
Bull
LoadLeveler V2R2
Using and Administering

AIX

86 A2 14EF 00
ORDER REFERENCE

Bull
LoadLeveler V2R2
Using and Administering

AIX

Software

October 2000

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

86 A2 14EF 00
ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright Bull S.A. 1992, 2000

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Year 2000

The product documented in this manual is Year 2000 Ready.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Contents

Who Should Use This Book . ix

How this Book is Organized xi
Typographic Conventions . xi

Related Information . xiii
Information Formats . xiii
Accessing This Book off the World Wide Web xiii
Accessing LoadLeveler Documentation Online xiii

LoadLeveler Man Pages . xiii

What’s New in 2.2 . xv
gsmonitor Daemon . xv
Additional Job States. xv
New Job Command File Keywords. xv
Consumable Resources. xv
Task Assignment Section . xv
New Adapter Stanza Keyword xv
New Machine Stanza Keyword xvi
Process Tracking . xvi
llctl Command Enhancement. xvi
Enhanced Support for DCE . xvi
llstatus Command Enhancements xvi
llq Command Enhancements. xvi
Task Guide . xvi
Job Control API Renamed . xvii
Scaling Considerations. xvii

Migration Considerations . xix
Moving From 1.3 to 2.1. xix

Resource Manager Functions Now in LoadLeveler. xix
Keywords Supported for Parallel Jobs xix
Migrating Your Existing Adapter Requirements Statements xix
Changes in LoadLeveler Command Output xx
Changes in the LoadLeveler Release Directory xx
Changes in the GUI Resource File. xx

Moving From 2.1 to 2.2. xxi
Keyword Added to Administration File xxi
Changes in LoadLeveler Command Output xxi

Part 1. Overview of LoadLeveler . 1

Chapter 1. What is LoadLeveler? 3
How LoadLeveler Works . 3

What Does a Network Job Management and Job Scheduling System Do? . . 4
LoadLeveler Daemons . 6
How Does LoadLeveler Schedule Jobs to Run on Machines? 6
The LoadLeveler Job Cycle. 7
What are Consumable Resources and Why Should I Use Them? 11

Chapter 2. LoadLeveler Daemons and Job States 13
Daemons and Processes . 13

The master Daemon . 13

iii

The schedd Daemon. 14
The startd Daemon . 15
The starter Process . 16
The negotiator Daemon. 17
The kbdd Daemon . 17
The gsmonitor Daemon. 18

LoadLeveler Job States. 18

Part 2. Using LoadLeveler . 21

Chapter 3. Submitting and Managing Jobs 23
Building a Job Command File 23

Job Command File Syntax 23
Submitting a Job Command File 25
Managing Jobs . 26

Editing a Job Command File 26
Querying the Status of a Job. 26
Placing and Releasing a Hold on a Job 27
Cancelling a Job . 28
Checkpointing a Job . 28
Setting and Changing the Priority of a Job 28
Working with Machines . 29

A Simple Task Scenario Using Commands. 30
Step 1: Build a Job . 30
Step 2: Edit a Job . 30
Step 3: Submit a Job . 30
Step 4: Display the Status of a Job 30
Step 5: Change the Priorities of Jobs in the Queue 31
Step 6: Hold a Job . 31
Step 7: Release a Hold on a Job 31
Step 8: Display the Status of a Machine 31
Step 9: Cancel a Job . 31
Step 10: Find the Location of the Central Manager. 31
Step 11: Find the Location of the Public Scheduling Machines 32

Additional Job Command File Examples 32
Example 1: Generating Multiple Jobs With Varying Outputs 32
Example 2: Using LoadLeveler Variables in a Job Command File 33
Example 3: Using the Job Command File as the Executable 34

Job Command File Keywords 36
account_no . 36
arguments . 37
blocking . 37
checkpoint . 37
class . 38
comment . 38
core_limit . 38
cpu_limit . 39
data_limit . 39
dependency . 39
environment . 41
error . 41
executable . 41
file_limit . 42
group . 42
hold . 42
image_size . 43

iv Using and Administering LoadLeveler

initialdir. 43
input. 43
job_cpu_limit. 43
job_name . 44
job_type . 44
max_processors . 44
min_processors. 45
network . 45
node. 47
node_usage . 47
notification . 48
notify_user . 48
output . 48
parallel_path . 49
preferences . 49
queue . 49
requirements. 49
resources . 52
restart . 52
rss_limit . 52
shell . 53
stack_limit . 53
startdate . 53
step_name . 53
task_geometry . 54
tasks_per_node . 54
total_tasks . 55
user_priority . 55
wall_clock_limit . 56
Job Command File Variables 56

Run-time Environment Variables 57
Submitting and Managing Jobs that Consume Resources 58

Specifying the Consumption of Resources by a Job Step 58
Displaying Currently Available Resources 58

Chapter 4. Submitting and Managing Parallel Jobs 59
Supported Parallel Environments 59
Keyword Considerations for Parallel Jobs 59

Scheduler Considerations . 59
Task Assignment Considerations 60

Running Interactive POE Jobs 62
Job Command File Examples 62

POE 2.4.0 . 62
PVM 3.3 (Non-SP) . 64
PVM 3.3.11+ (SP2MPI architecture) 64

Obtaining Status of Parallel Jobs 67
Obtaining Allocated Host Names 67

Part 3. Administering LoadLeveler . 69

Chapter 5. Administering and Configuring LoadLeveler 71
Overview . 71
Planning Considerations . 71

Where to Begin? . 72
Quick Set Up . 73
Administering LoadLeveler . 74

Contents v

Administration File Structure and Syntax 74
Customizing the Administration File 75
Step 1: Specify Machine Stanzas 75
Step 2: Specify User Stanzas 81
Step 3: Specify Class Stanzas 84
Step 4: Specify Group Stanzas 93
Step 5: Specify Adapter Stanzas 95

Configuring LoadLeveler . 97
The Configuration Files . 97
Configuration File Structure and Syntax 98

Keyword Summary . 135
Administration File Keywords 135
Configuration File Keywords and LoadLeveler Variables 138

Chapter 6. Administration Tasks for Parallel Jobs 149
Scheduling Considerations for Parallel Jobs 149
Allowing Users to Submit Interactive POE Jobs 149
Allowing Users to Submit PVM Jobs 150

Restrictions and Limitations for PVM Jobs 151
Setting Up a Class for Parallel Jobs. 151
Setting Up a Parallel Master Node 152

Chapter 7. Gathering Job Accounting Data 153
Collecting Job Resource Data on Serial and Parallel Jobs 153
Collecting Job Resource Data Based on Machines 153
Collecting Job Resource Data Based on Events 154
Collecting Job Resource Information Based on User Accounts 154
Collecting the Accounting Information and Storing it into Files 155
Accounting Reports . 155
Sample Job Accounting Scenario. 156

Task 1: Update the Configuration File 156
Task 2: Merge Multiple Files Collected From Each Machine Into One File 156
Task 3: Report Job Information on all the Jobs in the History File 156
Task 4: Using Account Numbers and Setting Up Account Validation 157
Task 5: Specifying Machines and Their Weights 157

Chapter 8. Routing Jobs to NQS Machines 159
Setting Up the NQS Environment. 159
Designating Machines to Which Jobs Will be Routed 160
Sample Routing Jobs to NQS Machines Scenario 160

Task 1: Modify the Administration File 160
Task 2: Modify the Configuration File 160
Task 3: Submit the Jobs . 161
Task 4: Obtain Status of NQS Jobs 163
Task 5: Cancel NQS Jobs 163

NQS Scripts . 163

Part 4. Command Reference . 165

Chapter 9. LoadLeveler Commands 167
Summary of LoadLeveler Commands 167

llacctmrg - Collect machine history files 168
llcancel - Cancel a Submitted Job 170
llclass - Query Class Information 172
llctl - Control LoadLeveler Daemons 175
lldcegrpmaint - LoadLeveler DCE group Maintenance Utility 180

vi Using and Administering LoadLeveler

llextSDR - Extract adapter information from the SDR 182
llfavorjob - Reorder System Queue by Job 185
llfavoruser - Reorder System Queue by User 186
llhold - Hold or Release a Submitted Job 187
llinit - Initialize Machines in the LoadLeveler Cluster 189
llprio - Change the User Priority of Submitted Job Steps 191
llq - Query Job Status . 193
llstatus - Query Machine Status 205
llsubmit - Submit a Job . 213
llsummary - Return Job Resource Information for Accounting 214

Part 5. The LoadLeveler Graphical User Interface 221

Chapter 10. Graphical User Interface Overview 223
Starting the Graphical User Interface 223

Specifying Options . 223
The LoadLeveler Main Window 223
Getting Help Using the Graphical User Interface 225
Differences Between LoadLeveler’s Graphical User Interface and Other

Graphical User Interfaces. 225
Building and Submitting Jobs Using the Graphical User Interface 225

Task Scenario Using the Graphical User Interface 226
Customizing the Graphical User Interface. 241

Syntax of an Xloadl File . 241
Modifying Windows and Buttons 242
Creating Your Own Pulldown Menus 242
Customizing Fields on the Jobs Window and the Machines Window 243
Modifying Help Panels. 244
Administrative Uses for the Graphical User Interface 244

Part 6. The LoadLeveler Application Programming Interfaces 249

Chapter 11. LoadLeveler APIs 251
Accounting API . 251

Account Validation Subroutine 251
Report Generation Subroutine 252

Serial Checkpointing API . 253
ckpt Subroutine . 254

The Submit API . 254
llsubmit Subroutine . 254
llfree_job_info Subroutine 255
The Monitor Program . 255

Data Access API . 256
Using the Data Access API 256
ll_query Subroutine . 257
ll_set_request Subroutine 257
ll_reset_request Subroutine 260
ll_get_objs Subroutine . 260
Understanding the LoadLeveler Job Object Model 262
ll_get_data Subroutine. 272
ll_next_obj Subroutine . 273
ll_free_objs Subroutine . 274
ll_deallocate Subroutine . 274
Examples of Using the Data Access API 275

Parallel Job API . 278

Contents vii

Interaction Between LoadLeveler and the Parallel API 279
ll_get_hostlist Subroutine. 280
ll_start_host Subroutine . 281
Examples . 282

Workload Management API . 283
ll_control Subroutine . 284
ll_start_job Subroutine. 287
ll_terminate_job Subroutine 289
Usage Notes . 290

Query API . 291
ll_get_jobs Subroutine . 291
ll_free_jobs Subroutine . 292
ll_get_nodes Subroutine . 293
ll_free_nodes Subroutine . 294

User Exits . 294
Handling DCE Security Credentials 294
Handling an AFS Token . 295
Filtering a Job Script . 296
Using Your Own Mail Program. 297
Writing Prolog and Epilog Programs. 297

Part 7. Appendixes . 303

Appendix A. Troubleshooting 305
Troubleshooting LoadLeveler 305

Frequently Asked Questions 305
Helpful Hints . 312
Getting Help from IBM. 316

Appendix B. Customer Case Studies 319
Customer 1: Technical Computing at the Cornell Theory Center 319

System Configuration . 319
LoadLeveler Configuration 319

Customer 2: Circuit Simulation. 327
System Configuration . 327
LoadLeveler Configuration 327

Customer 3: High-Energy Physics 329
System Configuration . 329
LoadLeveler Batch Configuration 329
LoadLeveler Interactive Configuration 330
Processor Configuration . 330

Customer 4: Computer Chip Design. 330
System Configuration . 331
Interactive Configuration . 331
Batch Configuration. 334
Configuration for a Machine That Schedules (But Doesn’t Run) Jobs . . . 335

Glossar y . 3337

Index . 339

viii Using and Administering LoadLeveler

Who Should Use This Book

This manual is intended for those who are responsible for using and/or
administering LoadLeveler.

Tasks involved with using LoadLeveler include submitting parallel, serial, and
interactive jobs. Tasks involved with administering Loadleveler include:

v Setting up configuration and administration files

v Maintaining LoadLeveler

v Setting up the distributed environment for allocating batch jobs.

Users and Administrators should be experienced with the UNIX** commands.
Administrators should be familiar with system management techniques such as
SMIT, as it is used in the AIX* environment. Knowledge of networking and NFS** or
AFS** protocols is helpful, as well as knowledge of DCE.

ix

x Using and Administering LoadLeveler

How this Book is Organized

This books contains the following sections:

v “Part 1. Overview of LoadLeveler” on page 1 describes what LoadLeveler is and
how it works, and includes an explanation of the LoadLeveler daemons and
processes.

v “Part 2. Using LoadLeveler” on page 21 describes how to submit both serial and
parallel jobs to LoadLeveler.

v “Part 3. Administering LoadLeveler” on page 69 describes how to perform
administration tasks, such as configuring LoadLeveler, gathering accounting data,
and routing jobs to NQS.

v “Part 4. Command Reference” on page 165 describes the LoadLeveler
commands.

v “Part 5. The LoadLeveler Graphical User Interface” on page 221 describes the
LoadLeveler graphical user interface.

v “Part 6. The LoadLeveler Application Programming Interfaces” on page 249
describes LoadLeveler’s application programming interfaces.

v The appendices include “Appendix A. Troubleshooting” on page 305, and
“Appendix B. Customer Case Studies” on page 319.

A glossary and index are also included.

Users of LoadLeveler should, at a minimum, become familiar with “Part 1. Overview
of LoadLeveler” on page 1 and “Part 2. Using LoadLeveler” on page 21.
Administrators should, at a minimum, become familiar with “Part 3. Administering
LoadLeveler” on page 69, and may find it helpful to read “Troubleshooting
LoadLeveler” on page 305.

Typographic Conventions
This book uses the following typographic conventions:

Typographic Usage

Bold v Bold words or characters represent system elements that you must use literally, such as
commands, flags, and path names.

v Bold words also indicate the first use of a term included in the glossary.

Italic v Italic words or characters represent variable values that you must supply.

v Italics are also used for book titles and for general emphasis in text.

Constant width Examples and information that the system displays appear in constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means “or.”)

< > Angle brackets (less-than and greater-than) enclose the name of a key on the keyboard. For
example, <Enter> refers to the key on your terminal or workstation that is labeled with the word
Enter.

... An ellipsis indicates that you can repeat the preceding item one or more times.

<Ctrl- x> The notation <Ctrl- x> indicates a control character sequence. For example, <Ctrl-c> means
that you hold down the control key while pressing <c>.

xi

xii Using and Administering LoadLeveler

Related Information

In addition to this publication, the following books are also part of the LoadLeveler
library:

v Diagnosis and Messages Guide , 86 A2 13EF

v Installation Memo , 86 A2 12EF

Information Formats
Documentation supporting RS/6000 SP software licensed programs is no longer
available from IBM in hardcopy format. However, you can view, search, and print
documentation in the following ways:

v On the World Wide Web

v Online (from the product media or the SP Resource Center)

Accessing This Book off the World Wide Web
You can view or download this book (in PDF format) from the World Wide Web
using the following URL:
http://www.rs6000.ibm.com/resource/aix_resource/sp_books/loadleveler

Accessing LoadLeveler Documentation Online
IBM ships on the product media manual pages, HTML files, and PDF files. In order
to use these files you must install the appropriate file sets. For more information,
see LoadLeveler Installation Memo , which is shipped on the product media.

To view the LoadLeveler books in HTML format, you need access to an HTML
document browser such as Netscape. Once you install the HTML files, an index to
the LoadLeveler books is found in /usr/lpp/LoadL/html/index.html .

You can also view the LoadLeveler books from the SP Resource Center, which is
available under the Parallel Systems Support Programs (PSSP) or as a separately
installed program. You invoke the Resource Center from PSSP by entering
resource_center . To invoke the Resource Center from the product CD, see the
readme.txt file.

To view the LoadLeveler books in PDF format, you need access to the Adobe
Acrobat Reader 3.0.1 or higher. The Acrobat Reader is shipped with AIX Version
4.3 Bonus Pack and is also freely available for downloading from the Adobe web
site at URL http://www.adobe.com .

LoadLeveler Man Pages
Manual (man) pages are available for all LoadLeveler commands. You can view the
man page for a command by entering man and the command name. For example:
man llq .

The following man pages associated with LoadLeveler APIs (Application
Programming Interfaces) are also available to you. You can view these man pages
by entering man and the name of the man page. For example: man
LoadL_submitapi .

xiii

Man Page Name What it Describes

LoadL_acctapi Accounting API

LoadL_ckptapi Serial Checkpointing API

LoadL_dataapi Data Access API

LoadL_jobctlapi Workload Management API

LoadL_parallelapi Parallel job API

LoadL_queryapi Query API

LoadL_submitapi Submit API

xiv Using and Administering LoadLeveler

What’s New in 2.2

The following is a list of new functions added for this release.

gsmonitor Daemon
A new daemon, gsmonitor , has been added to monitor machine availability and
notify the negotiator when a machine is no longer reachable. For more details, see
“The gsmonitor Daemon” on page 18.

Additional Job States
Two new LoadLeveler job states have been added:

v Cancelled

v Terminated

For more information, see “LoadLeveler Job States” on page 18.

New Job Command File Keywords
Three new job command file keywords have been added:

v blocking

v resources

v task_geometry

See “Job Command File Keywords” on page 36 for more information.

Consumable Resources
Consumable resources allow users to schedule jobs based on the availability of
specific resources. For information on how consumable resources is used in the
administration file, see “Step 1: Specify Machine Stanzas” on page 75, and “Step 3:
Specify Class Stanzas” on page 84. For information about configuring consumable
resources, see“Step 4: Define Consumable Resources” on page 104. For
information about how consumable resources is used in job command files, see
“resources” on page 52, and “Submitting and Managing Jobs that Consume
Resources” on page 58.

Task Assignment Section
A new section has been added discussing the assignment of tasks to nodes. For
more information see “Task Assignment Considerations” on page 60.

New Adapter Stanza Keyword
A new keyword called css_type has been added to the format of an adapter
stanza. css_type designates the type of switch adapter to be used.

For more information, see “Step 5: Specify Adapter Stanzas” on page 95.

xv

New Machine Stanza Keyword
A new keyword call schedd_fenced has been added to the format of a machine
stanza. This keyword specifies that the central manager ignores connections from
the schedd_daemon running on any machine specifying this keyword. For more
information, see 80.

Process Tracking
This new function cancels any processes (throughout the entire cluster) left behind
when a job terminates. For more information, see “Step 15: Specify Process
Tracking” on page 122.

llctl Command Enhancement
The purgeschedd keyword requests that all jobs scheduled by the a specified host
machine be purged. For more information, see 176.

Enhanced Support for DCE
LoadLeveler now fully supports DCE security features. Key features of DCE include
the ability to authenticate users’ identities, authorize users and programs to use
LoadLeveler’s services, and delegate user credentials to the starter process. For
more infomation on enabling DCE, see “Step 16: Configuring LoadLeveler to use
DCE Security Services” on page 123. A new command, lldcegrpmaint , is provided
for setting up DCE groups and principal names. For more information on this
command, see “lldcegrpmaint - LoadLeveler DCE group Maintenance Utility” on
page 180.

llstatus Command Enhancements
The llstatus command now includes options for listing consumable resources. The
new options are:

v -R, which lists consumable machine resources, and

v -F, which lists consumable floating resources

The -l option now lists: windows, memory, and connectivity for adapters; the switch
fabric connectivity vector; information about free memory and paging, and
consumable resource availability and use. For more information on the command,
see “llstatus - Query Machine Status” on page 205.

llq Command Enhancements
Device memory for parallel jobs has been added to the Allocated Hosts and Task
Instances lists in the llq -l output.

Task Guide
Task Guide support has been added for setting up consumable resources, tuning
scheduling and communications keywords, and merging SP machine and adapter
information. For more information, see 246.

xvi Using and Administering LoadLeveler

Job Control API Renamed
The Job Control API has been renamed in this release. This API is now called the
Workload Management API and adds a new subroutine, ll_control . For more
details, see “Workload Management API” on page 283.

Scaling Considerations
Information on running LoadLeveler on a large system configuration and ways to
reduce network traffic has been included in a new section, “Scaling Considerations”
on page 312. Also, the SCHEDD_SUBMIT_AFFINITY configuration file keyword
has been added; for more information on this keyword, see 103.

What’s New in 2.2 xvii

xviii Using and Administering LoadLeveler

Migration Considerations

This section describes some differences between LoadLeveler 1.3.0 and
LoadLeveler 2.1.0., and between LoadLeveler 2.1 and LoadLeveler 2.2. The
LoadLeveler Installation Memo has more specific information about and procedures
for migration.

Moving From 1.3 to 2.1

Resource Manager Functions Now in LoadLeveler
The following functions were previously part of the Parallel System Support
Programs (PSSP) Resource Manager and are now part of LoadLeveler.

Table 1. New LoadLeveler Functions Previously Part of the Resource Manager

Resource Manager Function LoadLeveler Function

Support for pools The pool_list keyword in the machine stanza.

