRUNC If the file does not exist, this flag has no effect. If the file exists, is a
regular file, and is successfully opened with the O_RDWR flag or the
O_WRONLY flag, all of the following apply:

• The length of the file is truncated to 0.

• The owner and group of the file are unchanged.

• The SetUserID attribute of the file mode is cleared.

• The SetUserID attribute of the file is cleared.

O_DIRECT This flag specifies that direct i/o will be used for this file while it is
opened.

The open subroutine is unsuccessful if any of the following conditions are true:

• The file supports enforced record locks and another process has locked a portion of the
file.

• The file is on a physical file system and is already open with the O_RSHARE flag or the
O_NSHARE flag.

• The file does not allow write access.

• The file is already opened for deferred update.

Flag That Specifies Type of Update
A program can request some control on when updates should be made permanent for a
regular file opened for write access. The following OFlag parameter values specify the type
of update performed:

1-751Base Operating System Runtime Services (A-P)

O_SYNC: If set, updates to regular files and writes to block devices are
synchronous updates. File update is performed by the following
subroutines:

• fclear

• ftruncate

• open with O_TRUNC

• write

On return from a subroutine that performs a synchronous update (any
of the preceding subroutines, when the O_SYNC flag is set), the
program is assured that all data for the file has been written to
permanent storage, even if the file is also open for deferred update.

Note: The O_DSYNC flag applies to AIX Version 4.2.1 and later releases.

O_DSYNC: If set, the file data as well as all file system meta–data
required to retrieve the file data are written to their
permanent storage locations. File attributes such as access
or modification times are not required to retrieve file data,
and as such, they are not guaranteed to be written to their
permanent storage locations before the preceding
subroutines return. (Subroutines listed in the O_SYNC
description.)

O_SYNC | O_DSYNC: If both flags are set, the file’s data and all of the file’s
meta–data (including access time) are written to their
permanent storage locations.

Note: The O_RSYNC flag applies to AIX Version 4.3.0 and later releases.

O_RSYNC: This flag is used in combination with O_SYNC or D_SYNC,
and it extends their write operation behaviors to read
operations. For example, when O_SYNC and R_SYNC are
both set, a read operation will not return until the file’s data
and all of the file’s meta–data (including access time) are
written to their permanent storage locations.

Flags That Define the Open File Initial State
The following OFlag parameter flag values define the initial state of the open file:

O_APPEND The file pointer is set to the end of the file prior to each
write operation.

O_DELAY Specifies that if the open subroutine could not succeed
due to an inability to grant the access on a physical file
system required by the O_RSHARE flag or the O_NSHARE
flag, the process blocks instead of returning the ETXTBSY
error code.

O_NDELAY Opens with no delay.

O_NONBLOCK Specifies that the open subroutine should not block.

The O_NDELAY flag and the O_NONBLOCK flag are identical except for the value
returned by the read and write subroutines. These flags mean the process does not block
on the state of an object, but does block on input or output to a regular file or block device.

The O_DELAY flag is relevant only when used with the O_NSHARE or O_RSHARE flags. It
is unrelated to the O_NDELAY and O_NONBLOCK flags.

1-752 Technical Reference: Base Operating System

General Notes on OFlag Parameter Flags
The effect of the O_CREAT flag is immediate, even if the file is opened with the O_DEFER
flag.

When opening a file on a physical file system with the O_NSHARE flag or the O_RSHARE
flag, if the file is already open with conflicting access the following can occur:

• If the O_DELAY flag is clear (the default), the open subroutine is unsuccessful.

• If the O_DELAY flag is set, the open subroutine blocks until there is no conflicting open.
There is no deadlock detection for processes using the O_DELAY flag.

When opening a file on a physical file system that has already been opened with the
O_NSHARE flag, the following can occur:

• If the O_DELAY flag is clear (the default), the open is unsuccessful immediately.

• If the O_DELAY flag is set, the open blocks until there is no conflicting open.

When opening a file with the O_RDWR, O_WRONLY, or O_TRUNC flag, and the file is
already open with the O_RSHARE flag:

• If the O_DELAY flag is clear (the default), the open is unsuccessful immediately.

• If the O_DELAY flag is set, the open blocks until there is no conflicting open.

When opening a first–in–first–out (FIFO) with the O_RDONLY flag, the following can occur:

• If the O_NDELAY and O_NONBLOCK flags are clear, the open blocks until a process
opens the file for writing. If the file is already open for writing (even by the calling
process), the open subroutine returns without delay.

• If the O_NDELAY flag or the O_NONBLOCK flag is set, the open succeeds immediately
even if no process has the FIFO open for writing.

When opening a FIFO with the O_WRONLY flag, the following can occur:

• If the O_NDELAY and O_NONBLOCK flags are clear (the default), the open blocks until
a process opens the file for reading. If the file is already open for writing (even by the
calling process), the open subroutine returns without delay.

• If the O_NDELAY flag or the O_NONBLOCK flag is set, the open subroutine returns an
error if no process currently has the file open for reading.

When opening a block special or character special file that supports nonblocking opens,
such as a terminal device, the following can occur:

• If the O_NDELAY and O_NONBLOCK flags are clear (the default), the open blocks until
the device is ready or available.

• If the O_NDELAY flag or the O_NONBLOCK flag is set, the open subroutine returns
without waiting for the device to be ready or available. Subsequent behavior of the device
is device–specific.

Any additional information on the effect, if any, of the O_NDELAY, O_RSHARE,
O_NSHARE, and O_DELAY flags on a specific device is documented in the description of
the special file related to the device type.

If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK OR–ed
with either O_RDONLY, O_WRONLY or O_RDWR. Other flag values are not applicable to
STREAMS devices and have no effect on them. The value O_NONBLOCK affects the
operation of STREAMS drivers and certain functions applied to file descriptors associated
with STREAMS files. For STREAMS drivers, the implementation of O_NONBLOCK is
device–specific.

If path names the master side of a pseudo–terminal device, then it is unspecified whether
open locks the slave side so that it cannot be opened. Portable applications must call
unlockpt before opening the slave side.

1-753Base Operating System Runtime Services (A-P)

The largest value that can be represented correctly in an object of type off_t will be
established as the offset maximum in the open file description.

Return Values
Upon successful completion, the file descriptor, a nonnegative integer, is returned.
Otherwise, a value of –1 is returned, no files are created or modified, and the errno global
variable is set to indicate the error.

Error Codes
The open, openx, and creat subroutines are unsuccessful and the named file is not
opened if one or more of the following are true:

EACCES One of the following is true:

• The file exists and the type of access specified by
the OFlag parameter is denied.

• Search permission is denied on a component of the
path prefix specified by the Path parameter. Access
could be denied due to a secure mount.

• The file does not exist and write permission is denied
for the parent directory of the file to be created.

• The O_TRUNC flag is specified and write permission
is denied.

EAGAIN The O_TRUNC flag is set and the named file contains a record lock
owned by another process.

EDQUOT The directory in which the entry for the new link is being placed cannot
be extended, or an i–node could not be allocated for the file, because
the user or group quota of disk blocks or i–nodes in the file system
containing the directory has been exhausted.

EEXIST The O_CREAT and O_EXCL flags are set and the named file exists.

EFBIG An attempt was made to write a file that exceeds the process’ file limit
or the maximum file size. If the user has set the envirnoment variable
XPG_SUS_ENV=ON prior to execution of the process, then the
SIGXFSZ signal is posted to the process when exceeding the process’
file size limit.

EINTR A signal was caught during the open subroutine.

EIO The path parameter names a STREAMS file and a hangup or error
occured.

EISDIR Named file is a directory and write access is required (the O_WRONLY
or O_RDWR flag is set in the OFlag parameter).

EMFILE The system limit for open file descriptors per process has already been
reached (OPEN_MAX).

ENAMETOOLO
NG

 The length of the Path parameter exceeds the system limit
(PATH_MAX); or a path–name component is longer than NAME_MAX
and _POSIX_NO_TRUNC is in effect.

ENFILE The system file table is full.

ENOENT The O_CREAT flag is not set and the named file does not exist; or the
O_CREAT flag is not set and either the path prefix does not exist or the
Path parameter points to an empty string.

ENOMEM The Path parameter names a STREAMS file and the system is unable
to allocate resources.

1-754 Technical Reference: Base Operating System

ENOSPC The directory or file system that would contain the new file cannot be
extended.

ENOSR The Path argument names a STREAMS–based file and the system is
unable to allocate a STREAM.

ENOTDIR A component of the path prefix specified by the Path component is not
a directory.

ENXIO One of the following is true:

• Named file is a character special or block special file,
and the device associated with this special file does
not exist.

• Named file is a multiplexed special file and either the
channel number is outside of the valid range or no
more channels are available.

• The O_DELAY flag or the O_NONBLOCK flag is set,
the named file is a FIFO, the O_WRONLY flag is set,
and no process has the file open for reading.

EROFS Named file resides on a read–only file system and write access is
required (either the O_WRONLY, O_RDWR, O_CREAT (if the file does
not exist), or O_TRUNC flag is set in the OFlag parameter).

ETXTBSY File is on a physical file system and is already open in a manner (with
the O_RSHARE or O_NSHARE flag) that precludes this open; or the
O_NSHARE or O_RSHARE flag was requested with the O_NDELAY
flag set, and there is a conflicting open on a physical file system.

Note: The EOVERFLOW error code applies to Version 4.2 and later releases.

EOVERFLOW A call was made to open and creat and the file already
existed and its size was larger than OFF_MAX and the
O_LARGEFILE flag was not set.

The open, openx, and creat subroutines are unsuccessful if one of the following are true:

EFAULT The Path parameter points outside of the allocated address space of
the process.

EINVAL The value of the OFlag parameter is not valid.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ETXTBSY The file specified by the Path parameter is a pure procedure (shared
text) file that is currently executing, and the O_WRONLY or O_RDWR
flag is set in the OFlag parameter.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine, close subroutine, exec subroutine, fcntl, dup, or dup2 subroutine,
fsync subroutine, ioctl subroutine, lockfx subroutine, lseek subroutine, read subroutine,
stat subroutine, umask subroutine, write subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-755Base Operating System Runtime Services (A-P)

opendir, readdir, telldir, seekdir, rewinddir, or closedir
Subroutine

Purpose
Performs operations on directories.

Library
Standard C Library (libc.a)

Syntax
#include <dirent.h>

DIR *opendir (DirectoryName)
const char *DirectoryName;

struct dirent *readdir (DirectoryPointer)
DIR *DirectoryPointer;

long int telldir(DirectoryPointer)
DIR *DirectoryPointer;

void seekdir(DirectoryPointer,Location)
DIR *DirectoryPointer;
long Location;

void rewinddir (DirectoryPointer)
DIR *DirectoryPointer;

int closedir (DirectoryPointer)
DIR *DirectoryPointer;

Description
Attention: Do not use the readdir subroutine in a multithreaded environment. See the
multithread alternative in the readdir_r subroutine article.

The opendir subroutine opens the directory designated by the DirectoryName parameter
and associates a directory stream with it.

Note: An open directory must always be closed with the closedir subroutine to ensure that
the next attempt to open that directory is successful.

The opendir subroutine also returns a pointer to identify the directory stream in subsequent
operations. The null pointer is returned when the directory named by the DirectoryName
parameter cannot be accessed or when not enough memory is available to hold the entire
stream. A successful call to any of the exec functions closes any directory streams opened
in the calling process.

The readdir subroutine returns a pointer to the next directory entry. The readdir subroutine
returns entries for . (dot) and .. (dot dot), if present, but never returns an invalid entry (with
d_ino set to 0). When it reaches the end of the directory, or when it detects an invalid
seekdir operation, the readdir subroutine returns the null value. The returned pointer
designates data that may be overwritten by another call to the readdir subroutine on the
same directory stream. A call to the readdir subroutine on a different directory stream does
not overwrite this data. The readdir subroutine marks the st_atime field of the directory
for update each time the directory is actually read.

The telldir subroutine returns the current location associated with the specified directory
stream.

The seekdir subroutine sets the position of the next readdir subroutine operation on the
directory stream. An attempt to seek an invalid location causes the readdir subroutine to

1-756 Technical Reference: Base Operating System

return the null value the next time it is called. The position should be that returned by a
previous telldir subroutine call.

The rewinddir subroutine resets the position of the specified directory stream to the
beginning of the directory.

The closedir subroutine closes a directory stream and frees the structure associated with
the DirectoryPointer parameter.

If you use the fork subroutine to create a new process from an existing one, either the
parent or the child (but not both) may continue processing the directory stream using the
readdir, rewinddir, or seekdir subroutine.

Parameters

DirectoryName Names the directory.

DirectoryPointer Points to the DIR structure of an open directory.

Location Specifies the offset of an entry relative to the start of the directory.

Return Values
On successful completion, the opendir subroutine returns a pointer to an object of type
DIR. Otherwise, a null value is returned and the errno global variable is set to indicate the
error.

On successful completion, the readdir subroutine returns a pointer to an object of type
struct dirent. Otherwise, a null value is returned and the errno global variable is set to
indicate the error. When the end of the directory is encountered, a null value is returned and
the errno global variable is not changed by this function call.

On successful completion, the closedir subroutine returns a value of 0. Otherwise, a value
of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
If the opendir subroutine is unsuccessful, it returns a null value and sets the errno global
variable to one of the following values:

EACCES Indicates that search permission is denied for any component of the
DirectoryName parameter, or read permission is denied for the
DirectoryName parameter.

ENAMETOOLONG Indicates that the length of the DirectoryName parameter argument
exceeds the PATH_MAX value, or a path–name component is
longer than the NAME_MAX value while the POSIX_NO_TRUNC
value is in effect.

ENOENT Indicates that the named directory does not exist.

ENOTDIR Indicates that a component of the DirectoryName parameter is not a
directory.

EMFILE Indicates that too many file descriptors are currently open for the
process.

ENFILE Indicates that too many file descriptors are currently open in the
system.

If the readdir subroutine is unsuccessful, it returns a null value and sets the errno global
variable to the following value:

EBADF Indicates that the DirectoryPointer parameter argument does not refer
to an open directory stream.

1-757Base Operating System Runtime Services (A-P)

If the closedir subroutine is unsuccessful, it returns a value of –1 and sets the errno global
variable to the following value:

EBADF Indicates that the DirectoryPointer parameter argument does not refer
to an open directory stream.

Examples
To search a directory for the entry name:

len = strlen(name);

DirectoryPointer = opendir(”.”);

for (dp = readdir(DirectoryPointer); dp != NULL; dp =

 readdir(DirectoryPointer))

 if (dp–>d_namlen == len && !strcmp(dp–>d_name, name)) {

 closedir(DirectoryPointer);

 return FOUND;

 }

closedir(DirectoryPointer);

return NOT_FOUND;

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The close subroutine, exec subroutines, fork subroutine, lseek subroutine, openx, open,
or creat subroutine, read, readv, readx, or readvx subroutine, scandir or alphasort
subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-758 Technical Reference: Base Operating System

passwdexpired Subroutine

Purpose
Checks the user’s password to determine if it has expired.

Syntax
passwdexpired (UserName, Message)
char *UserName;
char **Message;

Description
The passwdexpired subroutine checks a user’s password to determine if it has expired.
The subroutine checks the registry variable in the /etc/security/user file to ascertain where
the user is administered. If the registry variable is not defined, the passwdexpired
subroutine checks the local, NIS, and DCE databases for the user definition and expiration
time.

The passwdexpired subroutine may pass back informational messages, such as how
many days remain until password expiration.

Parameters

UserName Specifies the user’s name whose password is to be checked.

Message Points to a pointer that the passwdexpired subroutine allocates
memory for and fills in. This string is suitable for printing and issues
messages, such as in how many days the password will expire.

Return Values
Upon successful completion, the passwdexpired subroutine returns a value of 0. If this
subroutine fails, it returns one of the following values:

1 Indicates that the password is expired, and the user must change it.

2 Indicates that the password is expired, and only a system administrator
may change it.

–1 Indicates that an internal error has occurred, such as a memory
allocation (malloc) failure or database corruption.

Error Codes
The passwdexpired subroutine fails if one or more of the following values is true:

ENOENT Indicates that the user could not be found.

EPERM Indicates that the user did not have permission to check password
expiration.

ENOMEM Indicates that memory allocation (malloc) failed.

EINVAL Indicates that the parameters are not valid.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The authenticate subroutine.

The login command.

1-759Base Operating System Runtime Services (A-P)

pathconf or fpathconf Subroutine

Purpose
Retrieves file–implementation characteristics.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

long pathconf (Path, Name)
const char *Path;
int Name;

long fpathconf(FileDescriptor, Name)
int FileDescriptor, Name;

Description
The pathconf subroutine allows an application to determine the characteristics of
operations supported by the file system contained by the file named by the Path parameter.
Read, write, or execute permission of the named file is not required, but all directories in the
path leading to the file must be searchable.

The fpathconf subroutine allows an application to retrieve the same information for an open
file.

Parameters

Path Specifies the path name.

FileDescriptor Specifies an open file descriptor.

Name Specifies the configuration attribute to be queried. If this attribute is not
applicable to the file specified by the Path or FileDescriptor parameter,
the pathconf subroutine returns an error. Symbolic values for the Name
parameter are defined in the unistd.h file:

_PC_LINK_MAX Specifies the maximum number of links to the file.

_PC_MAX_CANON Specifies the maximum number of bytes in a
canonical input line. This value is applicable only
to terminal devices.

_PC_MAX_INPUT Specifies the maximum number of bytes allowed
in an input queue. This value is applicable only to
terminal devices.

_PC_NAME_MAX Specifies the maximum number of bytes in a file
name, not including a terminating null character.
This number can range from 14 through 255. This
value is applicable only to a directory file.

_PC_PATH_MAX Specifies the maximum number of bytes in a path
name, not including a terminating null character.

1-760 Technical Reference: Base Operating System

_PC_PIPE_BUF Specifies the maximum number of bytes
guaranteed to be written atomically. This value is
applicable only to a first–in–first–out (FIFO).

_PC_CHOWN_RESTRICTED
Returns 0 if the use of the chown subroutine is
restricted to a process with appropriate privileges,
and if the chown subroutine is restricted to
changing the group ID of a file only to the effective
group ID of the process or to one of its
supplementary group IDs.

_PC_NO_TRUNC Returns 0 if long component names are truncated.
This value is applicable only to a directory file.

_PC_VDISABLE This is always 0. No disabling character is
defined. This value is applicable only to a terminal
device.

Note: The _PC_FILESIZEBITS and PC_SYNC_IO flags apply to AIX
Version 4.3 and later releases.

_PC_FILESIZEBITS Returns the minimum number of bits required to
hold the file system’s maximum file size as a
signed integer. The smallest value returned is 32.

_PC_SYNC_IO Returns –1 if the file system does not support the
Synchronized Input and Output option. Any
value other than –1 is returned if the file system
supports the option.

Notes:

1. If the Name parameter has a value of _PC_LINK_MAX, and if the Path or FileDescriptor
parameter refers to a directory, the value returned applies to the directory itself.

2. If the Name parameter has a value of _PC_NAME_MAX or _PC_NO_TRUNC, and if the
Path or FileDescriptor parameter refers to a directory, the value returned applies to
filenames within the directory.

3. If the Name parameter has a value if _PC_PATH_MAX, and if the Path or FileDescriptor
parameter refers to a directory that is the working directory, the value returned is the
maximum length of a relative pathname.

4. If the Name parameter has a value of _PC_PIPE_BUF, and if the Path parameter refers
to a FIFO special file or the FileDescriptor parameter refers to a pipe or a FIFO special
file, the value returned applies to the referenced object. If the Path or FileDescriptor
parameter refers to a directory, the value returned applies to any FIFO special file that
exists or can be created within the directory.

5. If the Name parameter has a value of _PC_CHOWN_RESTRICTED, and if the Path or
FileDescriptor parameter refers to a directory, the value returned applies to any files,
other than directories, that exist or can be created within the directory.

Return Values
If the pathconf or fpathconf subroutine is successful, the specified parameter is returned.
Otherwise, a value of –1 is returned and the errno global variable is set to indicate the error.
If the variable corresponding to the Name parameter has no limit for the Path parameter or
the FileDescriptor parameter, both the pathconf and fpathconf subroutines return a value
of –1 without changing the errno global variable.

Error Codes
The pathconf or fpathconf subroutine fails if the following error occurs:

1-761Base Operating System Runtime Services (A-P)

EINVAL The name parameter specifies an unknown or inapplicable characteristic.

The pathconf subroutine can also fail if any of the following errors occur:

EACCES Search permission is denied for a component of the path prefix.

EINVAL The implementation does not support an association of the Name
parameter with the specified file.

ENAMETOOLONG The length of the Path parameter string exceeds the PATH_MAX
value.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate
result whose length exceeds PATH_MAX.

ENOENT The named file does not exist or the Path parameter points to an
empty string.

ENOTDIR A component of the path prefix is not a directory.

ELOOP Too many symbolic links were encountered in resolving path.

The fpathconf subroutine can fail if either of the following errors occur:

EBADF The File Descriptor parameter is not valid.

EINVAL The implementation does not support an association of the Name
parameter with the specified file.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The chown subroutine, confstr subroutine, sysconf subroutine.

Files, Directories, and File Systems for Programmers, Subroutines Overview in AIX General
Programming Concepts : Writing and Debugging Programs.

1-762 Technical Reference: Base Operating System

pause Subroutine

Purpose
Suspends a process until a signal is received.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int pause (void)

Description
The pause subroutine suspends the calling process until it receives a signal. The signal
must not be one that is ignored by the calling process. The pause subroutine does not
affect the action taken upon the receipt of a signal.

Return Values
If the signal received causes the calling process to end, the pause subroutine does not
return.

If the signal is caught by the calling process and control is returned from the signal–catching
function, the calling process resumes execution from the point of suspension. The pause
subroutine returns a value of –1 and sets the errno global variable to EINTR.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The incinterval, alarm, or settimer subroutine, kill or killpg subroutine, sigaction, sigvec,
or signal subroutine, wait, waitpid, or wait3 subroutine.

1-763Base Operating System Runtime Services (A-P)

pclose Subroutine

Purpose
Closes a pipe to a process.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
int pclose (Stream)
FILE *Stream;

Description
The pclose subroutine closes a pipe between the calling program and a shell command to
be executed. Use the pclose subroutine to close any stream you opened with the popen
subroutine. The pclose subroutine waits for the associated process to end, and then returns
the exit status of the command.

Attention: If the original processes and the popen process are reading or writing a
common file, neither the popen subroutine nor the pclose subroutine should use
buffered I/O. If they do, the results are unpredictable.

Avoid problems with an output filter by flushing the buffer with the fflush subroutine.

Parameter

Stream Specifies the FILE pointer of an opened pipe.

Return Values
The pclose subroutine returns a value of –1 if the Stream parameter is not associated with
a popen command or if the status of the child process could not be obtained. Otherwise,
the value of the termination status of the command language interpreter is returned; this will
be 127 if the command language interpreter cannot be executed.

Error Codes
If the application has called:

• The wait subroutine,

• The waitpid subroutine with a process ID less than or equal to zero or equal to the
process ID of the command line interpreter, or

• Any other function that could perform one of the two steps above, and

one of these calls caused the termination status to be unavailable to the pclose subroutine,
a value of –1 is returned and the errno global variable is set to ECHILD.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The fclose or fflush subroutine, fopen, freopen, or fdopen subroutine, pipe subroutine,
popen subroutine, wait, waitpid, or wait3 subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-764 Technical Reference: Base Operating System

perror Subroutine

Purpose
Writes a message explaining a subroutine error.

Library
Standard C Library (libc.a)

Syntax
#include <errno.h>

void perror (String)
const char *String;

extern int errno;
extern char *sys_errlist[];
extern int sys_nerr;

Description
The perror subroutine writes a message on the standard error output that describes the last
error encountered by a system call or library subroutine. The error message includes the
String parameter string followed by a : (colon), a space character, the message, and a
new–line character. The String parameter string should include the name of the program
that caused the error. The error number is taken from the errno global variable, which is set
when an error occurs but is not cleared when a successful call to the perror subroutine is
made.

To simplify various message formats, an array of message strings is provided in the
sys_errlist structure or use the errno global variable as an index into the sys_errlist
structure to get the message string without the new–line character. The largest message
number provided in the table is sys_nerr. Be sure to check the sys_nerr structure because
new error codes can be added to the system before they are added to the table.

The perror subroutine retrieves an error message based on the language of the current
locale.

After successfully completing, and before a call to the exit or abort subroutine or the
completion of the fflush or fclose subroutine on the standard error stream, the perror
subroutine marks for update the st_ctime and st_mtime fields of the file associated with
the standard error stream.

Parameter

String Specifies a parameter string that contains the name of the program that
caused the error. The ensuing printed message contains this string, a
: (colon), and an explanation of the error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The abort subroutine, exit subroutine, fflush or fclose subroutine, printf, fprintf, sprintf,
wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf subroutine, strerror subroutine.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-765Base Operating System Runtime Services (A-P)

pipe Subroutine

Purpose
Creates an interprocess channel.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int pipe (FileDescriptor)
int FileDescriptor[2];

Description
The pipe subroutine creates an interprocess channel called a pipe and returns two file
descriptors, FileDescriptor[0] and FileDescriptor[1]. FileDescriptor[0] is opened for reading
and FileDescriptor[1] is opened for writing.

A read operation on the FileDescriptor[0] parameter accesses the data written to the
FileDescriptor[1] parameter on a first–in, first–out (FIFO) basis.

Write requests of PIPE_BUF bytes or fewer will not be interleaved (mixed) with data from
other processes doing writes on the same pipe. PIPE_BUF is a system variable described
in the pathconf subroutine. Writes of greater than PIPE_BUF bytes may have data
interleaved, on arbitrary boundaries, with other writes.

If O_NONBLOCK or O_NDELAY are set, writes requests of PIPE_BUF bytes or fewer will
either succeed completely or fail and return –1 with the errno global variable set to
EAGAIN. A write request for more than PIPE_BUF bytes will either transfer what it can and
return the number of bytes actually written, or transfer no data and return –1 with the errno
global variable set to EAGAIN.

Parameters

FileDescriptor Specifies the address of an array of two integers into which the new file
descriptors are placed.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned,
and the errno global variable is set to identify the error.

Error Codes
The pipe subroutine is unsuccessful if one or more the following are true:

EFAULT The FileDescriptor parameter points to a location outside of the
allocated address space of the process.

EMFILE The number of open of file descriptors exceeds the OPEN_MAX value.

ENFILE The system file table is full, or the device containing pipes has no free
i–nodes.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-766 Technical Reference: Base Operating System

Related Information
The read subroutine, select subroutine, write subroutine.

The ksh command, sh command.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-767Base Operating System Runtime Services (A-P)

plock Subroutine

Purpose
Locks the process, text, or data in memory.

Library
Standard C Library (libc.a)

Syntax
#include <sys/lock.h>

int plock (Operation)
int Operation;

Description
The plock subroutine allows the calling process to lock or unlock its text region (text lock),
its data region (data lock), or both its text and data regions (process lock) into memory. The
plock subroutine does not lock the shared text segment or any shared data segments.
Locked segments are pinned in memory and are immune to all routine paging. Memory
locked by a parent process is not inherited by the children after a fork subroutine call.
Likewise, locked memory is unlocked if a process executes one of the exec subroutines.
The calling process must have the root user authority to use this subroutine.

A real–time process can use this subroutine to ensure that its code, data, and stack are
always resident in memory.

Note: Before calling the plock subroutine, the user application must lower the maximum
stack limit value using the ulimit subroutine.

Parameters

Operation Specifies one of the following:

PROCLOCK Locks text and data into memory (process lock).

TXTLOCK Locks text into memory (text lock).

DATLOCK Locks data into memory (data lock).

UNLOCK Removes locks.

Return Values
Upon successful completion, a value of 0 is returned to the calling process. Otherwise, a
value of –1 is returned and the errno global variable is set to indicate the error.

Error Codes
The plock subroutine is unsuccessful if one or more of the following is true:

EPERM The effective user ID of the calling process does not have the root user
authority.

EINVAL The Operation parameter has a value other than PROCLOCK,
TXTLOCK, DATLOCK, or UNLOCK.

EINVAL The Operation parameter is equal to PROCLOCK, and a process lock,
text lock, or data lock already exists on the calling process.

EINVAL The Operation parameter is equal to TXTLOCK, and a text lock or
process lock already exists on the calling process.

1-768 Technical Reference: Base Operating System

EINVAL The Operation parameter is equal to DATLOCK, and a data lock or
process lock already exists on the calling process.

EINVAL The Operation parameter is equal to UNLOCK, and no type of lock
exists on the calling process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutines, _exit, exit, or atexit subroutine, fork subroutine, ulimit subroutine.

1-769Base Operating System Runtime Services (A-P)

pm_battery_control Subroutine

Purpose
Controls and queries the battery status.

Library
Standard C Library (libc.a)

Syntax
#include <sys/pm.h>
int pm_battery_control(Command, Battery);
int Command;
struct pm_battery *Battery;

Description
The pm_battery_control subroutine controls and queries the battery status.

1-770 Technical Reference: Base Operating System

Parameters

Command Specifies one of the following:

PM_BATTERY_DISCHARGE
Discharges the battery.

PM_BATTERY_QUERY
Queries fuel state of the battery.

Battery Points a following pm_battery structure to return battery
information. When Command is PM_BATTERY_QUERY,
the following structure is used:

struct pm_battery {

 int attribute;/*battery attributes

are as follows*/

 PM_BATTERY /* battery is

supported */

 PM_BATTERY_EXIST /* battery

exists */

 PM_NICD /*NiCd or NiMH */

 PM_CHARGE /* now charging */

 PM_DISCHARGE /* now

discharging */

 PM_AC /* AC power is in

use */

 PM_DC /* DC power is in

use */

 int capacity; /* battery capacity */

 int remain; /* current remaining

capacity */

 int discharge_remain;

 /*remaining capacity while

discharging */

 int discharge_time; /* discharge

time */

 int full_charge_count; /*full charge

count */

}

If a field is not applicable, –1 is set.

Return Values

PM_SUCCESS Indicates successful completion.

PM_ERROR Indicates an error condition. The variable errno is set to
identify the error.

Error Codes

EINVAL The argument or command is not valid.

Implementation Specifics
The pm_battery_control subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pm_control_state subroutine, pm_control_parameter subroutine.

1-771Base Operating System Runtime Services (A-P)

pm_control_parameter Subroutine

Purpose
Controls and queries Power Management parameters.

Library
Standard C Library (libc.a)

Syntax

#include <sys/pm.h>
int pm_control_parameter (control, argument)
int control;
caddr_t argument;

Description
The pm_control_parameter subroutine controls and queries Power Management
parameters.

1-772 Technical Reference: Base Operating System

Parameters

control Specifies one of the following Power Management (PM) control
commands:

PM_CTRL_QUERY_SYSTEM_IDLE_TIMER
Queries system idle timer.

PM_CTRL_SET_SYSTEM_IDLE_TIMER
Sets system idle timer.

PM_CTRL_QUERY_DEVICE_IDLE_TIMER
Queries device idle timer.

PM_CTRL_SET_DEVICE_IDLE_TIMER
Sets device idle timer.

PM_CTRL_QUERY_LID_CLOSE_ACTION
Queries the LID close action.

PM_CTRL_SET_LID_CLOSE_ACTION
Sets the LID close action.

PM_CTRL_QUERY_SYSTEM_IDLE_ACTION
Queries the system idle action.

PM_CTRL_SET_SYSTEM_IDLE_ACTION
Sets the system idle action.

PM_CTRL_QUERY_MAIN_SWITCH_ACTION
Queries the main power switch action.

PM_CTRL_SET_MAIN_SWITCH_ACTION
Sets the main power switch action.

PM_CTRL_QUERY_LOW_BATTERY_ACTION
Queries the low battery action.

PM_CTRL_SET_LOW_BATTERY_ACTION
Sets the low battery action.

PM_CTRL_QUERY_BEEP
Queries whether beep is enabled or not.

PM_CTRL_SET_BEEP
Enables/disables beep.

PM_CTRL_QUERY_PM_DD_NUMBER
Queries the number of PM aware DDs.

PM_CTRL_QUERY_PM_DD_LIST
Returns an array of devno of PM aware DDs.

PM_CTRL_QUERY_LID_STATE
Queries the LID state.

argument The value of the argument parameter depends on the Power Management
control command.

1-773Base Operating System Runtime Services (A-P)

 For the following Power Management commands, the argument
parameter is a pointer to an integer in which result value is stored:

• PM_CTRL_QUERY_SYSTEM_IDLE_TIMER

• PM_CTRL_QUERY_LID_CLOSE_ACTION

• PM_CTRL_QUERY_SYSTEM_IDLE_ACTION

• PM_CTRL_QUERY_MAIN_SWITCH_ACTION

• PM_CTRL_QUERY_LOW_BATTERY_ACTION

• PM_CTRL_QUERY_BEEP

• PM_CTRL_QUERY_PM_DD_NUMBER

• PM_CTRL_QUERY_LID_STATE

 For the following Power Management commands, the argument
parameter is an integer to be set.

• PM_CTRL_SET_SYSTEM_IDLE_TIMER

• PM_CTRL_SET_LID_CLOSE_ACTION

• PM_CTRL_SET_SYSTEM_IDLE_ACTION

• PM_CTRL_SET_MAIN_SWITCH_ACTION

• PM_CTRL_SET_LOW_BATTERY_ACTION

• PM_CTRL_SET_BEEP

 For the PM_CTRL_PM_QUERY_DEVICE_TIMER and
PM_CTRL_SET_DEVICE_TIMER commands, the argument parameter is
a pointer to the following structure:

struct pm_device_timer_struct {

 dev_t devno; /* device major/minor number */

 int mode; /* device mode */

 int device_idle_time;/* if –1, don’t care */

 int device_standby_time;/*if –1, don’t care */

}

 For the PM_CTRL_QUERY_PM_DD_LIST command, the argument
parameter specifies a pointer to an array of integers.

Return Values

PM_SUCCESS Indicates successful completion.

PM_ERROR Indicates an error condition. The variable errno is set to
identify the error.

Error Codes

EINVAL The argument or control is not valid.

Implementation Specifics
The pm_control_parameter subroutine is part of the Base Operating System (BOS)
Runtime.

Related Information
The pm_control_state subroutine, pm_event_query subroutine, pm_battery_control
subroutine.

1-774 Technical Reference: Base Operating System

pm_control_parameter System Call

Purpose
Controls and queries the PM parameters.

Syntax
#include <pm.h>

int pm_control_parameter (ctrl, arg);
int ctrl;
caddr_t arg;

Description
The pm_control_parameter system call controls and queries the PM parameters.

Parameters

ctrl Specifies the function to be performed. It is one of the following values:

PM_CTRL_SET_PARAMETERS
Sets the PM parameters.

PM_CTRL_QUERY_DEVICE_NUMBER
Queries the number of PM aware devices.

PM_CTRL_QUERY_DEVICE_LIST
Gets all of PM aware device information.

PM_CTRL_QUERY_DEVICE_INFO
Queries PM aware device information.

PM_CTRL_SET_DEVICE_INFO
Sets PM aware device information.

PM_CTRL_SET_HIBERNATION_VOLUME
Tells PM hibernation volume information to PM core.

1-775Base Operating System Runtime Services (A-P)

arg Specifies a pointer to a structure that depends on the function specified by
the ctrl parameter.

When the ctrl parameter is PM_CTRL_SET_PARAMETERS, arg is a
pointer to the following pm_parameters_t structure:

typedef struct _pm_parameters {

 Simple_lock lock; /*lock data to serialize

access*/

 core_data_t core_data;

 daemon_data_t daemon_data;

} pm_parameters_t;

where,

typedef struct _daemon_data{

 int system_idle_action; /*system idle action*/

 int lid_close_action; /*lid close action*/

 int main_switch_action; /*main power switch

action*/

 int low_battery_action; /*low battery action*/

 int specified_time_action; /*action at specified

time*/

 int resume_passwd; /*enable/disable resume

password*/

 int kill_lft_session; /*continue/kill LFT

session*/

 int kill_tty_session; /*continue/kill TTY

session*/

 int permission; /*permitted state by

superuser*/

} daemon_data_t;

typedef struct _core_data{

 int system_idle_time; /*system idle time in

seconds*/

 int pm_beep; /*enable/disable beep*/

 int ringing_resume; /*enable/disable ringing

resume*/

 time_t resume_time; /*specified time to

resume*/

 time_t specified_time; /*specified time to sus

or hiber*/

 int sus_to_hiber; /*duration from suspend

to hibernation*/

 int kill_syncd; /*if syncd has been

killed*/

 char reserve[4]; /*reserved*/

} core_data_t;

When the ctrl parameter is PM_CTRL_QUERY_DEVICE_NUMBER, arg is a pointer to an
integer where the number of PM aware device drivers is returned.

1-776 Technical Reference: Base Operating System

When the ctrl parameter is PM_CTRL_QUERY_DEVICE_LIST, arg is a pointer to an array
of device logical names.

When the ctrl parameter is PM_CTRL_QUERY_DEVICE_INFO, or
PM_CTRL_SET_DEVICE_INFO, arg is a pointer to the following pm_device_info_t
structure:

struct _pm_device_info {

 char name[16]; /*device logical name*/

 int mode; /*current device PM mode*/

 int attribute; /*PM attribute*/

 int idle_time; /*device idle time*/

 int standby_time; /*device standby time*/

 int idle_time1; /*idle time 1 for DPMS */

 int idle_time2; /*idle time 2 for DPMS */

 char reserve[24]; /*reserved*/

} pm_device_info_t;

When the ctrl parameter is PM_CTRL_SET_HIBERNATION_VOLUME, arg is a pointer to
the following pm_hibernation_t structure:

typedef struct _pm_hibernation {

 dev_t devno; /*major/minor device number*/

 long ppnum; /*physical partition number*/

 long ppsize; /*physical partition size*/

 long snum; /*valid sector list item number*/

 pm_sector_t *slist; /*sector list*/

 pm_hibernation_t;

Where,

typedef struct _pm_sector {

 long start; /*RBA(Relative Block Address) in

sectors*/

 long size; /*sector size in sectors(512 bytes)*/

} pm_sector_t;

Note: The functions in AIX 4.1.1 still remain as they were. But they are left only for
backward compatibility and may be deleted in the future. New programs should not use
them.

Return Values

PM_SUCCESS Indicates successful completion.

PM_ERROR Indicates an error condition. The variable errno is set to
identify the error.

