
SC23-2593

Bull DPX/20
Writing a Device Driver

AIX

86 A2 29WG 04

ORDER REFERENCE

Bull DPX/20
Writing a Device Driver

AIX

Software

November 1995

BULL S.A. CEDOC

Atelier de Reproduction

FRAN–231

331 Avenue Patton BP 428

49005 ANGERS CEDEX

FRANCE

86 A2 29WG 04

ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States and other

countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and making

derivative works.

Copyright Bull S.A. 1992, 1995

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of

this book are invited. A form is provided at the end of this book for this purpose.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under

licence.

UNIX is a registered trademark in the USA and other countries licensed exclusively through X/Open.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors

contained herein, or for incidental or consequential damages in connection with the use of this material.

Preface iii

Contents

About This Book xiii.

Chapter 1. Device Driver Overview 1-1.

Aspects of the Kernel that Affect Device Drivers 1-2.

How Device Drivers Are Accessed 1-3.

Types of Device Drivers 1-5.

Block Device Drivers 1-6.

STREAMS Device Drivers 1-7.

Character Device Drivers 1-7.

Device Driver Configuration 1-8.

Object Data Manager (ODM) Database 1-9.

Device Driver Entry Points 1-10.

xyzconfig Entry Point 1-10.

xyzopen and xyzclose Entry Points 1-11.

xyzread Entry Point 1-11.

xyzwrite Entry Point 1-11.

xyzstrategy Entry Point 1-12.

xyzioctl Entry Point 1-12.

xyzmpx Entry Point 1-12.

xyzselect Entry Point 1-13.

xyzrevoke Entry Point 1-14.

xyzdump Entry Point 1-14.

STREAMS Entry Points 1-14.

xyzwput Entry Point 1-15.

xyzwsrv, xyzrsrv Entry Points 1-15.

Sample Device Driver 1-15.

Files for Sample XYZ Device Driver 1-16.

makefile for Sample XYZ Device Driver 1-16.

Configuration Program for Sample XYZ Device Driver 1-17.

Source Code for Sample XYZ Device Driver 1-19.

User Program to Invoke Sample XYZ Device Driver 1-20.

Running the Sample XYZ Device Driver 1-21.

Trace Output for Sample XYZ Device Driver 1-21.

Routines on the Interrupt Side 1-22.

xyzintr Entry Point 1-22.

xyzcallback Entry Point 1-23.

Pinning Device Driver Object Files 1-24.

Driving a SCSI Attached Device 1-25.

Other Topics 1-26.

Chapter 2. Device I/O 2-1.

Address Translation 2-1.

Block Address Translation 2-2.

Segment Address Translation 2-2.

I/O Controller Types 2-4.

I/O Space on PCI and ISA Systems 2-5.

Programmed I/O to PCI, ISA, and PCMCIA Devices 2-6.

Direct Memory Access 2-7.

DMA on POWER and POWER2 Architectures 2-7.

 iv AIX Version 3.2 Writing a Device Driver

DMA on RSC (Single-Chip) Architectures 2-7.

DMA on PowerPC Architectures 2-7.

DMA Routines for PCI and ISA Devices 2-8.

Page Protection 2-9.

Peer-To-Peer DMA Support 2-9.

DMA Master I/O for an ISA Adapter 2-10.

DMA Slave Transfers on an ISA Adapter 2-12.

DMA Master Transfers on a PCI Adapter 2-13.

I/O Controller Interface Translation on Micro Channel Systems 2-14.

I/O Address Spaces on Micro Channel Systems 2-16.

Programmed I/O to Micro Channel Adapters 2-20.

Programmed I/O (PIO) Error Recovery Considerations
for Micro Channel Adapters 2-22.

 Direct Memory Access (DMA) on Micro Channel 2-23.

DMA Channels and How They are Assigned on Micro Channel 2-23.

Understanding DMA Arbitration-Level Assignment 2-24.

Direct Memory Access (DMA) Slave Operations 2-25.

DMA Bus Master Operations 2-27.

Alignment Issues for DMA on Micro Channel 2-33.

Chapter 3. Interrupts 3-1.

Overview 3-1.

Interrupt Hardware Support 3-2.

Interrupt Levels 3-2.

Interrupt Priorities 3-4.

Interrupt-Level Mapping 3-6.

Interrupt Handling 3-9.

Early Power-Off Warning Interrupt 3-9.

BUS Interrupts 3-11.

Interrupt Management Kernel Services 3-13.

Multiprocessor Interrupt Concerns 3-13.

Interrupts on PCMCIA Devices 3-14.

Chapter 4. Memory Management 4-1.

Memory Allocation Services 4-1.

xmalloc 4-1.

xmfree 4-3.

init_heap 4-3.

Memory Pinning Services 4-3.

ltpin 4-3.

pin 4-3.

pincode 4-4.

pinu 4-4.

ltunpin 4-4.

unpin 4-4.

unpincode 4-4.

unpinu 4-4.

Memory Access Services 4-5.

copyin 4-5.

copyinstr 4-5.

copyout 4-5.

uiomove 4-5.

uwritec 4-5.

ureadc 4-5.

Virtual Memory Management Services 4-6.

Preface v

vms_create 4-8.

vms_delete 4-8.

vm_handle 4-8.

vm_att 4-8.

vm_cflush 4-8.

vm_det 4-8.

vm_mount 4-8.

vm_umount 4-8.

vm_move 4-9.

vm_write 4-9.

vm_writep 4-9.

vms_iowait 4-9.

vm_release 4-10.

vm_releasep 4-10.

Example Using Virtual Memory Management Services 4-10.

Cross-Memory Services 4-11.

xmattach 4-11.

xmdetach 4-12.

xmemin 4-12.

xmemout 4-12.

xmemdma 4-12.

Chapter 5. Synchronization and Serialization 5-1.

Timer Services 5-2.

Watchdog Timers 5-2.

Real-Time Timers 5-4.

Event Notification 5-7.

Serialization Services 5-8.

Uniprocessor (UP) Serialization 5-8.

Multiprocessing (MP) Serialization 5-8.

Lock Overview 5-9.

Serializing Critical Sections 5-9.

Avoiding Lock Nesting 5-10.

Releasing Locks During Sleeps 5-10.

Ensuring Proper Lock Ordering 5-10.

Device Driver Lock Models 5-10.

MP-Safe Coding Sample 5-12.

MP-Efficient Coding Sample 5-14.

Making a Uniprocessor Device Driver Multiprocessor-Safe 5-16.

Chapter 6. Device Configuration Methods 6-1.

Device States 6-2.

ODM Configuration Databases 6-3.

Define Methods 6-4.

Configure Methods 6-4.

Change Methods 6-5.

Unconfigure Methods 6-6.

Undefine Methods 6-6.

Configuring Devices with No Parent 6-7.

Adapter Device Attributes and busresolve 6-7.

Configuration of Devices on PCI and ISA Bus Systems 6-8.

Configuration of Devices on PCMCIA Systems 6-9.

Processing Pending or Wrong Interrupts after PCMCIA Card Removal 6-12.

Critical Section on Configuring/Unconfiguring a PCMCIA Card 6-12.

Creating and Releasing Major and Minor Numbers for a Special File 6-13.

 vi AIX Version 3.2 Writing a Device Driver

Creating Major Numbers 6-13.

Creating Minor Numbers 6-14.

Releasing Major and Minor Numbers 6-14.

Chapter 7. Block Device Drivers 7-1.

Block I/O Device Driver Entry Points 7-1.

ddconfig Entry Point 7-2.

ddopen and ddclose Entry Points 7-3.

ddstrategy Entry Point 7-3.

dddump Entry Point 7-6.

Character Access to Block Device Drivers 7-6.

Raw I/O Processing 7-6.

Block I/O Device Summary 7-7.

Chapter 8. SCSI Device Drivers 8-1.

SCSI Device Driver Overview 8-1.

SCSI Adapter Device Driver Overview 8-1.

SCSI Adapter/Device Interface 8-2.

sc_buf Structure 8-2.

Adapter/Device Driver Intercommunication 8-4.

SCSI Adapter Device Driver Routines 8-5.

config 8-5.

open 8-5.

close 8-5.

openx 8-5.

strategy 8-5.

ioctl 8-6.

SCSI Adapter ioctl Operations 8-6.

IOCINFO 8-6.

SCIOSTART 8-7.

SCIOSTOP 8-7.

SCIOINQU 8-7.

SCIOSTUNIT 8-8.

SCIOTUR 8-9.

SCIORESET 8-10.

SCIOHALT 8-10.

SCIODIAG 8-11.

SCIOTRAM 8-11.

SCIODNLD 8-12.

SCSI Device Driver Routines 8-13.

Top-Half Routines 8-14.

Bottom-Half Routines 8-16.

PVIDs 8-17.

SCSI Device Attributes 8-19.

SCSI Configuration Methods 8-19.

Chapter 9. Integrated Device Electronics (IDE) Device Drivers 9-1.

IDE Adapter Device Driver Overview 9-1.

IDE Adapter/Device Interface 9-1.

ataide_buf Structure 9-2.

Adapter/Device Driver Intercommunication 9-3.

IDE Adapter Device Driver Routines 9-4.

config 9-4.

open 9-4.

close 9-4.

Preface vii

strategy 9-4.

ioctl 9-4.

IDE Adapter ioctl Operations 9-5.

IOCINFO 9-5.

IDEIOSTART 9-5.

IDEIOSTOP 9-6.

IDEIOIDENT 9-6.

IDEIOINQU 9-6.

IDEIOSTUNIT 9-7.

IDEIOTUR 9-7.

IDEIORESET 9-8.

IDE Device Driver Routines 9-9.

Top-Half Routines 9-10.

Bottom-Half Routines 9-11.

PVIDs 9-13.

IDE Device Attributes 9-14.

IDE Configuration Methods 9-15.

Chapter 10. Writing a Virtual File System 10-1.

Multiple File System Types within the Kernel 10-2.

Data Structures within a Virtual File System 10-3.

gfs Structure 10-5.

vfs structure 10-5.

vnode structure 10-6.

gnode structure 10-7.

File-Over-File Mounts 10-7.

Components of a Third-Party Virtual File System 10-8.

Creating the Virtual File System Kernel Extension 10-9.

Entry Points within the File System Kernel Extension 10-9.

VFS Operations within the File System Kernel Extension 10-10.

Vnode Operations within the File System Kernel Extension 10-12.

Virtual Memory Operations 10-15.

File System Helper 10-16.

Mount Helper 10-17.

Virtual File System Configuration Program 10-18.

Software Installation Package 10-19.

Virtual File System Terminology 10-20.

Chapter 11. STREAMS-Based TTY Subsystem Interface 11-1.

Stream Head 11-3.

TIOC Module 11-4.

Open Routine 11-5.

Copy in Data for an IOCTL 11-5.

Copy out Data for an IOCTL 11-6.

LDTERM Module 11-6.

Open Routine 11-6.

Close Routine 11-6.

Read-Side Put Routine 11-7.

Write-Side Put Routine: Immediate Processing 11-8.

Write-Side Service Routine: Delayed Processing 11-10.

Multibyte Processing 11-10.

Messages Summary 11-10.

SPTR Module 11-11.

Open Routine 11-11.

Read-Side Put Routine 11-11.

 viii AIX Version 3.2 Writing a Device Driver

Write-Side Put Routine 11-11.

Messages Summary 11-12.

SLIP Module 11-12.

SLIP Applications 11-13.

SLIP Routines 11-13.

TTY Drivers 11-13.

Drivers Configuration Routine 11-13.

Open Disciplines 11-15.

Pacing Disciplines 11-17.

Open and Close Routines 11-17.

Write-Side Put Routine 11-17.

Read-Side Processing 11-18.

Interface with the TIOC Module 11-19.

Interface with the LDTERM Module 11-20.

Interface with the SPTR Module 11-20.

The TTY Subsystem in a Multiprocessor Environment 11-20.

TTY Modules Other Than Driver 11-21.

Drivers 11-21.

Special Cases 11-21.

IOCTL Support and Origin 11-22.

TTY Data Structures 11-25.

Information from usr/include/sys/str_tty.h 11-25.

Related Information 11-28.

Chapter 12. Implementing Graphical Input and 2D Graphics Device Drivers 12-1.

Porting to the AIXwindows X Server: Overview 12-1.

Porting 2D Graphics Adapters 12-2.

Graphics Adapter Interface (GAI) Display Subsystem 12-3.

Display Subsystem Definitions 12-4.

Application Programming Interface (API) 12-8.

X Server 12-10.

GAI Load Modules 12-11.

Kernel Components of the Display Subsystem 12-12.

Display Device Driver 12-13.

LFT Overview 12-13.

Configuration and ODM Object Classes 12-13.

Display Device Driver Subroutines 12-15.

Configure the Device (vddconfig) 12-15.

Open a Device (vddopen) 12-16.

Close a Device (vddclose) 12-17.

Device Control (vddioctl) 12-18.

LFT Interface Routines 12-19.

Activate (vttact) 12-19.

Copy Full Lines (vttcfl) 12-20.

Clear Rectangle (vttclr) 12-21.

Copy Line Segment (vttcpl) 12-22.

Deactivate (vttdact) 12-23.

Define Cursor (vttdefc) 12-23.

Initialize (vttinit) 12-24.

Move Cursor (vttmovc) 12-26.

Scroll (vttscr) 12-26.

Terminate (vttterm) 12-27.

Draw Text (vtttext) 12-27.

 Display Driver Structure Descriptions 12-30.

vtt_rc_parms 12-30.

Preface ix

vtt_box_rc_parms 12-30.

vtt_cp_parms 12-30.

font_data 12-31.

phys_displays 12-32.

Device Dependent Structure (DDS) 12-32.

Graphics Adapter Interface (GAI) 2D Adapter Load Modules 12-33.

Loadable DDX Interface 12-33.

Selection of Adapters 12-33.

X Server Initialization Subroutines 12-36.

ddxProcessArgument 12-36.

FindAllAvailableDisplays 12-37.

InitOutput Subroutine 12-38.

Device-Dependent Initialization Subroutines 12-39.

xxxentryFunc Subroutine 12-39.

xxxScrInit 12-40.

xxxCloseScreen 12-40.

Server Termination 12-41.

Adapter Access and the aixgsc System Call 12-41.

Implementation Details 12-42.

Minimum Resource Management Subsystem (RMS) for 2D Adapters 12-44.

Implementation 12-44.

Include Files 12-44.

Configuring the 2D Adapter into the ODM Database 12-45.

Porting Input Devices 12-47.

Input Device Driver Overview 12-47.

Device Driver 12-47.

X Server Input Ring 12-49.

SIGMSG Signal 12-50.

Block and Wakeup Handling 12-50.

xxxBlockHandler Subroutine 12-51.

xxxWakeupHandler Subroutine 12-51.

Event Processing 12-52.

AddInputCheck Subroutine 12-52.

RemoveInputCheck Subroutine 12-52.

Input Load Module 12-53.

InputDevPrivate structure 12-53.

ExtInitInput Subroutine 12-54.

deviceProc Subroutine 12-54.

setDeviceMode Subroutine 12-56.

setDeviceValuators Subroutine 12-56.

getDeviceControl Subroutine 12-57.

changeDeviceControl Subroutine 12-58.

processRawInputEvents Subroutine 12-58.

ODM Database Entry for Input Devices 12-59.

ODM Input Device Record Example 12-59.

Sample Input Device Load Module 12-59.

Building a Dynamically Loadable Module 12-60.

Debugging Load Modules 12-61.

List of X Server Porting Subroutines 12-62.

X Server Initialization 12-62.

Device-Dependent Initialization 12-62.

Block and Wakeup Handling (Input Devices) 12-62.

Event Processing (Input Devices) 12-62.

Input Load Module (Input Devices) 12-62.

Related Information 12-63.

 x AIX Version 3.2 Writing a Device Driver

Chapter 13. Implementing a Network Device Driver 13-1.

Writing a Network Device Driver 13-2.

Overview of Network Device Driver Changes in AIX Version 4.1 13-2.

Network Device Driver Initialization and Termination 13-2.

CDLI – Device Driver Interface 13-5.

Device Driver – CDLI Interface 13-10.

Writing a Network Demuxer 13-12.

Demuxer Initialization 13-12.

nd_add_filter Function 13-13.

nd_del_filter Function 13-14.

nd_add_status Function 13-14.

nd_del_status Function 13-15.

nd_receive Function 13-16.

nd_status Function 13-16.

nd_response Function 13-16.

DLPI/Socket – Network Demuxer Interface 13-17.

Device Driver – Network Demuxer Interface 13-19.

Sample Code – DLPI Call to ns_add_filter 13-20.

Writing a Network Interface Driver 13-21.

Basic Functions of a Network Interface Driver 13-21.

Summary of NID Changes in AIX Version 4.1 13-21.

Network Interface Driver Functions 13-21.

NID and ARP Data Structures 13-33.

Tracing and Debugging for NIDs 13-36.

Configuration Method for NID 13-37.

Chapter 14. Network Interfaces and Protocols 14-1.

STREAMS User Interfaces 14-1.

Protocol Interfaces via DLPI 14-2.

Writing or Porting STREAMS Network Protocols 14-3.

DLPI Interfaces Supported by AIX 14-3.

AIX Interpretations of Source and Destination Addresses 14-4.

Protocol Address Resolution 14-5.

AIX STREAMS Loading Convention 14-5.

MP Serialization and Locking Options for STREAMS Modules and Drivers 14-5. . . .

TLI and XTI Interface Protocols 14-6.

Obtaining Copies of the DLPI Specifications 14-7.

Writing or Porting Socket Network Protocols 14-8.

Initialization 14-8.

Loading 14-9.

Socket – Protocol Interface 14-9.

Protocol – Socket Interface 14-12.

Protocol – Network Interface 14-13.

Network – Protocol Interface 14-15.

IP Encapsulation/Adding Protocols to the System IP Protocol Switch 14-16.

Sample Socket Protocol 14-17.

Sample Socket Protocol’s Configuration Entry Point Function 14-17.

Sample Socket Protocol’s Initialization Function 14-18.

Sample Socket Protocol’s Packet Registration Function 14-18.

Sample Code for Direct Access to Device Driver via STREAMS 14-20.

Chapter 15. Debugging Tools 15-1.

System Dump 15-1.

Initiating a System Dump 15-1.

Including Device Driver Information in a System Dump 15-2.

Preface xi

Formatting a System Dump 15-4.

The crash Command 15-5.

crash Subcommands 15-5.

Kernel Debug Program 15-25.

Loading and Starting the Kernel Debug Program 15-25.

Using a Terminal with the Kernel Debug Program 15-25.

Entering the Kernel Debug Program 15-26.

Debugging Multiprocessor Systems 15-26.

Kernel Debug Program Concepts 15-27.

Kernel Debug Program Commands 15-30.

Kernel Debug Program Commands Grouped by Task Categories 15-32.

Descriptions of the Kernel Debug Program Commands 15-34.

alter Command for the Kernel Debug Program 15-34.

back Command for the Kernel Debug Program 15-34.

break Command for the Kernel Debug Program 15-34.

breaks Command for the Kernel Debug Program 15-35.

buckets Command for the Kernel Debug Program 15-36.

clear Command for the Kernel Debug Program 15-36.

cpu Command for the Kernel Debug Program 15-37.

display Command for the Kernel Debug Program 15-38.

dmodsw Command for the Kernel Debug Program 15-39.

drivers Command for the Kernel Debug Program 15-40.

find Command for the Kernel Debug Program 15-40.

float Command for the Kernel Debug Program 15-41.

fmodsw Command for the Kernel Debug Program 15-42.

go Command for the Kernel Debug Program 15-43.

help Command for the Kernel Debug Program 15-43.

loop Command for the Kernel Debug Program 15-44.

map Command for the Kernel Debug Program 15-44.

mblk Command for the Kernel Debug Program 15-45.

next Command for the Kernel Debug Program 15-46.

origin Command for the Kernel Debug Program 15-46.

ppd Command for the Kernel Debug Program 15-47.

proc Command for the Kernel Debug Program 15-47.

queue Command for the Kernel Debug Program 15-48.

quit Command for the Kernel Debug Program 15-48.

reset Command for the Kernel Debug Program 15-49.

screen Command for the Kernel Debug Program 15-49.

set Command for the Kernel Debug Program 15-51.

sregs Command for the Kernel Debug Program 15-51.

st Command for the Kernel Debug Program 15-52.

stack Command for the Kernel Debug Program 15-52.

stc Command for the Kernel Debug Program 15-53.

step Command for the Kernel Debug Program 15-53.

sth Command for the Kernel Debug Program 15-54.

stream Command for the Kernel Debug Program 15-54.

swap Command for the Kernel Debug Program 15-56.

thread Command for the Kernel Debug Program 15-56.

trace Command for the Kernel Debug Program 15-57.

trb Command for the Kernel Debug Program 15-58.

tty Command for the Kernel Debug Program 15-59.

user Command for the Kernel Debug Program 15-60.

uthread Command for the Kernel Debug Program 15-60.

vars Command for the Kernel Debug Program 15-62.

vmm Command for the Kernel Debug Program 15-62.

 xii AIX Version 3.2 Writing a Device Driver

xlate Command for the Kernel Debug Program 15-62.

Maps and Listings as Tools for the Kernel Debug Program 15-63.

Compiler Listing 15-63.

Map File 15-65.

Using the Kernel Debug Program 15-68.

Setting Breakpoints 15-68.

Viewing and Modifying Global Data 15-71.

Displaying Registers on a Micro Channel Adapter 15-73.

Stack Trace 15-73.

Error Messages for the Kernel Debug Program 15-76.

Error Logging 15-78.

Precoding Steps to Consider 15-78.

Coding Steps 15-79.

Writing to the /dev/error Special File 15-85.

Performance Tracing 15-86.

Introduction 15-86.

Using the trace Facility 15-88.

Controlling trace 15-90.

Producing a trace Report 15-93.

Defining trace Events 15-95.

Usage Hints 15-109.

Chapter 16. Power Management (PM) Aware Device Drivers 16-1.

Power Management-Aware Device Drivers: Overview 16-1.

PM Core versus PM-aware Device Driver Operations 16-2.

Power Management Kernel Services 16-2.

pm_register_handle 16-2.

pm_planar_control 16-8.

pm_register_planar_control_handle 16-9.

General Model of PM-Aware Device Driver 16-10.

Device_Pm_Handler() 16-10.

Device_external_interrupt_handler() 16-12.

StartIO() 16-13.

PM-Aware PCMCIA Device Drivers 16-14.

Index X-1.

Preface xiii

About This Book

AIX Writing a Device Driver contains an overview of block and character device drivers and
describes how to write a device driver for AIX Version 4.1. Also included is information on
debugging. Refer to Chapter 20, “Packaging Software for Installation” in AIX General
Programming Concepts : Writing and Debugging Programs for information on packaging
device drivers.

Who Should Use This Book
This book is intended for programmers and software support personnel who need detailed
information on writing device drivers. Readers of this book are expected to be familiar with
the C programming language, AIX commands, subroutines, and special files.

How to Use This Book

Overview of Contents
Chapters 1 through 6 are intended for all readers of this book and discuss the following
topics:

• Chapter 1 is a device driver overview.
• Chapter 2 discusses device input/output.
• Chapter 3 discusses interrupts.
• Chapter 4 is about memory management.
• Chapter 5 discusses synchronization and serialization.
• Chapter 6 is about device configuration methods.

Chapters 7 through 13 each discuss a particular type of device driver programming.

• Chapter 7 is about block device drivers.
• Chapter 8 is about SCSI device drivers.
• Chapter 9 discusses the IDE device drivers.
• Chapter 10 is about Virtual File Systems.
• Chapter 11 describes the STREAMS-based tty interface.
• Chapter 12 discusses implementing graphical input and 2D graphics device drivers.
• Chapter 13 discusses implementing a network device driver.
• Chapter 14 is about network interfaces and protocols.
• Chapter 15 contains information on debugging device drivers.
• Chapter 16 contains information on power management-aware device drivers.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

 xiv AIX Writing a Device Driver

Related Publications
The following books contain information related to writing device drivers:

• AIX Commands Reference, Order Number 86 A2 73AP to 86 A2 78AP.

• AIX General Programming Concepts : Writing and Debugging Programs,
Order Number 86 A2 65AP.

• AIX Communications Programming Concepts, Order Number 86 A2 70AP.

• AIX Kernel Extensions and Device Support Programming Concepts,
Order Number 86 A2 71AP.

• AIX Files Reference, Order Number 86 A2 79AP.

• AIX Problem Solving Guide and Reference, Order Number 86 A2 56AP

• AIX Technical Reference, Volume 5: Kernel and Subsystems, Order Number 86 A2 85AP.

• AIX Technical Reference, Volume 6: Kernel and Subsystems, Order Number 86 A2 86AP.

• PowerPC Architecture.

• Hardware Technical Information-General Architectures, Order Number 86 A1 09WD.

• UNIX System V Release 4, Programmer’s Guide: STREAMS. Englewood Cliffs, N.J.:
Prentice-Hall, 1990.

• Angebranndt, Susan, Drewry, Raymond, Karlton, Philip, Newman, Todd, Packard, Keith
and Scheifler, Robert W. Strategies for Porting the X v11 Sample Server. Massachusetts
Institute of Technology. 1991.

• Fortune, Erik and Israel, Elias. The X-Window Server. Digital Press.

• Gettys, James, Newman, Ron and Scheifler, Robert W. Xlib––C Language X Interface,
MIT X Consortium Standard, X Version 11, Release 5. MIT X Consortium 1991.

• Leffler, Samuel J., and others. The Design and Implementation of the 4.3 BSD UNIX
Operating System. Addison-Wessley. 1990.

• Patrick, Mark, and Sachs, George. X11 Input Extension Library Specification. MIT X
Consortium Standard. X Version 11, Release 5. Hewlett-Packard Company, Ardent
Computer, and the Massachusetts Institute of Technology. 1989, 1990, 1991.

• Patrick, Mark, and Sachs, George. X11 Input Extension Protocol Specification. MIT X
Consortium Standard. X Version 11, Release 5. Hewlett-Packard Company, Ardent
Computer, and the Massachusetts Institute of Technology. 1989, 1990, 1991.

• Sachs, George. X11 Input Extension Porting Document. MIT X Consortium Standard. X
Version 11, Release 5. Hewlett-Packard Company and the Massachusetts Institute of
Technology. 1989, 1990, 1991.

• Scheifler, Robert W. X Window System Protocol, MIT X Consortium Standard, X Version
11, Release 5. MIT X Consortium 1991.

• Womack, et al. PEX Protocol Specification, Version 5.1, MIT X Consortium Standard.
Massachusettes Institute of Technology 1988, 1989, 1990, 1991, 1992.

• Womack, et al. PEX Protocol Encoding Version 5.1, MIT X Consortium Standard.
Massachusettes Institute of Technology 1988, 1989, 1990, 1991, 1992.

Ordering Additional Copies of This Book
You can order publications from your sales representative or from your point of sale.

If you received a printed copy of Documentation Overview with your system, use that book
for information on related publications and for instructions on ordering them.

To order additional copies of this book, use Order Number 86 A2 29WG.

1-1Device Driver Overview

Chapter 1. Device Driver Overview

Many computer programs are dedicated to working with attached devices in some way. For
example, there are programs to send control characters to a printer, programs to receive
characters from a terminal, and programs to read data from a tape. In a broad sense, each
of these programs is a device driver because the program is dedicated to handling input
from or output to a device. Such programs are usually regarded as being part of, or an
extension of, the computer’s operating system.

Any operating system that supports multitasking (such as AIX) needs some way to prevent
one program from writing to, or changing the state of, some device that is already being
accessed by another program. So, a multitasking operating system relies on the computer’s
processors to distinguish between privileged and non-privileged execution of instructions.
Therefore, one must distinguish between programs that execute in privileged mode (kernel
mode) and those that execute in user mode. The AIX kernel consists of all software that
executes in kernel mode.

Even though AIX programs that execute in user mode can drive devices, such as a printer
or some device attached to a serial port, they can only do so by invoking software that is
part of the kernel. Because kernel device drivers are considerably more complex than
drivers that execute in user mode, from here on, the term device driver will only refer to
software that handles a device while executing in kernel mode.

Device drivers are more complex than user software for several reasons:

• Device drivers output data to a device or demand data from a device.

This means that the driver may have to read or write to registers on a card attached to
an I/O bus, or the driver may have to set up the means for the data to be transferred in
some other way. A device driver is intimately interconnected with processor memory
design, how the processor performs I/O, and with the architecture of the I/O bus
attached to the system. So, device drivers are not portable; migrating the driver routines
from one system to another often requires the routines to be rewritten.

• Device drivers may have to process interrupts generated by a card attached to the
system I/O bus.

When a terminal sends a character to the computer, or a printer runs out of paper, or a
tape drive has completed writing a block of data, the card serving as an adapter between
the device and the I/O bus on the computer generates an interrupt. The software
routines, within a device driver, that process interrupts (called interrupt handlers) take
some sort of action like buffering incoming data, or signaling a process. Because such
interrupts occur asynchronously, meaning that they occur without regard to what
instructions the computer’s processors are executing, the interrupt may occur while a
processor on the computer is in the middle of handling another interrupt. Therefore,
interrupt handlers must be reentrant; in other words, they must be able to access shared
resources (such as non-private data) and exclude concurrent access by any software
including another instance of itself.

Device driver routines that (asynchronously) execute in the context of handling an
interrupt are said to be, on the interrupt side, and are occasionally referred to as the
device handler, but this is not the same thing as a network device handler.

Device driver routines that (synchronously) execute in the context of a calling process
are said to be on the call side. For more information on concurrent access of shared
data, see “Synchronization and Serialization” on page 5-1.

• Device drivers may have to execute in real time.

Device drivers may have to respond to an interrupt, or perform some other function
within a certain fixed period of time.

1-2 AIX Writing a Device Driver

• A device driver is a collection of routines. There is no main routine.

The routines are usually written in C and compiled to produce one or two Extended
Object File Format (XCOFF) object files. The object files are linked to enable the kernel
loader to resolve kernel symbols. As a result of linking, the loader section is filled out with
a list of symbols to import from the kernel. The symbols are in the file /lib/kernex.exp.
The linking also establishes the driver’s configuration routine as the default entry point
for beginning execution. A simple example is shown in “Sample Device Driver” on page
1-15.

Aspects of the Kernel that Affect Device Drivers
There are a number of attributes of the AIX kernel that affect device drivers:

• Kernel routines can only call kernel services.

Kernel routines cannot call routines meant to execute in user mode. So, device driver
routines are not linked with the C library libc.a, nor can they invoke system calls. There
are some kernel DMA and timer routines in libsys.a, and there are some C library calls
written to execute in kernel mode in the library libcsys.a. For more information on them,
please refer to “Understanding Kernel Extension Binding,” in AIX Kernel Extensions and
Device Support Programming Concepts.

• Kernel code and data that is not pinned (explicitly or implicitly) is paged into system RAM
from a paging logical volume on disk.

So, one must distinguish between device driver routines that are to be collectively
pinned, called the bottom half, and those that are to be paged, called the top half.
Because device driver routines on the interrupt side must be pinned, the phrases in the
bottom half and on the interrupt side are sometimes used as if they are synonyms, but
they really are not synonyms. Due to real-time concerns, sometimes routines on the call
side are placed in the bottom half.

• Kernel routines are difficult to debug.

There is a kernel debugger, but it is not as easy to use as is dbx. References to
improper addresses may cause data corruption (because the kernel is privileged) or a
system crash. It is possible to trace the execution of a device driver with printf; but printf
only prints to a native serial port, cannot be used in an interrupt handler, and may affect
a device driver’s timing.

• Execution of kernel routines, in the context of a process, can be preempted by the
scheduler in favor of a process with greater priority.

This means that device driver routines cannot depend on disabling interrupts as being
sufficient to avert concurrent access to shared resources. It also means that drivers (not
just interrupt handlers) must be reentrant.

• The AIX kernel is dynamically extendible.

Object files acceptable to the kernel loader, are bound into the AIX kernel while the
computer is still operating; there is no need to restart the system. A device driver’s
routines are typically linked to form two object files (one for the top half, the other for the
bottom half), that can be loaded or unloaded by a user program invoking the kernel
loader with the sysconfig system call. Loading (configuring) files into the kernel is
extending the kernel. A kernel extension, such as a device driver, is configured into the
kernel while starting the system, or while the system is operating.

1-3Device Driver Overview

The AIX Kernel figure summarizes some aspects of the AIX kernel that affect device drivers.
Note that AIX enables kernel processes, processes that execute entirely in kernel mode.

user mode

kernel mode

synchronous
execution

(call side)

asynchronous
execution

(interrupt side)

top
half

bottom
half

Interrupt Handlers

paged

pinned

AIX Kernel

device

drivers

� �

Kernel
Processes

User
Processes

SVC

� �

How Device Drivers Are Accessed
In many operating systems, a user who wants to transfer data to a device must execute a
command specific to that device. In such an operating system, writing to tape requires a
different command than writing to a terminal, or writing to a file.

A feature of any UNIX operating system, such as AIX, is that I/O to a device is made to look
like I/O to a file in the system’s directory tree. A device is made ready for I/O by having its
corresponding file (usually placed in the directory /dev) opened, and data is read from the
device, or written to the device, by invoking read and write system calls on the
corresponding file. The device (for example, a printer) is freed for access by other software
by closing the file (called a device special file) associated with the device.

UNIX avoids the need to pass a device-specific parameter to system calls so that UNIX can
present the same device interface to any user program accessing different devices. It does
this by keeping device-specific data in the inode of the device special file. Such data
includes:

• A flag marking the file as special.

• A major number identifying which device driver is to be invoked (such as for a tape drive
or printer).

• A minor number identifying a particular device among the several devices handled by the
device driver associated with the major number (for example, selects tape1 or printer3).

• A flag marking the device type as character or block.

The file, created by the mknod system call, is marked special so that system calls know to
access a device, and not a file on disk.

1-4 AIX Writing a Device Driver

The major number serves as an index into an array of structures. Each structure contains
pointers to functions to be invoked when opening, closing, reading, writing, or performing
whatever device operation the program requires. The array of these structures is called a
device switch table. The Device Switch Table figure illustrates these structures.

crw––––––– 1 root system 25, 0 Aug 05 16:19 tty0

open21

22

23

24

25

26

27

28

Device Switch Table

16 entries

close
read
write
ioctl

strategy
tty struct
select
config
print
dump
mpx
revoke
dev. specific data

select cntl blocks

devsw cntl word

Program:

fd = open(”/dev/tty0”)

read(fd, buf, n)

pointers to:

major
number

In AIX, the device switch table can have up to 256 such structures. When the driver is
configured into the kernel, each function pointer in the structure is assigned the virtual
address of the first instruction of an associated routine, that is, the virtual address of a
routine’s entry point. If a device driver does not define a particular routine (no drivers define
all of them), use either a pointer to the function nodev, which returns ENODEV (in
sys/errno.h), or a pointer to the function nulldev, which returns NULL.

In effect, the major number specifies which device driver to invoke. If there is a serial port
with one driver, and, say, a multiport serial adapter which requires another driver, then each
would have their own unique major number. On the other hand, if you have a high-density
tape drive attached to one adapter, and a different, low-density tape drive attached to
another adapter, but a driver supports both kinds of adapters, then there is only one major
number needed to access either tape drive.

The minor number is used to distinguish between devices supported by the same driver. It
typically serves as an index into an array, maintained by the driver, of structures containing
device-specific information. For example, a terminal driver would need to keep track of the
various baud rates or parity settings of each terminal.

Once a program has opened a file, it uses the file descriptor to determine the device
number which combines the device’s major and minor number into one integer. The
program that configures the device driver into the kernel allocates a device number that is
unique for the system. The figure From File Descriptor to Device Number shows the data
structures involved in determining a device number from a file descriptor associated with the
device’s special file.

1-5Device Driver Overview

Current Process’
Data SegmentUser

Block

� � � � �
� � � � �� � � � �
� � � � �� � � � �
� � � � �

� � � � �
� � � � �� � � � �
� � � � �� � � � �

� � � � �
� � � � �� � � � �
� � � � �

� � � � �
� � � � �� � � � �
� � � � �� � � � �
� � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

inode

gnode

gn_data

vnode

gn_data

gn_rdev

gn_type gnodefile
descriptors

*sn_devnode

can get device number from file descriptor
by using fp_getf() and fp_getdevno()
kernel sevices

In Kernel
Segment

for disk
files

*v_gnode

for FIFO
for device
special files

*f_uvnode

Global
File
Table

200,000 files

struct file

device number
(is –1 for FIFOs)

 From File Descriptor to Device Number

0
1

2

1999

On some UNIX systems, there is a device switch table for character drivers, and one for
block drivers, hence the need for a flag c or b to mark the distinction. Some UNIX systems
access a stream head (a generic interface to STREAMS modules or drivers) through a third
device switch table. However, in AIX, the entry points to character drivers, block drivers, and
stream heads are all invoked through the same device switch table. The kinds of routines
that are expected to be included as entry points for a device driver vary with the type of
device driver needed.

Types of Device Drivers
There are three types of device drivers in AIX:

• A block device driver supports a device that reads and writes data buffers of a (large)
fixed size.

• A STREAMS device driver has some routines that are either invoked from a stream head,
or from a STREAMS module, instead of from the device switch table.

• A character device driver is any driver that is not either of the other two types.

1-6 AIX Writing a Device Driver

Block Device Drivers
Devices usually supported by a block device driver include: hard disk drives, diskette drives,
CD-ROM readers, and tape drives. Block device drivers often provide two ways to access a
block device:

raw access The buffer supplied by the user program is to be pinned in RAM as is.

block access The buffer supplied by the user program is to be copied to, or read from
buffers in the kernel.

If the block device is accessed as raw, the driver can copy data from the pinned buffer to the
device. In this case, the size of the buffer supplied by the user must be equal to, or some
multiple of, the device’s block size. The special file’s name is usually prefixed by the letter r
so that a user can tell which access type the block device has. For example, the name of a
diskette drive’s raw block special file is rfd0, and a special file name for a tape drive is rmt0.

Sometimes the term character mode access is used to mean raw access.

Otherwise, the block device is accessed as block. In this case, a write system call to such a
device returns once the user buffer is copied to buffers in the kernel segment. The write call
is asynchronous since the data in the kernel buffer is written out to the block device
sometime after the write call returns. The size of the user buffer need not be a multiple of
the device block size.

The term buffer cache refers to a collection of kernel buffers that are manipulated by some
kernel services specifically associated with block devices. Although UNIX block device
drivers have traditionally made use of the buffer cache, it is rarely used in AIX because
buffering is more frequently done by memory mapping regions of the kernel segment with
frames in RAM.

A block device driver with a block access type method is a driver that also provides a
strategy routine to arrange accesses to device blocks so that overall access time is
minimized. The strategy entry point is not invoked from a user program; rather, the entry
point, which is in the device switch table, can be invoked by either of the following:

• Off-level interrupt handlers responsible for writing the buffer cache out to disk.

• The AIX Virtual Memory Manager to perform paging, that is, to page space for working
segments, to disk files for memory-mapped files.

The block driver’s strategy routine is intended for reading and writing buffers that are not
necessarily contiguous on the device itself.

A tape device driver has a raw access method, but has no block access method. There is
no use of kernel buffers, and there is no reason to provide a strategy entry point since tape
does not lend itself to efficient random access.

For more information on implementing a block device driver, “Block Device Drivers” on page
7-1.

Block devices are often intended to contain a file system. A block device driver that
interfaces to the Logical Volume Manager (LVM) enables the block device to support a
journaled file system (JFS). For more information on this, see “Logical Volume
Programming” in AIX General Programming Concepts : Writing and Debugging Programs
and “Understanding Physical Volumes and the Logical Volume Device Driver” in AIX Kernel
Extensions and Device Support Programming Concepts.

For a block device to contain a file system that is not provided with the operating system,
kernel routines that interface between the virtual file system (VFS) and the block device
driver must be provided. For more information on this, see “Virtual File Systems,” in
AIX Kernel Extensions and Device Support Programming Concepts, and “Writing a Virtual
File System” on page 10-1.

1-7Device Driver Overview

STREAMS Device Drivers
Devices that may be supported by a STREAMS driver include: any device connected to the
serial port (such as a terminal), or any device attached to a LAN or WAN (such as an
Ethernet adapter).

Such devices lend themselves to support from STREAMS drivers because the STREAMS
facility is flexible and modular. These qualities are well suited to implementing
communication protocols.

Since the TTY subsystem in AIX Version 4.1 consists of STREAMS modules, if you want to
support terminal processing from a serial adapter you must provide a STREAMS driver. For
more information on this, see “STREAMS-Based TTY Subsystem Interface” on page 11-1.
“Implementing Graphical Input and 2-D Graphics Device Drivers” on page 12-1 contains
related information about the low-function terminal (LFT) subsystem that supports use of a
console display.

AIX provides a STREAMS driver, the Data Link Protocol Interface (DLPI), which supports
some LAN adapters. For more information on this, see “Implementing a Network Device
Driver” on page 13-1.

A stream is a linked list of kernel modules, and consists of a stream head at one end of the
list and a STREAMS device driver at the other. To visualize how a stream works, see the
STREAMS Driver Entry Points figure on page 1-14.

The stream head (supplied with the operating system as part of STREAMS, a device driver
writer does not need to write a stream head) contains some routines that are invoked from
the device switch table, so the stream head is associated with a device special file in the
AIX file tree.

A STREAMS driver has some routines that are either invoked by the stream head, or by a
STREAMS module that had been inserted into the stream between the stream head and the
STREAMS driver. The driver may, or may not, have any routines that are invoked from the
device switch table.

For more information on this, see “STREAMS Overview,” in AIX Communications
Programming Concepts and UNIX System V, Release 4, Programmer’s Guide: STREAMS.

Character Device Drivers
Devices that are supported by a character device driver include any device that reads or
writes data a character at a time (such as printers, sound boards, or terminals). Also, any
driver that has no associated hardware device (called a pseudo-driver) is treated as a
character device driver. For example, /dev/mem, /dev/kmem, and /dev/bus0 are character
pseudo-drivers.

Graphics input devices and graphics capable displays are often supported by character
device drivers. For more information on how to implement such drivers, see “Implementing
Graphical Input and 2D Graphics Device Drivers” on page 12-1.

A character special file that has the mode flag S_ISVTX (also called the sticky bit because it
causes the text of an executable to remain in memory after use) set, is a multiplexed
character file. Special files are created and deleted in /dev as needed to support multiple
ports connected to that adapter. For example, a serial adapter that supports multiple
terminals would need to be a multiplexed character file. A multiplexed device driver
contains an additional xyzmpx entry point. A pseudo-TTY (PTY) is an example of a
multiplexed character device.

Access to multiplexed character device drivers is similar to that of standard character device
drivers, except that the concept of channels has been added. A channel is typically
supported by a device driver as a resource subunit on a particular device. Each subunit can
be selected by an extra suffix on the special file path name.

When an open or create request is made involving a multiplexed character special file, the
path name of the special file can be followed by a character string specifying the name of

1-8 AIX Writing a Device Driver

the channel being requested. If no name is provided when opening a multiplexed character
driver, the device driver typically assigns the next available channel.

Device Driver Configuration
When a version of a device driver is written, to test the driver you need to create and load
the driver’s object files into the kernel. Sample code in this section, shown in several parts,
shows the basic steps of compiling, linking, loading, and testing a pseudo-driver.

Assume that the device special file is /dev/xyz. The device driver’s object files are usually
kept in the directory /usr/lib/drivers, but for this simple example, the object file xyz is kept
in the current directory. You can give a driver’s object file any name permitted within an AIX
file system.

To configure a device driver object file ./xyx into the AIX kernel, a user program with root
user authority, here written in C, extends the kernel:

struct cfg_load cfg;

cfg.path = ”./xyz”;

sysconfig(SYS_KLOAD, &cfg, sizeof(cfg)):

Continuing the sample code, the configuring program needs to pick major and minor
numbers that are not already in use:

majorno = 99; /* To avoid ODM for now */

minorno = 0;

device_number = makedev(majorno, minorno); /* see sysmacros.h */

A program that configures a driver into the kernel does not really just guess which major
and minor numbers to use. Associated with the Object Data Manager (ODM) are user
routines (such as the genmajor and genminor subroutines) for determining what numbers
to use and for allocating the numbers. Use of ODM is described later, but major number 99
is picked in the example just as an illustration. Calling makedev combines the major
number and the minor number into one integer, the device number.

A configuring program usually creates the device special file to be associated with the
device:

mknod (”/dev/xyz”, 0666 | _S_IFCHR, device_number);

Now, the configuring program invokes the device driver’s configure entry point:

struct cfg_dd xyzcfg;

xyzcfg.kmid = cfg.kmid; /* kernel module ID from sysconfig */

xyzcfg.devno = device_number;

xyzcfg.cmd = CFG_INIT;

sysconfig(SYS_CFGDD, &xyzcfg, sizeof(xyzcfg));

Control now passes to the default entry point for the device driver module. When linking the
device driver routines object file, the entry point specified should be the symbolic name of
the configuration entry point, in this case xyzconfig. A more complete example is shown
in the configuration program in “Sample Device Driver” on page 1-15.

STREAMS device drivers are configured into the kernel by invoking the strload and
str_install commands after editing the /etc/pse.cfg file. The strload command extends the
kernel by loading the Portable STREAMS Environment (pse) kernel extension. The
str_install command extends the kernel by issuing a series of calls to sysconfig as
indicated by entries in the file /etc/pse.cfg.

1-9Device Driver Overview

Object Data Manager (ODM) Database
Many UNIX systems have ASCII stanza files that are edited as part of configuring a driver
into the kernel. For example, in some UNIX systems you add stanzas to a file such as
/etc/system or /etc/master. In AIX, such stanza files are kept in a directory, /etc/objrepos,
called the ODM database. In AIX, you do not directly modify the files in the ODM database,
but instead you call ODM routines, or execute ODM commands to modify the ODM
database. The environment variable ODMDIR specifies which directory the ODM routines
reference.

The files in an ODM database are indexed ASCII files called ODM object classes. Object
classes can be thought of as tables where each row is an object and each column is a field
within each object. For example, in the file CuAt, there is an object with name tok0 that
has attribute dma_lvl and value 0x5. This object says the Token Ring card associated with
/dev/tok0 has DMA level 5.

The following object classes are significant for device drivers:

PdDv Predefined (supported) devices. (Not necessarily actually installed on the
system)

PdAt Predefined attributes of the predefined devices

PdCn Predefined connections/dependencies

CuDv Customized (defined and/or available) devices

CuAt Customized attributes of system and customized devices

CuDep Customized dependencies, which devices/subsystems require which others

CuDvDr Customized device driver resources. For example, ensures unique major
numbers

CuVPD Customized vital product data (for Micro Channel adapters)

Config_Rules List of configuration methods for cfgmgr command to execute product
inventory LPP history

A device method is an executable program, usually written in C, that modifies an ODM
object class associated with a device. A device method is invoked by a user with root user
authority, or when the command cfgmgr is called by rc.boot in RAM disk when the
computer system is started.

The following types of device methods should be provided for a device driver. These
methods are usually kept in the directory /usr/lib/methods.

• Define method (causes device to be defined).

A define method’s main task is to retrieve device data from PdDv in ODM and create a
CuDv object. Also, it ensures that a parent device exists in the CuDv object.

• Configure method (causes device to be available).

A configure method should perform the following steps:

a. Display LED value on system LED panel.

b. Verify that a parent device is available (in ODM).

c. Verify that a device is present.

d. Invoke the busresolve system call to get an interrupt level assigned to the device.

e. Extend the kernel by calling sysconfig.

f. Generate major and minor numbers and create a special file entry in /dev.

g. Build a device dependent structure (DDS).

1-10 AIX Writing a Device Driver

h. Invoke the device driver’s config entry point by calling sysconfig and passing it the
DDS.

i. Downloading any microcode needed by the adapter.

j. Updating CuDv with Vital Product Data and making the device available.

In addition to the define method and the configure method, other methods (for example,
undefine, unconfigure, start, stop, and change methods) may also be needed.

For more information on configuration methods, see “Device Configuration Methods” on
page 6-1 or “Object Data Manager (ODM)” in AIX General Programming Concepts : Writing
and Debugging Programs.

Device Driver Entry Points
We now consider how control passes from a user program to a device driver entry point
associated with the system call that the user program invoked. As shown in the Device
Switch Table figure, on page 1-4, there are up to eleven entry points listed in the device
switch table for a particular driver: open, close, read, write, ioctl, strategy, select, config,
dump, mpx, and revoke. The entry point, “print,” is not used. Even though the strategy and
dump driver routines have entry points in the device switch table, they cannot be invoked by
a system call in a user program.

Those routines which can be invoked from a system call in a user program, whose entry
points are listed in the device switch table, are collectively known as the device head, and
are said to perform the device head role within the driver. These routines are expected to
return control to the user program that invoked them once their task is complete. Even
though these routines are placed in the same object module, they rarely interact with each
other (for example, they don’t call each other). These routines merely share resources such
as kernel data structures and the device itself. Like any program, a device driver can define
other routines as needed, routines that may be invoked by any other routine in the driver.

For information on how to write each routine associated with an entry point in the device
switch table, please refer to a complete list of such routines in Chapter 2, “Device Driver
Operations” in AIX Technical Reference, Volume 5: Kernel and Subsystems. The following
discussion focuses on routines common to most drivers.

Note that a routine’s entry point is customarily labeled by prefixing a routine’s function with
some device-specific abbreviation based on the device special file name. For example, the
entry point associated with a routine that opens a terminal device is labeled, ttyopen, and
one that closes the device is, ttyclose. But, one is free to label entry points with any symbol
that a compiler and linker will accept.

xyzconfig Entry Point
A device driver’s configuration entry point is called when a program directs the kernel loader
to configure the device driver’s object file into the kernel. The configuration entry point is
also called when the device driver is being removed from the kernel or when certain data is
queried from the device.

Below are the commands that the device driver’s configure method passes as a parameter
to the sysconfig system call:

• CFG_INIT

In this case, the tasks that the configuration routine might perform are such things as,
placing entry points to other routines into the switch table by invoking devswadd, or
initializing and allocating kernel data structures associated with the device driver, or
initializing the adapter, or downloading microcode to the card attached to the device.

Also, the sysconfig system call usually passes a Device Dependent Structure (DDS) to
the configuration routine when initializing the device. One defines the DDS in whatever
fashion is necessary for the driver. For example, a serial device driver might require the

1-11Device Driver Overview

DDS to contain initial values for baud rate, bits per character, parity bit settings, and so
on.

• CFG_TERM

In this case, the routine checks for any outstanding open file descriptors and releases
any associated resources.

• CFG_QVPD

In this case, the routine returns Vital Product Data from the card attached to the device.

xyzopen and xyzclose Entry Points
These routines usually perform the following functions:

• Allocate or free resources for this device instance.

This is often where data structures are allocated or freed from the kernel heap.

This is often where the bottom half is pinned or unpinned, and this is where interrupt
handlers are often registered for use by the kernel, or removed from use by the kernel.

• Update use counts and semaphores if exclusive access required.

The xyzopen routine is invoked by open or creat system calls issued from a user program,
or is invoked from an fp_open or fp_opendev kernel service call issued from a kernel
extension.

The xyzclose routine is invoked by the close system call issued from a user program, or is
invoked from the fp_close kernel service call issued from a kernel extension.

xyzread Entry Point
This routine usually does the following:

• Returns a buffer of whatever data was collected from the device (via the device driver’s
interrupt handler).

A call to the read system call from a character device amounts to transferring data from
a kernel buffer that had been populated by this device’s interrupt handler to a buffer
supplied by the user (which is usually outside that user’s data segment)

• From a block device, initiates block I/O requests via the uphysio kernel service.

This is referred to as raw access since no kernel buffers are being used for reading.

• From a streams device, causes the stream head or module to invoke the device driver’s
xyzput entry point.

Depending on how the device special file was opened, the xyzread routine usually puts the
calling process to sleep until the data requested is available.

The xyzread routine is invoked by the read system call issued from a user program, or is
invoked by the fp_read kernel service call issued from a kernel extension.

xyzwrite Entry Point
This routine usually does the following:

• Outputs data to a block device.

An explicit write to a block device, one not using the xyzstrategy routine, is raw access.
This initiates block I/O requests via the uphysio kernel service

• Outputs data to a character device.

A write to a character device transfers data from a buffer supplied by the user, which is
usually out of that user’s data segment, pointed to by the uio structure, to any buffer
needed by the device adapter, usually one character at a time.

1-12 AIX Writing a Device Driver

• Outputs data to a STREAMS device.

A write to a STREAMS device causes the stream head (or some module in the Stream)
to invoke the streams driver’s xyzwput routine.

The xyzwrite routine is invoked by the write system call issued from a user program, or is
invoked by the fp_write kernel service routine issued from a kernel extension.

xyzstrategy Entry Point
This routine usually schedules read or write requests of a block device. Such requests are
added to a queue of pending I/O requests for the device. The queue can be sorted to
optimize device access; for example, one may wish to have disk blocks organized so that
any that are within the same cylinder (under the drive’s read/write head) are input or output
in one operation.

The buffer supplied to the xyzstrategy routine must be pinned in RAM, because the actual
I/O with the buffer is asynchronous (it may happen after the routine exits).

This routine calls the iodone kernel service once it’s finished.

The xyzstrategy routine is invoked indirectly by the following:

• The uphysio kernel service

• The Logical Volume Manager (LVM)

• The Virtual Memory Manager (VMM) (for handling page faults)

For more information about use of strategy routines for block devices, see “Block Device
Drivers” on page 7-1.

xyzioctl Entry Point
This routine usually performs functions that are not done by any of the other routines
mentioned up to now. Usually, the xyzioctl routine modifies, or inspects the state of the
attached device, and reports any results back to the calling program. For example, a
terminal driver would have its ttyioctl routine enable the calling program to modify baud
rate, bits per character, and so on.

This routine need not be synchronous since a device may not permit immediate action. For
example, a program that calls ioctl(CIOSTART) on a LAN adapter requires a subsequent
ioctl(CIOGETSTAT) to determine whether the first ioctl call is complete.

Not every driver has this entry point, but if this routine is present, it must support the
IOCINFO command option which tells xyzioctl to return a structure that describes the
attached device.

The xyzioctl routine is invoked by the ioctl system call issued from a user program, or is
invoked by the fp_ioctl kernel service call issued by a kernel extension.

xyzmpx Entry Point

Character device drivers can be supported as multiplexed if they provide and register a

ddmpx routine in the device switch table. When processing an open or create request
associated with a character special file, the system always determines if the associated
device driver has a ddmpx routine specified in the device switch table. If it does not,
standard character device open processing occurs.

If a ddmpx routine is found, the system calls the device driver ddmpx routine, passing it a

pointer to a character string specified after the special file name. If the character device
driver can successfully allocate a channel, it returns a channel ID to the system. The system
then calls the device driver ddopen routine with the channel ID received from the ddmpx
routine to allow for any special processing (such as initializing a device or allocating a
resource). This channel ID accompanies file I/O requests associated with the particular
open or create call that assigned it.

1-13Device Driver Overview

Unlike a standard character device driver, a multiplexed driver ddclose routine is called

once for every close that had an associated open or create request. Once the file system
determines that the last close has been issued for a channel, the multiplexed driver ddmpx
routine is called with an indication that the channel should be deallocated.

For a multiplexed device driver, a count of the number of explicit opens can be maintained.

However, a count of the number of using processes (due to calls to fork and dup
subroutines) cannot. Because the last close for a channel can be recognized by the channel
deallocation call to the ddmpx routine, keeping a count is not always required.

Channels offer the advantage of allowing access to a very large number of dynamically

allocated subunits without the need for a large number of special files. The availability of
channels can also be allowed to shrink or grow dynamically as the availability of resources
changes. Once a channel has been opened, its permissions and other security attributes
can be changed independently of other channels or the base special file.

xyzselect Entry Point
This routine enables notifying a calling thread about multiple I/O events.

Flags in the requested events parameter indicate which event is being requested along with

a synchronous request indication. The most commonly supported events are data available
for reading (the POLLIN flag), device available for writing (the POLLOUT flag), and
exceptional condition outstanding (the POLLPRI flag).

The select routine should check the current state of the device and set the corresponding

flags in the returned events parameter. If at least one requested event is indicated as true in
the returned events parameter, or if the synchronous request flag is set in the requested
events parameter, the select routine should simply return from the call.

If none of the requested events are true and the synchronous request flag is not set, the

select routine should store in memory which events have been requested for this device (by
setting state flags in a private data area) and return to the caller. Other device driver
routines, typically interrupt handlers, should check the requested-event state flags, and
notify the system if one or more of the events have become true for the device.

Notification of the event is achieved by calling the selnotify kernel service. This service

takes as input the device major and minor number, channel number (if multiplexed, or 0 if
not), and a returned events parameter indicating which events have become true for the
specified device. Unlike other operating system’s support for this capability,
requesting-process collisions and process identifiers do not have to be dealt with by the
device driver. The selnotify kernel service wakes up all processes still waiting on one or
more of the events now true for the device specified. After calling the selnotify kernel
service, the device driver should reset the requested state flags for the events that had
become true.

Note: The synchronous request flag and the requested-event state flags are used and
maintained by the device driver for performance reasons. These fields are used to
prevent unnecessary calls to the selnotify kernel service, such as when events on a
device are no longer being waited for. Actually, the selnotify kernel service knows
not to perform notification in these cases and could be called even when the original
request was synchronous, or for devices and events that were not requested.

1-14 AIX Writing a Device Driver

While calling the selnotify routine in all these cases might make device driver programming

simpler, it could have adverse effects on device and system performance. This is because
the selnotify routine must search a hash chain for events and devices not present each
time it is called. You can ensure optimal device and system performance by using the
synchronous request flag and maintaining requested event state information.

Device drivers providing a select routine can also use other device drivers, perhaps as

device handlers. The kernel provides a cascading select kernel service called fp_select that
can be used to pass select requests from one device driver to another.

The xyzselect routine is invoked by the select or poll system calls issued from a user
program, or is invoked by the fp_select kernel service call issued by a kernel extension.

xyzrevoke Entry Point

Only device drivers in the Trusted Computing Path must provide a ddrevoke routine so that

the calling thread can terminate all other threads that have the device special file open and
are currently in the wait state.

xyzdump Entry Point
Device drivers provide the dddump entry point when their respective devices can be
selected as an output device for system dump data.

STREAMS Entry Points
A STREAMS driver may include routines invoked directly from the device switch table.
However, a STREAMS driver usually handles all processing by using a write-side
(downstream) put routine, and one or two optional service routines. Like any device driver, a
STREAMS driver also has an interrupt handler which performs functions similar to those
performed by a read-side (upstream) put routine of a STREAMS module. These
relationships are shown in the STREAMS Driver Entry Points figure.

STREAMS Driver Entry Points

STREAMS
Driver

User Program User Program User Program

open(/dev/xyz0) open(/dev/xyz1)
write()
putmsg()

open(/dev/xyz2)
ioctl()
putmsg()

read()
getmsg()

user mode

kernel mode

xyzopen()

xyzclose()
xyzwput()

xyzwsrv()

xyzrsrv()

xyzintr()

stream
heads

STREAMS
module

write-side
(downstream)

read-side
(upstream)

abcwput() abcrput()
abcwsrv() abcrsrv()

abcwput() abcrput()
abcwsrv() abcrsrv()

abcwput() abcrput()
abcwsrv() abcrsrv()

abcclose() abcopen()
pushed
 into Stream

For more information on how to write a STREAMS module or device driver, see UNIX
SYSTEM V, Release 4, Programmer’s Guide: STREAMS.

1-15Device Driver Overview

xyzwput Entry Point
The write-side put routine receives messages from the stream head or STREAMS module
upstream. The stream head converts write and ioctl system calls, issued from the user
program, into messages, and then sends the messages downstream by invoking the
write-side put routine of whatever STREAMS module or driver is downstream. The stream
head handles the read system call issued from the program; the STREAMS driver does not.

This routine is invoked by the stream head or STREAMS module upstream from the driver.

A STREAMS driver does not have a read-side put routine. The interrupt handler assumes
the role of receiving data from the device’s adapter.

xyzwsrv, xyzrsrv Entry Points
A STREAMS driver can optionally support either a write-side or read-side service routine,
neither, or both.

When a driver’s write-side put routine determines that it must defer writing data to the
device (flow control), it must place the data on a write-side queue. A kernel process, which
is part of the Portable STREAMS Environment (PSE), eventually invokes the driver’s
write-side service routine, which checks the write-side queue and attempts to write the data
to the device, or enqueues the data on the write-side queue so it can make another attempt
later.

Similarly, the device driver’s interrupt handler may place a buffer of data coming in from the
device on a read-side queue. The PSE kernel process eventually invokes the driver’s
read-side service routine, which checks the read-side queue and then processes the data.
Once the processing is complete, the read-side service routine invokes the read-side put
routine of the STREAMS module upstream.

The data to be handled by a service routine is placed on a queue, as follows:

• The write-side put routine must call putq to place messages on a write-side service
queue, so that invoking the xyzwsrv routine later will process that message.

• The interrupt handler must call putq to place messages on a read-side service queue for
deferred processing by the xyzrsrv routine.

• A service routine gets messages off its own queue by calling getq.

Service routines are invoked by the STREAMS scheduler, implemented within a kernel
process in AIX. The STREAMS scheduler is part of the PSE kernel extension.

Sample Device Driver
For greatest simplicity, consider a pseudo-driver (one having no associated device), whose
routines are minimal and yet demonstrate an outline of what a device head looks like. As
with any sample code in this book, the following warning applies.

Warning: The source code examples provided are only intended to assist in the
development of a working software program. The source code examples may not function
as written: additional code is required. In addition, the source code examples may not
compile and may not bind successfully as written. The source code examples are provided,
both individually and as one or more groups, “AS IS” without warranty of any kind, either
expressed or implied, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The entire risk as to the quality and performance of the
source code examples, both individually and as one or more groups, is with you. Should any
part of the source code examples prove defective, you assume the entire cost of all
necessary servicing, repair, or correction. The contents of the source code examples are not
warranted, individually or as one or more groups, to meet your requirements or to be
error-free. Improvements and/or changes in the source code examples may be made at any
time. Changes may be made periodically to the information in the source code examples;

1-16 AIX Writing a Device Driver

these changes may be reported, for the sample device drivers included herein, in new
editions of the examples. References in the source code examples to products, programs,
or services shall not be viewed as an endorsement of any kind. A reference to a product
must not be construed to imply that the product is available or will be made available in your
country. Any reference to a licensed program in the source code examples is not intended to
state or imply that only the particular licensed program can be used. Any functionally
equivalent program can be used.

Files for Sample XYZ Device Driver
The sample device driver has the following files located in a user directory:

aprogram.c User program’s source: opens, reads, writes to device

makefile Command file that directs the make command

xyz.c Source code for the device driver

xyz_cfg.c Source code for the configure program

makefile for Sample XYZ Device Driver
This file, makefile, contains commands for building the sample XYZ device driver:

Once this is done, have root user run xyz_cfg –q to query the kernel

to see that the driver is not loaded. Then run xyz_cfg –l to load it.

Check again with xyz_cfg –q; if OK, then have non–root user run “aprogram.”

Then clean up by running xyz_cfg –u and verify absence of /dev/xyz.

#needed to get kernel services like devswadd()

KSYSLIST=/lib/kernex.exp

needed for trace macro (containing a system call)

SYSLIST=/lib/syscalls.exp

all: aprogram xyz xyz_cfg

import the kernel service calls and make xyzconfig() the entry point

xyz: xyz.o

 ld –e xyzconfig –o xyz –bI:$(KSYSLIST) –bI:$(SYSLIST) xyz.o

It is necessary to use separate compile and link steps to avoid picking up

routines like printf from libc.a. There is a kernel printf().

_KERNEL needed to get trace macro, others determined by header files

xyz.o: xyz.c

 cc –c –D_ALL_SOURCE –D_POSIX_SOURCE –D_KERNEL xyz.c

this is to create the driver’s configure method that extends the kernel

xyz_cfg: xyz_cfg.c

 cc –o xyz_cfg xyz_cfg.c

aprogram: aprogram.c

 cc –o aprogram aprogram.c

1-17Device Driver Overview

Configuration Program for Sample XYZ Device Driver
This configuration program, xyz_cfg.c, is not recommended for configuring drivers in
AIX. It avoids the use of ODM routines for simplicity.

/*

 * FUNCTION: Configure/Unconfigure program for bare bones driver, xyz

 * Normally, one has a configure program (run at boot time)

 * and then a separate unconfigure program (run interactively).

 * Run “xyz_cfg” to see parameters needed.

*/

#include <stdio.h> /* for printf() */

#include <unistd.h> /* for getopt() */

#include <stdlib.h> /* for exit() */

#include <sys/types.h> /* for dev_t and other declarations */

#include <sys/errno.h> /* for perror() */

#include <sys/sysmacros.h> /* for makedev() */

#include <sys/sysconfig.h> /* for sysconfig() */

#include <sys/device.h> /* for CFG_INIT & other flags */

#include <sys/mode.h> /* for mknod() */

void main(int argc, char *argv[])

{

 struct cfg_load cfg; /* to load kernel extension */

 struct cfg_dd xyzcfg; /* to invoke xyzconfig() */

 int majorno, minorno;

 dev_t device_number;

 int ch; /* flag char returned by getopt */

 extern int optind; /* for getopt function */

 extern char *optarg; /* for getopt function */

 /* normally call ODM routines to get values for these */

 majorno = 99;

 minorno = 0;

 device_number = makedev(majorno, minorno);

 /* parse command line */

 if(argc <= 1)

 { printf(“You must give an argument.\n”);

 printf(“arguments to xyz_cfg are:\n”);

 printf(“\t–l to load the driver and invoke xyzconfig() \n”);

 printf(“\t–u to invoke xyzconfig() and unload the driver \n”);

 printf(“\t–q to query the status of the kernel extension\n”);

 }

 while ((ch = getopt(argc,argv,”luq”)) != EOF)

 { switch (ch)

 { case ’l’: /* load the driver––assume is first time (shouldn’t!) */

 cfg.path = “./xyz”; /* path is local––usually /etc/drivers */

 if (sysconfig(SYS_KLOAD, &cfg, sizeof(cfg)) == –1)

 { perror(“sysconfig SYS_KLOAD FAILED”);

 exit(1);

 }

 xyzcfg.kmid = cfg.kmid; /* kernel module ID from SYS_KLOAD */

 xyzcfg.devno = device_number;

 xyzcfg.cmd = CFG_INIT;

 if (sysconfig(SYS_CFGDD, &xyzcfg, sizeof(xyzcfg)) == –1)

 { perror(“sysconfig SYS_CFGDD FAILED”);

 exit(1);

 }

 /* make /dev entry in honor of device switch table entry */

 if (mknod(“/dev/xyz”, 0666 | _S_IFCHR, device_number) == –1)

 { perror(“mknod FAILED”);

 exit(1);

 }

 break;

1-18 AIX Writing a Device Driver

 case ’u’: /* unload the driver */

 /* the kmid lost once this exits, so we requery the information */

 cfg.path = “./xyz”;

 if (sysconfig(SYS_QUERYLOAD, &cfg, sizeof(cfg)) == –1)

 { perror(“sysconfig SYS_QUERYLOAD FAILED”);

 exit(1);

 }

 xyzcfg.kmid = cfg.kmid; /* kernel module ID from SYS_QUERYLOAD */

 xyzcfg.devno = device_number;

 xyzcfg.cmd = CFG_TERM;

 if (sysconfig(SYS_CFGDD, &xyzcfg, sizeof(xyzcfg)) == –1)

 { perror(“sysconfig SYS_CFGDD FAILED”);

 exit(1);

 }

 /* remove /dev entry...normally would use ODM’s reldevno() */

 unlink(“/dev/xyz”);

 if (sysconfig(SYS_KULOAD, &cfg, sizeof(cfg)) == –1)

 { perror(“sysconfig SYS_KULOAD FAILED”);

 exit(1);

 }

 break;

 case ’q’: /* query the status of the system call */

 cfg.path = “./xyz”;

 if (sysconfig(SYS_QUERYLOAD, &cfg, sizeof(cfg)) == –1)

 { perror(“sysconfig SYS_QUERYLOAD FAILED”);

 exit(3);

 }

 printf(“The kernel module ID is %d\n”, cfg.kmid);

 xyzcfg.kmid = cfg.kmid; /* kernel module ID from SYS_QUERYLOAD */

 xyzcfg.devno = device_number;

 xyzcfg.cmd = CFG_QVPD;

 if (sysconfig(SYS_CFGDD, &xyzcfg, sizeof(xyzcfg)) == –1)

 { perror(“sysconfig SYS_CFGDD FAILED”);

 exit(1);

 }

 break;

 default:

 printf(“arguments to xyz_cfg are:\n”);

 printf(“\t–l to load the driver and invoke xyzconfig() \n”);

 printf(“\t–u to invoke xyzconfig() and unload the driver \n”);

 printf(“\t–q to query the status of the kernel extension\n”);

 } /* end switch on ch */

 } /* end while getopt */

 exit(0);

}

1-19Device Driver Overview

Source Code for Sample XYZ Device Driver
This file, xyz.c, contains source code for the sample device driver:

#include <sys/types.h> /* for dev_t and other types */

#include <sys/errno.h> /* for errno declarations */

#include <sys/sysconfig.h> /* for sysconfig() */

#include <sys/device.h> /* for devsw */

#include <sys/trchkid.h> /* for trace hook macros */

/***

 BARE BONES DRIVER

This shows the format of a minimal set of entry points for a

pseudo–driver.

***/

/************** xyzopen **********************/

int xyzopen(dev_t devno, ulong devflag, chan_t chan, int ext)

{

 TRCHKL5T(HKWD_USER1, 0x7, devno, devflag, chan, ext);

 return(0);

}

/************** xyzclose **********************/

int xyzclose(dev_t devno, chan_t chan)

{

 TRCHKL3T(HKWD_USER1, 0x8, devno, chan);

 return(0);

}

/************** xyzread **********************/

int xyzread(dev_t devno, struct uio *uiop, chan_t chan, int ext)

{

 TRCHKL5T(HKWD_USER1, 0x9, devno, uiop, chan, ext);

 return(0);

}

/************** xyzwrite **********************/

int xyzwrite(dev_t devno, struct uio *uiop, chan_t chan, int ext)

{

 TRCHKL5T(HKWD_USER1, 0x0a, devno, uiop, chan, ext);

 return(0);

}

/************** xyzconfig **********************/

int xyzconfig(dev_t devno, int cmd, struct uio *uiop)

{ struct devsw dsw_struct;

 extern int nodev();

 int return_code;

 /* trace macro to print received parameters in hex */

 TRCHKL4T(HKWD_USER1, 0x1, devno, cmd, uiop); /* 0x01–tracept label */

 switch(cmd)

 { case CFG_INIT:

 dsw_struct.d_open = xyzopen;

 dsw_struct.d_close = xyzclose;

 dsw_struct.d_read = xyzread;

 dsw_struct.d_write = xyzwrite;

 dsw_struct.d_ioctl = nodev;

 dsw_struct.d_strategy = nodev;

 dsw_struct.d_ttys = NULL;

 dsw_struct.d_select = nodev;

 dsw_struct.d_config = xyzconfig;

 dsw_struct.d_print = nodev;

 dsw_struct.d_dump = nodev;

 dsw_struct.d_mpx = nodev;

 dsw_struct.d_revoke = nodev;

 dsw_struct.d_dsdptr = NULL;

 dsw_struct.d_opts = NULL;

1-20 AIX Writing a Device Driver

 if((return_code = devswadd(devno, &dsw_struct)) != 0)

 { TRCHKL3T(HKWD_USER1, 0x2, devno, dsw_struct);

 return(return_code);

 }

 /* entry points now in device switch table */

 break;

 case CFG_TERM:

 TRCHKL1T(HKWD_USER1, 0x3);

 if((return_code = devswdel(devno)) != 0)

 { TRCHKL2T(HKWD_USER1, 0x4, devno);

 return(return_code);

 }

 break;

 case CFG_QVPD:

 TRCHKL1T(HKWD_USER1, 0x5);/* would normally handle this case too */

 break;

 default:

 TRCHKL1T(HKWD_USER1, 0x6);

 return(EINVAL);

 } /* end switch(cmd) */

 return(0);

}

User Program to Invoke Sample XYZ Device Driver
This file, aprogram.c, contains sample user code to invoke the sample device driver:

#include <stdio.h> /* for printf() */

#include <fcntl.h> /* for open(), close() */

#include <unistd.h> /* for read(), write() */

#include <sys/errno.h> /* for perror() */

int fd; /* file descriptor */

char buf[10]; /* read/write buffer */

void main()

{

 printf(“buf pointer: 0x%x\n”, buf);

 if((fd = open(“/dev/xyz”, O_RDWR)) == –1)

 { perror(“open /dev/xyz FAILED”);

 exit(1);

 }

 if(read(fd, buf, sizeof(buf)) == –1)

 { perror(“read FAILED”);

 exit(1);

 }

 if(write(fd, buf, sizeof(buf)) == –1)

 { perror(“write FAILED”);

 exit(1);

 }

 if(close(fd) == –1)

 { perror(“close FAILED”);

 exit(1);

 }

}

1-21Device Driver Overview

Running the Sample XYZ Device Driver
The lines prefixed by a # were commands executed as a user with root authority in a
window. The lines prefixed by a > were commands executed as a staff user in another
window. The order of the commands is as listed.

trace –j’010’ –l –s –a &

[1] 21971

xyz_cfg –q

The kernel module ID is 0

sysconfig SYS_CFGDD FAILED: No such device

[1] + 21971 Done trace –j’010’ –l –s –a &

xyz_cfg –l

xyz_cfg –q

The kernel module ID is 21790464

 > $ ls /dev/xyz

 > /dev/xyz

chmod 666 /dev/xyz

 > $ aprogram

 > buf pointer: 0x200516c0

trcstop

trcrpt –O’exec=y’ –O’pid=n’ –O’svc=y’ –O’timestamp=1’ >

$HOME/frog

 > $ ls /dev/xyz

 > /dev/xyz

xyz_cfg –u

xyz_cfg –q

The kernel module ID is 0

sysconfig SYS_CFGDD FAILED: No such device

 > $ ls /dev/xyz

 > ls: 0653–341 The file /dev/xyz does not exist.

Trace Output for Sample XYZ Device Driver
Here is the output of trcrpt (abbreviated for space):

The hook data indicates calls to xyzconfig (load and query), open, read, write, and close.

1-22 AIX Writing a Device Driver

ID PROCESS NAME I SYSTEM CALL ELAPSED KERNEL INTERRUPT

001 trace 0.000000 TRACE ON channel 0

010 trace 19.362228 UNDEFINED TRACE ID idx 0x21dc traceid

0010

 hookword 10E0000 type 0E

 hookdata 0000 00000001 00630000 00000001 2FF97F1C 00000000

010 trace 25.716153 UNDEFINED TRACE ID idx 0x2230 traceid

0010

 hookword 10E0000 type 0E

 hookdata 0000 00000001 00630000 00000003 2FF97F1C 00000000

010 trace 25.716159 UNDEFINED TRACE ID idx 0x224c traceid

0010

 hookword 10A0000 type 0A

 hookdata 0000 00000005

010 trace 99.695506 UNDEFINED TRACE ID idx 0x24e8 traceid

0010

 hookword 10E0000 type 0E

 hookdata 0000 00000007 00630000 00000003 00000000 00000000

010 trace 99.706120 UNDEFINED TRACE ID idx 0x2504 traceid

0010

 hookword 10E0000 type 0E

 hookdata 0000 00000009 00630000 2FF97DC0 00000000 00000000

010 trace 99.706318 UNDEFINED TRACE ID idx 0x2520 traceid

0010

 hookword 10E0000 type 0E

 hookdata 0000 0000000A 00630000 2FF97DC0 00000000 00000000

010 trace 99.706446 UNDEFINED TRACE ID idx 0x253c traceid

0010

 hookword 10E0000 type 0E

 hookdata 0000 00000008 00630000 00000000 00000000 00000000

002 trace 109.684978 TRACE OFF channel 0

Routines on the Interrupt Side
When one of the system’s processors receives an external interrupt, an AIX processor
interrupt handler, for that particular interrupt level, begins execution. This portion of the AIX
kernel determines which device interrupt handler, or which collection of handlers, to invoke.
For more information on interrupt processing, see “Interrupts” on page 3-1.

A card on the system bus that serves as an adapter between the system and the device
may generate an interrupt on the bus. Its device driver will need to configure a routine to
handle that interrupt, and may wish to add other routines to handle off-level interrupts, which
are scheduled by the device interrupt handler as a way to defer interrupt processing.

xyzintr Entry Point
This routine is registered to the kernel by a call to the i_init kernel service. The xyzopen
routine typically calls i_init, and pins the bottom half of the device driver. Because routines
executing on the interrupt side cannot afford to be preempted by demand paging, they are
placed within the driver’s bottom half (they are pinned in RAM).

This routine usually does the following:

• Determines the slot of the card that generated the device interrupt.

This routine may also have to determine whether to process the interrupt. The interrupt
level can be shared, so the interrupt may be intended for another device interrupt
handler.

• Disables some other device interrupts to prevent this routine from being reentered if
another interrupt for the same device driver is received.

This technique of avoiding concurrent execution can fail on computers with multiple
processors.

1-23Device Driver Overview

Because interrupt handlers have to address concurrency by serializing interrupt
processing in some way, the handler’s latency (the time between when control of the
system processor is assumed and when control can be relinquished) must be minimized
in order to maximize the system’s ability to respond to other device interrupts.

• Transfers data from the device into a buffer, or notifies a user program that something
has happened.

• Schedules an off-level interrupt handler to complete processing of input data.

This can be done to minimize the handler’s latency. As an alternative, the driver can
depend on kernel processes to handle received data.

There are some special concerns that apply to routines on the interrupt side:

• Many kernel services can only be invoked from routines on the call side.

• These routines cannot go to sleep, though they can post events to (waken) routines on
the call side.

• These routines cannot obtain or release locks.

Routines on the call side that are in the bottom half of a driver can adjust locks, provided
the events or lockwords are also pinned in RAM.

• An interrupt handler is called at the priority registered when the handler is configured into
the kernel via the i_init kernel service. The handler’s execution can only be preempted
by interrupts with a higher priority.

• Interrupt handlers have volatile data (local variables) in a pinned stack that is less than
4K bytes in size.

Note: Because xmalloc cannot execute on the interrupt side, any non-volatile buffers
that an interrupt handler needs must be previously allocated on the call side.

• Routines that handle off-level interrupts run at a less favored interrupt priority.

xyzcallback Entry Point
This entry point is used only in device drivers for cards attached to a PCMCIA bus.

This routine is registered to the kernel by calling a PCMCIA Card Service. It executes in the
context of a kernel process and does not need to be pinned in a usual environment. It does
need to be pinned when a device driver gets a PM PAGE FREEZE NOTICE from power
management threads until it gets a PM PAGE UNFREEZE NOTICE.

There is a special concern that applies to an xyzcallback routine:

• It cannot go to sleep for a long time, though it can post events to (waken) routines on the
call side.

For more information, see “Configuration of Devices on PCMCIA Systems” on page 6-9.

1-24 AIX Writing a Device Driver

Pinning Device Driver Object Files
Sometimes a driver routine (such as an interrupt handler) and any associated data is
required to be kept in RAM. This requirement might exist to avoid handling a page fault so
the routine can execute within a fixed period of time, or to avoid receiving a page fault while
interrupts are disabled.

Typically, a device driver writer compiles or links all routine and data definitions into one
loadable file (the bottom half of the device driver), because the pincode kernel service
marks each page of the loaded object file as being required to be kept in RAM. The method
for identifying the object file is that, a pointer to a routine within the object file is an input
value for the pincode kernel service.

Routines and data that can be subject to page replacement are typically collected into
another loadable object (the top half of the device driver).

Routines that wish to allocate buffers from the kernel heap (by calling the xmalloc kernel
service) must take care which heap the allocation is from. Routines in the bottom half
allocate data from the kernel’s pinned heap; and routines in the top half allocate data from
either heap. For more information on this, see “Memory Management” on page 4-1.

Any routine in the bottom half that invokes a routine in the top half, or refers to data in the
top half, negates any purpose for having been pinned in RAM. The routine may
(intermittently) cause a page fault.

Typically, a device driver’s open routine pins the device driver’s bottom half when the
device special file is first opened. The driver’s close routine checks for any outstanding open
calls on the file and then calls the unpincode kernel service.

1-25Device Driver Overview

Driving a SCSI Attached Device
A SCSI device driver converts I/O requests into SCSI commands, and passes these
commands to the SCSI adapter driver provided in AIX. Therefore, a SCSI device driver only
consists of routines that execute on the call side. The SCSI device driver passes commands
to the adapter driver by direct invocation of its routines; therefore, a SCSI device driver must
be integrated with the existing SCSI subsystem. The SCSI subsystem is illustrated in the
SCSI Subsystem figure.

The generic SCSI device head associated with the special file /dev/scsi# (where # is 0,
1, 2, or some other number) permits a user program with root user authority to send SCSI
commands through the associated SCSI adapter.

For more information on how to drive a SCSI attached device, see “SCSI Device Drivers” on
page 8-1.

SCSI Subsystem

/dev/scsi

major 10

Generic
Device
Head

/dev/rhdisk1 /dev/rcd0

major 11 major 12
minor 0 minor 1 minor 0

Hard Disk
Device
Driver

CD ROM
Device
Driver

Generic SCSI Adapter Driver

SCSI Adapter

SCSI
Devices

1-26 AIX Writing a Device Driver

Other Topics
It may be necessary to integrate a device driver into some existing subsystem in AIX. For
example, you may need to integrate a driver into one of the following subsystems:

• TTY subsystem

See “STREAMS-Based TTY Subsystem Interface” on page 11-1 for more information on
supporting terminal users through a serial device.

• Graphics device subsystem

See “Implementing Graphical Input and 2D Graphics Device Drivers” on page 12-1 for
more information on supporting a pointing device, graphics monitor, keyboard, or other
graphics related device.

• TCP/IP

See “Implementing a Network Device Driver” on page 13-1 for more information on
supporting the TCP/IP socket interface or the Transport Layer Interface (TLI) through a
network (Ethernet, Token Ring, or other) adapter.

• Socket Interface to your own protocol

See “Network Interfaces and Protocols” on page 14-1 for more information on
implementing a protocol that is an alternative to TCP/IP, which uses a network adapter
driver provided by AIX.

Once a device driver is written and configured into the kernel, it is necessary to test and
debug the driver routines. The example driver given in this chapter demonstrates the use of
trace macros, but you may wish to incorporate error logging capability into a driver so that a
system administrator can be notified of any irregularities.

Furthermore, defects in a driver could cause the system to halt after having copied an
image of the kernel (called a kernel dump) to a logical volume reserved for that purpose.
The kernel dump can be inspected with the crash utility. It may also be necessary to debug
a driver using the kernel debugger, which comes with AIX and is configured into the kernel
with the bosboot command. For more information on the use of such tools, see
“Debugging Tools” on page 15-1.

Once a driver is ready for delivery, you may wish to archive the resulting binary and
character files into a format that the installp command can process. For information on
packaging files into installp format see “Software Product Packaging” in AIX General
Programming Concepts : Writing and Debugging Programs.

In addition, you may wish to add an entry in the SMIT interface to enable users to install,
configure, or remove your device in the same way that is done with devices supported by
AIX. For more information on adding your own SMIT dialogs see “System Management
Interface Tool (SMIT) for Programmers” in AIX General Programming Concepts : Writing
and Debugging Programs.

Device I/O 2-1

Chapter 2. Device I/O

Even though a driver can perform many functions, one usually writes a driver to output data
to a device or demand data from a device; in other words drivers usually perform device
I/O. A driver may have to read from, or write to, registers on a card serving as an adapter
between an I/O bus and a device connected to the card, or the driver may have to set up
the means for data to be transferred in some other way.

Address Translation
There are two basic types of address translation implemented on system processors that
AIX supports:

• Block address translation (on PowerPC only)

• Segment address translation

The various kinds of address translation are diagramed in the Address Translation figure.

Address Translation

effective address

segment
address
translation

block
address
translation

real address

Power PC
only

direct-store
segment

Power PC
601 only

real address

real address

I/O address

page
address
translation

I/O controller
translation

memory forced I/O

2-2 AIX Writing a Device Driver

Block Address Translation
Block address translation (BAT) is a feature of the PowerPC architecture that is an
alternative to page address translation. Pages have a fixed size, but blocks can be from 128
KB to 256 MB in size, although on the PowerPC 601 RISC Microprocessor, BAT areas can
be no larger than 8MB. Whether this type of address translation is implemented in AIX
depends on the system PowerPC processor. AIX does not use the BAT tables of the
PowerPC 601 RISC Microprocessor, but instead uses memory-forced I/O, which is
described later.

Segment Address Translation
All three processor architectures that AIX supports, POWER, POWER2, and PowerPC, can
translate byte addresses by using sixteen segment registers. The contents of these
registers, together with that of some other processor registers (such as the general purpose
registers, instruction register, and machine state register) make up the context in which an
instruction executes. Changing the contents of some of these registers (having saved the
former values somewhere) is a context switch. A device driver’s call side routines typically
execute in the context of a process, and its interrupt side routines execute in the context of
an interrupt handler. The Segmented Virtual Memory figure shows how virtual memory
consists of segments accessed by instructions executing in various contexts.

� �
� �
� �
� �
� �

� �
� �

Segmented Virtual Memory

the kernel
segment

an I/O segment

context A
context B

other context

virtual
memory
segments

In AIX, instructions typically execute in a context whose segment registers contain the
following:

Segment register 0 Kernel segment identifier (ID) (Shared by all)
Segment register 1 Text segment ID (Where instructions are fetched from)
Segment register 2 Data segment ID (Not shared by others)
Segment register 13 Shared text segment ID (For shared libraries)
Segment register 15 I/O segment ID (For I/O. Often used, but not required.)

Device I/O 2-3

For more details, see “Program Address Space Overview” in the chapter about shared
libraries and shared memory in AIX General Programming Concepts : Writing and
Debugging Programs.

A segment register contains a segment identifier (segment ID) which determines, among
other things, what kind of address translation is to be performed on addresses within that
segment.

Consider the following kinds of segment address translation:

• Page address translation
• I/O controller interface translation
• Memory forced I/O (PowerPC 601 RISC Microprocessor)

Page address translation is usually performed on an address referenced by an instruction
accessing system RAM. For the POWER and POWER2 architectures, this kind of address
translation is detailed under “Memory Addressing” in the chapter about system processors
in Hardware Technical Information-General Architectures. For the PowerPC architecture,
page address translation is detailed in PowerPC Architecture.

A segment address is page translated if its corresponding segment register has the highest
order bit clear (zero); otherwise, the address is given to the I/O controller for translation.
The PowerPC 601 RISC Microprocessor has a feature, called memory-forced I/O, that
enables the I/O controller to generate a real address. This address can be used when I/O
space is memory mapped.

2-4 AIX Writing a Device Driver

I/O Controller Types
Each processor architecture expects an I/O controller to interface between the system bus
(the one the processors use to access RAM) and an I/O bus. A computer system may have
more than one I/O bus, but each bus has its own I/O controller.

The following table shows processor types, I/O controllers, and I/O bus protocol
combinations that are supported by AIX Version 4.1:

Processor Controller Bus Protocol Address Space for I/O

POWER RS1 IOCC Micro Channel I/O address

POWER RSC IOCC Micro Channel I/O address

POWER RS2 XIO Micro Channel I/O address

PowerPC ASIC Micro Channel I/O address

PowerPC PCIB/MC PCI real address
(memory mapped I/O)

The following list explains some terms used in the preceding table:

• Power RSC is POWER architecture on a single chip.
• Power RS2 is POWER2 architected chip.
• IOCC is I/O Channel Controller chip.
• XIO is Extended IOCC.
• ASIC is Application Specific Integrated Circuit chip.
• PCIB/MC is Peripheral Component Interconnect (PCI) Bridge/Memory Controller

complex.

The first four configurations, which interface to a Micro Channel bus, are quite similar. I/O
space is accessed by passing an address to an I/O controller for translation; the address is
then an I/O address. In this case, I/O space is mapped to I/O addresses by the I/O
controller.

Configurations having a PCIB/MC, which interfaces to a Peripheral Component
Interconnect (PCI) bus, are quite different. The I/O space is part of real address space,
meaning that a memory controller translates real addresses so that certain address ranges
access system RAM, and other address ranges access other system or bus attached
devices. In this sense, I/O space is memory mapped. Different systems may have different
address ranges mapped to different devices. For implementation details, see the hardware
technical reference for the particular system.

Device I/O 2-5

I/O Space on PCI and ISA Systems
On PowerPC systems that do not have a Micro Channel bus, I/O space is memory mapped
by the memory controller. So, I/O space is accessed by generating real addresses in one of
two ways: either through block address translation, or memory-forced I/O (PowerPC 601
RISC Microprocessor only). The Controller’s Memory Map (32 bit) figure shows an example
of how the memory controller maps real addresses to bus addresses.

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� �
� �
� �

PowerPC address

I/O
configuration

I/O Memory

PCI
I/O Memory

0GB

2GB

2GB+8MB

2GB+16MB

3GB-8MB

3GB

4GB-16MB

4GB

0GB

64K

8MB

16MB

1GB-8MB

1GB

0GB

1GB

1GB-16MB

reserved

system I/O

System I/O

interrupt
vector

flash ROM
registers

system
RAM

ISA
addresses

Controller’s Memory Map (32 bit)

2-6 AIX Writing a Device Driver

Programmed I/O to PCI, ISA, and PCMCIA Devices
A routine is said to perform programmed I/O whenever it issues a load or store instruction
with an address mapped to a bus or planar device. One distinguishes programmed I/O,
where a system processor performs the data transfer, from direct memory access (DMA)
where data is transferred by some other means.

For example, to output the value 0x12345678 to some register at offset 0x2f7:

volatile uchar *ioaddr;

struct io_map io_map;

...

ioaddr = iomem_att(&io_map); /* do after io_map initialized */

*(ioaddr + 0x2f7) = 0x12345678;

eieio(); /* ensures I/O instructions complete */

...

iomem_det(ioaddr);

The argument to iomem_att is a pointer to a structure io_map as defined in sys/ioacc.h.
The calling routine provides the size of the address space needed, and a bus ID which
specifies the bus type of region to be mapped. The figure Format of a Bus ID (real address,
32 bit) shows the format of a bus ID. The device driver’s configuration entry point must get
a valid bus ID from its configure method.

reserved
bus type number

bus typeflag

region

0 8 12 16 26 31

Format of a Bus ID (real address, 32 bit)

In this case, the bus type might be IO_ISA. The region might be ISA_IOMEM if I/O is to an
ISA adapter’s registers, or ISA_BUSMEM if I/O is to RAM on an ISA adapter.

A call to iomem_att returns a bus address in io_map. The bus address is to be passed to
iomem_det after the I/O is complete.

There is no exception handling for programmed I/O on systems that do not have Micro
Channel. An I/O exception causes the system to halt.

For PCMCIA devices, the bus type can be IO_ISA or IO_PCI. The bus type depends on the
bus that the PCMCIA bus is attached to. Before iomem_att is called, a call to RequestIO
for I/O memory or RequestWindow for bus memory is required.

Device I/O 2-7

Direct Memory Access
A method of transferring data to or from a device without having a system processor issue
load or store instructions is to use direct memory access (DMA), which relies on
capabilities designed into the DMA controller and the adapter interfacing to the attached
device.

There are two types of DMA:

• DMA Master

When an adapter arbitrates for the bus, and is able to transfer data directly by generating
its own bus addresses and transfer lengths, then the transfer is DMA master, and the
card is a DMA master adapter.

• DMA Slave

When an adapter arbitrates for control for the bus, but lacks the ability to generate its
own bus addresses to perform data transfer, so that a third party (a DMA controller)
performs the data transfer, then the transfer is DMA slave, and the card is a DMA slave
adapter.

Because bus addresses are meaningless on this system during DMA slave operations,

DMA slave adapters cannot use the addresses during the DMA transfer to indicate the
intended location for the data. Because of the programmed I/O commands that the
device driver has previously issued to the adapter, DMA write operations indicate where
the adapter should put the data. The DMA read operations indicate where the adapter
should retrieve the data. The adapter typically knows where the data is to be put (during
a DMA write operation) or where it is to come from (during DMA read operations).

The steps for performing DMA differ between bus types, though the steps for performing
DMA on ISA are similar to those for PCI. There is currently no DMA support for PCMCIA
adapters.

DMA on POWER and POWER2 Architectures
The RIOS-1 and RIOS-2 architectures are not cache-consistent. Therefore, on these
platforms, memory pages involved in a DMA transfer have to be made inaccessible to the
processor (hidden), and the processor data cache must be flushed accordingly.

The IOCCs on these models are buffered (including the dual-buffered XIO)
implementations, and thus require the use of kernel services to flush and invalidate buffers.

DMA on RSC (Single-Chip) Architectures
The RSC architecture is a cache-consistent architecture; therefore page hiding and data
cache flushes aren’t necessary.

The IOCC on this architecture is non-buffered, therefore does not require buffer flushes or
buffer invalidation.

DMA on PowerPC Architectures
The PowerPC architecture is a cache-consistent architecture, therefore page hiding and
data cache flushes aren’t necessary. However, if a DMA operation modifies an instruction
stream, instruction cache management is required.

2-8 AIX Writing a Device Driver

DMA Routines for PCI and ISA Devices
The dio structure, which is defined in sys/dma.h, has many uses by a device driver. It is
used both to pass a list of virtual addresses and lengths of buffers to the d_map_list and
d_map_slave services, and to receive the resulting list of bus addresses (d_map_list only)
for use by the device in the data transfer. Note that for calls to d_map_slave, the driver
does not need a dio bus list, since by nature the address generation for slaves is hidden.

Typically, a device driver will provide a dio structure containing only one buffer and length in
the list. Then, if the buffer length spans many pages, the bus address list would contain
multiple entries reflecting the physical locations making up the virtually contiguous buffer. It
may be desirable to process several buffer requests in one DMA operation. A driver can
group multiple requests by specifying a virtual list in a dio structure.

The device driver must allocate any pinned storage for all dio lists needed. The driver will
need at least two dio structures, one for passing in the virtual list, and another for accepting
the resulting bus list. The driver can have many dio lists if it plans to have multiple
outstanding I/O commands to its device. The length of each list is dependent on the
function of the device and driver. The virtual list needs as many elements as are planned to
be coalesced into one operation by the device. A formula for estimating how many elements
the bus address list will need is the sum of each of the buffer lengths divided by page size
plus 2. One way to represent this formula is:

sum[i=0 to n] ((vlist[i].length / PSIZE) + 2).

This is to handle a worst case situation, where, for a contiguous buffer spanning multiple
pages, each physical page is discontiguous, and neither the starting or ending addresses
are page-aligned.

If the d_map_list service runs out of space while filling in the dio bus list, then an error,
DMA_DIOFULL, is returned to the device driver and the bytes_done field of the dio virtual
list is set to how many bytes were successfully mapped in the bus list. This byte count is a
multiple of the minxfer field provided to the d_map_list or d_map_slave service. Also,
the resid_iov field of the virtual list is set to the index of the first d_iovec entry
representing the remainder of iovecs that could not be mapped. The device driver then can
initiate a partial transfer on its device and leave the remainder on its device queue, or make
another call to the d_map_list with new dio lists for the remainder, then setup its device for
the full transfer that was originally intended. If the driver chooses not to initiate the partial
transfer, it still must make a call to d_unmap_list to undo the partial mapping.

If d_map_list or d_map_slave encounter an access violation on a page within the virtual
list, then an error, DMA_NOACC, is returned to the device driver, and the bytes_done
field of the dio virtual list is set to the number of bytes that preceded the faulting iovec. In
this case, the resid_iov field is set to the index of the d_iovec entry that encountered the
violation. From this information, the driver can determine which buffer contained the faulting
page and report the failure of the request associated with the buffer. Note that in the
DMA_NOACC case, the bytes_done count is not always a multiple of the minxfer field
provided to the d_map_list or d_map_slave service, and no partial mapping is done. For
slaves this means that no setup of the address generation hardware has been done. For
masters this means the bus list is undefined. If the driver desires a partial transfer, it must
make another call to the mapping service with the dio list adjusted to not include the
faulting buffer.

Finally, if while mapping a transfer, either the d_map_list or d_map_slave services run out
of resources to map the transfer, an error, DMA_NORES, is returned to the device driver. In
this case, the bytes_done field of the dio virtual list is set to the number of bytes that
were successfully mapped in the bus list. This byte count is a multiple of the minxfer field
provided to the d_map_list or d_map_slave service. Also, the resid_iov field of the
virtual list is set to the index of the first d_iovec of the remaining iovecs that could not be
mapped. The device driver then can initiate a partial transfer on its device and leave the
remainder on its device queue, or choose to leave the entire request on its device queue

Device I/O 2-9

and wait for resources to free up (for example, after device interrupt from previous
operation). If the driver chooses not to initiate the partial transfer, it still must make a call to
d_unmap_list or d_unmap_slave (for slaves) to undo the partial mapping.

The maximum value for the minxfer parameter of the d_map_list and d_map_slave
services defaults to 64K bytes. This should be sufficient for almost all devices, but some
may require a larger absolute minimum transfer. The maximum minxfer value can be
increased by using the DMA_MAXMIN_* set of flags defined in sys/dma.h. One of these
flags may be ORed into the flags field of the d_map_init service to increase the
maximum possible minxfer value for subsequent calls to d_map_list and d_map_slave.

The only field of the bus list that a device driver modifies is the total_iovecs field to
indicate how many elements are available in the list. The device driver never modifies any
of the other fields in the bus list. It is this list that the device driver uses to setup its device
for the transfer, and it is this list that is provided to the d_unmap_list service to unmap the
transfer. The d_map_list service sets the used_iovecs field to indicate how many
elements it filled out.

As far as the virtual list, the device driver sets up all of the fields except for the
bytes_done and resid_iov fields which are set by the mapping service.

To enhance portability, these services are typically invoked by using macros (such as
D_MAP_INIT and D_MAP_LIST) defined in /sys/dma.h.

Page Protection
Page protection checking is performed by the d_map_page, d_map_list, and
d_map_slave services by calling the xmemdma kernel service for each page of a
requested transfer. If the intended direction of a transfer is device to memory, then the page
access permissions must allow writing to the page. If the intended direction of a transfer is
from memory to device, then the page access permissions need only allow reading from the
page. If there is a protection violation, no mapping for the DMA transfer is performed, and
an appropriate error code is returned.

The DMA_BYPASS flag allows a device driver to bypass the access checking functionality
of these services; this flag should only be used for global system buffers such as mbufs or
other command, control, and status buffers used by a device driver.

Peer-To-Peer DMA Support
Peer-to-Peer DMA is DMA transfer from one adapter’s bus memory to another’s, controlled
by either a Bus Master or a DMA Slave with assistance of the I/O Controller. In either case,
the transfer is independent of the CPU and does not involve system memory.

The flag BUS_DMA supports peer-to-peer DMA operations on calls to d_map_page,
d_map_list and d_map_slave. This flag ensures that these services do not translate the
provided address as a virtual address; instead it ensures that they treat the address as a
bus address.

2-10 AIX Writing a Device Driver

DMA Master I/O for an ISA Adapter
Because an ISA adapter can only generate 24 bit addresses, it can address up to 16MB. A
device driver may need to ensure that DMA buffers are in low memory, unless there is no
more than 16MB of RAM on the system. A driver allocates such buffers with the rmalloc
kernel service, and later frees them with the rmfree kernel service. Then, the driver can
“bounce” data from user supplied buffers (which may not be in low memory) into the buffer
allocated by rmalloc. Then the driver could cause the data to be transferred to the ISA
adapter with DMA.

For example, if the driver is to transfer data from a user buffer to a DMA master adapter,
some steps for the transfer could be:

Steps for ISA DMA Master Transfer

Module What Device Driver Could Do

xyzopen rmalloc driver buffer(s).
Call DIO_INIT to allocate and initialize a dio structure.
Call D_MAP_INIT which returns “d_handle” containing bus specific services.
Call D_MAP_ENABLE if DMA not already enabled for this “d_handle”.
Call D_MAP_PAGE if rmalloc’ed buffer contained within a 4K page,
 or call D_MAP_LIST if rmalloc’ed buffer(s) span multiple pages.

xyzread or
xyzwrite

Perform PIO write to adapter register to start DMA transfer.
Copy data to bounce buffer (writes only).

xyzintr (Interrupt received from adapter when DMA transfer complete.)
Copy data out of bounce buffer (reads only).
Perform PIO read of adapter register to check DMA status.

xyzclose Call D_UNMAP_PAGE or D_UNMAP_LIST.
Call D_MAP_DISABLE if DMA not already disabled for this “d_handle”.
Call D_MAP_CLEAR to free “d_handle” structure.
Call DIO_FREE to free the dio structure,
 then rmfree the driver buffer(s).

Device I/O 2-11

Here is an example in pseudo-code of how a DMA master transfer could be done:

Initialization entry point: (xyzopen or xyzconfig)

 determine bus type for device from configuration information

 determine 64 vs.32 bit capabilities from configuration

 information

 call ”handle = D_MAP_INIT(bid, DMA_MASTER|flags,

 bus_flags, channel)”

 if handle == DMA_FAIL

 could not configure

 else

 call ”D_MAP_ENABLE(handle)” (if necessary)

start_io entry point: (xyzread or xyzwrite)

 if single page or less transfer

 call ”result = D_MAP_PAGE(handle, baddr,busaddr, xmem)”

 if result == DMA_NORES

 no resources, leave request on device queue

 else if result == DMA_NOACC

 no access to page, fail request

 else

 program device for transfer using busaddr

 else

create dio list of virtual addresses involved in

transfer

 call ”result = D_MAP_LIST(handle, minxfer, vlist, blist)”

 if result == DMA_NORES

 not enough resource, either initiate partial transfer

 and leave remainder on queue or leave entire

 request on the queue and call d_unmap_list to

 unmap the partial transfer.

 else if result == DMA_NOACC

 use bytes_done to pinpoint failing buffer and fail

 corresponding request

 adjust virtual list and call d_map_list again

 else if result == DMA_DIOFULL

 ran out of space in blist. either initiate partial

 transfer and leave remainder on queue or leave

 entire request on the queue and call d_unmap_list

 to unmap the partial transfer.

 else

 program device for scatter/gather transfer using blist

finish_io entry point: (xyzintr)

 if single page or less transfer

 call ”D_UNMAP_PAGE(handle, busaddr)”

 else

 call ”D_UNMAP_LIST(handle, blist)”

unconfigure code: (xyzclose or xyzconfig)

 call ”D_MAP_DISABLE(handle)” (if necessary)

 call ”D_MAP_CLEAR(handle)”

2-12 AIX Writing a Device Driver

DMA Slave Transfers on an ISA Adapter
Here is an example in pseudo-code of how a DMA slave transfer could be done:

initialization entry point: (xyzopen or xyzconfig)

 determine bus type for device from configuration information

 call ”handle = D_MAP_INIT(bid, DMA_SLAVE, bus_flags,

 channel)”

 if handle == DMA_FAIL

 could not configure

 else

 call ”D_MAP_ENABLE(handle)” (if necessary)

start_io entry point: (xyzread or xyzwrite)

 create dio list of virtual addresses involved in transfer

 call ”result = D_MAP_SLAVE(handle, flags, minxfer, vlist,

 chan_flags)”

 if result == DMA_NORES

 not enough resource, either initiate partial transfer

 and leave remainder on queue or leave entire

 request on the queue and call d_unmap_slave to

 unmap the partial transfer.

 else if result == DMA_NOACC

 use bytes_done to pinpoint failing buffer and fail

 corresponding request

 adjust virtual list and call d_map_slave again

 else

 program device to initiate transfer

finish_io entry point: (xyzintr or xyzclose)

 call ”error = D_UNMAP_SLAVE(handle)”

 if error

 log error

retry, or fail

unconfigure entry point: (xyzclose or xyzconfig)

 call ”D_MAP_DISABLE(handle)” (if necessary)

 call ”D_MAP_CLEAR(handle)”

Device I/O 2-13

DMA Master Transfers on a PCI Adapter
The main difference between DMA on ISA and DMA on PCI is that there is no need for
“bounce” buffers for PCI DMA; also, there are no DMA slave adapters on a PCI bus.

For example, if the driver is to transfer data from a user buffer to a DMA master adapter,
some steps for the transfer could be:

Steps for PCI DMA Master Transfer (Short Term)

Module What Device Driver Could Do

xyzopen Call DIO_INIT to allocate and initialize a dio structure.
Call D_MAP_INIT which returns “d_handle” containing bus specific services.
Call D_MAP_ENABLE if DMA not already enabled for this “d_handle”.

xyzread or
 xyzwrite

Call D_MAP_PAGE if buffer contained within a 4K page, or
 call D_MAP_LIST if buffer(s) span multiple pages.
Perform PIO write to adapter register to start DMA transfer.

xyzintr (Interrupt received from adapter when DMA transfer complete.)
Perform PIO read of adapter register to check DMA status.
Call D_UNMAP_PAGE or D_UNMAP_LIST.

xyzclose Call D_MAP_DISABLE if DMA not already disabled for this “d_handle”.
Call D_MAP_CLEAR to free “d_handle” structure.
Call DIO_FREE to free the dio structure.

2-14 AIX Writing a Device Driver

I/O Controller Interface Translation on Micro Channel Systems
A processor associates device registers or memory to particular addresses via I/O
controller interface translation. When a processor instruction accesses an I/O bus, the
address referenced by that instruction is said to access an I/O controller interface because
all three processor architectures expect an I/O controller to interface between a processor
and an I/O bus associated with that I/O controller.

I/O controller interface translation, like page address translation, is affected by the value of
the segment ID contained in a segment register.

One performs I/O by executing load or store instructions referencing virtual addresses.
Some other architectures (for example, the Intel x86 series) rely on special instructions to
perform I/O to particular ports. The three processor architectures considered here translate
addresses so that system device registers, adapter registers, adapter RAM, and so on,
appear to be part of virtual memory.

The figure How an Address Specifies a Segment Register shows how the address specifies
which segment register to use. For example, the address 0x50285740 says to look in
segment register 5 for the segment ID, and it references byte 0x285740 within that
segment. If the high order (leftmost) bit in segment register 5 is 0, then the address is
translated as a page address, otherwise, the address is translated so that one can access
an I/O bus through its I/O controller interface.

segment
register
number

byte offset into segment

4 bits 28 bits

32 bit I/O address

segment register

Segment #

0 4 31

Bus ID

prepended
to offset

How an Address Specifies a Segment Register

Device I/O 2-15

A bus ID is a segment identifier associated with an I/O segment. The Format of a Bus ID
figure shows the overall format of a bus ID contained in a segment register. Note that the
high order bit is set to 1. This bit distinguishes which kind of address translation to perform:
when set, it signifies that addresses in this segment require I/O controller interface
translation.

BUID (Bus Unit ID) identifies which bus to use

user mode flag

supervisor mode flag

I/O flag

Segment #

Offset Prefix
(Bus Memory Only)

I/O controller
information e.g., 0x820c0020

1

Format of a Bus ID

I/O controller interface translation differs from page address translation in that no page
tables are searched. So there is no way to protect one program accessing an I/O bus from
another program accessing the same bus.

The bus identifier (bid) is a long value that is supplied to the BUSIO_ATT, BUSMEM_ATT

and IOCC_ATT macros to obtain access to the system I/O bus resources and the Micro
Channel bus. The bus identifier is also required when directly using the underlying io_att
kernel service to obtain access to the bus, instead of using the macros. However, use of the
macros is strongly advised. This bus identifier must be constructed by the device driver that
is to gain access to the bus.

The bus identifier consists of:

• Bus unit number that is typically supplied in the device-dependent structure (DDS) by the
device Configuration method

• Bus resource that is to be addressed

• Bus addressing modes to be used

The device driver should construct the bus identifier by starting with the bus unit value

provided in the DDS and then ORing in the additional bits required for proper bus access.
For example, the bus unit number for bus 0 on the system is hex 82000000.

Note: This number should not be hardcoded but should be obtained by the adapter’s
Configuration method from the parent’s bus_id attribute in the ODM database. The
device driver should then OR in the following bits: hex 000C0020. This sets up a
typical access mode with address checking enabled, address increment enabled,
and TCW bypass enabled.

Warning: Device drivers that rely on the ability to disable either or both of the Address
Check and Address Increment bits will not work on PowerPC machines. The PowerPC I/O
architecture does not support the Address Check, Address Increment, and TCW Bypass
bits. By default, these functions operate as enabled, and it is not possible to disable them.

2-16 AIX Writing a Device Driver

I/O Address Spaces on Micro Channel Systems
The I/O Subsystem figure shows how portions of the I/O subsystem work with one another.
Note that a system processor does not access an I/O bus directly, but relies on a
special-purpose processor, mounted on the system planar with its own dedicated RAM, to
serve as an interface between the system bus, which accesses system RAM, and the I/O
bus.

I/O
Channel
Controller

Central
Electronics
Complex

system bus

system bus

System

RAM

IOCC
RAM

IOCC
control
space

IIO
bus

System
Planar
Devices

Tags &
TCWs

Micro Channel
Slots

Bus I/O
& Bus
Memory
Space

The I/O Subsystem

Note that there are devices on the system planar itself, and there are devices plugged into
slots accessing the Micro Channel bus. There are also resources on the IOCC itself that
one may wish to modify or inspect. There is a distinction between I/O to a system planar
device (or the IOCC itself) and I/O to a device attached to the Micro Channel bus. You
specify which kind of I/O to do by selecting an I/O address segment, or “I/O space.”

There are several kinds of I/O address spaces defined by each processor architecture. The
ones that affect a device driver are:

• IOCC control space (or system I/O space)

• Bus I/O space

• Bus memory space

Devices that are attached to the system planar board (also known as the motherboard)
have addresses mapped to IOCC control space. Examples of such devices are: system
timer, calendar, non-volatile RAM, the LED registers, programmable option select (POS)
registers, and other planar device registers.

IOCC control space consists of one I/O segment called the IOCC control segment. An I/O
address translates to this segment if the IOCC bit in the IOCC controller information part of
a bus ID is set to 1. See the IOCC Control Space (Portion) figure for an example (for the
POWER architecture) of what system planar devices are mapped to which addresses.

Both bus I/O space and bus memory space are collectively referred to as standard I/O
space, and are accessed within one segment.

Any attempt to access IOCC control space without system privilege (as marked in the bus
ID) causes an I/O exception.

Device I/O 2-17

0x400020

0x400024

0x40002c

0x40002f

0x400084

0x4000c0

0x4000e0

0x4000e4

0x4000ea

0x4000ec

0x4000fc

0x400000

0x410000

0x4f0000

0xa00000

0xa00300

4 bytes

4 bytes

4 bytes

1 byte

4 bytes

32 bytes

1 byte

4 bytes

2 bytes

1 byte

1 byte

NVRAM,
2 MB

bus status register

TCW Itag anchor addr register

component reset register

standard I/O reset register

interrupt request register (IRQ)

time of day clock

system reset status register

power status
register

power reset
register

interrupt request
register

I/O board EC
level register

POS registers slot 0

POS registers slot 1

POS registers slot 15

operator panel LEDs (2 bytes)

IOCC Control Space (Portion)

Note: Some of the information in the preceding IOCC Control Space (Portion) figure
applies only to the POWER architecture and not to the PowerPC architecture.

So, for example, the address 0xf0400020 refers to BUID in register 15, where the offset
specifies the bus status register. Note that IOCC RAM is mapped to IOCC control space.

The register addresses start from the value of IO_IOCC as found in the header file
/usr/include/sys/iocc.h. Here the value of IO_IOCC is 0x00400000 (4 MB).

2-18 AIX Writing a Device Driver

0x0000

Bus I/O Space (Example)

0x0030

0x02a0

0x86a0

0xffff

I/O address
offsets

SCSI adapter

serial adapter

I/O regs

I/O regs

I/O regs

Multiprotocol

Token Ring
Bus Memory
 Space

The Bus I/O Space (Example) figure shows an example of how adapters attached to the I/O
bus can be mapped to bus I/O space. The IOCC checks each access to bus I/O space to
see if the address is within range of some region mapped in bus I/O space. If not, it
generates an I/O exception.

Note that the SCSI adapter has no registers mapped to addresses in bus I/O space, but the
others do. For example, a load instruction from address 0x50000030 would (if segment
register 5 has a bus ID for the standard I/O segment) get four bytes from the serial
adapter’s first register. Provided that segment register 15 has a standard I/O segment’s bus
ID, a store instruction to address 0xf00086a0 would place four bytes of data in the first
register on the Token-Ring adapter.

Device I/O 2-19

Bus Memory Space (Example)

I/O address

SCSI adapter

serial adapter

Multiprotocol

Token Ring

offsets

0x0000

0xffff

0x001 0000

0x00e 0000

0x010 0000

0x014 0000

0x120 0000

Bus I/O
Space

DMA Window

DMA Window

DMA Window

RAM

4K
pages

memory mapped
RAM

memory mapped
RAM

Each 4K page of bus memory space that is mapped for translation is associated with a
Translation Control Word (TCW), which is a data structure kept in RAM dedicated for use
by an IOCC. Any attempt to read or write to an address that is not within a page associated
with a TCW causes an I/O exception. For more information on TCWs and protection, see
“Translation, Protection, and the TCW Table,” in “Programming Model: System I/O
Structure” in Hardware Technical Information-General Architectures.

The Bus Memory Space (Example) figure shows an example of how the same four
adapters have bus memory addresses mapped to RAM either on the adapters or on the
system itself. Note that in this case, the serial adapter has no addresses in bus memory
space for its use.

In this example, a load instruction from address 0xf0010000 would read the first four bytes
in RAM on the SCSI adapter. Similarly, a store instruction to address 0xf00e0000 would
write four bytes to RAM on the multiprotocol adapter.

Once the mapping is in place, transfer from system memory to adapter RAM amounts to
issuing a sequence of load and store operations from one region of bus memory space to
another.

2-20 AIX Writing a Device Driver

Programmed I/O to Micro Channel Adapters
Programmed I/O requires a properly formatted bus identifier in a segment register. The
device driver’s configuration method gets a bus identifier for its particular bus by reading its
parent bus_id attribute out of the predefined attribute (PdAt) object class of the ODM. The
configuration method passes the bus identifier, within the device dependent structure
(DDS), to the device driver’s configuration entry point where the bus identifier is further
modified as needed. For example, a driver may wish to set the bus ID bits associated with
privilege key and IOCC space select by the following statement:

bid |= (IOCCSR_KEY | IOCCSR_SELECT); /* see <sys/iocc.h> */

To perform I/O to IOCC space, one uses the following macros:

IOCC_ATT(bid, iocc_addr) /* to place Bus ID in a segment reg */

BUSIO_PUTL(long_val, iocc_addr) /* to write four bytes */

BUSIO_GETL(long_val) /* to read four bytes */

BUSIO_PUTS(short_val, iocc_addr) /* to write two bytes */

BUSIO_PUTC(char_val, iocc_addr) /* to write one byte */

IOCC_DET(iocc_addr)

To perform I/O to bus I/O space (adapter registers):

BUSIO_ATT(bid, io_addr) /* to place Bus ID in a segment reg */

BUSIO_PUTLX(long_val, io_addr) /* to write four bytes */

BUSIO_GETLX(long_val) /* to read four bytes */

BUSIO_PUTSX(short_val, io_addr) /* to write two bytes */

BUSIO_PUTCX(char_val, io_addr) /* to write one byte */

BUSIO_DET(io_addr)

To perform I/O to bus memory space (adapter RAM):

BUSMEM_ATT(bid, mem_addr)

BUS_PUTLX(long_val, io_addr) /* to write four bytes */

BUS_GETLX(long_val) /* to read four bytes */

BUS_PUTSX(short_val, io_addr) /* to write two bytes */

BUS_PUTCX(char_val, io_addr) /* to write one byte */

BUSMEM_DET(io_addr)

The macros suffixed with an ‘X’ have exception handlers built into them. The return value is
nonzero if an I/O exception occurs during the data transfer. I/O to IOCC control space does
not generate an I/O exception if there is an error. To verify that data has been written
correctly, you need to read it after it is written.

It is possible to use macros that lack exception handlers, but if you don’t provide your own
exception handler, then an I/O exception would cause the system’s default handler to halt
the system. There are other macros defined in the header file /usr/include/sys/ioacc.h.

To perform byte-reversed I/O reads:

BUS_GETLRX(long *ioaddr, long *data)

Reads the specified long value (data) from the supplied bus memory or bus I/O
address (ioaddr) in byte-reversed format with built-in exception catching. The
return value is 0 for success. Otherwise, an error (exception) occurred during the
transfer.

The IOCC (I/O controller) on the system automatically converts 32-bit transfers

from LITTLE ENDIAN format on the device into BIG ENDIAN format. Therefore,
this macro undoes this conversion. Use this macro when the device or the data
on the device is stored in BIG ENDIAN format instead of the usual LITTLE
ENDIAN format found on most Micro Channel adapters.

BUS_GETSRX(short *ioaddr, short *data)

Device I/O 2-21

Reads the specified short value (data) from the supplied bus memory or bus I/O
address (ioaddr) in byte-reversed format with built-in exception catching. The
return value is 0 for success. Otherwise, an error (exception) occurred during the
transfer.