Specifying batch, interactive, or general use
for nodes

The machine_mode keyword in the machine stanza.

Enabling SP exclusive use accounting for
parallel jobs

The sp_excluse_enable keyword in the machine stanza.

Controlling user logins LoadLeveler does not directly interact with the Login Control Facility.
LoadLeveler logs into nodes as root and switches to the user’s ID.
root is never blocked on a node.

Providing node and adapter information for
SP nodes

The llextSDR extracts information from the SDR that you can use in
administration file stanzas.

Requesting dedicated use of nodes The node_usage keyword in the job command file.

Requesting dedicated use of adapters The usage operand on the network keyword in the job command
file.

Displaying job information with the jm_status
-j command

The llq command.

Displaying pool information with the
jm_status -P command

The llstatus -l command.

Also, the LoadLeveler rm_host keyword in the machine stanza is no longer
needed.

Keywords Supported for Parallel Jobs
LoadLeveler 2.1.0 includes a new scheduler, the Backfill scheduler, in addition to
the default scheduler which existed in LoadLeveler 1.3.0. See Table 4 on page 59
for a list of which keywords associated with parallel jobs are supported by each
scheduler.

Migrating Your Existing Adapter Requirements Statements
If you are running the Backfill scheduler with job_type=parallel , you should use the
2.1.0 network job command file keyword to request adapters. However, if you use
the 1.3.0 Adapter requirement in a job command file, the requirement is converted
to the 2.1.0 network statement. Only those requirement statements with one
Adapter keyword and that use the “==” operator are converted; all other Adapter
requirements are not allowed.

xix

Table 2 shows how the network type value in an Adapter requirement statement is
converted. The left column represents the network types you can request using the
Adapter requirement. The right hand column represents the resulting network
statement generated by LoadLeveler 2.1.0.

Table 2. How the Backfill Scheduler Handles the Adapter Requirement

Network Type Adapter Requirement Resulting network Statement

hps_ip css0,shared,IP

hps_user css0,shared,US

ethernet en0,shared,IP

fddi fi0,shared,IP

tokenring tr0,shared,IP

fcs fcs0,shared,IP

Note that any adapter name in a resulting network statement must be specified in
the administration file.

Changes in LoadLeveler Command Output
The following are changes in the output produced by LoadLeveler Version 2
Release 1 commands:

v The llq -l -x command output now includes task and node information for parallel
jobs. For more information, see “Results” on page 195.

v The llstatus -l command output includes the following changes:

– The order of the output fields displayed has changed.

– The first and last line of output has changed.

– Job classes are now grouped together and are followed by the number of
class instances. For example, small(2) POE(3) refers to two small class jobs
and three POE class jobs.

– The Adapter line now contains expanded information.

For more information, see “Results” on page 206.

Changes in the LoadLeveler Release Directory
The LoadLeveler release directory has changed as follows:

v /usr/lpp/LoadL/nfs is now /usr/lpp/LoadL/full .

v /usr/lpp/LoadL/nfs_so is now /usr/lpp/LoadL/so .

The LoadLeveler release directory is set by the RELEASE_DIR keyword in the
sample LoadLeveler configuration file and the sample program Makefiles.

Changes in the GUI Resource File
The following new resources have been added to Xloadl , the GUI resource file:

v New resources ending in _label allow you to specify the titles of the columns on
the Jobs and Machines windows.

v Additional resources ending in _len allow you to add new fields to the Jobs and
Machines windows and to specify the size of these fields.

v New resources are available for “widgets,” such as the Job Type cascading
menu, and the Nodes, Network, and PVM buttons and windows.

For more information, see /usr/lpp/LoadL/full/lib/Xloadl , the GUI resource file.

xx Using and Administering LoadLeveler

Moving From 2.1 to 2.2

Keyword Added to Administration File
The css_type keyword has been added to adapter stanzas in the administration
file. This keyword designates the type of switch adapter to be used; for more
information, see “Step 5: Specify Adapter Stanzas” on page 95.

Changes in LoadLeveler Command Output
The llstatus -l output now lists: windows, memory, and connectivity for adapters;
the switch fabric connectivity vector; information about free memory and paging,
and consumable resource availability and use. For more information on the
command, see “llstatus - Query Machine Status” on page 205.

Device memory for parallel jobs has been added to the Allocated Hosts and Task
Instances lists in the llq -l output. For more information, see “llq - Query Job Status”
on page 193.

Migration Considerations xxi

xxii Using and Administering LoadLeveler

Part 1. Overview of LoadLeveler

1

2 Using and Administering LoadLeveler

Chapter 1. What is LoadLeveler?

LoadLeveler is a job management system that allows users to run more jobs in less
time by matching the jobs’ processing needs with the available resources.
LoadLeveler schedules jobs, and provides functions for building, submitting, and
processing jobs quickly and efficiently in a dynamic environment.

Figure 1 shows the different environments to which LoadLeveler can schedule jobs.
Together, these environments comprise the LoadLeveler cluster. An environment
can include heterogeneous clusters, dedicated nodes, and the RISC System/6000
Scalable POWERparallel System (SP).

In addition, LoadLeveler can schedule jobs written for NQS to run on machines
outside of the LoadLeveler cluster. As Figure 1 also illustrates, a LoadLeveler
cluster can include submit-only machines, which allow users to have access to a
limited number of LoadLeveler features. This type of machine is further discussed in
“Roles of Machines” on page 5.

How LoadLeveler Works
This section introduces some basic job scheduling concepts.

LoadLeveler

IBM SP

NFS
AFS
DCE

NQS

IBM RS
System/6000

Submit-Only Machines

Figure 1. Example of a LoadLeveler Configuration

3

What Does a Network Job Management and Job Scheduling System
Do?

A network job management and job scheduling system, such as LoadLeveler, is a
software program that schedules and manages jobs that you submit to one or more
machines under its control. LoadLeveler accepts jobs that users submit and reviews
the job requirements. LoadLeveler then examines the machines under its control to
determine which machines are best suited to run each job.

Jobs
LoadLeveler schedules your jobs on one or more machines for processing. The
definition of a job, in this context, is a set of job steps. For each job step, you can
specify a different executable (the executable is the part of the job that gets
processed). You can use LoadLeveler to submit jobs which are made up of one or
more job steps, where each job step depends upon the completion status of a
previous job step. For example, Figure 2 illustrates a stream of job steps:

Each of these job steps is defined in a single job command file. A job command file
specifies the name of the job, as well as the job steps that you want to submit, and
can contain other LoadLeveler statements.

LoadLeveler tries to execute each of your job steps on a machine that has enough
resources to support executing and checkpointing each step. If your job command
file has multiple job steps, the job steps will not necessarily run on the same
machine, unless you explicitly request that they do.

You can submit batch jobs to LoadLeveler for scheduling. Batch jobs run in the
background and generally do not require any input from the user. Batch jobs can
either be serial or parallel. A serial job runs on a single machine. A parallel job is a
program designed to execute as a number of individual, but related, processes on
one or more of your system’s nodes. When executed, these related processes can
communicate with each other (through message passing or shared memory) to
exchange data or synchronize their execution.

LoadLeveler will execute two different types of parallel jobs:
job_type = PVM
job_type = parallel

Figure 2. LoadLeveler Job Steps

4 Using and Administering LoadLeveler

With a job_type of PVM, LoadLeveler supports a PVM API to allocate nodes and
launch tasks. With a job_type of parallel, LoadLeveler interacts with Parallel
Operating Environment (POE) to allocate nodes, assign tasks to nodes, and launch
tasks.

Machines and Workstations
In order for LoadLeveler to schedule a job on a machine, the machine must be a
valid member of the LoadLeveler cluster. A cluster is the combination of all of the
different types of machines that use LoadLeveler. The following types of machines
can comprise a LoadLeveler cluster:
v RISC System/6000 (and compatible hardware running AIX)
v SP System

To make a machine a member of the LoadLeveler cluster, the administrator has to
install the LoadLeveler software onto the machine and identify the central manager
(described in “Roles of Machines”). Once a machine becomes a valid member of
the cluster, LoadLeveler can schedule jobs to it.

Roles of Machines: Each machine in the LoadLeveler cluster performs one or
more roles in scheduling jobs. These roles are described below:

v Scheduling Machine: When a job is submitted, it gets placed in a queue
managed by a scheduling machine. This machine contacts another machine that
serves as the central manager for the entire LoadLeveler cluster. (This role is
described below). This scheduling machine asks the central manager to find a
machine that can run the job, and also keeps persistent information about the
job. Some scheduling machines are known as public scheduling machines,
meaning that any LoadLeveler user can access them. These machines schedule
jobs submitted from submit-only machines, which are described below.

v Central Manager Machine: The role of the Central Manager is to examine the
job’s requirements and find one or more machines in the LoadLeveler cluster that
will run the job. Once it finds the machine(s), it notifies the scheduling machine.

v Executing Machine: The machine that runs the job is known as the executing
machine.

v Submitting Machine: This type of machine is known as a submit-only machine. It
participates in the LoadLeveler cluster on a limited basis. Although the name
implies that users of these machines can only submit jobs, they can also query
and cancel jobs. Users of these machines also have their own Graphical User
Interface (GUI) that provides them with the submit-only subset of functions. The
submit-only machine feature allows workstations that are not part of the
LoadLeveler cluster to submit jobs to the cluster.

Keep in mind that one machine can assume multiple roles.

Machine Availability: There may be times when some of the machines in the
LoadLeveler cluster are not available to process jobs; for instance, when the
owners of the machines have decided to make them unavailable. This ability of
LoadLeveler to allow users to restrict the use of their machines provides flexibility
and control over the resources.

Machine owners can make their personal workstations available to other
LoadLeveler users in several ways. For example, you can specify that:

v The machine will always be available

v The machine will be available only between certain hours

v The machine will be available when the keyboard and mouse are not being used
interactively.

Chapter 1. What is LoadLeveler? 5

Owners can also specify that their personal workstations never be made available
to other LoadLeveler users.

LoadLeveler Daemons
This section lists the daemons that LoadLeveler uses to process jobs. For more
detailed information, see “Daemons and Processes” on page 13.

LoadL_master
Referred to as the master daemon, this daemon manages all LoadLeveler
daemons on its machine. The master daemon runs on all machines in the
cluster.

LoadL_schedd
Referred to as the schedd daemon, this daemon manages a list of jobs
submitted to the machine. The schedd daemon runs on all scheduling
machines in the cluster.

LoadL_startd
Referred to as the startd daemon, this daemon accepts jobs to be run on
the machine where startd runs. The startd daemon runs on all executing
machines in the cluster.

LoadL_starter
Spawned by the startd daemon, the starter process manages a running job
on the executing machine. The starter process runs on all executing
machines in the cluster.

LoadL_kbdd
Referred to as the keyboard daemon, this daemon monitors keyboard and
mouse activity. The keyboard daemon runs on all executing machines in the
cluster.

LoadL_negotiator
Referred to as the negotiator daemon, this daemon collects job status and
machine status from all machines in the LoadLeveler cluster, and makes
decisions on where the jobs should be run. The negotiator daemon runs on
the LoadLeveler central manager machine.

LoadL_GSmonitor
Referred to as the gsmonitor daemon, this daemon uses the Group
Services Application Programming Interface (GSAPI) for monitoring
machine availability, and then notifies the negotiator when a machine is no
longer reachable. The negotiator will then take the necessary action to
remove running job(s) and mark the machine down.

How Does LoadLeveler Schedule Jobs to Run on Machines?
When a user submits a job, LoadLeveler examines the job command file to
determine what resources the job will need. LoadLeveler determines which
machine, or group of machines, is best suited to provide these resources, then
LoadLeveler dispatches the job to the appropriate machine(s). To aid this process,
LoadLeveler uses queues. A job queue is a list of jobs that are waiting to be
processed. When a user submits a job to LoadLeveler, the job is entered into an
internal database–which resides on one of the machines in the LoadLeveler
cluster–until it is ready to be dispatched to run on another machine, as shown in
Figure 3 on page 7.

6 Using and Administering LoadLeveler

Once LoadLeveler examines a job to determine its required resources, the job is
dispatched to a machine to be processed. Arrows 2 and 3 indicate that the job can
be dispatched to either one machine, or–in the case of parallel jobs–to multiple
machines. Once the job reaches the executing machine, the job runs.

Jobs do not necessarily get dispatched to machines in the cluster on a first-come,
first-serve basis. Instead, LoadLeveler examines the requirements and
characteristics of the job and the availability of machines, and then determines the
best time for the job to be dispatched.

LoadLeveler also uses job classes to schedule jobs to run on machines. A job class
is a classification to which a job can belong. For example, short running jobs may
belong to a job class called short_jobs. Similarly, jobs that are only allowed to run
on the weekends may belong to a class called weekend. The system administrator
can define these job classes and select the users that are authorized to submit jobs
of these classes. For more information on job classes, see “Step 3: Specify Class
Stanzas” on page 84.

You can specify which types of jobs will run on a machine by specifying the type(s)
of job classes the machine will support. For more information, see “Step 1: Specify
Machine Stanzas” on page 75.

LoadLeveler also examines a job’s priority in order to determine when to schedule
the job on a machine. A priority of a job is used to determine its position among a
list of all jobs waiting to be dispatched. For more information on job priority, see
“Setting and Changing the Priority of a Job” on page 28.

The LoadLeveler Job Cycle
Figure 4 on page 8 illustrates the information flow through the LoadLeveler cluster:

Figure 3. Job Queues

Chapter 1. What is LoadLeveler? 7

The managing machine in a LoadLeveler cluster is known as the central manager .
There are alos machines that act as schedulers, and machines and machines that
serve as the executing machines. The arrows in Figure 4 illustrate the following:

v Arrow 1 indicates that a job has been submitted to LoadLeveler.

v Arrow 2 indicates that the scheduling machine contacts the central manager to
inform it that a job has been submitted, and to find out if a machine exists that
matches the job requirements.

v Arrow 3 indicates that the central manager checks to determine if a machine
exists that is capable of running the job. Once a machine is found, the central
manager informs the scheduling machine which machine is available.

v Arrow 4 indicates that the scheduling machine contacts the executing machine
and provides it with information regarding the job.

Figure 4 is broken down into the following more detailed diagrams illustrating how
LoadLeveler processes a job.

1. Submit a LoadLeveler job:

Figure 4. High-Level Job Flow

8 Using and Administering LoadLeveler

Figure 5 illustrates that the schedd daemon runs on the scheduling machine.
This machine can also have the startd daemon running on it. The negotiator
daemon resides on the central manager machine. The arrows in Figure 5
illustrate the following:

v Arrow 1 indicates that a job has been submitted to the scheduling machine.

v Arrow 2 indicates that the schedd daemon, on the scheduling machine,
stores all of the relevant job information on local disk.

v Arrow 3 indicates that the schedd daemon sends job description information
to the negotiator daemon.

2. Permit to run:

In Figure 6, arrow 4 indicates that the negotiator daemon authorizes the schedd
daemon to begin taking steps to run the job. This authorization is called a

1

2

3

Central ManagerSubmit
Job

negotiator daemon

schedd daemon

Jo
b

Scheduling
MachineJo

b
In

fo
rm

atio
n

List of
Submitted

Jobs

Figure 5. Job is Submitted to LoadLeveler

Central Manager

negotiator daemon

schedd daemon

Host

Perm
it to

Ru
n

4

Figure 6. LoadLeveler Authorizes the Job

Chapter 1. What is LoadLeveler? 9

permit to run. Once this is done, the job is considered Pending or Starting. (See
“LoadLeveler Job States” on page 18 for more information.)

3. Prepare to run:

In Figure 7, arrow 5 illustrates that the schedd daemon contacts the startd
daemon on the executing machine and requests that it start the job. The
executing machine can either be a local machine (the machine from which the
job was submitted) or a remote machine (another machine in the cluster).

4. Initiate job:

The arrows in Figure 8 illustrate the following:

v The two arrows numbered 6 indicate that the startd daemon on the
executing machine, spawns a starter process and awaits more work.

Central Manager

negotiator daemon

schedd
daemon

startd
daemon

startd
daemon

Host Host

Start Local Job

Start Remote Job

5

5

Figure 7. LoadLeveler Prepares to Run the Job

Central Manager

negotiator daemon

schedd
daemon

startd
daemon

startd
daemon

Host

Host

starter starter

Job Info (remote)

66

7

7

8

Jo
b In

form
atio

n

(lo
cal)

Figure 8. LoadLeveler Starts the Job

10 Using and Administering LoadLeveler

v The two arrows numbered 7 indicate that the schedd daemon sends the
starter process the job information and the executable.

v Arrow 8 indicates that the schedd daemon notifies the negotiator daemon that
the job has been started and the negotiator daemon marks the job as
Running. (See “LoadLeveler Job States” on page 18 for more information.)

The starter forks and executes the user’s job, and the starter parent waits for
the child to complete.

5. Complete job:

The arrows in Figure 9 illustrate the following:

v The arrows numbered 9 indicate that when the job completes, the starter
process notifies the startd daemon, and the startd daemon notifies the
schedd daemon.

v Arrow 10 indicates that the schedd daemon examines the information it has
received and forwards it to the negotiator daemon.

What are Consumable Resources and Why Should I Use Them?
Consumable resources are resources available on machines in your LoadLeveler
cluster. They are called ″resources″ because they model quantities of commodities
or services available on machines (e.g., cpus, real memory, virtual memory,
software licenses, DASD, etc). They are considered ″consumable″ because job
steps use some specified amount of these commodities when they are running.
Once the step is completed, the resource becomes available for reuse by another
job step.

Consumable resources which model the characteristics of a specific machine (e.g.,
its number of cpus, or the number of a specific software licenses available only on
that machine) are called machine resources. Consumable resources which model
resources that are available across the LoadLeveler cluster (such as floating
software licenses) are called floating resources. For example, consider a
configuration with 10 licenses for a given program (which can be used on any

starterstarter

Central Manager

negotiator daemon

schedd
daemon

schedd
daemon

startd
daemon

startd
daemon

Host Host

9

9 9

9

10

Exit Status (remote)

Exit Status (local)

Figure 9. LoadLeveler Completes the Job

Chapter 1. What is LoadLeveler? 11

machine in the cluster). If these licenses are defined as floating resources, all 10
can be used on one machine, or they can be spread across as many as 10
different machines.

The LoadLeveler administrator can specify:

v the consumable resources to be considered by LoadLeveler’s scheduling
algorithms

v the quantity of resources available on specific machines

v the quantity of floating resources available on machines in the cluster

v the consumable resources to be considered in determining the priority of
executing machines

v the default amount of resources consumed by a job step of a specified job class

The user submitting jobs can specify the resources consumed by each task of a job
step.

The LoadLeveler scheduling algorithms use the availability of the requested
consumable resources to determine the machine or machines on which a job will
run. Consumable resources are used only for scheduling purposes and are not
enforced like other limits, such as wall clock limits. Once a job is scheduled,
LoadLeveler does not ensure that the amount of resources used is equal to the
amount requested. LoadLeveler’s negotiator daemon keeps track of the amounts of
consumable resources available, reducing them by amounts requested when a job
step is scheduled, and increasing them when a consuming job step completes.

LoadLeveler does not attempt to obtain software licenses or to verify that software
licenses have been obtained, when consumable resources are used to model
software licenses. By providing a user exit to be invoked as a submit filter, the
LoadLeveler administrator may provide code to obtain a software license and run
the job step only after a license has been successfully obtained. For more
information on filtering job scripts, see “Filtering a Job Script” on page 296.

12 Using and Administering LoadLeveler

Chapter 2. LoadLeveler Daemons and Job States

This chapter presents a detailed explanation of LoadLeveler daemons and
processes. Included here is a description of job states, which are controlled by
certain daemons. See “LoadLeveler Job States” on page 18 for more information.

Daemons and Processes
This section presents a detailed explanation of LoadLeveler daemons and
processes. For more information on configuration file keywords mentioned in this
section, see “Configuring LoadLeveler” on page 97.

The master Daemon
The master daemon runs on every machine in the LoadLeveler cluster, except the
submit-only machine. The real and effective user ID of this daemon must be root.

The master daemon determines whether to start any other daemons by checking
the START_DAEMONS keyword in the global or local configuration file. If the
keyword is set to true , the daemons are started. If the keyword is set to false , the
master daemon terminates and generates a message.

On the machine designated as the central manager, the master runs the negotiator
daemon. The master also controls the central manager backup function. The
negotiator runs on either the primary or an alternate central manager. If a central
manager failure is detected, one of the alternate central managers becomes the
primary central manager by starting the negotiator.

The master daemon starts and if necessary, restarts all the LoadLeveler daemons
that the machine it resides on is configured to run. As part of its startup procedure,
this daemon executes the .llrc file (a dummy file is provided in the bin subdirectory
of the release directory). You can use this script to customize your local
configuration file, specifying what particular data is stored locally. This daemon also
runs the kbdd daemon, which monitors keyboard and mouse activity.