Error Codes

EINVAL Invalid argument.

Implementation Specifics
The pm_control_parameter system call is part of the Base Operation System (BOS)
Runtime.

Related Information
The pm_battery_control subroutine.

The pm_control_state system call, pm_system_event_query system call.

1-777Base Operating System Runtime Services (A-P)

pm_control_state Subroutine

Purpose
Controls and queries the Power Management states

Library
Standard C Library (libc.a)

Syntax
#include <sys/pm.h>
int pm_control_state(control, PMS)
int control;
struct pm_state *PMS;

Description
The pm_control_state subroutine controls and queries the Power Management (PM)
states.

Parameters

control Specifies one of the following Power Management control commands:

PM_CTRL_QUERY_STATE Queries the current system PM state.

PM_CTRL_REQUEST_STATE Requests to move to system full–on, system
PM enable, system standby or system
suspend state.

PM_CTRL_START_STATE Forces to move to system full–on, system PM
enable, system standby or system suspend
state.

PM_CTRL_QUERY_REQUEST Queries the result of the requested action.

PMS Specifies a pointer to the following pm_state structure.

struct pm_state {

 int state;

 int id;

 int event;

 int devno;

}

The contents of the structure depends on the PM control command.

• When the control is PM_CTRL_QUERY_STATE, state is returned.

• When the control is PM_CTRL_REQUEST_STATE, input is state and
output is id.

• When the control is PM_CTRL_START_STATE, input is state and output is
event and devno (if event is PM_EVENT_ERROR).

• When the control is PM_CTRL_QUERY_REQUEST, input is id and output
is event and devno (if event is PM_EVENT_ERROR).

1-778 Technical Reference: Base Operating System

Event value is one of the following,

PM_EVENT_LID_OPEN LID open

PM_EVENT_RTC specified time to resume

PM_EVENT_RINGING ringing

PM_EVENT_MOUSE mouse event

PM_EVENT_KEYBOARD keyboard event

PM_EVENT_EXTRA_INPUTDDextra input DD

PM_EVENT_EXTRA_BUTTON extra button

PM_EVENT_ERROR action failed

Return Values

PM_SUCCESS Indicates successful completion.

PM_ERROR Indicates an error condition. The variable errno is set to identify the
error.

Error Codes

EINVAL The argument or command is not valid.

Implementation Specifics
The pm_control_state subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pm_control_parameter subroutine, pm_event_query subroutine,
pm_battery_control subroutine.

1-779Base Operating System Runtime Services (A-P)

pm_control_state System Call

Purpose
Controls and queries the PM state.

Syntax
#include <pm.h>

int
pm_control_state (ctrl, arg);
int ctrl;
caddr_t arg;

Parameters

ctrl Specifies the function to be performed. It is one of the
following values:

PM_CTRL_QUERY_SYSTEM_STATE
Queries the PM state.

PM_CTRL_START_SYSTEM_STATE
Initiates the PM state change.

arg Specifies a pointer to the following pm_system_state_t
structure:

struct _pm_system_state {

 int state; /*system PM

state*/

 int event; /*resume

event*/

 char name[16]; /*device name

which caused an error*/

 char reserve[8]; /*reserved*/

} pm_system_state_t;

The state value is one of the following:

PM_SYSTEM_FULL_ON System full on

PM_SYSTEM_ENABLE System PM enable

PM_SYSTEM_STANDBY System standby

PM_SYSTEM_SUSPEND System suspend

PM_SYSTEM_HIBERNATION System hibernation

PM_TRANSITION_START Transition request started

PM_TRANSITION_END Transition request completed

1-780 Technical Reference: Base Operating System

The event value is one of the following:

PM_EVENT_POWER_SWITCH_ON

PM_EVENT_LID_OPEN

PM_EVENT_RTC

PM_EVENT_RING

PM_EVENT_MOUSE

PM_EVENT_KEYBOARD

PM_EVENT_EXTRA_INPUTDD

PM_EVENT_EXTRA_BUTTON

PM_EVENT_REJECT_BY_HIB_VOL

PM_EVENT_NOT_SUPPORTED

PM_EVENT_GENERAL_ERROR

PM_EVENT_REJECT_BY_DD

Note: The functions at AIX 4.1.1 still remain as they were. But they are left only for
backward compatibility and may be deleted in the future. New programs should not use
them.

Description
The pm_control_state system call controls and queries the PM state.

Return Values

PM_SUCCESS Indicates successful completion.

PM_ERROR Indicates an error condition. The variable errno is set to
identify the error.

Error Codes

EINVAL Invalid argument.

Implementation Specifics
The pm_control_state system call is part of the Base Operation System (BOS) Runtime.

Related Information
The pm_battery_control subroutine.

The pm_control_parameter system call, pm_system_event_query system call.

1-781Base Operating System Runtime Services (A-P)

pm_event_query Subroutine

Purpose
Queries a Power Management Event.

Library
Standard C Library (libc.a)

Syntax
#include <sys/pm.h>
int pm_event_query(Event, Action);
int *Event;
int *Action;

Description
The pm_event_query subroutine queries a Power Management (PM) event.

Parameters

Event Returns one of the following events:

PM_EVENT_NONE no event

PM_EVENT_LID_CLOSE LID close

PM_EVENT_SYSTEM_IDLE_TIMER system timer expiration

PM_EVENT_LOW_BATTERY low battery

PM_EVENT_SOFTWARE_REQUEST requested by software

PM_EVENT_DATA_CHANGE PM data change notice

PM_EVENT_AC power change from DC to AC

PM_EVENT_DC power change from AC to DC

PM_EVENT_DISPLAY_MESSAGE display message request

PM_EVENT_SPECIFIED_TIME Specified time for
suspend/hibernation

Action Returns one of the following actions (system state) to be requested. It is a
default state transition action in PM core:

PM_SYSTEM_NONE

PM_SYSTEM_FULL_ON

PM_SYSTEM_ENABLE

PM_SYSTEM_STANDBY

PM_SYSTEM_SUSPEND

PM_SYSTEM_SHUTDOWN

Return Values

PM_SUCCESS Indicates successful completion.

PM_ERROR Indicates an error condition. The variable errno is set to identify the
error.

1-782 Technical Reference: Base Operating System

Error Codes

EINVAL The argument or command is not valid.

EBUSY Another process is blocked for query.

Implementation Specifics
The pm_event_query subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pm_control_state subroutine, pm_control_parameter subroutine,
pm_battery_control subroutine.

1-783Base Operating System Runtime Services (A-P)

pm_system_event_query System Call

Purpose
Controls and queries the PM event.

Syntax
#include <pm.h>

int pm_system_event_query (event);
int event;

Description
The pm_system_event_query system call queries the PM event.

event Returns one of the following events:

PM_EVENT_NONE

PM_EVENT_LID_OPEN

PM_EVENT_LID_CLOSE

PM_EVENT_LOW_BATTERY

PM_EVENT_SYSTEM_IDLE_TIMER

PM_EVENT_POWER_SWITCH_OFF

PM_EVENT_POWER_SWITCH_ON

PM_EVENT_SPECIFIED_TIME

PM_EVENT_MOUSE

PM_EVENT_KEYBOARD

PM_EVENT_EXTRA_INPUTDD

PM_EVENT_EXTRA_BUTTON

PM_EVENT_TERMINATE

PM_EVENT_AC

PM_EVENT_DC

PM_SUCCESS Indicates successful completion.

PM_ERROR Indicates an error condition. The variable errno is set to identify the
error.

PM library
The PM library is supported to control/query PM information from application programs.

Error Codes

EINVAL Invalid argument.

Implementation Specifics
The pm_system_event_query system call is part of the Base Operation System (BOS)
Runtime.

Related Information
The pm_control_parameter system call, pm_battery_control subroutine,
pm_control_state system call.

1-784 Technical Reference: Base Operating System

pmlib_get_event_notice Subroutine

Purpose
Gets a new PM event.

Library
PM (Power Management) Library (libpm.a)

Syntax
#include <pmlib.h>

int pmlib_get_event_notice(event)
int *event;

Description
The pmlib_get_event_notice subroutine gets the latest event. It is recommended PM–
aware application calls this subroutine when signal notification from pm daemon arrives.

1-785Base Operating System Runtime Services (A-P)

Parameters

event Points to an integer that is the latest PM event that the PM daemon holds,
event can be bit–wise OR of following values:

PMLIB_EVENT_NONE No event.

PMLIB_EVENT_AC Power source is changed to
AC.

PMLIB_EVENT_DC Power source is changed to
DC.

PMLIB_EVENT_NOTICE_TO_FULL_ON System will change state to
full–on.

PMLIB_EVENT_NOTICE_TO_STANDBY System will change state to
standby.

PMLIB_EVENT_NOTICE_TO_SUSPEND System will change state to
suspend.

PMLIB_EVENT_NOTICE_TO_ENABLE System will change state to
PM enable.

PMLIB_EVENT_NOTICE_TO_HIBERNATION System will change state to
hibernation.

PMLIB_EVENT_NOTICE_TO_SHUTDOWN System will change state to
shutdown.

PMLIB_EVENT_NOTICE_TO_TERMINATE PM will be unconfigured.

PMLIB_EVENT_NOTICE_OF_REJECTION State change request was
rejected.

PMLIB_EVENT_NOTICE_COMPLETION State change was completed.

PMLIB_EVENT_RESUME_FROM_STANDBY System is resumed from
standby.

PMLIB_EVENT_RESUME_FROM_SUSPEND System is resumed from
suspend.

PMLIB_EVENT_RESUME_FROM_HIBERNATION
System is resumed from
hibernation.

PMLIB_EVENT_START_TO_CHANGE_STATE System state change started.

PMLIB_EVENT_FORCE_TO_CHANGE_STATESystem is forced to change
state.

PMLIB_EVENT_FAIL_TO_CHANGE_STATE System state change failed.

Return Values
Upon successful completion, PMLIB_SUCCESS is returned. If the
pmlib_get_event_notice subroutine fails, PMLIB_ERROR is returned and errno variable is
set to an error code.

Error Codes

ESRCH PM daemon is not running.

EINVAL Invalid argument.

Note: If an application program is registered as PM aware, the PM daemon sends a
SIGPM (equal to SIGPWR) signal to the application when an PM event occurs. The

1-786 Technical Reference: Base Operating System

application program needs to prepare a signal handler and to use this
pmlib_get_event_notice subroutine to get the to get the PM event.

Implementation Specifics
The pmlib_get_event_notice subroutine is part of the Base Operation System (BOS)
Runtime.

Related Information
The pmlib_request_state subroutine, pmlib_request_battery subroutine,
pmlib_request_parameter subroutine, pmlib_register_application subroutine.

1-787Base Operating System Runtime Services (A-P)

pmlib_register_application Subroutine

Purpose
Registers or unregister a PM aware application

Library
PM (Power Management) Library (libpm.a)

Syntax
#include <pmlib.h>

int pmlib_register_application(cmd);
int cmd;

Parameters

cmd Determines the action to be taken by the pmlib_register_application
subroutine and is one of the following values:

PMLIB_REGISTER Registers an application.

PMLIB_UNREGISTER Unregisters an application.

Description
The pmlib_register_application registers or unregisters the caller process as a PM–aware
application. The pmlib_register_application subroutine can be called by any user.

Return Values
Upon successful completion, PMLIB_SUCCESS is returned. If the pmlib_request_state
subroutine fails, PMLIB_ERROR is returned and errno variable is set to an error code.

Error Codes

ESRCH PM daemon is not running.

EINVAL Invalid argument.

Implementation Specifics
The pmlib_register_application subroutine is part of the Base Operation System (BOS)
Runtime.

Related Information
The pmlib_get_event_notice subroutine, pmlib_request_state subroutine,
pmlib_request_battery subroutine, pmlib_request_parameter subroutine.

1-788 Technical Reference: Base Operating System

pmlib_request_battery Subroutine

Purpose
Queries and controls the battery status.

Library
PM (Power Management) Library (libpm.a)

Syntax
#include <pmlib.h>

int pmlib_request_battery (cmd, pmb);
int cmd;
pmlib_battery_t *pmb;

Parameters

cmd Determines the action to be taken by the pmlib_request_battery subroutine and
isone of the following values:

PMLIB_QUERY_BATTERY Queries the battery state.

PMLIB_DISCHARGE_BATTERY Discharges the battery.

pmb Points to the following pmlib_battery_t structure:

typedef struct _pmlib_battery {

 int attribute; /*battery attribute*/

 int capacity; /*battery capacity*/

 int remain; /*current remain capacity*/

 int refresh_discharge_capacity;

 int refresh_discharge_time; /*discharge time*/

 int full_change_count;

} pmlib_battery_t;

When cmd is PMLIB_QUERY_BATTERY, the returned pmb.attribute is bit–wise OR of
following values:

PMLIB_BATTERY_SUPPORTED Battery is supported.

PMLIB_BATTERY_EXIST Battery exists.

PMLIB_BATTERY_NICD Battery is NiCd

PMLIB_BATTERY_CHARGING Battery is being charged.

PMLIB_BATTERY_DISCHARGING Battery is being discharged.

PMLIB_BATTERY_AC AC adapter is in use.

PMLIB_BATTERY_DC Battery is in use.

PMLIB_BATTERY_REFRESH_REQ Need to refresh battery.

Description
The pmlib_request_battery subroutine queries the battery information or requests to
discharge the battery. The pmlib_request_ subroutine can be called by any user.

Return Values
Upon successful completion, PMLIB_SUCCESS is returned. If the pmlib_request_state
subroutine fails, PMLIB_ERROR is returned and errno variable is set to an error code.

1-789Base Operating System Runtime Services (A-P)

Error Codes

ESRCH PM daemon is not running.

EINVAL Invalid argument.

Implementation Specifics
The pmlib_request_battery subroutine is part of the Base Operation System (BOS)
Runtime.

Related Information
The pmlib_get_event_notice subroutine, pmlib_request_state subroutine,
pmlib_request_parameter subroutine, pmlib_register_application subroutine.

1-790 Technical Reference: Base Operating System

pmlib_request_parameter Subroutine

Purpose
Queries and controls the PM system parameters.

Library
PM (Power Management) Library (libpm.a)

Syntax
#include <pmlib.h>

int pmlib_request_parameter(ctrl, arg);
int ctrl;
caddr_t *arg;

The pmlib_request_parameter subroutines queries and changes the PM system or
devices parameters. Any of these queries can be called by any user, but the set can be
called only by root.

Parameters

ctrl Determines the action to be taken by the pmlib_request_parameter subroutine
and is one of the following values:

PMLIB_QUERY_SYSTEM_IDLE_TIME Queries system idle timer.

PMLIB_SET_SYSTEM_IDLE_TIME Sets system idle timer.

PMLIB_QUERY_DEVICE_INFO Queries device information.

PMLIB_SET_DEVICE_INFO Sets device information.

PMLIB_QUERY_SYSTEM_IDLE_ACTION Queries action for system idle.

PMLIB_SET_SYSTEM_IDLE_ACTION Sets action for system idle.

PMLIB_QUERY_LID_CLOSE_ACTION Queries action for lid close.

PMLIB_SET_LID_CLOSE_ACTION Sets action for lid close.

PMLIB_QUERY_MAIN_SWITCH_ACTION Queries action for main switch.

PMLIB_SET_MAIN_SWITCH_ACTION Sets action for main switch.

PMLIB_QUERY_LOW_BATTERY_ACTION Queries action for low battery.

1-791Base Operating System Runtime Services (A-P)

PMLIB_SET_LOW_BATTERY_ACTION Sets action for low battery.

PMLIB_QUERY_PERMISSION Queries the action permitted to
any user.

PMLIB_SET_PERMISSION Sets the action permitted to any
user.

PMLIB_QUERY_BEEP Queries whether beep is enabled
or not.

PMLIB_SET_BEEP Sets whether beep is enabled or
not.

PMLIB_QUERY_RINGING_RESUME Queries if ringing resume is
enabled or not.

PMLIB_SET_RINGING_RESUME Sets if ringing resume is enabled
or not.

PMLIB_QUERY_RESUME_TIME Queries resume time.

PMLIB_SET_RESUME_TIME Sets resume time.

PMLIB_QUERY_DURATION_TO_HIBERNATION
Queries duration to hibernation.

PMLIB_SET_DURATION_TO_HIBERNATION Sets duration to hibernation.

PMLIB_QUERY_SPECIFIED_TIME Queries specified time.

PMLIB_SET_SPECIFIED_TIME Sets specified time.

PMLIB_QUERY_SPECIFIED_TIME_ACTION Queries action for specified time.

PMLIB_SET_SPECIFIED_TIME_ACTION Sets action for specified time.

PMLIB_QUERY_DEVICE_NUMBER Queries number of PM aware
devices.

PMLIB_QUERY_DEVICE_NAMES Queries the list of names of PM
aware devices.

PMLIB_QUERY_SUPPORTED_STATES Queries the system states
supported.

PMLIB_QUERY_KILL_LFT_SESSION Queries if LFT session is
terminated.

PMLIB_SET_KILL_LFT_SESSION Sets if LFT session is
terminated.

PMLIB_QUERY_KILL_TTY_SESSION Queries if TTY session is
terminated.

PMLIB_SET_KILL_TTY_SESSION Sets if TTY session is
terminated.

PMLIB_QUERY_PASSWD_ON_RESUME Queries if resume password is
required.

PMLIB_SET_PASSWD_ON_RESUME Sets if resume password is
required.

PMLIB_QUERY_KILL_SYNCD Queries if syncd is terminated at
standby.

PMLIB_SET_KILL_SYNCD Sets if syncd is terminated at
system standby.

1-792 Technical Reference: Base Operating System

When ctrl is PMLIB_QUERY_SYSTEM_IDLE_TIMER, arg points to an integer that is the
system idle timer value when function is returned.

When ctrl is PMLIB_SET_SYSTEM_IDLE_TIMER, arg points to an integer that is the
system idle timer value to set. The system idle timer value should be within the range from
60 to 7200. If 0 is set, the system–idle check is disabled.

When ctrl is PMLIB_QUERY_DEVICE_INFO, arg points to the following
pmlib_device_info_t structure. The device name needs to be specified in the name[16]
member. Then, mode, idle_time, standby_time, idle_time1 and idle_time2 members are
set when function is returned.

typedef struct _pmlib_device_info{

 char name[16]; /*name of device*/

 int mode; /*device mode*/

 int attribute; /*device attribute*/

 int idle_time; /*idle timer value during system PM

enable*/

 int standby_time; /*idle timer value during system standby*/

 int idle_time1; /*idle timer value for DPMS suspend*/

 int idle_time2; /*idle timer value for DPMS off*/

 char reserved[24]; /*reserved area for future use*/

} pmlib_device_info_t;

When ctrl is PMLIB_SET_DEVICE_INFO, arg points to pmlib_device_info_t structure, and
the devicename to name[16]. idle_time, standby_time, idle_time1 and idle_time2
members need to be set. The value of idle_time is within the range from 60 to 7200. If
idle_time, standby_time, idle_time1, or idle_time2 is set to –1, the current value is not
changed.

When ctrl is PMLIB_QUERY_SYSTEM_IDLE_ACTION, arg points to an integer that is the
action for system–idle timer expiration when the function is returned. Possible values for
action are as follows:

PMLIB_NONE State doesn’t change

PMLIB_SYSTEM_FULL_ON Full on

PMLIB_SYSTEM_ENABLE PM enable

PMLIB_SYSTEM_STANDBY Stand by

PMLIB_SYSTEM_SUSPEND Suspend

PMLIB_SYSTEM_HIBERNATION Hibernation

PMLIB_SYSTEM_SHUTDOWN Shutdown

When ctrl is PMLIB_SET_SYSTEM_IDLE_ACTION, arg points to an integer that is the
action to be set for system–idle timer expiration. The value for action should be one of the
values described at PMLIB_QUERY_SYSTEM_IDLE_ACTION.

When ctrl is PMLIB_QUERY_LID_CLOSE_ACTION, arg points to an integer that is the
action for lid close when the function is returned. Possible values for action are one of the
values described at PMLIB_QUERY_SYSTEM_IDLE_ACTION.

When ctrl is PMLIB_SET_LID_CLOSE_ACTION, arg points to an integer that is the action
to be set for lid close. The value for action should be one of the values described at
PMLIB_QUERY_SYSTEM_IDLE_ACTION.

When ctrl is PMLIB_QUERY_MAIN_SWITCH_ACTION, arg points to an integer that is the
action for the main switch when the function is returned. Possible values for action are one
of the values described at PMLIB_QUERY_SYSTEM_IDLE_ACTION.

When ctrl is PMLIB_SET_MAIN_SWITCH_ACTION, arg points to an integer that is the
action to set for the main switch. The value for action should be one of the values described
at PMLIB_QUERY_SYSTEM_IDLE_ACTION.

1-793Base Operating System Runtime Services (A-P)

When ctrl is PMLIB_QUERY_LOW_BATTERY_ACTION, arg points to an integer that is the
action for the low battery when the function is returned. Possible values for action are one of
the values described at PMLIB_QUERY_SYSTEM_IDLE_ACTION.

When ctrl is PMLIB_SET_LOW_BATTERY_ACTION, arg points to an integer that is the
action to be set for the low battery. The value for action should be one of the values
described at PMLIB_QUERY_SYSTEM_IDLE_ACTION.

When ctrl is PMLIB_QUERY_PERMISSION, arg points to an integer that is the action for
allowed to any user when the function is returned. Possible values for action are bit–wise
OR of following values:

PMLIB_SYSTEM_FULL_ON Full on

PMLIB_SYSTEM_ENABLE PM enable

PMLIB_SYSTEM_STANDBY Standby

PMLIB_SYSTEM_SUSPEND Suspend

PMLIB_SYSTEM_HIBERNATION Hibernation

PMLIB_SYSTEM_SHUTDOWN Shutdown

When ctrl is PMLIB_SET_PERMISSION, arg points to an integer that is the action to be set
for allowed to any user. Possible values for action are bit–wise OR of following values:

PMLIB_SYSTEM_FULL_ON Full on

PMLIB_SYSTEM_ENABLE PM enable

PMLIB_SYSTEM_STANDBY Standby

PMLIB_SYSTEM_SUSPEND Suspend

PMLIB_SYSTEM_HIBERNATION Hibernation

PMLIB_SYSTEM_SHUTDOWN Shutdown

When ctrl is PMLIB_QUERY_BEEP, arg points to an integer that is PMLIB_ON or
PMLIB_OFF for beep on/off.

When ctrl is PMLIB_SET_BEEP, arg points to an integer that is PMLIB_ON or PMLIB_OFF
to set for beep on/off.

When ctrl is PMLIB_QUERY_RINGING_RESUME, arg points to an integer that is
PMLIB_ON or PMLIB_OFF for ringing resume on/off when the function is returned.

When ctrl is PMLIB_SET_RINGING_RESUME, arg points to an integer that is PMLIB_ON
or PMLIB_OFF for ringing resume on/off.

When ctrl is PMLIB_QUERY_RESUME_TIME, arg points to an integer that is the time for
resume when the function is returned. The integer value is the time in seconds since
00:00:00 GMT, January 1, 1970.

When ctrl is PMLIB_SET_RESUME_TIME, arg points to an integer that is the time for
resume to be set. The integer value should be the time in seconds since 00:00:00 GMT,
January 1, 1970.

When ctrl is PMLIB_QUERY_DURATION_TO_HIBERNATION, arg points to an integer that
is the duration to hibernation in seconds when the function is returned.

When ctrl is PMLIB_SET_DURATION_TO_HIBERNATION, arg points to an integer that is
the duration to hibernation in seconds to be set.

When ctrl is PMLIB_QUERY_SPECIFIED_TIME, arg points to an integer that is the
specified time when the function is returned. The integer value is the time in seconds since
00:00:00 GMT, January 1, 1970.

1-794 Technical Reference: Base Operating System

When ctrl is PMLIB_SET_SPECIFIED_TIME, arg points to an integer that is the specified
time to be set. The integer value should be the time in seconds since 00:00:00 GMT,
January 1, 1970.

When ctrl is PMLIB_QUERY_SPECIFIED_TIME_ACTION, arg points to an integer that is
the action for the specified time when the function is returned. Possible values for action is
one of the values described at PMLIB_QUERY_SYSTEM_IDLE_ACTION.

When ctrl is PMLIB_SET_SPECIFIED_TIME_ACTION, arg points to an integer that is the
action to be set for the specified time. The value for action should be one of the values
described at PMLIB_QUERY_SYSTEM_IDLE_ACTION.

When ctrl is PMLIB_QUERY_DEVICE_NUMBER, arg points to an integer that is the
number of PM aware device drivers when the function is returned.

When ctrl is PMLIB_QUERY_DEVICE_NAMES, arg points to the head of array of name[16]
that is the names of PM aware device drivers when the function is returned.

When ctrl is PMLIB_QUERY_SUPPORTED_STATES, arg points to an integer that is the
action supported when the function is returned. The integer is bit–wise OR of following
values:

PMLIB_SYSTEM_FULL_ON Full on

PMLIB_SYSTEM_ENABLE PM enable

PMLIB_SYSTEM_STANDBY Standby

PMLIB_SYSTEM_SUSPEND Suspend

PMLIB_SYSTEM_HIBERNATION Hibernation

PMLIB_SYSTEM_SHUTDOWN Shutdown

When ctrl is PMLIB_QUERY_KILL_LFT_SESSION, arg points to an integer that is
PMLIB_ON or PMLIB_OFF to show if LFT session is terminated.

When ctrl is PMLIB_SET_KILL_LFT_SESSION, arg points to an integer that is PMLIB_ON
or PMLIB_OFF to set if LFT session is terminated.

When ctrl is PMLIB_QUERY_KILL_TTY_SESSION, arg points to an integer that is
PMLIB_ON or PMLIB_OFF to show if TTY sessions are terminated.

When ctrl is PMLIB_SET_KILL_TTY_SESSION, arg points to an integer that is PMLIB_ON
or PMLIB_OFF to set if TTY sessions are terminated.

When ctrl is PMLIB_QUERY_PASSWD_ON_RESUME, arg points to an integer that is
PMLIB_ON or PMLIB_OFF to show if resume password is required.

When ctrl is PMLIB_SET_PASSWD_ON_RESUME, arg points to an integer that is
PMLIB_ON or PMLIB_OFF to set if resume password is required.

When ctrl is PMLIB_QUERY_KILL_SYNCD, arg points to an integer that is PMLIB_ON or
PMLIB_OFF to show if sync daemon is terminated during system standby.

When ctrl is PMLIB_SET_KILL_SYNCD, arg points to an integer that is PMLIB_ON or
PMLIB_OFF to set if sync daemon is terminated during system standby.

Return Values
Upon successful completion, PMLIB_SUCCESS is returned. If the pmlib_request_state
subroutine fails, PMLIB_ERROR is returned and errno variable is set to an error code.

Error Codes

ESRCH PM daemon is not running.

EINVAL Invalid argument.

1-795Base Operating System Runtime Services (A-P)

EPERM Missing privilege.

ENOMEM Insufficient storage.

Implementation Specifics
The pmlib_request_parameter subroutine is part of the Base Operation System (BOS)
Runtime.

Related Information
The pmlib_get_event_notice subroutine, pmlib_request_state subroutine,
pmlib_request_battery subroutine, pmlib_register_application subroutine.

1-796 Technical Reference: Base Operating System

pmlib_request_state Subroutine

Purpose
Requests system state change.

Library
PM (Power Management) Library (libpm.a)

Syntax
#include <pmlib.h>

int pmlib_request_state (ctrl, pms);
int ctrl;
pmlib_state_t *pms;

Parameters

ctrl Determines the action to be taken by the pmlib_request_state subroutine and is
one of the following values:

PMLIB_REQUEST_STATE Requests to change system state.

PMLIB_QUERY_STATE Requests to query system state.

PMLIB_QUERY_ERROR Requests to query error of system state change.

PMLIB_CONFIRM Confirms system state change.

pms Points to the following pmlib_state_t structure:

typedef struct _pmlib_state {

 int state; /*system state for set/query*/

 int error; /*error value for query error*/

 pid_t pid; /*process id of application which

 prevented the state change*/

 char name[16]; /*name of application or PM aware DD

 which prevented the state change*/

} pmlib_state_t;

When ctrl is PMLIB_REQUEST_STATE, set one of the following state values to pms.state:

PMLIB_SYSTEM_FULL_ON Full on

PMLIB_SYSTEM_ENABLE PM enable

PMLIB_SYSTEM_STANDBY Standby

PMLIB_SYSTEM_SUSPEND Suspend

PMLIB_SYSTEM_HIBERNATION Hibernation

PMLIB_SYSTEM_SHUTDOWN Shutdown

When ctrl is PMLIB_QUERY_STATE, one of state values described at
PMLIB_REQUEST_STATE is set to pms.state when the function returns. PM aware DD’s
name is also returned if it rejects the PM command.

When ctrl is PMLIB_QUERY_ERROR, one of the following error values are set to
pms.error:

PMLIB_NO_ERROR No error.

PMLIB_ERROR_REJECT_BY_DEVICE Device rejected to change state.

PMLIB_ERROR_REJECT_BY_APPL Application rejected to change state.

1-797Base Operating System Runtime Services (A-P)

PMLIB_ERROR_REJECT_BY_SYSTEM System does not allow to change state.

PMLIB_ERROR_REJECTED_BY_HIB_VOL Hibernation volume is invalid.

PMLIB_ERROR_REJECTED_BY_EVENT A event prevented the state change.

PMLIB_ERROR_INVALID_PRIVILEGE Caller was not allowed to change state.

PMLIB_ERROR_DEVICE_ERROR A device rejected to change mode.

PMLIB_ERROR_OTHERS Other error occurred.

If an application caused system state change failure, the process id of that application is set
to pms.pid, and the name set to pms.name when the function returns.

When ctrl is PMLIB_CONFIRM, set one of the following state values to pms.state.

PMLIB_SYSTEM_CHANGE_OK OK to change the system state.

PMLIB_SYSTEM_CHANGE_NO No change to the system state.

Description
The pmlib_request_state subroutine is called to request to change PM system state,
request to query PM system state, request to query the error of PM system state change, or
request to confirm PM system state change. Non–root user can request to change state
only if the specified action an the action within the range allowed to any user.

Return Values
Upon successful completion, PMLIB_SUCCESS is returned. If the pmlib_request_state
subroutine fails, PMLIB_ERROR is returned and the errno variable is set to an error code.

Error Codes

ESRCH PM daemon is not running.

EINVAL Invalid argument.

EPERM Missing privilege.

EBUSY State change processing has already been started.

Implementation Specifics
The pmlib_request_state subroutine is part of the Base Operation System (BOS) Runtime.

Related Information
The pmlib_get_event_notice subroutine, pmlib_request_battery subroutine,
pmlib_request_parameter subroutine, pmlib_register_application subroutine.

1-798 Technical Reference: Base Operating System

poll Subroutine

Purpose
Checks the I/O status of multiple file descriptors and message queues.

Library
Standard C Library (libc.a)

Syntax
#include <sys/poll.h>
#include <sys/select.h>
#include <sys/types.h>

int poll(ListPointer, Nfdsmsgs, Timeout)
void *ListPointer;
unsigned long Nfdsmsgs;
long Timeout;

Description
The poll subroutine checks the specified file descriptors and message queues to see if they
are ready for reading (receiving) or writing (sending), or to see if they have an exceptional
condition pending.

Note: The poll subroutine applies only to character devices, pipes, message queues, and
sockets. Not all character device drivers support it. See the descriptions of individual
character devices for information about whether and how specific device drivers
support the poll and select subroutines.

1-799Base Operating System Runtime Services (A-P)

Parameters

ListPointer Specifies a pointer to an array of pollfd structures, pollmsg structures, or to
a pollist structure. Each structure specifies a file descriptor or message
queue ID and the events of interest for this file or message queue. The
pollfd, pollmsg, and pollist structures are defined in the
/usr/include/sys/poll.h file. If a pollist structure is to be used, a structure
similar to the following should be defined in a user program. The pollfd
structure must precede the pollmsg structure.

struct pollist {

 struct pollfd fds[3];

 struct pollmsg msgs[2];

 } list;

The structure can then be initialized as follows:

list.fds[0].fd = file_descriptorA;

list.fds[0].events = requested_events;

list.msgs[0].msgid = message_id;

list.msgs[0].events = requested_events;

The rest of the elements in thefdsandmsgsarrays can be initialized the
same way. The poll subroutine can then be called, as follows:

nfds = 3; /* number of pollfd structs */

nmsgs = 2; /* number of pollmsg structs */

timeout = 1000 /* number of milliseconds to timeout

*/

poll(&list, (nmsgs<<16)|(nfds), 1000);

The exact number of elements in the fds and msgs arrays must be used in
the calculation of the Nfdsmsgs parameter.

Nfdsmsgs Specifies the number of file descriptors and the exact number of message
queues to check. The low–order 16 bits give the number of elements in the
array of pollfd structures, while the high–order 16 bits give the exact number
of elements in the array of pollmsg structures. If either half of the Nfdsmsgs
parameter is equal to a value of 0, the corresponding array is assumed not to
be present.

Timeout Specifies the maximum length of time (in milliseconds) to wait for at least
one of the specified events to occur. If the Timeout parameter value is –1,
the poll subroutine does not return until at least one of the specified events
has occurred. If the value of the Timeout parameter is 0, the poll subroutine
does not wait for an event to occur but returns immediately, even if none of
the specified events have occurred.

poll Subroutine STREAMS Extensions
In addition to the functions described above, the poll subroutine multiplexes input/output
over a set of file descriptors that reference open streams. The poll subroutine identifies
those streams on which you can send or receive messages, or on which certain events
occurred.

You can receive messages using the read subroutine or the getmsg system call. You can
send messages using the write subroutine or the putmsg system call. Certain streamio
operations, such as I_RECVFD and I_SENDFD can also be used to send and receive
messages. See the streamio operations.

The ListPointer parameter specifies the file descriptors to be examined and the events of
interest for each file descriptor. It points to an array having one element for each open file
descriptor of interest. The array’s elements are pollfd structures. In addition to the pollfd
structure in the /usr/include/sys/poll.h file, STREAMS supports the following members:

1-800 Technical Reference: Base Operating System

int fd; /* file descriptor */

 short events; /* requested events */

 short revents; /* returned events */

The fd field specifies an open file descriptor and the events and revents fields are
bit–masks constructed by ORing any combination of the following event flags:

POLLIN A nonpriority or file descriptor–passing message is present on the
stream–head read queue. This flag is set even if the message is of 0
length. In the revents field this flag is mutually exclusive with the
POLLPRI flag. See the I_RECVFD command.

POLLRDNORM A nonpriority message is present on the stream–head read queue.

POLLRDBAND A priority message (band > 0) is present on the stream–head read
queue.

POLLPRI A high–priority message is present on the stream–head read queue.
This flag is set even if the message is of 0 length. In the revents
field, this flag is mutually exclusive with the POLLIN flag.

POLLOUT The first downstream write queue in the stream is not full. Normal
priority messages can be sent at any time. See the putmsg system
call.

POLLWRNORM The same as POLLOUT.

POLLWRBAND A priority band greater than 0 exists downstream and priority
messages can be sent at anytime.

POLLMSG A message containing the SIGPOLL signal has reached the front of
the stream–head read queue.

Return Values
On successful completion, the poll subroutine returns a value that indicates the total
number of file descriptors and message queues that satisfy the selection criteria. The return
value is similar to the Nfdsmsgs parameter in that the low–order 16 bits give the number of
file descriptors, and the high–order 16 bits give the number of message queue identifiers
that had nonzero revents values. The NFDS and NMSGS macros, found in the
sys/select.h file, can be used to separate these two values from the return value. The
NFDS macro returns NFDS#, where the number returned indicates the number of files
reporting some event or error, and the NMSGS macro returns NMSGS#, where the number
returned indicates the number of message queues reporting some event or error.

A value of 0 indicates that the poll subroutine timed out and that none of the specified files
or message queues indicated the presence of an event (all revents fields were values
of 0).

If unsuccessful, a value of –1 is returned and the global variable errno is set to indicate the
error.

Error Codes
The poll subroutine does not run successfully if one or more of the following are true:

EAGAIN Allocation of internal data structures was unsuccessful.

EINTR A signal was caught during the poll system call and the signal handler
was installed with an indication that subroutines are not to be restarted.

1-801Base Operating System Runtime Services (A-P)

EINVAL The number of pollfd structures specified by the Nfdsmsgs parameter
is greater than the maximum number of open files, OPEN_MAX. This
error is also returned if the number of pollmsg structures specified by
the Nfdsmsgs parameter is greater than the maximum number of
allowable message queues.

EFAULT The ListPointer parameter in conjunction with the Nfdsmsgs parameter
addresses a location outside of the allocated address space of the
process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

For compatibility with previous releases of this operating system and with BSD systems, the
select subroutine is also supported.

Related Information
The read subroutine, select subroutine, write subroutine.

The getmsg system call, putmsg system call.

The streamio operations.

The STREAMS Overview and the Input and Output Handling Programmer’s Overview in
AIX General Programming Concepts : Writing and Debugging Programs.

1-802 Technical Reference: Base Operating System

popen Subroutine

Purpose
Initiates a pipe to a process.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

FILE *popen (Command, Type)
const char *Command, *Type;

Description
The popen subroutine creates a pipe between the calling program and a shell command to
be executed.

Note: The popen subroutine runs only sh shell commands. The results are unpredictable
if the Command parameter is not a valid sh shell command. If the terminal is in a
trusted state, the tsh shell commands are run.

If streams opened by previous calls to the popen subroutine remain open in the parent
process, the popen subroutine closes them in the child process.

The popen subroutine returns a pointer to a FILE structure for the stream.

Attention: If the original processes and the process started with the popen subroutine
concurrently read or write a common file, neither should use buffered I/O. If they do, the
results are unpredictable.

Some problems with an output filter can be prevented by flushing the buffer with the fflush
subroutine.

Parameters

Command Points to a null–terminated string containing a shell command line.

Type Points to a null–terminated string containing an I/O mode. If the Type
parameter is the value r, you can read from the standard output of the
command by reading from the file Stream. If the Type parameter is the
value w, you can write to the standard input of the command by writing
to the file Stream.

Because open files are shared, a type r command can be used as an
input filter and a type w command as an output filter.

Return Values
The popen subroutine returns a null pointer if files or processes cannot be created, or if the
shell cannot be accessed.