The IOCC (I/O controller) on the system automatically converts 16-bit transfers

from LITTLE ENDIAN format on the device in BIG ENDIAN format. Therefore,
this macro undoes this conversion. Use this macro when the device or the data
on the device is stored in BIG ENDIAN format instead of the usual LITTLE
ENDIAN format found on most Micro Channel adapters.

To perform byte-reversed I/O writes:

BUS_PUTLRX(long *ioaddr, long data)

Writes the specified long value (data) to the supplied bus memory or bus I/O
address (ioaddr) in byte-reversed format with built-in exception catching. The
return value is 0 for success. Otherwise, an error (exception) occurred during the
transfer.

The IOCC (I/O controller) on the system automatically converts 32-bit transfers

from BIG ENDIAN format on the system in LITTLE ENDIAN format as seen by
the device. Therefore, this macro undoes this conversion. Use this macro when
the device or the data on the device is stored in BIG ENDIAN format instead of
the usual LITTLE ENDIAN format found on most Micro Channel adapters.

BUS_PUTSRX(short *ioaddr, short data)

Writes the specified short value (data) to the supplied bus memory or bus I/O
address (ioaddr) in byte-reversed format with built-in exception catching. The
return value is 0 for success. Otherwise, an error (exception) occurred during the
transfer.

The IOCC (I/O controller) on the system automatically converts 16-bit transfers

from BIG ENDIAN format on the system in LITTLE ENDIAN format as seen by
the device. Therefore, this macro undoes this conversion. Use this macro when
the device or the data on the device is stored in BIG ENDIAN format instead of
the usual LITTLE ENDIAN format found on most Micro Channel adapters.

To read the specified data from bus memory or bus I/O address space:

BUS_GETSTRX(char *ioaddr, char *daddr, int count)

Copies the number of bytes specified by the count parameter from either bus
memory or the bus I/O address, which starts at the address specified by the
ioaddr variable to memory starting at the location specified by the daddr
parameter with built-in exception catching. The return value is 0 for success.
Otherwise, an error (exception) occurred during the transfer.

To write the specified data to bus memory or bus I/O address space:

BUS_PUTSTRX(char *ioaddr, char *saddr, int count)

Copies the number of bytes specified by the count parameter from memory
specified by the saddr parameter to bus memory or the bus I/O address (starting
at the address specified by the ioaddr parameter) with built-in exception
catching. The return value is 0 for success. Otherwise, an error (exception)
occurred during the transfer.

2-22 AIX Writing a Device Driver

Programmed I/O (PIO) Error Recovery Considerations for Micro Channel
Adapters

All I/O operations typically include provisions to handle detectable errors. Except for

Programmable Option Select (POS) accesses, programmed I/O (PIO) operations can
contain a variety of synchronous errors. Because of this, device drivers must support
synchronous I/O-error exception handling.

For PIO macros with built-in exception catching, a nonzero return code indicates that an

exception or error occurred during the operation. If the operation is a read operation, the
contents of the destination data area are not valid. If the return code is nonzero, it will have
one of the exception values defined in the /usr/include/sys/except.h file.

An exception value of EXCEPT_IO indicates that the exception is an error caused by PIO

and should be handled. If the return code is nonzero and not EXCEPT_IO, another error
(usually a programming error) has occurred. The programmer coding this PIO operation
should include an assert to stop the system when this error occurs and provide a dump.
The operation can be retried up to the number of times specified by the
PIO_RETRY_COUNT value. If the operation is still unsuccessful, handle it as a permanent
error. The usual action is to return EIO to the caller of the device driver.

POS operations, unlike other PIO operations, cannot detect synchronous I/O errors. Device

driver programmers should implement an algorithm that reads back the data after a read or
write operation to see if a data error occurred. If the data resulting from this subsequent
read operation does not match the results of the previous read or write operation, retry the
POS operation. This procedure can be repeated up to the number of times specified by the
PIO_RETRY_COUNT value. If the operation is still unsuccessful, handle this problem as a
permanent error.

Device I/O 2-23

Direct Memory Access (DMA) on Micro Channel
The following subjects are discussed:

• DMA Channels and How They are Assigned on Micro Channel, on page 2-23

• Understanding DMA Arbitration-Level Assignment, on page 2-24

• Direct Memory Access (DMA) Slave Operations, on page 2-25

• DMA Bus Master Operations, on page 2-27

• Alignment Issues for DMA on Micro Channel, on page 2-33

DMA Channels and How They are Assigned on Micro Channel

A DMA channel is the means by which DMA transfers for different adapters are

distinguished from each other. A DMA channel is a resource that cannot be shared
simultaneously by two adapters.

How DMA channels are assigned to an adapter depends on the type of bus to which the

adapter interfaces. The Micro Channel allows for assignment of DMA channels at system
configuration time. System configuration software determines which adapters are present
and assigns a DMA channel to the device adapter. System configuration then sets the
device configuration and initialization data to reflect this assignment. “Understanding DMA
Arbitration Level Assignment” on page 2-24 discusses arbitration level assignments for bus
master and slave DMA operations for the Micro Channel bus.

However, some buses do not support programmable assignment of the DMA channel. DMA

channel numbers are hardwired or selected by a jumper on the adapter. In this case system
configuration runs an adapter-specific command that determines how the adapter is
configured. The device configuration and initialization data is then set to reflect the adapter
configuration.

The system supports I/O adapters attached to the Micro Channel Bus. This bus and
associated adapters support POS (a Programmable Option Select capability). The POS
capability allows the adapters to be configured into the system using software instead of
hardware switches and jumpers.

Each time the system is booted, the Micro Channel Bus configuration method scans the
bus and creates a list of all adapter cards plugged into the slots. For each adapter plugged
into a slot, the method uses the adapter ID (sensed from the POS registers) to look up the
adapter’s assignable resources in the devices database.

If the adapter uses the DMA channel, the database describes all possible DMA channels to

which the adapter can be programmed and a default or preferred choice. The bus
configuration method then selects a unique DMA channel for each adapter requiring DMA in
the system. The assigned DMA channel numbers are written into the Customized Devices
database object for each adapter in a slot.

An adapter’s configure method reads the assigned DMA channel or channels from the ODM

database for the specific adapter being configured and puts these channels in a
device-dependent structure (DDS) used to initialize the device driver supporting the adapter.

When the device driver for the adapter in the specified slot is initialized, the information in

the device-dependent structure is written to the adapter POS registers. This action properly
configures the adapter.

2-24 AIX Writing a Device Driver

Understanding DMA Arbitration-Level Assignment

All Micro Channel DMA devices typically support a Programmable Option Select (POS)

function to select one of several possible arbitration levels on which to request DMA
support. Any arbitration level can be defined to support either DMA slave or DMA master
operations. The system supports 15 arbitration levels. Arbitration level 0 is the highest
priority and arbitration level 14 the lowest.

The possible DMA arbitration levels supported by a specific adapter are defined by an

attribute of type A in the Predefined Device database object for the adapter. This attribute
has both a list of specified values and a default value for the adapter. Adapter arbitration
levels are not a shared resource. To discover the arbitration levels a device supports, refer
to the appropriate hardware reference manual.

Device Methods and DMA Arbitration Levels

When it detects the adapter during system boot, the bus Configure method calls the

adapter Define method. This method creates a customized device entry for the adapter in
the Customized Devices Object Class database. The bus Configure method then assigns
the Micro Channel resources for all adapters, while attempting to avoid conflicts with
resources that cannot be shared.

The bus Configure method tries to assign the adapter the same value the adapter had when

last configured on the system. If the adapter was not previously configured, the Configure
method attempts to use the default value. If these values conflict with other adapter
resources, the configure method tries every possible value listed for the adapter until it finds
one that resolves the conflict or exhausts all possible choices. If the conflict cannot be
resolved, the conflicting adapter in the highest numbered slot is not configured. The
arbitration level selected for the device is then stored in the adapter Customized Device
Attribute object.

When the Configuration manager later calls the adapter Configure method, this method

loads the device driver and builds a device-dependent structure (DDS). The Configure
method uses attribute information from the Customized Device object class to specify the
adapter initialization parameters. The DDS should contain the arbitration level assigned to
the adapter as well as the bus identifier and slot number to which the adapter is attached.
The Configure method then invokes the device driver ddconfig entry point for device
initialization. The device driver must then save the device-dependent data received at
initialization time and program the adapter POS registers with the values found in the DDS.

Allocating System Resources for DMA Support

The allocation and initialization of system support for resources such as DMA and interrupts

should be delayed, if possible, until the first open request. This delay frees resources for
other adapters until the adapter is needed. After the first open request for a device is
received, allocate the system resources required by the adapter. For DMA support, this
involves having the device driver call the d_init kernel service and specify the arbitration
level, the bus identifier, and a flags parameter value that indicate the type of DMA service
requested. Possible values for the flags parameter are defined in the
/usr/include/sys/dma.h file and should be set to MICRO_CHANNEL_DMA for bus master
support or MICRO_CHANNEL_DMA+DMA_SLAVE for DMA slave operations.

If the requested arbitration level is not allocated, the d_init kernel service returns the

channel identifier (ID) (channel_id parameter) assigned to the adapter. This value is used by
all other DMA services. If an error is returned, the open request for the device is rendered
unsuccessful with the EIO return code. When it receives the last close operation, the device
driver supporting the adapter should free the system resources allocated for the adapter.
The DMA resource can be freed by calling the d_clear kernel service and passing it the
channel ID of the DMA resource to be freed.

Device I/O 2-25

Direct Memory Access (DMA) Slave Operations

DMA slave transfer, the simpler method of device DMA, requires that the device driver:

• Ensure that the area in system memory is pinned.

• Obtain a cross-memory descriptor for the memory region by using the xm_attach kernel
service.

• Set up the DMA channel by calling the d_slave kernel service.

• Initiate the DMA through programmed I/O to the adapter.

• Receive the operation-completion interrupt from the adapter.

• Call the d_complete service to flush the I/O controller buffers and check for transfer
errors.

The d_slave kernel service supports setting up the DMA channel specified by the

channel_id parameter for a data transfer between either the adapter and system memory or
the adapter and another memory-mapped adapter on the bus. The d_slave kernel service
must be used to set up a DMA channel for each DMA transfer.

If the DMA transfer consists of moving data to or from system memory, the memory area

must be in contiguous virtual address space and must be pinned. The memory area must
also have an associated cross-memory descriptor (obtained by the xmattach service). It is
accessible at data transfer and interrupt time.

Make sure the data area in system memory is not accessed from the time the transfer is

mapped using the d_slave service until after the transfer has completed and the
d_complete service is called.

Setting up the DMA Channel

For a typical DMA transfer, the d_slave kernel service hides the system memory pages

involved in the transfer to avoid inconsistency in data caused by the processor and I/O
controller data-caching mechanisms. Any process attempting to access the memory region
targeted by the transfer sleeps until the transfer is complete and the d_complete kernel
service has been called.

Warning: Interrupt-handler access to memory regions involved in the transfer (or hidden by
the processor), before the d_complete operation resolves can cause the system to crash.

Hiding pages can adversely affect memory regions within a global buffer area or a kernel

buffer area. When accessing memory here, specify the DMA_NOHIDE flag in the call to the
d_slave kernel service to avoid hiding pages and improve path length. However, this mode
should be used only when transferring data to a device. Otherwise, the caching effects of
the processor and I/O controller may cause data inconsistency in adjoining memory areas.

If the DMA_NOHIDE flag is used when transferring data from a device to system memory,

assess the alignment of the affected data areas to ensure that caching does not result in
data inconsistency. The data buffer involved in this case should be aligned on a cache line
boundary and must end on a cache line boundary. The length of the data buffer, is typically
128 bytes.

2-26 AIX Writing a Device Driver

System Memory Transfers

When calling the d_slave service for a transfer involving system memory, the following are

required:

• The channel_id parameter

• The effective address of the system memory buffer

• The length of the transfer

• A cross-memory descriptor for the system memory buffer

• A flags parameter value

The flags parameter defines the DMA direction and type. For a transfer from system

memory to a device, set the flags parameter to 0 for a normal transfer or use
DMA_NOHIDE to avoid hiding the pages involved in the transfer. For a transfer from the
device to system memory, make the flags parameter specify DMA_READ. The d_slave
kernel service uses the I/O controller tag table to map the contiguous virtual memory region
to the underlying non-contiguous physical pages. This service also flushes any processor
data-cache lines that may contain data for the virtual memory range involved in the transfer.

Adapter-to-Adapter Transfers

When calling the d_slave service for a transfer from an adapter to another

memory-mapped adapter on the I/O bus, the device driver requires:

• The channel ID (channel_id parameter) associated with the device performing the DMA

• The I/O bus-memory address of the other adapter

• The length of the transfer

• A flags parameter value

The flags parameter defines the DMA direction and type. For a transfer from another

memory-mapped bus region to this device, set the flag parameter to BUS_DMA. For a
transfer from this device to some other memory-mapped adapter area on the I/O bus, make
the flags parameter specify DMA_READ+BUS_DMA.

After the device acknowledges the completion of the transfer, or indicates an error through

an interrupt, make the device driver call the d_complete kernel service to flush any buffers
from the I/O controller and check for errors. A call to this service also makes available any
pages hidden by the transfer.

Device I/O 2-27

Steps for DMA Slave I/O for Micro Channel
As an example, if the driver is to transfer data from a user buffer to a DMA slave adapter,
some steps for the transfer could be:

Steps for DMA Slave I/O for Micro Channel

Module What Device Driver Could Do

xyzopen Call d_init to allocate and initialize DMA channel.

xyzread or
xyzwrite

Call d_slave to map pages of I/O space or RAM to Tags.
Perform PIO write to adapter register to start DMA transfer.
Check for PIO exception and report any error.

xyzintr (Interrupt received from adapter when DMA transfer complete.)
Call d_complete to unhide pages and check for errors detected by IOCC.

xyzclose Call d_clear to free DMA channel.

DMA Bus Master Operations

Direct memory access (DMA) bus master support is more complex to program than DMA

slave operations, but provides a more flexible method of device DMA. During DMA bus
master operations, the adapter controls the bus and generates the addresses for the data
transfer. These addresses generated by the adapter are I/O bus-memory addresses. The
system has a 4GB Micro Channel bus address range that is separate from the 4GB
system-memory address range. Consequently, the DMA bus master transfers involving
system-memory must have their addresses translated from I/O bus-memory addresses to
system memory addresses.

Steps for DMA Master I/O for Micro Channel
As an example, if the driver is to transfer data from a user buffer to a DMA master adapter,
some steps for the transfer could be:

Steps for DMA Master I/O for Micro Channel

Module What Device Driver Could Do

xyzopen Call d_init to allocate and initialize DMA channel.

xyzread or
 xyzwrite

Call d_master to map pages of I/O space or RAM to TCWs.
Perform PIO write to adapter register to start DMA transfer.
Check for PIO exception and report any error.

xyzintr (Interrupt received from adapter when DMA transfer complete.)
Perform PIO read of adapter register to check DMA status.
Check for PIO exception and report any error.
Call d_complete to unhide pages and check for errors detected by IOCC.

xyzclose Call d_clear to free DMA channel.

Managing the Bus Memory DMA Transfer-Window Region

The device driver that supports a bus master DMA device must manage this bus-memory

window region into system memory as a limited resource since this region is supported by a
set number of TCEs that can be used for the adapter. That is, when I/O requests are
accompanied by data transfers, space must be allocated out of this fixed window region to
system memory to map the system memory involved in the transfer about to be requested.
Many device drivers may find it necessary to hold up and queue I/O requests until a
sufficient space in this bus-memory region becomes available to map the requested
transfer.

Note: When the device driver allocates a portion of its bus-memory window to map a
system memory region, the device driver must preserve the same page offset (low
12 bits) of the system memory address in the newly allocated bus-memory address.

2-28 AIX Writing a Device Driver

Mapping DMA Bus Master Transfers

To learn more about two essential techniques for mapping bus master DMA transfers,

consult the following information:

• Short-Term Buffer Mapping

• Long-Term Buffer Mapping

Short-Term Buffer Mapping

The short-term method is preferable when transferring data to and from caller-supplied data

areas that can be anywhere in system memory. The d_master kernel service is called to
set up the association between the specified system memory buffer and the region of the
adapter’s bus-memory allocation used for DMA requests. The adapter is told to start the
DMA request, using the bus-memory addresses that map to the correct area of system
memory.

To perform a short-term transfer, the device driver must accomplish these tasks:

• Allocate the required space from the bus-memory region used for the DMA transfer
window. If space is insufficient, either break up the transfer or queue the request until
space is available.

• Ensure that the specified area in system memory is pinned.

• Obtain a cross-memory descriptor for the memory region.

• Set up the DMA mapping by calling the d_master kernel service.

• Initiate the DMA operation by using programmed I/O to the adapter specifying the
bus-memory address used to map the transfer.

• Receive the operation completion interrupt from the adapter.

• Call the d_complete kernel service to flush the I/O controllers and check for transfer
errors.

If the DMA transfer consists of moving data to or from system memory, the memory area

must be in contiguous virtual address space and must be pinned. The memory area must
also have an associated cross-memory descriptor (obtained by using the xmattach
service). It is accessible at data transfer and interrupt time. Additionally, ensure the data
area in system memory is not accessed from the time the transfer is mapped using the
d_complete service until after the transfer has completed and the d_complete service is
called.

Both cache-consistent and cache-inconsistent hardware platforms are supported by the

DMA services. During a typical DMA transfer on a cache inconsistent platform, the
d_master service hides the system memory pages involved in the transfer. This avoids
data consistency problems due to the processor and I/O controller data-caching
mechanisms. Any process attempting to access the memory region involved in the transfer
will sleep (as if waiting on the resolution of a page fault) until the transfer has completed
and the d_complete service has been called.

Warning: Interrupt handler access to this area before the d_complete operation has been
issued will cause the system to crash.

Hiding of pages has an adverse effect within a global buffer area or a carefully managed

kernel buffer area. If the memory region is in one of these regions, a DMA_WRITE_ONLY
flag may be specified on the call to the d_master service. This avoids the hiding of pages
and enforces read-only mode of the memory with respect to the bus master device. This
mode can be used only when transferring data to a device. Otherwise, data inconsistency in
adjoining memory areas could occur due to caching effects of the processor and I/O

Device I/O 2-29

controller. “Long-Term Buffer Mapping” on page 2-29 contains information concerning the
data caching effects.

Note: On cache-consistent platforms, such as the PowerPC, pages are not hidden during
DMA operations since data consistency is managed by the hardware. The
DMA_WRITE_ONLY flag still enforces the read-only memory mode, but this has no
effect on page hiding.

Calling the d_master service for a transfer involving system memory requires:

• The channel ID (channel_id parameter)

• The effective address of the system memory buffer

• The length of the transfer

• A cross-memory descriptor for the system memory buffer

• The associated bus-memory address

• The flags parameter

The flags parameter defines the DMA direction and type. For a transfer from system

memory to a device, set this parameter to 0 for a normal transfer. And set the parameter to
DMA_WRITE_ONLY to avoid the hiding of pages involved in the transfer and to enforce
read-only mode by the bus master. For a transfer from the device to system memory, the
flags should specify DMA_READ.

The d_master kernel service uses the I/O-controller TCE table to map the contiguous

virtual memory region to the underlying noncontiguous physical pages. The d_master
kernel service provides the association between I/O bus-memory address and physical
memory address. This service also flushes any processor data-cache lines and
I/O-controller prefetch buffers that may contain data for the virtual memory range involved
in the transfer.

Long-Term Buffer Mapping

Long-term buffer mapping involves mapping the memory region for DMA transfers with the

d_master kernel service. Use the d_master kernel service when repeatedly accessing the
memory region for multiple DMA transfers with the device. This method is used to avoid the
high costs of continuously remapping the memory region to the DMA transfer window under
the following conditions:

• The memory region is permanently pinned. Remapping is required if the region is ever
unpinned.

• The memory user is not in user space.

• The DMA_WRITE_ONLY or DMA_NOHIDE flag is specified on the d_master service.

• Data consistency is appropriately managed using the d_cflush and d_move kernel
services.

Note: No special consideration is required on the cache-consistent PowerPC platform.
Data consistency is managed at the hardware level on this platform. The
DMA_WRITE_ONLY and DMA_NOHIDE flags are recognized, but have no effect
on page hiding since pages are never hidden on the PowerPC platform.

Long-term buffer mapping is typically used when a memory buffer area is used as a

command area. It is also used when a large number of data transfers come from a
common, permanently pinned buffer pool. Long-term mapping requires that the
bus-memory DMA window region assigned to the device be large enough to map this buffer
area.

2-30 AIX Writing a Device Driver

Many devices can use both short-term and long-term mapping in cases where a portion of

the DMA window is mapped to a fixed area of system memory used for device command
and response control blocks. The remaining area must be used for data transfers that are
mapped for each request. Long-term mapping of response areas is supported by using the
d_master service with either the DMA_NOHIDE or DMA_WRITE_ONLY flag. The
DMA_WRITE_ONLY flag enforces a read-only mode with respect to the bus master device
when accessing the system memory mapped in this manner. The DMA_NOHIDE flag
allows for long-term mapping of read or write areas.

Due to the processor data cache and the I/O-controller caching functions, long-term buffer

mapping requires special consideration on the system. The effects of these caches are
hidden when using short-term mapping. This is because the d_master service performs the
required processor cache flushes and the I/O controller cache becomes unusable and
makes the system memory involved in the transfer inaccessible to the processor until the
transfer is complete (d_complete time).

Two Methods of Long-Term Buffer Mapping

Using long-term mapping adds two new considerations to the use of long-term buffer

mapping:

• Modification of data in the mapped memory areas after they have been mapped

• Shared concurrent access by both the processor and the device to the system memory
area

There are two methods for handling long-term mapping based on the size and organization

of the long-term mapped area. The first method involves aligning any data area in a transfer
on cache-line boundaries and managing the caches using the d_cflush kernel service. To
determine the data-cache-line size and I/O-controller cache size, refer to the appropriate
technical reference for your device. When using a long-term mapped area for both
commands (DMA write operations) and for responses (DMA read operations), the two
cache areas must be in separate virtual memory areas. This is required to avoid data
consistency problems due to the processor and the device concurrently updating the same
area in memory.

Given that the DMA write and DMA receive areas are in different areas of memory, and that

each DMA write area is in its own area, the sequence of events for this type of DMA
operation is:

1. Select the data to be used for the DMA read or write operation.

2. Mark the data area as allocated. For example, remove it from the free list.

3. If this is a DMA write operation, update the data in the memory area chosen.

4. Call the d_cflush kernel service to flush and make unusable the processor and I/O
caches.

5. Inform the device that a command or response area is available (giving the address).

Many of these operations can occur synchronously with a device DMA operation or a

device interrupt response.

• Receive an interrupt from the device indicating an operation has been performed using
the data area.

• Call the d_complete service, specifying which data area to check for errors and then
ensure that the I/O controller buffers have been flushed to memory.

• Mark the data area as free to be used by another device transaction.

Device I/O 2-31

This first method of DMA long-term buffer mapping is highly useful for devices that use bus

master DMA for command and status control blocks transfers. It is also useful when many
relatively small (typically less than 1.5KB) data transfers occur, and it is more efficient to
copy the data to a long-term mapped buffer than it is to map the short transfers. In
particular, this method of DMA support is well-suited for devices using the subsystem
control block (SCB) architecture for processor-to-device communications.

A long term mapped buffer pool of command control blocks (each on 64-byte boundaries)

can be created, pinned, and permanently mapped to the device DMA window along with a
buffer pool of status blocks for responses from the device. To provide for long-term mapping
of response areas, use the DMA_NOHIDE flag. It should be specified on the single
d_master call used to map the response area to allow the affected pages to be accessible
to the processor while mapped for device DMA. When long-term mapping response areas,
the processor cache for the response area must be make unusable before reading from the
area. To make the affected cache line unusable, a vm_cflush call should be made before
the DMA operation is started.

This approach is also commonly used by communications device handlers that perform

device DMA directly into and out of mbuf structures. For DMA write operations, small mbuf
structures typically come from a common-pinned pool. Therefore, they must be mapped
without page hiding to avoid system crashes that could be caused by hiding a page in the
common mbuf pool. These small mbuf structures are normally aligned on cache line
boundaries and are an integral number of cache lines in size. For DMA read operations,
cluster or page-sized mbuf structures are used for device DMA because the size of the
incoming transfer is not known ahead of time.

These page-size mbuf structures are page-aligned and can be used in the DMA_NOHIDE

mode for increased performance and when:

• Transferring data from unaligned or user data areas where many small transactions are
normally known to occur.

• The cost of pinning the user or kernel data area and then mapping the transfers is higher
than performing a memory-to-memory copy from the user or unaligned buffer to a
permanently pinned and mapped buffer in the long-term mapped area.

The second method of long-term buffer mapping for DMA support is required where the

DMA transfer areas cannot be blocked into cache-line boundaries (64B or 128B areas) of
system memory or when extremely small (2B or 4B, for example) DMA transactions occur
between the device and system memory. Communications devices use this method where
the device and the processor share a long-term mapped buffer in system memory. For
example, in a communications adapter, there may be pointers to communications input,
output, and exception queues. Some of these queues are updated by the processor and
others by the device itself. In this example, there may be cases where the processor
updates a certain 4 bytes in the memory and the device updates an adjacent 4 bytes
asynchronously.

Even if DMA write and read areas are sufficiently separated, flushing a 128-byte processor

cache line to modify only a few bytes is inefficient. To solve this problem with both data
inconsistency and inefficiency, the d_move kernel service uses a special I/O controller
function that allows the processor to access data in system memory by bypassing the
processor caches. The service uses the same I/O controller caches as the device itself
does when transferring data. The d_move service allows the device driver writer to move
small amounts of data to or from this shared memory area without having to be concerned
with data consistency due to the processor and I/O caches. This method of data transfer
should be restricted to instances where the previous method of cache management is
unusable (due to data organization, for instance) or where the transfers are so small and
frequent that the cache management approach is inefficient.

2-32 AIX Writing a Device Driver

Processor write Operation to Shared Data Area

The sequence of steps in a processor write operation to shared data area is:

1. Move data from a nonshared buffer to the shared memory area using the d_move
service. If this operation returns an EINVAL return code, use the xmemin or xmemout
cross-memory services to move the data.

2. Call the d_complete kernel service with the address of the shared memory area to
ensure that no errors occurred unless the d_move service returned an EINVAL code.

3. The device performs a DMA operation on the data when indicated by a command or
some asynchronous event.

4. Call the d_complete service in response to a device-error interrupt to obtain any DMA
error conditions and enable a retry of the DMA operation, if necessary.

Processor read Operation from Shared Data

The sequence of steps in a processor read operation from shared data is:

1. Call the d_complete service with the address of the shared memory area to ensure that
no errors occurred during the DMA transfer before accessing the data or in response to
a device-error interrupt.

2. Access the data by using the d_move kernel service from the shared data area to some
other data area. If the EINVAL value is returned, use the xmemin or xmemout
cross-memory service to move the data.

3. Call the d_complete service with the address of the shared memory area to ensure that
no errors occurred unless the d_move service returns the EINVAL value.

The d_move kernel service moves data at I/O speeds, as opposed to normal processor

speeds. This service can become inefficient for moving data approaching the size of a
processor cache-line. The d_move kernel service is available on system models using
software-managed caches. However, if models supporting transparent caches are
introduced, the d_move kernel service is not required and returns an EINVAL return code.
All users of this kernel service must check for an EINVAL return code. If an EINVAL return
code is returned, the user should perform a normal data move. Doing so allows the device
driver to operate without change, both on models with software-managed caches, and
models where software cache management is not required.

Device I/O 2-33

Peer-to-Peer Bus Master DMA

DMA slave operations support transferring data from one device to another device’s

memory-mapped I/O area. Bus master operations can also be programmed to support bus
master DMA directly between two devices. Like the d_slave service, the d_master service
also supports the BUS_DMA flag, which indicates that the DMA transfer for the specified
arbitration level is between the device and another device on the bus and not system
memory. A drawback of bus-to-bus DMA master transfers is that all transfers on that
arbitration level are directed either to I/O bus-memory or to system memory. Bus-to-bus
transfers cannot be intermixed with bus-to-memory transfers on the same arbitration level
since the current I/O controller supports only transfer mapping by arbitration level instead of
mapping by translation-control word.

When an arbitration level is dedicated to one specific device and programmed I/O is used

for commands and status to the device, the d_master service can be used to allow a direct
adapter-to-adapter transfer of data. However, if multiple devices are concurrently supported
by an adapter or if bus master DMA is used for command and status transmission to the
device, multiple arbitration levels are required to support both bus-to-bus and bus-to-system
memory transfers by the device. When programming bus-to-bus transfers, the I/O controller
currently monitors the bus for errors during the transfer. The d_complete service can be
called after the transfer to pick up any associated error information and enable the
arbitration level again.

Alignment Issues for DMA on Micro Channel
As described under “Hiding DMA Data” in “Understanding DMA Transfers” in the chapter on
kernel services in AIX Kernel Extensions and Device Support Programming Concepts,
pages covering buffers for use by DMA services may be hidden unless DMA_NOHIDE is
specified. If the buffer is supplied by a user, and if the buffer is not page aligned, then there
is a chance that nearby data could be on the same page as the buffer being hidden. If a
user routine attempts access to such data, its context will sleep until the page is unhidden.
If the driver does not unhide the page, then such user routines would sleep indefinitely.

Any buffers that a driver allocates for DMA transfers may preferably be allocated from the
kernel heap (via xmalloc) so that the buffer can be page aligned: this lessens the chance of
nearby data being inadvertently hidden, and simplifies the coordination of data transfer with
the adapter. Also, fewer pages may be used.

If a DMA buffer is to be shared between the system processor (the driver) and a DMA
master adapter, then it would be registered with the flag DMA_NOHIDE. If a DMA buffer is
to be so shared, or shared between two DMA master adapters (where page hiding is
irrelevant), then there is a chance of data corruption due to race conditions (see Chapter 5,
Sychronization). An I/O controller reads and writes data in chunks which are the size of its
data cache line. If a DMA transfer starts at an address that is not cache-aligned, then
nearby data is inadvertently accessed. A race condition can be avoided by synchronizing
the access, or by ensuring that DMA accesses are cache-aligned and thereby
non-overlapping. A buffer can be cache aligned with the kernel services d_align or
d_roundup.

2-34 AIX Writing a Device Driver

Here is an example of a call-side routine that sets up DMA master transfers on a Micro

Channel adapter. Please note that the buffers are allocated by the driver itself and they are
accessed by the system and the adapter, so they are not hidden (DMA_NOHIDE) from the
system.

int dma_init()

{

 caddr_t busptr; /* points to bus address space */

 int rc; /* followed by other necessary declarations */

scb.ccbp = (t_ccb *) xmalloc(PAGESIZE, PGSHIFT, pinned_heap);

 if (scb.ccbp == NULL)

 { DTRC(0x20, 0x43, (ulong) scb.ccbp);/* custom trace macro */

return(ENOMEM);

 }

 /* clear the buffer for use */

 bzero(scb.ccbp, PAGESIZE);

 /* SCB – System Control Block /* you would define your own */

 * TSB – Termination Status Block

 * Separate regions must be set up for transferring data for DMA

 * reads and DMA writes. These separate regions should each consist

 * of an integral number of cache lines. The Command Control

 * Block (CCB) starts on the page boundary, which is also a cache

 * line boundary. The CCB and TSB must reside in separate 128–byte

 * regions for cache consistency.

 */

 scb.ccb_size = d_roundup(sizeof(t_ccb)); /* size of ccb struct */

 /*

 * The algorithm used by d_roundup() is :

 * outlength = (inlength + cache_line_size–1) & (cache_line_size–1);

 * where inlength is the length in bytes of the structure to be mapped.

 *

 * So the next available cache line boundary is at ccbp + ccb_size

 */

 scb.tsbp = (uint)scb.ccbp + (uint)scb.ccb_size;

 /* need the size of tsb also for flushing */

 scb.tsb_size = d_roundup(sizeof(t_tsb)); /* size of tsb struct*/

 /* the amount of data that is actually used is:(should be 256 bytes)*/

 scb.ctl_size = (uint)scb.tsb_size + (uint)scb.ccb_size;

 /* The ccb is mapped to the beginning of the bus memory window

 * configured for this device. The tsb follows.

 */

 scb.bus_ccbp = dds.dds_hdw.dma_bus_mem; /* device dep. struct */

 scb.bus_tsbp = (uint)scb.bus_ccbp + (uint)scb.ccb_size;

 /* initialize the ccb before mapping */

.....

 /* set up cross memory descriptor for the ccb and tsb */

 scb.ctl_xmem.aspace_id = XMEM_INVAL;

 rc = xmattach((char *)scb.ccbp, scb.ctl_size, &scb.ctl_xmem, SYS_ADSPACE);

Device I/O 2-35

 if (rc == XMEM_FAIL)

 { DTRC(0x20, 0x43, (ulong) rc);

xmfree(scb.ccbp, pinned_heap);

return(ENOMEM);

 }

 /* map the control area to the first page of bus dma memory space */

 d_master(scb.chan_id, DMA_READ|DMA_NOHIDE, (caddr_t)scb.ccbp,

scb.ctl_size, &scb.ctl_xmem, scb.bus_ccbp);

 /* attach to the bus segment */

 busptr = BUSIO_ATT(dds.dds_hdw.bus_id,(caddr_t)dds.dds_hdw.bus_io_addr);

 /* write address of the ccb to the command port, it never changes */

 port.command = (caddr_t) scb.bus_ccbp;

/* pio_retry() logs temporary failure & after 3rd fail gives up */

if(BUS_PUTLRX((busptr + HLZ1_COMMAND), port.command))

rc = pio_retry(rc, PUTL, addr, port.command);

if (port.pio_fatal) /* check for a permanent PIO exception */

 { DTRC(0x20, 0x45, (ulong) rc);

xmdetach(&scb.ctl_xmem);

xmfree(scb.ccbp, pinned_heap);

BUSIO_DET(busptr);

return(EIO); /* must read this reg to continue */

 }

 /* set the dma busmem address for the input buffer mapping */

 dma.indmap = dds.dds_hdw.dma_bus_mem + PAGESIZE;

 dma.window_size = dds.dds_hdw.dma_bus_length – PAGESIZE;

dma.enddmap = dds.dds_hdw.dma_bus_mem + dds.dds_hdw.dma_bus_length;

 /* initialize mapping control variables */

 dma.last_inbuf = NULL;

 dma.last_outbuf = NULL;

 /* enable the device as a busmaster, enable interrupts,clear IV on read*/

 port.sub_ctrl = /* device flags */;

 if(rc = BUS_PUTCX((busptr + HLZ1_SUB_CTRL), port.sub_ctrl))

rc = pio_retry(rc, PUTC, addr, port.sub_ctrl);

 if (port.pio_fatal) /* check for a permanent PIO exception */

 { DTRC(0x20, 0x46, (ulong) rc);

xmdetach(&scb.ctl_xmem);

xmfree(scb.ccbp, pinned_heap);

rc = EIO; /* must read this reg to continue */

 }

 BUSIO_DET(busptr);

 return(rc); /* error already logged if PIO exception */

} /* end dma_init() */

2-36 AIX Writing a Device Driver

Interrupts 3-1

Chapter 3. Interrupts

This chapter describes the issues associated with writing an interrupt handler for an adapter
on AIX Version 4.1. It contains the following sections:

• Overview, on page 3-1
• Interrupt Hardware Support, on page 3-2
• Interrupt Levels, on page 3-2
• Interrupt Priorities, on page 3-4
• Interrupt Level Mapping, on page 3-6
• Interrupt Handling, on page 3-9
• Early Power-Off Warning Interrupt, on page 3-9
• Bus Interrupts, on page 3-11
• Interrupt Management Kernel Services, on page 3-13
• Multiprocessor Interrupt Concerns, on page 3-13

Overview
Adapters on any bus can generate interrupts to the host processor. Each interrupt is
associated with a particular level, sometimes called an Interrupt Request Level (IRQ). For
example, one adapter can generate interrupts on IRQ2, although another can generate
interrupts on IRQ3. Assignment of interrupt levels to adapters is done by one of the
following methods:

• Setting POS registers on the adapter during device initialization. Some buses do not
support this.

• Manually setting the interrupt level via hardware switches.

Interrupt levels on certain buses, like the Micro Channel or PCI, can be shared. This means
that more than one adapter can generate interrupts at the same level. In this case, each
adapter must provide a register that can be interrogated to determine if the current interrupt
is due to this particular adapter. This enables the software to determine which adapter
actually generated the interrupt. Having each adapter on a separate interrupt level usually
gives better performance than interrupt-sharing on a particular level.

Each adapter also provides a procedure, which software must follow, that resets an
interrupt indication. This must be done before any more interrupts are generated by the
adapter.

Device drivers usually provide an interrupt handler to handle these situations. An interrupt
handler is a function that is called by the AIX kernel whenever an interrupt occurs on a
given IRQ level. The interrupt handler must first determine whether the interrupt was
caused by the adapter this driver is managing. If not, the handler exits immediately
indicating no action taken. If so, the interrupt handler performs whatever processing is
needed to deal with the interrupt, resets the interrupt in the adapter, and returns to the AIX
kernel.

Interrupt handlers, like most of the AIX kernel, can be preempted. They run with some
interrupts enabled. When a device driver configures itself, it specifies the priority of
interrupts from its associated adapter. When an interrupt occurs, only interrupts from
devices at that priority level and below are disabled. Higher priority interrupts can still occur.
Interrupt handlers for low priority devices (such as, a printer) can be preempted if an
interrupt occurs on a high priority device (such as, an unbuffered high-speed
communications link).

The AIX operating system provides routines so that interrupts at higher levels can be
disabled and enabled during the operation of the interrupt handler. Use these routines with
caution so that the higher priority interrupts can be serviced.

3-2 AIX Version 4.1 Writing a Device Driver

Interrupt Hardware Support
The processor recognizes the following types of hardware interrupts:

• SYSTEM RESET
• MACHINE CHECK
• DATA STORAGE
• INSTRUCTION STORAGE
• EXTERNAL
• ALIGNMENT
• PROGRAM
• FLOATING-POINT UNAVAILABLE
• DECREMENTER (available on PowerPC only)
• SYSTEM CALL
• TRACE
• FLOATING-POINT ASSIST

The hardware interrupts in the preceding list are the only way that normal instruction
execution can be interrupted. Thus all interrupt signals must be converted to one of these to
interrupt the processor. An interrupt vector for each type of hardware interrupt is loaded in
low memory and is executed upon receipt of the interrupt. The first two types of interrupts,
SYSTEM RESET and MACHINE CHECK, may occur at any time regardless of the state of
the interrupt mechanism and are processed immediately. The other interrupts are handled
in the order listed from highest to lowest priority.

The hardware interrupt type EXTERNAL is the interrupt into which all bus level interrupts
are multiplexed. This is the type of interrupt that a device driver will be required to handle.

For the PowerPC architecture, the Machine State Register (MSR) and the Save Registers
(SRR0 and SRR1) are used to process external interrupts. The MSR register contains an
enable bit which is used to enable or disable external interrupts. The SRR registers are
used to save the processor state at the time of the interrupt. For more details on the these
registers and the other types of hardware interrupts, see PowerPC Architecture.

The hardware interrupt mechanism between the processor and the device is bus
architecture dependent. For Micro Channel architecture, the interrupt controller is
embedded in the I/O Channel Controller (IOCC). For PowerPC based platforms with PCI
and ISA buses, a System I/O Bridge chip (SIO) and a proprietary PCI Bridge/Controller are
used to relay the interrupt signal to the processor as an external interrupt.

Interrupt Levels
The mechanism by which the processor knows where the interrupt originated depends on a
software abstraction of the interrupt source referred to as processor interrupt level.
(Processor interrupt level is also called software interrupt level, or just interrupt level.) The
interrupt level corresponds to a distinct hardware interrupt level present on a device. For
example, each bus interrupt level that originates on the PCI bus is converted into a unique
software interrupt level that the processor understands and uses to call the proper interrupt
handler for that interrupt. This design isolates the software from the information the
hardware presents to indicate the interrupt.

The number of interrupt levels that a processor recognizes is architecture dependent. The
POWER machines (RS1, RSC, and RS2) support 64 interrupt levels, and the PowerPC
machines can support up to 8000 interrupt levels. An interrupt must map into one of these
levels to be correctly serviced; that is, each hardware interrupt level must be assigned to
one of the processor interrupt levels. The details of this mapping process is described in
“Interrupt-Level Mapping,” on page 3-6.

Because individual adapters interrupt at various hardware levels of their own depending on
what type of bus they are on, there is one more configuration issue to consider. Some bus

Interrupts 3-3

implementations support assigning hardware interrupt levels at system configuration time.
System configuration software determines which adapters are present and assigns an
interrupt level to the device adapter using special bus commands. System configuration
then sets the device configuration hardware levels and initialization data to reflect this
assignment.

For example, on the Micro Channel bus, there are 16 bus interrupt levels. A typical Micro
Channel adapter has several bus interrupt levels from which to choose. Before setting
which bus interrupt level to use, the adapter’s configuration method calls the busresolve
routine. The busresolve routine returns a bus interrupt level that does not conflict with any
other adapters on the bus. The bus interrupt level returned by busresolve is written to the
ODM database. The device driver open routine can refer to the ODM database to register
the interrupt handler at the correct level.

However, some buses, like the ISA bus, do not support programmable assignment of bus
interrupt levels. The assignment of these bus interrupt levels is usually hardwired or
selected by a jumper on the adapter. In this case, the Predefined Attributes PdAt entries of
the ODM database must be set properly by the user to reflect the manual settings (or the
manual settings changed to match the ODM database), because there is no way for the
values to be changed by software. Driver developers should remember this important
difference about ISA bus configuration.

Attention: Do not change the Predefined Attributes (PdAt) object class by removing
information that was shipped with the base operating system.

On some buses, such as the PCI and MCA buses, interrupt level sharing is supported. To
ensure that busresolve handles these levels correctly, the ODM stanza for interrupt level
must have the type field set to ”I”. Non-shareable interrupts (all those on the ISA bus, for
example) are declared with type set to ”N”. Shared interrupt levels on the MCA buses must
all request the same priority, but this is not required for the PCI or ISA bus.

The following sample ODM entry declares an interrupt level to be shareable by setting the
attribute type to ”I”:

PdAt:

 uniquetype = ”adapter/pci/sample”

 attribute = ”intr_level”

 deflt = ”15”

 values = ”15”

 width = ””

 type = ”I”

 generic = ”D”

 rep = ”nl”

 nls_index = 3

Here is an example of a non-shareable interrupt (type = ”N”):

PdAt:

 uniquetype = ”adapter/isa/sample”

 attribute = ”intr_level”

 deflt = ”9”

 values = ”5, 7, 9”

 width = ””

 type = ”N”

 generic = ”DU”

 rep = ”nl”

 nls_index = 4

Chapter 6, “Device Configuration Methods,” on page 6-1 has more information on the ODM
database and adapter device attributes.

The following table summarizes the interrupt level properties for different types of buses.

3-4 AIX Version 4.1 Writing a Device Driver

Bus Interrupt
Sensitivity

Interrupt Levels
Shareable?

Programmable
Interrupt Levels?

Available
Interrupt Levels

MCA Level Yes, but must have
same priority.

Yes 1 – 16

PCI Level Yes Yes 15

ISA Edge Basically, no.
Yes, if level-trig-
gered.

No 5,7,9,11,14,15 *

*IRQ 15 is used by PCI or ISA, but not both.

In some documentation, the distinction between hardware interrupt levels and processor
interrupt levels is not made, because there is a one-to-one mapping between the two.
Usually, just the term interrupt level is used.

Interrupt Priorities
Each processor interrupt level (see “Interrupt Levels,” on page 3-2) also has a interrupt
priority associated with it. The following is a list of all the interrupt priorities (sorted so the
interrupt priorities with higher priority appear first):

• INTMAX
• INTCLASS0
• INTCLASS1
• INTCLASS2
• INTCLASS3
• INTOFFL0
• INTOFFL1
• INTOFFL2
• INTOFFL3
• INTIODONE
• INTBASE

These interrupt priorities represent the order in which the kernel enables external interrupts
to be processed. (The sys/m_intr.h file shows the numeric value associated with each
priority. The higher priorities have lower numeric values.)

Although the physical mechanisms vary for the different architectures, a basic rule for all
architectures is that the interrupt priority must be of a higher priority than the current
processor priority for the interrupt to be serviced. For example, if the processor is currently
servicing an interrupt of priority INTCLASS3, any off-level interrupts will not be serviced until
the INTCLASS3 interrupt handling is finished, and the processor priority is lowered.

The choice of what priority to run your device driver interrupts is based on two criteria:

• The maximum interrupt latency requirements
• The interrupt execution time of the device driver

The interrupt latency requirement is the maximum time within which an interrupt must be
serviced. If it is not serviced in this time, some event is lost or performance is degraded.
The interrupt execution time is the number of machine cycles required by the device driver
to service the interrupt.

A device with a short interrupt latency time must have a short interrupt service time. In other
words, a device that loses data if not serviced quickly must have a higher priority interrupt
level. This in turn requires that it spends less time in the interrupt handler. The following list
contains general guidelines for interrupt service times:

Interrupt Priority Service Time

INTMAX All interrupts disabled

INTCLASS0 Less than 200 cycles

Interrupts 3-5

INTCLASS1 Greater than 200 but less than 400 cycles

INTCLASS2 Greater than 400 but less than 600 cycles

INTCLASS3 Greater than 600 but less than 800 cycles

INTOFFL0 Less than 1500 cycles (off-level priority)

INTOFFL1 Greater than 1500 but less than 2500 cycles (off-level priority)

INTOFFL2 Greater than 2500 but less than 5000 cycles (off-level priority)

INTOFFL3 5000 cycles or greater (off-level priority)

INTIODONE I/O completion processing (lowest off-level priority)

INTBASE All interrupts enabled

Note: To find out your interrupt service time, you can put a trace hook with a time stamp
into both the entry and the exit points of your interrupt handler. The resulting trace
tells you the cumulative time that was spent in the handler. Divide this time by the
cycle speed of your system to get the number of cycles used.

The INTOFFLn (where n represents an integer) interrupt priorities are for off-level interrupt

processing. Typically, they are used when the interrupt service time for an operation
exceeds the time allowed at that interrupt priority. The i_sched kernel service is used to
schedule off-level processing. The operation is then set up to be performed at an off-level
interrupt priority. This allows other device interrupts to preempt the operation of the off-level
handler at a small cost of additional system overhead.

Operations that do not meet the off-level service time requirements must be scheduled to

be performed under a kernel process to maintain adequate system real-time performance.

Device driver routines providing the device handler role often include an off-level processing

routine. The kernel calls the off-level routine to perform device-specific processing after the
following events have taken place:

• The interrupt handler has completed its processing.

• The interrupt has been reset.

The processing associated with a device interrupt can be time-consuming. The off-level

routine allows a device to perform this processing at a less favored priority. This action in
turn enables interrupt handlers to run as fast as possible by avoiding interrupt-processing
delays and device overrun conditions.

Note: This routine must be part of the bottom half of the device driver when one is present.

Once an interrupt priority has been determined, the information is written to the system via
an ODM entry. The following sample entry assigns an interrupt priority INTCLASS2, which
has the value 3, to a device:

 uniquetype = ”adapter/mca/hscsi”

 attribute = ”intr_priority”

 deflt = ”3”

 values = ”3”

 width = ””

 type = ”P”

 generic = ”D”

 rep = ”nl”

 nls_index = 5

3-6 AIX Version 4.1 Writing a Device Driver

Interrupt-Level Mapping
The mapping of interrupt source to a specific processor interrupt level is dependent upon
the hardware architecture. This section briefly describes the mappings for the POWER,
POWER2, and PowerPC architectures and, also, discusses software interrupt priority.

The POWER architecture has a simple static mapping that directs the interrupt sources to
one of the 64 available processor levels. Since there are at most 2 IOCCs, each bus has its
16 hardware levels directed to 32 of the existing processor levels and the rest are used for
other interrupt sources. The POWER Interrupt Level Mapping figure shows the details of
the processor level mapping scheme.

IOCC 0

0 15 32

POWER Interrupt Level Mapping

24 25 28 6247 63

IOCC 1

48

E
P
O
W

S
G
A

S
L
A

E
X
T

D
E
C

O
F
F

LEVEL ASSIGNED

0–15 IOCC 0
 24 Early Power-Off Warning (EPOW)
 25 SGA – integrated graphics adapter
 28 SLA0
 29 SLA1
 30 SLA2
 31 SLA3
32–47 IOCC 1
 48 External Check
 62 Decrementer
 63 Off-level hardware assist

The interrupts are grouped into priorities by using a mask built and maintained by the
interrupt subsystem called the External Interrupt Mask (EIM). This mask is changed
whenever a new priority is set, thereby enabling the correct processor levels.

Although the POWER2 architecture also has 64 processor levels, it does not have the
priority flexibility of the POWER architecture. There is a direct relationship of processor
level and priority. Of the 64 processor levels, the hardware presents interrupts from the
most favored (level 0) to the least favored (level 63). Thus, interrupt levels must be
dynamically assigned based on priority.

The interrupt level allocation algorithm groups the processor levels into ranges
corresponding to software priorities, and assigns them as needed. This ensures that higher
priority interrupts are serviced before those of lesser priority. In addition to these
dynamically allocated levels, there are other interrupt levels that are pre-allocated to specific
sources. These can be seen in the POWER2 Interrupt Level Mapping figure.

Interrupts 3-7

0

POWER2 Interrupt Level Mapping

29 6233 63

INTCLASS2

58

M
I
S
C

E
X
T

R
E
S

LEVEL ASSIGNED

 0 Miscellaneous IOCC interrupts
 1 External Check
 2 Early Power-Off Warning (EPOW)
 3 Reserved
4–28 INTCLASS0, INTCLASS1 dynamically assigned interrupts
29–32 Reserved
33–57 INTCLASS2, INTCLASS3 dynamically assigned interrupts
58–61 Reserved
 62 Decrementer

E
P
O
W

R
E
S

R
E
S

D
E
C

O
F
F

INTCLASS3

INTCLASS0

INTCLASS1

1 2 3 4

 63 Off-level hardware assist

The PowerPC interrupt logic is very different from the previous architectures. Each
hardware level interrupt has a priority associated with it and will only interrupt on processors
if this priority is more favored than the current processor priority. The processor priority is
set by software for each processor.

Attached to each interrupt source is the Bus Unit Identifier (BUID) and a 4-bit code that
indicates the source on the specific Bus Unit Controller (BUC). These two values are used
by the interrupt subsystem to determine the interrupt level. On the PowerPC architecture,
there are a possible 8000 levels, of which 160 are currently being used. These levels are
assigned to groups that contain 16 interrupt levels. The poll groups are dynamically
assigned to a BUID through the buid_map when the interrupt handler is registered. This
mapping is shown in the PowerPC Interrupt Level Mapping figure.

3-8 AIX Version 4.1 Writing a Device Driver

0

1

2

3

4
.

.

.

.

.

.

12

13

14

15

10 2 35.

PowerPC Level Mapping

CPPR

Bus Unit Identification (BUID)4–bit source id

INTERRUPT
SOURCE

Current Processor Priority Register

poll array grouping

unique processor level

index into
poll array

BUID map
(Groups 0 and 9
 are reserved.)

Interrupts 3-9

Interrupt Handling
When an external interrupt is first detected, the system immediately calls the external
interrupt first-level interrupt handler (FLIH), which queries the hardware registers. At this
point on POWER and POWER2 machines, the interrupt is directly serviced. On PowerPC
machines, however, the FLIH will enqueue the interrupt based on level and priority. This
raises a flag indicating that there is pending work to be done and it will be serviced later,
thus the PowerPC essentially enqueues all interrupts.

The kernel detects queued interrupts at various key times, such as when enabling to a
less-favored priority from a more favored one. Once a queued interrupt is detected and the
processor is executing at (or about to be enabled to) a priority that lets the pending interrupt
be serviced, the current machine state is saved, and interrupt processing is started.

Then the kernel begins calling the interrupt handlers that are registered at the specified
level. Because interrupt levels can be shared on certain buses, the adapter which caused
the interrupt is not necessarily known at this stage. The order in which the kernel calls
interrupt handlers at a certain level is the order in which they were initially registered. This
ordering does not change as long as the interrupts are registered. Thus, there is no way to
“steal” interrupts from a previously loaded handler at the same level and priority.

Once your second-level interrupt handler (SLIH) is called, it must determine whether the
associated adapter caused the interrupt. If the interrupt was caused by the adapter, the
interrupt handler does its necessary work, possibly schedules more off-level work, and
returns INTR_SUCC. If the interrupt was not caused by the adapter, INTR_FAIL is returned,
and the kernel calls the next handler in the list.

Early Power-Off Warning Interrupt

Special interrupt subsystem support is provided to handle loss of power. Some machines

detect when power is about to be lost and generate an early power-off warning (EPOW).
Some device drivers may need an early power-off warning to recover from loss of power.

For example, the file system requires that no sector be damaged when power is lost. To

avoid damage, devices containing file-system data must be stopped at a sector boundary
when power is about to be lost.

A device driver can request that it be notified when an EPOW occurs. To make such a

request, the driver must call the i_init kernel service to define an interrupt handler for
interrupt priority INTEPOW (same as INTMAX) and a bus type of BUS_NONE. The kernel
calls all interrupt handlers thus defined at INTEPOW priority when an EPOW occurs.

A device handler should register an EPOW handler if it is critical that data-write operations

be halted on specific boundaries for data integrity and recovery. However, the path length
and time to halt a device must be short, since the amount of time between the early
power-off warning and actual power loss is usually short (a few milliseconds). (This timing is
hardware-dependent.) Only critical data devices such as disks need to register an EPOW
handler.

The INIT_EPOW macro in the sys/intr.h file can be used to initialize the handler parameter

passed to the i_init service for registering EPOW handlers.

Calling a registered EPOW interrupt handler is different from calling other interrupt handlers

registered by the i_init service. There are three conditions under which registered EPOW
handlers are called:

EPOW_SUSPEND
Calling is due to an early power-off warning (EPOW) without battery

3-10 AIX Version 4.1 Writing a Device Driver

backup, or when the battery backup is exhausted. Critical device operation
should be suspended. Interrupt handlers are called at INTEPOW priority.
The EPOW_SUSPEND flag is set in the flags field
 of the intr structure pointed to by the handler parameter when the interrupt
handler is called.

EPOW_BATTERY
Calling is due to an early power-off warning (EPOW) resulting in a
switch-over to backup battery power. Devices not configured for battery
backup operation should be suspended. EPOW interrupt handlers are
called at INTEPOW priority. When calling the interrupt handler, the kernel
sets the EPOW_BATTERY flag in the flags field of the intr structure
pointed to by the handler parameter.

EPOW_RESUME
Calling is due to a restoration of power. Any operations suspended due to
previous EPOW_SUSPEND or EPOW_BATTERY conditions should be
resumed. This normally occurs when either of the following is true:

• The early power-off warning was a false one caused by a power
fluctuation that did not actually cause loss of power.

• The system was running on battery backup and primary power is
restored.

• Interrupt handlers are called at the INTTIMER priority for this function.

Device handlers are responsible for ensuring the proper serialization of operation when

handling EPOW interrupts, normal device interrupts, and process level operations. The
following situations are possible complications:

• An early power-off warning can prove to be a false alarm.

If this happens, the EPOW interrupt handlers are called to suspend device operation (at

a high priority) and later called at a lower priority to resume device operation. If power is
actually lost, the EPOW_RESUME operation does not occur.

• A second early power-off warning can be detected while trying to resume from an earlier
one.

When this situation arises, an EPOW interrupt handler can be called again during the

course of an EPOW_RESUME call by the higher priority EPOW_SUSPEND or
EPOW_BATTERY calls. In this case, EPOW interrupt handlers may find that both the
EPOW_SUSPEND (or EPOW_BATTERY) and EPOW_RESUME flags are set in the
flags field within the intr structure. If this situation is detected, the suspend operation
should occur and the resume request should be ignored.

The EPOW interrupt handlers should ensure that no timing window can occur in which

device operation is restarted after an EPOW_SUSPEND condition and before an
EPOW_RESUME condition. This must not happen even if a suspend operation interrupts a
resume. To prevent this situation, the EPOW handler should check the EPOW_SUSPEND
and EPOW_RESUME flags in the intr structure, and then determine if the device is already
in a suspended state. (A device driver flag should be maintained for this purpose.) If this is
a suspend call and the device is already in the suspended state, no operation should be
performed. If this is a resume request and the device is suspended, the
device-suspended flag should be reset and the device started.

Note: The check for the EPOW_SUSPEND or EPOW_BATTERY flag and the checking
and clearing of the device-suspended flag should be made an atomic operation
by performing them at INTEPOW priority. Doing so ensures that an intervening
EPOW_SUSPEND or EPOW_BATTERY operation does not result in the device
being resumed during an EPOW_RESUME condition.

Interrupts 3-11

Such atomic operations also require that the device hardware support a state in which a

pending operation is not started. For a SCSI device, a SCSI Reset and resulting Unit
Attention provide this state. Other devices may require SUSPEND and RESUME hardware
commands.

BUS Interrupts
In general, the ISA bus has edge-triggered interrupts. The PCI and MCA buses use
level-sensitive interrupt lines. The 8259 Programmable Interrupt Controller (PIC) has
level-sensitivity program control for each of the IRQ lines. At startup, the 8259 IRQs are
initialized for edge sensitivity. The MP Interrupt Controller (MPIC) IRQs are initialized to
level sensitivity. When an interrupt handler is registered using i_init(), flags in the intr
structure determine whether or not the trigger mode of the associated IRQ is changed.
These flags (INTR_EDGE, INTR_LEVEL, and INTR_POLARITY) are in the flags field of
the intr structure.

The flags field indicates whether the device driver allows sharing of an interrupt level and
whether the interrupt handler is MPSAFE. In addition, this field contains other flags used by
interrupt handlers that understand and need to know when an Early Power-Off Warning
interrupt has occurred. The following is a table of values:

Flag Name Value Description

INTR_NOT_SHARED 0x0001 Interrupt level cannot be shared.

EPOW_SUSPEND 0x0002 Power loss in progress.

EPOW_RESUME 0x0004 Wall power has resumed.

EPOW_BATTERY 0x0008 Running on battery power.

INTR_MPSAFE 0x0010 MP-safe interrupt handler.

INTR_EDGE 0x0020 Interrupt level has edge-triggered semantics. Edge-

triggered interrupts cannot be shared.

INTR_LEVEL 0x0040 Interrupt level has level-triggered semantics. Level-

triggered interrupts can be shared.

INTR_POLARITY 0x0080 Interrupt polarity

 0–Active High or Positive Edge

 1–Active Low or Negative Edge

I_SCHED 0x8000 If set, already scheduled.

The bus type of the IRQ (PCI, ISA, etc.) does not determine the trigger mode of the IRQ. It
must be specified explicitly in the intr structure. Since ISA and PCI buses have default
triggering semantics, i_init() attempts to know the trigger mode of the IRQ being connected
to when the INTR_LEVEL and the INTR_EDGE flags of the intr structure are not set. A
request to register a PCI interrupt results in the INTR_LEVEL flag being set; an ISA
interrupt request results in the INTR_EDGE flag being set; and an MPIC interrupt request
results in the INTR_POLARITY flag being set. The INTR_POLARITY flag must be set to 0
for MCA-based and PCI-based devices. Bus interrupt levels on the ISA bus are usually not
shared, while PCI bus interrupt levels are. The INTR_NOT_SHARED flag is set by device
drivers that cannot share interrupts.

3-12 AIX Version 4.1 Writing a Device Driver

Because the 8259 is subject to priority inversion (a lower interrupt holding off a more
favored interrupt), interrupts are EOIed as soon as possible in the external first-level
interrupt handler (FLIH). For any interrupt level that is shared and level sensitive, special
action is required before the interrupt is issued an EOI. The IRQ line is masked in the 8259
before the EOI is issued. After the interrupt is serviced, the IRQ line is unmasked. If the
level is shared and the interrupt line is still being asserted, another interrupt occurs.

If a bus level is shared by multiple interrupting devices, each device can have a different
priority for ISA and PCI sources only. If this is the case, the processor level associated with
the shared, multi-priority bus level is checked for service at the lowest priority in the list. The
linked list associated with the processor level is maintained in descending priority order.
However, the interrupt logic adjusts the priority of the system before calling each handler in
the list. For example, consider a case where device driver A registers to interrupt as a
shared handler on IRQ15 using priority level INTCLASS0. Device driver B registers for the
same bus level, but it wants to be serviced at priority INTCLASS3. In this example, the
entire linked list associated with processor level is checked for service at INTCLASS3. The
list is kept in such an order that driver A is called before driver B, thus maintaining the
priority in some sense.

Note: It is recommended that interrupt sources on the same interrupt line use the same
priority.

Interrupts 3-13

Interrupt Management Kernel Services
The following list contains interrupt management kernel services.

i_init Defines an interrupt handler to the system, connects it to an interrupt level,
and assigns an interrupt priority to the level.

i_clear Removes an interrupt handler from the system.

Note: A system assert will occur if this service is called for an undefined
interrupt handler.

i_disable Raises the interrupt priority to the specified level, thus disabling all interrupt
levels at a less-favored interrupt priority.

i_enable Restores the interrupt priority to a less-favored interrupt priority, thus
enabling all interrupt levels of a higher priority.

i_mask Disables the specified bus interrupt level.

i_unmask Enables the specified bus interrupt level.

i_sched Schedules an off-level interrupt handler to be executed.

The i_reset kernel service, which was used to reset a bus interrupt level in releases before
AIX Version 3.2.5, no longer needs to be explicitly called. Its function has been moved to
the first-level interrupt handler (FLIH), and thus interrupt levels are automatically reset.

Multiprocessor Interrupt Concerns
Ensuring proper synchronized access to the interrupt handlers is of major concern when
writing handlers for a multiprocessor (MP) environment. AIX Version 4.1 provides two kernel
services that enable you to make your interrupt handling MP-safe:

disable_lock Raises the interrupt priority, and locks a simple lock if necessary.

unlock_enable Unlocks a simple lock if necessary, and restores the interrupt priority.

Essentially, these kernel services should be used wherever i_enable and i_disable are
normally used in a uniprocessor interrupt handler. The simple lock kernel services should
not be called directly, use disable_lock and unlock_enable to ensure that a thread will
never be interrupted while it holds a simple lock. Allowing a thread which holds a simple
lock to be interrupted can deadlock the system.

In an MP environment it is not necessary for all the interrupt handlers to be MP-safe;
however, this is a desired goal for increased performance. If an interrupt handler that is not
MP-safe is registered, the allocated interrupt level is marked for funnelled operation, which
is serviced by the master processor only. Additionally, all the other interrupt handlers at this
level will be routed to the master processor. In other words, all interrupt handlers sharing
the same level are either considered all MP-safe or all funnelled. Once all interrupt handlers
that are funnelled are removed from a level (by calling i_clear), any remaining MP-safe
handlers on that level will be allowed to run non-funnelled.

In addition, defining and removing interrupt handlers from the system must be done
carefully. If the corresponding interrupt handler is executing on another processor when
these services are called, the request cannot be performed until the handler exits. If the
handler is spinning on a lock held by the calling thread, the system will deadlock. Therefore,
ensure that any thread-interrupt lock which could block the corresponding interrupt handler
is released before calling these kernel services.

3-14 AIX Version 4.1 Writing a Device Driver

Interrupts on PCMCIA Devices
Interrupts on PCMCIA devices are triggered by level mode. The IRQ level can be shared
between the PCMCIA bus and the PCMCIA devices.

It is preferable that a PCMCIA device driver not assume interrupts are triggered by level
mode. A device driver should query CardServices by a call twice to the RequestIRQ
function by setting or clearing the CSIRQLevel flag of the IRQInfol member in the
requesting packet. If the call to RequestIRQ succeeds, a device driver knows the interrupt
trigger mode (INTR_EDGE or INTR_LEVEL|INTR_POLOARITY) that is isued to call the
i_init() kernel service.

4-1Memory Management

Chapter 4. Memory Management

This chapter discusses the various system calls typically utilized by kernel extensions and
device drivers in the manipulation of kernel memory. These services include:

• Memory Allocation Services, on page 4-1 (allocate and free kernel memory)
• Memory Pinning Services, on page 4-3 (pin and unpin kernel memory)
• Memory Access Services, on page 4-5 (transfer data between user memory and kernel

memory)
• Virtual Memory Management Services, on page 4-6 (manage virtual memory)
• Cross-Memory Services, on page 4-11 (perform cross-memory transfers)

This chapter discusses only the most commonly used kernel memory services available to
device driver developers.

Memory Allocation Services
The following are common memory allocation services:

• xmalloc
• xmfree
• init_heap

xmalloc
The xmalloc kernel service allocates an area of memory from either the kernel heap or the
pinned kernel heap. Memory should be allocated from the pinned heap if it is intended to
always remain pinned or remain pinned for a long period of time. If the allocated memory
can be paged out, it should be requested from the kernel heap. Any unpinned memory can
be pinned with the pin and unpin system calls at a later time if necessary.

The memory area returned by this service can be allocated on a boundary that is a power of
2 bytes from 16 bytes up to a page boundary of 4096 bytes (16-byte boundary, 32-byte
boundary, and so on up to a 4096-byte boundary.)

For requests less than one page, xmalloc rounds up the request to the next higher power
of 2. This implies that a request of just more than half a page is rounded up to one page.
xmalloc also allocates a minimum of 16 bytes at a time due to the allocation algorithm it
utilizes.

The xmalloc kernel service allocates requests differently based on the size of the request.
For requests of half a page or less (requests greater than half a page are rounded up to one
page), a vectored array is kept of elements that represent powers of 2 up to half a page.
Each element is an anchor to a list of allocated pages that are individually divided into
fragments. These fragments are equal to the size represented by the anchor array element.
Once a page is used up (all fragments are allocated), a new page is then grabbed and
divided and placed onto the appropriate list. This algorithm allows for fast allocation of areas
less than half a page because lists of fragments of the correct size have already been
allocated and are immediately ready for use by the caller. Although this method may seem
wasteful since it preallocates a whole page of fragments for each size, the worst case only
requires 8 pages to be pre-allocated with all free fragments.

The following figure shows the layout of the array used to keep track of the pages that are
divided into the various fragment sizes. Note that as long as a page contains a free
fragment, it is kept on the linked list for its size. Once all fragments on a page are allocated,
the page is no longer linked to the array. When one fragment comes free on a fully allocated
page, that page is reinserted onto the list corresponding to its fragment size.

4-2 AIX Writing a Device Driver

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

allocated
fragments

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

allocated
fragments

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

allocated
fragments

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

allocated
fragments

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �allocated

fragments

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

allocated
fragments

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

allocated
fragments

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

allocated
fragments

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

allocated
fragments

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

allocated
fragments

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

allocated
fragments

Fragment Sizes

Xmalloc Array of Fragments Less Than 1 Page

For allocations of greater than half a page, xmalloc allocates enough pages to contain the
requested allocation size.

xmalloc cannot be called with interrupts disabled.

4-3Memory Management

xmfree
Essentially, the xmfree kernel service frees up memory areas allocated through the
xmalloc kernel service. In the case of allocated regions one page or greater, xmfree
merely frees up the allocated pages.

In the case of memory fragments less than one page, xmfree must first find the page to
which the fragment belongs as it resides in the vectored array as described in the
discussion of xmalloc. Once the fragment is freed, the page to which it belongs is also
freed if the freed fragment completes an entire page of freed fragments.

xmfree cannot be called with interrupts disabled.

init_heap
The init_heap kernel service allows a device driver or kernel extension to set aside an area
of memory as a heap for private use. This reserved area must be page aligned and may be
a subset of another heap. The xmalloc and xmfree kernel services are used to allocate
and deallocate memory from this private heap.

init_heap cannot be called with interrupts disabled.

Memory Pinning Services
The following are common memory pinning services:

• ltpin
• pin
• pincode
• pinu
• ltunpin
• unpin
• unpincode
• unpinu

ltpin
The ltpin kernel service enables device drivers and kernel extensions to perform long-term
pinning of pages of kernel memory. This prevents them from being paged out. All pages
touched by the specified address range are pinned, not just the range itself. If the defined
range overlaps just slightly into one page, the entire page is pinned.

The ltpin service increments a pin count for each page. A page is not a candidate to be
paged out until its pin count reaches zero, typically by later calls to the ltunpin service.

The major difference between this service and the short-term pin kernel service is that
long-term pinned pages have their corresponding paging space allocation freed but
short-term pinned pages retain their paging space allocation.

There is also a limit to the number of long-term pinned pages allowed in the system. The
maximum number of long-term pinned pages is just under 32767 pages.

ltpin cannot be called with interrupts disabled.

pin
The pin kernel service enables device drivers and kernel extensions to perform short-term
pinning of pages of kernel memory. This prevents them from being paged out. All pages
touched by the specified address range are pinned, not just the range itself. Therefore, if
the defined range overlaps just slightly into one page, that entire page is pinned.

The pin service increments a pin count for each page. A page is not a candidate to be
paged out until its pin count reaches zero, typically by later calls to the unpin service.

4-4 AIX Writing a Device Driver

There is also a limit to the number of short-term pinned pages allowed in the system. The
maximum number of short term pinned pages is just under 32767 pages.

pin cannot be called with interrupts disabled.

pincode
The pincode kernel service supports long-term pinning of an entire object module’s code
and data. This service calculates the address and length of a module’s code and data and
calls the ltpin kernel service with these values to perform the actual pinning.

The pincode service increments a pin count for each page. A page is not a candidate to be
paged out until its pin count reaches zero, typically by later calls to the unpincode service.

pincode cannot be called with interrupts disabled.

pinu
The pinu kernel service provides short-term pinning of memory in either user or kernel
space. This routine calls the pin kernel service after performing an attach to the user’s
address space.

The pincu service increments a pin count for each page. A page is not a candidate to be
paged out until its pin count reaches zero, typically by later calls to the unpinu service.

pinu cannot be called with interrupts disabled.

ltunpin
The ltunpin kernel service unpins the memory pages long-term pinned by the ltpin kernel
service.

This service only decrements the pin count of one or more pages. A page is only a
candidate to be paged out when its pin count reaches zero.

The ltunpin kernel service cannot be called with interrupts disabled because it may need to
allocate paging space for the newly unpinned memory area.

unpin
The unpin kernel service unpins the memory pages short-term pinned by the pin kernel
service.

This service only decrements the pin count of one or more pages. A page is only a
candidate to be paged out when its pin count reaches zero.

The unpin kernel service can be called with interrupts disabled.

unpincode
The unpincode kernel service unpins a module’s code and data that was pinned by the
pincode kernel service. Once it has calculated the addresses of a module’s code and data
segments, unpincode calls the ltunpin kernel service to perform the actual unpinning.

This service only decrements the pin count of one or more pages. A page is only a
candidate to be paged out when its pin count reaches zero.

unpinu
The unpinu kernel service unpins memory pinned by the pinu kernel service. As in the
pinu kernel service, memory from either user or kernel space can be freed. This routine
calls the unpin kernel service to perform the actual unpin.

This service only decrements the pin count of one or more pages. A page is only a
candidate to be paged out when its pin count reaches zero.

This routine must be called with all interrupts disabled when unpinning memory in user
space. This routine can only unpin memory in kernel space if interrupts are disabled.

4-5Memory Management

Memory Access Services
The following are common memory access services:

• copyin
• copyinstr
• copyout
• uiomove

copyin
The copyin kernel service copies data from user memory to kernel memory with
appropriate exception handling.

copyin cannot be called with interrupts disabled.

copyinstr
The copyinstr kernel service copies a string from user memory to kernel memory with
appropriate exception handling. This service copies up to the number of bytes specified or
until a NULL byte is reached.

copyinstr cannot be called with interrupts disabled.

copyout
The copyout kernel service copies data from kernel memory to user memory with
appropriate exception handling.

copyout cannot be called with interrupts disabled.

uiomove
The uiomove kernel service copies data between kernel memory and either user or kernel
memory as defined by a uio structure. When using cross-memory descriptors, uiomove
calls either xmemin or xmemout for the actual transfer. Cross-memory transfers also
require a valid uio_xmem pointer to an array of xmem structures.

uiomove cannot be called with interrupts disabled.

uwritec

Device drivers writing out one character at a time can use the uwritec kernel service. This

service uses the uio structure to retrieve characters from the caller’s buffers, which are in
the address space designated by the uio_segflg field. Successive calls to this service
return characters from these buffers until no more characters are available or an error is
detected. The uwritec service updates the uio_resid field, which is used by the caller of
the write routine to determine how many characters were transferred.

ureadc

Device drivers reading in one character at a time can use the ureadc kernel service. This

service uses the uio structure to put characters into the caller’s buffers, which are in the
address space designated by the uio_segflg field. Each successive call to this service
writes characters into the next available buffer location described by the uio structure. This
operation can continue until the uio_resid character count is 0 or an error is detected.
The ureadc service updates the uio_resid field, which is used by the caller of the read
routine to determine how many characters were transferred.

4-6 AIX Writing a Device Driver

Virtual Memory Management Services
Virtual memory describes the hierarchy of both main system memory and secondary
storage such as hard disks. This two-tier structure allows actual physical memory to be
divided and allocated to several processes at the same time. It also allows programs to
address memory far larger than the actual size of physical system memory because
secondary storage can be used as an extension of the system memory.

Virtual memory objects are often used by device drivers to represent data that can be in
either system memory or on a secondary storage device. The virtual memory address
space is divided into segments, which are actually 256MB contiguous areas of this address
space. Process addressability is managed at the segment level. These segments can then
be kept private to a specific process or can be shared among several processes.
Segments themselves are further divided into pages, which are currently 4096 bytes.

There are several types of segments. A working segment is a segment that does not have
corresponding permanent storage space. For example, the stack and data region for a
process are mapped to a working segment because they exist only within the context of the
existence of the process. Once there is not enough physical memory to hold a working
segment’s pages, some of these pages must be transferred, or paged out, to paging space,
which is a temporary area of secondary storage (for example, hard disk). Once these pages
are again needed by the process, they can then be paged in, or transferred back into
system memory.

Persistent segments are mapped segments that have a corresponding permanent storage
area in secondary storage. Files on disk that are mapped are examples of mapped
segments. When a page of a persistent segment must be paged out, the actual page must
be written to secondary storage if it has changed while being mapped. If the page has not
changed, it is merely discarded and its place in physical memory is now open for another
page to be paged in.

Client segments are persistent segments that map files remotely, such as over an NFS
mount. When pages for these types of segments are paged out, they are written out over
the network.

Virtual memory objects are often used by device drivers to do things such as mapping a file
that exists on a hard disk in secondary storage.

4-7Memory Management

The following is an example of the usual steps to create and manipulate a virtual memory
object that maps in an NFS mounted file:

#include <sys/vmuser.h>

#include <sys/types.h>

#include <sys/m_types.h>

vmid_t vmid;

vmhandle_t demo_vm_handle;

int type;

struct gnode *gn;

int size;

int num_vm_bufs;

int rc;

extern int demo_nfs_strategy();

caddr_t buffer;

num_vm_bufs = 50; /* 50 is arbitrary for the number of buf

 structures to allocate */

 /* demo_nfs_strategy() is the strategy

 routine that handles the pageouts */

rc = vm_mount(D_REMOTE, demo_nfs_strategy, num_vm_bufs);

if (rc)

 return (rc);

 . . .

type = V_CLIENT; /* going to work with a ”client” segment */

/* gn is a pointer to the gnode of the file to be mapped */

/* size is the size in bytes of the file to be mapped */

if (rc = vms_create(&vmid, type, gn, size, 0, 0))

 return (rc);

/* vms_create() actually returns a segment ID in vmid */

demo_vm_handle = vm_handle(vmid, 0);

/* vm_handle() actually returns a segment register value */

 . . .

buffer = vm_att(demo_vm_handle, 0);

 /* we’re just picking 0 as the offset */

/* Note that the kernel will panic if it runs out of spare

 segment registers but there should be enough to go around.

 As a general rule, a device driver should limit itself to 2

 attaches at a time. */

/* The buffer can now be written to and read from */

 . . .

vm_det(buffer);

 . . .

if (rc = vms_delete(vmid))

 return (rc);

 . . .

vm_umount(D_REMOTE, demo_nfs_strategy);

The kernel services used to manage virtual memory generally have names beginning
“vms_” (for example, vms_create, vms_delete, and vms_iowait) or names beginning
“vm_” (for example, vm_handle, vm_att, and vm_cflush.)

4-8 AIX Writing a Device Driver

vms_create
The vms_create kernel service creates a virtual memory object of a specific type, size, and
limits.

The type parameter, which is an OR of bits, should always include V_CLIENT to indicate a
client segment, and may include the V_INTRSEG option to indicate the segment is an
interruptable segment.

vms_create cannot be called with interrupts disabled.

vms_delete
The vms_delete kernel service deletes a virtual memory object created through the
vms_create kernel service. Even though this service completes asynchronously,
notification of completion is given synchronously. This is because the allocated segment is
not truly freed until all paging I/O has completed. Until the segment has been marked as
freed, it remains accessible even though a successful return code may have been received.

vms_delete cannot be called with interrupts disabled.

vm_handle
The vm_handle kernel service creates a virtual memory handle for a virtual memory object,
as created by vms_create, for use by the vm_att kernel service. The handle is created
from a concatenation of the segment ID and a protection key.

vm_handle cannot be called with interrupts disabled.

vm_att
The vm_att kernel service maps a virtual memory object, created by the vms_create
kernel service, by allocating a free segment register and returning a 32-bit address made up
of the segment register value and the offset within that segment. This 32-bit address has
the segment register number in the upper 4 bits and the offset in the lower 28 bits.

If the system has no segment registers to allocate, it will panic.

vm_att can be called with interrupts disabled.

vm_cflush
The vm_cflush kernel service flushes out to memory all processor instruction and data
cache lines that contain the memory boundaries specified by the given address and range.

vm_cflush can be called with interrupts disabled.

vm_det
The vm_det kernel service essentially unmaps the virtual memory object originally mapped
by the vm_att kernel service. It does so by releasing the segment register associated with
the given virtual address of the memory object.

vm_det can be called with interrupts disabled.

vm_mount
The vm_mount kernel service allocates an entry in the paging device table (PDT) for a file
system and also allocates the required buf structures for processing by the strategy routine.

vm_mount cannot be called with interrupts disabled.

vm_umount
The vm_umount kernel service removes an entry from the paging device table (PDT) for a
file system and also deallocates the required buf structures that were previously allocated
by the vm_mount kernel service. If paging activity has not yet ceased when vm_umount is
called, the service waits until all I/O has completed before completely freeing all resources.

4-9Memory Management

vm_umount cannot be called with interrupts disabled.

vm_move
The vm_move kernel service will transfer data from a virtual memory object, created by the
vms_create kernel service, and a buffer pointed to by a uio structure.

vm_move cannot be called with interrupts disabled.

The following is an example of using vm_move on a permanent hard disk file:

#include <sys/vmuser.h>

#include <sys/types.h>

#include <sys/m_types.h>

vmid_t vmid;

int type;

int size;

dev_t dev_num;

int rc;

struct uio *uiop;

 . . .

type = V_CLIENT; /* client segment */

 /* dev_num is the devno of the block device on which

 the inode resides */

 /* size is the size in bytes of the file */

if (rc = vms_create(&vmid, type, dev_num, size, 0, 0))

 return (rc);

if (rc = vm_move(vmid, uiop–>uio_offset, uiop–>uio_resid,

 UIO_READ, uiop));

 return (rc);

if (rc = vms_delete(vmid));

 return (rc);

 . . .

vm_write
The vm_write kernel service initiates a page-out for all pages touched by a specified range
in a virtual memory object. The memory range is defined by a beginning address and
length. All pages touched by this range are marked for page-out.

A force parameter, applicable only to journaled segments, is provided to force a page-out
on a page even though it may have been recently modified. Typically, if a page has been
recently modified, it will most likely be modified again. By delaying page-outs on recently
modified pages, time is saved by writing the page only after several modifications rather
than after each modification. The force parameter overrides this process.

vm_write cannot be called with interrupts disabled.

vm_writep
The vm_writep kernel service is similar to the vm_write kernel service except that a page
range, rather than a memory range, is specified for page-outs.

No force parameter is provided.

vm_writep cannot be called with interrupts disabled.

vms_iowait
The vms_iowait kernel service waits until all page-out I/O for a virtual memory object is
complete.

vms_iowait cannot be called with interrupts disabled.

4-10 AIX Writing a Device Driver

vm_release
The vm_release kernel service releases all pages touched by a specified range in a virtual
memory object. In essence, an address range is defined by a beginning address and length.
All pages touched by this range are freed.

vm_release cannot be called with interrupts disabled.

vm_releasep
The vm_releasep kernel service will release the specified pages in a virtual memory object.
It is similar to the vm_release kernel service except that pages are specified rather than an
address range.

vm_releasep cannot be called with interrupts disabled.

Example Using Virtual Memory Management Services
The following example shows typical use of the vm_writep, vms_iowait, and vm_releasep
kernel services:

#include <sys/vmuser.h>

#include <sys/types.h>

#include <sys/m_types.h>

vmid_t vmid;

int type;

int size;

dev_t dev_num;

int pfirst;

int npages;

int rc;

 . . .

type = V_CLIENT; /* client segment */

 /* dev_num is the devno of the block device on which

 the inode resides */

 /* size is the size in bytes of the file */

 if (rc = vms_create(&vmid, type, dev_num, size, 0, 0))

 return (rc);

 . . .

 /* pfirst is the page number of the first page to pageout */

 /* npages is the number of pages we want to pageout */

if (rc = vm_writep(vmid, pfirst, npages));

 return (rc);

rc = vms_iowait(vmid);

vms_releasep(vmid, pfirst, npages);

if (rc)

 return (rc);

 . . .

4-11Memory Management

Cross-Memory Services
The cross-memory kernel services enable device drivers to access user-mode data. This is
often required by the interrupt handler section of device drivers or when performing DMA
transfers to and from a user buffer.

The following are common cross-memory services:

• xmattach
• xmdetach
• xmemin
• xmemout
• xmemdma

The xmattach kernel service provides a descriptor to access the user-mode memory region
while the xmemin and xmemout kernel services transfer data to and from this region. The
xmdetach kernel service then deallocates resources used to access the user-mode region
and prevents further accesses to that region.

The following example shows a typical transfer of user data to a kernel buffer using the
xmemin kernel service:

#include <sys/xmem.h>

caddr_t user_buffer;

caddr_t local_buffer;

uint buffer_len;

struct xmem dp;

int rc;

bzero(&dp, sizeof(struct xmem));

/* aspace_id field must be initialized to XMEM_INVAL */

dp.aspace_id = XMEM_INVAL;

/* user_buffer should have the address of the user buffer */

/* user_buffer_len should have the length of the user_buffer */

if (rc = xmattach(user_buffer,user_buffer_len,&dp,USER_ADSPACE))

 return (rc);

/* allocate word–aligned kernel bufr to hold copy of user data */

local_buffer = xmalloc(user_buffer_len, 2, pinned_heap);

if (local_buffer == NULL)

 return (ENOMEM);

if (rc = xmemin(user_buffer, local_buffer, buffer_len, &dp))

 return(rc);

/* The data in local_buffer can now be sent to the device

 if desired (eg. through PIO) */

 . . .

xmfree(local_buffer, pinned_heap);

xmdetach(&dp);

xmattach
The xmattach kernel service gives a device driver access to a user buffer without having to
execute under the process that initiated the I/O. It returns a cross-memory descriptor if the
attach is successful. The xmemin and xmemout kernel services can then be used to
transfer data to and from the attached user buffer.

xmattach cannot be called with interrupts disabled.

4-12 AIX Writing a Device Driver

xmdetach
The xmdetach kernel service detaches a user buffer, previously attached by the xmattach
kernel service, from a device driver. This prevents a device driver from further accesses to
a user buffer.

xmdetach can be called with interrupts disabled.

xmemin
The xmemin kernel service transfers data from an attached user buffer to a kernel buffer.
The device driver performing the transfer should have previously attached to the user buffer
using the xmattach kernel service.

xmemin can be called with interrupts disabled.

xmemout
The xmemout kernel service transfers data from a kernel buffer to an attached user buffer.
The device driver performing the transfer should have previously attached to the user buffer
using the xmattach kernel service.

xmemout cannot be called with interrupts disabled.

xmemdma
The xmemdma kernel service prepares a page for DMA I/O or processes a page after
DMA I/O is complete. Even though xmemdma can be called with interrupts disabled, the
page being processed must be in memory and either pinned or in the pager I/O state.

The following flags are used when preparing the page for DMA I/O:

XMEM_HIDE Flushes the cache and invalidates the page if this is the first hide for
the page. (On a PowerPC machine, this flag instructs the kernel
service to return the calculated real address for the page and if the
page is not read-only, set the modified bit.)

XMEM_ACC_CHK Checks the page protection bits for this page before the flush and
hide.

XMEM_WRITE_ONLY When used with the XMEM_ACC_CHK flag, indicates that page
access is read-only and DMA transfers from this page will only be
outward.

The following flag processes a page after DMA I/O:

XMEM_UNHIDE Decrements the hide count on this page. If this is the last unhide and the
page is not in the pager I/O state, processes waiting on the page are
taken off the wait queue and the page’s modified bit is set unless it was a
read-only page. (On a PowerPC machine, this flag causes the kernel
service to return 0.)

xmemdma can be called with interrupts disabled.

The following is an example of the use of the xmemdma kernel service to unhide a page
after a DMA transfer using the d_master kernel service:

int channel_id;

caddr_t buf_addr;

int buf_size;

struct xmem xmem_buf;

caddr_t dma_addr;

 . . .

/* We’re assuming that the channel_id, buf_addr, buf_size,

 xmem_buf,and dma_addr have already been setup */

 d_master(channel_id, DMA_READ, buf_addr, buf_size, &xmem_buf,

 dma_addr);

 xmemdma(&xmem_buf, buf_addr, XMEM_UNHIDE);

Synchronization and Serialization 5-1

Chapter 5. Synchronization and Serialization

It is often necessary for a device driver to synchronize its access to a resource that is
shared with a device or with kernel routines executing in other contexts. Kernel routines in
all contexts share the same kernel segment and all data structures within it. Drivers for
many devices share the same I/O space and system bus. A device driver’s routines all
access the same device, so they must synchronize their access to that device.

To synchronize access with another device, either the driver may poll the device by
repeatedly checking to see if the resource is available, or the device may notify the driver
that the resource is available by sending an interrupt whose handler posts an event that the
driver is waiting for.

If a driver routine accesses a resource that it shares with a kernel routine concurrently
executing in another context, then both routines must address various concurrency issues.
For example, you want to avoid the following conditions:

race conditions Multiple contexts access the same shared resource with different results
depending on the order in which the accesses are made. (Accesses to a
shared resource are serialized if they are coordinated so there is no race
condition.)

deadlock Each context awaits a notification the other never sends.

livelock Each context polls a condition the other never sets. (This is sometimes
called a type of deadlock.)

starvation Other contexts monopolize access to the shared resource.

A portion of a routine that accesses a shared resource, a routine’s critical section, makes
the access atomic relative to routines executing in other contexts whenever it synchronizes
its own access to that resource with respect to any access attempts by other routines, so
that all accesses are serialized (made one after the other). A routine synchronizes access
with other routines either by using semaphores (such as locks) or by invoking monitors,
which are routines that ensure atomic access.

A routine is reentrant if its critical sections make resource accesses that are atomic relative
to the same routine executing in some other context. In other words, a routine is reentrant if
it can safely execute in many contexts concurrently.

If a routine maintains state information somewhere (for example, in static or global data) so
that a subsequent call to the same routine would access information modified by a previous
call, then the routine is not reentrant: the state information is the shared resource, and that
portion of the routine that accesses the information is that routine’s critical section. If a
routine enables a caller to access any resources that can be shared, such as by returning a
pointer to static or global data, then the routine itself is not reentrant; it cannot safely
execute in more than one context.

Recall that an interrupt handler routine must be reentrant because a device may generate
an interrupt while another interrupt (possibly from the same device through another system
processor) is being handled. In AIX, device driver routines on the call side also must be
reentrant because a call-side driver routine executes in the context of a kernel thread
whose execution can be preempted in favor of another thread of greater priority, which
might be executing the same call-side driver routine.

For information on making interrupt-side routines reentrant, see Chapter 3, “Interrupts” on
page 3-1.

5-2 AIX Writing a Device Driver

Timer Services
A driver routine can poll a device actively by checking the shared resource’s availability and
then doing something else (keeping a system processor), or it can poll a device by checking
and then relinquishing its system processor for a certain period of time (going to sleep).
Because the time between resource availability checks with active polling depends on the
speed of a system processor, and because that time period may not be compatible with
device being polled, timer-based polling is more robust.

Each processor that AIX supports has a decrementor that periodically generates timer
interrupts whose handler, among other things, can invoke routines specified to be called
once a certain amount of time has passed. The kernel services and data structures
associated with timer interrupt handler are timers. There are basically two kinds of timers:
watchdog timers and real-time timers. A driver routine sets up a timer by specifying a
callback routine, which is an interrupt-side routine that is to be invoked by the timer interrupt
handler. The driver routine also specifies when to invoke the callback routine as either an
absolute time (from January 1, 1970) or a time relative to when the timer is started.

Watchdog Timers
Driver routines typically use timers to check if device I/O requests had successfully
completed. A watchdog timer may be satisfactory to poll a device, as it is fairly simple to
use and has low overhead. However, it involves writing an interrupt-side callback routine
that is little more than a timed “go to” routine: a watchdog timer handler receives no user
defined parameters. Also, a watchdog timer can only be set to the nearest second.

Here is an example of how to set up a watchdog timer. The following code sections are
written to augment the sample device driver shown in “Device Driver Overview” on page
1-1.

The callback routine, which is invoked any time the watchdog timer expires, executes on
the interrupt-side; so it will have to be in the device driver’s bottom half. In other words, the
callback routine will have to be explicitly pinned in RAM.

Here is the bottom half, xyz_bot.c:

#include <sys/types.h> /* for dev_t and other types */

#include <sys/trchkid.h> /* for trace hook macros */

/***

 WATCHDOG TIMER CALLBACK ROUTINE

This callback routine is invoked every time a timer expires.

This executes in the context of decrementer interrupt handler.

***/

void watchdog_callback()

{

TRCHKL1T(HKWD_USER1, 0xb);

}

Since the callback routine has no parameters, it must access some shared resources to do
anything useful. It may read an adapter’s registers to poll a device, or it may see if some
other resource is available for use. Portions of the callback routine that access such shared
resources are critical sections shared among threads and interrupt handlers and require
appropriate synchronization.

The driver’s top half, called xyz_top.c, is the same as the sample driver in Chapter 1 with
several additions.

Synchronization and Serialization 5-3

Add the following to the declaration section:

#include <sys/malloc.h> /* for xmalloc() */

/* for watchdog timer support */

#include <sys/watchdog.h> /* for watchdog structure */

extern void watchdog_callback();

struct watchdog *watchp;

Note that the pointer to the watchdog timer structure is global and is therefore a shared
resource requiring synchronization if the top half were to be reentrant. For simplicity, access
to the pointer is not serialized in this example.

Add the following to the xyzopen entry point:

watchp = (struct watchdog *) xmalloc(sizeof(struct watchdog),

0, pinned_heap);

if(watchp == (struct watchdog *) NULL)

{ setuerror(ENOMEM); /* failed, no space on pinned heap */

 return(–1); /* setuerror() used: there is no ublock access */

}

watchp–>func = (void (*)(void *))watchdog_callback;

w_init(watchp);

Add the following to the xyzclose entry point:

w_stop(watchp);

w_clear(watchp);

xmfree(watchp, pinned_heap);

Add the following to the xyzread entry point:

watchp–>restart = 3; /* 3 seconds */

w_start(watchp);

Add the following to the CFG_INIT portion of the xyzconfig entry point:

if((return_code = pincode(watchdog_callback)) != 0)

{ setuerror(return_code);

 return(–1);

}

And, add the following to the CFG_TERM portion of the xyzconfig entry point:

if((return_code = unpincode(watchdog_callback)) != 0)

{ setuerror(return_code);

 return(–1);

}

The corresponding stanzas of the makefile need to be changed:

xyz: xyz_top.o xyz_bot.o

ld –e xyzconfig –o xyz –bI:$(KSYSLIST) –bI:$(SYSLIST)

xyz_top.o xyz_bot.o # have on one line

xyz_top.o: xyz_top.c

cc –c –D_ALL_SOURCE –D_POSIX_SOURCE –D_KERNEL xyz_top.c

xyz_bot.o: xyz_bot.c

cc –c –D_ALL_SOURCE –D_POSIX_SOURCE –D_KERNEL xyz_bot.c

The user program, aprogram, only needs to have “sleep(5);” placed after the call to
read so that the timer can go off before the program terminates.

5-4 AIX Writing a Device Driver

The following sample trace report shows that the callback routine (hookdata 0xB) executed
a little less then three seconds after the call to xyzread (hookdata 0x9):

 trace –j010 –l –l –s –a

 ID PROCESS NAME I SYSTEM CALL ELAPSED APPL SYSCALL KERNEL

INTERRUPT

 001 trace 0.000000 trace ON channel 0

 010 trace 20.121544 UNDEFINED trace ID idx 0x2100 trace id 0010

 hookword 10E0000 type 0E

 hookdata 0000 00000001 00630000 00000001 2FF97F1C 00000000

 010 trace 26.447790 UNDEFINED trace ID idx 0x2154 trace id 0010

 hookword 10E0000 type 0E

 hookdata 0000 00000001 00630000 00000003 2FF97F1C 00000000

 010 trace 26.447795 UNDEFINED trace ID idx 0x2170 trace id 0010

 hookword 10A0000 type 0A

 hookdata 0000 00000005

 010 trace 63.647987 UNDEFINED trace ID idx 0x22c4 trace id 0010

 hookword 10E0000 type 0E

 hookdata 0000 00000007 00630000 00000003 00000000 00000000

 010 trace 63.648657 UNDEFINED trace ID idx 0x22e0 trace id 0010

 hookword 10E0000 type 0E

 hookdata 0000 00000009 00630000 2FF97DC0 00000000 00000000

 010 trace 66.057338 UNDEFINED trace ID idx 0x2314 trace id 0010

 hookword 10A0000 type 0A

 hookdata 0000 0000000B

 010 trace 70.649700 UNDEFINED trace ID idx 0x2348 trace id 0010

 hookword 10E0000 type 0E

 hookdata 0000 0000000A 00630000 2FF97DC0 00000000 00000000

 010 trace 70.649833 UNDEFINED trace ID idx 0x2364 trace id 0010

 hookword 10E0000 type 0E

 hookdata 0000 00000008 00630000 00000000 00000000 00000000

 002 trace 77.524587 trace OFF channel 0

There are many similarities between routines using watchdog timers and those using
real-time timers. This is shown in the following discussion of real-time timers.

Real-Time Timers
If the device requires setting a timer to within something finer than a second, or if the
callback routine needs user defined parameters, then the driver will use real-time timers,
which make use of Timer Request Blocks (TRBs) as defined in the file
/usr/include/sys/timer.h.

The real-time kernel services are:

talloc Allocates a TRB.

tstart Submits the timer request (to place the TRB on a timer queue).

tstop Removes the timer request.

tfree Frees up resources allocated for the TRB.

Here is an example of a way to set up a real-time timer. The following code sections are
written to augment the sample device driver shown in “Device Driver Overview” on page
1-1.

As with watchdog timers, the callback routine, specified to be called once the timer expires,
executes on the interrupt-side and so will have to be in the device driver’s bottom half.

Synchronization and Serialization 5-5

Here is the bottom half, xyz_bot.c:

#include <sys/types.h> /* for dev_t and other types */

#include <sys/errno.h> /* for errno declarations */

#include <sys/trchkid.h> /* for trace hook macros */

/* for timer support */

#include <sys/timers.h> /* for itimerspec, includes time.h */

#include <sys/timer.h> /* for TRBs */

/***

 TIMER CALLBACK ROUTINE

 This callback routine is invoked every time a timer expires.

 This executes in the context of decrementer interrupt handler.

***/

void timer_callback(struct trb *timer_req_blk_ptr)

{

TRCHKL2T(HKWD_USER1, 0xb, timer_req_blk_ptr–>t_func_sdata);

}

The callback routine, timer_callback, has a TRB, which can contain some user supplied
data, passed to it; in this case t_func_sdata is a signed integer containing, say, the
device number. Any data that can’t be passed as a parameter will have to be globally
accessible; portions of a routine that access such shared resources are critical sections
shared among threads and interrupt handlers and require appropriate synchronization.

The driver’s top half, called xyz_top.c, differs from the sample driver in Chapter 1 in
several ways described in the following discussion. One difference is the include files and
declarations would include:

/* for timer support */

#include <sys/timers.h> /* for itimerspec, includes time.h */

#include <sys/timer.h> /* for TRBs */

#include <sys/m_intr.h> /* for INTTIMER priority */

extern void timer_callback();

struct trb *trbp; /* single pointer to TRB structure */

Note that the pointer to TRB is global and is therefore a shared resource requiring
synchronization if the top half is to be reentrant. For simplicity, access to the pointer is not
serialized in this example.

Here is what is added to the entry point xyzopen:

if((trbp = talloc()) == (struct trb *) NULL)

{ setuerror(ENOMEM); /* talloc failed, no space on pin heap */

 return(–1); /* setuerror() used: there is no ublock access */

}

trbp–>id = thread_self(); /* or getpid() */

trbp–>timerid = TIMERID_REAL;

trbp–>eventlist = –1; /* no events being waited on */

trbp–>func = (void (*)(void *))timer_callback;

trbp–>t_func_sdata = (int) devno; /* or whatever data */

trbp–>ipri = INTTIMER;

Note that talloc allocates space from the pinned heap. The fields of the TRB listed are
the only ones a device driver would set; even so, most fields only need to be filled out if the
callback routine requires them. id, timerid, eventlist, t_func_sdata are all for use
by the callback routine. The callback routine, timer_callback, listed previously, currently
makes no use of any of these fields.

Here is what is added to the entry point xyzclose:

tstop(trbp);

tfree(trbp);

5-6 AIX Writing a Device Driver

Here is what is added to the entry point xyzread:

struct timespec threeSec;

struct itimerspec timeStruct;

...

threeSec.tv_sec = 3; /* 3 seconds */

threeSec.tv_nsec = 0; /* and no milliseconds */

timeStruct.it_interval = threeSec;

timeStruct.it_value = threeSec;

trbp–>timeout = timeStruct;

tstart(trbp);

So, if a program issues a read on this device, it starts a timer that causes the callback
routine to execute three seconds later.

Here is what is added to the CFG_INIT case section of xyzconfig:

if((return_code = pincode(timer_callback)) != 0)

{ setuerror(return_code);

return(–1);

}

This pins the bottom-half, containing the callback routine, in RAM.

Here is what is added to the CFG_TERM case section of xyzconfig:

if((return_code = unpincode(timer_callback)) != 0)

{ setuerror(return_code);

return(–1);

}

This enables the pages containing the bottom half to be subject to page replacement.

The makefile and aprogram.c are the same as in the watchdog timer example.

Now, when the kernel is extended, and the user program, aprogram, is run, a system trace
shows that the callback routine executes three seconds after read is called:

010 trace 22.459560 UNDEFINED TRACE ID idx 0x21d4 traceid 0010

hookword 10E0000

type 0E

hookdata 0000 00000009 00630000 2FF97DC0 00000000 00000000

010 trace 25.459661 UNDEFINED TRACE ID idx 0x2210 traceid 0010

hookword 10E0000

type 0E

hookdata 0000 0000000B 00630000 00000000 00000000 00000000

Synchronization and Serialization 5-7

Event Notification
An alternative to polling a device for when some data is available, or when some status is
achieved, is to make use of any interrupts that the device generates and notify the driver
that an interrupt was processed. In this case, the driver routine registers itself for an event
and causes its thread to relinquish the system processor. Whenever the event is posted,
the kernel awakens the driver’s thread and the driver routine resumes execution.

The kernel service et_wait causes the calling thread to relinquish the system processor
until that thread receives an event. The kernel service et_post enables a kernel process to
post an event to some thread, so that the thread can resume execution. The event is a bit
in a bit mask that is passed as a parameter to each call.

The following is an example of adding event notification to the real-time timer sample code
given previously.

In xyz_bot.c, add to the declarations:

/* for event handling */

#define THE_EVENT (1 << 31) /* this is the high order bit */

There is an event mask that can be used to ensure that an event is not reserved for the
base operating system kernel. Be aware that this event is specific to a 32-bit system.

Add the following line to the callback routine:

et_post(THE_EVENT, timer_req_blk_ptr–>id);

The field id, in the TRB, contains the ID of the thread that had set the timer.

In xyz_top.c add to the declarations:

/* for event handling */

#include <sys/sleep.h> /* for EVENT_SIGRET flag */

#define THE_EVENT (1 << 31) /* this is a high order bit */

And add the following to the xyzwrite entry point:

et_wait(THE_EVENT, THE_EVENT, EVENT_SIGRET); /* clear event

 upon receipt */

TRCHKL1T(HKWD_USER1, 0x0a);

Keep aprogram.c the same as in “Sample Device Driver” on page 1-15. A portion of the
trace looks like:

010 trace 18.261389 UNDEFINED TRACE ID idx 0x21c8 traceid 0010

hookword 10E0000

type 0E

hookdata 0000 0000000A 00630000 2FF97DC0 00000000 00000000

010 trace 21.261233 UNDEFINED TRACE ID idx 0x21fc traceid 0010

hookword 10E0000

type 0E

hookdata 0000 0000000B 00630000 00000000 00000000 00000000

010 trace 21.261919 UNDEFINED TRACE ID idx 0x2218 traceid 0010

hookword 10A0000

type 0A

hookdata 0000 0000000A

The trace shows entry into xyzwrite, the callback, and then the completion of xyzwrite.

Instead of posting events to a driver routine in a thread, a device driver may need to wait on
an event and meanwhile make a shared resource available for another routine to lock. To
do so, the driver can invoke the kernel service e_sleep_thread, which takes a pointer to an
event and a pointer to a lock as parameters. If the event is to be posted from the interrupt
side, be careful that the pointers refer to data in pinned memory.

5-8 AIX Writing a Device Driver

An interrupt handler (or some other routine) may call the kernel service e_wakeup, to
cause any threads sleeping on this event to resume execution and reacquire a lock on a
shared resource.

If multiple locks are to be released and then reacquired, a driver will use the kernel
services, e_assert_wait, e_block_thread, and e_clear_wait and e_wakeup instead.

For more information on event handling services, see AIX Technical Reference, Volume 5:
Kernel and Subsystems and AIX Technical Reference, Volume 6: Kernel and Subsystems.

Serialization Services
Sharing data among multiple concurrent processes causes an inherent problem with
maintaining data consistency. Consider, for example, a doubly linked list structure. In order
to remove an element from this list, it is necessary to update pointers in both the preceding
and succeeding the elements. During this update sequence the list is in an inconsistent
state. If additional process activity to add or remove elements is allowed to proceed while in
this state, the results would be unpredictable. Access could be serialized through the use of
locks.

Device drivers have the following types of critical code sections:

• Critical code sections shared among process threads. (Interrupt disabling is not
required.)

• Critical code sections shared among process threads and interrupt handlers. (Interrupt
disabling is required.)

Uniprocessor (UP) Serialization
On a uniprocessor, concurrent access to shared data is achieved through preemption. A
process can be preempted by another higher priority process, or by an interrupt routine.

Protection for access to data shared between process threads is provided by using locks.
Protection for access to data shared between the base level and the interrupt level is
provided by disabling interrupts.

Multiprocessing (MP) Serialization
Multiprocessing involves the use of more than a single processor. AIX implements shared
memory symmetric multiprocessing, that is, all processors are functionally equivalent and
can perform I/O and computations. AIX manages a pool of identical processors, any of
which may be used to control I/O devices or reference any memory unit. Conflicts between
processors attempting to access the same data at the same time are resolved by hardware
instruction synchronization. Conflicts in access to shared memory structures are resolved
by software synchronization techniques; most notably locking.

The multiprocessing discussion introduces the following new terminology:

Master Processor
The default processor for of funneled code execution. This is usually the
IPL boot processor.

Funneling Funneled code runs only on the master processor. This enables a UP
driver to run unchanged by funneling its execution through one specific
processor (the Master processor).

MP-safe Device driver code that can run on any processor. The code for the device
driver provides for locks to serialize the device drivers execution. This
provides for a coarse level of locking to enable parallel execution.

MP-efficient Device driver code that can run on any processor. The code for the device
driver provides for locks to serialize access to devices and data structures.
This provides for a finer level of locking to further enable parallel execution.

Synchronization and Serialization 5-9

Masking interrupts or disabling the processor by calling the i_disable kernel service to
serialize with an interrupt handler is no longer sufficient with symmetric multiprocessing
(except for funneled code). The I/O is symmetric and interrupts can be routed to any of the
processors in the complex; masking interrupts will not prevent the interrupt routine from
executing simultaneously on another processor. Serialization in a symmetric multiprocessor
system, therefore, requires the use of locks in addition to using i_disable.

Lock Overview
A number of serialization techniques are available defined by the intent to serialize access
to critical code sections, or data items. Locking critical sections of code is a coarse locking
level that supports MP-safe program execution. Locking at the data level is a finer locking
level that supports either MP-safe or MP-efficient program execution. Additionally, atomic
operations such as fetch_and_add and compare_and_swap can be used as an
alternative to locks to provide reliable access to a single shared variable for reading or
writing.

Lock contention wait can result in a process spinning on a busy lock or sleeping until the
lock is granted.

AIX provides for the following types of locks:

Simple locks Spin locks that provide exclusive ownership and are not recursive. These
locks are used for serialization among threads, serialization among threads
and interrupt handlers, and serialization among threads and interrupt
handlers.

Complex locksSleep locks that provide read or write access and are recursive on request.
These locks are used only for serialization among threads.

Lockl locks Sleeping, mutual exclusive locks provided for compatibility with AIX Version
3. These should not be used for newly written code.

Locking the global kernel_lock is not recommended (discouraged) because this lock has
the potential to block the system scheduler. Also, this lock may be removed at some future
time.

To support collecting and monitoring statistics about lock activity, AIX implements lock
instrumentation. This function is activated or deactivated on an IPL boot basis via the
bosboot command. Lock instrumentation criteria requires that locks be allocated before
being used and deallocated when no longer needed. Instrumentation is not provided for
lockl and unlockl lock services. Allocation calls and deallocation calls result in no operation
if instrumentation is disabled.

Serializing Critical Sections

The following kernel services, which encapsulate interrupt control and simple locks, should

be used to serialize critical sections in the driver bottom half:

disable_lock Raises the interrupt priority, and locks a simple lock if necessary.

unlock_enable Unlocks a simple lock if necessary, and restores the interrupt priority.

These kernel services should be used instead of calling the simple lock kernel services

directly; this ensures that a thread will never be interrupted while it holds a simple lock.
Allowing a thread which holds a simple lock to be interrupted can deadlock the system.

An MP-safe driver bottom half uses the disable_lock and unlock_enable kernel services

to serialize device driver execution with a code lock. An MP-efficient driver bottom half
replaces this code lock with one or more data locks, serializing access to individual data
structures and devices instead of driver execution. Take care that this finer grained locking
does not result in excessive execution path lengths.

5-10 AIX Writing a Device Driver

Avoiding Lock Nesting

The disable_lock and unlock_enable kernel services cannot be nested on the same lock.

An MP-safe or MP-efficient device driver must be structured to avoid the requirement for
such nesting. One way to achieve this is to have two names for each routine which can be
called from either outside or inside a critical section. The first name corresponds to a small
routine which is called from outside a critical section; it acquires the lock, calls the second
routine, and then releases the lock. The second routine assumes that the lock is already
acquired.

Releasing Locks During Sleeps

A thread-interrupt lock must not be held across a sleep, or when calling an external routine

which could sleep. Any kernel service which can be called from process level can result in a
sleep, as can accessing data which is not pinned.

In the part of the driver bottom half which runs in the process environment with interrupts

disabled, the e_sleep_thread kernel service can be used to sleep. This service releases a
specified lock before sleeping, and reacquires the lock afterwards.

Ensuring Proper Lock Ordering

If a thread must acquire several locks, a strict lock ordering must be defined in order to

avoid deadlocks. The locks generally must be acquired in the same order, and released in
the reverse order. Typically, MP-safe device drivers have a single lock, so lock ordering is
not normally a consideration for them. MP-efficient drivers must be carefully designed to
prevent deadlocks due to lock ordering.

Device Driver Lock Models
The device driver lock model in an MP environment can take on one of the forms previously
mentioned (funneled, MP-safe, or MP-efficient). The implementation model used by the
device driver needs to be communicated to the kernel for the MP-safe or MP-efficient
models. This is done by setting necessary flags in the appropriate data structures
supporting the devswadd, i_init, and iodone kernel services. The funneled implementation
is assumed by default.

The funneled model is essentially a UP implementation. This is appropriate for low
throughput devices or migrating device drivers from the UP environment. This is the
implementation model that is assumed if no changes are made to an existing UP device
driver migrated to an MP environment. Serialization of critical code sections is
accomplished by using the lockl and unlockl kernel services for sections shared among
threads, and the i_disable and i_enable kernel services for sections shared among
threads and interrupt handlers.

Although lockl locks are provided for compatibility with earlier releases, new code written
for AIX Version 4.1 should use simple locks instead. This enables gathering lock
instrumentation statistics for these locks.

The MP-safe model is intended for medium throughput devices and provides a coarse level
of MP serialization without the complexity and overhead of MP-efficient implementation.
Simple lock kernel services are provided for both serialization of critical sections shared
among threads and serialization of critical sections shared among threads and interrupt
handlers. This implementation enables critical sections of code to run on any processor in
the complex, but not at the same time. The locking granularity is usually a single global lock
at the device driver level.

The MP-efficient model is intended for high throughput devices by optimizing the parallel
execution capabilities of an MP processor. A finer level of locking capability is available by
using a hierarchy of locks based on data access serialization. Complex lock kernel services
are provided for shared read and exclusive write access to data structures shared among

Synchronization and Serialization 5-11

multiple-thread code sections. Simple lock kernel services are provided for serialization
among thread and interrupt handler code sections.

The implementation model used depends on such factors as performance needs and
whether the device driver is being migrated from a UP environment. If designing, or moving
to an MP-safe or MP-efficient model, the recommendation is to start by using simple locks
(a single global lock initially) and gradually refine the serialization as needed after identifying
all the data structures shared between the top and bottom half of the driver. Also, analysis
of the lock statistics provided by lock instrumentation can be used to identify contention
bottlenecks that may point out the need for additional locking or the need for the read and
write locking capability provided by complex locks.

5-12 AIX Writing a Device Driver

MP-Safe Coding Sample
/* Skeleton code sample using the following lock related */

/* kernel services: */

/* */

/* lockl() – conventional–lock lock request */

/* lock_alloc() – allocate simple lock */

/* simple_lock_init() – initialize simple lock */

/* lock_free() – release simple lock */

/* unlockl() – conventional–lock unlock request */

/* devswadd() – devsw table lock model options */

/* */

/* (driver configuration lock definition and use) */

...

lock_t config_lock ={LOCK_AVAIL}; /* define lockl lock */

Simple_lock dd_lock; /* define Simple MP lock */

...

int

dd_config(int cmd,

 struct uio *uiop)

{ /* start dd_config() */

 struct devsw dd_devsw;

 int rc;

 ...

 rc = lockl(&config_lock, LOCK_SHORT); /* dd_config lock */

 if (rc != LOCK_SUCC)

 return(EINVAL);

 lock_alloc(&dd_lock, /* allocate Simple MP lock */

 LOCK_ALLOC_PIN,

 DD_LOCK,

 –1);

 simple_lock_init(&dd_lock); /* initialize Simple MP lock */

 ...

 switch(cmd)

 {

 case CFG_INIT:

 {

 dd_devsw.d_open = dd_open;

 dd_devsw.d_close = dd_close;

 dd_devsw.d_read = dd_read;

 dd_devsw.d_write = dd_write;

 dd_devsw.d_ioctl = dd_ioctl;

 dd_devsw.d_strategy = dd_strategy;

 dd_devsw.d_ttys = 0;

 dd_devsw.d_select = nodev;

 dd_devsw.d_config = dd_config;

 dd_devsw.d_print = nodev;

 dd_devsw.d_dump = nodev;

 dd_devsw.d_mpx = nodev;

 dd_devsw.d_revoke = nodev;

 dd_devsw.d_dsdptr = NULL;

 dd_devsw.d_selptr = NULL;

 dd_devsw.d_opts = DEV_MPSAFE; /* register as MP SAFE */

 rc = devswadd(devno,&dd_devsw); /* devsw table entry */

 ...

 } /* end case CFG_INIT */

 break;

 case CFG_TERM:

 {

 ...

 lock_free(&dd_lock); /* release MP lock */

 ...

 } /* end case CFG_TERM */

 break;

Synchronization and Serialization 5-13

 } /* end switch (cmd) */

 ...

 unlockl(&config_lock); /* unlock dd_config lock */

 return(SUCCESS);

} /* end dd_config() */

/* Skeleton code sample using the following lock related */

/* kernel services: */

/* */

/* simple_lock() – set simple lock */

/* simple_unlock() – unlock simple lock */

/* */

/* (thread –– thread process serialization) */

/* */

int

dd_read (dev_t devno, struct uio *uiop)

{ /* start dd_read() */

 simple_lock(&dd_lock); /* set simple lock */

 ... /* (critical section) */

 simple_unlock(&dd_lock); /* unlock simple lock */

 return(SUCCESS);

} /* end dd_read */

/* Skeleton code sample using the following lock related */

/* kernel services: */

/* */

/* disable_lock() – disable interrupts and set simple lock */

/* unlock_enable() – unlock simple lock and enable interrupts*/

/* */

/* (thread –– interrupt process serialization) */

/* */

int

dd_intr (void)

{ /* start dd_intr() */

 int old_level; /* interrupt priority level save word */

 ...

 old_level = disable_lock(CURR_LEVEL, /* disable interrupts & */

 &dd_lock); /* set simple spin lock */

 ... /* (critical section) */

 unlock_enable(old_level, /* unlock simple lock & */

 &dd_lock); /* enable interrupts */

 return(SUCCESS);

} /* end dd_intr */

5-14 AIX Writing a Device Driver

MP-Efficient Coding Sample
/* Skeleton code sample using the following lock related */

/* kernel services: */

/* */

/* lockl() – conventional–lock lock request */

/* lock_alloc() – allocate Complex lock */

/* lock_init() – initialize Complex lock */

/* lock_free() – release Complex lock */

/* unlockl() – conventional–lock unlock request */

 /* */

 /* (driver configuration lock definition and use) */

...

lock_t config_lock = {LOCK_AVAIL}; /* dd_config lock */

struct { /* Adapater Control Block structure */

 Complex_lock adapter_lock; /* R/W Adapter lock */

 struct Device_Ctl *next_device /* device structure chain*/

} Adapter_Ctl;

struct { /* Device Control Block structure */

 Complex_lock device_lock; /* W/Exclusive Device lock*/

 struct statistics device_stats; /* performance statistics */

 short dev_minor_no; /* Device minor number */

} Device_Ctl;

int

dd_config(int cmd,

 struct uio *uiop)

{ /* start dd_config() */

 /*

 * Use lockl operation to serialize the execution of the

 * config commands.

 */

 if ((rc = lockl(&config_lock, LOCK_SHORT)) != LOCK_SUCC) {

 return(EBUSY);

 }

 switch(cmd) {

 case CFG_INIT:

 {

 ...

 /*

 * Define the locks in the adapter/device blocks

 */

 lock_alloc(&Adapter_Ctl.adapter_lock,

 LOCK_ALLOC_PIN,

 ADAPTER_CTL_LOCK,

 –1);

 lock_init(&Adapter_Ctl.adapter_lock,

 TRUE);

 lock_alloc(&Device_Ctl.device_lock,

 LOCK_ALLOC_PIN,

 DEVICE_CTL_LOCK,

 Device_Ctl.dev_minor_no);

 lock_init(&Adapter_Ctl.adapter_lock,

 TRUE);

 ...

 } /* end case CFG_INIT */

 break;

 case CFG_TERM:

 {

 /*

 * Free the locks in the adapter/device control blocks

 */

 ...

 lock_free(&Adapter_Ctl.adapter_lock);

 lock_free(&Device_Ctl.device_lock);

Synchronization and Serialization 5-15

 ...

 } /* end case CFG_TERM */

 break;

 ...

 }

 unlockl(&config_lock); /* unlock dd_config lock */

 return (SUCCESS);

} /* end dd_config() */

/* Skeleton code sample using the following lock related */

/* kernel services: */

/* */

/* lock_read() – lock Complex lock for shared read */

/* – or – write exclusive access */

/* lock_write() – lock Complex lock for w/exclusive access */

/* lock_done() – release Complex lock */

/* */

/* (thread – thread process serialization only) */

/* */

int

dd_ioctl(dev_t dev, int cmd, caddr_t arg, uint flag,

 chan_t chan, caddr_t ext)

{

 int rc; /* return code */

 ...

 /*

 * Lock adapter lock in shared read access (this is done to

 * protect against removal of device structure)

 */

 lock_read(&Adapter_Ctl.adapter_lock);

 ...

 switch(cmd) {

 /*

 * Return current device performance statistics

 */

 case DD_GET_STATS:

 {

 ...