When the master daemon detects a failure on one of the daemons that it is
monitoring, it attempts to restart it. Because this daemon recognizes that certain
situations may prevent a daemon from running, it limits its restart attempts to the
number defined for the RESTARTS_PER_HOUR keyword in the configuration file. If
this limit is exceeded, the master aborts and all daemons are killed.

When a daemon must be restarted, the master sends mail to the administrator(s)
identified by the LOADL_ADMIN keyword in the configuration file. The mail
contains the name of the failing daemon, its termination status, and a section of the
daemon’s most recent log file. If the master aborts after exceeding
RESTARTS_PER_HOUR, it will also send that mail before exiting.

The master daemon may perform the following actions in response to an llctl
command:
v Kill all daemons and exit
v Kill all daemons and execute a new master
v Re-run the .llrc file, reread the configuration files, stop or start daemons as

appropriate for the new configuration files
v Send drain request to startd and schedd
v Send flush request to startd and send result to caller

13

v Send suspend request to startd and send result to caller
v Send resume request to startd and schedd, and send result to caller

The schedd Daemon
The schedd daemon receives jobs sent by the llsubmit command and schedules
those jobs to machines selected by the negotiator daemon. The schedd daemon is
started, restarted, signalled, and stopped by the master daemon.

The schedd daemon can be in any one of the following states:

Available
This machine is available to schedule jobs.

Draining
The schedd daemon has been drained by the administrator but some jobs
are still running. The state of the machine remains Draining until all running
jobs complete. At that time, the machine status changes to Drained.

Drained
The schedd machine accepts no more jobs; jobs in the Starting or Running
state are allowed to continue running, and jobs in the Idle state are drained,
meaning they will not get dispatched.

Down The daemon is not running on this machine. The schedd daemon enters
this state when it has not reported its status to the negotiator. This can
occur when the machine is actually down, or because there is a network
failure.

The schedd daemon performs the following functions:

v Assigns new job ids when requested by the job submission process (for example,
by the llsubmit command).

v Receives new jobs from the llsubmit command. A new job is received as a job
object for each job step. A job object is the data structure in memory containing
all the information about a job step. The schedd forwards the job object to the
negotiator daemon as soon as it is received from the submit command.

v Maintains on disk copies of jobs submitted locally (on this machine) that are
either waiting or running on a remote (different) machine. The central manager
can use this information to reconstruct the job information in the event of a
failure. This information is also used for accounting purposes.

v Responds to directives sent by the administrator through the negotiator daemon.
The directives include:
– Run a job.
– Change the priority of a job.
– Remove a job.
– Hold or release a job.
– Send information about all jobs.

v Sends job events to the negotiator daemon when:
– schedd is restarting.
– A new series of job objects are arriving.
– A job is started.
– A job was rejected, completed, removed, or vacated. schedd determines the

status by examining the exit status returned by the startd.

v Communicates with the Parallel Operating Environment (POE) when you run a
POE job.

v Requests that a remote startd daemon kill a job.

14 Using and Administering LoadLeveler

v Handles the checkpoint file associated with the job, provided checkpointing has
been enabled. For more information, see “Step 14: Enable Checkpointing” on
page 117.

v Receives accounting information from startd.

The startd Daemon
The startd daemon monitors jobs and machine resources on the local machine and
forwards this information to the negotiator daemon. The startd also receives and
executes job requests originating from remote machines. The master daemon
starts, restarts, signals, and stops the startd daemon.

The startd daemon can be in any one of the following states:

Busy The maximum number of jobs are running on this machine.

Down The daemon is not running on this machine. The startd daemon enters this
state when it has not reported its status to the negotiator. This can occur
when the machine is actually down, or because there is a network failure.

Drained
The startd machine will not accept any new jobs. However, any jobs that
are already running on the startd machine will be allowed to complete.

Draining
The startd daemon has been drained by the administrator, but some jobs
are still running. The machine remains in the draining state until all of the
running jobs have completed, at which time the machine status changes to
drained. The startd daemon will not accept any new jobs while in the
draining state.

Flush Any running jobs have been vacated (terminated and returned to the queue
to be redispatched). The startd daemon will not accept any new jobs.

Idle The machine is not running any jobs.

None LoadLeveler is running on this machine, but no jobs can run here.

Running
The machine is running one or more jobs and is capable of running more.

Suspend
All LoadLeveler jobs running on this machine are stopped (cease
processing), but remain in virtual memory. The startd daemon will not
accept any new jobs.

The startd daemon performs these functions:

v Runs a timeout procedure that includes building a snapshot of the state of the
machine that includes static and dynamic data. This timeout procedure is run at
the following times:
– After a job completes.
– According to the definition of the POLLING_FREQUENCY keyword in the

configuration file.

v Records the following information in LoadLeveler variables and sends the
information to the negotiator. These variables are described in “LoadLeveler
Variables” on page 132.
– State (of the startd daemon)
– EnteredCurrentState
– Memory
– Disk

Chapter 2. LoadLeveler Daemons and Job States 15

– KeyboardIdle
– Cpus
– LoadAvg
– Machine
– Adapter
– AvailableClasses

v Calculates the SUSPEND, RESUME, CONTINUE, and VACATE expressions.
These are described in “Step 8: Manage a Job’s Status Using Control
Expressions” on page 109.

v Receives job requests from the schedd daemon to:
– Start a job
– Vacate a job
– Cancel

When the schedd daemon tells the startd to start a job, the startd determines
whether its own state permits a new job to run:

If: Then this happens:

Yes, it can start a new
job

The startd forks a starter process.

No, it cannot start a
new job

The startd rejects the request for one of the following reasons:

– Jobs have been suspended, flushed, or drained

– The job limit set for the MAX_STARTERS keyword has been
reached

– There are not enough classes available for the designated job
class

v Receives requests from the master (via llctl) to do one of the following:
– Drain
– Flush
– Suspend
– Resume.

v For each request, startd marks its own new state, forwards its new state to the
negotiator daemon, and then performs the appropriate action for any jobs that
are active.

v Receives notification of keyboard and mouse activity from the kbdd daemon

v Periodically examines the process table for LoadLeveler jobs and accumulates
resources consumed by those jobs. This resource data is used to determine if a
job has exceeded its job limit and for recording in the history file.

v Send accounting information to schedd.

The starter Process
The startd daemon spawns a starter process after the schedd daemon tells the
startd to start a job. The starter process manages all the processes associated with
a job step. The starter process is responsible for running the job and reporting
status back to startd.

The starter process performs these functions:

v Processes the prolog and epilog programs as defined by the JOB_PROLOG and
JOB_EPILOG keywords in the configuration file. The job will not run if the prolog
program exits with a return code other than zero.

v Handles authentication. This includes:
– Authenticates AFS, if necessary

16 Using and Administering LoadLeveler

– Verifies that the submitting user is not root
– Verifies that the submitting user has access to the appropriate directories in

the local file system.

v Runs the job by forking a child process that runs with the user id and all groups
of the submitting user. The starter child creates a new process group of which it
is the process group leader, and executes the user’s program or a shell. The
starter parent is responsible for detecting the termination of the starter child.
LoadLeveler does not monitor the children of the parent.

v Responds to vacate and suspend orders from the startd.

v Periodically generates a new checkpoint file, provided checkpointing has been
enabled, and sends it to the scheduling machine.

The negotiator Daemon
The negotiator daemon maintains status of each job and machine in the cluster
and responds to queries from the llstatus and llq commands. The negotiator
daemon runs on a single machine in the cluster (the central manager machine).
This daemon is started, restarted, signalled, and stopped by the master daemon.

The negotiator daemon receives status messages from each schedd and startd
daemon running in the cluster. The negotiator daemon tracks:
v Which schedd daemons are running
v Which startd daemons are running, and the status of each startd machine.

If the gsmonitor daemon does not send the negotiator an update about a machine
within the time period defined by the MACHINE_UPDATE_INTERVAL keyword,
then the negotiator assumes that the machine is down, and therefore the schedd
and startd daemons are also down.

The negotiator also maintains in its memory several queues and tables which
determine where the job should run.

The negotiator performs the following functions:

v Receives and records job status changes from the schedd daemon.

v Schedules jobs based on a variety of scheduling criteria and policy options. Once
a job is selected, the negotiator contacts the schedd that originally created the
job.

v Handles requests to:
– Set priorities
– Query about jobs
– Remove a job
– Hold or release a job
– Favor or unfavor a user or a job.

v Receives notification of schedd resets indicating that a schedd has restarted.

The kbdd Daemon
The kbdd daemon monitors keyboard and mouse activity. The kbdd daemon is
spawned by the master daemon if the X_RUNS_HERE keyword in the configuration
file is set to true .

The kbdd daemon notifies the startd daemon when it detects keyboard or mouse
activity; however, kbdd is not interrupt driven. It sleeps for the number of seconds
defined by the POLLING_FREQUENCY keyword in the LoadLeveler configuration
file, and then determines if X events, in the form of mouse or keyboard activity,

Chapter 2. LoadLeveler Daemons and Job States 17

have occurred. For more information on the configuration file, see “Chapter 5.
Administering and Configuring LoadLeveler” on page 71.

The gsmonitor Daemon
The negotiator daemon monitors for down machines based on the heartbeat
responses of the MACHINE_UPDATE_INTERVAL time period. If the negotiator has
not received an update after two MACHINE_UPDATE_INTERVAL periods, then it
marks the machine as down, and notifies the schedd to remove any jobs running on
that machine. The gsmonitor daemon (LoadL_GSmonitor) allows this cleanup to
occur more reliably. The gsmonitor daemon uses the Group Services Application
Programming Interface (GSAPI) to monitor machine availability and notify the
negotiator quickly when a machine is no longer reachable. Because it uses the
GSAPI, the gsmonitor daemon requires that the Group Services subsytem, which is
provided by the IBM Parallel System Support Programs (PSSP), be installed and
operational.

The gsmonitor daemon should be run on one or two nodes in each of the Group
Services domains. By running LoadL_GSmonitor on two nodes, this allows for a
backup in case one of the nodes goes down. A Group Services domain consists of
the set of nodes that makes up a system partition. LoadL_GSmonitor subscribes to
the Group Services system-defined host membership group, which is represented
by the HA_GS_HOST_MEMBERSHIP Group Services keyword. This group
monitors every configured node in the system, including those that are not in the
LoadLeveler cluster.

To start the gsmonitor daemon, set GSMONITOR_RUNS_HERE to True in the local
config file. The default for GSMONITOR_RUNS_HERE is False.

Notes:

The Group Services routines need to be run as root, so the LoadL_GSmonitor
executable must be owned by root and have the setuid permission bit enabled.

It will not cause a problem to run more than one LoadL_GSmonitor daemon per SP
System Partition, this will just cause the negotiator to be notified by each running
daemon.

For more information about the Group Services subsystem, see PSSP:
Administration Guide, SA22-7348. For more information about GSAPI, see Group
Services Programming Guide and Reference, SA22-7355-00.

LoadLeveler Job States
As LoadLeveler processes a job, the job moves into various states. Some states
are unique to specific daemons; for example, only the negotiator places a job in the
NotQueued state. For more information on daemons, see “Daemons and
Processes” on page 13. Possible job states are:

Cancelled
The job was cancelled either by a user or by an administrator.

Completed
The job has completed.

Deferred
The job will not be assigned to a machine until a specified date. This date
may have been specified by the user in the job command file, or may have

18 Using and Administering LoadLeveler

been generated by the negotiator because a parallel job did not accumulate
enough machines to run the job. (Only the negotiator places a job in the
Deferred state.)

Idle The job is being considered to run on a machine, though no machine has
been selected.

NotQueued
The job is not being considered to run on a machine. A job can enter this
state because the associated schedd is down, the user or group associated
with the job is at its maximum maxqueued or maxidle value, or because
the job has a dependency which cannot be determined. For more
information on these keywords, see “Controlling the Mix of Idle and Running
Jobs” on page 314. (Only the negotiator places a job in the NotQueued
state.)

Not Run
The job will never be run because a dependency associated with the job
was found to be false.

Pending
The job is in the process of starting on one or more machines. (The
negotiator indicates this state until the schedd acknowleges that it has
received the request to start the job. Then the negotiator changes the state
of the job to Starting. The schedd indicates the Pending state until all startd
machines have acknowledged receipt of the start request. The schedd then
changes the state of the job to Starting.)

Reject Pending
The job did not start. Possible reasons why a job is rejected are: job
requirements were not met on the target machine, or the user ID of the
person running the job is not valid on the target machine. After a job leaves
the Reject Pending state, it is moved into one of the following states: Idle,
User Hold, or Removed.

Removed
The job was stopped by LoadLeveler.

Remove Pending
The job is in the process of being removed, but not all associated machines
have acknowledged the removal of the job.

Running
The job is running: the job was dispatched and has started on the
designated machine.

Starting
The job is starting: the job was dispatched, was received by the target
machine, and LoadLeveler is setting up the environment in which to run the
job. For a parallel job, LoadLeveler sets up the environment on all required
nodes. See the description of the “Pending” state for more information on
when the negotiator or the schedd daemon moves a job into the Starting
state.

System Hold
The job has been put in system hold.

System User Hold
The job has been put in system hold and user hold.

Terminated
If the negotiator and schedd daemons experience communication problems,

Chapter 2. LoadLeveler Daemons and Job States 19

they may be temporarily unable to exchange information concerning the
status of jobs in the system. During this period of time, some of the jobs
may actually complete and therefore be removed from the schedd’s list of
active jobs. When communication resumes between the two daemons, the
negotiator will move such jobs to the Terminated state, where they will
remain for a set period of time (specified by the
NEGOTIATOR_REMOVE_COMPLETED keyword in the configuration file).
When this time has passed, the negotiator will remove the jobs from its
active list.

User Hold
The job has been put in user hold.

Vacated
The job started but did not complete. The negotiator will reschedule the job
(provided the job is allowed to be rescheduled). Possible reasons why a job
moves to the Vacated state are: the machine where the job was running
was flushed, the VACATE expression in the configuration file evaluated to
True, or LoadLeveler detected a condition indicating the job needed to be
vacated. For more information on the VACATE expression, see “Step 8:
Manage a Job’s Status Using Control Expressions” on page 109.

You may also see other states that include “Pending,” such as Complete Pending
and Vacate Pending. These are intermediate, temporary states usually associated
with parallel jobs.

20 Using and Administering LoadLeveler

Part 2. Using LoadLeveler

21

22 Using and Administering LoadLeveler

Chapter 3. Submitting and Managing Jobs

This chapter tells you how to submit jobs to LoadLeveler. In general, the information
in this chapter applies both to serial jobs and to parallel jobs. For more specific
information on parallel jobs, see “Chapter 4. Submitting and Managing Parallel
Jobs” on page 59.

Many LoadLeveler actions, such as submitting a job, can be done in either of the
following ways:
v Using LoadLeveler commands. This method is discussed in this chapter.
v Using the LoadLeveler graphical user interface (GUI). This method is discussed

in “Building and Submitting Jobs Using the Graphical User Interface” on
page 225.

Building a Job Command File
Before you can submit a job or perform any other job related tasks, you need to
build a job command file. A job command file describes the job you want to submit,
and can include LoadLeveler keyword statements. For example, to specify a binary
to be executed, you can use the executable keyword, which is described later in
this section. To specify a shell script to be executed, the executable keyword can
be used; if it is not used, LoadLeveler assumes that the job command file itself is
the executable.

The job command file can include the following:

v LoadLeveler keyword statements: A keyword is a word that can appear in job
command files. A keyword statement is a statement that begins with a
LoadLeveler keyword. These keywords are described in “Job Command File
Keywords” on page 36.

v Comment statements: You can use comments to document your job command
files. You can add comment lines to the file as you would in a shell script.

v Shell command statements: If you use a shell script as the executable, the job
command file can include shell commands.

v LoadLeveler Variables: See “Job Command File Variables” on page 56 for more
information.

You can build a job command file either by using the Build a Job window on the
GUI or by using a text editor.

Job Command File Syntax
The following general rules apply to job command files.

v Keyword statements begin with # @. There can be any number of blanks
between the # and the @.

v Comments begin with #. Any line whose first non-blank character is a pound sign
(#) and is not a LoadLeveler keyword statement is regarded as a comment.

v Statement components are separated by blanks. You can use blanks before or
after other delimiters to improve readability but they are not required if another
delimiter is used.

v The back-slash (\) is the line continuation character. Note that the continued line
must not begin with # @. See Figure 15 on page 34 for an example of using the
back-slash.

23

v Keywords are not case sensitive. This means you can enter them in lower case,
upper case, or mixed case.

Serial Job Command File
Figure 10 is an example of a simple serial job command file which is run from the
current working directory. The job command file reads the input file, longjob.in1 ,
from the current working directory and writes standard output and standard error
files, longjob.out1 and longjob.err1 , respectively, to the current working directory.

Using Multiple Steps in a Job Command File
To specify a stream of job steps, you need to list each job step in the job command
file. You must specify one queue statement for each job step. Also, the executables
for all job steps in the job command file must exist when you submit the job. All
information in the first step is inherited by all succeeding steps.

LoadLeveler treats all job steps as independent job steps unless you use the
dependency keyword. If you use the dependency keyword, LoadLeveler
determines whether a job step should run based upon the exit status of the
previously run job step.

For example, Figure 11 contains two separate job steps. Notice that step1 is the
first job step to run and that step2 is a job step that runs only if step1 exits with the
correct exit status.

The name of this job command file is file.cmd.
The input file is longjob.in1 and the error file is
longjob.err1. The queue statement marks the end of
the job step.
#
@ executable = longjob
@ input = longjob.in1
@ output = longjob.out1
@ error = longjob.err1
@ queue

Figure 10. Serial Job Command File

This job command file lists two job steps called "step1"
and "step2". "step2" only runs if "step1" completes
with exit status = 0. Each job step requires a new
queue statement.
#
@ step_name = step1
@ executable = executable1
@ input = step1.in1
@ output = step1.out1
@ error = step2.err1
@ queue
@ dependency = (step1 == 0)
@ step_name = step2
@ executable = executable2
@ input = step2.in1
@ output = step2.out1
@ error = step2.err1
@ queue

Figure 11. Job Command File with Multiple Steps

24 Using and Administering LoadLeveler

In Figure 11 on page 24, step1 is called the sustaining job step. step2 is called the
dependent job step because whether or not it begins to run is dependent upon the
exit status of step1. A single sustaining job step can have more than one dependent
job steps and a dependent job step can also have job steps dependent upon it.

In Figure 11 on page 24, each job step has its own executable , input , output , and
error statements. Your job steps can have their own separate statements, or they
can use those statements defined in a previous job step. For example, in Figure 12,
step2 uses the executable statement defined in step1:

See “Additional Job Command File Examples” on page 32 for more information.

Parallel Job Command File
In addition to building job command files to submit serial jobs, you can also build
job command files to submit parallel jobs. Before constructing parallel job command
files, consult your LoadLeveler system administrator to see if your installation is
configured for parallel batch job submission.

For more information on submitting parallel jobs, see “Chapter 4. Submitting and
Managing Parallel Jobs” on page 59.

Submitting a Job Command File
After building a job command file, you can submit it for processing either to a
machine in the LoadLeveler cluster or one outside of the cluster. (See “Querying
Multiple LoadLeveler Clusters” on page 27 for information on submitting a job to a
machine outside the cluster.) You can submit a job command file either by using the
GUI or the llsubmit command.

When you submit a job, LoadLeveler assigns the job a three part identifier and also
sets environment variables for the job.

The identifier consists of the following:

v Machine name: the name of the machine that schedules the job. This is not
necessarily the name of the machine that runs the job.

v Job ID: an identifier given to a group of job steps that were initiated from the
same job command file. For example, if you created a job command file that
submitted the same program five times (using five queue statements) possibly
with different input and output, each program would have the same job ID.

This job command file uses only one executable for
both job steps.
#
@ step_name = step1
@ executable = executable1
@ input = step1.in1
@ output = step1.out1
@ error = step1.err1
@ queue
@ dependency = (step1 == 0)
@ step_name = step2
@ input = step2.in1
@ output = step2.out1
@ error = step2.err1
@ queue

Figure 12. Job Command File with Multiple Steps and One Executable

Chapter 3. Submitting and Managing Jobs 25

v Step ID: an identifier that is unique for every job step in the job you submit. If a
job command file contains multiple job steps, every job step will have a unique
step ID but the same job ID.

For an example of submitting a job, see “Step 3: Submit a Job” on page 30.