Error Codes
The popen subroutine may set the EINVAL variable if the Type parameter is not valid. The
popen subroutine may also set errno global variables as described by the fork or pipe
subroutines.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

1-803Base Operating System Runtime Services (A-P)

Related Information
The fclose or fflush subroutine, fopen, freopen, or fdopen subroutine, fork or vfork
subroutine, pclose subroutine, pipe subroutine, wait, waitpid, or wait3 subroutine.

Files, Directories, and File Systems for Programmers in AIX General Programming
Concepts : Writing and Debugging Programs.

1-804 Technical Reference: Base Operating System

printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or
vwsprintf Subroutine

Purpose
Prints formatted output.

Library
Standard C Library (libc.a) or the Standard C Library with 128–Bit long doubles (libc128.a)

Syntax
#include <stdio.h>

int printf (Format, [Value, . . .])
const char *Format;

int fprintf (Stream, Format, [Value, . . .])
FILE *Stream;
const char *Format;

int sprintf (String, Format, [Value, . . .])
char *String;
const char *Format;

#include <stdarg.h>

int vprintf (Format, Value)
const char *Format;
va_list Value;

int vfprintf (Stream, Format, Value)
FILE *Stream;
const char *Format;
va_list Value;

int vsprintf (String, Format, Value)
char *String;
const char *Format;
va_list Value;

#include <wchar.h>

int vwsprintf (String, Format, Value)
wchar_t *String;
const char *Format;
va_list Value;

int wsprintf (String, Format,[Value, . . .])
wchar_t *String;
const char *Format;

Description
The printf subroutine converts, formats, and writes the Value parameter values, under
control of the Format parameter, to the standard output stream. The printf subroutine
provides conversion types to handle code points and wchar_t wide character codes.

The fprintf subroutine converts, formats, and writes the Value parameter values, under
control of the Format parameter, to the output stream specified by the Stream parameter.
This subroutine provides conversion types to handle code points and wchar_t wide
character codes.

The sprintf subroutine converts, formats, and stores the Value parameter values, under
control of the Format parameter, into consecutive bytes, starting at the address specified by
the String parameter. The sprintf subroutine places a null character (\0) at the end. You

1-805Base Operating System Runtime Services (A-P)

must ensure that enough storage space is available to contain the formatted string. This
subroutine provides conversion types to handle code points and wchar_t wide character
codes.

The wsprintf subroutine converts, formats, and stores the Value parameter values, under
control of the Format parameter, into consecutive wchar_t characters starting at the
address specified by the String parameter. The wsprintf subroutine places a null character
(\0) at the end. The calling process should ensure that enough storage space is available to
contain the formatted string. The field width unit is specified as the number of wchar_t
characters. The wsprintf subroutine is the same as the printf subroutine, except that the
String parameter for the wsprintf subroutine uses a string of wchar_t wide–character
codes.

All of the above subroutines work by calling the _doprnt subroutine, using variable–length
argument facilities of the varargs macros.

The vprintf, vfprintf, vsprintf, and vwsprintf subroutines format and write varargs macros
parameter lists. These subroutines are the same as the printf, fprintf, sprintf, and
wsprintf subroutines, respectively, except that they are not called with a variable number of
parameters. Instead, they are called with a parameter–list pointer as defined by the varargs
macros.

Parameters

Value Specifies 0 or more arguments that map directly to the objects in the
Format parameter.

Stream Specifies the output stream.

String Specifies the starting address.

Format A character string that contains two types of objects:

• Plain characters, which are copied to the output stream.

• Conversion specifications, each of which causes 0 or more items to be
retrieved from the Value parameter list. In the case of the vprintf,
vfprintf, vsprintf, and vwsprintf subroutines, each conversion
specification causes 0 or more items to be retrieved from the varargs
macros parameter lists.

If the Value parameter list does not contain enough items for the
Format parameter, the results are unpredictable. If more parameters
remain after the entire Format parameter has been processed, the
subroutine ignores them.

Each conversion specification in the Format parameter has the
following elements:

• A % (percent sign).

• 0 or more options, which modify the meaning of the conversion
specification. The option characters and their meanings are:

1-806 Technical Reference: Base Operating System

’ Formats the integer portions resulting from i, d, u, f, g
and G decimal conversions with thousands_sep
grouping characters. For other conversions the
behavior is undefined. This option uses the
nonmonetary grouping character.

– Left–justifies the result of the conversion within the
field.

+ Begins the result of a signed conversion with a + (plus
sign) or – (minus sign).

space character
Prefixes a space character to the result if the first
character of a signed conversion is not a sign. If both
the space–character and + option characters appear,
the space–character option is ignored.

Converts the value to an alternate form. For c, d, s,
and u conversions, the option has no effect. For o
conversion, it increases the precision to force the first
digit of the result to be a 0. For x and X conversions, a
nonzero result has a 0x or 0X prefix. For e, E, f, g, and
G conversions, the result always contains a decimal
point, even if no digits follow it. For g and G
conversions, trailing 0’s are not removed from the
result.

0 Pads to the field width with leading 0’s (following any
indication of sign or base) for d, i, o, u, x, X, e, E, f, g,
and G conversions; the field is not space–padded. If the
0 and – options both appear, the 0 option is ignored.
For d, i, o u, x, and X conversions, if a precision is
specified, the 0 option is also ignored. If the 0 and ’
options both appear, grouping characters are inserted
before the field is padded. For other conversions, the
results are unreliable.

B Specifies a no–op character.

N Specifies a no–op character.

J Specifies a no–op character.

• An optional decimal digit string that specifies the minimum field width. If
the converted value has fewer characters than the field width, the field is
padded on the left to the length specified by the field width. If the –
(left–justify) option is specified, the field is padded on the right.

• An optional precision. The precision is a . (dot) followed by a decimal
digit string. If no precision is specified, the default value is 0. The
precision specifies the following limits:

1-807Base Operating System Runtime Services (A-P)

– Minimum number of digits to appear for the d, i, o, u, x, or X
conversions.

– Number of digits to appear after the decimal point for the e, E, and f
conversions.

– Maximum number of significant digits for g and G conversions.

– Maximum number of bytes to be printed from a string in s and S
conversions.

– Maximum number of bytes, converted from the wchar_t array, to be
printed from the S conversions. Only complete characters are printed.

• An optional l (lowercase L), ll (lowercase LL), h, or L specifier indicates
one of the following:

– An optional h specifying that a subsequent d, i, u, o, x, or X
conversion specifier applies to a short int or unsigned short int
Value parameter (the parameter will have been promoted according
to the integral promotions, and its value will be converted to a short
int or unsigned short int before printing).

– An optional h specifying that a subsequent n conversion specifier
applies to a pointer to a short int parameter.

– An optional l (lowercase L) specifying that a subsequent d, i, u, o, x,
or X conversion specifier applies to a long int or unsigned long int
parameter .

– An optional l (lowercase L) specifying that a subsequent n
conversion specifier applies to a pointer to a long int parameter.

– An optional ll (lowercase LL) specifying that a subsequent d, i, u, o,
x, or X conversion specifier applies to a long long int or unsigned
long long int parameter.

– An optional ll (lowercase LL) specifying that a subsequent n
conversion specifier applies to a pointer to a long long int
parameter.

– An optional L specifying that a following e, E, f, g, or G conversion
specifier applies to a long double parameter. If linked with libc.a,
long double is the same as double (64bits). If linked with libc128.a
and libc.a, long double is 128 bits.

• The following characters indicate the type of conversion to be applied:

% Performs no conversion. Prints (%).

d or i Accepts a Value parameter specifying an integer and
converts it to signed decimal notation. The precision
specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer
digits, it is expanded with leading 0’s. The default
precision is 1. The result of converting a value of 0 with
a precision of 0 is a null string. Specifying a field width
with a 0 as a leading character causes the field–width
value to be padded with leading 0’s.

1-808 Technical Reference: Base Operating System

u Accepts a Value parameter specifying an unsigned
integer and converts it to unsigned decimal notation.
The precision specifies the minimum number of digits to
appear. If the value being converted can be represented
in fewer digits, it is expanded with leading 0’s. The
default precision is 1. The result of converting a value of
0 with a precision of 0 is a null string. Specifying a field
width with a 0 as a leading character causes the
field–width value to be padded with leading 0’s.

o Accepts a Value parameter specifying an unsigned
integer and converts it to unsigned octal notation. The
precision specifies the minimum number of digits to
appear. If the value being converted can be represented
in fewer digits, it is expanded with leading 0’s. The
default precision is 1. The result of converting a value of
0 with a precision of 0 is a null string. Specifying a
field–width with a 0 as a leading character causes the
field width value to be padded with leading 0’s. An octal
value for field width is not implied.

x or X Accepts a Value parameter specifying an unsigned
integer and converts it to unsigned hexadecimal
notation. The letters abcdef are used for the x
conversion and the letters ABCDEF are used for the X
conversion. The precision specifies the minimum
number of digits to appear. If the value being converted
can be represented in fewer digits, it is expanded with
leading 0’s. The default precision is 1. The result of
converting a value of 0 with a precision of 0 is a null
string. Specifying a field width with a 0 as a leading
character causes the field–width value to be padded
with leading 0’s.

f Accepts a Value parameter specifying a double and
converts it to decimal notation in the format [–]ddd.ddd.
The number of digits after the decimal point is equal to
the precision specification. If no precision is specified,
six digits are output. If the precision is 0, no decimal
point appears.

e or E Accepts a Value parameter specifying a double and
converts it to the exponential form [–]d.ddde+/–dd. One
digit exists before the decimal point, and the number of
digits after the decimal point is equal to the precision
specification. The precision specification can be in the
range of 0–17 digits. If no precision is specified, six
digits are output. If the precision is 0, no decimal point
appears. The E conversion character produces a
number with E instead of e before the exponent. The
exponent always contains at least two digits.

1-809Base Operating System Runtime Services (A-P)

g or G Accepts a Value parameter specifying a double and
converts it in the style of the e, E, or f conversion
characters, with the precision specifying the number of
significant digits. Trailing 0’s are removed from the
result. A decimal point appears only if it is followed by a
digit. The style used depends on the value converted.
Style e (E, if G is the flag used) results only if the
exponent resulting from the conversion is less than –4,
or if it is greater or equal to the precision. If an explicit
precision is 0, it is taken as 1.

c Accepts and prints a Value parameter specifying an
integer converted to an unsigned char data type.

C Accepts and prints a Value parameter specifying a
wchar_t wide character code. The wchar_t wide
character code specified by the Value parameter is
converted to an array of bytes representing a character
and that character is written; the Value parameter is
written without conversion when using the wsprintf
subroutine.

s Accepts a Value parameter as a string (character
pointer), and characters from the string are printed until
a null character (\0) is encountered or the number of
bytes indicated by the precision is reached. If no
precision is specified, all bytes up to the first null
character are printed. If the string pointer specified by
the Value parameter has a null value, the results are
unreliable.

S Accepts a corresponding Value parameter as a pointer
to a wchar_t string. Characters from the string are
printed (without conversion) until a null character (\0) is
encountered or the number of wide characters indicated
by the precision is reached. If no precision is specified,
all characters up to the first null character are printed. If
the string pointer specified by the Value parameter has
a value of null, the results are unreliable.

p Accepts a pointer to void. The value of the pointer is
converted to a sequence of printable characters, the
same as an unsigned hexadecimal (x).

n Accepts a pointer to an integer into which is written the
number of characters (wide–character codes in the
case of the wsprintf subroutine) written to the output
stream by this call. No argument is converted.

A field width or precision can be indicated by an * (asterisk) instead of a digit string. In this
case, an integer Value parameter supplies the field width or precision. The Value parameter
converted for output is not retrieved until the conversion letter is reached, so the parameters
specifying field width or precision must appear before the value (if any) to be converted.

If the result of a conversion is wider than the field width, the field is expanded to contain the
converted result and no truncation occurs. However, a small field width or precision can
cause truncation on the right.

The printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf subroutine
allows the insertion of a language–dependent radix character in the output string. The radix
character is defined by language–specific data in the LC_NUMERIC category of the
program’s locale. In the C locale, or in a locale where the radix character is not defined, the
radix character defaults to a . (dot).

1-810 Technical Reference: Base Operating System

After any of these subroutines runs successfully, and before the next successful completion
of a call to the fclose or fflush subroutine on the same stream or to the exit or abort
subroutine, the st_ctime and st_mtime fields of the file are marked for update.

The e, E, f, g, and G conversion specifiers represent the special floating–point values as
follows:

Quiet NaN +NaNQ or –NaNQ

Signaling NaN +NaNS or –NaNS

+/–INF +INF or –INF

+/–0 +0 or –0

The representation of the + (plus sign) depends on whether the + or space–character
formatting option is specified.

These subroutines can handle a format string that enables the system to process elements
of the parameter list in variable order. In such a case, the normal conversion character %
(percent sign) is replaced by %digit$, where digit is a decimal number in the range from 1 to
the NL_ARGMAX value. Conversion is then applied to the specified argument, rather than
to the next unused argument. This feature provides for the definition of format strings in an
order appropriate to specific languages. When variable ordering is used the * (asterisk)
specification for field width in precision is replaced by %digit$. If you use the
variable–ordering feature, you must specify it for all conversions.

The following criteria apply:

• The format passed to the NLS extensions can contain either the format of the conversion
or the explicit or implicit argument number. However, these forms cannot be mixed within
a single format string, except for %% (double percent sign).

• The n value must have no leading zeros.

• If %n$ is used, %1$ to %n – 1$ inclusive must be used.

• The n in %n$ is in the range from 1 to the NL_ARGMAX value, inclusive. See the
limits.h file for more information about the NL_ARGMAX value.

• Numbered arguments in the argument list can be referenced as many times as required.

• The * (asterisk) specification for field width or precision is not permitted with the variable
order %n$ format; instead, the *m$ format is used.

Return Values
Upon successful completion, the printf, fprintf, vprintf, and vfprintf subroutines return the
number of bytes transmitted (not including the null character [\0] in the case of the sprintf
and vsprintf subroutines). If an error was encountered, a negative value is output.

Upon successful completion, the wsprintf and vwsprintf subroutines return the number of
wide characters transmitted (not including the wide character null character [\0]). If an error
was encountered, a negative value is output.

Error Codes
The printf, fprintf, sprintf, or wsprintf subroutine is unsuccessful if the file specified by the
Stream parameter is unbuffered or the buffer needs to be flushed and one or more of the
following are true:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file
specified by the Stream or String parameter and the process would be
delayed in the write operation.

EBADF The file descriptor underlying the file specified by the Stream or String
parameter is not a valid file descriptor open for writing.

1-811Base Operating System Runtime Services (A-P)

EFBIG An attempt was made to write to a file that exceeds the file size limit of
this process or the maximum file size. For more information, refer to the
ulimit subroutine.

EINTR The write operation terminated due to receipt of a signal, and either no
data was transferred or a partial transfer was not reported.

Note: Depending upon which library routine the application binds to, this subroutine may
return EINTR. Refer to the signal subroutine regarding sa_restart.

EIO The process is a member of a background process group attempting to
perform a write to its controlling terminal, the TOSTOP flag is set, the
process is neither ignoring nor blocking the SIGTTOU signal, and the
process group of the process has no parent process.

ENOSPC No free space remains on the device that contains the file.

EPIPE An attempt was made to write to a pipe or first–in–first–out (FIFO) that
is not open for reading by any process. A SIGPIPE signal is sent to the
process.

The printf, fprintf, sprintf, or wsprintf subroutine may be unsuccessful if one or more of
the following are true:

EILSEQ An invalid character sequence was detected.

EINVAL The Format parameter received insufficient arguments.

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a nonexistent device, or the request was
outside the capabilities of the device.

Examples
The following example demonstrates how the vfprintf subroutine can be used to write an
error routine:

#include <stdio.h>

#include <stdarg.h>

/* The error routine should be called with the

 syntax: */

/* error(routine_name, Format

 [, value, . . .]); */

/*VARARGS0*/

void error(char *fmt, . . .);

/* ** Note that the function name and

 Format arguments cannot be **

 separately declared because of the **

 definition of varargs. */ {

 va_list args;

 va_start(args, fmt);

 /*

 ** Display the name of the function

 that called the error routine */

 fprintf(stderr, ”ERROR in %s: ”,

 va_arg(args, char *)); /*

 ** Display the remainder of the message

 */

 fmt = va_arg(args, char *);

 vfprintf(fmt, args);

 va_end(args);

 abort(); }

1-812 Technical Reference: Base Operating System

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The abort subroutine, conv subroutine, ecvt, fcvt, or gcvt subroutine, exit subroutine,
fclose or fflush subroutine, putc, putchar, fputc, or putw subroutine, putwc, putwchar, or
fputwc subroutine, scanf, fscanf, sscanf, or wsscanf subroutine, setlocale subroutine.

Input and Output Handling Programmer’s Overview and 128–Bit long Floating Point Data
Type in AIX General Programming Concepts : Writing and Debugging Programs.

1-813Base Operating System Runtime Services (A-P)

profil Subroutine

Purpose
Starts and stops program address sampling for execution profiling.

Library
Standard C Library (libc.a)

Syntax #include <mon.h>
void profil (ShortBuffer, BufferSize, Offset, Scale)
 OR
void profil (ProfBuffer, –1, 0, 0)

unsigned short *ShortBuffer;
struct prof *ProfBuffer;
unsigned int Buffersize, Scale;
unsigned long Offset;

Description
The profil subroutine arranges to record a histogram of periodically sampled values of the
calling process program counter. If BufferSize is not –1:

• The parameters to the profil subroutine are interpreted as shown in the first syntax
definition.

• After this call, the program counter (pc) of the process is examined each clock tick if the
process is the currently active process. The value of the Offset parameter is subtracted
from the pc. The result is multiplied by the value of the Scale parameter, shifted right 16
bits, and rounded up to the next half–word aligned value. If the resulting number is less
than the BufferSize value divided by sizeof(short), the corresponding short inside the
ShortBuffer parameter is incremented. If the result of this increment would overflow an
unsigned short, it remains USHRT_MAX.

• The least significant 16 bits of the Scale parameter are interpreted as an unsigned,
fixed–point fraction with a binary point at the left. The most significant 16 bits of the Scale
parameter are ignored. For example:

Octal Hex Meaning

0177777 0xFFFF Maps approximately each pair of bytes in the instruction space
to a unique short in the ShortBuffer parameter.

077777 0x7FFF Maps approximately every four bytes to a short in the
ShortBuffer parameter.

02 0x0002 Maps all instructions to the same location, producing a
noninterrupting core clock.

01 0x0001 Turns profiling off.

00 0x0000 Turns profiling off.

Note: Mapping each byte of the instruction space to an individual short in the ShortBuffer
parameter is not possible.

• Profiling, using the first syntax definition, is rendered ineffective by giving a value of 0 for
the BufferSize parameter.

If the value of the BufferSize parameter is –1:

• The parameters to the profil subroutine are interpreted as shown in the second syntax
definition. In this case, the Offset and Scale parameters are ignored, and the ProfBuffer

1-814 Technical Reference: Base Operating System

parameter points to an array of prof structures. The prof structure is defined in the
mon.h file, and it contains the following members:

caddr_t p_low;

caddr_t p_high;

HISTCOUNTER *p_buff;

int p_bufsize;

uint p_scale;

If the p_scale member has the value of –1, a value for it is computed based on p_low,
p_high, and p_bufsize; otherwise p_scale is interpreted like the scale argument in the
first synopsis. The p_high members in successive structures must be in ascending
sequence. The array of structures is ended with a structure containing a p_high member
set to 0; all other fields in this last structure are ignored.

The p_buff buffer pointers in the array of prof structures must point into a single
contiguous buffer space.

• Profiling, using the second syntax definition, is turned off by giving a ProfBuffer argument
such that the p_high element of the first structure is equal to 0.

In every case:

• Profiling remains on in both the child process and the parent process after a fork
subroutine.

• Profiling is turned off when an exec subroutine is run.

• A call to the profil subroutine is ineffective if profiling has been previously turned on
using one syntax definition, and an attempt is made to turn profiling off using the other
syntax definition.

• A call to the profil subroutine is ineffective if the call is attempting to turn on profiling
when profiling is already turned on, or if the call is attempting to turn off profiling when
profiling is already turned off.

Parameters

ShortBuffer Points to an area of memory in the user address space. Its length (in
bytes) is given by the BufferSize parameter.

BufferSize Specifies the length (in bytes) of the buffer.

Offset Specifies the delta of program counter start and buffer; for example, a 0
Offset implies that text begins at 0. If the user wants to use the entry point
of a routine for the Offset parameter, the syntax of the parameter is as
follows:

*(long *)RoutineName

Scale Specifies the mapping factor between the program counter and
ShortBuffer.

ProfBuffer Points to an array of prof structures.

Return Values
The profil subroutine always returns a value of 0. Otherwise, the errno global variable is
set to indicate the error.

Error Codes
The profil subroutine is unsuccessful if one or both of the following are true:

1-815Base Operating System Runtime Services (A-P)

EFAULT The address specified by the ShortBuffer or ProfBuffer parameters is
not valid, or the address specified by a p_buff field is not valid.
EFAULT can also occur if there are not sufficient resources to pin the
profiling buffer in real storage.

EINVAL The p_high fields in the prof structure specified by the ProfBuffer
parameter are not in ascending order.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutines, fork subroutine, moncontrol subroutine, monitor subroutine,
monstartup subroutine.

The prof command.

1-816 Technical Reference: Base Operating System

psdanger Subroutine

Purpose
Defines the amount of free paging space available.

Syntax
#include <signal.h>

int psdanger (Signal)
int Signal;

Description
The psdanger subroutine returns the difference between the current number of free
paging–space blocks and the paging–space thresholds of the system.

Parameters

Signal Defines the signal.

Return Values
If the value of the Signal parameter is 0, the return value is the total number of
paging–space blocks defined in the system.

If the value of the Signal parameter is –1, the return value is the number of free
paging–space blocks available in the system.

If the value of the Signal parameter is SIGDANGER, the return value is the difference
between the current number of free paging–space blocks and the paging–space warning
threshold. If the number of free paging–space blocks is less than the paging–space warning
threshold, the return value is negative.

If the value of the Signal parameter is SIGKILL, the return value is the difference between
the current number of free paging–space blocks and the paging–space kill threshold. If the
number of free paging–space blocks is less than the paging–space kill threshold, the return
value is negative.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The swapon subroutine, swapqry subroutine.

The chps command, lsps command, mkps command, rmps command, swapon
command.

Paging Space Overview in AIX 4.3 System Management Guide: Operating System and
Devices.

Subroutines Overview and Understanding Paging Space Programming Requirements in AIX
General Programming Concepts : Writing and Debugging Programs.

1-817Base Operating System Runtime Services (A-P)

psignal Subroutine or sys_siglist Vector

Purpose
Prints system signal messages.

Library
Standard C Library (libc.a)

Syntax
psignal (Signal, String)
unsigned Signal;
char *String;

char *sys_siglist[];

Description
The psignal subroutine produces a short message on the standard error file describing the
indicated signal. First the String parameter is printed, then the name of the signal and a
new–line character.

To simplify variant formatting of signal names, the sys_siglist vector of message strings is
provided. The signal number can be used as an index in this table to get the signal name
without the new–line character. The NSIG defined in the signal.h file is the number of
messages provided for in the table. It should be checked because new signals may be
added to the system before they are added to the table.

Parameters

Signal Specifies a signal. The signal number should be among those found in
the signal.h file.

String Specifies a string that is printed. Most usefully, the String parameter is
the name of the program that incurred the signal.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The perror subroutine, sigvec subroutine.

1-818 Technical Reference: Base Operating System

pthread_atfork Subroutine

Purpose
Registers fork handlers.

Library
Threads Library (libpthreads.a)

Syntax
#include <sys/types.h>
#include <unistd.h>

int pthread_atfork (void (*prepare)(void), void (*parent)(void)
void (*child)(void));

Description
The pthread_atfork subroutine registers fork cleanup handlers. The prepare handler is
called before the processing of the fork subroutine commences. The parent handler is
called after the processing of the fork subroutine completes in the parent process. The child
handler is called after the processing of the fork subroutine completes in the child process.

When the fork subroutine is called, only the calling thread is duplicated in the child process,
but all synchronization variables are duplicated. The pthread_atfork subroutine provides a
way to prevent state inconsistencies and resulting deadlocks. The expected usage is that
the prepare handler acquires all mutexes, and the two other handlers release them in the
parent and child processes.

The prepare handlers are called in LIFO (Last In First Out) order; whereas the parent and
child handlers are called in FIFO (first–in first–out) order. Thereafter, the order of calls to the
pthread_atfork subroutine is significant.

Note: The pthread.h header file must be the first included file of each source file using the
threads library.

Parameters

prepare Points to the pre–fork cleanup handler. If no pre–fork handling is
desired, the value of this pointer should be set to NULL.

parent Points to the parent post–fork cleanup handler. If no parent post–fork
handling is desired, the value of this pointer should be set to NULL.

child Points to the child post–fork cleanup handler. If no child post–fork
handling is desired, the value of this pointer should be set to NULL.

Return Values
Upon successful completion, pthread_atfork returns a value of zero. Otherwise, an error
number is returned to indicate the error.

Error Codes
The pthread_atfork function will fail if:

ENOMEM Insufficient table space exists to record the fork handler addresses.

The pthread_atfork function will not return an error code of EINTR.

1-819Base Operating System Runtime Services (A-P)

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
sys/types.h

The fork subroutine.

 The atexit subroutine.

Process Duplication and Termination in AIX General Programming Concepts : Writing and
Debugging Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-820 Technical Reference: Base Operating System

pthread_attr_destroy Subroutine

Purpose
Deletes a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_destroy (attr)
pthread_attr_t *attr;

Description
The pthread_attr_destroy subroutine destroys the thread attributes object attr, reclaiming
its storage space. It has no effect on the threads previously created with that object.

Parameters

attr Specifies the thread attributes object to delete.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_destroy subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

This function will not return an error code of [EINTR].

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_attr_init subroutine, pthread_create subroutine, the pthread.h file.

Creating Threads in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-821Base Operating System Runtime Services (A-P)

pthread_attr_getdetachstate or pthread_attr_setdetachstate
Subroutines

Purpose
Sets and returns the value of the detachstate attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setdetachstate (pthread_attr_t *attr, int
detachstate)
int pthread_attr_getdetachstate (const pthread_attr_t *attr,
 int * detachstate);

Description
The detachstate attribute controls whether the thread is created in a detached state. If the
thread is created detached, then use of the ID of the newly created thread by the
pthread_detach or pthread_join function is an error.

The pthread_attr_setdetachstate and pthread_attr_getdetachstate, respectively, set and
get the detachstate attribute in the attr object.

The detachstate can be set to either PTHREAD_CREATE_DETACHED or
PTHREAD_CREATE_JOINABLE. A value of PTHREAD_CREATE_DETACHED causes all
threads created with attr to be in the detached state, whereas using a value of
PTHREAD_CREATE_JOINABLE causes all threads created with attr to be in the joinable
state. The default value of the detachstate attribute is PTHREAD_CREATE_JOINABLE.

Parameters

attr Specifies the thread attributes object.

detachstate Points to where the detachstate attribute value will be
stored.

Return Values
Upon successful completion, pthread_attr_setdetachstate and
pthread_attr_getdetachstate return a value of 0. Otherwise, an error number is returned
to indicate the error.

The pthread_attr_getdetachstate function stores the value of the detachstate attribute in
detachstate if successful.

Error Codes
The pthread_attr_setdetachstate function will fail if:

EINVAL The value of detachstate was not valid.

1-822 Technical Reference: Base Operating System

The pthread_attr_getdetachstate and pthread_attr_setdetachstate functions will fail if:

EINVAL The attribute parameter is invalid.

These functions will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_attr_setstackaddr, pthread_attr_setstacksize, pthread_create,
pthread_attr_init subroutines, and pthread.h file.

Creating Threads in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-823Base Operating System Runtime Services (A-P)

pthread_attr_getguardsize or pthread_attr_setguardsize
Subroutines

Purpose
Gets or sets the thread guardsize attribute.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_getguardsize (const pthread_attr_t *attr, size_t
*guardsize);
int pthread_attr_setguardsize (pthread_attr_t *attr, size_t
guardsize);

Description
The guardsize attribute controls the size of the guard area for the created thread’s stack.
The guardsize attribute provides protection against overflow of the stack pointer. If a
thread’s stack is created with guard protection, the implementation allocates extra memory
at the overflow end of the stack as a buffer against stack overflow of the stack pointer. If an
application overflows into this buffer an error results (possibly in a SIGSEGV signal being
delivered to the thread).

The guardsize attribute is provided to the application for two reasons:

• Overflow protection can potentially result in wasted system resources. An application that
creates a large number of threads, and which knows its threads will never overflow their
stack, can save system resources by turning off guard areas.

• When threads allocate large data structures on the stack, large guard areas may be
needed to detect stack overflow.

The pthread_attr_getguardsize function gets the guardsize attribute in the attr object. This
attribute is returned in the guardsize parameter.

The pthread_attr_setguardsize function sets the guardsize attribute in the attr object. The
new value of this attribute is obtained from the guardsize parameter. If guardsize is zero, a
guard area will not be provided for threads created with attr. If guardsize is greater than
zero, a guard area of at least size guardsize bytes is provided for each thread created with
attr.

A conforming implementation is permitted to round up the value contained in guardsize to a
multiple of the configurable system variable PAGESIZE (see sys/mman.h). If an
implementation rounds up the value of guardsize to a multiple of PAGESIZE, a call to
pthread_attr_getguardsize specifying attr will store in the guardsize parameter the guard
size specified by the previous pthread_attr_setguardsize function call. The default value of
the guardsize attribute is PAGESIZE bytes. The actual value of PAGESIZE is
implementation–dependent and may not be the same on all implementations.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its own
thread stacks), the guardsize attribute is ignored and no protection will be provided by the

1-824 Technical Reference: Base Operating System

implementation. It is the responsibility of the application to manage stack overflow along
with stack allocation and management in this case.

Return Values
If successful, the pthread_attr_getguardsize and pthread_attr_setsguardsize functions
return zero. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_attr_getguardsize and pthread_attr_setguardsize functions will fail if:

EINVAL The attribute attr is invalid.

EINVAL The guardsize parameter is invalid.

EINVAL The guardsize parameter contains an invalid value.

1-825Base Operating System Runtime Services (A-P)

pthread_attr_getschedparam Subroutine

Purpose
Returns the value of the schedparam attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/sched.h>

int pthread_attr_getschedparam (attr, schedparam)
const pthread_attr_t *attr;
struct sched_param *schedparam;

Description
The pthread_attr_getschedparam subroutine returns the value of the schedparam
attribute of the thread attributes object attr. The schedparam attribute specifies the
scheduling parameters of a thread created with this attributes object. The
sched_priority field of the sched_param structure contains the priority of the thread. It
is an integer value.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.

schedparam Points to where the schedparam attribute value will be stored.

Return Values
Upon successful completion, the value of the schedparam attribute is returned via the
schedparam parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_getschedparam subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

This function does not return EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_attr_setschedparam subroutine, pthread_attr_init subroutine,
pthread_getschedparam subroutine, the pthread.h file.

Threads Scheduling in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-826 Technical Reference: Base Operating System

pthread_attr_getstackaddr Subroutine

Purpose
Returns the value of the stackaddr attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_getstackaddr (attr, stackaddr)
const pthread_attr_t *attr;
void **stackaddr;

Description
The pthread_attr_getstackaddr subroutine returns the value of the stackaddr attribute of
the thread attributes object attr. This attribute specifies the stack address of the thread
created with this attributes object.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.

stackaddr Points to where the stackaddr attribute value will be stored.

Return Values
Upon successful completion, the value of the stackaddr attribute is returned via the
stackaddr parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_getstackaddr subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

This function will not return EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_attr_setstackaddr subroutine, pthread_attr_init subroutine, the pthread.h
file.

Advanced Attributes in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-827Base Operating System Runtime Services (A-P)

pthread_attr_getstacksize Subroutine

Purpose
Returns the value of the stacksize attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_getstacksize (attr, stacksize)
const pthread_attr_t *attr;
size_t *stacksize;

Description
The pthread_attr_getstacksize subroutine returns the value of the stacksize attribute of
the thread attributes object attr. This attribute specifies the minimum stack size of a thread
created with this attributes object. The value is given in bytes. The default stack size is
PTHREAD_STACK_MIN, *12 defined in pthread.h.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.

stacksize Points to where the stacksize attribute value will be stored.

Return Values
Upon successful completion, the value of the stacksize attribute is returned via the stacksize
parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_getstacksize subroutine is unsuccessful if the following is true:

EINVAL The attr or stacksize parameters are not valid.

This function will not return an error code of [EINTR].

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_attr_setstacksize subroutine, pthread_attr_init subroutine, the pthread.h
file.

Advanced Attributes in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-828 Technical Reference: Base Operating System

pthread_attr_init Subroutine

Purpose
Creates a thread attributes object and initializes it with default values.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_init (attr)
pthread_attr_t *attr;

Description
The pthread_attr_init subroutine creates a new thread attributes object attr. The new
thread attributes object is initialized with the following default values:

Always initialized

Attribute Default value

Detachstate PTHREAD_CREATE_JOINABLE

Always Initialized

Attribute Default value

Contention–scope PTHREAD_SCOPE_PROCESS the default ensures
compatibility with implementations that do not support this
POSIX option.

Inheritsched PTHREAD_INHERITSCHED

Schedparam A sched_param structure which sched_prio field is set
to 1, the least favored priority.

Schedpolicy SCHED_OTHER

Always Initialized

Attribute Default value

Stacksize PTHREAD_STACK_MIN

Guardsize PAGESIZE

The resulting attribute object (possibly modified by setting individual attribute values), when
used by pthread_create, defines the attributes of the thread created. A single attributes
object can be used in multiple simultaneous calls to pthread_create.

1-829Base Operating System Runtime Services (A-P)

Parameters

attr Specifies the thread attributes object to be created.

Return Values
Upon successful completion, the new thread attributes object is filled with default values and
returned via the attr parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_init subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

ENOMEM There is not sufficient memory to create the thread attribute
object.

This function will not return an error code of [EINTR].

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_attr_setdetachstate subroutine, pthread_attr_setstackaddr subroutine,
pthread_attr_setstacksize subroutine, pthread_create subroutine, pthread_attr_destroy
and pthread_attr_setguardsize subroutine.

The pthread.h file.

Creating Threads in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-830 Technical Reference: Base Operating System

pthread_attr_setschedparam Subroutine

Purpose
Sets the value of the schedparam attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/sched.h>

int pthread_attr_setschedparam (attr, schedparam)
pthread_attr_t *attr;
const struct sched_param *schedparam;

Description
The pthread_attr_setschedparam subroutine sets the value of the schedparam attribute of
the thread attributes object attr. The schedparam attribute specifies the scheduling
parameters of a thread created with this attributes object. The sched_priority field of
the sched_param structure contains the priority of the thread.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.

schedparam Points to where the scheduling parameters to set are stored. The
sched_priority field must be in the range from 1 to 127, where 1 is
the least favored priority, and 127 the most favored.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_setschedparam subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

ENOSYS The priority scheduling POSIX option is not implemented.

ENOTSUP The value of the schedparam attribute is not supported.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_attr_getschedparam subroutine, pthread_attr_init subroutine,
pthread_create subroutine, the pthread.h file.

Threads Scheduling in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-831Base Operating System Runtime Services (A-P)

pthread_attr_setstackaddr Subroutine

Purpose
Sets the value of the stackaddr attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setstackaddr (attr, stackaddr)
pthread_attr_t *attr;
void *stackaddr;

Description
The pthread_attr_setstackaddr subroutine sets the value of the stackaddr attribute of the
thread attributes object attr. This attribute specifies the stack address of a thread created
with this attributes object.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.

stackaddr Specifies the stack address to set. It is a void pointer.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_setstackaddr subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

ENOSYS The stack address POSIX option is not implemented.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_attr_getstackaddr subroutine, pthread_attr_init subroutine, the pthread.h
file.

Advanced Attributes in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-832 Technical Reference: Base Operating System

pthread_attr_setstacksize Subroutine

Purpose
Sets the value of the stacksize attribute of a thread attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_attr_setstacksize (attr, stacksize)
pthread_attr_t *attr;
size_t stacksize;

Description
The pthread_attr_setstacksize subroutine sets the value of the stacksize attribute of the
thread attributes object attr. This attribute specifies the minimum stack size, in bytes, of a
thread created with this attributes object.

The allocated stack size is always a multiple of 8K bytes, greater or equal to the required
minimum stack size of 56K bytes (PTHREAD_STACK_MIN). The following formula is used
to calculate the allocated stack size: if the required stack size is lower than 56K bytes, the
allocated stack size is 56K bytes; otherwise, if the required stack size belongs to the range
from (56 + (n – 1) * 16) K bytes to (56 + n * 16) K bytes, the allocated stack size is
(56 + n * 16) K bytes.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

attr Specifies the thread attributes object.

stacksize Specifies the minimum stack size, in bytes, to set. The default stack
size is PTHREAD_STACK_MIN. The minimum stack size should be
greater or equal than this value.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_attr_setstacksize subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid, or the value of the stacksize parameter
exceeds a system imposed limit.

ENOSYS The stack size POSIX option is not implemented.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

1-833Base Operating System Runtime Services (A-P)

Related Information
The pthread_attr_getstacksize subroutine, pthread_attr_init subroutine, pthread_create
subroutine, the pthread.h file.

Advanced Attributes in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-834 Technical Reference: Base Operating System

pthread_attr_setsuspendstate_np and
pthread_attr_getsuspendstate_np Subroutine

Purpose
Controls whether a thread is created in a suspended state.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_setsuspendstate_np(pthread_attr_t, *attr, int
suspendstate);

int pthread_attr_getsuspendstate_np(pthread_attr_t, *attr, int
*suspendstate);

Description
The suspendstate attribute controls whether the thread is created in a suspended state. If
the thread is created suspended, the thread start routine will not execute until
pthread_continue_np is run on the thread. The pthread_attr_setsuspendstate_np and
pthread_attr_getsuspendstate_np routines, respectively, set and get the suspendstate
attribute in the attr object.

The suspendstate attribute can be set to either PTHREAD_CREATE_SUSPENDED_NP or
PTHREAD_CREATE_UNSUSPENDED_NP. A value of
PTHREAD_CREATE_SUSPENDED_NP causes all threads created with attr to be in the
suspended state, whereas using a value of PTHREAD_CREATE_UNSUSPENDED_NP
causes all threads created with attr to be in the unsuspended state. The default value of the
suspendstate attribute is PTHREAD_CREATE_UNSUSPENDED_NP.

