
Bull DPX/20
Open Terminal Management (OTM)

CPI-C SS Bull Environment User’s Guide

AIX

86 A2 32PE 04

ORDER REFERENCE

Bull DPX/20
Open Terminal Management (OTM)

CPI-C SS Bull Environment User’s Guide

AIX

Software

April 1996

Bull Electronics Angers S.A.

CEDOC

Atelier de Reprographie

331 Avenue Patton

49004 ANGERS CEDEX 01

FRANCE

86 A2 32PE 04

ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States and other

countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and making

derivative works.

Copyright Bull S.A. 1992, 1996

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of

this book are invited. A form is provided at the end of this book for this purpose.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under

licence.

UNIX is a registered trademark in the USA and other countries licensed exclusively through X/Open.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors

contained herein, or for incidental or consequential damages in connection with the use of this material.

Preface iii

About this Book

This guide describes the Common Programming Interface for Communications Starter Set
(CPI-C SS) which is an Application Program Interface (API) that is used with Bull’s OTM
(Open Terminal Management) product.

Who Should Use this Book
Application programmers use CPI-C SS to develop applications that run on Bull UNIX
machines, and that work through Bull’s OTM product to extract information from Bull
mainframes running under the different GCOS operating systems.

The OTM Product
The OTM product covers the emulations necessary to connect Bull UNIX machines to other
Bull machines that use Bull’s GCOS proprietary operating systems as well as to IBM
machines through the Bull/IBM gateway.

The OTM Manual Set
1. OTM Administrator and User’s Guide, ref: 86 A2 31PE.

2. OTM TWS2107 Terminal Emulation User’s Guide, ref: 86 A2 33PE.

3. OTM VIP7800 Terminal Emulation User’s Guide, ref: 86 A2 34PE.

4. OTM CPI-C SS in Bull Environment User’s Guide (emulation tailoring for applications),
ref: 86 A2 32PE.

5. OTM and CPI-C SS Diagnostic Guide, Stack C, ref: 86 A7 52AJ.

6. The various Software Release Bulletins (SRB) delivered with each software release.

Software Requirements
OSI Stack layers.

The AIX Version 4.1 of UNIX.

The OTM product.

iv OTM CPI–C Starter Set in the Bull Environment

Organization of this Book
Chapter 1. Introduction

describes the CPI-C Starter Set.
Chapter 2. Using the CPI-C Starter Set

gives the procedures for using the CPI-C SS product with OTM.
Chapter 3. Variables, Functions and Verbs

describes these CPI-C Starter Set elements.
Appendix A Error Messages and Trace Facility

provides OTM error messages and return codes and their logging system.
Glossary
Index

Conventions
The generic term DPX is used throughout this guide, meaning by this DPX/20.

As OTM is available also on Bull DPX/2 systems, whenever the use of the generic term
DPX could be misleading or not precise enough, the complete name is used (DPX/20 or
DPX/2).

Prerequisite Publications
OSI Services Reference Manual (ref: 86 A2 05AQ)

vContents

Contents

Chapter 1. Introduction 1-1.

Summary 1-1.

User Visibility 1-1.

What It Is and What It Does 1-1.

What It Is 1-3.

What It Does 1-4.

Two Level Transaction Processing 1-4.

Configurations Using the CPI-C Starter Set 1-5.

Connection between DPX System and DPS 6000 1-5.

Connection between DPX System and DPS 7000 1-5.

Connection between DPX System and DPS 9000 System 1-6.

Connection between Two DPX Systems 1-7.

Connection between DPX System and IBM System 1-7.

License Control – iFor/LS 1-8.

Nodelocked License 1-8.

License Control Prerequisites 1-8.

CPI-C Starter Set License Control Implementation 1-8.

Chapter 2. Using the CPI-C Starter Set 2-1.

Summary 2-1.

General 2-1.

Tracing 2-1.

Verbs 2-1.

Mapped Type Conversation 2-1.

Transparent Mode 2-2.

Startup Procedure 2-3.

Examples of User Application 2-5.

First Example: DPX DPS x Connection 2-5.

Second Example: DPX DPX Connection 2-7.

Third Example: Incoming Connection from DPS 7000 2-8.

State Transition Tables 2-10.

Use of CPI-C Verbs in the COBOL MF Environment 2-12.

Use of CPI-C Verbs in C Environment 2-13.

Debugging 2-14.

Generating a CPI-C SS Trace 2-14.

Set Trace Level 2-14.

Run CPI-C SS Application 2-15.

Run scancpic Utility 2-15.

Run dumpcpic 2-16.

Trace Example 2-16.

vi OTM CPI–C Starter Set in the BULL Environment User’s Guide

Chapter 3. Variables, Functions and Verbs 3-1.

Summary 3-1.

General 3-1.

Variables 3-1.

api_msg or rdmessg Function 3-3.

retrieve_error Function 3-5.

CMACCP 3-6.

CMALLC 3-9.

CMDEAL 3-11.

CMINIT 3-13.

CMRCV 3-16.

CMSDT 3-20.

CMSED 3-22.

CMSEND 3-24.

CMSERR 3-26.

Appendix A. Error Messages, Return Codes and Trace A-1.

Summary A-1.

Error Messages A-1.

Legend A-1.

CPI-C Starter Set Configurator Messages A-1.

Return Codes A-4.

CPI-C SS Trace Facility A-5.

Trace Levels A-5.

Trace Settings A-6.

Glossary G-1.

Index X-1.

Introduction 1-1

Chapter 1. Introduction

Summary
– User Visibility, on page 1-1.

– What It Is and What It Does, on page 1-1.

– Two Level Transaction Processing, on page 1-4.

– Configurations Using the CPI-C Starter Set, on page 1-5.

– License Control – iFor/LS, on page 1-8.

User Visibility
CPI-C SS (Common Programming Interface - for Communications Starter Set) creates
applications to run through the Bull Open Terminal Management (OTM) product to extract
information from Bull and IBM mainframes. CPI-C SS configuration requires only a few
additional operations after OTM configuration. Terminal management is completely
performed by OTM. The remote system continues to see the other end of the connection as
a terminal. The current level of security of the host system is not modified.

On the local system, it is only necessary to define the characteristics of the conversations
and to administer the connections through a menu driven procedure.

CPI-C SS coexists with the functionality offered by the Terminal Manager. The terminal
operator and application on the local system can establish concurrent sessions with the
host.

CPI-C SS sees data in transparent mode; the user application on the local system is totally
responsible for the handling of incoming data from host applications which see the
correspondent application as a terminal. The data display is determined by the terminal type
defined in the configuration.

The data length is the value of the SSDU (Session Service Data Unit) supported by OTM.
The maximum value is 18 KB. The SSDU value depends on the application running on the
remote host. The header and terminator characters for the VIP protocol are not visible.

Security of file updating in case of abnormal termination is left to the application
programmer.

The CPI-C library maintains one conversation per application.

There is no limitation on the number of conversations that the library can maintain at the
same time. Limitations on this number may be imposed by limitations on lower layers (eg.
maximum number of ISO sessions).

What It Is and What It Does
CPI-C SS is an Application Program Interface (API) used by application programmers on
Bull UNIX machines to write programs to extract information from Bull mainframes running
under the GCOS operating systems and also from IBM mainframes through the Bull/IBM
gateway.

OTM CPI–C Starter Set in the BULL Environment User’s Guide1-2

GCOS World

CPI-C SS

Bull UNIX

OSI Stack

OTM

IBM

CPI-C Starter Set Develops Applications to Communicate with Bull GCOS Machines

Introduction 1-3

What It Is
The CPI-C interface is defined by the X/OPEN UNIX standards setting organization.

In the CPI-C syntax, each API function is called a ”VERB”. Each verb has a function name
starting with ”CM” – for example ”CMSEND” and ”CMRCV”. There are between 30 and 40
verbs in the complete X/OPEN CPI-C definition. However X/OPEN defines 6 of these verbs
as being ”basic”. This group of 6 verbs is called the ”Starter Set”.

The Starter Set functions defined by X/OPEN are:

Mnemonic Verb Name

Initialize_Conversation CMINIT

Allocate CMALLC

Accept_Conversation CMACCP

Send_Data CMSEND

Receive CMRCV

Deallocate CMDEAL

The CPI-C SS product implements all the above verbs, which is why it is called ”CPI-C
Starter Set”. The syntax and the parameters of each verb are as defined by X/OPEN.
However not all the options of each verb may be supported. For example it is not possible
to perform two consecutive calls to CMSEND, since CMSEND performs the same function
as ’TRANSMIT’ on a synchronous terminal and will cause the ”Token” to be given to the
remote application.

The CPI-C SS product also implements the following verbs, which are not part of the
”Starter Set” of CPI-C verbs, but which are defined by X/OPEN:

Mnemonic Verb Name

Set_Deallocate_Type CMSDT

Set_Error_Direction CMSED

Send_Error CMSERR

The CPI-C SS product also includes two diagnostic functions, not defined by X/OPEN and
thus not compatible with other CPI-C interfaces. These functions are:

api_msg(int keymesg, char *datafile)

This function generates a text message describing the return code generated by a CPI-C
SS function call. Thus when called with the values:

api_msg(1, ””);

it returns a pointer to the following text message:

”CM_ALLOCATE_FAILURE_NO_RETRY”

retrieve_error()

This function retrieves detailed diagnostic information from the service provider (OTM)
and uses this information to generate a text message. It takes no parameters.

An example of a message that might be generated by this function is:

”4644 2ltp load_conv: Entry TOTO not found in configuration file
 /usr/CPI-C/site.cnf”

OTM CPI–C Starter Set in the BULL Environment User’s Guide1-4

What It Does
Using CPI-C SS, an application programmer creates simple applications for extracting
information from the mainframes.

CPI-C SS creates programs using two level transaction processing. The application at one
end of the link (subordinate) is seen at the other end, by the TP (Transaction Processing)
system, as a normally supported terminal, sending and receiving messages.

The application running on the DPX system (subordinate) gains access to applications
running on GCOS 6, GCOS 7, GCOS 8, and IBM systems.

In order to support these connections, OTM must be installed, to provide terminal
management functions.

CPI-C SS is very closely linked to OTM. Thus many people using OTM will need to use
CPI-C SS at one time or another.

The ”service provider” used by CPI-C SS is OTM. OTM uses the OSI stack to communicate
with BULL DPS Mainframes and Minicomputers, IBM Mainframes, and with BULL UNIX
Computers. OTM uses the services offered by the Session layer in the OSI stack.

Since the service provider used by CPI-C SS is OTM, the services offered to the application
program are ”Terminal–orientated”. The remote application on the remote machine is never
able to know whether it is dialoguing with a real physical terminal, or with an application
program.

Two Level Transaction Processing
CPI-C SS applications function using ”Two Level Transaction Processing”. Sometimes you
may see 2LTP or 2L–TP. 2LTP was at one time the name of the CPI-C SS product. This
was due to the fact that the CPI-C SS application is always seen as a terminal. In a
host–terminal situation, the two ends of the connections are not considered ”equal”. The
application running on the host is considered to be the ”Master” of the dialogue, while the
terminal is considered the slave. In addition the Host application has some ”rights” that the
terminal does not have, for example the use of the token, requests to close the connection,
etc..

Thus when a CPI-C SS application is communicating with an application on a host, it is said
that the application is ”Two Level”, because one application does not have as many ”rights”
as the other.

Introduction 1-5

Configurations Using the CPI-C Starter Set
Examples of possible configurations follow.

Connection between DPX System and DPS 6000
The DPX application is always the initiator of the conversation with the application running
under the GCOS 6 TP (for example, DMVITP or TPS6 or DTF or ECL) control.

User Application

UNIX GCOS 6
PID

CPI–C S.S.

OTM

OSI Stack

User Transaction

GCOS 6 TP

DPX
Datanet

DPS6000

Connection between DPX System and DPS 7000
The DPX application is always the initiator of the conversation with the application running
under the GCOS 7 TP (for example TDS or IOF) control.