 /*

 * Lock device control block for read access to gather

 * statistics for caller

 */

 lock_read(&Device_Ctl.device_lock);

 ... /* (critical section) */

 lock_done(&Device_Ctl.device_lock);

 rc = (SUCCESS);

 break;

 }

 /*

 * Update device performance statistics

 */

 case DD_UPDATE_STATS:

 {

 ...

 /*

 * Lock device control block for write access to update

 * statistics for caller

 */

 lock_write(&Device_Ctl.device_lock);

 ... /* (critical section) */

 lock_done(&Device_Ctl.device_lock);

 rc = (SUCCESS);

 break;

 }

 ...

5-16 AIX Writing a Device Driver

 }

 lock_done(&Adapter_Ctl.adapter_lock);

 return(rc);

}

Making a Uniprocessor Device Driver Multiprocessor-Safe

The following list gives brief guidelines on porting an existing uniprocessor device driver to

make it MP-safe or MP-efficient.

• Change the devswadd, devstrat, and i_init calls as necessary to indicate that the
device driver strategy routine, iodone routine, and interrupt handlers are MP-safe or
MP-efficient.

• If required, change the driver top half to use simple or complex locks instead of the lockl
kernel service. If using simple locks, remove any nesting.

• In the driver bottom half:

– Use disable_lock and unlock_enable instead of i_disable and i_enable for critical
section serialization.

– If the driver has nested calls to i_disable, remove the nesting, since the disable_lock
service does not support nesting.

– Ensure that locks are not held across sleeps. Modify the driver so that calls to the
e_sleep service can be replaced with calls to the e_sleep_thread service. Release
locks before using kernel services which are callable from process level. Do not
access unpinned data while holding a lock.

• Ensure that locks are acquired and released in the correct order to prevent system
deadlocks.

• If the driver relies on careful ordering of operations to avoid disabling interrupts (an
example is a singly-linked list which is altered at process level and is always consistent
so that it can be scanned at interrupt level), protect the operations with critical sections;
such careful ordering does not provide sufficient protection on multiprocessor systems.

• It is possible that device driver routines which are called by the kernel with interrupts
disabled do not call i_disable and i_enable. Ensure that these routines are serialized
with calls to disable_lock and unlock_enable. The following device driver routines are
called with interrupts disabled:

– EPOW handlers (see “Early Power Off Warning” on page 3-9)
– interrupt handlers (see Chapter 3, “Interrupts”)
– timeout routines (see “Timer and Time of Day Services” in AIX Kernel Extensions and

Device Support Programming Concepts)
– watchdog routines (see “Timer and Time of Day Services” in AIX Kernel Extensions

and Device Support Programming Concepts)
– off-level handlers
– iodone routines (see the iodone kernel service)

• Ensure that no thread-interrupt lock which could block the corresponding interrupt
handler is held when the i_init and i_clear kernel services are called.

• Check the return values of the tstop, w_init, and w_clear timer and watchdog kernel
services, and take appropriate action (such as releasing locks and retrying) if these
services were unable to perform the requested operations.

• Ensure that if the driver has a dddump entry point, it makes no assumptions about the
state of the device hardware when it is called.

6-1Device Configuration Methods

Chapter 6. Device Configuration Methods

The dynamically loadable and unloadable aspect of the AIX Version 4.1 kernel requires that
all device drivers have configuration methods to support the ability to load and unload them
from the kernel. Configuration methods are sets of executables including a Define method,
a Configure method, a Change method, an Unconfigure method, and an Undefine method.
A Configure method is part of a set of configuration methods. Be careful to not confuse
these terms. AIX Version 4.1 also has provisions for a Stop method and a Start method but
these are seldom needed in the case of device drivers.

The System Device Hierarchy figure shows how relationships of devices to other devices on
the system can be seen as a tree of parent-child relationships. Parents detect their children
and then execute the appropriate configuration methods to introduce them to the system.
These methods will then load the appropriate device drivers and make the device available
for use.

The system’s Configuration Manager (started by the cfgmgr command) actually oversees
the entire configuration process by starting configuration methods, interpreting errors, and
managing the configuration of child devices.

System

System

I/O Planar

Bus

SCSI Token-Ring
Serial I/O Graphics

CD-ROM Hard Disk Tape Keyboard Mouse Tablet

Planar

Adapter Adapter Adapter

System Device Hierarchy

6-2 AIX Version 4.1 Writing a Device Driver

Device States
The system considers each device to be in one of several different states indicating the
device’s availability for use. The state of each device is stored in a database by the Object
Data Manager (ODM). There are several databases used to maintain the configuration data
for each device. The following is a list of states and their meanings to the system.

Undefined The device is not known to the system. There is no information about the
device in the ODM database

Defined The device is known to the system but currently does not have its device
driver loaded and is therefore not available for use

Available The device has its device driver loaded and is available for use

The various configuration methods will take a device from one state to another by detecting
any attached devices, manipulating the databases, and loading or unloading the appropriate
device driver. The names of a device’s configuration methods are stored in the device’s
entry in the Predefined Device (PdDv) database.

The Device States and Methods figure shows how various methods change the state of a
device.

Undefined
 State

Defined
 State

Available
 State

Configure
Method

Undefine
Method

Unconfigure
Method

Define
Method

Device States and Methods

6-3Device Configuration Methods

ODM Configuration Databases
The databases used by the ODM (Object Data Manager) include the Predefined Devices
(PdDv), Predefined Attributes (PdAt), Predefined Connections (PdCn), Customized Devices
(CuDv), Customized Attributes (CuAt), Customized Dependencies (CuDep), Customized
Device Drivers (CuDvDr), Customized Vital Product Data (CuVPD), and Config Rules
(Config_Rules) object classes. The actual database files exist in the directories
/etc/objrepos and /usr/lib/objrepos. The databases keep track of the devices defined to
the system, the relationships among devices, and the various attribute values used to
configure each device. The purpose of the various object classes is explained in the
following list:

PdDv Contains definitions for the entire set of devices that could be
supported by the system.

PdAt Contains attributes for the devices listed in PdDv.

PdCn Contains the supported connection points for parent-child devices.

CuDv Contains definitions for devices that have been introduced to the system
and may contain devices that are in either the DEFINED or AVAILABLE
state.

CuAt Contains the attributes required by the devices in CuDv.

CuDep Contains devices that are dependent on other devices.

CuDvDr Contains the major numbers of drivers loaded into the kernel as well as the
device number (major, minor) of each device.

CuVPD Contains the Vital Product Data of a device if it contains such data.

Config_Rules Contains a list and order of config methods to be run.

Several commands and system calls exist to support manipulation of the various
configuration databases. The commands include odmget, odmadd, odmdelete,
odmchange, and odmshow.

The odmshow command is useful for displaying the format of the various databases.

The odmget command is useful for extracting current entries in each of the databases.
These examples can then be used as templates for new entries that can be added with the
odmadd command. When writing a new device driver package, new entries only need to be
written for the PdDv, PdAt, PdCn, and possibly Config_Rules object classes.

The odmadd and odmdelete commands are useful for adding or deleting any new entries.

The system calls available for manipulating the configuration databases, usually called from
within configuration methods, include odm_initialize, odm_add_obj, odm_rm_obj,
odm_change_obj, odm_get_first, odm_get_obj, and odm_terminate. The various
system calls will typically be used by the various configuration methods to view, add,
change, and remove objects from the configuration databases.

6-4 AIX Version 4.1 Writing a Device Driver

Define Methods
Devices are first introduced to the system via a define method. A generic define method
(/usr/lib/methods/define) on the system can be used for many devices. This method is
designed to cover a wide variety of devices, but if a specific device requires special
processing, a new specific define method will have to be written for it.

In general, a define method will take as parameters, the name of the new device, its class,
subclass, and type, the name of its parent, and the new device’s connection point. The
define method will then verify these parameters and create a new entry in the CuDv object
class for the device using the odm_add_obj subroutine. At this point, the device is only
marked as Defined and the driver has not yet been loaded. A device’s define method is
typically invoked from the command line via the mkdev command. This command will
actually look up the name of the define method to run from the PdDv database for the
device being defined. The following is a description of the various flags for the generic
define method:

–c class Designates the class of the device.

–s subclass Designates the subclass of the device.

–t type Designates the type of the device.

–p parent Designates the logical name of the device’s parent.

–w connection Designates the connection point.

–l name Designates the new logical name of the device.

–u Indicates that the –l flag is not allowed (the define method will generate a
new logical name based on the device’s prefix stored in PdDv).

–n Indicates that the device has no parent or parent connection.

–o Indicates that only one of these types of devices can exist and that the –l
flag is not allowed.

–k Indicates that the device can only be defined if one does not already exist
at the specified connection point.

For a more detailed discussion on writing a define method, see “Device Configuration
Subsystem” in AIX Version 4.1 Kernel Extensions and Device Support Programming
Concepts.

Configure Methods
Config methods are designed to resolve a device’s attributes, build device-dependent
structures, find any child devices, and load a device’s driver. A device may have attributes
that could conflict with other devices that already exist on the system. For example, an
adapter’s bus-memory address cannot conflict or overlap the address of another adapter. It
is the duty of the configure method to ensure that this does not occur. The busresolve
routine (discussed in “Adapter Device Attributes and busresolve,” on page 6-7), is a
system call provided to ensure that bus attributes do not conflict.

A device dependent structure (DDS) is used by the configure method to pass vital
information down to the device driver. This structure may contain information such as the
bus slot location, DMA level, and interrupt level of an adapter, or various attributes needed
to customize operation of the device. The DDS is built by reading in information from the
various databases. For example, the slot number can be read from the connwhere value
stored in CuDv. Various attributes required by the device driver can also be read from either
PdAt or CuAt using the getattr subroutine. Because CuAt contains non-default attribute
values, the getattr subroutine queries it first before retrieving values from PdAt.

6-5Device Configuration Methods

The DDS structure is typically passed in to the driver through the driver’s dd_config routine.
After using the loadext routine to load the driver, the configure method should build the
DDS structure and pass it to the driver using the sysconfig subroutine call and a command
of CFG_INIT. The following is an example:

sysconfig (SYS_CFGDD, &dds, sizeof(dds));

The sysconfig routine will call the driver’s dd_config routine with the CFG_INIT command
and pass in the DDS structure.

For more information on the sysconfig routine, see AIX Version 4.1 Technical Reference,
Volume 2: Base Operating System and Extensions. For more information on the loadext
subroutine, see AIX Version 4.1 Technical Reference, Volume 6: Kernel and Subsystems.

If the device can have child devices connected to it, the configure method must detect them
and run the child device’s define method in order for the child to be added to the CuDv
database. Once the define method has been successfully run, using the odm_run_method
subroutine, the logical name of the newly created child should be printed to stdout so that
the Configuration Manager can catch it and run the child’s configure method.

Once the configure method has successfully loaded and configured the device driver, it
should change the state of the device in the CuDv database to available using the
odm_change_obj subroutine.

For a detailed discussion of configure methods, see “Device Configuration Subsystem” in
AIX Version 4.1 Kernel Extensions and Device Support Programming Concepts.

Change Methods
Change methods are designed to modify a device’s attributes to values other than the
default. They can also alternately be designed to relocate a device to a different location or
parent device. A generic change method /usr/lib/methods/chgdevice is provided on the
system. A device’s default attribute values are stored in the Predefined Attribute (PdAt)
object class. The Customized Attribute (CuAt) object class is used to store values that are
different from the default.

A change method should first verify that the attributes being modified are being changed to
valid values. If the device is currently configured (available), it should be unconfigured by
using the odm_run_method subroutine to execute the unconfigure method. This is
required so that the device driver can later be initialized again with the new attribute values.

If an attribute is being changed to a value other than the default as listed in PdAt, a new
attribute value should be added in CuAt. If a CuAt value already exists, it can be changed to
the new value with the odm_change_obj subroutine.

If an attribute is being changed back to the default PdAt value, the CuAt entry should be
deleted.

Once all the attributes have been changed, the device driver’s configure method should be
executed using the odm_run_method subroutine so that the device driver can be reloaded
with the new attribute values. The following is a list of the various parameters for the
generic change method:

–l name Designates the logical name of the device.

–p parent Designates the logical name of the device’s new parent.

–w connection Designates the device’s new connection point.

–a attr=val, attr=val
Designates the attribute names and new values.

For a more detailed discussion on writing a change method, see “Device Configuration
Subsystem” in AIX Version 4.1 Kernel Extensions and Device Support Programming
Concepts.

6-6 AIX Version 4.1 Writing a Device Driver

Unconfigure Methods
Unconfigure methods merely undo what a configure method has done. As in the case of the
define and change methods, the generic unconfigure method
(/usr/lib/methods/ucfgdevice) that has been provided should be satisfactory for many
devices. However, if a specific device requires additional functionality, a new unconfigure
method will have to be written.

In general, an unconfigure method should first verify that the device is in the correct state
(AVAILABLE). It should then verify that any children of the device are also in the correct
state (DEFINED). The unconfigure method should then call sysconfig with a command of
CFG_TERM to instruct the device driver to terminate (the sysconfig routine will call the
driver’s dd_config routine with the CFG_TERM command). Once the device driver has
successfully terminated, the driver can be removed with the loadext system call. As a final
step, the unconfigure method should change the state of the device in CuDv from
AVAILABLE to DEFINED. The following is a list of the various parameters for the generic
unconfigure method:

–l <name> String that designates the logical name of the device

For more information on the sysconfig system call, please refer to the book
AIX Version 4.1 Technical Reference, Volume 2: Base Operating System and Extensions.
For reference information on the loadext subroutine, see AIX Version 4.1 Technical
Reference, Volume 6: Kernel and Subsystems. For a more detailed discussion on writing an
unconfigure method, see “Device Configuration Subsystem” in AIX Version 4.1 Kernel
Extensions and Device Support Programming Concepts.

Undefine Methods
Undefine methods will take a device from the defined state to the undefined state by
removing its entry from the CuDv database. In this state, all previous information about
where the device was connected and what logical name was attached to it is removed. Any
customized attributes for the device are also lost. As in the case of the change, define, and
unconfigure methods, a generic define method (/usr/lib/methods/undefine), which should
be satisfactory for many devices, has been provided.

In general, an undefine method should first verify that the device is in the correct state
(DEFINED). It should then verify that child devices, if any, have been undefined (they don’t
exist in the CuDv database). The undefine method should then make sure that this device is
not dependent on any other device, by checking the CuDep database, and removing all of
its customized attributes from CuAt. The final step the undefine method should perform is to
release the device number (devno) and remove any CuDvDr and CuDv entries. The
following is a list of the various parameters for the generic undefine method:

–l <name> String that designates the logical name of the device

For a more detailed discussion on writing an undefine method, see “Device Configuration
Subsystem” in AIX Version 4.1 Kernel Extensions and Device Support Programming
Concepts.

6-7Device Configuration Methods

Configuring Devices with No Parent
The configuration hierarchy is designed so that many devices are actually children of other
parent devices. These child devices are automatically detected and defined by their parent
configure methods. There are cases, however, of devices that are not connected to any
parent devices. One example is the system node, sys0, which is a device that has no
parent but is instead the parent and grandparent to most of the devices on the system.
Many third-party vendor devices fall into this category of parent-less devices. In this case,
these devices cannot rely on a parent because they are new to the system and the current
OS either cannot detect them or will not recognize them.

When devices cannot rely on a parent to run their define method, they must use the
Config_Rules database to initiate execution of their define method. Very often this define
method will also have to detect the device being defined, which requires writing and using a
new custom define method in place of the generic method. This is necessary because no
parent exists or no parent has been written to perform the normal detection. The following is
an example of a Config_Rules entry:

 phase= 2

 seq = 50

 boot_mask = 0

 rule = ”/usr/lib/methods/defdevice”

In the previous example, the define method /usr/lib/methods/defdevice, would be
run during phase 2 with a sequence number of 50. Phase 1 is used to configure basic
essential devices needed to boot the system. Phase 2 is used to boot most base system
devices. Note that a phase of 3 indicates methods to be run in phase 2 service mode. A
high sequence number was chosen in case the device depended on other devices to be
available. A high value causes the method to be run late in the configuration process. A
nonzero boot mask, as defined in /usr/include/sys/cfgdb.h, indicates the type of boot (for
example, disk, diskette, tape, or network) to which the method applies.

For more information on the Config_Rules Object Class, see AIX Version 4.1 Technical
Reference, Volume 6: Kernel and Subsystems.

Adapter Device Attributes and busresolve
When configuring a device, care must be taken not to configure a device in a manner that
conflicts with an existing device on the system. For example, a SCSI device cannot be
configured with the same ID and LUN (logical unit number) as another device. In the case
of adapters, not only must their connection locations (slot numbers) be unique, but several
of their attributes must also be unique. For example, one adapter’s allocated bus memory
range must not overlap another’s.

The busresolve routine is available to detect and resolve any possible conflicts with bus
resource attributes. It is usually called from within an adapter’s configure method. This
routine needs to be called only if the configure method is being executed at run time. The
bus configure method calls busresolve at boot time to properly resolve the attributes for all
adapter devices.

busresolve will scan the CuAt and PdAt databases for all attributes with types that
designate them as bus resource attributes. The following is a list of different bus attribute
types:

Type Description

O Indicates an address and width for bus I/O.

M Indicates an address and range for DMA transfers.

B Indicates an address and range for non-DMA transfers.

6-8 AIX Version 4.1 Writing a Device Driver

A Indicates a DMA arbitration level.

I Indicates a sharable interrupt level.

N Indicates a non-sharable interrupt level.

P Indicates an interrupt priority class.

W Specifies bus I/O and memory widths if not already specified by the
address attribute.

G Indicates a bus resource that must be assigned as part of a group.

S Indicates a bus resource that must be shared with another adapter.

busresolve will adjust the attribute values within each attribute’s specified allowable
ranges. busresolve never adjusts the attributes of an AVAILABLE device. It only adjusts
the attributes of DEFINED devices. This implies that devices configured first will have a
greater probability of obtaining their default attribute values. When a configure method calls
busresolve during run time, it should pass in the device’s logical name as the logname
parameter. This ensures that busresolve will adjust attributes only for the specified
DEFINED device. Passing in NULL for logname causes busresolve to attempt resolution of
attribute values for all Defined devices. This is typically done by the bus configuration
manager at boot time and, therefore, does not need to be done by each individual adapter
configure method. The CuAt and PdAt databases are automatically updated by busresolve
once all attributes have been resolved.

Configuration of Devices on PCI and ISA Bus Systems
The configuration process for adapters attached to systems that contain PCI and ISA buses
remains similar to the process for systems with a Micro Channel bus. The same ODM and
configuration methods scheme is used with one additional step required from the system
administrator when configuring adapters attached to the ISA bus. The PCI and ISA bus
configuration also differs from the Micro Channel bus in that the ISA is actually treated as a
child of the PCI bus even though the ISA bus has adapter children of its own. During
configuration of the PCI bus, the ISA bus is detected and then a separate configure method
is called for the ISA bus.

Because ISA adapters do not implement the notion of POS registers as in the case of Micro
Channel adapters, an additional step must be performed by the system administrator. In the
case of PCI and Micro Channel adapters, through the machine device driver, the bus
configure method can detect the type of adapter attached and then dynamically set certain
parameters such as the interrupt level or DMA arbitration level. In the case of ISA
adapters, these types of parameters are set via jumpers or DIP switches that physically
reside on the adapter. The system administrator installing the card must first set these
parameters to avoid conflicts with other adapters before physically installing the adapter into
the system. Since these settings cannot be detected on the ISA bus, the system
administrator must manually add the CuDv (Customized Device) and CuAt (Customized
Attribute) entries for the adapter. The CuDv entries should reflect that the adapter is a child
of the ISA bus and its location code must correspond to the correct slot in which it resides.
The CuAt entries must also reflect the actual settings on the adapter itself and must also
not conflict with other adapters on the ISA bus. The generic field of the CuAt and PdAt
entries should also contain a second character U to indicate that the particular attribute
value is user modified. Newer ISA adapters that provide dynamic detection and modification
of card settings are currently not supported. ISA adapters that require dynamic modification
of settings on the card will require the device driver to perform this function, rather than the
configuration methods.

Once the ISA specific requirements have been met, the configuration process of the ISA
and PCI busses is identical to that of the Micro Channel bus as previously discussed. The
busresolve routine is called by the corresponding bus configure method during boot so that
adapter configure methods are not required to call it. The only time an adapter configure

6-9Device Configuration Methods

method should call busresolve is during a runtime configure when the current attributes of
the adapter being configured must be validated against values already resolved during boot.

Configuration of Devices on PCMCIA Systems
Although configuration of adapters attached to a PCMCIA bus is, in general, similar to that
of MCA systems, there are specific differences that must be addressed. The main
difference lies in the interdependency of an adapter’s configuration methods, device driver
ddconfig routine, and the card service kernel extension. These pieces are all necessary to
successfully integrate the AIX Version 4.1 configuration subsystem with the PCMCIA
interface.

The PCMCIA bus is viewed as a child of the ISA bus. Therefore, when the ISA bus is
configured, via cfgbus_isa, the PCMCIA bus is detected and its configure method,
cfgbus_pcmcia, is executed. The logical names of the ISA and PCMCIA busses are bus1
and bus2, respectively. The PCMCIA bus will have a location code of 00–20 (for bus2).
Various steps are completed during configuration of the PCMCIA bus. These include:

• Adding the correct bus_id attribute into the PdAt database
• Loading the card and socket services extensions into the kernel
• Defining children of the PCMCIA bus and printing their logical names to stdout so that

they can be configured

Each card on the PCMCIA bus will have a location code of 00–XY where X is usually 2 (for
bus2) and Y is the slot number.

Insertion and removal of PCMCIA cards are automatically detected. The acfgd command
automatically configures or unconfigures PCMCIA devices. The acfgd command can
execute additional scripts before and after it executes the configuration or unconfiguration
method. Although device drivers are aware of card insertion or removal, applications are not
aware of them. If an application does not handle error cases on I/O system calls, the
application can hang after card removal.

One additional attribute is also required for PCMCIA devices. To aid in detection of devices
plugged into the PCMCIA bus, all device PdAt entries should have an attribute named
”pcmcia_devid”. This attribute is similar to the devid field in the PdDv entry but differs
in that this attribute’s value specifies which tuple of the card to use and what value or values
are allowed. The following is an example PdAt stanza:

 uniquetype = <class/subclass/type>

 attribute = ”pcmcia_devid”

 deflt = ”ttoo,value1:ttoo,value1,value2,value3”

 values = ””

 width = ””

 type = ”R”

 generic = ”D”

 rep = ”s”

 nls_index = ””

The deflt string (limited to 255 characters) contains the values that are to matched with
the tuple values read from the PCMCIA device. The following describes the syntax for the
deflt field:

 tt Tuple code (in hexadecimal) that identifies the tuple to be used for the
comparison

oo Offset (in hexadecimal) into the tuple from which to begin the comparison

value1,value2,...
The value(s) that are to be matched

Note: The example contains a : (colon), which indicates that there are 2 sets to be
matched. Both sets must match for a positive identification. If only 1 set is required,
the : (colon) and second set of values would not be needed. Since most PCMCIA

6-10 AIX Version 4.1 Writing a Device Driver

devices contain a Manufacturing ID tuple, this is the recommended tuple to use for
the match.

The card services kernel extension can be accessed by device drivers through the
CardServices kernel service. An extended system call, svcCardServices, is provided for
use by configuration methods. The CardServices kernel service is used to perform several
functions on a PCMCIA device such as detecting the device, reading its tuples, and
registering the device. The following is a list of supported card service functions:

• AccessConfigurationRegister
• DeregisterClient
• GetCardServicesInfo
• GetClientInfo
• GetConfigurationInfo
• GetEventMask
• GetFirstClient
• GetNextClient
• GetFirstTuple
• GetNextTuple
• GetStatus
• GetTupleData
• MapLogSocket
• MapPhySocket
• MapLogWindow
• MapPhyWindow
• MapMemPage
• ModifyConfiguration
• ModifyWindow
• RegisterClient
• ReleaseConfiguration
• ReleaseExclusive
• RequestExclusive
• ReleaseIO
• RequestIO
• ReleaseIRQ
• ReleaseSocketMask
• ReleaseWindow
• RequestConfiguration
• RequestIRQ
• RequestSocketMask
• RequestWindow
• ResetCard
• SetEventMask
• ValidateCIS
• VendorSpecific

The following is a list of functions that are defined in the PCMCIA Card Services Interface
Specification Release 2.10, but are not supported:

• OpenMemory
• ReadMemory
• WriteMemory
• CopyMemory
• RegisterEraseQueue
• CheckEraseQueue
• DeregisterEraseQueue
• CloseMemory
• GetFirstRegion
• GetNextRegion
• GetFirstPartition
• GetNextPartition

6-11Device Configuration Methods

• ReturnSSEntry
• RegisterMTD
• RegisterTimer
• SetRegion
• ReplaceSocketServices
• AdjustResourceInfo

To access a PCMCIA socket through card services, a device driver should know the logical
socket number. The configure method for a PCMCIA device should pass it to a device
driver by the MapPhySocket function through svcCardServices. MapPhySocket needs the
physical socket number and the physical adapter number. The physical socket number is
connection code –1. The physical adapter number is the device number for the
PCMCIA bus (bus2).

Card service function codes are prefixed by “CS,” for example, CSRegisterClient. Event
codes are prefixed by “CSE_,” for example, CSE_CARD_INSERTION. Error codes are
prefixed by “CSR_,” for example, CSR_SUCCESS. These function codes are defined in
sys.pcmciacs.h.

PCMCIA device drivers also require a callback routine whose address is passed to the
CardServices routine when needed. This callback routine is called by the card services
kernel extension as notification to the driver when certain events occur. Each PCMCIA
device driver must process REGISTRATION_COMPLETE, CARD_INSERTION, and
CARD_REMOVAL events. For further explanation on these events, see the PCMCIA Card
Services Interface Specification Release 2.10.

During initialization of the driver in the ddconfig routine, the CSRegisterClient function
should be called to register the device. The ddconfig routine should then sleep. When the
card services extension has finished registration of the device, it will call the callback routine
with a REGISTRATION_COMPLETE event notification. The driver can then be awakened.
The following figure shows the interaction between the ddconfig routine and card services
initialization. In a normal case, the CARD_INSERTION event comes before the
REGISTRATION_COMPLETE event, and a driver calls the RequestXXX functions in the
callback routine. After the REGISTRATION_COMPLETE event is called and the configure
method’s thread is awakened, the driver can initialize hardware in the PCMCIA card, if the
CARD_INSERTION event and the RequestXXX function were called successfully.

switch (function) {
 case CSRegisterClient:
 enqueue (registration);
 return;
 .
 .
 .
}
event_handler()
 callback with
 REGISTRATION_COMPLETE
 .
 .
 .

Device Driver and Card Services Interaction during Initialization

ddconfig()
 CardServices(CSRegisterClient, ...,
 callback,...);
 e_sleep();

 callback ()
 switch (event) {
 case REGISTRATION_COMPLETE:
 e_wakeup():
 return;
 case CARD_INSERTION:
 .
 .
 .
 case CARD_REMOVAL:
 .
 .
 .
 }

Device Driver Card Services

6-12 AIX Version 4.1 Writing a Device Driver

When a card is inserted or removed from a socket, an interrupt is generated that causes the
card services extension to call the callback routine with a CARD_INSERTION or
CARD_REMOVAL event. The driver then takes the appropriate action. Most drivers call the
RequestXXX functions on CARD_INSERTION and the ReleaseXXX functions on
CARD_REMOVAL. After these events are processed by all PCMCIA device drivers, the
acfgd command configures or unconfigures devices. The following figure shows the
interaction between the Card Services kernel extension and the device driver when a
PCMCIA card is removed.

switch (function) {
 .
 .
}
event_handler()
 callback with CARD_REMOVAL
 .
 .
 .
interrupt_handler()
 enqueue(card_detect_change);

Device Driver and Card Services Interaction during Card Removal

ddconfig()
 .
 .
callback ()
 switch (event) {
 case REGISTRATION_COMPLETE:
 .
 .
 case CARD_INSERTION:
 .
 .
 .
 case CARD_REMOVAL:
 CardServices(ReleaseConfiguration);
 CardServices(ReleaseIRQ);
 CardServices(ReleaseIO);
 }

Device Driver Card Services

Processing Pending or Wrong Interrupts after PCMCIA Card Removal
Wrong I/O interrupts can happen when a card is removed. It can be sent to a device driver
faster than the CARD_REMOVAL event, because CARD_REMOVAL is sent by a kernel
process. A device driver should check to see if the card really exists at the top of the I/O
interrupt routine. Also, an interrupt can be pending before a card is removed. A device
driver must handle these situations. A data storage exception is likely to happen because
the pointer address indexed with the I/O register values cannot be translated to a real
address.

Critical Section on Configuring/Unconfiguring a PCMCIA Card
In AIX, multiple threads can call card services. When configuring or unconfiguring a
PCMCIA card, system hangs can occur if the other threads try to access the
configuring/unconfiguring card.

A thread that configures or unconfigures a PCMCIA card should prevent other threads from
accessing the card by holding the lock in card services.

After the critical section ends, the thread that has the lock must release the lock. It prevents
the event handler in card services, auto–config daemon, configure methods for PCMCIA
devices, and PCMCIA GUI from working normally. One of the VendorSpecific functions,
CSaixLockSocket, is prepared. This function is defined in sys/pcmciacsAix.h.

6-13Device Configuration Methods

Creating and Releasing Major and Minor Numbers for a
Special File

Devices are generally identified in the kernel through major and minor numbers. Usually, a

major number identifies a particular device driver. Minor numbers identify specific device
instances known to the device driver. However, a device driver can be assigned multiple
major numbers. Also, minor numbers can be used to identify different modes of operation
for a specific device as well as different device instances.

Programs do not need to understand these major and minor numbers to access devices. A

program accesses a device by opening the corresponding device special file located in the
/dev directory. The special file i-node contains a particular major and minor number
combination specified when the special file was created. This relationship remains constant
until the special file is deleted.

The major number uniquely identifies the relevant device driver and thus is used to index

into the device switch table maintained by the kernel. The interpretation of the minor
number is entirely dependent on the particular device driver. Most frequently, the minor
number is used to select one of many subdevices supported by the device driver. The minor
device number usually serves as an index into a device driver-maintained array of
information about each of many devices or subdevices supported by the device driver.

Creating Major Numbers

The first time a device is configured, its Configure method is responsible for determining the

major and minor numbers for the device and for creating the device’s special files. When
subsequently configured, the device Configure method must ensure that the same major
and minor numbers are used to describe the device to the device driver. This consistency
guarantees that the previously created special file allows access to the same device as it
did previously.

Major numbers are allocated to device driver instances. When the genmajor device

configuration subroutine is called with a particular device driver instance name passed as a
parameter, it performs the following actions:

• Return the major number corresponding to the device driver instance name, if it has
already been allocated.

OR

• Assign the next available major number to the specified device driver instance and return
the newly assigned number.

Each time a device is configured, its Configure method should just call the genmajor

subroutine with the device’s device driver instance name. If the device has not been
assigned a major number, the genmajor subroutine assigns one and returns it. Otherwise it
returns the previously assigned number.

A device’s device driver instance name is obtained from the Device Driver Instance

descriptor of the device CuDv object. For most devices, the device driver instance name is
simply the device driver name. If the device drive uses multiple major numbers, a different
device driver instance name must be assigned for each major number.

6-14 AIX Version 4.1 Writing a Device Driver

Creating Minor Numbers

The allocation of device minor numbers is highly device-specific. A device Configure

method can determine minor number assignments on its own or use the genminor and
getminor device configuration subroutines. When the genminor subroutine is used to
allocate minor numbers for a device, information is stored in the configuration database.
This database keeps track of what minor numbers have been assigned for a particular
major number, and the minor numbers being assigned to the device. The getminor
subroutine can be used to obtain a list of minor numbers that have been assigned to a
device.

Releasing Major and Minor Numbers

When a device is unconfigured, its special files and major and minor number assignments

typically remain intact. The Unconfigure method does not deallocate the assignments or
remove special files, thus eliminating the need to reassign new values and rebuild special
files when the device is once again configured.

The major and minor numbers are to be unassigned when the device is undefined. The

Undefine method will also delete the device special files. If the device minor numbers were
allocated with the genminor subroutine, the reldevno device configuration subroutine can
be used to both delete the major and minor number assignments and to delete the special
files.

7-1Block Device Drivers

Chapter 7. Block Device Drivers

A block device driver interacts with a special facility in the kernel called the buffer cache.
Special entry points in the driver are provided because of this interaction. A block device
driver may also support character type interaction through read and write operations
referred to as raw I/O. The principal characteristic of block devices is to perform I/O
operations using system facilities such as buffer cache management and paging.

Data read from character devices is not stored in a cache for subsequent reading from
system buffers. For block device drivers, data is stored in a cache. Block devices interact
with the system to keep the cache containing information that a process (or multiple
processes) can read from at any time. If the information is not in the cache, the system (not
the user) requests the data from the block device driver.

Like all devices, the interaction with block devices is through shared memory. In addition,
there are routines to indicate when data in the shared memory (called buf structures) has
completed I/O processing.

The following sections cover the entry points responsible for the movement of data to and
from block devices. This includes control information, the shared memory facilities, the
mechanisms for programs to share the information, and the use of the kernel cache.

Finally, it may be necessary to talk to the device directly without interacting with the system
buffer cache. This topic is presented in “Character Access to Block Device Drivers” on page
7-6.

Block I/O Device Driver Entry Points
The device switch table contains the entry point addresses of the interface routines for each
device driver in the system, just as it does for the character device drivers. The following
Entry Points for the Block Device Driver figure shows the entry points for a block device
driver.

Like the character device driver, the block device driver must supply a config routine for
configuration support as well as an open and a close routine. The open routine is called
each time the device is opened and the close routine is called only on the final close of the
device.

Instead of having separate read and write routines, like character device drivers, each
block device driver has a strategy routine. This routine is called with a pointer to a buffer
header, known as the buf structure, which contains the I/O request parameter.

7-2 AIX Version 4.1 Writing a Device Driver

The strategy routine handles requests as buffers to be written or read from the device.

dddump: Used if this block
device is a device to which
system data can be dumped.

ddclose: Called on the
final close of a device.

ddopen: Called on
each open of a device.

ddconfig: Called when
a device is configured.

config open dumpclose read

ddread (optional): This
character–based request
is similar to ddwrite.

ddioctl: The
entry point for
device-specific
operations.

Not supported.
(nulldev)

ddstrategy: Block reads
and writes are done here.

ddwrite (optional): This character-based
request is converted into a block and sent
to the ddstrategy routine. System buffers
are not used. Buffers are allocated by the
device driver resulting in less system
overhead and better performance.

Entry Points for a Block Device Driver

write strategy mpx revoke
select,
poll ioctl

ddconfig Entry Point
The configuration routine of a block device driver creates an entry in the device switch table
for the block device driver. The device may support raw access. Raw access is character
access to a block device. In this case, the driver’s configure method must have created /dev
special file entries for use in raw access. These special files retain the same major and
minor numbers as their corresponding block device special files, but they have the letter r as
a prefix, and the special files are created as character rather than as block.

For example, a block device named /dev/hdisk0 that supports raw access also has a
/dev/rhdisk0 special file. The system calls the read and write routines of the raw device if
/dev/rhdisk0 is opened. Other UNIX systems may not allocate the same major and minor
numbers for both character and block devices.

7-3Block Device Drivers

ddopen and ddclose Entry Points
The AIX operating system supports only a few block devices in normal installation. These
devices, such as hard disks and CD-ROM, are capable of random access and are opened
by system services such as the buffer cache and paging subsystem. They are not to be
opened directly by user space applications during normal system operations, but may be
opened during maintenance by applications such as fsck.

The ddopen routine verifies that the device is a valid device and that it is online and
available. It also performs any setup required by the driver, such as pinning of code and
allocation of data structures.

Most of the block devices are attached to the SCSI adapter, and open the SCSI adapter
device driver to communicate with the device. For more information on the SCSI subsystem,
see the chapter on small computer system interface (SCSI) subsystem in AIX Version 4.1
Kernel Extensions and Device Support Programming Concepts and the chapter on SCSI
device drivers in this book.

The device performs ddclose processing to release the resource. If the device is attached
to the SCSI bus, refer to the AIX Version 4.1 Kernel Extensions and Device Support
Programming Concepts book and the chapter on SCSI device drivers in this book for
details.

ddstrategy Entry Point
The I/O requests to the physical device are accomplished through the strategy routine. The
strategy routine provides a “strategy” for mapping I/O requests to the device so that it
minimizes requests to the device and maximizes data transfer. When the strategy routine
(ddstrategy device driver entry point) is called, a pointer to a buffer header or a chain of
buffer headers specifies the request for device I/O. The strategy entry point is called in a
user process context when the buffer cache does not contain the buffer requested by the
user. The strategy routine, however, does not know about the user process.

The buffer header contains the following information:

• The major and the minor numbers of the device

• The description of the memory buffer to be used for the data transfer

• The direction of the transfer

• The transfer count

• The block number on the device for which the transfer is targeted

• The operation flag

The strategy routine returns to the caller as soon as the buffer headers are queued to the
appropriate device queue. Note that the strategy routine provides no return code to the
caller and never waits for I/O completion before returning. This means that all requests are
assumed valid in terms of parameters and that the request is asynchronous. Normal errors,
such as out-of-range blocks, are caught but not returned directly as a return code.

The execution of the request completes some time later. The buffer structure contains fields
for reporting the completion of the request.

A header contains all the information required to perform block I/O. The buf structure is
shown in the buf Structure figure. It is the primary interface to the bottom half of block
device drivers.

7-4 AIX Version 4.1 Writing a Device Driver

Chain of buf
structures in use

Chain of available
buf structures

Data area is kernel
address space.

busy ch

free chain

iodone

devno

block num

buffer addr

size

error

resid

work area

extension

buf Structure

flags

options

event
anchor

start

time

cross–
memory

descriptor

vnode

In AIX, the traditional strategy interface is extended as follows:

• The device driver strategy routine is called with a list of buf structures, chained using the
av_forw and av_back pointers. The last entry in this list has a NULL av_forw pointer.

• When the operation is completed and the driver calls the iodone kernel service, the
b_iodone function defined by the caller is scheduled to run as a software interrupt
handler.

The buf structure and its associated data page must be pinned before calling the strategy
routine. This is outlined in the /usr/include/sys/buf.h include file.

The buf structure contains the operation to be performed and status information to be
returned to the caller, and is more like a message exchanged between a requestor and a
service provider.

The caller is notified of I/O completion (or of an error associated with the request) by the
device driver’s call to the iodone kernel services. A residual count of the number of bytes
requested but not transferred by the operation is placed in the b_resid field of the buf
structure by the device driver before the I/O is marked as complete for the buffer header. If
all the requested bytes are transferred, this count is set to zero.

7-5Block Device Drivers

For more information on the specific fields of the buf structure, see “buf Structure” in
AIX Version 4.1 Technical Reference, Volume 5: Kernel and Subsystems.

Note: In AIX Version 4.1 a new flag, B_MPSAFE, has been added to the list of valid flags
for the b_flags field of the buf structure definition. This flag is to indicate whether or
not it is safe for the iodone processing to be performed on one processor or multiple
processors. The devstrat kernel service will actually mark the buf structure with the
B_MPSAFE_INITIAL flag once the B_MPSAFE flag has been sent. A device driver’s
strategy routine, however, does not have to be concerned with this flag, since it is
merely an instruction to the iodone system call about how to complete the
processing of the buf structure.

Reordering Block I/O Requests
Multiple I/O requests can also be presented to the strategy routine, where the additional
buffer headers can be chained to the first by using the av_forw pointers. While the device
strategy routine is free to rearrange the buffers on its device queue with respect to the
processing of single request, the ordering of the buffer headers provided in a chain to the
strategy routine cannot be modified. The strategy routine also determines if the block
number requested is valid for the device. In the case of a read-only operation, a block
number at the end-of-media is not considered as an error, but no data is transferred.

For a write operation, if the block number is at the end-of-media, it is considered an error,
the B_ERROR flag in the buf structure is set, and the b_error field contains the ENXIO
value.

Categorizing Requests to the Start I/O Routine
To maintain the state of the device and its I/O requests, the device driver typically allocates
a private data structure in the system memory associated with the device. The data
structure contains the device status along with the device error information and the device
queue pointers. Some device drivers maintain more than one queue of buffer headers. For
example, one queue for the requests that are waiting for I/O start and another queue for the
request that are currently in process.

For SCSI operations, the queueing process scans the pending queue for the requested
device so that the number of SCSI operations is minimized. The requests are grouped by
one of the following rules:

• Contiguous write operations

• Operations larger than maximum transfer size

• Operations requiring special processing

The coalesced (grouped) requests will be removed from the pending queue and placed in
the in_progress queue so that a single command can be built to satisfy the requests.
These requests are then queued and the routine to start I/O is called.

Starting Processing with the Start I/O Routine
The routine to start I/O checks to make sure that the device is not busy, and then scans the
request queues in an attempt to find an operation to start.

First, the command stack is checked to see if a command needs to be restarted. Then the
in_progress queue is checked to start any operations that have already been coalesced.
Finally, the pending queue is checked. If it is not empty, the coalesce routine is called to
group the operations into the in_progress queue.

When a request has been found and built, the adapter device driver is called by the strategy
routine to begin processing the operation. While the queues are being scanned and an
operation is in progress, the device busy flag is set. It is then reset if no request is found.

Once the I/O handling routine has completed an I/O transfer, it calls the iodone kernel
service that determines if the indicated operation has completed successfully or if it has
failed. If the operation is successful and complete, the next request is processed by the start

7-6 AIX Version 4.1 Writing a Device Driver

I/O routine. If the operation has failed, your general failure processing routine is called in an
attempt (such as retry) to clear the error.

dddump Entry Point
To support system dumps, a block device driver must supply the dddump entry point. It is
called by the devdump kernel service. See “Debugging Tools” on page 15-1 for more
information on system dumps. See “SCSI Device Drivers” on page 8-1 for more information
on providing system dump support on SCSI devices.

Character Access to Block Device Drivers
While a character device driver can only be accessed by a character special file, most block
device drivers provide both a block and a character special file. With this dual interface, a
user can access the device in either block or character mode.

Note that the block device driver must have a read and a write entry point as well as a
strategy entry point if it supports both character and block mode access. If it supports only
block mode, it only needs to support a strategy entry point.

The diskette or hard disk device drivers are examples of the dual nature of block device
drivers. The diskette is accessed by /dev/fd0 for block mode and by /dev/rfd0 for character
(raw) mode. The hard disk is accessed by /dev/hdisk0 for block mode and /dev/rhdisk0 for
character (raw) mode.

Raw I/O Processing
Raw I/O processing is a mechanism by which a block device driver has the ability to transfer
data without using the I/O buffer cache. The raw I/O request is converted into a block and
then sent to the device driver strategy entry point to be processed while the read and the
write routines are typically waiting for the I/O completion.

When your device driver is configured, it contains entries for both read and write (raw
access) and strategy (block access) routines. In addition, the configure method must set up
the /dev entries for both special files.

If there is no buffer cache and you make the request directly, a different buffering facility is
involved. You are providing a buffer passed in through the uio services. Therefore the read
and write entry points are talking to a user process and translating the requests into
strategy requests but still using buf structures. Because the buf structure contains a
header that contains a pointer to the data area, it can be mapped to point to a user data
area.

In fact, the user buffer can come out of the user data, text segments, shared memory
segments, or the system segment. The different areas are defined in the uio and iovec
structures.

The read and write routines of the raw device driver use the uphysio kernel service to map
the uio areas into buf structures used by the strategy routines. After filling in the buf
structure with data passed to it through the uio structure, the uphysio kernel service will
call the block device driver’s strategy routine. The number of buf headers sent is
determined by the buf_cnt parameter passed to the uphysio kernel service. The uphysio
kernel service returns only after all I/O has completed or after encountering an error. See
“uphysio Kernel Service” in AIX Version 4.1 Technical Reference, Volume 5: Kernel and
Subsystems for a more detailed discussion of this kernel service.

Note: Use care when accessing a block device through its character interface. Because
the buffer cache is bypassed, the driver must be sure that no data currently exists in
the kernel buffer cache. If another process did have data present in the cache, there
is a high probability of data becoming inconsistent with data obtained through the
character interface.

7-7Block Device Drivers

Block I/O Device Summary
A block I/O device contains a device name for its block device and its optional character
device. Block devices support strategy routines, and possibly support read and write
routines. The kernel cache speeds up access to data by allowing multiple processes to use
the same data and keeping data that is referenced often in the cache. However, the cache
is based on buffer sizes compatible with UNIX file system block sizes and is not efficient for
applications that can use larger block sizes. To improve performance, a block device driver
also provides raw or character access to block devices. More information is available in
AIX Version 4.1 Kernel Extensions and Device Support Programming Concepts.

7-8 AIX Version 4.1 Writing a Device Driver

8-1SCSI Device Drivers

Chapter 8. SCSI Device Drivers

The AIX Small Computer Systems Interface (SCSI) subsystem has two parts:

• SCSI Device Driver

• SCSI Adapter Device Driver

The SCSI adapter device driver is designed to shield you from having to communicate
directly with the system I/O hardware. This gives you the ability to successfully write a SCSI
device driver without having a detailed knowledge of the system hardware. You can look at
the SCSI subsystem as a two-tiered structure in which the adapter device driver is the
bottom or supporting layer. As a programmer, you need only worry about the upper layer.
This chapter only discusses writing a SCSI device driver, because the SCSI adapter device
driver is already provided in AIX.

The SCSI adapter device driver, or lower layer, is responsible only for the communications
to and from the SCSI bus, and any error logging and recovery. The upper layer is
responsible for all of the device-specific commands. The SCSI device driver should handle
all commands directed towards its specific device by building the necessary sequence of I/O
requests to the SCSI adapter device driver in order to properly communicate with the
device.

These I/O requests contain the SCSI commands that are needed by the SCSI device. One
important aspect to note is that the SCSI device driver cannot access any of the adapter
resources and should never try to pass the SCSI commands directly to the adapter, since it
has absolutely no knowledge of the meaning of those commands.

SCSI Device Driver Overview
The role of the SCSI device driver is to pass information between the operating system and
the SCSI adapter device driver by accepting I/O requests and passing these requests to the
SCSI adapter device driver. The device driver should accept either character or block I/O
requests, build the necessary SCSI commands, and then issue these commands to the
device through the SCSI adapter device driver.

The SCSI device driver should also process the various required reservations and releases
needed for the device. The device driver is notified through the iodone kernel service once
the adapter has completed the processing of the command. The device driver should then
notify its calling process that the request has completed processing through the iodone
kernel service.

SCSI Adapter Device Driver Overview
Unlike most other device drivers, the SCSI adapter device driver does not support the read
and write subroutines. It only supports the open, close, ioctl, config, and strategy
subroutines. Included with the open subroutine call is the openx subroutine that allows
SCSI adapter diagnostics.

A SCSI device driver does not need to access the SCSI diagnostic commands. Commands
received from the device driver through the strategy routine of the adapter are processed
from a queue. Once the command has completed, the device driver is notified through the
iodone kernel service.

8-2 AIX Version 4.1 Writing a Device Driver

SCSI Adapter/Device Interface
The AIX SCSI adapter device driver does not contain the ddread and ddwrite entry points,
but does contain the ddconfig, ddopen, ddclose, dddump, and ddioctl entry points.

Therefore, the adapter device driver’s entry in the kernel devsw table contains only those
entries plus an additional ddstrategy entry point. This ddstrategy routine is the path that
the SCSI device driver uses to pass commands to the device driver. Access to these entry
points is possible through the following kernel services:

• fp_open
• fp_close
• devdump
• fp_ioctl
• devstrat

The SCSI adapter is accessed by the device driver through the /dev/scsi# special files,
where # indicates ascending numbers 0,1, 2, and so on. The adapter is designed so that
multiple devices on the same adapter can be accessed at the same time.

For additional information on spanned and gathered write commands, see “Understanding
the Execution of Initiator I/O Requests” in AIX Version 4.1 Kernel Extensions and Device
Support Programming Concepts.

sc_buf Structure
The I/O requests made from the SCSI device driver to the SCSI adapter device driver are
completed throught the use of the sc_buf structure, which is defined in the
/usr/include/sys/scsi.h header file. This structure, which is similar to the buf structure in
other drivers, is passed between the two SCSI subsystem drivers through the strategy
routine. The following is a brief description of the fields contained in the sc_buf structure:

struct buf bufstruct
This structure is a copy of the standard buf structure used for the I/O
request that is defined in the /usr/include/sys/buf.h header file. Note that
the b_work field in the buf structure is reserved for use by the SCSI
adapter device driver.

struct buf *bp Contains a pointer to the original buffer structure used by the process
calling the SCSI device driver. It can be a pointer to a list of SCSI spanned
data transfer commands or it can contain a value of NULL. A NULL value
indicates that no list exists and all required information is contained in the
bufstruct field (see the preceding paragraph). A non-NULL value also
requires the resvd1 field of the sc_buf structure to be NULL.

uint resvd1 This field is usually set to NULL although it can contain a pointer to a uio
structure which is used in gathered writes.

uint resvd2 Reserved (should be set to zero).

uint resvd3 Reserved (should be set to zero).

uint resvd4 Reserved (should be set to zero).

uint timeout_value
Contains the amount of time, in seconds, to be used in waiting for the
completion of the command before it times out. A zero value indicates no
timeout should be used.

8-3SCSI Device Drivers

uchar status_validity
This field can contain the SC_SCSI_ERROR bit flag that indicates that the
scsi_status field return code is valid or the SC_ADAPTER_ERROR bit
flag which indicates that the general_card_status return code is valid. There
are three cases when considering the values of the return codes:

• If the sc_buf.bufstruct.b_flag field has the B_ERROR flag set,
then the status field contains a valid errno value. If the b_error field
has the value ENXIO, then the command needs to be restarted or the
SCSI device driver canceled the request. If the b_error field has the
value EIO, then the status_validity field indicates which status field,
scsi_status or general_card_status, contains the error.

If the status_validity field is zero, examine the
sc_buf.bufstruct.b_resid field for any possible error. Note that
b_resid can be nonzero even if no error occurred. Evaluate the
nonzero value carefully to ensure that it is a proper error value.

• If the sc_buf.bufstruct.b_flag field does not have the B_ERROR
flag set, then no error is being reported. However, you must still examine
the b_resid field to determine if an error has actually occurred. If an
error has occurred, it is up to the SCSI device driver to recover since
device queues are not stopped and future commands can still be sent to
the adapter and driver.

• If the sc_buf.bufstruct.b_flag field has the B_ERROR flag set,
then the device queue has been halted. To recover or continue after the
error, the sc_buf.flags field must have the SC_RESUME bit set in the
first sc_buf structure.

uchar scsi_status
This field is valid whenever the correct bit is set in the status_validity
field. The sc_buf.bufstruct.b_error field should also contain the
value EIO whenever the scsi_status field is valid. The various valid
values are shown and defined in the /usr/include/sys/scsi.h header file.

uchar general_card_status
This field is valid whenever the correct bit is set in the status_validity
field. The sc_buf.bufstruct.b_error field should also contain the
value EIO whenever the scsi_status field is valid. The various valid
values are shown and defined in the /usr/include/sys/scsi.h header file.

The general_card_status bit is set in the status_validity field
whenever the SCSI adapter device driver encounters an unrecoverable
error. Recovered errors are those that have been corrected and logged by
the adapter device driver. The SCSI adapter device driver logs both bus
and adapter-related errors.

If an error is detected after a command has reached a device, it is the
responsibility of the device driver to attempt recovery and log the error. Of
the values shown in /usr/include/sys/scsi.h, the device driver should
handle:

• SC_SCSI_BUS_FAULT
• SC_CMD_TIMEOUT
• SC_NO_DEVICE_RESPONSE

The SC_SCSI_BUS_FAULT error should be handled by the device driver
and not the adapter device driver since this can be caused by a protocol or
hardware failure.

8-4 AIX Version 4.1 Writing a Device Driver

uchar adap_q_status
This field is used to indicate that the adapter did not clear the device queue
on a failure. The adapter will set this field to SC_DID_NOT_CLEAR_Q to
indicate this condition. For example, this flag is returned if a check condition
occurs while a command is being queued to the device.

uchar lun This field should contain the LUN of the target device. Note that if the LUN
is greater than 7, this field should contain the LUN value and the lun field
in the scsi_cmd structure should be 0.

uint resvd7 Reserved (should be set to zero).

uchar q_tag_msg
This field is used when the SCSI device supports command tag queueing. It
should be set to 0 if the device does not support queueing. See the
/usr/include/sys/scsi.h file for a list and explanation of the valid values for
this field.

uchar flags This field contains various flags to instruct the adapter driver on how to
process the transfer request. See the /usr/include/sys/scsi.h file for a list
and explanation of the valid values for this field.

Adapter/Device Driver Intercommunication
In a typical request to the device driver, a call is first made to the device driver strategy
routine, which takes care of any necessary queueing. This strategy routine then calls the
device driver’s start routine, which fills in the sc_buf structure and calls the adapter device
driver’s strategy routine through the devstrat kernel service.

The adapter’s strategy routine validates all of the information contained in the sc_buf
structure and also performs any necessary queueing of the transaction request. If no
queueing is necessary, the adapter’s start subroutine is called.

When an interrupt occurs, the SCSI adapter interrupt routine fills in the
status_validity field and the appropriate scsi_status or general_card_status
field of the sc_buf structure. The bufstruct.b_resid field is also filled in with the value
of nontransferred bytes. The adapter’s interrupt routine then passes this newly filled in
sc_buf structure to the iodone kernel service which then signals the SCSI device driver’s
iodone subroutine. The adapter’s start routine is also called from the interrupt routine to
process any additional transactions on the queue.

The device driver’s iodone routine should then process all of the applicable fields in the
queued sc_buf structure for any errors and attempt error recovery if necessary. The device
driver should then dequeue the sc_buf structure and then pass a pointer to the structure
back to the iodone kernel service so that it can notify the originator of the request.

8-5SCSI Device Drivers

SCSI Adapter Device Driver Routines
This section describes the following routines:

• config
• open
• close
• openx
• strategy
• ioctl

config
The config routine performs all of the processing needed to configure, unconfigure, and
read Vital Product Data for the SCSI adapter. When this routine is called to configure an
adapter, it performs the required checks and building of data structures needed to prepare
the adapter for the processing of requests.

When asked to unconfigure or terminate an adapter, this routine deallocates any structures
defined for the adapter and marks the adapter as unconfigured. This routine can also be
called to return the Vital Product Data (VPD) for the adapter, which contains information that
is used to identify the serial number, change level, or part number of the adapter.

open
The open routine establishes a connection between a special file and a file descriptor. This
file descriptor is the link to the special file that is the access point to a device and is used by
all subsequent calls to perform I/O requests to the device. Interrupts are enabled and any
data structures needed by the adapter driver are also initialized.

close
The close routine marks the adapter as closed and disables all future interrupts, which
causes the driver to reject all future requests to this adapter.

openx
The openx routine allows a process with the proper authority to open the adapter in
diagnostic mode. If the adapter is already open in either normal or diagnostic mode, the
openx subroutine has a return value of –1. Improper authority results in an errno value of
EPERM,while an already open error results in an errno value of EACCES. If the adapter is
in diagnostic mode, only the close and ioctl routines are allowed. All other routines return a
value of –1 and an errno value of EACCES.

While in diagnostics mode, the adapter can run diagnostics, run wrap tests, and download
microcode. The openx routine is called with an ext parameter that contains the adapter
mode and the SC_DIAGNOSTIC value, both of which are defined in the sys/scsi.h header
file.

strategy
The strategy routine is the link between the device driver and the SCSI adapter device
driver for all normal I/O requests. Whenever the SCSI device driver receives a call, it builds
an sc_buf structure with the correct parameters and then passes it to this routine, which in
turn queues up the request if necessary. Each request on the pending queue is then
processed by building the necessary SCSI commands required to carry out the request.
When the command has completed, the SCSI device driver is notified through the iodone
kernel service.

8-6 AIX Version 4.1 Writing a Device Driver

ioctl
The ioctl routine allows various diagnostic and nondiagnostic adapter operations.
Operations include the following:

• IOCINFO
• SCIOSTART
• SCIOEVENT
• SCIOSTOP
• SCIOINQU
• SCIOSTUNIT
• SCIOTUR
• SCIOREAD
• SCIORESET
• SCIOHALT
• SCIODIAG
• SCIOTRAM
• SCIODNLD
• SCIOSTARTTGT
• SCIOSTOPTGT

SCSI Adapter ioctl Operations
This section describes the following ioctl operations:

• IOCINFO
• SCIOSTART
• SCIOSTOP
• SCIOINQU
• SCIOSTUNIT
• SCIOTUR
• SCIORESET
• SCIOHALT
• SCIODIAG
• SCIOTRAM
• SCIODNLD

IOCINFO
This operation allows a SCSI device driver to obtain important information about a SCSI
adapter, including the card’s SCSI ID and the maximum data transfer size in bytes. By
knowing the maximum data transfer size, a SCSI device driver can control several different
devices on several different adapters. This operation returns a devinfo structure as defined
in the sys/devinfo.h header file with the device type DD_BUS and subtype DS_SCSI. The
following is an example of a call to obtain the information:

rc = fp_ioctl(fp, IOCINFO, &infostruct, NULL);

where fp is a pointer to a file structure and infostruct is a devinfo structure. A non-zero rc
value indicates an error. Note that the devinfo structure is a union of several structures and
that scsi is the structure that applies to the adapter.

For example, the maximum transfer size value is contained in the variable
infostruct.un.scsi.max_transfer and the card ID is contained in
infostruct.un.scsi.card_scsi_id.

8-7SCSI Device Drivers

SCIOSTART
This operation opens a logical path to the SCSI device and causes the SCSI adapter device
driver to allocate and initialize all of the data areas needed for the SCSI device. The
SCIOSTOP operation should be issued when those data areas are no longer needed. This
operation should be issued before any nondiagnostic operation except for IOCINFO. The
following is a typical call:

rc = fp_ioctl(fp, SCIOSTART, idlun, NULL);

where fp is a pointer to a file structure and idlun is a type int value that contains the SCSI
and Logical Unit Number (LUN) ID values of the device to be started. The least significant
byte contains the LUN, the next least significant byte contains the SCSI ID, and the most
significant two bytes should be set to zero.

A nonzero return value indicates an error has occurred and all operations to this SCSI/LUN
pair should cease since the device is either already started or failed the start operation.
Possible errno values are EIO, EINVAL, or EACCES.

EIO The command could not complete due to a system error.
EINVAL Either the Logical Unit Number (LUN) ID or SCSI ID is invalid, or the

adapter is already open.
EACCES The adapter is not in normal mode.

SCIOSTOP
This operation closes a logical path to the SCSI device and causes the SCSI adapter device
driver to deallocate all data areas that were allocated by the SCIOSTART operation. This
operation should only be issued after a successful SCIOSTART operation to a device. The
following is a typical call:

rc = fp_ioctl(fp, SCIOSTOP, idlun, NULL);

where fp is a pointer to a file structure and idlun is a type int value that contains the SCSI
and LUN ID values of the device to be stopped. The least significant byte contains the LUN,
the next least significant byte contains the SCSI ID, and the upper two bytes should be set
to zero. A non-zero return value indicates an error has occurred. Possible errno values are
EIO and EINVAL.

EIO An unrecoverable system error has occurred.
EINVAL The adapter was not in open mode.

This operation requires SCIOSTART to be run first.

SCIOINQU
This operation issues an inquiry command to a SCSI device and is used to aid in SCSI
device configuration. The following is a typical call:

rc = ioctl(adapter, SCIOINQU, &inquiry_block);

where adapter is a file descriptor and inquiry_block is a sc_inquiry structure as defined in
the /usr/include/sys/scsi.h header file. The SCSI ID and LUN should be placed in the
sc_inquiry parameter block. The SC_ASYNC flag should not be set on the first call to this
operation and should only be set if a bus fault has occurred. Possible errno values are EIO,
EFAULT, EINVAL, EACCES, ENOMEM, ETIMEDOUT, ENODEV, and ENOCONNECT.

EIO A system error has occurred. Consider retrying the operation several times,
because another attempt may be successful.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

8-8 AIX Version 4.1 Writing a Device Driver

ETIMEDOUT The command has timed out. Consider retrying the operation several times,
because another attempt may be successful.

ENODEV The device is not responding. Possibly no LUNs exist on the present SCSI
ID.

ENOCONNECTA bus fault has occurred and the operation should be retried with the
SC_ASYNC flag set in the sc_inquiry structure. In the case of multiple
retries, this flag should be set only on the last retry.

This operation requires SCIOSTART to be run first.

SCIOSTUNIT
This operation issues a start unit command to a SCSI device and is used to aid in SCSI
device configuration. The following is a typical call:

rc = ioctl(adapter, SCIOSTUNIT, &start_block);

where adapter is a file descriptor and start_block is a sc_startunit structure as defined in
the /usr/include/sys/scsi.h header file. The SCSI ID and LUN should be placed in the
sc_startunit parameter block. The start_flag field designates the start option, which
when set to true, makes the device available for use. When this field is set to false, the
device is stopped.

The SC_ASYNC flag should not be set on the first call to this operation and should only be
set if a bus fault has occurred. The immed_flag field allows overlapping start operations to
several devices on the SCSI bus. When this field is set to false, status is returned only when
the operation has completed. When this field is set to true, status is returned as soon as the
device receives the command. The SCIOTUR operation can then be issued to check on
completion of the operation on a particular device.

Note that when the SCSI adapter is allowed to issue simultaneous start operations, it is
important that a delay of 10 seconds be allowed between successive SCIOSTUNIT
operations to devices sharing a common power supply since damage to the system or
devices can occur if this precaution is not followed. Possible error values are EIO, EFAULT,
EINVAL, EACCES, ENOMEM, ETIMEDOUT, ENODEV, and ENOCONNECT.

EIO A system error has occurred. Consider retrying the operation several times,
because another attempt may be successful.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Consider retrying the operation several times,
because another attempt may be successful.

ENODEV The device is not responding. Possibly no LUNs exist on the present SCSI
ID.

ENOCONNECTA bus fault has occurred. Try the operation again with the SC_ASYNC flag
set in the sc_inquiry structure. In the case of multiple retries, this flag
should be set only on the last retry.

This operation requires SCIOSTART to be run first.

8-9SCSI Device Drivers

SCIOTUR
This operation issues a SCSI Test Unit Ready command to an adapter and aids in SCSI
device configuration. The following is a typical call:

rc = ioctl(adapter, SCIOTUR, &ready_struct);

where adapter is a file descriptor and ready_struct is a sc_ready structure as defined in the
/usr/include/sys/scsi.h header file. The SCSI ID and LUN should be placed in the
sc_ready parameter block. The SC_ASYNC flag should not be set on the first call to this
operation and should only be set if a bus fault has occurred. The status of the device can be
determined by evaluating the two output fields: status_validity and scsi_status.
Possible errno values are EIO, EFAULT, EINVAL, EACCES, ENOMEM, ETIMEDOUT,
ENODEV, and ENOCONNECT.

EIO A system error has occurred. Consider retrying the operation several
(around three) times, because another attempt may be successful. If an
EIO error occurs and the status_validity field is set to
SC_SCSI_ERROR, then the scsi_status field has a valid value and
should be inspected.

If the status_validity field is zero and remains so on successive
retries, then an unrecoverable error has occurred with the device.

If the status_validity field is SC_SCSI_ERROR and the
scsi_status field contains a Check Condition status, then the SCIOTUR
operation should be retried after several seconds.

If after successive retries, the Check Condition status remains, the device
should be considered inoperable.

EFAULT A user process copy has failed.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Consider retrying the operation several times,
because another attempt may be successful.

ENODEV The device is not responding and possibly no LUNs exist on the present
SCSI ID.

ENOCONNECTA bus fault has occurred and the operation should be retried with the
SC_ASYNC flag set in the sc_inquiry structure. In the case of multiple
retries, this flag should be set only on the last retry.

This operation requires SCIOSTART to be run first.

8-10 AIX Version 4.1 Writing a Device Driver

SCIORESET
This operation causes a SCSI device to release all reservations, clear all current
commands, and return to an initial state by issuing a Bus Device Reset (BDR) to all LUNs
associated with the specified SCSI ID. A SCSI reserve command should be issued after the
SCIORESET operation to prevent other initiators from claiming the device. Note that
because a certain amount of time exists between a reset and reserve command, it is still
possible for another initiator to successfully reserve a particular device. The following is a
typical call:

rc = fp_ioctl(fp, SCIORESET, idlun, NULL);

where fp is a pointer to a file structure and idlun is a type int value that contains the SCSI
and LUN ID values of the device to be stopped. The least significant byte contains the LUN,
the next least significant byte contains the SCSI ID, and the upper two bytes should be set
to zero. A nonzero return value indicates an error has occurred. Possible errno values are
EIO, EINVAL, EACCES, and ETIMEDOUT.

EIO An unrecoverable system error has occurred.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ETIMEDOUT The operation did not complete before the time-out value was exceeded.

This operation requires SCIOSTART to be run first.

SCIOHALT
This operation stops the current command of the selected device, clears the command
queue of any pending commands, and brings the device to a halted state. The SCSI
adapter sends a SCSI abort message to the device and is usually used by the SCSI device
driver to abort the current operation instead of allowing it to complete or time out.

After the SCIOHALT operation is sent, the device driver must set the SC_RESUME flag in
the next sc_buf structure sent to the adapter device driver, or all subsequent sc_buf
structures sent are ignored.

The SCSI adapter also performs normal error recovery procedures during this command
which include issuing a SCSI bus reset in response to a SCSI bus hang. The following is a
typical call:

rc = fp_ioctl(fp, SCIOHALT, idlun, NULL);

where fp is a pointer to a file structure and idlun is a type int value that contains the SCSI
and LUN ID values of the device to be stopped. The least significant byte contains the LUN,
the next least significant byte contains the SCSI ID, and the upper two bytes should be set
to zero. A nonzero return value indicates an error has occurred. Possible errno values are
EIO, EINVAL, EACCES, and ETIMEDOUT.

EIO An unrecoverable system error has occurred.

EINVAL The device is not opened.

EACCES The adapter is in diagnostics mode.

ETIMEDOUT The operation did not complete before the time-out value was exceeded.

This operation requires SCIOSTART to be run first.

8-11SCSI Device Drivers

SCIODIAG
This command is most commonly used by a SCSI adapter diagnostic program. The
SCIODIAG operation allows the SCSI adapter to run various diagnostic commands, which
include:

• Internal Diagnostics Test
• SCSI Wrap Test
• Read/Write Register Test
• POS Register Test

These diagnostics options are defined, along with the sc_card_diag structure which is used
in the call, in the /usr/include/sys/scsi.h header file. Any errors detected by the diagnostics
are returned in the same sc_card_diag structure. Refer to the header file for a definition of
the returned values.

Whenever an error is detected, an EFAULT errno value is returned along with the
appropriate error statuses in the sc_card_diag structure. When the ENOMSG value is
received, no information is provided in the error status fields.

Because this operation attempts no retries or error recovery, no error logging is provided.
The following is a typical call:

rc = ioctl(adapter, SCIODIAG, &diag_struct);

where adapter is a file descriptor and diag_struct is a sc_card_diag structure. Possible
errno values are EIO, EFAULT, EINVAL, EACCES, ENOMSG, and ETIMEDOUT.

EIO An unrecoverable system error has occurred.

EFAULT A user process copy has failed or diagnostics has failed without completing
all tests.

EINVAL An invalid diagnostic command was passed.

EACCES The adapter is not in diagnostics mode.

ENOMSG The diagnostic command has completed with errors.

ETIMEDOUT The operation did not complete before the time-out value was exceeded.

This operation requires the adapter be in diagnostic mode.

SCIOTRAM
This operation is designed to test SCSI adapter RAM. However, it is currently not supported
and therefore, returns an errno value of ENXIO if called.

8-12 AIX Version 4.1 Writing a Device Driver

SCIODNLD
This operation downloads microcode to the SCSI adapter and is used in configuring the
SCSI adapter. This command can also be used to query for the current version of the
microcode from the adapter. The following is a typical call:

rc = ioctl(adapter, SCIODNLD, &dnld_struct);

where adapter is a file descriptor and dnld_struct is a sc_download structure. Possible
errno values are EIO, EFAULT, EINVAL, EACCES, ENOMEM, and ETIMEDOUT.

EIO An unrecoverable system error has occurred or there is a checksum error
with the microcode. If the adapter has been opened in diagnostics mode,
this error is logged in the system error log. If the adapter has onboard
microcode, it may still function properly.

EFAULT A user copy has failed or a severe I/O error has occurred during the
download and all subsequent commmands to this adapter should cease. If
the adapter has been opened in diagnostics mode, this error is logged in
the system error log.

EINVAL An invalid input parameter was passed.

ENOMEM A request for memory failed.

ETIMEDOUT The operation did not complete before the time-out value was exceeded.

8-13SCSI Device Drivers

SCSI Device Driver Routines
A SCSI device driver should contain the following routines:

• config
• ioctl
• open
• close
• read
• write

Additional routines that you may need are the strategy, iodone, and dump routines. A
dump routine is needed if the device is to be used as the receiver of a system dump. A
strategy routine is needed in the case of block I/O device drivers that handle lists of buf
structures.

Because the AIX operating system allows device drivers to be paged out of memory, certain
functions and data structures of the driver must be guaranteed to be in memory to avoid
page faults while running in the interrupt environment.This is required because disabling
interrupts to any level will prevent the system from paging any pages in or out.

Routines that are called from an interrupt handler run in the interrupt environment while
those that are called from a kernel or user process run in the process environment.
Routines that run in the process environment can be interrupted by those running in the
interrupt environment and can be preempted by processes with a higher process priority.

Routines running in the interrupt environment can only be interrupted by those running at a
higher interrupt priority or by exceptions. In order for interrupt environment routines to avoid
causing page faults, all code and data accessed in the interrupt environment must be
pinned. Kernel services that deal with the pinning of code are pin, pinu, and pincode.

A function name is passed to the pincode kernel service when using it to pin driver code.
However, the entire module that contains the function is pinned, not just the function itself.
In the case of large device drivers, this is a wasteful use of memory. To get around this
restriction, split the driver into two halves:

• a top half

• a bottom half

The top half contains preemptable routines that run in the process environment while the
bottom half contains routines that run in the interrupt environment.

You can compile the two halves so that they are cross-linked. This allows one half of the
driver to be automatically loaded together with the other half when it is loaded. The bottom
(pinned) half should not have any dependencies on the top (unpinned) half, so you must
carefully plan the two halves to avoid this condition, while at the same time minimizing
wasted memory.

Usually, top-half routines include the config, ioctl, open, close, read, and write routines.
Routines that usually reside in the bottom half are the strategy, dump, and iodone
routines. Put any routines that cannot be paged out in the bottom half of the device driver.

In the case of read-only devices, such as CD-ROM, you do not need a write routine.

8-14 AIX Version 4.1 Writing a Device Driver

Top-Half Routines
This section discusses the following routines:

• config
• ioctl
• open
• close
• read
• write

config
This routine is commonly used when configuring, unconfiguring, or changing attributes of
the device. It is called by various configuration methods which include the configure,
unconfigure, and change methods. This routine can also be called to return the Vital Product
Data (VPD) of the device. The following is a typical call to this subroutine from a
configuration method:

sysconfig(SYS_CFGDD, &cfg, sizeof(struct cfg_dd));

where sysconfig is a subroutine and cfg is a cfg_dd structure which is defined in
/usr/include/sys/sysconfig.h. The cmd field of the cfg_dd structure should contain one of
the following parameters:

• CFG_INIT
• CFG_TERM
• CFG_QVPD

If the routine is called with the CFG_INIT parameter, perform simple error checking to
ensure that the driver, as well as the device, is in the correct state. Any required data
structures should also be allocated and initialized with the values contained in the Device
Dependent Structure (DDS). The DDS should have been correctly built by the configuration
method and passed to the config routine through the cfg_dd structure which contains a field
that points to the DDS. After all data structures have been properly initialized, the device
switch table entry should be built and then entered using the devswadd kernel service.

If called with the CFG_TERM parameter, the routine should first check that the driver is in
the correct state and that the device is closed before deallocating associated data
structures, removing the driver from the device switch table, and changing the status of the
device to CLOSED in the device driver.

If the routine is called with the CFG_QVPD parameter, the driver should fill in the passed
uio structure with the appropriate information about the device and the driver and then
return this structure to the calling routine.

ioctl
This routine handles any I/O access to the SCSI device other than that which is handled by
the read and write routines. Any diagnostic capabilities and the standard IOCINFO
operation should also be handled by this routine.

Typical I/O requests are those that reset the device, obtain certain configuration parameters,
or perform various basic accesses to the device. This routine can also perform various
diagnostic functions once the device is opened in diagnostic mode. The IOCINFO operation
is used to return information specific to the device as well as statistics about the usage of
the device.

8-15SCSI Device Drivers

open
This routine opens a SCSI device by initializing any data structures, pinning the bottom half
of the driver code, registering and initializing and interrupt handlers, setting up any DMA
channels, and preparing any needed timers.

If the current open is the first open to the device, any global data structures as well as the
bottom half of the driver should be pinned using the pincode kernel service. The pinning of
the code and global data structures should occur before the device is able to generate
interrupts since the interrupt handler is usually placed in the bottom half of the driver.

The SCSI adapter should then be opened with the fp_open kernel service. Once this
operation completes, a SCIOSTART should then be issued for the device. If a forced open
was attempted on the device, then a bus device reset (BDR) must also be issued through
the SCIORESET operation. If the open operation was a diagnostic open, then processing is
usually complete at this point since all that is required for a diagnostic open is that the
appropriate data structures are pinned and the adapter is opened and started for the device.

If the open is a normal open, then an SCIOTUR operation should be issued to test for the
readiness of the SCSI device. An IOCINFO ioctl call should then be made to obtain any
necessary operating parameters for the driver.

The open routine should serialize its operation using simple locks. This prevents more than
one application from modifying driver data structures. Unlock the resource when the driver
has completed its processing to allow other applications to open SCSI devices.

Note that if any of the commands during the open operation fail, the device driver should
clean up before exiting with an error. This includes freeing any allocated memory, unpinning
any pinned code, and releasing any locks.

close
This routine closes the SCSI device by deallocating any data structures associated with the
device as well as unpinning any code or data. The adapter driver is also stopped and any
timers are also released.

Serialize the close routine so that no more than one application can modify the data
structures of a driver. Use simple lock kernel services to accomplish this.

If the device was opened in normal mode and the SC_RETAIN_RESERVE flag was not set,
then a release must be performed on the device to allow other initiators to reserve the
device. If the reservation is to be retained, then the release should not be performed.

A SCIOSTOP operation should now be issued to the adapter driver which should also be
closed using the fp_close kernel service.

read
This routine reads data from a SCSI device and returns it to the calling process through a
uio structure.

The driver must perform any parameter validation, command building, and cross memory
descriptor processing that might be necessry before calling the SCSI adapter strategy
routine through devstrat. For block device drivers, if the read routine is merely a raw
interface, the uphysio routine should be called if the request falls on block boundaries. The
uphysio routine will end up calling the device driver’s strategy routine. If the request does
not fall on a block boundary, the driver should then break up the request into blocks. Odd
sized transfers can then be handled by using devstrat to call the strategy routine after the
sc_buf structure has been correctly built.

write
This routine writes data received through a uio structure from the calling process to a SCSI
device.

The write routine should be very similar to the read routine described above in the type of
prcessing that is required.

8-16 AIX Version 4.1 Writing a Device Driver

Bottom-Half Routines
This section discusses the following routines:

• strategy
• dump

strategy
Note: This routine is only present in drivers for block SCSI devices. This routine accepts a

linked list of buf structures, processes them, and determines the proper SCSI
command to send to the device to perform the required operation. The buf structure
is defined in the /usr/include/sys/buf.h header file.

This routine should also determine if requests made in successive buf structures can be
consolidated into one SCSI command. The request is placed on the I/O request queue for
future processing by the device driver. Once a request is ready to be sent out to the device,
the adapter’s strategy routine should be called via the devstrat kernel routine. The
adapter’s strategy routine takes a pointer to an sc_buf structure as its only parameter.

After the I/O operation has completed, the user-level calling routine’s iodone routine is
called through the iodone kernel service. The caller’s iodone routine should have been
passed in the b_iodone field of the buf structure.

dump
This routine is needed if the device is to be used as a possible recipient of a system dump.
The dump routine should first disable interrupts to the INTIODONE level which are naturally
re-enabled at the end of the routine. Also, there are several commands, passed through the
cmd parameter, that the routine must handle.

For a DUMPINIT command, this routine should just call the adapter dump routine through
the devdump system call with a DUMPINIT command.

For a DUMPSTART command, this routine should just call the adapter dump routine
through the devdump system call with a DUMPSTART command.

For a DUMPQUERY command, this routine should just call the adapter dump routine
through the devdump system call with a DUMPQUERY command and then fill in the
dmp_query structure passed in through the arg parameter with the appropriate
information.

For a DUMPWRITE command, this routine should fill out an sc_buf structure for each iovec
structure passed in through the uio parameter. A SCSI WRITE command should be
constructed into each of the sc_buf structures and the adapter’s dump routine should then
be called through the devdump system call with a DUMPWRITE command. This should be
repeated until all the iovec structures have been processed.

For a DUMPEND command, this routine should just call the adapter dump routine through
the devdump system call with a DUMPEND command.

For a DUMPTERM command, this routine should just call the adapter dump routine through
the devdump system call with a DUMPTERM command.

8-17SCSI Device Drivers

PVIDs
If a SCSI device is intended to contain a JFS filesystem, it must first meet two requirements.
The first is that even though the device is not a hard disk, the driver must respond as such
when it is issued an IOCINFO ioctl call. The device type must be either DD_DISK or
DD_SCDISK as defined in the header file /usr/include/sys/devinfo.h.

The second requirement is that the device must contain a Physical Volume Identifier (PVID)
so that it can be uniquely distinguished from other media on the system that contain
filesystems. The PVID is used by the system to keep track of media even if it is moved from
one SCSI ID to another or from one adapter to another. This allows the Logical Volume
Manager (LVM) to maintain the consistency of volume groups (VGs) and logical volumes
(LVs) that span several physical storage devices.

Normally, once a PVID is written, it remains with the device until it is overwritten or
somehow damaged. This implies that a PVID only needs to be written once for a newly
added device. New system-supported hard disks will have a PVID assigned to them the
first time they are configured on a system by the configure method for hard disks. The
system accomplishes this by first performing a read of the IPL record area from each disk
detected on the system. If this area contains no PVID (the PVID value is 0), one is created
and written out to the IPL record area. The PVID is created by the following scheme:

8-18 AIX Version 4.1 Writing a Device Driver

 #define makehex(x) ”0123456789abcdef”[x&15]

 struct unique_id unique_id;

 struct utsname uname_buf;

 long machine_id;

 struct timestruc_t cur_time;

 int i;

 char pvidstr[33];

 char bdevice[64];

 int fd;

 IPL_REC clearipl;

 IPL_REC ipl_rec;

 off_t offset;

 bzero((caddr_t) &unique_id, sizeof (struct unique_id));

 if (gettimer (TIMEOFDAY, &cur_time))

exit (–1);

 if (uname(&uname_buf))

exit (–1);

 machine_id = 0;

 sscanf(uname_buf.machine, ”%8x”, &machine_id);

 /* Note that words 3 and 4 remain 0 */

 unique_id–>word1 = machine_id;

 unique_id–>word2 = cur_time.tv_sec*1000 + cur_time.tv_nsec/1000000;

 for(i=0;i<32;i++) {

 if (i&1)

pvidstr[i] = makehex(unique_id[i/2]);

else

pvidstr[i] = makehex(unique_id[i/2]>>4);

 }

 pvidstr[32] = ’\0’;

 /* lname is the name of the disk */

 sprintf(bdevice,”/dev/r%s”,lname);

 fd = open(bdevice, O_RDWR);

 if (fd < 0)

exit (–1);

 offset = lseek(fd, PSN_IPL_REC, 0);

 if (offset < 0)

exit (–1);

 if (read(fd, &ipl_rec, sizeof(ipl_rec)) < 0)

exit (–1);

 if (ipl_rec.IPL_record_id != (unsigned int) IPLRECID) {

/*

 * Boot record does not exist on disk yet.

 */

ipl_rec = clearipl;

ipl_rec.IPL_record_id = IPLRECID;

 }

 ipl_rec.pv_id = pvid;

 offset = lseek(fd, PSN_IPL_REC, 0);

 if (offset < 0)

exit (–1);

 if (write(fd, &ipl_rec, sizeof(ipl_rec)) < 0)

exit (–1);

 close (fd);

Once the PVID has been created and stored to disk, it should also be added into the CuAt
database for the disk under the pvid attribute.

8-19SCSI Device Drivers

SCSI Device Attributes
The following is a list of standard attributes that apply to the supported SCSI devices. This
list contains attributes most SCSI devices should contain. It is not an exhaustive list since
each device may require additional attributes, depending on the implementation of each
device.

model_name The name of the SCSI device that is returned in the inquiry string when an
SCIOINQU ioctl call is made to the device. It is usually a 16-byte character
string.

maxlun The maximum allowed value of the Logical Unit Number (LUN) for this
device. Currently, all supported SCSI devices have a maxlun value of zero.
This indicates that only that particular device is allowed to occupy its SCSI
ID and instructs the SCSI adapter to cease searching for other devices at
other LUNs on the current SCSI ID.

pvid This attribute applies only to SCSI disks and contains the PVID value of the
disk which is stored in the boot record of the disk. The value is usually a
32-bit character string and its default value is “none” as stored in the
Predefined Attribute (PdAt) object class. Once a disk is assigned a PVID,
create a Customized Attribute (CuAt) object class entry that contains the
proper PVID value of the disk.

SCSI Configuration Methods
The configuration of SCSI devices is similar to the configuration of other devices on the
system. Please refer to “Device Configuration Methods” on page 6-1 for a detailed
explanation of configuration methods and how they should be written. However, there is an
additional requirement that configuration methods for SCSI devices be written to take care
of PVIDs (Physical Volume Identifiers) if necessary.

The configure method should try to read the PVID from the disk after the disk has been
spun up and an INQUIRY command has been issued. If the disk has no PVID, then one
should be created and wriiten out if the media is allowed to contain an LV (logical volume) or
filesystem. For information on how to accomplish this, see “PVIDs” on page 8-17.

If a non-NULL PVID is read, either of the following situations may exist:

• The device is already known to the system.
• The device is being moved from another system.

To determine which situation exists, the config method should scan the CuAt database for a
previous record of this PVID. If none is found, then the disk should be assumed to be one
being moved from another system.

If a non-NULL PVID is read, then the config method should verify that the PVID stored in the
database is for the same logical name as the disk currently being configured. If so, then the
disk is in the same position as it was when it was last configured and the config method
does not need to perform any more PVID processing.

If a non-NULL PVID is read but its matching database entry does not match the logical
name of the device being currently configured, this is an indication that the device has been
moved from another location on the same system. If this occurs, calling the current parent
SCSI adapter’s config method will update the CuDv to correctly pair the device’s logical
name with its PVID.

8-20 AIX Version 4.1 Writing a Device Driver

9-1Integrated Device Electronics (IDE) Device Drivers

Chapter 9. Integrated Device Electronics (IDE) Device
Drivers

The Integrated Device Electronics (IDE) subsystem has two parts:

• IDE Device Driver

• IDE Adapter Device Driver

The role of the IDE device driver is to pass information between the operating system and
the IDE adapter device driver by accepting I/O requests and passing these requests to the
IDE adapter device driver. The device driver should accept either character or block I/O
requests, build the necessary IDE commands, and then issue these commands to the
device through the IDE adapter device driver.

The IDE device driver is notified through the iodone kernel service once the adapter has
completed the processing of the command. The device driver should then notify its calling
process that the request has completed processing through the iodone kernel service.

IDE Adapter Device Driver Overview
Unlike most other device drivers, the IDE adapter device driver does not support the read
and write subroutines. It only supports the open, close, ioctl, config, and strategy
subroutines.

Commands received from the device driver through the strategy routine of the adapter are
processed from a queue. Once the command has completed, the device driver is notified
through the iodone kernel service.

IDE Adapter/Device Interface
The AIX IDE adapter device driver does not contain the ddread and ddwrite entry points,
but does contain the ddconfig, ddopen, ddclose, dddump, and ddioctl entry points.

Therefore, the adapter device driver’s entry in the kernel devsw table contains only those
entries plus an additional ddstrategy entry point. This ddstrategy routine is the path that
the IDE device driver uses to pass commands to the device driver. Access to these entry
points is possible through the following kernel services:

• fp_open
• fp_close
• devdump
• fp_ioctl
• devstrat

The IDE adapter is accessed by the device driver through the /dev/ide# special files, where
indicates ascending numbers 0,1, 2, and so on. The adapter is designed so that multiple
devices on the same adapter can be accessed at the same time.

For additional information on spanned and gathered write commands, see “Execution of I/O
Requests” in AIX Version 4.1 Kernel Extensions and Device Support Programming
Concepts.

9-2 AIX Version 4.1 Writing a Device Driver

ataide_buf Structure
The I/O requests made from the IDE device driver to the IDE adapter device driver are
completed through the use of the ataide_buf structure defined in the
/usr/include/sys/ide.h header file. This structure, which is similar to the buf structure in
other drivers, is passed between the two IDE subsystem drivers through the strategy
routine. The following is a brief description of the fields contained in the ataide_buf
structure:

struct buf bufstruct
This structure is a copy of the standard buf structure used for the I/O
request that is defined in the /usr/include/sys/buf.h header file. Note that
the b_work field in the buf structure is reserved for use by the IDE adapter
device driver.

struct buf *bp Contains a pointer to the original buffer structure used by the process
calling the IDE device driver. It can be a pointer to a list of IDE spanned
data transfer commands or it can contain a value of NULL. A NULL value
indicates that no list exists and all required information is contained in the
bufstruct field (see the preceding paragraph).

uint timeout_value
Contains the amount of time, in seconds, to be used in waiting for the
completion of the command before it times out. A zero value indicates no
time-out should be used.

uchar status_validity
This field can contain the ATA_IDE_STATUS bit flag that indicates that the
ata.status field return code is valid. The ATA_ERROR_VALID bit flag
indicates that the ata.errval field contains a valid error indicator. There
are three cases when considering the values of the return codes:

• If the ataide_buf.bufstruct.b_flag field has the B_ERROR flag
set, then the ataide_buf.bufstruct.b_error field contains a valid
errno value. If the b_error field has the value ENXIO, then the
command needs to be restarted or the IDE device driver canceled the
request. If the b_error field has the value EIO, then the
status_validity field indicates which fields, ata.status or
ata.errval, are valid.

If the ata.status field indicates no error, examine the
ataide_buf.bufstruct.b_resid field for any possible error. Note
that b_resid can be nonzero even if no error occurred. Evaluate the
nonzero value carefully to ensure that it is a proper error value.

• If the ataide_buf.bufstruct.b_flag field does not have the
B_ERROR flag set, then no error is being reported. However, you must
still examine the b_resid field to determine if an error has actually
occurred. If an error has occurred, it is up to the IDE device driver to
recover since device queues are not stopped and future commands can
still be sent to the adapter and driver.

• There is a special case when b_resid will be nonzero. The DMA
service routine may not be able to map all virtual to real memory pages
for a single DMA transfer. This may occur when sending close to the
maximum amount of data that the adapter driver supports. In this case,
the adapter driver transfers as much of the data that can be mapped by
the DMA service. The unmapped size is returned in the b_resid field,
and the status_validity field will have the ATA_IDE_DMA_NORES
bit set. The IDE device driver is expected to send the data represented
by the b_resid field in a separate request.

9-3Integrated Device Electronics (IDE) Device Drivers

uchar ata.status
This field is valid whenever the ATA_IDE_STATUS bit is set in the
status_validity field. The various valid values are shown and defined
in the /usr/include/sys/ide.h header file.

uchar ata.errval
This field is valid whenever the ATA_ERROR_VALID bit is set in the
status_validity field. The ataide_buf.bufstruct.b_error field
should also contain the value EIO whenever the ata.errval field is valid.
The various valid values are shown and defined in the
/usr/include/sys/ide.h header file.

The ATA_ERROR_VALID bit is set in the status_validity field
whenever the IDE adapter device driver encounters an unrecoverable
error. Recovered errors are those that have been corrected and logged by
the adapter device driver. The IDE adapter device driver logs both bus and
adapter-related errors.

If an error is detected after a command has reached a device, it is the
responsibility of the device driver to attempt recovery and log the error. Of
the values shown in /usr/include/sys/ide.h, the device driver should
handle:

• ATA_ERROR_VALID

• ATA_CMD_TIMEOUT

Adapter/Device Driver Intercommunication
In a typical request to the device driver, a call is first made to the device driver strategy
routine, that takes care of any necessary queuing. This strategy routine then calls the
device driver’s start routine, which fills in the ataide_buf structure and calls the adapter
device driver’s strategy routine through the devstrat kernel service.

The adapter’s strategy routine validates all of the information contained in the ataide_buf
structure and also performs any necessary queuing of the transaction request. If no queuing
is necessary, the adapter’s start subroutine is called.

When an interrupt occurs, the IDE adapter interrupt routine fills in the status_validity
field and the appropriate ata.status or ata.errval field of the ataide_buf structure.
The bufstruct.b_resid field is also filled in with the value of nontransferred bytes. The
adapter’s interrupt routine then passes this newly filled in ataide_buf structure to the
iodone kernel service which then signals the IDE device driver’s iodone subroutine. The
adapter’s start routine is also called from the interrupt routine to process any additional
transactions on the queue.

The device driver’s iodone routine should then process all of the applicable fields in the
queued ataide_buf structure for any errors and attempt error recovery if necessary. The
device driver should then dequeue the ataide_buf structure and then pass a pointer to the
structure back to the iodone kernel service so that it can notify the originator of the request.

9-4 AIX Version 4.1 Writing a Device Driver

IDE Adapter Device Driver Routines
This section describes the following routines:

• config
• open
• close
• strategy
• ioctl

config
The config routine performs all of the processing needed to configure, unconfigure, and
read Vital Product Data for the IDE adapter. When this routine is called to configure an
adapter, it performs the required checks and building of data structures needed to prepare
the adapter for the processing of requests.

When asked to unconfigure or terminate an adapter, this routine deallocates any structures
defined for the adapter and marks the adapter as unconfigured. This routine can also be
called to return the Vital Product Data (VPD) for the adapter, which contains information
that is used to identify the serial number, change level, or part number of the adapter.

open
The open routine establishes a connection between a special file and a file descriptor. This
file descriptor is the link to the special file that is the access point to a device and is used by
all subsequent calls to perform I/O requests to the device. Interrupts are enabled and any
data structures needed by the adapter driver are also initialized.

close
The close routine marks the adapter as closed and disables all future interrupts, which
causes the driver to reject all future requests to this adapter.

strategy
The strategy routine is the link between the device driver and the IDE adapter device driver
for all normal I/O requests. Whenever the IDE device driver receives a call, it builds an
ataide_buf structure with the correct parameters and then passes it to this routine, which in
turn queues up the request if necessary. Each request on the pending queue is then
processed by building the necessary IDE commands required to carry out the request.
When the command has completed, the IDE device driver is notified through the iodone
kernel service.

ioctl
The ioctl routine allows various adapter operations. Operations include the following:

• IOCINFO
• IDEIOSTART
• IDEIOSTOP
• IDEIOINQU
• IDEIOSTUNIT
• IDEIOTUR
• IDEIOREAD
• IDEIORESET
• IDEIOIDENT

9-5Integrated Device Electronics (IDE) Device Drivers

IDE Adapter ioctl Operations
This section describes the following ioctl operations:

• IOCINFO
• IDEIOSTART
• IDEIOSTOP
• IDEIOIDENT
• IDEIOINQU
• IDEIOSTUNIT
• IDEIOTUR
• IDEIORESET

IOCINFO
This operation allows an IDE device driver to obtain important information about an IDE
adapter, mainly the maximum data transfer size in bytes. By knowing the maximum data
transfer size, an IDE device driver can control several different devices on several different
adapters. This operation returns a devinfo structure as defined in the sys/devinfo.h
header file with the device type DD_BUS and subtype DS_IDE. The following is an example
of a call to obtain the information:

rc = fp_ioctl(fp, IOCINFO, &infostruct, NULL);

where fp is a pointer to a file structure and infostruct is a devinfo structure. A nonzero
rc value indicates an error. Note that the devinfo structure is a union of several structures
and that ide is the structure that applies to the adapter.

For example, the maximum transfer size value is contained in the variable
infostruct.un.ide.max_transfer.

IDEIOSTART
This operation opens a logical path to the IDE device and causes the IDE adapter device
driver to allocate and initialize all of the data areas needed for the IDE device. The
IDEIOSTOP operation should be issued when those data areas are no longer needed. This
operation should be issued before any operation except for IOCINFO. The following is a
typical call:

rc = fp_ioctl(fp, IDEIOSTART, id, NULL);

where fp is a pointer to a file structure and id is a type int value that contains the IDE
device ID value of the device to be started. The least significant byte contains the IDE
device ID and the most significant three bytes should be set to zero.

A nonzero return value indicates an error has occurred and all operations to this IDE device
ID should cease since the device is either already started or failed the start operation.
Possible errno values are EIO, EINVAL, or EACCES.

EIO The command could not complete due to a system error.

EINVAL Either the IDE device ID is invalid, or the adapter is already open.

EACCES The adapter is not in normal mode.

9-6 AIX Version 4.1 Writing a Device Driver

IDEIOSTOP
This operation closes a logical path to the IDE device and causes the IDE adapter device
driver to deallocate all data areas that were allocated by the IDEIOSTART operation. This
operation should only be issued after a successful IDEIOSTART operation to a device. The
following is a typical call:

rc = fp_ioctl(fp, IDEIOSTOP, id, NULL);

where fp is a pointer to a file structure and id is a type int value that contains the IDE
device ID value of the device to be stopped. The least significant byte contains the IDE
device ID, and the upper three bytes should be set to zero. A nonzero return value indicates
an error occurred. Possible errno values are EIO and EINVAL.

EIO An unrecoverable system error occurred.

EINVAL The adapter was not in open mode.

This operation requires IDEIOSTART to be run first.

IDEIOIDENT
This operation issues an identify device command to an IDE device and is used to aid in
IDE device configuration. First an ATA identify device command is sent to the device; if this
fails, an ATAPI identify device command is sent to the device. The following is a typical
call:

rc = ioctl(adapter, IDEIOIDENT, &identify);

where adapter is a file descriptor and identify is an identify_device structure as
defined in the /usr/include/sys/ide.h header file. The IDE device ID should be placed in
the ata parameter block. Possible errno values are EIO, EFAULT, EINVAL, EACCES,
ENOMEM, ETIMEDOUT, ENODEV, and ENOCONNECT.

EIO A system error occurred. Consider retrying the operation several times,
because another attempt may be successful.

EFAULT A user process copy failed.

EINVAL The device is not opened.

ENOMEM A memory request failed.

ETIMEDOUT The command has timed out. Consider retrying the operation several times,
because another attempt may be successful.

ENODEV The device is not responding. Possibly no device exists with the present
IDE device ID.

ENOCONNECT
A bus fault occurred.

This operation requires IDEIOSTART to be run first.

IDEIOINQU
This operation issues an inquiry command to an IDE ATAPI device and is used to aid in IDE
device configuration. The following is a typical call:

rc = ioctl(adapter, IDEIOINQU, &inquiry_block);

where adapter is a file descriptor and inquiry_block is an ide_inquiry structure as
defined in the /usr/include/sys/ide.h header file. The IDE device ID should be placed in
the ide_inquiry parameter block. Possible errno values are EIO, EFAULT, EINVAL,
ENOMEM, ETIMEDOUT, ENODEV, and ENOCONNECT.

EIO A system error occurred. Consider retrying the operation everal times,
because another attempt may be successful.

EFAULT A user process copy failed.

9-7Integrated Device Electronics (IDE) Device Drivers

EINVAL The device is not opened.

ENOMEM A memory request failed.

ETIMEDOUT The command has timed out. Consider retrying the operation several times,
because another attempt may be successful.

ENODEV The device is not responding. Possibly no device exists with the present
IDE ID.

ENOCONNECT
A bus fault occurred.

This operation requires that IDEIOSTART run first.

IDEIOSTUNIT
This operation issues a start unit command to an IDE ATAPI device and is used to aid in
IDE device configuration. The following is a typical call:

rc = ioctl(adapter, IDEIOSTUNIT, &start_block);

where adapter is a file descriptor and start_block is an ide_startunit structure as
defined in the /usr/include/sys/ide.h header file. The IDE device ID should be placed in
the ide_startunit parameter block. The start_flag field designates the start option,
which when set to true, makes the device available for use. When this field is set to false,
the device is stopped.

The immed_flag field is not supported; this field appears only for SCSI compatibility.
Status is returned only when the operation has completed.

Possible error values are EIO, EFAULT, EINVAL, ENOMEM, ETIMEDOUT, ENODEV, and
ENOCONNECT.

EIO A system error occurred. Consider retrying the operation several times,
because another attempt may be successful.

EFAULT A user process copy failed.

EINVAL The device is not opened.

ENOMEM A memory request failed.

ETIMEDOUT The command timed out. Consider retrying the operation several times,
because another attempt may be successful.

ENODEV The device is not responding.

ENOCONNECT
A bus fault occurred.

This operation requires IDEIOSTART to run first.

IDEIOTUR
This operation issues an IDE ATAPI Test Unit Ready command to an IDE ATAPI device and
aids in IDE device configuration. The following is a typical call:

rc = ioctl(adapter, IDEIOTUR, &ready_struct);

where adapter is a file descriptor and ready_struct is an ide_ready structure as defined
in the /usr/include/sys/ide.h header file. The IDE device ID should be placed in the
ide_ready parameter block. The status of the device can be determined by evaluating the
output field: status_validity. Possible errno values are EIO, EFAULT, EINVAL,
ENOMEM, ETIMEDOUT, ENODEV, and ENOCONNECT.

EIO A system error occurred. Consider retrying the operation several (around
three) times, because another attempt may be successful. If an EIO error
occurs and the status_validity field has ATA_IDE_STATUS set, then
the ata_status field has a valid value and should be inspected.

9-8 AIX Version 4.1 Writing a Device Driver

If the status_validity field is zero and remains so on successive
retries, then an unrecoverable error has occurred with the device.

If the status_validity field has ATA_ERROR set and the ata_status
field contains a Check Condition status, then the IDEIOTUR operation
should be retried after several seconds.

If the Check Condition status remains after several retries, the device
should be considered inoperable.

EFAULT A user process copy failed.

EINVAL The device is not opened.

ENOMEM A memory request failed.

ETIMEDOUT The command timed out. Consider retrying the operation several times,
because another attempt may be successful.

ENODEV The device is not responding and possibly no device exists on the present
IDE device ID.

ENOCONNECT
A bus fault occurred.

This operation requires IDEIOSTART to run first.

IDEIORESET
This operation causes an IDE device to clear all current commands and return to an initial
state by issuing an ATAPI soft reset to the specified ATAPI device. The following is a typical
call:

rc = fp_ioctl(fp, IDEIORESET, id, NULL);

where fp is a pointer to a file structure and id is a type int value that contains the IDE
device ID value of the device to be stopped. The least significant byte contains the IDE
device ID, and the upper three bytes should be set to zero. A nonzero return value indicates
an error has occurred. Possible errno values are EIO, EINVAL, and ETIMEDOUT.

EIO An unrecoverable system error occurred.

EINVAL The device is not opened.

ETIMEDOUT The operation did not complete before the time-out value was exceeded.

This operation requires IDEIOSTART to run first.

9-9Integrated Device Electronics (IDE) Device Drivers

IDE Device Driver Routines
An IDE device driver should contain the following routines:

• config

• ioctl

• open

• close

• read

• write

Additional routines you may need are the strategy, iodone, and dump routines. A dump
routine is needed if the device is to used as the receiver of a system dump. A strategy
routine is needed in the case of block I/O device drivers that handle lists of buf structures.

Because the AIX operating system allows device drivers to be paged out of memory, certain
functions and data structures of the driver must be guaranteed to be in memory to avoid
page faults while running in the interrupt environment. This is required because disabling
interrupts to any level will prevent the system from paging any pages in or out.

Routines that are called from an interrupt handler run in the interrupt environment while
those that are called from a kernel or user process run in the process environment.
Routines that run in the process environment can be interrupted by those running in the
interrupt environment and can be preempted by processes with a higher process priority.

Routines running in the interrupt environment can only be interrupted by those running at a
higher interrupt priority or by exceptions. In order for interrupt environment routines to avoid
causing page faults, all code and data accessed in the interrupt environment must be
pinned. Kernel services that deal with the pinning of code are pin, pinu, and pincode.

A function name is passed to the pincode kernel service when using it to pin driver code.
However, the entire module that contains the function is pinned, not just the function itself.
In the case of large device drivers, this is a wasteful use of memory. To get around this
restriction, split the driver into a top half and a bottom half.

The top half contains preemptable routines that run in the process environment while the
bottom half contains routines that run in the interrupt environment.

You can compile the two halves so that they are cross-linked. This allows one half of the
driver to be automatically loaded together with the other half when it is loaded. The bottom
(pinned) half should not have any dependencies on the top (unpinned) half, so you must
carefully plan the two halves to avoid this condition, while at the same time minimizing
wasted memory.

Usually, top-half routines include the config, ioctl, open, close, read, and write routines.
Routines that usually reside in the bottom half are the strategy, dump, and iodone
routines. Put any routines that cannot be paged out in the bottom half of the device driver.

In the case of read-only devices, such as CD-ROM, you do not need a write routine.

9-10 AIX Version 4.1 Writing a Device Driver

Top-Half Routines
This section discusses the following routines:

• config

• ioctl

• open

• close

• read

• write

config
This routine is commonly used when configuring, unconfiguring, or changing attributes of
the device. It is called by various configuration methods that include the configure,
unconfigure, and change methods. This routine can also be called to return the Vital
Product Data (VPD) of the device. The following is a typical call to this subroutine from a
configuration method:

sysconfig(SYS_CFGDD, &cfg, sizeof(struct cfg_dd));

where sysconfig is a subroutine and cfg is a cfg_dd structure that is defined in
/usr/include/sys/sysconfig.h. The cmd field of the cfg_dd structure should contain one of
the following parameters:

• CFG_INIT

• CFG_TERM

• CFG_QVPD

If the routine is called with the CFG_INIT parameter, perform simple error checking to
ensure that the driver, as well as the device, is in the correct state. Any required data
structures should also be allocated and initialized with the values contained in the Device
Dependent Structure (DDS). The DDS should have been correctly built by the configuration
method and passed to the config routine through the cfg_dd structure that contains a field
that points to the DDS. After all data structures have been properly initialized, the device
switch table entry should be built and entered using the devswadd kernel service.

If called with the CFG_TERM parameter, the routine should first check that the driver is in
the correct state and that the device is closed before deallocating associated data
structures, removing the driver from the device switch table, and changing the status of the
device to CLOSED in the device driver.

If the routine is called with the CFG_QVPD parameter, the driver should fill in the passed
uio structure with the appropriate information about the device and the driver and then
return this structure to the calling routine.

ioctl
This routine handles any I/O access to the IDE device other than that handled by the read
and write routines. The standard IOCINFO operation should also be handled by this
routine.

Typical I/O requests are those that reset the device, obtain certain configuration
parameters, or perform various basic accesses to the device. The IOCINFO operation is
used to return information specific to the device as well as statistics about the usage of the
device.

open
This routine opens an IDE device by initializing any data structures, pinning the bottom half
of the driver code, registering and initializing any interrupt handlers, setting up any DMA
channels, and preparing any needed timers.

9-11Integrated Device Electronics (IDE) Device Drivers

If the current open is the first open to the device, any global data structures as well as the
bottom half of the driver should be pinned using the pincode kernel service. The pinning of
the code and global data structures should occur before the device is able to generate
interrupts since the interrupt handler is usually placed in the bottom half of the driver.

The IDE adapter should then be opened with the fp_open kernel service. Once this
operation completes, an IDEIOSTART should then be issued for the device.

An IOCINFO ioctl call should then be made to obtain any necessary operating parameters
for the driver.

The open routine should serialize its operation using simple locks. This prevents more than
one application from modifying driver data structures. Unlock the resource when the driver
has completed its processing to allow other applications to open IDE devices.

Note: If any of the commands during the open operation fail, the device driver should
clean up before exiting with an error. This includes freeing any allocated memory,
unpinning any pinned code, and releasing any locks.

close
This routine closes the IDE device by deallocating any data structures associated with the
device as well as unpinning any code or data. The adapter driver is also stopped and any
timers are also released.

Serialize the close routine so that no more than one application can modify the data
structures of a driver. Use simple lock kernel services to accomplish this.

An IDEIOSTOP operation should now be issued to the adapter driver which should also be
closed using the fp_close kernel service.

read
This routine reads data from an IDE device and returns it to the calling process through a
uio structure.

The driver must perform any parameter validation, command building, and cross-memory
descriptor processing that might be necessary before calling the IDE adapter strategy
routine through devstrat. For block device drivers, if the read routine is merely a raw
interface, the uphysio routine should be called if the request falls on block boundaries. The
uphysio routine will end up calling the device driver’s strategy routine. If the request does
not fall on a block boundary, the driver should then break up the request into blocks.
Odd-sized transfers can then be handled by using devstrat to call the strategy routine after
the ataide_buf structure has been correctly built.

write
This routine writes data received through a uio structure from the calling process to an IDE
device.

The write routine should be very similar to the read routine described above in the type of
processing required.

Bottom-Half Routines
This section discusses the following routines:

• strategy

• dump

strategy
Note: This routine is only present in drivers for block IDE devices. This routine accepts a

linked list of buf structures, processes them, and determines the proper IDE
command to send to the device to perform the required operation. The buf structure
is defined in the /usr/include/sys/buf.h header file.

9-12 AIX Version 4.1 Writing a Device Driver

This routine should also determine if requests made in successive buf structures can be
consolidated into one IDE command. The request is placed on the I/O request queue for
future processing by the device driver. Once a request is ready to be sent out to the device,
the adapter’s strategy routine should be called using the devstrat kernel routine. The
adapter’s strategy routine takes a pointer to an ataide_buf structure as its only parameter.

After the I/O operation has completed, the user-level calling routine’s iodone routine is
called through the iodone kernel service. The caller’s iodone routine is passed in the
b_iodone field of the buf structure.

dump
This routine is needed if the device is used as a possible recipient of a system dump. The
dump routine should first disable interrupts to the INTIODONE level which are naturally
re-enabled at the end of the routine. Also, there are several commands, passed through the
cmd parameter, that the routine must handle:

• For a DUMPINIT command, this routine should call the adapter dump routine through
the devdump system call with the DUMPINIT command.

• For a DUMPSTART command, this routine should call the adapter dump routine through
the devdump system call with the DUMPINIT command.

• For a DUMPQUERY command, this routine should call the adapter dump routine
through the devdump system call with a DUMPQUERY command and fill in the
dmp_query structure passed in through the arg parameter with the appropriate
information.

• For a DUMPWRITE command, this routine should fill out an ataide_buf structure for
each iovec structure passed in through the uio parameter. An IDE WRITE command
should be constructed in each of the ataide_buf structures and the adapter’s dump
routine should be called through the devdump system call with a DUMPWRITE
command. This should be repeated until all the iovec structures are processed.

• For a DUMPEND command, this routine should call the adapter dump routine through
the devdump system call with a DUMPEND command.

• For a DUMPTERM command, this routine should call the adapter dump routine through
the devdump system call with a DUMPTERM command.

9-13Integrated Device Electronics (IDE) Device Drivers

PVIDs
If an IDE device is intended to contain a JFS file system, it must first meet two
requirements. The first is that even though the device is not a hard disk, the driver must
respond as such when it is issued an IOCINFO ioctl call. The device type must be either
DD_DISK or DD_SCDISK as defined in the header file /usr/include/sys/devinfo.h.

The second requirement is the device must contain a Physical Volume Identifier (PVID) so
that it can be uniquely distinguished from other media on the system that contain file
systems. The PVID is used by the system to keep track of media even if it is moved from
one IDE connection to another or from one adapter to another. This allows the Logical
Volume Manager (LVM) to maintain the consistency of volume groups (VGs) and logical
volumes (LVs) that span several physical storage devices.

Normally, once a PVID is written, it remains with the device until it is overwritten or
somehow damaged. This implies that a PVID only needs to be written once for a newly
added device. New system-supported hard disks will have a PVID assigned to them the first
time they are configured on a system by the configure method for hard disks. The system
accomplishes this by first performing a read of the IPL record area from each disk detected
on the system. If this area contains no PVID (the PVID value is 0), one is created and
written out to the IPL record area. The PVID is created by the following scheme:

#define makehex(x) ”0123456789abcdef”[x&15]

struct unique_id unique_id;

struct utsname uname_buf;

long machine_id;

struct timestruc_t cur_time;

int i;

char pvidstr[33];

char bdevice[64];

int fd;

IPL_REC clearipl;

IPL_REC ipl_rec;

off_t offset;

bzero((caddr_t) &unique_id, sizeof (struct unique_id));

if (gettimer (TIMEOFDAY, &cur_time))

 exit (–1);

if (uname(&uname_buf))

 exit (–1);

machine_id = 0;

sscanf(uname_buf.machine, ”%8x”, &machine_id);

/* Note that words 3 and 4 remain 0 */

 unique_id–>word1 = machine_id;

 unique_id–>word2 = cur_time.tv_sec*1000 + cur_time.tv_nsec/1000000;

for(i=0;i<32;i++) {

 if (i&1)

 pvidstr[i] = makehex(unique_id[i/2]);

 else

 pvidstr[i] = makehex(unique_id[i/2]>4);

}

pvidstr[32] = ’0’;

/* lname is the name of the disk */

 sprintf(bdevice,”/dev/r%s”,lname);

 fd = open(bdevice, O_RDWR);

 if (fd < 0)

 exit (–1);

offset = lseek(fd, PSN_IPL_REC, 0);

 if (offset < 0)

 exit (–1);

if (read(fd, &ipl_rec, sizeof(ipl_rec)) < 0)

 exit (–1);

9-14 AIX Version 4.1 Writing a Device Driver

if (ipl_rec.IPL_record_id != (unsigned int) IPLRECID) {

 /*

 * Boot record does not exist on disk yet.

 */

 ipl_rec = clearipl;

 ipl_rec.IPL_record_id = IPLRECID;

}

ipl_rec.pv_id = pvid;

offset = lseek(fd, PSN_IPL_REC, 0);

 if (offset < 0)

 exit (–1);

if (write(fd, &ipl_rec, sizeof(ipl_rec)) < 0)

 exit (–1);

close (fd);

Once the PVID has been created and stored to disk, it should also be added into the CuAt
database for the disk under the pvid attribute.

IDE Device Attributes
The following is a list of standard attributes that apply to the supported IDE devices. This list
contains attributes most IDE devices should contain. It is not an exhaustive list since each
device may require additional attributes, depending on the implementation of each device.

model_name The name of the IDE device that is returned in the identify device
model_number string when an IDEIOIDENT ioctl call is made to the device.
It is usually a 40-byte character string.

pvid This attribute applies only to IDE disks and contains the PVID value of the
disk which is stored in the boot record of the disk. The value is usually a
32-bit character string and its default value is “none” as stored in the
Predefined Attribute (PdAt) object class. Once a disk is assigned a PVID,
create a Customized Attribute (CuAt) object class entry that contains the
proper PVID value of the disk.

9-15Integrated Device Electronics (IDE) Device Drivers

IDE Configuration Methods
The configuration of IDE devices is similar to the configuration of other devices on the
system. Please refer to “Device Configuration Methods” on page 6-1 for a detailed
explanation of configuration methods and how they should be written. However, there is an
additional requirement that configuration methods for IDE devices be written to take care of
PVIDs (Physical Volume Identifiers), if necessary.

The configure method should try to read the PVID from the disk after the disk has been
spun up and an Identify Device command has been issued. If the disk has no PVID, then
one should be created and written out if the media is allowed to contain an LV (logical
volume) or file system. For information on how to accomplish this, see “PVIDs” on page
9-13.

If a non-NULL PVID is read, either of the following situations may exist:

• The device is already known to the system.

• The device is being moved from another system.

To determine which situation exists, the config method should scan the CuAt database for
a previous record of this PVID. If none is found, then the disk should be assumed to be one
being moved from another system.

If a non-NULL PVID is read, then the config method should verify that the PVID stored in
the database is for the same logical name as the disk currently being configured. If so, then
the disk is in the same position as it was when it was last configured and the config method
does not need to perform any more PVID processing.

If a non-NULL PVID is read but its matching database entry does not match the logical
name of the device being currently configured, this is an indication that the device has been
moved from another location on the same system. If this occurs, calling the current parent
IDE adapter’s config method updates the CuDv to correctly pair the device’s logical name
with its PVID.

9-16 AIX Version 4.1 Writing a Device Driver

10-1Writing a Virtual File System

Chapter 10. Writing a Virtual File System

In addition to Journaled File System (JFS), Network File System (NFS), and the CD-ROM
file system types included within AIX, it is possible to write your own Virtual File System
(VFS). This may be desirable if you want to incorporate a new concept such as a distributed
file system, or to use a new device such as a WORM drive or tape jukebox, or simply for
performance reasons where a large amount of a specific type of data needs to be managed
in an unusual manner.

10-2 AIX Version 4.1 Writing a Device Driver

Multiple File System Types within the Kernel
Each type of file system is represented within the kernel by a struct gfs. Each mounted file
system is represented by a struct vfs which contains a pointer to the appropriate struct gfs.
These structures are the basis for file system related operations.

The vfs structures are in a linked list, regardless of file system type, with the kernel variable
rootvfs pointing to the first vfs structure in the list. The following vfs and gfs Structures figure
shows the relationship between vfs and gfs structures.

In–core

Inodes Vnodes

rootvfs

vfs vmount

vfs_gfs

vfs_mdata

vfs_next

“/”

gfs
vnodeops

gn_ops

gfs_opsvfs_gfs

vfs_mdata

vfs_next

vfs_gfs

vfs_mdata

vfs_next

vfs_gfs

vfs_mdata

vfs_next=0

In–core

Inodes Vnodes

“/u”

“/tmp”

vfsops

JFS File Systems

NFS File Systems

“nmount1”

“nmount2”

gfs

gn_ops

gfs_ops

vnodeops

vfsops

vfs and gfs Structures

vfs_gfs

vfs_mdata

vfs_next

The gfs structures each contain a pointer to a struct vnodeops, and a struct vfsops. These
structures contain a list of functions which have a standardized interface by which system
calls can invoke file related (with vnodeops), and file system related (with vfsops)
operations.

You add new file system types to the kernel by loading the kernel extension into the kernel
using the sysconfig(KLOAD,...) subroutine and then invoking the config entry point of the
new kernel extension. The kernel extension contains the virtual file system dependent
functions.

10-3Writing a Virtual File System

This in turn creates a vnodeops structure and a vfsops structure, and initializes these
structures with addresses of the functions within the extension. A temporary gfs structure is
created, and the gfsadd kernel service is used to insert the gfs record into the kernel’s array
of gfs structures. At this point, the virtual file system type is usable, and file systems of the
new type can be mounted.

Data Structures within a Virtual File System
As already described, a gfs, vnodeops, and vfsops structure are created each time a new
file system kernel extension is added to the kernel.

When new file systems are mounted, a vfs and vmount structure are created. The vmount
structure contains specifics of the mount request, such as the object being mounted, and
the stub over which it is being mounted. The vfs structure is the connecting structure which
links the vnodes (representing files) with the vmount information, and the gfs structure.

The mount helper creates the vmount structure, and calls the vmount subroutine. The
vmount subroutine then creates the vfs structure, partially populates it, and invokes the file
system dependent vfs_mount subroutine which completes the vfs structure, and performs
any operations required internally by the particular file system implementation. See “Mount
Helper” on page 10-17 for more information about the mount helper.

Whenever a file is accessed, it is represented by a vnode structure, and an in-core inode
structure, which also contains a gnode structure, and possibly a copy of the disk i-node.
The vnode and gnode structures are file system independent, and the kernel can access
them directly. However, the kernel has no information about the internal storage of the data
files that the vnodes represent. To perform actions on a data file, the kernel passes a vnode
pointer to the relevant vnode operation listed in the vnodeops structure.

The following File System Data Structures figure shows the relationships of the various data
structures within a mounted sample file system my_fs. Note that in this file system type,
there is a copy of the disk i-node (my_dinode) within each in-core i-node (my_icinode).

10-4 AIX Version 4.1 Writing a Device Driver

This figure also shows the way that the in-core i-node contains the gnode, which in turn
contains pointers both to the containing in-core i-node (gn_data), and a direct link back to
the vnodeops structure (gn_ops) for efficiency.

my_icinode

my_dinode

gnode

gn_ops

gn_vnode

gn_data

my_icinode

my_dinode

gnode

gn_ops

gn_vnode

gn_data

my_icinode

my_dinode

gnode

gn_ops

gn_vnode

gn_data

v_vfspre=0

v_vfsp

v_gnode

v_vfsnext

vnode

vnode

vnode

v_vfspre

v_vfsp

v_gnode

v_vfsnext

v_vfspre=0

v_vfsp

v_gnode

v_vfsnext=0

vnodeops

vfs
gfs

vfs_vnodes

vfs_gfs

vfs_mdata

gn_ops

gfs_ops

vmount

vfsops

/tmp.my_vfsf

/tmp/my_vfsd

–

–

rw

File System Data Structures

The following sections contain descriptions of each of the file-system-independent
structures.