Submitting a Job Command File to be Routed to NQS Machines: When
submitting a job command file to be routed to an NQS machine for processing, the
job command file must contain the shell script to be submitted to the NQS node.
NQS accepts only shell scripts; binaries are not allowed. All options in the
command file pertaining to scheduling are used by LoadLeveler to schedule the job.
When the job is dispatched to the node running the specified NQS class, the
LoadLeveler options pertaining to the runtime environment are converted to NQS
options and the job is submitted to the specified NQS queue. For more information
on submitting jobs to NQS, see Figure 31 on page 159. For more information on the
llsubmit command, see “llsubmit - Submit a Job” on page 213.

Submitting a Job Command File Using a Submit-Only Machine: You can submit
jobs from submit-only machines. Submit-only machines allow machines that do not
run LoadLeveler daemons to submit jobs to the cluster. You can submit a job using
either the submit-only version of the GUI or the llsubmit command.

To install submit-only LoadLeveler, follow the procedure in the LoadLeveler
Installation Memo , or consult the appropriate README file.

In addition to allowing you to submit jobs, the submit-only feature allows you to
cancel and query jobs from a submit-only machine.

Managing Jobs
This sections tells you how to edit a job command file, query the status of a job,
place and release a hold on a job, cancel a job, change the priority of a job,
checkpoint a step, and display machine status.

Editing a Job Command File
After you build a job command file, you can edit it using the editor of your choice.
You may want to change the name of the executable or add or delete some
statements.

Querying the Status of a Job
Once you submit a job, you can query the status of the job to determine, for
example, if it is still in the queue or if it is running. You also receive other job status
related information such as the job ID and job owner. You can query the status of a
LoadLeveler job either by using the GUI or the llq command. For an example of
querying the status of a job, see “Step 4: Display the Status of a Job” on page 30.

Querying the Status of a Job Running on an NQS Machine: If your job
command file was routed to an NQS machine for processing, you can obtain its
status by using either the GUI or the llq command. Keep in mind that a machine in
the LoadLeveler cluster monitors the NQS machine where your job is running. The
status you see on the GUI (or from llq) is generated by the machine in the
LoadLeveler cluster. Since LoadLeveler only checks the NQS machine for status
periodically, the status of the job on the NQS machine may change before
LoadLeveler has an opportunity to update the GUI. If this happens, NQS will notify
you, before LoadLeveler notifies you, regarding the status of the job.

26 Using and Administering LoadLeveler

Querying the Status of a Job Using a Submit-Only Machine: A submit-only
machine, in addition to allowing you to submit and cancel jobs, allows you to query
the status of jobs. You can query a job using either the submit-only version of the
GUI or by using the llq command. For information on llq , see “llq - Query Job
Status” on page 193.

Querying Multiple LoadLeveler Clusters
This section applies only to those installations having more than one LoadLeveler
cluster.

Using the LOADL_CONFIG environment variable, you can query, submit, or cancel
jobs in multiple LoadLeveler clusters. The LOADL_CONFIG environment variable
allows you to specify that the master configuration file be located in a directory
other than the home directory of the loadl user ID. The file that LOADL_CONFIG
points to must be in the /etc directory.

You need to set up your own master configuration file to point to the location of the
LoadLeveler user ID, group ID, and configuration files. By default, the location of
the master file is /etc/LoadL.cfg .

The following example explains how you can set up a machine to query multiple
clusters:

You can configure /etc/LoadL.cfg to point to the “default” configuration files, and
you can configure /etc/othercluster.cfg to point to the configuration files of another
cluster which the user can select.

For example, you can enter the following query command:
$ llq

The above command uses the configuration from /etc/LoadL.cfg (this is determined
by the LOADL_CONFIG environment variable). To send a query to the scheduler
defined in the configuration file of /etc/othercluster.cfg , enter:
$ env LOADL_CONFIG=/etc/othercluster.cfg llq

Note that the machine from which you issue the llq command is considered as a
submit-only machine by the other cluster.

Placing and Releasing a Hold on a Job
You may place a hold on a job and thereby cause the job to remain in the queue
until you release it.

There are two types of holds: a user hold and a system hold. Both you and your
LoadLeveler administrator can place and release a user hold on a job. Only a
LoadLeveler administrator, however, can place and release a system hold on a job.

You can place a hold on a job or release the hold either by using the GUI or the
llhold command. For examples of holding and releasing jobs, see “Step 6: Hold a
Job” on page 31 and “Step 7: Release a Hold on a Job” on page 31.

As a user or an administrator, you can also use the startdate keyword described in
“startdate” on page 53 to place a hold on a job. This keyword allows you to specify
when you want to run a job.

Chapter 3. Submitting and Managing Jobs 27

Cancelling a Job
You can cancel one of your jobs that is either running or waiting to run by using
either the GUI or the llcancel command. You can use llcancel to cancel
LoadLeveler jobs and jobs routed to NQS. Note that you can also cancel jobs from
a submit-only machine.

Checkpointing a Job
Checkpointing is a method of periodically saving the state of a job so that, if for
some reason, the job does not complete, it can be restarted from the saved state.
For a detailed explanation of checkpointing, see “Step 14: Enable Checkpointing” on
page 117.

Setting and Changing the Priority of a Job
LoadLeveler uses the priority of a job to determine its position among a list of all
jobs waiting to be dispatched. You can use the llprio command to change job
priorities. See “llprio - Change the User Priority of Submitted Job Steps” on
page 191 for more information. This section discusses the different types of
priorities and how LoadLeveler uses these priorities when considering jobs for
dispatch.

User Priority
Every job has a user priority associated with it. This priority, which can be specified
by the user in the job command file, is a number between 0 and 100 inclusively. A
job with a higher priority runs before a job with a lower priority (when both jobs are
owned by the same user). The default user priority is 50. Note that this is not the
UNIX nice priority.

System Priority
Every job has a system priority associated with it. This priority is specified in
LoadLeveler’s configuration file using the SYSPRIO expression.

Understanding the SYSPRIO Expression: SYSPRIO is evaluated by
LoadLeveler to determine the overall system priority of a job. A system priority value
is assigned when the negotiator adds the new job to the queue of jobs eligible for
dispatch.

The SYSPRIO expression can contain class, group, and user priorities, as shown in
the following example:
SYSPRIO : (ClassSysprio * 100) + (UserSysprio * 10) + (GroupSysprio * 1) - (QDate)

For more information on the system priority expression, including all the variable
you can use in this expression, see “Step 6: Prioritize the Queue Maintained by the
Negotiator” on page 105.

How Does a Job’s Priority Affect Dispatching Order?
LoadLeveler schedules jobs based on the adjusted system priorty, which takes in
account both system priority and user priority. Jobs with a higher adjusted system
priority are scheduled ahead of jobs with a lower adjusted system priority. In
determining which jobs to run first, LoadLeveler does the following:

1. Assigns all jobs a SYSPRIO at job submission time.

2. Orders jobs first by SYSPRIO.

3. Assigns jobs belonging to the same user and the same class an adjusted
system priority, which takes all the system priorities and orders them by user
priority.

28 Using and Administering LoadLeveler

For example, Table 3 represents the priorities assigned to jobs submitted by two
users, Rich and Joe. Two of the jobs belong to Joe, and three belong to Rich. User
Joe has two jobs (Joe1 and Joe2) in Class A with SYSPRIOs of 9 and 8
respectively. Since Joe2 has the higher user priority (20), and because both of
Joe’s jobs are in the same class, Joe2’s priority is swapped with that of Joe1 when
the adjusted system priority is calculated. This results in Joe2 getting an adjusted
system priority of 9, and Joe1 getting an adjusted system priority of 8. Similarly, the
Class A jobs belonging to Rich (Rich1 and Rich3) also have their priorities
swapped. The priority of the job Rich2 does not change, since this job is in a
different class (Class B).

Table 3. How LoadLeveler Handles Job Priorities

Job User Priority System
Priority

(SYSPRIO)

Class Adjusted System
Priority

Rich1 50 10 A 6

Joe1 10 9 A 8

Joe2 20 8 A 9

Rich2 100 7 B 7

Rich3 90 6 A 10

Working with Machines
Throughout this book, the terms workstation, machine, and node refer to the
machines in your cluster. See “Machines and Workstations” on page 5 for
information on the roles these machines can play.

You can perform the following types of tasks related to machines:

v Display machine status: when you submit a job to a machine, the status of the
machine automatically appears in the Machines window on the GUI. This window
displays machine related information such as the names of the machines running
jobs, as well as the machine’s architecture and operating system. For detailed
information on one or more machines in the cluster, you can use the Details
option on the Actions pull-down menu. This will provide you with a detailed report
that includes information such as the machine’s state and amount of installed
memory.

For an example of displaying machine status, see “Step 8: Display the Status of
a Machine” on page 31.

v Display central manager: the LoadLeveler administrator designates one of the
machines in the LoadLeveler cluster as the central manager. When jobs are
submitted to any machine, the central manager is notified and decides where to
schedule the jobs. In addition, it keeps track of the status of machines in the
cluster and jobs in the system by communicating with each machine.
LoadLeveler uses this information to make the scheduling decisions and to
respond to queries.

Usually, the system administrator is more concerned about the location of the
central manager than the typical end user but you may also want to determine its
location. One reason why you might want to locate the central manager is if you
want to browse some configuration files that are stored on the same machine as
the central manager.

v Display public scheduling machines: public scheduling machines are machines
that participate in the scheduling of LoadLeveler jobs on behalf of users at

Chapter 3. Submitting and Managing Jobs 29

submit-only machines and users at other workstations that are not running the
schedd daemon. You can find out the names of all these machines in the cluster.

Submit-only machines allow machines that are not part of the LoadLeveler
cluster to submit jobs to the cluster for processing.

A Simple Task Scenario Using Commands
The section presents a series of simple tasks which a user might perform using
commands. This section is meant for new users of LoadLeveler. More experienced
users may want to continue on to “Additional Job Command File Examples” on
page 32.

Step 1: Build a Job
Since you are not using the GUI, you have to build your job command file by using
a text editor to create a script file. Into the file enter the name of the executable,
other keywords designating such things as output locations for messages, and the
necessary LoadLeveler statements, as shown in Figure 13:

Step 2: Edit a Job
You can optionally edit the job command file you created in step 1.

Step 3: Submit a Job
To submit the job command file that you created in step 1, use the llsubmit
command:
llsubmit longjob.cmd

LoadLeveler responds by issuing a message similar to:
submit: The job "wizard.22" has been submitted.

where wizard is the name of the machine to which the job was submitted and 22 is
the job identifier (ID). You may want to record the identifier for future use (although
you can obtain this information later if necessary).

For more information on llsubmit , see “llsubmit - Submit a Job” on page 213

Step 4: Display the Status of a Job
To display the status of the job you just submitted, use the llq command. This
command returns information about all jobs in the LoadLeveler queue:
llq wizard.22

This job command file is called longjob.cmd. The
executable is called longjob, the input file is longjob.in,
the output file is longjob.out, and the error file is
longjob.err.
#
@ executable = longjob
@ input = longjob.in
@ output = longjob.out
@ error = longjob.err
@ queue

Figure 13. Building a Job Command File

30 Using and Administering LoadLeveler

where wizard is the machine name to which you submitted the job, and 22 is the
job ID. You can also query this job using the command llq wizard.22.0 , where 0 is
the step ID. For more information, see “llq - Query Job Status” on page 193.

Step 5: Change the Priorities of Jobs in the Queue
You can change the user priority of a job that is in the queue or one that is running.
This only affects jobs belonging to the same user and the same class. If you
change the priority of a job in the queue, the job’s priority increases or decreases in
relation to your other jobs in the queue. If you change the priority of a job that is
running, it does not affect the job while it is running. It only affects the job if the job
re-enters the queue to be dispatched again. For more information, see “How Does
a Job’s Priority Affect Dispatching Order?” on page 28.

To change the priority of a job, use the llprio command. To increase the priority of
the job you submitted by a value of 10, enter:
llprio +10 wizard.22.0

For more information, see “llprio - Change the User Priority of Submitted Job Steps”
on page 191.

Step 6: Hold a Job
To place a temporary hold on a job in a queue, use the llhold command. This
command only takes effect if jobs are in the Idle or NotQueued state. To place a
hold on wizard.22.0, enter:
llhold wizard.22.0

For more information, see “llhold - Hold or Release a Submitted Job” on page 187.

Step 7: Release a Hold on a Job
To release the hold you placed in step 6, use the llhold command:
llhold -r wizard.22.0

For more information, see “llhold - Hold or Release a Submitted Job” on page 187.

Step 8: Display the Status of a Machine
To display the status of the machine to which you submitted a job, use the llstatus
command:
llstatus -l wizard

For more information, see “llstatus - Query Machine Status” on page 205.

Step 9: Cancel a Job
To cancel wizard.22.0, use the llcancel command:
llcancel wizard.22.0

For more information, see “llcancel - Cancel a Submitted Job” on page 170.

Step 10: Find the Location of the Central Manager
Enter the llstatus command with the appropriate options to display the machine on
which the central manager is running. For more information, see “llstatus - Query
Machine Status” on page 205.

Chapter 3. Submitting and Managing Jobs 31

Step 11: Find the Location of the Public Scheduling Machines
Public scheduling machines are those machines that participate in the scheduling of
LoadLeveler jobs. The llstatus command can also be used to display the public
scheduling machines.

Additional Job Command File Examples
“Serial Job Command File” on page 24 gives you an example of a simple job
command file. This section contains examples of building and submitting more
complex job command files.

Example 1: Generating Multiple Jobs With Varying Outputs
To run a program several times, varying the initial conditions each time, you could
can multiple LoadLeveler scripts, each specifying a different input and output file as
described in Figure 15 on page 34. It would probably be more convenient to prepare
different input files and submit the job only once, letting LoadLeveler generate the
output files and do the multiple submissions for you.

Figure 14 illustrates the following:

v You can refer to the LoadLeveler name of your job symbolically, using $(jobid)
and $(stepid) in the LoadLeveler script file.

v $(jobid) refers to the job identifier.

v $(stepid) refers to the job step identifier and increases after each queue
command. Therefore, you only need to specify input, output, and error
statements once to have LoadLeveler name these files correctly.

Assume that you created five input files and each input file has different initial
conditions for the program. The names of the input files are in the form
longjob.in. x, where x is 0–4.

Submitting the LoadLeveler script shown in Figure 14 results in your program
running five times, each time with a different input file. LoadLeveler generates the
output file from the LoadLeveler job step IDs. This ensures that the results from the
different submissions are not merged.

To submit the job, type the command:
llsubmit longjob.cmd

LoadLeveler responds by issuing the following:
submit: The job "ll6.23" with 5 job steps has been submitted.

The following table shows you the standard input files, standard output files, and
standard error files for the five job steps:

@ executable = longjob
@ input = longjob.in.$(stepid)
@ output = longjob.out.$(jobid).$(stepid)
@ error = longjob.err.$(jobid).$(stepid)
@ queue
@ queue
@ queue
@ queue
@ queue

Figure 14. Job Command File with Varying input Statements

32 Using and Administering LoadLeveler

Job Step Standard Input Standard Output Standard Error

ll6.23.0 longjob.in.0 longjob.out.23.0 longjob.err.23.0

ll6.23.1 longjob.in.1 longjob.out.23.1 longjob.err.23.1

ll6.23.2 longjob.in.2 longjob.out.23.2 longjob.err.23.2

ll6.23.3 longjob.in.3 longjob.out.23.3 longjob.err.23.3

ll6.23.4 longjob.in.4 longjob.out.23.4 longjob.err.23.4

Example 2: Using LoadLeveler Variables in a Job Command File
Figure 15 on page 34 shows how you can use LoadLeveler variables in a job
command file to assign different names to input and output files. This example
assumes the following:

v The name of the machine from which the job is submitted is lltest1

v The user’s home directory is /u/rhclark and the current working directory is
/u/rhclark/OSL

v LoadLeveler assigns a value of 122 to $(jobid) .

In Job Step 0:

v LoadLeveler creates the subdirectories oslsslv_out and oslsslv_err if they do
not exist at the time the job step is started.

In Job Step 1:

v The character string rhclark denotes the home directory of user rhclark in input ,
output , error , and executable statements.

v The $(base_executable) variable is set to be the “base” portion of the
executable , which is oslsslv .

v The $(host) variable is equivalent to $(hostname) . Similarly, $(jobid) and
$(stepid) are equivalent to $(cluster) and $(process) , respectively.

In Job Step 2:

v This job step is executed only if the return codes from Step 0 and Step 1 are
both equal to zero.

v The initial working directory for Step 2 is explicitly specified.

Chapter 3. Submitting and Managing Jobs 33

Example 3: Using the Job Command File as the Executable
The name of the sample script shown in Figure 16 on page 36 is run_spice_job .
This script illustrates the following:

v The script does not contain the executable keyword. When you do not use this
keyword, LoadLeveler assumes that the script is the executable. (Since the name
of the script is run_spice_job , you can add the executable = run_spice_job
statement to the script, but it is not necessary.)

Job step 0 ==
The names of the output and error files created by this job step are:
#
output: /u/rhclark/OSL/oslsslv_out/lltest1.122.0.out
error : /u/rhclark/OSL/oslsslv_err/lltest1_122_0_err
#
@ job_name = OSL
@ step_name = step_0
@ executable = oslsslv
@ arguments = -maxmin=min -scale=yes -alg=dual
@ environment = OSL_ENV1=20000; OSL_ENV2=500000
@ requirements = (Arch == "R6000") && (OpSys == "AIX43")
@ input = test01.mps.$(stepid)
@ output = $(executable)_out/$(host).$(jobid).$(stepid).out
@ error = $(executable)_err/$(host)_$(jobid)_$(stepid)_err
@ queue
#
Job step 1 ==
The names of the output and error files created by this job step are:
#
output: /u/rhclark/OSL/oslsslv_out/lltest1.122.1.out
error : /u/rhclark/OSL/oslsslv_err/lltest1_122_1_err
#
@ step_name = step_1
@ executable = rhclark/$(job_name)/oslsslv
@ arguments = -maxmin=max -scale=no -alg=primal
@ environment = OSL_ENV1=60000; OSL_ENV2=500000; \

OSL_ENV3=70000; OSL_ENV4=800000;
@ input = rhclark/$(job_name)/test01.mps.$(stepid)
@ output = rhclark/$(job_name)/$(base_executable)_out/$(hostname).$(cluster).$(process).out
@ error = rhclark/$(job_name)/$(base_executable)_err/$(hostname)_$(cluster)_$(process)_err
@ queue
#
Job step 2 ==
The names of the output and error files created by this job step are:
#
output: /u/rhclark/OSL/oslsslv_out/lltest1.122.2.out
error : /u/rhclark/OSL/oslsslv_err/lltest1_122_2_err
#
@ step_name = OSL
@ dependency = (step_0 == 0) && (step_1 == 0)
@ comment = oslsslv
@ initialdir = /u/rhclark/$(step_name)
@ arguments = -maxmin=min -scale=yes -alg=dual
@ environment = OSL_ENV1=300000; OSL_ENV2=500000
@ input = test01.mps.$(stepid)
@ output = $(comment)_out/$(host).$(jobid).$(stepid).out
@ error = $(comment)_err/$(host)_$(jobid)_$(stepid)_err
@ queue

Figure 15. Using LoadLeveler Variables in a Job Command File

34 Using and Administering LoadLeveler

v The job consists of four job steps (there are 4 queue statements). The spice3f5
and spice2g6 programs are invoked at each job step using different input data
files:

– spice3f5: Input for this program is from the file spice3f5_input_ x where x
has a value of 0, 1, and 2 for job steps 0, 1, and 2, respectively. The name of
this file is passed as the first argument to the script. Standard output and
standard error data generated by spice3f5 are directed to the file
spice3f5_output_ x. The name of this file is passed as second argument to
the script. In job step 3, the names of the input and output files are
spice3f5_input_benchmark1 and spice3f5_output_benchmark1 ,
respectively.

– spice2g6: Input for this program is from the file spice2g6_input_ x. Standard
output and standard error data generated by spice2g6 together with all other
standard output and standard error data generated by this script are directed
to the files spice_test_output_ x and spice_test_error_ x, respectively. In job
step 3, the name of the input file is spice2g6_input_benchmark1 . The
standard output and standard error files are spice_test_output_benchmark1
and spice_test_error_benchmark1 .

All file names that are not fully qualified are relative to the initial working directory
/home/loadl/spice . LoadLeveler will send the job steps 0 and 1 of this job to a
machine for that has a real memory of 64 MB or more for execution. Job step 2
most likely will be sent to a machine that has more that 128 MB of real memory
and has the ESSL library installed since these preferences have been stated
using the LoadLeveler preferences keyword. LoadLeveler will send job step 3 to
the machine ll5.pok.ibm.com for execution because of the explicit requirement
for this machine in the requirements statement.