User Application

UNIX GCOS 7
PID

CPI–C S.S.

OTM

OSI Stack

User Transaction

TDS

DPX
Datanet

DPS 7000

OTM CPI–C Starter Set in the BULL Environment User’s Guide1-6

Connection between DPX System and DPS 9000 System
The DPX application is always the initiator of the conversation with the application running
under TP8 (via CXI) or TS8 or TSS or DMIVTP control.

User Application

UNIX GCOS8

GATEWAY

CPI–C S.S.

OTM

OSI Stack

User Transaction
TP8 (via CXI)

DAC_Q or DAC
PID

TRANSACTION QUEUER
MDNET/MROUT

DPX
Datanet

DPS9000

User Application

UNIX GCOS8

GATEWAY

CPI–C S.S.

OTM

OSI Stack

User Transaction

DAC_Q or DAC
PID

D M I V T P

MDNET/MROUT

DPX
Datanet

DPS9000

Introduction 1-7

Connection between Two DPX Systems

User Application

UNIX

CPI–C S.S.

OTM

OSI Stack

User Application

UNIX

CPI–C S.S.

OTM

OSI Stack

DPX DPX

The connection between two DPX systems may also take place via a DataNet.

Connection between DPX System and IBM System

User Application

UNIX CICS

CPI–C S.S.

OTM

OSI Stack

VTAM

Applications

DPX
Datanet

IBM

OSF

OTM CPI–C Starter Set in the BULL Environment User’s Guide1-8

License Control – iFor/LS
The Network Licensing System uses encrypted licenses, to manage software products to
maintain compliance with terms of licensing agreements.

Nodelocked License
The Licensing model used with CPI-C Starter Set is ”nodelocked”.

Nodelocking (also known as CPU locking) is a licensing mechanism requiring each node
(workstation) on which the licensed software operates to obtain an authorised license for its
unique System ID.

License Control Prerequisites
The prerequisites which apply to the licenses are derived from functional prerequisites.

To use CPI-C Starter Set it is mandatory to have previously installed OTM and OSI Stack
upper and lower layers (osi_frame, osi_low, osi_high) and therefore the associated licenses.

CPI-C Starter Set License Control Implementation
CPI-C Starter Set needs a license in nodelocked mode to work.

When CPI-C Starter Set license is absent or expired, the connections to OTM through
CPI-C are refused. For incoming connections, a CM_ALLOCATE_FAILURE_NO_RETRY is
returned by the CMACCP verb.

In addition, the ”4697 2ltp Accept_C: CPI-C Starter Set license not available.” is written in
the ”/tmp/api.trc” file.

For outgoing connections, a CM_ALLOCATE_FAILURE_NO_RETRY is returned by the
CMINIT verb.

In addition, the ”4698 2ltp Initiate_C: CPI-C Starter Set license not available.” is written in
the ”/tmp/api.trc” file.

The current connections are not affected by the expiration of the CPI-C Starter Set license.

The absence of OTM license will lock the OTM daemon and so all TM-USERS new
connections will be rejected.

The absence of the OSI layers licenses will lock the top and bottom sub–components of
the OSI layers: session, transport, LLC and X25.3 mapper.

Using the CPI-C Starter Set 2-1

Chapter 2. Using the CPI-C Starter Set

Summary
– Debugging, on page 2-14.

General
The CPI-C SS programming interface is based on a subset of X/Open CPI-C/OSI primitives
set.

It is available in the libotmapi.a library, under the /usr/lib directory.

Under the /usr/include directory, there are two header files: CPI-C.h for the C language,
and CPI–H for the Cobol language.

Applications written using these libraries, are able to maintain a conversation with user
applications running on the remote system.

Tracing
These libraries provide tracing capabilities to help the user for application debugging. A
quick test procedure, using library verbs one by one, is provided to help the application
programmer test the connections. See Chapter 3, ”Quick Test Procedure” in the OTM
Administrator’s and User’s Guide.

Verbs
COBOL 85 (MICROFOCUS COBOL II) and C programs can invoke the CPI-C verbs. The
verb syntax, parameters, functionning and return codes are in accordance with X/Open
specifications.

The implemented CPI-C verbs are:

CMINIT – initialize conversation

CMALLC – allocate

CMACCP – accept conversation

CMSEND – send data

CMSED – set error direction

CMRCV – receive information

CMSERR – send error

CMSDT – set deallocate type

CMDEAL – deallocate

Mapped Type Conversation
The mapped conversation behavior is used. In this way programs can exchange data
records with a data format defined by the application programmers; data is transmitted in a
transparent way, and the presentation rules of the data stream are honored in relation to the
terminal type.

OTM CPI–C Starter Set in BULL Environment User’s Guide2-2

Transparent Mode
The Transparent Mode is used to decompose a function into its elemental parts (bypassing
the CPI-C rules).

The Transparent Mode is enabled by setting the environment variable

API_MODE = TRANSPARENT.

The CMALLC can be decomposed into the following steps:

• connect request

• connect confirm

The connection state can be Receive or Send depending on the application being called.

During a debugging phase, Transparent Mode is used to analyze the error that occurred.

Using the CPI-C Starter Set 2-3

Startup Procedure
The login procedure can be modified by the user.

A file containing login data, which are to be sent to the remote system, is provided to
perform the login procedure in NON TRANSPARENT mode. The file name is specified in
the environment variable AUT_LOG_FILE. If the variable does not exist the automatic login
procedure is performed.

This file is created with the cpic_startup command. The user is prompted to enter the
values of the different parameters. The user then enters the name of the created file in the
AUT_LOG_FILE variable with this command:

export AUT_LOG_FILE=$HOME/file_name

The file contains two commands:

1. Send Data

2. Receive Data (and check if send has been completed successfully)

It has the following structure:

R%*

S%1<user name>

R%*

S%2<user password)

R%*

S%3<project>

R%*

S%4<billing>

R%*

More than one Send Data command can be specified in this file.

A Send Data command must always be followed by a Receive Data command.

The Send Data command has the following format:

<cmd>%1<data>%2<data>%3<data>%4<data>

<cmd> is the command name Send Data (S)

%1–%4 identify the arguments of the command. A maximum of 4 arguments can be
specified. If present each identifier contains the following:

%1 = user name

%2 = user password

%3 = project

%4 = billing

These arguments are in the file: site.cnf

<data> is a sequence of characters to be sent to the remote system to perform the login
procedure.

Special characters can be specified. For example \c \ n \ t \ v \ b.

The Receive Data command checks if the Send Data command has been completed
successfully, that is, if the login procedure has been performed and the prompt string has
been returned.

OTM CPI–C Starter Set in BULL Environment User’s Guide2-4

The format is the following:

<cmd><data>

<cmd> is the command name Receive Data (R)

<data> is a sequence of characters, usually the system prompt, that the system has to
display after the login procedure has been performed. This string of characters is used to
check the answer from the remote system. If the answer contains the specified string the S
command has been completed successfully. If the answer does not contain the specified
string the S command failed: CM_ALLOCATE_FAILURE_NO_RETRY will be returned to the
application.

If <data> = %* no check is performed on data that are to be received.

Special characters can be specified, for example \c, \n, \t, \b, \v.

After the execution of the commands contained in the file the user application must be in
SEND state. This condition occurs if the last executed command is a Receive command. If
the last executed command is not a Receive command, this message is returned to the
application: CM_ALLOCATE_FAILURE_NO_RETRY.

Note: The API_MODE environment variable must be undefined in order to use NON
TRANSPARENT mode, which is the default mode in CPI-C SS.

Using the CPI-C Starter Set 2-5

Examples of User Application
To exchange data (to synchronize) between an application running on DPX and an
application running on GCOS x or DPX host or IBM host, the dialog must be performed as
explained in the following examples.

Data exchanging means to send commands to be executed to the correspondent and to
receive an answer from the correspondent about the executed commands.

First Example: DPX DPS x Connection
In this example the CPI-C Starter Set program plays the role of a terminal (screen)
application.

The behavior of the remote system GCOS x, when the CPI-C commands in the local
application are executed, is explained in the following table:

Local Application GCOS 8 Behavior

To initialize the conversation characteristics,
CMINIT must be called into the local ap-
plication. A conversation–ID is returned by
CMINIT.

To establish the conversation connection,
CMALLC must be invoked with the con-
versation–ID assigned by CMINIT.

After executing the CMALLC, a Connect
Indication is received by the GCOS 8 sys-
tem. A Connect Confirm must be returned
to the local application.

For GCOS 8, data (first selection form) is
sent to the local application and the turn is
given to the local application.

For GCOS 8, data (login key request) must
be sent to the local application and the turn
is given. The local application returns login
parameter (user$password) to the GCOS 8
and turn is given to the GCOS 8. GCOS 8
sends the first selection form to the local
application and turn is given to the local ap-
plication.

After executing the CMALLC, the conversa-
tion is established, the local application is in
send state. A CMSEND, used to send the
request of TP (typically a command), must
be executed. The local application is in re-
ceive state.

Data (the command) is received by the
GCOS 8 system and turn is given to GCOS
8. The system executes the command and
it sends the result to the local application.
The TP form (the result) is returned to the
local application.

OTM CPI–C Starter Set in BULL Environment User’s Guide2-6

After the CMSEND the state is receive.

The local application must invoke a CMRCV
to wait for incoming event (the result) that is
already present. The local application is in
send state.

Many CMRCVs are necessary as the data
length to be received from GCOS 8.

GCOS 8 returns to the local application the
result of the executed command and after
the result GCOS 8 sends the turn to the lo-
cal application.

A CMSEND must be invoked to send TP
input data

Data are received by the system and turn is
given to the local application. The form is
returned to the local application.

The local application must invoke a CMRCV
to wait for incoming event that is already
present. The local application is in send
state.

A CMSEND must be invoked to send logoff
key.

A CMRCV must be called to wait for incom-
ing event.

Data are received by the system and turn is
given. A session release request is sent to
the local application. A session release con-
firm is received by the system.

The session release request is received by
the local application and a return code
CM_DEALLOCATED_NORMAL means that
the conversation is deallocated.

The programming schema between the DPX applications and the GCOS x remote system
can be the following:

Local Application on DPX GCOS 8 Behavior

.

CMINIT

.

CMALLC GCOS 8
receive connect indication
send connect confirm
send login key + turn
receive user$password + turn
send selection form + turn

.

CMSEND receive data + turn

CMRCV send the TP form

 .

CMRCV send the TP form + turn

CMSEND receive data + turn

Using the CPI-C Starter Set 2-7

CMRCV send the form

CMSEND logoff key receive data + turn

CMRCV send session release request

rc = CM_DEALLOCATED_NORMAL receive session release confirm

. exit

The host application must accept a login string in the format user $ password. Otherwise
the login sequence must be provided by the 2LTP application (using a CMSEND).

Second Example: DPX DPX Connection
In this example the CPI-C Starter Set program plays the role of a terminal (screen)
application.

The behaviour of the remote system DPX, when the CPI-C commands in the local
application are executed, is explained in the following table. The environment variable send
type is set to SEND AND PREP TO RECEIVE.

Local Application Remote Application

To initialize the conversation characteristics,
CMINIT must be called by the local applica-
tion. A conversation–ID is returned by CMI-
NIT.

To accept an incoming conversation request
CMACCP must be called by the remote ap-
plication, that is waiting for remote con-
versation requests.

To establish the conversation connection,
CMALLC must be invoked with the con-
versation ID assigned by CMINIT.

After CMACCP has been completed suc-
cessfully a conversation-ID is returned to
the remote application.

After executing the CMALLC, the conversa-
tion is established, the local application is in
SEND state. The remote application is in
RECEIVE state.

A CMSEND, used to send data to corre-
spond, must be executed

The remote application must invoke a
CMRCV to wait for incoming event that is
already present. The local application is in
Receive state and the remote application is
in Send state.

A CMSEND must be invoked to send data
to correspond.

The local application must invoke a CMRCV
to wait for incoming event that is already
present. The local application is in Send
state and the remote application is in Re-
ceive state.