10-5Writing a Virtual File System

gfs Structure
The gfs structure is defined in the sys/gfs.h header file:

struct gfs {

struct vfsops *gfs_ops;

struct vnodeops *gn_ops;

int gfs_type; /* type of gfs (from vmount.h) */

char gfs_name[16]; /* name of vfs (eg. ”jfs”,”nfs”, .)*/

int (*gfs_init)(); /* (gfsp) – if ! NULL, */

/* called once to init gfs */

int gfs_flags; /* flags for gfs capabilities */

caddr_t gfs_data; /* ptr to gfs’s private config data*/

int (*gfs_rinit)();

int gfs_hold /* count of mounts of the ... */

}

There is one gfs structure for each type of virtual file system currently installed on the
machine. For each gfs entry, there may be any number of vfs entries.

The gfs structures are stored within a global array accessible only by the kernel. The gfs
entries are inserted with the gfsadd kernel service. Only one gfs entry with a given gfs_type
can be inserted into the array. Generally, gfs entries are added by the CFG_INIT section of
the configuration code of the file system kernel extension.

The gfs entries are removed with the gfsdel kernel service. This is usually done within the
CFG_TERM section of the configuration code of the file system kernel extension.

The operating system uses the gfs entries as an access point to the virtual file system
functions on a type-by-type basis. There is no direct link from a gfs entry to all of the vfs
entries of a particular gfs type. The file system code generally uses the gfs structure as a
pointer to the vnodeops structure and the vfsops structure for a particular type of file
system, although the gnodes also contain a pointer to the vnodeops structure for their type
of file system.

vfs structure
The vfs structure is defined in the sys/vfs.h header file:

struct vfs {

struct vfs *vfs_next; /* vfs’s are a linked list */

struct gfs *vfs_gfs; /* ptr to gfs of vfs */

struct vnode *vfs_mntd; /* pointer to mounted vnode, */

 /* the root of this vfs */

struct vnode *vfs_mntdover; /* pointer to mounted–over */

 /* vnode */

struct vnode *vfs_vnodes; /* all vnodes in this vfs */

int vfs_count; /* number of users of this vfs

*/

caddr_t vfs_data; /* private data area pointer */

unsigned int vfs_number; /* serial number to help */

 /* distinguish between */

 /* different mounts of the */

 /* same object */

int vfs_bsize; /* native block size */

short vfs_rsvd1; /* Reserved */

unsigned short vfs_rsvd2; /* Reserved */

struct vmount *vfs_mdata; /* record of mount arguments */

};

There is one vfs structure for each file system currently mounted.

New vfs structures are created with the vmount subroutine. This subroutine calls the
vfs_mount subroutine found within the vfsops structure for the particular virtual file system
type.

10-6 AIX Version 4.1 Writing a Device Driver

The vfs entries are removed with the uvmount subroutine. This subroutine calls the
vfs_umount subroutine from the vfsops structure for the virtual file system type.

The vfs structure is central to each mounted file system. It provides access to the vnodes
currently loaded for the file system, mount information through the vfs_mdata pointer, and
provides a path back to the gfs structure and its file system specific subroutines through the
vfs_gfs pointer.

The vfs structures are a linked list with the first vfs entry addressed by the rootvfs variable
which is private to the kernel. The vfs_mntd pointer points to the vnode within the file
system which generally represents the root directory of the file system. The vfs_mntdover
pointer points to a vnode within another file system, also usually representing a directory,
which indicates where the file system is mounted. In this sense, the vfs_mntd pointer
corresponds to the object within the vmount structure referenced by the vfs_mdata pointer,
and the vfs_mntdover pointer corresponds to the stub within the vmount structure
referenced by the vfs_mdata pointer.

Refer to the “Mount Helper” section on page 10-17 for details of the vmount structure.

vnode structure
The vnode structure is defined in the sys/vnode.h header file:

struct vnode {

 ushort v_flag; /* see definitions below */

 ulong v_count; /* the use count of this vnode */

 int v_vfsgen; /* generation number for the vfs */

 Simple_lock v_lock; /* lock on the structure */

 struct vfs *v_vfsp; /* pointer to the vfs of this vnode */

 struct vfs *v_mvfsp; /* pointer to vfs which was mounted over this */

 /* vnode; NULL if no mount has occurred */

 struct gnode *v_gnode; /* ptr to implementation gnode */

 struct vnode *v_next; /* ptr to other vnodes that share same gnode */

 struct vnode *v_vfsnext; /* ptr to next vnode on list off of vfs */

 struct vnode *v_vfsprev; /* ptr to prev vnode on list off of vfs */

 union v_data {

 void * _v_socket; /* vnode associated data */

 struct vnode * _v_pfsvnode; /* vnode in pfs for spec */

 } _v_data;

 char * v_audit; /* ptr to audit object */

};

Vnodes are the primary handles by which the operating system references files. Most vnode
operations are passed a pointer to a vnode as their first parameter.

Vnodes are created by the vfs-specific code when needed, using the vn_get kernel service.

Vnodes are deleted with the vn_free kernel service.

Vnodes are the result of a path resolution. Each time an object (file) within a file system is
located (even if it is not opened), a vnode for that object is located (if already in existence),
or created. Naturally, vnodes for each directory searched to resolve the path are also
created, or referenced. Vnodes are also created for files as the files are created.

The vnode structure provides the link between the vfs structure and the gnode structure.
There are two vnodes for one gnode only in the case of file-over-file mounts. In this case,
the gnode refers to the first related vnode, and the other vnodes for that gnode are linked
using the v_next field.

10-7Writing a Virtual File System

gnode structure
The gnode structure is defined in the sys/vnode.h header file:

struct gnode {

 enum vtype gn_type; /* type of object: VDIR,VREG,... */

 short gn_flags; /* attributes of object */

 ulong gn_seg; /* segment into which file is mapped */

 long gn_mwrcnt; /* count of map for write */

 long gn_mrdcnt; /* count of map for read */

 long gn_rdcnt; /* total opens for read */

 long gn_wrcnt; /* total opens for write */

 long gn_excnt; /* total opens for exec */

 long gn_rshcnt; /* total opens for read share */

 struct vnodeops *gn_ops;

 struct vnode *gn_vnode; /* ptr to list of vnodes per this gnode */

 dev_t gn_rdev; /* for devices, their ”dev_t” */

 chan_t gn_chan; /* for devices, their ”chan”, minor’s minor */

 Simple_lock gn_reclk_lock; /* lock for filocks list */

 int gn_reclk_event; /* event list for file locking */

 struct filock *gn_filocks; /* locked region list */

 caddr_t gn_data; /* ptr to private data (usually contiguous) */

};

A gnode refers directly to a file (regular, directory, special, and so on), and is usually
embedded within a file system implementation specific in-core i-node.

Gnodes are created as needed by file system specific code at the same time as creating
in-core i-nodes. This is normally immediately followed by a call to the vn_get kernel service
to create a matching vnode.

The gnode structure is usually deleted either when the file it refers to is deleted, or when its
in-core i-node is removed to make room for an in-core i-node representing a more recently
accessed file.

In early UNIX virtual file system implementations, the vnode represented the file system
independent information about a file, and the in-core i-node was totally file system
implementation specific. In AIX, the gnode is a part of the in-core i-node which is uniform,
but the remainder of the in-core i-node remains implementation specific.

File-Over-File Mounts
It is possible to have more than one vnode referring to a gnode. This occurs when a file is
mounted over another file. In this case, the v_mvfs field within the vnode of the file which is
being mounted over is set to point to a newly created vfs structure. The new vfs structure
represents a file system with one file, whose vnode points to the gnode of the file which is
mounted.

10-8 AIX Version 4.1 Writing a Device Driver

The following File-Over-File Mounts figure shows the situation where a file in /tmp is
mounted over a file in /u. Note that the gnode points to one of the vnodes which is linked to
the next vnode for that gnode with the v_next field.

In–core

Inode

gnode

gn_vnode

v_vfsp

v_mvfsp

v_next=0

v_vfsp

v_gnode

v_next=0

v_vfsp

v_gnode

v_next

vfs

vfs

vfs

vfs_mntd

vfs_mdata

vfs_mdata

vmount

vmount

“/u”

“/tmp”

File-Over-File Mounts

Components of a Third-Party Virtual File System
The following are the basic components that you must provide to implement a virtual file
system for the AIX operating system:

1. The kernel extension containing initialization functions, vfs operations, vnode operations,
and virtual memory operations

2. A file system helper or some other mechanism to create file systems on media

3. A mount helper or a specialized mount command

4. A configuration program to load the kernel extension into the kernel

5. A software installation package (preferably an installp package) to install the software on
a customer’s computer, and modify /etc/vfs

10-9Writing a Virtual File System

Creating the Virtual File System Kernel Extension
The virtual file system kernel extension is similar to a driver in that it runs in kernel mode
and has a configuration entry point. Considerations for compiling and linking are also
similar.

The following is an example of Makefile entry for building a virtual file system kernel
extension:

 CFLAGS = –O –D_AIX –D_SUN –D_KERNEL –DKERNEL –I../.. –I. –qxref –qlist

 CDEFS = –U_STR_ –U_MATH_ –D_KERNEL –D_AIX –D_IBMR2 \

 –DMACHINE=_IBMR2 ’–DMACHNAME=”R2_System”’ \

 –DNLS –D_NLS –DMSG –Daiws –Dunix

 all: my_vfs

 my_vfs: my_vfsops.o my_vnopeops.o

 /bin/ld –b”binder:/usr/lib/bind glink:/lib/glink.o” \

 –s –D0 –H512 –T512 \

 –lcsys –lsys \

 –b”I:/lib/kernex.exp I:/lib/syscalls.exp E:myfs_t.exp

 map:sym.myfs_t” \

 –e myfs_config \

 my_vfsops.o my_vnodeops.o \

 –o my_vfs

 my_vnodeops.o: my_vnodeops.c myfs.h

 ${CC} ${CFLAGS} ${CDEFS} –c my_vnodeops.c 2> $*.err

 my_vfsops.o: my_vfsops.c myfs.h

 ${CC} ${CFLAGS} ${CDEFS} –c my_vfsops.c 2> $*.err

Note: To bring in the appropriate version of printf and have debugging statements appear
on the terminal, do not use cc for the linking phase of the operation.

Entry Points within the File System Kernel Extension
This section describes the config, init, and rootinit entry points.

config
int myfs_config (int cmd, struct uio *uiop);

The primary entry point within the file system kernel extension is the config entry point. The
configuration program calls this entry point once the kernel extension is loaded. The
configuration routine to which the config entry point refers usually consists of a case
statement which switches based on the command passed in. The two cases which should
be taken into account are CFG_INIT and CFG_TERM. However, you can add more
commands.

The CFG_INIT branch should:

1. Check that the extension has not already been initialized.

2. Initialize any private data structures.

3. Create and add an entry into the gfs table using the gfsadd kernel service. This calls the
init entry point from the gfs structure.

4. Register the page fault handler (strategy routine) using the vm_mount kernel service.

5. Pin any code or data within the file system which must not be paged. For example, pin
interrupt handlers or the strategy routine.

10-10 AIX Version 4.1 Writing a Device Driver

The CFG_TERM branch should:

1. Verify that it is safe (appropriate) to terminate the extension. For example, verify that the
file system has been unmounted.

2. Remove the gfs struct entry using the gfsdel kernel service.

3. Unpin the areas pinned during the CFG_INIT.

init
int myfs_init (struct gfs *gfsp);

This routine is called by the gfsadd kernel service immediately after creating the gfs
structure. The address of the function is passed into gfsadd within the gfs_init field of
the gfs structure. Any functions that must be performed after the gfs entry is created but
before users can start to use the file system should be performed here.

The most common operation within this function is to initialize file system dependent
structures. The function may also spawn a pager process using the creatp and initp kernel
services.

rootinit
This function is only called for the root file system. The entry point is passed to the gfsadd
kernel service in the gfs_rinit field of the gfs structure. The most common operations
are to initialize the root vmount and vfs structures, and to open the root device.

VFS Operations within the File System Kernel Extension
The vfs operations are those operations which affect an entire file system, such as:

• mount
• unmount
• sync

The addresses of these functions are stored within a vfsops structure that is pointed to by
the gfs_ops field of the gfs structure for a particular virtual file system implementation.

For specific details of the vfs operations requirements, see the AIX Version 4.1 Kernel
Extensions and Device Support Programming Concepts book.

The following are descriptions of the vfs operations for a typical virtual file system.

vfs_mount
int myfs_mount(struct vfs *vfsp, struct ucred *crp);

This routine is called by the vmount subroutine, and performs the following actions in
addition to any internal work required:

1. Extract important data passed by the mount helper program in the vfsp–>vfs_mdata
field.

2. Obtain the vnode of the object being mounted with the lookupvp kernel service.

3. Check that the object being mounted is appropriate.

4. Initialize the following fields within the vmount structure (pointed to by
vfsp–>vfs_mdata):

– vmt_fsid

– vmt_vfsnumber

– vmt_time

5. If applicable, call vm_mount to register the file system’s strategy routine.

10-11Writing a Virtual File System

6. Create a vnode (and matching in-core i-node) for the root directory of the file system,
and initialize the v_mvfsp field of the stub vnode (pointed to by vfsp–>vfs_mntdover)
with its address.

7. Use the vn_rele vnode operation to release the object’s vnode.

vfs_unmount
int myfs_unmount(struct vfs *vfsp,int flags, struct ucred *crp);

This routine is called by the umount subroutine. This routine performs the following actions:

1. Free up any resources used by this mount, including vnodes, using the vn_free vnode
operation.

2. Set the v_mvfsp field of the vnode for the stub to NULL.

3. Set vfsp–>vfs_mntd to NULL.

4. Call the vm_umount kernel service to unregister the file system’s strategy routine.

5. Call the vfsrele kernel service to release the system-created resources.

vfs_root
int myfs_root(struct vfs *vfsp, struct vnode **vpp,

 struct ucred *crp);

This routine is frequently called when locating files within a file system. Essentially, it finds,
or creates a vnode (associated with an in-core i-node) for the root of the file system (that is,
the file containing the root directory). Before returning success, the routine should check
that the file system is mounted, and calls the vn_hold vnode operation for the vnode it is
about to return.

vfs_statfs
int myfs_statfs(struct vfs *vfsp, struct statfs *statfsp,

 struct ucred *crp);

The vfs_statfs routine returns basic file system statistics in the form of a statfs structure.
See the sys/statfs.h header file for the fields of the statfs structure. The methods to obtain
this information are implementation dependent.

vfs_sync
int myfs_sync();

Every 60 seconds, and whenever the sync command is run, the sync function is called.
This in turn calls the vfs_sync function once for each different file system type. Note that a
pointer to a gfs structure is passed in.

The actual use of this routine is totally implementation dependent, but once completed each
file system of the same gfs type should be updated on secondary storage (assuming there
is any) to the point where it is consistent.

vfs_vget
See “File System Operations” in AIX Version 4.1 Technical Reference, Volume 5: Kernel
and Subsystems.

vfs_cntl
See “File Systems Operations” in AIX Version 4.1 Technical Reference, Volume 5: Kernel
and Subsystems.

10-12 AIX Version 4.1 Writing a Device Driver

Vnode Operations within the File System Kernel Extension
The vnode operations are the operations that work on specific files (represented by vnodes)
within a file system. This section covers the required vnode operations.

See “File System Operations” in AIX Version 4.1 Technical Reference, Volume 5: Kernel
and Subsystems for details on the requirements for the vnode operations.

vn_hold
int myfs_hold (struct vnode *vp);

This routine simply increments the v_count field (the usage count) of the vnode.

vn_rele
int myfs_rele (struct vnode *vp);

This routine decrements the usage count of the vnode. If the usage count is reduced to
zero, remove the vnode from memory using the vn_free vnode operation.

It is practical to release the related in-code i-node at this point, assuming (as is normal) that
this is the only vnode referencing the in-core i-node.

Check that the file system was being unmounted but could not complete because there
were still open files (vfsp–>vfs_flag & VFS_UNMOUNTING). If this was the last vnode for
the file system (vfsp–>count == NULL), call the vfsrele kernel service to release the vfs
entry and complete the unmount.

vn_getattr
int myfs_getattr (struct vnode *vp, struct vattr *ubuf,

 struct ucred *crp);

This routine obtains the attributes of the file referenced by vp from the related gnode and
in-core i-node which is in a file-system specific format, and returns the information in a vattr
structure.

10-13Writing a Virtual File System

The following shows the vattr structure as defined in the sys/vattr.h header file:

struct vattr {

enum vtype va_type; /* from gnode.gn_type*/

mode_t va_mode; /* access modes from in–core i-node*/

uid_t va_uid; /* user id from in–core i-node*/

gid_t va_gid; /* group id from in–core i-node*/

union {

dev_t _va_dev;

long _va_fsid; /* vfs_mdata–>vmt_fsid.fsid_dev*/

} _vattr_union;

long va_serialno; /* i-node numberfrom in–core i-node*/

short va_nlink; /* number of links to fil from in–core

i-node*/

long va_size; /* file size in bytes from in–core i-node*/

long va_blocksize; /* block size for file system */

long va_blocks; /* blocks reserved for file

from in–core i-node*/

struct timeval va_atime;/* last file access time

from in–core i-node*/

struct timeval va_mtime;/* last file modification

time from in–core i-node*/

struct timeval va_ctime;/* last disk i-node modification

time from in–core i-node*/

dev_t va_rdev; /* from gnode.gn_rdev*/

long va_nid; /* use unamex(), field nid*/

chan_t va_chan; /* from gnode.gn_chan*/

char *va_acl; /* Access Control List*/

int va_aclsiz;/* size of ACL*/

int va_gen: /* inode generation number */

};

vn_open
int myfs_open (struct vnode *vp, int flags, int ext,

 caddr_t vinfop, struct ucred *crp);

The vn_open routine should check the validity of the operation, in particular any file-system
dependent tests, such as the requested open mode conflicting with the mode in which the
file is already opened by another process.

The file can be bound in at this point, or the binding can be delayed until the first read or
write to the file. See the “Virtual Memory Operations” section on page 10-15 for information
on binding.

This routine should also increment the appropriate usage counter within the gnode
(gn_rdcnt, gn_wrcnt, or gn_excnt).

vn_close
int myfs_close (struct vnode *vp, int flags,caddr_t vinfo,

 struct ucred *crp);

The close routine calls vn_close routine. Any usage counters incremented by the vn_open
call should be decremented. Do not remove the vnode within vn_close, this is done within
vn_rele.

vn_strategy
int myfs_strategy (struct buf *bp);

The strategy routine is called by the virtual memory manager when a page of memory is
referenced that is mapped to a file, but the memory has not been paged in. Usually, this
routine simply places the buffer on the list of pending work for the pager, and wakes the
pager.

10-14 AIX Version 4.1 Writing a Device Driver

The buffer pointer passed in will have the following values in its fields:

b_bcount Always PAGESIZE (4K).

b_blkno The 512-byte block number of the offset within the file (0, 8, 16, and so on).

b_baddr The 4K offset within the mapped segment. This rolls over to zero once a
256-MB segment is crossed.

av_forw Non-null if there are multiple requests to process. This will happen if the
virtual memory manager attempts to perform read ahead operations.

b_flags Set to B_READ for a read operation, B_WRITE for a write operation and
(B_READ | B_PFSTORE) for a read before a write operation.

vn_rdwr
int myfs_rdwr (struct vnode *vp, enum uio_rw op, int flags,

 struct uio *uiop, int ext, caddr_t vinfo,

 struct vattr *vattrp, struct ucred *crp);

This routine performs file (not directory) reads or writes. Follow these procedures:

1. Verify that the file type is correct.

2. Return success if the transfer size is zero.

3. Return EINVAL if the start offset is negative.

4. Verify that the file is mapped. If it is not mapped in, map it using the vms_create kernel
service.

5. Use vm_move to copy the data from the source to the destination, reducing the transfer
length on reads that go past the end of the file.

Note: The vm_move amounts to a copy which can page fault.

vn_lookup
int myfs_lookup(struct vnode *dp, struct vnode **vpp,

char *name, int flags, struct ucred *crp);

This routine finds the file name which is the basename of a file in the directory dp, and
returns a vnode pointer for the file. If the file is not found, set vpp to NULL.

vn_readdir
int myfs_readdir (struct vnode *vp, struct uio *uiop,

 struct ucred *crp);

This routine is called to read directories, which it returns in file-system independent format
using a dirent structure. Even read and fread call this routine if the file is a directory, and
the directory contents are reconstituted (imperfectly) from the structures.

Read directory entries from the directory starting with the first entry at or beyond
uiop–>uio_offset. Entries are read into an internal buffer while the buffer size is less than the
uio–>resid passed in (which is 4K), or until the end of the directory is reached. You do not
need to place empty directory entries in the buffer. The buffer should be filled in with as
many entries as possible.

The buffer is then copied back into user space using the uiomove kernel service which
updates uio–>uio_resid. The vn_readdir routine then updates uiop–>uio_offset to be the
offset within the directory of the next unread entry.

If the routine is called with no directory entries beyond the uio_offset, the routine should
return with uio_resid untouched.

10-15Writing a Virtual File System

The following listing shows the fields of the dirent structure as found in the sys/dir.h header
file:

#define _D_NAME_MAX 255

struct dirent {

ulong_t d_offset; /* offset within directory file

of next directory entry */

ino_t d_ino; /* i-node number of entry */

ushort_t d_reclen; /* Use DIRSIZ(struct dirent *)

after d_namlen is initialized */

ushort_t d_namlen; /* strlen(d_name field)*/

char d_name[_D_NAME_MAX+1];

/* name must be no longer than this including the ’\0’ */

};

Virtual Memory Operations
Once a file is opened, it is bound into an address range. This address range is not in either
the user or kernel space, but is inserted into the kernel address space on a temporary basis
by vms_create.

Accesses to this range may cause page faults which cause the registered strategy routine
to be called. The strategy routine then arranges for the information to be paged in or out
without itself page faulting. For this reason, pin the strategy routine and any data areas it
uses.

A separate process can be started to handle page faults as requested by the strategy
routine, and this process is under no obligation to avoid page faulting.

Binding the File to an Address Range
To bind a file to an address range, call the vms_create kernel service. This reserves part of
the 52-bit virtual memory address space of the machine, and associates it with the gnode
passed in. The vmid passed back is effectively a segment register value, which should be
placed in the gn_seg field of the gnode structure. This is typically done by the file system’s
open routine or by the read/write function (upon the first I/O attempt).

On subsequent reads or writes to the file, the vn_rdwr subroutine passes this vmid to
vm_move, along with transfer length, uio pointer and so on. Then vm_move places the
address space of the file within the kernel address space long enough to perform the
transfer.

For more information on vms_create, refer to kernel services in AIX Version 4.1 Technical
Reference, Volume 5: Kernel and Subsystems.

The Page Handling Process
The pager for a virtual file system may run as a separate process, a process spawned by
the vfs_init subroutine. The routine uses the e_sleep_thread kernel service on a list of buf
structures to which the vn_strategy subroutine appends further entries. Once the list
contains at least one request, the pager parses the buf structures, and in many virtual file
system implementations, attempts to order them depending upon the situation.

For instance, buffers may be separated into requests for different media so that one disk
does not need to wait until another disk has completed a series of transfers. Or the requests
may be ordered to optimize disk seek sequencing.

Paging a Block In or Out
The actual technique used to page a block in or out varies greatly between virtual file
systems. In a situation where the file system resides directly on media, such as in the
CD-ROM file system, the buf structures are modified to contain the actual device block
number, and device IDs, then the devstrat(bufp) kernel service is called by the page fault
handler. This calls the strategy routine within the device driver to perform the transfer.

10-16 AIX Version 4.1 Writing a Device Driver

Once the data is transferred, call the iodone(bp) kernel service to notify the virtual memory
manager that the memory space is now valid.

File System Helper
The file system helper for a virtual file system type is listed in the /etc/vfs file. This program
is called by AIX system management programs, usually to operate on an unmounted file
system. Examples include:

fsck Calls the file system helper to perform an implementation-dependent check
of the contents of a file system.

mkfs Invokes the file system helper to create a file system.

chfs Uses the file system helper to extend a file system.

An example of an entry in the /etc/filesystems file follows:

 /mymnt:

 dev = /dev/fd0

 vfs = myfs

 mount = true

 options = rw

 type = myfs

 nodename = myfs

For the preceding example, the command:

mkfs /mymnt

translates to a call to the file system helper with the following parameters:

fshop_make 5 5 7 –ip 0 \

name=/tmp/my_vfsd,label=/tmp/my_vfsd,dev=/tmp/my_vfsf

Note: The fshop_make is not the name of the file system helper. The subcommand
argv[0] is set to a name other than the program name using the execlp subroutine.

We suggest that third-party virtual file system writers use argv[1], which is a command from
the fshelp.h file such as FSHOP_MAKE.

The command:

fsck –v myfs

translates to the following call:

fshop_check 1 3 6 –ifp 0 device=/dev/hd1,mounted

The basic subcommands are:

argv[A_NAME (=0)]
The command in char * format

argv[A_OP (=1)]
The command as an entry from the fshelp.h file

argv[A_FSFD (=2)]
File descriptor number for the file system

argv[A_COMFD (=3)]
File descriptor number for pipe

argv[A_MODE (=4)]
Mode flags. For example, i = FSHMOD_INTERACT_FLAG

argv[A_DEBG (=5)]
Debug level

10-17Writing a Virtual File System

argv[A_FLGS (=6)]
Operation-dependent flags

The functions performed by any file system helper are not fixed. Implement only those
appropriate to a virtual file system. Furthermore, it is acceptable for some functions to be
omitted, and implemented as separate programs, although the AIX commands will not be
able to invoke them.

Mount Helper
The format of the mount helper is similar to that of the file system helper. The mounting
program may be in any format, but for it to be invoked by the AIX mount command it should
be listed as the mount helper in the /etc/vfs file, and conform to the following invocation
format:

argv[0] The command path

argv[1] Command (M=mount, U=unmount)

argv[2] Debug Level

argv[3] Nodename

argv[4] Object (the file system being mounted)

argv[5] Stub (the directory that the file system is mounted over)

argv[6] Options (for example, “rw” = read/write)

The basic operations of the mount helper are:

1. Checks that the operation is valid.

2. Allocates space for a vmount structure with enough space at the end for the additional
parameters. See the sys/vmount.h header file for information on the vmount structure.

3. Populates the vmount structure.

4. Calls vmount (vmountptr, size_of_vmount_struct).

The contents of the vmount structure are defined as follows:

#define VMT_OBJECT 0 /* I index of object name */

#define VMT_STUB 1 /* I index of mounted over stub name */

#define VMT_HOST 2 /* I index of (short) hostname */

#define VMT_HOSTNAME 3 /* I index of (long) hostname */

#define VMT_INFO 4 /* I index of binary vfs specific info

*/

/* includes network address, opts, etc*/

#define VMT_ARGS 5 /* I index of text of vfs specific args*

/

#define VMT_LASTINDEX 5 /* I the last in the array of structs */

struct vmount {

ulong vmt_revision; /* revision level, currently 1 */

ulong vmt_length; /* length of structure and data */

fsid_t vmt_fsid; /* Do not set */

int vmt_vfsnumber; /* Do not set */

time_t vmt_time; /* Do not set */

ulong vmt_timepad; /* Do not set */

int vmt_flags; /* general mount flags */

int vmt_gfstype; /* type of gfs, e.g. MNT_JFS */

struct vmt_data {

short vmt_off; /* I offset of data, word aligned */

short vmt_size; /* I actual size of data in bytes */

} vmt_data[VMT_LASTINDEX + 1];

};

10-18 AIX Version 4.1 Writing a Device Driver

Note: The vmt_off field is the offset from the start of the vmount structure to the start of
the data element.

The following is an example of a hexadecimal dump of a vmount structure:

0000: 00000001 0000006c 00000000 00000000l

0010: 00000000 00000000 00000000 00000000

0020: 00000008 003c000e 004c000e 005c0002<.. .L.. .\..

0030: 00600002 00640004 00680003 2f746d70 .‘.. .d.. .h.. /tmp

0040: 2f64656d 6f766673 66000000 2f746d70 /dem ovfs f... /tmp

0050: 2f64656d 6f766673 64000000 2d000000 /dem ovfs d... –...

0060: 2d000000 00000000 72770000 00000000 –... rw..

Virtual File System Configuration Program
You must load the virtual file system kernel extension in much the same way as a driver.
This operation can be performed by a separate program that is invoked by an rc script, or
preferably, as a rule in the Config_Rules database. It can also be invoked by the mount
helper when the first file system of a particular type is mounted.

Load the kernel extension with the sysconfig subroutine:

sysconfig (SYS_KLOAD,...)

Then use sysconfig to call the configuration entry point of the extension:

sysconfig (SYS_CFGKMOD,...)

The following is an example of using the sysconfig subroutine:

struct cfg_load load;

struct cfg_kmod kmod;

.

.

.

load.path = kern_ext_name;

if(sysconfig(SYS_KLOAD, &load, sizeof(load)) == –1){

fprintf (stderr, ”Unable to SYS_KLOAD %s, errno = %d\n”,

 load.path, errno);

exit(1);

}

fprintf(stderr, ”loaded at 0x%08x\n”, load.kmid);

/* initialize extension */

kmod.kmid = load.kmid;

kmod.cmd = CFG_INIT;

kmod.mdiptr = (caddr_t) &kmod.kmid;

kmod.mdilen = sizeof(kmod.kmid);

if(sysconfig(SYS_CFGKMOD, &kmod, sizeof(kmod)) == –1){

fprintf(stderr,

”Unable to configure module, errno=%d\n”,

errno);

exit(1);

}

During development, and for some file system implementations, you may want to unload the
kernel extension. To do this, use the following calls:

kmod.cmd = CFG_TERM;

sysconfig (SYS_CFGKMOD, &kmod,...);

sysconfig (SYS_KULOAD, &load,...);

10-19Writing a Virtual File System

Software Installation Package
You should package your software in the form of an installp module, because this is the
form in which customers expect to receive software for AIX Version 4.1. See “Software
Product Packaging” in AIX Version 4.1 General Programming Concepts: Writing and
Debugging Programs for more information.

In addition to installing the software in the customer’s system, the installation program also:

1. Appends an entry into the /etc/vfs file for the new file system type. For example:

my_fs 8 /etc/helpers/my_fsmnthelp /etc/helpers/my_fshelper

2. (Optional) Inserts a new rule into the Config_Rules database to invoke the kernel
extension installation program during system startup.

3. (Optional) Creates an initial entry in /etc/filesystems.

/etc/vfs
The /etc/vfs file describes the currently installed virtual file systems. Entries include:

• Comment lines, which start with a #.

• The general control line which defines the default local, and (optionally) the default
remote virtual file system. This is typically:

%defaultvfs jfs nfs

• VFS entries that consist of:

name The name of the vfs type.

type The number of the vfs type.

mount-helper The name of the mount helper, or “none”. This is with respect to
/etc/helpers unless it starts with a / (slash).

file system-helper
Same conventions as mount-helper.

Use white space to separate these fields.

For a user file system, use numbers from MNT_USRVFS (=8) to MNT_AIXLAST (=15) for
the type. These values are defined in the sys/vmount.h header file. File system numbers
between zero and MNT_USRVFS – 1 (=7) are reserved for assignment by the operating
system.

Once the example file system “my_fs” is inserted, the end of /etc/vfs contains:

%defaultvfs jfs nfs

#

cdrfs 5 none none

jfs 3 none /etc/helpers/v3fshelper

nfs 2 /etc/helpers/nfsmnthelp

none remote

my_fs 8 /etc/helpers/my_fsmnthelp

/etc/helpers/my_fshelper

Loading the File System Kernel Extension during System Startup
The easiest way to load the kernel extension into the kernel during system startup is to
insert a new rule into the Config_Rules database. To do this, create a file with the new rule
in it. Our sample file is named my_fs_rule.add:

Config_Rules:

phase = 2

seq = 0

rule = ”/etc/methods/installmy_fs –a /etc/drivers/my_fs”

10-20 AIX Version 4.1 Writing a Device Driver

To install the rule, use the following ODM commands:

odmdelete –q ”rule LIKE ’*my_fs*’” –o Config_Rules

odmadd my_fs_rule.add

The odmdelete command deletes old Config_Rules entries which may have been inserted
for this virtual file system. If you use the odmadd command twice without odmdelete, there
will be two rules in the database, and the extension installation program will be invoked
twice.

Do not use this technique during development, as a faulty kernel extension could prevent a
successful system startup. Instead, add the rule at the end of the development cycle when
the extension is stable.

Virtual File System Terminology
Disk i-node A disk i-node is an i-node that resides on a disk (or some other secondary

storage). Generally, this i-node contains all of the information about a file
which also resides on the disk except its name (which is in one or more
directories), and its contents (which are stored in the data area reserved for
the file). This information includes file type, size, permissions, access times,
and data location information (assuming the file is a data file, not a special
file). Disk i-nodes are referred to by their i-node number which is unique
within a particular file system.

gfs entry A gfs structure exists for each TYPE of virtual file system that is being used
within the system. For example, there is one gfs structure for the Journaled
File System (JFS) regardless of the number of JFS file systems currently
mounted, and if there are any NFS mounts, there is one gfs structure for
NFS. The gfs structure provides the system with a set of pointers to the
standardized functions for a file system type.

gnode A gnode is a data structure containing information about a file that is
currently (or has recently) being referenced. The gnode is effectively an
extension of the vnode, and contains the information which is directly
associated with the file, independent from the vfs by which the file is being
accessed. There can only be one gnode within a system for a particular file
at any one time. The gnode is a system-defined structure (that is, vfs
independent), contained within an in-core i-node which is vfs dependent.

in-core i-node An in-core i-node is a data structure maintained by a file system kernel
extension which represents a file on disk. The structure of the in-core
i-node is implementation dependent; however, it contains a gnode structure
that is implementation independent. It is common that the in-core i-node
also contain a copy of the disk i-node for the file it represents.

virtual file system (vfs)
A virtual file system represents a conventional mounted file system. The
purpose of having virtual file systems is so that the kernel, and system calls
need not know anything about the file system internals, but rather they can
perform file system operations, and file operations through a defined
interface that is independent of the data storage format or media.

vnode A vnode is a data structure representing a file within a virtual file system.
Accesses by system calls to a file are performed using a vnode pointer
which provides an implementation independent interface. Each vnode
contains a pointer to the vfs which contains it, and to the gnode which
contains limited information about the file, and a pointer to the in-core
i-node that contains the implementation specific data about the file.

11-1STREAMS-Based TTY Subsystem Interface

Chapter 11. STREAMS-Based TTY Subsystem Interface

This chapter describes the programming interface of the tty subsystem. This interface can
be used by a tty programmer to write a specific module (such as a converter or a line
discipline), or a specific driver.

The following information is provided:

• The description of the tty modules and drivers and especially the protocol used in the
exchange of STREAMS messages.

• The way the tty subsystem is integrated in a multiprocessor environment.

• The list of the IOCTL operations relating to the tty subsystem.

• The tty data structures extracted from the str_tty.h file where tty constants, functions and
messages are defined.

The tty subsystem is based on STREAMS. The stack structure of a tty stream is made up of
the following modules:

• The stream head, which processes the user’s requests. It is common to all tty devices,
regardless of the line discipline or tty driver in use.

• The tioc module. It is provided to facilitate processing of the transparent ioctl operations.

• The line discipline (ldterm, sptr or slip).

• The stream end. It is a tty driver (cxma, lft, lion, rs, or sf) or pseudo-driver (pty).

The tty stream may also contain:

• An optional character mapping module (nls). It is a converter module pushed above the
tty driver to support input and output data mapping. The nls module uses the input and
output map files provided by the setmaps command.

• A pair of optional converters to convert upstream and downstream data. An upper
converter module is pushed above the line discipline and a lower converter module is
pushed below the line discipline. (For example, uc_sjis and lc_sjis are the upper and
lower converters used to convert IBM-932 code set into or from the EUC code set
handled by the ldterm line discipline.)

Note: The optional modules are not described in this chapter. See “The TTY Subsystem” in
AIX Version 4.1 General Programming Concepts: Writing and Debugging Programs
for more information.

The following figure shows the tty stream structure for a terminal and for a serial printer. The
line discipline for a terminal is ldterm. The line discipline for a serial printer is sptr and the
stream structure is simpler (the converters, and nls modules are not needed.)

11-2 AIX Version 4.1 Writing a Device Driver

Stream
Head

tioc Module

User
Process

User Space

Kernel Space

downstream
(write side)

Lower Converter Module

Upper Converter Module

ldterm Module

tty
Driver

upstream
(read side)

Terminal

TTY Terminal Stream

nls Module

Stream
Head

tioc Module

User
Process

downstream
(write side)

sptr Module

tty
Driver

upstream
(read side)

Printer

TTY Serial Printer Stream

User Space

Kernel Space

User modules can also be added or can replace the standard tty modules or drivers to
support other specific functionalities.

The means of communication within a stream are messages. Messages are sent through a
stream by calls to routines of each queue (write-side or read-side queue) in the stream.
Messages can be generated by a driver, a module, or by the stream head. The messages
are exchanged between modules or drivers in conformance with protocol rules which are
described in the following sections.

Messages that are passed from the stream head toward the driver are said to travel
downstream (also called write side). Similarly, messages passed in the other direction, from
the driver to the stream head, travel upstream (also called read side).

For more general information about tty subsystem and STREAMS, refer to AIX Version 4.1
General Programming Concepts: Writing and Debugging Programs and AIX Version 4.1
Communications Programming Concepts.

11-3STREAMS-Based TTY Subsystem Interface

Note: Because the tty subsystem is based on STREAMS, a good knowledge of STREAMS
concepts is highly recommended.

Stream Head
The stream head is the interface between the stream and the user application. The stream
head processes the user’s requests; it is common to all tty devices regardless of the line
discipline or tty driver in use.

The stream head performs the following functions:

• It allocates the stream as the controlling terminal if none is already allocated.

• It handles the process group and the session associated with the controlling terminal.

• It handles the job control.

• It processes the M_PCSIG and M_HANGUP messages coming from the line discipline
and generates the appropriate signals to the appropriate user process. It also handles the
message type M_ERROR from any downstream modules.

• It handles “trusted path” for security purposes. This functionality is shared between the
stream head and the driver.

• It handles the “revoke” function which kills all waiting processes attached to the specified
file descriptor.

The stream head processes various messages. In particular, the M_SETOPTS message is
sent by the line discipline module to alter some characteristics of the stream head. The
SO_ISTTY flag contained in an M_SETOPTS message indicates to the stream head that
the stream is established for a terminal.

The IOCTLs listed here are directly processed by the stream head:

TIOCSPGRP (or TXSPGRP)
Sets the process group identificator for the tty.

TIOCGPGRP (or TXGPGRP)
Gets the process group identificator for the tty.

TIOCGSID Gets the session identificator for the tty.

TXISATTY Answers if this stream is a tty or not.

TCTRUST Sets or resets the trust flag in the stream head.

TCQTRUST Gets the state of the tty (trusted or not).

TCSAK Sets or resets the state for secure attention key (SAK).

TCQSAK Identifies the process of a user asking for the SAK sequence.

TIOCCONS Sets the console redirection active or not.

TCXONC Generates the following message types downstream based on the input
parameter:

Input Parameter Message Type
TCOON M_START
TCOOF M_STOP
TCION M_STARTI
TCIOFF M_STOPI

TCFLSH Generates a M_FLUSH message type based on input parameter type
(FLUSHR, FLUSHW).

11-4 AIX Version 4.1 Writing a Device Driver

TIOC Module
The IOCTL system calls from applications that are addressed to modules or drivers can be
processed according to two STREAMS mechanisms:

• The first mechanism allows the processing of ioctls issued using the I_STR call. The
associated structure (strioctl defined in the stropts.h file) contains the IOCTL command
and the number of bytes of data. The I_STR calls are handled by the stream head and
forwarded downstream.

• The second mechanism allows the processing of ioctls other than I_STR. These IOCTLs
are known as transparent IOCTLs. (The transparent mechanism transparently supports
applications developed prior to the introduction of STREAMS.)

If an IOCTL is not processed in the stream head, the stream head creates an M_IOCTL
message which includes the ioctl arguments, and sends this message downstream for
processing by a specific module or driver. M_IOCTL messages containing a transparent
IOCTL have a TRANSPARENT indicator in their associated iocblk structure defined in the
stream.h file. The M_IOCTL messages can be followed by one or more M_DATA blocks.

The tioc module is provided in the tty subsystem to facilitate processing of the transparent
IOCTLs in the lower modules. It has two functions:

1. Identification of the transparent IOCTLs that can be processed on a tty stream:

The tioc module maintains a table containing a list of ioctls commands with the number
of bytes to copy, and a type (see the tioc_reply structure in “Open Routine”). The tioc
module recognizes a predefined list of ioctls. In addition, it asks the lower modules or
drivers for their specific IOCTLs and adds them to its list. This protocol is described in
“Open Routine.”

2. Management of the data transfers from or to the stream head for the transparent ioctls:

Since a module or driver has no user context, it has to request the stream head to
perform data transfers between user and kernel environments. The tioc module is
responsible for the transfer of data from or to the user space. This avoids messages
transfers through all modules. If the ioctl processing requires data to be transferred in
from user space, tioc issues an M_COPYIN message. In the same way, tioc issues an
M_COPYOUT message to transfer out any data back to user space. The tioc module
may also intermix M_COPYIN and M_COPYOUT messages in any order, if both input
and output transfers are required for an ioctl. The protocol used to perform the
M_COPYIN and M_COPYOUT messages is described in “Copy in Data for an IOCTL”
and “Copy out Data for an IOCTL.”

11-5STREAMS-Based TTY Subsystem Interface

Open Routine
The open routine has to initialize the IOCTL commands table of the tioc module. For that, it
sends downstream an M_CTL message containing the TIOC_REQUEST command.

The M_CTL message has to come downstream to the stream end. Then the drivers or
modules send an M_CTL message upstream containing the TIOC_REPLY command. Each
module on read side adds an M_DATA message to the M_CTL message if required. The
M_DATA message contains a list of tioc_reply structures which define the specific IOCTLs
to be handled by tioc.

The tioc_reply structure, defined in the str_tty.h file, is the following:

struct tioc_reply {

 int tioc_cmd; /* command */

 int tioc_size; /* number of bytes to copy */

 int tioc_type; /* type of ioctl */

};

/*

 * STREAM tioc module tioc_type

 */

#define TTYPE_NOCOPY 0 /* don’t need any copies */

#define TTYPE_COPYIN 1 /* need a M_COPYIN */

#define TTYPE_COPYOUT 2 /* need a M_COPYOUT */

#define TTYPE_COPYINOUT 3 /* need both M_COPYIN and M_COPYOUT */

#define TTYPE_IMMEDIATE 4 /* use immediate value */

The following examples show how IOCTL types are used.

The IOCTLs that do not require data transfer to or from STREAMS (for example,
TIOCSDTR) are declared as TTYPE_NOCOPY.

The IOCTLs that use immediate parameter values (for example, TCSBRK) are declared as
TTYPE_IMMEDIATE and are called as follows:

ioctl(fd, TCSBRK, 0);

The IOCTLs that request information from the STREAMS and require COPYOUT operations
(for example, TIOCGETA) are declared as TTYPE_COPYOUT and are called as follows:

ioctl(fd, TIOCGETA, termios_ptr);

In the preceding example, termios_ptr is the address of a termios structure to be
obtained from the tty.

The IOCTLs that send information to the STREAMS and require M_COPYIN operations (for
example, TIOCSETA) are declared as TTYPE_COPYIN and are called as follows:

ioctl(fd, TIOCSETA, termios_ptr);

In the preceding example, termios_ptr is the address of a termios structure to be set in
the tty.

Copy in Data for an IOCTL
When an M_IOCTL message arrives from the stream head, the write-side put routine
recognizes an IOCTL which requires data to be copied in, and it also knows the size of
required data.

So, the write-side put routine immediately sends an M_COPYIN message with this size to
the stream head. The stream head processes a copyin function and sends an M_IOCDATA
message downstream containing the data and the result of the copyin process.

If the copyin was successful, the write-side put routine sends an M_IOCTL message, linked
to an M_DATA message containing the data, downstream. The M_IOCTL message is sent
downstream until a module can process it and send an M_IOCACK up to the stream head.

11-6 AIX Version 4.1 Writing a Device Driver

If the copyin was not successful, the write-side put routine sends an M_IOCNAK message
to the stream head.

Copy out Data for an IOCTL
When an M_IOCTL message arrives from the stream head, the write-side put routine
recognizes an IOCTL which requires data to be copied out.

The tioc module sends the M_IOCTL message downstream and the IOCTL is processed by
the appropriate module. If the ioctl processing is successful, this module sends an
M_IOCACK upstream containing data to copy out.

The read-side put routine sends an M_COPYOUT message, linked to an M_DATA
message, to the stream head. The stream head processes a copyout function and sends
downstream an M_IOCDATA message containing the result of the copyout process.

The write-side put routine replies to this message by an upstream message, depending on
the success of the copyout. If it was successful, it sends an M_IOCACK message. If not, it
sends an M_IOCNAK message.

LDTERM Module
The ldterm module is a key part of the STREAMS-based tty subsystem. It supplies the line
discipline for terminal devices. This line discipline is POSIX compliant and also supports the
System V and BSD interfaces. The ldterm module provides the terminal interface functions
specified in the termios.h header file. The ldterm module also handles EUC and multibyte
characters.

The ldterm module processes various types of STREAMS messages. The messages
processed by this module are listed in Messages Summary. Any other message received by
ldterm is passed downstream or upstream unchanged.

Open Routine
When first called, the open routine allocates space for the ldterm internal structure, and
also sends an M_SETOPTS message upstream. This message includes a stroptions
structure part defined in the stream.h file, which contains options that inform the stream
head how to use this stream.

The open routine allocates space for the termios structure, which contains the flags used to
control the terminal. The flags are defined in the termios.h file.

– c_iflag defines input modes.
– c_oflag defines output modes.
– c_cflag defines hardware control modes.
– c_lflag defines terminal functions handled by ldterm.
– c_cc defines the control characters.

The open routine initializes the flags with default values.

When ldterm is pushed during stream initialization, it sends some M_CTL messages
downstream that query the driver for the default flags (TIOCGETA comand) and the flags
the driver may process (MC_CANONQUERY command). The driver may modify the flags
processed by ldterm with its response to MC_CANONQUERY.

Close Routine
The close routine sends an M_SETOPTS message upstream to undo stream head changes
done on the first open.

The ldterm module also sends M_START messages downstream to undo the effect of any
previous M_STOP messages.

Finally, the close routine frees all the outstanding buffers allocated by the ldterm module.

11-7STREAMS-Based TTY Subsystem Interface

Read-Side Put Routine
The ldterm read-side put routine processes the following STREAMS messages coming
from downstream modules or driver:

M_FLUSH
This is a request to flush the read-side or the write-side queue of all its data messages and
all data being accumulated. The read-side put routine processes the request and forwards
the message upstream.

The queue to be flushed (read-side or write-side) is determined by the M_FLUSH parameter
(FLUSHR or FLUSHW).

M_BREAK
The M_BREAK message provides the following status information:
break_interrupt, parity_error, framing_error or overrun.
The read-side put routine reads the status, processes the event and discards the message.

M_DATA
The read-side put routine processes the M_DATA message and performs various actions
according to the characters encountered in the data and the setting of the termios flags:

• The read-side put routine generates echo characters which are sent downstream in
M_DATA messages.

• ldterm can control the output flow of data: if the IXON flag is set and if ldterm deals with
the flow control, the read-side put routine processes START (VSTART) and STOP
(VSTOP) characters and sends M_START and M_STOP messages downstream.

• ldterm can control the input flow of data: if the IXOFF flag is set and input is to be
stopped or started, the read-side put routine generates M_STOPI and M_STARTI
messages downstream.

• If the ISIG flag is active, the read-side put routine manages signals characters. It sends
M_PCSIG messages upstream when signal characters are encountered and then
discards these characters.

• At the logical termination of input, the read-side put routine sends the currently buffered
characters upstream to the stream head. The logical termination of input depends on the
state of the ICANON flag:

– If ICANON is set, ldterm is in canonical input mode. In this case, the input logically
terminates at the end of a line of input. The canonical line termination characters are
NEWLINE, EOF, EOL, and EOL2.

– If ICANON is not set, ldterm is in noncanonical or raw input mode. In this case, the
input terminates when at least VMIN bytes are present in the input message buffer or
when the timer specified by VTIME expires.

M_IOCACK
The M_IOCACK message signals a positive acknowledgment of a previous M_IOCTL
message.

• If the M_IOCACK message acknowledges the TIOCGETA, TIOCSETA, TIOCSETAW, or
TIOCSETAF commands, the termios structure is updated as specified in the commands.

• If the M_IOCACK message acknowledges switching the current canonical mode
(–ICANON to ICANON, or ICANON to –ICANON), the read-side put routine sends an
M_SETOPTS message upstream to notify the stream head of the change.

• If the message acknowledges a TIOCOUTQ command, the required number of bytes are
added to the reply value in the M_IOCACK message.

• In all other cases the message is sent upstream.

11-8 AIX Version 4.1 Writing a Device Driver

M_CTL
The M_CTL messages received on the read-side and processed by ldterm are sent by the
driver for different reasons:

1. The M_CTL message can be sent to communicate changes in the driver’s state:

If the CLOCAL flag of ldterm is not set, and the carrier state has just made a transition
from on to off, the read-side put routine sends an M_HANGUP message upstream to
inform the stream head that the terminal connection was broken.

2. The M_CTL message can be sent to answer to a previous request or command from
ldterm. The following commands contained in an M_CTL message are processed:

TIOCGETA The driver sends this command either as a response to an inquiry for
current settings or to reflect an asynchronous change in the flags of its
termios structure.
The read-side put routine copies the termios structure from the attached
M_DATA message block into its internal termios structure. Then, it frees
the M_CTL message.

MC_NO_CANON
The input canonical processing normally performed on M_DATA messages
is disabled and those messages are passed upstream unmodified; this is
used by modules or drivers that perform their own input processing (For
example a pseudo terminal in TIOCREMOTE mode connected to a
program that performs the input processing).

MC_DO_CANON
All input processing performed on M_DATA messages is enabled.

MC_PART_CANON
The driver sends this message to notify ldterm that it handles some part of
the input processing itself (for example, flow control). An M_DATA message
containing a termios structure is expected to be attached to the original
M_CTL message. The ldterm module will examine the c_iflag,
c_oflag, and c_lflag fields of the termios structure and will process
only those flags which have not been turned ON.

TIOCGETMODEM
The driver sends this message to communicate the state of its flag modem
carrier on. The associated M_DATA message contains a value of 1
(one) to indicate the carrier is on, or a value of 0 (zero) to indicate the
carrier is off. This information is used to update the ldterm module state.
If the CLOCAL flag of ldterm is not set, and the carrier state has just made
a transition from on to off, the read-side put routine sends an
M_HANGUP message upstream to inform the stream head that the
terminal connection was broken.

When the command is processed the M_CTL message is freed.

3. The M_CTL message can be sent to answer to the TIOC_REQUEST coming from the
tioc module with a TIOC_REPLY. (See “TIOC Module” on page 11-4.) This M_CTL
message is forwarded upstream.

All other messages are merely forwarded upstream.

Write-Side Put Routine: Immediate Processing
The ldterm write-side put routine immediately processes the following STREAMS
messages:

11-9STREAMS-Based TTY Subsystem Interface

M_FLUSH
The write-side put routine flushes the read-side or the write-side queue and discards any
buffered output data. Then, it forwards the message downstream.

The queue to be flushed (read-side or write-side) is determined by the M_FLUSH parameter
(FLUSHR or FLUSHW).

M_DATA
If the write-side queue is empty, the write-side put routine processes the M_DATA message.
Else, it queues the M_DATA message to the write-side queue for later processing by the
write-side service routine.

M_IOCTL
The write-side put routine validates the format of the M_IOCTL message and checks for
known IOCTL command:

• If the message format is invalid, it turns the M_IOCTL message into an M_IOCNAK
message, and returns it upstream.

• If the IOCTL command is not recognized, it forwards the M_IOCTL message downstream
for processing by other modules.

• If the IOCTL is recognized, the write-side put routine determines if the command must be
processed in the proper sequence relative to M_DATA messages. If so, it queues the
M_IOCTL message to the write-side queue for later processing. The commands that
require processing in sequence are:
TIOCSETAW, TIOCSETAF, TCSETAW, TCSETAF, TCSBRK, TCSETXW, TCSETXF, and
TCSBREAK.
Otherwise, the write-side put routine processes the command immediately.

M_READ
The M_READ message is processed only if the ldterm module is in noncanonical input
mode.

The M_READ message is sent by the stream head to notify downstream modules when an
application has issued a read request and there is not enough data queued at the stream
head to satisfy the request. The message contains the number of characters requested by
the application.

If VTIME is positive, the write-side put routine starts an input timer. When the timer expires,
it sends all buffered input upstream.

M_START, M_STOP, M_STARTI, M_STOPI
Some IOCTLs commands (TCXONC with one parameter among TCOON, TCOOF, TCION,
TCIOF) are issued by the application to control the flow of data. The blocked data are stored
in the modules queues.

To process these IOCTLs the stream head generates and send downstream the following
high priority messages:

• M_START to restart output of data

• M_STOP to stop output of data

• M_STARTI to restart input of data

• M_STOPI to stop input of data.

The ldterm write-side put routine updates internal state fields and forwards these messages
downstream.

11-10 AIX Version 4.1 Writing a Device Driver

Write-Side Service Routine: Delayed Processing
The write-side service routine processes messages that may be delayed due to STREAMS
flow control or to ioctls requiring sequential processing. The write-side service routine is
called by the scheduler.

M_DATA
The write-service service routine processes the data according to the flags in the termios
structure. It sends the processed characters downstream to the driver when the write-side
queue fills up and all of the data is processed.

M_IOCTL
Some ioctl commands must wait until output drains before they are processed. M_IOCTL
messages containing these commands are queued on the write-side queue so that the write
service routine processes them in the correct sequence relative to preceeding data. The
commands that require processing in sequence are:
TIOCSETAW, TIOCSETAF, TCSETAW, TCSETAF, TCSBRK, TCSETXW, TCSETXF, and
TCSBREAK.

Multibyte Processing
The ldterm module handles the extended UNIX code (EUC) character encoding scheme.
This encoding scheme enables the module to process multibyte characters as well as
single-byte characters. It correctly handles backspacing and tabulation expansion for
multibyte characters.

By default, multibyte processing by ldterm is turned off. When ldterm receives an
EUC_WSET IOCTL call that sets character width on screen to a value greater than one, it
enables multibyte processing.

When multibyte processing is turned on, the ldterm module automatically calls EUC
routines as necessary.

Messages Summary
Messages include read-side messages and write-side messages.

Read-Side Messages
Messages processed by ldterm:

M_BREAK, M_CTL, M_DATA, M_FLUSH, M_HANGUP, M_IOCACK.

Messages sent by ldterm upstream:

M_CTL, M_DATA, M_ERROR, M_FLUSH, M_HANGUP, M_IOCACK, M_IOCNAK,
M_PCSIG, M_SETOPTS.

Write-Side Messages
Messages processed by ldterm:

M_CTL, M_DATA, M_FLUSH, M_IOCTL, M_READ, M_START, M_STARTI, M_STOP,
M_STOPI, M_NOTIFY.

Messages sent by ldterm downstream:

M_BREAK, M_CTL, M_DATA, M_DELAY, M_FLUSH, M_IOCTL, M_STOP, M_START,
M_STOPI, M_STARTI.

11-11STREAMS-Based TTY Subsystem Interface

SPTR Module
The serial printer module (sptr) supplies a specific line discipline for serial printers. It is
mainly used by the spool subsystem.

The user interface (spool/application) is specified in the lp special file.

The sptr module processes various types of STREAMS messages. The messages
processed by this module are listed in Messages Summary. Any other message received by
sptr is passed downstream or upstream unchanged.

Open Routine
When first called the open routine allocates space for the sptr structure and sends an
M_SETOPTS message upstream to the stream head.

When sptr is pushed on the stream, it sends an M_CTL message to the driver (containing
the TIOCMGET command) to obtain the status and the CTS modem control signal.

Read-Side Put Routine
The read-side put routine processes the following STREAMS messages:

M_FLUSH
The read-side put routine flushes the read-side queue, then forwards the message
upstream. The flushing is dependent on the input parameter (FLUSHR or FLUSHW).

M_DATA
The read-side put routine stores the M_DATA message for next M_READ message.

M_PCPROTO
The driver sends this message containing the LPWRITE_ACK command to indicate to sptr
that all the data it sent in the previous M_PROTO message was transmitted to the line.

M_IOCACK
The M_IOCACK message signals the positive acknowledgment of a previous M_IOCTL
message.

M_CTL
The M_CTL message is sent by the driver to communicate changes in the driver’s state, or
to reply to a previous M_CTL message.

The following commands contained in an M_CTL message are processed:

TIOCMGET The sptr module registers the CTS state in its private data.

TIOC_REPLY The sptr module adds information concerning the specific IOCTL
commands in the message and sends it upstream.

cts_on or cts_off
This message is sent by the driver when the CTS signal changes. sptr
uses it to get information about the printer connection and in turn takes
appropriate actions.

Write-Side Put Routine
The write-side put routine immediately processes the following STREAMS messages:
(Messages not listed here are simply forwarded downstream.)

M_FLUSH
The write-side put routine flushes the write-side queue and forwards the message
downstream. The flushing is dependent on the input parameter (FLUSHR or FLUSHW).

11-12 AIX Version 4.1 Writing a Device Driver

M_DATA
If the write-side queue is not empty, the write-side put routine queues the message to this
queue for later processing. The message will be processed by the write-side service routine
when called by the scheduler.

If the write-side queue is empty, the write-side put routine processes the message
immediately: it formats the data if needed, and sends an M_PROTO message with the data
downstream to the driver.

M_IOCTL
The write-side put routine processes some IOCTL commands.

For example, the sptr module will reply to LPWRITE_REQ when it receives the write
completion message (M_PCPROTO message) from the driver or if an error condition arrives
(timeout, disconnection of the printer).

The IOCTL commands which are not processed by SPTR are sent downstream unchanged.

M_READ
This message is sent by the stream head as a data request. The write-side put routine
returns the required number of data previously stored on the read side.

Messages Summary
Messages include read-side messages and write-side messages.

Read-Side Messages
Messages processed by sptr:

M_CTL, M_DATA, M_FLUSH, M_IOCACK, M_PCPROTO.

Message sent by sptr upstream:

M_FLUSH, M_IOCACK, M_IOCNAK, M_SETOPTS.

Write-Side Messages
Message processed by sptr:

M_DATA, M_FLUSH, M_IOCTL, M_READ.

Messages sent by sptr downstream:

M_CTL, M_DATA, M_FLUSH, M_IOCTL, M_PROTO

SLIP Module
The Serial Line Internet Protocol (slip) line discipline enables the TCP/IP protocol layer to
use the serial lines as network interfaces.

The slip module is used to read internet protocol (IP) packets from a tty port, and to write IP
packets to a tty port for an IP network interface.

The slip module reads raw data character by character from a tty port until it can assemble
an IP packet and forward it for the IP network interface. In the same way, packets written to
a network interface and corresponding to a tty device (slip interface) are written to the tty
port for transmission to a remote system.

11-13STREAMS-Based TTY Subsystem Interface

SLIP Applications
Two slip applications are provided: the slattach command and the sliplogin command.
Both attach a tty device to a network interface.

Both the slattach and sliplogin commands configure the stream head for a tty in the
following fashion:

The tty port is opened, and set to “raw” mode, with all echoing disabled. Then all active
disciplines are popped from the stream for the tty, and the slip line discipline is pushed. For
more information on slip configuration, see the /etc/rc.net.serial shell script.

The stream stack with the slip module is reduced to:

• The stream head

• The slip module

• The driver.

SLIP Routines
The slip module has open and close routines, and put and service routines for the read-side
and the write-side.

The read-side put routine handles M_FLUSH, M_CTL and M_DATA messages sent by the
driver. Unrecognized messages are just passed upstream.

The write-side put routine handles M_FLUSH, M_IOCTL and M_DATA messages sent by
the stream head. Unrecognized messages are just passed downstream.

TTY Drivers
tty drivers directly control the hardware (asynchronous devices) or pseudo-hardware (pty
devices). They perform the actual input and output to the adapter. The tty subsystem
consists of the following drivers:

Name Function

cxma 128-port adapter
lft Low function terminal emulation
lion 64-port adapter
pty Pseudo-terminal
rs Native serial ports, 8-port and 16-port adapters.
sf Native serial ports, in ISA bus hardware.

This section first explains how to provide a configuration routine for a tty driver. Then the
open, close, write and read processings are described, as well as the open and pacing
disciplines which are managed by the driver.

STREAMS tty device drivers have interrupt entry points at the hardware device interface,
and have direct entry points only for the open, close, and sysconfig system calls. The
open and close entry points are accessed via STREAMS. The stream head translates
write, putmsg and ioctl calls into messages and sends them downstream to be processed
by the driver write put routine.

Drivers Configuration Routine
In order to support dynamic loading, unloading, configuring, and unconfiguring, each tty
driver must provide a configuration routine. This routine is called each time the tty driver is
referenced in a load or unload operation.

Unlike an AIX non-STREAMS-based character device driver, the configuration entry point of
a tty driver has does not add an entry to the device switch table. It simply declares itself to
STREAMS by calling the str_install utility as shown in following example. The str_install

11-14 AIX Version 4.1 Writing a Device Driver

utility performs the internal operations necessary to add or remove the tty driver from the
STREAMS internal tables.

Example
The following example is a minimal configuration routine for a tty driver called ttyd. Device
specific configuration and initialization logic can be added as necessary. The ttyd_config
entry point defines and initializes the strconf_t structure required by the str_install utility. In
this example the ttyd_config operation retrieves the argument passed through the pointer
specified by the uiop parameter. The major number is required for tty drivers and is
retrieved from the dev parameter.

Note: Two types of DDS are handled for a tty driver:

• A DDS for the adapter contains the information common to all the lines on the adapter.

• A DDS for the line describes the attributes passed when a line is being configured on an
adapter. These attributes are, for example, TBC (Transmit Buffer Count), RTRIG
(Reception Trigger), default termios settings.

/* ttyd driver example:

/* BEGINNING. */

#include <sys/device.h> /* for the CFG_* constants */

#include <strconf.h> /* for the STR_* constants */

static struct module_info ttydm_info = {

DRIVER_ID,“ttyd”,0,INFPSZ,512,256

};

static struct qinit ttyd_rinit = {

NULL,ttydrsrv,ttydopen,ttydclose,NULL,&ttydm_info,NULL

};

static struct qinit ttyd_winit = {

ttydwput,ttydwsrv,NULL,NULL,NULL,&ttydm_info,NULL

};

static struct streamtab ttydinfo = {

&ttyd_rinit,&ttyd_winit,NULL,NULL

};

ttyd_config(dev, cmd, uiop)

dev_t dev;

int cmd;

struct uio *uiop;

{

struct ttyd_dds tmp_dds;

static strconf_t ttyd_conf = {

“ttyd”, &ttydinfo, STR_NEW_OPEN, –1

 };

if (uimove(&tmp_dds,sizeof(struct ttyd_dds),UIO_WRITE, uiop))

return EFAULT;

ttyd_conf.sc_major = major(dev);

ttyd_conf.sc_sqlevel = SQLVL_QUEUEPAIR; /* for example */

switch (cmd) {

case CFG_INIT:return str_install(STR_LOAD_DEV, &ttyd_conf);

case CFG_TERM: return str_install(STR_UNLOAD_DEV,

&ttyd_conf);

default: return EINVAL;

 }

}

/*ttyd driver example:

/* END.*/

11-15STREAMS-Based TTY Subsystem Interface

In this example, all the ttyd driver entry points are declared in the qinit structures that will
be handled by STREAMS. These entry points are:

On the read-side:

– an open routine
– a close routine
– a service routine.

On the write-side:

– a put routine
– a service routine.

All these entry points are standard STREAMS interface entry points.
The only direct entry point to the driver is ttyd_config.

Open Disciplines
Open disciplines specify the protocol to establish a connection

Open disciplines are defined at configuration time. They can be dtropen (default value) or
wtopen.

To facilitate the adding of any new discipline without modifying the driver, a module offers a
common interface for open disciplines. Thus the driver doesn’t have to know any
information about the open discipline it invokes at open time. In the same way, the open
discipline has no asumption to make concerning the driver’s private data structures. An
open discipline runs correctly with any driver that respects the common interface.

Driver / Common Open Discipline Module Interface
The driver has a private data structure (one per port) which contains a pointer to an open
discipline. This pointer is updated at open of the current open discipline.

The driver has to:

• provide a ddservice routine that allows the open disciplines to consult the status of the
line and to set or drop control lines.

• keep an openRetrieve pointer to the open discipline internal structure as long as the
input routine of the open discipline is present in the input data stream. For wtopen this
field will remain until the driver is closed. For dtropen it is cleared on returning from the
call to the open entry of the discipline.

• notify the open discipline, if one is active, of any line status change using the
openDisc_input entry.

• call openDisc_open at each open.

Interface routines
The common open discipline module interface provides the driver with five entry routines:

openDisc_open For open discipline open

openDisc_close For open discipline close

openDisc_input For open discipline input

openDisc_output For open discipline output

openDisc_service For open discipline service

The open routine of the driver calls openDisc_open with:

• A pointer to a memory location. The driver will use this pointer every time it calls the open
discipline routines.

• A pointer to its private data structure (one per port).

11-16 AIX Version 4.1 Writing a Device Driver

• Its ddservice entry point.

• An identifier of the required open discipline.

• The open status: local or remote.

• The open mode: DNDELAY, NONBLOCK,...

openDisc_open Routine
int openDisc_open (int **retrieve, caddr_t DriverPriv, int type,

int (* ddservice) (), int status, int mode)

{

if (valid open discipline type)

return((openDisc_sw[type].open)(retrieve,

 DriverPriv, ddservice, status, mode));

else

return(EINVAL);

}

For example, the open routine of the dtropen open discipline has the following form:

int dtro_open (int **retrieve, caddr_t ddpriv,

int (* ddservice) (), int mode, int status)

{

/* Allocate a dtro structure for that port */

struct dtro_t *dtro

/* Initializes the enclosed openDisc structure */

dtro–>CommonField.openDisc_next = dtro_list;

dtro_list = dtro; /* Chain it to existing ones */

dtro–>CommonField.DrivPriv = ddpriv;

dtro–>CommonField.ddservice = ddservice;

dtro–>CommonField.type = DTR_OPEN;

/* Pass the address of the structure to the driver, so that it can call

again */

*retrieve = (int *) dtro;

/* Make the dtropen specific processing */

}

openDisc_close Routine
int openDisc_close(caddr_t retrieve)

{

return((openDisc_sw[retrieve–>type].close)(retrieve));

}

The close routine of any open discipline must free its private structure (including openDisc
structure) and remove it from the chain.

openDisc_input Routine
int openDisc_input(caddr_t retrieve,char c,enum status s)

{

return((openDisc_sw[retrieve–>type].input)(retrieve, c, s));

}

openDisc_output Routine
int openDisc_output(caddr_t retrieve)

{

return((openDisc_sw[retrieve–>type].output)(retrieve));

}

11-17STREAMS-Based TTY Subsystem Interface

openDisc_service Routine
int openDisc_service(caddr_t retrieve,enum service_commands cmd,

void *arg)

{

return((openDisc_sw[retrieve–>type].service)(retrieve));

}

Pacing Disciplines
Pacing disciplines (or flow disciplines) control the flow of input and output data. The flow
control can be software or hardware, depending on driver and adapter capabilities. The
default mode is xon for a terminal.

Software Flow Control
In this case, special characters (START and STOP) indicate when the flow of data has to be
stopped or resumed. IXON, IXOFF and IXANY flags of termios structure enable start and
stop output or input control.

Hardware Flow Control
In this case, the flow of data is suspended or resumed by toggling an EIA modem control
signal. The hardware flow control modes are: dtr, rts.

Open and Close Routines
The open routine is called whenever a device is opened. The open routine uses the open
discipline specified at configuration time, and pins the private data structure.

The close routine unpins the private data structure.

During open and close, the driver is in user context such that it is able to issue sleeps and
allocate dynamic memory.

The open and close routines are normally serialized by the STREAMS. Only one close can
be active at a time per major/minor device pair. In some cases, the open routine can also
sleep waiting for the specified conditions, such as modem status, to be met.

Write-Side Put Routine
The write-side put routine processes the following received messages:

M_BREAK, M_CTL, M_DATA, M_DELAY, M_FLUSH, M_IOCTL, M_PROTO, M_START,
M_STARTI, M_STOP, M_STOPI.

Because the tty driver is the lowest module on the STREAMS stack, all other messages
have to be freed by the driver.

M_DATA
Data are to be sent to ouput.

M_DELAY
Data output is suspended for a delay passed as a parameter.

M_IOCTL
The M_IOCTL message contains the IOCTL command to be processed by the driver. When
the processing ends, the driver sends an M_IOCACK or M_IOCNAK message upstream,
depending on the result of the IOCTL processing. For those IOCTLs which are not to be
processed by the driver, the driver sends an M_IOCNAK message upstream. However
some IOCTL commands are ignored by the driver and cause only an acknowledgement of
the command.

11-18 AIX Version 4.1 Writing a Device Driver

M_FLUSH
If the request is done for the write side, the driver directly flushes its write-side queue. If the
request is for the read side, the driver immediately sends the same message upstream and
finally flushes its read-side queue.

M_CTL
The M_CTL message is generally sent by ldterm, sptr or tioc modules on their open
processing to obtain information from the driver. It must be processed immediately. The
message contains one of the following commands:

MC_CANONQUERY, TIOCGETA, TIOCGETMODEM, TIOC_REQUEST, TIOCMGET,
TXTTYNAME.

If these commands need to be processed by the driver, the driver sends upstream the same
message containing the requested information in the data part of the message.

If these commands do not need to be processed by the driver, then the driver just frees the
message.

In reply to the TIOC_REQUEST command the driver sends the M_CTL message upstream
replacing TIOC_REQUEST by TIOC_REPLY, and adding the list of its specific ioctl
commands, if any.

In reply to the MC_CANONQUERY command, the driver answers MC_PART_CANON if
needed.

TXTTYNAME is used to initialize the line discipline module name.

TIOCGETA is used to initialize the line discipline with the default termios settings.

M_STOP, M_START
These requests stop and restart output.

M_STOPI, M_STARTI
These requests stop and restart input.

M_BREAK
This message is sent by the line discipline to the driver to request the transmission of a
BREAK on the device if it supports the break condition.

If the integer pointed by the b_rptr part of this message is 1, then the driver sets the break
condition; otherwise the driver clears the break condition.

M_PROTO
This message is sent by the sptr module and contains the LPWRITE_REQ command. The
M_DATA message associated with the M_PROTO message contains data to transmit to the
line. The driver must acknowledge this message with a M_PCPROTO message with
parameter LPWRITE_ACK when it has transmitted all the data to the line.

Read-Side Processing
The driver has no read-side put routine because it is the last module on the stream.
However the driver has a read-side service routine which is scheduled by STREAMS.

The following messages are sent upstream by the driver:

M_BREAK, M_CTL, M_DATA, M_PCPROTO, M_PCSIG.

M_DATA
When the driver is ready to send data or other information to the user process, it does not
wake up the process. It stores the received characters in M_DATA messages which are
queued. These messages are sent later by the read-side service routine to the stream
corresponding to the driver line.

11-19STREAMS-Based TTY Subsystem Interface

M_BREAK
The driver sends this message upstream to provide the line discipline with the following
status information:
break_interrupt, parity_error, framing_error or overrun.

M_CTL
The driver sends this message upstream either to communicate changes in the modem
status (a transition of the carrier state from on to off for example), or to answer to a
previous request (TIOCGETA from module ldterm, for example).

M_PCSIG
If the SAK recognition is set, the driver sends this message to signal the reception of the
SAK sequence.

M_PCPROTO
The driver sends this message containing the LPWRITE_ACK command to indicate to sptr
that all the data it sent in the previous M_PROTO message was transmitted to the line.

Interface with the TIOC Module
On opening, the tioc module sends an M_CTL message downstream containing the
TIOC_REQUEST command. Then the tioc module waits for an M_CTL message with a
TIOC_REPLY command containing the downstream modules or driver specific ioctls. The
tioc module will update its ioctls table according to these specific ioctls. (See “TIOC Module”
on page 11-4.)

Example
The rs driver has two transparent IOCTLs (RS_SETA and RS_GETA) which require data
transfers from and into user space. The tioc module will perform these transfers on behalf
of the rs driver. For that, rs defines two tioc_reply structures that will be sent to tioc
module at its open time in reply to a TIOC_REQUEST included in an M_CTL message.

/* tioc_reply structures array. */

static struct tioc_reply

srs_tioc_reply[] = {

 { RS_SETA, sizeof(struct rs_info), TTYPE_COPYIN },

 { RS_GETA, sizeof(struct rs_info), TTYPE_COPYOUT },

};

In the write put routine of the rs driver, if the message to process is an M_CTL containing a
TIOC_REQUEST command, the following code is executed:

/* mp is the M_CTL to process,

 iocp is mp–>b_rptr: pointer to an iocblk struct describing M_CTL

 mp1 will contain the 2 tioc_reply structures.

 q is the driver’s write-side queue.

*/

case TIOC_REQUEST:

int reply_size = 2 * sizeof(struct tioc_reply);

iocp–>ioc_cmd = TIOC_REPLY;

if (!(mp1 = allocb(reply_size, BPRI_MED)))

break; /* just reply with the same message, next RS_SETA and

RS_GETA will arrive transparent and will fail */

iocp–>ioc_count = reply_size;

bcopy(srs_tioc_reply, mp1–>b_rptr, reply_size);

mp1–>b_wptr = mp1–>b_rptr + reply_size;

mp–>b_cont = mp1;

qreply(q,mp); /* send the M_CTL upstream */

break;

}

11-20 AIX Version 4.1 Writing a Device Driver

The M_CTL message containing the TIOC_REPLY command is sent upstream and other
modules will add M_DATA messages to M_CTL if necessary.

Interface with the LDTERM Module
The driver answers to the following ldterm commands which are included in M_CTL
messages:

TIOCGETA The ldterm module asks for current termios structure settings.

TIOCGETMODEM
The ldterm module asks for the modem carrier state.

MC_CANONQUERY
The ldterm module negotiates which termios structure flags are handled
by the driver.

Another specific interface between the tty driver and the line discipline module (ldterm,
sptr) module is the possibility for the driver to send special information:

• A modem status change

• A break interrupt

• A parity error

• A framing error.

When the driver detects a modem status change, it sends upstream an M_CTL message
with a status pointed by the b_rptr part of the message. This status can be:

cts_on, cts_off, dsr_on, dsr_off, ri_on, ri_off, cd_on, cd_off.

When the driver detects an error, it sends an M_BREAK message upstream with a status
pointed by the b_rptr part of the message. This status can be one of the values:

break_interrupt, framing_error, parity_error, overran.

Interface with the SPTR Module
When the driver has sent on the line all the data associated with an M_PROTO message
(with the LPWRITE_ACK command), it sends sptr an M_PCPROTO message (with the
LPWRITE_REQ command) in reply.

The TTY Subsystem in a Multiprocessor Environment
Note: Information supplied in this section requires knowledge of the STREAMS

synchronization, and of the device drivers in a multiprocessor environment. See
Related Information on page 11-28.

On a multiprocessor system, a program can run on any processor and can migrate between
processors. A program which consists of multiple threads can run on several processors at
the same time. This creates a problem of concurrent access to global data.

However, the STREAMS-based tty subsystem takes advantage of the synchronization
provided by STREAMS. Most of tty STREAMS modules and drivers are configured with the
queue pair level synchronization (SQLVL_QUEUEPAIR). This ensures the serialization of
operations done on read and write sides, without explicit locking by the module.

In the tty subsystem, the problem of maintaining data consistency in a multiprocessor
environment is different in the driver and in the other stream modules.

11-21STREAMS-Based TTY Subsystem Interface

TTY Modules Other Than Driver
If the module doesn’t have global data shared by all the modules instances, the queue pair
level synchronization (SQLVL_QUEUEPAIR) is enough to ensure the module is
multiprocessor-safe. Nevertheless, the queue level synchronization (SQLVL_QUEUE) can
be used for better throughput if there is no shared data between the read and write sides of
the module, or if the put and service routines of the module guarantee the consistency of
accesses to such data. The kernel provides a set of locking services and atomic primitives
for that purpose.

If the module has global data, it must be protected with locks, such as simple locks. Use the
disable_lock and unlock_enable kernel services to safely protect data on a multiprocessor
system.

Drivers
There are three basic types of critical sections for drivers:

• thread-thread: critical sections shared between threads

• thread-interrupt: critical sections shared between threads and interrupts handlers

• interrupt-interrupt: critical sections shared between interrupt handlers.

STREAMS resolves the first critical section problem, except for concurrent multiple opens.
The serialization of open and close, and the synchronization between the last close and first
open is performed by STREAMS, and no specific lock is needed in the driver.

The other critical sections must be managed by the driver.

Depending on the STREAMS synchronization level selected, the STREAMS will also ensure
the serialization of the put and service routines for the driver.

For the rs driver for example, only one interrupt per adapter can be handled at a time. But
off-level routines which may be called for the same port on different processors, need to be
serialized. To do so, the driver uses simple locks and interrupt priority masking.

Drivers which are not multiprocessor-safe can rely on the possibility of funnelling provided
by the kernel and STREAMS.

Special Cases
These include callback functions and driver configuration routines.

Callback Functions
There are callback functions (for the timeout or bufcall utilities) that need to be protected
against interrupts. This protection can be ensured by STREAMS. In this case the flag
STR_QSAFETY will be specified in the str_install utility. It is also possible to use locks to
protect the callback functions.

Note: These functions are not serialized with the service and put procedures.

Driver Configuration Routine
The minimal configuration routine of the driver is not called by STREAMS. Consequently it is
not protected by STREAMS and must ensure its protection as a non-STREAMS driver does.

An example of a driver configuration routine is provided on page 11-14.

11-22 AIX Version 4.1 Writing a Device Driver

IOCTL Support and Origin
The following table indicates for each IOCTL:

– Its origin: AIX, AT&T, BSD or SVID (AIX means that the IOCTL is specific to AIX
system).

– In which part of the stream tty subsystem (stream head, ldterm, sptr, nls, or driver)
the IOCTL is processed. An asterisk (*) in a column indicates where the ioctl is
processed.

The last column (comment) gives an additional information for some IOCTLs:

– “STREAMS” indicates that the ioctl is processed by the STREAMS framework.
– “TIOCGETA”, “TIOCSETA”, “TIOCSETAF” and “TIOCSETAW” indicate the internal

names of the TCGETS, TCSETS, TCSETSF and TCSETSW ioctls respectively.
– “rs”, “sf”, “lion”, and “cxma” indicate that the IOCTL can only be used by the specified

driver.
– “pty” indicates that the IOCTL can only be used by a pseudo-terminal driver.

IOCTL origin stream
head

ldterm sptr nls driver comment

CXMA_GETA AIX * cxma

CXMA_SETA AIX * cxma

CXMA_SETAW AIX * cxma

CXMA_SETAF AIX * cxma

CXMA_KME AIX * cxma

CXMA_GETFLOW AIX * cxma

CXMA_SETFLOW AIX * cxma

CXMA_GETAFLOW AIX * cxma

CXMA_SETAFLOW AIX * cxma

CXMA_RESET AIX * cxma

EUC_WGET AT&T *

EUC_WSET AT&T *

FIOASYNC BSD * STREAMS

FIONREAD BSD * STREAMS

LI_GETVT AIX * lion

LI_SETVT AIX * lion

LI_GETXP AIX * lion

LI_SETXP AIX * lion

LI_SLPI AIX * lion

LI_DSLP AIX * lion

LI_SLPO AIX * lion

LI_PRES AIX * lion, cxma

LI_DRAM AIX * lion, cxma

LI_GETTBC AIX * lion

LI_SETTBC AIX * lion

LPRGET AIX *

LPRSET AIX *

11-23STREAMS-Based TTY Subsystem Interface

IOCTL commentdrivernlssptrldtermstream
head

origin

LPRMODG AIX *

LPRMODS AIX *

LPRGOTV AIX *

LPRSTOV AIX *

LPQUERY AIX *

LPRGETA AIX *

LPRSETA AIX *

LPWRITE_REQ AIX *

RS_GETA AIX * rs, sf

RS_SETA AIX * rs, sf

TCFLSH SVID *

TCGETA SVID * *

TCGETS SVID * * TIOCGETA

TCGETX SVID * *

TCGMAP AIX *

TCKEP AIX * STREAMS

TCLOOP AIX *

TCQSAK AIX *

TCQTRUST AIX *

TCSAK AIX *

TCSBRK SVID *

TCSBREAK AIX *

TCSETA SVID * * *

TCSETAF SVID * * *

TCSETAW SVID * * *

TCSETS SVID * * TIOCSETA

TCSETSF SVID * * TIOCSETAF

TCSETSW SVID * * TIOCSETAW

TCSETX SVID * *

TCSETXF SVID * *

TCSETXW SVID * *

TCSMAP AIX *

TCTRUST AIX *

TCXONC SVID *

TIOCCBRK BSD *

TIOCCDTR BSD *

TIOCCONS AIX *

TIOCEXCL BSD * pty

TIOCFLUSH BSD *

TIOCGETC BSD *

TIOCGETD BSD *

11-24 AIX Version 4.1 Writing a Device Driver

IOCTL commentdrivernlssptrldtermstream
head

origin

TIOCGETP BSD *

TIOCGLTC BSD *

TIOCGPGRP SVID *

TIOCGSID SVID *

TIOCGWINSZ BSD *

TIOCHPCL BSD *

TIOCNXCL BSD * pty

TIOCLBIC BSD *

TIOCLBIS BSD *

TIOCLGET BSD *

TIOCLSET BSD *

TIOCMBIC SVID *

TIOCMBIS SVID *

TIOCMGET SVID * *

TIOCMSET SVID * *

TIOCOUTQ BSD * *

TIOCPKT BSD * pty

TIOCREMOTE AT&T * pty

TIOCSBRK BSD *

TIOCSDTR BSD *

TIOCSETC BSD *

TIOCSETD BSD *

TIOCSETN BSD *

TIOCSETP BSD *

TIOCSLTC BSD *

TIOCSPGRP SVID *

TIOCSTART BSD *

TIOCSTI BSD *

TIOCSTOP BSD *

TIOCSWINSZ BSD * * pty

TIOCUCNTL BSD * pty

TXGPGRP AIX *

TXISATTY AIX *

TXSETIHOG AIX *

TXSETOHOG AIX *

TXSPGRP AIX *

TXTTYNAME AIX *

11-25STREAMS-Based TTY Subsystem Interface

TTY Data Structures
The following is an extract from the usr/include/sys/str_tty.h file. This file defines all the
constants, functions, structures and types of messages that are used by the tty modules
and drivers for the exchange of messages. Additional comments explain how some of the
structures are used.

Information from usr/include/sys/str_tty.h
#ifndef _H_STR_TTY

#define _H_STR_TTY

#include <sys/termio.h>

#include <sys/stream.h>

#ifdef _KERNEL

#include <sys/errno.h>

#include <sys/ioctl.h> /* for TTNAMEMAX definition */

#include <termios.h>

#include <sys/trchkid.h>

#include <sys/atomic_op.h>

/* Macro definition for atomic operation on sysinfo fields. */

#define sysinfo_add(x,y) fetch_and_add(&(x), (y))

TIOC Module
/* Commands of the M_CTL message at open */

#define TIOC_REQUEST _IO(’J’, 0x91) /* request for ioctls */

#define TIOC_REPLY _IO(’J’, 0x92) /* reply for ioctls */

/* Data structures for TIOC_REPLY */

struct tioc_reply {

int tioc_cmd; /* ioctl command */

int tioc_size; /* number of bytes to copy */

int tioc_type; /* type of ioctl */

};

/* Values for tioc_type */

tioc_type indicates if the IOCTL requires data to be copied into or from user space.

#define TTYPE_NOCOPY 0 /* don’t need any copy */

#define TTYPE_COPYIN 1 /* need an M_COPYIN */

#define TTYPE_COPYOUT 2 /* need an M_COPYOUT */

#define TTYPE_COPYINOUT 3 /* need both M_COPYIN and M_COPYOUT */

#define TTYPE_IMMEDIATE 4 /* use immediate value */

TTY Commands Associated with M_CTL Messages
#define TIOCGETMODEM _IO(’J’, 0xa0) /* get the modem state from driver */

#define MC_CANONQUERY _IO(’J’, 0xa1) /* query the termios state */

#define MC_NO_CANON _IO(’J’, 0xa2) /* set pty’s remote mode */

#define MC_DO_CANON _IO(’J’, 0xa3) /* reset pty’s remote mode */

#define MC_PART_CANON _IO(’J’, 0xa4) /* oflag,iflag and lflag of termios*/

/* are handled by driver or ldterm */

M_PCPROTO Commands
#define LPWR (’l’<<8)

#define LPWRITE_ACK (LPWR|31) /* command in M_PCPROTO message */

typedef int OSR_STATUS;

11-26 AIX Version 4.1 Writing a Device Driver

Status Information
enum status gives general status definitions for drivers and line discipline in the case of
parity and framing error or break_interrupt from the adapter, or in the case of modem status
changes. The status information is sent by the driver in an M_BREAK message.

enum status {

good_char, overrun, parity_error, framing_error, break_interrupt,

cts_on, cts_off, dsr_on, dsr_off, ri_on, ri_off, cd_on, cd_off };

The possible values for the status enumeration are:

good_char A valid character was received.

overrun Characters were not removed from the hardware in a timely fashion and
some data was lost by the hardware.

parity_error Character was received with improper parity. The character is passed as
received by the hardware.

framing_error Character was received with a framing error. This usually indicates the
number of bits per character is set incorrectly or the baud rate is not set
correctly. The character is passed as received by the hardware.

break_interrupt
The hardware detected a break condition. The break condition is different
for various adapters and physical link layers. For asynchronous
communications, the break condition is usually defined as a spacing
condition on the line for more than one total character time.

cts_on The clear to send signal, cts, made a low to high transition.

cts_off The clear to send signal made a high to low transition.

dsr_on The data set ready signal, dsr, made a low to high transition.

dsr_off The data set ready signal made a high to low transition.

ri_on The ring indicate signal, ri, made a low to high transition.

ri_off The ring indicate signal has made a high to low transition.

cd_on The data carrier detect signal, cd, made a low to high transition.

cd_off The data carrier detect signal made a high to low transition.

TTY Trace Support
The main tty hook IDs are defined in the sys/trchkid.h common header file. The tty
subhooks are defined below. The tty hooks and subhooks are used in the Return and Enter
macros defined below.

/* TTY subhooks identificators */

#define TTY_CONFIG 0x01

#define TTY_OPEN 0x02

#define TTY_CLOSE 0x03

#define TTY_WPUT 0x04

#define TTY_RPUT 0x05

#define TTY_WSRV 0x06

#define TTY_RSRV 0x07

#define TTY_REVOKE 0x08 /* for stream head */

#define TTY_IOCTL 0x09 /* for ioctls */

#define TTY_PROC 0x0a /* for drivers */

#define TTY_SERVICE 0x0b /* for drivers */

#define TTY_SLIH 0x0c /* for drivers */

#define TTY_OFFL 0x0d /* for drivers */

#define TTY_LAST 0x0e /* can be used for any specific entry*/

11-27STREAMS-Based TTY Subsystem Interface

The parameters for the Return and Enter macros are:

w TTY hookid | TTY subhookid

dev dev(type dev_t)

ptr address of the private data (q–>q_ptr) of each module or driver
a, b, c specific parameters for each subhook
retval return value

The parameters for each subhook are:

TTY_CONFIG a=command, no dev, no ptr.
TTY_OPEN a=oflag, b=sflag
TTY_CLOSE a=flag
TTY_WPUT a=@msg, b=message type
TTY_RPUT as TTY_WPUT
TTY_WSRV a=q_count
TTY_RSRV as TTY_WSRV
TTY_REVOKE a=flag
TTY_IOCTL a=ioctl command
TTY_PROC a=cmd, b=arg
TTY_SERVICE a=service command, b=arg
TTY_SLIH no dev, ptr=@struct intr, a=adapter type
TTY_OFFL ptr=@struct intr

Enter and Return Macros
The Enter and Return macros use the tty hooks and subhooks.

#define Enter(w, dev, ptr, a, b, c) \

dev_t DEV; \

int PTR; \

int Flag = 0; \

int W; \

if (TRC_ISON(0)) { \

DEV = (dev); \

PTR = (ptr); \

Flag = 1; \

W = w; \

TRCHKGT(W, DEV, PTR, a, b, c); \

}

#define Return(retval) { \

int RET = (retval); \

int Line = __LINE__; \

if (Flag) \

TRCHKGT(((W)|0x80), DEV, PTR, RET, Line, 0);\

return(RET); \

}

#define Returnv(retval) { \

int Line = __LINE__; \

if (Flag) \

TRCHKGT(((W)|0x80), DEV, PTR, 0, Line, 0);\

}

#define Data(xxx, a, b, c) \

(Flag ? TRCHKGT(((W)|0x40), DEV, PTR, a, b, c) : 0)

11-28 AIX Version 4.1 Writing a Device Driver

TTY IOCTL Internal Names
The following definitions indicate the internal names of some IOCTLs.

/* tty ioctls commands internal names */

#define TIOCGETA TCGETS

#define TIOCSETA TCSETS

#define TIOCSETAW TSETSW

#define TIOCSETAF TCSETSF

STREAMS TTY Modules and Drivers DDS
/* Maximum device name length */

#define DEV_NAME_LN 16

/* DDS types used at configuration time */

enum dds_type { /* Which DDS type */

LC_SJIS_DDS, /* sjis lower converter module*/

LDTERM_DDS, /* ldterm module */

LION_ADAP_DDS, /* 64-port driver (for adapter) */

LION_LINE_DDS, /* 64-port driver (for lines) */

NLS_DDS, /* nls module */

PTY_DDS, /* pty module */

RS_ADAP_DDS, /* Native 8 and 16-port driver (for adapters) */

RS_LINE_DDS, /* Native 8 and 16-port driver (for lines) */

SPTR_DDS, /* sptr module */

TIOC_DDS, /* tioc module */

UC_SJIS_DDS /* sjis upper converter module */

CXMA_ADAP_DDS /* 128-port driver (for adapter) */

CXMA_LINE_DDS /* 128-port driver (for lines) */

 };

STREAMS TTY Modules and Drivers Names
enum module_names {

tioc, /* transparent ioctl modulename */

ldterm, /* line discipline module name */

pty, /* pseudo tty driver module name */

uc_sjis, /* upper converter sjis module name */

lc_sjis, /* lower converter sjis module name */

nls, /* mapping discipline module name */

sptr, /* serial line printer discipline name */

rs, /* rs driver name */

lion, /* lion driver name */

cxma /* 128 port driver name */

 };

#endif /* _H_STR_TTY */

Related Information
Discussion of Multiprocessing (MP) Serialization in Serialization Services, on page 5-8, and
MP-Safe Coding Example, on page 5-12.

The TTY Subsystem in AIX Version 4.1 General Programming Concepts: Writing and
Debugging Programs.

STREAMS in AIX Version 4.1 Communications Programming Concepts.

UNIX System V Release 4, Programmer’s Guide: STREAMS. Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1990.

12-1Implementing Graphical Input and 2D Graphics Device Drivers

Chapter 12. Implementing Graphical Input and 2D
Graphics Device Drivers

This chapter provides technical guidance for developers who want to add functionality into
the XServer on AIXwindows. This additional functionality may include graphics adapters,
input devices and dynamically loaded extensions.

This chapter has several sections:

• “Porting to the AIXwindows X Server: Overview,” on page 12-1, provides a description
of the basics of porting to the AIXwindows X Server.

• “Porting 2D Graphics Adapters,” on page 12-2, outlines the general procedure to
develop a graphics adapter device driver and the loadable DDX interface used by the X
Server.

• “Porting Input Devices,” on page 12-47, describes how to add a new input device to the
AIXwindows X Server via the X11 Input Extension.

• “Building a Dynamically Loadable Module,” on page 12-60, is a brief description of how to
develop a generic X extension load module.

The information provided in this chapter does not attempt to educate readers about the X
Window System or X programming. Rather, it describes the tasks required to implement the
above-mentioned functionality in the AIX system. For general information about the X
Window System programming see the list of related information at the end of this chapter.

Porting to the AIXwindows X Server: Overview
You can add functionality to the AIXwindows X server through the creation of dynamically
loadable modules. Each load module must provide the following basic functionality:

• An entry point definition

• A set of routines to initialize the appropriate data structure provided by the X server

• X Consortium and vendor-written implementation-specific routines

The load modules can interact with the X Window System in a variety of ways. The
AIXwindows X server currently supports the following functionality:

• Porting the X server to run on a different 2D graphics adapter

• Writing load modules to the standard X11 Input Extension

• Creating your own dynamically loadable X Window System extension

The load modules for 2D graphics adapters and extension input devices require that entries
be defined and configured in the AIX Object Data Manager (ODM) databases.This allows
the X server to determine where the load modules for the specific devices reside.
Information about 2D graphics adapters is stored in the ODM Graphics Adapter Interface
(GAI) database, and information about extension input devices is stored in the ODM
XINPUT database.

Current database entries can be examined by setting the environment variable
ODMDIR=/usr/lib/objrepos and running the command odmget GAI or odmget XINPUT.
These entries will be explained in greater detail in the respective sections of this chapter.

12-2 AIX Writing a Device Driver

The dynamically loaded extensions are normally loaded via a per-user basis. If the X server
is started with a –x ext_name flag, then the X server will look in the file
/usr/lpp/X11/bin/dynamic_ext for the load module that corresponds to ext_name. There
are also static extensions, which can be found in /usr/lpp/X11/bin/static_ext, but they are
always loaded into the X server, and are thus not recommended.

The information provided here assumes an ability on the part of the developer to program
generic actions without further instruction. Refer to the following sections to learn more
about extension-specific tasks:

• Porting 2D Graphics Adapters (on page 12-2)

• Porting Input Devices (on page 12-47)

The subroutines used in these extensions are summarized in “List of X Server Porting
Subroutines” on page 12-62.

Porting 2D Graphics Adapters
This section describes the method for porting 2D graphics adapters into the X server on the
AIXwindows. The information is divided as follows:

• Graphics Architecture Overview
– Graphics Adapter Interface (GAI) Display Subsystem
– X Server

• Low-Level Display Driver
– Display Device Driver
– Display Device Driver Subroutines
– LFT Interface Routines
– Display Driver Structure Descriptions

• Device Dependent Driver (DDX)
– GAI 2D Adapter Load Modules
– X Server Initialization Routines
– Device Dependent Initailization Subroutines
– Adapter Access and the aixgsc System Call
– Minimum RMS for 2D Adapters
– Configuring the 2D Adapter into the ODM Database

12-3Implementing Graphical Input and 2D Graphics Device Drivers

Graphics Adapter Interface (GAI) Display Subsystem
The Architecture of the Display Subsystem figure illustrates the display subsystem
architecture.

PEX
APP

PEX

DPS
APP

DPSlib

Motif Toolkit

XT Toolkit (XT)

Motif
APP

window
mgr

coc
dkt

Character APP

Xlib

xterm

OpenGL
APP

OpenGL

graPHIGS
APP

graPHIGS
LIB

GL
APP

GL
LIB

graPHIGS
Nucleus

X Server

AIX/LFT DIX MI MFB CFB OS

GAI Load Modules

xxddx xxrms xxPEX xx3DMod1 xx3DMod2 xx3DMod5

Kernel Enhancements

RCMLFT

Display Device DriversInput Device Drivers

Architecture of the Display Subsystem

The display subsystem is the set of software entities that provides all display related input
and output to applications and to the AIX Version 4.1 kernel. Its capabilities range from
simple 2D graphics to support for 3D models which enable lighting and shading.

A Graphics Adapter Interface (GAI) defines an interface between the user application
programming interface (API) and the device-specific code.

The principal components of the architecture include:

• X Server

• graPHIGS Nucleus

12-4 AIX Writing a Device Driver

• Kernel Enhancements

• GAI Load Modules

The shaded objects in the architecture figure show input and graphics hardware devices
and user applications. These are not components of the display subsystem.

The components of the display subsystem receive their external inputs from X clients and
from other kernel subsystems. User inputs are processed by the kernel and routed through
the X server, which sends them appropriately to X clients.

Applications use programming interfaces made available through the various libraries of the
display subsystem. Each programming interface, (API), defines a graphical model. These
graphical models evolve in many forums, including the American National Standards
Institute, the International Standards Organization, the X Consortium, the GL Architecture
Review Board (ARB), and various highly successful industry de-facto standards.

The graphical models supported by the display subsystem are listed below:

• graPHIGS

• X Window System

• Display PostScript

• Graphics Library of Silicon Graphics, Inc. (GL)

• OpenGL Version 1.0

• PEX 5.1

Display Subsystem Definitions
The display subsystem is the set of software units that provides all display-related input and
output to applications and to the AIX Version 4.1 kernel.

List of Component Types
The types of components are defined below:

Component Type Definition

Adapter With reference to input devices, an adapter specifies the device driver
used to process user events from one of the input devices. This could
be the keyboard/sound, mouse, tablet, dials, or lighted programmable
function keys.

Application Specifies a program that uses the display subsystem. The use of this
term with respect to the display subsystem is analogous to the
standard definition of application.

Client Specifies an application that uses the services of X Window System.
In the terminology of the display subsystem, however, this concept
has been extended. A client is an application that uses a server.
These clients are typically different processes and may reside on
different platforms.

12-5Implementing Graphical Input and 2D Graphics Device Drivers

Display Device Driver

Specifies the set of subroutines that control read or write access to a

display adapter. The display drivers provide a common programming
interface to other components in the display subsystem, and account
for the particular function and implementation within the specific
device. Thus, each display driver contains code unique for that
device. A set of subroutines is not considered a display driver unless
it:

• Contains software that is applicable only to the function or control
of a particular device.

OR

• Issues I/O level commands to specifically manipulate the device
hardware.

• Manages the graphics context and graphics resources on behalf of
servers.

Library Specifies a programming interface consisting of a functionally related
set of subroutines that are typically grouped as one module and that
provide the formal application programming interface into a collection
of software.

Nucleus Specifies a server. The term nucleus is used principally to distinguish
an instance of a server process from the X server. The principal user
of nucleus is the graPHIGS API, via the graPHIGS nucleus.

Server Specifies the component of X Window System that receives requests
from the Xlib library and that returns events to the Xlib library. This
concept has been modified and extended in the display subsystem. A
server can also mean a process executing in a platform in which
rendering occurs and that is directly attached to the display adapter.
This server accepts X protocol requests and returns X protocol
events, and as such is the X server. However, other graphical models
use the server to obtain screen resources such as window geometries
or colormaps, so the X server definition is now extended to become
the resource server.

Toolkit Specifies a library of calls that allows applications to manipulate data
presentation using a different level of abstraction than that offered by
an underlying library. The display subsystem expansion of this
concept of a toolkit is the concept that it in turn calls upon another
library. The toolkit often takes its name from the underlying library.
Frequently, toolkits are written to be window system independent.

List of Component Names
The following list introduces the components and provides an description of the function of
each. Where appropriate, the general category of component is described rather than each
instance. Some of the components listed (such as DPS, GL and graPHIGS) are packaged
into separate LPPs and must be ordered as such.

Component Description

DPS Specifies Display PostScript, a program product from Adobe Systems, Inc.
This program implements the language PostScript and its extensions, as
applicable, on a display system instead of on printers. DPS uses 2D
graphical functions and complex character fonts, and operates as an
extension of the X server.

12-6 AIX Writing a Device Driver

GAI Specifies the Graphics Adapter Interface, including the interface to and the
set of libraries that form the interface for graphical output to the display
adapters. The GAI libraries implement 2D and 3D graphics functions as
well as permit direct access to the hardware. GAI components include:

• GAI Resource Management Support

• GAI 2D Drawing Library

• GAI 3D Model 1 Drawing Library

• GAI 3D Model 2 Drawing Library

• GAI 3D Model 5 Drawing Library

GL Specifies Graphics Library. This it the library of graphical functions defined
and implemented by Silicon Graphics, Incorporated, under the product
name GL. This library is a set of 3D functions, based on a graphical model
differing from the PHIGS graphical model. GL is the second graphical
model used for 3D. Thus, it is often referred to as the 3D-M2 or the GAI 3D
Model 2 Drawing Library.

graPHIGS Specifies the graPHIGS application programming interface (API), which is
an implementation of PHIGS. This program includes extensions to and
deviations from the PHIGS standard. The term PHIGS is a reference to the
graPHIGS API, unless explicitly stated to the contrary.

The graPHIGS API is the first 3D graphical model. It is referred to as
3D-M1 or the GAI 3D Model 1 Drawing Library.

OpenGL Specifies OpenGL, a network transparent API for developing applications

using 3D graphics. OpenGL is derived from the proprietary SGI GL API.

PEX Specifies the 3D Extension to X. The core X protocol provides for basic 2D
graphics functionality. The PEX extension adds 3D graphics at about the
same functional level as PHIGS and PHIGS PLUS, including features such
as lighting, shading, server-side stored structures, and advanced primitives.

PHIGS Specifies Programmer’s Hierarchical Interactive Graphics System, an
accepted international standard (ISO 9592) for the definition, display, and
modification of 2D or 3D graphical data, the additional manipulation of
geometrically related, objects, and the definition and modification of the
relationships between the data and the objects. The relationships and the
data are stored in a hierarchical data store.

LFT Specifies low-function terminal. The LFT is a STREAMS-based simple
character oriented tty-like terminal emulator for full screen processing. LFT
is a low-cost, low-function enablement feature intended to be used only
during system startup, installation and standalone diagnostics. It is not
expected to be used in steady-state processing. It supports all the display
adapters and keyboards available in AIX Version 4.1, but does not support
the mouse, tablet, or any other input devices.

X Window System
Specifies the core of the display subsystem. The X Window System
supplies many functions to other components of the subsystem, including
resource management, window allocation, a transparent method for
communications between platforms, and 2D drawing operations. It has a
well-defined mechanism for extending its services. It operates using two X
components, the Xlib library and the X server that operate as follows:

Xlib Resides in a client and provides the API to users of X
Window System. Xlib passes the requests to the X server
and events to the application. It interacts with the X server
using a protocol through an AIX or shared memory socket.

12-7Implementing Graphical Input and 2D Graphics Device Drivers

X Server The X server resides in the X executable and is a
component within the display subsystem core. The X
server consists of two parts. A part that is device
independent (dix) that interprets requests from the Xlib,
schedules client activity, manages the return of events and
input to the Xlib Library, and performs other generic
actions.

The X server also consists of a device-dependent part. The
device-dependent part renders the 2D graphics operations
defined by X Window System for the specific display
adapter. The loadddx GAI Load Modules implement this
interface.

12-8 AIX Writing a Device Driver

Character
APP

xterm
APP

DPS
APP

DPS
LIB

Motif
APP

PEX
APP

Open
GL
APP

GL
APP

gP
APPAPP

Toolkit

Motif
Toolkit

Xt
Toolkit

PEX
LIB

Extension

Lib

Comm

Device-
Dependent
Core

Kernel

HDW.

gP
LIB

Open
GL
widgets
LIB

Open
GL
LIB

X
LIB

GL
LIB

Comm
Svcs

Comm.
Svcs.

X Server

loadddx loadrms
loadext

loadext

loadext

RCM
Input Adapter
Display Driver

Graphics
Adapters

Input
Devices

X
LIB

Other GAI
Display Drivers

gP
Nucleus

Device-
Independent
Core

Libs

Functional Block Diagram of Display Subsystem

Client Side

Server Side

Application Programming Interface (API)
All types and combinations of applications may exist within a platform. Many of them
communicate with the user and display adapter in the server by means of the X Window
System protocol over a communications link. Others communicate by means of a
graPHIGS protocol over (perhaps a different) communications link.

12-9Implementing Graphical Input and 2D Graphics Device Drivers

A list of the generic application types include:

• Character-based applications

• Terminal emulator applications (such as xterm)

• Toolkit applications (Motif and Xt)

• Display PostScript applications

• X Window System applications

• OpenGL applications

• GL 3.2 applications

• graPHIGS applications

• PEX applications

Applications bind to their appropriate library using any of the AIX system services available
to them. The API component provides a set of libraries and toolkits for use by application
developers.

API Names

Common Name Library Name Description

Xlib libX11.a Low-level X11 interface. Interface to communication

services.

Xt libXt.a Toolkit intrinsics provided by X Window System.

Xext libXext.a X Window System Extension libraries. Provides API

for the shape, cursor, colormap, DPS, Direct Access.

Input Library libXi.a Provides API for the standard X11 Input Extension.

Motif toolkit libXm.a Provides Motif widget and API support.

Motif Resource

Manager

libMrm.a Motif Resource Manager.

OpenGL libGL.a Provides OpenGL support.

OpenGLwidgets libXGLW.a Provides support for OpenGL widgets.

OpenGL utilities libGLu.a Provides a set of utilities to be used with OpenGL.

GL3.2 libg1.a Provides support for GL 3.2. Sometimes the math

library is also needed with GL 3.2.

PEXlib libPEX5.a PEXlib API.

PEX PHIGS libphigs.a PHIGS API to PEX. This is sometimes called PEX_SI

PHIGS.

graPHIGS lib libgP.a graPHIGS shell (API bindings and interface to the

Nucleus)

The API and library architecture is shown in the Client Side portion of the Functional Block
Diagram of Display Subsystem figure, on page 12-8.

All communications begin with AIX sockets. In local or standalone platforms, the sockets
are local domain or in shared memory. Between distributed platforms, the sockets are
TCP/IP sockets. The type of communication or transport medium is transparent to the
application.

12-10 AIX Writing a Device Driver

X Server
The X server plays an extremely important role within the display subsystem architecture.
The X server is the central arbiter and provider of graphical resources. It can be considered
the resource server of the display subsystem. The family of X server extensions rely upon
the X server. All input flows through the X server. Other components, such as the
graPHIGS nucleus or one of the 3D libraries, request basic graphics resources from the X
server. The X server’s role in the display subsystem architecture is shown in the Functional
Block Diagram of Display Subsystem figure, on page 12-8.

The subcomponents of the server are:

• Device Independent Core

• GAI Load Modules––loadddx, loadrms

• X Extensions

The X server communicates with the applications to present data to the screen. It has an
input and an output path. Input is defined as the direction of data flowing from an input
device, through the server, and out through the communications services to the application.
Output is defined as the direction of data flowing from an application, through the
communications services, through the server and device drivers, and onto the display
adapter.

The device-independent portion of the X server is made up of modified code from the X
Consortium. Specifically the dix (device-independent x), mi (machine independent), mfb
(monochrome frame buffer), cfb (color frame buffer) and os (operating system) directories
are included. The structure and subroutines have been modified to provide for windows that
are being accessed directly by one of the 3D GAI models. In other cases, modifications
have been made to optimize for performance. However, in all cases, the programmer
interfaces have remained the same to facilitate porting from other platforms.

The device-dependent portion of the X server is provided by the 2D GAI load modules
(loadddx and loadrms). The X Window System has a regular architecture to support the
definition of extensions. New and third-party extensions will be permitted and assisted.

The following extensions are supported in AIXwindows:

X Window System Extensions

Common Name Official Name Source

DPS Adobe-DPS-Extension

DPSExtension

Adobe

PEX X3D-PEX MIT Standard

OpenGL OpenGL OpenGL Architecture Review

Board

cursor aixCursorExtension AIXwindows

colormap blink xColormapExtension AIXwindows

X Input XInputExtension MIT Standard

Shape SHAPE

Non Rectangular Window (Shape)

Extension

MIT Standard

Screen Saver SCREEN-SAVER MIT Draft Standard

12-11Implementing Graphical Input and 2D Graphics Device Drivers

The X Window System extensions have subcomponents in both the X server and API
display system components.

GAI Load Modules
One of the fundamental components of the display subsystem is the set of graphics
services provided X servers, the graPHIGS nucleus or one of the 3D libraries. These
services are contained within the GAI load modules. The GAI load module is bound to the X
server, graPHIGS nucleus or 3D library upon its initialization. It provides a library of
graphics function to the loading entity.

Except for the RMS load modules, the GAI load modules each provide the device-specific
code for one of the GAI models, as illustrated in the Block Diagram of the GAI Load
Modules figure. RMS provides a set of support routines that manage hardware resources
common to all models, such as windows and clipping regions, but not all models are
supported on all adapters. Consequently, there is be no need for full function RMS on this
class of adapter.

Device
Specific
Code

Device
Specific
Code

Device
Specific
Code

Device
Specific
Code

Device
Specific
Code

calls calls calls calls calls

RMS 3DMOD1 3DMOD2 3DMOD5

RMS

loadddx

3D Model 1
graPHIGS

3D Model 2
GL

3D Model 5
Open GL

I/O I/O I/O I/O I/O

Block Diagram of the GAI Load Modules

LOADDDX

GAI Models

The GAI load module directly controls the display adapters. When called, it passes direct
I/O operations to the display adapters.

The GAI load module also provides functions that assist the X server and other servers in
implementing a protocol to directly access the hardware and in managing the resources of
the display adapters. It also processes inputs from the display adapters, particularly
interrupts and pick events.

12-12 AIX Writing a Device Driver

The GAI load modules are as follows:

loadddx The loadddx load modules implement the porting layer of the X server. Its
interfaces can be found in Strategies for Porting the X v11 Sample Server.
There is one loadddx for each graphics adapter supported. “Graphics
Adapter Interface (GAI) 2D Adapter Load Modules,” on page 12-33,
provides techniques for the development of a loadddx.

loadrms The loadrms load modules implement the resource management support
for the GAI models. This includes device specific management of window
geometries, windows, monitors, system queues, and clipping regions. This
resource management is most important for the 3D models accessing
hardware directly. “Minimum Resource Management Subsystem (RMS) for
2D Adapters,” on page 12-44, discusses the minimum RMS support
needed to implement a 2D graphics adapter.

Note: The following load modules are necessary to provide certain types of 3D support to
adapters. They are not required for 2D adapters, but are listed here only for
informational purposes.

load3dm1 The GAI 3D Model 1 load modules provides the set of functions required to
support a PHIGS-like 3D graphics model within the display subsystem. The
support functions have been tailored to complement the architecture of the
graPHIGS Nucleus. The functions supported fall into the broad categories
of context support and rendering support. The 3dm1 load module provides
the support necessary for multiple graPHIGS nucleii to access a display
adapter.

load3dm2 The API within the display subsystem that supports immediate mode
graphics is GL. To support this API, GAI 3D Model 2 load module has been
defined. It provides direct support for high-function display adapters being
driven by GL applications.

load3dm5 The GAI 3D Model 5 load modules provide the rendering functions for
supporting the OpenGL API. These load modules configure the rendering
libraries depending on the amount of hardware support available for the
API to use. This may range from full hardware support to full software
support or some combination of the two. The 3D Model 5 was designed to
fully support both direct (server bypass) and indirect (protocol to X server)
rendering.

Kernel Components of the Display Subsystem
The kernel components are as follows:

LFT The LFT implements a simple character-oriented tty-like terminal
emulation. LFT is not intended to be used in a steady state system
environment. Customers are expected to use a graphical interface for all
processing except system startup, installation and stand-alone diagnostics

RCM The rendering context manager (RCM) permits time sharing of the adapter
between graphics processes. This sharing of the adapter is based upon
system requests. It also permits space sharing of the adapter, in the sense
of having the displayable area of the adapter. The RCM provides the
environment for multiple graphics processes independently accessing
display hardware. Each of these processes requests that the graphics
adapter be in a particular state; the state is called the rendering context for
that graphics process. It protects each graphics process from other
graphics processes.

For 2D adapters only displaying X Window System clients, the RCM is not
necessary.

12-13Implementing Graphical Input and 2D Graphics Device Drivers

Display Device Driver
This material covers configuration information that is unique to graphics and display device
driver functions. Use it as a guide to the unique aspects of your adapter, the device driver
you write, and how the X server and the LFT subsystem use your device.

Note: This section is preliminary and a prerequisite for writing the ddx portion of your
adapter. It is recommended that this section be completed first before moving to the
other sections.

LFT Overview
The LFT (low-function terminal) is a simple character oriented, tty-like terminal emulation. It
replaces and simplifies the HFT (high-function terminal) of previous releases of AIX, no
longer supporting virtual terminals or hotkeying. The LFT supports all graphics adapters and
keyboards supported by AIX, but it does not support any other types of input devices such
as mouse or tablet; these have their own drivers.

The LFT is configured during phase two of the boot process. The LFT will be configured
only if there are graphics adapters already available. You must first configure your own
adapter and then allow your device to be used by the LFT.

Configuration and ODM Object Classes
Most of the configuration information in the ODM related to devices tells the system
management routines and other devices about your device. For graphics adapters some of
the information is for graphics adapters only while other information is general about any
device.

You must add the following objects for your device and information for other object classes
so they can find your device. For example, the LFT and X server need to know if your
device is available.

PdDv
The PdDv object class is the Predefined Device object class. It contains information about
the device and the driver it uses, the configuration methods, class, subclass, and type
information of the device.

PdAt
The PdAt object class contains information about various attributes of your driver that are
unique to graphics. There are also PdAt attributes that are used by system management
routines and the LFT subsystem.

Some of the attributes used for a graphics adapter are:

display_id The display_id attribute takes a value of the form 0x04xx0000, where:

04 Fixed.

xx An adapter specific ID.
0x00 – 0x7F are reserved forAIX use only.
0x80 – 0xFF are for vendor adapters. Use a value not in the database.
Remember that all vendors use this range.

dsp_name This is the value of type field of the PdDv object class. It provides a unique
name for your adapter. Check the database to make sure your name is
unique.

dsp_desc Description of the adapter.

scrn_height Screen height.

scrn_width Screen width.

12-14 AIX Writing a Device Driver

color1–16 The 16 default colors to be used by the VDD.

belongs_to Indicates that the LFT subsystem can use this device. The string graphics
is the default value.

CuDep
The CuDep object class tells the LFT subsystem that your device is available for use. The
LFT subsystem reads this class to find out which devices it can open and use as a graphics
output device. You create an object in this object class based on the belongs_to attribute in
the PdAt object class for that adapter.

GAI
The GAI object class is in the /usr/lib/objrepos directory. This object class requires two
entries to tell the location of two modules that need to be loaded during X server startup.
(Although these entries are not needed directly by the display driver to run the LFT, they are
discussed here because all entries to the ODM should be handled by the define methods of
the display driver.) The required entries are:

Adapter_Id This field is derived from the display_id attribute in the PdAt object class.
This is the decimal equivalent of the display_id attribute value and is used
as a link to the related objects in other object classes.

Module_Key This is the name of the module to be loaded when the X server starts.

Module_Path This is the path of the location of the module that is to be loaded. The X
server prepends the string /usr/lpp/gai/ to this to form the full path name of
the load module.

Configuration Summary
AIX configuration methods for a VDD (that is, the graphics adapter driver) do not create a
/dev entry for their device. The device is exclusively used by the LFT subsystem. This
simplifies supporting device multiplexing.

Instead of a user level /dev entry, the LFT subsystem calls kernel services such as
fp_opendev and fp_ioctl. The LFT subsystem gets to the hardware specific functions of
the VDD through the d_dsdptr pointer of the devsw table that it obtains through the
devswqry kernel service.

VDD configuration methods should make sure that they save the address of the
phys_displays structure in the d_dsdptr pointer of the devsw table. Initialize the
phys_displays structure with pointers to various hardware specific functions in the VDD. If
you decide to create a /dev entry for the adapter device, you need to incorporate privilege
checks and protection mechanisms in your open and close routines.

The system finds out about your adapter through the PdDv object class and adds it to the
system through your configuration methods. You allow your device to be used by the LFT
through the belongs_to PdAt attribute.

Your configuration method puts an object into the CuDep object class that tells the LFT
subsystem to use your graphics adapter. The system management commands chdisp and
lsdisp use the name and description fields to show information about your adapter. Finally,
the X server uses the display_id attribute to find out which ddx to load for your adapter. The
information for which one to load is contained in the GAI object class.

12-15Implementing Graphical Input and 2D Graphics Device Drivers

Display Device Driver Subroutines
The standard display device driver subroutines are as follows:

• vddconfig routine
• vddopen routine
• vddclose routine
• vddioctl routine
• interrupt handler

Note: All subroutines with names beginning vdd (virtual device driver) deal with the low
level display driver. Do not confuse these with routines with names beginning vtt,
which are LFT Interface routines.

Configure the Device (vddconfig)

Purpose
Configures the display device driver.

Syntax
int vddconfig (devno, cmd, uiop)

dev_t devno;

int cmd;

struct uio *uiop;

Description
The vddconfig routine initializes the device driver into the device switch table. It also can
terminate the device driver by removing itself from the device switch table.

The vddconfig routine is called by the display configure, unconfigure, or reconfigure
method. This routine can also provide additional device specific functions relating to
configuration such as returning device Vital Product Data. This routine is invoked through
the sysconfig subroutine by the display configure method.