Chapter 3. Submitting and Managing Jobs 35

Job Command File Keywords
This section provides an alphabetical list of the keywords you can use in a
LoadLeveler script. It also provides examples of statements that use these
keywords. For most keywords, if you specify the keyword in a job step of a
multi-step job, its value is inherited by all proceeding job steps. Exceptions to this
are noted in the keyword description.

account_no
Supports centralized accounting. Allows you to specify an account number to
associate with a job. This account number is stored with job resource information in
local and global history files. It may also be validated before LoadLeveler allows a
job to be submitted. For more information, see “Chapter 7. Gathering Job
Accounting Data” on page 153.

The syntax is:
account_no = string

#!/bin/ksh
@ job_name = spice_test
@ account_no = 99999
@ class = small
@ arguments = spice3f5_input_$(stepid) spice3f5_output_$(stepid)
@ input = spice2g6_input_$(stepid)
@ output = $(job_name)_output_$(stepid)
@ error = $(job_name)_error_$(stepid)
@ initialdir = /home/loadl/spice
@ requirements = ((Arch == "R6000") && (OpSys == "AIX43") && (Memory > 64))
@ queue
@ queue
@ preferences = ((Memory > 128) && (Feature == "ESSL"))
@ queue
@ class = large
@ arguments = spice3f5_input_benchmark1 spice3f5_output_benchmark1
@ requirements = (Machine == "ll5.pok.ibm.com")
@ input = spice2g6_input_benchmark1
@ output = $(job_name)_output_benchmark1
@ error = $(job_name)_error_benchmark1
@ queue
OS_NAME= vunamev

case $OS_NAME in
AIX)

echo "Running $OS_NAME version of spice3f5" > $2
AIX_bin/spice3f5 < $1 >> $2 2>&1
echo "Running $OS_NAME version of spice2g6"
AIX_bin/spice2g6
;;

*)
echo "spice3f5 for $OS_NAME is not available" > $2
echo "spice2g6 for $OS_NAME is not available"
;;

esac

Figure 16. Job Command File Used as the Executable

36 Using and Administering LoadLeveler

where string is a text string that can consist of a combination of numbers and
letters. For example, if the job accounting group charges for job time based upon
the department to which you belong, your account number would be similar to:
account_no = dept34ca

arguments
Specifies the list of arguments to pass to your program when your job runs.

The syntax is:
arguments = arg1 arg2 ...

For example, if your job requires the numbers 5, 8, 9 as input, your arguments
keyword would be similar to:
arguments = 5 8 9

blocking
Blocking specifies that tasks be assigned to machines in multiples of a certain
integer. Unlimited blocking specifies that tasks be assigned to the each machine
until it runs out of initiators, at which time tasks will be assigned to the machine
which is next in the order of priority. If the total number of tasks are not evenly
divisible by the blocking factor, the remainder of tasks are allocated to a single
node.

The syntax is:
blocking = integer|unlimited

Where:

integer
specifies the blocking factor to be used. The blocking factor must be a
positive integer. With a blocking factor of 4, LoadLeveler will allocate 4
tasks at a time to each machine with at least 4 initiators available. This
keyword must be specified with the total_tasks keyword. For example:
blocking = 4
total_tasks = 17

LoadLeveler will allocate tasks to machines in an order based on the values
of their MACHPRIO expressions (beginning with the highest MACHPRIO
value). In cases where total_tasks is not a multiple of the blocking factor,
LoadLeveler assigns the remaining number of tasks as soon as possible
(even if that means assigning the remainder to a machine at the same time
as it assigns another block).

unlimited
Specifies that LoadLeveler allocate as many tasks as possible to each
machine, until all of the tasks have been allocated. LoadLeveler will
prioritize machines based on the number of initiators each machine
currently has available. Unlimited blocking is the only means of allocating
tasks to nodes that does not prioritize machines primarily by MACHPRIO
expression.

checkpoint
Specifies whether you want to checkpoint your program.

The syntax is:

Chapter 3. Submitting and Managing Jobs 37

checkpoint = user_initiated | system_initiated | no

Specify user_initiated if you want to determine when the checkpoint is taken. User
initiated checkpointing is available to both serial jobs and parallel POE jobs.
(Checkpointing is not supported for parallel PVM jobs.) Serial jobs must use the
LoadLeveler ckpt API call to request user initiated checkpointing. See “Serial
Checkpointing API” on page 253 for more information. POE jobs must use the
Parallel Environment (PE) parallel checkpointing API to enable user initiated
checkpointing. See IBM Parallel Environment for AIX: Operation and Use, Volume 1
for more information.

Specify system_initiated if you want LoadLeveler to automatically checkpoint your
program at preset intervals. System initiated checkpointing is available only to serial
jobs. To cause both user initiated and system initiated checkpoints to occur, specify
system_initiated and have your program use the appropriate ckpt API call.

Specify no if you do not want your program to be checkpointed. This is the default.

To restart a program for which a checkpoint file exists, you must set the
CHKPT_STATE environment variable to restart . For more information on
environment variables associated with checkpointing, see “Set the Appropriate
Environment Variables” on page 118. For information on setting environment
variables for a job, see “environment” on page 41. Note that it is not necessary to
set the restart job command language keyword for a checkpointing job. For more
information, see “restart” on page 52.

To use checkpointing, your program must be linked with the appropriate
LoadLeveler libraries. See “Ensure all User’s Jobs are Linked to Checkpointing
Libraries” on page 120 for more information. For more detailed information on
checkpointing, see “Step 14: Enable Checkpointing” on page 117.

class
Specifies the name of a job class defined locally in your cluster. If not specified, the
default job class, No_Class , is assigned. You can use the llclass command to find
out information on job classes.

The syntax is:
class = name

For example, if you are allowed to submit jobs belonging to a class called
“largejobs”, your class keyword would look like the following:
class = largejobs

comment
Specifies text describing characteristics or distinguishing features of the job.

core_limit
Specifies the hard limit and/or soft limit for the size of a core file. This is a per
process limit.

The syntax is:
core_limit = hardlimit,softlimit

Some examples are:

38 Using and Administering LoadLeveler

core_limit = 125621,10kb
core_limit = 5621kb,5000k
core_limit = 2mb,1.5mb
core_limit = 2.5mw
core_limit = unlimited
core_limit = rlim_infinity
core_limit = copy

See “Limit Keywords” on page 88 for more information on the values and units you
can use with this keyword.

cpu_limit
Specifies the hard limit and/or soft limit for the amount of CPU time that a submitted
job step can use. This is a per process limit.

The syntax is:
cpu_limit = hardlimit,softlimit

For example:
cpu_limit = 12:56:21,12:50:00
cpu_limit = 56:21.5
cpu_limit = 1:03,21
cpu_limit = unlimited
cpu_limit = rlim_infinity
cpu_limit = copy

See “Limit Keywords” on page 88 for more information on the values and units you
can use with this keyword.

data_limit
Specifies the hard limit and/or soft limit for the size of the data segment to be used
by the job step. This is a per process limit.

The syntax is:
data_limit = hardlimit,softlimit

For example:
data_limit = ,125621
data_limit = 5621kb
data_limit = 2mb
data_limit = 2.5mw,2mb

See “Limit Keywords” on page 88 for more information on the values and units you
can use with this keyword.

dependency
Specifies the dependencies between job steps. A job dependency, if used in a given
job step, must be explicitly specified for that step.

The syntax is:
dependency = expression

where the syntax for the expression is:
step_name operator
value

Chapter 3. Submitting and Managing Jobs 39

where step_name (as described in “step_name” on page 53) must be a previously
defined job step and operator can be one of the following:
== equal to
!= not equal to
<= less than or equal to
>= greater than or equal to
< less than
> greater than
&& and
|| or

The value is usually a number which specifies the job return code to which the
step_name is set. It can also be one of the following LoadLeveler defined job step
return codes:

CC_NOTRUN
The return code set by LoadLeveler for a job step which is not run because
the dependency is not met. The value of CC_NOTRUN is 1002.

CC_REMOVED
The return code set by LoadLeveler for a job step which is removed from
the system (because, for example, llcancel was issued against the job
step). The value of CC_REMOVED is 1001.

Examples: The following are examples of dependency statements:

Example 1: In the following example, the step that contains this dependency
statement will run if the return code from step 1 is zero:
dependency = (step1 == 0)

Example 2: In the following example, step1 will run with the executable called
myprogram1 . Step2 will run only if LoadLeveler removes step1 from the system. If
step2 does run, the executable called myprogram2 gets run.
Beginning of step1
@ step_name = step1
@ executable = myprogram1
@ ...
@ queue
Beginning of step2
@ step_name = step2
@ dependency = step1 == CC_REMOVED
@ executable = myprogram2
@ ...
@ queue

Example 3: In the following example, step1 will run with the executable called
myprogram1 . Step2 will run if the return code of step1 equals zero. If the return
code of step1 does not equal zero, step2 does not get executed. If step2 is not run,
the dependency statement in step3 gets evaluated and it is determined that step2
did not run. Therefore, myprogram3 gets executed.
Beginning of step1
@ step_name = step1
@ executable = myprogram1
@ ...
@ queue
Beginning of step2
@ step_name = step2
@ dependency = step1 == 0
@ executable = myprogram2
@ ...

40 Using and Administering LoadLeveler

@ queue
Beginning of step3
@ step_name = step3
@ dependency = step2 == CC_NOTRUN
@ executable = myprogram3
@ ...
@ queue

Example 4: In the following example, the step that contains step2 returns a
non-negative value if successful. This step should take into account the fact that
LoadLeveler uses a value of 1001 for CC_REMOVED and 1002 for CC_NOTRUN.
This is done with the following dependency statement:
dependency = (step2 >= 0) && (step2 < CC_REMOVED)

environment
Specifies your initial environment variables when your job step starts. Separate
environment specifications with semicolons. An environment specification may be
one of the following:

COPY_ALL
Specifies that all the environment variables from your shell be copied.

$var Specifies that the environment variable var be copied into the environment
of your job when LoadLeveler starts it.

!var Specifies that the environment variable var not be copied into the
environment of your job when LoadLeveler starts it. This is most useful in
conjunction with COPY_ALL.

var=value
Specifies that the environment variable var be set to the value “value” and
copied into the environment of your job when LoadLeveler starts it.

The syntax is:
environment = env1 ; env2 ; ...

For example:
environment = COPY_ALL; !env2;

error
Specifies the name of the file to use as standard error (stderr) when your job step
runs. If you do no specify this keyword, the file /dev/null is used.

The syntax is:
error = filename

For example:
error = $(jobid).$(stepid).err

executable
For serial jobs, executable identifies the name of the program to run. The program
can be a shell script or a binary. For parallel jobs, executable can be a shell script
or the following:

v For Parallel Operating Environment (POE) jobs – specifies the full path name of
the POE executable.

v For Parallel Virtual Machine (PVM) jobs – specifies the name of your parallel job.

Chapter 3. Submitting and Managing Jobs 41

If you do not include this keyword and the job command file is a shell script,
LoadLeveler uses the script file as the executable.

The syntax is:
executable = name

Examples:
@ executable = a.out
@ executable = /usr/bin/poe (for POE jobs)
@ executable = my_parallel_job (for PVM jobs)

Note that the executable statement automatically sets the $(base_executable)
variable, which is the file name of the executable without the directory component.
See Figure 15 on page 34 for an example of using the $(base_executable)
variable.

file_limit
Specifies the hard limit and/or soft limit for the size of a file. This is a per process
limit.

The syntax is:
file_limit = hardlimit,softlimit

For example:
file_limit = 120mb,100mb

See “Limit Keywords” on page 88 for more information on the values and units you
can use with this keyword.

group
Specifies the LoadLeveler group. If not specified, this defaults to the default group,
No_Group . The syntax is:
group = group_name

For example:
group = my_group_name

hold
Specifies whether you want to place a hold on your job step when you submit it.
There are three types of holds:
user Specifies user hold
system

Specifies system hold
usersys

Specifies user and system hold

The syntax is:
hold = user|system|usersys

For example, to put a user hold on a job, the keyword statement would be:
hold = user

42 Using and Administering LoadLeveler

To remove the hold on the job, you can use either the GUI or the llhold -r
command.

image_size
Maximum virtual image size, in kilobytes, to which your program will grow during
execution. LoadLeveler tries to execute your job steps on a machine that has
enough resources to support executing and checkpointing your job step. If your job
command file has multiple job steps, the job steps will not necessarily run on the
same machine, unless you explicitly request that they do.

If you do not specify the image size of your job command file, the image size is that
of the executable. If you underestimate the image size of your job step, your job
step may crash due to the inability to acquire more address space. If you
overestimate the image size, LoadLeveler may have difficulty finding machines that
have the required resources.

The syntax is:
image_size = number

Where number must be a positive integer. For example, to set an image size of 11
KB, the keyword statement would be:
image_size = 11

initialdir
The path name of the directory to use as the initial working directory during
execution of the job step. If none is specified, the initial directory is the current
working directory at the time you submitted the job. File names mentioned in the
command file which do not begin with a / are relative to the initial directory. The
initial directory must exist on the submitting machine as well as on the machine
where the job runs.

The syntax is:
initialdir = pathname

For example:
initialdir = /var/home/mike/ll_work

input
Specifies the name of the file to use as standard input (stdin) when your job step
runs. If not specified, the file /dev/null is used.

The syntax is:
input = filename

For example:
input = input.$(process)

job_cpu_limit
Specifies the hard limit and/or soft limit for the CPU time to be used by all
processes of a job step. For example, if a job step forks to produce multiple
processes, the sum total of CPU consumed by all of the processes is added and
controlled by this limit.

Chapter 3. Submitting and Managing Jobs 43

The syntax is:
job_cpu_limit = hardlimit,softlimit

For example:
job_cpu_limit = 12:56,12:50

See “Limit Keywords” on page 88 for more information on the values and units you
can use with this keyword.

job_name
Specifies the name of the job. This keyword must be specified in the first job step. If
it is specified in other job steps in the job command file, it is ignored. You can name
the job using any combination of letters and/or numbers.

The syntax is:
job_name = job_name

For example:
job_name = my_first_job

The job_name only appears in the long reports of the llq , llstatus , and llsummary
commands, and in mail related to the job.

job_type
Specifies the type of job step to process. Valid entries are:

pvm3 For PVM jobs with a non-SP architecture.

parallel
For other parallel jobs, including PVM 3.3.11+ (SP architecture).

serial For serial jobs. This is the default.

Note that when you specify job_type=pvm3 or job_type=serial , you cannot specify
the following keywords: node , tasks_per_node , total_tasks , network.LAPI , and
network.MPI .

The syntax is:
job_type = string

For example:
job_type = pvm3

max_processors
Specifies the maximum number of nodes requested for a parallel job, regardless of
the number of processors contained in the node.

This keyword is equivalent to the maximum value you specify on the new node
keyword. In any new job command files you create for non-PVM jobs, you should
use the node keyword to request nodes/processors. The max_processors
keyword should be used by existing job command files and new PVM job command
files. Note that if you specify in a job command file both the max_processors
keyword and the node keyword, the job is not submitted.

The syntax is:

44 Using and Administering LoadLeveler

max_processors = number

For example:
max_processors = 6

min_processors
Specifies the minimum number of nodes requested for a parallel job, regardless of
the number of processors contained in the node.

This keyword is equivalent to the minimum value you specify on the new node
keyword. In any new job command files you create for non-PVM jobs, you should
use the node keyword to request nodes/processors. The min_processors keyword
should be used by existing job command files and new PVM job command files.
Note that if you specify in a job command file both the min_processors keyword
and the node keyword, the job is not submitted.

The syntax is:
min_processors = number

For example:
min_processors = 4

network
Specifies communication protocols, adapters, and their characteristics. You need to
specify this keyword when you want a task of a parallel job step to request a
specific adapter that is defined in the LoadLeveler administration file. You do not
need to specify this keyword when you want a task to access a shared, default
adapter via TCP/IP. (A default adapter is an adapter whose name matches a
machine stanza name.)

Note that you cannot specify both the network statement and the Adapter
requirement (or the Adapter preference) in a job command file. Also, the value of
the network keyword applies only to the job step in which you specify the keyword.
(That is, this keyword in not inherited by other job steps.)

The syntax is:
network.protocol = network_type [, [usage] [, mode [, comm_level]]]

Where:

protocol
Specifies the communication protocol(s) that are used with an adapter, and
can be the following:

MPI Specifies the Message Passing Interface. You can specify in a job
step both network.MPI and network.LAPI .

LAPI Specifies the Low-level Application Programming Interface. You can
specify in a job step both network.MPI and network.LAPI .

PVM Specifies a Parallel Virtual Machine job. When you specify in a job
step network.PVM , you cannot specify any other network
statements in that job step. Also, the adapter mode must be IP.

network_type
Specifies either an adapter name or a network type.This field is required.
The possible values for adapter name are the names associated with the

Chapter 3. Submitting and Managing Jobs 45

interface cards installed on a node (for example, en0, tk1, and css0). The
possible values for network type are installation-defined; the LoadLeveler
administrator must specify them in the adapter stanza of the LoadLeveler
administration file using the network_type keyword. For example, an
installation can define a network type of “switch” to identify css0 adapters.
When a switch adapter exists on a node, the network_type can be specified
as csss, which indicates that the fastest switch communication path should
be used. For more information, see “Step 5: Specify Adapter Stanzas” on
page 95.

usage Specifies whether the adapter can be shared with tasks of other job steps.
Possible values are shared , which is the default, or not_shared .

mode Specifies the communication subsystem mode used by the communication
protocol that you specify, and can be either IP (Internet Protocol), which is
the default, or US (User Space). Note that each instance of the US mode
requested by a task running on the SP switch requires an adapter window.
For example, if a task requests both the MPI and LAPI protocols such that
both protocol instances require US mode, two adapter windows will be
used. For more information on adapter windows, see Parallel System
Support Programs for AIX Administration Guide.

comm_level
The comm_level keyword should be used to suggest the amount of
inter-task communication that users expect to occur in their parallel jobs.
This suggestion is used to allocate adapter device resources. For more
information on device resources, consult the PSSP Admin Guide. Specifying
a level that is higher than what the job actually needs will not speed up
communication, but may make it harder to schedule a job (because it
requires more resources). The comm_level keyword can only be specified
with US mode. The three communication levels are:

LOW Implies that minimal inter-task communication will occur.

AVERAGE
This is the default value. Unless you know the specific
communication characteristics of your job, the best way to
determine the comm_level is through trial-and-error.

HIGH Implies that a great deal of inter-task communication will occur.

Example 1: To use the MPI protocol with an SP switch adapter in User Space
mode without sharing the adapter, enter the following:
network.MPI = css0,not_shared,US,HIGH

Example 2: To use the MPI protocol with a shared SP switch adapter in IP mode,
enter the following:
network.MPI = css0,,IP

Because a shared adapter is the default, you do not need to specify shared .

Example 3: A communication level can only be specified if User Space mode is
also specified:
network.MPI = css0,,US,AVERAGE

Note that LoadLeveler can ensure that an adapter is dedicated (not shared) if you
request the adapter in US mode, since any user who requests a user space
adapter must do so using the network statement. However, if you request a

46 Using and Administering LoadLeveler

dedicated adapter in IP mode, the adapter will only be dedicated if all other
LoadLeveler users who request this adapter do so using the network statement.

node
Specifies the minimum and maximum number of nodes requested by a job step.
You must specify at least one of these values. The value of the node keyword
applies only to the job step in which you specify the keyword. (That is, this keyword
is not inherited by other job steps.)

The syntax is:
node = [min][,max]

Where:

min Specifies the minimum number of nodes requested by the job step. The
default is 1.

max Specifies the maximum number of nodes requested by the job step. The
default is the min value of this keyword. The maximum number of nodes a
job step can request is limited by the max_node keyword in the
administration file (provided this keyword is specified). That is, the
maximum must be less than or equal to any max_node value specified in a
user, group, or class stanza.

For example, to specify a range of six to twelve nodes, enter the following:
node = 6,12

To specify a maximum of seventeen nodes, enter the following:
node = ,17

When you use the node keyword together with the total_tasks keyword, the min
and max values you specify on the node keyword must be equal, or you must
specify only one value. For example:
node = 6
total_tasks = 12

For information on specifying the number of tasks you want to run on a node, see
“Task Assignment Considerations” on page 60,“tasks_per_node” on page 54, and
“total_tasks” on page 55.

node_usage
Specifies whether this job step shares nodes with other job steps.

The syntax is:
node_usage = shared | not_shared

Where:

shared
Specifies that nodes can be shared with other tasks of other job steps. This
is the default.

not_shared
Specifies that nodes are not shared: no other job steps are scheduled on
this node.

Chapter 3. Submitting and Managing Jobs 47

notification
Specifies when the user specified in the notify_user keyword is sent mail. The
syntax is:
notification = always|error|start|never|complete

Where:

always
Notify the user when the job begins, ends, or if it incurs error conditions.

error Notify the user only if the job fails.

start Notify the user only when the job begins.

never Never notify the user.

complete
Notify the user only when the job ends. This is the default.