A CMRCV must be called to wait for incom-
ing event.

A CMSEND must be invoked to send data.

OTM CPI–C Starter Set in BULL Environment User’s Guide2-8

Data are received by the remote application
that is in Send state. The local application is
in Receive state.

The local application executes a CMRCV to
wait for incoming event.

The remote application executes a
CMDEAL to communicate the end of the
conversation.

The local application receives a return code
CM_DEALLOCATED_NORMAL meaning
that the conversation is deallocated.

The programming schema between two CPI-C applications running on two DPX systems
can be the following:

Local Application on DPX Remote Application on DPX

.

.

.

CMINIT

CMACCP

CMALLC

CMSEND

CMRCV

CMSEND

CMRCV

CMRCV

CMSEND

CMRCV

CMDEAL

rc = CM_DEALLOCATED_NORMAL

Third Example: Incoming Connection from DPS 7000
In this example the CPI-C Starter Set program plays the role of a terminal (printer)
application.

Perform the following:

1. Create the remote site to be accessed using smit.

For example:

Site Name remsite

Remote DSA Site PH79

2. Create the session user using smit.

For example:

Remote Session User dst8

Site Name remsite

Mailbox DST8

Using the CPI-C Starter Set 2-9

3. Create the Symbolic Destination name using smit.

For example:

Symbolic Destination name PRDST8

Terminal Type VIP7800N

Remote Session User dst8

4. Set the API_TERM_NAME variable as follows:

API_TERM_NAME=PRDST8; export API_TERM_NAME

5. Create a CPI-C Starter Set program as follows:

CMACCP the program is waiting for data from DPS 7000

CMRCV the program is in receive state. (Note that the state of the program
depends on the host sending data). The program receive data and when
CMRCV finished receiving data it exits with STATUS RECEIVED

CMSEND the CPI-C Starter Set program sends the token; This confirms to the
DPS 7000 that the program received data and then closes the
connection

6. Launch the CPI-C Starter Set program.

7. To verify that OTM opened a connection (DST8), launch inftms. The connection is
waiting for incoming data.

8. Connect to the DPS 7000 host (using a CPI-C Starter Set program or a tmcall) and
create a report with destination DST8 (configured on the DPS 7000 as remote printer).

9. The report is managed by the CPI-C program: It can be stored on file or it can be sent to
the printer or filtered by an user program.

OTM CPI–C Starter Set in BULL Environment User’s Guide2-10

State Transition Tables
During the execution phase, the local application changes its state each time a CPI-C call is
issued. Each CPI-C call causes the local application to change from a certain state A to
another state B. If the local application is not in the proper state when the CPI-C routine is
invoked, a return code indicates the error that occurred. If an error is detected, the state
transition does not occur.

For each state, the figure illustrates the behaviour of each CPI-C function.

RESET

INIT

SEND

RECV

CMALLC[OK]

CMDEAL(A)[OK]

CMALLC[AE]

CMINIT[OK]

CMDEAL(A)[OK]

CMSEND[DA]

CMSEND[EP]

CMSEND[RF]

CMRCV(W)[DA]

CMRCV(W)[DN]

CMRCV(W)[RF]

CMRCV(W)[OK] {ND,SE}

CMRCV(W)[OK] {DR,SE}

CMSERR[OK]

CMSEND[OK]

CMRCV(W)[OK] {DR,NO}

CMDEAL(A)[OK]

CMRCV(W)[DA]

CMRCV(W)[DN]

CMRCV(W)[RF]
CMACCP[OK]

CMSERR[OK]

Note that initial state is ”RESET”

Error ”CM_PROGRAM_PARAMETER_CHECK” does not change state in any case.

Error ”CM_PROGRAM_STATE_CHECK” is returned if action cannot be performed in
current state.

Using the CPI-C Starter Set 2-11

The symbols enclosed in round brackets indicate a conversation characteristic. The
symbols enclosed in square brackets indicate a return code. The symbols enclosed in curly
brackets indicate the value of the parameters data received and status received. The
symbols have the following meaning:

A deallocate_type = CM_DEALLOCATE_ABEND

W receive_type = CM_RECEIVE_AND_WAIT RS

RS receive_type = CM_REQUEST_TO_SEND_RECEIVED AE

AE CM_ALLOCATE_FAILURE_NO_RETRY DA

DA CM_DEALLOCATE_ABEND DN

DN CM_DEALLOCATE_NORMAL EN

EN CM_PROGRAM_ERROR_NO_TRUNC EP

EP CM_PROGRAM_ERROR_PURGING PE

PE CM_PARAMETER_ERROR PC

PC CM_PARAMETER_CHECK RF

RF CM_RESOURCE_FAILURE_NO_RETRY DR

DR CM_COMPLETE_DATA_RECEIVED ND

ND CM_NO_DATA_RECEIVED NO

NO CM_NO_STATUS_RECEIVED SE

SE CM_SEND_RECEIVED

Suppose that the local application is in Send state (SEND). A CMRCV is issued and
receive_type is set to CM_RECEIVE_AND_WAIT. After the CMRCV execution the following
situations can occur:

• if a return_code = CM_DEALLOCATE_ABEND

– or a return_code = CM_DEALLOCATE_NORMAL

– or a return_code = CM_RESOURCE_FAILURE_NO_RETRY

– is returned the local application enters Reset state (RESET).

• if a return_code = CM_PARAMETER_CHECK is returned the local application does not
change state

Suppose that the local application is in Initialize state (INIT.). A CMDEAL is issued. The
following situations can occur:

• If deallocate_type is set to CM_DEALLOCATE_ABEND, after the CMDEAL execution the
local application enters Reset state and a return_code = OK is returned.

• If deallocate_type is set to CM_DEALLOCATE_ABEND, after the CMDEAL execution the
local application does not change state and a return_code = CM_PARAMETER_CHECK
is returned.

OTM CPI–C Starter Set in BULL Environment User’s Guide2-12

Use of CPI-C Verbs in the COBOL MF Environment
Micro Focus COBOL is composed of four principal topics: COMPILER, NATIVE CODE
GENERATOR, RUN TIME SYSTEM (RTS), LINKER. CPI-C verbs that are used in user
applications, are in the libotmapi.a library. In this environment, two executions mode for
cobol programs are allowed; they can be statically linked (applications) or dynamically
called.

These verbs can be used both for statically linked programs and dynamically called
programs. In both cases the execution environment must be created.

For statically linked programs, it is sufficient to link RTS, CPI-C library and the application
program to obtain the object. For example:

cob –x prgname.cbl –o exname –L/pathname –llibname

This command produces an ”Object File Format” (OFF), that can be executed entering:

exname

For dynamically called programs, it is necessary to link to the RTS environment the part of
the CPI-C library involved with the application program, to obtain the object. To correctly link
RTS and the CPI-C library functions involved with the program, CCPSTID.o object is
provided.

For example:

cob –xe ”” /usr/CPI-C/CCPSTID.o –L /usr/lib \

–lotmapi –o rts32

where rts32 is the name of the standard RTS provided by MicroFocus.

After this command has been executed, an extended RTS that includes CPI-C verbs is
generated.

rts32 must be under the directory specified by the environment variable COBDIR and
replaces the old rts32 .

The command cobrun executes the user application program, (See the COBOL/2 MF
Operating Guide), and calls rts32 .

Programs are executed under RTS control. RTS can dynamically call the .int files
(Intermediate Code File generated by the COMPILER) or the .gnt files (Generate Native
Code produced by NATIVE CODE GENERATOR).

To execute subprograms written in non–COBOL languages (e.g. C) with the COBOL verb
call , it is necessary to link such subprograms to the RTS or to the COBOL application.

The command that generates an extended RTS or an application, is:

cob [options] filename ...

where filename is one or more files having the extension:

.cbl (or .CBL or .cob), .int .gnt .c .o .a .s

The execution of the cob command produces an end–point which may be:

.gnt ”dynamic load” mode execution (-u option)

.int ”dynamic load” mode execution (-i option)

a statically linked module, type OFF (-x option)

(See COBOL/2 MF Operating Guide Chapter 9).

The endpoint .gnt that uses the CPI-C verbs, is executed under the new RTS.

Using the CPI-C Starter Set 2-13

The extended Run Time System can be assigned an other name chosen by the user. For
example:

cob –xe ”” /usr/CPI-C/CCPSTID.o –L /usr/lib \

–lotmapi –o rts32

The user application program that uses CPI-C verbs is myprog.cbl. To compile myprog.cbl
and to obtain a .gnt file, use the command:

cob –u myprog.cbl

To execute the user application program:

myrts myprog

Use of CPI-C Verbs in C Environment
CPI-C verbs that are used in user applications are in the libotmapi.a library. To generate an
object file perform the following:

cc –O –I/usr/mydir cpicpgm.c –o cpic –bI:/usr/lib/libotmapi.exp

Where:

I/usr/mydir is a private include directory.

bI:/usr/lib/libotmapi.exp is the export file for the shared library /usr/lib/libotmapi.a .

No other OTM library must be included because libotmapi.a automatically calls libtmpi.a
and libmef.a.

OTM CPI–C Starter Set in BULL Environment User’s Guide2-14

Debugging
Since CPI-C SS uses OTM, debugging a CPI-C SS application often means debugging an
OTM problem.

CPI-C SS is simple to debug. There is a function that sends a message from OTM which
describes exactly ”why” the last error occurred. Also, there is an ASCII file (/tmp/api.trc) that
contains similar information.

If you need more detailed information on the CPI-C SS Trace Facility, refer to Appendix A.

Generating a CPI-C SS Trace
In addition a very easy-to-use (or more accurately ”easy to understand”) trace facility
exists.This trace system is particularly useful to application developers, because it shows all
the parameters and data exchanged between the API and the application.

The CPI-C SS traces are designed to be very similar to the ”CPI-C OSI user traces”.
However the method of activating and stopping them is different.

The simplest way to generate a trace is to proceed as follows:

1. Set up the trace level for the ”symbolic destination name” using SMIT.

2. Run the CPI-C SS application.

3. Run the utility ’scancpic’.

4. Run the utility ’dumpcpic’.

See Appendix A, Error Messages and Trace Facility, for further information on the CPI-C SS
Trace Facility.

Set Trace Level
Run ’smit OTM Configuration menu’ and make the following choices:

CPI-C Starter Set Configuration

Change Symbolic Destination Description

Use ’F4’ to display all the Symbolic Destination descriptions. Choose the one that is used by
the CPI-C SS application to extract the configuration information.

When the ’Change Symbolic Destination Description’ menu is displayed, modify the fields
”Trace Level” and ”Trace Storage Mode”. Set the trace level to ’2’ or ’4’ (0 and 1 will produce
no trace, 3 produces the same trace as 2). Set the trace storage mode flag to 1.

Please see the OTM Administator and User’s Guide and the OTM Diagnostic Guide for
more detailed information about the Trace Level and Trace Storage Mode.

When the new values have been entered, hit <Enter> to validate the new configuration.

The procedure described above allows the configuration file to be updated. However the
new configuration information is not immediately usable. By default it is only activated the
next time the machine is rebooted.

The following sequence of commands allows the new CPI-C SS configuration to be used by
the next CPI-C SS application that is executed:

Run the SMIT ’OTM Configuration menu’ and make the following choices:

CPI-C Starter Set Configuration

Load New Symbolic Destinations Configuration

Using the CPI-C Starter Set 2-15

The following question is displayed:

 Configuration Updating – Are You Sure ? [y]

Leave the default answer and validate with <Enter>.

The trace levels are now set up correctly.

Run CPI-C SS Application
Execute the CPI-C SS application normally. No special configuration is required. The trace
information generated is written in a binary format to the file ’/tmp/apilog’.

Run scancpic Utility
The utility ’scancpic’ generates an ASCII file identifying all the ’Conversation IDs’ that are in
the trace file (’/tmp/apilog’).

The purpose of this step is to allow the trace information corresponding to one specific
connection to be extracted.