Parameters

attr Specifies the thread attributes object.

suspendstate Points to where the suspendstate attribute value will be
stored.

Return Values
Upon successful completion, pthread_attr_setsuspendstate_np and
pthread_attr_getsuspendstate_np return a value of 0. Otherwise, an error number is
returned to indicate the error.

The pthread_attr_getsuspendstate_np function stores the value of the suspendstate
attribute in suspendstate if successful.

Error Codes
The pthread_attr_setsuspendstate_np function will fail if:

EINVAL The value of suspendstate is not valid.

1-835Base Operating System Runtime Services (A-P)

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

1-836 Technical Reference: Base Operating System

pthread_cancel Subroutine

Purpose
Requests the cancellation of a thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_cancel (pthread_t thread);

Description
The pthread_cancel subroutine requests the cancellation of the thread thread. The action
depends on the cancelability of the target thread:

• If its cancelability is disabled, the cancellation request is set pending.

• If its cancelability is deferred, the cancellation request is set pending till the thread
reaches a cancellation point.

• If its cancelability is asynchronous, the cancellation request is acted upon immediately; in
some cases, it may result in unexpected behaviour.

The cancellation of a thread terminates it safely, using the same termination procedure as
the pthread_exit subroutine.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

thread Specifies the thread to be canceled.

Return Values
If successful, the pthread_cancel function returns zero. Otherwise, an error number is
returned to indicate the error.

Error Codes
The ptread_cancel function may fail if:

ESRCH No thread could be found corresponding to that specified by the given
thread ID.

The pthread_cancel function will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
 The pthread_kill subroutine, pthread_exit subroutine, pthread_join subroutine,
pthread_cond_wait, and pthread_cond_timedwait subroutines.

The pthread.h file.

Terminating Threads in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-837Base Operating System Runtime Services (A-P)

pthread_cleanup_pop or pthread_cleanup_push Subroutine

Purpose
Establishes cancellation handlers.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_cleanup_pop (int execute);
void pthread_cleanup_push (void (*routine)(void *), void *arg);

Description
The pthread_cleanup_push function pushes the specified cancellation cleanup handler
routine onto the calling thread’s cancellation cleanup stack. The cancellation cleanup
handler is popped from the cancellation cleanup stack and invoked with the argument arg
when: (a) the thread exits (that is, calls pthread_exit, (b) the thread acts upon a
cancellation request, or (c) the thread calls pthread_cleanup_pop with a non–zero execute
argument.

The pthread_cleanup_pop function removes the routine at the top of the calling thread’s
cancellation cleanup stack and optionally invokes it (if execute is non–zero).

These functions may be implemented as macros and will appear as statements and in pairs
within the same lexical scope (that is, the pthread_cleanup_push macro may be thought to
expand to a token list whose first token is ’{’ with pthread_cleanup_pop expanding to a
token list whose last token is the corresponding ’}’).

The effect of calling longjmp or siglongjmp is undefined if there have been any calls to
pthread_cleanup_push or pthread_cleanup_pop made without the matching call since
the jump buffer was filled. The effect of calling longjmp or siglongjmp from inside a
cancellation cleanup handler is also undefined unless the jump buffer was also filled in the
cancellation cleanup handler.

Parameters

execute Specifies if the popped routine will be executed.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_cancel, pthread_setcancelstate subroutines, the pthread.h file.

Terminating Threads in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-838 Technical Reference: Base Operating System

pthread_cond_destroy or pthread_cond_init Subroutine

Purpose
Initialise and destroys condition variables.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_cond_init (pthread_cond_t *cond, const

pthread_condattr_t *attr);

int pthread_cond_destroy (pthread_cond_t *cond);
pthread_cond_t cond = PTHREAD_COND_INTITIALIZER;

Description
The function pthread_cond_init initialises the condition variable referenced by cond with
attributes referenced by attr.Ifattr is NULL, the default condition variable attributes are used;
the effect is the same as passing the address of a default condition variable attributes
object. Upon successful initialisation, the state of the condition variable becomes initialised.

Attempting to initialise an already initialised condition variable results in undefined
behaviour.

The function pthread_cond_destroy destroys the given condition variable specified by
cond; the object becomes, in effect, uninitialised. An implementation may cause
pthread_cond_destroy to set the object referenced by cond to an invalid value. A
destroyed condition variable object can be re–initialised using pthread_cond_init; the
results of otherwise referencing the object after it has been destroyed are undefined.

It is safe to destroy an initialised condition variable upon which no threads are currently
blocked. Attempting to destroy a condition variable upon which other threads are currently
blocked results in undefined behaviour.

In cases where default condition variable attributes are appropriate, the macro
PTHREAD_COND_INITIALIZER can be used to initialise condition variables that are
statically allocated. The effect is equivalent to dynamic initialisation by a call to
pthread_cond_init with parameter attr specified as NULL, except that no error checks are
performed.

Return Values
If successful, the pthread_cond_init and pthread_cond_destroy functions return zero.
Otherwise, an error number is returned to indicate the error. The EBUSY and EINVAL error
checks, if implemented, act as if they were performed immediately at the beginning of
processing for the function and caused an error return prior to modifying the state of the
condition variable specified by cond.

Error Codes
The pthread_cond_init function will fail if:

1-839Base Operating System Runtime Services (A-P)

EAGAIN The system lacked the necessary resources (other than
memory) to initialise another condition variable.

ENOMEM Insufficient memory exists to initialise the condition
variable.

The pthread_cond_init function may fail if:

EINVAL The value specified by attr is invalid.

The pthread_cond_destroy function may fail if:

EBUSY The implementation has detected an attempt to destroy the
object referenced by cond while it is referenced (for
example, while being used in a pthread_cond_wait or
pthread_cond_timedwait by another thread.

EINVAL The value specified by cond is invalid.

These functions will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_cond_signal, pthread_cond_broadcast, pthread_cond_wait, and
pthread_cond_timewait subroutines.

The pthread.h file.

Using Condition Variables in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-840 Technical Reference: Base Operating System

PTHREAD_COND_INITIALIZER Macro

Purpose
Initializes a static condition variable with default attributes.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Description
The PTHREAD_COND_INITIALIZER macro initializes the static condition variable cond,
setting its attributes to default values. This macro should only be used for static condition
variables, since no error checking is performed.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Implementation Specifics
This macro is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_cond_init subroutine.

Using Condition Variables and Threads Library Quick Reference in AIX General
Programming Concepts : Writing and Debugging Programs.

1-841Base Operating System Runtime Services (A-P)

pthread_cond_signal or pthread_cond_broadcast Subroutine

Purpose
Unblocks one or more threads blocked on a condition.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_cond_signal (condition)
pthread_cond_t *condition;

int pthread_cond_broadcast (condition)
pthread_cond_t *condition;

Description
These subroutines unblock one or more threads blocked on the condition specified by
condition. The pthread_cond_signal subroutine unblocks at least one blocked thread,
while the pthread_cond_broadcast subroutine unblocks all the blocked threads.

If more than one thread is blocked on a condition variable, the scheduling policy determines
the order in which threads are unblocked. When each thread unblocked as a result of a
pthread_cond_signal or pthread_cond_broadcast returns from its call to
pthread_cond_wait or pthread_cond_timedwait, the thread owns the mutex with which it
called pthread_cond_waitor pthread_cond_timedwait. The thread(s) that are unblocked
contend for the mutex according to the scheduling policy (if applicable), and as if each had
called pthread_mutex_lock.

The pthread_cond_signal or pthread_cond_broadcast functions may be called by a
thread whether or not it currently owns the mutex that threads calling pthread_cond_wait
or pthread_cond_timedwait have associated with the condition variable during their waits;
however, if predictable scheduling behaviour is required, then that mutex is locked by the
thread calling pthread_cond_signal or pthread_cond_broadcast.

If no thread is blocked on the condition, the subroutine succeeds, but the signalling of the
condition is not held. The next thread calling pthread_cond_wait will be blocked.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameter

condition Specifies the condition to signal.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Code
The pthread_cond_signal and pthread_cond_broadcast subroutines are unsuccessful if
the following is true:

EINVAL The condition parameter is not valid.

1-842 Technical Reference: Base Operating System

Implementation Specifics
These subroutines are part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_cond_wait or pthread_cond_timedwait subroutine.

Using Condition Variables in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-843Base Operating System Runtime Services (A-P)

pthread_cond_wait or pthread_cond_timedwait Subroutine

Purpose
Blocks the calling thread on a condition.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>int pthread_cond_wait (pthread_cond_t *cond);
int pthread_cond_timedwait (pthread_cond_t *cond,
pthread_mutex_t * mutex, const struct timespec *abstime);

Description
The pthread_cond_wait and pthread_cond_timedwait functions are used to block on a
condition variable. They are called with mutex locked by the calling thread or undefined
behaviour will result.

These functions atomically release mutex and cause the calling thread to block on the
condition variable cond; atomically here means’’atomically with respect to access by another
thread to the mutex and then the condition variable’’. That is, if another thread is able to
acquire the mutex after the about–to–block thread has released it, then a subsequent call to
pthread_cond_signal or pthread_cond_broadcast in that thread behaves as if it were
issued after the about–to–block thread has blocked.

Upon successful return, the mutex has been locked and is owned by the calling thread.

When using condition variables there is always a boolean predicate involving shared
variables associated with each condition wait that is true if the thread should proceed.
Spurious wakeups from the pthread_cond_wait or pthread_cond_timedwait functions
may occur. Since the return from pthread_cond_wait or pthread_cond_timedwait does
not imply anything about the value of this predicate, the predicate should be re–evaluated
upon such return.

The effect of using more than one mutex for concurrent pthread_cond_wait or
pthread_cond_timedwait operations on the same condition variable is undefined; that is, a
condition variable becomes bound to a unique mutex when a thread waits on the condition
variable, and this (dynamic) binding ends when the wait returns.

A condition wait (whether timed or not) is a cancellation point. When the cancelability enable
state of a thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting upon a
cancellation request while in a condition wait is that the mutex is (in effect) re–acquired
before calling the first cancellation cleanup handler. The effect is as if the thread were
unblocked, allowed to execute up to the point of returning from the call to
pthread_cond_wait or pthread_cond_timedwait, but at that point notices the cancellation
request and instead of returning to the caller of pthread_cond_wait or
pthread_cond_timedwait, starts the thread cancellation activities, which includes calling
cancellation cleanup handlers.

A thread that has been unblocked because it has been canceled while blocked in a call to
pthread_cond_wait or pthread_cond_timedwait does not consume any condition signal
that may be directed concurrently at the condition variable if there are other threads blocked
on the condition variable.

The pthread_cond_timedwait function is the same as pthread_cond_wait except that an
error is returned if the absolute time specified by abstime passes (that is, system time
equals or exceeds abstime) before the condition cond is signaled or broadcasted, or if the
absolute time specified by abstime has already been passed at the time of the call. When
such time–outs occur, pthread_cond_timedwait will nonetheless release and reacquire the

1-844 Technical Reference: Base Operating System

mutex referenced by mutex. The function pthread_cond_timedwait is also a cancellation
point.

If a signal is delivered to a thread waiting for a condition variable, upon return from the
signal handler the thread resumes waiting for the condition variable as if it was not
interrupted, or it returns zero due to spurious wakeup.

Parameters

condition Specifies the condition variable to wait on.

mutex Specifies the mutex used to protect the condition variable. The mutex
must be locked when the subroutine is called.

timeout Points to the absolute time structure specifying the blocked state
timeout.

Return Values
Except in the case of ETIMEDOUT, all these error checks act as if they were performed
immediately at the beginning of processing for the function and cause an error return, in
effect, prior to modifying the state of the mutex specified by mutex or the condition variable
specified by cond.

Upon successful completion, a value of zero is returned. Otherwise, an error number is
returned to indicate the error.

Error Codes
The pthread_cond_timedwait function will fail if:

ETIMEDOUT The time specified by abstime to pthread_cond_timedwait has
passed.

The pthread_cond_wait and pthread_cond_timedwait functions may fail if:

EINVAL The value specified by cond, mutex,orabstime is invalid.

EINVAL Different mutexes were supplied for concurrent pthread_cond_wait or
pthread_cond_timedwait operations on the same condition variable.

EINVAL The mutex was not owned by the current thread at the time of the call.

These functions will not return an error code of EINTR.

Implementation Specifics
These subroutines are part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_cond_signal or pthread_cond_broadcast subroutine, the pthread.h file.

Using Condition Variables in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-845Base Operating System Runtime Services (A-P)

pthread_condattr_destroy or pthread_condattr_init Subroutine

Purpose
Initialises and destroys condition variable.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_condattr_destroy (pthread_condattr_t *attr);
int pthread_condattr_init (pthread_condattr_t *attr);

Description
The function pthread_condattr_init initialises a condition variable attributes object attr with
the default value for all of the attributes defined by the implementation. Attempting to
initialise an already initialised condition variable attributes object results in undefined
behaviour.

After a condition variable attributes object has been used to initialise one or more condition
variables, any function affecting the attributes object (including destruction) does not affect
any previously initialised condition variables.

The pthread_condattr_destroy function destroys a condition variable attributes object; the
object becomes, in effect, uninitialised. The pthread_condattr_destroy subroutine may set
the object referenced by attr to an invalid value. A destroyed condition variable attributes
object can be re–initialised using pthread_condattr_init; the results of otherwise
referencing the object after it has been destroyed are undefined.

Parameter

attr Specifes the condition attributes object to delete.

Return Values
If successful, the pthread_condattr_init and pthread_condattr_destroy functions return
zero. Otherwise, an error number is returned to indicate the error.

Error Code
The pthread_condattr_init function will fail if:

ENOMEM Insufficient memory exists to initialise the condition variable attributes
object.

The pthread_condattr_destroy function may fail if:

EINVAL The value specified by attr is invalid.

These functions will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

1-846 Technical Reference: Base Operating System

Related Information
The pthread_cond_init subroutine, the pthread_condattr_getpshared, the
pthread_create, the pthread_mutex_init, the pthread.h file.

Using Condition Variables in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-847Base Operating System Runtime Services (A-P)

pthread_condattr_getpshared Subroutine

Purpose
Returns the value of the pshared attribute of a condition attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_condattr_getpshared (attr, pshared)
const pthread_condattr_t *attr;
int *pshared;

Description
The pthread_condattr_getpshared subroutine returns the value of the pshared attribute of
the condition attribute object attr. This attribute specifies the process sharing of the condition
variable created with this attributes object. It may have one of the following values:

PTHREAD_PROCESS_
SHARED

Specifies that the condition variable can be used by any thread
that has access to the memory where it is allocated, even if
these threads belong to different processes.

PTHREAD_PROCESS_
PRIVATE

Specifies that the condition variable shall only be used by
threads within the same process as the thread that created it.
This is the default value.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

attr Specifies the condition attributes object.

pshared Points to where the pshared attribute value will be stored.

Return Values
Upon successful completion, the value of the pshared attribute is returned via the pshared
parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_condattr_getpshared subroutine is unsuccessful if the following is true:

EINVAL The attr parameter is not valid.

ENOSYS The process sharing POSIX option is not implemented.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_condattr_setpshared subroutine, pthread_condattr_init subroutine.

1-848 Technical Reference: Base Operating System

Advanced Attributes in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-849Base Operating System Runtime Services (A-P)

pthread_condattr_setpshared Subroutine

Purpose
Sets the value of the pshared attribute of a condition attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_condattr_setpshared (attr, pshared)
pthread_condattr_t *attr;
int pshared;

Description
The pthread_condattr_setpshared subroutine sets the value of the pshared attribute of
the condition attributes object attr. This attribute specifies the process sharing of the
condition variable created with this attributes object.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

attr Specifies the condition attributes object.

pshared Specifies the process sharing to set. It must have one of the following values:

PTHREAD_PROCESS_SHARED
Specifies that the condition variable can be used by any thread
that has access to the memory where it is allocated, even if
these threads belong to different processes.

PTHREAD_PROCESS_PRIVATE
Specifies that the condition variable shall only be used by
threads within the same process as the thread that created it.
This is the default value.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_condattr_setpshared subroutine is unsuccessful if the following is true:

EINVAL The attr or pshared parameters are not valid.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

1-850 Technical Reference: Base Operating System

Related Information
The pthread_condattr_getpshared subroutine, pthread_condattr_init subroutine,
pthread_cond_init subroutine.

Advanced Attributes in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-851Base Operating System Runtime Services (A-P)

pthread_create Subroutine

Purpose
Creates a new thread, initializes its attributes, and makes it runnable.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>int pthread_create(pthread_t * thread, const
pthread_attr_t * attr, void *(* start_routine) (void), void *
arg);

Description
The pthread_create subroutine creates a new thread and initializes its attributes using the
thread attributes object specified by the attr parameter. The new thread inherits its creating
thread’s signal mask; but any pending signal of the creating thread will be cleared for the
new thread.

Note: The number of threads per process is defined in the pthread.h file as 512.

The new thread is made runnable, and will start executing the start_routine routine, with the
parameter specified by the arg parameter. The arg parameter is a void pointer; it can
reference any kind of data. It is not recommended to cast this pointer into a scalar data type
(int for example), because the casts may not be portable.

After thread creation, the thread attributes object can be reused to create another thread, or
deleted.

The thread terminates in the following cases:

• The thread returned from its starting routine (the main routine for the initial thread)

• The thread called the pthread_exit subroutine

• The thread was canceled

• The thread received a signal that terminated it

• The entire process is terminated due to a call to either the exec or exit subroutines.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

thread Points to where the thread ID will be stored.

attr Specifies the thread attributes object to use in creating the thread. If the
value is NULL, the default attributes values will be used.

start_routine Points to the routine to be executed by the thread.

arg Points to the single argument to be passed to the start_routine routine.

Return Values
If successful, the pthread_create function returns zero. Otherwise, an error number is
returned to indicate the error.

1-852 Technical Reference: Base Operating System

Error Codes
The pthread_create function will fail if:

EAGAIN The system lacked the necessary resources to create another thread,
or the system–imposed limit on the total number of threads in a process
PTHREAD_THREADS_MAX would be exceeded.

EINVAL The value specified by attr is invalid.

EPERM The caller does not have appropriate permission to set the required
scheduling parameters or scheduling policy.

The pthread_create function will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_attr_init subroutine, pthread_attr_destroy subroutine, pthread_exit
subroutine, pthread_cancel subroutine, pthread_kill subroutine, pthread_self subroutine,
pthread_once subroutine, pthread_join subroutine, fork subroutine, and the pthread.h
file.

Creating Threads in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-853Base Operating System Runtime Services (A-P)

pthread_delay_np Subroutine

Purpose
Causes a thread to wait for a specified period.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_delay_np (interval)
struct timespec *interval;

Description
The pthread_delay_np subroutine causes the calling thread to delay execution for a
specified period of elapsed wall clock time. The period of time the thread waits is at least as
long as the number of seconds and nanoseconds specified in the interval parameter.

Notes:

1. The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used, or
the cc_r compiler used. In this case, the flag is automatically set.

2. The pthread_delay_np subroutine is not portable.

Parameters

interval Points to the time structure specifying the wait period.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_delay_np subroutine is unsuccessful if the following is true:

EINVAL The interval parameter is not valid.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE
threads. It should not be used when writing new applications.

Related Information
The sleep, nsleep, or usleep subroutine.

1-854 Technical Reference: Base Operating System

pthread_equal Subroutine

Purpose
Compares two thread IDs.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_equal (pthread_t t1, pthread_t t2);

Description
The pthread_equal subroutine compares the thread IDs thread1 and thread2. Since the
thread IDs are opaque objects, it should not be assumed that they can be compared using
the equality operator (==).

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

thread1 Specifies the first ID to be compared.

thread2 Specifies the second ID to be compared.

Return Values
The pthread_equal function returns a non–zero value if t1 and t2 are equal; otherwise, zero
is returned.

If either t1 or t2 are not valid thread IDs, the behaviour is undefined.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_self subroutine, the pthread_create subroutine, the pthread.h file.

Creating Threads in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-855Base Operating System Runtime Services (A-P)

pthread_exit Subroutine

Purpose
Terminates the calling thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_exit (void *value_ptr);

Description
The pthread_exit subroutine terminates the calling thread safely, and stores a termination
status for any thread that may join the calling thread. The termination status is always a void
pointer; it can reference any kind of data. It is not recommended to cast this pointer into a
scalar data type (int for example), because the casts may not be portable. This subroutine
never returns.

Unlike the exit subroutine, the pthread_exit subroutine does not close files. Thus any file
opened and used only by the calling thread must be closed before calling this subroutine. It
is also important to note that the pthread_exit subroutine frees any thread–specific data,
including the thread’s stack. Any data allocated on the stack becomes invalid, since the
stack is freed and the corresponding memory may be reused by another thread. Therefore,
thread synchronization objects (mutexes and condition variables) allocated on a thread’s
stack must be destroyed before the thread calls the pthread_exit subroutine.

Returning from the initial routine of a thread implicitly calls the pthread_exit subroutine,
using the return value as parameter.

If the thread is not detached, its resources, including the thread ID, the termination status,
the thread–specific data, and its storage, are all maintained until the thread is detached or
the process terminates.

If another thread joins the calling thread, that thread wakes up immediately, and the calling
thread is automatically detached.

If the thread is detached, the cleanup routines are popped from their stack and executed.
Then the destructor routines from the thread–specific data are executed. Finally, the storage
of the thread is reclaimed and its ID is freed for reuse.

Terminating the initial thread by calling this subroutine does not terminate the process, it just
terminates the initial thread. However, if all the threads in the process are terminated, the
process is terminated by implicitly calling the exit subroutine with a return code of 0 if the
last thread is detached, or 1 otherwise.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

status Points to an optional termination status, used by joining threads. If no
termination status is desired, its value should be NULL.

Return Values
The pthread_exit function cannot return to its caller.

1-856 Technical Reference: Base Operating System

Errors No errors are defined.
The pthread_exit function will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_cleanup_push subroutine, pthread_cleanup_pop subroutine,
pthread_key_create subroutine, pthread_create subroutine, pthread_join subroutine,
pthread_cancel subroutine, exit subroutine, the pthread.h file.

Terminating Threads and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-857Base Operating System Runtime Services (A-P)

pthread_get_expiration_np Subroutine

Purpose
Obtains a value representing a desired expiration time.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_get_expiration_np (delta, abstime)
struct timespec *delta;
struct timespec *abstime;

Description
The pthread_get_expiration_np subroutine adds the interval delta to the current absolute
system time and returns a new absolute time. This new absolute time can be used as the
expiration time in a call to the pthread_cond_timedwait subroutine.

Notes:

1. The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used, or
the cc_r compiler used. In this case, the flag is automatically set.

2. The pthread_get_expiration_np subroutine is not portable.

Parameters

delta Points to the time structure specifying the interval.

abstime Points to where the new absolute time will be stored.

Return Values
Upon successful completion, the new absolute time is returned via the abstime parameter,
and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_get_expiration_np subroutine is unsuccessful if the following is true:

EINVAL The delta or abstime parameters are not valid.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE
threads. It should not be used when writing new applications.

Related Information
The pthread_cond_timedwait subroutine.

1-858 Technical Reference: Base Operating System

pthread_getconcurrency or pthread_setconcurrency
Subroutine

Purpose
Gets or sets level of concurrency.

Library
Threads Library (libthreads.a)

Syntax

#include <pthread.h>

int pthread_getconcurrency (void);
int pthread_setconcurrency (int new_level);

Description
The pthread_setconcurrency function allows an application to inform the threads
implementation of its desired concurrency level, new_level. The actual level of concurrency
provided by the implementation as a result of this function call is unspecified.

If new_level is zero, it causes the implementation to maintain the concurrency level at its
discretion as if pthread_setconcurrency was never called.

The pthread_getconcurrency function returns the value set by a previous call to the
pthread_setconcurrency function. If the pthread_setconcurrency function was not previously
called, this function returns zero to indicate that the implementation is maintaining the
concurrency level.

When an application calls pthread_setconcurrency it is informing the implementation of its
desired concurrency level. The implementation uses this as a hint, not a requirement.

Return Value
If successful, the pthread_setconcurrency function returns zero. Otherwise, an error number
is returned to indicate the error.

The pthread_getconcurrency function always returns the concurrency level set by a
previous call to pthread_setconcurrency. If the pthread_setconcurrency function has never
been called, pthread_getconcurrency returns zero.

Error Codes
The pthread_setconcurrency function will fail if:

EINVAL The value specified by new_level is negative.

EAGAIN The value specific by new_level would cause a system
resource to be exceeded.

Implementation Specifics
Use of these functions changes the state of the underlying concurrency upon which the
application depends. Library developers are advised to not use the pthread_getconcurrency

1-859Base Operating System Runtime Services (A-P)

and pthread_setconcurrency functions since their use may conflict with an applications use
of these functions.

Related Information
The pthread.h file.

1-860 Technical Reference: Base Operating System

pthread_getschedparam Subroutine

Purpose
Returns the current schedpolicy and schedparam attributes of a thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <sys/sched.h>

int pthread_getschedparam (thread, schedpolicy, schedparam)
pthread_t thread;
int *schedpolicy;
struct sched_param *schedparam;

Description
The pthread_getschedparam subroutine returns the current schedpolicy and schedparam
attributes of the thread thread. The schedpolicy attribute specifies the scheduling policy of a
thread. It may have one of the following values:

SCHED_FIFO Denotes first–in first–out scheduling.

SCHED_RR Denotes round–robin scheduling.

SCHED_OTHER Denotes the default AIX scheduling policy. It is the default value.

The schedparam attribute specifies the scheduling parameters of a thread created with this
attributes object. The sched_priority field of the sched_param structure contains the
priority of the thread. It is an integer value.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

thread Specifies the target thread.

schedpolicy Points to where the schedpolicy attribute value will be stored.

schedparam Points to where the schedparam attribute value will be stored.

Return Values
Upon successful completion, the current value of the schedpolicy and schedparam
attributes are returned via the schedpolicy and schedparam parameters, and 0 is returned.
Otherwise, an error code is returned.

Error Codes
The pthread_getschedparam subroutine is unsuccessful if the following is true:

ESRCH The thread thread does not exist.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

1-861Base Operating System Runtime Services (A-P)

The implementation of this subroutine is dependent on the priority scheduling POSIX option.
The priority scheduling POSIX option is implemented in AIX.

Related Information
The pthread_attr_getschedparam subroutine.

Threads Scheduling in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-862 Technical Reference: Base Operating System

pthread_getspecific or pthread_setspecific Subroutine

Purpose
Returns and sets the thread–specific data associated with the specified key.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void *pthread_getspecific (key)
pthread_key_t key;

void *pthread_setspecific (key, value)
pthread_key_t key;
const void *value;

Description
The pthread_setspecific function associates a thread–specific value with a key obtained
via a previous call to pthread_key_create. Different threads may bind different values to
the same key. These values are typically pointers to blocks of dynamically allocated memory
that have been reserved for use by the calling thread.

The pthread_getspecific function returns the value currently bound to the specified key on
behalf of the calling thread.

The effect of calling pthread_setspecific or pthread_getspecific with a key value not
obtained from pthread_key_create or after key has been deleted with pthread_key_delete
is undefined.

Both pthread_setspecific and pthread_getspecific may be called from a thread–specific
data destructor function. However, calling pthread_setspecific from a destructor may result
in lost storage or infinite loops.

Parameters

key Specifies the key to which the value is bound.

value Specifies the new thread–specific value.

Return Values
The function pthread_getspecific returns the thread–specific data value associated with
the given key. If no thread–specific data value is associated with key, then the value NULL is
returned. If successful, the pthread_setspecific function returns zero. Otherwise, an error
number is returned to indicate the error.

Error Codes
The pthread_setspecific function will fail if:

ENOMEM Insufficient memory exists to associate the value with the key.

The pthread_setspecific function may fail if:

EINVAL The key value is invalid.

No errors are returned from pthread_getspecific.

These functions will not return an error code of EINTR.

1-863Base Operating System Runtime Services (A-P)

Implementation Specifics
These subroutines are part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_key_create subroutine, the pthread.h file.

Thread–Specific Data in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-864 Technical Reference: Base Operating System

pthread_getunique_np Subroutine

Purpose
Returns the sequence number of a thread

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_getunique_np (thread, sequence)
pthread_t *thread;
int *sequence;

Description
The pthread_getunique_np subroutine returns the sequence number of the thread thread.
The sequence number is a number, unique to each thread, associated with the thread at
creation time.

Notes:

1. The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used, or
the cc_r compiler used. In this case, the flag is automatically set.

2. The pthread_getunique_np subroutine is not portable.

Parameters

thread Specifies the thread.

sequence Points to where the sequence number will be stored.

Return Values
Upon successful completion, the sequence number is returned via the sequence parameter,
and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_getunique_np subroutine is unsuccessful if the following is true:

EINVAL The thread or sequence parameters are not valid.

ESRCH The thread thread does not exist.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE
threads. It should not be used when writing new applications.

Related Information
The pthread_self subroutine.

1-865Base Operating System Runtime Services (A-P)

pthread_join, or pthread_detach Subroutine

Purpose
Blocks the calling thread until the specified thread terminates.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_join (pthread_t thread, void
**value_ptr);
int pthread_detach (pthread_t thread;
**value_ptr);

Description
The pthread_join subroutine blocks the calling thread until the thread thread terminates.
The target thread’s termination status is returned in the status parameter.

If the target thread is already terminated, but not yet detached, the subroutine returns
immediately. It is impossible to join a detached thread, even if it is not yet terminated. The
target thread is automatically detached after all joined threads have been woken up.

This subroutine does not itself cause a thread to be terminated. It acts like the
pthread_cond_wait subroutine to wait for a special condition.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

The pthread_detach subroutine is used to indicate to the implementation that storage for
the thread whose thread ID is in the location thread can be reclaimed when that thread
terminates. This storage shall be reclaimed on process exit, regardless of whether the
thread has been detached or not, and may include storage for thread return value. If thread
has not yet terminated, pthread_detach shall not cause it to terminate. Multiple
pthread_detach calls on the same target thread causes an error.

Parameters

thread Specifies the target thread.

status Points to where the termination status of the target thread will be stored.
If the value is NULL, the termination status is not returned.

Return Values
If successful, the pthread_join function returns zero. Otherwise, an error number is
returned to indicate the error.

Error Codes
The pthread_join and pthread_detach functions will fail if:

EINVAL The implementation has detected that the value specified by thread
does not refer to a joinable thread.

ESRCH No thread could be found corresponding to that specified by the given
thread ID.

The pthread_join function will fail if:

1-866 Technical Reference: Base Operating System

EDEADLK The value of thread specifies the calling thread.

The pthread_join function will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_exit subroutine, pthread_create subroutine, wait subroutine,
pthread_cond_wait or pthread_cond_timedwait subroutines, the pthread.h file.

Joining Threads in AIX General Programming Concepts : Writing and Debugging Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-867Base Operating System Runtime Services (A-P)

pthread_key_create Subroutine

Purpose
Creates a thread–specific data key.

Library
Threads Library (libpthreads.a)

Syntax#include <pthread.h>
int pthread_key_create (key,destructor)
pthread_key_t * key;
void (* destructor) (void *);

Description
The pthread_key_create subroutine creates a thread–specific data key. The key is shared
among all threads within the process, but each thread has specific data associated with the
key. The thread–specific data is a void pointer, initially set to NULL.

The application is responsible for ensuring that this subroutine is called only once for each
requested key. This can be done, for example, by calling the subroutine before creating
other threads, or by using the one–time initialization facility.

Typically, thread–specific data are pointers to dynamically allocated storage. When freeing
the storage, the value should be set to NULL. It is not recommended to cast this pointer into
scalar data type (int for example), because the casts may not be portable, and because the
value of NULL is implementation dependent.

An optional destructor routine can be specified. It will be called for each thread when it is
terminated and detached, after the call to the cleanup routines, if the specific value is not
NULL. Typically, the destructor routine will release the storage thread–specific data. It will
receive the thread–specific data as a parameter.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

key Points to where the key will be stored.

destructor Points to an optional destructor routine, used to cleanup data on thread
termination. If no cleanup is desired, this pointer should be NULL.

Return Values
If successful, the pthread_key_create function stores the newly created key value at *key
and returns zero. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_key_create function will fail if:

EAGAIN The system lacked the necessary resources to create another
thread–specific data key, or the system–imposed limit on the total
number of keys per process PTHREAD_KEYS_MAX has been
exceeded.

ENOMEM Insufficient memory exists to create the key.

The pthread_key_create function will not return an error code of EINTR.

1-868 Technical Reference: Base Operating System

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_exit subroutine, pthread_key_delete subroutine, pthread_getspecific
subroutne, pthread_once subroutine, pthread.h file.

Thread–Specific Data in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-869Base Operating System Runtime Services (A-P)

pthread_key_delete Subroutine

Purpose
Deletes a thread–specific data key.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_key_delete (pthread_key_t key);

Description
The pthread_key_delete subroutine deletes the thread–specific data key key, previously
created with the pthread_key_create subroutine. The application must ensure that no
thread–specific data is associated with the key. No destructor routine is called.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

key Specifies the key to delete.

Return Values
If successful, the pthread_key_delete function returns zero. Otherwise, an error number is
returned to indicate the error.

Error Codes
The pthread_key_delete function will fail if:

EINVAL The key value is invalid.

The pthread_key_delete function will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_key_create subroutine, pthread.h file.

Thread–Specific Data in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-870 Technical Reference: Base Operating System

pthread_kill Subroutine

Purpose
Sends a signal to the specified thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <signal.h>

int pthread_kill (pthread_t thread, int sig);

Description
The pthread_kill subroutine sends the signal signal to the thread thread. It acts with
threads like the kill subroutine with single–threaded processes.

If the receiving thread has blocked delivery of the signal, the signal remains pending on the
thread until the thread unblocks delivery of the signal or the action associated with the
signal is set to ignore the signal.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

thread Specifies the target thread for the signal.

signal Specifies the signal to be delivered. If the signal value is 0, error
checking is performed, but no signal is delivered.

Return Values
Upon successful completion, the function returns a value of zero. Otherwise the function
returns an error number. If the pthread_kill function fails, no signal is sent.

Error Codes
The pthread_kill function will fail if:

ESRCH No thread could be found corresponding to that specified by the given
thread ID.

EINVAL The value of the sig argument is an invalid or unsupported signal
number.

The pthread_kill function will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The kill subroutine, pthread_cancel subroutine, pthread_create subroutine, sigaction
subroutine, pthread_self subroutine, raise subroutine, pthread.h file.

Signal Management in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-871Base Operating System Runtime Services (A-P)

pthread_lock_global_np Subroutine

Purpose
Locks the global mutex.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_lock_global_np ()

Description
The pthread_lock_global_np subroutine locks the global mutex. If the global mutex is
currently held by another thread, the calling thread waits until the global mutex is unlocked.
The subroutine returns with the global mutex locked by the calling thread.

Use the global mutex when calling a library package that is not designed to run in a
multithreaded environment. (Unless the documentation for a library function specifically
states that it is compatible with multithreading, assume that it is not compatible; in other
words, assume it is nonreentrant.)

The global mutex is one lock. Any code that calls any function that is not known to be
reentrant uses the same lock. This prevents dependencies among threads calling library
functions and those functions calling other functions, and so on.

The global mutex is a recursive mutex. A thread that has locked the global mutex can relock
it without deadlocking. The thread must then call the pthread_unlock_global_np
subroutine as many times as it called this routine to allow another thread to lock the global
mutex.

Notes:

1. The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used, or
the cc_r compiler used. In this case, the flag is automatically set.

2. The pthread_lock_global_np subroutine is not portable.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE
threads. It should not be used when writing new applications.

Related Information
The pthread_mutex_lock subroutine, pthread_unlock_global_np subroutine.

Using Mutexes in AIX General Programming Concepts : Writing and Debugging Programs.

1-872 Technical Reference: Base Operating System

pthread_mutex_init or pthread_mutex_destroy Subroutine

Purpose
Initialises or destroys a mutex.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
int pthread_mutex_init (pthread_mutex_t *mutex, const
pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Description
The pthread_mutex_init function initialises the mutex referenced by mutex with attributes
specified by attr. If attr is NULL, the default mutex attributes are used; the effect is the same
as passing the address of a default mutex attributes object. Upon successful initialisation,
the state of the mutex becomes initialised and unlocked.

Attempting to initialise an already initialised mutex results in undefined behaviour.

The pthread_mutex_destroy function destroys the mutex object referenced by mutex; the
mutex object becomes, in effect, uninitialised. An implementation may cause
pthread_mutex_destroy to set the object referenced by mutex to an invalid value. A
destroyed mutex object can be re–initialised using pthread_mutex_init; the results of
otherwise referencing the object after it has been destroyed are undefined.

It is safe to destroy an initialised mutex that is unlocked. Attempting to destroy a locked
mutex results in undefined behaviour.

In cases where default mutex attributes are appropriate, the macro
PTHREAD_MUTEX_INITIALIZER can be used to initialise mutexes that are statically
allocated. The effect is equivalent to dynamic initialisation by a call to pthread_mutex_init
with parameter attr specified as NULL, except that no error checks are performed.

Parameters

mutex Specifies the mutex to delete.

Return Values
If successful, the pthread_mutex_init and pthread_mutex_destroy functions return zero.
Otherwise, an error number is returned to indicate the error. The EBUSY and EINVAL error
checks act as if they were performed immediately at the beginning of processing for the
function and cause an error return prior to modifying the state of the mutex specified by
mutex.

Error Codes
The pthread_mutex_init function will fail if:

ENOMEM Insufficient memory exists to initialise the mutex.

EINVAL The value specified by attr is invalid.

The pthread_mutex_destroy function will fail if:

1-873Base Operating System Runtime Services (A-P)

EBUSY The implementation has detected an attempt to destroy the object
referenced by mutex while it is locked or referenced (for example, while
being used in a pthread_cond_wait or pthread_cond_timedwait by
another thread.

EINVAL The value specified by mutex is invalid.

These functions will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_mutex_lock, pthread_mutex_unlock, pthread_mutex_trylock,
pthread_mutexattr_setpshared subroutines, the pthread.h file.

1-874 Technical Reference: Base Operating System

PTHREAD_MUTEX_INITIALIZER Macro

Purpose
Initializes a static mutex with default attributes.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Description
The PTHREAD_MUTEX_INITIALIZER macro initializes the static mutex mutex, setting its
attributes to default values. This macro should only be used for static mutexes, as no error
checking is performed.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Implementation Specifics
This macro is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_mutex_init subroutine.