For example, if you want to be notified with mail only when your job step completes,
your notification keyword would be:
notification = complete

When a LoadLeveler job ends, you may receive UNIX mail notification indicating the
job exit status. For example, you could get the following mail message:
Your LoadLeveler job
myjob1
exited with status 4.

The return code 4 is from the user’s job. LoadLeveler retrieves the return code and
returns it in the mail message, but it is not a LoadLeveler return code.

notify_user
Specifies the user to whom mail is sent based on the notification keyword. The
default is the submitting user and the submitting machine.

The syntax is:
notify_user = userID

For example, if you are the job step owner but you want a co-worker whose name
and user ID is bob , to receive mail regarding the job step, your notify keyword
would be:
notify_user = bob

output
Specifies the name of the file to use as standard output (stdout) when your job step
runs. If not specified, the file /dev/null is used.

The syntax is:
output = filename

For example:
output = out.$(jobid)

48 Using and Administering LoadLeveler

parallel_path
Specifies the path that should be used when starting a PVM 3.3 slave process. This
is used for PVM 3.3 only and is translated into the ep keyword as defined in the
PVM 3.3 hosts file.

For example:
parallel_path = /home/userid/cmds/pvm3/$PVM_ARCH:$PVM_ROOT/lib/$PVM_ARCH

The parallel_path statement above has two components, separated by a colon.
The first component points to the location of the user’s programs. The second
component points to the location of the pvmgs routine – required if the job uses
PVM 3.3 group support – assuming PVM 3.3 is installed “normally”. Note that your
installation must install PVM 3.3 to include group support in order for you to use
group support within LoadLeveler. $PVM_ARCH will be replaced by the architecture
of the machine, as defined by PVM 3.3. This will specify the path to be searched for
executables when the user’s job issues a pvm_spawn() command.

$PVM_ARCH, and $PVM_ROOT are PVM environment variables. For more
information, see the appropriate PVM 3.3 documentation.

preferences
Specifies the characteristics that you prefer be available on the machine that
executes the job steps. LoadLeveler attempts to run the job steps on machines that
meet your preferences. If such a machine is not available, LoadLeveler will then
assign machines which meet only your requirements.

The values you can specify in a preferences statement are the same values you
can specify in a requirements statement, with the exception of the Adapter
requirement. See “requirements” for more information.

The syntax is:
preferences = Boolean_expression

Some examples are::
preferences = (Memory <=16) && (Arch == "R6000")

preferences = Memory >= 64

queue
Places one copy of the job step in the queue. This statement is required. The
queue statement essentially marks the end of the job step. Note that you can
specify statements between queue statements.

The syntax is:
queue

requirements
Specifies the requirements which a machine in the LoadLeveler cluster must meet
to execute any job steps. You can specify multiple requirements on a single
requirements statement.

The syntax is:
requirements = Boolean_expression

Chapter 3. Submitting and Managing Jobs 49

When strings are used as part of a Boolean expression that must be enclosed in
double quotes. Sample requirement statements are included following the
descriptions of the supported requirements.

The requirements supported are:

Adapter
Specifies the pre-defined type of network you want to use to run a parallel job
step. In any new job command files you create, you should use the network
keyword to request adapters and types of networks. The Adapter requirement
is provided for compatibility with Version 1.3 job command files. Note that you
cannot specify both the Adapter requirement and the network statement in a
job command file.

The pre-defined network types are:

hps_ip
Refers to an SP switch in IP mode.

hps_us
Refers to an SP switch in user space mode. If the switch in user mode
is requested by the job, no other jobs using the switch in user mode will
be allowed on nodes running that job.

ethernet
Refers to Ethernet.

fddi Refers to Fiber Distributed Data Interface (FDDI).

tokenring
Refers to Token Ring.

fcs Refers to Fiber Channel Standards.

Note that LoadLeveler converts the above network types to the network
statement. For more information, see “Migrating Your Existing Adapter
Requirements Statements” on page xix.

Arch
Specifies the machine architecture on which you want your job step to run. It
describes the particular kind of UNIX platform for which your executable has
been compiled. The default is the architecture of the submitting machine.

Disk
Specifies the amount of disk space in kilobytes you believe is required in the
LoadLeveler execute directory to run the job step.

Feature
Specifies the name of a feature defined on a machine where you want your job
step to run. Be sure to specify a feature in the same way in which the feature is
specified in the machine stanza of the administration file. To find out what
features are available, use the llstatus command.

LL_Version
Specifies the LoadLeveler version, in dotted decimal format, on which you want
your job step to run. For example, LoadLeveler Version 2 Release 1 (with no
modification levels) is written as 2.1.0.0.

Machine
Specifies the name(s) of machines on which you want the job step to run. Be
sure to specify a machine in the same way in which it is specified in the
machine configuration file.

50 Using and Administering LoadLeveler

Memory
Specifies the amount of physical memory required in megabytes in the machine
where you want your job step to run.

OpSys
Specifies the operating system on the machine where you want your job step to
run. It describes the particular kind of UNIX platform for which your executable
has been compiled. The default is the operating system of the submitting
machine. The executable must be compiled on a machine that matches these
requirements.

Pool
Specifies the number of a pool where you want your job step to run.

Example 1: To specify a memory requirement and a machine architecture
requirement, enter:
requirements = (Memory >=16) && (Arch == "R6000")

Example 2: To specify that your job requires multiple machines for a parallel job,
enter:
requirements = (Machine == { "ll6" "ll5" "ll0" })

Example 3: You can set a machine equal to a job step name. This means that you
want the job step to run on the same machine on which the previous job step ran.
For example:
requirements = (Machine == machine.step_name)

where step_name is a step name previously defined in the job command file. The
use of Machine == machine. step_name is limited to serial jobs.

For example:
@ step_name = step1
@ executable = c1
@ output = $(executable).$(jobid).$(step_name).out
@ queue
@ step_name = step2
@ dependency = (step1 == 0)
@ requirements = (Machine == machine.step1)
@ executable = c2
@ output = $(executable).$(jobid).$(step_name).out
@ queue

Example 4: To specify a requirement for an SP switch adapter in IP mode, enter:
requirements = (Adapter == "hps_ip")

Example 5: To specify a requirement for a specific pool number, enter:
requirements = (Pool == 7)

Example 6: To specify a requirement that the job runs on LoadLeveler Version 2
Release 1 or any follow-on release, enter:
requirements = (LL_Version >= "2.1")

Note that the statement requirements = (LL_Version == "2.1") matches only the
value 2.1.0.0.

Chapter 3. Submitting and Managing Jobs 51

resources
Specifies quantities of the consumable resources ″consumed″ by each task of a job
step. The resources may be machine resources or floating resources. The syntax is:
resources=name(count) name(count) ... name(count)

where name(count) is an administrator-defined name and count, or could also be
ConsumableCpus (count), ConsumableMemory (count units), or
ConsumableVirtualMemory (count units). ConsumableMemory and
ConsumableVirtualMemory are the only two consumable resources that can be
specified with both a count and units. The count for each specified resource must
be an integer greater than or equal to zero, with three exceptions:
ConsumableCpus , and ConsumableMemory must be specified with a value which
is greater than zero, and ConsumableVirtualMemory must be specified with a
value greater than 0, and greater than or equal to the image_size . If the count is
not valid, then LoadLeveler will issue an error message, and will not submit the job.
The allowable units are those normally used with LoadLeveler data limits:
b bytes
w words
kb kilobytes (2** 10 bytes)
kw kilowords (2** 10 words)
mb megabytes (2** 20 bytes)
mw megawords (2**20 words)
gb gigabytes (2** 30 bytes)
gw gigawords (2** 30 words)

ConsumableMemory and ConsumableVirtualMemory values are stored in mb
(megabytes) and rounded up. Therefore, the smallest amount of
ConsumableMemory or ConsumableVirtualMemory which you can request is
one megabyte. If no units are specified, then megabytes are assumed. However,
image_size units are in kilobytes. Resources defined here that are not in the
SCHEDULE_BY_RESOURCES list in the global configuration file will not affect the
scheduling of the job. If the resources keyword is not specified in the job step, then
the default_resources (if any) defined in the administration file for the class will be
used for each task of the job step.

restart
Specifies whether LoadLeveler considers a job “restartable.” The syntax is:
restart = yes|no

If restart=yes , which is the default, and the job is vacated from its executing
machine before completing, the central manager requeues the job. It can start
running again when a machine on which it can run becomes available. If
restart=no , a vacated job is cancelled rather than requeued.

Note that this keyword is different from the restart state associated with
checkpointing jobs. This state tells LoadLeveler to restart a job from an existing
checkpoint file. (Checkpoint jobs are always considered “restartable.”) For more
information, see “Set the Appropriate Environment Variables” on page 118.

rss_limit
Specifies the hard limit and/or soft limit for the resident set size.

The syntax is:
rss_limit = hardlimit,softlimit

52 Using and Administering LoadLeveler

For example:
rss_limit=12mb,10mb

The above example specifies the limits in megabytes, but If no units are specified,
then bytes are assumed. See “Limit Keywords” on page 88 for more information on
the values and units you can use with this keyword.

shell
Specifies the name of the shell to use for the job step. If not specified, the shell
used in the owner’s password file entry is used. If none is specified, the /bin/sh is
used.

The syntax is:
shell = name

For example, if you wanted to use the Korn shell, the shell keyword would be:
shell = /bin/ksh

stack_limit
Specifies the hard limit and/or soft limit for the size of the stack that is created.

The syntax is:
stack_limit = hardlimit,softlimit

For example:
stack_limit = 120000,100000

Because no units have been specified in the above example, LoadLeveler assumes
that the figure represents a number of bytes. See “Limit Keywords” on page 88 for
more information on the values and units you can use with this keyword.

startdate
Specifies when you want to run the job step. If not specified, the current date and
time are used.

The syntax is:
startdate = date time

date is expressed as MM/DD/YYYY, and time is expressed as HH:mm(:ss).

For example, if you want the job to run on August 28th, 2000 at 1:30 PM, issue:
startdate = 08/28/2000 13:30

If you specify a start date that is in the future, your job is kept in the Deferred state
until that start date.

step_name
Specifies the name of the job step. You can name the job step using any
combination of letters, numbers, underscores (_) and periods (.). You cannot,
however, name it T or F, or use a number in the first position of the step name. The
step name you use must be unique and can be used only once. If you don’t specify
a step name, by default the first job step is named the character string ″0″, the
second is named the character string ″1″, and so on.

Chapter 3. Submitting and Managing Jobs 53

The syntax is:
step_name = step_name

For example:
step_name = step_3

task_geometry
The task_geometry keyword allows you to group tasks of a parallel job step to run
together on the same node. Although task_geometry allows for a great deal of
flexibility in how tasks are grouped, you cannot specify the particular nodes that
these groups run on; the scheduler will decide which nodes will run the specified
groupings. The syntax is:
task_geometry={(task id,task id,...)(task id,task id, ...) ... }

In this example, a job with 6 tasks will run on 4 different nodes:
task_geometry={(0,1) (3) (5,4) (2)}

Each number in the example above represents a task id in a job, each set of
parenthesis contains the task ids assigned to one node. The entire range of tasks
specified must begin with 0, and must be complete; no number can be skipped (the
largest task id number should end up being the value that is one less than the total
number of tasks). The entire statement following the keyword must be enclosed in
braces, and each grouping of nodes must be enclosed in parentheses. Commas
can only appear between task ids, and spaces can only appear between nodes and
task ids.

The task_geometry keyword cannot be specified under any of the following
conditions: (a) the step is serial, (b) job_type is anything other than ″parallel″, or (c)
any of the following keywords are specified: tasks_per_node , total_tasks , node ,
min_processors , max_processors , blocking . For more information, see “Task
Assignment Considerations” on page 60.

tasks_per_node
Specifies the number of tasks of a parallel job you want to run per node. Use this
keyword in conjunction with the node keyword. The value you specify on the node
keyword can be a range or a single value. If the node keyword is not specified, then
the default value is one node.

The maximum number of tasks a job step can request is limited by the total_tasks
keyword in the administration file (provided this keyword is specified). That is, the
maximum must be less than any total_tasks value specified in a user, group, or
class stanza.

The value of the tasks_per_node keyword applies only to the job step in which you
specify the keyword. (That is, this keyword is not inherited by other job steps.)

Also, you cannot specify both the tasks_per_node keyword and the total_tasks
keyword within a job step.

The syntax is:
tasks_per_node = number

54 Using and Administering LoadLeveler

Where number is the number of tasks you want to run per node. The default is one
task per node.

For example, to specify a range of seven to 14 nodes, with four tasks running on
each node, enter the following:
node = 7,14
tasks_per_node = 4

The above job step runs 28 to 56 tasks, depending on the number of nodes
allocated to the job step.

total_tasks
Specifies the total number of tasks of a parallel job you want to run on all available
nodes. Use this keyword in conjunction with the node keyword. The value you
specify on the node keyword must be a single value rather than a range of values.
If the node keyword is not specified, then the default value is one node.

The maximum number of tasks a job step can request is limited by the total_tasks
keyword in the administration file (provided this keyword is specified). That is, the
maximum must be less than any total_tasks value specified in a user, group, or
class stanza.

The value of the total_tasks keyword applies only to the job step in which you
specify the keyword. (That is, this keyword is not inherited by other job steps.)

Also, you cannot specify both the total_tasks keyword and the tasks_per_node
keyword within a job step.

The syntax is:
total_tasks = number

Where number is the total number of tasks you want to run.

For example, to run two tasks on each of 12 available nodes for a total of 24 tasks,
enter the following:
node = 12
total_tasks = 24

If you specify an unequal distribution of tasks per node, LoadLeveler allocates the
tasks on the nodes in a round-robin fashion. For example, if you have three nodes
and five tasks, two tasks run on the first two nodes and one task runs on the third
node.

user_priority
Sets the initial priority of your job step. Priority only affects your job steps. It orders
job steps you submitted with respect to other job steps submitted by you, not with
respect to job steps submitted by other users.

The syntax is:
user_priority = number

where number is a number between 0 and 100, inclusive. A higher number
indicates the job step will be selected before a job step with a lower number. The
default priority is 50. Note that this is not the UNIX nice priority.

Chapter 3. Submitting and Managing Jobs 55

This priority guarantees the order the jobs are considered for dispatch. It does not
guarantee the order in which they will run.

wall_clock_limit
Sets the hard limit and/or soft limit for the elapsed time for which a job can run. In
computing the elapsed time for a job, LoadLeveler considers the start time to be the
time the job is dispatched.

If you are running the LoadLeveler Backfill scheduler, either users must set a wall
clock limit in their job command file or the administrator must define a wall clock
limit value for the class to which a job is assigned. In most cases, this wall clock
limit value should not be unlimited . For more information, see “Choosing a
Scheduler” on page 100.

The syntax is:
wall_clock_limit = hardlimit,softlimit

An example is:
wall_clock_limit = 5:00,4:30

See “Limit Keywords” on page 88 for more information on the values and units you
can use with this keyword.

Job Command File Variables
LoadLeveler has several variables you can use in a job command file. These
variables are useful for distinguishing between output and error files.

You can refer to variables in mixed case, but you must specify them using the
following syntax:
$(variable_name)

The following variables are available to you:

$(host)
The hostname of the machine from which the job was submitted. In a job
command file, the $(host) variable and the $(hostname) variable are
equivalent.

$(domain)
The domain of the host from which the job was submitted.

$(jobid)
The sequential number assigned to this job by the submitting machine. The
$(jobid) variable and the $(cluster) variable are equivalent.

$(stepid)
The sequential number assigned to this job step when multiple queue
statements are used with the job command file. The $(stepid) variable and the
$(process) variable are equivalent.

In addition, the following keywords are also available as variables. However, you
must define them in the job command file. These keywords are described in detail
in “Job Command File Keywords” on page 36.

$(executable)
$(class)
$(comment)

56 Using and Administering LoadLeveler

$(job_name)
$(step_name)

Note that for the $(comment) variable, the keyword definition must be a single
string with no blanks. Also, the executable statement automatically sets the
$(base_executable) variable, which is the file name of the executable without the
directory component. See Figure 15 on page 34 for an example of using the
$(base_executable) variable.

Example 1
The following job command file creates an output file called stance.78.out , where
stance is the host and 78 is the jobid.
@ executable = my_job
@ arguments = 5
@ output = $(host).$(jobid).out
@ queue

Example 2
The following job command file creates an output file called
computel.step1.March05 .
@ comment = March05
@ job_name = computel
@ step_name = step1
@ executable = my_job
@ output = $(job_name).$(step_name).$(comment)
@ queue

Run-time Environment Variables
The following environment variables are set by LoadLeveler for all jobs. These
environment variables are also set before running prolog and epilog programs. For
more information on prolog and epilog programs, see “Writing Prolog and Epilog
Programs” on page 297.
LOADLBATCH

Set to yes to indicate the job is running under LoadLeveler.
LOADL_ACTIVE

The LoadLeveler version.
LOADL_JOB_NAME

The three part job identifier.
LOADL_PID

The process ID of the starter process.
LOADL_PROCESSOR_LIST

A Blank-delimited list of hostnames allocated for the step. This environment
variable is limited to 128 hostnames. If the value is greater than the 128
limit, the environment variable is not set.

LOADL_STARTD_PORT
The port number where the startd daemon runs.

LOADL_STEP_ACCT
The account number of the job step owner.

LOADL_STEP_ARGS
Any arguments passed by the job step.

LOADL_STEP_CLASS
The job class for serial jobs.

LOADL_STEP_COMMAND
The name of the executable (or the name of the job command file if the job
command file is the executable).

Chapter 3. Submitting and Managing Jobs 57

LOADL_STEP_ERR
The file used for standard error messages (stderr).

LOADL_STEP_GROUP
The UNIX group name of the job step owner.

LOADL_STEP_ID
The job step ID.

LOADL_STEP_IN
The file used for standard input (stdin).

LOADL_STEP_INITDIR
The initial working directory.

LOADL_STEP_NAME
The name of the job step.

LOADL_STEP_NICE
The UNIX nice value of the job step. This value is determined by the nice
keyword in the class stanza. For more information, see “Step 3: Specify
Class Stanzas” on page 84.

LOADL_STEP_OUT
The file used for standard output (stdout).

LOADL_STEP_OWNER
The job step owner.

LOADL_STEP_TYPE
The job type (SERIAL, PARALLEL, PVM3, or NQS)

Submitting and Managing Jobs that Consume Resources

Specifying the Consumption of Resources by a Job Step
The LoadLeveler user may use the resources keyword in the job command file to
specify the resources to be consumed by each task of a job step. If the resources
keyword is specified in the job command file, it overrides any default_resources
specified by the administrator for the job step’s class.

For example, the following job requests one CPU and one FRM license for each of
its tasks:
resources = ConsumableCpus(1) FRMlicense(1)

If this were specified in a serial job step, one CPU and one FRM license would be
consumed while the job step runs. If this were a parallel job step, then the number
of CPUs and FRM licenses consumed while the job step runs would depend upon
how many tasks were running on each machine. For more information on assigning
tasks to nodes, see “Task Assignment Considerations” on page 60.

Displaying Currently Available Resources
The LoadLeveler user can get information about currently available resources by
using the llstatus command with either the -F, or -R options. The -F option displays
a list of all of the floating resources associated with the LoadLeveler cluster. The -R
option list all of the consumable resources associated with all of the machines in
the LoadLeveler cluster. The user can specify a hostlist with the llstatus command
to display only the consumable resources associated with specific hosts.

58 Using and Administering LoadLeveler

Chapter 4. Submitting and Managing Parallel Jobs

This chapter tells you how to submit and manage parallel jobs. For information on
setting up and planning for parallel jobs, see “Chapter 6. Administration Tasks for
Parallel Jobs” on page 149.

Supported Parallel Environments
LoadLeveler allows you to schedule parallel batch jobs that have been written using
the following:
v IBM Parallel Environment Library* (POE/MPI/LAPI) 2.4.0
v Parallel Virtual Machine (PVM) 3.3 (RS6K architecture)
v Parallel Virtual Machine (PVM) 3.3.11+ (SP2MPI architecture)

Note that for parallel batch jobs, LoadLeveler no longer interacts with the PSSP
Resource Manager, since all Resource Manager function has been incorporated
into LoadLeveler. For more information, see “Resource Manager Functions Now in
LoadLeveler” on page xix.

Keyword Considerations for Parallel Jobs

Scheduler Considerations
Several LoadLeveler job command language keywords are associated with parallel
jobs. Whether a keyword is appropriate is dependent upon the type of job and the
type of LoadLeveler scheduler you are running.

Table 4 shows you the parallel keywords supported by the LoadLeveler Backfill
scheduler, based on the type of job you are running.