Parameters passed with this routine are:

devno Device major and minor number.

cmd What function this routine performs. The commands are:

INIT Specifies that the vddconfig routine is to perform an initialization
function. This involves checking the minor number in devno for
validity, and installing the device driver’s entry points in the device
switch table. This is accomplished by using the devswadd kernel
service along with a devsw structure to add the device driver’s entry
points to the device switch table for the major device number supplied
in the devno parameter.

This routine also copies the device dependant information from the
Device Dependant Structure (DDS) provided by the caller into the
device specific data area to be used when the device driver routines
are invoked. The address and length of the DDS is described in the
uio structure pointed to by the uiop parameter. The uiomove kernel
service can copy the DDS into the data area of the device driver.

TERM Terminate the device driver and return any system resources. An
unconfigure or reconfigure method, through the configuration entry
point of the device driver, uses this command to remove resources
and system access to this driver. This routine determines if any opens
are outstanding on the specified devno. If not, it marks the device as
terminated and does not allow any subsequent opens to the device.

12-16 AIX Writing a Device Driver

All dynamically allocated data areas associated with the specified
device number should be freed. If this termination removes the last
minor number supported by the device driver from use, the devswdel
kernel service should be called to remove the device driver’s entry
points from the device switch table for this devno.

Devices that can act as console should return an error without
terminating the device driver.

QVPD Query VPD is an optional function used by the device’s configure
method to request the return of device specific vital product data. This
information is usually used for diagnostic purposes. For this function,
the uio structure pointed to by uiop must be set up by the caller to
define an area in the caller’s storage in which this routine is to write
the vital product data. Use the uiomove kernel service to provide the
data copy operation.

uiop A pointer to a uio structure specifying the location and length of the caller’s data
area in which to transfer information to or from.

This pointer is pointing to a caller provided uio structure that describes the
location and length of the device-dependent data structure (for INIT) in which to
read the information or to the vital product data area (for QVPD) in which to write
the requested information. The uiomove kernel service can facilitate the copying
of information out of or into the area described by the uio structure. The format of
the uio structure is defined in the sys/device.h header file.

Return Values
The vddconfig routine should set the return code to zero if no errors were detected for the
operation specified. If an error is returned, the return code is one of the values defined in the
errno.h header file.

Open a Device (vddopen)

Purpose
Initializes the display device driver into the system.

Syntax
int vddopen (devno, devflag, chan, ext)

dev_t devno;

int devflag;

int chan;

int ext;

Description
The vddopen routine prepares a device for operation. The kernel calls vddopen when a
program uses an open or devopen subroutine.

The display device driver can only be opened by one process at a time (LFT). The open
subroutine can enforce this by maintaining a static flag variable, which is set to 1 if the
device is open and zero if not. Each time it is called, vddopen checks the value of the flag
and, if it is not zero, returns with a return code of EIO to indicate that the device is already
open. Otherwise, vddopen sets the flag and returns normally. The vddclose routine later
clears the flag when the device is closed.

The vddopen routine should initialize the device. It should allocate the required system
resources to the device (such as DMA channels, interrupt levels and priorities) and register
its vddintr device interrupt handler for the interrupt level required to support the target
device (if required).

12-17Implementing Graphical Input and 2D Graphics Device Drivers

Parameters passed with this routine are:

devno Specifies both the major and minor device numbers.

devflag One of the following values:

DKERNEL The device was called by a kernel routine using DEVOPEN.

DREAD The device is being opened for reading only.

DWRITE The device is being opened for writing.

DAPPEND The device is being opened for appending.

DNDELAY The device is being opened in nonblock mode.

chan Channel number (ignored by this device driver).

ext The extended system call parameter (ignored by this device driver).

Return Values
The vddopen routine indicates an error condition to the application program by returning a
nonzero return code. The return code should be one of the values defined in the errno.h
header file.

Close a Device (vddclose)

Purpose
Resets the display device driver.

Syntax
int vdd_close (devno, chan, ext)

dev_t devno;

int chan;

int ext;

Description
The kernel calls the vddclose routine when a program uses a close or devclose
subroutine.

The vddclose routine resets the display to prevent generating any more interrupts or DMA
requests until it is opened again. It should free DMA channels and interrupt levels allocated
for this device. The intent is to free system resources used by this device until they are
needed again. The flag that was set by the vddopen routine should be reset.

Parameters passed with this routine are:

devno Specifies both the major and minor device numbers.

chan Channel number (ignored by this device driver).

ext The extended system call parameter (ignored by this device driver).

Return Values
The vddclose routine indicates an error condition by returning a nonzero return code. The
return code should be one of the values defined in the errno.h header file.

12-18 AIX Writing a Device Driver

Device Control (vddioctl)

Purpose
The vddioctl routine provides control commands and parameters to the device.

Syntax
long vdd_ioctl (devno, cmd, arg, devflag, chan, ext)

dev_t devno;

long cmd;

long arg;

ulong devflag;

long chan;

long ext;

Description
The vddioctl routine performs special I/O operations. These operations are normally device
specific. Within the LFT subsystem it is not used, providing only access to adapter
diagnostic functions. However, it is a valid porting strategy for upper level graphics libraries,
such as the adapter ddx, to use vddioctl. Possible operations include returning adapter bus
addresses for I/O, and DMA control.

Parameters passed with this routine are:

devno Both the major and minor device numbers

cmd Command parameter indicating what function this routine should perform

arg Parameter from the ioctl subroutine call that specifies an additional
argument for the cmd operation

devflag Device open or other control flags

chan Channel number (typically not used by this device driver)

ext The extended system call parameter (typically not used by this device
driver)

Return Values
The vddioctl routine indicates an error condition to the application program by returning a
nonzero return code. The return code should be one of the values defined in the errno.h
header file. Data may be returned to the user application by use of the copyout kernel
service.

Programming Notes
There are no required ioctl commands. This entry point should always return success if
there are no vendor-specific commands.

Interrupt Handling
Graphics adapters which generate interrupts need an interrupt handler. The interrupt
handler is made known to the system during the device driver initialization. The specific
interrupts to be handled are device dependent.

12-19Implementing Graphical Input and 2D Graphics Device Drivers

LFT Interface Routines
All the following routines take a pointer to the vtmstruc structure associated with the virtual
terminal. The structure contains terminal specific data and pointers. The VDD uses this
structure to obtain the pointer to its local terminal dependent data area, as well as to
determine the position to move the cursor to when applicable. The following is a list of all
the routines necessary to define the LFT interface:

• Activate (vttact)
• Copy full line (vttcfl)
• Clear rectangle (vttclr)
• Copy line (vttcpl)
• Deactivate (vttdact)
• Define cursor (vttdefc)
• Initialize (vttinit)
• Move cursor (vttmovc)
• Scroll display (vttscr)
• Terminater (vttterm)
• Draw text (vtttext)

Note: Structures are described in “Display Driver Structure Descriptions,” on page 12-30.

Activate (vttact)

Synopsis
The vttact routine switches the Virtual Display Driver into the active state and gives the
virtual display driver exclusive access to the display hardware.

Description
This routine copies the presentation space in the frame buffer and establishes the correct
position of the hardware cursor. The presentation space is first cleared and then the cursor
is placed in the upper left corner.

Also, the color palette is loaded.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttact)(vp);

struct vtmstruc *vp;

The parameter passed with this routine is:

vp Pointer to the vtmstruc structure associated with this terminal.

Return Values
The return value 0 indicates successful completion.

Programming Notes
Only one instance of the device driver can be in the activated state at one time.

Calling this routine when the device driver is already activated causes unpredictable effects
on subsequent operations.

You must call the initialize (vttinit) routine (see page 12-24) prior to the first call to this
routine. Failure to do so causes unpredictable effects on the operation of this and
subsequent routines.

12-20 AIX Writing a Device Driver

Copy Full Lines (vttcfl)

Synopsis
The vttcfl routine copies the entire or partial content of the presentation space by one or
more full lines positions, either up or down. The source and destination points are within the
presentation space and the resulting information which lies beyond the absolute lower right
hand or upper left hand corner of the presentation space is lost.

Description
The command copies a sequence of one or more consecutive full lines of character and
attribute pairs in either direction within a presentation space and truncates the modified
content at the presentation space boundaries.

Use this command with the Clear Rectangle (vttclr) routine (see page 12-21) to insert new
lines into the presentation space.

In addition, the cursor can optionally be removed or left shown on the screen.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttcfl) (vp, source_row, dest_row,

length, update_cursor);

struct vtmstruc *vp;

long source_row;

long dest_row;

long length;

ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc associated with this terminal.

source_row Row number at which to begin the line copy operation.

dest_row Row number to which the line copy operation will copy the first row of the
source.

length Number of lines which are to be copied.

update_cursor
This is a Boolean value. If a device does not have a hardware cursor and
this parameter is set to zero, the cursor is not visible when this command
returns to the caller. Otherwise, the cursor is visible.

Note: If a display has a hardware sprite cursor, this routine does not affect the visibility of
the cursor. Rather, UPDATE_CURSOR specifies whether the cursor is moved to the
position specified in vp–>mparms.cursor.

Return Values
The return value 0 indicates successful completion.

Programming Notes
The actual amount of data copied varies, depending on the physical display adapter.

The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.

12-21Implementing Graphical Input and 2D Graphics Device Drivers

Clear Rectangle (vttclr)

Synopsis
The vttclr routine clears any specified rectangular area of the screen.

Description
This routine stores a space in each character position of the rectangular area with any
combination of the following attributes:

• Foreground color (one of 16 different colors)
• Background color (one of 16 different colors)
• Font (one of 8 different fonts)
• Underscore
• Reverse image
• Blink
• Bright
• Non-display

If the real display does not have a hardware cursor, then the cursor may optionally be
displayed or not displayed when this routine returns to the caller. If the real display has a
hardware cursor, the cursor is always displayed when the routine returns to the caller.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttclr)(vp, screen_pos, attr, update_cursor);

struct vtmstruc *vp;

struc vtt_box_rc_parms *screen_pos;

ulong attr;

ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc structure associated with this terminal.

screen_pos Pointer to a vtt_box_rc_parms structure with the coordinates of the
upper-left and lower-right corners of the rectangular area that is cleared.
The vtt_box_rc_parms structure is defined in “Display Driver Structure
Descriptions” on page 12-30.

attr Attributes of each character in the specified rectangular area.

update_cursor This is a Boolean value. If a device does not have a hardware cursor and
this parameter is set to zero, the cursor is not visible when this command
returns to the caller. Otherwise, the cursor is visible.

Note: If a display has a hardware sprite cursor, this command does not affect the visibility
of the cursor. Rather, the update_cursor parameter specifies whether the cursor is
moved to the position specified in the vtmstruc structure.

Return Values
The return value 0 indicates successful completion.

Programming Notes
If a rectangular area is not valid (such as coordinates outside the presentation space,
upper-left and lower-right coordinates switch), the result of running this routine is
unpredictable.

The cursor position used for positioning is in the vtmstruc structure pointed to by vp.

12-22 AIX Writing a Device Driver

Copy Line Segment (vttcpl)

Synopsis
The vttcpl routine copies a specified segment in one or more consecutive lines either left or
right.

Description
This routine copies a sequence of one or more consecutive character/attribute pairs in
either direction within a line and truncates the modified content at the line boundaries.

The contents of the preceding lines are not affected. Succeeding consecutive lines,
however, can be similarly copied if the number of lines requested to operate on is greater
than one.

Use this routine with the Clear Rectangle (vttclr) routine (see page 12-21) to obtain the
repetitive inline “move” function.

If the starting point is the first position in the first line and the number of lines requested is
equal to the number of rows in the presentation space, then the entire screen is scrolled
right. Otherwise, there is a partial screen scroll.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttcpl) (vp, rc, update_cursor);

struct vtmstruc *vp;

struct vtt_rc_parms *rc;

ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc structure associated with this terminal.

rc Pointer to a vtt_rc_parms structure containing the “copy to” and “copy
from” information. This structure is defined in “Display Driver Structure
Descriptions” on page 12-30.

string_length Number of character/attribute pairs to be copied in each line.

string_index Index of the first character to display.

start_row Beginning line on which to operate.

start_column Starting position, within each line, of the source to be copied from.

dest_row Last line on which to operate.

dest_column Starting position, within each line, of the destination to be copied to. If the
destination column is bigger than the starting column, the specified line
segment is copied to the right. Otherwise, it is copied to the left.

update_cursor This is a Boolean value. If a device does not have a hardware cursor and
this parameter is set to zero, the cursor is not visible when this routine
returns to the caller. Otherwise, the cursor is visible.

Note: If a display has a hardware sprite cursor, this routine does not affect the visibility of
the cursor. Rather, update_cursor specifies whether the cursor is moved to the
position specified in the vtt_cursor structure.

Return Values
The return value 0 indicates successful completion.

Programming Notes
The actual amount of data copied varies, dependent on the physical display adapter.

12-23Implementing Graphical Input and 2D Graphics Device Drivers

The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.

Deactivate (vttdact)

Synopsis
The vttdact routine switches the virtual display driver into the inactive state.

Description
Recall that the device driver model maintains a presentation space model. When the display
hardware has a character buffer, that buffer will, in general, be used to contain and maintain
the presentation space data while a given instance of the device driver is active (the so
called integral presentation space case). If no hardware character buffer is used to maintain
the presentation space the device driver must maintain a presentation space while either
Active or Inactive.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttdact) (vp);

struct vtmstruc *vp;

The parameter passed with this routine is:

vp Pointer to the vtmstruc structure associated with this terminal.

Return Values
The return value 0 indicates successful completion.

Programming Notes
Calling this routine when the device driver is already deactivated causes unpredictable
effects on subsequent operations.

Define Cursor (vttdefc)

Synopsis
The vttdefc routine changes the shape of the cursor to one of six predefined shapes.

Description
Select the shape of the cursor from a set of shapes which is dependent on the display
device. Selectors 6 through 255 are reserved. The default (selector 2, the double
underscore) is used if you specify a reserved selector.

This routine can also reposition and turn off the cursor.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttdefc) (vp, selector, update_cursor);

struct vtmstruc *vp;

uchar selector;

ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc structure associated with this terminal.

selector Cursor shape to display. The available shapes are:

0 No cursor
1 Single Underscorer
2 Double Underscore
3 Half Blob

12-24 AIX Writing a Device Driver

4 Double Line
5 Full Blob
Other values Default to double underscore.

update_cursor
This is a Boolean value. Whether the cursor should be made visible after its
shape is changed.

Note: If a display has a hardware sprite cursor, this command does not affect the visibility
of the cursor. Rather, Show_Cursor specifies whether the cursor is moved to the
position specified in Cursor_Pos.

Return Values
The return value 0 indicates successful completion.

Programming Notes
The cursor is invisible on all displays if the selector value is zero (a null shape is chosen).
The update_cursor parameter does not affect the visibility of the cursor on displays with
hardware cursors.

If you specify an invalid cursor position, the results are unpredictable.

On display adapters that do not support a hardware cursor, the cursor shape is generated
with an exclusive-or operation.

The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.

Initialize (vttinit)

Synopsis
The vttinit routine initializes the internal state of the virtual display driver. It also allows the
caller to select up to eight different fonts for subsequent use by the virtual terminal (see the
Draw Text (vtttext) subroutine on page 12-27). All characters in all the selected fonts must
be the same size.

Description
This routine initializes the internal state of the virtual display driver. A list of eight font IDs
may optionally be passed to this procedure.

All characters in all fonts in the list must be the same size. Any font whose character box
size differs from that of the first font in the list is replaced by the first font in the list.

To allow custom font selection, vttinit is passed a font_id. Using the chfont command, the
user can create a font_id which is stored in the ODM to be used at LFT configuration time.
If font_id is not equal to –1, then the index is used to load the font table. If the font_id is
equal to –1, then there has been no custom font selection, and the LFT uses the first
available font in the font table.

If the font list is validated or a default font is found:

• The presentation space (PS) is initialized with space characters and the canonical
attribute of each character in the PS is set to zero.

• The cursor is moved to the upper left corner of the PS and displayed if the virtual display
driver is active.

• The default cursor shape (double underscore) is selected.

12-25Implementing Graphical Input and 2D Graphics Device Drivers

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttinit)(vp, font_ids, ps_size);

struct vtmstruc *vp;

struct fontpal *font_ids;

struct ps_s *ps_size;

Parameters passed with this routine are:

vp Pointer to the virtual-terminal-specific data area.

font_ids Pointer to a fontpal structure that contains the font IDs to use for the
various fonts selected by the attribute encoding. The font order is important
as it matches the font selector enumerated scalar in the canonical
representation of attributes (see “vtt_cp_parms” on page 12-30). This
parameter is optional. If it is not specified, one default font will be selected.

ps_size Pointer to a ps_s structure that contains the width and height (in
characters) of the presentation space.

Return Values
This routine sets the height and width of the presentation space in the ps_s parameter. If it
is unable to allocate the local data, vttinit returns ENOMEM. The return value 0 indicates
successful completion.

Programming Notes
All fonts specified in this routine should be the same size because of the default actions.

Call this routine before the first call to the activate (vttact) routine (see page 12-19). If you
do not, there are unpredictable effects on subsequent operations.

The PS size is calculated using the following formulas (all division is integer division):

Height of the real screen

(in picture elements)

Number of rows in

a character box

Width of the real screen

(in picture elements)

Number of columns in

a character box

Presentation Space Height =

Presentation Space Width =

12-26 AIX Writing a Device Driver

Move Cursor (vttmovc)

Synopsis
The vttmovc routine moves the cursor to the indicated position.

Description
The current cursor shape is repositioned to the specified character row and column. The
cursor is always visible after this routine if the cursor has been defined as a visible shape,
and this virtual terminal is active.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttmovc) (vp);

struct vtmstruc *vp;

The parameter passed with this routine is:

vp Pointer to the vtmstruc structure associated with this terminal.

Return Values
The return value 0 indicates successful completion.

Programming Notes
If an invalid position is specified, the results are unpredictable.

Scroll (vttscr)

Synopsis
The vttscr routine scrolls the entire contents of the display screen up or down.

Description
The current display screen contents are moved the indicated number of lines up or down.
When scrolling up, the lines moved off the screen at the top are discarded and the indicated
number of lines at the bottom are cleared to blanks with the attributes provided. When
scrolling down, the lines moved off the screen at the bottom are discarded and the indicated
number of lines at the top are cleared to blanks with the attributes provided. The cursor may
also be repositioned and made invisible.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttscr)(vp, lines, attributes,

update_cursor);

struct vtmstruc *vp;

long lines;

ulong attributes;

ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc structure associated with this terminal.

lines Number of lines to scroll. A positive value moves the screen contents
toward the top. A negative value moves the screen contents toward the
bottom of the screen.

attributes Attributes of the blanks to be inserted in the new lines that appear at either
the top or bottom of the screen.

update_cursor
This is a Boolean value. Whether the cursor should be made visible after
the scroll.

12-27Implementing Graphical Input and 2D Graphics Device Drivers

Note: If a display has a hardware sprite cursor, this command does not affect the visibility
of the cursor. Rather, Show_Cursor specifies whether the cursor is moved to the
position specified in Cursor_Pos.

Return Values
There are no return values.

Programming Notes
If a position is not valid, the results are unpredictable.

The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.

Terminate (vttterm)

Synopsis
The vttterm routine prevents interrupts to a virtual terminal and must be issued when the
virtual terminal closes.

Description
A virtual terminal in the process of closing no longer requires interrupts from its I/O devices.
In fact, after the virtual terminal process terminates, virtual interrupts directed to that
process cause a system failure. To prevent such problems, the virtual terminal must call the
terminate routine before terminating itself.

Syntax
Use this routine with the following call:

rc = (*vp–>display–>vttterm)(vp);

struct vtmstruc *vp;

The parameter passed with this routine is:

vp Pointer to the vtmstruc structure associated with this terminal.

Return Values
The return value 0 indicates successful completion.

Programming Notes
Not issuing this routine when closing causes a system failure.

For display adapters that generate interrupts serviced by the virtual terminal, the routine
ensures that the adapter is not reinitialized when the virtual terminal process terminates.

For device drivers which allocate storage for their presentation space, this routine will free
that storage and all the local data areas.

Draw Text (vtttext)

Synopsis
The vtttext routine draws a string of qualified ASCII characters into the refresh buffer and
presentation space buffer of the display device.

Description
Each supplied ASCII character is drawn into the refresh buffer and/or presentation space
buffer beginning at the specified starting row and column. At the end of this character
drawing operation, the cursor is redrawn at the specified new location.

12-28 AIX Writing a Device Driver

Each character drawn is mapped to the appropriate font range by two mechanisms. First,
each character will be logically ANDed by the value supplied in the code point mask
parameter. It is expected that this parameter will contain either 0xFF or 0x7F which will have
the effect of wrapping the code point in either a seven-bit range or an eight-bit range. Next,
the code point base parameter is added to each supplied character to find the correct
symbol in the font.

Each character will be drawn with a device specific attribute derived from the canonical
attribute specification in the vtt_attr parameter.

The cursor can be moved or redrawn by this routine if the update_cursor parameter is set to
true (1). In this case, a cursor of the type specified by the Define Cursor (vttdefc) routine
(see page 12-23) will be moved or redrawn, as appropriate for the given hardware at the
location specified in the vtmstruc parameters.

Note: The no show state (zero) of update_cursor does not guarantee that the cursor will be
invisible after this operation. Whether or not it is invisible is a device-dependent
characteristic.

Recall that the device driver model maintains a presentation space model. Usually, where
the display hardware has a character buffer, that buffer is used to contain and maintain the
presentation space data while a given instance of the device driver is active. This is the
integral presentation space case.

If no hardware character buffer is used to maintain the presentation space, this is the
disjoint refresh buffer case, in which the driver must maintain an off adapter presentation
space while active or inactive.

Syntax

Use this routine with the following call:

rc = (*vp–>display–>vtttext)(vp, ascii_string, rc, cp,

update_cursor);

struct vtmstruc *vp;

char *ascii_string;

struct vtt_rc_parms *rc;

struct vtt_cp_parms *cp;

ulong update_cursor;

Parameters passed with this routine are:

vp Pointer to the vtmstruc structure associated with this terminal.

ascii_string Adjustable extent array of characters which are to be drawn on the display.
The length of this string must be greater than or equal to the string_length
parameter in the vtt_rc_parms structure.

rc Pointer to a vtt_rc_parms structure containing the ASCII string, row, and
column information.

string_length How many of the characters in the ASCII string are to be drawn. Note that
this drawing operation performs no end-of-line check so that unpredictable
results will occur if the combination of string_length and start_column
causes an attempt to write off the end of the line.

string_index Index of the first character in ascii_string that is to be displayed.

start_row Specifies, in the presentation buffer and display refresh buffer, the row
number of the first character drawn. This parameter has a unity origin.

start_column Specifies, in the presentation buffer and display refresh buffer, the column
number of the first character drawn. This parameter has a unity origin.

dest_row
dest_column Not used.

12-29Implementing Graphical Input and 2D Graphics Device Drivers

cp Pointer to a vtt_cp_parms structure containing the ASCII string, and row
and column information.

cp_mask 8-bit value which is logically ANDed with each ASCII character before font
translation. Legal values for this parameter are either 0xFF or 0x7F.

cp_base Value which allows each ASCII character to be translated to a final font set,
larger than 256 code points. The ASCII character is masked by cp_mask.
The masked ASCII character is logically added to the value of cp_base to
determine the actual character, in a 10-bit selection, to be displayed.

attributes Canonical representation of the desired attributes which should be used
when drawing the character string. See the discussion of canonical attribute
representation under “vtt_cp_parms” on page 12-30.

cursor A vtt_cursor structure that defines the x and y position of the cursor.

update_cursor
This parameter is a Boolean value and controls whether the cursor should
be redrawn at the end of this draw routine. The purpose is to allow the LFT
subsystem to control how much APA display processing is wasted in
undrawing and redrawing cursors.

Note: If a display has a hardware sprite cursor, this routine does not affect
the visibility of the cursor. Rather, update_cursor specifies whether
or not the cursor is moved to the position specified in the
vtt_cp_parms structure.

Return Values
There are no return values.

Programming Notes
Use this routine only to draw in one single line of the display at a time. Length specifications
that would imply a wrap to next line in the middle of the call will cause unpredictable results
in displays with invisible refresh buffer space at the end of the visible line.

The cursor position used for positioning is contained in the vtmstruc structure pointed to by
vp.

12-30 AIX Writing a Device Driver

Display Driver Structure Descriptions

vtt_rc_parms
The vtt_rc_parms structure is supplied as a parameter to several of the virtual display
driver routines, notably the Draw Text routine, the two copy routines and the Read Screen
Segment routine.

/**/

/* row column length structure interfaces to VDD Routine */

/***/

struct vtt_rc_parms {

 ulong string_length; /* length of character string that */

 /* must be displayed */

 ulong string_index; /* index of the 1st char to display */

 long start_row; /* starting row for draw/move */

 /* operations, unity based. */

 long start_column; /* starting column for draw/move */

 /* operations, unity based */

 long dest_row; /* destination row number for move */

 /* operations, zero based */

 long dest_column; /* destination column number for move */
 /* operations, zero based */

};

vtt_box_rc_parms
The vtt_box_rc_parms structure is supplied as a parameter to the Clear Rectangle routine
entry points.

/***/

/* the vtt_box_rc_parms structure is supplied as a parameter to the */

/* VDD clear rectangle routine. */

/**/

struct vtt_box_rc_parms {

 long row_ul; /* row number of upper–left corner */

 /* of the upright rectangle */

 long column_ul; /* col number of upper–left corner */

 /* of the upright rectangle */

 long row_lr; /* row number of lower–right corner */

 /* of the uproght rectangle. */

 long column_lr; /* col number of lower–right corner */

 /* of the upright rectangle */

};

vtt_cp_parms
The vtt_cp_parms structure is supplied as a parameter to the Draw Text routine. The
vtt_cursor substructure is passed as a parameter to several procedures such as Define
Cursor, Move Cursor, and Scroll Up.

/**/

/* code point base/mask and cursor positioning parameter */

/* structure for use in vtttext replace text */

/**/

struct vtt_cp_parms

{

 ulong cp_mask; /* code point mask for implementing */

 /* 7 or 8 bit ascii */

 long cp_base; /* code point base, added to code */

 /* point if base >= 0 */

 ushort attributes; /* attribute bits */

 struct vtt_cursor cursor; /* cursor x and y position */

};

12-31Implementing Graphical Input and 2D Graphics Device Drivers

The definitions and default states of the canonical attributes are:

FG COLOR Foreground color specification in writing into the frame buffer. The default
value is device dependent.

BG COLOR Background color specification to be used in writing into the frame buffer.
The default value is device dependent.

FONT_SELECT
Select for the font to be used in writing into the frame buffer. A value of zero
selects the first font ID supplied in the VTTINIT font ID array as the active
font for drawing. A value of seven selects the eighth font ID array value as
the active font for drawing. The default value is zero.

NO_DISP Select non-displayed mode for characters. One equals non-displayed, zero
equals displayed. Default value is zero.

BRIGHT Select bright (intensified) display mode. One equals intensified. Zero equals
normal intensity. Default value is zero.

BLINK Select blinking representation. One equals blinking characters. Zero equals
non-blink. Default value is zero.

REV_VIDEO Select reverse video representation. One equals reversed image. Zero
equals normal image. Default value is zero. To get the effect of reverse
video on all adapters, this bit must be set to one. Swapping the foreground
and background colors will not yield the desired result on all adapters
because these fields may in fact be ignored by some virtual device drivers.

UNDERSCORE
Select underscoring of characters. One equals underscore each character.
Zero equals no underscore. Default value is zero. A default color table is
provided for any display type. The size and organization of color tables is
device dependent.

No single device supports all the canonical attributes in any configuration. For example,
when a canonical attribute is supplied to the Draw Text routine, the canonical form is
interpreted to something usable by the given device. When a subsequent call to the Read
Screen Segment routine is made, the internally stored attributes will be mapped back to
canonical form. This back transform has some loss of information in that canonical attributes
that are unsupported by a given device will be set to a default state instead of the originally
supplied state.

font_data
The font_data structure is initialized by the LFT and is used by the VDD to get the
necessary font information for displaying text.

struct font_data

{

ulong font_id; /* font_data index (1 based) */

ulong font_attr; /* 0=plain, 1=bold, 2=italic */

ulong font_style; /* 0=apa,*/

long font_width; /* charbox width in pels*/

long font_height; /* charbox height in pels*/

long *font_ptr; /* pointer to font file*/

ulong font_size; /* size of font structure*/

};

12-32 AIX Writing a Device Driver

phys_displays
The phys_displays structure is defined in /usr/include/sys/display.h.

/***/

/* presentation space structure */

/***/

struct ps_s {

 long ps_w; /* presentation space width */

 long ps_h; /* presentation space height */

};

/**/

/* cursor positioning structure used as parameter to VDD routine */

/***/

struct vtt_cursor {

 long x;

 long y;

};

struct vtmstruc {

 struct phys_displays *displays; /* display this VT is using */

 struct vtt_cp_parms mparms; /* attribute+cursor position*/

 char *vttld; /* pointer to VTT local data*/

 off_t vtid; /*virtual terminal id = 0 */

 uchar vtm_mode; /* mode = KSR */

 int font_index; /* –1 means use ’best’ font */

 int number_of_fonts; /* number of fonts found */

 struct font_data *fonts; /* font information */

 int (*fsp_enq)(); /* font request enqueue func*/

};

Device Dependent Structure (DDS)
The Device Dependent Structure is specific to the display adapter. The contents must
contain the addresses, interrupt levels, DMA areas, and other configuration information set
by the configuration method.

The following is an example Device Dependent Structure:

struct display_dds

{

int adapter_busaddr;

int int_level;

int int_class;

int slot_number;

int color_tablet[16];

int dms_channel;

int dma_address;

int screen_height_mm;

int screen_weight_mm;

int display_id;

};

12-33Implementing Graphical Input and 2D Graphics Device Drivers

Graphics Adapter Interface (GAI) 2D Adapter Load Modules
The device-dependent portion (ddx) of the X server code (the portion of the server code
that actually manipulates the adapter) is located in dynamically loadable modules under the
current GAI architecture. These modules are loaded at server invocation time when a user
requests that the server run on a specific adapter via command-line flags, or the default
adapter(s) in the absence of a specific request. Adapter modules not requested in this
instantiation of the server are not loaded.

The interface between the device-independent (dix) portion of the server and the device
dependent (ddx) subsystem is documented in Strategies for Porting the X11 Sample Server
by Angebranndt and others. The porting layer specified in the porting guide is a well-defined
interface which allows third party vendors to supply those device-dependent portions of the
X server required to support a new device. In the current GAI architecture on AIX, the ddx
resides in dynamically loadable, device-dependent code modules (loadddx’s) and are
required to support execution of the X server on display adapters. By utilizing a dynamic
loading scheme, the GAI architecture facilitates the independent addition of new driver
modules by third-party vendors, as access to object modules for static binding is not
necessary.

The loadable module technique is utilized to support the addition of extensions to the X
Window System as well. Loading only the required extensions for a particular invocation of
the server limits the system resources from being consumed. An additional benefit is that
third-party extension writers can add their X server extensions without requiring server
integration and rebuilding.

This information highlights the process of initializing and destroying 2D minimal RMS
adapter instances within the GAI architecture. Details regarding the implementation of an X
device dependent subsystem (ddx) can be found in standard documents, such as The X
Window System Server by Israel and Fortune.

Loadable DDX Interface
The process by which the X server and one or more adapters is initialized is divided into
three steps:

• Selecting the adapter or adapters through command-line flags or default actions

• Loading the appropriate load module and dynamic binding with X server executable

• Initializing the hardware and the X server screen structure

Selection of Adapters
Command-line flags allow the user to specify a number of characteristics of the X server
display. Characteristics relating to adapter selection include the number of screens for the
display, configuration of the screens for the display, and default visual and default depth of
the display. Command-line flags for adapters include the logical name returned from the AIX
lsdisp command as they are stored in the Object Data Manager database (the ODM
database contains the configuration information for the entire system). As an example, the
lsdisp command returns the following information if the system is configured with a Color
Graphics Display Adapter and a POWER_Gt1 Graphics Adapter:

DEV_NAME SLOT BUS ADPT_NAME DESCRIPTION

sga0 0J sys POWER_Gt1 Graphics Adapter

gda0 03 mca colorgda Graphics Adapter

If no display characteristic command-line flags are specified, the default actions are used.
These default actions include:

• Use of all configured adapters. If there is only one graphics adapter installed, the X
server will be initialized on that graphics adapter. If more than one adapter is configured
in the system, the X server will be initialized in multihead mode.

12-34 AIX Writing a Device Driver

• Use of PseudoColor visual for the default visual (or GrayScale visual for grayscale
adapters).

• Use of default depth (usually 8).

If the user chooses to bypass the default server configuration options and initialize on less
than all available display adapters, the –P Row Column DeviceName command-line option
must be specified. If the user chose to initialize the X server on Color Graphics Display
Adapter (assuming output from lsdisp above), the appropriate command line options would
include the flag to initialize on Color GDA only, –P11 gda0.

As part of the adapter initialization process, the X server main function calls an operating
system dependent subroutine, ProcessCommandLine. ProcessCommandLine calls
FindAllAvailableDisplays function, which queries the ODM database for all available
graphics adapters in the system and sets up a DisplayRec structure for every adapter
found. The DisplayRec structures are actually stored in a global dynamic array,
AvailableDisplays. FindAllAvailableDisplays returns to ProcessCommandLine which
calls a device-dependent command line parsing function, ddxProcessArgument.
ddxProcessArgument handles some GAI-specific global variable initializations based on
the command line flags specified for wrapping pointer in x and y directions, backing-store
configuration, extension loading, and adapter initialization. It is in ddxProcessArgument
that the remaining structure members in the adapter DisplayRecs are initialized to specify
users interest in X initialization on a given adapter. When ddxProcessArgument
encounters a –P flag, it uses the logical name associated with the flag as a key in the ODM
CuDv database and retrieves the associated entry. If the entry does not exist, an error
message is displayed. When an unexpected option or invalid value is specified for a flag,
the X server displays the usage message and ignores the option or terminates initialization,
depending on the severity of usage error. Both ProcessCommandLine and
ddxProcessArgument validate command line options and display error messages.

Assuming that there are no errors detected by ddxProcessArgument, InitOutput is called
from the main subroutine, passing a pointer to the screenInfo structure. The pixmap and
bitmap format information is initialized in the screenInfo structure and for each requested
adapter aixAddDisplay is called to load the loadddx if it has not been bound in (on server
reset, the module would have already been loaded) and evoke the drivers entry function, for
example xxxEntryFunc which sets device specific pixmapFormat information and calls
the MIT dix function AddScreen which “increases” the size of the screenRecs (internal
server structure) array and calls the device-specific initialization routine specifying the
adapters screen number, a pointer to its ScreenRec, and the command line argument
vector and argument count where the adapter will be initialized, screen vectors set, and
access to the adapter given to X and rms configured via CreateAdapter call.

12-35Implementing Graphical Input and 2D Graphics Device Drivers

main

ProcessCommandLine

FindAllAvailibleDisplays

ddxProcessArguments

InitOutput
 open/dev/rcm
 for each display requested call
 aixAddDisplay to initialize

aixAddDisplay
 loads adapter loadddx if not loaded
 calls adapter loadddx entry function

xxxEntryFunc
 device dependent module entry
 pixmap format structure initialization
 pass xxxScrInit pointer fo AddScreen

AddScreen
 Allocate Screen Structure
 Initialize Screen Structure
 Allocate Screen Privates

xxxScrInit
 Set Screen and/or screen private vectors
 ioctl(aixScreenFD(pScreen),HFHANDLE,&gscHandle)
 allocate/initialize gc/window privates
 CreateAdapter call

Server Initialization Sequence for the Selection and Initialization of Displays

12-36 AIX Writing a Device Driver

X Server Initialization Subroutines
Note: The following subroutines are for informational purposes only.

ddxProcessArgument

Purpose
Processes the command line arguments for the X server.

Syntax
int ddxProcessArgument (argc, argv, i)
int argc;
char *argv[];
int i;

Description
The ddxProcessArgument subroutine is an AIXwindows supplied subroutine. There is one
for the X server rather than one for each ddx. It is called for each flag one flag at a time. Its
parameters include the argc and argv parameters which were used for this invocation for
the X server and the current index into argv. ddxProcessArgument looks at the current
argument and returns zero if the argument is not a device-dependent one, and otherwise
returns a count of the number of elements of argv that are part of this one argument.

Parameters
argc Specifies the number of options in the argv list.

argv Specifies an array of options that were passed to the X Server at its
invocation.

i Specifies the current index into argv list.

Flags
ddxProcessArgument processes the following arguments (not a complete list):

Mouse Processing Flags

Flag Name Variable Set

–wrapx aixXWrapScreen
Specifies mouse behavior when the mouse’s hot spot reaches the left or
right borders of any root window.

–wrapy aixYWrapScreen
Specificies of mouse behavior when the mouse’s hot spot reaches the top
or bottom borders of any root window.

–wrap aixXWrapScreen, aixYWrapScreen
Sets both the –wrapx and –wrapy flags.

Other Flags

Flag Name Variable Set

–bs aixAllowBackingStore
Enables backing store support on all screens.

–nobs aixAllowBackingStore
Disables backing store support on all screens.

–x <extention name>
how_many_extensions, extension_list
Tracks number of and list of requested extensions.

12-37Implementing Graphical Input and 2D Graphics Device Drivers

–T aixDontZap
Disables the Ctrl-Alt-Backspace key sequence used to kill the server.

–wp aixWhitePixelText
Allows you to specify a WhitePixel color.

–bp aixBlackPixelText
Allows you to specify a BlackPixel color.

–n dpy
Specifies the connection number of the server.

–layer <int> layer
Specifies the requested layer for the default visual if the ddx supports
overlays and underlays.

Processing of Displays Specified on the Command Line

The following flags can be used to specify the display on the command line. If a display is
not specified, by default, the X server is invoked on all available displays in a multihead
configuration by slot order. The first active display found becomes the equivalent of –P11
(Screen 0). The next active screen found becomes the equivalent of –P12 (Screen1).

–force Specifies that the X server may be invoked from tty.

–P Row Col DisplayName
Specifies that the X server is to be invoked on the display specified by the
display_name parameter. Valid values for this field are those found in the
logical_name field of the CuDv.

In all of the flags, the display_name parameter is specified by the logical name of the
device. You can find out what this logical name is by executing the lsdisp command.

Note: Only the ProcessCommandLine and ddxProcessArgument subroutines should
process command-line flags.

FindAllAvailableDisplays

Purpose
Initializes the DisplayRec structure for the X server.

Syntax
void FindAllAvailableDisplays (argc, argv)
int argc;
char **argv;

Description
The FindAllAvailableDisplays subroutine queries the ODM to find out information about
all possible graphics displays that are available. It returns a initialized DisplayRec structure
for each display and sets the NumAvailableDisplays global variable to the number of
displays attached to the system.

The information needed to obtain a list of all available displays is contained in two ODM
classes, the PdAt (predefined attributes) and the CuDv (customized devices). To find all the
active displays attached to a system, two ODM queries are needed––one to find all the
graphics devices, and one to subset the available devices from all the graphics devices.

For each display attached to the hardware, the FindAllDisplays subroutine initializes the
following information:

dev_id Specifies the GAI adapter ID. This is used as a key to the ODM query of
the GAI load modules. This value is stored in the predefined attribute
display_id.

12-38 AIX Writing a Device Driver

name Set to the name of the display as returned by the lsdisp command (i.e.
ppr0). This value is the logical name of the device as retrieved from the
PdAt query of all the graphics devices.

loadModule Set to the loadddx load module for the specified adapter. It is a
concatenation of the Module_path as stored in the GAI class and the
GAI_PATH. The value stored is the full path not the partial path as
retrieved from the GAI.

EntryFunc Set to NULL. This gets initialized when the loadddx load module is actually
loaded.

x_pos Set to 0. This is initialized to the appropriate value later in the initialization
cycle.

y_pos Set to 0. This is initialized to the appropriate value later in the initialization
cycle.

requested Set to False. Set to True later in the initialization cycle when the adapter is
actually requested.

display_number
Set to the current value of the variable used to control the for loop.

Parameters
The argc and argv (count and vector) command-line arguments are passes in for
processing of the –force flag. The –force flag allows the X server to be started from a tty.

InitOutput Subroutine

Purpose
Initializes the screenInfo imageByteOrder, bitmap information, and pixmap format
information.

Syntax
void InitOutput (screenInfoPtr, argc, argv)
ScreenInfo *screenInfoPtr;
int argc;
char *argv[];

Description
The InitOutput subroutine initializes the screenInfo imageByteOrder, bitmap information,
and pixmap format information. The InitOutput subroutine obtains a private index for the
screen and one for the AIX extensions. These indexes are global variables named
aixExtScreenPrivateIndex and aixScreenPrivateIndex. They are used as private indexes
for the structure containing the vectors for the AIX private extensions (cursor and colormap)
and the AIX screen private structure and vectors.

If there were no screens specified on the command line, the subroutine processes the
default screens. The default screens are all currently available screens, the first screen
found in the ODM.

The InitOutput subroutine opens the /dev/rcm file once for each invocation of the X server
and not done once per head in a multihead environment. The subroutine stores the file
descriptor from the open in the screenInfoPriv structure.

For each screen, the InitOutput subroutine calls subroutines to load and initialize or
reinitialize the adapter. The serverGeneration global variable can be used to determine if
the X server is being invoked or reset.

12-39Implementing Graphical Input and 2D Graphics Device Drivers

Parameters
screenInfoPtr Specifies a pointer to the screenInfo structure. The screenInfo structure

contains a section of per server information as well as an array of screen
information.

argc Specifies the number of options in the argv list.

argv Specifies an array of options that were passed to the X server at its
invocation.

Device-Dependent Initialization Subroutines
Note: These routines must be provided by the loadddx module.

xxxentryFunc Subroutine

Purpose
Returns information from the loading of the loadddx module.

Syntax
int xxxentryFunc (index, pScreen, argc, argv)
register int index;
register ScreenPtr pScreen;
int argc;
char **argv;

Description
The address of the entry point of the loadable driver is returned when the load system call
is performed on the loadddx module. The function is invoked in the InitOutput subroutine
and performs some or all of several actions. This function must be provided by the load
module driver.

The xxxentryFunc function initializes any appropriate pixmap formats and then calls
AddScreen subroutine to allocate the per screen structure and provide addition dix
initialization of the screenInfo structure. The AddScreen subroutine allocates the screen
structure, links it appropriately into dix structures and then calls a ddx supplied routine to
finish the initialization.

A pointer to xxxentryFunc is stored in the EntryFunc field of the DisplayRec structure for
this adapter. In practice, this function can be called whatever the driver implementor
chooses. By convention it is referred to as xxxentryFunc.

Parameters
index Specifies the index of this screen in the array of screens for the X server.

pScreen Specifies a pointer to the screen structure.

argc Specifies the number of options in the argv list.

argv Specifies an array of options that were passed to the X server at its
invocation.

Return Values
Success

Failure

12-40 AIX Writing a Device Driver

xxxScrInit

Purpose
Initializes the screen structure for each screen and performs device dependent initialization
as required.

Syntax
Bool xxxScrInit (index, pScreen, argc, argv)
register int index;
register ScreenPtr pScreen;
int argc;
char **argv;

Description
There is one xxxScrInit subroutine for each adapter load module. Its address is passed to
the AddScreen dix subroutine and is called from the AddScreen subroutine through the
function pointer to do device dependent initialization of the per-screen structure as well as
window and gc devPrivates. The xxx in the subroutine name is replaced with some
meaningful prefix, such as the adapter name. This subroutine performs the following:

• Gets a gscHandle from the RCM by making an ioctl call with a GSC_HANDLE
parameter.

• Calls the CreateAdapter function for the 2D model.

• Registers this process as a graphics process by making the aixgsc system call with the
MAKE_GP parameter.

• Initializes pScreen structure. This includes any visual structures for the screen.

• Allocates and initializes pScreenPrivate vectors (calls aixAllocatePrivates) and
initializes AIX extension vectors––these are the vectors for the cursor and colormap
extensions.

• Allocates and initializes any internally used private structures.

• Performs any other device-specific initialization.

Parameters
index Specifies the index of this screen in the array of screens for the X Server.

pScreen Specifies a pointer to the screen structure.

argc Specifies the number of options in the argv list.

argv Specifies an array of options that were passed to the X Server at its
invocation.

Return Values
True xxxScrInit succeeded

False xxxScrInit failed.

xxxCloseScreen

Purpose
Closes the screen during X Server reset.

Syntax
Bool pScreen–>CloseScreen (scrnNum, pScreen, argc, argv)
int scrnNum;
ScreenPtr pScreen;
int argc;
char **argv;

12-41Implementing Graphical Input and 2D Graphics Device Drivers

Description
The xxxCloseScreen subroutine is a device-dependent routine that must be provided by
the driver implementor. This subroutine is called for each initialized screen when the server
is reset or closed down.

The xxxCloseScreen subroutine should free any privately allocated structures. If
dynamically allocated space is not freed, the driver will cause the X server to leak memory
across server resets. In addition, a process similar to that outlined in the xxxScrInit
subroutine must be followed to relinquish access to the adapter.

Whereas in the xxxScrinit routine the MAKE_GP subfunction of the aixgsc system call was
called to gain access to the adapter, the UNMAKE_GP subfunction of aixgsc must be
called in the xxxCloseScreen routine to relinquish access to the adapter. Failure to do so
will prevent the success of subsequent aixgsc MAKE_GP calls in xxxScrInit if the server is
resetting and not actually terminating.

Parameters
scrnNum Number of screen

pScreen Specifies the screen to be closed.

argc Number of command line parameters

argv Command line argument vector

Server Termination
Each implementation of the X server must provide two routines that terminate the X server.
The ddxGiveUp subroutine is called when the X server terminates normally. The abortDDX
subroutine is called when the X server encounters an unrecoverable error. Both of these
subroutines close the screen for each active screen of the display. There is no change in
either subroutine.

Adapter Access and the aixgsc System Call
Because the X server is a user process, special considerations have to be taken to ensure
that the DDX is able to access the adapter. This is done through the aixgsc system call
with the MAKE_GP parameter.

The MAKE_GP parameter marks the calling process as a graphics process for the specified
adapter and returns a segment base address of the adapter and a device-specific structure
that should contain device-specific offset addresses. The device-specific structure may also
contain additional information.

The device-specific portion of the information returned by the aixgsc system call is actually
set in the low-level device driver make_gp routine. This is a hardware-specific function that
is a member of the phys_display structure. (See “Display Device Driver” on page 12-13.)
This make_gp routine fills in addresses and other information required by the DDX.

Once the make_gp routine of the display device driver has been properly implemented, the
aixgsc system call will return the correct addresses within the loadable DDX module. This
enables the X server to access the graphics adapter.

12-42 AIX Writing a Device Driver

Implementation Details
The aixgsc system call takes a pointer to the following structure (defined in
/usr/sys/include/aixgsc.h) as an argument:

typedef struct _make_gp {

 int error; /* error report */

 caddr_t segment; /* segment base address */

 genericPtr pData; /* device specific adapter addresses

*/

 int length; /* length of device specific data */

 int access; /* access authority */

define SHARE_ACCESS 0 /* process shares access to adapter

*/

define EXCLUSIVE_ACCESS 1 /* process cannot share access */

} make_gp;

The following is a sample make_gp routine for a display device driver:

static long xxx_make_gp(pdev,pproc,map,len,trace)

gscDev *pdev;

rcmProcPtr pproc;

struct xxx_map *map

int len;

int *trace;

{

 struct ddsent * dds;

 /* This routine fills in the register mappings for this instance */

 /* returns to the gsc call. */

 dds = (struct ddsent *) pdev–>devHead.display–>odmdds;

 map–>io_addr = dds–>io_bus_addr_start;

 map–>cp_addr = dds–>io_bus_mem_start;

 map–>vr_addr = dds–>vram_start;

 map–>dma_addr[0] = dds–>dma_range_start;

 map–>screen_height_mm = dds–>screen_height_mm;

 map–>screen_wdith_mm = dds–>screen_width_mm;

 return(0);

}

12-43Implementing Graphical Input and 2D Graphics Device Drivers

With the above make_gp routine, the following is a typical fragment of code to bind the
graphics adapter load module into the GAI architecture and allow access to the adapter
within the xxx_ScrInit:

#include <gai/gai.h>

#include <gai/misc.h>

#include <sys/rcm_win.h>

#include <sys/aixgsc.h>

#include <sys/rcmioctl.h>

#include <aixPrivates.h>

extern gAdapterPtr gaiDevAdpIndex[MAXSCREENS];

gsc_handle gscHandle;

Bool xxxScrInit(int index, ScreenPtr pScreen, int argc, char **argv)

{

 gAdapterPtr pAdapter = NULL;

 make_gp makegp_info;

 struct xxx_map xxx_makegp_info; /* see RCM */

 /* documentation */

 int count = 0;

 char *cmdlist[1] = {(char *) NULL};

 strcpy (gscHandle.devname, aixScreenName(pScreen));

 if (ioctl (aixScreenFD(pScreen), GSC_HANDLE, &gscHandle) < 0) {

 return (FALSE);

 }

 pAdapter = CreateAdapter (aixDeviceID(pScreen),

 gscHandle.handle, count, cmdlist);

 makegp_info.error = 0;

 makegp_info.pData = (char *) &xxx_makegp_info;

 makegp_info.length = sizeof(struct xxx_map);

 makegp_info.access = EXCLUSIVE_ACCESS;

 /* not a direct access device

*/

 if (aixgsc(gscHandle.handle, MAKE_GP, &makegp_info)) {

 return (FALSE);

 }

 vram_bits = makegp_info.segment +

 ((struct xxx_map *) makegp_info.pData)–>vr_addr;

 /* continue with remainder of adapter initialization ,

 return TRUE on success, FALSE otherwise. */

}

12-44 AIX Writing a Device Driver

Minimum Resource Management Subsystem (RMS) for 2D
Adapters

The Resource Management Subsystem (RMS) is responsible for managing resources
common to different rendering models. These resources include cursors, color palettes,
buffers, client clip information, fonts, window geometries, and so on. It is not necessary to
provide full-function RMS support for an adapter that supports only the X rendering model,
as X handles its own resources.

In order to provide the minimal RMS support required by the Graphics Adapter Interface
(GAI) architecture, the 2D graphic adapter load module must call the RMS CreateAdapter
function in the adapter initialization subroutine and the RMS DestroyAdapter function in the
adapter uninitialize or destroy subroutine.

Implementation
Adapters that are not direct access adapters and will never be direct access adapters can
write an abbreviated version of the Resource Management Support. The following calls
must be made by a 2D adapter that is intended to display any of the SOFT 3D APIs, such
as OpenGL or SoftPHIGS. Otherwise, these calls are recommended, but not required.

CreateAdapter This routine is the basic initialization routine of the GAI RMS library. It
provides the necessary initialization to create a graphics process within
the RCM (Rendering Context Manager) and permits the graphics
process to begin configuration and operation. The routine is typically
called in the ddx specific adapter initialization routine.

DestroyAdapter This routine destroys all data structures allocated for the adapter and
conveys information to the RCM that invalidates the graphics process’
adapter access privileges. This routine is typically called in the ddx
specific routine vectored through when the X server terminates or resets.

Adapters that use the minimal RMS will not physically have an RMS load module and will
store the value NORMS in the rms ODM entry.

The calling sequence for the CreateAdapter and DestroyAdapter functions are as follows:

gAdapterPtr CreateAdapter(int aid, GSC_HANDLE gsc_handle, int

argc, char** argv);

The CreateAdapter function is called from the xxxScrInit subroutine.

pAdapter–>pProc–>DestroyAdapter(pAdapter); /* pAdapter is */

 /* the adapter pointer returned from CreateAdapter */

The DestroyAdapter function is typically called from the xxxCloseScreen routine.

Include Files
In addition to the standard X server include files, the compilation units (c source files) which
contain the implementation of the device dependent initialization and uninitialization routines
must include the following header files:

• <sys/rcm_win.h>
• <gai/gai.h>
• <gai/misc.h>
• <sys/aixgsc.h>
• <sys/rcmioctl.h>
• <X11/ext/aixPrivates.h>

These header files resolve type definitions for GAI specific data types and external function
declarations for GAI-specific functions used by 2D graphics adapter load modules and input
adapter load modules. In addition, they make available the use of the AIX Graphics System
Call (aixgsc). At initialization time, an aixgsc call must be made to the device independent

12-45Implementing Graphical Input and 2D Graphics Device Drivers

portion of the RCM to register the process (in the case of a 2D graphics adapter ddx
module bound with the X server, the X process) as a graphics process.

Configuring the 2D Adapter into the ODM Database
Information about where loadable modules exist is stored in the ODM database. These
records are located in the GAI class of the database in /usr/lib/objrepos. At load time, this
database is queried based on a unique adapter ID for the correct modules to load. There
are two entries that are required for 2D graphics adapters: one for the RMS module and
one for the DDX module.

Since it is not necessary to provide full-function RMS support for 2D adapters (see previous
section), a special keyword ”NORMS” has been developed to provide the minimal level of
RMS support; ”NORMS” should be placed in the Module_Path field of the ODM entry.

The following is the structure definition for the GAI record in the ODM database:

ODM Record

class GAI {

 long Adapter_Id;

 char Module_Key[11];

 vchar Module_Path[256];

 vchar Processor_Id[16];

};

Field definitions for the GAI record in the ODM database.

Adapter_id Specifies the GAI adapter ID for the adapter. New adapters are assigned
this value during development. This is obtained from the display_id attribute
of the ODM PdDv Object Class and stored in the dev_id field of the
appropriate display_rec structure when the server initializes.

The ID is given a value of the form 0x04xxmmnn, where:

04 Fixed.
xx An adapter-specific ID.
0x00 – 0x7f Reserved for use by the provider of AIX.
0x80 – 0xff Provided for vendor adapters.

Note: To avoid duplication of adapter IDs within this range, it is advised
that you contact the provider of AIX for a list of available IDs and
not rely on using values not currently installed in the database.

mm Specifies the adapter state for vendor adapters. 0x00
indicates that the adapter is functional. No other value is
allowed at this time.

nn Differentiates between multiple instances of the same
adapter type (max 4).

Module_Key Specifies the key for the module. Typically, this key is “rms”, “ddx” or one of
the 3D or extension keys.

Module_Path Specifies the path name of the load module for this key and adapter. The
module path is used along with the GAI_PATH environment variable to find
the load module.

Processor_Id Identifies the processor. Intended for future use to enable the developer to
load modules based on processor type. Currently, the only supported value
of this field is 0 (zero), the default, defined as ANY_PROCESSOR.

12-46 AIX Writing a Device Driver

Usually, ODM records are gathered in a file to be added at configuration time. For example,
a samp2d.add file for an adapter with an ID of 0x4330000 may contain the following
records:

GAI:

Adapter_Id = 0x4330000

Module_Key = ”rms”

Module_Path = ”NORMS”

Processor_Id = 0

GAI:

Adapter_Id = 0x4330000

Module_Key = ”ddx”

Module_Path = ”sampddx/loadddx”

Processor_Id = 0

12-47Implementing Graphical Input and 2D Graphics Device Drivers

Porting Input Devices
This section describes how to add a new input device to the X Server using the X11 Input
Extensions. It consists of the following areas:

• Input Device Driver Overview (on page 12-47)
• Block and Wakeup Handling (on page 12-50)
• Event Processing (on page 12-52)
• Input Load Module (on page 12-53)
• ODM Database Entry for Input Devices (on page 12-59)
• Sample Input Device Load Module (on page 12-59)

Input Device Driver Overview
The AIX system supports only keyboards and displays as part of the low-function Terminal
(LFT) subsystem. Typically, the X server uses the mouse as its core pointer, but it could
also be a tablet or other device that has a valuator with at least two axes and one pointer.
Devices with valuators of two or more axes are supported on the system as extension input
devices. The AIX system provides built-in load modules for supported extension input
devices. Unsupported input devices require their own load modules.

The X server accesses extension input devices through the X11 Input Extension. This
information describes adding a new input device to the AIXwindows X server. You must
understand how the X11 Input Extension works before trying to port a new input device.
This information should be used with the X11 Input Extension Porting document from the X
Consortium.

The three requirements for adding a new extension input device to the AIXwindows X
server are:

• A device driver (or standard tty device driver)

• A load module that contains the device-dependent subroutines for accessing the
extension input device

• Entries in the Object Data Manager (ODM) database

Device Driver
The device driver is the interface between the X server and the extension input device
hardware. If the extension input device can use the serial port, you may want to use the
standard tty device driver rather than write a device driver. The requirements for the device
driver vary, depending upon whether you want to use the X server input ring. If you use the
standard tty device driver, you may need to maintain your own input ring. For information on
using the tty device driver, see “STREAMS-Based TTY Subsystem Interface” on page 11-1.

To use the X Server input ring to store events, follow the specification for adding events to
the input ring. The device driver must send a signal to the X server to notify it that there is
input pending. The load module for the extension input device is responsible for sending the
input ring information of the X server to the device driver. The deviceProc subroutine must
initialize the inputInfoDevPriv structure for the extension input device.

If you do not want to use the X server input ring, then the load module and the device driver
must coordinate how and where input device events are to be stored. The load module
must register with the X server the two values it will use to check for input pending. The
module must also determine the subroutine to call if input is available. This can be done
using AddInputCheck subroutine. You will need to follow this method if you plan on using
the standard tty device driver. You must also register a block handler and a wakeup handler.

12-48 AIX Writing a Device Driver

InputInfo Structure
The InputInfo structure, defined in the /usr/include/X11/ext/inputstr.h file, contains
information about the input devices. The inputInfo global variable must be used to access
the elements of the structure.

The InputInfo structure is defined as follows:

typedef struct {

 int numDevices; /* total number of devices */

 DeviceIntPtr devices; /* all devices turned on */

 DeviceIntPtr off_devices; /* all devices turned off */

 DeviceIntPtr keyboard; /* fast path to keyboard device */

 DeviceintPtr pointer /* fast pointer to the pointer */

 /* device */

#ifdef AIXV4

 inputInfoDevPriv infoPriv; /* the global input specific */

 /* control block */

#endif

} InputInfo;

The fields of the InputInfo structure are defined as follows:

numDevices Specifies the number of devices that are known to the X server.

devices Specifies a pointer to a linked list of device structures that represent
devices that are turned on.

off_devices Specifies a pointer to a linked list of device structures that represent
devices that are turned off.

keyboard Specifies a pointer that is a fast path to the core keyboard structure.

pointer Specifies a pointer that is a fast path to the core pointer structure.

infoPriv Specifies a pointer to the private structure for the input control blocks.

inputInfoDevPriv Structure
The InputInfo structure contains a private area that is used for input control blocks. The
following structure is used as the InputInfo private area. The MAX_DEVICES variable is
defined in the inputstr.h file. Use the infoInput global variable to access this structure. The
devices and eventHandlers elements must be set in the deviceProc subroutine if the X
server input ring is to be used to store the device events.

struct _inputInfoDevPrev {

 struct inputring *inputRing;

 struct DeviceIntRec *devices [MAX_DEVICES] ;

 void (*eventHandlers [MAX_DEVICES]) () ;

} inputInfoDevPriv, *inputInfoDevPrivPtr;

#define INPUT_RING_SIZE 4096

The fields of the inputInfoDevPriv structure include are defined as follows:

inputRing Specifies a pointer to the input ring where the input devices store events.
The inputring structure is defined in system include file
/usr/include/sys/inputdd.h.

devices Specifies an array of pointers to the DeviceIntRec structure for each
device and serves as a fast path to the structures for each device. The
index into the array is the device ID stored in the DeviceIntRec structure
for the extension input device.

eventHandlers

Specifies an array of subroutines (one for each possible device) that format
the raw event as read from the input ring into the proper X server format.
The index into the array is the device ID stored in the DeviceIntRec
structure for the extension input device.

12-49Implementing Graphical Input and 2D Graphics Device Drivers

inputring and ir_report Structures
The inputring and ir_report structures are defined in the inputdd.h include file. Refer to
the inputdd.h file for details of the structure. The first 10 bytes in each ir_report structure
contain the ID of the device returning the event, the size of the event, and a time stamp.
The Input Ring Structure figure depicts the location of this data within the context of the
input ring.

X Server Input Ring
Once a device has been opened, extension input device drivers can add events to the X
server input queue. The input ring is allocated in X server memory and is stored as part of
the device private area of the input control block in the inputInfo structure. To use the input
queue, the deviceProc subroutine for each extension input device must register the input
ring data with the device driver. This data is the pointer to the inputring structure and the
device ID. The device ID for each device is the id field of its DeviceIntRec.

See the following diagram that illustrates the X Server input ring.

ID

Length

Time Stamp

Data

Size

Head Pointer

Tail Pointer

Overflow Flag

Notify Flag

next report to process

next location to store report

H
e
a
d
e
r

Report-
ing
Area

Event Report

Input Ring

Input Ring Structure

All input devices that receive input events from device drivers by this mechanism share the
input ring. The input queue contains a head and tail pointer. The device driver adds device
events to the ring at the tail pointer, and the X server reads events from the ring at the head
pointer. The header of each raw device event contains a device ID, the size of the event
data, and a timestamp in milliseconds. The offset to the next event is computed from size
value. The locking strategy uses priority levels to ensure that only one input driver touches
the input ring at any given time. Thus, all input device drivers must execute with an
INTCLASS3 priority whenever they modify the input ring.

When the queue head pointer is equal to the tail pointer, it is assumed that the queue is
empty. When the device driver attempts to add an event that would cause the tail pointer to
be equal to or logically greater than the head pointer, it sets the ir_overflow flag and
flushes the input event that caused the overflow. Additionally, all events are flushed as long
as the ir_overflow flag in the ring header is set to IROVERFLOW, even if there is room on
the ring for an event report.

Data stored in the input ring are in the form of raw device events, but they must be
reformatted into the type of event that the X server returns to the client. The events may be
core device events (those originating from a pointer or keyboard) or extension device
events, such as valuator motion, button press, button release, key press, key release or

12-50 AIX Writing a Device Driver

proximity. Since the X server may not have knowledge of every raw device event format
stored in the queue, it calls a device-specific subroutine to reformat the event into one of
the event types that the X server understands. These subroutines are stored in the input
device private structure in the processRawInputEvents field.

A fast path to each of the extension input device’s processRawInputEvents is the
eventHandlers array stored in the private area of the inputInfo structure. When the device
is opened, the deviceProc subroutine stores a pointer to the device’s
processRawInputEvents subroutine in the eventHandlers index that corresponds to the
device’s ID as stored in the id field of the deviceIntRec structure. The
processRawDeviceEvents formats the event into the appropriate X events and calls the
subroutine stored in the processInputEvents field of the DeviceIntRec for the extension
input device.

SIGMSG Signal
Input device drivers using the AIX input event queue provide event notification to the X
server using the SIGMSG signal. The SIGMSG signal is defined in the
/usr/include/sys/signal.h file. The ir_notifyreq flag in the input ring header specifies when
the SIGMSG signal is to be sent. If the flag is set to IRSIGEMPTY, the driver sends a
signal only when it enqueues an event report into an empty input ring. If the ir_notifyreq
flag is set to IRSIGALWAYS, then the device driver sends a SIGMSG signal each time it
enqueues an event.

Notification is provided for the event that causes a queue overflow; however, once queue
overflow has been posted to the input ring, no other event notification is provided until the
overflow indicator has been cleared. Queue overflow is posted to the input ring when the
ir_overflow flag is set to IROVERFLOW.

If the input device to be added connects to the system through a tty port, a block and
wakeup handling scheme must be used. See “Block and Wakeup Handling” on page 12-50
for more information.

Block and Wakeup Handling
If you use the standard tty device driver, you must notify the X server to enable the
extension input device driver for input pending. This can be accomplished by calling the
AddEnabledDevice subroutine, which adds the file descriptor for the device driver to the
select mask. To remove the file descriptor for the device driver from the select mask, use
the RemoveEnabledDevice subroutine. Both subroutines should be called in the
deviceProc subroutine for the extension input device when the extension input device is
turned on or off. The xxxBlockHandler and xxxWakeupHandler subroutines must be
registered with the X Server by calling the RegisterBlockAndWakeupHandlers subroutine
to control what the X Server should do before and after calling the select subroutine.

Note: You must replace the xxx portion of the subroutine name to make it unique.

The xxxBlockHandler and xxxWakeupHandler subroutines are removed by calling
RemoveBlockAndWakeupHandlers when the extension input device is turned off in a
deviceProc subroutine of the device.

The AddEnabledDevice, RemoveEnabledDevice and
RemoveBlockAndWakeupHandlers subroutines are common X Server routines. For more
information about these subroutines, refer to The X-Window Server by Elias Israel and Erik
Fortune, Digital Press.

Additional information about the xxxBlockHandler and xxxWakeupHandler subroutines
follows.

12-51Implementing Graphical Input and 2D Graphics Device Drivers

xxxBlockHandler Subroutine

Purpose
Allows for any device-specific action before the select subroutine is processed.

Syntax
void xxxBlockHandler (blockData, ppTimeout, pReadmask)
char *blockData;
struct timeval **ppTimeout;
unsigned *pReadmask;

Description
The xxxBlockHandler subroutine allows for any device-specific action before the X server
processes the select subroutine. The xxxBlockHandler subroutine is called before the X
server calls the select subroutine. For most extension devices, this subroutine is an empty
routine. You must register block and wakeup handlers in pairs, and in most cases, only a
wakeup handler is needed for input devices.

Parameters
blockData Points to the private data used by the block handler subroutine. Its value is

the same as the value of the blockData parameter that was passed to the
RegisterBlockAndWakeupHandlers subroutine.

ppTimeout Returns a pointer to the timeout value. This value is used to determine the
maximum amount of time the block is allowed to last.

pReadmask Points to a data structure that defines which descriptors are to be blocked
on. The data structure is an array of unsigned long data elements, and the
bit in the arrary must be set so that it corresponds to the value of the file
descriptor.

xxxWakeupHandler Subroutine

Purpose
Allows for reading from ready file descriptors after select processing.

Syntax
#define FD_SETSIZE 128 /* limit of server connections */
#include <sys/select.h>
void xxxWakeupHandler (result, pReadmask)
int result;
unsigned *pReadmask;

Description
The xxxWakeupHandler subroutine is called after the X server returns from the select
subroutine. If the descriptor for the extension input device driver is ready for reading, the
two long values that check for input should be set not equal to each other.

The macro FD_ISSET(n, pReadMask) checks the file descriptor that you are using to see if
the select subroutine selected your ID.

Parameters
result Indicates the return value from the select subroutine that specifies the

number of descriptors that are ready for reading.

pReadMask Points to a data structure that defines which descriptors are ready for
reading.

12-52 AIX Writing a Device Driver

Event Processing
Processing events involves obtaining events from devices and delivering them to clients. If
the X server input ring is used, each device event in the input ring is passed to the
eventHandlers subroutine, which was initialized in the inputInfoDevPriv structure.
Otherwise, the input processing subroutine passed to the AddInputCheck subroutine will
be called to process pending input. Both of these methods should use the
processRawEvents subroutine, which is part of the load module.

AddInputCheck Subroutine

Purpose
Adds additional input checking for extension input devices that are not using the X server
input ring.

Syntax
void AddInputCheck (p1, p2, proc)
void *p1, *p2;
void *proc ();

Description
The AddInputCheck subroutine adds extra input checking for extension input devices that
do not use the X server input ring. The AddInputCheck subroutine adds a level of
indirection to the current scheme of checking for input by comparing of two long data
elements. Instead of one set of long data elements to check for pending input, there is an
array of longs. The AddInputCheck subroutine adds a new set of long data elements as
well as an input processing procedure into this array.Two identical values indicates no input
whereas two different values indicates input is pending. The long values can be pointers or
hard-coded values.

Parameters
p1, p2 Specifies a pointer to a long data element. The values can be a mask, a

hard coded value, an integer, or a pointer.

proc Specifies a procedure to call if the values pointed to by the p1 and p2
parameters are not equal.

RemoveInputCheck Subroutine
Cancels the AddInputCheck subroutine.

Syntax
void RemoveInputCheck (proc)
void *proc ();

Description
The RemoveInputCheck subroutine removes additional input checking for extension input
devices that do not use the X server input ring. This subroutine is called when the
deviceProc subroutine of the device contains the DEVICE_OFF value.

Parameters
proc Specifies the procedure that corresponds to the input check that should be

removed.

12-53Implementing Graphical Input and 2D Graphics Device Drivers

Input Load Module
The subroutines that manipulate each extension input device are stored in a dynamically
loadable module. When the X server receives an X_ListInputDevices protocol request, it
loads each of the extension load modules and calls the entry point for each load module.
Load modules remain loaded until the X server terminates or resets.

InputDevPrivate structure
The InputDevPrivate structure must be initialized in the entry point subroutine of the
extension input device load module. This structure is part of the
/usr/include/X11/ext/aixInput.h file and is defined as follows:

typedef struct {

 pointer client_list;

 short ctrlstructsize;

 int (*legalModifier) ();

 int (*deviceProc) ();

 int (*openDevice) ();

 void (*closeDevice) ();

 int (*setDeviceMode) ();

 int (*setDeviceValuators) ();

 int (*getDeviceControl) ();

 int (*changeDeviceControl) ();

 void (*processRawInputEvents) ();

 int fd;

 int idx;

 pointer vendor_specific;

} InputDevPrivate;

Field definitions for the InputDevPrivate structure:

client_list Specifies a linked list of all the clients that have this device open. This
element must be initialized to NULL.

ctrlstructsize

Specifies the size of the device control structure that this device accepts.
This field is used in the ChangeDeviceControl protocol. If the extension
input device does not support changing controls, this element must be set
to 0.

legalModifier

Specifies a pointer to a subroutine that is used for devices that have keys.
This field returns True or False if the key passed as an input parameter
can be used as a modifier key. If the extension input device does not use a
modifier key, this element must be set to False.

deviceProc Specifies a pointer to the deviceProc subroutine. The deviceProc
subroutine initializes the device, turns the device on and off, and closes it.

openDevice Specifies a pointer to the subroutine to call when the OpenDevice protocol
is specified.The initial value of this field is NoopDDA().

closeDevice Specifies a pointer to the subroutine to call when the CloseDevice protocol
is specified.The initial value of this field is NoopDDA().

setDeviceMode

Specifies a pointer to the subroutine to call when the SetDeviceMode
protocol is specified. If the extension input device does not support mode
changing, this element must be set to NULL.

12-54 AIX Writing a Device Driver

setDeviceValuators

Specifies a pointer to a subroutine to call when the SetDeviceValuators
protocol is specified. If the extension input device does not support
valuators or initializing of valuators, this element must be set to NULL.

getDeviceControl

Specifies a pointer to a subroutine to obtain the current device control
setting for the device. If the extension input device does not support
querying of device controls, this element must be set to NULL.

changeDeviceControl

Specifies a pointer to a subroutine to set the device control settings for a
device. If the extension input device does not support changing device
controls, this element must be set to NULL.

processRawInputEvents

Specifies an input subroutine that formats the raw events extracted from
the input ring.

fd Specifies the file descriptor of the extension input device.

idx Specifies an index to device-specific information. Do not initialize this field.

vendor_specific

Specifies a pointer to any vendor private data used in the load module of
the extension input device.

ExtInitInput Subroutine

Purpose
Initializes the input private structure for the extension input device.

Syntax
int ExtInitInput (inputDevPrivate)
InputDevPrivate *inputDevPrivate;

Parameters
inputDevPrivateSpecifies a pointer to an empty input device private structure and returns

an initialized structure.

Description
The ExtInitInput subroutine for the extension input device initializes the devPrivate
structure of the deviceIntRec structure. The ExtInitInput subroutine is the entry to the load
module and is returned from the load system call.

Return Values
0 Indicates successful completion.

1 Indicates an error occurred.

deviceProc Subroutine

Purpose
Initializes, turns on, opens, or closes the extension input device.

Syntax
int xxxdeviceProc (pDev, onoff)
DevicePtr pDev;
int onoff;

12-55Implementing Graphical Input and 2D Graphics Device Drivers

Description
The deviceProc subroutine is a device-specific procedure that is called from the
EnableDevice, DisableDevice, InitAndStartDevices, CloseDevice, and ExtInitInput
subroutines. This subroutine performs the function specified by the onoff parameter for the
device specified by the pDev parameter.

Typical actions that occur during device initialization include setting up device private
information and calling the dix subroutines to initialize device-specific information. These
subroutines include InitializePointerDeviceStruct and InitializeKeyboardDeviceStruct to
initialize the pointer and keyboard. The deviceProc subroutine must initialize extensions,
device class structures, and the global state of the device. The extension class device
structures are created by using the following subroutines:

• InitButtonClassDeviceStruct
• InitKeyClassDeviceStruct
• InitValuatorClassDeviceStruct
• InitValuatorAxisClassDeviceStruct
• InitFocusClassDeviceStruct
• InitProximityClassDeviceStruct
• InitKbdFeedbackClassDeviceStruct
• InitPtrFeedbackClassDeviceStruct

The MakeAtom subroutine is called with the name of the device. The
AssignTypeAndName subroutine is called with the device ID and the atom returned from
the MakeAtom subroutine. These subroutines set the device name and type in the device
structure.

The deviceProc subroutine must initialize the default values for global state in the
devPrivate section of the DeviceIntRec structure for the specified device.

Parameters
pDev Specifies a pointer to the structure that devices the device

onoff Specifies the action to be taken. Valid values for onoff are:

DEVICE_INIT Creates structures.

DEVICE_ON Opens the hardware device driver if one exists. The device
is marked as on and calls the AddEnabledDevice
subroutine. Other OS-specific actions occur to make the
device available. Typically, the deviceProc subroutine calls
the AddEnabledDevice subroutine to add the device to
the list of “on” devices and the on field of the device
structure is set to True.

If an extension device does not receive its events from
input ring, then the AddInputCheck and
RegisterBlockAndWakeupHandlers subroutines are
called to set up the input checking and processing
mechanism for the extension device.

DEVICE_OFF Marks the device off. Typically, deviceProc calls the
RemoveEnabledDevice subroutine to delete the device
from the list of “on” devices and adds the device to the list
of initialized devices. The on field of the device structure is
set to False.

If the RegisterBlockAndWakeupHandlers subroutine
was called during the DEVICE_ON state, the
RemoveBlockAndWakeupHandler subroutine turns off
the block and wakeup handlers for the device.

12-56 AIX Writing a Device Driver

DEVICE_CLOSE
If the AddInputCheck subroutine was called during the
DEVICE_ON stage, the RemoveInputCheck subroutine
turns off input checking and processing for the extension
input device in the server.

Return Values
0 Indicates successful completion.

1 Indicates an error occurred.

setDeviceMode Subroutine

Purpose
Sets the mode of a device.

Syntax
int xxxsetDeviceMode (pDev, client, mode)
DeviceIntPtr pDev;
ClientPtr client;
int mode;

Description
The setDeviceMode subroutine sets the mode of the device to the mode passed as an
input parameter. This mode can be Absolute or Relative.

Parameters
pDev Specifies the device.

client Specifies the client opening the input device.

mode Specifies the mode. Valid values are Absolute or Relative.

Return Values
BadDevice Indicates an invalid device ID.

BadMatch Indicates the device does not support modes.

BadMode Indicates the specified mode is invalid.

DeviceBusy Indicates another client is using this device.

setDeviceValuators Subroutine

Purpose
Initializes the valuators on a device.

Syntax
int xxxsetDeviceValuators (pDev, client, valuators, first_valuator, num_valuators)
DeviceIntPtr pDev;
ClientPtr pClient;
int *valuators;
int first_valuator;
int num_valuators;

Description
The setDeviceValuators subroutine initializes one or more of the valuators of the device to
the values passed in the valuators parameter.

12-57Implementing Graphical Input and 2D Graphics Device Drivers

Parameters
pClient Specifies the client setting the valuators the input device.

pDev Specifies the device.

valuators Specifies an array of valuator values to be set.

first_valuator Specifies the index of the first valuator to be set.

num_valuators Specifies the number of valuators to be set.

Return Values
Success

BadMatch Indicates the device does not permit valuators to be set.

BadValue Indicates an invalid value for the valuator was specified.

BadDevice Indicates an invalid device ID was specified.

getDeviceControl Subroutine

Purpose
Returns the current device control setting for the specified device.

Syntax
int xxxgetDeviceControl (pClient, pDev, control)
ClientPtr client
DevicePtr pDev;
xDeviceCtl *control;

Description
The getDeviceControlProc subroutine for each device obtains the specified controls for
the device. The xDeviceControl structure is passed directly to the client. The client must
link third-party vendor code and initialize the appropriate subroutines to interpret the data.

Parameters
pClient Specifies the client that is requesting the control change.

pDev Specifies a pointer to the device.

control Specifies the control to obtain.

Return Values
Success

BadValue Indicates the X server does not support specified control.

BadMatch Indicates the X server supports specified control, but the device does not.

AlreadyGrabbed
Indicates the device was grabbed by another client.

12-58 AIX Writing a Device Driver

changeDeviceControl Subroutine

Purpose
Changes the device control settings for the specified device.

Syntax
int xxxchangeDeviceControl (pDev, control)
DevicePtr pDev;
xDeviceCtl *control;

Description
The control procedure for each device changes the specified controls.

Parameters
pDev Specifies a pointer to the device.

control Specifies the change to the device control.

Return Values
Success

Failure

processRawInputEvents Subroutine

Purpose
Formats a raw device event into an event that can be sent to an X Client.

Syntax
void xxxprocessRawInputEvents (pDev, rawEvents)
DeviceIntRecPtr pDev;
pointer *rawEvent;

Description
The processRawInputEvents subroutine takes the raw device event as retrieved from the
input queue or input device and formats it into an event that can be sent to an X client.

In order to map raw device event into X event, information about the current screen and
cursor position is needed. This type of information is accessible globally as follows:

extern int DeviceButtonPress, DeviceButtonRelease;

/* extension device event types */

extern int DeviceMotionNotify, DeviceValuator;

/* extension device event types */

extern int ProximityIn, ProximityOut;

/* extension device event types */

extern int lastEventTime;

extern ScreenInfo screenInfo; /* screen information */

extern int aixCurrentScreen; /* current screen number */

extern InputInfo inputInfo; /* global InputInfo,

 defined in dix/devices.c */

extern int AIXCurrentX; /* current X position of cursor */

extern int AIXCurrentY; /* current Y position of cursor */

extern long GetTimeInMillis(); /* function to get current time */

Parameters
pDev Specifies a pointer to the DeviceIntRec structure for the device.

rawEvent Specifies a pointer to the raw device event for the device.

12-59Implementing Graphical Input and 2D Graphics Device Drivers

ODM Database Entry for Input Devices
Information about each input device is stored in the ODM (Object Data Manager) database.
The following information will be stored for each device.

XINPUT {

 char DeviceName[64]; /* VENDOR’S NAME FOR DEVICE */

 vchar ModuleName[MAXPATHLEN] /* PATH NAME TO LOAD MOCULE */

 char GenericName[15]; /* ONE OF 18 GENERIC DEVICES */

 vchar Class[16]; /* PdDv CLASS */

 vchar SubClass;

 vchar connwhere;

};

The fields of the XINPUT ODM record structure are defined as follows:

DeviceName Specifies a vendor specific name for the device.

ModuleName Specifies the relative name of the load module. This name is used in
conjunction with the XINPUTPATH environment variable to find the name
of the XINPUT load module. The default path is set to:
/usr/lpp/X11/lib/load.

GenericName Specifies the name of the device as used in name field of the
deviceIntRec structure. There are 18 predefined names defined in the XI.h
include file. Vendors are encouraged to use these names for
interoperability.

Class Same as the class name in the device driver CuDv record.

SubClass Reserved for future use.

connwhere Reserved for future use.

ODM Input Device Record Example
The .add file for the system-supported input devices will contain the information for the
input device. For instance, the keyboard device will have the following record:

XINPUT:

DeviceName = “Keyboard Device”

GenericName= “KEYBOARD”

ModuleName = ”loadkeyboard”

Class = “Keyboard”

Sample Input Device Load Module
A sample Input Device load module is included in the AIX Version 4.1 distribution and is
located in the directory /usr/lpp/X11/Xamples/extensions/server/load.

If this directory is not on your system, you may have not loaded the X11.samples.ext LPP.
To see if this is on your system execute:

lslpp –h | grep samples.ext

12-60 AIX Writing a Device Driver

Building a Dynamically Loadable Module
The figure shows how dynamically loadable modules are built.

X Server

Symbols Exported When Built
 xxxx
 yyyyy
 zzzz

Load Module
 Uses xxxx, yyyy, zzzz

Imported Symbols
at build time

Build of Dynamically Loadable Modules

To build a dynamically loadable module, the loading module and the loaded module must
cooperate. The loading module must export a list of symbols that will be needed by the
loadable module. The loadable module must import the symbols needed from the loading
module. These symbols are resolved at the time of the load system call. In addition, each
dynamically loadable module must provide the name of a subroutine to be used as the entry
point to this module.

AIX provides the following exports files that can be used by a dynamically loadable module
as import files:

X.exp Contains symbols from the device independent (dix) portion of the X server.

Xi.exp Contains symbols from the device independent portion of the X11 Input
Extension.

The following example is a sample makefile used to build a dynamically loadable module.
This module imports symbols from X.exp and Xi.exp. The ExtInitInput subroutine is used
as the entry point to this module:

Makefile for creating loadable object module

specify entry point

EPNT = SampExtInit

import files

IMPS = –bI:/usr/lpp/X11/bin/X.exp\

–bI:/usr/lpp/X11/bin/Xi.exp

include file directories

INCS = –I/urs/include/X11 \

–I/usr/include/X11/ext \

–I/usr/include/X11/extensions

sample:

cc SampExt.c –o LoadSampExt –e${EPNT} ${INCS} ${IMPS}

–bM:SRE

12-61Implementing Graphical Input and 2D Graphics Device Drivers

Debugging Load Modules
Remember that symbols defined in the load module are not available to the debugger until
the load module is loaded into memory. So, in order to set a breakpoint inside a function
defined in the load module, you have to wait until the module is loaded. To do this:

• Get into the debugger (dbx /usr/lpp/X11/bin/X) and issue a set subcommand. This will
list all the variables defined in the debug environment.

• Use the unset subcommand to unset the variable $ignoreload:

unset $ignoreload

• Issue the run subcommand at the debug prompt:

run –Pll dev_name

where dev_name is the index of the device you want to debug from the lsdisp command
(for example, ppr0). The process of loading and unloading generates signals which the
debugger catches and pauses. At this time you set the breakpoint.

As an example, say that there are two displays on the system:

>lsdisp

DEV SLOT BUS APT_NAME DESCRIPTION

ppr0 00–01 mca POWER_G4 Midrange Graphics Adapter

gda0 00–03 mca colordga Color Graphics Adapter

Get into the debugger:

dbx /usr/lpp/X11/bin/X (user action)

dbx>unset $ignoreload (user action)

dbx>run –P11 gda0 (user action)

At this point the LFT subsystem takes over the cursor and you will see a screen flash on
the vendor display. Type Shift-Action to get the cursor back to the ibmdisp display.

dbx> stopped due to load/unload (system response)

dbx> stop in xyz (user action, xyz() is

the function you want to

break in.)

12-62 AIX Version 4.1 Writing a Device Driver

List of X Server Porting Subroutines
Load modules for the AIXwindows X server must contain the following subroutines.

X Server Initialization
The following X Consortium subroutines must be included to meet X server requirements.
One instance is required for each server.

ddxProcessArgument
Processes the command-line arguments for the X server.

FindAllAvailableDisplays
Initializes the DisplayRec structure for the X server.

InitOutput Initializes the screeninfo ImageByteOrder, bitmap information, and pixmap
format information and obtains private indexes for the screen and AIX
extensions.

Device-Dependent Initialization
The following subroutines must be supplied to meet ddx requirements:

xxxentryFunc Returns information from the loading of the loadddx module.

xxxScrInit Initializes the screen structure for each screen and performs
device-dependent initialization as required.

xxxCloseScreen
Closes the screen during X server reset.

Block and Wakeup Handling (Input Devices)
Third-party vendors need to write these subroutines for their input extension load modules.

xxxBlockHandler
Allows for any device-specific action before the select subroutine is
processed.

xxxWakeupHandler
Allows for reading from ready file descriptors after select processing.

Event Processing (Input Devices)
The following are provided callable routines for input extension device event processing:

AddInputCheck
Adds additional input checking for extension input devices that are not
using the X server input ring.

RemoveInputCheck
Cancels the AddInputCheck subroutine.

Input Load Module (Input Devices)
The following subroutines must be supplied for input extension load modules:

ExtInitInput Initializes the input private structure for the extension input device.

deviceProc Initializes, turns on, opens, or closes the extension input device.

setDeviceMode
Sets the mode of a device.

setDeviceValuators
Initializes the valuators on a device.

12-63Implementing Graphical Input and 2D Graphics Device Drivers

getDeviceControl
Returns the current device control setting for the specified device.

changeDeviceControl
Changes the device control settings for the specified device.

processRawInputEvents
Formats a raw device event into an event that can be sent to an X client.

Related Information
Angebranndt, Susan, Drewry, Raymond, Karlton, Philip, Newman, Todd, Packard, Keith and
Scheifler, Robert W. Strategies for Porting the X v11 Sample Server. Massachusetts
Institute of Technology. 1991.

Fortune, Erik, and Israel, Elias. The X-Window Server. Digital Press.

Gettys, James, Newman, Ron and Scheifler, Robert W. Xlib––C Language X Interface, MIT
X Consortium Standard, X Version 11, Release 5. MIT X Consortium 1991.

Patrick, Mark, and Sachs, George. X11 Input Extension Library Specification. MIT X
Consortium Standard. X Version 11, Release 5. Hewlett-Packard Company, Ardent
Computer, and the Massachusetts Institute of Technology. 1989, 1990, 1991.

Patrick, Mark, and Sachs, George. X11 Input Extension Protocol Specification. MIT X
Consortium Standard. X Version 11, Release 5. Hewlett-Packard Company, Ardent
Computer, and the Massachusetts Institute of Technology. 1989, 1990, 1991.

Sachs, George. X11 Input Extension Porting Document. MIT X Consortium Standard. X
Version 11, Release 5. Hewlett-Packard Company and the Massachusetts Institute of
Technology. 1989, 1990, 1991.

Scheifler, Robert W. X Window System Protocol, MIT X Consortium Standard, X Version
11, Release 5. MIT X Consortium 1991.

12-64 AIX Version 4.1 Writing a Device Driver

13-1Implementing a Network Device Driver

Chapter 13. Implementing a Network Device Driver

A Common Data Link Interface (CDLI) device driver has several components, as shown in
the CDLI Device Driver Structure figure.

SOCKETS STREAMS

DLPI

NETWORK DEVICE DRIVER

PHYSICAL DEVICE

NETWORK SERVICES

NETWORK DEMUXERS

NID/IFNET

CDLl Device Driver Structure

Several of those components are system-supplied, but a device driver writer typically writes
the following components:

Network Device Driver (NDD)
Defines a simple interface to network based devices that can be used by
both the sockets network interface layer (IFNET) and the STREAMS DLPI
data link layers. (See “Writing a Network Device Driver” on page 13-2.)

Network Demuxer (ND)
Provides common data-link receive functionality. The demuxer specifies
receive filters that are used to distribute network packets. (See “Writing a
Network Demuxer” on page 13-12.)

Network Interface Driver(NID)
The AIX Network Interface Driver (NID) is a layer of software between a
network device driver (NDD) and an AIX network layer. This layer is
required for all network device drivers that have to be made available to a
network layer. (See “Writing a Network Interface Driver” on page 13-21.)

13-2 AIX Version 4.1 Writing a Device Driver

Writing a Network Device Driver
Network device drivers, including the system provided network device drivers (for example,
Ethernet and Token-Ring), are implemented as loadable kernel extensions in AIX. The
following general guidelines apply:

• By convention, device driver kernel extensions are installed in the /usr/lib/drivers
directory. Some system utilities may assume that this is the case.

• When building the kernel extension the relevant base system exports must be imported.
The system provided device drivers import the following: kernex.exp, syscalls.exp.
(streams.exp is used by some drivers). These system export files are located in the
/usr/lib directory.

• Device driver writers must decide how much of the kernel extension to pin. The major
consideration is that code executed on the interrupt level should be pinned. In general,
the system provided device drivers are pinned in their entirety.

• Network device drivers must be configured and loaded into the system.

Overview of Network Device Driver Changes in AIX Version 4.1
To accommodate the changes for the CDLI interface that the communications subsystem
now uses, the network device driver’s interfaces in AIX Version 4.1 are different from the
interfaces in AIX Version 3.2. The parameters passed to the open, close, ioctl and output
functions have been changed. The ioctl function has a new list of commands to service.
The receive interrupt routine is now required to pass up frames via a required interface.
There are also some minor changes to the way a network device driver is loaded and
terminated.

Note: An attribute “bnc_dix_jumper”, which takes values “yes” or “no”, is used for SMIT to
prompt a user to change a jumper on an Ethernet card if it is hardware configurable
for BNC or DIX cables. This attribute is used in AIX Version 4.1 and in some later
versions of AIX Version 3.2.

Network Device Driver Initialization and Termination
Device driver initialization involves execution of the kernel extension’s configuration entry
point. This function is designated when the network device driver is built and is called by the
system when the device driver is loaded. Usually, the ifconfig command is responsible for
configuring the network device driver. The format of the entry should be as follows:

(*networkdd_config) (int cmd, struct uio *uio)

The entry has the following parameters:

• cmd indicates what type of configuration operation should be performed. The network
device driver should recognize the following values for cmd (see
/usr/include/sys/device.h) and can define additional device specific commands:

CFG_INIT Initialize the device.

CFG_TERM Terminate the device.

CFG_QVPD Return vital product data.

CFG_UCODE Download microcode.

• uio is a pointer to a uio structure whose data area contains a ndd_config_t structure
(refer to /usr/include/sys/ndd.h). This ndd_config_t structure contains the
configuration information for the network device driver

When called with the CFG_INIT command the device driver’s configuration function should
perform the following tasks:

• Do any pinning of modules or data structures required by the device driver.

13-3Implementing a Network Device Driver

• Do any lock initialization required by the driver.

• Initialize the device control structures, including allocating memory for the ndd structure.

• Call the ns_attach kernel service to add the device driver to the list of available network
devices.

When called with the CFG_TERM command the device driver’s configuration function
should perform the following tasks:

• Do any unpinning of modules or data structures required by the device driver.

• Free any lock resources.

• Free any device control structures.

• Call the ns_detach kernel service to remove the device driver from the list of available
network devices.

Attention: DLPI or the socket network interface layer may still have references to the
device driver’s ndd structure. This structure should only be deleted from the system when
the device driver is certain that these references have been removed.

When called with the CFG_QVPD command the device driver’s configuration function
should return the devices vital product data in the ndd_config_t structure.

CFG_UCODE is device specific.

The configuration entry point can be called from the process environment only.

Sample network device driver code for configuration and unconfiguration follows:

xx_config(

 int cmd, /* command being processed */

 struct uio *p_uio) /* pointer to uio structure */

{

 xx_dev_ctl_t *p_dev_ctl = NULL; /* point to dev_ctl area */

 int rc = 0; /* return code */

 int i; /* loop index */

 ndd_config_t ndd_config; /* config information */

 /*

 * Use lockl operation to serialize the execution of the config commands.

 */

 lockl(&CFG_LOCK, LOCK_SHORT);

 if (!xx_inited) {

/* perform first time initialization

 *

 * set all locks

 * init device driver structures

 */

 }

 pincode(xx_open); /* pin the entire driver */

 uiomove((caddr_t) &ndd_config, sizeof(ndd_config_t), UIO_WRITE, p_uio);

 /*

 * find the device in the dev_list if it is there

 */

 p_dev_ctl = xx_dd_ctl.p_dev_list;

 while (p_dev_ctl) {

if (p_dev_ctl–>seq_number == ndd_config.seq_number)

break;

p_dev_ctl = p_dev_ctl–>next;

 }

 switch(cmd) {

case CFG_INIT:

if (p_dev_ctl) {

rc = EBUSY;

break;

13-4 AIX Version 4.1 Writing a Device Driver

}

/*

 * Allocate memory for the dev_ctl structure

 */

p_dev_ctl = xmalloc(sizeof(xx_dev_ctl_t), MEM_ALIGN,

pinned_heap);

bzero(p_dev_ctl, sizeof(en3com_dev_ctl_t));

/*

 * Initialize the locks in the dev_ctl area

 */

.....

/*

 * Add the new dev_ctl into the dev_list

 */

p_dev_ctl–>next = en3com_dd_ctl.p_dev_list;

xx_dd_ctl.p_dev_list = p_dev_ctl;

xx_dd_ctl.num_devs++;

/*

 * Copy in the dds for config manager

 */

if (copyin(ndd_config.dds, &p_dev_ctl–>dds,

sizeof(en3com_dds_t))) {

 rc = EIO;

break;

}

p_dev_ctl–>seq_number = ndd_config.seq_number;

/* save the dev_ctl address in the NDD correlator field */

p_dev_ctl–>ndd.ndd_correlator = (caddr_t)p_dev_ctl;

p_dev_ctl–>ndd.ndd_addrlen = XX_NADR_LENGTH;

p_dev_ctl–>ndd.ndd_hdrlen = XX_HDR_LEN;

p_dev_ctl–>ndd.ndd_physaddr = WRK.net_addr;

p_dev_ctl–>ndd.ndd_mtu = XX_MAX_MTU;

p_dev_ctl–>ndd.ndd_mintu = XX_MIN_MTU;

p_dev_ctl–>ndd.ndd_type = NDD_ISO???;

p_dev_ctl–>ndd.ndd_flags = NDD_BROADCAST | NDD_SIMPLEX;

p_dev_ctl–>ndd.ndd_open = xx_open;

p_dev_ctl–>ndd.ndd_output = xx_output;

p_dev_ctl–>ndd.ndd_ctl = xx_ctl;

p_dev_ctl–>ndd.ndd_close = xx_close;

p_dev_ctl–>ndd.ndd_specstats = (caddr_t)&(XXSTATS);

p_dev_ctl–>ndd.ndd_speclen = sizeof(XXSTATS);

 /* perform device–specific initialization */

 /* add the device to the NDD chain */

 if (rc = ns_attach(&p_dev_ctl–>ndd)) {

return(rc);

 }

break;

case CFG_TERM:

/* Does the device exist? */

if (!p_dev_ctl) {

rc = ENODEV;

break;

}

/*

 * Make sure the device is in CLOSED state.

 * Call ns_detach and make sure that it is done

 * without error.

 */

if (p_dev_ctl–>device_state != CLOSED || ns_detach(&(p_dev_ctl–>ndd))) {

rc = EBUSY;

break;

}

/*

 * Remove the dev_ctl area from the dev_ctl list

 * and free the resources.

13-5Implementing a Network Device Driver

 */

break;

case CFG_QVPD:

/* Does the device exist? */

if (!p_dev_ctl) {

rc = ENODEV;

break;

}

 if (copyout((caddr_t)&p_dev_ctl–>vpd, ndd_config.p_vpd,

(int)ndd_config.l_vpd)) {

 rc = EIO;

}

break;

default:

rc = EINVAL;

 }

 /* if we are about to be unloaded, free locks */

 if (!xx_dd_ctl.num_devs) {

/* free locks here */

xx_inited = FALSE;

 }

 unpincode(xx_open); /* unpin the entire driver */

 unlockl(&CFG_LOCK);

 return (rc);

}

CDLI – Device Driver Interface
In AIX Version 4.1, network device drivers should be entered only through the kernel CDLI
users. STREAMS and sockets are implemented above CDLI, so that users gain access to
the network device drivers through the standard socket and STREAMS application
interface. The kernel establishes a ndd structure (refer to /usr/include/sys/ndd.h) for all
network devices. This structure defines the entry points that the device driver must support.
The following is a list of these entry points:

• ndd_open

• ndd_close

• ndd_output

ndd_open Entry Point
This entry point has the following format:

ndd_open(struct ndd *ndd)

The parameter ndd is a pointer to the system ndd structure for this network device. The file
/usr/include/sys/ndd.h contains the definition of this structure.

Device driver users (DLPI or the socket network interface layer) gain access to the device
through a call to the ns_alloc kernel service. This kernel service opens the network device,
if required, by a call to the ndd_open entry point.

When the ndd_open function is called, the device driver should allocate the necessary
system resources (such as DMA channel, interrupt level and priority). It should register it’s
interrupt handler with the system using the i_init kernel service and initialize the device.
After the open is successful, the device driver is responsible for ORing the ndd_flag field
with NDD_UP. The device driver should have ORed this field with NDD_RUNNING upon
successful initialization.

ndd_open can be called from the process environment only.

13-6 AIX Version 4.1 Writing a Device Driver

A code fragment for a sample network device driver open routine follows:

xx_open(

 ndd_t *p_ndd) /* pointer to the ndd in the dev_ctl area */

 {

 xx_dev_ctl_t *p_dev_ctl = (xx_dev_ctl_t *)(p_ndd–>ndd_correlator);

 int rc;

 /*

 * Set the device state and NDD flags

 */

 p_dev_ctl–>device_state = OPEN_PENDING;

 p_ndd–>ndd_flags = NDD_BROADCAST | NDD_SIMPLEX;

 /* set up locks, register interrupt handler */

 p_ndd–>ndd_flags |= (NDD_RUNNING | NDD_UP);

 return(0);

}

ndd_close Entry Point
This entry point has the following format:

ndd_close(struct ndd *ndd)

The parameter ndd is a pointer to the system ndd structure for this network device.

DLPI or the socket network interface layer relinquishes access to a network device by
calling the ns_free kernel service. This kernel service will close the device, when the user
reference count reaches 0, by a call to the ndd_close entry point.

When the ndd_close function is called, the device driver should free its system resources
(including all mbufs) and deregister its interrupt handler through a call to the i_clear kernel
service. On entry to the close routine the device driver should remove the NDD_UP and
NDD_RUNNING flags from the ndd_flags field.

ndd_close can be called from the process environment only.

A code fragment for an example Network Device Driver close routine follows:

xx_close(

 ndd_t *p_ndd) /* pointer to the ndd in the dev_ctl area */

{

 xx_dev_ctl_t *p_dev_ctl = (xx_dev_ctl_t *)(p_ndd–>ndd_correlator);

 int ipri;

 if (p_dev_ctl–>device_state == OPENED) {

 p_dev_ctl–>device_state = CLOSE_PENDING;

 /* wait for the transmit queue to drain */

 while (p_dev_ctl–>device_state == CLOSE_PENDING &&

(p_dev_ctl–>tx_pending || p_dev_ctl–>txq_len)) {

DELAYMS(1000); /* delay 1 second */

 }

 }

 /*

 * deactivate the adapter

 */

 p_dev_ctl–>device_state = CLOSED;

 p_ndd–>ndd_flags &= ~(NDD_RUNNING | NDD_UP | NDD_LIMBO | NDD_DEAD);

 unlock_enable(ipri, &SLIH_LOCK);

 /* cleanup all the resources allocated for open */

 unpincode(xx_open);

 return(0);

}

13-7Implementing a Network Device Driver

ndd_output Entry Point
This entry point has the following format:

ndd_output(struct ndd *ndd, struct mbuf *data)

The entry point has the following parameters:

• ndd is a pointer to the system ndd structure for this network device.

• data is a pointer to the mbuf chain to be transmitted.

DLPI or the socket network interface layer calls ndd_output directly to output data on the
network device.

The first mbuf in each packet chain will be of the M_PKTHDR format (see
/usr/include/sys/mbuf.h). Multiple mbufs may hold the packet and will be linked to data via
the m_next field. Multiple packets on the transmit are supported and these will be linked to
data via the m_nextpkt field. m_pkthdr.len is set equal to the total length of the
individual packet.

On successful transmit, the device driver is responsible for freeing all mbufs. On failure, this
is the callers responsibility. In the case of a multiple packet transmission, if any of the
packets are transmitted the device driver should return success and free the mbufs.

On output, the device driver should check the value of ndd–>ndd_trace. If this entry point
is not null then the device driver should call the trace point for each packet which is
transmitted (chained packets must be unchained before this call). The format of the call is:

(*ndd_trace) (struct ndd *ndd, struct mbuf *data, caddr_t *hp,

ndd–>ndd_trace_arg)

Parameters for ndd_trace have the following meanings:

• ndd is a pointer to the system ndd structure for this network device.

• data is a pointer to the mbuf chain to be transmitted.

• hp is a pointer to the start of the data in the mbuf being transmitted

• ndd_trace_arg is a cookie set by the trace routine.

The trace routine does not free the mbuf chain.

If transmission fails because of queue overruns, the device driver should return EAGAIN.

ndd_output may be called from the process or interrupt environment.

A code fragment for an example Network Device Driver output routine follows:

xx_output(

 ndd_t *p_ndd, /* pointer to the ndd in the dev_ctl area */

 struct mbuf *p_mbuf) /* pointer to a mbuf (chain) */

{

 xx_dev_ctl_t *p_dev_ctl = (xx_dev_ctl_t *)(p_ndd–>ndd_correlator);

 struct mbuf *p_cur_mbuf;

 struct mbuf *buf_tofree;

 int bus;

 int first;

 if (p_dev_ctl–>device_state != OPENED) {

return(ENETDOWN);

 }

 /*

 * if there is a transmit queue, put the packet onto the queue.

 */

 if (p_dev_ctl–>txq_first) {

/*

 * if the txq is full, return EAGAIN. Otherwise, queue as

 * many packets onto the transmit queue and free the

 * rest of the packets, return no error.

 */

.......

......

13-8 AIX Version 4.1 Writing a Device Driver

 }

 while (p_mbuf) {

p_cur_mbuf = p_mbuf;

/*

 * If there is txd available, try to transmit the packet.

 */

if (!(WRK.txd_avail–>flags & XX_IN_USE)) {

if (!xx_xmit(p_dev_ctl, p_cur_mbuf, bus)) {

 /*

 * Transmit OK, free the packet

 */

 p_mbuf = p_mbuf–>m_nextpkt;

 p_cur_mbuf–>m_nextpkt = NULL;;

 m_freem(p_cur_mbuf);

 first = FALSE;

}

else {

 /*

 * Transmit error. Call hardware error recovery

 * function. If this is the first packet,

 * return error. Otherwise, free the reset packets

 * and return error.

 */

 p_ndd–>ndd_genstats.ndd_oerrors++;

 if (first) {

return(ENETDOWN);

 }

 else {

/* increment the error counter */

while (p_cur_mbuf = p_mbuf) {

p_mbuf = p_mbuf–>m_nextpkt;

p_cur_mbuf–>m_nextpkt = NULL;

m_freem(p_cur_mbuf);

}

 return(0);

 }

}

} /* if there is txd available */

else {

while (p_cur_mbuf = buf_tofree) {

p_ndd–>ndd_genstats.ndd_xmitque_ovf++;

p_ndd–>ndd_genstats.ndd_opackets_drop++;

buf_tofree = buf_tofree–>m_nextpkt;

p_cur_mbuf–>m_nextpkt = NULL;

m_freem(p_cur_mbuf);

}

return(0);

}

 } /* while */

 return(0);

}

xx_xmit(

 xx_dev_ctl_t *p_dev_ctl,/* pointer to the device control area */

 struct mbuf *p_mbuf, /* pointer to the packet in mbuf */

 int bus) /* handle for I/O bus accessing */

{

 ndd_t *p_ndd = &(p_dev_ctl–>ndd);

int count;

int offset;

int rc;

int pio_rc = 0;

/*

 * Call ndd_trace if it is enabled

 */

if (p_ndd–>ndd_trace) {

(*(p_ndd–>ndd_trace))(p_ndd, p_mbuf,

p_mbuf–>m_data, p_ndd–>ndd_trace_arg);

}

13-9Implementing a Network Device Driver

/* increment the tx_pending count */

p_dev_ctl–>tx_pending++;

/*

 * copy data into transmit buffer and do processor cache flush

 */

 m_copydata(p_mbuf, 0, count, p_txd–>buf);

/*

 * Pad short packet with garbage

 */

if (count < XX_MIN_MTU)

count = XX_MIN_MTU;

p_txd–>tx_len = count;

......

.....

/*

 * tell the adapter how many bytes to send

 * clear the status and set the EOP and EL bit.

 */

 /* start watchdog timer */

 w_start(&(TXWDT));

return(0);

}

ndd_ctl Entry Point
This entry point for the IOCTL system call has the following format:

ndd_ctl(struct ndd *ndd, int cmd, caddr_t arg, int length)

This entry point has the following parameters:

• ndd is a pointer to the system ndd structure for this network device.

• cmd is the IOCTL.

• arg is the address of the ioctl arguments. This address will be in kernel memory.

• length is the length of arg.

The ioctls for a network device driver are shown below:

NDD_ADD_FILTER
Add receive data filter. arg points to the address of the filter
function to add.

NDD_DEL_FILTER
Remove receive data filter. arg points to the address of the filter
function to remove.

NDD_ADD_STATUS
Add status filter. arg points to the address of the filter function to
add.

NDD_DEL_STATUS
Delete status filter. arg points to the address of the filter function to
delete.

NDD_CLEAR_STATS
Clear all statistics maintained by the network device driver.

NDD_DISABLE_ADDRESS
Disable a multicast address. Remove the NDD_ALTADDRS flag in
the ndd structure. arg contains the multicast address.

NDD_ENABLE_ADDRESS
Enable a multicast address. Set the NDD_ALTADDRS flag in the
ndd structure. arg contains the multicast address.

NDD_GET_STATS
Get general statistics from the network device. General statistics

13-10 AIX Version 4.1 Writing a Device Driver

are maintained by the device driver in the ndd_genstats field of
the ndd. arg points to a user buffer where the ndd_genstats
information should be placed.

NDD_GET_ALL_STATS
Get all statistics from the network device. All statistics means
general statistics maintained by the device driver in the
ndd_genstats field of the ndd and additional specific statistics
maintained by the device driver in a structure pointed to by the
ndd_specstats field. Some device drivers may only update
specific statistics when IOCTL commands are processed. arg
points to a device-specific structure that contains the
ndd_genstats structure followed by device-specific information.

NDD_MIB_QUERY
Return the MIB structure identifying which options the device
supports. arg is a pointer to a structure of type generic_mib_t
in the kernel address space.

NDD_MIB_GET
Get device specific MIBs. arg is a pointer to a structure of type
generic_mib_t in the kernel address space.

NDD_DUMP_ADDR
Return the address of remote dump routine in arg.

NDD_MIB_ADDR
Get all receive addresses for the device. arg is a pointer to a
structure of type ndd_mib_addr_elem_t in the kernel address
space.

NDD_ENABLE_MULTICAST
Enable receipt of all multicast packets. Set NDD_MULTICAST flag
in ndd structure.

NDD_DISABLE_MULTICAST
Disable receipt of all multicast packets. Remove NDD_MULTICAST
flag in ndd structure.

NDD_PROMISCUOUS_ON
Set promiscuous mode on if the adapter allows this. Promiscuous
mode allows the adapter to receive all the packets transmitted on
the network. Set NDD_PROMISC flag in ndd structure.

NDD_PROMISCUOUS_OFF
Set promiscuous mode off. Remove NDD_PROMISC flag in ndd
structure.

Network device drivers are not required to support all of the preceding IOCTLs. For IOCTLs
not supported, the driver should return EOPNOTSUPP.

Additional device specific IOCTLs may also be supported.

DLPI or the socket network interface layer calls ndd_ctl directly if one of the preceding
IOCTLs is issued on a stream or a raw (AF_NDD) socket.

ndd_ctl can be called from the process or interrupt environment.

Device Driver – CDLI Interface
This consists of the following kernel services and functions:

• ns_attach and ns_detach

• nd_receive

• nd_status

13-11Implementing a Network Device Driver

ns_attach and ns_detach Kernel Services
These have the following format:

ns_attach(struct ndd *ndd)

ns_detach(struct ndd *ndd)

The parameter ndd is a pointer to the system ndd structure for this network device.

The preceding two kernel services are called by network device driver configuration
functions to add or remove their network device from the system’s list of available devices.
These services are discussed, in detail, in the initialization and CDLI–Device Driver
Interface sections.

ns_attach and ns_detach can be called from the process environment only.

nd_receive Function
Network device drivers pass receive data to the system through calls to the nd_receive
function that is specified in the ndd structure for the network device. This function may be
null. The format of the call is:

The format of the call is:

(*nd_receive(struct ndd *ndd, struct mbuf *data))

The parameters are as follows:

• ndd is a pointer to the system ndd structure for this network device.

• data is a pointer to the mbuf chain to be received.

AIX supports multiple protocols, concurrently, on the same network device for both sockets
and STREAMS users. To accomplish this receive packets are passed to network demuxers.
Network demuxers are loadable kernel extensions whose function is to route packets to the
appropriate user. Generally, a unique demuxer will be required for each type of network
device. This is because knowledge of the physical layer data headers is required for packet
routing. Network device driver writers will need to provide a network demuxer with their
device driver if one of the system-provided demuxers is not satisfactory for their network
device. Because both device drivers and network demuxers are loadable kernel extensions
it is possible to add a completely new network device to AIX Version 4.1 without requiring
any modifications to the base operating system. The device driver can either bind in a
network demuxer or have the system add a demuxer appropriate for the type of network
device being added. When DLPI or the socket network interface layer calls ns_alloc to
register use of a network device driver, the system checks if the ndd_demuxer field in the
ndd structure is null. If the field is null (the device driver has not bound in a demuxer) then
the system searches the known demuxers in the system trying to find a demuxer for this
type of network device. The interface type is set in the ndd_type field of the ndd structure
and describes classes of network devices which have the same physical layer
characteristics such as 802.3 Ethernet and Token Ring. All devices of the same type can
use a common demuxer. If a match is found, ns_alloc sets the ndd receive and status
function pointers to the demuxers. It also sets the ndd_demuxsource field to 0 (system
provided). AIX Version 4.1 provides demuxers for the following interface types:
NDD_ISO88023, NDD_ISO88025 and NDD_FDDI (see /usr/include/sys/ndd.h). Device
driver writers for network devices of these types may elect to use the system demuxers
instead of providing their own.

Typically, the nd_receive function is called by the device driver’s receive interrupt routine. It
is only called for receive frames that are not in error for any reason. The mbuf pointer
passed to the nd_receive function may contain more than one mbuf chain.

nd_receive may be called with interrupts disabled.

13-12 AIX Version 4.1 Writing a Device Driver

nd_status Function
Network device drivers pass status event information to the system through calls to the
nd_status function that is specified in the ndd structure. This function may be null.

The format of the call is:

(*nd_status(struct ndd *ndd, struct ndd_statblk *status))

The call has the following parameters:

• ndd is a pointer to the system ndd structure for this network device.

• status is a pointer to the status block. This structure is defined in
/usr/include/sys/ndd.h

The nd_status function is typically called by the device driver’s receive interrupt routine
upon receipt of a bad frame. If the adapter has support for status interrupts, it should be
called by the status interrupt routine. The status structure of type ndd_statblk should
have the code field set to NDD_BAD_PKTS and values set in the option fields before
nd_status is called. After calling the nd_status function, the interrupt routine should free
the mbufs associated with the bad frame, or frames.

nd_status can be called from the process or interrupt environment.

Writing a Network Demuxer
Network demuxers, including the system provided ISO88023, ISO88025 and FDDI
demuxers, are implemented as loadable kernel extensions in AIX Version 4.1 The following
general guidelines apply:

• By convention, network demuxer kernel extensions are installed in the /usr/lib/drivers
directory. Some system utilities may assume that this is the case.

• When building the kernel extension the relevant base system exports must be imported.
The system provided demuxers import the following: kernex.exp, syscalls.exp. The
system export files are located in the /usr/lib directory.

• Network demuxer writers must decide how much of the kernel extension to pin. The
major consideration is that the demuxer’s receive and status functions will be called with
interrupts disabled. In general, the system provided demuxers are pinned in their entirety.

• Network demuxers must be configured and loaded into the system.

Network demuxers are loadable kernel extensions whose function is to route incoming
packets to the appropriate user. Generally, a unique demuxer will be required for each type
of network device. This is because knowledge of the physical layer data headers is required
for packet routing. DLPI and the socket network interface layer make direct calls to network
demuxers to register particular packet types to be received. Device drivers call network
demuxers to route packets and status events to the correct users.

Demuxer Initialization
Network demuxer initialization involves execution of the kernel extension’s configuration
entry point. This configuration entry point is called by the configuration method of the
network device driver during the system boot up. This function is invoked when the network
demuxer is built and is called by the system when the kernel extension is loaded.The format
of the entry should be as follows:

(*network_demuxer_config) (int cmd, struct uio *uio)

The entry has the following parameters:

cmd Designates a particular demuxer command.

uio Pointer to a uio structure. This is generally ignored by demuxers.

13-13Implementing a Network Device Driver

Command values that should be recognized by the network demuxer are:

CFG_INIT Initialize the demuxer.

CFG_TERM Terminate the demuxer.

Other demuxer specific commands can be defined.

When called with the CFG_INIT command the demuxer’s configuration function should
perform the following tasks:

• Do any pinning of modules or data structures required by the demuxer.

• Do any lock initialization required by the demuxer.

• Initalize the demuxer control structures.

• Call the ns_add_demux kernel service to add the demuxer to the system’s list of
available demuxers. This step is not required if the demuxer is to be bound to a device
driver or is not to be made available to other network devices.

When called with the CFG_TERM command the demuxer’s configuration function should
perform the following tasks:

• Verify that there are no active users of the demuxer.

• Do any unpinning of modules or data structures required by the demuxer.

• Free any lock resources.

• Free any demuxer control structures.

• If required, call the ns_del_demux kernel service to remove the demuxer from the
system’s list of available demuxers.

nd_add_filter Function
The nd_add_filter function adds a receive filter for the routing of received data. It is
invoked by the CDLI routines and has the following entry point:

(*nd_add_filter)(struct ndd *nddp, caddr_t filter, int len, ns_user_t

ns_user)

The entry point has the following parameters:

nddp Pointer to the system ndd structure for this demuxer.

filter Address of a user defined structure which contains information that the
demuxer needs such as filter type. See /usr/include/sys/cdli.h for the
ns_8022 structure as an example of what is used for this parameter with
802.2 networks.

len Length in bytes of the filter parameter.

ns_user Pointer to the ns_user structure that describes the user of the filter. The
structure is defined in /usr/include/sys/cdli.h.

The nd_add_filter field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer. The function should perform the following
tasks:

• Set any necessary data structure locks.

• Perform sanity checks on the fields of the ns_user structure.

• Handle the appropriate filter type specified in the filter parameter, if applicable.

• Set the nddp–>ndd_specdemux field to a pointer to a private demuxer control structure
that maintains a list of which filters have been added. Be sure to save ns_user
information here; it will later be retrieved by the nd_receive function.

13-14 AIX Version 4.1 Writing a Device Driver

• Call the nddp–>ndd_ctl entry point of the Network Device Driver to register the filter
with the NDD. The calling format is:

((*nddp–>ndd_ctl))(nddp,NDD_ADD_FILTER,filter,len);

• If any errors are returned from the preceding call, invoke the appropriate demuxer delete
filter function.

• Release all locks set upon entry into the function.

• Return 0 for success, errno otherwise.

nd_del_filter Function
The nd_del_filter function for the demuxer deletes a previously specified receive filter. It is
invoked by the CDLI routines and has the following entry point:

(*nd_del_filter)(struct ndd *nddp, caddr_t filter, int len)

The entry point has the following parameters:

nddp Pointer to the system ndd structure for this demuxer.

filter Address of a user defined structure which contains information about the
filter that is to be deleted.

len Length in bytes of the filter parameter.

The nd_del_filter field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer. The function should perform the following
tasks:

• Set any necessary data structure locks.

• Check the len parameter for correctness and verify that a filter has previously been
added.

• If applicable, handle the appropriate filter type specified in the filter parameter.

• Retrieve the filter list from nddp–>ndd_specdemux, search for the filter to be deleted
and free any storage associated with that filter.

• Call the nddp–>ndd_ctl entry point of the Network Device Driver to inform it that the
filter is being deleted. On return from this entry point, check for nonzero error return
codes. The calling format is:

((*nddp–>ndd_ctl))(nddp,NDD_DEL_FILTER,filter,len);

• Release all locks set upon entry into the function.

• Return 0 for success, errno otherwise.

nd_add_status Function
The nd_add_status function adds a filter for routing asynchronous status. It is invoked by
the CDLI routines and has the following entry point:

(*nd_add_status)(struct ndd *nddp, caddr_t filter, int len, ns_statuser *ns_statuser)

The entry point has the following parameters:

nddp Pointer to the system ndd structure for this demuxer.

filter Address of a user defined structure which contains information that the
demuxer needs such as filter type. See /usr/include/sys/cdli.h for the
ns_com_status structure as an example of what is typically used for this
parameter.

len Length in bytes of the filter parameter.

ns_statuser Pointer to structure describing the status user. The structure is defined in
/usr/include/sys/cdli.h.

13-15Implementing a Network Device Driver

The nd_add_status field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer. The function should perform the following
tasks:

• Set any necessary data structure locks.

• Check the len parameter for correctness and verify that a filter has previously been
added.

• Call the dmx_add_status kernel service to add the status filter. The calling format is:

 dmx_add_status(nddp, filter, ns_statuser)

• If no errors were encountered, call the nddp–>ndd_ctl entry point of the Network
Device Driver to register the status filter. On return from this entry point, check for
nonzero error return codes. The calling format is:

 ((*nddp–>ndd_ctl))(nddp,NDD_ADD_STATUS,filter,len);

• Release all locks set upon entry into the function.