The following example shows how ’scancpic’ is used:

$ scancpic –?

usage: scancpic –i <in_file> –o <out_file>

$ scancpic –i /tmp/apilog –o /tmp/scancpic

$ cat /tmp/scancpic

* Do not remove the comments from this file. The only thing you *

* can do with this command is to delete the lines in which are *

* desribed pseudo conversation IDs that do not concern you. *

* Before running dumpcpic plese remove the invalid entries *

* (Invalid ID because trace level is less than 2). *

* PSEUDO CONVERSATION IDS START OFFSET IN INPUT FILE *

 58e70000 00000000

There is no real need to modify the contents of the output file, unless the trace file
’/tmp/apilog’ is very large and there are a lot of ”Pseudo Conversation IDs” listed.

OTM CPI–C Starter Set in BULL Environment User’s Guide2-16

Run dumpcpic
The ’dumpcpic’ utility uses the ASCII file produced by ’scancpic’ and the binary CPI-C SS
trace file (’/tmp/apilog’ by default) and produces an ASCII output file (’/tmp/dumpcpic’ by
default). Here is an example of how it can be used:

$ dumpcpic –?

usage: dumpcpic [–i <inpput_file>] [–p <path–file>] { –c

<conv_id> } [–f <scanfile>] [–s] [–e]

$ dumpcpic –f /tmp/scancpic

Dumping the file /tmp/dumpcpic

End of dumping the file /tmp/dumpcpic

$ head /tmp/dumpcpic

TRACE CPIC file: dumpcpic date: Wed Feb 2 19:21:05 1994

 level: DACTRC= 4

 path: DACTRD= /tmp

+–––+

|TRACE CPIC verbs with input parameters at beginning of each |

|verb entry then retuned values at the end of verb processing |

+–––+

CMACCP

 Input Conversation ID = 00000000

 ACCEPT: Conversation Status == S_RESET

 ACCEPT: calling function utm_acpt().

 ACCEPT: calling function get_msg().

Use InfoExplorer to search the Documentation CDROM for more information on these
commands.

Trace Example
Here is an example of the traces that might be generated by a call to the ’CMINIT()’
function.

TRACE CPIC file: dumpcpic date: Mon Jan 31 16:19:59 1994

 level: DACTRC= 4

 path: DACTRD= /tmp

+–––+

|TRACE CPIC verbs with input parameters at beginning of each |

| verb entry then retuned values at the end of verb processing |

+–––+

CMINIT

 Input Simbolic Destination Name = LOOPPRT1

 Input Conversation ID = 00000000

 INITIATE: State == S_RESET

 LOAD_CONV: Cofiguration found LOOPPRT1

 LOAD_CONV: Term=DKU7107

 LOAD_CONV: Log tmpi_lev=–1

 LOAD_CONV: Remote Session=PRT1

 LOAD_CONV: User=USER

 LOAD_CONV: Password=

 LOAD_CONV: Billing=

 LOAD_CONV: Project=

 LOAD_CONV: Log tmpi_flg=–1

 LOAD_CONV: Emission SSDU=18432

 LOAD_CONV: Reception SSDU=18432

 LOAD_CONV: Conversation Id=58960001

 INITIATE: State == S_INIT

Using the CPI-C Starter Set 2-17

 Dumping For CMINIT() Conversation Table

 Error Direction : CM_RECEIVE_ERROR

 Deallocation Type : CM_INVALID_VALUE

 Send Type : CM_SEND_AND_PREP_TO_RECEIVE

 Conversation ID : 58960001

 Conversation Type : CM_MAPPED_CONVERSATION

 Mode : CM_INVALID_MODE

 Vip Data Mode : NOT TRANSPARENT

 Status : S_INIT

 Conversation Side : INITIATOR_SIDE

 Terminal Type : DKU7107

 Terminal Session Selector : INVALID_VALUE

 Emission SSDU : 18432

 Reception SSDU : 18432

 Tmpi Context Pointer : 0

 Application Session Selector: INVALID_VALUE

 Presentation Type : INVALID_VALUE

 Correspondent Entity : UNDEFINED_CORRESPONDENT

 Local Entity : TERMIMAL

 Dumping Submitter Structure.

 USER : USER

 PASSWORD :

 BILLING :

 PROJECT :

 Dumping Session Structures.

 Session Selector Calling : @API22678

 Session Selector Called : @JE60

 Transport Selector Calling : @1JUC2

 Transport Selector Called : @1JUE6

 Network Selector Calling : 02608c2e5326

 Network Selector Called : 02608c2e5326

 Dumping Transport Structures.

 Transport Class : 4

 Alternative Transport Class : 2

 Use of Express Flow : 1

 Use of Flow Control : 1

 Transport Credit : 2

 Transport Provider Data Unit : 1024

 Transport Checksum : 0

 Transport Type of Network : 2

 End of Data dumped.

 Output Conversation ID = 58960001

 RC: CM_OK

 Mon Jan 31 16:20:02 1994

OTM CPI–C Starter Set in BULL Environment User’s Guide2-18

CPI–C Starter Set Variables, Functions and Verbs 3-1

Chapter 3. Variables, Functions and Verbs

Summary
– Variables, on page 3-1.

– api_msg or rdmessg Function, on page 3-3.

– retrieve error Function, on page 3-5.

– CMACCP, on page 3-6.

– CMALLC, on page 3-9.

– CMDEAL, on page 3-11.

– CMINIT, on page 3-13.

– CMRCV, on page 3-16.

– CMSDT, on page 3-20.

– CMSED, on page 3-22.

– CMSEND, on page 3-24.

– CMSERR, on page 3-26.

General
This chapter is in three parts:

1. Explanation of the different variables that can be set to create this CPI-C SS product’s
operating environment.

2. Explanation of the rdmessg and retrieve_error functions.

3. List of the CPI-C SS verbs giving the information you need to use them.

Variables
The following environment variables can be set:

API_MODE

This variable can be set to the following values:

TRANSPARENT

NONTRANSPARENT

API_LOG_LEV

This variable contains the value of the trace level. The values range from 0 to 4,
0 is the minimum value. 0 is used to log the detected errors. The other values are
reserved for authorized personnel.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-2

API_LOG_FLG

This variable is used to select the output logging file. The values for this variable
are:

0 to produce the logging data using the ELOG driver. The logging file is
named elgfile under the directory /usr/adm and it is a circular file. elgfile
is cleared at system startup. The command lgprint produces the file
elog_print from the input file elgfile. elog_print can then be printed or
displayed. It is recommended to use this value to produce the logging data.
(Refer to the OTM Administrator’s and User’s Guide for further details
about the command).

1 if the logging data is to be stored in a temporary file:

 /tmp/apilog and can be viewed

using the command cpi-clog

This is not a fixed size file and can store a large quantity of logging information.
This file is written in append mode. It is a temporary file and is therefore deleted
at system start–up. To save the stored information, the temporary file must be
copied into a private file before executing shutdown.

AUT_LOG_FILE

This variable contains the file name used to perform the start up procedure.

LOGNAME

This variable contains the user name who requests the connection. A check is
performed before starting a connection.

API_SSDUE

It is used only with the API_TP_NAME variable. Its value is the size of the
emission SSDU. The value ranges from 1024 bytes to 18432 bytes. If this
variable is not set the CMACCP call uses the default value (18432 bytes).

API_SSDUR

It is used only with theAPI_TP_NAME variable. Its value is the size of the
reception SSDU. The value ranges from 1024 bytes to 18432 bytes. If this
variable is not set the CMACCP call uses the default value (18432 bytes).

CPI–C Starter Set Variables, Functions and Verbs 3-3

api_msg or rdmessg Function

Purpose
This function gives you an analysis of the CPI-C SS error messages.

Syntax
char *api_msg (keymsg, myfile)

int keymsg;

char *myfile;

rdmessg

Description
To analyze the error messages that are produced by the CPI verbs, two functions are
provided: api_msg() and rdmessg. These functions are not standard X/Open and are not
CPI functions.

The error messages caused by the CPI verbs are collected in the file CPICMESSAGE.LIB
under the directory /usr/cpi-c. Each record in this file associates to each error code that is
returned by the CPI functions, the correspondent meaning. The record format is the
following:

message identifier (key) 4 digits

filler 3 spaces

message text 80 chars

end of string 1 byte

The file is ordered per key in ascending mode.

For a detailed list of the error messages and return codes, refer to the header file
<cpic-c.h>.

The api_msg() function can be used in a C program. keymsg is the code of the error
message. myfile is a pointer to the string containing the pathname of the file containing the
errors. If this argument is NULL the pathname of the file CPICMESSAGE.LIB is assumed by
default.

rdmessg can be used in a COBOL program. keymsg is the key that identifies the message
errmsg is the output area which will contain the message found in the file. rdmessg calls the
api_msg() function. The environment variable COB_errmsg contains the pathname of the
file containing the errors. If this variable does not contain a value, the path of the
CPICMESSAGE.LIB file is assumed by default.

Returns
The api_msg() function returns a pointer to the string containing the desired message.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-4

Example
Here is an example of a COBOL program that uses rdmessg.

.

.

.

working–storage section.

01 keymsg pic s9(09) comp.

01 errmsg.

02 msg–id pic x(04).

02 filler pic x(03).

02 msg–txt pic x(80).

02 filler pic x(01).

procedure division.

.

.

call ”rdmessg” using keymsg

errmsg

CPI–C Starter Set Variables, Functions and Verbs 3-5

retrieve_error Function

Purpose
This function generates a message describing the last error encountered.

Syntax
retrieve_error

Description
This function is only effective if an error has occurred. It takes no parameters.

The retrieve_error function gets detailed diagnostic information from the Open Terminal
Management (OTM) product which is the service provider. This information is used to
generate a message.

This is an example of a message generated by the retrieve_error function:

*4644 2ltp load_conv: Entry XXXX not found in configuration

file /usr/cpi-c/site.cnf

Example
This is an example of the use of retrieve_error in a C program:

if (returncode != CM_OK)

{

printf(\ nERROR DETECTED IN CALL TO <<%s>>\n\n, command);

printf(error : <<%s>>\n, api_msg(returncode, NULL));

printf(%s\n, retrieve_error());

OTM CPI–C Starter Set in BULL Environment User’s Guide3-6

CMACCP

Purpose
accept conversation

Syntax

C SYNTAX

#include ”cpi-c.h”

.

.

CMACCP (conversation_id, return_code)

CONVERSATION_ID conversation_id;

CM_RETCODE *return_code;

COBOL SYNTAX

 .

 .

COPY ”CPI–H”

 .

 .

CALL ”CMACCP” USING CONVERSATION-ID, CM-RETCODE

 .

Description
The CMACCP call accepts an incoming conversation (either from a remote host application
or from a terminal application). Like CMINIT, CMACCP initializes values for various
conversation characteristics. The difference between the two calls is that the program that
will later allocate the conversation issues the CMINIT call, and the partner program that will
accept the conversation after it is allocated issues the CMACCP call.

The following environment variables are to be set:

API_MODE It can assume two different values:

TRANSPARENT

NON_TRANSPARENT

API_LOG_LEV It contains the logging level value.

API_LOG_FLG It contains the logging flag value.

LOGNAME It is used only with the API_TP_NAME variable. It contains user and
password.

API_TP_NAME The cpi-c program is an host application: it can receive data from other
terminal applications running only on DPX machines. The value of
API_TP_NAME is used as local Session User (local Mailbox). (see LOCMB
in the ”OTM Administrator’s and User’s Guide”).

CPI–C Starter Set Variables, Functions and Verbs 3-7

API_TERM_NAME
The cpi-c program is a terminal application: it can receive data from other
terminal applications running on GCOSx hosts or DPX or Datanet
machines. The value of API_TERM_NAME corresponds to an address into
the site.cnf file (Symbolic Destination Name).

API_TERM_NAME and API_TP_NAME must not be used together because they are in
conflict.