Using Mutexes in AIX General Programming Concepts : Writing and Debugging Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-875Base Operating System Runtime Services (A-P)

pthread_mutex_lock, pthread_mutex_trylock, or
pthread_mutex_unlock Subroutine

Purpose
Locks and unlocks a mutex.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutex_lock (mutex)
pthread_mutex_t *mutex;

int pthread_mutex_trylock (mutex)
pthread_mutex_t *mutex;

int pthread_mutex_unlock (mutex)
pthread_mutex_t *mutex;

Description
The mutex object referenced by mutex is locked by calling pthread_mutex_lock. If the
mutex is already locked, the calling thread blocks until the mutex becomes available. This
operation returns with the mutex object referenced by mutex in the locked state with the
calling thread as its owner.

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection is not provided.
Attempting to relock the mutex causes deadlock. If a thread attempts to unlock a mutex that
it has not locked or a mutex which is unlocked, undefined behaviour results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking is provided. If
a thread attempts to relock a mutex that it has already locked, an error will be returned. If a
thread attempts to unlock a mutex that it has not locked or a mutex which is unlocked, an
error will be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains the
concept of a lock count. When a thread successfully acquires a mutex for the first time, the
lock count is set to one. Every time a thread relocks this mutex, the lock count is
incremented by one. Each time the thread unlocks the mutex, the lock count is decremented
by one. When the lock count reaches zero, the mutex becomes available for other threads
to acquire. If a thread attempts to unlock a mutex that it has not locked or a mutex which is
unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the mutex
results in undefined behaviour. Attempting to unlock the mutex if it was not locked by the
calling thread results in undefined behaviour. Attempting to unlock the mutex if it is not
locked results in undefined behaviour.

1-876 Technical Reference: Base Operating System

The function pthread_mutex_trylock is identical to pthread_mutex_lock except that if the
mutex object referenced by mutex is currently locked (by any thread, including the current
thread), the call returns immediately.

The pthread_mutex_unlock function releases the mutex object referenced by mutex. The
manner in which a mutex is released is dependent upon the mutex’s type attribute. If there
are threads blocked on the mutex object referenced by mutex when
pthread_mutex_unlock is called, resulting in the mutex becoming available, the scheduling
policy is used to determine which thread shall acquire the mutex. (In the case of
PTHREAD_MUTEX_RECURSIVE mutexes, the mutex becomes available when the count
reaches zero and the calling thread no longer has any locks on this mutex).

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler
the thread resumes waiting for the mutex as if it was not interrupted.

Parameter

mutex Specifies the mutex to lock.

Return Values
If successful, the pthread_mutex_lock and pthread_mutex_unlock functions return zero.
Otherwise, an error number is returned to indicate the error.

The function pthread_mutex_trylock returns zero if a lock on the mutex object referenced
by mutex is acquired. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_mutex_trylock function will fail if:

EBUSY The mutex could not be acquired because it was already
locked.

The pthread_mutex_lock, pthread_mutex_trylock and pthread_mutex_unlock functions
will fail if:

EINVAL The value specified by mutex does not refer to an
initialised mutex object.

The pthread_mutex_lock function will fail if:

EDEADLK The current thread already owns the mutex and the mutex
type is pthread_mutex_errorcheck.

The pthread_mutex_unlock function will fail if:

EPERM The current thread does not own the mutex and the mutex
type is not pthread_mutex_normal.

These functions will not return an error code of EINTR.

Implementation Specifics
These subroutines are part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_mutex_init and pthread_mutex_destroy subroutines, pthread.h file.

Using Mutexes and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-877Base Operating System Runtime Services (A-P)

pthread_mutexattr_destroy or pthread_mutexattr_init
Subroutine

Purpose
Initialises and destroys mutex attributes.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
int pthread_mutexattr_init (pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy (pthread_mutexattr_t *attr);

Description
The function pthread_mutexattr_init initialises a mutex attributes object attr with the
default value for all of the attributes defined by the implementation.

The effect of initialising an already initialised mutex attributes object is undefined.

After a mutex attributes object has been used to initialise one or more mutexes, any function
affecting the attributes object (including destruction) does not affect any previously initialised
mutexes.

The pthread_mutexattr_destroy function destroys a mutex attributes object; the object
becomes, in effect, uninitialised. An implementation may cause
pthread_mutexattr_destroy to set the object referenced by attr to an invalid value. A
destroyed mutex attributes object can be re–initialised using pthread_mutexattr_init; the
results of otherwise referencing the object after it has been destroyed are undefined.

Parameters

attr Specifies the mutex attributes object to delete.

Return Values
Upon successful completion, pthread_mutexattr_init and pthread_mutexattr_destroy
return zero. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_mutexattr_init function will fail if:

ENOMEM Insufficient memory exists to initialise the mutex attributes object.

The pthread_mutexattr_destroy function will fail if:

EINVAL The value specified by attr is invalid.

These functions will not return EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

1-878 Technical Reference: Base Operating System

Related Information
The pthread_create subroutine, pthread_mutex_init subroutine, pthread_cond_init
subroutine, pthread.h file.

Using Mutexes in AIX General Programming Concepts : Writing and Debugging Programs.

Threads Library Options and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-879Base Operating System Runtime Services (A-P)

pthread_mutexattr_getkind_np Subroutine

Purpose
Returns the value of the kind attribute of a mutex attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_getkind_np (attr, kind)
pthread_mutexattr_t *attr;
int *kind;

Description
The pthread_mutexattr_getkind_np subroutine returns the value of the kind attribute of
the mutex attributes object attr. This attribute specifies the kind of the mutex created with
this attributes object. It may have one of the following values:

MUTEX_FAST_NP Denotes a fast mutex. A fast mutex can be locked only
once. If the same thread unlocks twice the same fast
mutex, the thread will deadlock. Any thread can unlock a
fast mutex. A fast mutex is not compatible with the
priority inheritance protocol.

MUTEX_RECURSIVE_NP Denotes a recursive mutex. A recursive mutex can be
locked more than once by the same thread without
causing that thread to deadlock. The thread must then
unlock the mutex as many times as it locked it. Only the
thread that locked a recursive mutex can unlock it. A
recursive mutex must not be used with condition
variables.

MUTEX_NONRECURSIVE_NP Denotes the default non–recursive POSIX compliant
mutex.

Notes:

1. The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used, or
the cc_r compiler used. In this case, the flag is automatically set.

2. The pthread_mutexattr_getkind_np subroutine is not portable.

Parameters

attr Specifies the mutex attributes object.

kind Points to where the kind attribute value will be stored.

Return Values
Upon successful completion, the value of the kind attribute is returned via the kind
parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_mutexattr_getkind_np subroutine is unsuccessful if the following is true:

1-880 Technical Reference: Base Operating System

EINVAL The attr parameter is not valid.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE
threads. It should not be used when writing new applications.

Related Information
The pthread_mutexattr_setkind_np subroutine.

Using Mutexes in AIX General Programming Concepts : Writing and Debugging Programs.

1-881Base Operating System Runtime Services (A-P)

pthread_mutexattr_getpshared or
pthread_mutexattr_setpshared Subroutine

Purpose
Sets and gets process–shared attribute.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_getpshared (attr, pshared)
const pthread_mutexattr_t *attr;
int *pshared;

int pthread_mutexattr_setpshared (attr, pshared)
pthread_mutexattr_t *attr;
int pshared;

Description
The pthread_mutexattr_getpshared function obtains the value of the process–shared
attribute from the attributes object referenced by attr. The pthread_mutexattr_setpshared
function is used to set the process–shared attribute in an initialised attributes object
referenced by attr.

The process–shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex
to be operated upon by any thread that has access to the memory where the mutex is
allocated, even if the mutex is allocated in memory that is shared by multiple processes. If
the process–shared attribute is PTHREAD_PROCESS_PRIVATE, the mutex will only be
operated upon by threads created within the same process as the thread that initialised the
mutex; if threads of differing processes attempt to operate on such a mutex, the behaviour is
undefined. The default value of the attribute is PTHREAD_PROCESS_PRIVATE.

Parameters

attr Specifies the mutex attributes object.

pshared Points to where the pshared attribute value will be stored.

Return Values
Upon successful completion, pthread_mutexattr_setpshared returns zero. Otherwise, an
error number is returned to indicate the error.

Upon successful completion, pthread_mutexattr_getpshared returns zero and stores the
value of the process–shared attribute of attr into the object referenced by the pshared
parameter. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_mutexattr_getpshared and pthread_mutexattr_setpshared functions will
fail if:

EINVAL The value specified by attr is invalid.

The pthread_mutexattr_setpshared function willfail if:

1-882 Technical Reference: Base Operating System

EINVAL The new value specified for the attribute is outside the range of legal
values for that attribute.

These functions will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_mutexattr_init subroutine.

Advanced Attributes in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-883Base Operating System Runtime Services (A-P)

pthread_mutexattr_gettype or pthread_mutexattr_settype
Subroutines

Purpose
Gets or sets a mutex type.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_gettype (pthread_mutexattr_t *attr, int
*type);
int pthread_mutexattr_settype (pthread_mutexattr_t *attr, int
type);

Description
The pthread_mutexattr_gettype and pthread_mutexattr_settype functions respectively get
and set the mutex type attribute. This attribute is set in the type parameter to these
functions. The default value of the type attribute is PTHREAD_MUTEX_DEFAULT. The type
of mutex is contained in the type attribute of the mutex attributes. Valid mutex types include:

PTHREAD_MUTEX_
NORMAL

This type of mutex does not detect deadlock. A thread attempting
to relock this mutex without first unlocking it will deadlock.
Attempting to unlock a mutex locked by a different thread results in
undefined behaviour. Attempting to unlock an unlocked mutex
results in undefined behaviour.

PTHREAD_MUTEX_
ERRORCHECK

This type of mutex provides error checking. A thread attempting to
relock this mutex without first unlocking it will return with an error.
A thread attempting to unlock a mutex which another thread has
locked will return with an error. A thread attempting to unlock an
unlocked mutex will return with an error.

PTHREAD_MUTEX_
RECURSIVE

A thread attempting to relock this mutex without first unlocking it
will succeed in locking the mutex. The relocking deadlock which
can occur with mutexes of type PTHREAD_MUTEX_NORMAL
cannot occur with this type of mutex. Multiple locks of this mutex
require the same number of unlocks to release the mutex before
another thread can acquire the mutex. A thread attempting to
unlock a mutex which another thread has locked will return with an
error. A thread attempting to unlock an unlocked mutex will return
with | 20103 an error.

PTHREAD_MUTEX_
DEFAULT

Attempting to recursively lock a mutex of this type results in
undefined behaviour. Attempting to unlock a mutex of this type
which was not locked by the calling thread results in undefined
behaviour. Attempting to unlock a mutex of this type which is not
locked results in undefined behaviour. An implementation is
allowed to map this mutex to one of the other mutex types.

Return Values
If successful, the pthread_mutexattr_settype function returns zero. Otherwise, an error
number is returned to indicate the error. Upon successful completion, the
pthread_mutexattr_gettype function returns zero and stores the value of the type attribute

1-884 Technical Reference: Base Operating System

of attr into the object referenced by the type parameter. Otherwise an error is returned to
indicate the error.

Error Codes
The pthread_mutexattr_gettype and pthread_mutexattr_settype functions will fail if:

EINVAL The value type is invalid.

EINVAL The value specified by attr is invalid.

Implementation Specifics
It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex
with condition variables because the implicit unlock performed for a pthread_cond_wait or
pthread_cond_timedwait may not actually release the mutex (if it had been locked multiple
times). If this happens, no other thread can satisfy the condition of the predicate.

Related Information
The pthread_cond_wait and pthread_cond_timedwait subroutines.

The pthread.h file.

1-885Base Operating System Runtime Services (A-P)

pthread_mutexattr_setkind_np Subroutine

Purpose
Sets the value of the kind attribute of a mutex attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_mutexattr_setkind_np (attr, kind)
pthread_mutexattr_t *attr;
int kind;

Description
The pthread_mutexattr_setkind_np subroutine sets the value of the kind attribute of the
mutex attributes object attr. This attribute specifies the kind of the mutex created with this
attributes object.

Notes:

1. The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used, or
the cc_r compiler used. In this case, the flag is automatically set.

2. The pthread_mutexattr_setkind_np subroutine is not portable.

Parameters

attr Specifies the mutex attributes object.

kind Specifies the kind to set. It must have one of the following values:

MUTEX_FAST_NP Denotes a fast mutex. A fast mutex can be
locked only once. If the same thread unlocks
twice the same fast mutex, the thread will
deadlock. Any thread can unlock a fast mutex. A
fast mutex is not compatible with the priority
inheritance protocol.

MUTEX_RECURSIVE_NP Denotes a recursive mutex. A recursive mutex
can be locked more than once by the same
thread without causing that thread to deadlock.
The thread must then unlock the mutex as many
times as it locked it. Only the thread that locked a
recursive mutex can unlock it. A recursive mutex
must not be used with condition variables.

MUTEX_NONRECURSIVE_NP Denotes the default non–recursive POSIX
compliant mutex.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_mutexattr_setkind_np subroutine is unsuccessful if the following is true:

1-886 Technical Reference: Base Operating System

EINVAL The attr parameter is not valid.

ENOTSUP The value of the kind parameter is not supported.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

This subroutine is provided only for compatibility with the DCE threads. It should not be
used when writing new applications.

Related Information
 The pthread_mutexattr_getkind_np subroutine.

Using Mutexes in AIX General Programming Concepts : Writing and Debugging Programs.

1-887Base Operating System Runtime Services (A-P)

pthread_once Subroutine

Purpose
Executes a routine exactly once in a process.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_once (pthread_once_t *once_control, void
(*init_routine)(void));

pthread_once_t once_control = PTHREAD_ONCE_INIT;

Description
The pthread_once subroutine executes the routine init_routine exactly once in a process.
The first call to this subroutine by any thread in the process executes the given routine,
without parameters. Any subsequent call will have no effect.

The init_routine routine is typically an initialization routine. Multiple initializations can be
handled by multiple instances of pthread_once_t structures. This subroutine is useful when
a unique initialization has to be done by one thread among many. It reduces synchronization
requirements.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Parameters

once_block Points to a synchronization control structure. This structure has to be
initialized by the static initializer macro PTHREAD_ONCE_INIT.

init_routine Points to the routine to be executed.

Return Values
Upon successful completion, pthread_once returns zero. Otherwise, an error number is
returned to indicate the error.

Error Codes
No errors are defined. The pthread_once function will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_create subroutine, pthread.h file, PTHREAD_ONCE_INIT macro.

One Time Initializations in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-888 Technical Reference: Base Operating System

PTHREAD_ONCE_INIT Macro

Purpose
Initializes a once synchronization control structure.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

static pthread_once_t once_block = PTHREAD_ONCE_INIT;

Description
The PTHREAD_ONCE_INIT macro initializes the static once synchronization control
structure once_block, used for one–time initializations with the pthread_once subroutine.
The once synchronization control structure must be static to ensure the unicity of the
initialization.

Note: The pthread.h file header file must be the first included file of each source file using
the threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be
used, or the cc_r compiler used. In this case, the flag is automatically set.

Implementation Specifics
This macro is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_once subroutine.

One Time Initializations in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-889Base Operating System Runtime Services (A-P)

pthread_rwlock_init, pthread_rwlock_destroy Subroutine

Purpose
Initialises or destroys a read–write lock object.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_init (pthread_rwlock_t *rwlock, const
pthread_rwlock attr_t *attr);
int pthread_rwlock_destroy (pthread_rwlock_t *rwlock);
pthread_rwlock_t rwlock=PTHREAD_RWLOCK_INITIALIZER;

Description
The pthread_rwlock_init function initialises the read–write lock referenced by rwlock with
the attributes referenced by attr. If attr is NULL, the default read–write lock attributes are
used; the effect is the same as passing the address of a default read–write lock attributes
object. Once initialised, the lock can be used any number of times without being
re–initialised. Upon successful initialisation, the state of the read–write lock becomes
initialised and unlocked. Results are undefined if pthread_rwlock_init is called specifying
an already initialised read–write lock. Results are undefined if a read–write lock is used
without first being initialised.

If the pthread_rwlock_init function fails, rwlock is not initialised and the contents of rwlock
are undefined.

The pthread_rwlock_destroy function destroys the read–write lock object referenced by
rwlock and releases any resources used by the lock. The effect of subsequent use of the
lock is undefined until the lock is re–initialised by another call to pthread_rwlock_init. An
implementation may cause pthread_rwlock_destroy to set the object referenced by rwlock
to an invalid value. Results are undefined if pthread_rwlock_destroy is called when any
thread holds rwlock. Attempting to destroy an uninitialised read–write lock results in
undefined behaviour. A destroyed read–write lock object can be re–initialised using
pthread_rwlock_init; the results of otherwise referencing the read–write lock object after it
has been destroyed are undefined.

In cases where default read–write lock attributes are appropriate, the macro
PTHREAD_RWLOCK_INITIALIZER can be used to initialise read–write locks that are
statically allocated. The effect is equivalent to dynamic initialisation by a call to
pthread_rwlock_init with the parameter attr specified as NULL, except that no error checks
are performed.

Return Values
If successful, the pthread_rwlock_init and pthread_rwlock_destroy functions return zero.
Otherwise, an error number is returned to indicate the error. The EBUSY and EINVAL error
checks, if implemented, will act as if they were performed immediately at the beginning of
processing for the function and caused an error return prior to modifying the state of the
read–write lock specified by rwlock.

Error Codes
The pthread_rwlock_init function will fail if:

1-890 Technical Reference: Base Operating System

ENOMEM Insufficient memory exists to initialise the read–write lock.

EINVAL The value specified by attr is invalid.

The pthread_rwlock_destroy function will fail if:

EBUSY The implementation has detected an attempt to destroy the object
referenced by rwlock while it is locked.

EINVAL The value specified by attr is invalid.

Implementation Specifics
Similar functions are being developed by IEEE PASC. In keeping with its objective of
ensuring that CAE Specifications are fully aligned with formal standards, The Open Group
intends to add any new interfaces adopted by an official IEEE standard in this area.

Related Information
The pthread.h file.

The pthread_rwlock_rdlock, pthread_rwlock_wrlock, pthread_rwlockattr_init and
pthread_rwlock_unlock subroutines.

1-891Base Operating System Runtime Services (A-P)

pthread_rwlock_rdlock or pthread_rwlock_tryrdlock
Subroutines

Purpose
Locks a read–write lock object for reading.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_rdlock (pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock (pthread_rwlock_t *rwlock);

Description
The pthread_rwlock_rdlock function applies a read lock to the read–write lock referenced
by rwlock. The calling thread acquires the read lock if a writer does not hold the lock and
there are no writers blocked on the lock. It is unspecified whether the calling thread acquires
the lock when a writer does not hold the lock and there are writers waiting for the lock. If a
writer holds the lock, the calling thread will not acquire the read lock. If the read lock is not
acquired, the calling thread blocks (that is, it does not return from the
pthread_rwlock_rdlock call) until it can acquire the lock. Results are undefined if the
calling thread holds a write lock on rwlock at the time the call is made.

Implementations are allowed to favour writers over readers to avoid writer starvation.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the
pthread_rwlock_rdlock function n times). If so, the thread must perform matching unlocks
(that is, it must call the pthread_rwlock_unlock function n times).

The function pthread_rwlock_tryrdlock applies a read lock as in the
pthread_rwlock_rdlock function with the exception that the function fails if any thread
holds a write lock on rwlock or there are writers blocked on rwlock.

Results are undefined if any of these functions are called with an uninitialised read–write
lock.

If a signal is delivered to a thread waiting for a read–write lock for reading, upon return from
the signal handler the thread resumes waiting for the read–write lock for reading as if it was
not interrupted.

Return Values
If successful, the pthread_rwlock_rdlock function returns zero. Otherwise, an error
number is returned to indicate the error.

The function pthread_rwlock_tryrdlock returns zero if the lock for reading on the
read–write lock object referenced by rwlock is acquired. Otherwise an error number is
returned to indicate the error.

Error Codes
The pthread_rwlock_tryrdlock function will fail if:

EBUSY The read–write lock could not be acquired for reading because a writer
holds the lock or was blocked on it.

The pthread_rwlock_rdlock and pthread_rwlock_tryrdlock functions will fail if:

1-892 Technical Reference: Base Operating System

EINVAL The value specified by rwlock does not refer to an initialised read–write
lock object.

EDEADLK The current thread already owns the read–write lock for writing.

EAGAIN The read lock could not be acquired because the maximum number of
read locks for rwlock has been exceeded.

Implementation Specifics
Similar functions are being developed by IEEE PASC. In keeping with its objective of
ensuring that CAE Specifications are fully aligned with formal standards, The Open Group
intends to add any new interfaces adopted by an official IEEE standard in this area.

Realtime applications may encounter priority inversion when using read–write locks. The
problem occurs when a high priority thread ’locks’ a read–write lock that is about to be
’unlocked’ by a low priority thread, but the low priority thread is preempted by a medium
priority thread. This scenario leads to priority inversion; a high priority thread is blocked by
lower priority threads for an unlimited period of time. During system design, realtime
programmers must take into account the possibility of this kind of priority inversion. They
can deal with it in a number of ways, such as by having critical sections that are guarded by
read–write locks execute at a high priority, so that a thread cannot be preempted while
executing in its critical section.

Related Information
The pthread.h file.

The pthread_rwlock_init, pthread_rwlock_wrlock, pthread_rwlockattr_init, and
pthread_rwlock_unlock subroutines.

1-893Base Operating System Runtime Services (A-P)

pthread_rwlock_unlock Subroutine

Purpose
Unlocks a read–write lock object.

Library
Threads Library (libthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_unlock (pthread_rwlock_t *rwlock);

Description
The pthread_rwlock_unlock function is called to release a lock held on the read–write lock
object referenced by rwlock. Results are undefined if the read–write lock rwlock is not held
by the calling thread.

If this function is called to release a read lock from the read–write lock object and there are
other read locks currently held on this read–write lock object, the read–write lock object
remains in the read locked state. If this function releases the calling thread’s last read lock
on this read–write lock object, then the calling thread is no longer one of the owners of the
object. If this function releases the last read lock for this read–write lock object, the
read–write lock object will be put in the unlocked state with no owners.

If this function is called to release a write lock for this read–write lock object, the read–write
lock object will be put in the unlocked state with no owners.

If the call to the pthread_rwlock_unlock function results in the read–write lock object
becoming unlocked and there are multiple threads waiting to acquire the read–write lock
object for writing, the scheduling policy is used to determine which thread acquires the
read–write lock object for writing. If there are multiple threads waiting to acquire the
read–write lock object for reading, the scheduling policy is used to determine the order in
which the waiting threads acquire the read–write lock object for reading. If there are multiple
threads blocked on rwlock for both read locks and write locks, it is unspecified whether the
readers acquire the lock first or whether a writer acquires the lock first.

Results are undefined if any of these functions are called with an uninitialised read–write
lock.

Return Values
If successful, the pthread_rwlock_unlock function returns zero. Otherwise, an error
number is returned to indicate the error.

Error Codes
The pthread_rwlock_unlock function will fail if:

EINVAL The value specified by rwlock does not refer to an initialised read–write
lock object.

EPERM The current thread does not own the read–write lock.

Implementation Specifics
Similar functions are being developed by IEEE PASC. In keeping with its objective of
ensuring that CAE Specifications are fully aligned with formal standards, The Open Group
intends to add any new interfaces adopted by an official IEEE standard in this area.

1-894 Technical Reference: Base Operating System

Related Information
The pthread.h file.

The pthread_rwlock_init, pthread_rwlock_wrlock, pthread_rwlockattr_init,
pthread_rwlock_rdlock subroutines.

1-895Base Operating System Runtime Services (A-P)

pthread_rwlock_wrlock or pthread_rwlock_trywrlock
Subroutines

Purpose
Locks a read–write lock object for writing.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlock_wrlock (pthread_rwlock_t *rwlock);
int pthread_rwlock_trywrlock (pthread_rwlock_t *rwlock);

Description
The pthread_rwlock_wrlock function applies a write lock to the read–write lock referenced
by rwlock. The calling thread acquires the write lock if no other thread (reader or writer)
holds the read–write lock rwlock. Otherwise, the thread blocks (that is, does not return from
the pthread_rwlock_wrlock call) until it can acquire the lock. Results are undefined if the
calling thread holds the read–write lock (whether a read or write lock) at the time the call is
made.

Implementations are allowed to favour writers over readers to avoid writer starvation.

The function pthread_rwlock_trywrlock applies a write lock like the
pthread_rwlock_wrlock function, with the exception that the function fails if any thread
currently holds rwlock (for reading or writing).

Results are undefined if any of these functions are called with an uninitialised read–write
lock.

If a signal is delivered to a thread waiting for a read–write lock for writing, upon return from
the signal handler the thread resumes waiting for the read–write lock for writing as if it was
not interrupted.

Return Values
If successful, the pthread_rwlock_wrlock function returns zero. Otherwise, an error
number is returned to indicate the error.

The function pthread_rwlock_trywrlock returns zero if the lock for writing on the
read–write lock object referenced by rwlock is acquired. Otherwise an error number is
returned to indicate the error.

Error Codes
The pthread_rwlock_trywrlock function will fail if:

EBUSY The read–write lock could not be acquired for writing
because it was already locked for reading or writing.

The pthread_rwlock_wrlock and pthread_rwlock_trywrlock functions will fail if:

1-896 Technical Reference: Base Operating System

EINVAL The value specified by rwlock does not refer to an
initialised read–write lock object.

EDEADLK The current thread already owns the read–write lock for
writing or reading.

Implementation Specifics
Similar functions are being developed by IEEE PASC. In keeping with its objective of
ensuring that CAE Specifications are fully aligned with formal standards, The Open Group
intends to add any new interfaces adopted by an official IEEE standard in this area.

Realtime applications may encounter priority inversion when using read–write locks. The
problem occurs when a high priority thread ’locks’ a read–write lock that is about to be
’unlocked’ by a low priority thread, but the low priority thread is preempted by a medium
priority thread. This scenario leads to priority inversion; a high priority thread is blocked by
lower priority threads for an unlimited period of time. During system design, realtime
programmers must take into account the possibility of this kind of priority inversion. They
can deal with it in a number of ways, such as by having critical sections that are guarded by
read–write locks execute at a high priority, so that a thread cannot be preempted while
executing in its critical section.

Related Information
The pthread.h file.

The pthread_rwlock_init, pthread_rwlock_unlock, pthread_rwlockattr_init,
pthread_rwlock_rdlock subroutines.

1-897Base Operating System Runtime Services (A-P)

pthread_rwlockattr_getpshared or
pthread_rwlockattr_setpshared Subroutines

Purpose
Gets and sets process–shared attribute of read–write lock attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlockattr_getpshared (const pthread_rwlockattr_t
*attrint *pshared);
int pthread_rwlockattr_setpshared (pthread_rwlockattr_t *attr,
int pshared);

Description
The process–shared attribute is set to PTHREAD_PROCESS_SHARED to permit a
read–write lock to be operated upon by any thread that has access to the memory where
the read–write lock is allocated, even if the read–write lock is allocated in memory that is
shared by multiple processes. If the process–shared attribute is
PTHREAD_PROCESS_PRIVATE, the read–write lock will only be operated upon by threads
created within the same process as the thread that initialised the read–write lock; if threads
of differing processes attempt to operate on such a read–write lock, the behaviour is
undefined. The default value of the process–shared attribute is
PTHREAD_PROCESS_PRIVATE.

The pthread_rwlockattr_getpshared function obtains the value of the process–shared
attribute from the initialised attributes object referenced by attr. The
pthread_rwlockattr_setpshared function is used to set the process–shared attribute in an
initialised attributes object referenced by attr.

Return Values
If successful, the pthread_rwlockattr_setpshared function returns zero. Otherwise, an
error number is returned to indicate the error.

Upon successful completion, the pthread_rwlockattr_getpshared returns zero and stores
the value of the process–shared attribute of attr into the object referenced by the pshared
parameter. Otherwise an error number is returned to indicate the error.

Error Codes
The pthread_rwlockattr_getpshared and pthread_rwlockattr_setpshared functions will
fail if:

EINVAL The value specified by attr is invalid.

 The pthread_rwlockattr_setpshared function will fail if:

EINVAL The new value specified for the attribute is outside the range of legal
values for that attribute.

1-898 Technical Reference: Base Operating System

Implementation Specifics
Similar functions are being developed by IEEE PASC. In keeping with its objective of
ensuring that CAE Specifications are fully aligned with formal standards, The Open Group
intends to add any new interfaces adopted by an official IEEE standard in this area.

Related Information
The pthread.h file.

The pthread_rwlock_init, pthread_rwlock_unlock, pthread_rwlock_wrlock,
pthread_rwlock_rdlock, pthread_rwlockattr_init subroutines.

1-899Base Operating System Runtime Services (A-P)

pthread_rwlockattr_init or pthread_rwlockattr_destroy
Subroutines

Purpose
Initialises and destroys read–write lock attributes object.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_rwlockattr_init (pthread_rwlockattr_t *attr);
int pthread_rwlockattr_destroy (pthread_rwlockattr_t *attr);

Description
The function pthread_rwlockattr_init initialises a read–write lock attributes object attr with
the default value for all of the attributes defined by the implementation. Results are
undefined if pthread_rwlockattr_init is called specifying an already initialised read–write
lock attributes object.

After a read–write lock attributes object has been used to initialise one or more read–write
locks, any function affecting the attributes object (including destruction) does not affect any
previously initialised read–write locks.

The pthread_rwlockattr_destroy function destroys a read–write lock attributes object. The
effect of subsequent use of the object is undefined until the object is re–initialised by
another call to pthread_rwlockattr_init. An implementation may cause
pthread_rwlockattr_destroy to set the object referenced by attr to an invalid value.

Return Value
If successful, the pthread_rwlockattr_init and pthread_rwlockattr_destroy functions
return zero. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_rwlockattr_init function will fail if:

ENOMEM Insufficient memory exists to initialise the read–write lock
attributes object.

The pthread_rwlockattr_destroy function will fail if:

EINVAL The value specified by attr is invalid.

1-900 Technical Reference: Base Operating System

Implementation Specifics
Similar functions are being developed by IEEE PASC. In keeping with its objective of
ensuring that CAE Specifications are fully aligned with formal standards, The Open Group
intends to add any new interfaces adopted by an official IEEE standard in this area.

Related Information
The pthread.h file.

The pthread_rwlock_init, pthread_rwlock_unlock, pthread_rwlock_wrlock,
pthread_rwlock_rdlock, and pthread_rwlockattr_getpshared subroutines.

1-901Base Operating System Runtime Services (A-P)

pthread_self Subroutine

Purpose
Returns the calling thread’s ID.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

pthread_t pthread_self (void);

Description
The pthread_self subroutine returns the calling thread’s ID.

Note: The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

Return Values
The calling thread’s ID is returned.

Errors No errors are defined.
The pthread_self function will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_create subroutine, pthread_equal subroutine, pthread.h file.

Creating Threads in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-902 Technical Reference: Base Operating System

pthread_setcancelstate, pthread_setcanceltype or
pthread_testcancel Subroutines

Purpose
Sets the calling thread’s cancelability state.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_setcancelstate (int state, int *oldstate);
int pthread_setcanceltype (int type, int *oldstype);
int pthread_testcancel (void);

Description
The pthread_setcancelstate function atomically both sets the calling thread’s cancelability
state to the indicated state and returns the previous cancelability state at the location
referenced by oldstate. Legal values for state are PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype function atomically both sets the calling thread’s cancelability
type to the indicated type and returns the previous cancelability type at the location
referenced by oldtype. Legal values for type are PTHREAD_CANCEL_DEFERRED and
PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in which
main was first invoked, are PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DEFERRED respectively.

The pthread_testcancel function creates a cancellation point in the calling thread. The
pthread_testcancel function has no effect if cancelability is disabled.

Parameters

state Specifies the new cancelability state to set. It must have
one of the following values:

PTHREAD_CANCEL_DISABLE
Disables cancelability; the thread is not
cancelable. Cancellation requests are held
pending.

PTHREAD_CANCEL_ENABLE
Enables cancelability; the thread is
cancelable, according to its cancelability
type. This is the default value.

oldstate Points to where the previous cancelability state value will
be stored.

1-903Base Operating System Runtime Services (A-P)

Return Values
If successful, the pthread_setcancelstate and pthread_setcanceltype functions return
zero. Otherwise, an error number is returned to indicate the error.

Error Codes
The pthread_setcancelstate function will fail if:

EINVAL The specified state is not PTHREAD_CANCEL_ENABLE
or PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype function will fail if:

EINVAL The specified type is not PTHREAD_CANCEL_DEFERRED
or PTHREAD_CANCEL_ASYNCHRONOUS.

These functions will not return an error code of EINTR.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The pthread_cancel subroutine, the pthread.h file.

Terminating Threads in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-904 Technical Reference: Base Operating System

pthread_setschedparam Subroutine

Purpose
Returns the current schedpolicy and schedparam attributes of a thread.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>
#include <sys/sched.h>
int pthread_setschedparam (thread, schedpolicy, schedparam)
pthread_t thread;
int schedpolicy;
const struct sched_param *schedparam;

Description
The pthread_setschedparam subroutine dynamically sets the schedpolicy and
schedparam attributes of the thread thread. The schedpolicy attibute specifies the
scheduling policy of the thread. The schedparam attribute specifies the scheduling
parameters of a thread created with this attributes object. The sched_priority field of
the sched_param structure contains the priority of the thread. It is an integer value.

If the target thread has system contention scope, the process must have root authority to
set the scheduling policy to either SCHED_FIFO or SCHED_RR.

Note: The pthread.h header file must be the first included file of each source file using
the threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used,
or the cc_r compiler used. In this case, the flag is automatically set.

1-905Base Operating System Runtime Services (A-P)

Parameters

thread Specifies the target thread.

schedpolicy

Points to the schedpolicy attribute to set. It must have one
of the following values:

SCHED_FIFO Denotes first–in first–out scheduling.

SCHED_RR Denotes round–robin scheduling.

SCHED_OTHER
Denotes the default AIX scheduling policy.
It is the default value.

Note: It is not permitted to change the priority of a
thread when setting its scheduling policy to
SCHED_OTHER. In this case, the priority is managed
directly by the kernel, and the only legal value that can
be passed to pthread_setschedparam is
DEFAULT_PRIO, which is defined in pthread.h as 1.

schedparam Points to where the scheduling parameters to set are
stored. The sched_priority field must be in the range
from 1 to 127, where 1 is the least favored priority, and 127
the most favored.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_setschedparam subroutine is unsuccessful if the following is true:

EINVAL The thread or schedparam parameters are not valid.

ENOSYS The priority scheduling POSIX option is not implemented.

ENOTSUP The value of the schedpolicy or schedparam attributes are
not supported.

EPERM The target thread has insufficient permission to perform the
operation or is already engaged in a mutex protocol.

ESRCH The thread thread does not exist.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime. The implementation
of this subroutine is dependent on the priority scheduling POSIX option. The priority
scheduling POSIX option is implemented in AIX.

Related Information
The pthread_getschedparam subroutine, pthread_attr_setschedpolicy subroutine,
pthread_attr_setschedparam subroutine.

Threads Scheduling in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Quick Reference in AIX General Programming Concepts : Writing and
Debugging Programs.

1-906 Technical Reference: Base Operating System

pthread_sigmask Subroutine

Purpose
Examines and changes blocked signals.

Library
Threads Library (libpthreads.a)

Syntax
#include <signal.h>

int pthread_sigmask (int how, const sigset_t *set, sigset_t *oset
fP);

Description
Refer to sigprocmask.

1-907Base Operating System Runtime Services (A-P)

pthread_signal_to_cancel_np Subroutine

Purpose
Cancels the specified thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

int pthread_signal_to_cancel_np (sigset, thread)
sigset_t *sigset;
pthread_t *target;

Description
The pthread_signal_to_cancel_np subroutine cancels the target thread thread by creating
a handler thread. The handler thread calls the sigwait subroutine with the sigset parameter,
and cancels the target thread when the sigwait subroutine returns. Successive call to this
subroutine override the previous one.

Notes:

1. The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used, or
the cc_r compiler used. In this case, the flag is automatically set.

2. The pthread_signal_to_cancel_np subroutine is not portable.

Parameters

sigset Specifies the set of signals to wait on.

thread Specifies the thread to cancel.

Return Values
Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes
The pthread_signal_to_cancel_np subroutine is unsuccessful if the following is true:

EAGAIN The handler thread cannot be created.

EINVAL The sigset or thread parameters are not valid.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE
threads. It should not be used when writing new applications.

Related Information
The pthread_cancel subroutine, sigwait subroutine.

1-908 Technical Reference: Base Operating System

pthread_suspend_np and pthread_continue_np Subroutine

Purpose
Suspends execution of the pthread specified by thread.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_suspend_np(pthread_t thread);

int pthread_continue_np(pthread_t thread);

Description
The pthread_suspend_np routine immediately suspends the execution of the pthread
specified by thread. On successful return from pthread_suspend_np, the suspended
pthread is no longer executing. If pthread_suspend_np is called for a pthread that is
already suspended, the pthread is unchanged and pthread_suspend_np returns
successful.

The pthread_continue_np routine resumes the execution of a suspended pthread. If
pthread_continue_np is called for a pthread that is not suspended, the pthread is
unchanged and pthread_continue_np returns successful.

A suspended pthread will not be awakened by a signal. The signal stays pending until the
execution of pthread is resumed by pthread_continue_np.

Parameters

thread Specifies the target thread.

Return Values
Zero is returned when successful. A non–zero value indicates an error.

Error Codes
If any of the following conditions occur, pthread_suspend_np and pthread_continue_np
fail and return the corresponding value:

ESRCH The thread attribute cannot be found in the current
process.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

1-909Base Operating System Runtime Services (A-P)

pthread_unlock_global_np Subroutine

Purpose
Unlocks the global mutex.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_unlock_global_np ()

Description
The pthread_unlock_global_np subroutine unlocks the global mutex when each call to the
pthread_lock_global_np subroutine is matched by a call to this routine. For example, if a
thread called the pthread_lock_global_np three times, the global mutex is unlocked after
the third call to the pthread_unlock_global_np subroutine.

If no threads are waiting for the global mutex, it becomes unlocked with no current owner. If
one or more threads are waiting to lock the global mutex, exactly one thread returns from its
call to the pthread_lock_global_np subroutine.