• Return 0 for success, errno otherwise.

nd_del_status Function
The nd_del_status function deletes a previously added status filter. It is invoked by the
CDLI routines and has the following entry point:

(*nd_del_status)(struct ndd *nddp, caddr_t filter, int len)

The parameters are the same as the parameters of the companion nd_add_status
function.

The nd_del_status field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer. The function should perform the following
tasks:

• Set any necessary data structure locks.

• Check the len parameter for correctness and verify that a filter has previously been
added.

Call the dmx_del_status kernel service to delete the status filter. The calling format is:

dmx_del_status(nddp, filter)

• If no errors were encountered, call the nddp–>ndd_ctl entry point of the Network Device
Driver to unregister the status filter. On return from this entry point, check for nonzero
error return codes. The calling format is:

 ((*nddp–>ndd_ctl))(nddp,NDD_DEL_STATUS,filter,len);

• Release all locks set upon entry into the function.

• Return 0 for success, errno otherwise.

13-16 AIX Version 4.1 Writing a Device Driver

nd_receive Function
The nd_receive function is invoked by the Network Device Driver for receive packets.

The nd_receive field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer. The function should perform the following
tasks:

• Set any necessary data structure locks.

• If there are no receive filters, free all the mbufs and return.

• Grab each mbuf in the chain and parse the header data to determine which type of
additional processing needs to be done. For example, an Ethernet driver will send the
nd_receive function 802.3 packets, or standard Ethernet type packets, or both of these
types of packets. Use the macros DELIVER_PACKET or IFSTUFF_AND_DELIVER
found in /usr/include/net/nd_lan.h to send the data to the next layer. For 802.2 style
networks, the dmx_8022_receive kernel service has been provided to send the data to
the next layer. The entry point has the following format:

 dmx_8022_receive(struct ndd *nddp, struct mbuf *m, int len)

For this entry point, the len parameter is the size of the MAC header in bytes.

• After exhausting all the mbufs in the chain, release all locks and return. The return value
for this function is void.

For more information, see the description of nd_receive, on page 13-11, in “Writing a
Network Device Driver.”

nd_status Function
The nd_status function is invoked by the Network Device Driver for all status conditions. It
distributes asynchronous status to the appropriate network services users.

The nd_status field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer. The function should perform the following
tasks:

• Set any necessary data structure locks.

• Pass status information to the next layer by calling the dmx_status kernel service. The
calling format is:

 dmx_status(struct ndd *nddp, struct ndd_statblk *status)

• Release all locks set upon entry into the function. The return value of this function is void.

For more information, see the description of nd_status, on page 13-12, in “Writing a
Network Device Driver.”

nd_response Function
The nd_response function is invoked by the higher level protocols if they choose to
perform 802.2 LLC Exchange Station ID or TEST Link Frame processing. It has the
following entry point:

(*nd_response)(struct ndd *nddp, struct mbuf *m, int llcoffset)

The entry point has the following parameters:

ndd Pointer to the system ndd structure for this demuxer.

m Poiner to a mbuf structure which may not contain more than one packet
which contains a XID or TEST packet.

llcoffset Byte offset to the start of the llc header in the mbuf.

13-17Implementing a Network Device Driver

The nd_response field of the ns_demuxer structure filter is set to the address of this
function during configuration of the demuxer. The function should perform the following
tasks:

• Set any necessary data structure locks.

• Copy the MAC source address for the MAC destination address and copy the
nddp–>ndd_physaddr to the MAC source address.

• If the MAC destination address indicates routing information is present, turn off the
routing control bits in the MAC header.

• Call the device driver output routine (*nddp–>ndd_output)(nddp,m) to send the
packet to the driver. If a nonzero error is returned, free the mbuf.

• Release all locks set upon entry into the function. The return value of this function is void.

DLPI/Socket – Network Demuxer Interface
When a network demuxer is bound to a network device driver either by the device driver or
through a ns_alloc call (ns_alloc is described in the appendix of this book), a linkage is
created between the ndd structure and the demuxer’s ns_demuxer structure (defined in
/usr/include/sys/cdli.h). This is done by setting the ndd_demuxer field in the ndd
structure equal to the address of the demuxer’s structure. When DLPI or the socket network
interface issues a request to the system (using ns_add_filter or ns_del_filter) to start
receiving or stop receiving packets or status on this network interface, the system invokes
the demuxer’s entry points for adding or deleting filters or status as defined in the
ns_demuxer structure. A sample fragment of code for ns_add_filter is:

/***

*

*

* ns_add_filter() – Pass ”add filter” request on to demuxer

*

**

/

ns_add_filter(nddp, filter, len, ns_user)

 struct ndd *nddp; /* specific interface */

 caddr_t filter;

 int len;

 struct ns_user *ns_user; /* the details */

{

 return((*(nddp–>ndd_demuxer–>nd_add_filter))

 (nddp, filter, len, ns_user));

}

Thus these kernel service are really entry points into the network demuxer. The syntax of
the calls are as follows:

ns_add_filter(struct ndd *ndd, caddr_t filter, int len,

 struct ns_user *ns_user);

The following parameters apply to ns_add_filter:

ndd Pointer to the system ndd structure for this network device. Typically, a

demuxer user obtains this pointer through a prior call to ns_alloc.

filter Address of the filter function to be added. This is demuxer dependent.

len Length of the filter.

ns_user Pointer to a ns_user structure. This structure is defined in
/usr/include/sys/cdli.h.

13-18 AIX Version 4.1 Writing a Device Driver

“Sample Code – DLPI Call to ns_add_filter,” on page 13-20, shows how DLPI calls
ns_add_filter. First, a ns_alloc call is made to obtain the ndd pointer. DLPI builds the
interface name from the basename of the device being opened (for example, ”tr” for
/dev/dlpi/tr) and the physical point of attachment (for example, 0) passed by the user in the
DL_ATTACH_REQ. Next the sample illustrates how DLPI handles a DL_SUBS_BIND_REQ
request to receive packets from this interface that match a specific 802.2 logical link control
(LLC) header. Note that DLPI simply passes the users request intact to the demuxer. Also
note how the ns_user structure is built. The isr field points to the DLPI interrupt handler
and isr_data is set to the internal address of this Stream. When the demuxer calls DLPI
on a receive packet it also returns isr_data and DLPI does not need to do any packet
demultiplexing to locate the target user. The netisr field is NULL indicating that the DLPI
interrupt routine is to be called on the interrupt level. pkt_format tells the demuxer how
much of the LLC header to remove on input (and how much to expect on output). DLPI
simply passes the format which the user has set through an IOCTL.

ns_add_status has the following syntax:

ns_add_status(struct ndd *ndd, caddr_t filter, int len, struct

ns_statuser *ns_statuser);

The following parameters apply to ns_add_status:

ndd Pointer to the system ndd structure for this network device. Typically, a

demuxer user obtains this pointer through a prior call to ns_alloc.

filter Address of the status function to be added. This is demuxer dependent.

len Length of the filter.

ns_statuser Pointer to a ns_statuser structure. This structure is defined in
/usr/include/sys/cdli.h.

When ns_add_status is called, the demuxer should issue a ndd_ctl with the
NDD_ADD_STATUS operation.

The call to reverse ns_add_filter is ns_del_filter. The call to reverse ns_add_status is
ns_del_status.

ns_del_filter has the following syntax:

ns_del_filter(struct ndd *ndd, caddr_t filter, int len)

The function arguments for ns_del_filter are the same as those for ns_add_filter.

ns_del_status has the following syntax:

ns_del_status(struct ndd *ndd, caddr_t filter, int len)

The function arguments for ns_del_status are the same as those for ns_del_filter.

The demuxer should issue a ndd_ctl with the NDD_DEL_STATUS operation when the
ns_del_status entry point is called.

Many of the demuxer functions for 802.2 LANs can be handled by common routines. A
demuxer can register to use these functions by setting nd_use_nsdmx in the demuxers
ns_demuxer structure to the true value. Setting nd_use_nsdmx true causes the dmx_init
function to be called when ns_alloc binds a network demuxer to a system ndd structure.

13-19Implementing a Network Device Driver

Device Driver – Network Demuxer Interface
The Network Device Driver determines which demuxer to use by setting the ndd_type field
during configuration in its config entry point routine. (For more information see “Writing a
Network Device Driver”, on page 13-2.) A list of defined ndd_types can be found in
/usr/include/sys/ndd.h; a typical name is NDD_ISO88023. The command ifconfig calls
the configuration method of the NDD, which calls the configuration method for the demuxer.
In addition, ifconfig calls the configuration method for the associated NID for the interface.
(For more information, see “Loading and Initialization” in “Network Interface Driver
Functions,” on page 13-21.)

The demuxer’s configuration entry point passes to the ns_add_demux function a structure
of type ns_demuxer that contains fields that are set to the address of functions that the
CDLI and Network Device Driver routines eventually call. For the NDD, this means that the
nd_receive and nd_status fields of the ndd structure are used. These fields contain
function pointers to the appropriate demuxer functions. (For more information, see the
discussion of the nd_receive function, on page 13-16, and the discussion of the nd_status
function, on page 13-16.)

13-20 AIX Version 4.1 Writing a Device Driver

Sample Code – DLPI Call to ns_add_filter
/*

 * dlb_attach – attach interface to this module

 *

 */

staticf MBLKP

dlb_attach(dlb, mp)

DLBP dlb;

MBLKP mp;

{

int len;

int ppa;

char *name;

NDDP ndd;

...

ppa = ((dl_attach_req_t *)(mp–>b_rptr))–>dl_ppa;

name = mknddname(dlb–>dlb_nddname, ppa);

if (ns_alloc(name, &ndd)) {

...

}

...

}

/*

 * dlb_subs_bind – bind a SNAP

 *

 * if dlb_isap != 0xAA, then either

 * – we bound to some non–snap sap

 * – we have already done a subs_bind

 */staticf MBLKP

dlb_subs_bind(dlb, mp)

DLBP dlb;

MBLKP mp;

{

dl_subs_bind_req_t *dlsbr = (dl_subs_bind_req_t *)mp–>b_rptr;

snap_t *snap = (snap_t *)(mp–>b_rptr +

dlsbr–>dl_subs_sap_offset);

int err = 0;

struct ns_8022 dl;

struct ns_user ns_user;

...

else if (dlsbr–>dl_subs_bind_class != DL_HIERARCHICAL_BIND)

err = DL_NOTSUPPORTED;

else if (dlsbr–>dl_subs_sap_length != sizeof(snap_t))

err = DL_BADADDR;

else if ((char *)snap + sizeof(snap_t) > mp–>b_wptr)

err = DL_BADADDR;

...

ns_user.isr = (int)dlb_intr;

ns_user.isr_data = (caddr_t)dlb;

ns_user.protoq = nilp(struct ifqueue);

ns_user.netisr = NULL;

ns_user.ifp = nilp(struct ifnet);

ns_user.pkt_format = dlb–>dlb_pkt_format;

dl.filtertype = NS_8022_LLC_DSAP_SNAP;

dl.dsap = dlb–>dlb_isap;

bcopy(snap, dl.orgcode, sizeof(snap_t));

if (err = ns_add_filter(dlb–>dlb_ndd, &dl, sizeof(dl), &ns_user))

return dlb_error(mp, DL_SUBS_BIND_REQ, err, dlb);

...

}

13-21Implementing a Network Device Driver

Writing a Network Interface Driver
The AIX Network Interface Driver (NID) is a layer of software between a network device
driver (NDD) and an AIX network layer. This layer is required for all network device drivers
that have to be made available to a network layer. This discussion concentrates on NIDs for
an Internet Protocol (IP) network layer, though you can easily modify an NID to support
other network layers.

An AIX Network Interface Driver provides a uniform interface to the IP layer. The NID
passes output packets from the IP layer to the Network Device Driver (NDD). The device
driver insulates the NID from the hardware but does not hide the special anomaly from the
type of underlying physical network.

Each type of physical network has unique access requirement. For Ethernet, this is the
Ethernet header. For a Token Ring, it is the MAC/LLC header. These different anomalies of
the network are handled inside the NID, providing a uniform interface to the network
protocols.

Basic Functions of a Network Interface Driver
The NID is a dynamically loadable kernel extension similar to a device driver. You must load
or add the NID to the kernel through a configuration method. A typical NID performs the
following basic functions:

• Provides a uniform interface from the network layer to the network device driver.

• Translates an IP address to a hardware address for the underlaying device driver.

• Builds the communication device driver specific protocol header (see the Data Packet for
Ethernet figure, on page 13-25).

• Communicates with the network device driver.

A specific NID may perform more functions than those previously listed.

Summary of NID Changes in AIX Version 4.1
Several functions which were in AIX Version 3.2 NIDs have been removed from the NIDs
and placed into the Network Demuxer. For example, the Receive Data and Status Interrupt
function has been moved to the Network Demuxer. (For more information on this, see
“Writing a Network Demuxer”, on page 13-12.) The add_arp_iftype, del_arp_iftype, and
find_arp_iftype kernel services are no longer available, making it the responsibility of NID
writers to either supply their own ARP and address resolution routines or to use the one
supplied by the system. There is an all new set of NID specific IOCTL calls. Finally, there
are some small changes regarding initialization and termination of the NID.

Network Interface Driver Functions
A network interface driver (NID) performs the following functions:

• Loading and initializing
• Communicating with the NDD
• Translating network addresses to hardware addresses
• Handling NID specific IOCTL calls
• Terminating and unloading

Loading and Initialization
The configuration method, ifconfig, loads the AIX NID kernel extension.

The ifconfig command configures the correct NID with the correct Network Device Driver
(NDD). The non-numeric portion of the interface parameter from the command line is used
as the NDD name. The NID name is the same as the NDD name with if_ prepended to

13-22 AIX Writing a Device Driver

the NDD name. For example, the following command tells ifconfig to configure NID if_en
and NDD en in /usr/lib/drivers:

ifconfig en0 1.1.1.1 up

The ifconfig command is run automatically when the system is started, and configures all
NIDs that have been defined in the ODM database. For your NID to be automatically
configured, your interface must be defined in the CuDv ODM object class with the parent
attribute set to inet0 and the name attribute set to the name of your interface. In addition,
the CuAt ODM object class must have a corresponding netaddr attribute defined for the
interface.

If you choose not to have ifconfig configure your NID automatically, you can manually issue
the command as shown above, or place the command in one of the shell scripts that are run
when the system is started.

After loading the NID, the configuration method calls the NID kernel extension entry point
with the CFG_INIT command. This initializes the AIX NID.

Steps during initialization include:

• Pin the code and data for the NID kernel extension if not already pinned. The code might
be pinned already if the configuration method for this NID has been invoked earlier for
another adapter of the same type. If there are multiple adapters of the same type, the
same NID code services all these adapters. It is not necessary to load multiple copies of
an NID for multiple adapters of the same type.

• Open and initialize the underlying NDD. This is done by the ns_alloc subroutine in the
following sample code.

• Initialize an ifnet structure and call the if_attach kernel service. This is done by
xx_attach in the following sample code. The if_attach kernel service adds a NID to the
network interface list, which is a linked list of ifnet structures.

Initialize the ifnet structure with the address of the output routine (ifp–>if_output), ioctl
routine (ifp–>if_ioctl), and reset routine (ifp–>if_reset).

The following sample code illustrates loading and initializing:

struct xx_softc {

struct arpcom xx_ac; /* common part */

struct ndd *nddp;

};

config_xx(cmd, uio)

int cmd;

struct uio *uio;

{

struct device_req device;

int error = 0;

int unit;

struct xx_softc *xxp;

char *cp;

int type;

if ((cmd != CFG_INIT) || (uio == NULL))

return(EINVAL);

if (uiomove((caddr_t) &device, (int)sizeof(device), UIO_WRITE, uio))

return(EFAULT);

lockl(&if_xx_lock, LOCK_SHORT);

if (init == 0) {

if (ifsize <= 0)

ifsize = IF_SIZE;

if (error = pincode(config_xx))

goto out;

xx_softc = (struct xx_softc *)

xmalloc(sizeof(struct xx_softc)*ifsize, 2, pinned_heap);

13-23Implementing a Network Device Driver

if ((xx_softc == (struct xx_softc *)NULL) ||

 (xx_softc == (struct xx_softc *)NULL)) {

unpincode(config_xx);

unlockl(&if_xx_lock);

return(ENOMEM);

}

bzero(xx_softc, sizeof(struct xx_softc) * ifsize);

init++;

}

cp = device.dev_name;

while(*cp < ’0’ || *cp > ’9’) cp++;

unit = atoi(cp);

if (unit >= ifsize) {

error = ENXIO;

goto out;

}

if (!strncmp(device.dev_name, ”xx”, 2)) {

type = IFT_XX;

xxp = &xx_softc[unit];

} else {

error = EINVAL;

goto out;

}

error = ns_alloc(device.dev_name, &xxp–>nddp);

if (error == 0)

xx_attach(unit, type);

else

bsdlog(LOG_ERR,

”if_xx: ns_alloc(%s) failed with errno = %d\n”,

device.dev_name, error);

out:

unlockl(&if_xx_lock);

return(error);

}

xx_attach(unit, type)

unsigned unit;

unsigned type;

{

register struct ifnet *ifp;

register struct xx_softc *xxp;

extern int xx_output();

extern int xx_ioctl();

xxp = &xx_softc[unit];

ifp = &xxp–>xx_if

ifp–>if_name = ”xx”;

ifp–>if_mtu = ??;

ifp–>if_type = type;

ifp–>if_unit = unit;

bcopy(xxp–>nddp–>ndd_physaddr, xxp–>xx_addr, 6);

ifp–>if_flags = IFF_BROADCAST | IFF_NOTRAILERS;

/* Check if the adapter supports local echo */

if (xxp–>nddp–>ndd_flags & NDD_SIMPLEX)

ifp–>if_flags |= IFF_SIMPLEX;

ifp–>if_output = xx_output;

ifp–>if_ioctl = xx_ioctl;

ifp–>if_addrlen = ??;

ifp–>if_hdrlen = ??;

ifp–>if_mtu = ??;

ifp–>if_unit = unit;

ifp–>if_name = ”xx”;

ifp–>if_init = xx_init;

ifp–>if_output = xx_output;

ifp–>if_ioctl = xx_ioctl;

ifp–>if_type = IFT_XX;

13-24 AIX Writing a Device Driver

ifp–>if_addrlen = ??;

ifp–>if_hdrlen = ??;

/* packet filter support */

ifp–>if_flags |= IFF_BPF; /* Enable bpf support */

ifp–>if_tap = NULL; /* Inactive tap filter */

ifp–>if_arpres = arpresolve;

ifp–>if_arprev = revarpinput;

ifp–>if_arpinput = arpinput;

if_attach(ifp);

}

Communicating with the IP
The TCP/IP and NIDs are different kernel extensions that are loaded separately. In order to
communicate with each other, these kernel extensions use the functions and data structures
of the base kernel extension. These kernel services include:

• Address Family Domain kernel services

• Network Interface Device kernel services

• Routing and Interface Address kernel services

Some of these services are:

add_input_type
Adds an interface type to the Network Input Table.

del_input_type
Deletes an input type from the Network Input Table.

find_input_type
Finds an input type from the Network Input Table.

if_attach Adds a network interface to the network interface list.

if_detach Deletes a network interface from the network interface list.

ifunit Returns the ifnet structure for the requested interface.

ifa_ifwithaddr Locates an interface based on a complete interface address.

ifa_ifwithdstaddr
Locates the point-to-point interface with a given destination address.

ifa_ifwithnet Locates an interface on a specific network.

if_down Marks an interface as down.

if_nostat Changes statistical elements of the interface array to zero in preparation for
an attach operation.

Outgoing Packets
For the outgoing packets, the routing code in the IP layer determines the correct NID to use
by scanning the linked list of ifnet structures. The routing code uses Interface Address
kernel services like ifa_ifwithaddr, ifa_ifwithdstaddr, and ifa_ifwithnet to locate the
appropriate ifnet structure. For more detailed information on kernel services, see the
AIX Technical Reference, Volume 5: Kernel and Subsystems.

The ifnet structure is initialized by each NID during its initialization phase. Once the
appropriate NID is located, the IP layer calls the output routine of the NID:

(*ifp–>if_output)(ifp, m, dst, rt)

struct ifnet *ifp;

struct mbuf *m;

struct sockaddr *dst;

struct rtentry *rt;

13-25Implementing a Network Device Driver

ifp A pointer to the ifnet structure. This is required as there may be multiple
adapters of the same type that are serviced by the same NID. The
if_unit field in the ifnet structure is used to determine the appropriate
adapter.

m The mbuf chain containing the data packet. This mbuf chain is freed by the

NID or the device handler.

dst A pointer to the socket address of the destination of the packet.

rt A pointer to a routing table entry for this packet. A null value indicates there
is no routing table entry.

The following Data Packet for Ethernet figure illustrates the modifications to an outgoing
packet from the socket layer to the Ethernet device handler.

Socket Layer

Data

TCP/IP

IP
Header

TCP
Header

Data

DataTCP
Header

IP
Header

NID for Ethernet

Ethernet
Header

Data Packet for Ethernet

Ethernet Device Handler

The output routine provides no guarantee for the transmission of packets. There is no
acknowledgment of a successful delivery. The errors returned are those that can be
detected immediately, such as the interface is down, no memory buffers, and address family
not supported. If the error is detected after the call is returned, the protocol is not notified.

13-26 AIX Writing a Device Driver

The following sample code shows typical code for an output routine:

/***

 * xx_output() – output packet to network

 **/

xx_output(ifp, m, dst, rt)

register struct ifnet *ifp;

register struct mbuf *m;

struct sockaddr_xx *dst;

struct rtentry *rt;

{

register struct xx_softc *xxp;

register struct xx_hdr *hdrp;

struct xx_hdr hdr;

register int hdr_len;

register int error = 0;

struct mbuf *mcopy = 0;

if ((ifp–>if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))

{

error = ENETDOWN;

++xxp–>if_snd.ifq_drops;

goto out;

}

if ((xxp–>if_flags & IFF_SIMPLEX) && (m–>m_flags & M_BCAST))

mcopy = m_copym(m, 0, (int)M_COPYALL, M_DONTWAIT);

xxp = &xx_softc[xxp–>if_unit];

switch (dst–>sa_family) {

/*

 call necessary ARP resolve routine or any other resolve

 here

*/

hdrp = (struct xx_hdr *)&hdr;

break;

}

 /*

 * Add local net header. If no space in first mbuf,

 * allocate another.

 */

hdr_len = xx_len;

M_PREPEND(m, hdr_len, M_DONTWAIT);

if (!m) {

error = ENOBUFS;

++xxp–>if_snd.ifq_drops;

goto out;

}

/* copy in the local net headers */

bcopy((caddr_t)hdrp, mtod(m, caddr_t), hdr_len);

m = m_collapse(m, xx_MAX_GATHERS);

if (!m) {

error = ENOBUFS;

++xxp–>if_snd.ifq_drops;

goto out;

}

if (m–>m_flags & M_BCAST|M_MCAST)

++xxp–>if_omcasts;

13-27Implementing a Network Device Driver

xxp–>if_obytes += m–>m_pkthdr.len;

if (!xxp–>nddp) {

m_freem(m);

++xxp–>if_oerrors;

/*

 call the Network Device Driver’s output function

*/

} else if ((*(xxp–>nddp–>ndd_output))(xxp–>nddp, m)) {

m_freem(m);

++xxp–>if_oerrors;

}

if (mcopy)

(void) looutput(xxp, mcopy, dst, rt);

++xxp–>if_opackets;

m = 0;

 out:

if (m)

m_freem(m);

return (error);

}

Communicating with the Device Handler
The communications device handler interface kernel services provide a standard interface
between NIDs and AIX communication device handlers.

The ns_alloc and ns_free services allocate and relinquish use of a Network Device Driver,
respectively. Once the NDD has been allocated, outgoing packets to the NDD can be sent
by calling the driver’s output function found in the ndd_output field of the ndd structure.
This structure is returned after a successful call to ns_alloc.

Note: ns_alloc and ns_free are described in the appendix of this book.

Output Data
The output routine for NID is called by the network layer (IP). The NID transmits the data by
calling the function found in ndd_output of the ndd structure. This is shown in the
xx_output routine in the sample code starting on page 13-26.

Before calling the ndd_output function, the output routine might have to build the

corresponding link-level header. If the output routine is called by IP, it is supplied with a
destination address in a sockaddr structure. If the sockaddr address family is supported by
the NID, the NID has to map this sockaddr into a link-level address.

This mapping may involve a lookup, or it may require more involved techniques like an
Address Resolution Protocol (ARP). For more information on ARPs, see “Translating
Network Addresses to Hardware Addresses,” on page 13-28.

It may not be always necessary to build the link-level header. For example, a point-to-point
link may not need a link-level header.

The ndd_output function pointer requires two parameters. The first is a pointer to the ndd
structure of which ndd_output is a field. The second is a pointer to the mbuf with
contains the data to transmit. The first mbuf in each packet chain will be of the M_PKTHDR
format (see /usr/include/sys/mbuf.h) Multiple mbufs may hold the packet and will be
linked to data the m_next field. ndd_output points to a device driver entry point similar to
the following:

xx_output(p_ndd, p_mbuf)

ndd_t *p_ndd; /* pointer to the ndd in the dev_ctl area */

struct mbuf *p_mbuf; /* pointer to a mbuf (chain) */

This function returns a zero after successful transmission. If a nonzero return is
encountered, it is the NIDs responsibility to free the mbufs.

13-28 AIX Writing a Device Driver

Translating Network Addresses to Hardware Addresses
The network layer provides the NID with the destination network address. If it is not a
point-to-point network the NID must translate this network address into a destination
hardware address to perform a successful transmission of the packet.

For the existing AIX NIDs, different mechanisms are used for different types of NIDs. For
Ethernet, Token Ring, 802.3, and Fiber Distributed Data Interface (FDDI), the Address
Resolution Protocol (ARP) is used.

The ARP is defined in the RFC826. The ARP provides a dynamic address-translation
mechanism for networks that support broadcast or multicast communication.

The idea of ARP is simple. Whenever a packet needs to be sent out, the NID calls the ARP
resolver routine to get the hardware address of the destination. If the address is already
known (in the cache translation table) then that value is returned. If not, the packet is
queued and an ARP request is broadcast on the network. The request has the network
address of the required destination host.

When the correct destination host receives the ARP request, it sends back an ARP reply
providing the requester with the hardware destination address. The original sender host can
then update its cache translation table and can transmit the queued-up output packet.

The resolver routines for the previously mentioned networks (Ethernet, Token Ring, 802.3,
and FDDI) for the Internet address family are provided by the corresponding NID kernel
extension.

The resolver routine is specified by the NID during configuration. The if_arpres field of
the ifnet structure is assigned a pointer to the NID specific ARP resolution routine before
calling if_attach kernel service. The resolver routine will then be called by the IP layer at the
appropriate time by looking at the ifnet structure for that particular interface.

The resolve routine resolves the IP address into the corresponding hardware address. If
successful, addr_hw points to the hardware address, and a value of zero is returned to the
caller.

If there is no entry in the ARP table (arptab), one needs to be created. An entry is created
with the network address of sock_addr_net and a broadcast ARP request is sent out (using
xx_arpwhohas). The mbuf structure containing the data is held until the address is
resolved. A value of 1 is returned to the caller. The response for the ARP request is
eventually received by the xx_arpinput routine. This routine would update the ARP table
and send out the held packet.

(*resolve)(ac, m, sock_addr_net, addr_hw)

struct arpcom *ac;

struct mbuf *m;

struct in_addr *sock_addr_net;

caddr_t *addr_hw;

Based on the interface type of the resolver, the addr_hw parameter has different semantics:

Ethernet addr_hw is used as type struct ether_header *eh. It is used to return
the value of the Ethernet address.

Token-ring (802.5)
addr_hw is used as type struct ie5_mac_hdr *macp. It completes the
MAC and LCC headers.

802.3 addr_hw is used as type struct ie3_mac_hdr *macp. It completes the
MAC and LCC headers.

FDDI addr_hw is used as type struct fddi_mac_hdr *macp. It completes
the MAC and LCC headers.

The ARP input routine is specified by the NID during configuration. The if_arpinput field
of the ifnet structure is assigned a pointer to the NID specific ARP resolution routine

13-29Implementing a Network Device Driver

before calling the if_attach kernel service. The ARP input routine will then be called by the
receive function of the interface demuxer at the interrupt level.

For Local Area Networks, several resolver and arp input routines are present with the NIDs
provided with the system. These NIDs, in /usr/lib/drivers, are for the following interfaces:

if_en Standard Ethernet and IEEE 802.3 Ethernet NID

if_fd FDDI NID

if_tr IEEE 802.5 token-ring NID

If you choose to use the arp routines provided with the system instead of writing your own,
use the following values for the if_arpres and if_arpinput fields of the ifnet structure:

Interface Type if_arpres Value if_arpinput Value

Standard Ethernet arpresolve arpinput

FDDI fddi_arpresolve fddi_arpinput

802.5 ie5_arpresolve ie5_arpinput

802.3 arpresolve arpinput

The whohas routine broadcasts an ARP request packet asking who has the sock_addr_net
Internet Address.

(*whohas)(ac, sock_addr_net)

struct arpcom *ac;

struct in_addr *sock_addr_net;

The arptfree routine frees any ARP table entry specified by *ac. Any mbuf chain of data
associated with this arptab entry and held for future transmission, is also freed. (See the
previous discussion of the resolve routine, about one page earlier, in this same section.)

(*arptfree)(at)

struct arptab *at;

Handling NID Specific ioctl Calls
The NID supports at least the following ioctl commands:

SIOCSIFADDR Sets the Network Interface address.

The SIOCIFADDR command does not update the interface address
list. The address list is updated by the network (for example,
TCP/IP) layer. See the ifaddr structure on page 13-35 for more
information.

The SIOCIFADDR only adds the IP address to the arpcom
structure for the address in the AF_INET domain.

SIOCSIFFLAGS Sets interface flags.

The SIOCSIFFLAGS command modifies the if_flags field in the
ifnet structure for this NID. The different flags that are stored in the
if_flags field are as follows (also see the net/if.h header file):

SIOCIFDETACH Calls the ns_free function to deallocate the given device driver.

IFIOCTL_ADD_FILTER Calls the ns_add_filter CDLI service to add the given filter to the
device driver

IFIOCTL_DEL_FILTER Calls the ns_del_filter CDLI service to remove the given filter

SIOCADDMULTI Adds a multicast address. The IOCTL must support subfunctions
for adding a multicast address and for enabling a multicast address.

SIOCDELMULTI Deletes a multicast address. The IOCTL must support subfunctions
for deleting a multicast address and for disabling all multicasts.

13-30 AIX Writing a Device Driver

The following sample code shows an IOCTL routine:

xx_ioctl(ifp, cmd, data)

register struct ifnet *ifp;

int cmd;

caddr_t data;

{

register struct ifaddr *ifa = (struct ifaddr *)data;

register struct xx_softc *xxp = &xx_softc[ifp–>if_unit];

int error = 0;

struct timestruc_t ct;

if (!xxp–>nddp) {

return(ENODEV);

}

switch (cmd) {

 case SIOCIFDETACH:

ns_free(xxp–>nddp);

xxp–>nddp = 0;

break;

 case IFIOCTL_ADD_FILTER:

{

ns_8022_t *filter;

ns_user_t *user;

filter = &((struct if_filter *)data)–>filter;

user = &((struct if_filter *)data)–>user;

error = ns_add_filter(xxp–>nddp, filter, sizeof(*filter),

user);

if (error)

bsdlog(LOG_ERR,

 ”if_fd: ns_add_filter() failed with %d return

code.\n”,

 error);

break;

}

 case IFIOCTL_DEL_FILTER:

ns_del_filter(xxp–>nddp, (ns_8022_t *)data, sizeof(ns_8022_t));

break;

 case SIOCSIFADDR:

 switch (ifa–>ifa_addr–>sa_family) {

 case AF_INET:

((struct arpcom *)ifp)–>ac_ipaddr =

IA_SIN(ifa)–>sin_addr;

break;

 default:

break;

}

fd_init();

ifp–>if_flags |= IFF_UP;

curtime(&ct);

ifp–>if_lastchange.tv_sec = (int)ct.tv_sec;

ifp–>if_lastchange.tv_usec = (int)ct.tv_nsec / 1000;

break;

 case SIOCSIFFLAGS:

fd_init();

break;

 case SIOCADDMULTI:

{

register struct ifreq *ifr = (struct ifreq *)data;

void xx_map_ip_multicast();

char addr[6];

/*

13-31Implementing a Network Device Driver

 * Update our multicast list.

 */

switch(driver_addmulti(ifr, &(xxp–>fd_ac),

xx_map_ip_multicast, &error, addr)) {

 case ADD_ADDRESS:

error = (*(xxp–>nddp–>ndd_ctl))

(xxp–>nddp, NDD_ENABLE_ADDRESS, addr,

FDDI_ADDRLEN);

if(error) {

int rc;

driver_delmulti(ifr, &(xxp–>fd_ac),

xx_map_ip_multicast, &rc, addr);

}

break;

 case ENABLE_ALL_MULTICASTS:

error = (*(xxp–>nddp–>ndd_ctl))

(xxp–>nddp, NDD_ENABLE_MULTICAST, addr,

FDDI_ADDRLEN);

if(error) {

int rc;

driver_delmulti(ifr, &(xxp–>fd_ac),

xx_map_ip_multicast, &rc, addr);

}

break;

 case 0:

/* address already enabled */

break;

 case –1:

 /* error */

break;

}

break;

}

 case SIOCDELMULTI:

{

register struct ifreq *ifr = (struct ifreq *)data;

void xx_map_ip_multicast();

char addr[6];

/*

 * Update our multicast list.

 */

switch(driver_delmulti(ifr, &(xxp–>fd_ac),

xx_map_ip_multicast, &error, addr))

{

 case DEL_ADDRESS:

 error = (*(xxp–>nddp–>ndd_ctl))

(xxp–>nddp, NDD_DISABLE_ADDRESS, addr,

FDDI_ADDRLEN);

 break;

 case DISABLE_ALL_MULTICASTS:

 error = (*(xxp–>nddp–>ndd_ctl))

(xxp–>nddp, NDD_DISABLE_MULTICAST, addr,

FDDI_ADDRLEN);

 break;

 case 0:

/* address still in use */

 break;

 case –1:

 /* error */

break;

 }

 break;

 }

 default:

error = EINVAL;

}

13-32 AIX Writing a Device Driver

return (error);

}

Two kernel services have been added to help with multicast addressing. They are
driver_addmulti to add multicast addresses and driver_delmulti to delete multicast
addresses.

driver_addmulti(ifr, *ac, func, error, mac_address)

struct ifreq *ifr;

struct arpcom *ac;

void func();

int *error;

char *mac_address;

The func parameter above is a pointer to a user defined routine in the NID that maps the
multicast address.The following is an example of such a routine:

void xx_map_ip_multicast(struct sockaddr_in *sin, u_char *lo,

u_char *hi)

{

if (sin–>sin_addr.s_addr == INADDR_ANY) {

/*

* An IP address of INADDR_ANY means listen to all

* of the xx multicast addresses used for IP.

* (This is for the sake of IP multicast routers.)

*/

bcopy(xx_ipmulticast_min, lo, 6);

bcopy(xx_ipmulticast_max, hi, 6);

} else {

xx_MAP_IP_MULTICAST(&sin–>sin_addr, lo);

bcopy(lo, hi, 6);

}

}

The function driver_delmulti has the same parameters.

driver_delmulti(ifr, *ac, func, error, mac_address)

struct ifreq *ifr;

struct arpcom *ac;

void func();

int *error;

char *mac_address;

Terminating
The IOCTL SIOCIFDETACH discussed in “Handling NID Specific IOCTL Calls,” on page
13-29, supports the termination of the NDD and corresponding NID.

13-33Implementing a Network Device Driver

NID and ARP Data Structures
This section lists data structures used for NID and ARP. The following NID Data Structure
Relationships figure shows the relationships between various NID and ARP data structures.

ifaddr

NID Data Structure Relationships

xx_softc[0]

xx_softc[1]

arpcom ifnet ifaddr

ifaddr

. . .

.

.

.

.

.

.

.

.

.

xx_softc
The xx_softc structure shows software status and is an internal structure of the NID. This is
a starting point for locating the address of other data structures for the NID.

struct xx_softc {

 struct arpcom xx_ac; /* common part */

 struct ndd *nddp; /* ptr to device driver struct */

}

arpcom
The arpcom structure is a network common structure. It is shared between the NID and the
address resolution code. This is the first element in the softc structure.

struct arpcom {

 struct ifnet ac_if;

 u_char ac_hwaddr[MAX_HWADDR];

 struct in_addr ac_ipaddr;

 struct driver_mult *ac_multiaddrs; /* Lock for walking list */

 /* of multicast addrs. */

};

ifnet
The ifnet structure is the Network Interface Table. It has the following types of fields:

• Interface identifier (if_name, ...)
• Interface properties (if_mtu, if_flags, ...)
• Interface routines (if_output, if_ioctl, ...)
• Interface statistics (if_ipackets, if_opackets, if_ierrors, ...)

It also maintains a pointer to the linked list interface addresses (if_addrlist) for the interface.
The ifnet structures for the different interfaces are in a linked list (if_next). The following
code sample shows the ifnet structure:

13-34 AIX Writing a Device Driver

 struct ifnet {

char *if_name; /* name, e.g. ‘‘en’’ or ‘‘lo’’ */

short if_unit; /* sub–unit for lower level driver */

u_long if_mtu; /* maximum transmission unit */

u_long if_flags; /* up/down, broadcast, etc. */

short if_timer; /* time ’til if_watchdog called */

int if_metric; /* routing metric (external only) */

struct ifaddr *if_addrlist; /* linked list of addresses per if */

/* procedure handles */

int (*if_init)(); /* init routine */

int (*if_output)(); /* output routine (enqueue) */

int (*if_start)(); /* initiate output routine */

int (*if_done)(); /* output complete routine */

int (*if_ioctl)(); /* ioctl routine */

int (*if_reset)(); /* bus reset routine */

int (*if_watchdog)(); /* timer routine */

/* generic interface statistics */

int if_ipackets; /* packets received on interface */

int if_ierrors; /* input errors on interface */

int if_opackets; /* packets sent on interface */

int if_oerrors; /* output errors on interface */

int if_collisions; /* collisions on csma interfaces */

/* end statistics */

struct ifnet *if_next;

u_char if_type; /* ethernet, tokenring, etc */

u_char if_addrlen; /* media address length */

u_char if_hdrlen; /* media header length */

u_char if_index; /* numeric abbreviation for this if */

/* SNMP statistics */

struct timeval if_lastchange; /* last updated */

int if_ibytes; /* total number of octets received */

int if_obytes; /* total number of octets sent */

int if_imcasts; /* packets received via multicast */

int if_omcasts; /* packets sent via multicast */

int if_iqdrops; /* dropped on input, this interface */

int if_noproto; /* destined for unsupported protocol */

int if_baudrate; /* linespeed */

/* stuff for device driver */

 dev_t devno; /* device number */

 chan_t chan; /* channel of mpx device */

struct in_multi *if_multiaddrs; /* list of multicast addresses */

int (*if_tap)(); /* packet tap */

caddr_t if_tapctl; /* link for tap (ie BPF) */

int (*if_arpres)(); /* arp resolver routine */

int (*if_arprev)(); /* Reverse–ARP input routine */

int (*if_arpinput)(); /* arp input routine */

struct ifqueue {

struct mbuf *ifq_head;

struct mbuf *ifq_tail;

int ifq_len;

int ifq_maxlen;

int ifq_drops;

} if_snd; /* output queue */

simple_lock_data_t if_slock; /* statistics lock */

simple_lock_data_t if_multi_lock;

};

13-35Implementing a Network Device Driver

ifaddr
The ifaddr structure contains information about one interface address. The structures are
maintained by the different address families (for example, Internet, osi, and xns). They are
allocated and attached by the address families, and not by the NID. All the addresses for an
interface are linked so that they are easy to locate.

struct ifaddr {

struct sockaddr *ifa_addr; /* address of interface */

struct sockaddr *ifa_dstaddr; /* other end of p–to–p link */

#define ifa_broadaddr ifa_dstaddr /* broadcast address interface */

struct sockaddr *ifa_netmask; /* used to determine subnet */

struct ifnet *ifa_ifp; /* back–pointer to interface */

struct ifaddr *ifa_next; /* next address for interface */

#ifdef _KERNEL

void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *);

#else

void (*ifa_rtrequest)(); /* check or clean routes (+ or –)’d

*/

#endif

struct rtentry *ifa_rt; /* ??? for ROUTETOIF */

u_short ifa_flags; /* mostly rt_flags for cloning */

u_short ifa_llinfolen; /* extra to malloc for link info */

};

ifreq
The ifreq (interface request) structure is used for socket IOCTLs. All interface IOCTLs must
have parameter definitions that begin with ifr_name. The remainder can be
interface-specific.

struct ifreq {

#define IFNAMSIZ 16

char ifr_name[IFNAMSIZ]; /* if name, e.g. ”en0” */

union {

struct sockaddr ifru_addr;

struct sockaddr ifru_dstaddr;

struct sockaddr ifru_broadaddr;

long ifru_flags;

int ifru_metric;

caddr_t ifru_data;

short ifru_mtu;

}

arptab
The arptab (ARP table entries) structures contain the network address to link-layer address
translation. The table is maintained by the ARP routines.

The entries in this table are hashed for fast retrieval. The table is divided into ARPTAB_NB
buckets, each of size ARPTAB_BSIZ. The network address entry to be stored is hashed
based upon its at_iaddr value into the appropriate bucket. To work on this table,
ARPTAB_HASH and ARPTAB_LOOK are defined.

struct arptab {

struct in_addr at_iaddr;/* internet address */

u_char hwaddr[MAX_HWADDR];/* hardware address */

u_char at_timer;/* minutes since last reference */

u_char at_flags;/* flags */

struct mbuf *at_hold;/* last pkt til resolved/timeout

*/

struct ifnet *at_ifp;/* ifnet assoc with entry */

union if_dependent if_dependent;/* hdwr dependent info */

};

13-36 AIX Writing a Device Driver

arpreq
Use the arpreq (ARP request from user) structure to initiate a socket ioctl request.

struct arpreq {

struct sockaddr arp_pa;/* protocol address */

struct sockaddr arp_ha;/* hardware address */

int arp_flags;/* flags */

u_short at_length;/* length of hdwr addr */

union if_dependent ifd;/* hdwr dependent info */

u_long ifType;/* interface type */

}

Include Files
The include files for the data structures include:

net/if.h
net/if_arp.h
sys/mbuf.h
sys/socket.h
sys/devinfo.h

Tracing and Debugging for NIDs
The trace tool is useful for debugging the NID kernel extension. It is also a useful
mechanism for performance analysis and tuning. The tracing code has a small overhead, so
the system performance is minimally altered by using tracing code. To add trace code, see
the chapter on the trace facility in AIX General Programming Concepts : Writing and
Debugging Programs and “Performance Tracing” on page 15-86. The process of tracing is
described in the following paragraphs.

Each logical module inside the kernel and kernel extension is allocated a unique hook ID.
For example:

• HKWD_SOCKET for the socket module

• HKWD_MBUF for the mbuf module

• HKWD_IFEN for the Ethernet NID.

• HKWD_IFFD for the FDDI NID

• HKWD_IFET for the Ethernet 802.3 NID

• HKWD_IFTR for the Token Ring 802.5 NID

• HKWD_IFSL for the SLIP NID

For each of the hook IDs, there are sub-hook IDs for the procedures contained in the related
modules.

For example, for the Ethernet NID output routine, the sub-hook IDs are hkwd_output_in
and hkwd_output_out. A new kernel extension can use tracing by allocating itself a new
unique hook ID which does not have the same value as an existing hook ID. A combination
of hook ID and sub hook ID is used to create a unique trace event in the trace log.

For example, at the beginning of the Ethernet ARP resolve routine, there is the tracing call:

TRCHKT(HKWD_IFEN | hkwd_output_in)

Start tracing by using the trace command. Stop it by calling trcstop. Process the trace log
by using the trcrpt command.

The net_error kernel service makes a tracing call to trace the error generated.

TRCHKL1(HKWD_NETERR | error_code, ifp)

13-37Implementing a Network Device Driver

Configuration Method for NID
Since NID is a dynamically loadable kernel extension, it has to be loaded by an application
which is called as a configuration method. For the existing NID of AIX this is achieved using
the ifconfig command.

To add your own NID used by AIX TCP/IP, create a configuration method that loads your
own NID. This configuration method will be similar to ifconfig.

The configuration method uses the sysconfig subroutine to load, unload, and configure the
AIX NID.

13-38 AIX Writing a Device Driver

14-1Network Interfaces and Protocols

Chapter 14. Network Interfaces and Protocols

AIX Version 4.1 provides two standard user application interfaces to the network: sockets
and STREAMS. The figure CDLI Device Driver Structure, on page 13-1, graphically displays
the� network interface architecture.

Network device drivers are not required to support the socket and STREAMS interfaces
directly. Instead device drivers interface with kernel services which provide the upper layer
support. Collectively these kernel services are called the Common Data Link Interface
(CDLI). Nor are device drivers required to support direct user access to the driver. Raw
socket and STREAMS interfaces are provided for this purpose. Because device drivers only
interface with well defined kernel services, this architecture greatly simplifies the writing and
porting of network device drivers.

AIX Version 4.1 supports user written STREAMS and socket network protocols. For the
STREAMS user, both a tli and an xti application library is provided along with the OSF/ 1.2
STREAMS system call framework. The xti application interface is X/Open compliant.
STREAMS network protocols written to the TPI (Transport Provider Interface) should be
able to directly link into the STREAMS application interface from below. A Data Link
Provider Interface (DLPI) STREAMS module is provided to connect STREAMS-based
protocols with network device drivers. In general, STREAMS protocols should not have to
make direct calls to either CDLI or the network device driver. For socket users, AIX Version
4.1 offers a standard BSD socket framework with a set of kernel services which permit users
to dynamically add both communication domains and new protocol switch entries to an
existing communications domain, but this feature is currently supported only for the
AF_INET address family. In addition, AIX exports a number of low level socket calls such
as sbappend, sbdrop and sbreserve which are required by socket based protocols. With
these services, user written socket based network protocols should be able to directly link
into the socket application interface from below. The standard BSD network interface layer
(ifnet) is provided to connect socket based protocols with network device drivers. In general,
socket based protocols should not have to make direct calls to either CDLI or the network
device driver.

Finally, both network device drivers and network protocols are implemented as loadable
kernel extensions. Special commands, (such as strload for STREAMS) or special user
written commands (similiar to ifconfig for sockets) accomplish the loading of these kernel
extensions.

STREAMS User Interfaces
Both the Transport Layer Interface (TLI) and the X/Open Transport Interface (XTI) define a
transport service interface. The TLI and XTI implementations are limited to TCP/IP. TLI and
XTI are accessed through a set of library subroutines for the C programming language.
These libraries access the kernel through STREAMS messages.

TLI and XTI provide both a connection mode and a connectionless mode of transport
services. A transport endpoint specifies a communication path between the transport user
and the transport provider. A single transport endpoint may not support both modes of
service simultaneously.

TLI and XTI support both synchronous and asynchronous execution modes for handling
asynchronous events. In synchronous mode, the user program is blocked until a specific
event has occurred. In asynchronous mode, the user process is not blocked and is notified
when the specific event has occurred.

Both TLI and XTI support a rich option management facility to provide negotiation,
debugging, graceful shutdown, and buffer management functionalities.

14-2 AIX Writing a Device Driver

The TLI implementation is based on AT&T SVR4 (System V release 4). The transport
provider driver, XTISO, and the associated STREAMS module, timod, are based on the
Transport Provider Interface (TPI) version 1.5. The XTI implementation complies with the
XPG4 standards defined by X/Open.

The user can also directly call the STREAMS getmsg and putmsg system calls to read
from and write to the stream-head message queue.

For more information see “xtiso STREAMS Driver” and “dlpi STREAMS Driver” in AIX
Technical Reference, Volume 4: Communications, “Transport Service Library Interface
Overview” in AIX Communications Programming Concepts, and the reference information
on getmsg and putmsg in AIX Technical Reference, Volume 4: Communications.

Protocol Interfaces via DLPI
The DLS provider is implemented as a style 2 provider that supports both the
connectionless and connection-oriented modes of communication. The DLPI services
support local management primitives and data-transfer primitives. Local management
primitives allow the DLS user to query and control the DLS provider. Data-transfer primitives
enable the DLS user to communicate with a peer DLS user. Each local management
primitive and data-transfer primitive is implemented as a STREAMS message. Normal
primitives are implemented as M_PROTO messages. High-priority interface
acknowledgement primitives are implemented as M_PCPROTO messages.

A style 2 DLS provider can support several physical points of attachment (PPA). The PPA is
used to identify one of several of the same type of interface in the system. A DLS user must
explicitly identify the PPA using the DL_ATTACH_REQ primitive. For more information, see
the description of the DL_ATTACH_REQ primitive in AIX Technical Reference, Volume 3:
Communications.

The DLS provider has been implemented to allow the DLS user the capability of specifying
the packet format. Using the M_IOCTL STREAMS message, the DLS user can specify the
packet format. If the DLS user does not specify the packet format, the default is
NS_PROTO. The packet formats are defined in “DLPI Interfaces Supported by AIX,” on
page 14-3.”

In order for the DLS provider to generically support all interface types, the DLS provider has
been implemented so the DLS user can specify address resolution routines.

For more information, see the reference articles on the DLPI primitives (such as
DL_ATTACH_REQ) in AIX Technical Reference, Volume 3: Communications and AIX
Technical Reference, Volume 4: Communications.

See “Data Link Provider Interface Information” in AIX Communications Programming
Concepts for more information on protocol interfaces using DLPI.

14-3Network Interfaces and Protocols

Writing or Porting STREAMS Network Protocols
This section:

• Lists and explains DLPI interfaces supported by AIX

• Details the AIX interpretations of source and destination address

• Provides sample code for packet format setting

• Points to demuxer docs

DLPI Interfaces Supported by AIX
The DLPI driver supports CDLI-based network interfaces in a generic fashion. This support
is enabled by allowing the DLPI user to specify the particular packet format necessary for
the transmission media over which the stream is created. Using the M_IOCTL streams
message, the DLS user can specify the packet format. If the DLS user does not specify the
packet format, the default is NS_PROTO. The packet formats are defined in
/usr/include/sys/cdli.h. The definitions of these formats follow:

NS_PROTO Remove all link-level headers. SNAP is not used.

NS_PROTO_SNAP
Remove all link-level headers including SNAP.

NS_PROTO_DL_COMPAT
Use the AIX Version 3.2.5 DLPI address format.

NS_PROTO_DL_DONTCARE
No addresses present in DL_UNITDATA_IND.

NS_INCLUDE_LLC
Leave LLC headers in place.

NS_INCLUDE_MAC
Do not remove any headers.

The DLPI user is allowed one packet format specification per stream. This packet format
must be specified after the attach, and before the bind. Otherwise, an error is generated.
The DLPI user can specify one of the following packet formats per stream: NS_PROTO,
NS_PROTO_SNAP, NS_PROTO_DL_COMPAT, NS_PROTO_DL_DONTCARE,
NS_INCLUDE_LLC, and NS_INCLUDE_MAC. The NS_PROTO, NS_PROTO_SNAP,
NS_INCLUDE_LLC, and NS_INCLUDE_MAC packet formats are defined in the
/usr/include/sys/cdli.h file. The NS_PROTO_DL_COMPAT and
NS_PROTO_DL_DONTCARE packet formats are defined in the
/usr/include/sys/dlpi_aix.h file. If the user does not specify a packet format, the default
packet format is NS_PROTO.

For the DL_UNITDATA_IND primitive, DLPI provides the header information in the
dl_unitdata_ind_t structure. All packet formats except NS_INCLUDE_MAC accept
downstream addresses in the form mac_addr.dsap[.snap].

If the packet format specified is NS_PROTO or NS_PROTO_SNAP, the MAC and LLC are
included in the header, and the data portion of the message contains only data. If the
packet format is NS_PROTO, the DLPI header includes the MAC and LLC without the
SNAP. If the packet format is NS_PROTO_SNAP, the DLPI header includes the MAC, LLC,
and SNAP. Both NS_PROTO and NS_PROTO_SNAP present destination addresses as
mac_addr and source addresses as mac_addr.ssap.dsap.ctrl[.snap].

If the packet format specified is NS_PROTO_DONTCARE, the DLPI driver does not place
any addresses in the upstream DL_UNITDATA_IND. Addresses are still required on the
DL_UNITDATA_REQ.

14-4 AIX Writing a Device Driver

If the packet format specified is NLS_PROTO_DL_COMPAT, DLPI uses the address format
used in the AIX Version 3.2.5 DLPI driver. The address format is identical both upstream
and downstream, and the source and destination addresses are presented as
mac_addr.dsap[.snap].

If the packet format specified is NS_INCLUDE_LLC, the DLPI header contains only the
destination and source addresses. If the packet format is NS_INCLUDE_LLC, only the LLC
is placed in the data portion of the message. If the packet format is NS_INCLUDE_MAC,
the MAC and LLC are both placed in the data portion of the message. Therefore, the DLPI
user must have knowledge of the MAC header and LLC architecture for that interface in
order to retrieve the MAC header and LLC from the data portion of the message. The
NS_INCLUDE_LLC packet format presents both the source and destination addresses as
mac_addr and leaves the LLC header in the M_DATA portion of the DL_UNITDATA_IND
message. The NS_INCLUDE_MAC format sets the stream to raw mode, which does not
process incoming or outgoing messages. (The previous connectionless-only DLPI driver
sent messages upstream consisting of an M_PROTO/DL_UNITDATA_IND prepended to an
M_DATA block containing the entire medium frame.) This verson of the driver does not
prepend any M_PROTO portion, instead presenting only M_DATA messages upstream.
This is because the received messages may not be Unitdata type, but any of the LLC
message types. Downstream messages no longer require the DL_UNITDATA_REQ header
and must be received as M_DATA messages. These messages must contain a completed
MAC header that will be copied to the medium without further translation.

For the DL_UNITDATA_REQ primitive, if the DLPI user had specified either the
NS_PROTO, NS_PROTO_SNAP, or NS_INCLUDE_LLC format, the DLPI user must
provide the destination address and an optional DSAP in the DLPI header. If the DLPI user
does not specify the DSAP, the DSAP specified at bind time is used. If the DLPI user
specifies the NS_INCLUDE_LLC packet format, the user must include only the LLC in the
data portion. If the user specifies the NS_INCLUDE_MAC packet format, the DLPI user
must provide the full MAC header, including the LLC, in the data portion of the message.

The DLPI user specifies the packet format via the STREAMS I_STR IOCTL. For example,
to change the address format to one compatible with AIX Version 3.2.5, enter:

int

fixaddr(int fd) {

 int old=NS_PROTO_DL_COMPAT;

 return ioctl(fd, DL_PKT_FORMAT, old);

}

To select a raw stream, enter:

int

beraw(int fd) {

 int raw+NS_INCLUDE_MAC;

 return ioctl(fd, DL_PKT_FORMAT, raw);

}

AIX Interpretations of Source and Destination Addresses
DLPI source and destination addresses are 6 byte hardware addresses.

TLI and XTI source and destination addresses are specified via the sockaddr_in structure
defined in the /usr/include/netinet/in.h file. This structure requires a family, a port number,
and an IP address.

14-5Network Interfaces and Protocols

Protocol Address Resolution
In order for the DLPI driver to generically support all interface types, DLPI has been
implemented to allow the DLS user the capability of specifying address resolution routines.

The DLPI user can provide an address resolution procedure for input and output using the
STREAMS I_STR IOCTL, or the user can rely on the system default address resolution
routines. AIX provides default address resolution routines that are interface specific. The
default input address resolution routine is ndd–>nd_demuxer–>nd_address_input, and
the default output address resolution routine is ndd–>ndd_demuxer–>
nd_address_resolve. (Refer to /usr/include/sys/ndd.h).

The DLPI driver calls the input address resolution routine with a pointer to the MAC header
(and optional LLC header) and a pointer to an mbuf structure containing data. The contents
of the data depend on which packet format was specified by the user.

The DLPI driver calls the output address resolution routine with a pointer to an
output_bundle structure, an mbuf structure, and an ndd structure. The output_bundle
structure is described in /usr/include/net/nd_lan.h. The DLPI driver assigns the destination
address to key_to_find and copies the pkt_format and bind time LLC into helpers. If the user
has provided a different dsap/type than what was set at bind time, the DLPI driver copies
these values into helpers. It is the output resolution routine’s responsibility to complete the
MAC header and call ndd_output().

If you choose to specify the input and/or output address resolution routine, use the following
sample code:

noinres(int fd) {

 return ioctl(fd, DL_INPUT_RESOLVE, 0);

}

AIX STREAMS Loading Convention
The configuration file for DLPI is the /etc/dlpi.conf file.

To load: strload –f /etc/dlpi.conf

To unload: strload –uf /etc/dlpi.conf

For STREAMS modules and drivers that can be accessed by TLI and XTI, the configuration
file is the /etc/xtiso.conf file.

To load: strload –f /etc/xtiso.conf

To unload: strload –uf /etc/xtiso.conf

MP Serialization and Locking Options for STREAMS Modules and
Drivers

The STREAMS framework has a special set of data structures and synchronizations that
enable STREAMS-based devices to operate in a multi-threaded environment.

At configuration time, users supply valid synchronization levels for STREAMS modules and
drivers. The synchronization level is specified in the sc_sqlevel member of the strconf_t
structure passed in as an argument into the str_install configuration procedure call. In
addition, MP-safe and MP-efficient STREAMS drivers and modules are required specify in
the sc_flags member of the strconf_t structure the style of the open routine logically ORed
with STR_MPSAFE.

14-6 AIX Writing a Device Driver

Valid synchronization levels are:

SQLVL_QUEUE
Queue Level. This synchronization level enables a separate thread of
execution to access either side of the stream simultaneously.This
synchronization level provides the finest degree of parallelization. If the
user specifies the SQLVL_QUEUE level of synchronization, the user may
need to provide locks to ensure that only one thread executes within a
queue at a time. If the user must provide a locking mechanism, it is
recommended that the user employ the q_lock.

SQLVL_QUEUEPAIR
Queue Pair Level. This synchronization level guarantees that only one
thread of execution can access either queue of the queue pair at a time.

SQLVL_MODULE
Module Level. This level specifies synchronous across all instances of a
module, ensuring no more than one thread of execution through all
instances of the module at a time. This is the level of synchronization the
user should select in a non MP-safe STREAMS module.

SQLVL_ELSEWHERE
Arbitrary Level. A cooperating group of modules, such as a protocol family,
may need to ensure that there is only one thread of execution through the
entire group. In this case, the module developer provides a unique name
that is used at configuration time. The unique name is specified in the
sc_sqinfo member of the strconf_t structure.

 SQLVL_GLOBAL
Global Level. This synchronization level forces a single thread access
through all streams. This option is normally used only for debugging. With
this level of synchronization, the user requests a single lock for the entire
streams system. Only one thread at a time may be executing.

 SQLVL_DEFAULT
Default Level. This synchronization level is defined as SQLVL_MODULE.

TLI and XTI Interface Protocols
The Transport Provider Interface (TPI) is a STREAMS message interface that specifies the
types and allowable sequences of messages passed between the transport user and the
transport provider. TPI is defined by a set of primitives which are implemented as
STREAMS messages. These STREAMS messages can consist of M_PROTO,
M_PCPROTO, or M_DATA message blocks. The TLI and XTI libraries are implemented
using TPI primitives.

The TLI module, timod, sits between the stream head and the transport provider and helps
map TLI messages to TPI primitives. timod passes most messages along unchanged.

14-7Network Interfaces and Protocols

Obtaining Copies of the DLPI Specifications
You can obtain copies of the Data Link Provider Interface (DLPI) specifications
electronically. A postscript version of the DLPI specifications may be retrieved electronically
by anonymous ftp from any of the internet hosts listed below.

HOST IP address Pathname
liasun3.epfl.ch 128.178.155.12 /pub/sun/dlpi
marsh.cs.curtin.edu.au 134.7.1.1 /pub/netman/dlpi
ftp.eu.net 192.16.202.2 /network/netman/dlpi
opcom.sun.ca 142.77.1.61 /pub/drivers/dlpi
ftp.cac.psu.edu 128.118.2.23 /pub/unix/netman/dlpi

To retrieve the postscript DLPI specifications through anonymous ftp, use the following
example:

ftp ftp.eu.net

Connected to eunet.EU.net.

220–

220–Welcome to the central EUnet Archive,

220–

220 eunet.EU.net FTP server (Version wu–2.4(2) Jul 09 1993) ready.

Name (ftp.eu.net:jhaug):anonymous

ftp> user anonymous

331 Guest login ok, send your complete e–mail address as password.

Password:

ftp> cd /network/netman/dlpi

250 CWD command successful.

ftp> bin

200 Type set to I.

ftp> get dlpi.ps.Z

200 PORT command successful.

150 Opening BINARY mode data connection for dlpi.ps.Z (479345

bytes).

226 Transfer complete.

1476915 bytes received in 39.12 seconds (11.97 Kbyte/s)

ftp> quit

221 Goodbye.

There is no guarantee that public internet servers will always be available. If none of the
above public internet server hosts are available, you might try using one of the internet
archive server listing services, such as, Archie, to search for a public server that has the
DLPI specifications.

14-8 AIX Writing a Device Driver

Writing or Porting Socket Network Protocols
Socket protocols, including the system provided TCP/IP and XNS protocols, are
implemented as loadable kernel extensions in AIX Version 4.1. The following general
guidelines apply:

• By convention, protocol kernel extensions are installed in the /usr/lib/drivers directory.
Some system utilities may assume that this is the case.

• When building the kernel extension the relevant base system exports must be imported.
The system provided protocols import the following: kernex.exp, syscalls.exp,
sockets.exp and statcmd.exp. The system export files are located in the /usr/lib
directory. These exports should provide all of the services and data structures required to
port standard BSD socket-based protocols.

• If other kernel extensions are using services provided by the new protocol then users
must create an export file and export these services. See /usr/lib/netinet.exp for an
example of a protocol export file.

• Protocol writers must decide how much of the kernel extension to pin. The major
consideration is that the system interrupt handlers will call the protocol’s handler with
interrupts disabled. (By the way, this is not true for the protocol’s fast and slow timers.)
So at minimum, the protocol’s interrupt handler must be pinned. The system provided
socket protocols are pinned in their entirety.

Initialization
There are two phases to socket protocol initialization in AIX. The first phase involves
execution of the kernel extension’s configuration entry point. This function is designated
when the kernel extension is built and is called by the system when the kernel extension is
loaded. This function should perform the following tasks:

• Do any lock initialization required by the protocol in an MP environment.

• Do any pinning of modules or data structures required by the protocol.

• Add the protocol’s communication domain to the system list using the domain_add
kernel service. domain_add will call the domain’s initialization function plus inititalization
function of all of the protocol’s listed in the domain’s protocol switch table. The later step
is phase two of protocol initialization. Definitions related to this are in
/usr/include/sys/domain.h and /usr/include/sys/protosw.h

• Register address resolution functions, loopback handlers and address resolution IOCTLs
with the systen using the nd_config_proto kernel service.

This is illustrated in sample code for a socket protocol’s configuration entry point
function, on page 14-17.

The second phase of protocol initialization occurs when the protocol initialization function
is called by domain_add. This is exactly analogous to what happens on BSD systems.
Generally, these initialization procedures should contain all of the protocol initialization
procedures which are not AIX specific. Protocols being ported from Berkeley systems
will require no changes to their initialization procedures with two exceptions:

• If protocol interrupts are to be scheduled using the AIX software interrupt facilities, then
this should be initialized at this point. This is done via a call to the netisr_add kernel
service.

• Perform any lock initialization required by the protocol in an MP environment.

This is illustrated in sample code for a socket protocol’s initialization function, on page
14-18.

14-9Network Interfaces and Protocols

After this initialization process, the socket protocol is loaded into the kernel, configured into
the system’s socket framework and initialized. All that remains is for the protocol to notify
the system of the types of network packets it wishes to receive, from which network
interfaces and the format in which packets are to be exchanged with the system. This is
accomplished through a call to the ns_add_filter kernel service. Because AIX supports
multiple protocols concurrently on the same network adapter and because a protocol may
not want to receive packets from all of the network interfaces configured into the system,
socket protocols should perform this registration when an address is bound to a network
interface.

This is illustrated in sample code for a socket protocol’s packet registration function, on
page 14-18.

Loading
The system provided socket protocols are loaded and configured by the ifconfig command.
Because ifconfig requires prior knowledge of all the communication address families in the
system, it cannot be used to load and configure user written socket protocols. The user
must provide a configuration command. The basic logic of this command should be as
follows:

1. Check if the protocol is loaded using the sysconfig kernel service. If not, load the
protocol using the sysconfig kernel service.

2. Open a socket.

3. Issue the appropriate socket IOCTL. For additional information, see
/usr/include/sys/ioctl.h and the reference articles for the socket IOCTLs.

Socket – Protocol Interface
The interfaces that a socket protocol must support are described in the protocol switch
structure, defined in /usr/include/sys/protosw.h. These interfaces, along with their call
semantics, are:

void pr_input(defined per communications domain),

int pr_output(defined per communications domain),

void pr_ctlinput(int cmd, struct sockaddr *sa, caddr_t arg)

 /* cmd is one of the PRS commands listed in protosw.h,

 sa is a sockaddr, and

 arg is an optional argument used within

 the protocol family

 */

int pr_ctloutput(int req, struct socket *so,int level,

 int optname,mbuf **optval)

 /* req is a PRCO action listed in protosw.h,

 so is a socket,

 level is an indication of which protocol layer,

 optname is a protocol dependent request value,

 optval is for return results

 */

14-10 AIX Writing a Device Driver

int pr_usrreq(struct socket *so, int req, struct mbuf *m,

 struct mbuf *nam, struct mbuf *control)

 /* so is the socket,

 req is a PRU request listed in protosw.h,

 m is an optional message chain,

 nam is an optional mbuf containing an address,

 control is an optional mbuf containing control information

 void pr_init(void),

 void pr_fastimo(void),

 void pr_slowtimo(void),

 void pr_drain(void).

 */

The socket system calls interact with the protocol solely through the protocol switch
structure.

The pr_init function is called by the system when the protocol is loaded. After this is
accomplished, the system will call the pr_fastimo function on a 200 millisecond timer and
the pr_slowtimo function on a 500 millisecond timer. Unlike other BSD-based systems,
AIX calls the protocol’s pr_drain functions when the system detects a shortage of network
memory buffers (mbufs).

Protocols pass data among themselves (for example ip to tcp) using the pr_input and
pr_output functions. pr_output moves data towards the network interface and pr_input
moves data towards the socket system call interface. Control information is passed using
the pr_ctlinput and pr_ctloutput functions. Unlike with pr_output, the socket system
routines will pass control data down to the protocols using pr_ctloutput. The getsockopt
and setsockopt socket system calls are implemented in this fashion.

With the two exceptions noted above, all of the socket-to-protocol interfaces in the system
are implemented using pr_usrreq. The specific call semantics for each socket system call
are as follows:

This is the semantics of the socket system call:

(pr_usrreq)((struct socket *) so, PRU_ATTACH,

(struct mbuf *)0, (struct mbuf *)proto,

 (struct mbuf *)0);

This is the semantics of the bind system call:

(pr_usrreq)((struct socket *) so, PRU_BIND,

 (struct mbuf *)0, nam, (struct mbuf *)0);

This is the semantics of the listen system call:

(pr_usrreq)((struct socket *) so, PRU_LISTEN,

 (struct mbuf *)0, (struct mbuf *)0,

 (struct mbuf *)0);

This is the semantics of the close, disconnect system call:

(pr_usrreq)((struct socket *) so, PRU_DISCONNECT,

 (struct mbuf *)0, (struct mbuf *)0,

 (struct mbuf *)0))

This is the semantics of the close system call:

(pr_usrreq)((struct socket *) so, PRU_DETACH,

 (struct mbuf *)0, (struct mbuf *)0,

 (struct mbuf *)0);

14-11Network Interfaces and Protocols

This is the semantics of the soabort system call:

(pr_usrreq)((struct socket *) so, PRU_ABORT,

 (struct mbuf *)0, (struct mbuf *)0,

 (struct mbuf *)0);

This is the semantics of the accept system call:

(pr_usrreq)((struct socket *) so, PRU_ACCEPT,

 (struct mbuf *)0, nam, (struct mbuf *)0);

This is the semantics of the connect system call:

(pr_usrreq)((struct socket *) so, PRU_CONNECT,

 (struct mbuf *)0, nam, (struct mbuf *)0);

This is the semantics of the socketpair system call:

(pr_usrreq)(so1, PRU_CONNECT2,

 (struct mbuf *)0, (struct mbuf *)so2,

 (struct mbuf *)0);

The semantics for send, sendto, sendmsg, write is one of the following forms:

(pr_usrreq)((struct socket *) so, PRU_SENDOOB,top,

 addr, control);

 /* or */

(pr_usrreq)((struct socket *) so, PRU_SEND,top, addr, control);

The semantics for receive, recvfrom, recvmsg, read is one of the following forms:

(pr–>pr_usrreq)((struct socket *) so, PRU_RCVOOB, m,

 (struct mbuf *)(flags & MSG_PEEK), (struct mbuf *)0);

 /* or */

(pr_usrreq)((struct socket *) so, PRU_RCVD, (struct mbuf *)0,

 (struct mbuf *)flags, (struct mbuf *)0);

This is the semantics of the shutdown system call:

 (pr_usrreq)((struct socket *) so, PRU_SHUTDOWN,

 (struct mbuf *)0, (struct mbuf *)0,

 (struct mbuf *)0);

This is the semantics of the setsockopt system call:

(pr_ctloutput) (PRCO_SETOPT, (struct socket *) so, level,

 optname, &m0);

This is the semantics of the getsockopt system call:

(pr_ctloutput) (PRCO_GETOPT, (struct socket *) so, level,

 optname, mp);

This is the semantics of the ioctl system call:

(pr_usrreq)((struct socket *) so, PRU_CONTROL,

 (struct mbuf *)cmd, (struct mbuf *)data, (struct mbuf *)0));

This is the semantics of the stat system call:

(pr_usrreq)((struct socket *) so, PRU_SENSE,

 (struct mbuf *)ub, (struct mbuf *)0,

 (struct mbuf *)0));

This is the semantics of the getsockname system call:

(pr_usrreq)((struct socket *) so, PRU_SOCKADDR,

 (struct mbuf *)0, m, (struct mbuf *)0);

This is the semantics of the getpeername system call:

(pr_usrreq)((struct socket *) so, PRU_PEERADDR,

 (struct mbuf *)0, m, (struct mbuf *)0);

14-12 AIX Writing a Device Driver

The pr_flags field in the protocol switch table describe basic characteristics of the protocol
and impact the behavior of the socket interface. Valid values for these flags are listed in
/usr/include/sys/protosw.h. If PR_CONNREQUIRED is set then the socket calls will not
attempt to transfer data before a connection is established. The PR_ADDR flag causes
receive data to be preceded by the senders address. The PR_ATOMIC flag causes sends to
be performed in a single protocol send request. The PR_WANTRCVD flag causes the
socket routines to notify the protocol when the user has removed data from the socket
receive queue. The notification is one of the following socket system calls:

(pr–>pr_usrreq)((struct socket *) so, PRU_RCVOOB, m,

 (struct mbuf *) (flags & MSG_PEEK),

 (struct mbuf *)0);

(pr_usrreq)((struct socket *) so, PRU_RCVD,

 (struct mbuf *)0, (struct mbuf *)flags,

 (struct mbuf *)0);

The PR_RIGHTS flag indicates that the protocol supports the passing of access rights.

The Design and Implementation of the 4.3 BSD UNIX Operating System contains additional
information on the socket-to-protocol interface.

Protocol – Socket Interface
The AIX kernel establishes a socket structure (refer to /usr/include/sys/socketvar.h) for all
sockets. This structure contains send and receive buffer queues (so_snd and so_rcv), a
pointer to the protocol’s switch table (so_proto) and a pointer to the protocol’s control block
(so_pcb). Protocols establish a back pointer to the socket in the control block (for an
example, refer to /usr/include/netinet/in_pcb.h) which completes the cross linkage. The
later three pointers, so_proto, so_pcb and the protocol’s back pointer are established
during the socket system call and the resultant PRU_ATTACH pr_usrreq. It is through these
components of the socket structure that the system’s protocol-to-socket interface is largely
implemented.

On sending of data, reliable protocols typically use the socket send buffer to hold data until
acknowledgment. Data is copied from the send buffer using m_copy for output. When an
acknowledgement is received the protocol removes data from the send buffer with sbdrop or
sbdroprecord.

On receipt of data, protocols employ the sbappend system services to append data to the
appropriate socket’s receive buffer. Typically, sbappend or sbappendrecord are called
after the protocol checks that enough space is available in the receive buffer. This check is
performed using the sbspace kernel service. sbappendrecord differs from sbappend in
that the data is treated as being the beginning of a new record. Protocols needed to add
either access rights or the sender’s address to the receive data employ the sbappendaddr
or sbappendrights kernel services. For access rights plus data sbappendcontrol should
be used. For sender’s address, plus access rights (optional), plus data sbappendaddr
should be employed. Unlike sbappend or sbappendrecord, these two kernel services
check receive buffer space for the caller. These system services do not wake up waiting
receivers, so the protocol must issue an sorwakeup.

14-13Network Interfaces and Protocols

The following sample code illustrates adding data to a socket receive buffer:

...

/*

 * Locate pcb for datagram.

 */

nsp = ns_pcblookup(&idp–>idp_sna, idp–>idp_dna.x_port, NS_WILDCARD);

/*

 * Switch out to protocol’s input routine.

 */

nsintr_swtch++;

...

idp_input(m, nsp);

...

idp_input(m, nsp)

struct mbuf *m;

register struct nspcb *nsp;

{

register struct idp *idp = mtod(m, struct idp *);

struct ifnet *ifp = m–>m_pkthdr.rcvif;

...

/*

 * Construct sockaddr format source address.

 * Stuff source address and datagram in user buffer.

 */

...

if (! (nsp–>nsp_flags & NSP_RAWIN)) {

m–>m_len –= sizeof (struct idp);

m–>m_pkthdr.len –= sizeof (struct idp);

m–>m_data += sizeof (struct idp);

}

if (sbappendaddr(&nsp–>nsp_socket–>so_rcv,(struct sockaddr

*)&idp_ns,

 m, (struct mbuf *)0) == 0)

goto bad;

sorwakeup(nsp–>nsp_socket);

return;

bad:

m_freem(m);

}

Protocol – Network Interface
In AIX Version 4.1, paths through which socket messages can be sent and received are
configured into the system via network interfaces. Normally, a hardware or pseudo device is
associated with each interface. An interface and its addresses are defined by kernel ifnet
structures (refer to /usr/include/net/if.h). The linked ifnet structures provide a list of socket
interface names and protocol addresses configured in the system. It is through these ifnet
structures that the system’s protocol-to-network interface is largely implemented. This
approach provides the socket protocols with a consistent interface to all network hardware
devices.

Interface properties, including state information, are conveyed to the protocols through the
ifnet flags and maximum transmission unit (mtu) fields. The most important interface flags
and their meanings are:

IFF_UP Interface is up and available for protocol use.

IFF_BROADCAST
Interface is broadcast capable.

IFF_LOOPBACK
Interface is a software loopback.

14-14 AIX Writing a Device Driver

IFF_POINTTOPOINT
Interface is a point-to-point link (slip).

IFF_RUNNING Interface resources have been allocated.

IFF_NOARP Interface should not use address-resolution protocol.

IFF_SIMPLEX Interface cannot hear its own transmissions.

IFF_DO_HW_LOOPBACK
Bypass software loopback.

IFF_ALLCAST Token-ring only. Sets all rings broadcast.

IFF_SNAP Ethernet only. Interface is 802.3.

Protocols pass data to the network interface employing the if_output routine. Each network
interface accepts output datagrams of a specified (via the mtu) maximum length. Output
occurs when if_output is called as follows:

(*ifp–>if_output)(struct ifnet *ifp, struct mbuf *m, struct

sockaddr *dst, struct rtentry *rt)

This has the following parameters:

• ifp is the ifnet pointer for the interface.

• m is the mbuf chain to be sent.

• dst is the destination address.

• rt is an optional routing entry.

The network interface is responsible for encapsulation or decapsulation of any link-layer
protocol headers required to deliver the message. This resolution is accomplished as
follows:

• If dst–>sa_family is equal to AF_UNSPEC, the link-layer header is copied from
dst–>sa_data. In this case, the protocol provided the link-layer header.

• If dst–>sa_family is equal to AF_UNSPEC, then the network interface calls the protocol’s
address resolution routine. This routine was registered when the protocol was initialized
(see the heading “Initialization” in “Writing or Porting Socket Network Protocols”, on page
14-8).

The format of the call to the protocol’s address resolution routine is:

(*dst–>af_family.resolve) (struct arpcom *ac, struct mbuf *m,

struct sockaddr *dst, caddr_t *llh)

The call has the following parameters:

• m is the mbuf chain to be sent,

• dst is the destination address

• llh is the link layer header to be filled out by the resolution routine. llh must be big
enough to hold the largest possible link layer header.

The network interface module generally maintains the ifnet data structure as part of a larger
data structure (an arpcom) that contains interface specific information. Thus ac is typically
set to (struct arpcom *) ifp, where ifp is the ifnet pointer for the interface. Note
that AIX Version 4.1 provides several generic address resolution routines which may be
employed by protocols.

14-15Network Interfaces and Protocols

Protocols pass control data to the network interface employing the if_ioctl routine. Most
importantly, interface addresses are set with IOCTL requests. The IOCTL requests to set
interface addresses, (SIOCSIFADDR, SIOCSIFDSTADDR), and to set and delete multicast
addresses (SIOCADDMULTI, SIOCDELMULTI) generally require work at the interface layer
and should be passed along by the protocols with an if_ioctl. The specific format of this call
is:

(*ifp–>if_ioctl)(struct ifnet *ifp, int cmd, caddr_t data)

This call has the following parameters:

• ifp is the ifnet pointer for the interface.

• cmd is the IOCTL.

• data is the IOCTL data.

Network – Protocol Interface
In AIX Version 4.1, receive data is passed directly from the common data link interface to
the protocols bypassing the network interface layer. The protocol registers with the system
the format and the method of delivery for input packets. This registration is done through the
ns_add_filter kernel service at the protocol’s initialization. By selecting the input packet
format, the protocol informs the system whether to strip various portions of the link layer
header before receive data is presented. There are two methods of delivery:

• A direct call from the interrupt level to the protocol’s input function

• An enqueue of the packet on the protocol’s input queue and a schedule of the
appropriate software interrupt

When called directly, the format of the call to the protocol is:

(*protocol_input)(struct ndd *ndd, struct mbuf *data, caddr_t

*llc, caddr_t *protocookie)

The parameters are:

• ndd is an ndd pointer (see /usr/include/sys/ndd.h) to the receiving interface.

• data is an mbuf pointer to the received data (in the format requested).

• llc is a pointer to the link-layer header of the received packet.

• protocookie is an address passed in by the protocol when it registered to receive
packets of this type. This can be useful for demuxing purposes.

When the packet is enqueued, the protocol receives only the data, in the format requested.

14-16 AIX Writing a Device Driver

IP Encapsulation/Adding Protocols to the System IP Protocol Switch
The domain_add kernel service can be used for adding an entire communications address
family with its own protocol switch (see the heading “Initialization” in “Writing or Porting
Socket Network Protocols”, on page 14-8). To add entries to an existing protocol switch
(for example, IP encapsulation or a new protocol within IP) use the protosw_enable kernel
service. To remove the protocol switch use the protosw_disable kernel service. These
services currently only support the AF_INET communications domain. The user is
responsible for pinning the new protocol switch entry.

The following sample code illustrates adding IP protocol switch entries to the system:

/* set up protocol switch table in internet protocol */

{

extern int protosw_enable();

struct protosw *pr;

struct protosw xns_sw = { SOCK_RAW,0,IPPROTO_IDP,

 PR_ATOMIC|PR_ADDR,idpip_input,0,

 nsip_ctlinput,0,0,0,0,0,0,};

pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);

if (pr != 0) {

/* enable the protocol switch so that the IP will handle

 * the incoming xns encapsulating packet and pass along.

 * The route pointers are passed because they are not

 * resolve at load time.

 */

protosw_enable(&xns_sw);

 /* XXX Should check the rc and do ? */

}

}

14-17Network Interfaces and Protocols

Sample Socket Protocol
This sample socket protocol includes the following pieces of sample code:

• Configuration entry point function
• Initialization function
• Packet registration function

Sample Socket Protocol’s Configuration Entry Point Function
struct protosw nssw[] = {

{ 0,&nsdomain,0,0, 0,idp_output,0,0, 0, ns_init,0,0,0,},

{SOCK_DGRAM,&nsdomain,0,PR_ATOMIC|PR_ADDR,0,0,idp_ctlinput,idp_ctloutput,

 idp_usrreq,0,0,0,0,},

{SOCK_STREAM,&nsdomain,NSPROTO_SPP,PR_CONNREQUIRED|PR_WANTRCVD,spp_input,0,

 spp_ctlinput,spp_ctloutput, spp_usrreq,

 spp_init,spp_fasttimo,spp_slowtimo,0,},

{ SOCK_SEQPACKET,&nsdomain,NSPROTO_SPP, PR_CONNREQUIRED|PR_WANTRCVD|PR_ATOMIC,

 spp_input,0,spp_ctlinput,spp_ctloutput, spp_usrreq_sp,0,0,0,0,},

{SOCK_RAW,&nsdomain,NSPROTO_RAW,PR_ATOMIC|PR_ADDR,idp_input,idp_output,0,

 idp_ctloutput, idp_raw_usrreq,0,0,0,0,},

{ SOCK_RAW,&nsdomain,NSPROTO_ERROR,PR_ATOMIC|PR_ADDR,idp_ctlinput,idp_output,0,

 idp_ctloutput, idp_raw_usrreq,0,0,0,0,},

}

struct domain nsdomain =

 { AF_NS, ”network systems”, 0, 0, 0,

 nssw, &nssw[sizeof(nssw)/sizeof(nssw[0])],

 0, 0, ns_funnel, ns_funfrc };

. . .

;/*

 *

 * config_ns – entry point for netns kernel extension

 *

 */

config_ns(cmd, uio)

int cmd;

struct uio *uio;

{

int err, nest;

struct config_proto config_proto;

err = 0;

nest = lockl(&kernel_lock, LOCK_SHORT);

switch (cmd) {

case CFG_INIT:

/* check if kernel extension already loaded */

if (extension_loaded)

goto out;

ns_lock_init();

/*

 * pin the netns kernel extension

*/

 if (err = pincode(config_ns))

goto out; /* Add ns domain */

domain_add(&nsdomain);

config_proto.loop = nsintr;

config_proto.loopq = &nsintrq;

 config_proto.netisr = NETISR_NS;

config_proto.resolve = ns_arpresolve;

config_proto.ioctl = NULL;

config_proto.whohas = NULL;

nd_config_proto(AF_NS, &config_proto);

extension_loaded++;

break;

14-18 AIX Writing a Device Driver

case CFG_TERM:

default:

err = EINVAL;

}out:

if (nest != LOCK_NEST)

unlockl(&kernel_lock);

return(err);

}

Sample Socket Protocol’s Initialization Function
void

ns_init()

{

 struct timestruc_t ct;

 extern void curtime();

IFQ_LOCK_DECL() ns_broadhost = * (union ns_host *) allones;

ns_broadnet = * (union ns_net *) allones;

nspcb.nsp_next = nspcb.nsp_prev = &nspcb;

nsrawpcb.nsp_next = nsrawpcb.nsp_prev = &nsrawpcb;

nsintrq.ifq_maxlen = nsqmaxlen;

curtime(&ct); /* get the current system time */

ns_pexseq = ct.tv_nsec/1000; /* use microsecond as seq no. */

ns_netmask.sns_len = 6;

ns_netmask.sns_addr.x_net = ns_broadnet;

ns_hostmask.sns_len = 12;

ns_hostmask.sns_addr.x_net = ns_broadnet;

ns_hostmask.sns_addr.x_host = ns_broadhost;

IFQ_LOCKINIT(&nsintrq);

 rtinithead(AF_NS, 16, setnsroutemask);

(void) netisr_add(NETISR_NS, nsintr, &nsintrq, &nsdomain);

}

Sample Socket Protocol’s Packet Registration Function
/*

 * Generic internet control operations (ioctl’s).

 */

ns_control(so, cmd, data, ifp)

struct socket *so;

int cmd;

caddr_t data;

register struct ifnet *ifp;

{

register struct ifreq *ifr = (struct ifreq *)data;

register struct ns_aliasreq *ifra = (struct ns_aliasreq *)data;

register struct ns_ifaddr *ia;

struct ifaddr *ifa;

struct ns_ifaddr *oia;

struct mbuf *m;

int error, dstIsNew, hostIsNew;

. . .

switch (cmd) { .

 . . case SIOCSIFADDR:

return (ns_ifinit(ifp, ia, (struct sockaddr_ns *)

 &ifr–>ifr_addr, 1));

. . .

}

. . .

}

14-19Network Interfaces and Protocols

/*

 * Initialize an interface’s internet address

 * and routing table entry.

 */

ns_ifinit(ifp, ia, sns, scrub)

register struct ifnet *ifp;

register struct ns_ifaddr *ia;

register struct sockaddr_ns *sns;

{

struct sockaddr_ns oldaddr;

register union ns_host *h = &ia–>ia_addr.sns_addr.x_host;

int error;

. . .

return(ns_ns_filter(ifp));

}

ns_ns_filter(ifp)

struct ifnet *ifp;

{

 struct ns_user ns_user;

 struct ns_8022 filter;

 struct ndd *nddp;

char ifname[IFNAMSIZ];

int

rc;

/*

 * Alloc the ndd. Note that we never free it!!

 */

sprintf(ifname, ”%s%d”, ifp–>if_name, ifp–>if_unit);

if (rc = ns_alloc(ifname, &nddp))

return(rc);

/*

 * Add 802.3 filter.

 */

bzero(&filter, sizeof(filter));

 filter.filtertype = NS_8022_LLC_DSAP;

filter.dsap = DSAP_XNS;

 ns_user.isr = nsintr;

 ns_user.protoq = &nsintrq;

ns_user.netisr = NETISR_NS;

ns_user.pkt_format = NS_PROTO;

ns_user.ifp = ifp;

rc = ns_add_filter(nddp, &filter, sizeof(filter), &ns_user);

return(rc);

}

14-20 AIX Writing a Device Driver

Sample Code for Direct Access to Device Driver via STREAMS
Sample client and server source code demonstrating direct user access to device drivers
via STREAMS can be found in directory /usr/samples/dlpi/*.

15-1Debugging Tools

Chapter 15. Debugging Tools

This chapter provides information about the available procedures for debugging a device
driver which is under development. The procedures discussed include:

• Saving device driver information in a system dump, on page 15-1.

• Using the crash command to interpret and format system structures, on page 15-5.

• Using the kernel debugger to set breakpoints and display variables and registers, on
page 15-25.

• Error logging to record device-specific hardware or software abnormalities, on page
15-78.

• Using the trace facility to monitor entry and exit of device drivers and selectable system
events, on page 15-86.

System Dump
The system dump copies selected kernel structures to the dump when an unexpected
system halt occurs, when the reset button is pressed, or when the special system dump key
sequences are entered. You can also initiate a system dump through the System
Management Interface Tool (SMIT). For more information, see “Start a System Dump” in
AIX Problem Solving Guide and Reference.

The dump device can be dynamically configured, which means that either the tape or logical
volumes on hard disk can be used to receive the system dump. Use the sysdumpdev
command to dynamically configure the dump device.

You can also define primary and secondary dump devices. A primary dump device is a
dedicated dump device, while a secondary dump device is shared.

The system kernel dump routine contains all the vital structures of the running system, such
as the process table, the kernel’s global memory segment, and the data and stack segment
of each process.

Be sure to refer to the system header files in the /usr/include/sys directory. The name of
the file tells which structure and associated information it contains. For example, the user
block is defined in sys/user.h. The process block is defined in sys/proc.h.

When you examine system data that maps into these structures, you can gain valuable
kernel information that can explain why the dump was called.

Initiating a System Dump
A system dump initiated by a kernel panic is written to the primary dump device. If you
initiate a system dump by pressing the reset button, the system dump is written to the
primary dump device.

Use the special key sequences to determine whether the write of a system dump goes to
the primary dump device or to the secondary dump device. To write to the primary dump
device, use the sequence Ctrl-Alt-NumPad1. To write to the secondary dump device, use
the sequence Ctrl-Alt-NumPad2.

To use SMIT, select Problem Determination from the main menu, then select System
Dump. This presents a menu that allows you to initiate a system dump to either the primary
or secondary device, and manipulate the dump devices and the system dump files.

If you prefer to initiate the system dump from the command line, use the sysdumpstart
command. Use the –p flag to write to the primary device or the –s flag to write to the
secondary device.

15-2 AIX Version 4.1 Writing a Device Driver

If you want your device to be a primary or secondary device, the driver must contain a
dddump routine. For more information, see the “dddump Entry Point” section in Chapter 4.

When the system dump completes, the system either halts or reboots, depending upon the
setting of the autorestart attribute of sys0. This can be shown and altered using SMIT by
selecting System Environments, then Change / Show Characteristics of Operating
System. The Automatically REBOOT system after a crash item shows and sets this
value.

Including Device Driver Information in a System Dump
The system dump is table driven. The two parts of the table are:

master dump table
A master dump table entry is a pointer to a function which is provided by
the device driver. The function is called by the kernel dump routine when a
system dump occurs. The function must return a pointer to a component
dump table.

component dump table
Specifies memory areas to be included in a system dump.

Both the master dump table and the component dump table must reside in pinned global
memory.

When a dump occurs, the kernel dump routine calls the function pointed to in the master
dump table twice. On the first call, an argument of 1 indicates that the kernel dump routine
is starting to dump the data specified by the component dump table.

15-3Debugging Tools

On the second call, an argument of 2 indicates that the kernel dump routine has finished
dumping the data specified by the component dump table. The component dump table
should be allocated and pinned during initialization. The entries in the component dump
table can be filled in later. The function pointed to in the master dump table must not attempt
to allocate memory when it is called. The following System Dump Flow figure shows the flow
of a system dump.

System Dump Flow

SMIT

Menu

sysdumpstart

Command

sysdumpdev

Command
APPL

KERNEL

crash

Command

Component

Dump

Table

Kernel

Component

dmp_add()

dmp_del()

Master

Dump

Table

dmp_do() /dev/dump

Dump
Media
Device
Driver

Dump

Device

Kernel Abend

Key Sequence

In order to have your device driver data areas included in a system dump, you must register
the data areas in the master dump table. Use the dmp_add kernel service to add an entry
to the master dump table. Conversely, use the dmp_del kernel service to delete an entry
from the master dump table. The syntax is as follows:

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/dump.h>

int dmp_add(cdt_func) or int dmp_del(cdt_func)

int cdt * ((*cdt_func) ());

The cdt structure is defined in the sys/dump.h header file. A cdt structure consists of a
fixed-length header (cdt_head structure) and an array of one or more cdt_entry structures.

15-4 AIX Version 4.1 Writing a Device Driver

The cdt_head structure contains a component name field, containing the name of the
device driver, and the length of the component dump table. Each cdt_entry structure
describes a contiguous data area, giving a pointer to the data area, its length, a segment
register, and a name for the data area. Use the name supplied for the data area to refer to it
when the crash command formats the dump. The following Kernel Dump Image figure
illustrates a dump image.

Component Dump Table – A

Bitmap for 1st data area

1st data area for component A

Bitmap for 2nd data area

2nd data area for component A

...

Component Dump Table – N

Bitmap for 1st data area

1st data area for component N

Bitmap for 2nd data area

2nd data area for component N

Kernel Dump Image

Formatting a System Dump
Each device driver that includes data in a system dump can install a unique formatting
routine in the /usr/lib/ras/dmprtns directory. A formatting routine is a command that is
called by the crash command. The name of the formatting routine must match the
component name field of the corresponding component dump table.

The crash command forks a child process that runs the formatting routines. If a formatting
routine is not provided for a component name, the crash command runs the
_default_dmp_fmt default formatting routine, which prints out the data areas in hex.

The crash command calls the formatting routine as a command, passing the file descriptor
of the open dump image file as a command line argument. The syntax for this argument is
–ffile_descriptor.

The dump image file includes a copy of each component dump table used to dump memory.
Before calling a formatting routine, the crash command positions the file pointer for the
dump image file to the beginning of the relevant component dump table copy.

The dumped memory is laid out in the dump image file with the component dump table and
is followed by a bitmap for the first data area, then the first data area itself. A bitmap for the
next data area follows, then the next data area itself, and so on.

The bitmap for a given data area indicates which pages of the data area are actually
present in the dump image and which are not. Pages that were not in memory when the
dump occurred were not dumped. The least significant bit of the first byte of the bitmap is
set to 1 if the first page is present. The next least significant bit indicates the presence or

15-5Debugging Tools

absence of the second page, and so on. A macro for determining the size of a bitmap is
provided in sys/dump.h.

The crash Command
The crash command is a particularly useful tool for device driver development and
debugging, which interprets and formats the system structures. The crash command is
interactive and allows you to examine an operating system image or an active system. An
operating system image is held in a system dump file, either as a file or on the dump device.
When you run the crash command, you can optionally specify a system image file and
kernel file, as shown in the syntax below:

crash [–a] [–i IncludeFile] [SystemImageFile [KernelFile]]

The default SystemImageFile is /dev/mem and the default KernelFile is
/usr/lib/boot/unix.

To run the crash command on the active system, enter:

crash

Because the command uses /dev/mem, you need root permissions.

To invoke the crash command on a system image file, enter:

crash SystemImageFile

where SystemImageFile is either a file name or the name of the dump device.

Note that by convention the symbol names for function entry points always begin with a .
(period), while symbol names for data areas always begin with an _ (underscore). There is
usually a data address corresponding to an external entry point address, and the od
subcommand displays the data address for a name with no prefix. To be safe, use the
proper prefix when looking for addresses.

Use the –a flag to generate a list of data structures without using subcommands. The
resulting list is large, so you can redirect the output to either a file or to a printer.

Use the –i flag to read the given include file, allowing the print subcommand to output data
according to the include file structures.

You can use a variety of subcommands to view the system structures. These subcommands
can have flags that modify the format of the data. If you do not use a flag to specify what
you want to see, all valid entries are displayed.

crash Subcommands
Once you initiate the crash command, > is the prompt character. For a list of the available
subcommands, type the ? character. To exit, type q. You can run any shell command from
within the crash command by preceding it with an ! (exclamation mark).

Since the crash command only deals with kernel threads, the word thread when used alone
will be used to mean kernel thread in the crash documentation that follows. The default
thread for several subcommands is the current thread (the thread currently running). On a
multiprocessor system, you can use the cpu subcommand to change the current processor:
the default thread becomes the running thread on the selected processor.

The parameters ProcessTableEntry and ThreadTableEntry are used in many subcommands
to indicate a process or thread respectively. These parameters are simply numbers for table
entry indexes which can be displayed using the proc and thread subcommands.

Note that many structures displayed are longer than one screen length. Make sure that you
can halt scrolling if it is important to view something in detail. To do this, use the stty
command:

stty ixon ixany

15-6 AIX Version 4.1 Writing a Device Driver

Use the Ctrl-S key sequence to stop scrolling and Ctrl-Q to resume scrolling.

buf [BufferHeaderNumber]
The buf subcommand displays the system buffer headers. A buffer header contains the
information required to perform block I/O. If you type the buf subcommand with no
BufferHeaderNumber, a summary of the system buffer headers is displayed.

Aliases = bufhdr, hdr

> buf

BUF MAJ MIN BLOCK FLAGS

 0 000a 000b 8 done stale

 1 000a 000b 243 done stale

 2 000a 000b 24 done stale

...

If you type the buf subcommand with a BufferHeaderNumber a single complete header is
displayed:

> buf 3

BUFFER HEADER 3:

 b_forw: 0x014d0528, b_back: 0x014d0160, b_vp: 0x00000000

 av_forw: 0x014d0160, av_back: 0x014d0528, b_iodone: 0x000185f8

 b_dev: 0x000a000b, b_blkno: 0, b_addr: 0x014e9000

 b_bcount: 4096, b_error: 0, b_resid: 0

 b_work: 0x80000000, b_options:0x00000000, b_event: 0xffffffff

 b_start.tv_sec: 0, b_start.tv_nsec: 0

 b_xmemd.aspace_id: 0x00000000, b_xmemd.subspace_id: 0x00000000

 b_flags: read done stale

Refer to the sys/buf.h header file for the structure definition.

buffer [Format] [BufferHeaderNumber]
The buffer subcommand displays the data in a system buffer according to the Format
parameter. When specifying a buffer header number, the buffer associated with that buffer
header is displayed. If you do not provide a Format parameter, the previous Format is used.
Valid options are decimal, octal, hex, character, byte, i–node, directory, and write. The
write option creates a file in the current directory containing the buffer data.

Aliases = b

> buffer hex 3

BUFFER FOR BUF_HDR 3

00000: 41495820 4c564342 00006a66 73000000

00020: 00000000 00000000 00000000 00000000

00040: 00000000 00000000 00003030 30303033

...

15-7Debugging Tools

callout
The callout subcommand displays all active entries on the active trblist. When the
time-out kernel extension is used in a device driver, this timer request is entered on a
system-wide list of active timer requests. This list of timer requests is the trblist. Any timer
which is active is on this list until it expires.

Aliases = c, call, calls, time, timeout, tout

>callout

TRB’s On The Active List Of Processor 0.

TRB #1 on Active List

 Timer address......................0x0

 trb.to_next........................0x0

 trb.knext..........................0x59aa100

 trb.kprev..........................0x0

 Thread id (–1 for dev drv).........0xfffffffe

 Timer flags........................0x12

 trb.timerid........................0x0

 trb.eventlist......................0xffffffff

 trb.timeout.it_interval.tv_nsec....0x0

 trb.timeout.it_interval.tv_sec.....0x0

 Next scheduled timeout (secs)......0x2d63f6a8

 Next scheduled timeout (nanosecs)..0xc849a80

 Timeout function...................0x8c748

 Timeout function data..............0x59aa040

 TRB #2 on Active List

...

Refer to sys/timer.h for the structure definitions, and to InfoExplorer for a description of the
time-out mechanism.

cm [ThreadTableEntry SegmentNumber]
The cm subcommand is used by the od subcommand to change the current segment map.
The cm subcommand changes the map of the crash command internal pointers for any
thread segment not paged out, if you specify the thread ThreadTableEntry and
SegmentNumber. This allows the od subcommand to display data relative to the beginning
of the segment desired. The following example sets the map to thread ThreadTableEntry 3
to SegmentNumber 2, then displays ten words starting from the offset 0:

Aliases = none

> cm 3 2

t3,2 >> od 0 10

00000000: 00000000 00000000 00000000 00000000

00000010: 00000000 00000000 00000000 00000000

00000020: 00000000 00000000

t3,2 >>

...

Using the cm subcommand without any parameters resets the map of internal pointers.

cpu [ProcessorNumber]
If no argument is given, the cpu subcommand displays the number of the currently selected
processor. Initially, the selected processor is processor 0. If the ProcessorNumber argument
is given, the cpu subcommand selects the specified processor as the current processor. By
extension, this selects the current kernel thread (the running kernel thread on the selected
processor). Processor numbering starts from zero.

Aliases = none

> cpu

Selected cpu number : 0

15-8 AIX Version 4.1 Writing a Device Driver

dblock [Address]
The dblock subcommand displays the allocated streams data block headers. The address
parameter is required. If the address is not supplied, this command will print an error
message stating that the address is required. Refer to the sys/stream.h file for the datab
structure definitions. The freep and db_size definitions are not included in
/usr/include/sys/stream.h. These structure members are described here:

freep Address of the free pointer

db_size Size of the data block

There is no checking performed on the address passed in as the required parameter. The
dblock subcommand will accept any address. It is up to the user to be sure that a valid
address is specified.

To determine a valid address run the mblock subcommand. From the output of the mblock
subcommand, select a non-zero data block address under the DATABLOCK column
heading.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = dblk

> queue 59d5a74

 QUEUE QINFO NEXT PRIVATE FLAGS HEAD OTHERQ COUNT

 59d5a74 1884c1c 59d5474 59d5500 0x003e 59e1c00 59d5a00 4096

> mblk 59e1c00

 ADDRESS NEXT PREVIOUS CONT RPTR WPTR DATABLOCK

 59e1c00 0 0 0 59e2000 59e3000 59e1c44

> dblk 59e1c44

 ADDRESS FREEP BASE LIM REFCNT TYPE SIZE

 59e1c44 0 59e2000 59e3000 1 0 1000

dlock [ThreadIdentifier | –p [ProcessorNumber]]
Displays deadlock analysis information about all types of locks (simple, complex, and lockl).
The dlock subcommand searches for deadlocks from a given start point. If ThreadIdentifier
is given, the corresponding kernel thread is the start point. If –p is given without a
ProcessorNumber, the start point is the running kernel thread on the current processor. If –p
ProcessorNumber is given, the running kernel thread on the specified processor is the start
point. If no arguments are given, dlock searches for deadlocks among all threads on all
processors.

The first output line gives information about the starting kernel thread, including the lock
which is blocking the kernel thread, and a stack trace showing the function calls which led to
the blocking lock request. Each subsequent line shows the lock held by the blocked kernel
thread from the previous line, and identifies the kernel thread or interrupt handler which is
blocked by those locks. If the information required for a full analysis is not available (paged
out), an abbreviated display is shown; in this case, examine the stack trace to locate the
locking operations which are causing the deadlock. The display stops when a lock is
encountered for a second time, or no blocking lock is found for the current kernel thread.

Aliases = none

>dlock 00d3f

Deadlock from tid 00d3f. This tid waits for the first line lock,

owned by Owner–Id that waits for the next line lock, and so on...

 LOCK NAME | ADDRESS | OWNER–ID | WAITING FUNCTION

 lockC1 | 0x001f79e0 | Tid 113d | .lock_write_ppc

 called from : .times + 0000020c

Dump data incomplete.Only 0 bytes found out of 4.

 called from : .file + 0000000b

 lockC2 | 0x001f79e8 | Tid d3f | .lock_write_ppc

 called from : .times + 000001c8

Dump data incomplete.Only 0 bytes found out of 4.

 called from : .file + 0000000b

15-9Debugging Tools

dmodsw
The dmodsw subcommand displays the streams drivers switch table. The information
printed is contained in an internal structure. The following members of this internal structure
are described here:

address Address of dmodsw
d_next Pointer to the next driver in the list
d_prev Pointer to the previous driver in the list
d_name Name of the driver
d_flags Flags specified at configuration time
d_sqh Pointer to synch queue for driver-level synchronization
d_str Pointer to streamtab associated with the driver
d_sq_level Synchronization level specified at configuration time
d_refcnt Number of open or pushed count
d_major Major number of a driver

The flags structure member, if set, is based one of the following values:

#define Value Description
F_MODSW_OLD_OPEN 0x1 Supports old-style (V.3) open/close parameters
F_MODSW_QSAFETY 0x2 Module requires safe timeout/bufcall callbacks
F_MODSW_MPSAFE 0x4 Non-MP-Safe drivers need funneling

The synchronization level codes are described in the /usr/include/sys/strconf.h file.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = none

> dmodsw

NAME ADDRESS NEXT PREVIOUS FLAG SYNCHQ STREAMTAB S–LVL COUNT MAJOR

sad 5a0cf40 5a0cf00 5a0c9c0 0x0 5a0ad40 188c600 3 0 12

slog 5a0cf00 5a0cec0 5a0cf40 0x0 5a0ad20 188c8a0 3 0 13

en 5a0cec0 5a0ce80 5a0cf00 0x0 5a0ad00 1893ee0 3 0 27

et 5a0ce80 5a0ce40 5a0cec0 0x0 5a0ace0 1893ee0 3 0 28

tr 5a0ce40 5a0ce00 5a0ce80 0x0 5a0acc0 1893ee0 3 0 29

fi 5a0ce00 5a0cdc0 5a0ce40 0x0 5a0aca0 1893ee0 3 0 30

echo 5a0cdc0 5a0cd80 5a0ce00 0x0 0 18951a0 5 0 31

nuls 5a0cd80 5a0cd40 5a0cdc0 0x0 0 1895190 5 0 32

spx 5a0cd40 5a0cd00 5a0cd80 0x0 5a0ac80 1895d70 3 0 33

unixdg 5a0cd00 5a0ccc0 5a0cd40 0x0 5a0ac60 18a14e0 3 0 34

unixst 5a0ccc0 5a0cc80 5a0cd00 0x0 5a0ac40 18a14e0 3 0 35

udp 5a0cc80 5a0cc40 5a0ccc0 0x0 5a0ac20 18a14e0 3 0 36

tcp 5a0cc40 5a0cb40 5a0cc80 0x0 5a0ac00 18a14e0 3 0 37

rs 5a0cb40 5a0cb00 5a0cc40 0x0 0 18b31d0 5 1 15

pts 5a0cb00 5a0ca40 5a0cb40 0x0 0 18fc930 4 7 24

ptc 5a0ca40 5a0ca00 5a0cb00 0x0 0 18fa5c0 4 2 23

ttyp 5a0ca00 5a0c9c0 5a0ca40 0x0 0 18fc950 4 0 26

ptyp 5a0c9c0 5a0cf40 5a0ca00 0x0 0 18fc940 4 0 25

ds [Address]
The ds subcommand returns the symbols closest to the given address. The ds
subcommand can take either a text address or a data address.

Aliases = none

> ds 012345

 .ioctl_systrace + 0x000001b5

When a number such as 0x000001b5 is displayed, it shows the number of assembly
language instructions by which the given address is offset from the entry point of the routine.

15-10 AIX Version 4.1 Writing a Device Driver

du [ThreadTableEntry]
Displays a combined hex and ASCII dump of the specified thread’s uthread structure and of
the user structure of the process which owns the thread. If the data is not available (paged
out), a message is displayed. The default is the current thread.

Aliases = none

> du 3

Uthread structure of thread slot 3

 00000000 00000000 00000000 2ff7fec0 00000000 *......../.......*

 00000010 00000303 00000000 00030644 000010b0 *...........D....*

 00000020 22222828 00030644 00006244 00000009 *””((...D..bD....*

.

.

.

dump
The dump subcommand displays the name of each component for which there is data
present. After you select a component name from the list, the crash program loads and
runs the associated formatting routine contained in the /usr/lib/ras/dmprtns directory.

If there is more than one data area for the selected component, the formatting routine
displays a list of the data areas and allows you to select one. The crash command then
displays the selected data area. You can enter the quit subcommand to return to the
previously displayed list and make another selection or enter quit a second time to leave
the dump subcommand loop.

Aliases = none

Displays messages in the error log. Count is the number of messages to print that have
already been read by the errdemon process. (The default is 3 messages.) errpt always
prints all messages that have not yet been read by the errdemon process.

Aliases = none

file [FileTableEntry]
The file subcommand displays the file table. Unless you request specific file entries, the
command displays only those with a nonzero reference.

Aliases = files, f

> f 3

SLOT REF INODE FLAGS

 3 1 0x018e53f0 read

Refer to sys/file.h for the structure definition.

fmodsw
The fmodsw subcommand displays the streams modules switch table. The information
printed is contained in an internal structure. The following members of this internal structure
are described here:

address Address of fmodsw
d_next Pointer to the next module in the list
d_prev Pointer to the previous module in the list
d_name Name of the module
d_flags Flags specified at configuration time
d_sqh Pointer to synch queue for module-level synchronization
d_str Pointer to streamtab associated with the module
d_sq_level Synchronization level specified at configuration time
d_refcnt Number of open or pushed count
d_major –1

15-11Debugging Tools

The flags structure member, if set, is based one of the following values:

#define Value Description
F_MODSW_OLD_OPEN 0x1 Supports old-style (V.3) open/close parameters
F_MODSW_QSAFETY 0x2 Module requires safe timeout/bufcall callbacks
F_MODSW_MPSAFE 0x4 Non-MP-Safe drivers need funneling

The synchronization level codes are described in the /usr/include/sys/strconf.h file.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = none

> fmodsw

NAME ADDRESS NEXT PREVIOUS FLAG SYNCHQ STREAMTAB S–LVL COUNT MAJOR

bufcall 5a0cf80 5a0cc00 5a0ca80 0x1 5a0ad60 188bf80 3 0 –1

sc 5a0cc00 5a0cbc0 5a0cf80 0x0 5a0abe0 18a29b0 3 0 –1

timod 5a0cbc0 5a0cb80 5a0cc00 0x0 5a0abc0 18a34b0 3 0 –1

tirdwr 5a0cb80 5a0cac0 5a0cbc0 0x0 5a0aba0 18a4010 3 0 –1

ldterm 5a0cac0 5a0ca80 5a0cb80 0x0 0 18ef460 4 8 –1

tioc 5a0ca80 5a0cf80 5a0cac0 0x0 0 18f0e90 4 10 –1

fs [ThreadTableEntry]
Traces a kernel stack for the thread specified by ThreadTableEntry. Displays the called
subroutines with a hex dump of the stack frame for the subroutine that contains the
parameters passed to the subroutine. By default, the current thread is traced. This
subcommand will not work on a running system because it uses stack tracing; however, it
does work on a dump image.

Aliases = none

> fs

STACK TRACE:

 **** .et_wait ****

2ff97e78 2FF97ED8 0080D568 00000000 018F4C60 /.^....h......L‘

2ff97e88 2FF97EE8 0080D568 00082BC0 000BA020 /.^....h..+.....

2ff97e98 2FF97ED8 28008044 00082418 2FF98000 /.^.(..D..B./...

2ff97ea8 00000000 000B8468 00000000 00000000 h........

2ff97eb8 2FF97F38 0000000B 00000004 00000004 /..8............

2ff97ec8 00000005 01DFE258 00000000 E3000600 X........

inode [–] [<Major> <Minor> <INumber>]
The inode subcommand displays the i-node table and the i-node data block addresses. You
can display a specific i-node by specifying the major and minor device numbers of the
device where the i-node resides and the i-node number. The command displays the i-node
only if it is currently on the system hash list.

Aliases = ino, i

>inode

 ADDRESS MAJ MIN INUMB REF LINK UID GID SIZE MODE SMAJ SMIN FL

AGS

0x018e4e50 010 0007 11264 0 1 2 2 30 ––––777 – –

0x018f9fd0 010 0009 16384 1 6 201 0 512 d–––755 – –

 addr: 16448 0 0 0 0 0 0 0

0x018ea940 010 0011 0 1 0 0 0 0 –––– 0 – –

...

kfp [FramePointer]
If you use the kfp subcommand without parameters, it displays the last kernel frame pointer
address that was set using kfp. If you specify a frame pointer address, it sets the kernel
frame pointer to the new address. Use this subcommand in conjunction with the –r flag of
the trace subcommand.

Aliases = fp, rl

> kfp

15-12 AIX Version 4.1 Writing a Device Driver

knlist [Symbol]
The knlist subcommand displays the addresses of all the specified symbol names. If there
is no such symbol, the subcommand displays a no match message. Run this
subcommand only on an active system.

The knlist subcommand runs a subroutine to the active kernel to obtain the address from
the system’s knlist. The nm subcommand provides the same function but searches the
symbol table in the Kernel Image File for the address and therefore can be used on a dump.

Aliases = none

> knlist open

open:0x000bbc98

le [Module Address]
The le subcommand displays the kernel load list entries. If you specify an address in a
kernel extension, the corresponding load list entry is displayed. If you attempt to display a
paged out loader entry, the subcommand displays an error message.

Aliases = none

linkblk
The linkblk subcommand displays the streams linkblk table. Refer to the
/usr/include/sys/stream.h file for the linkblk structure definitions. If there are no
linkblk structures found on the system, the linkblk subcommand will print a message
stating that no structures are found.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = lblk

This example shows a regular link:

> linkblk

 QTOP QBOT INDEX

 5ab8b74 5ae5074 5ab4200

This example shows a persistent link:

> linkblk

 QTOP QBOT INDEX

 0 5ae5174 5a4ef00

mblock Address
The mblock subcommand displays the allocated streams message block headers. The
address parameter is required. If the address is not supplied, this command will print an
error message stating that the address is required. Refer to the /usr/include/sys/stream.h
file for the queue structure definitions.

The mblock subcommand’s checking of the address parameter is limited to verifying that
the address falls on a 128-byte boundary. It is up to the user to be sure that a valid address
is specified.

To determine a valid address, run the queue subcommand. From the output of the queue
subcommand, select a non-zero address for the head of the message queue under the
HEAD column heading for either a read queue or a write queue.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = mblk

> queue 59d5a74

 QUEUE QINFO NEXT PRIVATE FLAGS HEAD OTHERQ COUNT

59d5a74 1884c1c 59d5474 59d5500 0x003e 59e1c00 59d5a00 4096

> mblk 59e1c00

 ADDRESS NEXT PREVIOUS CONT RPTR WPTR DATABLOCK

 59e1c00 0 0 0 59e2000 59e3000 59e1c44

15-13Debugging Tools

mbuf [–] [Clusters | Address ...]
The mbuf subcommand displays the system mbuf structures. These structures are memory
buffers that are chained and can be manipulated by the Memory Buffer kernel services. If
you specify the – flag, the subcommand also displays the data associated with the mbuf
structures.

The mbuf subcommand with no additional arguments displays the chain of mbuf structures
pointed to by the mbuf pointer. If you specify Clusters, the subcommand displays the chain
of mbuf structures pointed to by the kernel mbclusters pointer. If you specify Address, then
the mbuf structure at the given address is displayed. Note that valid mbuf pointers must be
on a 128-byte boundary.

Aliases = mbuff

> mbuf

 ADDRESS SIZE TYPE LINK DATAPTR

0x01a67000 0 free 0x00000000 0x01a67000

 DATA: 0x00000000 0x00000000 0x00000000 0x00000000

Refer to the sys/mbuf.h header file for the structure definition.

mst [Address]
The mst subcommand displays the mstsave portion of the uthread structures at the
addresses specified. If you do not specify an address, the subcommand displays
information about the last running kernel thread.

Aliases = none

ndb
Displays network kernel data structures either for a running system or a system dump. The
ndb subcommand, short for network debugger, displays the following options:

? Provides first-level help information.
help Provides additional help information.
tcb [Addr] Shows TCBs. The default is HEAD TCB.
udb [Addr] Shows UDBs. The default is HEAD UDB.
sockets Shows sockets from the file table.
mbuf [Addr] Shows the mbuf at the specified address.
ifnet [Addr] Shows the ifnet structures at the specified address.
quit Stops the running option.
xit Exits the ndb submenu.

Aliases = none

nm [Symbol]
The nm subcommand displays the symbol value and type found in KernelFile.

Aliases = none

> nm open

 00095484 000C70 PR SD <.open>

 00095484 PR LD .open

 000BBC98 00000C SV SD open

od [SymbolName | Address] [Count] [Format]
The od subcommand dumps Count number of data values starting at Symbol value or
Address according to Format. Possible formats are octal, longoct, decimal, longdec,
character, hex, instruction, and byte. The default is hex. Note that if you use the Format
parameter, you must also use Count.

The od subcommand is especially useful during program development in order to see
structure values at a given point in time.

Aliases = none

15-14 AIX Version 4.1 Writing a Device Driver

> od open 10

00095484: 7c0802a6 bf21ffe4 90010008 9421ff30

00095494: 609c0000 832202e0 607b0000 60bd0000

000954a4: 63230000 38800000

> od open 10 byte

00095484: 0174 0010 0002 0246 0277 0041 0377 0344

0009548c: 0220 0001

> od 12345

warning: word alignment performed

00012344: 480001d8

ppd [ProcessorNumber | *]
Displays per-processor data area (PPDA) structures for the specified processor. If no
processor is specified, the current processor selected by the cpu subcommand is used. If
the asterisk argument is given, the PPDA of every enabled processor is displayed.

Aliases = none

> ppd

Per Processor Data Area for processor 0

csa......................2fedf500

mstack...................00315db0

fpowner..................e6001360

curthread................e6001360

r0.......................60000000

r1.......................6000068e

r2.......................d00089b8

r15......................0000f930

sr0......................d0005a54

sr2......................2feac6e0

iar......................f013c7c4

print type Address
Does dbx-style printing of structures. The –i option must be given on the command line to
use this feature.

Aliases = none

proc [–] [–r] [ProcessTableEntry]
The proc subcommand displays the process table, including the kernel thread count (the
number of threads in the process) and state of each process. Use the –r flag to display only
runnable processes. Use the – flag to display a longer listing of the process table.

Aliases = ps, p

>p

SLT ST PID PPID PGRP UID EUID TCNT NAME

 0 a 0 0 0 0 0 1 swapper

FLAGS: swapped_in no_swap fixed_pri kproc

 1 a 1 0 0 0 0 1 init

FLAGS: swapped_in no_swap

 2 a 204 0 0 0 0 1 wait

FLAGS: swapped_in no_swap fixed_pri kproc

 ...