Table 4. Parallel Keywords Supported by the Backfill Scheduler

job_type=parallel job_type=pvm3

network
node
node_usage
tasks_per_node
total_tasks
task_geometry
blocking
All keywords supported for
job_type=pvm3 (supported for
compatibility reasons)

Adapter requirement
max_processors
min_processors
network
parallel_path

Table 5 shows you the parallel keywords supported by the default LoadLeveler
scheduler, based on the type of job you are running.

Table 5. Parallel Keywords Supported by the Default Scheduler

job_type=parallel job_type=pvm3

max_processors
min_processors
Adapter requirement

max_processors
min_processors
parallel_path
Adapter requirement

59

These keywords are used in the examples in this chapter, and are described in
more detail in “Job Command File Keywords” on page 36.

If you disable the default LoadLeveler scheduler to run an external scheduler, see
“Usage Notes” on page 290 for an explanation of which keywords are supported.

Task Assignment Considerations
You can use the following keywords to specify how LoadLeveler assigns tasks to
nodes. With the exception of unlimited blocking, each of these methods prioritizes
machines in an order based on their MACHPRIO expressions. Various task
assignment keywords can be used in combination, and others are mutually
exclusive.

Table 6. Valid Combinations of Task Assignment Keywords

Keyword Valid Combinations

total_tasks X X

tasks_per_node X X

node = <min, max> X

node = <number> X X

min_processors X X

max_processors X X

task_geometry X

blocking X

The following examples show how each allocation method works. For each
example, consider a 3-node SP with machines named ″N1,″ ″N2,″ and ″N3″. The
machines’ order of priority, according to the values of their MACHPRIO expressions,
is: N1, N2, N3. N1 has 4 initiators available, N2 has 6, and N3 has 8.

node and total_tasks
When you specify the node keyword with the total_tasks keyword, the assignment
function will allocate all of the tasks in the job step evenly among however many
nodes you have specified. If the number of total_tasks is not evenly divisible by the
number of nodes, then the assignment function will assign any larger groups to the
first node(s) on the list that can accept them. In this example, 14 tasks must be
allocated among 3 nodes:
@ node=3
@ total_tasks=14

Table 7. node and total_tasks

Machine Available Initiators Assigned Tasks

N1 4 4

N2 6 5

N3 8 5

The assignment function divides the 14 tasks into groups of 5, 5, and 4, and begins
at the top of the list, to assign the first group of 5. The assignment function starts at

N1, but because there are only 4 available initiators, cannot assign a block of 5

60 Using and Administering LoadLeveler

tasks. Instead, the function moves down the list and assigns the two groups of 5 to
N2 and N3, the assignment function then goes back and assigns the group of 4

tasks to N1.

node and tasks_per_node
When you specify the node keyword with the tasks_per_node keyword, the
assignment function will assign tasks in groups of the specified value among the
specified number of nodes.
@ node = 3
@ tasks_per_node = 4

blocking
When you specify blocking, tasks are allocated to machines in groups (blocks) of
the specified number (blocking factor). The assignment function will assign one
block at a time to the machine which is next in the order of priority until all of the
tasks have been assigned. If the total number of tasks are not evenly divisible by
the blocking factor, the remainder of tasks are allocated to a single node. The
blocking keyword must be specified with the total_tasks keyword. For example:
@ blocking = 4
@ total_tasks = 17

Where blocking specifies that a job’s tasks will be assigned in blocks, and 4
designates the size of the blocks. Here is how a blocking factor of 4 would work
with 17 tasks:

Table 8. blocking

Machine Available Initiators Assigned Tasks

N1 4 4

N2 6 5

N3 8 8

The assignment function first determines that there will be 4 blocks of 4 tasks, with
a remainder of one task. Therefore, the function will allocate the remainder with the

first block that it can. N1 gets a block of four tasks, N2 gets a block, plus the
remainder, then N3 gets a block. The assignment function begins again at the top
of the priority list, and N3 is the only node with enough initiators available, so N3

ends up with the last block.

unlimited blocking
When you specify unlimited blocking, the assignment function will allocate as many
jobs as possible to each node; the function prioritizes nodes primarily by how many
initiators each node has available, and secondarily on their MACHPRIO
expressions. This method allows you to allocate tasks among as few nodes as
possible. To specify unlimited blocking, specify ″unlimited″ as the value for the
blocking keyword. The total_tasks keyword must also be specified with unlimited
blocking. For example:
@ blocking = unlimited
@ total_tasks = 17

Table 9. unlimited blocking

Machine Available Initiators Assigned Tasks

N3 8 8

N2 6 6

N1 4 3

Chapter 4. Submitting and Managing Parallel Jobs 61

The assignment function begins with N3 (because N3 has the most initiators
available), and assigns 8 tasks, N2 takes six, and N1 takes the remaining 3.

task_geometry
The task_geometry keyword allows you to specify which tasks run together on the
same machines, although you cannot specify which machines. In this example, the
task_geometry keyword groups 7 tasks to run on 3 nodes:
@ task_geometry = {(5,2)(1,3)(4,6,0)}

The entire task_geometry expression must be enclosed within braces. The task IDs
for each node must be enclosed within parentheses, and must be separated by
commas. The entire range of task IDs that you specify must begin with zero, and
must end with the task ID which is one less than the total number of tasks. You can
specify the task IDs in any order, but you cannot skip numbers (the range of task
IDs must be complete). Commas may only appear between task IDs, and spaces
may only appear between nodes and task IDs.

Running Interactive POE Jobs
POE will accept LoadLeveler job command files; however, you can still set the
following environment variables to define specific LoadLeveler job attributes before
running an interactive POE job:
LOADL_ACCOUNT_NO

The account number associated with the job.
LOADL_INTERACTIVE_CLASS

The class to which the job is assigned.

For information on other POE environment variables, see IBM Parallel Environment
for AIX; Operation and Use, Volume 1.

Job Command File Examples
This section contains sample job command files for the following parallel
environments:
v IBM AIX Parallel Operating Environment (POE) 2.4.0
v Parallel Virtual Machine (PVM) 3.3 (RS6K architecture)
v Parallel Virtual Machine (PVM) 3.3.11+ (SP2MPI architecture)

POE 2.4.0
Figure 17 on page 63 is a sample job command file for POE 2.4.0.

62 Using and Administering LoadLeveler

Figure 17 shows the following:

v The total number of nodes requested is a minimum of eight and a maximum of
10 (node=8,10). Two tasks run on each node (tasks_per_node=2). Thus the
total number of tasks can range from 16 to 20.

v Each task of the job can run using the LAPI protocol in US mode with an SP
switch adapter (network.LAPI=switch,shared,US), and/or using the MPI
protocol in US mode with an HPS adapter (network.MPI=switch,shared,US).
Note that “switch” is an installation-defined network type which is used for css0
adapters in these examples.

v The maximum run time allowed for the job is 60 seconds (wall_clock_limit=60).

Figure 18 is a second sample job command file for POE 2.4.0.

Figure 18 shows the following:

v POE is invoked twice, via my_POE_setup_program and
my_POE_main_program .

v The job requests a minimum of two nodes and a maximum of eight nodes
(node=2,8).

v The job by default runs one task per node.

v The job uses the MPI protocol with an SP switch adapter in IP mode
(network.MPI=switch,shared,IP).

v The maximum run time allowed for the job is 60 seconds (wall_clock_limit=60).

#
@ job_type = parallel
@ environment = COPY_ALL
@ output = poe.out
@ error = poe.error
@ node = 8,10
@ tasks_per_node = 2
@ network.LAPI = switch,shared,US
@ network.MPI = switch,shared,US
@ wall_clock_limit = 60
@ executable = /usr/bin/poe
@ arguments = /u/richc/My_POE_program -euilib "us"
@ class = POE
@ queue

Figure 17. POE 2.4.0 Job Command File – Multiple Tasks Per Node

#
@ job_type = parallel
@ input = poe.in.1
@ output = poe.out.1
@ error = poe.err
@ node = 2,8
@ network.MPI = switch,shared,IP
@ wall_clock_limit = 60
@ class = POE
@ queue
/usr/bin/poe /u/richc/my_POE_setup_program -infolevel 2
/usr/bin/poe /u/richc/my_POE_main_program -infolevel 2

Figure 18. POE Sample Job Command File – Invoking POE Twice

Chapter 4. Submitting and Managing Parallel Jobs 63

PVM 3.3 (Non-SP)
Figure 19 shows a sample job command file for PVM 3.3 (RS6K architecture).
Before using PVM, users should contact their administrator to determine which PVM
architecture has been installed.

Note the following requirements for PVM 3.3 (RS6K architecture) jobs:

v The job must have job_type = pvm3 .

v You must specify the parallel executable as the executable.

PVM 3.3.11+ (SP2MPI architecture)
Figure 20 on page 65 shows a sample job command file for PVM 3.3.11+ (SP2MPI
architecture). Before using PVM, users should contact their administrator to
determine which PVM architecture has been installed. The SP2MPI architecture
version should be used when users require that their jobs run in user space.

@ executable = my_PVM_program
@ job_type = pvm3
@ parallel_path = /home/LL_userid/cmds/pvm3/$PVM_ARCH:$PVM_ROOT/lib/$PVM_ARCH
@ class = PVM3
@ requirements = (Pool == 4)
@ output = my_PVM_program.$(cluster).$(process).out
@ error = my_PVM_program.$(cluster).$(process).err
@ min_processors = 8
@ max_processors = 10
@ queue

Figure 19. Sample PVM 3.3 Job Command File

64 Using and Administering LoadLeveler

Note the following requirements for PVM 3.3.11+ (SP2MPI architecture) jobs:

v The job must have job_type = parallel .

v You must specify one more processor then you actually need to run the parallel
job. PVM spawns an additional task to relay messages to and from the PVM
daemon. Parallel tasks cannot communicate with PVM daemon directly. The
additional task will be spawned on the last processor in the
LOADL_PROCESSOR_LIST. For more information on this environment variable
set by LoadLeveler see “Obtaining Allocated Host Names” on page 67.

v You must use the PVM daemon and starter path dictated by the LoadLeveler
administrator. The parallel_path keyword is ignored.

v You must export MP_EUILIB as us when running in user space over the switch.
MP_PROCS, MP_RMPOOL and MP_HOSTFILE are ignored when running under
LoadLeveler.

v You should clean up any temporary PVM log or daemon files before starting the
PVM daemon.

#!/bin/ksh
@ job_type = parallel
@ class = PVM3
@ requirements = (Adapter == "hps_us")
@ output = my_PVM_program.$(cluster).$(process).out
@ error = my_PVM_program.$(cluster).$(process).err
@ node = 3,3
@ queue

Set PVM daemon and starter path dictated by LoadLeveler administrator
starter_path=/home/userid/loadl/pvm3/bin/SP2MPI
daemon_path=/home/userid/loadl/pvm3/lib/SP2MPI

Export "MP_EUILIB" before starting PVM3 (default is "ip")
export MP_EUILIB=us
echo MP_EUILIB=$MP_EUILIB

Clean up old PVM log and daemon files belonging to user
filelog=/tmp/pvml.id | awk -F'=' '{print $2}' | awk -F'(' '{print $1}'
filedaemon=/tmp/pvmd.id | awk -F'=' '{print $2}' | awk -F'(' '{print $1}'
rm -f $filelog > /dev/null
rm -f $filedaemon > /dev/null

Start PVM daemon in background
$daemon_path/pvmd3 &
echo "pvm background pid=$!"
echo "Sleep 2 seconds"
sleep 2
echo "PVM daemon started"

Start parallel executable
llnode_cnt=′echo "$LOADL_PROCESSOR_LIST" | awk '{print NF}'′
actual_cnt=expr "$llnode_cnt" - 1
$starter_path/starter -n $actual_cnt /home/userid/my_PVM_program
echo "Parallel executable starting"

Check processes running and halt PVM daemon
echo "ps -a" | /home/userid/loadl/pvm3/lib/SP2MPI/pvm
echo "Halt PVM daemon"
echo "halt" | /home/userid/loadl/pvm3/lib/SP2MPI/pvm
wait
echo "PVM daemon completed"

Figure 20. Sample PVM 3.3.11+ (SP2MPI Architecture) Job Command File

Chapter 4. Submitting and Managing Parallel Jobs 65

v You must start the PVM daemon in the job script, and you must start it in the
background ($daemon_path/pvmd3 &).

v You must compile your parallel program following the PVM guidelines for PVM
3.3.11+ (SP2MPI architecture).

v You must start the parallel executable through the PVM starter program. The
PVM starter program has no relationship to the LoadLeveler starter daemon.

v You must specify the parallel executable as an argument to the PVM starter
program.

v You must specify the actual number of parallel tasks to the PVM starter program.
This number must be one less then the number of processors allocated through
LoadLeveler.

v You must halt the PVM daemon when the PVM starter program completes.

v You can invoke the PVM starter program only once.

Sequence of Events in a PVM 3.3.11+ Job
This example demonstrates the sequence of events that occur when you submit the
sample job command file shown in Figure 20 on page 65.

Figure 21 on page 67 illustrates the following:

v From the job command file, (1) the PVM daemon, pvmd3, and (2) the PVM
starter are started under the LoadLeveler starter. The PVM starter tells the PVM
daemon to start two tasks (my_PVM_program).

v (3) The PVM daemon starts the POE Partition Manager, which in turn (4) starts
the POE daemons, (represented as pvmd2) on all three nodes.

v (5) The POE daemons (pvmd2) start the parallel tasks, my_PVM_program , on
all nodes under the LoadLeveler starter. The last parallel task,
my_PVM_program on Node 3, is the additional task which relays messages
between the PVM daemon and the parallel tasks.

66 Using and Administering LoadLeveler

Obtaining Status of Parallel Jobs
Both end users and LoadLeveler administrators can obtain status of parallel jobs in
the same way as they obtain status of serial jobs – either by using the llq command
or by viewing the Jobs window on the graphical user interface (GUI). By issuing llq
-l, or by using the Job Details selection in the GUI, users get a list of machines
allocated to the parallel job. See “llq - Query Job Status” on page 193 for sample
output from an llq -l command issued to query a parallel job.

Also, administrators can create a class for parallel jobs. Users can check the status
of their parallel jobs by specifying this class in the Class field on the Jobs window of
the GUI.

Obtaining Allocated Host Names
llq -l output includes information on allocated host names. Another way to obtain
the allocated host names is with the LOADL_PROCESSOR_LIST environment
variable, which you can use from a shell script in your job command file as shown
in Figure 22 on page 68.

Figure 21. Sequence of Events in a PVM 3.3.11+ Job

Chapter 4. Submitting and Managing Parallel Jobs 67

This example uses LOADL_PROCESSOR_LIST to perform a remote copy of a
local file to all of the nodes, and then invokes POE. Note that the processor list
contains an entry for each task running on a node. If two tasks are running on a
node, LOADL_PROCESSOR_LIST will contain two instances of the host name
where the tasks are running. The example in Figure 22 removes any duplicate
entries.

Note that LOADL_PROCESSOR_LIST is set by LoadLeveler, not by the user. This
environment variable is limited to 128 hostnames. If the value is greater than the
128 limit, the environment variable is not set.

#!/bin/ksh
@ output = my_POE_program.$(cluster).$(process).out
@ error = my_POE_program.$(cluster).$(process).err
@ class = POE
@ job_type = parallel
@ node = 8,12
@ network.MPI = css0,shared,US
@ queue

tmp_file="/tmp/node_list"
rm -f $tmp_file

Copy each entry in the list to a new line in a file so
that duplicate entries can be removed.
for node in $LOADL_PROCESSOR_LIST

do
echo $node >> $tmp_file

done

Sort the file removing duplicate entries and save list in variable
nodelist= sort -u /tmp/node_list

for node in $nodelist
do

rcp localfile $node:/home/userid
done

rm -f $tmp_file

/usr/bin/poe /home/userid/my_POE_program

Figure 22. Using LOADL_PROCESSOR_LIST in a Shell Script

68 Using and Administering LoadLeveler

Part 3. Administering LoadLeveler

69

70 Using and Administering LoadLeveler

Chapter 5. Administering and Configuring LoadLeveler

This chapter tells you how to administer and configure LoadLeveler. In general, the
information in this chapter applies to both serial and parallel jobs. For more specific
information on parallel jobs, see “Chapter 6. Administration Tasks for Parallel Jobs”
on page 149.

Overview
After installing LoadLeveler, you need to customize it by modifying both the
administration file and the configuration file. The administration file optionally lists
and defines the machines in the LoadLeveler cluster and the characteristics of
classes, users, and groups. The configuration file contains many parameters that
you can set or modify that will control how LoadLeveler operates.

In order to easily manage LoadLeveler, you should have only one administration file
and one global configuration file, centrally located on a machine in the LoadLeveler
cluster. Every other machine in the cluster must be able to read the administration
and configuration file that are located on the central machine. LoadLeveler does not
prevent you from having multiple copies of administration files but you need to be
sure to update all the copies whenever you make a change to one. Having only one
administration file prevents any confusion.

You can, however, have multiple local configuration files that specify information
specific to individual machines. For more information on the global and local
configuration files, refer to “Configuring LoadLeveler” on page 97.

Before working with these two files, you should read the following planning
considerations to help you decide how to modify the files.

Planning Considerations
Node availability

Some workstation owners might agree to accept LoadLeveler jobs only
when they are not using the workstation themselves. Using LoadLeveler
keywords, these workstations can be configured to be available at
designated times only.

Common name space
To run jobs on any machine in the LoadLeveler cluster, a user needs the
same uid (the system ID number for a user) and gid (the system ID number
for a group) on every machine in the cluster. The term cluster refers to all
machines mentioned in the configuration file.

For example, if there are two machines in your LoadLeveler cluster,
machine_1 and machine_2, user john must have the same user ID and
login group ID in the /etc/passwd file on both machines. If user john has
user ID 1234 and login group ID 100 on machine_1, then user john must
have the same user ID and login group ID in /etc/passwd on machine_2.
This ensures that the getuid system call returns the same user ID on both
systems. (This allows a job to run with the same group ID and user ID of
the person who submitted the job.)

If you do not have a user ID on one machine, your jobs will not run on that
machine. Also, many commands, such as llq , will not work correctly if a
user does not have a user ID on the central manager machine.

71

However, there are cases where you may choose to not give a user a login
ID on a particular machine. For example, a user does not need an ID on
every submit-only machine; the user only needs to be able to submit jobs
from at least one such machine. Also, you may choose to restrict a user’s
access to a schedd machine that is not a public scheduler; again, the user
only needs access to at least one schedd machine.

Performance
You should keep the log , spool , and execute directories in a local file
system in order to maximize performance. Also, to measure the
performance of your network, consider using one of the available products,
such as Toolbox/6000.

Management
Managing distributed software systems is a primary concern for all system
administrators. Allowing users to share filesystems to obtain a single,
network-wide image, is one way to make managing LoadLeveler easier.

Resource Handling
Some nodes in the LoadLeveler cluster might have special software
installed that users might need to run their jobs successfully. You should
configure LoadLeveler to distinguish those nodes from other nodes using,
for example, machine features.

Where to Begin?
Setting up LoadLeveler involves defining machines, users, and how they interact, in
such a way that LoadLeveler is able to run jobs quickly and efficiently. If you have a
good deal of experience in system administration and job scheduling, you should
begin by reading “Expert”. If you are relatively new to job scheduling tasks, begin by
reading “Intermediate or Beginner”.

No matter what your level of experience, it will prove worthwhile to read all the
information in this chapter at some point to help you optimize LoadLeveler’s
performance.

Intermediate or Beginner
If you are experienced in UNIX system administration but are unfamiliar with job
scheduling systems or your experience is limited, you may want to start with the
section “Administration File Structure and Syntax” on page 74 and read to the end
of this chapter. This section provides a relatively slow, step-by-step approach to
administering LoadLeveler. If you would rather start up LoadLeveler quickly using
mostly default characteristics, follow the procedures in “Quick Set Up” on page 73.

Expert
If you are very familiar with UNIX system administration and job scheduling, and
have some idea how you want to distribute your workload, go to “Quick Set Up” on
page 73. Each step in this short procedure refers you to a detailed discussion of the
task at hand. The sample configuration and administration files included in the
samples subdirectory also provide assistance.

If you plan to run interactive jobs using the Parallel Operating Environment (POE)
running under LoadLeveler, see “Allowing Users to Submit Interactive POE Jobs” on
page 149.

72 Using and Administering LoadLeveler

Quick Set Up
If you are very familiar with UNIX system administration and job scheduling, follow
the steps listed in this section to get LoadLeveler up and running on your network
quickly in a default configuration. This default configuration will merely enable you
to submit serial jobs; for a more complex setup, you will have to consult the rest of
this manual. This section also does not address how to configure DCE. For more
information about configuring DCE for LoadLeveler, see “Step 16: Configuring
LoadLeveler to use DCE Security Services” on page 123. For this set up, it is
recommended that you use loadl as the LoadLeveler user ID. Afterward, you can
fine tune your configuration for greater efficiency when you become more familiar
with the details of LoadLeveler.