When the CMACCP call completes successfully, the conversation characteristics are
initialized as follows:

Conversation Characteristic Initialized Value

conversation type Derived from the received conversation
start–up request

deallocate type CM_DEALLOCATE_SYNC_LEVEL

prepare to receive type CM_PREP_TO_RECEIVE_SYNC_LEV-
EL

processing mode CM_BLOCKING

receive type CM_RECEIVE_AND_WAIT

return control This characteristic applies only to an Al-
locate call

send type CM_BUFFER_DATA

Parameters
conversation_ID

[output] Specifies the conversation identifier assigned to the conversation. CPI–C supplies
and maintains the conversation ID. When the return code is set equal to CM_OK the value
returned in this parameter is used by the program on all subsequent calls issued for this
conversation.

return_code

[output] Specifies the result of the call execution. The return code variable can have one of
the following values:

CM_OK

CM_PROGRAM_STATE_CHECK

Indicates failure in the node service environment that provides the synchronization
between the program (in which the CMACCP call is issued) and the remote request.

CM_PROGRAM_PARAMETER_CHECK

Reflects one of the following situations:

• API_TERM_NAME variable is set and does not refer any entry into site.cnf file.

• API_TERM_NAME and API_TP_NAME variables are both set.

• API_TERM_NAME variable is set and its length is greater than eight characters.

• API_TP_NAME variable is set and its length is greater than twelve characters.

• Neither API_TERM_NAME nor API_TP_NAME variables are set.

• API_TP_NAME variable is set and LOGNAME one is unset.

• API_TP_NAME variable is set and LOGNAME variable is greater than twelve.

• API_TP_NAME variable is set, LOGNAME variable too, but password value could not
be extracted from LOGNAME.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-8

CM_RESOURCE_FAILURE_ RETRY

The error condition must be removed before attempting a retry execution.

State Changes
When return code is set to CM_OK, the conversation enters the Receive state.

Implementation Specifics
For each conversation, CPI-C assigns a unique identifier (the conversation ID) that the
program uses in all future calls intended for that conversation. Therefore, the program must
issue the CMACCP call before any other calls can refer to the conversation.

This call is used when the DPX machine receives an incoming request to establish a
session connection.

When the remote session request comes in, the following operations are executed:

1. The check on the validity of this parameter is executed: LOGNAME

2. In case of positive result of the checks the local program is scheduled and it begins a
dialogue confirming the connection request. Otherwise the session connection is
rejected with an error code.

3. Therefore, when CM OK is delivered the conversation is accepted and no
synchronization call is required.

CPI–C Starter Set Variables, Functions and Verbs 3-9

CMALLC

Purpose
allocate

Syntax

C SYNTAX

#include ”cpi-c.h”

CMALLC (conversation_id, return_code)

CONVERSATION_ID conversation_id;

CM_RETCODE *return_code;

COBOL SYNTAX

.

.

.

COPY ”CPI-C”

.

.

.

CALL ”CMALLC” USING CONVERSATION–ID, CM-RETCODE

.

.

Description
A program uses the CMALLC call to establish a mapped conversation (depending on the
conversation type characteristics) with its partner program.

After a CMALLC has been executed, the conversation is always in Send state for the CPI-C
initiator side.

A return code of CM_OK indicates that the conversation has been successfully allocated.

Parameters
conversation_ID

[input] Specifies the conversation identifier of an initialized conversation.

return_code
[output] Specifies the result of the call execution, which is returned to the
local program. The return control characteristic determines which return
codes can be returned to the local program. If return control is set to
CM_WHEN_SESSION_ALLOCATED, return code can have one of the
following values:

CM_OK

CM_ALLOCATE_FAILURE_RETRY

OTM CPI–C Starter Set in BULL Environment User’s Guide3-10

The error condition must be removed before attempting a retry
execution.

CM_PARAMETER_ERROR

This value indicates that an error has been detected on the
information placed in the configuration file or a mismatching
between this information and lower layer configuration has been
detected.

CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation ID specifies an unassigned
conversation identifier.

State Changes
Conversation enters Send state (if Transparent Mode is not enabled).

In Transparent Mode the connection state is returned (this state cannot be conform to the
CPI-C rules).

Implementation Specifics
1. An allocation error resulting from the local system’s failure to obtain a session for the

conversation is reported on the CMALLC call. An allocation error resulting from the
remote correspondent rejection of the allocation request is reported on CMALLC.

2. To establish the conversation for CPI-C, a session must first be established between the
local correspondent and the remote correspondent.

3. The request of session/conversation, towards the correspondent is performed when the
CMALLC call is requested.

4. In Transparent Mode CMALLC consists of opening the connection with a host. In this
case, the return code is RECEIVE (in CPI-C the return code is SEND).

If the correspondent is GCOS 8 the login procedure is to be performed by the user
application.

CPI–C Starter Set Variables, Functions and Verbs 3-11

CMDEAL

Purpose
deallocate

Syntax

C SYNTAX

#include ”cpi-c.h”

CMDEAL (conversation_id, return_code)

CONVERSATION_ID conversation_id;

CM_RETCODE *return_code;

COBOL SYNTAX

.

.

COPY ”CPI–H”

.

.

.

CALL ”CMDEAL” USING CONVERSATION-ID, CM–RETCODE

Description
A program uses the CMDEAL call to end a conversation. The conversation_ID is no longer
assigned when the CMDEAL call completes successfully.

In GCOSx Host connections, CMDEAL always consists of a connection abort and for this
reason deallocate type is always set to CM_DEALLOCATE_ABEND.

In UNIX to UNIX connections, CMDEAL must be executed in Send state. Executing a
CMDEAL not in Send state causes a connection abort and for this reason deallocate type
is set to CM_DEALLOCATE_ABEND.

When the conversation is in SEND state the CMDEAL call completes successfully and the
partner program will receive a CM_DEALLOCATE_NORMAL.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-12

Parameters
conversation_ID

[input] Specifies the conversation identifier of the conversation to be ended.

return_code

[output] Specifies the result of the call execution, which is returned to the local program.

If deallocate type is set CM_DEALLOCATE_ABEND (always set to this value), the
return_code variable can have one of the following values:

CM_OK
(deallocation is complete)

CM_PROGRAM_STATE_CHECK

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation specifies an unassigned conversation_ID
identifier.

State Changes
When return code indicates CM_OK, the conversation enters Reset state.

CPI–C Starter Set Variables, Functions and Verbs 3-13

CMINIT

Purpose
initialize conversation

Syntax

C SYNTAX

#include ”cpi-c.h”

CMINIT (conversation_id, system_dest_name, return_code)

CONVERSATION_ID conversation_id;

char *system_dest_name;

CM_RETCODE *return_code;

COBOL SYNTAX

.

.

.

COPY ”CPI–H”

.

.

CALL ”CMINIT” USING CONVERSATION–ID, SYSTEM-DEST-NAME, CM-RETCODE

.

Description
A program uses the CMINIT call to initialize values for various conversation characteristics
before allocating the conversation (with a call to CMALLC).

The following environment variables can be set:

API_MODE

It can assume the following values:

TRANSPARENT

NON_TRANSPARENT

In a DPX environment this variable is to be set to TRANSPARENT.

AUT_LOG_FILE

This variable contains the path of a command file used to perform the conversation after
the connection. The command file contains ”send” and ”receive” commands. The last
command must be a ”receive” command.

If the variable API_MODE is set toTRANSPARENT this variable must not be used.

USERINFO

This variable cannot exceed 32 chars. It invokes the DSA functions.

The information contained in this variable will be sent to the application running on Host
and will be used by the Host.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-14

SECURITY

INITIAL_COR

EMU_MODEL

The variables USERINFO, SECURITY, INITIAL_COR, EMU_MODEL are used by the
Terminal Manager. Their values are inserted in the connection protocol record.

LOCMB It contains the value of the Local Session Selector (Local Mailbox).

REMMB_EXT

It contains the value of the Remote Session Selector Extension (remote mailbox
extension). This variable is used for security.

API_LOG_LEV

It contains the trace level value.

API_LOG_FLG

It contains the trace storage mode flag value. When the CMINIT call completes
successfully, the following conversation characteristics are initialized:

Conversation Characteristic Initialized Value

conversation type CM_MAPPED_CONVERSATION

deallocate type CM_DEALLOCATE_ABEND

prepare to receive type CM_PREP_TO_RECEIVE_SYNC_LEVEL

processing mode CM_BLOCKING

receive type CM_RECEIVE_AND_WAIT

return control CM_WHEN_SESSION_ALLOCATED

send type CM_SEND_AND_PREP_TO_RECEIVE

Parameters
conversation_ID

[output] Specifies the conversation identifier assigned to the conversation, which is
returned to the program. CPI C supplies and maintains the conversation_ID. If the
CMINIT is successful (return_code is set equal to CM_OK), the local program uses the
identifier returned in this variable for the rest of the conversation.

system_dest_name

[input] Specifies the symbolic name of the correspondent for the session on which the
conversation is to be performed. The symbolic destination name is provided by the
program and refers to an entry in the configuration file. The appropriate entry in the
configuration file is retrieved and used to initialize the characteristics for the
conversation being initialized.

return_code

[output] Specifies the result of the call execution, which is returned to the local program.
The return_code variable can have one of the following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the system_dest_name does not match an entry in the
/usr/cpi-c/site.cnf file.

CPI–C Starter Set Variables, Functions and Verbs 3-15

State Changes
When return code indicates CM_OK, the new conversation is in the Initialize state.

Implementation Specifics
1. For each conversation, CPI–C assigns a unique identifier, the conversation_ID. The

program then uses the conversation_ID in all future calls intended for that conversation.
CMINIT must be issued by the program before any other calls may be made for that
conversation.

2. If the symbolic destination name contains invalid allocation information, the error is
detected when the information is processed by CMALLC.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-16

CMRCV

Purpose
receive information

Syntax

C SYNTAX

#include ”cpi-c.h”

CMRCV (conversation_id, buffer, requested_length,

data_received, received_length, status_received,

request_to_send_received, return_code)

CONVERSATION_ID conversation_id;

char *buffer;

int *request_length;

DATA_RECEIVED *data_received;

int *received_length;

STATUS_RECEIVED *status_received;

REQUEST_TO_SEND_RECEIVED *request_to_send_received;

CM_RETCODE *return_code;

COBOL SYNTAX

.

.

COPY ”CPI–H”

.

.

.

CALL ”CMRCV” USING CONVERSATION–ID, CM–BUFFER,

CM–REQUEST–LENGTH, DATA–RECEIVED,

CM–RECEIVED–LENGTH, STATUS–RECEIVED,

REQUEST–TO–SEND–RECEIVED, CM–RETCODE

Description
A program uses the CMRCV call to receive information from a given conversation. The
information received can be a data record (on a mapped conversation), conversation status.

Parameters
conversation_ID

[input] Specifies the conversation identifier.

CPI–C Starter Set Variables, Functions and Verbs 3-17

buffer

[input] Specifies the variable in which the program has to receive data.

If data_received is returned to the program with a value of CM_NO_DATA_RECEIVED,
or return_code has a value other than CM_OK or CM_DEALLOCATED_NORMAL,
buffer contents are undefined.

requested_length

[input] Specifies the maximum amount of data the program has to receive (SPDU).

data_received

[output] Specifies whether or not the program received data, which is returned to the
local program.

Unless return code is set to CM_OK or CM_DEALLOCATED_NORMAL, data_received
is undefined. The data_received variable can have one of the following values:

CM_NO_DATA_RECEIVED
(mapped conversation)
No data is received by the program. Status may be received if the return_code is set to
CM_OK.

CM_COMPLETE_DATA_RECEIVED
(mapped conversations)
For mapped conversations, indicates that a complete data record has been received.

received_length

[output] Specifies the variable in which is returned the amount of data the program
received, up to the maximum.

If the program receives information other than data, received_length is undefined.

status_received

[output] Specifies the variable in which is returned an indication of whether or not the
program received the conversation status.

Unless return_code is set to CM_OK, status_received is undefined.

The status_received variable can have one of the following values:

CM_NO_STATUS_RECEIVED
No conversation status is received by the program; data may be received.