>p 20

SLT ST PID PPID PGRP UID EUID TCNT NAME

 20 a 1406 1 1406 0 0 1 ksh

FLAGS: swapped_in no_swap

15-15Debugging Tools

>p –

SLT ST PID PPID PGRP UID EUID TCNT NAME

 0 a 0 0 0 0 0 1 swapper

FLAGS: swapped_in no_swap fixed_pri kproc

Links: *child:0xe3000100 *siblings:0x00000000 *uidl:0xe3001400

 *ganchor:0x00000000

Dispatch Fields: pevent:0x00000020 wevent:0x00000000

 *p_synch:0xffffffff

Thread Fields: *threadlist:0xe6000000 threadcount: 1

 active: 1 suspended: 0 local: 0 localsleep: 0

 *synch:0xffffffff

Scheduler Fields: fixed pri: 16 repage:0x00000000

scount:0x00000000

Misc: adspace:0x00000808 *ttyl:0x00000000

 *p_ipc:0x00000000 *p_dblist:0x00000000

*p_dbnext:0x00000000

 *lock:0x00000000 kstackseg:0x007fffff *pgrpl:0x08x

Signal Information:

 pending:hi 0x00000000,lo 0x00000000

 sigcatch:hi 0x00000000,lo 0x00000000 sigignore:hi

0xffffffff,lo 0xfff7ffff

Statistics: size:0x00000000(pages) audit:0x00000000

SLT ST PID PPID PGRP UID EUID TCNT NAME

 1 a 1 0 0 0 0 1 init

FLAGS: swapped_in no_swap

 Links: *child:0xe3001400 *siblings:0x00000000

*uidl:0xe3000100

 *ganchor:0x00000000

Dispatch Fields: pevent:0x00000020 wevent:0x00000000

 *p_synch:0xffffffff

Thread Fields: *threadlist:0xe60000a0 threadcount: 1

 active: 1 suspended: 0 local: 0 localsleep: 0

 *synch:0xffffffff

Scheduler Fields: nice: 20 repage:0x00000000

scount:0x00000000

Misc: adspace:0x00000505 *ttyl:0x00000000

 *p_ipc:0x00000000 *p_dblist:0x00000000

*p_dbnext:0x00000000

 *lock:0x00000000 kstackseg:0x007fffff *pgrpl:0x08x

Signal Information:

 pending:hi 0x00000000,lo 0x00000000

 sigcatch:hi 0x00000001,lo 0x18783eff sigignore:hi

0xfffffffe,lo 0xe787c100

Statistics: size:0x00000028(pages) audit:0x00000000

...

Refer to the sys/proc.h header file for the structure definition.

queue [Address]
The queue subcommand displays the STREAMS queue. If the address optional parameter
is not supplied, crash will display information for all queues available. Refer to the
/usr/include/sys/stream.h file for the queue structure definitions.

If you wish to see the information stored for a read queue, issue the queue subcommand
with the read queue address specified as the parameter.

15-16 AIX Version 4.1 Writing a Device Driver

When you issue the queue subcommand with the address parameter, the column headings
do not distinguish between the read queue and the write queue. One queue address will be
displayed under the column heading QUEUE. The other queue in the pair will be displayed
under the column heading OTHERQ. The write queue will have a numerically higher
address than the read queue.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = que

> queue

 WRITEQ QINFO NEXT PRIVATE FLAGS HEAD READQ COUNT

59c2a74 188c50c 59c2474 59b1900 0x002a 0 59c2a00 0

59c2474 18f0e50 59c2274 59b6880 0x0028 0 59c2400 0

59c2274 18ef3d8 59c2174 59cc800 0x0028 0 59c2200 0

59c2174 18b31b4 0 54684f8 0x0028 0 59c2100 0

59d5a74 188c50c 5a94874 59d3c00 0x002a 0 59d5a00 0

5a94874 18f0e50 5a9c074 59ec500 0x0028 0 5a94800 0

5a9c074 18fa748 0 59e5b00 0x0028 0 5a9c000 0

59ff074 188c50c 59eab74 59ffe00 0x002a 0 59ff000 0

59eab74 18f0e50 59ff374 59da500 0x0028 0 59eab00 0

59ff374 18fa748 0 59da380 0x0028 0 59ff300 0

5ab4374 188c50c 59ee174 5ab4c00 0x002a 0 5ab4300 0

59ee174 18f0e50 5ab4774 59da100 0x0028 0 59ee100 0

5ab4774 18ef3d8 5ad2874 59d7800 0x0028 0 5ab4700 0

> queue 5ab4700

 QUEUE QINFO NEXT PRIVATE FLAGS HEAD OTHERQ COUNT

5ab4700 18ef3bc 59ee100 59d7800 0x0029 0 5ab4774 0

quit
Exit from the crash command.

Aliases = q

qrun
The qrun subcommand displays the list of scheduled streams queues. If there are no
queues found for scheduling, the qrun subcommand will print a message stating there are
no queues scheduled for service.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = none

> qrun

 QUEUE

 59d5a74

socket [–]
The socket subcommand displays the system socket structures. Use the – flag to also
display the socket buffers.

Aliases = sock

> sock

SLOT: 26 type:0x0002 opts:0x0000 linger:0x0000

 state:0x0080 pcb:0x01d32d8c proto:0x01c65cf0

 q0:0x00000000 q0len: 0 q:0x00000000

 qlen: 0 qlimit: 0 head:0x00000000

 timeo: 0 error: 0 oobmark: 0 pgrp: 0

...

Refer to sys/socket.h for structure definitions.

15-17Debugging Tools

stack [ThreadTableEntry]
The stack subcommand displays a dump of the kernel stack of the kernel thread identified
by ThreadTableEntry. The addresses are virtual data addresses rather than true physical
addresses. If you do not specify an entry, the subcommand displays information about the
last running kernel thread. You cannot trace the stack of the current running kernel thread
on a running system.

Aliases = s, stk, k, kernel

> s 31
KERNEL STACK:

2ff97a50: 8eaa4 16 2ff97ac8 2

2ff97a60: 90b0 8e8b4 2ff97ad8 0

2ff97a70: 1 26 2ff97ac8 2ff98938

...

stat
The stat subcommand displays statistics found in the dump. These statistics include the
panic message (if there is one), time of crash, and system name.

Aliases = none

> stat

 sysname: AIX

 nodename: funk

 release: 1

 version: 3

 machine: 000003961000

 time of crash: Fri Sep 28 17:50:38 1990

 age of system: 15 day, 6 hr., 25 min.

status [ProcessorNumber]
Displays a description of the kernel thread scheduled on the designated processor. If no
processor is specified, the status subcommand displays information for all processors. The
information displayed includes the processor number, kernel thread identifier, kernel thread
table slot, process identifier, process table slot, and process name.

Aliases = none

> status 0

CPU TID TSLOT PID PSLOT PROC_NAME

 0 1fe1 31 1fd8 31 crash

stream
The stream subcommand displays the stream head table. The information printed is
contained in an internal structure. The following members of this internal structure are
described here:

address Address of stream head
wq Address of streams write queue
dev Associated device number of the stream
read error Read error on the stream
write_error Write error on the stream
flags Stream head flag values
push_cnt Number of modules pushed on the stream
wroff Write offset to prepend M_DATA
ioc_id ID of outstanding M_IOCTL request
pollq List of active polls
sigsq List of active M_SETSIGs

15-18 AIX Version 4.1 Writing a Device Driver

The flags structure member, if set, is based on combinations of the following values:

#define Value Description
F_STH_READ_ERROR 0x0001 M_ERROR with read error received, fail all read calls.
F_STH_WRITE_ERROR 0x0002 M_ERROR with write error received, fail all writes.
F_STH_HANGUP 0x0004 M_HANGUP received, no more data.
F_STH_NDELON 0x0008 Do TTY semantics for ONDELAY handling.
F_STH_ISATTY 0x0010 This stream acts a terminal.
F_STH_MREADON 0x0020 Generate M_READ messages.
F_STH_TOSTOP 0x0040 Disallow background writes (for job control).
F_STH_PIPE 0x0080 Stream is one end of a pipe or FIFO.
F_STH_WPIPE 0x0100 Stream is the “write” side of a pipe.
F_STH_FIFO 0x0200 Stream is a FIFO.
F_STH_LINKED 0x0400 Stream has one or more lower streams linked.
F_STH_CTTY 0x0800 Stream controlling tty.
F_STH_CLOSED 0x4000 Stream has been closed, and should be freed.
F_STH_CLOSING 0x8000 Actively on the way down.

This subcommand can be issued from crash on either a running system or a system dump.

Aliases = none

> stream

ADDRESS WRITEQ MAJ/MIN RERR WERR FLAGS IOCID WOFF PCNT POLQNEXT SIGQNEXT

59b1900 59c2a74 15, 0 0 0 0x0838 0 0 2 0 0

59d3c00 59d5a74 23, 5 0 0 0x0020 0 0 1 0 0

59ffe00 59ff074 23, 4 0 0 0x0020 0 0 1 0 0

5ab4c00 5ab4374 24, 0 0 5 0x0816 0 0 2 0 0

59d3f00 59ee974 24, 1 0 5 0x0816 0 0 2 0 0

59d3800 59dff74 24, 2 0 5 0x0816 0 0 2 0 0

59d3700 5a9c174 24, 3 0 5 0x0816 0 0 2 0 0

59ff800 59ff774 24, 4 0 0 0x0810 0 0 2 0 0

5a94d00 59ee574 24, 5 0 0 0x0830 0 0 2 0 0

5a94600 5a96c74 24, 6 0 5 0x0816 0 0 2 0 0

tcb [ThreadTableEntry] . . .
Displays the mstsave portion of the user structures of the named kernel threads (see the
user.h and mstsave.h header files). If you do not specify an entry, information about the
last running kernel thread is displayed. This subcommand replaces the pcb subcommand.

Aliases = none

> tcb

 UTHREAD AREA FOR SLOT 2

SAVED MACHINE STATE

 curid:0x00000204 m/q:0x00000000 iar:0x00019cfc cr:0x22000000

 usr:0x00009030 lr:0x00035678 ctr:0x00019c90 xer:0x20000000

 *prevmst:0x00000000 *stackfix:0x00000000 intpri:0x0000000b

 backtrace:0x00 tid:0x00000000 fpeu:0x00 ecr:0x00000000

 Exception Struct

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 Segment Regs

 0:0x00000000 1:0x007fffff 2:0x00000408 3:0x007fffff

 4:0x007fffff 5:0x007fffff 6:0x007fffff 7:0x007fffff

.

.

.

Aliases = none

15-19Debugging Tools

>tcb

 UTHREAD AREA FOR SLOT 25

SAVED MACHINE STATE

 curid:0x0000162e m/q:0x00000000 iar:0x0187e1dc cr:0x44224820

 msr:0x000090b0 lr:0x0187e2d8 ctr:0x00040610 xer:0x00000004

 *prevmst:0x00000000 *stackfix:0x00000000 intpri:0x0000000b

 backtrace:0x00 tid:0x00000000 fpeu:0x01 ecr:0x00000000

 Exception Struct

 0xd0112540 0x42000000 0x400015b5 0xd0112540 0x00000106

 Segment Regs

 0:0x00000000 1:0x007fffff 2:0x000019f9 3:0x007fffff

 ...

 General Purpose Regs

 0:0x018abcd8 1:0x2fedefb8 2:0x018ac41c 3:0x018ab6e4

 4:0x018a63b0 5:0x018a63b0 6:0x018a63b0 7:0x00000000

 ...

 Floating Point Regs

 Fpscr: 0x00000000

 0:0x00000000 0x00000000 1:0x00000000 0x00000000 2:0x00000000 0x00000000

 3:0x00000000 0x00000000 4:0x00000000 0x00000000 5:0x00000000 0x00000000

 ...

Kernel stack address: 0x2fedf500

>tcb 10

 UTHREAD AREA FOR SLOT 10

SAVED MACHINE STATE

 curid:0x000009f4 m/q:0x00008003 iar:0x0001ddf8 cr:0x80222822

 msr:0x000010b0 lr:0x0001ddf8 ctr:0x000ee000 xer:0x00000000

 *prevmst:0x00000000 *stackfix:0x2fedf2d8 intpri:0x00000000

 backtrace:0x00 tid:0x00000000 fpeu:0x01 ecr:0x00000000

 Exception Struct

 0x30000000 0x40000000 0x00001272 0x30000000 0x00000106

 Segment Regs

 0:0x00000000 1:0x007fffff 2:0x00001010 3:0x007fffff

 ...

 General Purpose Regs

 0:0x40000707 1:0x2fedf2d8 2:0x00160d2c 3:0x00000420

 4:0x00000001 5:0xe6000644 6:0x000010b0 7:0x00000420

 ...

 Floating Point Regs

 Fpscr: 0x00000000

 0:0x00000000 0x00000000 1:0x00000000 0x00000000 2:0x00000000 0x00000000

 3:0x00000000 0x00000000 4:0x00000000 0x00000000 5:0x00000000 0x00000000

 ...

Kernel stack address: 0x2fedf500

thread [–] [–r] [–p ProcessTableEntry | –a Address | ThreadTableEntry]
Displays the contents of the kernel thread table. The – (minus) flag displays a longer listing
of the thread table. The –r flag displays only runnable kernel threads. The –p flag displays
only those kernel threads which belong to the process identified by ProcessTableEntry. The
–a flag displays the kernel thread structure at Address. If ThreadTableEntry is given, only
the corresponding kernel thread is displayed.

Aliases = th

15-20 AIX Version 4.1 Writing a Device Driver

> thread 1

SLT ST TID PID CPUID POLICY PRI CPU EVENT PROCNAME

 1 s 1e1 1 unbound other 3c 0 init

 FLAGS: wakeonsig

The trace subcommand displays a kernel stack trace of the kernel thread identified by
ThreadTableEntry. The trace starts at the bottom of the stack and attempts to find valid
stack frames deeper in the stack. By default, the current kernel thread is used.

Use the –r flag to use the kernel frame pointer set up by the kfp subcommand as the
starting address instead of the frame pointer found in the SystemImageFile. The trace
subcommand stops and reports an error if an invalid frame pointer is encountered.

Aliases = t

> t 31
STACK TRACE:

.et_wait ()

.e_sleep ()

.e_sleepl ()

.sleepx ()

.fifo_read ()

.fifo_rdwr ()

.vno_rw ()

.rwuio ()

.rdwr ()

.kreadv ()

ts [TextAddress]
The ts subcommand finds the text symbols closest to the given address.

Aliases = none

> ts 012345

.ioctl_systrace

tty [d] [l] [e] [Name | Major [Minor]]
Aliases = term, dz, dh

Refer to the sys/tty.h header file for the structure definition.

user [ThreadTableEntry]
Displays the uthread structure and the associated user structure of the thread identified by
ThreadTableEntry. If you do not specify the entry, the information about the last running
kernel thread is displayed..

Aliases = u, uarea, u_area

>u 4

 UTHREAD AREA FOR SLOT 4

SAVED MACHINE STATE

 curid:0x00000408 m/q:0x00008003 iar:0x0001ed98 cr:0x84201000

 msr:0x000010b0 lr:0x0001ed98 ctr:0x00000000 xer:0x20000000

 *prevmst:0x00000000 *stackfix:0x2feaeea8 intpri:0x00000000

 backtrace:0x00 tid:0x00000000 fpeu:0x00 ecr:0x00000000

 Exception Struct

 0x2feaf688 0x40000000 0x00000c0c 0x2feaf688 0x00000106

 Segment Regs

 0:0x00000000 1:0x007fffff 2:0x00000c0c 3:0x007fffff

 ...

 General Purpose Regs

 0:0x00000000 1:0x2feaeea8 2:0x00160d2c 3:0x00001000

 4:0x00000001 5:0x2fedf500 6:0x0000000b 7:0x000090b0

15-21Debugging Tools

 ...

 Floating Point Regs

 Fpscr: 0x00000000

 0:0x00000000 0x00000000 1:0x00000000 0x00000000

 ...

 30:0x00000000 0x00000000 31:0x00000000 0x00000000

Kernel stack address: 0x2feaeffc

SYSTEM CALL STATE

 errno address:0xc0c0fade error code:0x00 *kjmpbuf:0x00000000

PER–THREAD TIMER MANAGEMENT

 Real/Alarm Timer (ut_timer.t_trb[TIMERID_ALRM]) = 0x0

 Virtual Timer (ut_timer.t_trb[TIMERID_VIRTUAL]) = 0x0

 Prof Timer (ut_timer.t_trb[TIMERID_PROF]) = 0x0

SIGNAL MANAGEMENT

 *sigsp:0x0 oldmask:hi 0x0,lo 0x0 code:0x0

MISCELLANOUS FIELDS:

 fstid:0x00000000 ioctlrv:0x00000000 selchn:0x00000000

 USER AREA OF ASSOCIATED PROCESS gil (SLOT 4, PROCTAB 0xe3000400)

 handy_lock:0x00000000 timer_lock:0x00000000

 map:0x00000000 *semundo:0x00000000

 compatibility:0x00000000 lock:0x00000000

SIGNAL MANAGEMENT

 Signals to be blocked (sig#:hi/lo mask,flags,&func)

 1:hi 0x00000000,lo 0x00000000,0x00000000,0x00000000

 2:hi 0x00000000,lo 0x00000000,0x00000000,0x00000000

 3:hi 0x00000000,lo 0x00000000,0x00000000,0x00000000

 ...

USER INFORMATION

 euid:0x0000 egid:0x0000 ruid:0x0000 rgid:0x0000 luid:0x00000000

 suid:0x00000000 ngrps:0x0000 *groups:0x2feacc34 compat:0x00000000

 ref:0x00000004

 acctid:0x00000000 sgid:0x00000000 epriv:0x00000000

 ipriv:0x00000000 bpriv:0x00000000 mpriv:0x00000000

 u_info:

ACCOUNTING DATA

 start:0x2d612cc9 ticks:0x00000002 acflag:0x0000 pr_base:0x00000000

 pr_size:0x00000000 pr_off:0x00000000 pr_scale:0x00000000

 process times:

 user:0x00000000s 0x00000000us

 sys:0x000004f1s 0x14dc9380us

 children’s times:

 user:0x00000000s 0x00000000us

 sys:0x00000000s 0x00000000us

CONTROLLING TTY

 *ttysid:0x00000000 *ttyp(pgrp):0x00000000

 ttyd(evice):0x00000000 ttympx:0x00000000 *ttys(tate):0x00000000

 tty id: 0x00000000 *query function: 0x00000000

PINNED PROFILING BUFFER

 *pprof: 0x00000000 *mem desc: 0x00000000

RESOURCE LIMITS AND COUNTERS

 ior:0x00000000 iow:0x00000000 ioch:0x00000000

15-22 AIX Version 4.1 Writing a Device Driver

 text:0x00000000 data:0x00000000 stk:0x01000000

 max data:0x08000000 max stk:0x01000000 max file:0x7fffffff

 soft core dump:0x7fffffff hard core dump:0x7fffffff

 soft rss:0x7fffffff hard rss:0x7fffffff

 cpu soft:0x7fffffff cpu hard:0x7fffffff

 hard ulimit:0x7fffffff

 minflt:0x00000000 majflt:0x00000000

AUDITING INFORMATION

 auditstatus:0x00000000

SEGMENT REGISTER INFORMATION

 Reg Flag Fileno Pointer

 0 0 0 0

 1 0 0 0

 ...

 *adspace:0xa0000000

FILE SYSTEM STATE

 *curdir:0x00000000 *rootdir:0x00000000

 cmask:0x0000 maxindex:0x0000

FILE DESCRIPTOR TABLE

 *ufd: 0x20013b14

> user

 UTHREAD AREA FOR SLOT 31

SAVED MACHINE STATE

 curid:0x00001fd8 m/q:0x00000000 iar:0x0006ee54 cr:0x2224248a

 msr:0x00009030 lr:0x000095d4 ctr:0x00000009 xer:0x00000020

 *prevmst:0x00000000 *stackfix:0x00000000 intpri:0x0000000b

 backtrace:0x00 tid:0x00000000 fpeu:0x01 ecr:0x00000000

 Exception Struct

 0x10013b7c 0x4000d030 0x60000990 0x10013b7c 0x00000106

 Segment Regs

 0:0x00000000 1:0x007fffff 2:0x0000068e 3:0x6000068e

 4:0x007fffff 5:0x007fffff 6:0x007fffff 7:0x007fffff

.

.

.

 21_trb[TIMERID_ALRM]) = 0x0

 Virtual Timer (ut_timer.t_trb[TIMERID_VIRTUAL]) = 0x0

 Prof Timer (ut_timer.t_trb[TIMERID_PROF]) = 0x0

SIGNAL MANAGEMENT

 *sigsp:0x0 oldmask:hi 0x0,lo 0x0 code:0x0

MISCELLANOUS FIELDS:

 fstid:0x00000000 ioctlrv:0x00000000 selchn:0x00000000

 USER AREA OF ASSOCIATED PROCESS crash (SLOT 31, PROCTAB

0xe3001f00)

 handy_lock:0x00000000 timer_lock:0x00000000

 map:0x00000000 *semundo:0x00000000

 compatibility:0x00000000 lock:0x00000000

SIGNAL MANAGEMENT

 Signals to be blocked (sig#:hi/lo mask,flags,&func)

 1:hi 0x00000000,lo 0x00000000,0x00000000,0x00000000

 2:hi 0x00x00000000

.

.

.

Refer to the sys/user.h header file for the structure definition.

15-23Debugging Tools

var
The var subcommand displays the tunable system parameters.

Aliases = tune, tunable, tunables

> var

buffers 20

files 328

e_files 328

threads 262144

e_threads 51

clists 16384

maxproc 40

iostats 1

locks 200

e_locks 8456344

vfs [–] [Vfs SlotNumber]
The vfs uses the specified Vfs SlotNumber to display an entry in the vfs table. Use the –
flag to display the vnodes associated with the vfs. The default displays the entire vfs table.

Aliases = m, mnt, mount

> vfs 3

VFS ADDRESS TYPE OBJECT STUB NUM FLAGS PATHS

 3 1a62494 jfs 1a6d47c 1a6d650 5 D /dev/hd1 mounted over /u

 flags: C=disconnected D=device I=remote P=removable

 R=readonly S=shutdown U=unmounted Y=dummy

> vfs – 3

VFS ADDRESS TYPE OBJECT STUB NUM FLAGS PATHS

 3 1a62494 jfs 1a6d47c 1a6d650 5 D /dev/hd1 mounted over /u

ADDRESS VFS MVFS VNTYPE FSTYPE COUNT ISLOT INODE FLAGS

1a6e0ac 3 – vreg jfs 1 – 18f82c0

1a6e218 3 – vreg jfs 1 – 18f8770

1a6e24c 3 – vreg jfs 1 – 18f8590

1a6e17c 3 – vdir jfs 3 – 18f7f00

1a6dea4 3 – vreg jfs 2 – 18f65b0

1a6dfa8 3 – vdir jfs 5 – 18f6100

1a6d47c 3 – vdir jfs 1 – 18ea580 vfs_root

Refer to the sys/vfs.h header file for structure definitions.

vnode [VNodeAddress]
The vnode subcommand displays data at the specified VNodeAddress as a vnode.
VNodeAddress must be specified in hexadecimal notation.The default is to display all
vnodes in the vnode table.

Aliases = none

> vnode 1a6e078

ADDRESS VFS MVFS VNTYPE FSTYPE COUNT ISLOT DATAPTR FLAGS

1a6e078 0 – vreg jfs 4 – 18f6790

 Total VNODES printed 1

Refer to the sys/vnode.h header file for the structure definition.

15-24 AIX Version 4.1 Writing a Device Driver

xmalloc
The xmalloc subcommand displays information concerning the allocation and usage of
kernel memory, specifically the pinned_heap and the kernel_heap.

Aliases = xm, malloc

>xmalloc

Kernel heap usage

heap size = 242720768 amount used = 79005568

Pinned heap usage

heap size = 242720768 amount used = 342832

Kernel and pinned heap usage

from = 1028ac bytes = 62914560 number = 2

from = 41d58 bytes = 8388608 number = 1

 ...

15-25Debugging Tools

Kernel Debug Program
Use the kernel debug program (also known as the kernel debugger or low-level debugger)
for debugging the kernel, device drivers, and other kernel extensions. The kernel debug
program provides the following functions:

• Setting breakpoints within the kernel or within kernel extensions
• Formatting and displaying selected kernel data structures
• Viewing and modifying memory for any kernel data
• Viewing and modifying memory for kernel instructions
• Modifying the state of the machine by altering system registers

Loading and Starting the Kernel Debug Program
The kernel debug program must be loaded by using the bosboot command before it can be
started. Use either of the following commands:

bosboot –a –d /dev/ipldevice –D

OR

bosboot –a –d /dev/ipldevice –I

The –D flag causes the kernel debugger program to be loaded. The –I flag also causes the
kernel debug program to be loaded, but it is also invoked at system initialization. This
means that when the system starts, it will trap the kernel debug program.

After issuing the bosboot command, you must restart the machine. The kernel debug
program will not be loaded until the system is restarted. When started, the debug program
accepts the commands described in “Kernel Debug Program Commands” on page 15-30.

If the kernel debug program is invoked during initialization, use the go command to continue
the initialization process.

Note: The debug program disables all external interrupts while it is in operation.

Using a Terminal with the Kernel Debug Program
The debug program opens an asynchronous ASCII terminal when it is first started, and
subsequently upon being started due to a system halt. Native serial ports are checked
sequentially starting with port 0 (zero). Each port is configured at 9600 bps, 8 bits, and no
parity. If carrier detect is asserted within 1/10 seconds, then the port is used. Otherwise, the
next available native port is checked. This process continues until a port is opened or until
every native port available on the machine has been checked. If no native serial port is
opened successfully, then the result is unpredictable.

You can only display the kernel debugger on an ASCII terminal connected to a native serial
port. The kernel debugger does not support any displays connected to any graphics
adapters. The debugger has its own device driver for handling the display terminal. It is also
possible to connect a serial line between two machines and define the serial line port as the
port for the console. In that case, use the cu command to connect to the target machine and
run the debugger.

Attention: If a serial device, other than a terminal connected to a native serial port, is
selected by the kernel debugger, the system may appear to just hang up.

15-26 AIX Version 4.1 Writing a Device Driver

Entering the Kernel Debug Program
It is possible to enter the kernel debug program through one of the following procedures:

• From a native keyboard, press Ctrl-Alt-Numpad4.

• From the tty keyboard, enter Ctrl-4 (IBM 3151 terminals) or Ctrl-\ (BQ 303, BQ 310C, and
WYSE 50).

• The system can enter the debugger if a breakpoint is set. To do this, use the break
debugger command. See “Breakpoints” on page 15-29 and “Setting Breakpoints” on
page 15-68 for information on setting a breakpoint.

• The system can also enter the debugger by calling the brkpoint subroutine from C code.
The syntax for calling this subroutine is:

brkpoint();

• The system can also enter the debugger if a static debug trap (SDT), is compiled into the
code. To do this, place the assembler language instruction:

t 0x4, r1 r1

at the desired address. One way to do this is to create an assembler language routine
that does this, then call it from your driver code.

Note: After the debug program is started, SDTs are treated the same as other processor
instructions. The step command can be used to step over SDTs. The go or loop
commands can be used to resume execution at the instruction following the SDT.

• The system can also enter the debugger if a system halt is caused by a fatal system
error. In such a case, the system creates a log entry in the system log and if the kernel
debugger is available, calls the kernel debugger. A system dump is generated on exit
from the debugger.

If the kernel debug program is not available (nothing happens when you type in the above
key sequence), you must load it. To do this, see “Loading and Starting the Kernel Debug
Program” on page 15-25.

Note: You can use the crash command to determine whether the kernel debug program is
available. Use the od subcommand:

crash

>od dbg_avail

If the od subcommand returns a 0 or 1, the kernel debug program is available. If it
returns 2, the debug program is not available.

Debugging Multiprocessor Systems
 On multiprocessor systems, entering the kernel debug program stops all processors
(except the current processor running the debug program itself). Generally, when the
debugger returns control to the program being debugged, other processors are released to
run again. However, other processors are not released during the step command. On
multiprocessor systems, the kernel debug program prompt indicates the current processor
as follows:

>ProcessorNumber>

where ProcessorNumber identifies the current processor.

15-27Debugging Tools

Kernel Debug Program Concepts
When the kernel debugger is invoked, it is the only running program. All processes are
stopped, interrupts are disabled, and the cache is flushed. The system creates a new
mstsave (machine state save) area for use by the debugger. However, the data displayed
by the debugger comes from the mstsave area of the thread that was interrupted when the
debugger was entered. After exiting from the kernel debugger, all the processes will
continue to run unless you entered the debugger through a system halt.

Commands
The kernel debug program must be loaded and started before it can accept commands

Once in the kernel debugger, use the commands to investigate and make alterations. Each
command has an alias or a shortened form. This is the minimum number of letters required
by the debugger to recognize the alias as unique. See “Kernel Debug Program Commands”
on page 15-30 for lists and descriptions of the commands.

Numeric Values and Strings
Numeric arguments are required to be hexadecimal for all commands except the loop and
step commands and the slotnumber option of the drivers command, which all take a
numeric count in decimal. Decimal numbers must either be decimal constants (0–9),
variables, or expressions involving both options (see “Expressions” on page 15-29).
Hexadecimal numbers can also include the letters A through F.

In some cases, only numeric constants are allowed. Wherever appropriate, this restriction is
clearly identified.

On the other hand, a string is either a hexadecimal constant or a character constant of the
form “String”. Hexadecimal constants can be no longer than 8 digits. Double quotation
marks separate string constants from other data.

Variables
Variable names must start with a letter and can be up to eight characters long. Variable
names cannot contain special symbols. Variables usually represent locations or values
which are used again and again. A variable must not represent a valid number. Use the set
command to define and initialize variables. Variables can contain from 1 to 4 bytes of
numeric data or up to 32 characters of string data. You can release a variable with the reset
command. You cannot use the reset command with reserved variables.

For example:

set name 1234 Sets your variable called name=1234

set s8 820c00e0 Sets seg reg 8 to point to the IOCC

Note that s8 is a reserved variable.

Reserved Variables
There is a set of variables that have a reserved meaning for the kernel debug program. You
can reference and change these variables, but they represent the actual hardware registers.
There are also two variables (fx and org) reserved for use by the kernel debug program,
which can be changed or set. If you change any registers while in the kernel debug
program, the change remains in effect when you leave the kernel debug program. The
reserved variables are:

bat0l BAT register 0, lower.

bat0u BAT register 0, upper.

bat1l BAT register 1, lower.

bat1u BAT register 1, upper.

bat2l BAT register 2, lower.

bat2u BAT register 2, upper.

15-28 AIX Version 4.1 Writing a Device Driver

cppr Current processor priority register.

cr Condition register.

ctr Count register.

dar Data address register.

dec Decrementer.

dsier Data storage interrupt error register.

dsisr Data storage interrupt status register.

eim0 External interrupt mask (low).

eim1 External interrupt mask (high).

eis0 External interrupt summary (low).

eis1 External Interrupt summary (high).

fp0–fp31 Floating point registers 0 through 31.

fpscr Floating point status and control register.

fx Address of the last item found by the find command.

iar Instruction Address Register (program counter). Points to the current
instruction.

lr Link register.

mq Multiply quotient.

msr Machine State register.

org The current value of origin. It is useful to set this to the program load point.

peis0 Pending external interrupt status register 0.

peis1 Pending external interrupt status register 1.

r0 – r31 General Purpose Registers 0 through 31. These registers have the
following usage conventions:

r0 Used on prologs. Not preserved across calls.

r1 Stack pointer. Preserved across calls.

r2 TOC. Preserved across calls.

r3 – r10 Parameter list for a procedure call. The first argument is r3,
the second is r4 and so on until r10 is the 8th argument.
These registers are not preserved across calls.

r11 Scratch. Pointer to FCN; DSA pointer to
int proc(env).

r12 PL8 exception return. Value preserved across calls.

r13–r31 Scratch. Value preserved across calls.

rtcl Real Time clock (nano seconds).

rtcu Real Time clock (seconds).

s0–s15 Segment registers. If a segment register is not in use, it has a value of
007FFFFF.

sdr0 Storage description register 0.

sdr1 Storage description register 1.

sisr Data Storage-Interrupt Status register.

15-29Debugging Tools

srr0 Machine status save/restore 0.

srr1 Machine status save/restore 1.

tbl Time base register, lower.

tbu Time base register, upper.

tid Transaction register (fixed point).

xer Exception register (fixed point).

xirr External interrupt request register.

Expressions
The kernel debug program does not allow full expression processing. Expressions can only
contain decimal or hex constants, variables and operators. The variable operators include:

+ addition
– subtraction
* multiplication
/ division
> dereference

The > operator indicates that the value of the preceding expression is to be taken as the
address of the target value. The contents of the address specified by the evaluated
expression are used in place of the expression.

You can enter expressions in the form Expression(Expression). This form causes the two
expressions to be evaluated separately and then added together. This form is similar to the
base address syntax used in the assembler.

You can also enter expressions in the form +Expression or –Expression. This form causes
the expression to be added to or subtracted from the origin (the reserved variable org.)

Expressions are processed from left to right only. The type of data specified must be the
same for all terms in the expression.

Pointer Dereferences
A pointer dereference can be used to refer indirectly to the contents of a memory location.
For example, assume that the 0xC50 location contains a counter. An expression of the form
c50> can be used to refer to the counter. Any expression can be placed before the >
(greater than) operator, including an expression involving another > operator. In this case
multiple levels of indirection are used. To extend the example, if the FF7 location contains
the C50 value, the expression FF7>> refers to the above counter.

The following examples show how to use a pointer dereference with the alter command:

alter 124> 0582

alter addrl>+8 d96e

In the first case, data is placed into the memory location pointed to by the word at the 124
address. The second case places the d96e variable into memory at the address computed
by adding 8 to the word at the address in the addrl variable.

Breakpoints
The debugger creates a table of breakpoints that it internally maintains. The break
command creates breakpoints. The clear command clears breakpoints. When the
breakpoint is set, the debugger temporarily replaces the corresponding instruction with the
trap instruction. The instruction overlaid by the breakpoint operates when you issue a step
or go command.

A breakpoint can only be set if the instruction is not paged out. Breakpoints should not be
set in any code used by the debugger.

For more information, see “Setting Breakpoints” on page 15-68.

15-30 AIX Version 4.1 Writing a Device Driver

Kernel Debug Program Commands
The following table shows the kernel debug program commands in alphabetical order:

Command Alias Description

alter a Alters memory.

back b Decrements the Instruction Address Register (IAR).

break br Sets a breakpoint.

breaks breaks Lists currently set breakpoints.

buckets bu Displays contents of kmembucket kernel structures.

clear cl Clears (removes) breakpoints.

cpu cp Sets the current processor or shows processor states.

display d Displays a specified amount of memory.

dmodsw dm Displays the STREAMS driver switch table.

drivers dr Displays the contents of the device driver (devsw) table.

find f Finds a pattern in memory.

float fl Displays the floating point registers.

fmodsw fm Displays the STREAMS module switch table.

go g Starts the program running.

? or help h Displays the list of valid commands.

loop l Run until control returns to this point.

map m Displays the system loadlist.

mblk mb Displays the contents of message block structures.

next n Increments the IAR.

origin o Sets the origin.

ppd pp Displays per-processor data.

proc pr Displays the formatted process table.

queue que Displays contents of STREAMS queue at specified ad-
dress.

quit q Ends a debugging session.

reset r Releases a user-defined variable.

screen s Displays a screen containing registers and memory.

set se Defines or initialize a variable.

sregs sr Displays segment registers.

st st Stores a fullword in memory.

stack sta Displays a formatted kernel stack trace.

stc stc Stores one byte in memory.

step ste Performs an instruction single-step.

sth sth Stores a halfword in memory.

stream str Displays stream head table.

15-31Debugging Tools

Command DescriptionAlias

swap sw Switches from the current display and keyboard to another
RS232 port.

thread th Displays thread table entries.

trace tr Displays formatted trace information.

trb trb Displays the timer request blocks.

tty tt Displays the tty structure.

user u Displays a formatted user area.

uthread ut Displays the uthread structure.

vars v Displays a listing of the user-defined variables.

vmm vm Displays the virtual memory data structure.

xlate x Translates a virtual address to a real address.

15-32 AIX Version 4.1 Writing a Device Driver

Kernel Debug Program Commands Grouped by Task Categories
The kernel debug program commands can be grouped into the following task categories:

• Displaying Registers

• Modifying Registers

• Setting, Specifying, and Deleting Breakpoints

• Displaying Data

• Manipulating Memory

• Controlling the Debugger

Displaying Registers
cpu Selects the current processor.

float Displays the floating-point register.

origin Sets the origin of the IAR.

screen Displays a screen containing registers and memory.

sregs Displays segment registers.

Modifying Registers
back Decreases the instruction address register (IAR).

next Increments the IAR.

set Define or initialize a user-defined variable.

Setting, Specifying, and Deleting Breakpoints
brat Sets a branch on target address (brat) point.

break Sets a breakpoint.

breaks Lists currently set breakpoints.

clear Removes breakpoints.

go Starts the operation of the program following a breakpoint or static debug
trap.

loop Operates until control returns to this point a number of times.

step Performs a single-step instruction.

watch Sets watch points which interrupt data storage.

Displaying Data
buckets Displays statistics on the net_malloc kernel memory pool by bucket size.

display Displays a specified amount of memory.

dmodsw Displays the internal STREAMS driver switch table.

drivers Displays the contents of the device driver (devsw) table.

fmodsw Displays the internal STREAMS module switch table.

map Displays a system load list.

mblk Displays the contents of the STREAMS message blocks.

ppd Displays a formatted per-processor data structure.

proc Displays the formatted process table.

queue Displays the contents of the STREAMS queues.

15-33Debugging Tools

screen Displays a screen containing registers and memory.

stack Displays a formatted kernel stack trace.

stream Displays the contents of the stream head table.

thread Displays the formatted thread table.

trace Displays formatted trace information.

trb Displays the timer request blocks.

tty Displays tty information.

user Displays a formatted user area.

uthread Displays a formatted uthread structure.

vmm Displays the virtual memory information menu.

Manipulating Memory
alter Alters memory.

display Displays a specified amount of memory.

find Finds a pattern in memory.

st Stores a fullword in memory.

stc Stores 1 byte in memory.

sth Stores a halfword in memory.

vmm Displays the virtual memory information menu.

xlate Translates a virtual address to a real address.

Controlling the Debugger
? or help Displays the list of valid commands.

quit Ends the debugging session.

reset Clear a user-defined variable.

set Define or initialize a user-defined variable.

swap Switches from the current display and keyboard to an RS-232 port.

vars Displays a listing of user-defined variables.

15-34 AIX Version 4.1 Writing a Device Driver

Descriptions of the Kernel Debug Program Commands
This includes a description of each of the kernel debug program commands. The
commands are in alphabetical order.

alter Command for the Kernel Debug Program

Purpose
Alters a memory location to the hexadecimal value entered.

Syntax

alter Address Data

Description
The alter command changes the memory location specified by the Address parameter to
the hexadecimal value specified by the Data parameter. The alter command can be used to
change one or several bytes of memory. The number of bytes modified with this command
depends on the number of bytes you specified. If you specified an odd number of
hexadecimal digits, only the first four bits of the last byte are changed.

The alter command cannot be used to modify storage to the value of a variable or an
expression. Instead, use the st command, the stc command, or the sth command.

Examples
1. To store the 16-bit ffff value at the 1000 address, enter:

alter 1000 ffff

2. To store the 8-bit 2C value in the high-order byte at the 1000 address, enter:

a 1000 2C

back Command for the Kernel Debug Program

Purpose
Decreases the instruction address register (IAR).

Syntax

back
Number

Description
The back command decreases the IAR by the number of bytes specified by the Number
parameter and displays the new current instruction.

Examples
1. To decrement the IAR by 4 bytes, enter:

back

2. To decrement the IAR by 16 bytes, enter:

b 16

break Command for the Kernel Debug Program

Purpose
Sets a breakpoint.

15-35Debugging Tools

Syntax

break
Address

Description
The break command sets a breakpoint in a program at the address specified by the
Address parameter. The Address parameter should be a hexadecimal expression. A
breakpoint starts the loaded debug program when the instruction at the specified address is
run.

There is a maximum of 32 breakpoints.

Examples
1. To set a breakpoint at the instruction address register (IAR), enter:

break

2. To set a breakpoint at address 521A, enter:

break 521a

3. To set a breakpoint at A0+8300, enter:

br 8300+A0

4. To set a breakpoint at the origin plus A0, enter:

break +A0

5. To set a breakpoint at the address in the link register, enter:

break lr

breaks Command for the Kernel Debug Program

Purpose
Lists the current breakpoints.

Syntax

breaks

Description
The breaks command lists all currently active breakpoints. For each breakpoint, an offset
into a segment is given along with the segment register value at the time the breakpoint was
set. This information is required to distinguish between breakpoints set at identical offsets
from different segment register values.

15-36 AIX Version 4.1 Writing a Device Driver

buckets Command for the Kernel Debug Program

Purpose
Displays statistics on the net_malloc kernel memory pool by bucket size.

Syntax

buckets

Description
The buckets command displays the contents of the kmembucket kernel structures. These
structures contain information on the net_malloc memory pool by size of allocation.

All output values are printed in hexadecimal format.

This command can also be invoked via the alias, bu.

Example
To display kmembucket kernel structure for offset 0 and allocation size of 2 enter:

buckets

clear Command for the Kernel Debug Program

Purpose
Removes one or all breakpoints.

Syntax

*c
cl
clear

Address

one of

Description
The clear command removes one or all breakpoints. The Address parameter specifies the
location of the breakpoint to be removed. If you specify no flags, the breakpoint pointed to
by the instruction address register (IAR) is removed. The clear command can be initiated by
entering clear, c, or cl at the command line.

Addresses are maintained as offsets from the start of their segment. In the event that two
breakpoints are set at the same offset at the start of two different segments, and one
breakpoint is then removed, the address specified to the clear command is not unique. In
this case, each of the conflicting segment IDs are displayed, and the clear command
displays a prompt requesting the ID of the segment whose breakpoint you want to remove.

Examples
1. To clear the breakpoint at the IAR, enter:

clear

2. To clear the breakpoint at the 10000200 address, enter:

cl 10000200

3. To clear all breakpoints, enter:

clear *

15-37Debugging Tools

cpu Command for the Kernel Debug Program

Purpose
Switches the current processor, and reports the kernel debug state of processors.

Syntax

cpu
ProcessorNumber

Description
The cpu command places the processor specified by the ProcessorNumber parameter in
debug mode; the processor enters the debugger and is ready to accept commands. The
processor where the debugger was previously running is stopped. This command is
available only on multiprocessor systems.

If no processor is specified, the cpu command displays the kernel debug state of each
processor. The possible states are as follows:

Debug The processor has entered the debugger.

Stopped The processor has been stopped by another processor in the debug state.

Waiting The processor has hit a breakpoint while another processor is in the debug
state, without having been stopped by the other processor. A particular
example is the race condition where two processors both hit breakpoints.
One of the processors will enter the debug state; the other will enter the
waiting state.

Example
To select the first processor, enter:

cpu 0

15-38 AIX Version 4.1 Writing a Device Driver

display Command for the Kernel Debug Program

Purpose
Displays a specified amount of memory.

Syntax

display Address
Length

Description
The display command displays memory storage, starting at the address specified by the
Address parameter. The Length parameter indicates the number of bytes to display, and has
a default value of 16.

The display command displays the contents of the specified region of memory in a
two-column format. The left column displays the contents of memory in hexadecimal, and
the right column displays the printable ASCII representation of the hexadecimal data.

The display command also shows the exact amount of storage requested when you specify
a length of 1, 2, or 4 bytes. In this instance, it uses the processor load character, load
halfword, or load fullword instruction, respectively. These instructions should be used when
displaying input and output address space. Any other value for the Length parameter
causes memory to be loaded one byte at a time.

Examples
1. To display 16 bytes at the IAR, enter:

display iar

2. To display 12 bytes at address 152F, enter:

d 152F 12

3. To display 16 bytes at the origin + B7, enter:

display +B7

4. To display 16 bytes at the address in r3, enter:

disp r3

5. To display from the address contained in the address in r3, enter:

d r3>

15-39Debugging Tools

dmodsw Command for the Kernel Debug Program

Purpose
Displays the internal STREAMS driver switch table.

Syntax

dmodsw

Description
The dmodsw command displays the internal STREAMS driver switch table, one entry at a
time. By pressing the Enter key, you can walk through all the dmodsw entries in the table.
The contents of the first entry are meaningless except for the d_next pointer. When the last
entry has been reached, the dmodsw command will print the message, “This is the
last entry.”

The information printed is contained in an internal structure. The following members of this
internal structure are described here:

address Address of dmodsw
d_next Pointer to the next driver in the list
d_prev Pointer to the previous driver in the list
d_name Name of the driver
d_flags Flags specified at configuration time
d_sqh Pointer to synch queue for driver–level synchronization
d_str Pointer to streamtab associated with the driver
d_sq_level Synchronization level specified at configuration time
d_refcnt Number of open or pushed count
d_major Major number of a driver

The flags structure member, if set, is based one of the following values:

#define value description

–––––––––––––––– ––––– ––

F_MODSW_OLD_OPEN 0x1 Supports old–style (V.3) open/close

parameters

F_MODSW_QSAFETY 0x2 Module requires safe timeout/bufcall

callbacks

F_MODSW_MPSAFE 0x4 Non-MP-Safe drivers need funneling

The synchronization level codes are described in the /usr/include/sys/strconf.h header
file.

This command can also be invoked via the alias, dm.

15-40 AIX Version 4.1 Writing a Device Driver

drivers Command for the Kernel Debug Program

Purpose
Displays the contents of the device driver (devsw) table.

Syntax

drivers

Address

Slot

Description
The drivers command displays the contents of the devsw table. If no parameters are
specified, then each entry in the table is displayed. If a parameter is specified and is a valid
slot number (less than 256), then the corresponding slot in the devsw table is displayed. If
the parameter is not a valid slot number, then it is understood as an address and the slot
with the last entry point prior to the given address is displayed, along with the name of that
entry point.

Each devsw entry consists of a number of entry points (read, write, and so on) into the
specified driver. Each entry consists of a function descriptor, and the address of the
function.

Examples
1. To display the entire devsw table, enter:

drivers

2. To display the tenth slot of the devsw table, enter:

drivers 10

3. To display the last entry point before the address 0x130000F, enter:

dr 130000f

find Command for the Kernel Debug Program

Purpose
Searches storage.

Syntax

find Pattern
Address

EndAddress
Alignment

Description
The find command searches storage for a pattern beginning at the address specified by the
Address parameter. If the specified argument is found, the search stops and storage
containing the specified argument is displayed. The address of the storage is placed into the
fx variable.

The following defaults apply to the first execution of the find command:

• Address = 0

• EndAddress = 0xFFFFFFFF

• Alignment = 1 (byte alignment)

15-41Debugging Tools

An asterisk (*) can be substituted for any of the parameters. An asterisk causes the find
command to use the value for that parameter that was used in the previous execution of the
command.

Examples
1. To find the first occurrence of 7c81 in virtual memory starting at 0, enter:

find 7c81

2. To find the first occurrence of the string TEST, enter:

find ”TEST”

3. To find the first occurrence of 7c81 after address 10000, enter:

f 7c81 10000

4. To find the first occurrence of 7c81 between 0 and the user-defined top variable, enter:

f 7c81 0 top

5. To find the first occurrence of 7c81 starting at the last address used, enter:

find 7c81 *

6. To find the first of occurrence of 7c81 starting at the last address used and aligned on a
halfword, enter:

f 7c81 * * 2

7. To find the next occurrence of 7c starting at 1 plus the last address at which the find
command stopped, enter:

f 7c fx+1 * 2

8. To search for the last pattern used, enter:

find *

9. To search for the last pattern starting at the next location (the find command remembers
the alignment which was used in the previous search), enter:

f * fx+1

float Command for the Kernel Debug Program

Purpose
Displays floating-point registers.

Syntax

float

Description
The float command displays the contents of floating-point registers and other control
registers.

15-42 AIX Version 4.1 Writing a Device Driver

fmodsw Command for the Kernel Debug Program

Purpose
Displays the internal STREAMS module switch table.

Syntax

fmodsw

Description
The fmodsw command displays the internal STREAMS module switch table, one entry at a
time. By pressing the Enter key, you can walk through all the fmodsw entries in the table.
The contents of the first entry are meaningless except for the d_next pointer. When the last
entry has been reached, the fmodsw command will print the message This is the
last entry. This command can also be invoked via the alias, fm.

The information printed is contained in an internal structure. The following members of this
internal structure are described here:

address Address of fmodsw
d_next Pointer to the next module in the list
d_prev Pointer to the previous module in the list
d_name Name of the module
d_flags Flags specified at configuration time
d_sqh Pointer to synch queue for module–level synchronization
d_str Pointer to streamtab associated with the module
d_sq_level Synchronization level specified at configuration time
d_refcnt Number of open or pushed count
d_major –1

The flags structure member, if set, is based one of the following values:

#define value description

–––––––––––––––– –––––

–––

F_MODSW_OLD_OPEN 0x1 Supports old–style (V.3) open/close

parameters

F_MODSW_QSAFETY 0x2 Module requires safe timeout/bufcall

callbacks

F_MODSW_MPSAFE 0x4 Non-MP-Safe drivers need funneling

The synchronization level codes are described in the /usr/include/sys/strconf.h header
file.

15-43Debugging Tools

go Command for the Kernel Debug Program

Purpose
Starts executing the program under test.

Syntax

go
Address

Description
The go command resumes operation of your program. Program operation begins at the
current instruction address register (IAR) setting. Specify an address with the Address
parameter to set the Instruction Address Register (IAR) to a new address and begin running
there. If this command is used with no parameters after the debugger was entered via a
fatal system error, a system dump will be generated and the machine will halt.

Examples
1. To continue running your program at the IAR, enter:

go

2. To set the IAR to 1000 and begin running there, enter:

g 1000

help Command for the Kernel Debug Program

Purpose
Displays the help screen of the kernel debug program.

Syntax

help

Description
The help command displays a one-line help message for each debug program command.

Example
To display the list of valid kernel debug program commands, enter:

help

15-44 AIX Version 4.1 Writing a Device Driver

loop Command for the Kernel Debug Program

Purpose
Runs the program being tested until the IAR reaches the current value several times.

Syntax

Number
loop

Description
The loop command causes the system to continue running and to stop when the instruction
address register (IAR) returns to the current value the number of times specified by the
Number parameter. All other breakpoints are ignored. The Number parameter specifies the
number of loops that execute before the debug program regains control, and must be a
valid decimal expression. The default value for the Number parameter is 1.

The loop command is similar to setting a breakpoint at the current IAR, but allows you to
stop on a specified instance when the IAR returns to the current point.

Example
To execute until the second time the IAR has the current value, enter:

loop 2

map Command for the Kernel Debug Program

Purpose
Displays the system load list.

Syntax

map Address

SymbolName

Description
The map command displays information from the system load list. The system load list is
the list of symbols exported from the kernel. If the map command is entered with no
parameters, then the entire load list is displayed one page at a time. If an address is given,
the name and value of the last symbol located before the given address is displayed. If a
symbol name is given, then the load list is searched for the symbol and any matching
entries are displayed. There can be more than one entry for a given symbol table.

Since the load list contains only symbols exported from the kernel, a given symbol name
can be in the kernel but not reported by the map command.

The symbol value for a data structure is the address of that data structure. The symbol
value for a function is not the address of the function, but the address of the function
descriptor. The first word of the function descriptor is the address of the function. For
example, if entering map execexit displays 0x1000, then entering display 1000
displays the address of the execexit function in the first word of the displayed memory.

Examples
1. To display the entire load list, enter:

map

2. To display the symbol with a value closest to 0xe3000000, enter:

m e3000000

15-45Debugging Tools

3. To display the value of the function execexit, enter:

map execexit

mblk Command for the Kernel Debug Program

Purpose
Displays the contents of the STREAMS message blocks defined by the msgb structure in
the /usr/include/sys/stream.h header file.

Syntax

Address
mblk

Description
The mblk command displays the contents of the msgb structure that is defined in the
/usr/include/sys/stream.h headerfile. If you do not specify an Address, the command
displays the contents of the message blocks of type M_MBLK and M_MBDATA, as well as
displays the address of mh_freelater.

The mh_freelater parameter is a pointer to the message blocks that are just now freed and
are scheduled to be given back to the system, but are not yet given back.

All output values are printed in hexadecimal format.

This command can also be invoked via the alias, mb.

Examples
1. To display the contents of the message blocks of type M_BLK and M_MBDATA, and the

address of mh_freelater, enter:

mblk

2. To display the contents of the message block structure at address 0005ec80, enter:

mblk 0005ec80

15-46 AIX Version 4.1 Writing a Device Driver

next Command for the Kernel Debug Program

Purpose
Increases the instruction address register (IAR).

Syntax

Number
next

Description
The next command increases the instruction address register (IAR) by the number specified
by the Number parameter and displays the new current instruction. The default value for the
Number parameter is 4 bytes.

Examples
1. To increment the IAR by 4 bytes, enter:

next

2. To increment the IAR by 20 bytes, enter:

n 20

origin Command for the Kernel Debug Program

Purpose
Sets the address origin of the instruction address register (IAR).

Syntax

origin Number

Description
The origin command sets the address origin. The origin address specified by the Number
parameter is added to any hexadecimal expression beginning with a + (plus sign). This
command is especially useful when setting breakpoints. Use the screen command to
display the value of the origin and the origin displacement of the IAR.

The origin command also sets the reserved org variable. For example, entering origin
652C0 does the same as entering set org 652C0.

Examples
1. To set the origin to 178D, enter:

origin 178D

2. To set the origin to 59cc, enter:

o 59cc

15-47Debugging Tools

ppd Command for the Kernel Debug Program

Purpose
Displays per-processor data.

Syntax

ProcessorNumber

ppd

Description
The ppd command displays the per-processor data structure of the specified processor. If
no argument is given, data for the current processor, as selected by the cpu command, is
displayed.

Note: The ppd command is available only on multiprocessor systems.

Examples
1. To display per-processor data for the current processor, enter:

ppd

2. To display per-processor data for processor 2, enter:

ppd 2

proc Command for the Kernel Debug Program

Purpose
Displays the formatted process table.

Syntax

ProcessID
proc

Description
The proc command displays the process table in a format similar to the output of the ps
command, with an * (asterisk) placed next to the currently running process on the processor
where the debugger is active. If the ProcessID parameter is specified, the proc command
displays information pertaining to this process only, and gives more detailed information.

Examples
1. To display the process table, enter:

p

2. To display the process table entry for the process with process ID 1, enter:

proc 1

15-48 AIX Version 4.1 Writing a Device Driver

queue Command for the Kernel Debug Program

Purpose
Displays the contents of the STREAMS queues.

Syntax

queue Address

Description
The queue command displays the contents of the STREAMS queue at the specified
Address. Refer to the /usr/include/sys/stream.h header file for the queue structure
definition.

In the output, an X indicates that the value is printed in hexadecimal format.

This command can also be invoked via the alias, que.

Example
To display the contents of the STREAMS queue stored at address 59c1874, where
59c1874 is a valid queue address, enter:

queue 59c1874

quit Command for the Kernel Debug Program

Purpose
Ends the debug program session.

Syntax

quit

Description
The quit command terminates the debug session. Use this command when you have
completed debugging and want to clear all breakpoints. The quit command performs the
following tasks:

• Clears all breakpoints.

• Issues the go command, which generates a system dump if the debugger was entered
via a fatal system error.

To use the debug program again after issuing the quit command, use one of the keyboard
sequences described in “Entering the Kernel Debug Program” on page 15-26.

15-49Debugging Tools

reset Command for the Kernel Debug Program

Purpose
Clears a user-defined variable.

Syntax

reset VariableName

Description
The reset command clears those variables specified with the VariableName parameter.
Resetting a variable effectively deletes it, and allows the variable slot to be used again.
Currently, 16 user-defined variables are allowed, and when they are all in use, you cannot
set any more. Use the vars command to display all variables currently set.

Variables that are not user-defined, such as registers, cannot be reset. If you specify a
variable that is not user-defined, or a variable that is not defined, an error message is
displayed.

Example
To delete the user-defined variable foo, enter:

reset foo

screen Command for the Kernel Debug Program

Purpose
Displays a screen of data.

Syntax

+
–
track
on
off
on half

Address

screen one of

VariableName

Description
The screen command primarily displays memory and registers, but it is also used to control
the format of subsequent screen commands. By default, memory is displayed starting at the
instruction address register (IAR), or at the variable currently tracked. Variables can be
tracked by specifying them with the track VariableName flag.

The track option changes the address that the screen displays as the expression that is
being tracked changes. This option is useful in a case where, at a breakpoint, the memory
to be displayed is addressed by a register.

You can also use parameters to modify the format of the screen so that only half of the
physical screen is used, or even turn off the screen display entirely. The format modification
parameters are useful if important information can be scrolled off the screen when the
debugger is entered. Restore the default (full) screen by entering:

screen on

15-50 AIX Version 4.1 Writing a Device Driver

Flags
+ Displays the next 0x70 bytes of data.

– Displays the previous 0x70 bytes of data.

track VariableName Instructs the screen display to track to the specified variable.

on Turns the display on.

off Turns the display off so that the screen display does not appear
when the debug program is started. This flag is useful if a slow,
asynchronous terminal is used.

on half Displays only the top half of the display screen. The memory
display is omitted.

Examples
1. To display the next 112 bytes of data, enter:

screen +

2. To display the previous 112 bytes of data, enter:

screen –

3. To display memory starting at 20000FF7, enter:

s 20000ff7

4. To display memory at the address contained in location 200, enter:

s 200>

5. To turn on the display, enter:

screen on

6. To turn off the display, enter:

screen off

7. To set the display format to use about half of the screen, enter:

screen on half

8. To track memory starting at the value in general purpose register 3, enter:

sc track r3

15-51Debugging Tools

set Command for the Kernel Debug Program

Purpose
Create and change values of debugger variables.

Syntax

set

Register

Value
Variable

Description
This command sets debugger variables. Use the set command to create new variables or
modify the value of old variables. Certain debugger variables are symbolic names for
machine registers, which you can modify. See “Reserved Variables” on page 15-27 for a list
of these variables.

Examples
1. To assign value 100 to variable start.

set start 100

2. To set general purpose register 12 to 0.

set r12 0

3. To set segment register 3 to 10000.

se s3 10000

4. To assign 45F0 to the Iar.

set iar 45F0

5. To assign string ”AIX” to variable name.

se name ”AIX”

sregs Command for the Kernel Debug Program

Purpose
Displays segment registers.

Syntax

sregs

Description
The sregs command displays the contents of the segment registers and other control
registers. The display created is similar to that created by the screen command.

15-52 AIX Version 4.1 Writing a Device Driver

st Command for the Kernel Debug Program

Purpose
Stores a fullword into memory.

Syntax

Addressst Data

Description
The st command stores a fullword of data into memory by using the processor fullword
store instruction. If the address specified by the Address parameter is not word-aligned, it is
rounded down to a fullword. The st command is the correct way to place a fullword of data
into input and output memory.

This is similar to the alter command, but the word size is implicit in the command. stc and
sth are used to perform similar functions for bytes and halfwords.

Example
To store the 32-bit value 5 at address 1000, enter:

st 1000 5

stack Command for the Kernel Debug Program

Purpose
Displays a formatted stack traceback.

Syntax

stack
ThreadID

Description
The stack command displays a formatted kernel-stack traceback for the specified kernel
thread. If no thread is specified, the currently running thread is used. Stack frames show
return addresses and can be used to trace the calling sequence of the program. Be aware
that the first few parameters are passed in registers to the called functions, and are not
usually available on the stack. Generally only the stack chain (stacks back-chain pointer)
and return address (address where the current function returns upon completion) are valid.
To interpret the stack thoroughly, it is necessary to use an assembler language listing for a
procedure to determine what has been stored on the stack. Stack frames for the specified
thread are not always accessible.

Examples
1. To format any existing stack frames, enter:

stack

2. To format stack frames for the thread with thread ID 251 enter:

sta 251

15-53Debugging Tools

stc Command for the Kernel Debug Program

Purpose
Stores one byte into memory.

Syntax

Addressstc Data

Description
The stc command stores a byte of data specified by the Data parameter into memory at the
address specified by the Address parameter by using the processor store-character
instruction. The stc command is the correct way to place a byte of data into input and output
memory.

This is similar to the st and sth commands, which are used for fullwords and halfwords.

Example
To store the 8-bit value FF at address 1000, enter:

stc 1000 ff

step Command for the Kernel Debug Program

Purpose
Runs instructions single-step.

Syntax

step

s

Number

Description
The step command causes the processor to enter a single instruction and return control to
the debug program. If a branch is the next instruction to be run, the s flag causes the
processor to step over a subroutine call. An integer Number parameter is used as the
number of instructions to run before returning control to the debug program.

Note: On multiprocessor systems, other processors are not released during step, contrary
to most commands.

Flag
s Executes a subroutine as if it were one instruction.

Examples
1. To single step the processor, enter:

step

2. To single step and skip over a subroutine call, enter:

step s

3. To step for 20 instructions, enter:

step 20

15-54 AIX Version 4.1 Writing a Device Driver

sth Command for the Kernel Debug Program

Purpose
Stores a halfword into memory.

Syntax

Addresssth Data

Description
The sth command stores a halfword of data specified by the Data parameter into memory
by using the processor store halfword instruction. If the address specified by the Address
parameter is not halfword-aligned, it is rounded down to a halfword boundary. The sth
command is the correct way to place a halfword into input and output memory space.

This is similar to the st and stc commands, which are used for fullwords and bytes.

Example
To store the 16-bit value 14 at address 1000, enter:

sth 1000 0014

stream Command for the Kernel Debug Program

Purpose
Displays the contents of the stream head table.

Syntax

stream
Address

Description
The stream command displays the contents of the stream head table. If no address is
specified, the command displays the first stream found in the STREAMS hash table. If the
address is specified, the command displays the contents of the stream head stored at that
address.

The information printed is contained in an internal structure. The following members of this
internal structure are described here:

sth address of stream head
wq address of streams write queue
rq address of streams read queue
dev associated device number of the stream
read_mode read mode
write_mode write mode
close_wait_timeout

close wait timeout in microseconds
read_error read error on the stream
write_error write error on the stream
flags stream head flag values
push_cnt number of modules pushed on the stream
wroff write offset to prepend M_DATA
ioc_id id of outstanding M_IOCTL request
ioc_mp outstanding ioctl message
next next stream head on the link
pollq list of active polls
sigsq list of active M_SETSIGs
shttyp pointer to tty information

15-55Debugging Tools

The read_mode and write_mode values are defined in the /usr/include/sys/stropts.h
header file.

The read_error and write_error variables are integers defined in the
/usr/include/sys/errno.h header file.

The flags structure member, if set, is based on combinations of the following values:

#define Value Description
F_STH_READ_ERROR 0x0001 M_ERROR with read error received, fail all read calls.
F_STH_WRITE_ERROR 0x0002 M_ERROR with write error received, fail all writes.
F_STH_HANGUP 0x0004 M_HANGUP received, no more data.
F_STH_NDELON 0x0008 Do TTY semantics for ONDELAY handling.
F_STH_ISATTY 0x0010 This stream acts a terminal.
F_STH_MREADON 0x0020 Generate M_READ messages.
F_STH_TOSTOP 0x0040 Disallow background writes (for job control).
F_STH_PIPE 0x0080 Stream is one end of a pipe or FIFO.
F_STH_WPIPE 0x0100 Stream is the “write” side of a pipe.
F_STH_FIFO 0x0200 Stream is a FIFO.
F_STH_LINKED 0x0400 Stream has one or more lower streams linked.
F_STH_CTTY 0x0800 Stream controlling tty.
F_STH_CLOSED 0x4000 Stream has been closed, and should be freed.
F_STH_CLOSING 0x8000 Actively on the way down.

In the output, values marked with X are printed in hexadecimal format.

This command can also be invoked via the alias, str.

Examples
1. To display the first stream head found in the stream head table, enter:

stream

2. To display the contents of the particular stream head located at address 59b2e00
(where 59b2e00 is a valid stream head address), enter:

stream 59b2e00

15-56 AIX Version 4.1 Writing a Device Driver

swap Command for the Kernel Debug Program

Purpose
Switches to the specified RS-232 port.

Syntax

Portswap

Description
The swap command allows control of the debug program to be transferred to another
terminal. The Port parameter specifies which asynchronous tty port to transfer control. The
swap command does not support returning to a port that was previously used.

Specify 0 for port 0 (s1) or 1 for port 1 (s2).

Ports must be configured the same as the port on which the debug program is currently
running: 9600 baud, 8 data bits, no parity. The device attached to the port must respond
with a carrier detect within 1/10 seconds or the command fails and control will not be
transferred.

Example
To switch display to RS-232 port 1, enter:

swap 1

thread Command for the Kernel Debug Program

Purpose
Displays thread table entries.

Syntax

ThreadID

thread
ProcessID

Description
The thread command displays the contents of the kernel thread table. If the ProcessID
parameter is given, information about all kernel threads belonging to that process is
displayed. If the ThreadID parameter is given, detailed information about the specified
kernel thread is displayed. If no parameters are given, information about all kernel threads
in the kernel thread table is displayed. Note that the ProcessID and ThreadID parameters
share a common name space: even numbers are always used for process IDs, whereas
odd numbers are used for threads (the init processes, PID 1, is an exception).

Examples
1. To display information about all threads in the thread table, enter:

thread

15-57Debugging Tools

The output is similar to:

SLT ST TID PID CPUID POLICY PRI CPU EVENT PROCNAME FLAGS

 0 s 3 0 ANY OTHER 10 78 swapper 0x00001400

 1 s 103 1 ANY OTHER 3C 0 init 0x00000400

 2*r 205 204 0 OTHER 7F 78 wait 0x00001000

 3 r 307 306 1 OTHER 7F 78 wait 0x00001000

 4 s 409 408 ANY OTHER 24 0 netm 0x00001000

 5 s 50B 50A ANY OTHER 24 0 gil 0x00001000

 6 s 60D 50A ANY OTHER 24 0 000B2DA8 gil 0x00001000

 7 s 70F 50A ANY OTHER 24 0 000B2DA8 gil 0x00001000

 8 s 811 50A ANY OTHER 24 0 000B2DA8 gil 0x00001000

 9 s 913 50A ANY OTHER 24 1 000B2DA8 gil 0x00001000

 10 s A15 60C ANY OTHER 3C 0 sh 0x00000400

 11 s B17 70E ANY OTHER 3C 0 sh 0x00000400

2. To display information about the threads in process 2106, enter:

th 2106

3. To display information about the thread with thread ID 1497, enter:

th 1497

trace Command for the Kernel Debug Program

Purpose
Displays formatted kernel trace buffers.

Syntax

: SubhookID

–c
–h

HookID
trace

Channel

Description
The trace command displays the last 128 entries of a kernel trace buffer in reverse
chronological order. There are 8 trace buffers, each associated with a trace channel. Each
can trace any combination of trace events. Trace data gives an indication of system activity
at a very low level; interrupts, input/output, and process scheduling are examples of event
types that can be traced.

The trace command displays headers for the trace buffers that contain pointers into the
trace buffers and the state of the trace driver. Following this are the last 128 entries from the
selected trace buffer. Trace entries consist of a major and a minor number for the trace
hook, an ASCII trace ID, an ASCII trace hook type, followed by either a hexadecimal dump
of the trace data or a pointer to the start of a variable-length block of trace data.

The trace command is not meant to replace the trcfmt command, which formats the trace
data in more detail. It is a facility for viewing system trace data in the event of a system
crash before the data has been written to disk.

Flags
–c Channel Specifies the trace channel used.

–h Displays the trace headers.

15-58 AIX Version 4.1 Writing a Device Driver

Examples
1. To display a sequence of trace entries, enter:

trace

The system then returns the following question:

Display channel (0 – 8): 0

2. To display a sequence of trace entries with hookword 105, enter:

trace 105 –c 0

3. To display a sequence of trace entries with hookword 105 and subhook d, enter:

trace 105:d –c 0

4. To display all entries with hookword 105 or 10b, enter:

trace 105 10b

5. To display all entries with hookword 105 and a 300 in the trace data, enter:

trace 105 #300

6. To display the trace headers, enter:

trace –h

trb Command for the Kernel Debug Program

Purpose
Displays the timer request blocks (TRBs).

Syntax

trb

Description
The trb command displays a menu of commands to display timer request block (TRB)
information.

The trb command allows you to traverse the active and free TRB chains; examine TRBs by
process, slot number, or address; and examine the clock interrupt handler information.

15-59Debugging Tools

tty Command for the Kernel Debug Program

Purpose
Displays the tty structure.

Syntax

tty

Minor
Major

Name
l ed

Description
The tty command displays tty data structures. If no parameters are specified, a short listing
of all opened terminals is displayed. Selected terminals can be displayed by specifying the
terminal name in the Name parameter, such as tty1, or a major device number with optional
minor numbers. If the Major parameter is specified, all terminals with the specified major
number are listed. If the Major and Minor parameters are both specified, the terminal with
both the specified major and minor numbers is listed.

Selected type of information can be displayed, according to the specified flags.

Flags
a Displays a short listing of all terminals.

o Displays a short listing of all open terminals.

v Displays a verbose listing.

d Displays the driver information.

l Displays the line discipline information.

e Displays information for every module and driver present in the stream for
the selected lines.

Examples
1. To display listings for each open terminal, enter:

tty

2. To display the driver and line disicipline information for terminal tty1, enter:

tty d l tty1

3. To display the listing for the terminal with a major number 7 and a minor number 1, enter:

tty 7 1

15-60 AIX Version 4.1 Writing a Device Driver

user Command for the Kernel Debug Program

Purpose
Displays the U-area (user area).

Syntax

user
ThreadID

Description
The user command with no parameter specified displays the U-area for the currently
running thread. If the ThreadID parameter is specified, then the U-area for that thread is
displayed in detail.

Examples
1. To display the current U-area, enter:

user

2. To display the U-area for the thread with thread ID 315, enter:

u 315

uthread Command for the Kernel Debug Program

Purpose
Displays the uthread structure.

Syntax

ThreadID
uthread

Description
The uthread command displays uthread structures. If the ThreadID parameter is given, the
uthread structure of the specified kernel thread is displayed. Otherwise, the uthread
structure of the current kernel thread is displayed.

Examples
1. To display the uthread structure of the current kernel thread, enter:

uthread

The output is similar to:

using current thread:

UTHREAD AREA FOR TID 0x00000205

SAVED MACHINE STATE

 curid:0x00000204 m/q:0x00000000 iar:0x000214D4 cr:0x24000000

 msr:0x00009030 lr:0x00021504 ctr:0x0002147C xer:0x20000000

 *prevmst:0x00000000 *stackfix:0x00000000 intpri:0x0000000B

 backtrace:0x00 tid:0x00000000 fpeu:0x00 ecr:0x00000000

 Exception Struct

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 Segment Regs

 0:0x00000000 1:0x007FFFFF 2:0x00000408 3:0x007FFFFF

 4:0x007FFFFF 5:0x007FFFFF 6:0x007FFFFF 7:0x007FFFFF

 8:0x007FFFFF 9:0x007FFFFF 10:0x007FFFFF 11:0x007FFFFF

 12:0x007FFFFF 13:0x007FFFFF 14:0x00000204 15:0x007FFFFF

 General Purpose Regs

15-61Debugging Tools

 0:0x00000000 1:0x2FEAEF38 2:0x00270314 3:0x00000054

 4:0x00000002 5:0x00000000 6:0x000BF9B8 7:0x00000000

 8:0xDEADBEEF 9:0xDEADBEEF 10:0xDEADBEEF 11:0x00000000

 12:0x00009030 13:0xDEADBEEF 14:0xDEADBEEF 15:0xDEADBEEF

 16:0xDEADBEEF 17:0xDEADBEEF 18:0xDEADBEEF 19:0xDEADBEEF

 20:0xDEADBEEF 21:0xDEADBEEF 22:0xDEADBEEF 23:0xDEADBEEF

 24:0xDEADBEEF 25:0xDEADBEEF 26:0xDEADBEEF 27:0xDEADBEEF

 28:0xDEADBEEF 29:0xDEADBEEF 30:0xDEADBEEF 31:0xDEADBEEF

 Press ”ENTER” to continue, or ”x” to exit:>0>

Floating Point Regs

 Fpscr: 0x00000000

 0:0x00000000 0x00000000 1:0x00000000 0x00000000 2:0x00000000 0x00000000

 3:0x00000000 0x00000000 4:0x00000000 0x00000000 5:0x00000000 0x00000000

 6:0x00000000 0x00000000 7:0x00000000 0x00000000 8:0x00000000 0x00000000

 9:0x00000000 0x00000000 10:0x00000000 0x00000000 11:0x00000000 0x00000000

 12:0x00000000 0x00000000 13:0x00000000 0x00000000 14:0x00000000 0x00000000

 15:0x00000000 0x00000000 16:0x00000000 0x00000000 17:0x00000000 0x00000000

 18:0x00000000 0x00000000 19:0x00000000 0x00000000 20:0x00000000 0x00000000

 21:0x00000000 0x00000000 22:0x00000000 0x00000000 23:0x00000000 0x00000000

 24:0x00000000 0x00000000 25:0x00000000 0x00000000 26:0x00000000 0x00000000

 27:0x00000000 0x00000000 28:0x00000000 0x00000000 29:0x00000000 0x00000000

 30:0x00000000 0x00000000 31:0x00000000 0x00000000

Kernel stack address: 0x2FEAEFFC

Press ”ENTER” to continue, or ”x” to exit:>0>

SYSTEM CALL STATE

 user stack:0x00000000 user msr:0x00000000

 errno address:0xC0C0FADE error code:0x00 *kjmpbuf:0x00000000

 ut_flags:

PER–THREAD TIMER MANAGEMENT

 Real/Alarm Timer (ut_timer.t_trb[TIMERID_ALRM]) = 0x0

 Virtual Timer (ut_timer.t_trb[TIMERID_VIRTUAL]) = 0x0

 Prof Timer (ut_timer.t_trb[TIMERID_PROF]) = 0x0

 Posix Timer (ut_timer.t_trb[POSIX4]) = 0x0

SIGNAL MANAGEMENT

 *sigsp:0x0 oldmask:hi 0x0,lo 0x0 code:0x0

Press ”ENTER” to continue, or ”x” to exit:>0>

Miscellaneous fields:

 fstid:0x00000000 ioctlrv:0x00000000 selchn:0x00000000

Uthread area printout terminated.

2. To display the uthread structure of the kernel thread with thread ID 1497, enter:

ut 1497

15-62 AIX Version 4.1 Writing a Device Driver

vars Command for the Kernel Debug Program

Purpose
Displays a list of user-defined variables.

Syntax

vars

Description
The vars command displays the user-defined variables and their values.

The command displays the variable name and value, and an indication of what is the base
of the value. Since the value 10 can be either decimal or hexadecimal it is displayed as
HEX/DEC. The command displays string variables with no quotes around the string value.

The values of the reserved variables fx and org are also displayed.

vmm Command for the Kernel Debug Program

Purpose
Displays the virtual memory information menu.

Syntax

vmm

Description
The vmm command displays a menu of commands for displaying the virtual memory data
structures. These commands examine segment register values for kernel segments such as
the ram disk and the page space disk maps. Addresses and sizes of VMM data structures
are also available, as are VMM statistics such as the number of page faults and the number
of pages paged in or out.

xlate Command for the Kernel Debug Program

Purpose
Translates a virtual address to a real address.

Syntax

VirtualAddressxlate

Description
The xlate command displays the real address corresponding to the specified virtual
address.

Example
To display the real address corresponding to the virtual address 10054000, enter:

xlate 10054000

10054000 –virtual– =EF004 –real–

EF004 is the corresponding real address.

15-63Debugging Tools

Maps and Listings as Tools for the Kernel Debug Program
The assembler listing and the map files are essential tools for debugging using the kernel
debugger. In order to create the assembler list file during compilation, use the –qlist option
while compiling. Also use the –qsource option to get the C source listing in the same file:

cc –c –DEBUG –D_KERNEL –DIBMR2 demodd.c –qsource –qlist

In order to obtain the map file, use the –bmap:FileName option on the link editor, enter:

ld –o demodd demodd.o –edemoconfig –bimport:/lib/kernex.exp \

–lsys –lcsys –bmap:demodd.map –bE:demodd.exp

You can also create a map file with a slightly different format by using the nm command. For
example, use the following command to get a map listing for the kernel (/unix):

nm –xv /unix > unix.m

Compiler Listing
The assembler and source listing is used to correlate any C source line with the
corresponding assembler lines. The following is a portion of the C source code for a sample
device driver. The left column is the line number in the source code:

.

.

185

186 if (result = devswadd(devno, &demo_dsw)){

187 printf(”democonfig : failed to add entry points\n”);

188 (void)devswdel(devno);

189 break;

190 }

191 dp–>inited = 1;

192 demos_inited++;

193 printf(”democonfig : CFG_INIT success\n”);

194 break;

195

.

.

The following is a portion of the assembler listing for the corresponding C code shown
previously. The left column is the C source line for the corresponding assembler statement.
Each C source line can have multiple assembler source lines. The second column is the
offset of the assembler instruction with respect to the kernel extension entry point.

15-64 AIX Version 4.1 Writing a Device Driver

.

.

186| 000218 l 80610098 2 L4Z gr3=devno(gr1,152)

186| 00021C cal 389F0000 1 LR gr4=gr31

186| 000220 bl 4BFFFDE1 0 CALL gr3=devswadd,2,

gr3,(struct_4198576)”,gr4,devswadd”,gr1,cr[01567],gr0”,

gr4”–gr12”,fp0”–fp13”

186| 000224 cror 4DEF7B82 1

186| 000228 st 9061005C 2 ST4A #2357(gr1,92)=gr3

186| 00022C st 9061003C 1 ST4A result(gr1,60)=gr3

186| 000230 l 8061005C 1 L4A gr3=#2357(gr1,92)

186| 000234 cmpi 2C830000 2 C4 cr1=gr3,0

186| 000238 bc 41860020 3 BT CL.16,cr1,0x4/eq

187| 00023C ai 307F01A4 1 AI gr3=gr31,420

187| 000240 bl 4BFFFDC1 2 CALL gr3=printf,1,’democonfig :

failed to add entry points”,gr3,printf”,gr1,cr[01567],gr0”,

gr4”–gr12”,fp0”–fp13”

187| 000244 cror 4DEF7B82 1

188| 000248 l 80610098 2 L4Z gr3=devno(gr1,152)

188| 00024C bl 4BFFFDB5 0 CALL gr3=devswdel,1,gr3,

devswdel”,gr1,cr[01567],gr0”,gr4”–gr12”,fp0”–fp13”

188| 000250 cror 4DEF7B82 1

189| 000254 b 48000104 0 B CL.6

186| CL.16:

191| 000258 l 80810040 2 L4Z gr4=dp(gr1,64)

191| 00025C cal 38600001 1 LI gr3=1

191| 000260 stb 98640004 1 ST1Z (char)(gr4,4)=gr3

192| 000264 l 8082000C 1 L4A gr4=.demos_inited(gr2,0)

192| 000268 l 80640000 2 L4A gr3=demos_inited(gr4,0)

192| 00026C ai 30630001 2 AI gr3=gr3,1

192| 000270 st 90640000 1 ST4A demos_inited(gr4,0)=gr3

193| 000274 ai 307F01D0 1 AI gr3=gr31,464

193| 000278 bl 4BFFFD89 0 CALL gr3=printf,1,’democonfig :

CFG_INIT success”,gr3,printf”,gr1,cr[01567],gr0”,gr4”–gr12”,

fp0”–fp13”

193| 00027C cror 4DEF7B82 1

194| 000280 b 480000D8 0 B CL.6

.

.

Now with both the assembler listing and the C source listing, you can determine the
assembler instruction for a C statement. As an example, consider the C source line at line
191 in the sample code:

191 dp–>inited = 1;

The corresponding assembler instructions are:

191| 000258 l 80810040 2 L4Z gr4=dp(gr1,64)

191| 00025C cal 38600001 1 LI gr3=1

191| 000260 stb 98640004 1 ST1Z (char)(gr4,4)=gr3

The offsets of these instructions within the sample device driver (demodd) are 000258,
00025C, and 000260.

15-65Debugging Tools

Map File
The binder map file is a symbol map in address order format. Each symbol listed in the map
file has a storage class (CL) and a type (TY) associated with it.

Storage classes correspond to the XMC_XX variables defined in the syms.h file. Each
storage class belongs to one of the following section types:

.text Contains read-only data (instructions). Addresses listed in this section use
the beginning of the .text section as origin. The .text section can contain
one of the following storage class (CL) values:

DB Debug Table. Identifies a class of sections that has the
same characteristics as read only data.

GL Glue Code. Identifies a section that has the same
characteristics as a program code. This type of section has
code to interface with a routine in another module. Part of
the interface code requirement is to maintain TOC
addressability across the call.

PR Program Code. Identifies the sections that provide
executable instructions for the module.

R0 Read Only Data. Identifies the sections that contain
constants that are not modified during execution.

TB Reserved.

TI Reserved.

XO Extended Op. Identifies a section of code that is to be
treated as a pseudo-machine instruction.

.data Contains read-write initialized data. Addresses listed in this section use the
beginning of the .data section as origin. The .data section can contain one
of the following storage class (CL) values:

DS Descriptor. Identifies a function descriptor. This information
is used to describe function pointers in languages such as
C and Fortran.

RW Read Write Data. Identifies a section that contains data that
is known to require change during execution.

SV SVC. Identifies a section of code that is to be treated as a
supervisory call.

T0 TOC Anchor. Used only by the predefined TOC symbol.
Identifies the special symbol TOC. Used only by the TOC
header.

TC TOC Entry. Identifies address data that will reside in the
TOC.

TD TOC Data Entry. Identifies data that will reside in the TOC.

UA Unclassified. Identifies data that contains data of an
unknown storage class.

.bss Contains read-write uninitialized data. Addresses listed in this section use
the beginning of the .data section as origin. The .bss section contain one of
the following storage class (CL) values:

BS BSS class. Identifies a section that contains uninitialized
data.

UC Unnamed Fortran Common. Identifies a section that
contains read write data.

15-66 AIX Version 4.1 Writing a Device Driver

Types correspond to the XTY_XX variables defined in the syms.h file. The type (TY) can be
one of the following values:

ER External Reference

LD Label Definition

SD Section Definition

CM BSS Common Definition

15-67Debugging Tools

The following is a map file for a sample device driver:

1 ADDRESS MAP FOR demodd

2 SOURCE–FILE(OBJECT) or

 *IE ADDRESS LENGTH AL CL TY Sym# NAME IMPORT–FILE{SHARED–OBJECT}

3 ––– –––––––– –––––– –– –– –– –––– –––––––––– ––––––––––––––––––––––––––

4 I ER S1 pinned_heap /lib/kernex.exp{/unix}

5 I ER S2 devswadd /lib/kernex.exp{/unix}

6 I ER S3 devswdel /lib/kernex.exp{/unix}

7 I ER S4 nodev /lib/kernex.exp{/unix}

8 I ER S5 printf /lib/kernex.exp{/unix}

9 I ER S6 uiomove /lib/kernex.exp{/unix}

10 I ER S7 xmalloc /lib/kernex.exp{/unix}

11 I ER S8 xmfree /lib/kernex.exp{/unix}

12 00000000 0008B8 2 PR SD S9 <>

/tmp/cliff/demodd/demodd.c(demodd.o)

13 00000000 PR LD S10 .democonfig

14 0000039C PR LD S11 .demoopen

15 000004B4 PR LD S12 .democlose

16 000005D4 PR LD S13 .demoread

17 00000704 PR LD S14 .demowrite

18 00000830 PR LD S15 .get_dp

19 000008B8 000024 2 GL SD S16 <.printf> glink.s(/usr/lib/glink.o)

20 000008B8 GL LD S17 .printf

21 000008DC 000024 2 GL SD S18 <.xmalloc> glink.s(/usr/lib/glink.o)

22 000008DC GL LD S19 .xmalloc

23 00000900 000090 2 PR SD S20 .bzero

noname(/usr/lib/libcsys.a[bzero.o])

24 00000990 000024 2 GL SD S21 <.uiomove> glink.s(/usr/lib/glink.o)

25 00000990 GL LD S22 .uiomove

26 000009B4 000024 2 GL SD S23 <.devswadd> glink.s(/usr/lib/glink.o)

27 000009B4 GL LD S24 .devswadd

28 000009D8 000024 2 GL SD S25 <.devswdel> glink.s(/usr/lib/glink.o)

29 000009D8 GL LD S26 .devswdel

30 000009FC 000024 2 GL SD S27 <.xmfree> glink.s(/usr/lib/glink.o)

31 000009FC GL LD S28 .xmfree

32 00000000 000444 4 RW SD S29 <_/tmp/cliff/demodd/demoddc>

/tmp/cliff/demodd/demodd.c(demodd.o)

33 00000450 000004 4 RW SD S30 demo_dev

/tmp/cliff/demodd/demodd.c(demodd.o)

34 00000460 000004 4 RW SD S31 demos_inited

/tmp/cliff/demodd/demodd.c(demodd.o)

35 00000470 000080 4 RW SD S32 data

/tmp/cliff/demodd/demodd.c(demodd.o)

36 * E 000004F0 00000C 2 DS SD S33 democonfig

/tmp/cliff/demodd/demodd.c(demodd.o)

37 E 000004FC 00000C 2 DS SD S34 demoopen

/tmp/cliff/demodd/demodd.c(demodd.o)

38 E 00000508 00000C 2 DS SD S35 democlose

/tmp/cliff/demodd/demodd.c(demodd.o)

39 E 00000514 00000C 2 DS SD S36 demoread

/tmp/cliff/demodd/demodd.c(demodd.o)

40 E 00000520 00000C 2 DS SD S37 demowrite

/tmp/cliff/demodd/demodd.c(demodd.o)

41 0000052C 000000 2 T0 SD S38 <TOC>

42 0000052C 000004 2 TC SD S39 <_/tmp/cliff/demodd/demoddc>

43 00000530 000004 2 TC SD S40 <printf>

44 00000534 000004 2 TC SD S41 <demo_dev>

45 00000538 000004 2 TC SD S42 <demos_inited>

46 0000053C 000004 2 TC SD S43 <data>

47 00000540 000004 2 TC SD S44 <pinned_heap>

48 00000544 000004 2 TC SD S45 <xmalloc>

49 00000548 000004 2 TC SD S46 <uiomove>

50 0000054C 000004 2 TC SD S47 <devswadd>

51 00000550 000004 2 TC SD S48 <devswdel>

52 00000554 000004 2 TC SD S49 <xmfree>

15-68 AIX Version 4.1 Writing a Device Driver

In the sample map file listed previously, the .data section starts from the statement at
line 32:

32 00000000 000444 4 RW SD S29 <_/tmp/cliff/demodd/demoddc>

/tmp/cliff/demodd/demodd.c(demodd.o)

The TOC (Table of Contents) starts from the statement at line 41:

41 0000052C 000000 2 T0 SD S38 <TOC>

Using the Kernel Debug Program
This section contains information on setting breakpoints, viewing and modifying global data,
displaying registers, and using the stack trace.

Setting Breakpoints
Setting a breakpoint is essential for debugging kernel or kernel extensions. To set a
breakpoint, use the following sequence of steps:

1. Locate the assembler instruction corresponding to the C statement.

2. Get the offset of the assembler instruction from the listing.

3. Locate the address where the kernel extension is loaded.

4. Add the address of the assembler instruction to the address where kernel extension is
loaded.

5. Set the breakpoint with the break command.

The process of locating the assembler instruction and getting its offset is explained in the
previous section. The next step is to get the address where the kernel extension is loaded.

Determine the Location of your Kernel Extension
To determine the address where a kernel extension has been loaded, use the following
procedure. First, find the load point (the entry point) of the executable kernel extension. This
is a label supplied with the –e option for the ld (links objects) command used while
generating the kernel extension. In our example this is the democonfig routine.

Then use one of the following six methods to locate the address of this load point. This
address is the location where the kernel extension is loaded.

Method 1

If the kernel extension is a device driver, use the drivers command to locate the address of
the load point routine. The drivers command lists all the function descriptors and the
function addresses for the device driver (that are in the dev switch table). Usually the config
routine will be the load point routine. Hence in our example the function address for the
config (democonfig) routine is the address where the kernel extension is loaded.

> drivers 255

MAJ#255 Open Close Read Write

func desc 0x01B131B0 0x01B131BC 0x01B131C8 0x01B131D4

func addr 0x01B12578 0x01B126A0 0x01B127D4 0x01B12910

Ioctl Strategy Tty Select

func desc 0x00019F10 0x00019F10 0x00000000 0x00019F10

func addr 0x00019A20 0x00019A20 0x00019A20

Config Print Dump Mpx

func desc 0x01B131A4 0x00019F10 0x00019F10 0x00019F10

func addr 0x01B121EC 0x00019A20 0x00019A20 0x00019A20

Revoke Dsdptr Selptr Opts

func desc 0x00019F10 0x00000000 0x00000000 0x00000002

func addr 0x00019A20

15-69Debugging Tools

Method 2

Another method to locate the address is to use the value of the kmid pointer returned by the
sysconfig(SYS_KLOAD) subroutine when loading the kernel extension. The kmid pointer
points to the address of the load point routine. Hence to get the address of the load point,
print the kmid value during the sysconfig call from the configuration method. Then go into
the low level debugger and display the value pointed to by kmid. For clarity, set mnemonics
for kmid.

> set kmid 1b131a4

> vars

Listing of the User–defined variables:

 kmid HEX=01B131A4

 fx HEX/DEC=01B1256E

 org

There are 15 free variable slots.

> d kmid

01B131A4 01B121EC 01B131E0 00000000 01B12578

|..!...1.......%x|

> d kmid>

01B121EC 7C0802A6 BFC1FFF8 90010008 9421FF80

||............!..|

Method 3

If kmid is also not known, use the find command to locate the load point routine:

> find democonfig 1b00000

01B1256E 66616B65 636F6E66 69677C08 02A693E1

|democonfig|.....|

The find command will locate the specified string. It initiates a search from the starting
address specified in the command. The string that is located is at the end of the
democonfig routine. Now, backup to locate the beginning of the routine.

Usually all procedures have the instruction 7C0802A6 within the first three or four
instructions of the procedure (within the first 12 to 16 bytes). See the assembler listing for
the actual position of this instruction within the procedure. Use the screen command with
the – flag to keep going back to locate the instruction. You can help speed up your search
by using the ASCII section of the screen output to look for occurrences of the pipe symbol
(|), which corresponds to the hexadecimal value 7C, the first byte of the instruction. Once
this instruction is found, you can figure out where the start of the procedure is using the
assembler listing as a guide.

> screen fx

GPR0 000078E4 2FF7FF70 000C5E78 00000000 2FF7FFF8 00000000 00007910 DEADBEEF

GPR8 DEADBEEF DEADBEEF DEADBEEF 7C0802A6 DEADBEEF DEADBEEF DEADBEEF DEADBEEF

GPR16 DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF

GPR24 DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF 00007910

MSR 000090B0 CR 00000000 LR 0002506C CTR 000078E4

MQ 00000000 XER 00000000 SRR0 000078E4 SRR1 000090B0 DSISR 40000000

DAR 30000000 IAR 000078E4 (ORG+000078E4) ORG=00000000 Mode: VIRTUAL

000078E0 00000000 48000000 4E800020 00000000 |....H...N..|

 | b 0x78E4 (000078E4)

000078F0 000C0000 00000000 00000000 00000000 |................|

 |

01B12560 80020301 00000000 0000036C 000A6661 |...........l..fa|

01B12570 6B65636F 6E666967 7C0802A6 93E1FFFC |keconfig|.......|

01B12580 90010008 9421FFA0 83E20000 90610078 |.....!.......a.x|

01B12590 9081007C 90A10080 90C10084 307F0294 |...|........0...|

01B125A0 48000535 80410014 80610078 5463043E |H..5.A...a.xTc.>|

01B125B0 90610038 80610078 48000491 9061003C |.a.8.a.xH....a.<|

01B125C0 28830000 41860020 8061003C 88630004 |(...A.. .a.<.c..|

15-70 AIX Version 4.1 Writing a Device Driver

> screen –

.

.

>

>

GPR0 000078E4 2FF7FF70 000C5E78 00000000 2FF7FFF8 00000000 00007910 DEADBEEF

GPR8 DEADBEEF DEADBEEF DEADBEEF 7C0802A6 DEADBEEF DEADBEEF DEADBEEF DEADBEEF

GPR16 DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF

GPR24 DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF DEADBEEF 00007910

MSR 000090B0 CR 00000000 LR 0002506C CTR 000078E4 MQ 00000000

XER 00000000 SRR0 000078E4 SRR1 000090B0 DSISR40000000 DAR 30000000

IAR 000078E4 (ORG+000078E4) ORG=00000000 Mode: VIRTUAL

000078E0 00000000 48000000 4E800020 00000000 |....H...N..|

 | b 0x78E4 (000078E4)

000078F0 000C0000 00000000 00000000 00000000 |................|

|

01B121E0 00000000 00000000 00000000 7C0802A6 |............|...|

01B121F0 BFC1FFF8 90010008 9421FF80 83E20000 |.........!......|

01B12200 90610098 9081009C 90A100A0 307F0040 |.a..........0..@|

01B12210 80810098 480008C1 80410014 307F0058 |....H....A..0..X|

01B12220 83C20008 63C40000 80A2000C 80C20010 |....c...........|

01B12230 480008A5 80410014 63C30000 80810098 |H....A..c.......|

01B12240 5484043E 90810038 38800000 9081003C |T..>...88......<|

The start of the democonfig routine is at 0x01B121EC.

Method 4

If the load point routine is an exported routine, use the map command to locate the
appropriate routine:

>map <routine name>

Method 5

You can also use the crash command to locate the load point. After running the crash
command, run the le subcommand to list the load point for all the kernel extensions. The
knlist subcommand will list the addresses of exported symbols:

$ crash

>le

>quit

The le subcommand shows the module start address. The first procedure in the kernel
extension would follow the module header from the module start address. Hence in the case
of the example demodd kernel extension, le showed the module start address to be
0x01B12000 and the democonfig procedure starts at 0x01B121EC.

You can locate the start of the democonfig procedure by searching for the first instruction of
the democonfig procedure which would be usually 0x7C0802A6. Use the assembler listing
to determine the first instruction.

First, display memory at 0x01b12000 and then use the screen subcommand to search
ahead.

>screen 01b12000

>screen +

.

.

Method 6

Use the find command to search for a pattern:

> find democonfig 1b00000

01B1256E 66616B65 636F6E66 69677C08 02A693E1

|democonfig|.....|

We know that the module starts before 1B1256E. We also know that the “magic” number is
01DF. The loader identifies a file as a load module by looking for 01DF as the first two bytes
in the file. So, the greatest address which is less than 1B1256E that contains 01DF, will be
the start of the module, provided that it is on a page boundary. This means it has a mask of
FFFFF000, a 4096 boundary or 0x1000:

15-71Debugging Tools

> find 01df 01900000 * 2

Search starting at 1900000 through the kernel storage (the *) for 01DF on a 2-byte
boundary.

The greatest address, on a page boundary, that is less than 1B1256E will be the module
start. This will be offset 00000000 in the map file.

Change the Origin
Set the origin to the address of the load point. By default this is zero. By changing the origin
to the address of the load point, you can directly correlate the address in the assembler
listing with the address for the Instruction Address Register (IAR) and break points.

>set fkcfg 1B121EC set a variable called fkcfg

>origin fkcfg

Set the Break Point
Now set the break point with the break command. Assume that we want to set the
breakpoint at the assembler instruction at offset 218 (using the assembler listing):

>break +218 If origin has been set to load point

OR

>break 1B121EC+218

Viewing and Modifying Global Data
You can access the global data with two different methods. To understand how to locate the
address of a global variable, we use the example of our demodd device driver. Here we try
to view and modify the value of the data[] character array in the sample demodd device
driver.

Use the first method only when you break in a procedure for the kernel extension to be
debugged. You can use the second method at any time.

Method 1
1. After getting into the low level debugger, set a break point at the demoread procedure

call. You can use any routine in demodd for this purpose.

2. Call the demoread routine. When the system breaks in demoread and invokes the
debugger, the GPR2 (general purpose register 2) points to the TOC address. Now use
the offset of the address of any global variable (from the start of TOC) to determine its
address. The TOC is listed in the map file.

The map file on page 15-67 shows that the address of the data[] array is at 0x53C while
the TOC is at 0x52C. The offset of the address of the data[] array with respect to the
start of TOC is 0x53C – 0x52C = 0x10. Hence the address of the data[] variable is at
(r2+10). And the actual data[] variable is located at the address value in (r2 + 10):

> d r2

01B131E0 01B12CCC 0004E7D0 01B13114 01B1311C |..,.......1...1.|

> d r2+10>

01B13124 61626364 65666768 696A6B6C 6D6E6F70 |abcdefghijklmnop|

Now we can change the value of the data[] variable. As an example, we change the first
four bytes of data[] to “pppp” (p = 70):

> st r2+10> 70707070

> d r2+10>

01B13124 70707070 65666768 696A6B6C 6D6E6F70 |ppppefghijklmnop|

15-72 AIX Version 4.1 Writing a Device Driver

Method 2
You can use this method at any time. This method requires the map file and the address at
which the relevant kernel address has been loaded. This method currently works because
of the manner in which a kernel extension is loaded. But it may not work if the procedure for
loading a kernel extension changes.

The address of a variable is:

Address of the last
function before the
variable in the map file

Length of the
function

Offset of the
variable

+ +

The following is the section of the map file (see page 15-67) showing the data[] variable
and the last function (xmfree) in the .text section:

26 000009B4 000024 2 GL SD S23 <.devswadd> glink.s(/usr/lib/glink.o)

27 000009B4 GL LD S24 .devswadd

28 000009D8 000024 2 GL SD S25 <.devswdel> glink.s(/usr/lib/glink.o)

29 000009D8 GL LD S26 .devswdel

30 000009FC 000024 2 GL SD S27 <.xmfree> glink.s(/usr/lib/glink.o)

31 000009FC GL LD S28 .xmfree

32 00000000 000444 4 RW SD S29 <_/tmp/cliff/demodd/demoddc>

/tmp/cliff/demodd/demodd.c(demodd.o)

33 00000450 000004 4 RW SD S30 demo_dev

/tmp/cliff/demodd/demodd.c(demodd.o)

34 00000460 000004 4 RW SD S31 demos_inited

/tmp/cliff/demodd/demodd.c(demodd.o)

35 00000470 000080 4 RW SD S32 data

/tmp/cliff/demodd/demodd.c(demodd.o)

36 * E 000004F0 00000C 2 DS SD S33 democonfig

/tmp/cliff/demodd/demodd.c(demodd.o)

37 E 000004FC 00000C 2 DS SD S34 demoopen

/tmp/cliff/demodd/demodd.c(demodd.o)

The last function in the .text section is at lines 30–31. The offset address of this function
from the map is 0x000009FC (line 30, column 2). The length of the function is 0x000024
(line 30, column 3). The offset address of the data[] variable is 0x000000470 (line 35,
column 2). Hence the offset of the address of the data[] variable is:

0x000009FC + 0x000024 + 0x00000470 = 0x00000E90

Add this address value to the load point value of the demodd kernel extension. If, as in the
case of the sample demodd device handler, this is 0x1B131A4, then the address of the
data[] variable is:

0x1B121EC + 0x00000E90 = 0x1B1307C

>display 1B1307C

01B1307C 61626364 65666768 696A6B6C 6D6E6F70 |abcdefghijklmnop|

Now change the value of the data[] variable as in method 1.

Note that in method 1, using the TOC, you found the address of the address of data[], while
in method 2 you simply found the address of data[].

15-73Debugging Tools

Displaying Registers on a Micro Channel Adapter
When you write a device driver for a new Micro Channel adapter, you often want to be able
to read and write to registers that reside on the adapter. This is a way of seeing if the
hardware is functioning correctly. For example, to examine a register on the Token Ring
adapter, first see where this adapter resides in the bus I/O space:

$lsdev –C

sys0 Available 00–00 System Object

sysunit0 Available 00–00 System Unit

sysplanar0 Available 00–00 CPU Planar

.

.

scsi0 Available 00–01 SCSI I/O Controller

tok0 Available 00–02 Token–Ring High–Performance Adapter

ent0 Available 00–03 Ethernet High–Performance LAN Adapter

$lsattr –l tok0 –E

bus_intr_lvl 3 Bus interrupt level False

intr_priority 3 Interrupt priority False

.

.

rdto 92 RECEIVE DATA TRANSFER OFFSET True

bus_io_addr 0x86a0 Bus I/O address False

dma_lvl 0x5 DMA arbitration level False

dma_bus_mem 0x202000 Address of bus memory used DMA False

We now know that the token ring adapter is located at 0x86A0.

To read a specific register, enter the kernel debugger and use the sregs command to
display the segment registers. Find an unused segment register (=007FFFFF). For this
example, assume s9 is not used. Enable the Micro Channel bus addressing with the set
command:

set s9 820c0020

Use the sregs command to display the segment register values to check that you typed it in
correctly.

From the POWERstation and POWERserver Hardware Technical Information-Options and
Devices, we know that the address of the Adapter Communication and Status register is
P6a6. The value of P is based on the Bus I/O address (bus_io_addr) of the adapter. In the
above example, this is 86A0. It could have been anything from 86A0 to F6A0 on a 0x1000
byte boundary. Hence P is 8, and the address of the Communication and Status register is
86A6. The display command now displays the two-byte register:

d 900086a6 2

The key is to load a segment register with 820c0020 and then use that segment register to
reference registers and memory on your adapter. You can use the same method to access
registers resident on the IOCC. In that case, load the segment register with a value of
820c00e0.

Stack Trace
The stack trace gives the stack history which provides the sequence of procedure calls
leading to the current IAR. The Ret Addr is the address of the instruction calling this
procedure. You can use the map file to locate the name of the procedure. Note that the first
stack frame shown is almost always useless, since data either has not been saved yet, or is
from a previous call. The last function preceding the Ret Addr is the function that called the
procedure.

15-74 AIX Version 4.1 Writing a Device Driver

You can also use the map command to locate the function name if the function was
exported. The map <addr> command locates the symbol before the given address. The
following is a concise view of the stack:

Low | |Stack grows at

Addresses | |this end.

|––––––––––––––––––––|

Callee’s stack –> 0 | Back chain |

pointer 4 | Saved CR |

8 | Saved LR |

 12–16 | Reserved |<–––LINK AREA (callee)

 20 | SAVED TOC |

|––––––––––––––––––––|

Space for P1–P8 | P1 | OUTPUT ARGUMENT AREA

is always reserved | ... |<–––(Used by callee to

| Pn | construct argument

| Callee’s |

| stack | <––– LOCAL STACK AREA

| area |

|––––––––––––––––––––|

| | (Possible word wasted

|––––––––––––––––––––| for alignment.)

–8*nfprs–4*ngprs ––> | Caller’s GPR | Rfirst = R13 for full

save | save area | save

| max 19 words | R31

|––––––––––––––––––––|

–8*nfprs ––> | Caller’s FPR | Ffirst = F14 for a

| save area | full save

| max 18 dblwds | F31

|––––––––––––––––––––|

Caller’s stack –> 0 | Back chain |

pointer 4 | Saved CR |

8 | Saved LR |

 12–16 | Reserved |<–––LINK AREA (caller)

 20 | Saved TOC |

|––––––––––––––––––––|

Space for P1–P8 24 | P1 | INPUT PARAMETER AREA

is always reserved | ... | <–––(Callee’s input

| Pn | parameters found

|––––––––––––––––––––| here. Is also

| Caller’s | caller’s arg area.)

| stack |

High | area |

Addresses |

The following is a sample stack history with a break in the sample demodd kernel
extension. The breakpoint was set at the start of the demoread routine at 0x1B127D4
(Beginning IAR). This was called from an instruction at 0x000824B0 (Ret Addr). This in turn
is called by the instruction at address 0x00085F54 (Ret Addr), and so on.

The low values of the addresses (0x000824B0 and 0x00085F54) suggest that the
instructions are in /unix. You can use the crash command and the le subcommand to
determine the right kernel extension that is loaded in an address range.

0x1b127d4 beginning demoread in demodd
0x000824b0 .rdevread in /unix
0x00085f54 .cdev_rdwr in /unix

> stack

Beginning IAR: 0x01B127D4 Beginning Stack: 0x2FF97C28

Chain:0x2FF97C88 CR:0x24222082 Ret Addr:0x000824B0 TOC:0x000C5E78

P1:0x2003F800 P2:0x2003F800 P3:0x0000008C P4:0x00000001

P5:0x01B11200 P6:0x00000000 P7:0x2FF97D38 P8:0x00000000

2FF97C60 00000203 00000000 2FF97CF8 2FF7FCD0 |......../.|./...|

2FF97C70 29057E6B 00001000 2FF97DC0 018E8BE0 |).~k..../.}.....|

2FF97C80 00FF0000 00000000 2FF97CD8 22222044 |......../.|.”” D|

Returning to Stack frame at 0x2FF97C88

Press ENTER to continue or x to exit:

15-75Debugging Tools

>

Chain:0x2FF97CD8 CR:0x22222044 Ret Addr:0x00085F54 TOC:0x00000000

P1:0x00000000 P2:0x018C41E0 P3:0x2FF97CF8 P4:0x2FF7FCC8

P5:0x000850E0 P6:0x00000000 P7:0xDEADBEEF P8:0xDEADBEEF

2FF97CC0 DEADBEEF DEADBEEF 00000000 000BE4F8 |................|

2FF97CD0 001E70F8 000BE7A4 2FF97D28 000BE5AC |..p...../.}(....|

Returning to Stack frame at 0x2FF97CD8

Press ENTER to continue or x to exit:

...

>

Chain:0x00000000 CR:0x22222022 Ret Addr:0x0000238C TOC:0x00000000

P1:0x00000003 P2:0x30000000 P3:0x00000800 P4:0x00000000

P5:0x00000000 P6:0x00000000 P7:0x00000000 P8:0x00000000

Returning to Stack frame at 0x0

Press ENTER to continue or x to exit:

> Trace back complete.

15-76 AIX Version 4.1 Writing a Device Driver

Error Messages for the Kernel Debug Program
The following error messages can appear while using the kernel debug program:

1. Bad type –– trace terminated.

A trace event was found that had an incorrect hookword type, and the traceback was
terminated. This message is for your information only.

2. Channel out of range.

You entered a value that is outside of the numeric range of acceptable channel numbers.
Enter the command again, selecting a channel in the range displayed in the prompt.

3. Do you want to continue the search? (Y/N)

Ten consecutive pages were not in storage. To continue the search, enter Y (yes). To exit
the search enter N (no).

4. The address you specified is not in real storage.

The command was rejected because the data at the address you specified has been
paged out of RAM to disk. Enter the command again with a data address that is currently
in RAM.

5. The page at Address is not in real storage.

The search passed over a page that was not in storage. Action is not required. This
message is for your information only.

6. The value cannot be found.

You specified a value that cannot be found or was not in real storage. Action is not
required. This message is for your information only.

7. This breakpoint is undefined or not currently addressable.

The breakpoint was not cleared because it is undefined or its segment is not currently
addressable. Try to load the segment ID into a segment register with the set command.

8. Timestamp paged out.

A trace data structure is not currently paged into physical memory. Enter the command
again later when the data structure is available.

9. Trace data paged out.

A trace data structure is not currently paged into physical memory. Enter the command
again later when the data structure is available.

10.Trace entry paged out.

A trace data structure is not currently paged into physical memory. Enter the command
again later when the data structure is available.

11.Trace header paged out.

A trace data structure is not currently paged into physical memory. Enter the command
again later when the data structure is available.

12.Trace Queue header paged out.

A trace data structure is not currently paged into physical memory. Enter the command
again later when the data structure is available.

13.You cannot set more than 32 breakpoints.

The breakpoint is not set because you tried to set more than the maximum number of
breakpoints allowed on the system. Clear at least one breakpoint before setting another
breakpoint.

15-77Debugging Tools

14.You cannot Step or Go into paged–out storage.

The command cannot run because you specified an address for the command that is in
paged-out storage. Specify an address that is not in paged-out storage.

15.You did not enter all required parameters.

The command was unsuccessful because you did not specify all the required
parameters. Enter the command again with the necessary parameters.

16.You entered a parameter that is not valid.

The command was unsuccessful because you specified a parameter that the debug
program did not recognize. Check the spelling and syntax of the parameter you
specified. Then, enter the command again with a valid parameter.

15-78 AIX Version 4.1 Writing a Device Driver

Error Logging
The error facility allows a device driver to have entries recorded in the system error log.
These error log entries record any software or hardware failures that need to be available
either for informational purposes or for fault detection and corrective action. The device
driver, using the errsave kernel service, adds error records to the special file /dev/error.

The errdemon daemon then picks up the error record and creates an error log entry. When
you access the error log either through SMIT (System Management Interface Tool) or with
the errpt command, the error record is formatted according to the error template in the error
template repository and presented in either a summary or detailed report. See the Flow of
the Error Logging Facility figure on page 15-78 for an illustration of this.

Concurrent Error
Notification

Vital Product Data

errpt
Command

SMIT

Local
Application(s)

Configuration Data

Error Record
Templates

Detecting
Module

errlog
Subroutine

Detecting
Kernel or Interrupt

Routine

errsave
Kernel
Service

/dev/error

User Space

Kernel Space

Error
Log
File

Error
Daemon

Flow of the Error Logging Facility

Precoding Steps to Consider
Follow three precoding steps before initiating the error logging process. It is beneficial to
understand what services are available to developers, and what the customer, service
personnel, and defect personnel see.

15-79Debugging Tools

Determine the Importance of the Error
The first precoding step is to review the error-logging documentation and determine whether
a particular error should be logged. Do not use system resources for logging information
that is unimportant or confusing to the intended audience.

It is, however, a worse mistake not to log an error that merits logging. You should work in
concert with the hardware developer, if possible, to identify detectable errors and the
information that should be relayed concerning those errors.

Determine the Text of the Message
The next step is to determine the text of the message. Use the errmsg command with the
–w flag to browse the system error messages file for a list of available messages. If you are
developing a product for wide-spread general distribution and do not find a suitable system
error message, you can submit a request to your supplier for a new message or follow the
procedures that your organization uses to request new error messages. If your product is an
in-house application, you can use the errmsg command to define a new message that
meets your requirements.

Determine the Correct Level of Thresholding
Finally, determine the correct level of thresholding. Each error to be logged, regardless of
whether it is a software or hardware error, can be limited by thresholding to avoid filling the
error log with duplicate information.

Side effects of runaway error logging include overwriting existing error log entries and
unduly alarming the end user. The error log is not unlimited in size. When its size limit is
reached, the log wraps. If a particular error is repeated needlessly, existing information is
overwritten, possibly causing inaccurate diagnostic analyses. The end user or service
person can perceive a situation as more serious or pervasive than it is if they see hundreds
of identical or nearly identical error entries.

You are responsible for implementing the proper level of thresholding in the device driver
code.

The error log currently equals 1MB. As shipped, it cleans up any entries older than 30 days.
In order to ensure that your error log entries are actually informative, noticed, and remain
intact, test your driver thoroughly.

Coding Steps
To begin error logging,

1. Select the error text.

2. Construct error record templates.

3. Add error logging calls into the device driver code.

Selecting the Error Text
The first task is to select the error text. After browsing the contents of the system message
file, three possible paths exist for selecting the error text. Either all of the desired messages
for the new errors exist in the message file, none of the messages exist, or a combination of
errors exists.

• If the messages required already exist in the system message file, make a note of the
four-digit hexadecimal identification number, as well as the message-set identification
letter. For instance, a desired error description can be:

SET E

E859 ”The wagon wheel is broken.”

• If none of the system error messages meet your requirements, and if you are responsible
for developing a product for wide-spread general distribution, you can either contact your
supplier to allocate new messages or follow the procedures that your organization uses
to request new messages. If you are creating an in-house product, use the errmsg

15-80 AIX Version 4.1 Writing a Device Driver

command to write suitable error messages and use the errinstall command to install
them. Refer to “Software Product Packaging” in AIX Version 4.1 General Programming
Concepts: Writing and Debugging Programs for more information. Take care not to
overwrite other error messages.

• It is also possible to use a combination of existing messages and new messages within
the same error record template definition.

Constructing Error Record Templates
The second step is to construct your error record templates. An error record template
defines the text that appears in the error report. Each error record template has the
following general form:

Error Record Template

+LABEL:

Comment =

Class =

Log =

Report =

Alert =

Err_Type =

Err_Desc =

Probable_Causes =

User_Causes =

User_Actions =

Inst_Causes =

Inst_Actions =

Fail_Causes =

Fail_Actions =

Detail_Data = <data_len>, <data_id>, <data_encodi

ng>

Each field in this stanza has well-defined criteria for input values. See the errupdate
command for more information. The fields are:

Label Requires a unique label for each entry to be added. The label must follow C
language rules for identifiers and must not exceed 16 characters in length.

Comment Indicates this is a comment field. You must enclose the comment in double
quotation marks; and it cannot exceed 40 characters.

Class Requires class values of H (hardware), S (software), or U (Undetermined).

Log Requires values True or False. If failure occurs, the errors are logged only if
this field value is set to True. When this value is False the Report and
Alert fields are ignored.

Report The values for this field are True or False. If the logged error is to be
displayed using error report, the value of this field must be True.

Alert Set this field to True for errors that are alertable. For errors that are not
alertable, set this field to False.

Err_Type Describes the severity of the failure that occurred. Possible values are
INFO, PEND, PERF, PERM, TEMP, and UNKN where:

INFO The error log entry is informational and was not the result
of an error.

PEND A condition in which it is determined that the loss of
availability of a device or component is imminent.

PERF A condition in which the performance of a device or
component was degraded below an acceptable level.

15-81Debugging Tools

PERM A permanent failure is defined as a condition that was not
recoverable. For example, an operation was retried a
prescribed number of times without success.

TEMP Recovery from this temporary failure was successful, yet
the number of unsuccessful recovery attempts exceeded a
predetermined threshold.

UNKN A condition in which it is not possible to assess the severity
of a failure.

Err_Desc Describes the failure that occurred. Proper input for this field is the four-digit
hexadecimal identifier of the error description message to be displayed
from SET E in the message file.

Prob_Causes Describes one or more probable causes for the failure that occurred. You
can specify a list of up to four Prob_Causes identifiers separated by
commas. A Prob_Causes identifier displays a probable cause text
message from SET P in the message file. List probable causes in the order
of decreasing probability. At least one probable cause identifier is required.

User_Causes Specifies a condition that an operator can resolve without contacting any
service organization. You can specify a list of up to four User_Causes
identifiers separated by commas. A User_Causes identifier displays a text
message from SET U in the message file. List user causes in the order of
decreasing probability. Leave this field blank if it does not apply to the
failure that occurred. If this field is blank, either the Inst_Causes or the
Fail_Causes field must not be blank.

User_Actions

Describes recommended actions for correcting a failure that resulted from a
user cause. You can specify a list of up to four recommended
User_Actions identifiers separated by commas. A recommended
User_Actions identifier displays a recommended action text message,
SET R in the message file. You must leave this field blank if the
User_Causes field is blank.

The order in which the recommended actions are listed is determined by
the expense of the action and the probability that the action corrects the
failure. Actions that have little or no cost and little or no impact on system
operation should always be listed first. When actions for which the
probability of correcting the failure is equal or nearly equal, list the least
expensive action first. List remaining actions in order of decreasing
probability.

Inst_Causes Describes a condition that resulted from the initial installation or setup of a
resource. You can specify a list of up to four Inst_Causes identifiers
separated by commas. An Inst_Causes identifier displays a text
message, SET I in the message file. List the install causes in the order of
decreasing probability. Leave this field blank if it is not applicable to the
failure that occurred. If this field is blank, either the User_Causes or the
Failure_Causes field must not be blank.

Inst_Actions

Describes recommended actions for correcting a failure that resulted from
an install cause. You can specify a list of up to four recommended
Inst_actions identifiers separated by commas. A recommended
Inst_actions identifier identifies a recommended action text message,
SET R in the message file. Leave this field blank if the Inst_Causes field
is blank. The order in which the recommended actions are listed is
determined by the expense of the action and the probability that the action
corrects the failure. See the User_Actions field for the list criteria.

15-82 AIX Version 4.1 Writing a Device Driver

Fail_Causes Describes a condition that resulted from the failure of a resource. You can
specify a list of up to four Fail_Causes identifiers separated by commas.
A Fail_Causes identifier displays a failure cause text message, SET F in
the message file. List the failure causes in the order of decreasing
probability. Leave this field blank if it is not applicable to the failure that
occurred. If you leave this field blank, either the User_Causes or the
Inst_Causes field must not be blank.

Fail_Actions

Describes recommended actions for correcting a failure that resulted from a
failure cause. You can specify a list of up to four recommended action
identifiers separated by commas. The Fail_Actions identifiers must
correspond to recommended action messages found in SET R of the
message file. Leave this field blank if the Fail_Causes field is blank.
Refer to the description of the User_Actions field for criteria in listing
these recommended actions.

Detail_Data Describes the detailed data that is logged with the error when the failure
occurs. The Detail_data field includes the name of the detecting
module, sense data, or return codes. Leave this field blank if no detailed
data is logged with the error.