Notes:

1. The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used, or
the cc_r compiler used. In this case, the flag is automatically set.

2. The pthread_unlock_global_np subroutine is not portable.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE
threads. It should not be used when writing new applications.

Related Information
The pthread_lock_global_np subroutine.

Using Mutexes in AIX General Programming Concepts : Writing and Debugging Programs.

1-910 Technical Reference: Base Operating System

pthread_yield Subroutine

Purpose
Forces the calling thread to relinquish use of its processor.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>

void pthread_yield ()

Description
The pthread_yield subroutine forces the calling thread to relinquish use of its processor,
and to wait in the run queue before it is scheduled again. If the run queue is empty when the
pthread_yield subroutine is called, the calling thread is immediately rescheduled.

If the thread has global contention scope (PTHREAD_SCOPE_SYSTEM), calling this
subroutine acts like calling the yield subroutine. Otherwise, another local contention scope
thread is scheduled.

The pthread.h header file must be the first included file of each source file using the
threads library. Otherwise, the –D_THREAD_SAFE compilation flag should be used, or the
cc_r compiler used. In this case, the flag is automatically set.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The yield subroutine and the sched_yield subroutine.

Threads Scheduling in AIX General Programming Concepts : Writing and Debugging
Programs.

Threads Library Options and Threads Library Quick Reference in AIX General Programming
Concepts : Writing and Debugging Programs.

1-911Base Operating System Runtime Services (A-P)

ptrace, ptracex Subroutine

Purpose
Traces the execution of another process.

Library
Standard C Library (libc.a)

Syntax

#include <sys/reg.h>
#include <sys/ptrace.h>
#include <sys/ldr.h>

int ptrace (Request, Identifier,Address, Data, Buffer)
int Request;
int Identifier;
int *Address;
int Data;
int *Buffer;

int ptracex (request, identifier, long long addr, data, buff)
int request;
int identifier, long long addr;
int data;
int *buff;

Description
The ptrace subroutine allows a 32–bit process to trace the execution of another process.
The ptrace subroutine is used to implement breakpoint debugging.

A debugged process executes normally until it encounters a signal. Then it enters a stopped
state and its debugging process is notified with the wait subroutine. While the process is in
the stopped state, the debugger examines and modifies its memory image by using the
ptrace subroutine. For multi–threaded processes, the getthrds subroutine is used to
identify each kernel thread in the debugged process. Also, the debugging process can
cause the debugged process to terminate or continue, with the possibility of ignoring the
signal that caused it to stop.

As a security measure, the ptrace subroutine inhibits the set–user–ID facility on subsequent
exec subroutines.

(This paragraph only applies to AIX 4.3.1 and previous releases.) When a process is
executing under ptrace control, portions of the process’s address space are recopied after
load, unload, and loadbind calls. For a 32–bit process, the main program text (loaded in
segment 1) and shared library modules (loaded in segment 13) is recopied. Any breakpoints
or other modifications to these segments must be reinserted after load, unload, or
loadbind. Changes to privately loaded modules persist. For a 64–bit process, shared library
modules are recopied after load and unload are called. (For AIX 4.3.0 and 4.3.1, these
segments have a virtual address of 0x09000000xxxxxxxx, where x denotes any value.) The
segments for the main programs and the segments containing privately loaded modules are
not recopied. When a 64–bit process calls loadbind, no segments are recopied and the
debugger is not notified.

1-912 Technical Reference: Base Operating System

(This paragraph only applies to AIX 4.3.2 and later releases.) When a process executing
under ptrace control calls load or unload, the debugger is notified and the W_SLWTED
flag is set in the status returned by wait. (A 32–bit process calling loadbind is stopped as
well.) If the process being debugged has added modules in the shared library to its address
space, the modules are added to the process’s private copy of the shared library segments.
If shared library modules are removed from a process’s address space, the modules are
deleted from the process’s private copy of the library text segment by freeing the pages that
contain the module. No other changes to the segment are made, and existing breakpoints
do not have to be reinserted.

When a process being traced forks, the child process is initialized with the unmodified main
program and shared library segment, effectively removing breakpoints in these segments in
the child process. If multiprocess debugging is enabled, new copies of the main program
and shared library segments are made. Modifications to privately loaded modules, however,
are not affected by a fork. These breakpoints will remain in the child process, and if these
breakpoints are executed, a SIGTRAP signal will be generated and delivered to the
process.

If a traced process initiates an exec subroutine, the process stops before executing the first
instruction of the new image and returns the SIGTRAP signal.

Note: ptrace and ptracex are not supported in 64–bit mode.

For the 64–bit Process
Use ptracex where the debuggee is a 64–bit process and the operation requested uses the
third (address) parameter to reference the debuggee’s address space or is sensitive to
register size.

If returning or passing an int doesn’t work for a 64–bit debuggee (for example,
PT_READ_GPR), the buffer parameter takes the address for the result. Thus, with the
ptracex subroutine, PT_READ_GPR and PT_WRITE_GPR take a pointer to an 8 byte area
representing the register value.

In general, ptracex supports all the calls that ptrace does when they are modified for any
that are extended for 64–bit addresses (for example, GPRs, LR, CTR, IAR, and MSR).
Anything whose size increases for 64–bit processes must be allowed for in the obvious way
(for example, PT_REGSET must be an array of long longs for a 64–bit debuggee).

Parameters

1-913Base Operating System Runtime Services (A-P)

Request

 Determines the action to be taken by the ptrace subroutine and has one
of the following values:

PT_ATTACH This request allows a debugging process to attach a
current process and place it into trace mode for
debugging. This request cannot be used if the target
process is already being traced. The Identifier parameter
is interpreted as the process ID of the traced process. The
Address, Data, and Buffer parameters are ignored.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to one the following codes:

ESRCH Process ID is not valid; the traced process is a kernel
process; the process is currently being traced; or, the
debugger or traced process already exists.

EPERM Real or effective user ID of the debugger does not
match that of the traced process, or the debugger does
not have root authority.

EINVAL The debugger and the traced process are the same.

PT_CONTINUE This request allows the process to resume execution. If
the Data parameter is 0, all pending signals, including the
one that caused the process to stop, are concealed before
the process resumes execution. If the data parameter is a
valid signal number, the process resumes execution as if it
had received that signal. If the Address parameter equals
1, the execution continues from where it stopped. If the
Address parameter is not 1, it is assumed to be the
address at which the process should resume execution.
Upon successful completion, the value of the Data
parameter is returned to the debugging process. The
Identifier parameter is interpreted as the process ID of the
traced process. The Buffer parameter is ignored.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

EIO The signal to be sent to the traced process is not a
valid signal number.

Note: For the PT_CONTINUE request, use ptracex with a 64–bit
debuggee because the resume address needs 64 bits.

PTT_CONTINUE
This request asks the scheduler to resume execution of
the kernel thread specified by Identifier. This kernel thread
must be the one that caused the exception. The Data
parameter specifies how to handle signals:

– If the Data parameter is zero, the kernel thread which caused the
exception will be resumed as if the signal never occurred.

– If the Data parameter is a valid signal number, the kernel thread
which caused the exception will be resumed as if it had received that
signal.

1-914 Technical Reference: Base Operating System

The Address parameter specifies where to resume execution:

– If the Address parameter is one, execution resumes from the address
where it stopped.

– If the Address parameter contains an address value other than one,
execution resumes from that address.

The Buffer parameter should point to a PTTHREADS structure,
which contains a list of kernel thread identifiers to be started. This list
should be NULL terminated if it is smaller than the maximum
allowed.

On successful completion, the value of the Data parameter is
returned to the debugging process. On unsuccessful completion, the
value –1 is returned, and the errno global variable is set as follows:

EINVAL The Identifier parameter names the wrong kernel
thread.

EIO The signal to be sent to the traced kernel thread is
not a valid signal number.

ESRCH The Buffer parameter names an invalid kernel
thread. Each kernel thread in the list must be
stopped and belong to the same process as the
kernel thread named by the Identifier parameter.

Note: For the PTT_CONTINUE request, use ptracex with a 64–bit
debuggee because the resume address needs 64 bits.

PT_DETACH This request allows a debugged process, specified by the
Identifier parameter, to exit trace mode. The process then
continues running, as if it had received the signal whose
number is contained in the data parameter. The process is
no longer traced and does not process any further ptrace
calls. The Address and Buffer parameters are ignored.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

EIO Signal to be sent to the traced process is not a valid
signal number.

PT_KILL This request allows the process to terminate the same
way it would with an exit subroutine.

PT_LDINFO This request retrieves a description of the object modules
that were loaded by the debugged process. The Identifier
parameter is interpreted as the process ID of the traced
process. The Buffer parameter is ignored. The Address
parameter specifies the location where the loader
information is copied. The Data parameter specifies the
size of this area. The loader information is retrieved as a
linked list of ld_info structures. The ld_info structures are
defined in the /usr/include/sys/ldr.h file. The linked list is
implemented so that the ldinfo_nxt field of each
element gives the offset of the next element from this
element. The ldinfo_nxt field of the last element has
the value 0.

1-915Base Operating System Runtime Services (A-P)

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

ENOMEM Either the area is not large enough to accommodate
the loader information, or there is not enough memory
to allocate an equivalent buffer in the kernel.

Note: For the PT_LDINFO request, use ptracex with a 64–bit
debuggee because the source address needs 64 bits.

PT_MULTI This request turns multiprocess debugging mode on and
off, to allow debugging to continue across fork and exec
subroutines. A 0 value for the data parameter turns
multiprocess debugging mode off, while all other values
turn it on. When multiprocess debugging mode is in effect,
any fork subroutine allows both the traced process and its
newly created process to trap on the next instruction. If a
traced process initiated an exec subroutine, the process
stops before executing the first instruction of the new
image and returns the SIGTRAP signal. The Identifier
parameter is interpreted as the process ID of the traced
process. The Address and Buffer parameters are ignored.

Also, when multiprocess debugging mode is enabled, the following
values are returned from the wait subroutine:

W_SEWTED Process stopped during execution of the exec
subroutine.

W_SFWTED Process stopped during execution of the fork
subroutine.

PT_READ_BLOCK
This request reads a block of data from the debugged
process address space. The Address parameter points to
the block of data in the process address space, and the
Data parameter gives its length in bytes. The value of the
Data parameter must not be greater than 1024. The
Identifier parameter is interpreted as the process ID of the
traced process. The Buffer parameter points to the
location in the debugging process address space where
the data is copied. Upon successful completion, the

ptrace subroutine returns the value of the data parameter.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to one of the following codes:

EIO The Data parameter is less than 1 or greater than 1024.

EIO The Address parameter is not a valid pointer into the
debugged process address space.

EFAULT The Buffer parameter does not point to a writable
location in the debugging process address space.

Note: For the PT_READ_BLOCK request, use ptracex with a 64–bit
debuggee because the source address needs 64 bits.

1-916 Technical Reference: Base Operating System

Note: For the PT_READ_BLOCK request, use ptracex with a 64–bit
debuggee because the source address needs 64 bits.

PT_READ_FPR
This request stores the value of a floating–point register
into the location pointed to by the Address parameter. The
Data parameter specifies the floating–point register,
defined in the sys/reg.h file for the machine type on which
the process is executed. The Identifier parameter is
interpreted as the process ID of the traced process. The
Buffer parameter is ignored.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

EIO The Data parameter is not a valid floating–point
register. The Data parameter must be in the range
256–287.

PTT_READ_FPRS
This request writes the contents of the 32 floating point
registers to the area specified by the Address parameter.
This area must be at least 256 bytes long. The Identifier
parameter specifies the traced kernel thread. The Data
and Buffer parameters are ignored.

PT_READ_GPR
This request returns the contents of one of the
general–purpose or special–purpose registers of the
debugged process. The Address parameter specifies the
register whose value is returned. The value of the Address
parameter is defined in the sys/reg.h file for the machine
type on which the process is executed. The Identifier
parameter is interpreted as the process ID of the traced
process. The Data and Buffer parameters are ignored.
The buffer points to long long target area.

Note: If ptracex with a 64–bit debugee is used for this request, the
register value is instead returned to the 8–byte area pointed to by the
buffer pointer.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

EIO The Address is not a valid general–purpose or
special–purpose register. The Address parameter must
be in the range 0–31 or 128–136.

PTT_READ_GPRS
This request writes the contents of the 32 general purpose
registers to the area specified by the Address parameter.
This area must be at least 128 bytes long.

Note: If ptracex with a 64–bit debugee is used for the
PTT_READ_GPRS request, there must be at least a 256 byte target
area. The Identifier parameter specifies the traced kernel thread. The
Data and Buffer parameters are ignored.

1-917Base Operating System Runtime Services (A-P)

PT_READ_I or PT_READ_D
These requests return the word–aligned address in the
debugged process address space specified by the
Address parameter. On all machines currently supported
by the Version 4 operating system, the PT_READ_I and
PT_READ_D instruction and data requests can be used
with equal results. The Identifier parameter is interpreted
as the process ID of the traced process. The Data
parameter is ignored.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

EIO The Address is not word–aligned, or the Address is not
valid. User blocks, kernel segments, and kernel
extension segments are not considered as valid
addresses.

Note: For the PT_READ_I or the PT_READ_D request, use ptracex
with a 64–bit debuggee because the source address needs 64 bits.

PTT_READ_SPRS
This request writes the contents of the special purpose
registers to the area specified by the Address parameter,
which points to a ptsprs structure. The Identifier
parameter specifies the traced kernel thread. The Data
and Buffer parameters are ignored.

Note: For the PTT_READ_SPRS request, use ptracex with the 64–bit
debuggee because the new ptxsprs structure must be used.

PT_REATT This request allows a new debugger, with the proper
permissions, to trace a process that was already traced by
another debugger. The Identifier parameter is interpreted
as the process ID of the traced process. The Address,
Data, and Buffer parameters are ignored.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to one the following codes:

ESRCH The Identifier is not valid; or the traced process is a
kernel process.

EPERM Real or effective user ID of the debugger does not
match that of the traced process, or the debugger does
not have root authority.

EINVAL The debugger and the traced process are the same.

PT_REGSET This request writes the contents of all 32 general purpose
registers to the area specified by the Address parameter.
This area must be at least 128 bytes for the 32–bit
debuggee or 256 bytes for the 64–bit debuggee. The
Identifier parameter is interpreted as the process ID of the
traced process. The Data and Buffer parameters are
ignored.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

1-918 Technical Reference: Base Operating System

EIO The Address parameter points to a location outside of
the allocated address space of the process.

Note: For the PT_REGSET request, use ptracex with the 64–bit
debuggee because 64–bit registers requiring 256 bytes are returned.

PT_TRACE_ME
This request must be issued by the debugged process to
be traced. Upon receipt of a signal, this request sets the
process trace flag, placing the process in a stopped state,
rather than the action specified by the sigaction
subroutine. The Identifier, Address, Data, and Buffer
parameters are ignored. Do not issue this request if the
parent process does not expect to trace the debugged
process.

As a security measure, the ptrace subroutine inhibits the set–user–ID
facility on subsequent exec subroutines, as shown in the following
example:

if((childpid = fork()) == 0)

{ /* child process */

 ptrace(PT_TRACE_ME,0,0,0,0);

 execlp()/* your favorite exec*/

 }

else

{ /* parent */

 /* wait for child to stop */

 rc = wait(status)

Note: This is the only request that should be performed by the child.
The parent should perform all other requests when the child is in a
stopped state.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

ESRCH Process is debugged by a process that is not its parent.

PT_WRITE_BLOCK
This request writes a block of data into the debugged
process address space. The Address parameter points to
the location in the process address space to be written
into. The Data parameter gives the length of the block in
bytes, and must not be greater than 1024. The Identifier
parameter is interpreted as the process ID of the traced
process. The Buffer parameter points to the location in the
debugging process address space where the data is
copied. Upon successful completion, the value of the Data
parameter is returned to the debugging process.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to one of the following codes:

EIO The Data parameter is less than 1 or greater than 1024.

1-919Base Operating System Runtime Services (A-P)

EIO The Address parameter is not a valid pointer into the
debugged process address space.

EFAULT The Buffer parameter does not point to a readable
location in the debugging process address space.

Note: For the PT_WRITE_BLOCK request, use ptracex with the 64–bit
debuggee because 64–bit registers requiring 256 bytes are returned.

PT_WRITE_FPR
This request sets the floating–point register specified by
the Data parameter to the value specified by the Address
parameter. The Identifier parameter is interpreted as the
process ID of the traced process. The Buffer parameter is
ignored.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

EIO The Data parameter is not a valid floating–point
register. The Data parameter must be in the range
256–287.

PTT_WRITE_FPRS
This request updates the contents of the 32 floating point
registers with the values specified in the area designated
by the Address parameter. This area must be at least 256
bytes long. The Identifier parameter specifies the traced
kernel thread. The Data and Buffer parameters are
ignored.

PT_WRITE_GPR
This request stores the value of the Data parameter in one
of the process general–purpose or special–purpose
registers. The Address parameter specifies the register to
be modified. Upon successful completion, the value of the
Data parameter is returned to the debugging process. The
Identifier parameter is interpreted as the process ID of the
traced process. The Buffer parameter is ignored.

Note: If ptracex with a 64–bit debugee is used for the
PT_WRITE_GPR request, the new register value is NOT passed via
the data parameter, but is instead passed via the 8–byte area pointed to
by the buffer parameter.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

EIO The Address parameter is not a valid general–purpose
or special–purpose register. The Address parameter
must be in the range 0–31 or 128–136.

PTT_WRITE_GPRS
This request updates the contents of the 32 general
purpose registers with the values specified in the area
designated by the Address parameter. This area must be
at least 128 bytes long. The Identifier parameter specifies
the traced kernel thread. The Data and Buffer parameters
are ignored.

1-920 Technical Reference: Base Operating System

Note: For the PTT_WRITE_GPRS request, use ptracex with the 64–bit
debuggee because 64–bit registers requiring 256 bytes are returned.
The buffer points to long long source area.

PT_WRITE_I or PT_WRITE_D
These requests write the value of the data parameter into
the address space of the debugged process at the
word–aligned address specified by the Address
parameter. On all machines currently supported by the
Version 4 operating system, instruction and data address
spaces are not separated. The PT_WRITE_I and
PT_WRITE_D instruction and data requests can be used
with equal results. Upon successful completion, the value
written into the address space of the debugged process is
returned to the debugging process. The Identifier
parameter is interpreted as the process ID of the traced
process. The Buffer parameter is ignored.

If this request is unsuccessful, –1 is returned and the errno global
variable is set to the following code:

EIO The Address parameter points to a location in a pure
procedure space and a copy cannot be made; the
Address is not word–aligned; or, the Address is not
valid. User blocks, kernel segments, and kernel
extension segments are not considered valid
addresses.

Note: For the or PT_WRITE_I or PT_WRITE_D request, use ptracex
with a 64–bit debuggee because the target address needs 64 bits.

PTT_WRITE_SPRS
This request updates the special purpose registers with
the values in the area specified by the Address parameter,
which points to a ptsprs structure. The Identifier
parameter specifies the traced kernel thread. The Data
and Buffer parameters are ignored.

Identifier Determined by the value of the Request parameter.

Address Determined by the value of the Request parameter.

Data Determined by the value of the Request parameter.

Buffer Determined by the value of the Request parameter.

Note: For the PTT_READ_SPRS request, use ptracex with the 64–bit
debuggee because the new ptxsprs structure must be used.

Error Codes
The ptrace subroutine is unsuccessful when one of the following is true:

EFAULT The Buffer parameter points to a location outside the
debugging process address space.

EINVAL The debugger and the traced process are the same; or the
Identifier parameter does not identify the thread that caused
the exception.

1-921Base Operating System Runtime Services (A-P)

EIO The Request parameter is not one of the values listed, or
the Request parameter is not valid for the machine type on
which the process is executed.

ENOMEM Either the area is not large enough to accommodate the
loader information, or there is not enough memory to
allocate an equivalent buffer in the kernel.

EPERM The Identifier parameter corresponds to a kernel thread
which is stopped in kernel mode and whose computational
state cannot be read or written.

ESRCH The Identifier parameter identifies a process or thread that
does not exist, that has not executed a ptrace call with the
PT_TRACE_ME request, or that is not stopped.

For ptrace: If the debuggee is a 64–bit process, the options that refer to GPRs or SPRs fail
with errno = EIO, and the options that specify addresses are limited to 32–bits.

For ptracex: If the debuggee is a 32–bit process, the options that refer to GPRs or SPRs
fail with errno = EIO, and the options that specify addresses in the debuggee’s address
space that are larger than 2**32 – 1 fail with errno set to EIO.

Also, the options PT_READ_U and PT_WRITE_U are not supported if the debuggee is a
64–bit program (errno = ENOTSUP).

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec, getprocs, getthrds, load, sigaction, unload, wait, waitpid, or wait3
subroutine.

The dbx command.

1-922 Technical Reference: Base Operating System

ptsname Subroutine

Purpose
Returns the name of a pseudo–terminal device.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *ptsname (FileDescriptor)
int FileDescriptor

Description
The ptsname subroutine gets the path name of the slave pseudo–terminal associated with
the master pseudo–terminal device defined by the FileDescriptor parameter.

Parameters

FileDescriptor Specifies the file descriptor of the master pseudo–terminal device

Return Values
The ptsname subroutine returns a pointer to a string containing the null–terminated path
name of the pseudo–terminal device associated with the file descriptor specified by the
FileDescriptor parameter. A null pointer is returned and the errno global variable is set to
indicate the error if the file descriptor does not describe a pseudo–terminal device in the
/dev directory.

Files

/dev/* Terminal device special files.

Related Information
The ttyname subroutine.

The Input and Output Handling Programmer’s Overview in AIX General Programming
Concepts : Writing and Debugging Programs.

1-923Base Operating System Runtime Services (A-P)

putc, putchar, fputc, or putw Subroutine

Purpose
Writes a character or a word to a stream.

Library
Standard I/O Package (libc.a)

Syntax
#include <stdio.h>

int putc (Character, Stream)
int Character;
FILE *Stream;

int putchar (Character)
int Character;

int fputc (Character, Stream)
int Character;
FILE *Stream;

int putw (Word, Stream)
int Word;
FILE *Stream;

Description
The putc and putchar macros write a character or word to a stream. The fputc and putw
subroutines serve similar purposes but are true subroutines.

The putc macro writes the character Character (converted to an unsigned char data type)
to the output specified by the Stream parameter. The character is written at the position at
which the file pointer is currently pointing, if defined.

The putchar macro is the same as the putc macro except that putchar writes to the
standard output.

The fputc subroutine works the same as the putc macro, but fputc is a true subroutine
rather than a macro. It runs more slowly than putc, but takes less space per invocation.

Because putc is implemented as a macro, it incorrectly treats a Stream parameter with side
effects, such as putc(C, *f++). For such cases, use the fputc subroutine instead. Also, use
fputc whenever you need to pass a pointer to this subroutine as a parameter to another
subroutine.

The putc and putchar macros have also been implemented as subroutines for ANSI
compatibility. To access the subroutines instead of the macros, insert #undef putc or
#undef putchar at the beginning of the source file.

The putw subroutine writes the word (int data type) specified by the Word parameter to the
output specified by the Stream parameter. The word is written at the position at which the
file pointer, if defined, is pointing. The size of a word is the size of an integer and varies from
machine to machine. The putw subroutine does not assume or cause special alignment of
the data in the file.

After the fputcw, putwc, fputc, putc, fputs, puts, or putw subroutine runs successfully,
and before the next successful completion of a call either to the fflush or fclose subroutine
on the same stream or to the exit or abort subroutine, the st_ctime and st_mtime fields
of the file are marked for update.

1-924 Technical Reference: Base Operating System

Because of possible differences in word length and byte ordering, files written using the
putw subroutine are machine–dependent, and may not be readable using the getw
subroutine on a different processor.

With the exception of stderr, output streams are, by default, buffered if they refer to files, or
line–buffered if they refer to terminals. The standard error output stream, stderr, is
unbuffered by default, but using the freopen subroutine causes it to become buffered or
line–buffered. Use the setbuf subroutine to change the stream buffering strategy.

When an output stream is unbuffered, information is queued for writing on the destination
file or terminal as soon as it is written. When an output stream is buffered, many characters
are saved and written as a block. When an output stream is line–buffered, each line of
output is queued for writing on the destination terminal as soon as the line is completed
(that is, as soon as a new–line character is written or terminal input is requested).

Parameters

Stream Points to the file structure of an open file.

Character Specifies a character to be written.

Word Specifies a word to be written (not portable because word length and
byte–ordering are machine–dependent).

Return Values
Upon successful completion, these functions each return the value written. If these functions
fail, they return the constant EOF. They fail if the Stream parameter is not open for writing,
or if the output file size cannot be increased. Because the EOF value is a valid integer, you
should use the ferror subroutine to detect putw errors.

Error Codes
The fputc subroutine will fail if either the Stream is unbuffered or the Stream buffer needs to
be flushed, and:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying Stream
and the process would be delayed in the write operation.

EBADF The file descriptor underlying Stream is not a valid file descriptor open
for writing.

EFBIG An attempt was made to write a file that exceeds the file size of the
process limit or the maximum file size.

EFBIG The file is a regular file and an attempt was made to write at or beyond
the offset maximum.

EINTR The write operation was terminated due to the receipt of a signal, and
either no data was transferred or the implementation does not report
partial transfers for this file.

Note: Depending upon which library routine the application binds to,
this subroutine may return EINTR. Refer to the signal
Subroutine regarding sa_restart.

EIO A physical I/O error has occurred, or the process is a member of a
background process group attempting to perform a write subroutine to
its controlling terminal, the TOSTOP flag is set, the process is neither
ignoring nor blocking the SIGTTOU signal and the process group of the
process is orphaned. This error may also be returned under
implementation–dependent conditions.

1-925Base Operating System Runtime Services (A-P)

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or first–in–first–out (FIFO) that is
not open for reading by any process. A SIGPIPE signal will also be sent
to the process.

The fputc subroutine may fail if:

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a nonexistent device, or the request was
outside the capabilities of the device.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fclose or fflush subroutine, feof, ferror, clearerr, or fileno subroutine, fopen,
freopen, or fdopen subroutine, fread or fwrite subroutine, getc, fgetc, getchar, or getw
subroutine, getwc, fgetwc, or getwchar subroutine, printf, fprintf, sprintf, NLprintf,
NLfprintf, NLsprintf, or wsprintf subroutine, putwc, fputwc, or putwchar subroutine,
puts or fputs subroutine, setbuf subroutine.

1-926 Technical Reference: Base Operating System

putenv Subroutine

Purpose
Sets an environment variable.

Library
Standard C Library (libc.a)

Syntax
int putenv (String)
char *String;

Description
Attention: Unpredictable results can occur if a subroutine passes the putenv subroutine
a pointer to an automatic variable and then returns while the variable is still part of the
environment.

The putenv subroutine sets the value of an environment variable by altering an existing
variable or by creating a new one. The String parameter points to a string of the form
Name=Value, where Name is the environment variable and Value is the new value for it.

The memory space pointed to by the String parameter becomes part of the environment, so
that altering the string effectively changes part of the environment. The space is no longer
used after the value of the environment variable is changed by calling the putenv
subroutine again. Also, after the putenv subroutine is called, environment variables are not
necessarily in alphabetical order.

The putenv subroutine manipulates the environ external variable and can be used in
conjunction with the getenv subroutine. However, the EnvironmentPointer parameter, the
third parameter to the main subroutine, is not changed.

The putenv subroutine uses the malloc subroutine to enlarge the environment.

Parameters

String A pointer to the Name=Value string.

Return Values
Upon successful completion, a value of 0 is returned. If the malloc subroutine is unable to
obtain sufficient space to expand the environment, then the putenv subroutine returns a
nonzero value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec: execl, execv, execle, execlp, execvp, or exect subroutine, getenv subroutine,
malloc subroutine.

1-927Base Operating System Runtime Services (A-P)

puts or fputs Subroutine

Purpose
Writes a string to a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>

int puts (String)
const char *String;

int fputs (String, Stream)
const char *String;
FILE *Stream;

Description
The puts subroutine writes the string pointed to by the String parameter to the standard
output stream, stdout, and appends a new–line character to the output.

The fputs subroutine writes the null–terminated string pointed to by the String parameter to
the output stream specified by the Stream parameter. The fputs subroutine does not
append a new–line character.

Neither subroutine writes the terminating null character.

After the fputwc, putwc, fputc, fputs, puts, or putw subroutine runs successfully, and
before the next successful completion of a call either to the fflush or fclose subroutine on
the same stream or a call to the exit or abort subroutine, the st_ctime and st_mtime
fields of the file are marked for update.

Parameters

String Points to a string to be written to output.

Stream Points to the FILE structure of an open file.

Return Values
Upon successful completion, the puts and fputs subroutines return the number of
characters written. Otherwise, both subroutines return EOF, set an error indicator for the
stream and set the errno global variable to indicate the error. This happens if the routines
try to write to a file that has not been opened for writing.

Error Codes
If the puts or fputs subroutine is unsuccessful because the output stream specified by the
Stream parameter is unbuffered or the buffer needs to be flushed, it returns one or more of
the following error codes:

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor
specified by the Stream parameter and the process would be delayed in
the write operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is
not a valid file descriptor open for writing.

1-928 Technical Reference: Base Operating System

EFBIG Indicates that an attempt was made to write to a file that exceeds the
process’ file size limit or the systemwide maximum file size.

EINTR Indicates that the write operation was terminated due to receipt of a
signal and no data was transferred.

Note: Depending upon which library routine the application binds to,
this subroutine may return EINTR. Refer to the signal
subroutine regarding the SA_RESTART bit.

EIO Indicates that the process is a member of a background process group
attempting to perform a write to its controlling terminal, the TOSTOP
flag is set, the process is neither ignoring or blocking the SIGTTOU
signal, and the process group of the process has no parent process.

ENOSPC Indicates that there was no free space remaining on the device
containing the file specified by the Stream parameter.

EPIPE Indicates that an attempt is made to write to a pipe or first–in–first–out
(FIFO) that is not open for reading by any process. A SIGPIPE signal
will also be sent to the process.

ENOMEM Indicates that insufficient storage space is available.

ENXIO Indicates that a request was made of a nonexistent device, or the
request was outside the capabilities of the device.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fopen, freopen, or fdopen subroutine, fread, or fwrite subroutine, gets or fgets
subroutine, getws or fgetws subroutine, printf, fprintf, and sprintf subroutine, putc,
putchar, fputc, or putw subroutine, putwc, putwchar, or fputwc subroutine, putws or
fputws subroutine.

 The feof, ferror, clearerr, or fileno macros.

Subroutines Overview in AIX General Programming Concepts : Writing and Debugging
Programs.

1-929Base Operating System Runtime Services (A-P)

putwc, putwchar, or fputwc Subroutine

Purpose
Writes a character or a word to a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>

wint_t putwc(Character, Stream)
wint_t Character;
FILE *Stream;

wint_t putwchar(Character)
wint_t Character;

wint_t fputwc(Character, Stream)
wint_t Character;
FILE Stream;

Description
The putwc subroutine writes the wide character specified by the Character parameter to the
output stream pointed to by the Stream parameter. The wide character is written as a
multibyte character at the associated file position indicator for the stream, if defined. The
subroutine then advances the indicator. If the file cannot support positioning requests, or if
the stream was opened with append mode, the character is appended to the output stream.

The putwchar subroutine works like the putwc subroutine, except that putwchar writes the
specified wide character to the standard output.

The fputwc subroutine works the same as the putwc subroutine.

Output streams, with the exception of stderr, are buffered by default if they refer to files, or
line–buffered if they refer to terminals. The standard error output stream, stderr, is
unbuffered by default, but using the freopen subroutine causes it to become buffered or
line–buffered. Use the setbuf subroutine to change the stream’s buffering strategy.

After the fputwc, putwc, fputc. putc, fputs, puts, or putw subroutine runs successfully,
and before the next successful completion of a call either to the fflush or fclose subroutine
on the same stream or to the exit or abort subroutine, the st_ctime and st_mtime fields
of the file are marked for update.

Parameters

Character Specifies a wide character of type wint_t.

Stream Specifies a stream of output data.

Return Values
Upon successful completion, the putwc, putwchar, and fputwc subroutines return the wide
character that is written. Otherwise WEOF is returned, the error indicator for the stream is
set, and the errno global variable is set to indicate the error.

Error Codes
If the putwc, putwchar, or fputwc subroutine fails because the stream is not buffered or
data in the buffer needs to be written, it returns one or more of the following error codes:

1-930 Technical Reference: Base Operating System

EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor
underlying the Stream parameter, delaying the process during the write
operation.

EBADF Indicates that the file descriptor underlying the Stream parameter is not
valid and cannot be updated during the write operation.

EFBIG Indicates that the process attempted to write to a file that already equals
or exceeds the file–size limit for the process. The file is a regular file
and an attempt was made to write at or beyond the offset maximum
associated with the corresponding stream.

EILSEQ Indicates that the wide–character code does not correspond to a valid
character.

EINTR Indicates that the process has received a signal that terminates the
read operation.

EIO Indicates that the process is in a background process group attempting
to perform a write operation to its controlling terminal. The TOSTOP flag
is set, the process is not ignoring or blocking the SIGTTOU flag, and the
process group of the process is orphaned.

ENOMEM Insufficient storage space is available.

ENOSPC Indicates that no free space remains on the device containing the file.

ENXIO Indicates a request was made of a non–existent device, or the request
was outside the capabilities of the device.

EPIPE Indicates that the process has attempted to write to a pipe or
first–in–first–out (FIFO) that is not open for reading. The process will
also receive a SIGPIPE signal.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Other wide character I/O subroutines: fgetwc subroutine, fgetws subroutine, fputws
subroutine, getwc subroutine, getwchar subroutine, getws subroutine, putws subroutine,
ungetwc subroutine.

Related standard I/O subroutines: fdopen subroutine, fgets subroutine, fopen subroutine,
fprintf subroutine, fputc subroutine, fputs subroutine, fread subroutine, freopen
subroutine, fwrite subroutine, gets subroutine, printf subroutine, putc subroutine, putchar
subroutine, puts subroutine, putw subroutine, sprintf subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character Input/Output Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

1-931Base Operating System Runtime Services (A-P)

putws or fputws Subroutine

Purpose
Writes a wide–character string to a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>

int putws (String)
const wchar_t *String;

int fputws (String, Stream)
const wchar_t *String;
FILE *Stream;

Description
The putws subroutine writes the const wchar_t string pointed to by the String parameter to
the standard output stream (stdout) as a multibyte character string and appends a new–line
character to the output. In all other respects, the putws subroutine functions like the puts
subroutine.

The fputws subroutine writes the const wchar_t string pointed to by the String parameter
to the output stream as a multibyte character string. In all other respects, the fputws
subroutine functions like the fputs subroutine.

After the putws or fputws subroutine runs successfully, and before the next successful
completion of a call to the fflush or fclose subroutine on the same stream or a call to the
exit or abort subroutine, the st_ctime and st_mtime fields of the file are marked for
update.

Parameters

String Points to a string to be written to output.

Stream Points to the FILE structure of an open file.

Return Values
Upon successful completion, the putws and fputws subroutines return a nonnegative
number. Otherwise, a value of –1 is returned, and the errno global variable is set to indicate
the error.

Error Codes
The putws or fputws subroutine is unsuccessful if the stream is not buffered or data in the
buffer needs to be written, and one of the following errors occur:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the
Stream parameter, which delays the process during the write operation.

EBADF The file descriptor underlying the Stream parameter is not valid and
cannot be updated during the write operation.

EFBIG The process attempted to write to a file that already equals or exceeds
the file–size limit for the process.

EINTR The process has received a signal that terminates the read operation.

1-932 Technical Reference: Base Operating System

EIO The process is in a background process group attempting to perform a
write operation to its controlling terminal. The TOSTOP flag is set, the
process is not ignoring or blocking the SIGTTOU flag, and the process
group of the process is orphaned.

ENOSPC No free space remains on the device containing the file.

EPIPE The process has attempted to write to a pipe or first–in–first–out (FIFO)
that is not open for reading. The process also receives a SIGPIPE
signal.

EILSEQ The wc wide–character code does not correspond to a valid character.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Other wide–character I/O subroutines: fgetwc subroutine, fgetws subroutine, fputwc
subroutine, getwc subroutine, getwchar subroutine, getws subroutine, putwc subroutine,
putwchar subroutine, ungetwc subroutine.

Related standard I/O subroutines: fdopen subroutine, fgets subroutine, fopen subroutine,
fprintf subroutine, fputc subroutine, fputs subroutine, fread subroutine, freopen
subroutine, fwrite subroutine, gets subroutine, printf subroutine, putc subroutine, putchar
subroutine, puts subroutine, putw subroutine, sprintf subroutine.

National Language Support Overview for Programming, Subroutines Overview,
Understanding Wide Character Input/Output Subroutines in AIX General Programming
Concepts : Writing and Debugging Programs.

1-933Base Operating System Runtime Services (A-P)

pwdrestrict_method Subroutine

Purpose
Defines loadable password restriction methods.

Library

Syntax
int pwdrestrict_method (UserName, NewPassword, OldPassword,
Message)
char *UserName;
char *NewPassword;
char *OldPassword;
char **Message;

Description
The pwdrestrict_method subroutine extends the capability of the password restrictions
software and lets an administrator enforce password restrictions that are not provided by the
system software.

Whenever users change their passwords, the system software scans the pwdchecks
attribute defined for that user for site specific restrictions. Since this attribute field can
contain load module file names, for example, methods, it is possible for the administrator to
write and install code that enforces site specific password restrictions.

The system evaluates the pwdchecks attribute’s value field in a left to right order. For each
method that the system encounters, the system loads and invokes that method. The system
uses the load subroutine to load methods. It invokes the load subroutine with a Flags value
of 1 and a LibraryPath value of /usr/lib. Once the method is loaded, the system invokes the
method.

To create a loadable module, use the –e flag of the ld command. Note that the name
pwdrestrict_method given in the syntax is a generic name. The actual subroutine name
can be anything (within the compiler’s name space) except main. What is important is, that
for whatever name you choose, you must inform the ld command of the name so that the
load subroutine uses that name as the entry point into the module. In the following example,
the C compiler compiles the pwdrestrict.c file and pass –e pwdrestrict_method to the ld
command to create the method called pwdrestrict:

cc –e pwdrestrict_method –o pwdrestrict pwdrestrict.c

The convention of all password restriction methods is to pass back messages to the
invoking subroutine. Do not print messages to stdout or stderr. This feature allows the
password restrictions software to work across network connections where stdout and stderr
are not valid. Note that messages must be returned in dynamically allocated memory to the
invoking program. The invoking program will deallocate the memory once it is done with the
memory.