CM_SEND_RECEIVED
The remote side of the conversation has entered Receive state, placing the local side in
Send state. The local program (who issued the CMRCV call) can now issue CMSEND.

request_to_send_received

[output] Specifies the variable in which is returned an indication of whether or not the
remote program issued a Request To Send call.

request to send received is undefined when return code is
CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

The request_to_send_received variable can have the following value:

CM_REQ_TO_SEND_NOT_RECEIVED

The local program has not received a request–to–send notification.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-18

return_code

[output] Specifies the result of the call execution, which is returned to the local program.
The return codes that can be returned depend on the state and characteristics of the
conversation at the time this call is issued.

If CMRCV is issued in Send state, return_code can have one of the following values:

CM_OK

CM_ DEALLOCATED_ABEND

CM_ DEALLOCATED_NORMAL

CM_ RESOURCE_FAILURE_RETRY

CM_ PROGRAM_ERROR_TRUNC

CM_ PROGRAM_ERROR_PURGING

If a state or parameter error has occurred, return code can have one of the following
values:

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:
The conversation is not in Send, or Receive state.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:
The conversation_ID specifies an unassigned conversation identifier.
The requested_length specifies a value not able to contain the received data.

State Changes
When return code indicates CM_OK:

The conversation is in Receive state if a CMRCV call is issued and all of the following
conditions are true:

data_received indicates CM_COMPLETE_DATA_RECEIVED.

The status_received indicates CM_NO_STATUS_RECEIVED.

The conversation enters Send state when status_received is set to
CM_SEND_RECEIVED.

No state change occurs when the call is issued in Receive state, data_received is set to
CM_COMPLETE_DATA_RECEIVED, and status_received indicates
CM_NO_STATUS_RECEIVED.

The state change is not implicit at the end of the operation, as for a CMSEND operation,
one or more CMRCV can be performed.

CPI–C Starter Set Variables, Functions and Verbs 3-19

Implementation Specifics
1. As receive type is set to CM_RECEIVE_AND_WAIT, processing mode is set to

CM_BLOCKING, and no data is present when the call is performed, CPI–C waits for
information to arrive on the specified conversation before allowing the CMRCV call to
return with the information. If information is already available, the program receives it
without waiting.

2. If the return code indicates CM_PROGRAM_STATE_CHECK or
CM_PROGRAM_PARAMETER_CHECK, all other variables will contain no information.

3. A Receive call issued against a mapped conversation can receive only a complete data
record.

When the program receives a complete data record, the data_received parameter is set
to CM_COMPLETE_DATA_RECEIVED. The length of the record is less than or equal to
the length specified on the requested length parameter.

4. The CMRCV call performed with requested length set to zero has no special
significance. The type of information available is indicated by the return_code,
data_received, and the status_received parameters, as usual. As receive type is set to
CM_RECEIVE_AND_WAIT and no information is available, this call waits for information
to arrive.

5. The program can receive both data and conversation status on the same call. The
return_code, data_received, and status_received parameters indicate to the program the
kind of information the program receives.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-20

CMSDT

Purpose
set deallocate type

Syntax

C SYNTAX

#include ”cpi-c.h”

CMSDT (conversation_id, deallocate_type, return_code)

CONVERSATION_ID conversation_id;

DEALLOCATE_TYPE *deallocate_type;

CM_RETCODE *return_code;

COBOL SYNTAX

.

.

.

CALL CMSDT USING CONVERSATION–ID,

CM-DEALLOCATE-TYPE, CM-RETCODE

Description
CMSDT is used by a program to set the deallocate type characteristic for a given
conversation.

CMSDT overrides the value that was assigned when either the CMINIT or the CMACCP
call was issued.

Parameters
conversation_ID

[input] Specifies the conversation identifier.

deallocate_type

[input] Specifies the type of deallocation to be performed. The deallocate type variable
can have one of the following values:

CM_DEALLOCATE_FLUSH

The conversation is deallocated normally.

CM_DEALLOCATE_ABEND

Execute the function of the Flush call when the conversation is in Send state and
deallocate the conversation abnormally. Data purging can occur when the conversation
is in Receive state.

CPI–C Starter Set Variables, Functions and Verbs 3-21

return_code

[output] Specifies the result of the call execution, which is returned to the local program.
The return code variable can have one of the following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:

The conversation ID specifies an unassigned conversation identifier.

The deallocate type specifies an undefined value.

CM_PROGRAM_STATE_CHECK

State Changes
This call does not cause any state changes.

Implementation Specifics
1. A deallocate type set to CM_DEALLOCATE_FLUSH is used by a program to deallocate

a conversation normally.

2. A deallocate type set to CM_DEALLOCATE_ABEND is used by a program to
unconditionally deallocate a conversation. Specially, the parameter is used when the
program detects an error condition that prevents further useful communications
(communications that would lead to successful completion of the transaction).

3. If a return code other than CM_OK is returned on the call, the deallocate type
conversation characteristic is unchanged.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-22

CMSED

Purpose
set error direction

Syntax

C SYNTAX

#include ”cpi-c.h”

.

.

CMSED (conversation_id, &error_direction, &return_code)

CONVERSATION_ID conversation_id;

ERROR_DIRECTION *error_direction;

CM_RETCODE *return_code;

COBOL SYNTAX

.

COPY ”CPI-H”

.

CALL ”CMSED” USING CONVERSATION–ID,

 ERROR–DIRECTION, CM–RETCODE

.

Description
This call is used by the program to set the error direction characteristic for a given
conversation, overriding the value assigned when CMINIT/CMACCP calls were issued. This
call is useful only for DPX/DPX connections and is ignored for GCOSx connections.

Parameters
conversation_ID

[input] specifies the conversation identifier

CPI–C Starter Set Variables, Functions and Verbs 3-23

error_direction

[input] specifies the error direction of the data flow in which the program detected an
error.

The error direction can have the following values:

CM_RECEIVE_ERROR

specifies that the program detected an error in the data it received from the
remote program.

CM_SEND_ERROR

specifies that the program detected an error while preparing to send data to the
remote program.

return_code

[output] can have one of the following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK

conversation ID or error direction wrong

CM_PROGRAM_STATE_CHECK

State Changes
This call does not cause any state change

Implementation Specifics
1. The error direction is significant only if CMSERR is issued after a RECEIVE on which

both data and CM_SEND_RECEIVED are received. Otherwise the error_direction is
ignored when this call is issued. In this situation, the CMSERR may result from one of
the following errors:

an error in the received data

an error being the result of processing performed after having received and processed
the data

Because the correspondent in this situation cannot tell which error occurred, the
program has to supply the error direction information.

CM_RECEIVE_ERROR is the default value, that can be overridded by CMSED before
issuing CMSERR. Once changed, the new error_direction remain in effect until the
program change it again.

2. If a return_code other than CM OK is returned on the call, the error_direction
characteristics is unchanged.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-24

CMSEND

Purpose
send data

Syntax

C SYNTAX

#include ”cpi-c.h”

CMSEND (conversation_id, buffer, send_length,

request_to_send_received, return_code)

CONVERSATION_ID conversation_id;

char *buffer;

int *send_length;

REQUEST_TO_SEND_RECEIVED *request_to_send_received;

CM_RETCODE *return_code;

COBOL SYNTAX

.

.

.

COPY ”CPI–H”

.

.

.

CALL ”CMSEND” USING CONVERSATION–ID, CM_BUFFER,

 CM–SEND–LENGTH, REQUEST–TO–SEND–RECEIVED,

 CM–RETCODE

.

.

Description
A program uses the CMSEND call to send data to the remote program. This call transfers
one data record to the correspondent for transmission to the remote program. The data
record consists entirely of data and is not examined by the correspondent for possible
logical records.

Parameters
Conversation_ID

[input] Specifies the conversation identifier of the conversation.

buffer

[input] When a program issues a CMSEND call, buffer specifies the data record to be
sent. The length of the data record is given by the send length parameter.

CPI–C Starter Set Variables, Functions and Verbs 3-25

send_length

[input] Specifies the message length. The send length ranges in value from 0 to the
SSDU value and it depends on the correspondent.

It specifies the size of the buffer parameter and the number of bytes to be sent during
the conversation. When a program issues a CMSEND call during a mapped
conversation and send length is zero, a null data record is sent.

request_to_send_received

[output] Specifies the variable in which is returned an indication of whether or not a
request send notification has been received. The request send received variable can
have the following value:

CM_REQ_TO_SEND_NOT_RECEIVED

Indicates that a request–to–send notification has not been received.

If return code is either

CM_PROGRAM_STATE_CHECK, or

CM_PROGRAM_PARAMETER_CHECK, request send received is undefined.

return_code

[output] Specifies the result of the call execution which is returned to the local program.
The return code variable can have one of the following values:

CM_OK

CM_DEALLOCATED_ABEND

CM_RESOURCE_FAILURE_NO_RETRY

CM_PROGRAM_ERROR_PURGING

CM_PROGRAM_STATE_CHECK This value indicates that the conversation is not in
Send state.

CM_PROGRAM_PARAMETER_CHECK This value indicates that the conversation_ID
specifies an unassigned conversation identifier.

State Changes
When return_code indicates CM_OK:

The conversation enters Receive state when CMSEND is issued with send set to
CM_SEND_AND_PREP_TO_RECEIVE.

Implementation Specifics
1. The local correspondent sends immediately the data for the transmission.

2. The CMSEND call sends one complete data record. No control is performed on sent
data as mapped conversation mode is used.

3. In Transparent Mode, no control is performed on the state when the command is
executed.

The connection rules and the remote rules are applied.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-26

CMSERR

Purpose
send error

Syntax

C SYNTAX

#include ”cpi-c.h”

CMSERR (conversation_id, request_to_send_received,

return_code)

CONVERSATION_ID conversation_id;

REQUEST_TO_SEND_RECEIVED *request_to_send_received;

CM_RETCODE *return_code;

COBOL SYNTAX

.

.

COPY ”CPI–H” .

.

.

CALL ”CMSERR” USING CONVERSATION–ID, REQUEST–TO–SEND–RECEIVED,
CM–RETCODE

Description
CMSERR is used by a program to inform the remote program that the local program
detected an error during a conversation. If the conversation is in Send state, CMSERR
forces the correspondent to purge its send buffer. When this call completes successfully,
the local program is in Send state and the remote program is in Receive state. Further
action is defined by program logic.

Parameters
conversation_ID

[input] Specifies the conversation identifier.

request_to_send_received

[output] Specifies the variable in which is returned an indication of whether or not a
request–to–send notification has been received. The request_to_send_received
variable can have one of the following values:

CM_REQ_TO_SEND_RECEIVED

The local side of the conversation enters Receive state, which places the
remote side in Send state. (for GCOSx request_to_send_received is
always set to CM_REQ_TO_SEND_RECEIVED.)

CM_REQ_TO_SEND_NOT_RECEIVED

A request-to-send notification has not been received.

CPI–C Starter Set Variables, Functions and Verbs 3-27

If return_code is set to either CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value of request_to_send_received is undefined.

return_code

Specifies the result of the call execution, which is returned to the local program. The
value for return code depends on the state of the conversation at the time this call is
issued.

If the CMSERR is issued in Send state, return_code can have the following value:

CM_OK

If the CMSERR is issued in Receive state, return_code can have one of the following
values:

CM_OK

CM_DEALLOCATED_NORMAL

CM_RESOURCE_FAILURE_NO_RETRY

State Changes
When return code indicates CM_OK:

The conversation enters Send state when the call is issued in Receive state.

No state change occurs when the call is issued in Send state.

Implementation Specifics
1. The correspondent sends the error notification to the remote correspondent immediately

(during the processing of this call).

2. When CMSERR is issued in Receive state, incoming information is also purged.
Because of this purging, the return code of CM_DEALLOCATED_NORMAL is reported
instead of:

CM_DEALLOCATED_ABEND

Similarly, a return_code of CM_OK is reported instead of:

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM_ERROR_PURGING

The following types of incoming information are also purged:

Data sent with the Send Data call

Deallocate calls

The request-to-send notification is not purged. This notification is reported to the
program when it issues a call that includes the request_to_send_received parameter.