You can repeat the Detail_Data field. The amount of data logged with an
error must not exceed the maximum error record length defined in the
sys/err_rec.h header file. Save failure data that cannot be contained in an
error log entry elsewhere, for example in a file. The detailed data in the
error log entry contains information that can be used to correlate the failure
data to the error log entry. Three values are required for each detail data
entry:

data_len Indicates the number of bytes of data to be associated with the
data_id value. The data_len value is interpreted as a decimal
value.

data_id Identifies a text message to be printed in the error report in front
of the detailed data. These identifiers refer to messages in SET
D of the message file.

data_encoding
Describes how the detailed data is to be printed in the error
report. Valid values for this field are:

ALPHA The detailed data is a printable ASCII character
string.

DEC The detailed data is the binary representation of an
integer value, the decimal equivalent is to be printed.

HEX The detailed data is to be printed in hexadecimal.

15-83Debugging Tools

Sample Error Record Template
An example of an error record template is:

+ MISC_ERR:

Comment = ”Interrupt: I/O bus timeout or channel check”

Class = H

Log = TRUE

Report = TRUE

Alert = FALSE

Err_Type = UNKN

Err_Desc = E856

Prob_Causes = 3300, 6300

User_Causes =

User_Actions =

Inst_Causes =

Inst_Actions =

Fail_Causes = 3300, 6300

Fail_Actions = 0000

Detail_Data = 4, 8119, HEX *IOCC bus number

Detail_Data = 4, 811A, HEX *Bus Status Register

Detail_Data = 4, 811B, HEX *Misc. Interrupt Register

Construct the error templates for all new errors to be added in a file suitable for entry with
the errupdate command. Run the errupdate command with the –h flag and the input file.
The new errors are now part of the error record template repository. A new header file is
also created (file.h) in the same directory in which the errupdate command was run. This
header file must be included in the device driver code at compile time. Note that the
errupdate command has a built-in syntax checker for the new stanza that can be called
with the –c flag.

Adding Error Logging Calls into the Code
The third step in coding error logging is to put the error logging calls into the device driver
code. The errsave kernel service allows the kernel and kernel extensions to write to the
error log. Typically, you define a routine in the device driver that can be called by other
device driver routines when a loggable error is encountered. This function takes the data
passed to it, puts it into the proper structure and calls the errsave kernel service. The
syntax for the errsave kernel service is:

#include <sys/errids.h>

void errsave(buf, cnt)

char *buf;

unsigned int cnt;

where,

buf Specifies a pointer to a buffer that contains an error record as described in
the sys/errids.h header file.

cnt Specifies a number of bytes in the error record contained in the buffer
pointed to by the buf parameter.

The following sample code is an example of a device driver error logging routine. This
routine takes data passed to it from some part of the main body of the device driver. This
code simply fills in the structure with the pertinent information, then passes it on using the
errsave kernel service.

15-84 AIX Version 4.1 Writing a Device Driver

void

errsv_ex (int err_id, unsigned int port_num,

int line, char *file, uint data1, uint data2)

{

dderr log;

char errbuf[255];

ddex_dds *p_dds;

p_dds = dds_dir[port_num];

log.err.error_id = err_id;

if (port_num = BAD_STATE) {

sprintf(log.err.resource_name, ”%s :%d”,

p_dds–>dds_vpd.adpt_name, data1);

data1 = 0;

}

else

sprintf(log.err.resource_name,”%s”,p_dds–>dds_vpd

.devname);

sprintf(errbuf, ”line: %d file: %s”, line, file);

strncpy(log.file, errbuf, (size_t)sizeof(log.file));

log.data1 = data1;

log.data2 = data2;

errsave(&log, (uint)sizeof(dderr)); /* run actual loggi

ng */

} /* end errlog_ex */

The data to be passed to the errsave kernel service is defined in the dderr structure which
is defined in a local header file, dderr.h. The definition for dderr is:

typedef struct dderr {

struct err_rec0 err;

int data1; /* use data1 and data2 to show detail */

int data2; /* data in the errlog report. Define */

/* these fields in the errlog template */

/* These fields may not be used in all */

/* cases. */

} dderr;

The first field of the dderr.h header file is comprised of the err_rec0 structure, which is
defined in the sys/err_rec.h header file. This structure contains the ID (or label) and a field
for the resource name. The two data fields hold the detail data for the error log report. As an
alternative, you could simply list the fields within the function.

You can also log a message into the error log from the command line. To do this, use the
errlogger command.

After you add the templates using the errupdate command, compile the device driver code
along with the new header file. Simulate the error and verify that it was written to the error
log correctly. Some details to check for include:

• Is the error demon running? This can be verified by running the ps –ef command and
checking for /usr/lib/errdemon as part of the output.

• Is the error part of the error template repository? Verify this by running the errpt –at
command.

15-85Debugging Tools

• Was the new header file, which was created by the errupdate command and which
contains the error label and unique error identification number, included in the device
driver code when it was compiled?

Writing to the /dev/error Special File
The error logging process begins when a loggable error is encountered and the device
driver error logging subroutine sends the error information to the errsave kernel service.
The error entry is written to the /dev/error special file. Once the information arrives at this
file, it is time-stamped by the errdemon daemon and put in a buffer. The errdemon daemon
constantly checks the /dev/error special file for new entries, and when new data is written,
the daemon collects other information pertaining to the resource reporting the error. The
errdemon daemon then creates an entry in the /var/adm/ras/errlog error logging file.

15-86 AIX Version 4.1 Writing a Device Driver

Performance Tracing
The AIX trace facility is useful for observing a running device driver and system. The trace
facility captures a sequential flow of time-stamped system events, providing a fine level of
detail on system activity. Events are shown in time sequence and in the context of other
events. The trace facility is useful in expanding the trace event information to understand
who, when, how, and even why the event happened.

Introduction
The operating system is shipped with permanent trace event points. These events provide
general visibility to system execution. You can extend the visibility into applications by
inserting additional events and providing formatting rules.

Care was taken in the design and implementation of this facility to make the collection of
trace data efficient, so that system performance and flow would be minimally altered by
activating trace. Because of this, the facility is extremely useful as a performance analysis
tool and as a problem determination tool.

The trace facility is more flexible than traditional system monitor services that access and
present statistics maintained by the system. With traditional monitor services, data reduction
(conversion of system events to statistics) is largely coupled to the system instrumentation.
For example, the system can maintain the minimum, maximum, and average elapsed time
observed for runs of a task and permit this information to be extracted.

The trace facility does not strongly couple data reduction to instrumentation, but provides a
stream of system events. It is not required to presuppose what statistics are needed. The
statistics or data reduction are to a large degree separated from the instrumentation.

You can choose to develop the minimum, maximum, and average time for task A from the
flow of events. But it is also possible to extract the average time for task A when called by
process B, extract the average time for task A when conditions XYZ are met, develop a
standard deviation for task A, or even decide that some other task, recognized by a stream
of events, is more meaningful to summarize. This flexibility is invaluable for diagnosing
performance or functional problems.

The trace facility generates large volumes of data. This data cannot be captured for
extended periods of time without overflowing the storage device. This allows two practical
ways that the trace facility can be used natively.

First, the trace facility can be triggered in multiple ways to capture small increments of
system activity. It is practical to capture seconds to minutes of system activity in this way for
post-processing. This is sufficient time to characterize major application transactions or
interesting sections of a long task.

Second, the trace facility can be configured to direct the event stream to standard output.
This allows a realtime process to connect to the event stream and provide data reduction in
real-time, thereby creating a long term monitoring capability. A logical extension for
specialized instrumentation is to direct the data stream to an auxiliary device that can either
store massive amounts of data or provide dynamic data reduction.

15-87Debugging Tools

You can start the system trace from:

• The command line

• SMIT

• Software

As shown in the following Starting and Stopping Trace figure, the trace facility causes
predefined events to be written to a trace log. The tracing action is then stopped. Tracing
from a command line is discussed in “Controlling Trace” on page 15-90. Tracing from a
software application is discussed and an example is presented in “Examples of Coding
Events and Formatting Events” on page 15-108.

Invoke trace from:
 – command line
 – SMIT
 – software

Defined trace
events are written
to the trace log.

trace

Command

Trace

Log

Stop

Trace

Starting and Stopping Trace

After a trace is started and stopped, you must format it before viewing it. This is illustrated in
the following Trace Formatting figure. To format the trace events that you have defined, you
must provide a stanza that describes how the trace formatter is to interpret the data that has
been collected. This is described in “Syntax for Stanzas in the trace Format File” on page
15-98.

15-88 AIX Version 4.1 Writing a Device Driver

Invoke formatter
from:
 – command line
 – SMIT

Trcrpt filters the
trace log according
to entries in your
format file.

trcrpt

Command

Trace

Log

Formatted

Output File

Trace Formatting

The trcrpt command provides a general purpose report facility. The report facility provides
little data reduction, but converts the raw binary event stream to a readable ASCII listing of
the event stream. Data can be visually extracted by a reader, or tools can be developed to
further reduce the data.

For an event to be traced, you must write an event hook (sometimes called a trace hook)
into the code that you want to trace. Tracing can be done on either the system channel
(channel 0) or on a generic channel (channels 1–7). All preshipped trace points are output
to the system channel.

Usually, when you want to show interaction with other system routines, use the system
channel. The generic channels are provided so that you can control how much data is
written to the trace log. Only your data is written to one of the generic channels.

For more information on trace hooks, see “Macros for Recording trace Events” on page
15-96.

Using the trace Facility
The following sections describe the use of the trace facility.

Configuring and Starting trace Data Collection
The trace command configures the trace facility and starts data collection. The syntax of
this command is:

trace [–a | –f | –l] [–c] [–d] [–h] [–j Event [,Event]] [–k Event [,Event]]
[–m Message] [–n] [–o OutName] [–o–] [–s] [–L Size] [–T Size] [–1234567]

The various options of the trace command are:

–f or –l Control the capture of trace data in system memory. If you specify neither
the –f nor –l option, the trace facility creates two buffer areas in system
memory to capture the trace data. These buffers are alternately written to
the log file (or standard output if specified) as they become full. The –f or –l
flag provides you with the ability to prevent data from being written to the
file during data collection. The options are to collect data only until the
memory buffer becomes full (–f for first), or to use the memory buffer as a
circular buffer that captures only the last set of events that occurred before
trace was terminated (–l). The –f and –l options are mutually exclusive.

15-89Debugging Tools

With either the –f or –l option, data is not transferred from the memory
collection buffers to file until trace is terminated.

–a Run the trace collection asynchronously (as a background task), returning
a normal command line prompt. Without this option, the trace command
runs in a subcommand mode (similar to the crash command) and returns a
> prompt. You can issue subcommands and regular shell commands from
the trace subcommand mode by preceding the shell commands with an !
(exclamation point).

–c Saves the previous trace log file adding .old to its name. Generates an
error if a previous trace log file does not exists. When using the –o Name
flag, the user-defined trace log file is renamed.

–d Delay data collection. The trace facility is only configured. Data collection is
delayed until one of the collection trigger events occurs. Various methods
for triggering data collection on and off are provided. These include the
following:

• trace subcommands

• trace commands

• ioctls to /dev/systrctl

–j Event or –k Event
Specifies a set of events to include (–j) or exclude (–k) from the collection
process. The Event list items can be separated by commas, or enclosed in
double quotation marks and separated by commas or blanks.

–s Terminate trace data collection if the trace log file reaches its maximum
specified size. The default without this option is to wrap and overwrite the
data in the log file on a FIFO basis.

–h Do not write a date/sysname/message header to the trace log file.

–m Message Specify a text string (message) to be included in the trace log header
record. The message is included in reports generated by the trcrpt
command.

–n Adds some information to the trace log header: lock information, hardware
information, and, for each loader entry, the symbol name, address, and
type.

–o Outfile Specify a file to use as the log file. If you do not use the –o option, the
default log file is /usr/adm/ras/trcfile. To direct the trace data to standard
output, code the –o option as –o –. (When –o– is specified the –c flag is
ignored.) Use this technique only to pipe the data stream to another
process since the trace data contains raw binary events that are not
displayable.

–1234567 Duplicate the trace design for multiple channels. Channel 0 is the default
channel and is always used for recording system events. The other
channels are generic channels, and their use is not predefined. There are
various uses of generic channels in the system. The generic channels are
also available to user applications. Each created channel is a separate
events data stream. Events recorded to channel 0 are mixed with the
predefined system events data stream. The other channels have no
predefined use and are assigned generically.

A program can request that a generic channel be opened by using the
trcstart subroutine. A channel number is returned, similar to the way a file
descriptor is returned when it opens a file. The program can record events
to this channel and, thus, have a private data stream. The trace command
allows a generic channel to be specifically configured by defining the
channel number with this option. However, this is not generally the way a

15-90 AIX Version 4.1 Writing a Device Driver

generic channel is started. It is more likely to be started from a program
using the trcstart subroutine, which uses the returned channel ID to record
events.

–T Size and –L Size
Specify the size of the collection memory buffers and the maximum size of
the log file in bytes. The trace facility pins the data collection buffers,
making this amount of memory unavailable to the rest of the system. It is
important to be aware of this, because it means that the trace facility can
impact performance in a memory constrained environment. If the
application being monitored is not memory constrained, or if the percentage
of memory consumed by the trace routine is small compared to what is
available in the system, the impact of trace “stolen” memory should be
small.

If you do not specify a value, trace uses a default size. The trace facility
pins a little more than the specified buffer size. This additional memory is
required for the trace facility itself. Trace pins a little more than the amount
specified for first buffer mode (–f option). Trace pins a little more than twice
the amount specified for trace configured in alternate buffer or last (circular)
buffer mode.

You can also start trace from a the command line or with a trcstart subroutine call. The
trcstart subroutine is in the librts.a library. The syntax of the trcstart subroutine is:

int trcstart(char *args)

where args is simply the options list desired that you would enter using the trace command
if starting a system trace (channel 0). If starting a generic trace, include a –g option in the
args string. On successful completion, trcstart returns the channel ID. For generic tracing
this channel ID can be used to record to the private generic channel.

For an example of the trcstart routine, see the sample code on page 15-92.

When compiling a program using this subroutine, you must request the link to the librts.a
library. Use –l rts as a compile option.

Controlling trace
Once trace is configured by the trace command or the trcstart subroutine, controls to trace
trigger the collection of data on, trigger the collection of data off, and stop the trace facility
(stop deconfigures trace and unpins buffers). These basic controls exist as subcommands,
commands, subroutines, and ioctl controls to the trace control device, /dev/systrctl. These
controls are described in the following sections.

Controlling trace in Subcommand Mode
If the trace routine is configured without the –a option, it runs in subcommand mode.
Instead of the normal shell prompt, –> is the prompt. In this mode the following
subcommands are recognized:

trcon Triggers collection of trace data on.

trcoff Triggers collection of trace data off.

q or quit Stops collection of trace data (like trcoff) and terminates trace
(deconfigures).

!command Runs the specified shell command.

The following is an example of a trace session in which the trace subcommands are used.
First, the system trace points have been displayed. Second, a trace on the system calls
have been selected. Of course, you can trace on more than one trace point. Be aware that
trace takes a lot of data. Only the first few lines are shown in the following example:

15-91Debugging Tools

trcrpt –j |pg

004 TRACEID IS ZERO

100 FLIH

200 RESUME

102 SLIH

103 RETURN FROM SLIH

101 SYSTEM CALL

104 RETURN FROM SYSTEM CALL

106 DISPATCH

10C DISPATCH IDLE PROCESS

11F SET ON READY QUEUE

134 EXEC SYSTEM CALL

139 FORK SYSTEM CALL

107 FILENAME TO VNODE (lookuppn)

15B OPEN SYSTEM CALL

130 CREAT SYSTEM CALL

19C WRITE SYSTEM CALL

163 READ SYSTEM CALL

10A KERN_PFS

10B LVM BUF STRUCT FLOW

116 XMALLOC size,align,heap

117 XMFREE address,heap

118 FORKCOPY

11E ISSIG

169 SBREAK SYSTEM CALL

trace –d –j 101 –m ”system calls trace example”

–> trcon

–> !cp /tmp/xbugs .

–> trcoff

–> quit

trcrpt –O ”exec=on,pid=on” > cp.trace

pg cp.trace

pr 3 11:02:02 1991

System: AIX smiller Node: 3

Machine: 000247903100

Internet Address: 00000000 0.0.0.0

system calls trace example

trace –d –j 101 –m –m system calls trace example

ID PROCESS NAME PID I ELAPSED_SEC DELTA_MSEC APPL SYSCALL

001 trace 13939 0.000000000 0.000000 TRACE ON chan 0

101 trace 13939 0.000251392 0.251392 kwritev

101 trace 13939 0.000940800 0.689408 sigprocmask

101 trace 13939 0.001061888 0.121088 kreadv

101 trace 13939 0.001501952 0.440064 kreadv

101 trace 13939 0.001919488 0.417536 kioctl

101 trace 13939 0.002395648 0.476160 kreadv

101 trace 13939 0.002705664 0.310016 kioctl

Controlling the trace Facility by Commands
If you configure the trace routine to run asynchronously (the –a option), you can control the
trace facility with the following commands:

trcon Triggers collection of trace data on.

trcoff Triggers collection of trace data off.

trcstop Stops collection of trace data (like trcoff) and terminates the trace routine.

15-92 AIX Version 4.1 Writing a Device Driver

Controlling the trace Facility by Subroutines
The controls for the trace routine are available as subroutines from the librts.a library. The
subroutines return zero on successful completion. The subroutines are:

trcon Triggers collection of trace data on.

trcoff Triggers collection of trace data off.

trcstop Stops collection of trace data (like trcoff) and terminates the trace routine.

Controlling the trace Facility with ioctls Calls
The subroutines for controlling trace open the trace control device (/dev/systrctl), issue the
appropriate ioctl command, close the control device and return. To control tracing around
sections of code, it can be more efficient for a program to issue the ioctl controls directly.
This avoids the unnecessary, repetitive opening and closing of the trace control device, at
the expense of exposing some of the implementation details of trace control. To use the
ioctl call in a program, include sys/trcctl.h to define the ioctl commands. The syntax of the
ioctl is as follows:

ioctl (fd, CMD, Channel)

where:

fd File descriptor returned from opening /dev/systrctl

CMD TRCON, TRCOFF, or TRCSTOP

Channel Trace channel (0 for system trace).

The following code sample shows how to start a trace from a program and only trace
around a specified section of code:

#include <sys/trcctl.h>

extern int trcstart(char *arg);

char *ctl_dev =”/dev/systrctl”;

int ctl_fd

main()

{

printf(”configuring trace collection \n”);

if (trcstart(”–ad”)){

perror(”trcstart”);

exit(1);

}

if((ctl_fd =open (ctl_dev))<0){

perror(”open ctl_dev”);

exit(1);

}

printf(”turning trace collection on \n”);

if(ioctl(ctl_fd,TRCON,0)){

perror(”TRCON”);

exit(1);

}

/* code between here and trcoff ioctl will be traced */

printf(”turning trace off\n”);

if (ioctl(ctl_fd,TRCOFF,0)){

perror(”TRCOFF”);

exit(1);

}

exit(0);

}

15-93Debugging Tools

Producing a trace Report
A trace report facility formats and displays the collected event stream in readable form. This
report facility displays text and data for each event according to rules provided in the trace
format file. The default trace format file is /etc/trcfmt and contains a stanza for each event
ID. The stanza for the event provides the report facility with formatting rules for that event.
This technique allows you to add your own events to programs and insert corresponding
event stanzas in the format file to have their new events formatted.

This report facility does not attempt to extract summary statistics (such as CPU utilization
and disk utilization) from the event stream. This can be done in several other ways. To
create simple summaries, consider using awk scripts to process the output obtained from
the trcrpt command.

The trcrpt Command
The syntax of the trcrpt command is as follows:

trcrpt [–c] [–d List] [–e Date] [–h] [–j] [–k List] [–n Name] [–o File] [–p List]
[–q] [–r] [–s Date] [–t File] [–v] [–O Options] [–T List] [LogFile]

Normally the trcrpt output goes to standard output. However, it is generally more useful to
redirect the report output to a file. The options are:

–c Causes the trcrpt command to check the syntax of the trace format file.
The trace format file checked is either the default (/etc/trcfmt) or the file
specified by the –t flag with this command. You can check the syntax of the
new or modified format files with this option before attempting to use them.

–d List Allows you to specify a list of events to be included in the trcrpt output.
This is useful for eliminating information that is superfluous to a given
analysis and making the volume of data in the report more manageable.
You may have commonly used event profiles, which are lists of events that
are useful for a certain type of analysis.

–e Date Ends the report time with entries on, or before the specified date. The Date
parameter has the form mmddhhmmssyy (month, day, hour, minute,
second, and year). Date and time are recorded in the trace data only when
trace data collection is started and stopped. If you stop and restart trace
data collection multiple times during a trace session, date and time are
recorded each time you start or stop a trace data collection. Use this flag in
combination with the –s flag to limit the trace data to data collected during a
certain time interval.

–h Omit the column headings of the report.

–j Causes the trcrpt command to produce a list of all the defined events from
the specified trace format file. This option is useful in creating an initial file
that you can edit to use as an include or exclude list for the trcrpt or trace
command.

–k List Similar to the –d flag, but allows you to specify a list of events to exclude
from the trcrpt output.

–n Name Specifies the kernel name list file to be used by trcrpt to convert kernel
addresses to routine names. If not specified, the report facility uses the
symbol table in /unix. A kernel name list file that matches the system the
data was collected on is necessary to produce an accurate trace report.
You can create such a file for a given level of system with the trcnm
command:

trcnm /unix > Name

–o File Writes the report to a file instead of to standard output.

15-94 AIX Version 4.1 Writing a Device Driver

–p List Limits the trcrpt output to events that occurred during the running of
specific processes. List the processes by process name or process ID.

–q Suppresses detailed output of syntax error messages. This is not an option
you typically use.

–r Produces a raw binary format of the trace data. Each event is output as a
record in the order of occurrence. This is not necessarily the order in which
the events are in the trace log file since the logfile can wrap. If you use this
option, direct the output to a file (or process), since the binary form of the
data is not displayable.

–t File Allows you to specify a trace format file other than the default (/etc/trcfmt).

–T List Limits the report to the kernel thread IDs specified by the List parameter.
The list items are kernel thread IDs separated by commas. Starting the list
with a kernel thread ID limits the report to all kernel thread IDs in the list.
Starting the list with a ! (exclamation point) followed by a kernel thread ID
limits the report to all kernel thread IDs not in the list.

–O options Allows you to specify formatting options to the trcrpt command in a comma
separated list. Do not put spaces after the commas. These options take the
form of option=selection. If you do not specify a selection, the command
uses the default selection. The possible options are discussed in the
following sections. Each option is introduced by showing its default
selection.

2line=off This option lets the user specify whether the lines in the event
report are split and displayed across two lines. This is useful
when more columns of information have been requested than
can be displayed on the width of the output device.

cpuid=off Lets you specify whether to display a column that contains the
physical processor number.

endtime=nnn.nnnnnnnnn
The starttime and endtime option permit you to specify an
elapsed time interval in which the trcrpt produces output. The
elapsed time interval is specified in seconds with nanosecond
resolution.

exec=off Lets you specify whether a column showing the path name of
the current process is displayed. This is useful in showing
what process (by name) was active at the time of the event.
You typically want to specify this option. We recommend that
you specify exec=on and pid=on.

ids=on Lets you specify whether to display a column that contains the
event IDs. If the selection is on, a three-digit hex ID is shown
for each event. The alternative is off.

pagesize=0 Lets you specify how often the column headings is reprinted.
The default selection of 0 displays the column headings
initially only. A selection of 10 displays the column heading
every 10 lines.

pid=off Lets you specify whether a column showing the process ID of
the current process is displayed. It is useful to have the
process ID displayed to distinguish between several
processes with the same executable name. We recommend
that you specify exec=on and pid=on.

15-95Debugging Tools

starttime=nnn.nnnnnnnnn
The starttime and endtime option permit you to specify an
elapsed time interval in which the trcrpt command produces
output. The elapsed time interval is specified in seconds with
nanosecond resolution.

svc=off Lets you specify whether the report should contain a column
that indicates the active system call for those events that
occur while a system call is active.

tid=off Lets you specify whether a column showing the thread ID of
the current thread is displayed. It is useful to have the thread
ID displayed to distinguish between several threads within the
same process. Alternatively, you can specify tid=on.

timestamp=0
The report can contain two time columns. One column is
elapsed time since the trace command was initiated. The
other possible time column is the delta time between adjacent
events. The option controls if and how these times are
displayed. The selections are:

0 Provides both an elapsed time from the start of trace
and a delta time between events. The elapsed time is
shown in seconds and the delta time is shown in
milliseconds. Both fields show resolution to a
nanosecond. This is the default value.

1 Provides only an elapsed time column displayed as
seconds with resolution shown to microseconds.

2 Provides both an elapsed time and a delta time column.
The elapsed time is shown in seconds with nanosecond
resolution, and delta time is shown in microseconds with
microsecond resolution.

3 Omits all time stamps from the report.

logfile The logfile is the name of the file that contains the event data to be
processed by the trcrpt command. The default is the /usr/adm/ras/trcfile
file.

Defining trace Events
The operating system is shipped with predefined trace hooks (events). You need only
activate trace to capture the flow of events from the operating system. You may want to
define trace events in your code during development for tuning purposes. This provides
insight into how the program is interacting with the system. The following sections provide
the information that is required to do this.

Possible Forms of a trace Event Record
A trace event can take several forms. An event consists of a

• Hookword
• Data words (optional)
• A TID, or thread identifier
• Timestamp (optional)

The following Format of a Trace Event Record figure illustrates a trace event. A four-bit type
is defined for each form the event record can take. The type field is imposed by the
recording routine so that the report facility can always skip from event to event when
processing the data, even if the formatting rules in the trace format file are incorrect or
missing for that event.

15-96 AIX Version 4.1 Writing a Device Driver

12 bit
Hook ID

4 bit
Type

16 bit
Data Field

D1 Optional Data Word 1

D2 Optional Data Word 2

D3 Optional Data Word 3

D4 Optional Data Word 4

D5 Optional Data Word 5

TID (Thread ID)

Optional Time Stamp

Format of a Trace Event Record

An event record should be as short as possible. Many system events use only the hookword
and timestamp. There is another event type you should seldom use because it is less
efficient. It is a long format that allows you to record a variable length of data. In this long
form, the 16-bit data field of the hookword is converted to a length field that describes the
length of the event record.

Macros for Recording trace Events
There is a macro to record each possible type of event record. The macros are defined in
the sys/trcmacros.h header file. The event IDs are defined in the sys/trchkid.h header file.
Include these two header files in any program that is recording trace events. The macros to
record system (channel 0) events with a time stamp are:

• TRCHKL0T (hw)
• TRCHKL1T (hw,D1)
• TRCHKL2T (hw,D1,D2)
• TRCHKL3T (hw,D1,D2,D3)
• TRCHKL4T (hw,D1,D2,D3)
• TRCHKL5T (hw,D1,D2,D3,D4,D5)

Similarly, to record non-time stamped system events (channel 0), use the following macros:

• TRCHKL0 (hw)
• TRCHKL1 (hw,D1)
• TRCHKL2 (hw,D1,D2)
• TRCHKL3 (hw,D1,D2,D3)
• TRCHKL4 (hw,D1,D2,D3,D4)
• TRCHKL5 (hw,D1,D2,D3,D4,D5)

There are only two macros to record events to one of the generic channels (channels 1–7).
These are:

• TRCGEN (ch,hw,d1,len,buf)
• TRCGENT (ch,hw,d1,len,buf)

These macros record a hookword (hw), a data word (d1) and a length of data (len) specified
in bytes from the user’s data segment at the location specified (buf) to the event stream
specified by the channel (ch).

15-97Debugging Tools

Use of Event IDs (hookids)
Event IDs are 12 bits (or 3-digit hexadecimal), for a possibility of 4096 IDs. Event IDs that
are permanently left in and shipped with code need to be permanently assigned.
Permanently assigned event IDs are defined in the sys/trchkid.h header file.

To allow you to define events in your environments or during development, a range of event
IDs exist for temporary use. The range of event IDs for temporary use is hex 010 through
hex 0FF. No permanent (shipped) events are assigned in this range. You can freely use this
range of IDs in your own environment. If you do use IDs in this range, do not let the code
leave your environment.

Permanent events must have event IDs assigned by the current owner of the trace
component. You should conserve event IDs because they are limited. Event IDs can be
extended by the data field. The only reason to have a unique ID is that an ID is the level at
which collection and report filtering is available in the trace facility. An ID can be collected or
not collected by the trace collection process and reported or not reported by the trace report
facility. Whole applications can be instrumented using only one event ID. The only restriction
is that the granularity on choosing visibility is to choose whether events for that application
are visible.

A new event can be formatted by the trace report facility (trcrpt command) if you create a
stanza for the event in the trace format file. The trace format file is an editable ASCII file.
The syntax for a format stanzas is shown in “Syntax for Stanzas in the trace Format File” on
page 15-98. All permanently assigned event IDs should have an appropriate stanza in the
default trace format file shipped with the base operating system.

Suggested Locations and Data for Permanent Events
The intent of permanent events is to give an adequate level of visibility to determine
execution, and data flow, and have an adequate accounting for how CPU time is being
consumed. During code development, it can be desirable to make very detailed use of trace
for a component. For example, you can choose to trace the entry and exit of every
subroutine in order to understand and tune pathlength. However, this would generally be an
excessive level of instrumentation to ship for a component.

We suggest that you consult a performance analyst for decisions regarding what events and
data to capture as permanent events for a new component. The following paragraphs
provide some guidelines for these decisions.

Events should capture execution flow and data flow between major components or major
sections of a component. For example, there are existing events that capture the interface
between the virtual memory manager and the logical volume manager. If work is being
queued, data that identifies the queued item (a handle) should be recorded with the event.
When a queue element is being processed, the “dequeue” event should provide this
identifier as data also, so that the queue element being serviced is identified.

Data or requests that are identified by different handles at different levels of the system
should have events and data that allow them to be uniquely identified at any level. For
example, a read request to the physical file system is identified by a file descriptor and a
current offset in the file. To a virtual memory manager, the same request is identified by a
segment ID and a virtual page address. At the disk device driver level, this request is
identified as a pointer to a structure which contains pertinent data for the request.

The file descriptor or segment information is not available at the device driver level. Events
must provide the necessary data to link these identifiers so that, for example, when a disk
interrupt occurs for incoming data, the identifier at that level (which can simply be the buffer
address for where the data is to be copied) can be linked to the original user request for
data at some offset into a file.

Events should provide visibility to major protocol events such as requests, responses,
acknowledgements, errors, and retries. If a request at some level is fragmented into multiple
requests, a trace event should indicate this and supply linkage data to allow the multiple
requests to be tracked from that point. If multiple requests at some level are coalesced into

15-98 AIX Version 4.1 Writing a Device Driver

a single request, a trace event should also indicate this and provide appropriate data to
track the new request.

Use events to give visibility to resource consumption. Whenever resources are claimed,
returned, created or deleted an event should record the fact. For example, claiming or
returning buffers to a buffer pool or growing or shrinking the number of buffers in the pool.

The following guidelines can help you determine where and when you should have trace
hooks in your code:

• Tracing entry and exit points of every function is not necessary. Provide only key actions
and data.

• Show linkage between major code blocks or processes.

• If work is queued, associate a name (handle) with it and output it as data.

• If a queue is being serviced, the trace event should indicate the unique element being
serviced.

• If a work request or response is being referenced by different handles as it passes
through different software components, trace the transactions so the action or receipt can
be identified.

• Place trace hooks so that requests, responses, errors, and retries can be observed.

• Identify when resources are claimed, returned, created, or destroyed.

Also note that:

• A trace ID can be used for a group of events by “switching” on one of the data fields. This
means that a particular data field can be used to identify from where the trace point was
called. The trace format routine can be made to format the trace data for that unique
trace point.

• The trace hook is the level at which a group of events can be enabled or disabled.

Syntax for Stanzas in the trace Format File
The intent of the trace format file is to provide rules for presentation and display of the
expected data for each event ID. This allows new events to be formatted without changing
the report facility. Rules for new events are simply added to the format file. The syntax of the
rules provide flexibility in the presentation of the data.

Refer to the /etc/tcrfmt file to see examples of the syntax for stanzas that appear in the
trace format file.

event_id V.R L = event_label

one of

APPL
SVC
KERN
INT

Syntax of a Stanza in the Format File

/n
/t
starttimer(#,#)
endtimer(#,#)
data_descriptor

A trace format stanza can be as long as required to describe the rules for any particular
event. The stanza can be continued to the next line by terminating the present line with a \
(backslash) character. The fields are:

event_id Each stanza begins with the three-digit hexadecimal event ID that the
stanza describes, followed by a space.

V.R This field describes the version (V) and release (R) that the event was first
assigned. Any integers work for V and R, and you may want to keep your
own tracking mechanism.

15-99Debugging Tools

L= The text description of an event can begin at various indentation levels.
This improves the readability of the report output. The indentation levels
correspond to the level at which the system is running. The recognized
levels are:

APPL Application level

SVC Transitioning system call

KERN Kernel level

INT Interrupt

event_label The event_label is an ASCII text string that describes the overall use of the
event ID. This is used by the –j option of the trcrpt command to provide a
listing of events and their first level description. The event label also
appears in the formatted output for the event unless the event_label
field starts with an @ character.

\n The event stanza describes how to parse, label and present the data
contained in an event record. You can insert a \n (newline) in the event
stanza to continue data presentation of the data on a new line. This allows
the presentation of the data for an event to be several lines long.

\t The \t (tab) function inserts a tab at the point it is encountered in parsing
the description. This is similar to the way the \n function inserts new lines.
Spacing can also be inserted by spaces in the data_label or
match_label fields.

starttimer(#,#)
The starttimer and endtimer fields work together. The (#,#) field is a
unique identifier that associates a particular starttimer value with an
endtimer that has the same identifier. By convention, if possible, the
identifiers should be the ID of starting event and the ID of the ending event.

When the report facility encounters a start timer directive while parsing an
event, it associates the starting events time with the unique identifier. When
an end timer with the same identifier is encountered, the report facility
outputs the delta time (this appears in brackets) that elapsed between the
starting event and ending event. The begin and end system call events
make use of this capability. On the return from system call event, a delta
time is shown that indicates how long the system call took.

endtimer(#,#) See the starttimmer field in the preceding paragraph.

data_descriptor
The data_descriptor field is the fundamental field that describes how
the report facility consumes, labels, and presents the data. The following
Syntax of the data_descriptor Field figure illustrates this field’s syntax.

data_label

, match_val

format

match_label
data_descriptor

data_descriptor

Syntax of the data_descriptor Field

15-100 AIX Version 4.1 Writing a Device Driver

The various subfields of the data_descriptor field are:

data_label The data label is an ASCII string that can optionally precede the output of
data consumed by the following format field.

format Review the format of an event record depicted in the figure Format of a
trace Event Record. You can think of the report facility as having a pointer
into the data portion of an event. This data pointer is initialized to point to
the beginning of the event data (the 16-bit data field in the hookword). The
format field describes how much data the report facility consumes from
this point and how the data is considered. For example, a value of Bm.n
tells the report facility to consume m bytes and n bits of data and to
consider it as binary data.

The possible format fields are described in the following section. If this
field is not followed by a comma, the report facility outputs the consumed
data in the format specified. If this field is followed by a comma, it signifies
that the data is not to be displayed but instead compared against the
following match_vals field. The data descriptor associated with the
matching match_val field is then applied to the remainder of the data.

match_val The match value is data of the same format described by the preceding
format fields. Several match values typically follow a format field that is
being matched. The successive match fields are separated by commas.
The last match value is not followed by a comma. Use the character string
* as a pattern-matching character to match anything. A pattern-matching
character is frequently used as the last element of the match_val field to
specify default rules if the preceding match_val field did not occur.

match_label The match label is an ASCII string that is output for the corresponding
match.

Each of the possible format fields is described in the comments of the /etc/trcfmt file. The
following shows several possibilities:

Format field descriptions

Am.n This value specifies that m bytes of data are consumed as ASCII text, and
that it is displayed in an output field that is n characters wide. The data
pointer is moved m bytes.

S1, S2, S4 Left justified string. The length of the field is defined as 1 byte (S1), 2 bytes
(S2), or 4 bytes (S4). The data pointer is moved accordingly.

Bm.n Binary data of m bytes and n bits. The data pointer is moved accordingly.

Xm Hexadecimal data of m bytes. The data pointer is moved accordingly.

D2, D4 Signed decimal format. Data length of 2 (D2) bytes or 4 (D4) bytes is
consumed.

U2, U4 Unsigned decimal format. Data length of 2 or 4 bytes is consumed.

F4, F8 Floating point of 4 or 8 bytes.

Gm.n Positions the data pointer. It specifies that the data pointer is positioned m
bytes and n bits into the data.

Om.n Skip or omit data. It omits m bytes and n bits.

Rm Reverse the data pointer m bytes.

15-101Debugging Tools

Some macros are provided that can be used as format fields to quickly access data. For
example:

$D1, $D2, $D3, $D4, $D5
These macros access data words 1 through 5 of the event record without
moving the data pointer. The data accessed by a macro is hexadecimal by
default. A macro can be cast to a different data type (X, D, U, B) by using a %
character followed by the new format code. For example, the following macro
causes data word one to be accessed, but to be considered as 2 bytes and 3
bits of binary data:

$D1%B2.3

$HD This macro accesses the first 16 bits of data contained in the hookword, in a
similar manner as the $D1 through $D5 macros access the various data
words. It is also considered as hexadecimal data, and also can be cast.

You can define other macros and use other formatting techniques in the trace format file.
This is shown in the following trace format file example.

15-102 AIX Version 4.1 Writing a Device Driver

Example Trace Format File
.

.

.

I. General Information

#

A. Binary format for the tracehook calls. (1 column = 4 bits)

trchk MMmTDDDD

trchkt MMmTDDDDtttttttt

trchkl MMmTDDDD11111111

trchklt MMmTDDDD11111111tttttttt

trchkg MMmTDDDD1111111122222222333333334444444455555555

trchkg MMmTDDDD1111111122222222333333334444444455555555tttttttt

trcgen MMmTLLLL11111111vvvvvvvvvvvvvvvvvvvvvvvvvvxxxxxx

trcgent MMmTLLLL11111111vvvvvvvvvvvvvvvvvvvvvvvvvvxxxxxxtttttttt

#

legend:

MM = major id

m = minor id

T = hooktype

D = hookdata

t = nanosecond timestamp

1 = d1 (see trchkid.h for calling syntax for the tracehook routines)

2 = d2, etc.

v = trcgen variable length buffer

L = length of variable length data in bytes.

#

The DATA_POINTER starts at the third byte in the event, ie.,

at the 16 bit hookdata DDDD.

The trcgen() type (6,7) is an exception.The DATA_POINTER starts at

the fifth byte, ie., at the ’d1’ parameter 11111111.

#

B. Indentation levels

the left margin is set per template using the ’L=XXXX’ command.

The default is L=KERN, the second column.

L=APPL moves the left margin to the first column.

L=SVC moves the left margin to the second column.

L=KERN moves the left margin to the third column.

L=INT moves the left margin to the fourth column.

The command if used must go just after the version code.

#

Example usage:

#113 1.7 L=INT ”stray interrupt” ... \

#

C. Continuation code and delimiters.

A ’\’ at the end of the line must be used to continue the template

on the next line.

Individual strings (labels) can be separated by one or more blanks

or tabs. However, all whitespace is squeezed down to 1 blank on

the report. Use ’\t’ for skipping to the next tabstop, or use

A0.X format (see below) for variable space.

#

#

II. FORMAT codes

#

A. Codes that manipulate the DATA_PONTER

Gm.n

”Goto” Set DATA_POINTER to byte.bit location m.n

#

Om.n

”Omit” Advance DATA_POINTER by m.n byte.bits

#

Rm

15-103Debugging Tools

”Reverse” Decrement DATA_POINTER by m bytes. R0 byte aligns.

#

B. Codes that cause data to be output.

Am.n

Left justified ascii.

m=length in bytes of the binary data.

n=width of the displayed field.

The data pointer is rounded up to the next byte boundary.

Example

DATA_POINTER|

V

xxxxxhello world\0xxxxxx

#

i. A8.16 results in: |hello wo |

DATA_POINTER––––––––|

V

xxxxxhello world\0xxxxxx

#

ii. A16.16 results in: |hello world |

DATA_POINTER––––––––––––––––|

V

xxxxxhello world\0xxxxxx

#

iii. A16 results in: |hello world|

DATA_POINTER––––––––––––––––|

V

xxxxxhello world\0xxxxxx

#

iv. A0.16 results in: | |

DATA_POINTER|

V

xxxxxhello world\0xxxxxx

#

S1, S2, S4

Left justified ascii string.

The length of the string is in the first byte(half–word, word)

of the data. This length of the string does not include this byte.

The data pointer is advanced by the length value.

Example

DATA_POINTER|

V

xxxxxBhello worldxxxxxx (B = hex 0x0b)

#

i. S1 results in: |hello world|

DATA_POINTER–––––––––––|

V

xxxxBhello worldxxxxxx

#

$reg%S1

A register with the format code of ’Sx’ works ”backwards”

from a register with a different type. The format is Sx,

but the length of the string comes from $reg instead of the

next n bytes.

#

Bm.n

Binary format.

m = length in bytes

n = length in bits

The length in bits of the data is m * 8 + n. B2.3 and B0.19

are the same. Unlike the other printing FORMAT codes, the

DATA_POINTER can be bit aligned and is not rounded up to

the next byte boundary.

#

Xm

15-104 AIX Version 4.1 Writing a Device Driver

Hex format.

m = length in bytes. m=0 thru 16

The DATA_POINTER is advanced by m.

#

D2, D4

Signed decimal format.

The length of the data is 2 (4) bytes.

The DATA_POINTER is advanced by 2 (4).

#

U2, U4

Unsigned decimal format.

The length of the data is 2 (4) bytes.

The DATA_POINTER is advanced by 2 (4).

#

F4

Floating point format. (like %0.4E)

The length of the data is 4 bytes.

The format of the data is that of C type ’float’.

The DATA_POINTER is advanced by 4.

#

F8

Floating point format. (like %0.4E)

The length of the data is 8 bytes.

The format of the data is that of C type ’double’.

The DATA_POINTER is advanced by 8.

#

HB

Number of bytes in trcgen() variable length buffer.

This is also equal to the 16 bit hookdata.

The DATA_POINTER is not changed.

#

HT

The hooktype. (0 – E)

trcgen = 0, trchk = 1, trchl = 2, trchkg = 6

trcgent = 8, trchkt = 9, trchlt = A, trchkgt = E

HT & 0x07 masks off the timestamp bit

This is used for allowing multiple, different trchkx() calls with

the same template.

The DATA_POINTER is not changed.

#

C. Codes that interpret the data in some way before output.

T4

Output the next 4 bytes as a data and time string,

in GMT timezone format. (as in ctime(&seconds))

The DATA_POINTER is advanced by 4.

#

E1,E2,E4

Output the next byte (half_word, word) as an ’errno’ value,

replacing the numeric code with the corresponding #define name in

/usr/include/sys/errno.h

The DATA_POINTER is advanced by 1, 2, or 4.

#

P4

Use the next word as a process id (pid), and output the

pathname of the executable with that process id.Process

ids and their pathnames are acquired by the trace command at

the start of a trace and by trcrpt via a special EXEC tracehook.

The DATA_POINTER is advanced by 4.

#

\t

Output a tab. \t\t\t outputs 3 tabs. Tabs are expanded to spaces,

using a fixed tabstop separation of 8.If L=0 indentation is used,

the first tabstop is at 3.

The DATA_POINTER advances over the \t.

15-105Debugging Tools

#

\n

Output a newline. \n\n\n outputs 3 newlines.

The newline is left–justified according to the INDENTATION LEVEL.

The DATA_POINTER advances over the \n.

#

$macro

The value of ’macro’ is output as a %04X value. Undefined

macros have the value of 0000.

The DATA_POINTER is not changed.

An optional format can be used with macros:

$v1%X4 will output the value $v1 in X4 format.

$zz%B0.8 will output the value $v1 in 8 bits of binary.

Understood formats are: X, D, U, B. Others default to X2.

#

”string” ’string’ data type

Output the characters inside the double quotes exactly. A string

is treated as a descriptor. Use ”” as a NULL string.

#

‘string format $macro‘ If a string is backquoted, it is expanded

as a quoted string, except that FORMAT codes and $registers are

expanded as registers.

#

III. SWITCH statement

A format code followed by a comma is a SWITCH statement.

Each CASE entry of the SWITCH statement consists of

1. a ’matchvalue’ with a type (usually numeric) corresponding

to the format code.

2. a simple ’string’ or a new ’descriptor’ bounded by braces.

A descriptor is a sequence of format codes, strings,

switches and loops.

3. and a comma delimiter.

The switch is terminated by a CASE entry without a comma

delimiter. The CASE entry is selected to as the first

entry whose matchvalue is equal to the expansion of the format

code. The special matchvalue ’*’ is a wildcard and matches

anything.

The DATA_POINTER is advanced by the format code.

#

#

IV. LOOP statement

The syntax of a ’loop’ is

LOOP format_code { descriptor }

The descriptor is executed N times, where N is the numeric value

of the format code.The DATA_POINTER is advanced by the

format code plus whatever the descriptor does. Loops are used to

output binary buffers of data, so descriptor is

usually simply X1 or X0. Note that X0 is like X1 but does not

supply a space separator ’ ’ between each byte.

#

V. macro assignment and expressions

’macros’ are temporary (for the duration of that event) variables

that work like shell variables.

They are assigned a value with the syntax:

{{ $xxx = EXPR }}

where EXPR is a combination of format codes, macros, and constants.

Allowed operators are + – / *

For example:

#{{ $dog = 7 + 6 }} {{ $cat = $dog * 2 }} $dog $cat

#

will output:

#000D 001A

#

Macros are useful in loops where the loop count is not always

15-106 AIX Version 4.1 Writing a Device Driver

just before the data:

#G1.5 {{ $count = B0.5 }} G11 LOOP $count {X0}

#

Up to 25 macros can be defined per template.

#

#

VI. Special macros:

$RELLINENO line number for this event. The first line starts at 1.

$D1 – $D5 dataword 1 through dataword 5. No change to datapointer.

$HD hookdata (lower 16 bits)

$SVC Output the name of the current SVC

$EXECPATH Output the pathname of the executable for current process.

$PID Output the current process id.

$ERROR Output an error message to the report and exit from the

template after the current descriptor is processed.

The error message supplies the logfile, logfile offset of

the start of that event, and the traceid.

$LOGIDX Current logfile offset into this event.

$LOGIDX0 Like $LOGIDX, but is the start of the event.

$LOGFILE Name of the logfile being processed.

$TRACEID Traceid of this event.

$DEFAULT Use the DEFAULT template 008

$STOP End the trace report right away

$BREAK End the current trace event

$SKIP Like break, but don’t print anything out.

$DATAPOINTER The DATA_POINTER. It can be set and manipulated

like other user–macros.

{{ $DATAPOINTER = 5 }} is equivalent to G5

$BASEPOINTER Usually 0. It is the starting offset into an event.The

actual offset is the DATA_POINTER + BASE_POINTER. It is used

with template subroutines, where the parts on an event have

the same structure, and can be printed by the same template,

but may have different starting points into an event.

#

VII. Template subroutines

If a macro name consists of 3 hex digits, it is a ”template

subroutine”. The template whose traceid equals the macro name

is inserted in place of the macro.

#

The data pointer is where is was when the template

substitution was encountered.Any change made to the data pointer

by the template subroutine remains in affect when the template

ends.

#

Macros used within the template subroutine correspond to those

in the calling template. The first definition of a macro in the

called template is the same variable as the first in the called.

The names are not related.

#

Example:

Output the trace label ESDI STRATEGY.

The macro ’$stat’ is set to bytes 2 and 3 of the trace event.

Then call template 90F to interpret a buf header. The macro

’$return’ corresponds to the macro ’$rv’, since they were

declared in the same order. A macro definition with

no ’=’ assignment just declares the name

like a place holder. When the template returns,the saved special

status word is output and the returned minor device number.

#

#900 1.0 ”ESDI STRATEGY” {{ $rv = 0 }} {{ $stat = X2 }} \

$90F \n\

#special_esdi_status=$stat for minor device $rv

#

#90F 1.0 ”” G4 {{ $return }} \

15-107Debugging Tools

block number X4 \n\

byte count X4 \n\

B0.1, 1 B_FLAG0 \

B0.1, 1 B_FLAG1 \

B0.1, 1 B_FLAG2 \

G16 {{ $return = X2 }}

#

Note: The $DEFAULT reserved macro is the same as $008

#

VII. BITFLAGS statement

The syntax of a ’bitflags’ is

BITFLAGS [format_code|register],

flag_value string {optional string if false}, or

’&’ mask field_value string,

...

#

This statement simplifies expanding state flags, since it look

a lot like a series of #defines.

The ’&’ mask is used for interpreting bit fields.

The mask is anded to the register and the result is compared to

the field_value. If a match, the string is printed.

The base is 16 for flag_values and masks.

The DATA_POINTER is advanced if a format code is used.

Note:the default base for BITFLAGS is 16. If the mask or field

value has a leading 0, the number is octal. 0x or 0X makes the

number hex.

A 000 traceid will use this template

This id is also used to define most of the template functions.

filemode(omode) expand omode the way ls –l does. The

call to setdelim() inhibits spaces between the chars.

#

15-108 AIX Version 4.1 Writing a Device Driver

Examples of Coding Events and Formatting Events
There are five basic steps involved in generating a trace from your software program.

Step 1: Enable the trace

Enable and disable the trace from your software that has the trace hooks defined. The
following code shows the use of trace events to time the running of a program loop.

#include <sys/trcctl.h>

#include <sys/trcmacros.h>

#include <sys/trchkid.h>

char *ctl_file = ”/dev/systrctl”;

int ctlfd;

int i;

main()

{

printf(”configuring trace collection \n”);

if (trcstart(”–ad”)){

perror(”trcstart”);

exit(1);

}

if((ctlfd = open(ctl_file,0))<0){

perror(ctl_file);

exit(1);

}

printf(”turning trace on \n”);

if(ioctl(ctlfd,TRCON,0)){

perror(”TRCON”);

exit(1);

}

/* here is the code that is being traced */

for(i=1;i<11;i++){

TRCHKL1T(HKWD_USER1,i);

/* sleep(1) */

/* you can uncomment sleep to make the loop

/* take longer. If you do, you will want to

/* filter the output or you will be */

/* overwhelmed with 11 seconds of data */

}

/* stop tracing code */

printf(”turning trace off\n”);

if(ioctl(ctlfd,TRCSTOP,0)){

perror(”TRCOFF”);

exit(1);

}

exit(0);

}

Step 2: Compile your program

When you compile the sample program, you need to link to the librts.a library:

cc –o sample sample.c –l rts

Step 3: Run the program

Run the program. In this case, it can be done with the following command:

./sample

You must have root privilege if you use the default file to collect the trace information
(/usr/adm/ras/trcfile).

15-109Debugging Tools

Step 4: Add a stanza to the format file

This provides the report generator with the information to correctly format your file. The
report facility does not know how to format the HKWD_USER1 event, unless you provide
rules in the trace format file.

The following is an example of a stanza for the HKWD_USER1 event. The HKWD_USER1
event is event ID 010 hexadecimal. You can verify this by looking at the sys/trchkid.h
header file.

User event HKWD_USER1 Formatting Rules Stanza

An example that will format the event usage of the sample program

010 1.0 L=APPL ”USER EVENT – HKWD_USER1” O2.0 \n\

 ”The # of loop iterations =” U4\n\

 ”The elapsed time of the last loop = ”\

 endtimer(0x010,0x010) starttimer(0x010,0x010)

Note: When entering the example stanza, do not modify the master format file /etc/trcfmt.
Instead, make a copy and keep it in your own directory. This allows you to always
have the original trace format file available.

Step 5: Run the format/filter program

Filter the output report to get only your events. To do this, run the trcrpt command:

trcrpt –d 010 –t mytrcfmt –O exec=on –o sample.rpt

The formatted trace results are:

ID PROC NAME I ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

010 sample 0.000105984 0.105984 USER HOOK 1

The data field for the user hook = 1

010 sample 0.000113920 0.007936 USER HOOK 1

The data field for the user hook = 2 [7 usec]

010 sample 0.000119296 0.005376 USER HOOK 1

The data field for the user hook = 3 [5 usec]

010 sample 0.000124672 0.005376 USER HOOK 1

The data field for the user hook = 4 [5 usec]

010 sample 0.000129792 0.005120 USER HOOK 1

The data field for the user hook = 5 [5 usec]

010 sample 0.000135168 0.005376 USER HOOK 1

The data field for the user hook = 6 [5 usec]

010 sample 0.000140288 0.005120 USER HOOK 1

The data field for the user hook = 7 [5 usec]

010 sample 0.000145408 0.005120 USER HOOK 1

The data field for the user hook = 8 [5 usec]

010 sample 0.000151040 0.005632 USER HOOK 1

The data field for the user hook = 9 [5 usec]

010 sample 0.000156160 0.005120 USER HOOK 1

The data field for the user hook = 10 [5 usec]

Usage Hints
The following sections provide some examples and suggestions for use of the trace facility.

Viewing trace Data
Include several optional columns of data in the trace output. This causes the output to
exceed 80 columns. It is best to view the reports on an output device that supports 132
columns.

15-110 AIX Version 4.1 Writing a Device Driver

Bracketing Data Collection
Trace data accumulates rapidly. Bracket the data collection as closely around the area of
interest as possible. One technique for doing this is to issue several commands on the
same command line. For example, the command:

trace –a; cp /etc/trcfmt /tmp/junk; trcstop

captures the total execution of the copy command.

Note: This example is more educational if the source file is not already cached in system
memory. The trcfmt file can be in memory if you have been modifying it or
producing trace reports. In that case, choose as the source file some other file that is
50 to 100KB and has not been touched.

Reading a trace Report
The trace facility displays system activity. It is a useful learning tool to observe how the
system actually performs. The previous output is an interesting example to browse. To
produce a report of the copy, use the following:

trcrpt –O ”exec=on,pid=on” > cp.rpt

In the cp.rpt file you can see the following activities:

• The fork, exec, and page fault activities of the cp process.

• The opening of the /etc/trcfmt file for reading and the creation of the /tmp/junk file.

• The successive read and write subroutiness to accomplish the copy.

• The cp process becoming blocked while waiting for I/O completion, and the wait process
being dispatched.

• How logical volume requests are translated to physical volume requests.

• The files are mapped rather than buffered in traditional kernel buffers. The read accesses
cause page faults that must be resolved by the virtual memory manager.

• The virtual memory manager senses sequential access and begins to prefetch the file
pages.

• The size of the prefetch becomes larger as sequential access continues.

• The writes are delayed until the file is closed (unless you captured execution of the sync
daemon that periodically forces out modified pages).

• The disk device driver coalesces multiple file requests into one I/O request to the drive
when possible.

The trace output looks a little overwhelming at first. This is a good example to use as a
learning aid. If you can discern the activities described, you are well on your way to being
able to use the trace facility to diagnose system performance problems.

15-111Debugging Tools

Effective Filtering of the trace Report
The full detail of the trace data may not be required. You can choose specific events of
interest to be shown. For example, it is sometimes useful to find the number of times a
certain event occurred. Answer the question, “how many opens occurred in the copy
example?” First, find the event ID for the open subroutine:

trcrpt –j | pg

You can see that event ID 15b is the open event. Now, process the data from the copy
example (the data is probably still in the log file) as follows:

trcrpt –d 15b –O ”exec=on”

The report is written to standard output and you can determine the number of opens that
occurred. If you want to see only the opens that were performed by the cp process, run the
report command again using:

trcrpt –d 15b –p cp –O ”exec=on”

This command shows only the opens performed by the cp process.

15-112 AIX Version 4.1 Writing a Device Driver

Power Management (PM) Aware Device Drivers 16-1

Chapter 16. Power Management (PM) Aware Device
Drivers

This chapter provides information on the modification of an existing AIX device driver for
Power Management.

Power Management-Aware Device Drivers: Overview
PM-aware device drivers are responsible for handling power-management-related
operations for corresponding devices.

The Power Management kernel extension (PM core) is a coordinator for PM-aware device
drivers. The PM core informs the device drivers of various PM events and also requests
some of the drivers to enter a low power mode if they seem to be idle. Because power
management features are completely dependent on each machine, the role of the PM core
is to abstract the difference between the machines. The following are PM features:

device local standby
Moves a device to a low power mode if the device is idle. In certain cases,
low power mode just turns the device off locally. For example, power to a
hard disk drive can be stopped using a standard or unique command if it
has not been accessed for a while.

suspend Powers off everything on a power-managed machine except the system
memory, the memory controller, and some power management-related
logic. Therefore, all the volatile data in the remaining system devices is lost.
All the device drivers that directly access those devices must have an
appropriate routine to retrieve the data at the start of the suspend state. In
certain cases, the device drivers may need to perform some operations
before the corresponding device is turned off as a result of entering
suspend. Since system memory, including the private memory area of the
device driver, is preserved during the suspend state, each device driver can
retrieve the previous device context using the data in its own private
memory area.

hibernation During the hibernation state, all power source, except the special logic for
turning the system on again, is shut off. At the restart from hibernation, the
volatile data of all the devices is lost. System main memory, however, is
saved or restored by the power management kernel extension using
nonvolatile storage, such as the hard disk. There is no difference between
the suspend and hibernation states for device drivers whose device data
was lost during those power management states.

Warning: All device drivers that are to be used on a system supporting suspend and
hibernation states must be PM-aware. Since, in these states, power is removed from all
physical devices, it is necessary for the corresponding device drivers to be notified of state
transitions to save and restore device states as necessary. A non-PM-aware device driver
could experience unpredictable behavior following a suspend or hibernation and, in some
cases, could abend the system, or depending on the device design, could cause physical
damage to the device.

Pseudo-device drivers, drivers that do not control physical devices, might also want to be
PM-aware in order to monitor power management state transitions. For example, network
pseudo-drivers would be able to gracefully disconnect a network link prior to a suspend or
hibernation.

16-2 AIX Version 4.1 Writing a Device Driver

PM Core versus PM-aware Device Driver Operations
The following is a summary of the power management operations of PM-aware device
drivers as opposed to the PM core.

PM Core Notifies all registered PM-aware device drivers of power management state
transitions. The state transitions can be the result of a user action, an
external event, or the expiration of a system timer.

Maintains idle counts for each device in the system, as well as for the
system as a whole.

PM-aware Device Driver
Handles commands from the PM core such as device idle, suspend,
hibernate, and enable. The PM-aware device driver then takes
device-specific action appropriate for the command. For example, if the
device driver receives a device idle request, the driver places the device
into a low power mode or even in an off state.

The PM-aware device driver can reject a command from the PM core if the
driver is unable to perform the request. For example, if the device has an
outstanding operation that does not complete for several seconds, the
PM-aware device driver can reject the request from the PM core.

If there is an outstanding command that will complete within a second or
two, the PM-aware device driver waits for completion of the outstanding
command and returns successful to the PM core.

The PM-aware device driver maintains an activity flag to inform the PM core
whether the device driver is busy.

Power Management Kernel Services
The following sections contain information on the power management kernel services. For
more detailed information on the syntax and return codes of each PM kernel service, see
AIX Technical Reference, Volume 5: Kernel and Subsystems.

pm_register_handle
The pm_register_handle kernel service registers and unregisters a PM handle to the PM
core.

Registration order
The order of PM-aware device driver registration corresponds to the order in which the
device drivers are configured. The PM core notifies registered handlers in the reverse order
of registration when starting suspend or hibernation. For example, the last registered
handler is the first one called. This ordering eliminates problems with parent and child
device dependencies among layered device drivers. In order for a parent driver to receive
notification from the PM core earlier than its children, the PM core uses the same order of
registration when resuming from suspend or hibernation.

Power Management (PM) Aware Device Drivers 16-3

Struct pm_handle
The pm_handle structure is the communications vehicle between the PM-aware device
driver and the PM core. The device driver is responsible for allocating the pm_handle
structure and ensuring that it is pinned for accesses to the structure during suspend and
hibernation system state transitions.

The following is the pm_handle structure definition:

struct pm_handle {
int activity; /* PM aware DD sets this value when accesses occur */
int mode; /* PM aware DD needs to maintain this device mode */
int device_idle_time; /* idle timer value during system PM enable */
int device_standby_time; /* idle timer value during system standby */
int idle_counter; /* idle time counter */
int (*handler)(caddr_t private, int ctrl); /* PM core calls this subroutine */
caddr_t private; /* private pointer passed to the handler subroutine */
dev_t devno; /* device major number minor number */
int attribute; /* device attributes */
struct pm_handle *next1; /* next pointer used by PM core */
struct pm_handle *next2; /* next pointer used by PM core */
int device_idle_time1; /* idle timer value for DPMS standby mode */
int device_idle_time2; /* idle timer value for DPMS suspend mode */
char *device_logical_name; /* device logical name */
char reserve[2]; /* reserved area for future use */
ushort pm_version; /* phase 1: 0x0000, phase 2: 0x0100 */
int *extension; /* for future expandability */

}

The following are fields in the pm_handle structure:

pm_handle.activity

Used by a PM-aware device driver to notify the PM core of the busy state
of the device.

For most devices, when the driver processes a request for that device, it
sets the activity field to 1. The PM core regularly monitors the
activity field of each registered device for determining device idle times,
as well as system idle times. The PM core resets each device’s activity
field to 0 on each periodic check.

For some devices, the device driver does not get a chance to set the
activity field to 1 even though the device is in use. Examples include a
graphics adapter driver that processes requests for the device after giving
the X-server direct access to the device. These devices must set the
activity field to –1. The PM core does not reset a device’s activity
field if it is set to –1, nor does the core increment the device’s idle count.

Other devices that can set the activity field to –1 include asynchronous
interrupt processing devices such as keyboard, mouse, and serial port
devices. When they receive a suspend or hibernation transition request
from the PM core, these device drivers should set the activity field to
–1. At resume time, the PM core automatically sends device PM enable
requests to all drivers whose activity field was –1 prior to entering the
suspend or hibernation state. Setting the activity field to –1 also
indicates that no bus master I/O activity is occurring for that device.

The asynchronous interrupting devices must also disable their device
interrupts once they accept a suspend or hibernation notification to
preserve the current state.

The default value for the activity field is 0.

16-4 AIX Version 4.1 Writing a Device Driver

pm_handle.mode

The mode field is updated by the PM-aware device driver after completing a
device mode transition as instructed by the PM core. The following is a
description of each of the device modes:

PM_DEVICE_FULL_ON
The normal device operational mode. The device is fully
powered without any device-level power management
active. At device configuration, all devices are in the full-on
mode.

PM_DEVICE_ENABLE
In the PM-enabled state, device drivers can activate
device-level power management. All devices are moved
into the PM-enabled state when the PM core is configured
and initialized. After the device is in suspend or hibernation
state, this mode can be invoked by the PM core in
response to a failed hibernation or suspend transition.

PM_DEVICE_IDLE
In PM_DEVICE_IDLE mode, the device driver causes its
device to enter a power saving mode. Any access to the
device brings the device driver back to the
PM_DEVICE_ENABLE mode.

PM_DEVICE_SUSPEND
In PM_DEVICE_SUSPEND mode, the device is powered
off. The device driver saves necessary device state for
restoring upon resume from suspend state. During this
state, the device driver does not process any newly arriving
I/O requests, but instead, blocks the requesting process
until after the resume.

Some devices might have downloadable microcode that
will need to be restored as part of the resume from
suspend or hibernation. In these cases, the device
configuration method should provide the device driver with
the file system path to the microcode download file at
device configuration time. Then, during the resume from
suspend or hibernation, the device driver can use the
fp_open() and fp_read() kernel services to open and
read in its microcode file and then download it prior to
resuming normal operation.

PM_DEVICE_HIBERNATION
In PM_DEVICE_HIBERNATION mode, the device is
powered off. To the device driver, this mode is no different
from the PM_DEVICE_SUSPEND mode. The device driver
saves necessary device state for restoring upon resume
from hibernation state. During this state, the device driver
does not process any newly arriving I/O requests, but
instead, blocks the requesting process until after the
resume.

PM_DEVICE_DPMS_STANDBY
This mode is used only by graphics device drivers. In
PM_DEVICE_DPMS_STANDBY mode, the display is
dimmed.

Power Management (PM) Aware Device Drivers 16-5

PM_DEVICE_DPMS_SUSPEND
This mode is used only by graphics device drivers. In
PM_DEVICE_DPMS_SUSPEND mode, the display is
suspended.

The PM core updates a device’s mode field in the case of a transition from
suspend to hibernation. In this case, the PM core changes the mode from
PM_DEVICE_SUSPEND to PM_DEVICE_HIBERNATION, so that the
device driver can accurately determine the previous mode when resuming.

The default value for the mode field is PM_FULL_ON.

pm_handle.device_idle_time

The device_idle_time field indicates the period of device inactivity
before the PM core requests that the device go to PM_DEVICE_IDLE
mode.

The value for the device_idle_time field is retrieved from the ODM and
never changed by the device driver.

pm_handle.device_standby_time

When the system is in the PM_STANDBY state, the
device_standby_time field indicates the period of device inactivity
before the PM core requests that the device go to the PM_DEVICE_IDLE
state.

The value for the device_standby_time field is retrieved from the ODM
and never changed by the device driver.

pm_handle.idle_counter

The idle_counter field is incremented by the PM core each time a
periodic check of the device’s activity field indicates the device is idle.

The default value for the idle_counter is 0. This field is never modified
by the device driver.

pm_handle.handler

The handler field is set by the device driver to point to the device driver’s
power management handler. This function is the entry point called by the
PM core to send state transition notifications to the device driver.

The device driver takes care to ensure this function is pinned prior to
processing a transition to the suspend or hibernation state. Also, the driver
must not call any kernel services listed as “process environment only”
during the suspend or hibernation transition. In other words, the driver must
ensure that no page faults occur during the suspend or hibernation
transition.

The parameters to the handler function are:

private The private parameter is the pm_handle.private field
as used by the device driver. The driver can choose to
have the private field point to a device-specific data
structure.

ctrl The ctrl parameter specifies a PM core-initiated mode
transition or notification. The notifications are one of the
following:

PM_PAGE_FREEZE_NOTICE. Notifies the device driver
that a subsequent suspend or hibernation state transition is
imminent. The device driver uses this notification to pin
necessary code and data to be used during the suspend or
hibernate paths. If the device driver needs to xmalloc or
xmfree anything, it must be done before returning from this
notification.

16-6 AIX Version 4.1 Writing a Device Driver

PM_PAGE_UNFREEZE_NOTICE. Notifies the device
driver that the suspend or hibernation transition is complete
and the driver can unpin relevant code and data.

PM_RING_RESUME_ENABLE_NOTICE. Notifies the
device driver when the PM_RING_RESUME_SUPPORT
flags are set. In response, the driver enables its device’s
corresponding ring resume feature.

The pm_handle.handler is initialized to point to the device driver’s PM
handler and not changed again.

pm_handle.private

The private field is available for device driver-specific use. This field is
the first parameter on calls to the registered PM handler. For example, a
device driver that controls multiple physical devices can register multiple
times, once for each physical device. In this case, the driver uses the
private field to distinguish between the registrations.

If unused, the private field is set to NULL.

pm_handle.devno

The device driver sets its major or minor device number in the devno field.
If the device does not have a major or minor number, the devno field is set
to 0. The PM core never modifies the devno field.

pm_handle.attribute

The attribute field is used by specific PM-aware device drivers whose
activity affects the power management modes of another device.

For example, the activity of a graphics input device affects the low power
mode of a graphics output device, such as keyboard input, causing a
graphics screen to unblank. Also, an audio input device can affect the low
power mode of an audio output device, such as CD-ROM input, causing the
audio output to get out of low power mode. The following is a list of possible
attribute bit values:

PM_GRAPHICAL_INPUT
Input device for graphical output, such as the keyboard and
the mouse.

PM_GRAPHICAL_OUTPUT
Output device for graphical input, such as graphics.

PM_AUDIO_INPUT
Input device for audio output device.

PM_AUDIO_OUTPUT
Output device for audio sound.

PM_RING_RESUME_SUPPORT
Device that supports the feature of ringing resume.

PM_REMOTE_TERMINAL
Asynchronous terminal, such as TTY, has this attribute.

The PM core checks the activity fields of all devices that have attribute
bits set to determine when the system is idle.

The attribute field is set to the logical OR of all relevant attributes.

pm_handle.next1

The next1 field is used by the PM core and is not modified by the device
driver.

Power Management (PM) Aware Device Drivers 16-7

pm_handle.next2

The next2 field is used by the PM core and is not modified by the device
driver.

pm_handle.device_idle_time1

The device_idle_time1 field is used only by graphics device drivers.
This field indicates the period of device inactivity before the PM core
requests the graphics device to go to PM_DEVICE_DPMS_STANDBY
mode. Device drivers, other than graphics device drivers, should set this
field to 0.

pm_handle.device_idle_time2

The device_idle_time2 field is used only by graphics device drivers.
This field indicates the period of device inactivity before the PM core
requests the graphics device to go to PM_DEVICE_DPMS_SUSPEND
mode. Device drivers, other than graphics device drivers, should set this
field to 0.

pm_handle.device_logical_name

The device_logical_name field is set to a pointer that points to the
device’s logical name string. For example, a disk driver allocates a string
area that contains a corresponding disk name, such as hdisk0 or
hdisk1, and sets a pointer that points the string area to the
device_logical_name field.

pm_handle.reserve

The reserve field is reserved and is set to 0.

pm_handle.pm_version

The pm_version field indicates the supported level of the power
management implementation. This field is initialized to 0x0100 if the driver
is compliant with this documentation.

pm_handle.extension

The extension field is reserved for future expansion. The pm_version
field directs future usability of this field. The extension field is initialized
to 0.

pm_handle Fields Retrieved from ODM
The following data of each PM-aware device driver is stored in the ODM PdAt object class
and retrieved at device configuration time so that the corresponding PM-aware device driver
can set them in the pm_handle structure:

device attribute (attribute name: pm_dev_att)

default device idle time (attribute name: pm_dev_itime)

default device standby time (attribute name: pm_dev_stime)

Actual instance of hard disk

PdAt:

uniquetype=”disk/scsi/540mb2”

attribute=”pm_dev_itime”

deflt=”300”

values=”0–7200,1”

width=””

type=”R”

generic=””

rp=”nr”

nls_index=0

16-8 AIX Version 4.1 Writing a Device Driver

pm_planar_control
The pm_planar_control kernel service allows a device driver to request planar-level power
management control of its device regardless of the current platform. Some devices are
power-managed through external logic to a device slot. The pm_planar_control kernel
service abstracts this functionality from the device driver.

The pm_planar_control kernel service can be called from either the process or interrupt
environment.

All devices should include calls to pm_planar_control, even if the device has built-in power
management features. This provides a common programming interface and ensures that
the pm_planar_control kernel service has a chance to manage planar power control,
where available.

The following planar device IDs are used to control device power through the PM planar
control kernel service. These values are defined in the sys/pmdev.h header file.

Display indicator

LCD PMDEV_LCD 0x00010000

CRT PMDEV_CRT 0X00010100

(PM_PLANAR_LOWPOWER1=DPMS standby mode)

(PM_PLANAR_LOWPOWER2=DPMS suspend mode)

(PM_PLANAR_OFF =DPMS off mode)

Video controller

graphic controller PMDEV_GCC 0X00020000

DAC PMDEV_DAC 0X00020100

VRAM PMDEV_VRAM 0X00020200

multi media

video capture PMDEV_VCAP 0X00030000

playback PMDEV_VPLAY 0X00030100

CCD camera PMDEV_CAMERA 0X00030200

audio PMDEV_AUDIO 0X00030300

audio mute PMDEV_AUDIO_EXT_MUTE 0X00030310

graphical input

internal keyboard PMDEV_INTKBD 0X00040000

external keyboard PMDEV_EXTKBD 0x00040100

internal mouse PMDEV_INTMOUSE 0X00040200

external mouse PMDEV_EXTMOUSE 0X00040300

communication device

serial1 PMDEV_SERIAL1 0x00050001

serial2 PMDEV_SERIAL2 0x00050002

parallel PMDEV_PARALLEL 0x00050100

CPU local bus

CPU PMDEV_CPU 0x00090000(LOWPOWER1=doze)

L2 cache PMDEV_L2 0x00090100(OFF=cache flush)

others PMDEV_LOCALn(n=2–f) 0x00090200–0x00090f00

extended bus slot

PCMCIA(slot 0–f) PMDEV_PCMCIANn(n=0–f) 0x000c00N0–0x000c00Nf

N=0–f(bus#)

PCI(slot 0–f) PMDEV_PCINNDD 0x000dNNDD

NN=0–ff(bus #)

DD=DevFunc# (device number<<3|function number)

ISA(slot 0–f) PMDEV_ISANn(n=0–f) 0x000e00N0–0x000e00Nf

N=0–f(bus #)

unknown device

SCSI device PMDEV_UNKNOWN_SCSI 0X00100iii

iii=((SCSI ID<<6) | LUN)

Power Management (PM) Aware Device Drivers 16-9

IDE PMDEV_UNKNOWN_IDE 0X0011000n

n=device number

Others PMDEV_UNKNOWN_OTHER 0X00120000

internal device

SCSI drive PMDEV_INTERNAL_SCSI 0X0018xiii

x=power connector number (0–f)

iii=((SCSI ID<<6) | LUN)

IDE PMDEV_INTERNAL_IDE 0X0019x00n

x=power connector number (0–f)

n=device number

Others PMDEV_INTERNAL_OTHER 0X001ax000

x=power connector number (0–f)

Others

FDC PMDEV_FDC 0X00060000

The planar device ID of the extended bus slot and the internal and unknown device planar
device ID are variable. The device driver must OR in the variable values with the base
planar device ID. In the case of the extended bus slot, the device driver builds the entire
planar device ID. For internal and unknown devices, there must be a device attribute in
ODM (pm_devid) that indicates the base device ID. The default value is either
PMDEV_UNKNOWN_SCSI, PMDEV_UNKNOWN_IDE, or PMDEV_UNKNOWN_OTHER,
depending on the device type. The driver uses this value and ORs in the variable values
(such as SCSI ID or lun). The PMDEV_INTERNAL_SCSI, PMDEV_INTERNAL_IDE, or
PMDEV_INTERNAL_OTHER base devid provides an interface for the user to indicate
whether a certain device is internal and what its power connector ID is. Since this is passed
by the driver to the pm_planar_control, this allows the machine-dependent planar_control
function to manage the power to these connectors if that functionality is provided on that
platform.

An example of the PM planar control’s support for further power control functions, in addition
to the function that the device driver directly handles, is the CD-ROM device driver. In
addition to spinning down the motor through a conventional SCSI command, the CD-ROM
drive can be turned on or off using the PM planar control if the drive is attached internally in
the machine. However, the CD-ROM driver does not actually consider the difference
between an internal device and an external (unknown) one. A special attribute that indicates
“internal” or “unknown” is set. The CD-ROM driver uses this information as the bit 12 of
planar_devid. As a result, the planar_devid is different between an internal device and an
unknown device. For an internal device, the power connector number can be input into
SMIT based on user information, in addition to the internal or unknown attribute.

pm_register_planar_control_handle
The pm_register_planar_control_handle kernel service allows the actual planar control
function of the PM core to be extended. The pm_planar_control kernel service takes the
devid passed to it and looks for a registered planar_control_handle function for that devid
and, if it exists, calls it.

For example, on a platform with PCMCIA, the PCMCIA card/socket services call
pm_register_planar_control_handle() to register planar control functions for each
PCMCIA slot. Then, when a PCMCIA device is attached and calls the pm_planar_control
kernel service, the appropriate PCMCIA planar_control_handle() function is called.

16-10 AIX Version 4.1 Writing a Device Driver

General Model of PM-Aware Device Driver
This model of a PM-aware device driver contains the following sample code:

• Device_PM_Handler()

• Device_external_interrupt_handler()

• StartIO()

Device_Pm_Handler()
/*
–––
 A NEW handler with Power Management entry
–––
*/
device_pm_handler (caddr_t private, int ctrl) /* New routine for PM */
{

switch(ctrl) {
case suspend:
case hibernation:

if (outstanding condition in waiting something to complete) {
if (It takes more than 1 second even in normal case) {

return (PM_ERROR);
} else {

pm_pending = TRUE;
e_sleep(&suspend_hib_pending, ...);
/* ### pm_pending ###*/
/* pm_pending flag is used to wait the current outstanding IO
operation to complete. This flags gets the interrupt handler
to call the e_wakeup corresponding to the above e_sleep when
the waited event completes. */

}
}
if (ctrl == suspend) {

mode = suspend;
pm_planar_control(planar_devid, PM_PLANAR_OFF);

} else {
mode = hibernation;

}
suspend_hibernation_job();
if (having async external int || needs to turn the device on immediately after resume completion)

activity flag = –1;
break;

case device_idle:
case PM_enable:

if (ctrl == PM_enable && mode == device_idle) {
if (planar_off was applied for device_idle) {

pm_planar_control(planar_devid, PM_PLANAR_ON);
retrieve_device(from_off_to_enable);

} else if (planar_lowpower was applied for device_idle) {
pm_planar_control(planar_devid, PM_PLANAR_ON);
retrieve_device(from_idle_to_enable);

}
if (device specific internal low power mode was applied) {

retrieve the device to normal mode (e.g. restart disk motor);
}
mode = PM_enable;

}
if (ctrl == device_idle && mode == PM_enable) {

if (planar_off is intended to be applied for device_idle mode) {

Power Management (PM) Aware Device Drivers 16-11

Save the current device context if needed;
pm_planar_control(planar_devid, PM_PLANAR_OFF);

} else if (planar_lowpower1 is intended to be applied for device_idle mode) {
Save the current device context if needed;
pm_planar_control(planar_devid,\

 PM_PLANAR_LOWPOWER1);
}
if (device specific low power mode is intended to be applied) {

Get the device to enter the low power mode (e.g. stop disk motor);
}
mode = device_idle;

}
if (mode == suspend || mode == hibernation) {

if (block_for_pm == TRUE) {
block_for_pm = FALSE;
e_wakeup(&pm_block);
/* ### block_for_pm ### */
/* block_for_pm flag is used to block the further device request
which this driver receives after it accepts the request of PM
device mode transition with success. Here, the blocking is
terminated because the resume occurs. */

}
if (ctrl == device_idle) {

if (planar_off is NOT applied for device_idle) {
pm_planar_control(planar_devid,\

 PM_PLANAR_ON);
retrieve_device(from_off_to_idle);
pm_planar_control(planar_devid,\

PM_PLANAR_LOWPOWER1);
/* The device has been in PM_PLANAR_OFF.
To move on to LOWPOWER1, it needs to
be temporarily turned on(PLANAR_ON)
once. Thus, here is PM_PLANAR_ON
before PM_PLANAR_LOWPOWER1. */

}
mode = device_idle;

} else {
pm_planar_control(planar_devid,PM_PLANAR_ON);
retrieve_device(from_off_to_enable);
mode = PM_enable;

}
}
break;

case full_on:
if (mode != PM_enable)

return (PM_ERROR);
Disable device_level power management;
mode = full_on;
break;

case device_DPMS_standby:
if (!(attribute & PM_GRAPHICAL_OUTPUT))

return (PM_ERROR);
pm_planar_control(planar_devid,PM_PLANAR_LOWPOWER1);
Apply DPMS standby operation to graphics sub–system;
mode = device_DPMS_standby;
break;

case device_DPMS_suspend:
if (!(attribute & PM_GRAPHICAL_OUTPUT))

return (PM_ERROR);
pm_planar_control(planar_devid,PM_PLANAR_LOWPOWER2);

16-12 AIX Version 4.1 Writing a Device Driver

Apply DPMS suspend operation to graphics sub–system;
mode = device_DPMS_suspend;
break;

case PM_page_freeze_notice:
if (all memory for PM related code/data are already pinned)

return (PM_SUCCESS);
Pin all code/data related to power management operations;
if (additional data area is needed for power management)

Get the area through ”xmalloc” and pin it;
if (not enough memory can’t be obtain)

return(PM_ERROR)
break;

case PM_page_unfreeze_notice:
if (all memory for PM related code/data are already pinned)

Unpin all code/data related to power management operations;
return(PM_SUCCESS);

if (additional data area was obtained for power management)
Release the area;

break;

case PM_MDM_ring_resume_notice:
if (!(attribute & PM_RING_RESUME_SUPPORT))

return (PM_ERROR);
Enable ring resume feature;
break;

}
 return (PM_SUCCESS);

}

 Device_external_interrupt_handler()
/*
–––
 Interrupt handler MODIFIED for Power Management
–––
*/
Device_external_interrupt_handler() /* Modified routine for PM */
{

appropriate_interrupt_routine();
Set activity flag to either 1 or –1;

if (This int causes the current outstanding IO request to complete) {

if (pm_pending == TRUE) { /* Check if pm_handler is now waiting for the completion of the
outstanding IO operation to successfully accept the request of
suspend or hibernation from PM core. */

if (it is in a boundary of the processing) {
pm_pending = FALSE;
e_wakeup(&suspend_hib_pending);

}
}

}
return (INTR_SUCC);

}

Power Management (PM) Aware Device Drivers 16-13

 StartIO()
/*
–––
 Device handler MODIFIED for Power Management
–––
*/
startIO() /* Modified routine for PM */
{

switch(mode) {
case suspend:
case hibernation:

block_for_pm = TRUE;
e_sleep(&pm_block,...);
/* Since the request of suspend or hibernation has already
been accepted with success, any further device request
must not be processed until resume notice such as device_idle
request or PM_enable request. This pm_block is checked
at the routine of resume sequence described above and then
the above e_sleep is unblocked. */

if (request needs to access the device directly)
Set activity flag to either 1 or –1;

break;

case device_idle:
if (request needs to access the device directly) {

Set activity flag to either 1 or –1;
pm_planar_control(planar_devid,PM_PLANAR_ON);
retrieve_device_state(from_idle_to_enable);

}
break;

case PM_enable:
if (request needs to access the device directly) {

Set activity flag to either 1 or –1;
if (device level power management is applied)

Set the device/a part of the sub–system to normal state;
}
break;

case full_on:
do nothing;
break;

}
appropriate_startIO_routine();

}

16-14 AIX Version 4.1 Writing a Device Driver

PM-Aware PCMCIA Device Drivers
All PCMCIA clients are required to be PM-aware. The following are some PCMCIA-unique
requirements for PM implementation:

• At the beginning of the resuming routine from the suspend and hibernation states, all
clients must check tuples in the Card Information Structure (CIS) to determine whether
the card in the slot is the expected one. Even though configuration has changed during
the suspend and hibernation states, the CSE_CARD_REMOVAL and
CSE_CARD_INSERTION events are not issued from card services.

• All resources are not required to be released to card services when the clients enter the
suspend and hibernation states. However, if the card is removed during those states, the
clients should release all remaining resources to card services in the resuming process.
Since there is a possibility that a PC card has been removed and reinserted in the same
socket, PCMCIA clients might need to restore the PC card’s configuration registers when
resuming from the suspend state, even though an expected card is in the previous
socket.

• If the clients expect ringing resume in the suspend state, the client must set the
configuration registers (for example, Card Configuration and Status Register (CCSR)) to
route the ring indication to the PC Card Interface Controller (PCIC) and keep the power
on.

• While the clients are in the suspend and hibernation states, they should reject and return
any callback events from card services. Therefore, the clients should not make any
requests that cause callback events to other clients. The RequestExclusive,
ReleaseExclusive, and GetClientInfo card services functions are restricted in the routine
of processing the entering of suspend, hibernation, and resume.

In addition, if a client calls the ResetCard function, the client should be using a socket
exclusively by calling the RequestExclusive function in advance.

• The RegisterClient, DeregisterClient, RequestSocketMask, and ReleaseSocketMask card
services functions should not be called from the client’s pm_handler routine, but from the
config or unconfig routine.

Note: The pm_planar_control routine for each socket that is provided by card services
supports PM_PLANAR_QUERY, PM_PLANAR_ON, PM_PLANAR_OFF, and
PM_PLANAR_CURRENT_LEVEL.

X-1Index

Index

A
accessing device drivers, 1-3
adapter device attributes, 6-7
add_input_type kernel service, 13-24
address resolution, protocol, 14-5
Address Resolution Protocol (ARP), 13-28

data structures, 13-33
aixgsc system call, 12-41
arpcom structure, 13-33
arpreq structure, 13-36
arptab structure, 13-35
asynchronous routines, contrasted with

synchronous, 1-1
ataide_buf structure, 9-2–9-3

struct buf *bp, 9-2
struct buf *bp field, 9-2
struct buf bufstruct field, 9-2
uchar ata.errval field, 9-3
uchar ata.status field, 9-3
uchar status_validity field, 9-2
uint timeout_value field, 9-2

B
block address translation, 2-2
block device driver, 1-6
buf structure, 7-3, 7-4, 8-2, 8-13, 8-16, 9-2, 9-9
bufcall utility, 11-21
Bus I/O Space, 2-18
Bus Memory Space (Example), 2-19
busresolve, 6-7

C
call side, contrasted with interrupt side, 1-1
canonical mode, 11-7
cfg_dd structure, 8-14, 9-10
change methods, 6-5
character device driver, 1-7
character I/O, to block devices, 7-6
character I/O processing, poll and select support,

1-13
chdisp command, 12-14
commands

chdisp, 12-14
crash, 15-4, 15-5–15-24, 15-26, 15-70, 15-74
errinstall, 15-80
errlogger, 15-84
errmsg, 15-79
errpt, 15-78, 15-84
errupdate, 15-80, 15-83, 15-84
ifconfig, 13-37
lsdisp, 12-14
nm, 15-63
odmadd, 10-20
odmdelete, 10-20
setmaps, 11-1
slattach, 11-13
sliplogin, 11-13

sysdumpdev, 15-1
sysdumpstart, 15-1
trace, 13-36, 15-88
trcrpt, 15-88, 15-93
trcstop, 13-36

compiling
when using the kernel debugger, 15-63
when using trace, 15-108

comples locks, 5-9
configuration, 1-8

PCMCIA systems, 6-9
configuration databases, ODM, 6-3
configuration entry point, 1-10
configuration method, for network interface driver,

13-37
configuration methods, 6-1

network interface driver, 13-37
SCSI, 8-19
virtual file system, 10-18

configuration routine, tty drivers, 11-13
configure method, purpose of, 1-9
configure methods, 6-4
configuring devices with no parent, 6-7
controller types, I/O, 2-4
converting, addresses, 2-1
converting file descriptor to device number, 1-4
copyin kernel service, 4-5
copyinstr kernel service, 4-5
copyout kernel service, 4-5, 12-18
crash command, 15-4, 15-5–15-24, 15-26, 15-70,

15-74
pcb subcommand, 15-18
ppd subcommand, 15-14
status subcommand, 15-17
thread subcommand, 15-19

crash subcommands
buf, 15-6
buffer, 15-6
callout, 15-7
cm, 15-7
cpu, 15-7
dlock, 15-8
ds, 15-9
du, 15-10
dump, 15-10
fs, 15-11
inode, 15-11
kfp, 15-11, 15-20
knlist, 15-12, 15-70
le, 15-12, 15-70
mbuf, 15-13
mst, 15-13
ndb, 15-13
nm, 15-12, 15-13
od, 15-13, 15-26
print, 15-14
proc, 15-14
quit, 15-16

X-2 AIX Version 4.1 Writing a Device Driver

socket, 15-16
stack, 15-17
stat, 15-17
trace, 15-11
ts, 15-20
tty, 15-20
user, 15-20
var, 15-23
vfs, 15-23
vnode, 15-23
xmalloc, 15-24

cross–memory services, 4-11
CuDep object class, 12-14

D
Data Packet for Ethernet, 13-25
data structures, network interface driver and ARP,

13-33
debugger. See kernel debugger
debugging

network interface driver, 13-36
network interface drivers, 13-36
virtual display driver, 12-61

define method, purpose of, 1-9
define methods, 6-4
del_input_type kernel service, 13-24
devdump kernel service, 8-2, 9-1
device dependent structure, 8-14, 9-10, 12-15

example of, 12-32
device driver structure figure, 13-1
device drivers

multiprocessor-safe, porting from uniprocessor,
5-16

power management-aware. See system dump
device handlers

processing BUS interrupts, 3-11
processing interrupts, generating power-off

warnings, 3-9
device head, 1-10
device methods

how invoked, 1-9
types to be provided, 1-9

Device Switch Table, 1-4
devinfo structure, 8-6, 9-5
devstrat kernel service, 8-2, 8-4, 9-1, 9-3, 10-15
devswadd kernel service, 8-14, 9-10, 12-15
devswdel kernel service, 12-16
devswqry kernel service, 12-14
display device driver, 12-13

configuration, 12-13
DLPI interfaces, 14-3
DMA

allocating resources, 2-24
arbitration-level assignment, 2-24
bus master operations

comparison to slave operations, 2-27
managing the bus memory transfer region,

2-27
mapping bus master transfers, 2-28

device methods and, 2-24
programming, 2-23
slave operations

adapter-to-adapter transfers, 2-26
comparison to bus master operations, 2-27

device driver requirements, 2-25
setting up the DMA channel, 2-25
transferring system memory, 2-26

DMA bus master operations
long-term buffer mapping, 2-29
peer-to-peer transfers, 2-33
short-term buffer mapping, 2-28

DMA master transfer, sample call side routine to
set up, 2-34

DMA slave, 2-27
dmp_add kernel service, 15-3
dmp_del kernel service, 15-3
dmx_8022_receive function, 13-16
dmx_status function, 13-16
dump

See also system dump
system, 15-1

E
e_sleep_thread kernel service, 10-15
entry points

configuration, 1-10
ddclose, 7-3
ddconfig, 7-2
dddump, 7-6
ddopen, 7-3
ddstrategy, 7-3
in STREAMS driver, 1-14
interrupt, 1-22
open and close, 1-11
read, 1-11
strategy, 1-12
write, 1-11

entry points of a device driver, 1-10
errinstall command, 15-80
errlogger command, 15-84
errmsg command, 15-79
error logging, 15-78–15-85

adding logging calls, 15-83
coding steps, 15-79

error record template, 15-80
errpt command, 15-78, 15-84
errsave kernel service, 15-78, 15-83, 15-85
errupdate command, 15-80, 15-83, 15-84
EUC handling, 11-10
event notification, 5-7
events, notification, 5-7

F
figures

Bus I/O Space, 2-18
Bus Memory Space (Example), 2-19
CDLI Device Driver Structure, 13-1
Data Packet for Ethernet, 13-25
Device Switch Table, 1-4
Format of a Bus ID, 2-15
From File Descriptor to Device Number, 1-4
I/O Subsystem, 2-16
IOCC Control Space, 2-16
NID Data Structure Relationships, 13-33
operating system kernel, 1-3
SCSI Subsystem, 1-25
Segmented Virtual Memory, 2-2

X-3Index

STREAMS Driver Entry Points, 1-14
System Device Hierarchy, 6-1

file system helper, 10-16
files

/dev/error, 15-78, 15-85
/dev/ide#, 9-1
/dev/mem, 15-5
/dev/scsi#, 8-2
/dev/systrctl, 15-89, 15-90, 15-92
/etc/filesystems, 10-16, 10-19
/etc/trcfmt, 15-93, 15-109
/etc/vfs, 10-16, 10-17, 10-19
/usr/adm/ras/trcfile, 15-89
/usr/lib/boot/unix, 15-5
lp, 11-11
net/if.h, 13-29, 13-36
net/if_arp.h, 13-36
str_tty.h, 11-25
sys/buf.h, 7-4, 8-2, 8-16, 9-2, 15-6
sys/device.h, 12-16
sys/devinfo.h, 8-6, 9-5, 13-36
sys/dir.h, 10-15
sys/dump.h, 15-3, 15-5
sys/erec.h, 15-82
sys/err_rec.h, 15-84
sys/errids.h, 15-83
sys/file.h, 15-10
sys/fshelp.h, 10-16
sys/gfs.h, 10-5
sys/ide.h, 9-2, 9-6
sys/mbuf.h, 13-36, 15-13
sys/proc.h, 15-1, 15-15
sys/scsi.h, 8-2, 8-3, 8-5, 8-7, 8-11
sys/socket.h, 13-36, 15-16
sys/statfs.h, 10-11
sys/sysconfig.h, 8-14, 9-10
sys/timer.h, 15-7
sys/trcctl.h, 15-92
sys/trchkid.h, 15-96, 15-97, 15-109
sys/trcmacros.h, 15-96
sys/tty.h, 15-20
sys/user.h, 15-1, 15-22
sys/vattr.h, 10-13
sys/vfs.h, 10-5, 15-23
sys/vmount.h, 10-17
sys/vnode.h, 10-6, 10-7, 15-23
termios.h, 11-6

find command for the kernel debug program, 15-40
find_input_type kernel service, 13-24
font_data structure, 12-31
Format of a Bus ID, 2-15
fp_close kernel service, 8-2, 8-15, 9-1, 9-11
fp_ioctl kernel service, 8-2, 9-1, 12-14
fp_open kernel service, 8-2, 8-15, 9-1, 9-11
fp_opendev kernel service, 12-14

G
GAI object class, 12-14
gfs structure, 10-2, 10-5
gfsadd kernel service, 10-3, 10-5, 10-9
gfsdel kernel service, 10-5, 10-10
gnode structure, 10-7
go command for kernel debug program, 15-43

H
hardware interrupts, 3-2

I
I/O, 2-1
I/O address segments, for Micro Channel, 2-16
I/O controller types, 2-4
I/O spaces, for Micro Channel, 2-16
I/O Subsystem, 2-16
IDE, adapter device driver, 9-1
IDE adapter device driver. See SCSI device driver

routines
IDE adapter device driver routines

close, 9-4
config, 9-4
ioctl, 9-4
open, 9-4
strategy, 9-4

IDE adapter ioctl operations
IDEIOIDENT, 9-6
IDEIOINQU, 9-6
IDEIORESET, 9-8
IDEIOSTART, 9-5
IDEIOSTOP, 9-6
IDEIOSTUNIT, 9-7
IDEIOTUR, 9-7
IOCINFO, 9-5

IDE configuration methods, 9-15
IDE device attributes, 9-14
IDE device driver routines

close, 9-11
config, 9-10
dump, 9-12
ioctl, 9-10
open, 9-10
read, 9-11
strategy, 9-11
write, 9-11

IDE device driver structure
bottom half routines, 9-11
top half routines, 9-10

IDE subsystem components
IDE adapter device driver, 9-1
IDE device driver, 9-1

ide_inquiry structure, 9-6
ide_ready structure, 9-7
ide_startunit structure, 9-7
identify_device structure, 9-6
if_attach kernel service, 13-22, 13-24
if_detach kernel service, 13-24
if_down kernel service, 13-24
if_nostat kernel service, 13-24
ifa_ifwithaddr kernel service, 13-24
ifa_ifwithdstaddr kernel service, 13-24
ifa_ifwithnet kernel service, 13-24
ifaddr structure, 13-35
ifconfig command, 13-37
ifnet structure, 13-22, 13-24, 13-29, 13-33
ifreq structure, 13-35
ifunit kernel service, 13-24
init_heap kernel service, 4-3
initialization, network device driver, 13-2

X-4 AIX Version 4.1 Writing a Device Driver

interface protocols, TLI and XTI, 14-6
interrupt level mapping, 3-6
interrupt levels, 3-2
interrupt service times, 3-4
interrupt side, contrasted with call side, 1-1
interrupt side routines, 1-22
interrupts, 3-1

BUS, 3-11
generating power-off warnings, 3-9
necessity for Device driver to handle, 1-1
PCMCIA devices, 3-14

IOCC Control Space, 2-16
ioctl calls,, supported by network interface driver,

13-29
iodone kernel service, 7-4, 8-1, 8-4, 8-5, 8-16, 9-1,

9-3, 9-4, 10-16
ISA bus configuration, 3-3, 6-8

K
kernel debug program

address origin, setting, 15-46–15-62
address register, instruction, increasing, 15-46
address register, instruction, decreasing,

15-34–15-62
breakpoints

clearing, 15-36–15-62
listing, 15-35–15-62
setting, 15-34–15-62
skipping, restarting after, 15-44–15-62

data screens, displaying, 15-49–15-62
data storing, 15-53–15-62
device drivers, displaying, 15-40–15-62
ending the program session, 15-48–15-62
error messages, 15-76–15-77
floating point registers, displaying,

15-41–15-62
formatted process tables, displaying,

15-47–15-62
formatted trace buffers, displaying,

15-57–15-62
fullwords, storing into memory, 15-52–15-62
halfwords, storing, 15-54
help screen, displaying, 15-43–15-62
instruction address register

decreasing, 15-34
increasing, 15-46

loading, 15-25
memory, storing fullwords into, 15-52
memory location, altering, 15-34
memory, displaying, 15-38–15-62
per-processor data, displaying, 15-47
processor, switching, 15-37
program, restarting, 15-43
RS-232 port, switching, 15-56–15-62
segment registers, displaying, 15-51–15-62
single-stepping instructions, 15-53–15-62
stack traceback, formatted, tracing,

15-52–15-62
starting, 15-25–15-27
storage, searching, 15-40–15-62
storing data, 15-53–15-62
storing halfwords, 15-54–15-62
system load list, displaying, 15-44–15-62

thread table, displaying, 15-56
timer request blocks, displaying, 15-58–15-62
translating, virtual address to real address,

15-62
tty structure, displaying, 15-59–15-62
u-area, displaying, 15-60–15-62
user-defined variables, clearing, 15-49–15-62
user-defined variables, displaying, 15-62
uthread structure, displaying, 15-60
variables, user-defined, clearing, 15-49
variables, user-defined, displaying, 15-62
virtual memory, displaying, 15-62

kernel debug program commands
alter, altering memory location, 15-34–15-62
back, decreasing the instruction address

register, 15-34–15-62
break, setting breakpoints, 15-34–15-62
breaks, lists the current breakpoints,

15-35–15-62
clear, removes breakpoints, 15-36–15-62
cpu, switching processor, 15-37
display, displaying memory, 15-38–15-62
drivers, displaying device drivers, 15-40–15-62
find, searching storage, 15-40
float, displaying floating point registers,

15-41–15-62
go, restarting program, 15-43–15-62
help, displays the help screen, 15-43–15-62
loop, restarting after skipping breakpoints,

15-44–15-62
map, displaying system load list, 15-44–15-62
next, increasing the instruction address

register, 15-46–15-62
origin, setting address origin, 15-46–15-62
proc, displaying formatted process tables,

15-47–15-62
quit, ending the debug program session, 15-48
reset, clearing user-defined variables,

15-49–15-62
screen, displaying data screens, 15-49–15-62
sregs, displaying segment registers,

15-51–15-62
st, storing fullwords into memory, 15-52–15-62
stack, displaying formatted stack traceback,

15-52
stc, storing a byte into memory, 15-53
step, running single-step instructions,

15-53–15-62
sth, storing halfwords into memory, 15-54
swap, switching RS-232 ports, 15-56–15-62
trace, displaying formatted trace buffers,

15-57–15-62
trb, displaying timer request blocks,

15-58–15-62
tty, displaying tty structure, 15-59–15-62
user, displaying u-area, 15-60–15-62
vars, displaying user-defined variables, 15-62
vmm, displaying virtual memory, 15-62
xlate, translating addresses, 15-62

kernel debugger
accessing global data, 15-71
compiler listings, 15-63
compiling options, 15-63

X-5Index

displaying registers, 15-73
entering, 15-26
map files, 15-65
setting breakpoints, 15-29, 15-68
stack trace, 15-73
subcommands, 15-27–15-31

breakpoints, 15-29
dereferencing a pointer, 15-29
expressions, 15-29
reserved variables, 15-27
variables, 15-27

kernel figure, 1-3
kernel services

add_input_type, 13-24
copyout, 12-18
del_input_type, 13-24
devdump, 8-2, 9-1
devstrat, 8-2, 8-4, 9-1, 9-3, 10-15
devswadd, 8-14, 9-10, 12-15
devswdel, 12-16
devswqry, 12-14
disable_lock, 11-21
dmp_add, 15-3
dmp_del, 15-3
e_sleep_thread, 10-15
errsave, 15-78, 15-83, 15-85
find_input_type, 13-24
fp_close, 8-2, 8-15, 9-1, 9-11
fp_ioctl, 8-2, 9-1, 12-14
fp_open, 8-2, 8-15, 9-1, 9-11
fp_opendev, 12-14
gfsadd, 10-3, 10-5, 10-9
gfsdel, 10-5, 10-10
if_attach, 13-22, 13-24
if_detach, 13-24
if_down, 13-24
if_nostat, 13-24
ifa_ifwithaddr, 13-24
ifa_ifwithdstaddr, 13-24
ifa_ifwithnet, 13-24
ifunit, 13-24
iodone, 7-4, 8-1, 8-4, 8-5, 8-16, 9-1, 9-3, 9-4,

10-16
lookupvp, 10-10
net_error, 13-36
pin, 8-13, 9-9
pincode, 8-13, 8-15, 9-9, 9-11
pinu, 8-13, 9-9
pm_planar_control, 16-8
pm_register_handle, 16-2
pm_register_planar_control_handle, 16-9
uiomove, 10-14, 12-15, 12-16
unlock_enable, 11-21
vfsrele, 10-11, 10-12
vm_mount, 10-9
vms_create, 10-15
vn_free, 10-6
vn_get, 10-6, 10-7

L
lc_sjis module, 11-1
lcok overview, 5-9
ldterm line discipline, 11-6
levels, interrupt, 3-2

library routines, restricted device driver use, 1-2
loading convention, STREAMS, 14-5
lock models, 5-10
locking, simple locks, 8-15, 9-11
locking options, for streams modules and drivers,

14-5
lockl locks, 5-9
lookupvp kernel service, 10-10
loop command for the kernel debug program,

15-44
lsdisp command, 12-14
ltpin kernel service, 4-3
ltunpin kernel service, 4-4

M
macros

byte-reversed I/O read
int BUS_GETLRX, 2-20
int BUS_GETSRX, 2-21

byte-reversed I/O write
int BUS_PUTLRX, 2-21
int BUS_PUTSRX, 2-21

programmed I/O read, int BUS_GETSTRX,
2-21

programmed I/O write, int BUS_PUTSTRX,
2-21

main routine, device driver does not have, 1-2
major number, 1-3
major numbers, 6-13
map command, 15-44
mbuf structure, 13-25
memory access services, 4-5
memory allocation services, 4-1
memory management, 4-1
memory pinning services, 4-3
Micro Channel

DMA bus master operations, 2-27
I/O address segments for, 2-16
kinds of I/O spaces for, 2-16
programmed I/O for, 2-20

Micro Channel adapters, displaying registers,
15-73

minor number, 1-3
minor numbers, 6-13
mount helper, 10-17
MP efficient code, 5-14
MP–safe interrupt handling, 3-13
multiprocessing serialization, 5-8
multiprocessor environment, tty, 11-20
multiprocessor interrupt concerns, 3-13

N
nd_add_filter function, 13-13
nd_add_status function, 13-14
nd_del_filter function, 13-14
nd_del_status function, 13-15
nd_receive function, 13-11, 13-16
nd_response function, 13-16
nd_status function, 13-12, 13-16
ndd_close entry point, 13-6
ndd_ctl entry point, 13-9
ndd_open entry point, 13-5
ndd_output entry point, 13-7

X-6 AIX Version 4.1 Writing a Device Driver

net_error kernel service, 13-36
network, interface from protocol, 14-13
network address translation to hardware address,

13-28
network device driver, 13-2

changes, 13-2
initialization and termination, 13-2

network interface driver
basic functions, 13-21
changes, 13-21
communicating with the device handler, 13-27
communicating with the IP, 13-24
configuration method for, 13-37
configuration methods, 13-37
data structures, 13-33
debugging, 13-36
initializing, 13-21
ioctl calls, 13-29
loading, 13-21
outgoing packets, 13-24
output data, 13-27
purpose, 13-21
terminating, 13-32
tracing, 13-36
translating network addresses to hardware

addresses, 13-28
network interface driver data structures, 13-33

arpcom structure, 13-33
arpreq structure, 13-36
arptab structure, 13-35
ifaddr structure, 13-35
ifnet structure, 13-22, 13-24, 13-29, 13-33
ifreq structure, 13-35
mbuf structure, 13-25
sockaddr structure, 13-27
xx_softc structure, 13-33

network interface drivers
debugging, 13-36
tracing, 13-36

network interfaces, 14-1
network protocols, 14-1

socket, writing or porting, 14-8
streams, writing or porting, 14-3

network to protocol interface, 14-15
NID Data Structure Relationships, 13-33
nls module, 11-1
nm command, 15-63
ns_add_filter, 13-17

sample DLPI call to, 13-20
ns_add_status, 13-18
ns_alloc, sample call to, 13-20
ns_attech kernel service, 13-11
ns_del_filter, 13-18
ns_del_status, 13-18
ns_detach kernel service, 13-11

O
object classes

CuDep, 12-14
GAI, 12-14
PdAt, 12-13
PdDv, 12-13
purpose of each, 6-3

Object Data Manager, 1-9
object files, pinning, 1-24
ODM configuration databases, 6-3
odmadd command, 10-20
odmdelete command, 10-20
open and close entry points, 1-11
outgoing packets, network interface driver, 13-24
output data, network interface driver, 13-27

P
page address translation, 2-3
paging, compared with pinning, 1-2
parent, configuring devices with no, 6-7
PCI bus configuration, 6-8
PCMCIA device drivers, PM-aware, 16-14
PCMCIA devices, interrupts, 3-14
PCMCIA systems, configuration of devices on, 6-9
PdAt object class, 12-13
PdDv object class, 12-13
performance tracing. See tracing
phys_displays structure, 12-32
Physical Volume Identifier. See PVID
pin kernel service, 4-3, 8-13, 9-9
pincode kernel service, 4-4, 8-13, 8-15, 9-9, 9-11
pinning, device driver object files, 1-24
pinning code and data, 1-2
pinu kernel service, 4-4, 8-13, 9-9
pm-aware device driver, pseudo code, 16-10
power management

device driver operations, pm core versus
pm-aware, 16-2

device drivers. See kernel debugger
preempting, device drivers subject to, 1-2
presentation space, 12-24

height, 12-25
width, 12-25

priorities, interrupt, 3-4
programmed I/O

error recovery considerations, 2-22
for Micro Channel, 2-20

protocol, interface from network, 14-15
protocol address resolution, 14-5
protocol interfaces via DLPI, 14-2
protocol to network interface, 14-13
protocol to socket interface, 14-12
PVID (Physical Volume Identifier), 8-17, 9-13

R
raw I/O. See character I/O
read entry point, 1-11
real time, device drivers required to execute in, 1-1
real–time timers, 5-4

S
sample code, trace format file, 15-102
sample device driver, 1-15
samples

call–side routine to set up DMA master
transfers, 2-34

cross–memory services, 4-11
DLPI call to ns_add_filter, 13-20
ifnet structure, 13-34

X-7Index

input device load module, 12-59
ioctl routine of network interface driver, 13-30
loading and initializing network interface driver,

13-22
mapping multicast address in NID, 13-32
MP safe code, 5-12
network device driver configuration, 13-3
ns_add_filter fragment, 13-17
output routine for network interface driver,

13-26
socket protocol, 14-17
socket receive buffer, adding data to, 14-13
virtual memory management services, 4-10
xmemdma kernel service, 4-12

sc_buf structure, 8-2–8-4
sc_card_diag structure, 8-11
sc_inquiry structure, 8-7, 8-8
SCSI adapter device driver, 8-1
SCSI adapter device driver routines

See also SCSI device driver routines
close, 8-5
config, 8-5
ioctl, 8-6
open, 8-5
openx, 8-5
strategy, 8-5

SCSI adapter ioctl operations
IOCINFO, 8-6
SCIODIAG, 8-11
SCIODNLD, 8-12
SCIOHALT, 8-10
SCIOINQU, 8-7
SCIORESET, 8-10
SCIOSTART, 8-7
SCIOSTOP, 8-7
SCIOSTUNIT, 8-8
SCIOTRAM, 8-11
SCIOTUR, 8-9

SCSI configuration methods, 8-19
SCSI device attributes, 8-19
SCSI device driver, 8-1
SCSI device driver routines

See also SCSI adapter device driver routines
close, 8-15
config, 8-14
dump, 8-16
ioctl, 8-14
open, 8-15
read, 8-15
strategy, 8-16
write, 8-15

SCSI device driver structure
bottom half routines, 8-13
top half routines, 8-13

SCSI Subsystem, 1-25
SCSI subsystem components

SCSI adapter device driver, 8-1
SCSI device driver, 8-1

segment register contents, 2-2
Segmented Virtual Memory, 2-2
selnotify kernel service, 1-13
serialization, 5-1

for Streams modules and drivers, 14-5
serialization services, 5-8

service times, interrupt guidelines, 3-4
setmaps command, 11-1
shared data

read operations, 2-32
write operations, 2-32

simple locks, 5-9
slattach command, 11-13
slip line discipline, 11-12
sliplogin command, 11-13
sockaddr structure, 13-27
socket network protocols, writing or porting, 14-8
socket protocol

interfaces to support, 14-9
sample, 14-17

socket protocols
initializing, 14-8
loading, 14-9

socket receive buffer, sample adding data to, 14-13
source addresses, DLPI interpretation, 14-4
special files

creating major numbers, 6-13
creating minor numbers, 6-14
releasing major numbers, 6-14
releasing minor numbers, 6-14

sptr line discipline, 11-11
states, of devices, 6-2
str_install utility, 11-13, 11-21
strategy entry point, 1-12
stream head, 11-3
streams, serialization and locking options, 14-5
STREAMS device driver, 1-7
STREAMS Driver Entry Points, 1-14
STREAMS driver routines

write–side put, 1-15
write–side service or read–side service, 1-15

STREAMS entry points, 1-14
STREAMS loading convention, 14-5
streams network protocols, writing or porting, 14-3
streams user interfaces, 14-1
STREAMS–based tty, 11-1
structures

arpcom, 13-33
arpreq, 13-36
arptab, 13-35
ataide_buf, 9-2–9-3
buf, 7-3, 7-4, 8-2, 8-13, 8-16, 9-2, 9-9
cfg_dd, 8-14, 9-10
devinfo, 8-6, 9-5
font_data, 12-31
gfs, 10-2, 10-5
gnode, 10-7
ide_inquiry, 9-6
ide_ready, 9-7
ide_startunit, 9-7
identify_device, 9-6
ifaddr, 13-35
ifnet, 13-22, 13-24, 13-29, 13-33
ifreq, 13-35
mbuf, 13-25
phys_displays, 12-32
sc_buf, 8-2–8-4
sc_card_diag, 8-11
sc_inquiry, 8-7, 8-8
sockaddr, 13-27

X-8 AIX Version 4.1 Writing a Device Driver

tioc_reply, 11-5
uio, 8-14, 8-15, 9-10, 9-11
vfs, 10-2, 10-5
vfsops, 10-2, 10-3, 10-5
vmount, 10-3, 10-17
vnode, 10-6
vnodeops, 10-2, 10-3, 10-5
vtt_box_rc_parms, 12-30
vtt_cp_parms, 12-30
vtt_rc_parms, 12-30
xx_softc, 13-33

subroutines, sysconfig, 8-14, 9-10, 10-2, 10-18,
12-15, 13-37, 15-69

synchronization, 5-1
synchronous routines, contrasted with

asynchronous, 1-1
sysconfig subroutine, 8-14, 9-10, 10-2, 10-18,

12-15, 13-37, 15-69
sysdumpdev command, 15-1
sysdumpstart command, 15-1
system dump, 15-1

formatting, 15-4
including device driver information, 15-2
initiating, 15-1

system dump components
component dump table, 15-2
master dump table, 15-2

T
termination, network device driver, 13-2
timeout utility, 11-21
timer services, 5-2
timers

real–time, 5-4
watchdog, 5-2

tioc module, 11-4
tioc_reply structure, 11-5
TLI addresses, 14-4
TLI interface protocol, 14-6
trace command, 13-36, 15-88
trace events

defining, 15-95–15-109
event IDs, 15-97–15-109

determining location of, 15-97–15-109
format file example, 15-102–15-109
format file stanzas, 15-98–15-109
forms, 15-95–15-109
macros, 15-96–15-109

trace report
filtering, 15-111–15-112
producing, 15-93–15-95
reading, 15-110–15-112

tracing, 15-86–15-112
configuring, 15-88
controlling, 15-90–15-92
for network interface drivers, 13-36
starting, 15-87, 15-88

translating, addresses, 2-1
transparent ioctl, 11-4
trcrpt command, 15-88, 15-93
trcstop command, 13-36
tty drivers, 11-13
tty ioctls, 11-22

tty line disciplines
ldterm, 11-6
slip, 11-12
sptr, 11-11

tty multiprocessor environment, 11-20
tty open disciplines, 11-15
tty pacing disciplines, 11-17
tty stream head, 11-3
tty subsystem, 11-1
types of device drivers, 1-5

U
uc_sjis module, 11-1
uio structure, 8-14, 8-15, 9-10, 9-11
uiomove kernel service, 4-5, 10-14, 12-15, 12-16
unconfigure methods, 6-6
undefine methods, 6-6
uniprocessor serialization, 5-8
unpin kernel service, 4-4
unpincode kernel service, 4-4
unpinu kernel service, 4-4
user software compared with device driver, 1-1

V
vfs structure, 10-2, 10-5
vfsops structure, 10-2, 10-3, 10-5
vfsrele kernel service, 10-11, 10-12
virtual display driver, debugging, 12-61
virtual display driver routines

device specific routines, 12-19
activate, 12-19
clear rectangle, 12-21
copy full lines, 12-20
copy line segment, 12-22
deactivate, 12-23
define cursor, 12-23
draw text, 12-27
initialize, 12-24
move cursor, 12-26
scroll, 12-26
terminate, 12-27

display device driver routines, 12-15
close, 12-17
configure, 12-15
interrupt handling, 12-18
ioctl, 12-18
open, 12-16

virtual file system
components, 10-8
configuration, 10-18
creating kernel extensions, 10-9
definition of terms, 10-20
file system helper, 10-16
installing, 10-19
loading, 10-19
mount helper, 10-17

virtual file system data structures, 10-3
gfs structure, 10-2, 10-5
gnode structure, 10-7
relationship between, 10-3
vfs structure, 10-2, 10-5
vmount, 10-3, 10-17

X-9Index

vnode structure, 10-6
virtual file system entry points

config, 10-9
init, 10-10
rootinit, 10-10

virtual file system operations
See also vnode operations
vfs_cntl, 10-11
vfs_mount, 10-10
vfs_root, 10-11
vfs_statfs, 10-11
vfs_sync, 10-11
vfs_unmount, 10-11
vfs_vget, 10-11

virtual memory management services, 4-6
virtual memory operations, 10-15
vm_cflush kernel service, 4-8
vm_det kernel service, 4-8
vm_mount kernel service, 4-8, 10-9
vm_move kernel service, 4-9
vm_release kernel service, 4-10
vm_releasep kernel service, 4-10
vm_umount kernel service, 4-8
vm_write kernel service, 4-9
vm_writep kernel service, 4-9
vmount structure, 10-3, 10-17
vms_att kernel service, 4-8
vms_create kernel service, 4-8, 10-15
vms_delete kernel service, 4-8
vms_handle kernel service, 4-8
vms_iowait kernel service, 4-9
vn_free kernel service, 10-6
vn_get kernel service, 10-6, 10-7

vnode operations
vn_close, 10-13
vn_getattr, 10-12
vn_hold, 10-12
vn_lookup, 10-14
vn_open, 10-13
vn_rdwr, 10-14
vn_readdir, 10-14
vn_rele, 10-12
vn_strategy, 10-13

vnode structure, 10-6
vnodeops structure, 10-2, 10-3, 10-5
vtt_box_rc_parms structure, 12-30
vtt_cp_parms structure, 12-30
vtt_rc_parms structure, 12-30

W
watchdog timers, 5-2
write entry point, 1-11
write–side or read–side service routine in

STREAMS driver, 1-15
write–side put routine in STREAMS driver, 1-15

X
xmalloc kernel service, 4-1
xmattach kernel service, 4-11
xmdetach kernel service, 4-12
xmemdma kernel service, 4-12
xmemin kernel service, 4-12
xmemout kernel service, 4-12
xmfree kernel service, 4-3
XTI addresses, 14-4
XTI interface protocol, 14-6

X-10 AIX Version 4.1 Writing a Device Driver

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull DPX/20 Writing a Device Driver

Nº Reférence / Reference Nº : 86 A2 29WG 04 Daté / Dated : November 1995

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement

Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.

If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL S.A. CEDOC

Atelier de Reproduction

FRAN–231

331 Avenue Patton BP 428

49005 ANGERS CEDEX

FRANCE

BULL S.A. CEDOC

Atelier de Reproduction

FRAN–231

331 Avenue Patton BP 428

49005 ANGERS CEDEX

FRANCE

86 A2 29WG 04

ORDER REFERENCE

P
L
A

C
E

 B
A

R
 C

O
D

E
 I

N
 L

O
W

E
R

L
E

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.

Use the cut marks to get the labels.

AIX

86 A2 29WG 04

Writing a Device
Driver

DPX/20

AIX

86 A2 29WG 04

Writing a Device
Driver

DPX/20

AIX

86 A2 29WG 04

Writing a Device
Driver

DPX/20