There are many caveats that go along with loadable subroutine modules:

1. The values for NewPassword and OldPassword are the actual clear text passwords
typed in by the user. If you copy these passwords into other parts of memory, clear those
memory locations before returning back to the invoking program. This helps to prevent
clear text passwords from showing up in core dumps. Also, do not copy these passwords

1-934 Technical Reference: Base Operating System

into a file or anywhere else that another program can access. Clear text passwords
should never exist outside of the process space.

2. Do not modify the current settings of the process’ signal handlers.

3. Do not call any functions that will terminate the execution of the program (for example,
the exit subroutine, the exec subroutine). Always return to the invoking program.

4. The code must be thread–safe.

5. The actual load module must be kept in a write protected environment. The load module
and directory should be writable only by the root user.

One last note, all standard password restrictions are performed before any of the site
specific methods are invoked. Thus, methods are the last restrictions to be enforced by the
system.

Parameters

UserName Specifies a ”local” user name.

NewPassword Specifies the new password in clear text (not
encrypted).This value may be a NULL pointer. Clear text
passwords are always in 7 bit ASCII.

OldPassword Specifies the current password in clear text (not
encrypted).This value may be a NULL pointer. Clear text
passwords are always in 7 bit ASCII.

Message Specifies the address of a pointer to malloc’ed memory
containing an NLS error message. The method is expected
to supply the malloc’ed memory and the message.

Return Values
The method is expected to return the following values. The return values are listed in order
of precedence.

–1 Internal error. The method could not perform its password
evaluation. The method must set the errno variable. The
method must supply an error message in Message unless it
can’t allocate memory for the message. If it cannot allocate
memory, then it must return the NULL pointer in Message.

1 Failure. The password change did not meet the
requirements of the restriction. The password restriction
was properly evaluated and the password change was not
accepted. The method must supply an error message in
Message. The errno variable is ignored. Note that
composition failures are cumulative, thus, even though a
failure condition is returned, trailing composition methods
will be invoked.

0 Success. The password change met the requirements of
the restriction. If necessary, the method may supply a
message in Message; otherwise, return the NULL pointer.
The errno variable is ignored.

A-1Base Operating System Error Codes

Appendix A. Base Operating System Error Codes for
Services That Require Path–Name Resolution

The following errors apply to any service that requires path name resolution:

EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path parameter points outside of the allocated address space of
the process.

EIO An I/O error occurred during the operation.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENAMETOOLONG A component of a path name exceeded 255 characters and the
process has the DisallowTruncation attribute (see the ulimit
subroutine) or an entire path name exceeded 1023 characters.

ENOENT A component of the path prefix does not exist.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENOENT The path name is null.

ENOTDIR A component of the path prefix is not a directory.

ESTALE The root or current directory of the process is located in a virtual file
system that is unmounted.

Related Information
List of File and Directory Manipulation Services.

A-2 Technical Reference: Base Operating System

B-1ODM Error Codes

Appendix B. ODM Error Codes

When an ODM subroutine is unsuccessful, a value of –1 is returned and the odmerrno
variable is set to one of the following values:

ODMI_BAD_CLASSNAME The specified object class name does not match the
object class name in the file. Check path name and
permissions.

ODMI_BAD_CLXNNAME The specified collection name does not match the
collection name in the file.

ODMI_BAD_CRIT The specified search criteria is incorrectly formed. Make
sure the criteria contains only valid descriptor names and
the search values are correct. For information on
qualifying criteria, see ”Understanding ODM Object
Searches” in AIX General Programming Concepts :
Writing and Debugging Programs.

ODMI_BAD_LOCK Cannot set a lock on the file. Check path name and
permissions.

ODMI_BAD_TIMEOUT The time–out value was not valid. It must be a positive
integer.

ODMI_BAD_TOKEN Cannot create or open the lock file. Check path name and
permissions.

ODMI_CLASS_DNE The specified object class does not exist. Check path
name and permissions.

ODMI_CLASS_EXISTS The specified object class already exists. An object class
must not exist when it is created.

ODMI_CLASS_PERMS The object class cannot be opened because of the file
permissions.

ODMI_CLXNMAGICNO_ERR The specified collection is not a valid object class
collection.

ODMI_FORK Cannot fork the child process. Make sure the child
process is executable and try again.

ODMI_INTERNAL_ERR An internal consistency problem occurred. Make sure the
object class is valid or contact the person responsible for
the system.

ODMI_INVALID_CLASS The specified file is not an object class.

ODMI_INVALID_CLXN Either the specified collection is not a valid object class
collection or the collection does not contain consistent
data.

ODMI_INVALID_PATH The specified path does not exist on the file system. Make
sure the path is accessible.

ODMI_LINK_NOT_FOUND The object class that is accessed could not be opened.
Make sure the linked object class is accessible.

ODMI_LOCK_BLOCKED Cannot grant the lock. Another process already has the
lock.

ODMI_LOCK_ENV Cannot retrieve or set the lock environment variable.
Remove some environment variables and try again.

B-2 Technical Reference: Base Operating System

ODMI_LOCK_ID The lock identifier does not refer to a valid lock. The lock
identifier must be the same as what was returned from the
odm_lock subroutine.

ODMI_MAGICNO_ERR The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR Cannot allocate sufficient storage. Try again later or
contact the person responsible for the system.

ODMI_NO_OBJECT The specified object identifier did not refer to a valid
object.

ODMI_OPEN_ERR Cannot open the object class. Check path name and
permissions.

ODMI_OPEN_PIPE Cannot open a pipe to a child process. Make sure the
child process is executable and try again.

ODMI_PARAMS The parameters passed to the subroutine were not
correct. Make sure there are the correct number of
parameters and that they are valid.

ODMI_READ_ONLY The specified object class is opened as read–only and
cannot be modified.

ODMI_READ_PIPE Cannot read from the pipe of the child process. Make sure
the child process is executable and try again.

ODMI_TOOMANYCLASSES Too many object classes have been accessed. An
application can only access less than 1024 object
classes.

ODMI_UNLINKCLASS_ERR Cannot remove the object class from the file system.
Check path name and permissions.

ODMI_UNLINKCLXN_ERR Cannot remove the object class collection from the file
system. Check path name and permissions.

ODMI_UNLOCK Cannot unlock the lock file. Make sure the lock file exists.

Related Information
List of ODM Commands and Subroutines in AIX General Programming Concepts : Writing
and Debugging Programs.

X-1Index

Index

Symbols
Empty, 1-118
/etc/filesystems file, accessing entries, 1-288
/etc/hosts file

closing, 1-708
retrieving host entries, 1-707

/etc/utmp file, accessing entries, 1-381
_atojis macro, 1-455
_check_lock Subroutine, 1-73
_clear_lock Subroutine, 1-74
_edata identifier, 1-151
_end identifier, 1-151
_exit subroutine, 1-165
_extext identifier, 1-151
_jistoa macro, 1-455
_lazySetErrorHandler Subroutine, 1-465
_tojlower macro, 1-455
_tojupper macro, 1-455
_tolower subroutine, 1-115
_toupper subroutine, 1-115

Numbers
164a_r subroutine, 1-468
199332, 1-367
3–byte integers, converting, 1-467

A
a64l subroutine, 1-3
abort subroutine, 1-5
absinterval subroutine, 1-304
absolute path names

copying, 1-388
determining, 1-388

absolute values, computing complex, 1-399
access control attributes, setting, 1-82
access control information

changing, 1-12
retrieving, 1-15
setting, 1-17, 1-19

access control subroutines
acl_chg, 1-12
acl_fchg, 1-12
acl_fget, 1-15
acl_fput, 1-17
acl_fset, 1-19
acl_get, 1-15
acl_put, 1-17
acl_set, 1-19
chacl, 1-82
chmod, 1-87
chown, 1-90
chownx, 1-90
fchacl, 1-82

fchmod, 1-87
fchown, 1-90
fchownx, 1-90
frevoke, 1-233

access subroutine, 1-8
accessx subroutine, 1-8
acct subroutine, 1-11
acl_chg subroutine, 1-12
acl_fchg subroutine, 1-12
acl_fget subroutine, 1-15
acl_fput subroutine, 1-17
acl_fset subroutine, 1-19
acl_get subroutine, 1-15
acl_put subroutine, 1-17
acl_set subroutine, 1-19
acos subroutine, 1-36
acosh subroutine, 1-38
acosl subroutine, 1-36
address identifiers, 1-151
addssys subroutine, 1-21
adjtime subroutine, 1-23
advance subroutine, 1-109
aio_cancel subroutine, 1-24
aio_error subroutine, 1-26
aio_read subroutine, 1-28
aio_return subroutine, 1-30
aio_suspend subroutine, 1-32
aio_write subroutine, 1-34
alarm subroutine, 1-304
alloca subroutine, 1-608
archive files, reading headers, 1-487
arithmetic functions, computing binary

floating–points, 1-118
ASCII strings, converting to floating–point

numbers, 1-40
asctime subroutine, 1-126
asctime_r subroutine, 1-129
asin subroutine, 1-36
asinh subroutine, 1-38
asinl subroutine, 1-36
assert macro, 1-39
asynchronous I/O

reading, 1-28
writing, 1-34

asynchronous I/O requests
canceling, 1-24
listing, 1-517
retrieving error status, 1-26
retrieving return status, 1-30
suspending, 1-32

atan subroutine, 1-36
atan2 subroutine, 1-36
atan2l subroutine, 1-36
atanh subroutine, 1-38

X-2 Technical Reference: Base Operating System

atanl subroutine, 1-36
atexit subroutine, 1-165
atof subroutine, 1-40
atoff subroutine, 1-40
atojis subroutine, 1-455
atomic access subroutines

compare_and_swap, 1-108
fetch_and_add, 1-187
fetch_and_and, 1-188
fetch_and_or, 1-188

audit bin files
compressing and uncompressing, 1-53
establishing, 1-44

audit records
generating, 1-48
reading, 1-57
writing, 1-59

audit subroutine, 1-42
audit trail files, appending records, 1-48
auditbin subroutine, 1-44
auditevents subroutine, 1-46
auditing modes, 1-50
auditing subroutines

audit, 1-42
auditbin, 1-44
auditevents, 1-46
auditlog, 1-48
auditobj, 1-50
auditpack, 1-53
auditproc, 1-54
auditread, 1-57
auditwrite, 1-59

auditlog subroutine, 1-48
auditobj subroutine, 1-50
auditpack subroutine, 1-53
auditproc subroutine, 1-54
auditread, auditread_r subroutines, 1-57
auditwrite subroutine, 1-59
authenticate, 1-60
authentication subroutines

ckuseracct, 1-99
ckuserID, 1-101
crypt, 1-120
encrypt, 1-120
getlogin, 1-307
getpass, 1-317
getuserpw, 1-375
newpass, 1-695
putuserpw, 1-375
setkey, 1-120

authorizations, 1-374
authorizations, compare, 1-612
auxiliary areas

creating, 1-410
destroying, 1-411
drawing, 1-412
hiding, 1-413
processing, 1-430

B
basename Subroutine, 1-62
baud rates, getting and setting, 1-80
bcmp subroutine, 1-63
bcopy subroutine, 1-63
beep levels, setting, 1-414
Bessel functions, computing, 1-64
binary files, reading, 1-229
binary searches, 1-70
binding a process to a processor, 1-66
bit string operations, 1-63
box characters, shaping, 1-481
brk subroutine, 1-68
bsearch subroutine, 1-70
btowc subroutine, 1-72
buffered data, writing to streams, 1-175
byte string operations, 1-63
bzero subroutine, 1-63

C
calloc subroutine, 1-608
catclose subroutine, 1-75
catgets subroutine, 1-76
catopen subroutine, 1-77
CCSIDs, converting, 1-79
ccsidtocs subroutine, 1-79
ceil subroutine, 1-193
ceill subroutine, 1-193
cfgetispeed subroutine, 1-80
cfgetospeed subroutine, 1-80
cfsetispeed subroutine, 1-80
cfsetospeed subroutine, 1-80
chacl subroutine, 1-82
character conversion

8–bit processing codes and, 1-453
code set converters, 1-400, 1-403
conv subroutines, 1-115
Japanese, 1-455
Kanji–specific, 1-453
multibyte to wide, 1-633, 1-635
translation operations, 1-115

character manipulation subroutines
_atojis, 1-455
_jistoa, 1-455
_tojlower, 1-455
_tojupper, 1-455
_tolower, 1-115
_toupper, 1-115
atojis, 1-455
conv, 1-115
ctype, 1-457
fgetc, 1-268
fputc, 1-923
getc, 1-268
getchar, 1-268
getw, 1-268

X-3Index

isalnum, 1-131
isalpha, 1-131
isascii, 1-131
iscntrl, 1-131
isdigit, 1-131
isgraph, 1-131
isjalnum, 1-457
isjalpha, 1-457
isjdigit, 1-457
isjgraph, 1-457
isjhira, 1-457
isjis, 1-457
isjkanji, 1-457
isjkata, 1-457
isjlbytekana, 1-457
isjlower, 1-457
isjparen, 1-457
isjprint, 1-457
isjpunct, 1-457
isjspace, 1-457
isjupper, 1-457
isjxdigit, 1-457
islower, 1-131
isparent, 1-457
isprint, 1-131
ispunct, 1-131
isspace, 1-131
isupper, 1-131
isxdigit, 1-131
jistoa, 1-455
kutentojis, 1-455
NCesc, 1-115
NCflatchr, 1-115
NCtolower, 1-115
NCtoNLchar, 1-115
NCtoupper, 1-115
NCunesc, 1-115
putc, 1-923
putchar, 1-923
putw, 1-923
toascii, 1-115
tojhira, 1-455
tojkata, 1-455
tojlower, 1-455
tojupper, 1-455
tolower, 1-115
toujis, 1-455
toupper, 1-115

character shaping, 1-472
characters

classifying, 1-131, 1-457
returning from input streams, 1-268
writing to streams, 1-923

charsetID, multibyte character, 1-124
chdir subroutine, 1-85
chmod subroutine, 1-87
chown subroutine, 1-90
chownx subroutine, 1-90
chpass subroutine, 1-93
chroot subroutine, 1-95

chssys subroutine, 1-97
cjistosj subroutine, 1-453
ckuseracct subroutine, 1-99
ckuserID subroutine, 1-101
class subroutine, 1-103
clearerr macro, 1-186
clock subroutine, 1-105
close subroutine, 1-106
closedir subroutine, 1-755
code sets

closing converters, 1-400
converting names, 1-79
opening converters, 1-403

coded character set IDs, converting, 1-79
command–line flags, returning, 1-313
compare_and_swap subroutine, atomic access,

1-108
compile subroutine, 1-109
confstr subroutine, 1-113
controlling terminal, 1-125
controls

battery status, 1-788
PM event, 1-783
PM parameters, 1-774
PM states, 1-779
PM system parameters, 1-790

conv subroutines, 1-115
conversion

date and time representations, 1-129
date and time to string representation

using asctime subroutine, 1-129
using ctime subroutine, 1-129
using gmtime subroutine, 1-129
using localtime subroutine, 1-129

converter subroutines
btowc, 1-72
fwscanf, 1-253
iconv_close, 1-400
iconv_open, 1-403
inet_net_ntop, 1-438
inet_net_pton, 1-439
inet_ntop, 1-440
inet_pton, 1-441
jcode, 1-453
mbrlen, 1-616
mbrtowc, 1-618
mbsinit, 1-624
swscanf, 1-253
wscanf, 1-253

copysign subroutine, 1-118
creat subroutine, 1-747
crypt subroutine, 1-120
cs subroutine, 1-122
csid subroutine, 1-124
csjtojis subroutine, 1-453
csjtouj subroutine, 1-453
cstoccsid subroutine, 1-79
ctermid subroutine, 1-125
ctime subroutine, 1-126
ctime_r subroutine, 1-129

X-4 Technical Reference: Base Operating System

ctype subroutines, 1-131
cujtojis subroutine, 1-453
cujtosj subroutine, 1-453
current process credentials, reading, 1-318
current process environment, reading, 1-320
current processes

getting user name, 1-134
group ID

initializing, 1-442
returning, 1-301

path name of controlling terminal, 1-125
user ID, returning, 1-365

current working directory, getting path name, 1-278
cursor positions, setting, 1-434
cuserid subroutine, 1-134

D
data arrays, encrypting, 1-120
data locks, 1-767
data sorting subroutines

bsearch, 1-70
ftw, 1-244
hcreate, 1-397
hdestroy, 1-397
hsearch, 1-397
insque, 1-444
lfind, 1-543
lsearch, 1-543
remque, 1-444

data space segments, changing allocation, 1-68
date, displaying and setting, 1-356
date format conversions, 1-126
defect 219851, 1-865
defect 220239, 1-329
defssys subroutine, 1-135
delssys subroutine, 1-136
descriptor tables, getting size, 1-284
difftime subroutine, 1-126
directories

changing, 1-85
changing root, 1-95
creating, 1-640
directory stream operations, 1-755
generating path names, 1-391
getting path name of current directory, 1-278

directory subroutines
chdir, 1-85
chroot, 1-95
closedir, 1-755
getcwd, 1-278
getwd, 1-388
glob, 1-391
globfree, 1-395
link, 1-515
mkdir, 1-640
opendir, 1-755
readdir, 1-755
rewinddir, 1-755
seekdir, 1-755

telldir, 1-755
dirname Subroutine, 1-138
disclaim subroutine, 1-140
div subroutine, 1-6
dlclose subroutine, 1-141
dlerror subroutine, 1-142
dlopen Subroutine, 1-143
dlsym Subroutine, 1-146
drand48 subroutine, 1-147
drem subroutine, 1-150
dup subroutine, 1-177
dup2 subroutine, 1-177

E
ecvt subroutine, 1-152
encrypt subroutine, 1-120
encryption, performing, 1-120
endfsent subroutine, 1-288
endfsent_r subroutine, 1-290
endgrent subroutine, 1-293
endhostent subroutine, 1-708
endpwent subroutine, 1-334
endrpcent subroutine, 1-342
endttyent subroutine, 1-363
endutent subroutine, 1-381
endvfsent subroutine, 1-384
environment variables

finding default PATH, 1-113
finding values, 1-285
setting, 1-926

erand48 subroutine, 1-147
erf subroutine, 1-154
erfc subroutine, 1-154
errlog subroutine, 1-155
error functions, computing, 1-154
error handling

math, 1-613
returning information, 1-526

error logs, writing to, 1-155
error messages

placing into program, 1-39
writing, 1-764

errorlogging subroutines
errlog, 1-155
perror, 1-764

Euclidean distance functions, computing, 1-399
exec subroutines, 1-158
execl subroutine, 1-158
execle subroutine, 1-158
execlp subroutine, 1-158
exect subroutine, 1-158
execution profiling

after initialization, 1-653
using default data areas, 1-662
using defined data areas, 1-655

execv subroutine, 1-158
execve subroutine, 1-158
execvp subroutine, 1-158
exit subroutine, 1-165

X-5Index

exp subroutine, 1-167
expm1 subroutine, 1-167
exponential functions, computing, 1-167

F
fabs subroutine, 1-193
fabsl subroutine, 1-193
faccessx subroutine, 1-8
fattach Subroutine, 1-170
fchacl subroutine, 1-82
fchdir Subroutine, 1-172
fchmod subroutine, 1-87
fchown subroutine, 1-90
fchownx subroutine, 1-90
fclear subroutine, 1-173
fclose subroutine, 1-175
fcntl subroutine, 1-177
fcvt subroutine, 1-152
fdetach Subroutine, 1-184
fdopen subroutine, 1-201
feof macro, 1-186
ferror macro, 1-186
fetch_and_add subroutine, atomic access, 1-187
fetch_and_and subroutine, atomic access, 1-188
fetch_and_or subroutine, atomic access, 1-188
ffinfo subroutine, 1-189
fflush subroutine, 1-175
ffs subroutine, 1-63
fgetc subroutine, 1-268
fgetpos subroutine, 1-237
fgets subroutine, 1-348
fgetwc subroutine, 1-386
fgetws subroutine, 1-389
FIFO files, creating, 1-642
file access permissions, changing, 1-82, 1-87
file descriptors

checking I/O status, 1-798
closing associated files, 1-106
controlling, 1-177
establishing connections, 1-747
performing control functions, 1-445

file names, constructing unique, 1-644
file ownership, changing, 1-90
file permissions, changing, 1-82, 1-87
file pointers, moving read–write, 1-545
file subroutines

access, 1-8
accessx, 1-8
dup, 1-177
dup2, 1-177
endutent, 1-381
faccessx, 1-8
fclear, 1-173
fcntl, 1-177
ffinfo, 1-189
finfo, 1-189
flock, 1-532
flockfile, 1-191
fpathconf, 1-759

fsync, 1-241
ftrylockfile, 1-191
funlockfile, 1-191
getc_unlocked, 1-271
getchar_unlocked, 1-271
getenv, 1-285
getutent, 1-381
getutid, 1-381
getutline, 1-381
lockf, 1-532
lockfx, 1-532
lseek, 1-545
mkfifo, 1-642
mknod, 1-642
mkstemp, 1-644
mktemp, 1-644
nlist, 1-705
nlist64, 1-703
pathconf, 1-759
pclose, 1-763
pipe, 1-765
popen, 1-802
putc_unlocked, 1-271
putchar_unlocked, 1-271
putenv, 1-926
pututline, 1-381
setutent, 1-381
utmpname, 1-381

file system subroutines
confstr, 1-113
endfsent, 1-288
endvfsent, 1-384
fscntl, 1-236
getfsent, 1-288
getfsfile, 1-288
getfsspec, 1-288
getfstype, 1-288
getvfsbyflag, 1-384
getvfsbyname, 1-384
getvfsbytype, 1-384
getvfsent, 1-384
mntctl, 1-651
setfsent, 1-288
setvfsent, 1-384

file systems
controlling operations, 1-236
retrieving information, 1-288
returning mount status, 1-651

file trees, searching recursively, 1-244
file–implementation characteristics, 1-759
fileno macro, 1-186
files

binary, 1-229
closing, 1-106
creating, 1-642
creating links, 1-515
creating space at pointer, 1-173
determining accessibility, 1-8
establishing connections, 1-747

X-6 Technical Reference: Base Operating System

generating path names, 1-391
getting name list, 1-703, 1-705
locking and unlocking, 1-532
opening, 1-747
opening streams, 1-201
reading, 1-229
reading asynchronously, 1-28
repositioning pointers, 1-237
revoking access, 1-233
systems, getting information about, 1-290
writing asynchronously, 1-34
writing binary, 1-229

finfo subroutine, 1-189
finite subroutine, 1-103
first–in–first–out files, 1-642
flags, returning, 1-313
floating–point absolute value functions, computing,

1-193
floating–point exceptions, 1-212, 1-219, 1-225

changing floating point status and control
register, 1-222

flags, 1-210
querying process state, 1-225
testing for occurrences, 1-215, 1-217

floating–point numbers
converting to strings, 1-152
determining classifications, 1-103
manipulating, 1-234
reading and setting rounding modes, 1-220
rounding, 1-193

floating–point subroutines, 1-212, 1-219, 1-222,
1-225, 1-227

fp_sh_info, 1-222
fp_sh_trap_info, 1-222

floating–point trap control, 1-208
flock subroutine, 1-532
flockfile subroutine, 1-191
floor subroutine, 1-193
fmin subroutine, 1-602
fmod subroutine, 1-193
fmodl subroutine, 1-193
fmout subroutine, 1-602
fmtmsg Subroutine, 1-196
fnmatch subroutine, 1-199
fopen subroutine, 1-201
fork subroutine, 1-205
formatted output, printing, 1-804
fp_any_enable subroutine, 1-208
fp_any_xcp subroutine, 1-215
fp_clr_flag subroutine, 1-210
fp_cpusync subroutine, 1-212
fp_disable subroutine, 1-208
fp_disable_all subroutine, 1-208
fp_divbyzero subroutine, 1-215
fp_enable subroutine, 1-208
fp_enable_all subroutine, 1-208
fp_flush_imprecise Subroutine, 1-214
fp_inexact subroutine, 1-215
fp_invalid_op subroutine, 1-215
fp_iop_convert subroutine, 1-217

fp_iop_infdinf subroutine, 1-217
fp_iop_infmzr subroutine, 1-217
fp_iop_infsinf subroutine, 1-217
fp_iop_invcmp subroutine, 1-217
fp_iop_snan subroutine, 1-217
fp_iop_sqrt subroutine, 1-217
fp_iop_vxsoft subroutine, 1-217
fp_iop_zrdzr subroutine, 1-217
fp_is_enabled subroutine, 1-208
fp_overflow subroutine, 1-215
fp_raise_xcp subroutine, 1-219
fp_read_flag subroutine, 1-210
fp_read_rnd subroutine, 1-220
fp_set_flag subroutine, 1-210
fp_sh_info subroutine, 1-222
fp_sh_set_stat subroutine, 1-222
fp_sh_trap_info subroutine, 1-222
fp_swap_flag subroutine, 1-210
fp_swap_rnd subroutine, 1-220
fp_trap subroutine, 1-225
fp_trapstate subroutine, 1-227
fp_underflow subroutine, 1-215
fpathconf subroutine, 1-759
fprintf subroutine, 1-804
fputc subroutine, 1-923
fputs subroutine, 1-927
fputwc subroutine, 1-929
fputws subroutine, 1-931
fread subroutine, 1-229
free subroutine, 1-608
freeaddrinfo subroutine, 1-232
freopen subroutine, 1-201
frevoke subroutine, 1-233
frexp subroutine, 1-234
frexpl subroutine, 1-234
fscntl subroutine, 1-236
fseek subroutine, 1-237
fsetpos subroutine, 1-237
fsync subroutine, 1-241
ftell subroutine, 1-237
ftime subroutine, 1-356
ftok subroutine, 1-242
ftrylockfile subroutine, 1-191
ftw subroutine, 1-244
funlockfile subroutine, 1-191
fwide subroutine, 1-247
fwprintf subroutine, 1-248
fwrite subroutine, 1-229
fwscanf subroutine, 1-253

G
gai_strerror subroutine, 1-258
gamma functions, computing natural logarithms,

1-511
gamma subroutine, 1-511
gcd subroutine, 1-602
gcvt subroutine, 1-152
get_speed subroutine, 1-259
getaddrinfo subroutine, 1-261

X-7Index

getargs Subroutine, 1-264
getaudithostattr, IDtohost, hosttoID, nexthost or

putaudithostattr subroutine, 1-266
getc subroutine, 1-268
getc_unlocked subroutine, 1-271
getchar subroutine, 1-268
getchar_unlocked subroutine, 1-271
getconfattr subroutine, 1-272
getcontext or setcontext Subroutine, 1-277
getcwd subroutine, 1-278
getdate Subroutine, 1-280
getdtablesize subroutine, 1-284
getegid subroutine, 1-292
getenv subroutine, 1-285
geteuid subroutine, 1-365
getevars Subroutine, 1-286
getfsent subroutine, 1-288
getfsent_r subroutine, 1-290
getfsfile subroutine, 1-288
getfsspec subroutine, 1-288
getfsspec_r subroutine, 1-290
getfstype subroutine, 1-288
getfstype_r subroutine, 1-290
getgid subroutine, 1-292
getgrent subroutine, 1-293
getgrgid subroutine, 1-293
getgrgid_r subroutine, 1-295
getgrnam subroutine, 1-293
getgrnam_r subroutine, 1-296
getgroupattr subroutine, 1-297
getgroups subroutine, 1-301
getgrpaclattr Subroutine, 1-302
gethostent subroutine, 1-707
getinterval subroutine, 1-304
getitimer subroutine, 1-304
getlogin subroutine, 1-307
getlogin_r subroutine, 1-309
getnameinfo subroutine, 1-311
getopt subroutine, 1-313
getpagesize subroutine, 1-316
getpass subroutine, 1-317
getpcred subroutine, 1-318
getpenv subroutine, 1-320
getpgid Subroutine, 1-322
getpgrp subroutine, 1-323
getpid subroutine, 1-323
getportattr Subroutine, 1-324
getppid subroutine, 1-323
getpri subroutine, 1-328
getpriority subroutine, 1-329
getpw Subroutine, 1-333
getpwent subroutine, 1-334
getpwnam subroutine, 1-334
getpwuid subroutine, 1-334
getrlimit subroutine, 1-336
getrlimit64 subroutine, 1-336
getroleattr Subroutine, 1-339
getrpcbyname subroutine, 1-342
getrpcbynumber subroutine, 1-342
getrpcent subroutine, 1-342

getrusage subroutine, 1-344
getrusage64 subroutine, 1-344
gets subroutine, 1-348
getsfile_r subroutine, 1-290
getsid Subroutine, 1-350
getssys subroutine, 1-351
getsubopt Subroutine, 1-352
getsubsvr subroutine, 1-353
gettimeofday subroutine, 1-356
gettimer subroutine, 1-358
gettimerid subroutine, 1-361
getttyent subroutine, 1-363
getttynam subroutine, 1-363
getuid subroutine, 1-365
getuinfo subroutine, 1-366
getuserattr subroutine, 1-367
GetUserAuths Subroutine, 1-374
getuserpw subroutine, 1-375
getusraclattr Subroutine, 1-378
getutent subroutine, 1-381
getutid subroutine, 1-381
getutline subroutine, 1-381
getvfsbyflag subroutine, 1-384
getvfsbyname subroutine, 1-384
getvfsbytype subroutine, 1-384
getvfsent subroutine, 1-384
getw subroutine, 1-268
getwc subroutine, 1-386
getwchar subroutine, 1-386
getwd subroutine, 1-388
getws subroutine, 1-389
glob subroutine, 1-391
globfree subroutine, 1-395
gmtime subroutine, 1-126
gmtime_r subroutine, 1-129
grantpt subroutine, 1-396

H
hash tables, manipulating, 1-397
hcreate subroutine, 1-397
hdestroy subroutine, 1-397
hsearch subroutine, 1-397
hypot subroutine, 1-399

I
I/O asynchronous subroutines

aio_cancel, 1-24
aio_error, 1-26
aio_read, 1-28
aio_return, 1-30
aio_suspend, 1-32
aio_write, 1-34
lio_listio, 1-517
poll, 1-798

I/O low–level subroutines, 1-106, 1-747
creat, 1-747
open, 1-747

I/O requests
canceling, 1-24

X-8 Technical Reference: Base Operating System

listing, 1-517
retrieving error status, 1-26
retrieving return status, 1-30
suspending, 1-32

I/O stream macros
clearerr, 1-186
feof, 1-186
ferror, 1-186
fileno, 1-186

I/O stream subroutines
fclose, 1-175
fdopen, 1-201
fflush, 1-175
fgetc, 1-268
fgetpos, 1-237
fgets, 1-348
fgetwc, 1-386
fgetws, 1-389
fopen, 1-201
fprintf, 1-804
fputc, 1-923
fputs, 1-927
fputwc, 1-929
fputws, 1-931
fread, 1-229
freopen, 1-201
fseek, 1-237
fsetpos, 1-237
ftell, 1-237
fwide, 1-247
fwprintf, 1-248
fwrite, 1-229
getc, 1-268
getchar, 1-268
gets, 1-348
getw, 1-268
getwc, 1-386
getwchar, 1-386
getws, 1-389
printf, 1-804
putc, 1-923
putchar, 1-923
puts, 1-927
putw, 1-923
putwc, 1-929
putwchar, 1-929
putws, 1-931
rewind, 1-237
sprintf, 1-804
swprintf, 1-248
vfprintf, 1-804
vprintf, 1-804
vsprintf, 1-804
vwsprintf, 1-804
wprintf, 1-248
wsprintf, 1-804

I/O terminal subroutines
cfgetispeed, 1-80
cfgetospeed, 1-80
cfsetispeed, 1-80

cfsetospeed, 1-80
ioctl, 1-445
ioctl32, 1-445
ioctl32x, 1-445
ioctlx, 1-445

iconv_close subroutine, 1-400
iconv_open subroutine, 1-403
identification subroutines

endgrent, 1-293
endpwent, 1-334
getconfattr, 1-272
getgrent, 1-293
getgrgid, 1-293
getgrnam, 1-293
getgroupattr, 1-297
getpwent, 1-334
getpwnam, 1-334
getpwuid, 1-334
getuinfo, 1-366
getuserattr, 1-272, 1-367
IDtogroup, 1-297
IDtouser, 1-367
nextgroup, 1-297
nextuser, 1-367
putgrent, 1-293
putgroupattr, 1-297
putpwent, 1-334
putuserattr, 1-367
setgrent, 1-293
setpwent, 1-334

idexpl subroutine, 1-234
idpthreadsa, 1-120
IDtogroup subroutine, 1-297
IDtouser subroutine, 1-367
IEE Remainders, computing, 1-150
if_freenameindex subroutine, 1-405
if_indextoname subroutine, 1-406
if_nameindex subroutine, 1-407
if_nametoindex subroutine, 1-408
ilogb subroutine, 1-118
IMAIXMapping subroutine, 1-409
IMAuxCreate callback subroutine, 1-410
IMAuxDestroy callback subroutine, 1-411
IMAuxDraw callback subroutine, 1-412
IMAuxHide callback subroutine, 1-413
IMBeep callback subroutine, 1-414
IMClose subroutine, 1-415
IMCreate subroutine, 1-416
IMDestroy subroutine, 1-417
IMFilter subroutine, 1-418
IMFreeKeymap subroutine, 1-419
IMIndicatorDraw callback subroutine, 1-420
IMIndicatorHide callback subroutine, 1-421
IMInitialize subroutine, 1-422
IMInitializeKeymap subroutine, 1-424
IMIoctl subroutine, 1-425
IMLookupString subroutine, 1-427
IMProcess subroutine, 1-428
IMProcessAuxiliary subroutine, 1-430
IMQueryLanguage subroutine, 1-432

X-9Index

IMSimpleMapping subroutine, 1-433
IMTextCursor callback subroutine, 1-434
IMTextDraw callback subroutine, 1-435
IMTextHide callback subroutine, 1-436
IMTextStart callback subroutine, 1-437
imul_dbl subroutine, 1-6
incinterval subroutine, 1-304
inet_net_ntop subroutine, 1-438
inet_net_pton subroutine, 1-439
inet_ntop subroutine, 1-440
inet_pton subroutine, 1-441
initgroups subroutine, 1-442
initialize subroutine, 1-443
input method

checking language support, 1-432
closing, 1-415
control and query operations, 1-425
creating instance, 1-416
destroying instance, 1-417
initializing for particular language, 1-422

input method keymap
initializing, 1-419, 1-424
mapping key and state pair to string, 1-409,

1-427, 1-433
input method subroutines

callback functions
IMAuxCreate, 1-410
IMAuxDestroy, 1-411
IMAuxDraw, 1-412
IMAuxHide, 1-413
IMBeep, 1-414
IMIndicatorDraw, 1-420
IMIndicatorHide, 1-421
IMTextCursor, 1-434
IMTextDraw, 1-435
IMTextHide, 1-436
IMTextStart, 1-437

IMAIXMapping, 1-409
IMClose, 1-415
IMCreate, 1-416
IMDestroy, 1-417
IMFilter, 1-418
IMFreeKeymap, 1-419
IMinitialize, 1-422
IMInitializeKeymap, 1-424
IMIoctl, 1-425
IMLookupString, 1-427
IMProcess, 1-428
IMProcessAuxiliary, 1-430
IMQueryLanguage, 1-432
IMSimpleMapping, 1-433

input streams
reading character string from, 1-389
reading single character from, 1-386
returning characters or words, 1-268

insque subroutine, 1-444
integers

computing absolute values, 1-6
computing division, 1-6
computing double–precision multiplication, 1-6

performing arithmetic, 1-602
interoperability subroutines

ccsidtocs, 1-79
cstoccsid, 1-79

interprocess channels, creating, 1-765
interprocess communication keys, 1-242
interval timers

allocating per process, 1-361
manipulating expiration time, 1-304
returning values, 1-304

inverse hyperbolic functions, computing, 1-38
inverse trigonometric functions, computing, 1-36
invert subroutine, 1-602
ioctl subroutine, 1-445
ioctl32 subroutine, 1-445
ioctl32x subroutine, 1-445
ioctlx subroutine, 1-445
is_wctype subroutine, 1-452
isalnum subroutine, 1-131
isalpha subroutine, 1-131
isascii subroutine, 1-131
iscntrl subroutine, 1-131
isdigit subroutine, 1-131
isendwin Subroutine, 1-449
isgraph subroutine, 1-131
islower subroutine, 1-131
isnan subroutine, 1-103
isprint subroutine, 1-131
ispunct subroutine, 1-131
isspace subroutine, 1-131
isupper subroutine, 1-131
iswalnum subroutine, 1-450
iswalpha subroutine, 1-450
iswcntrl subroutine, 1-450
iswctype subroutine, 1-452
iswdigit subroutine, 1-450
iswgraph subroutine, 1-450
iswlower subroutine, 1-450
iswprint subroutine, 1-450
iswpunct subroutine, 1-450
iswspace subroutine, 1-450
iswupper subroutine, 1-450
iswxdigit subroutine, 1-450
isxdigit subroutine, 1-131
itom subroutine, 1-602
itrunc subroutine, 1-193

J
j0 subroutine, 1-64
j1 subroutine, 1-64
Japanese conv subroutines, 1-455
Japanese ctype subroutines, 1-457
jcode subroutines, 1-453
JFS, controlling operations, 1-236
JIS character conversions, 1-453
jistoa subroutine, 1-455
jistosj subroutine, 1-453
jistouj subroutine, 1-453
jn subroutine, 1-64

X-10 Technical Reference: Base Operating System

Journaled File System, 1-177
jrand48 subroutine, 1-147

K
Kanji character conversions, 1-453
keyboard events, processing, 1-418, 1-428
kill subroutine, 1-459
killpg subroutine, 1-459
kleenup subroutine, 1-462
knlist subroutine, 1-463
kutentojis subroutine, 1-455