3. A CMSERR sent to a GCOSx Host corresponds to the BREAK functionality particular to
the Host.

After the execution of this command, the local application is in a RECEIVE status,
specified by the parameter request send received.

This occurs to match CMSERR rules and GCOSx rules.

OTM CPI–C Starter Set in BULL Environment User’s Guide3-28

Error Messages, Return Codes and Trace A-1

Appendix A. Error Messages, Return Codes and Trace

Summary
– Error Messages, on page A-1.

– Return Codes, on page A-4.

– CPI-C SS Trace Facility, on page A-5.

Error Messages

Legend
The error messages generated by CPI-C Starter Set are listed with a particular structure.

Within the text of the messages, the following identifiers have been used:

xxxx to indicate an hexadecimal code

yyyy to indicate a printer name or an alphanumeric string

zzzz to indicate a decimal number

id–num to identify the connection number.

Some error messages contain the following sentence:

return code xxxx cause xxxx orig xxxx

where:

return code is the error code from the layer

orig is the number of the layer from which the error occurred

cause is the reason of the error

The command

pmaderror retcode

or

pmaderror <orig> <cause>

displays on the screen a description of the error code.

For a further description of the meaning of return code, origin and cause, refer to the ”ISO
Services Manual”.

CPI-C Starter Set Configurator Messages
0200 2LTP configurator is already in use.

1. The 2LP configurator is being updated by another user.

2. Wait for the termination of the configurator.

0201 Internal error zzzz

1. A fatal error has occured.

2. Call Technical Assistance.

OTM CPI–C Starter Set in BULL Environment User’s GuideA-2

0202 2LTP configurator: end of function

1. The CPI-C Starter Set configuration session has finished.

2. Information only.

0203 File reorganization failed. Status = zzzz.

1. An error in the record reorganization in the site.cnf file has occurred.

0204 Ck_dest (): Cannot Open configuration file. Status = zzzz

1. The site.new file does not exist or it is damaged.

0205 Ck_dest() corrupted configuration file. Status = zzzz. Please use reorg().

1. The site.new file contains damaged records.

0206 Ck_dest() unexpected end of file. Status = zzzz.

1. An error reading /usr/CPI-C/site.new file has occurred.

0207 Crtcnf() cannot open configuration file. Status = zzzz.

1. An error reading /usr/CPI-C/site.new file has occurred.

0208 Crtcnf() cannot write data on file. Status = zzzz

1. An error writing site.new file has occurred.

0209 Dltcnf() cannot open configuration file. Status = zzzz.

1. An error writing /usr/CPI-C/site.new file has occurred.

0210 Dltcnf() cannot open temporary file. Status = zzzz.

1. The temporary file cannot be read under /tmp directory.

2. Check access rights.

0211 Dltcnf() cannot write data on temporary file. Status = zzzz.

1. The temporary file cannot be created under /tmp directory.

2. Check write rights.

0212 Dltcnf() unexpected end of file on configuration file. Status = zzzz.

1. A UNIX system call error has occurred.

2. Call Technical Assistance.

0213 Lstcnf() cannot open configuration file. Status = zzzz.

1. The configuration file cannot be read.

2. Check access rights.

0214 Lstcnf() cannot open temporary file. Status = zzzz.

1. The temporary file cannot be read under /tmp directory.

2. Check access rights.

0215 Lstcnf() unexpected end of file on configuration file. Status = zzzz.

1. An UNIX system call error has occured.

2. Call Technical Assistance.

0216 Save_file() cannot save configuration file. Status = zzzz.

1. A copy of the configuration file cannot be created under /tmp directory.

2. Check access rights.

Error Messages, Return Codes and Trace A-3

0217 Save_file() cannot execute system() function. Status = zzzz.

1. An UNIX system call error has occured.

2. Call Technical Assistance.

0218 Restore_file() cannot restore the configuration file. Status = zzzz.

1. The file site.cnf cannot be created under /usr/CPI-C directory.

2. Check access rights.

0219 Delete_file() cannot remove copy file. Status = zzzz.

1. It is not possible to remove the copy of the configuration file under /tmp.

2. Check access rights.

0220 Exit_fun() Signal received. Number = zzzz.

1. The configurator may be killed because of a received signal.

2. Call Technical Assistance.

0221 Crtcnf() cannot open configuration file in write mode. Status = zzzz.

1. The configuration file cannot be written under /usr/CPI-C directory.

2. Check write rights.

0222 Create_file() cannot create configuration file. Status = zzzz.

1. It is not possible to create site.new file for the first time.

2. Check access rights.

0223 Create_file() cannot remove configuration file for errors. Status = zzzz.

1. It is not possible to delete site.new file.

2. Check access rights.

0224 Ck_dest() duplicated entries in configuration file. Status = zzzz.

1. Two equal entries have been found in the configuration file.

2. Check the configured sites.

0227 Conf_stid: usage allowed only for super–user

1. Only super–user can launch the command.

OTM CPI–C Starter Set in BULL Environment User’s GuideA-4

Return Codes
The following return codes are provided for the CPI-C functions in BULL environment:

CM_OK 0

CM_ALLOCATE_FAILURE_NO_RETRY 1

CM_CONVERSATION_TYPE_MISMATCH 3

CM_TP_NOT_RECOGNISED 9

CM_TP_NOT_AVAILABLE_NO_RETRY 10

CM_DEALLOCATED_ABEND 17

CM_DEALLOCATED_NORMAL 18

CM_PARAMETER_ERROR 19

CM_PRODUCT_SPECIFIC_ERROR 20

CM_PROGRAM_ERROR_NO_TRUNC 21

CM_PROGRAM_ERROR_PURGING 22

CM_PROGRAM_PARAMETER_CHECK 24

CM_PROGRAM_STATE_CHECK 25

CM_RESOURCE_FAILURE_NO_RETRY 26

CM_DEALLOCATED_ABEND_TIMER 31

Error Messages, Return Codes and Trace A-5

CPI-C SS Trace Facility
CPI-C Starter Set provides an integrated mechanism to trace events about data structures.
Data is saved into a disk file that will be edited through a specific utility.

All the detected errors are collected in the file /tmp/api.trc. Every error message has the
following format:

Pid = Pidid – Date Time Year

ernum <module>: <message>

where:

ernum is the message code number.

module is the internal routine that detected the error.

message is a brief explanation of the error code.

An example follows:

Pid = 11054 – Thu Oct 14 11:30:20 1993

4643 2ltp load_conv: Cannot open configuration file

/usr/CPI-C/site.cnf

CPI-C Starter Set manages two different ways to produce the output logging file:

1. via a stream driver, the ELOG driver (which provides minimum system interferences).
Logging data is produced on a circular file (elgfile) under the directory /usr/adm on disk.
elgfile is cleared at system startup.

The command lgprint produces the file elog_print from the input file elgfile.
elog_print can then be printed or displayed.

2. via private file containing all data collected from the logging activation.

Logging information is stored into the sequential file /tmp/apilog and can be viewed
using the command cpi-clog and dumpcpic (Refer to the OTM Administrator’s and
User’s Guide for further details).

utmlog can also be used to inspect the logging file. For example:

utmlog –F/tmp/apilog –i AD > outfile

to produce the outfile file from the input file /tmp/apilog. outfile contains information
about the function identifier AD. Refer to the utmlog command in the OTM
Administrator and User’s Guide.

Trace Levels
The trace level contains the following information:

Level 0 Error logging (recommended value) is traced in /tmp/apilog. This file can be
viewed using the command cpi-clog.

Level 2 State and events of the CPI-C Starter Set. Function names and their
parameters and function return codes are traced. The logging file can be
inspected using the commands cpi-log and dumpcpic.

Level 4 All internal routines are traced. The logging file can be inspected using the
commands cpi-clog and dumpcpic.

Each level includes the lower ones: a trace level 4 includes information from the level 0, 2.

For troubleshooting it is possible to raise the trace level: set the trace level to 4 and refer to
the Technical Staff. If the trace level is 4, all the errors and the internal routine are logged.

The other values (5–15) are reserved for future use.

OTM CPI–C Starter Set in BULL Environment User’s GuideA-6

Trace Settings
 The Trace Level and Trace Storage Mode flags can be set as follows:

1. via smit using the smit menus: ”Communications Applications and Services”, ”OTM
Configuration”, ”Environment Configuration”, ”Change/Show Global Parameter”

Refer to the ”Configuration” chapter for the procedure to be followed.

These values are configured and are active for all the running OTM processes (provider,
daemon and TM users: CPI-C Starter Set).

2. via environment variables.

The environment variables are used to set a specific value of trace level and trace
storage mode flag for a particular TM user (for example CPI-C Starter Set) to be
launched and tested.

CPI-C Starter Set trace level and trace storage mode flag can also be set using
environment variables:

API_LOG_LEV to set the trace level

Specify a value ranging from 0 to 15.

API_LOG_FLG to set the trace storage mode flag and the subsystem through which
data is to be redirected

Specify a value between 0 and 1.

the variables affect only the CPI-C Starter Set environment.

3. via smit using the smit menus: ”Communications Applications and Services”, ”OTM
Configuration”, ”CPI-C Starter Set Configuration”, ”Insert Symbolic Description”

Trace level and trace storage mode flag set via ”CPI-C Starter Set Configuration” has
the highest priority among the environment variables and the OTM trace level and flag.

G-1Glossary

Glossary

2LP
Two-Level Transaction Processing describes
communications between two systems that do not
have equal rights. One is considered the master,
the other the slave.

AFNOR
Association Francaise de NORmalisation: French
Standards Association.

API
Application Programming Interface: Functional
interface allowing a high–level language application
program to use specific data or functions of the
operating system.

ASCII
American National Standard Code for Information
Interchange.

AIX
International Business Machines UNIX
Operating System derived from AT&T UNIX
System V.The Bull DPX/20 uses this operating
system.

C Language
The programming language that is the basis of the
UNIX operating system.

CCITT
Consultative Committee on International
Telegraphy & Telephone: United Nations
Specialized Standards Group proposing
recommendations for international
telecommunications.

CEN/CENELEC
Comité Européen de Normalisation ELECtronique:
European Electronic Standards Committee.

CICS
The Customer Information Control System is the
IBM transaction monitor which is an interface with
IBM mainframes.

COBOL (Micro Focus)
The Common Business Oriented Language from
Micro Focus ltd. is the version used on the Bull
UNIX computers.

Conversation ID
This is the unique identifier assigned by CPI-C SS
to each conversation between a Bull UNIX machine
and a Bull or IBM mainframe

CPI-C
Common Programming Interface for
Communications: API allowing X/Open-compliant
systems to communicate with systems
implementing XCP2 protocols and SNA Logical
Unit type 6.2 (LU6.2).

CSMA–CD
Carrier Sense Multiple Access – Collision
Detection.

CXI
The Common Exchange Interface is the GCOS 8
module that provides the link to a Datanet.

DAC
The Direct ACcess module of GCOS 8 that
manages terminal connections.

Datanet
The Bull communications processor, also known as
a Front-end processor. It manages network
communications.

DMVITP
Data Manager IV for Transaction Processing is a
part of the GCOS 6 and GCOS 8 operating
systems.

DPS
Distributed Processing System is the name given
to the Bull mainframe computers (DPS 6000, DPS
7000 and DPS 9000)

DPX
A name given to Bull UNIX computers.

DSA
Distributed Systems Architecture is the Bull
network architecture.

DTF
A GCOS 6 transaction processing executive.

ECL
A transaction processing module used by GCOS 6.

Environment Variable
These variables set up the environment for running
an application or using a computer system under
UNIX.

ECMA
European Computer Manufacturers’ Association.

Ethernet
A baseband LAN specification (IEEE 802.3) using
the CSMA-CD technique.

G-2 OTM Administrator and User’s Guide

FastPath
Simplified keystroke commands permitting SMIT
functions to be quickly activated (IBM).

FDDI
Communications adapter interface with a Fiber
Distributed Data Network.