L
l3tol subroutine, 1-467
l64a subroutine, 1-3
labs subroutine, 1-6
layout values

querying, 1-477
setting, 1-479
transforming text, 1-483

LayoutObject
creating, 1-470
freeing, 1-476

lcong48 subroutine, 1-147
ldaclose subroutine, 1-488
ldahread subroutine, 1-487
ldaopen subroutine, 1-499
ldclose subroutine, 1-488
ldexp subroutine, 1-234
ldfhread subroutine, 1-490
ldgetname subroutine, 1-492
ldiv subroutine, 1-6
ldlinit subroutine, 1-494
ldlitem subroutine, 1-494
ldlnseek subroutine, 1-496
ldlread subroutine, 1-494
ldlseek subroutine, 1-496
ldnrseek subroutine, 1-501
ldnshread subroutine, 1-503
ldnsseek subroutine, 1-505
ldohseek subroutine, 1-498
ldopen subroutine, 1-499
ldrseek subroutine, 1-501
ldshread subroutine, 1-503
ldsseek subroutine, 1-505
ldtbindex subroutine, 1-507
ldtbread subroutine, 1-508
ldtbseek subroutine, 1-510
lfind subroutine, 1-543
lgamma subroutine, 1-511
linear searches, 1-543
lineout subroutine, 1-513
link subroutine, 1-515
lio_listio subroutine, 1-517
llabs subroutine, 1-6
lldiv subroutine, 1-6
load subroutine, 1-520
loadbind subroutine, 1-524
loadquery subroutine, 1-526

locale subroutines
localeconv, 1-528
nl_langinfo, 1-701

locale–dependent conventions, 1-528
localeconv subroutine, 1-528
locales, returning language information, 1-701
localtime subroutine, 1-126
localtime_r subroutine, 1-129
lockf subroutine, 1-532
lockfx subroutine, 1-532
log subroutine, 1-167
log10 subroutine, 1-167
log1p subroutine, 1-167
logarithmic functions, computing, 1-167
logb subroutine, 1-118
logical partitions, synchronizing physical copies,

1-591
Logical Volume Manager, 1-547
logical volumes

changing attributes, 1-547
creating, 1-552
deleting from volume groups, 1-559
extending, 1-563
querying, 1-573
reducing, 1-586
synchronizing physical copies of logical

partitions, 1-591
login name, getting, 1-307, 1-309
loginfailed Subroutine, 1-536
loginrestrictions Subroutine, 1-538
loginsuccess Subroutine, 1-541
long integers, converting to strings, 1-468
long integers, converting

to 3–byte integers, 1-467
to base–64 ASCII strings, 1-3

lrand48 subroutine, 1-147
lsearch subroutine, 1-543
lseek subroutine, 1-545
ltol3 subroutine, 1-467
LVM logical volume subroutines

lvm_changelv, 1-547
lvm_createlv, 1-552
lvm_deletelv, 1-559
lvm_extendlv, 1-563
lvm_querylv, 1-573
lvm_reducelv, 1-586
lvm_resynclv, 1-591

LVM physical volume subroutines
lvm_changepv, 1-550
lvm_createvg, 1-556
lvm_deletepv, 1-561
lvm_installpv, 1-567
lvm_migratepp, 1-570
lvm_querypv, 1-577
lvm_resynclp, 1-589
lvm_resyncpv, 1-593

LVM volume group subroutines
lvm_queryvg, 1-581
lvm_queryvgs, 1-584

X-11Index

lvm_varyoffvg, 1-595
lvm_varyonvg, 1-597

lvm_changelv subroutine, 1-547
lvm_changepv subroutine, 1-550
lvm_createlv subroutine, 1-552
lvm_createvg subroutine, 1-556
lvm_deletelv subroutine, 1-559
lvm_deletepv subroutine, 1-561
lvm_extendlv subroutine, 1-563
lvm_installpv subroutine, 1-567
lvm_migratepp subroutine, 1-570
lvm_querylv subroutine, 1-573
lvm_querypv subroutine, 1-577
lvm_queryvg subroutine, 1-581
lvm_queryvgs subroutine, 1-584
lvm_reducelv subroutine, 1-586
lvm_resynclp subroutine, 1-589
lvm_resynclv subroutine, 1-591
lvm_resyncpv subroutine, 1-593
lvm_varyoffvg subroutine, 1-595
lvm_varyonvg subroutine, 1-597

M
m_in subroutine, 1-602
m_out subroutine, 1-602
macros, assert, 1-39
madd subroutine, 1-602
madvise subroutine, 1-605
makecontext Subroutine, 1-607
mallinfo subroutine, 1-608
malloc subroutine, 1-608
mallopt subroutine, 1-608
mapped files, synchronizing, 1-691
MatchAllAuths Subroutine, 1-612
MatchAllAuthsList Subroutine, 1-612
MatchAnyAuthsList Subroutine, 1-612
math errors, handling, 1-613
matherr subroutine, 1-613
mblen subroutine, 1-615
mbrlen subroutine, 1-616
mbrtowc subroutine, 1-618
mbsadvance subroutine, 1-620
mbscat subroutine, 1-622
mbschr subroutine, 1-623
mbscmp subroutine, 1-622
mbscpy subroutine, 1-622
mbsinit subroutine, 1-624
mbsinvalid subroutine, 1-625
mbslen subroutine, 1-626
mbsncat subroutine, 1-627
mbsncmp subroutine, 1-627
mbsncpy subroutine, 1-627
mbspbrk subroutine, 1-628
mbsrchr subroutine, 1-629
mbsrtowcs subroutine, mbsrtowcs, 1-630
mbstomb subroutine, 1-632
mbstowcs subroutine, 1-633
mbswidth subroutine, 1-634
mbtowc subroutine, 1-635

mcmp subroutine, 1-602
mdiv subroutine, 1-602
memccpy subroutine, 1-636
memchr subroutine, 1-636
memcmp subroutine, 1-636
memcpy subroutine, 1-636
memmove subroutine, 1-636
memory allocation, 1-608
memory area operations, 1-636
memory management

comparing and swapping data, 1-122
controlling execution profiling, 1-653, 1-655,

1-662
defining addresses, 1-151
defining available paging space, 1-816
disclaiming memory content, 1-140
generating IPC keys, 1-242
returning system page size, 1-316

memory management subroutines
alloca, 1-608
calloc, 1-608
cs, 1-122
disclaim, 1-140
free, 1-608
freeaddrinfo, 1-232
ftok, 1-242
gai_strerror, 1-258
getaddrinfo, 1-261
getnameinfo, 1-311
getpagesize, 1-316
if_freenameindex, 1-405
if_indextoname, 1-406
if_nameindex, 1-407
if_nametoindex, 1-408
madvise, 1-605
mallinfo, 1-608
malloc, 1-608
mallopt, 1-608
memccpy, 1-636
memchr, 1-636
memcmp, 1-636
memcpy, 1-636
memmove, 1-636
memset, 1-636
mincore, 1-638
mmap, 1-646
moncontrol, 1-653
monitor, 1-655
monstartup, 1-662
mprotect, 1-667
msem_init, 1-669
msem_lock, 1-671
msem_remove, 1-673
msem_unlock, 1-674
msleep, 1-690
msync, 1-691
munmap, 1-693
mwakeup, 1-694
psdanger, 1-816

X-12 Technical Reference: Base Operating System

realloc, 1-608
memory mapping

advising system of paging behavior, 1-605
determining page residency status, 1-638
file–system objects, 1-646
modifying access protections, 1-667
putting a process to sleep, 1-690
semaphores

initializing, 1-669
locking, 1-671
removing, 1-673
unlocking, 1-674

synchronizing mapped files, 1-691
unmapping regions, 1-693
waking a process, 1-694

memory pages, determining residency, 1-638
memory semaphores

initializing, 1-669
locking, 1-671
putting a process to sleep, 1-690
removing, 1-673
unlocking, 1-674
waking a process, 1-694

memset subroutine, 1-636
message catalogs

closing, 1-75
opening, 1-77
retrieving messages, 1-76

message control operations, 1-676
message facility subroutines

catclose, 1-75
catgets, 1-76
catopen, 1-77

message queue identifiers, 1-679
message queues

checking I/O status, 1-798
reading messages from, 1-681
receiving messages from, 1-687
sending messages to, 1-684

min subroutine, 1-602
mincore subroutine, 1-638
mkdir subroutine, 1-640
mkfifo subroutine, 1-642
mknod subroutine, 1-642
mkstemp subroutine, 1-644
mktemp subroutine, 1-644
mktime subroutine, 1-126
mmap subroutine, 1-646
mntctl subroutine, 1-651
modf subroutine, 1-234
modfl subroutine, 1-234
modulo remainders, computing, 1-193
moncontrol subroutine, 1-653
monitor subroutine, 1-655
monstartup subroutine, 1-662
mout subroutine, 1-602
move subroutine, 1-602
mprotect subroutine, 1-667
mrand48 subroutine, 1-147
msem_init subroutine, 1-669

msem_lock subroutine, 1-671
msem_remove subroutine, 1-673
msem_unlock subroutine, 1-674
msgctl subroutine, 1-676
msgget subroutine, 1-679
msgrcv subroutine, 1-681
msgsnd subroutine, 1-684
msleep subroutine, 1-690
msqrt subroutine, 1-602
msub subroutine, 1-602
msync subroutine, 1-691
mult subroutine, 1-602
multibyte character subroutines

csid, 1-124
mblen, 1-615
mbsadvance, 1-620
mbscat, 1-622
mbschr, 1-623
mbscmp, 1-622
mbscpy, 1-622
mbsinvalid, 1-625
mbslen, 1-626
mbsncat, 1-627
mbsncmp, 1-627
mbsncpy, 1-627
mbspbrk, 1-628
mbsrchr, 1-629
mbstomb, 1-632
mbstowcs, 1-633
mbswidth, 1-634
mbtowc, 1-635

multibyte characters
converting to wide, 1-633, 1-635
determining display width of, 1-634
determining length of, 1-615
determining number of, 1-626
extracting from string, 1-632
locating character sequences, 1-628
locating next character, 1-620
locating single characters, 1-623, 1-629
operations on null–terminated strings, 1-622,

1-627
returning charsetID, 1-124
validating, 1-625

munmap subroutine, 1-693
mwakeup subroutine, 1-694

N
NCesc subroutine, 1-115
NCflatchr subroutine, 1-115
NCtolower subroutine, 1-115
NCtoNLchar subroutine, 1-115
NCtoupper subroutine, 1-115
NCunesc subroutine, 1-115
nearest subroutine, 1-193
network host entries, retrieving, 1-707
new–process image file, 1-158
newpass subroutine, 1-695
nextafter subroutine, 1-118

X-13Index

nextgroup subroutine, 1-297
nextgrpacl Subroutine, 1-302
nextrole Subroutine, 1-339
nextuser subroutine, 1-367
nextusracl Subroutine, 1-378
nftw subroutine, 1-698
nice subroutine, 1-329
nl_langinfo subroutine, 1-701
nlist subroutine, 1-705
nlist64 subroutine, 1-703
nrand48 subroutine, 1-147
numbers, generating, pseudo–random, 1-147
numerical manipulation subroutines, 1-511

a64l, 1-3
abs, 1-6
acos, 1-36
acosh, 1-38
acosl, 1-36
asin, 1-36
asinh, 1-38
asinl, 1-36
atan, 1-36
atan2, 1-36
atan2l, 1-36
atanh, 1-38
atanl, 1-36
atof, 1-40
atoff, 1-40
cabs, 1-399
ceil, 1-193
ceill, 1-193
class, 1-103
copysign, 1-118
div, 1-6
drand48, 1-147
drem, 1-150
ecvt, 1-152
erand48, 1-147
erf, 1-154
erfc, 1-154
exp, 1-167
expm1, 1-167
fabs, 1-193
fabsl, 1-193
fcvt, 1-152
finite, 1-103
floor, 1-193
floorl, 1-193
fmin, 1-602
fmod, 1-193
fmodl, 1-193
fp_any_enable, 1-208
fp_any_xcp, 1-215
fp_clr_flag, 1-210
fp_disable, 1-208
fp_disable_all, 1-208
fp_divbyzero, 1-215
fp_enable, 1-208
fp_enable_all, 1-208
fp_inexact, 1-215

fp_invalid_op, 1-215
fp_iop_convert, 1-217
fp_iop_infdinf, 1-217
fp_iop_infmzr, 1-217
fp_iop_infsinf, 1-217
fp_iop_invcmp, 1-217
fp_iop_snan, 1-217
fp_iop_sqrt, 1-217
fp_iop_zrdzr, 1-217
fp_is_enabled, 1-208
fp_overflow, 1-215
fp_read_flag, 1-210
fp_read_rnd, 1-220
fp_set_flag, 1-210
fp_swap_flag, 1-210
fp_swap_rnd, 1-220
fp_underflow, 1-215
frexp, 1-234
frexpl, 1-234
gamma, 1-511
gcd, 1-602
gcvt, 1-152
hypot, 1-399
ilogb, 1-118
imul_dbl, 1-6
invert, 1-602
isnan, 1-103
itom, 1-602
itrunc, 1-193
j0, 1-64
j1, 1-64
jn, 1-64
jrand48, 1-147
l3tol, 1-467
l64a, 1-3
labs, 1-6
lcong48, 1-147
ldexp, 1-234
ldexpl, 1-234
ldiv, 1-6
lgamma, 1-511
llabs, 1-6
lldiv, 1-6
log, 1-167
log10, 1-167
log1p, 1-167
logb, 1-118
lrand48, 1-147
ltol3, 1-467
m_in, 1-602
m_out, 1-602
madd, 1-602
matherr, 1-613
mcmp, 1-602
mdiv, 1-602
min, 1-602
modf, 1-234
modfl, 1-234
mout, 1-602
move, 1-602

X-14 Technical Reference: Base Operating System

mrand48, 1-147
msqrt, 1-602
msub, 1-602
mult, 1-602
nearest, 1-193
nextafter, 1-118
nrand48, 1-147
omin, 1-602
omout, 1-602
pow, 1-167, 1-602
rint, 1-193
rpow, 1-602
scalb, 1-118
sdiv, 1-602
seed48, 1-147
srand48, 1-147
strtod, 1-40
strtof, 1-40
strtold, 1-40
trunc, 1-193
uitrunc, 1-193
umul_dbl, 1-6
unordered, 1-103
y0, 1-64
y1, 1-64
yn, 1-64

O
Object Data Manager, 1-727
object file access subroutines

ldaclose, 1-488
ldahread, 1-487
ldaopen, 1-499
ldclose, 1-488
ldfhread, 1-490
ldgetname, 1-492
ldlinit, 1-494
ldlitem, 1-494
ldlread, 1-494
ldlseek, 1-496
ldnlseek, 1-496
ldnrseek, 1-501
ldnshread, 1-503
ldnsseek, 1-505
ldohseek, 1-498
ldopen, 1-499
ldrseek, 1-501
ldshread, 1-503
ldsseek, 1-505
ldtbindex, 1-507
ldtbread, 1-508
ldtbseek, 1-510

object file subroutines
load, 1-520
loadbind, 1-524
loadquery, 1-526

object files
closing, 1-488
computing symbol table entries, 1-507

controlling run–time resolution, 1-524
listing, 1-526
loading and binding, 1-520
manipulating line number entries, 1-494
providing access, 1-499
reading archive headers, 1-487
reading file headers, 1-490
reading indexed section headers, 1-503
reading symbol table entries, 1-508
retrieving symbol names, 1-492
seeking to indexed sections, 1-505
seeking to line number entries, 1-496
seeking to optional file header, 1-498
seeking to relocation entries, 1-501
seeking to symbol tables, 1-510

objects, setting locale–dependent conventions,
1-528

ODM
ending session, 1-744
error message strings, 1-716
freeing memory, 1-718

ODM (Object Data Manager)
initializing, 1-727
running specified method, 1-740

ODM object classes
adding objects, 1-709
changing objects, 1-711
closing, 1-713
creating, 1-715
locking, 1-728
opening, 1-732
removing, 1-736
removing objects, 1-734, 1-738
retrieving class symbol structures, 1-730
retrieving objects, 1-720, 1-722, 1-724
setting default path location, 1-742
setting default permissions, 1-743
unlocking, 1-746

ODM subroutines
odm_add_obj, 1-709
odm_change_obj, 1-711
odm_close_class, 1-713
odm_create_class, 1-715
odm_err_msg, 1-716
odm_free_list, 1-718
odm_get_by_id, 1-720
odm_get_first, 1-724
odm_get_list, 1-722
odm_get_next, 1-724
odm_get_obj, 1-724
odm_initialize, 1-727
odm_lock, 1-728
odm_mount_class, 1-730
odm_open_class, 1-732
odm_rm_by_id, 1-734
odm_rm_class, 1-736
odm_rm_obj, 1-738
odm_run_method, 1-740
odm_set_path, 1-742

X-15Index

odm_set_perms, 1-743
odm_terminate, 1-744
odm_unlock, 1-746

odm_add_obj subroutine, 1-709
odm_change_obj subroutine, 1-711
odm_close_class subroutine, 1-713
odm_create_class subroutine, 1-715
odm_err_msg subroutine, 1-716
odm_free_list subroutine, 1-718
odm_get_by_id subroutine, 1-720
odm_get_first subroutine, 1-724
odm_get_list subroutine, 1-722
odm_get_next subroutine, 1-724
odm_get_obj subroutine, 1-724
odm_initialize subroutine, 1-727
odm_lock subroutine, 1-728
odm_mount_class subroutine, 1-730
odm_open_class subroutine, 1-732
odm_rm_by_id subroutine, 1-734
odm_rm_class subroutine, 1-736
odm_rm_obj subroutine, 1-738
odm_run_method subroutine, 1-740
odm_set_path subroutine, 1-742
odm_set_perms subroutine, 1-743
odm_terminate subroutine, 1-744
odm_unlock subroutine, 1-746
omin subroutine, 1-602
omout subroutine, 1-602
open file descriptors

controlling, 1-177
performing control functions, 1-445

open subroutine, described, 1-747
opendir subroutine, 1-755
openx subroutine, described, 1-747
output stream

writing character string to, 1-931
writing single character to, 1-929

P
paging memory

behavior, 1-605
defining available space, 1-816

passwdexpired, 1-758
password maintenance, password changing, 1-93
passwords

generating new, 1-695
reading, 1-317

pathconf subroutine, 1-759
pause subroutine, 1-762
pclose subroutine, 1-763
permanent storage, writing file changes to, 1-241
perror subroutine, 1-764
pglob parameter, freeing memory, 1-395
physical partitions

moving, 1-570
synchronizing, 1-589, 1-593

physical volumes
changing, 1-550
deleting, 1-561

installing, 1-556, 1-567
moving physical partitions between, 1-570
querying, 1-577
synchronizing physical partitions, 1-593

pipe subroutine, 1-765
pipes

closing, 1-763
creating, 1-765, 1-802

plock subroutine, 1-767
pm_battery_control subroutine, 1-769
pm_control_parameter subroutine, 1-771
pm_control_state subroutine, 1-777
pm_event_query subroutine, 1-781
poll subroutine, 1-798
popen subroutine, 1-802
pow subroutine, 1-167, 1-602
power functions, computing, 1-167
power management

pm_battery_control subroutine, 1-769
pm_control_parameter subroutine, 1-771
pm_control_state subroutine, 1-777
pm_event_query subroutine, 1-781

pre–editing space, 1-437
print formatter subroutines

initialize, 1-443
lineout, 1-513

print lines, formatting, 1-513
printer initialization, 1-443
printf subroutine, 1-804
process accounting

displaying resource use, 1-344
enabling and disabling, 1-11
tracing process execution, 1-911

process credentials, reading, 1-318
process environments

initializing run–time, 1-462
reading, 1-320

process group IDs
returning, 1-292, 1-323
supplementary IDs

getting, 1-301
initializing, 1-442

process identification
alphanumeric user name, 1-134
path name of controlling terminal, 1-125

process IDs, returning, 1-323
process initiation

creating child process, 1-205
executing file, 1-158

process locks, 1-767
process messages

getting message queue identifiers, 1-679
providing control operations, 1-676
reading from message queue, 1-681
receiving from message queue, 1-687
sending to message queue, 1-684

process priorities
getting or setting, 1-329
returning scheduled priorities, 1-328

X-16 Technical Reference: Base Operating System

process program counters, histogram, 1-813
process resource allocation

changing data space segments, 1-68
controlling system consumption, 1-336
getting size of descriptor table, 1-284
locking into memory, 1-767
starting address sampling, 1-813
stopping address sampling, 1-813

process resource use, 1-344
process signals

alarm, 1-304
printing system signal messages, 1-817
sending to processes, 1-459

process subroutines (security and auditing)
getegid, 1-292
geteuid, 1-365
getgid, 1-292
getgroups, 1-301
getpcred, 1-318
getpenv, 1-320
getuid, 1-365
initgroups, 1-442
kleenup, 1-462

process user IDs, returning, 1-365
processes

closing pipes, 1-763
creating, 1-205
getting process table entries, 1-331
initializing run–time environment, 1-462
initiating pipes, 1-802
suspending, 1-762
terminating, 1-5, 1-165, 1-459
tracing, 1-911

processes subroutines
_exit, 1-165
abort, 1-5
acct, 1-11
atexit, 1-165
brk, 1-68
ctermid, 1-125
cuserid, 1-134
exec, 1-158
exit, 1-165
fork, 1-205
getdtablesize, 1-284
getpgrp, 1-323
getpid, 1-323
getppid, 1-323
getpri, 1-328
getpriority, 1-329
getrlimit, 1-336
getrlimit64, 1-336
getrusage, 1-344
getrusage64, 1-344
kill, 1-459
killpg, 1-459
msgctl, 1-676
msgget, 1-679
msgrcv, 1-681
msgsnd, 1-684

msgxrcv, 1-687
nice, 1-329
pause, 1-762
plock, 1-767
profil, 1-813
psignal, 1-817
ptrace, 1-911
sbrk, 1-68
setpriority, 1-329
setrlimit, 1-336
setrlimit64, 1-336
times, 1-344
vfork, 1-205
vlimit, 1-336
vtimes, 1-344

profil subroutine, 1-813
program assertion, verifying, 1-39
psdanger subroutine, 1-816
psignal subroutine, 1-817
pthread_atfork subroutine, 1-818
pthread_attr_destroy subroutine, 1-820
pthread_attr_getdetachstate subroutine, 1-821
pthread_attr_getguardsize subroutine, 1-823
pthread_attr_getschedparam subroutine, 1-825
pthread_attr_getstackaddr subroutine, 1-826
pthread_attr_getstacksize subroutine, 1-827
pthread_attr_init subroutine, 1-828
pthread_attr_setdetachstate subroutine, 1-821
pthread_attr_setguardsize subroutine, 1-823
pthread_attr_setschedparam subroutine, 1-830
pthread_attr_setstackaddr subroutine, 1-831
pthread_attr_setstacksize subroutine, 1-832
pthread_attr_setsupendstate_np and

pthread_attr_getsuspendstate_np subroutine,
1-834

pthread_cancel subroutine, 1-836
pthread_cleanup_pop subroutine, 1-837
pthread_cleanup_push subroutine, 1-837
pthread_cond_broadcast subroutine, 1-841
pthread_cond_destroy subroutine, 1-838
PTHREAD_COND_INITIALIZER macro, 1-840
pthread_cond_signal subroutine, 1-841
pthread_cond_timedwait subroutine, 1-843
pthread_cond_wait subroutine, 1-843
pthread_condattr_destroy subroutine, 1-845
pthread_condattr_getpshared subroutine, 1-847
pthread_condattr_setpshared subroutine, 1-849
pthread_create subroutine, 1-851
pthread_delay_np subroutine, 1-853
pthread_equal subroutine, 1-854
pthread_exit subroutine, 1-855
pthread_get_expiration_np subroutine, 1-857
pthread_getconcurrency subroutine, 1-858
pthread_getschedparam subroutine, 1-860
pthread_getspecific subroutine, 1-862
pthread_getunique_np subroutine, 1-864
pthread_join subroutine, 1-865
pthread_key_create subroutine, 1-867
pthread_key_delete subroutine, 1-869
pthread_kill subroutine, 1-870

X-17Index

pthread_lock_global_np subroutine, 1-871
pthread_mutex_destroy subroutine, 1-872
pthread_mutex_init subroutine, 1-872
PTHREAD_MUTEX_INITIALIZER macro, 1-874
pthread_mutex_lock subroutine, 1-875
pthread_mutex_trylock subroutine, 1-875
pthread_mutexattr_destroy subroutine, 1-877
pthread_mutexattr_getkind_np subroutine, 1-879
pthread_mutexattr_getpshared subroutine, 1-881
pthread_mutexattr_gettype subroutine, 1-883
pthread_mutexattr_init subroutine, 1-877
pthread_mutexattr_setkind_np subroutine, 1-885
pthread_mutexattr_setpshared subroutine, 1-881
pthread_mutexattr_settype subroutine, 1-883
pthread_once subroutine, 1-887
PTHREAD_ONCE_INIT macro, 1-888
pthread_rwlock_destroy subroutine, 1-889
pthread_rwlock_init subroutine, 1-889
pthread_rwlock_rdlock subroutine, 1-891
pthread_rwlock_tryrdlock subroutine, 1-891
pthread_rwlock_unlock subroutine, 1-893
pthread_rwlockattr_destroy subroutine, 1-899
pthread_rwlockattr_getpshared subroutine, 1-897
pthread_rwlockattr_init subroutine, 1-899
pthread_rwlockattr_setpshared subroutine, 1-897
pthread_self subroutine, 1-901
pthread_setcancelstate subroutine, 1-902
pthread_setschedparam subroutine, 1-904
pthread_setspecific subroutine, 1-862
pthread_sigmask subroutine, 1-906
pthread_signal_to_cancel_np subroutine, 1-907
pthread_suspend_np and pthread_continue_np

subroutine, 1-908
pthread_unlock_global_np subroutine, 1-909
pthread_yield subroutine, 1-910
ptrace subroutine, 1-911
ptracex subroutine, 1-911
ptsname subroutine, 1-922
putc subroutine, 1-923
putc_unlocked subroutine, 1-271
putchar subroutine, 1-923
putchar_unlocked subroutine, 1-271
putenv subroutine, 1-926
putgrent subroutine, 1-293
putgroupattr subroutine, 1-297
putgrpaclattr Subroutine, 1-302
putportattr Subroutine, 1-324
putpwent subroutine, 1-334
putroleattr Subroutine, 1-339
puts subroutine, 1-927
putuserattr subroutine, 1-367
putuserpw subroutine, 1-375
putuserpwhist subroutine, 1-375
putusraclattr Subroutine, 1-378
pututline subroutine, 1-381
putw subroutine, 1-923
putwc subroutine, 1-929
putwchar subroutine, 1-929
putws subroutine, 1-931
pwdrestrict_method subroutine, 1-933

Q
queries

battery status, 1-788
PM event, 1-783
PM parameters, 1-774
PM states, 1-779
PM system parameters, 1-790

queues, inserting and removing elements, 1-444

R
read operations

asynchronous, 1-28
binary files, 1-229

read–write file pointers, moving, 1-545
readdir subroutine, 1-755
realloc subroutine, 1-608
registers, PM aware application, 1-787
regular expressions, matching patterns, 1-109
remque subroutine, 1-444
requests, system state change, 1-796
resabs subroutine, 1-304
reset_speed subroutine, 1-259
resinc subroutine, 1-304
restimer subroutine, 1-358
retrieving, new PM event, 1-784
rewind subroutine, 1-237
rewinddir subroutine, 1-755
rint subroutine, 1-193
rpc file, handling, 1-342
rpow subroutine, 1-602
run–time environment, initializing, 1-462

S
sbrk subroutine, 1-68
scalb subroutine, 1-118
sdiv subroutine, 1-602
seed48 subroutine, 1-147
seekdir subroutine, 1-755
set_speed subroutine, 1-259
setfsent subroutine, 1-288
setfsent_r subroutine, 1-290
setgrent subroutine, 1-293
setitimer subroutine, 1-304
setkey subroutine, 1-120
setpriority subroutine, 1-329
setpwent subroutine, 1-334
setrlimit subroutine, 1-336
setrlimit64 subroutine, 1-336
setrpcent subroutine, 1-342
setsockopt subroutine, 1-401
settimeofday subroutine, 1-356
settimer subroutine, 1-358
setttyent subroutine, 1-363
setutent subroutine, 1-381
setvfsent subroutine, 1-384
shell command–line flags, 1-313
SIGALRM signal, 1-305
SIGIOT signal, 1-5

X-18 Technical Reference: Base Operating System

signal names, formatting, 1-817
single–byte to wide–character conversion, 1-72
SJIS character conversions, 1-453
sjtojis subroutine, 1-453
sjtouj subroutine, 1-453
socket options, setting, 1-401
sockets kernel service subroutines, setsockopt,

1-401
sockets network library subroutines

endhostent, 1-708
gethostent, 1-707

special files, creating, 1-642
sprintf subroutine, 1-804
srand48 subroutine, 1-147
SRC subroutines

addssys, 1-21
chssys, 1-97
delssys, 1-136
getssys, 1-351

SRC subsys record, adding, 1-21
SRC subsys structure, initializing, 1-135
status indicators

beeping, 1-414
drawing, 1-420
hiding, 1-421

step subroutine, 1-109
stime subroutine, 1-358
streams

checking status, 1-186
closing, 1-175
flushing, 1-175
opening, 1-201
repositioning file pointers, 1-237
writing to, 1-175

string conversion, long integers to base–64 ASCII,
1-3

string manipulation subroutines
advance, 1-109
bcmp, 1-63
bcopy, 1-63
bzero, 1-63
compile, 1-109
ffs, 1-63
fgets, 1-348
fnmatch, 1-199
fputs, 1-927
gets, 1-348
puts, 1-927
step, 1-109

strings
bit string operations, 1-63
byte string operations, 1-63
copying, 1-63
drawing text strings, 1-435
matching against pattern parameters, 1-199
reading bytes into arrays, 1-348
writing to standard output streams, 1-927
zeroing out, 1-63

strtod subroutine, 1-40
strtof subroutine, 1-40

strtold subroutine, 1-40
subsystem objects

modifying, 1-97
removing, 1-136

subsystem records, reading, 1-351, 1-353
supplementary process group IDs

getting, 1-301
initializing, 1-442

swapcontext Subroutine, 1-607
swprintf subroutine, 1-248
swscanf subroutine, 1-253
symbol–handling subroutine, knlist, 1-463
symbols, translating names to addresses, 1-463
sys_siglist vector, 1-817
system auditing, 1-42
system data objects, auditing modes, 1-50
system event audits, getting or setting status, 1-46
system resources, setting maximums, 1-336
system signal messages, 1-817
system variables, determining values, 1-113

T
telldir subroutine, 1-755
terminal baud rate

get, 1-259
set, 1-259

text area, hiding, 1-436
text locks, 1-767
text strings, drawing, 1-435
Thread–Safe C Library, 1-290, 1-295, 1-296

subroutines
getfsent_r, 1-290
getlogin_r, 1-309
getsfile_r, 1-290
setfsent_r, 1-290

Thread–safe C Library, subroutines, 164_r, 1-468
threads, getting thread table entries, 1-354
Threads Library, 1-904

blocked signals, 1-906
condition variables

creation and destruction, 1-838, 1-840
creation attributes, 1-845, 1-847, 1-849
signalling a condition, 1-841
waiting for a condition, 1-843

DCE compatibility subroutines
pthread_delay_np, 1-853
pthread_get_expiration_np, 1-857
pthread_getunique_np, 1-864
pthread_lock_global_np, 1-871
pthread_mutexattr_getkind_np, 1-879
pthread_mutexattr_setkind_np, 1-885
pthread_signal_to_cancel_np, 1-907
pthread_unlock_global_np, 1-909

mutexes
creation and destruction, 1-874
creation attributes, 1-881, 1-883
locking, 1-875
pthread_mutexattr_destroy, 1-877
pthread_mutexattr_init, 1-877

X-19Index

process creation, pthread_atfork subroutine,
1-818

pthread_attr_getguardsize subroutine, 1-823
pthread_attr_setguardsize subroutine, 1-823
pthread_getconcurrency subroutine, 1-858
pthread_mutex_destroy, 1-872
pthread_mutex_init, 1-872
read–write lock attributes object, 1-897, 1-899
read–write locks

pthread_rwlock_destroy subroutine, 1-889
pthread_rwlock_init subroutine, 1-889
pthread_rwlock_rdlock subroutine, 1-891
pthread_rwlock_tryrdlock subroutine, 1-891
pthread_rwlock_unlock subroutine, 1-893

scheduling
dynamic thread control, 1-860, 1-910
thread creation attributes, 1-825, 1-830

signal, sleep, and timer handling, pthread_kill
subroutine, 1-870

thread–specific data
pthread_getspecific subroutine, 1-862
pthread_key_create subroutine, 1-867
pthread_key_delete subroutine, 1-869
pthread_setspecific subroutine, 1-862

threads
cancellation, 1-836, 1-902
creation, 1-851
creation attributes, 1-820, 1-821, 1-826,

1-827, 1-828, 1-831, 1-832, 1-834, 1-908
ID handling, 1-854, 1-901
initialization, 1-887, 1-888
termination, 1-837, 1-855, 1-865

time
displaying and setting, 1-356
reporting used CPU time, 1-105
synchronizing system clocks, 1-23

time format conversions, 1-126
time manipulation subroutines

absinterval, 1-304
adjtime, 1-23
alarm, 1-304
asctime, 1-126
clock, 1-105
ctime, 1-126
difftime, 1-126
ftime, 1-356
getinterval, 1-304
getitimer, 1-304
gettimeofday, 1-356
gettimer, 1-358
gettimerid, 1-361
gmtime, 1-126
incinterval, 1-304
localtime, 1-126
mktime, 1-126
resabs, 1-304
resinc, 1-304
restimer, 1-358
setitimer, 1-304
settimeofday, 1-356

settimer, 1-358
stime, 1-358
time, 1-358
tzset, 1-126
ualarm, 1-304

time subroutine, 1-358
timer, getting or setting values, 1-358
times subroutine, 1-344
toascii subroutine, 1-115
tojhira subroutine, 1-455
tojkata subroutine, 1-455
tojlower subroutine, 1-455
tojupper subroutine, 1-455
tolower subroutine, 1-115
toujis subroutine, 1-455
toupper subroutine, 1-115
transforming text, 1-483
trunc subroutine, 1-193
trusted processes, initializing run–time

environment, 1-462
tty description file, querying, 1-363
tty subroutines

endttyent, 1-363
getttyent, 1-363
getttynam, 1-363
setttyent, 1-363

tzset subroutine, 1-126

U
ualarm subroutine, 1-304
uitrunc subroutine, 1-193
UJIS character conversions, 1-453
ujtojis subroutine, 1-453
ujtosj subroutine, 1-453
umul_dbl subroutine, 1-6
unordered subroutine, 1-103
unregisters, PM aware application, 1-787
user accounts, checking validity, 1-99
user authentication data, accessing, 1-375
user database

accessing group information, 1-293, 1-297
accessing user information, 1-272, 1-334,

1-367
user information

accessing, 1-272, 1-334, 1-367
accessing group information, 1-293, 1-297
searching buffer, 1-366

user login name, getting, 1-307
users, authenticating, 1-101
utmpname subroutine, 1-381

V
vectors, sys_siglist, 1-817
vfork subroutine, 1-205
vfprintf subroutine, 1-804
VFS (Virtual File System)

getting file entries, 1-384
returning mount status, 1-651

virtual memory, mapping file–system objects, 1-646

X-20 Technical Reference: Base Operating System

vlimit subroutine, 1-336
volume groups

changing physical volumes, 1-550
creating, 1-556
creating empty logical volumes, 1-552
deleting logical volumes, 1-559
deleting physical volumes, 1-561
installing physical volumes, 1-567
querying, 1-581
querying all varied on–line, 1-584
varying off–line, 1-595
varying on–line, 1-597

vprintf subroutine, 1-804
vsprintf subroutine, 1-804
vtimes subroutine, 1-344
vwsprintf subroutine, 1-804

W
wide character subroutines

fgetwc, 1-386
fgetws, 1-389
fputwc, 1-929
fputws, 1-931
getwc, 1-386
getwchar, 1-386
getws, 1-389
is_wctype, 1-452
iswalnum, 1-450
iswalpha, 1-450
iswcntrl, 1-450

iswctype subroutine, 1-452
iswdigit, 1-450
iswgraph, 1-450
iswlower, 1-450
iswprint, 1-450
iswpunct, 1-450
iswspace, 1-450
iswupper, 1-450
iswxdigit, 1-450
putwc, 1-929
putwchar, 1-929
putws, 1-931

wide characters
checking character class, 1-450
converting, from multibyte, 1-633, 1-635
determining properties, 1-452
reading from input stream, 1-386, 1-389
writing to output stream, 1-929, 1-931

words, returning from input streams, 1-268
wprintf subroutine, 1-248
write operations

asynchronous, 1-34
binary files, 1-229

wscanf subroutine, 1-253
wsprintf subroutine, 1-804

Y
y0 subroutine, 1-64
y1 subroutine, 1-64
yn subroutine, 1-64

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull Technical Reference Base Operating System and Extensions Volume 1/2

Nº Reférence / Reference Nº : 86 A2 81AP 05 Daté / Dated : February 1999

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.

Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.

If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL ELECTRONICS ANGERS

CEDOC

34 Rue du Nid de Pie – BP 428

49004 ANGERS CEDEX 01

FRANCE

Technical Publications Ordering Form

Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:

Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL ELECTRONICS ANGERS
CEDOC
ATTN / MME DUMOULIN
34 Rue du Nid de Pie – BP 428
49004 ANGERS CEDEX 01
FRANCE

Managers / Gestionnaires :
Mrs. / Mme : C. DUMOULIN +33 (0) 2 41 73 76 65
Mr. / M : L. CHERUBIN +33 (0) 2 41 73 63 96

FAX : +33 (0) 2 41 73 60 19
E–Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web site at: / Ou visitez notre site web à:

http://www–frec.bull.com (PUBLICATIONS, Technical Literature, Ordering Form)

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

[_ _] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E–MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander à votre contact Bull.

BULL ELECTRONICS ANGERS

CEDOC

34 Rue du Nid de Pie – BP 428

49004 ANGERS CEDEX 01

FRANCE

86 A2 81AP 05

ORDER REFERENCE

P
L
A

C
E

 B
A

R
 C

O
D

E
 I

N
 L

O
W

E
R

L
E

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.

Use the cut marks to get the labels.

AIX

86 A2 81AP 05

Technical
Reference

Base Operating
System and
Extensions
Volume 1/2

AIX

86 A2 81AP 05

Technical
Reference

Base Operating
System and
Extensions
Volume 1/2

AIX

86 A2 81AP 05

Technical
Reference

Base Operating
System and
Extensions
Volume 1/2