Gateway
Software, linking two networks using different
communication architectures. A gateway performs
routing, conversion and relaying operations.

GCOS
The General Comprehensive Operating Systems
are the proprietary operating systems for the Bull
mainframe computers: GCOS 6 for the DPS 6000,
GCOS 7 for the DPS 7000, and GCOS 8 for the
DPS 9000.

HDLC
High–level Data Link Control: Use of specialized
series of bits to control data links in accordance
with International Standards.

HPAD
Host PAD: Server side in the PAD client/server
model.

IEEE
Institute of Electrical & Electronic Engineers.

IOF
The Interactive Operator Facility controls
interactive processing under GCOS 7.

ISDN
Integrated Services Digital Network: Network
supporting voice and non–voice communications.

ISO
International Standards Organization: Originator of
Open Systems Interconnection reference model
(ISO–IS 7498).

Mandatory
Characteristic of a parameter field. If data is not
entered in the field, the command of the dialog is
not executed (SMIT).

Mapped Conversation
In a mapped conversation there is a one-to-one
correlation between the data record sent and the
data record received.

MASK
A pattern of characters used as a control for other
patterns of characters.

OSF
The Open Systems Facility is the gateway in the
Bull Datanet that provides the interface to the IBM
mainframes.

OSI
Open Systems Interconnection: Reference model
defined in OS–IS 7498.

OTM
The Open Terminal Manager product provides the
emulations needed for the Bull UNIX machines to
communicate with Bull and IBM mainframes.

Output
Window where the results of dialog commands are
displayed. The standard output of commands are
sent to this window (SMIT).

PAD
Packet Assembler Disassembler: Functional device
enabling un–equipped Data Terminal Equipments
to access a packet switching network.

PDU
Protocol Data Unit: Unit of protocol control
information specified in the protocol of a given
layer.

PID
The French acronym (Prise Iso Dsa) for the ISO
DSA Plug which provides conversion between ISO
and DSA protocols.

Session
Session protocol: Virtual relationship permitting
communications between two network addressable
units.

SMIT
System Management Interface Tool (IBM):
Menu–driven, resident command–building system
management facility.

SMTP
Shared Memory Transport Protocol.

SNA
Systems Network Architecture is the IBM network
architecture.

SPDU
The Session Protocol Data Unit is the data entering
or leaving the bottom of the session layer.

SSDU
The Session Service Data Unit is the data entering
or leaving the top of the session layer.

TDS
The Transaction Driven System is the GCOS 7
facility that handles transaction processing.

TP
This is the abbreviation for Transaction Processing.

G-3Glossary

TPAD
Terminal PAD: Client side in the PAD client/server
model.

TPS6
A transaction processing executive under GCOS 6.

Trace Level
This is a number from 0 to 5 that indicates the level
of detail to be included in the CPI-C traces. It has
also been called ”Logging Level”.

Trace Storage Mode
The mode determines how the trace information is
stored. It can be either FILE or BUFFER. This is
also known as ”Logging Flag”.

TS8
A GCOS 8 module.

TSS
Time Sharing Software is part of GCOS 8.

X/Open
The organization that develops international
standards for UNIX.

G-4 OTM Administrator and User’s Guide

Index X-1

Index

Numbers
2LTP, 1-4

A
A Symbol, 2-11
AD Identifier, A-5
AE Symbol, 2-11
Alphanumeric String, A-1
API, 1-1
API_LOG_FLG Variable, 3-2, 3-6, 3-14
API_LOG_LEV Variable, 3-1, 3-6, 3-14
API_MODE Variable, 3-1, 3-6, 3-13
api_msg Function, 1-3, 3-3
API_SSDUE Variable, 3-2
API_SSDUR Variable, 3-2
API_TERM_NAME Variable, 3-7
API_TP_NAME Variable, 3-6
AUT_LOG_FILE Variable, 2-3, 3-2, 3-13

B
Break Function, 3-27
buffer Parameter, 3-17, 3-24

C
CCPSTID.o Object, 2-12
CICS, 1-7
CMACCP, 1-8, 2-1, 2-7, 2-8, 2-10, 2-16, 3-2, 3-6,

3-20
CMALLC, 1-3, 2-1, 2-5, 2-7, 2-8, 2-10, 3-9, 3-13,

3-15
CMDEAL, 1-3, 2-1, 2-8, 2-10, 2-11, 3-11
CMINIT, 1-3, 1-8, 2-1, 2-5, 2-7, 2-8, 2-10, 2-16,

3-13, 3-20
CMRCV, 1-3, 2-1, 2-6, 2-7, 2-8, 2-10, 2-11, 3-16
CMSDT, 1-3, 3-20
CMSED, 1-3, 2-1, 3-22
CMSEND, 1-3, 2-1, 2-5, 2-6, 2-8, 2-10, 3-18, 3-24
CMSERR, 1-3, 2-1, 2-10, 3-23, 3-26
CMSTD, 2-1
cob Command, 2-12
COB_errmsg Variable, 3-3
COBOL, 2-12, 3-4
COBOL 85, 2-1
COBOL II, 2-1
COBOL/2, 2-12
cobrun, 2-12
Compiler, 2-12
Configuration File, 2-14, 3-14
Configurations, 1-5
Connection Number, A-1
Conversation ID (example), 2-16
Conversation ID (pseudo), 2-15
CPI-C SS Verbs, 3-1
CPI-C Library, 1-1
cpic_startup Command, 2-3
cpic-c.h Header File, 3-3
cpi-clog Command, 3-2, A-5

CXI, 1-6

D
DA Symbol, 2-11
DAC, 1-6
Data Flow, 3-23
data received Parameter, 3-17
Datanet, 1-5, 1-6, 1-7, 3-7
Deallocate Calls, 3-27
deallocate type, 3-11
Debugging, 2-1, 2-14
Diagnostic Functions, 1-3
DMIVTP, 1-6
DMVITP, 1-5
DN Symbol, 2-11
DPS 7000, 1-5, 2-9
DPS 9000, 1-6
DPX, 2-5
DPX/DPX Connections, 3-22
DR Symbol, 2-11
DST8, 2-9
DTF, 1-5
dumpcpic, 2-14, 2-16, A-5

E
ECL, 1-5
elgfile, 3-2, A-5
ELOG Driver, 3-2, A-5
elog_print File, 3-2, A-5
EMU_MODEL Variable, 3-14
EN Symbol, 2-11
Environment Variables, 3-1, A-6
EP Symbol, 2-11
ernum, A-5
errmsg Output Area, 3-3
Error Direction, 3-22
Error Messages, A-1
Export File, 2-13

G
Gateway, 1-6
GCOS, 1-1, 2-5, 3-7, 3-11, 3-22, 3-27
GCOS 6, 1-4, 1-5
GCOS 7, 1-4, 1-5
GCOS 7 TP, 1-5
GCOS 8, 1-4, 2-5
GCOS6 TP, 1-5
gnt Files, 2-12

H
Hexadecimal Code, A-1

I
IBM, 1-4, 1-7, 2-5
Include Directory (private), 2-13
inftms, 2-9
INIT, 2-10

OTM CPI-C SS in Bull Environment User’s GuideX-2

INITIAL_COR Variable, 3-14
IOF, 1-5
ISO Sessions, 1-1

K
keymsg Error Message Code, 3-3

L
lgprint Command, 3-2, A-5
libmef.a Library, 2-13
libtmpi.a Library, 2-13
Linker, 2-12
LLC, 1-8
Local

Mailbox, 3-6
Program, 3-26
System, 1-1

login, 2-3
LOGNAME Variable, 3-2, 3-6, 3-8

M
Mapped Conversation, 3-9
MDNET, 1-6
Microfocus, 2-1, 2-12
MROUT, 1-6
myfile Pointer, 3-3
myprog.cbl Program, 2-13

N
Native Code Generator, 2-12
ND Symbol, 2-11
NO Symbol, 2-11
Non Transparent Mode, 2-3

O
Object File Format (OFF), 2-12
OSF, 1-7
OSI Stack, 1-4, 1-5, 1-7, 1-8
OTM, 1-4
outfile, A-5

P
PC Symbol, 2-11
PE Symbol, 2-11
PID, 1-5, 1-6
pmaderror retcode, A-1

R
R Command, 2-4
rdmessg Function, 3-1, 3-3
Receive Data, 2-3
RECEIVE Return Code, 3-10
RECEIVE State, 2-7
receive type Parameter, 3-19
received length Parameter, 3-17
RECV, 2-10
REMMB_EXT Variable, 3-14
Remote

Application, 1-4
Machine, 1-4

Program, 3-23, 3-26
Site, 2-8
System, 1-1

request_to_send Notification, 3-27
request_to_send_received Parameter, 3-17, 3-25,

3-26, 3-27
requested length Parameter, 3-17
RESET, 2-10
retrieve_error Function, 1-3, 3-1, 3-5
Return Codes, A-4
return control Parameter, 3-9
RF Symbol, 2-11
RS Symbol, 2-11
rts32, 2-12
Run Time System (RTS), 2-12

S
S Command, 2-3
scancpic, 2-14
SE Symbol, 2-11
SECURITY Variable, 3-14
SEND, 2-10
Send Data, 2-3, 3-23, 3-27
SEND Return Code, 3-10
SEND State, 2-7, 2-11
send type Variable, 2-7
send_length Parameter, 3-25
Service Provider, 1-4
Session Connection, 3-8
Session Layer, 1-4, 1-8
Session User, 2-8
SMIT, 2-8, 2-14, A-6
SSDU, 1-1, 3-2
State Transition Tables, 2-10
status received Parameter, 3-17
Symbolic Destination Name, 2-9, 2-16

T
TDS, 1-5
Terminal Management, 1-1
tmcall, 2-9
tmp/api.trc File, 2-14, A-5
tmp/api.trc file, 1-8
tmp/apilog File, 2-15, 3-2
tmp/aplilog File, A-5
tmp/dumpcpic File, 2-16
Token, 1-3, 1-4
TP, 1-5
TP Form, 2-5, 2-6
TP8, 1-6
TPS6, 1-5
Trace Facility, 2-1, 2-14, A-5
Trace File, 2-15
Trace Level, 2-14, A-5
Trace Storage Mode, 2-14, A-6
Traces (OSI User), 2-14
Transparent Mode, 1-1, 2-2, 3-10
Transport Layer, 1-8
TS8, 1-6
TSS, 1-6
Two Level Transaction Processing, 1-4

Index X-3

U
User Application, 1-1, 1-5
User Transactions, 1-5
USERINFO, 3-13
usr/cpic Directory, 3-3
usr/cpi-c/site.cnf Flie, 3-14
utmlog Command, A-5

V
Variables, 3-1

VIP Protocol, 1-1
VTAM, 1-7

W
W Symbol, 2-11

X
X/OPEN, 1-3
X25.3 Mapper, 1-8

OTM CPI-C SS in Bull Environment User’s GuideX-4

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull DPX/20 Open Terminal Management (OTM) CPI-C SS Bull Environment User’s

Guide

Nº Reférence / Reference Nº : 86 A2 32PE 04 Daté / Dated : April 1996

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement

Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.

If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

Bull Electronics Angers S.A.

CEDOC

Atelier de Reprographie

331 Avenue Patton

49004 ANGERS CEDEX 01

FRANCE

Bull Electronics Angers S.A.

CEDOC

Atelier de Reprographie

331 Avenue Patton

49004 ANGERS CEDEX 01

FRANCE

86 A2 32PE 04

ORDER REFERENCE

P
L
A

C
E

 B
A

R
 C

O
D

E
 I

N
 L

O
W

E
R

L
E

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.

Use the cut marks to get the labels.

AIX

86 A2 32PE 04

OTM
CPI-C SS Bull

Environment User’s
Guide

DPX/20

AIX

86 A2 32PE 04

OTM
CPI-C SS Bull

Environment User’s
Guide

DPX/20

AIX

86 A2 32PE 04

OTM
CPI-C SS Bull

Environment User’s
Guide

DPX/20