1. Ensure that the installation procedure has completed successfully and that the
configuration file, LoadL_config , exists in LoadLeveler’s home directory or in
the directory specified in /etc/LoadL.cfg (if this file exists). See “Configuring
LoadLeveler” on page 97 for more information.

2. Identify yourself as the LoadLeveler administrator in the LoadL_config file
using the LOADL_ADMIN keyword. The syntax of this keyword is:

LOADL_ADMIN = list of user names (required)
where list of user names is a blank-delimited list of those individuals who
will have administrative authority.

Refer to “Step 1: Define LoadLeveler Administrators” on page 99 for more
information.

3. Define a machine to act as the LoadLeveler central manager by coding one
machine stanza as follows in the administration file, which is called
LoadL_admin . (Replace machinename with the actual name of the machine.)
machinename: type = machine
central_manager = true

Do not specify more than one machine as the central manager. Also, if during
installation, you ran llinit with the -cm flag, the central manager is already
defined in the LoadL_admin file because the llinit command takes parameters
you entered and updates the administration and configuration files. See “Step 1:
Specify Machine Stanzas” on page 75 for more information.

4. Issue the following command for each machine to be included in the
LoadLeveler cluster. (Replace hostname with the actual name of the machine.)
llctl -h hostname start

Issue this command for the central manager machine first. See “llctl - Control
LoadLeveler Daemons” on page 175 for more information.

You can also issue the following command to start LoadLeveler on all machines
beginning with the central manager. Before you issue this command, make sure
all the machines are listed in the administration file. This command only affects
machines that are defined in the administration file.
llctl -g start

llctl uses rsh or remsh to start LoadLeveler on the target machine. Therefore, the
administrator using llctl must have rsh authority on the target machine.

Chapter 5. Administering and Configuring LoadLeveler 73

Administering LoadLeveler
This section explains how to perform administration tasks, and includes a
step-by-step approach to administering LoadLeveler in “Customizing the
Administration File” on page 75.

Administration File Structure and Syntax
The administration file is called LoadL_admin and it lists and defines the machine,
user, class, group, and adapter stanzas.

Machine stanza
Defines the roles that the machines in the LoadLeveler cluster play. See
“Step 1: Specify Machine Stanzas” on page 75 for more information.

User stanza
Defines LoadLeveler users and their characteristics. See “Step 2: Specify
User Stanzas” on page 81 for more information.

Class stanza
Defines the characteristics of the job classes. See “Step 3: Specify Class
Stanzas” on page 84 for more information.

Group stanza
Defines the characteristics of a collection of users that form a LoadLeveler
group. See “Step 4: Specify Group Stanzas” on page 93 for more
information.

Adapter stanza
Defines the network adapters available on the machines in the LoadLeveler
cluster. See “Step 5: Specify Adapter Stanzas” on page 95 for more
information.

Stanzas have the following general format:

The following is a simple example of an administration file illustrating several
stanzas:

label: type = type_of_stanza
keyword1 = value1
keyword2 = value2
...

Figure 23. Format of Administration File Stanzas

74 Using and Administering LoadLeveler

The characteristics of a stanza are:

v Every stanza has a label associated with it. The label specifies the name you
give to the stanza.

v Every stanza has a type field that specifies it as a user, class, machine, group,
or adapter stanza.

v New line characters are ignored. This means that separate parts of a stanza may
be included on the same line. However, it is not recommended to have parts of a
stanza cross line boundaries.

v White space is ignored, other than to delimit keyword identifiers. This eliminates
confusion between tabs and spaces at the beginning of lines.

v A cross-hatch sign (#) identifies a comment and may appear anywhere on the
line. All characters following this sign on that line are ignored.

v Multiple stanzas of the same label are allowed, but only the first label is used.

v Default stanzas specify the default values for any keywords which are not
otherwise specified. Each stanza type can have an associated default stanza. A
default stanza must appear in the administration file ahead of any specific stanza
entries of the same type. For example, a default class stanza must appear ahead
of any specific class stanzas you enter.

Customizing the Administration File
You can add as many stanzas as you would like to the administration file. This
section tells you how to modify this file in a step-by-step manner. You do not have
to perform the steps in the order that they appear here.

Step 1: Specify Machine Stanzas

The information in a machine stanza defines the characteristics of that machine.
You do not have to specify a machine stanza for every machine in the LoadLeveler
cluster but you must have one machine stanza for the machine that will serve as
the central manager.

If you do not specify a machine stanza for a machine in the cluster, the machine
and the central manager still communicate and jobs are scheduled on the machine
but the machine is assigned the default values specified in the default machine
stanza. If there is no default stanza, the machine is assigned default values set by
LoadLeveler.

machine_a: type = machine
central_manager = true # defines this machine as the central manager
adapter_stanzas = adapter_a # identifies an adapter stanza

class_a: type = class
priority = 50 # priority of this class

user_a: type = user
priority = 50 # priority of this user

group_a: type = group
priority = 50 # priority of this group

adapter_a: type = adapter
adapter_name = en0 #defines an adapter

Figure 24. Sample Administration File Stanzas

Chapter 5. Administering and Configuring LoadLeveler 75

Any machine name used in the stanza must be a name which can be resolved to
an IP address. This name is referred to as an interface name because the name
can be used for a program to interface with the machine. Generally, interface
names match the machine name, but they do not have to.

By default, LoadLeveler will append the DNS domain name to the end of any
machine name without a domain name appended before resolving its address. If
you specify a machine name without a domain name appended to it and you do not
want LoadLeveler to append the DNS domain name to it, specify the name using a
trailing period. You may have a need to specify machine names in this way if you
are running a cluster with more than one nameserving technique. For example, if
you are using a DNS nameserver and running NIS, you may have some machine
names which are resolved by NIS which you do not want LoadLeveler to append
DNS names to. In situations such as this, you also want to specify name_server
keyword in your machine stanzas.

Under the following conditions, you must have a machine stanza for the machine in
question:

v If you set the MACHINE_AUTHENTICATE keyword to true in the configuration
file, then you must create a machine stanza for each node that LoadLeveler
includes in the cluster.

v If the machine’s hostname (the name of the machine returned by the UNIX
hostname command) does not match an interface name. In this case, you must
specify the interface name as the machine stanza name and specify the
machine’s hostname using the alias keyword.

v If the machine’s hostname does match an interface name but not the correct
interface name.

Machine stanzas take the following format. Default values for keywords appear in
bold:

You can specify the following keywords in a machine stanza:

adapter_stanzas = stanza_list
where stanza_list is a blank-delimited list of one or more adapter stanza names

label: type = machine
adapter_stanzas = stanza_list
alias = machine_name
central_manager = true | false | alt
cpu_speed_scale = true | false
dce_host_name = dce hostname
machine_mode = batch | interactive | general
master_node_exclusive = true | false
max_adapter_windows = [all | none | <+> n | -n]
max_jobs_scheduled = number
name_server = list
pvm_root = pathname
pool_list = pool_numbers
resources = name(count) name(count) ... name(count)
schedd_fenced = true | false
schedd_host = true | false
spacct_excluse_enable = true | false
speed = number
submit_only = true | false

Figure 25. Format of a Machine Stanza

76 Using and Administering LoadLeveler

which specify adapters available on this machine. All adapter stanzas you
define must be specified on this keyword.

alias = machine_name
where machine_name is a blank-delimited list of one or more machine names.
Depending upon your network configurations, you may need to add alias
keywords for machines that have multiple interfaces.

Note: In general, if your cluster is configured with machine hostnames which
match the hostnames corresponding to the IP address configured for the LAN
adapters which LoadLeveler is expected to use, you will not have to specify the
alias keyword. For example, if all of the machines in your cluster are configured
like this sample machine, you should not have to specify the alias keyword.
Machine porsche.kgn.ibm.com

v The hostname command returns porsche.kgn.ibm.com.

v The Ethernet adapter address 129.40.8.20 resolves to hostname
porsche.kgn.ibm.com.

However, if any machine in your cluster is configured like either of the following
two sample machines, then you will have to specify the alias keyword for those
machines:

1. Machine yugo.kgn.ibm.com

v The hostname command returns yugo.kgn.ibm.com.

v The Ethernet adapter address 129.40.8.21 resolves to hostname
chevy.kgn.ibm.com.

v No adapter address resolves to yugo.

You need to code the machine stanza as:
chevy: type = machine
alias = yugo

2. Machine rover.kgn.ibm.com

v The hostname command returns rover.kgn.ibm.com.

v The FDDI adapter address 129.40.9.22 resolves to hostname
rover.kgn.ibm.com.

v The Ethernet adapter address 129.40.8.22 resolves to hostname
bmw.kgn.ibm.com.

v No route exists via the FDDI adapter to the clusters central manager
machine.

v A route exists from this machine to the central manager via the Ethernet
adapter.

You need to code the machine stanza as:
bmw: type = machine
alias = rover

central_manager = true| false | alt
where true designates this machine as the LoadLeveler central manager host,
where the negotiator daemon runs. You must specify one and only one machine
stanza identifying the central manager. For example:
machine_a: type = machine
central_manager = true

false specifies that this machine is not the central manager.

Chapter 5. Administering and Configuring LoadLeveler 77

alt specifies that this machine can serve as an alternate central manager in the
event that the primary central manager is not functioning. For more information
on recovering if the primary central manager is not operating, refer to “What
Happens if the Central Manager Isn’t Operating?” on page 309. Submit-only
machines cannot have their machine stanzas set to this value.

If you are going to select machines to serve as alternate central managers, you
should look at the following keywords in the configuration file:
v CENTRAL_MANAGER_HEARTBEAT_INTERVAL
v CENTRAL_MANAGER_TIMEOUT

For information on setting these keywords, see “Step 10: Specify Alternate
Central Managers” on page 111.

cpu_speed_scale = true| false
where true specifies that CPU time (which is used, for example, in setting
limits, in accounting information, and reported by the llq -x command), is in
normalized units for each machine. false specifies that CPU time is in native
units for each machine. For an example of using this keyword to normalize
accounting information, see “Task 5: Specifying Machines and Their Weights”
on page 157.

dce_host_name = dce hostname
where dce hostname is the dce hostname of this machine. Execute either
″SDRGetObjects Node dcehostname, ″ or ″llextSDR ″ to obtain a listing of
DCE hostnames of nodes on an SP system.

machine_mode = batch | interactive | general
Specifies the type of job this machine can run. Where:

batch Specifies this machine can run only batch jobs.

interactive
Specifies this machine can run only interactive jobs. Only POE is
currently enabled to run interactively.

general
Specifies this machine can run both batch jobs and interactive jobs.

master_node_exclusive = true| false
where true specifies that this machine is used only as a master node for
parallel jobs.

max_adapter_window s = [all | none | <+> n | -n]
This keyword specifies how many of a machine’s available adapter windows
LoadLeveler can use. The default value is all , which specifies that LoadLeveler
can reserve all of the windows which are not already reserved by other
applications. The value none indicates that LoadLeveler can not use any
windows (consequently, no user space jobs will be dispatched to that machine).
A positive number (specified, with or without the plus sign), means that
LoadLeveler can use no more than the specified number of windows; however,
LoadLeveler may use less than the specified number if fewer windows are
actually available on the machine’s adapter. A negative number means that
LoadLeveler will use all but the specified number of the available windows (e.g.,
-n means that LoadLeveler will reserve n windows for use by other
applications).

max_jobs_scheduled = number
where number is the maximum number of jobs submitted from this scheduling
(schedd) machine that can run (or start running) in the LoadLeveler cluster at
one time. If number of jobs are already running, no other jobs submitted from

78 Using and Administering LoadLeveler

this machine will run, even if resources are available in the LoadLeveler cluster.
When one of the running jobs completes, any waiting jobs then become eligible
to be run. The default is -1, which means there is no maximum.

name_server = list
where list is a blank-delimited list of character strings that is used to specify
which nameserver(s) are used for the machine. Valid strings are DNS, NIS, and
LOCAL. LoadLeveler uses the list to determine when to append a DNS domain
name for machine names specified in LoadLeveler commands issued from the
machine described in this stanza.

If DNS is specified alone, LoadLeveler will always append the DNS domain
name to machine names specified in LoadLeveler commands. If NIS or LOCAL
is specified, LoadLeveler will never append a DNS domain name to machine
names specified in LoadLeveler commands. If DNS is specified with either NIS
or LOCAL, LoadLeveler will always look up the name in the administration file
to determine whether to append a DNS domain name. If the name is specified
with a trailing period, it doesn’t append the domain name.

pvm_root = pathname
Where pathname specifies the location of the directory in which PVM is
installed. The default pathname is $HOME/pvm3 .

pool_list = pool_numbers
Where pool_numbers is a blank-delimited list of non-negative numbers
identifying pools to which the machine belongs. These numbers may be any
positive integers including zero. This keyword provides compatability with
function that was previously part of the Resource Manager.

resources = name(count) name(count) ... name(count)

Specifies quantities of the consumable resources initially available on the
machine. Where name(count) is an administrator-defined name and count, or
could also be ConsumableCpus (count), ConsumableMemory (count units), or
ConsumableVirtualMemory (count units). ConsumableMemory and
ConsumableVirtualMemory are the only two consumable resources that can
be specified with both a count and units. The count for each specified resource
must be an integer greater than or equal to zero, with three exceptions:
ConsumableCpus , and ConsumableMemory must be specified with a value
which is greater than zero, and ConsumableVirtualMemory must be specified
with a value greater than 0, and greater than or equal to the image_size . The
allowable units are those normally used with LoadLeveler data limits:
b bytes
w words
kb kilobytes (2** 10 bytes)
kw kilowords (2** 10 words)
mb megabytes (2** 20 bytes)
mw megawords (2**20 words)
gb gigabytes (2** 30 bytes)
gw gigawords (2** 30 words)

ConsumableMemory and ConsumableVirtualMemory values are stored in
mb (megabytes) and rounded up. Therefore, the smallest amount of
ConsumableMemory or ConsumableVirtualMemory which you can request is
one megabyte. If no units are specified, then megabytes are assumed.
Resources defined here that are not in the SCHEDULE_BY_RESOURCES list
in the global configuration file will not effect the scheduling of the job.

Chapter 5. Administering and Configuring LoadLeveler 79

schedd_fenced = true | false
where true specifies that the central manager ignores connections from the
schedd daemon running on this machine. Use the true setting in conjunction
with the llctl -h host purgeschedd command when you want to attempt to
recover resources lost when a node running the schedd daemon fails. A true
setting prevents conflicts from arising when a schedd machine is restarted while
a purge is taking place. For more information, see “How Do I Recover
Resources Allocated by a schedd Machine?” in the LoadLeveler Diagnosis and
Messages Guide.

schedd_host = true | false
where true designates this as a public scheduling machine used to receive job
submissions from submit-only machines, or for accepting jobs from machines
which run stard but not schedd daemons. Submit-only machines do not run
LoadLeveler jobs.

spacct_excluse_enable = true | false
Where true specifies that the accounting function on an SP system is informed
that a job step has exclusive use of this machine. Note that your SP system
must have exclusive user accounting enabled in order for this keyword to have
an effect. For more information on SP accounting, see Parallel System Support
Programs for AIX: Administration Guide, GC23-3899.

speed = number
where number is a floating point number that is used for machine scheduling
purposes in the MACHPRIO expression. For more information on machine
scheduling and the MACHPRIO expression, see “Step 7: Prioritize the Order of
Executing Machines Maintained by the Negotiator” on page 106. In addition, the
speed keyword is also used to define the weight associated with the machine.
This weight is used when gathering accounting data on a machine basis. The
default is 1.0.

The following example illustrates how the speed keyword can be used for
assigning weights to machines.

If your cluster consisted of five RISC System/6000 machines that you want to
have the same weight, you would not have to specify this keyword in the
administration file. By default, all machines would have a weight of 1.0. If,
however, you add an SP system to your cluster for parallel job processing, you
may want to update the local configuration file for each node of the SP system
to charge differently for resource consumption on those nodes. You would need
to set the speed keyword to something other than 1.0 to make the SP nodes
have a different weight.

For information on how the speed keyword can be used to schedule machines,
refer to “Step 7: Prioritize the Order of Executing Machines Maintained by the
Negotiator” on page 106.

submit_only = true| false
where true designates this as a submit-only machine. If you set this keyword to
true , in the administration file set central_manager and schedd_host to false .

Examples of Machine Stanzas

Example 1: In this example, the machine is being defined as the central manager.
#
machine_a: type = machine
central_manager = true # central manager runs here

80 Using and Administering LoadLeveler

Example 2: This example sets up a submit-only node. Note that the submit-only
keyword in the example is set to true , while the schedd_host keyword is set to
false . You must also ensure that you set the schedd_host to true on at least one
other node in the cluster.
#
machine_b: type = machine
central_manager = false # not the central manager
schedd_host = false # not a scheduling machine
submit_only = true # submit only machine
alias = machineb # interface name

Example 3: In the following example, machine_c is the central manager, has an
alias associated with it, and can run parallel PVM jobs:
#
machine_c: type = machine
central_manager = true # central manager runs here
schedd_host = true # defines a public scheduler
alias = brianne
pvm_root = /u/brianne/loadl/1.2.0/aix32/pvm3

Step 2: Specify User Stanzas
The information specified in a user stanza defines the characteristics of that user.
You can have one user stanza for each user but this is not necessary. If an
individual user does not have their own user stanza, that user uses the defaults
defined in the default user stanza.

User stanzas take the following format:
You can specify the following keywords in a user stanza:

account = list
where list is a blank-delimited list of account numbers that identifies the account
numbers a user may use when submitting jobs. The default is a null list.

default_class = list
where list is a blank-delimited list of class names used for jobs which do not
include a class statement in the job command file. If you specify only one
default class name, this class is assigned to the job. If you specify a list of
default class names, LoadLeveler searches the list to find a class which
satisfies the resource limit requirements. If no class satisfies these
requirements, LoadLeveler rejects the job.

Suppose a job requests a CPU limit of 10 minutes. Also, suppose the default
class list is default_class = short long, where short is a class for jobs up to

label: type = user
account = list
default_class = list
default_group = group name
default_interactive_class = class name
maxidle = number
maxjobs = number
maxqueued = number
max_node = number
max_processors = number
priority = number
total_tasks = number

Figure 26. Format of a User Stanza

Chapter 5. Administering and Configuring LoadLeveler 81

five minutes in length and long is a class for jobs up to one hour in length.
LoadLeveler will select the long class for this job because the short class does
not have sufficient resources.

If no default_class is specified in the user stanza, or if there is no user stanza
at all, then jobs submitted without a class statement are assigned to the
default_class that appears in the default user stanza. If you do not define a
default_class , jobs are assigned to the class called No_Class .

default_group = group_name
where group_name is the default group assigned to jobs submitted by the user.
If a default_group statement does not appear in the user stanza, or if there is
no user stanza at all, then jobs submitted by the user without a group
statement are assigned to the default_group that appears in the default user
stanza. If you do not define a default_group , jobs are assigned to the group
called No_Group .

If you specify default_group = Unix_Group , LoadLeveler sets the user’s
LoadLeveler group to his or her primary UNIX group (as defined in the
/etc/passwd file).

default_interactive_class = class_name
where class_name is the class to which an interactive job submitted by this
user is assigned if the user does not specify a class using the
LOADL_INTERACTIVE_CLASS environment variable. You can specify only one
default interactive class name.

If you do not set a default_interactive_class value in the user stanza, or if
there is no user stanza at all, then interactive jobs submitted without a class
statement are assigned to the default_interactive_class that appears in the
default user stanza. If you do not define a default_interactive_class ,
interactive jobs are assigned to the class called No_Class .

See “Example 2” on page 84 for more information on how LoadLeveler assigns
a default interactive class to jobs.

maxidle = number
where number is the maximum number of idle jobs this user can have in queue.
That is, number is the maximum number of jobs which the negotiator will
consider for dispatch for the user. Jobs above this maximum are placed in the
NotQueued state. This prevents individual users from dominating the number of
jobs that are either running or are being considered to run. If the user stanza
does not specify maxidle or if there is no user stanza at all, the maximum
number of jobs that can be simultaneously in queue for the user is defined in
the default stanza. If no value is found, or the limit found is -1, then no limit is
placed on the number of jobs that can be simultaneously idle for the user.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 314.

maxjobs = number
where number is the maximum number of jobs this user can run at any time. If
the user stanza does not specify maxjobs or if there is no user stanza at all,
the maximum jobs that can be simultaneously run by the user is defined in the
default stanza. The default is -1, which means no limit is placed on the number
of jobs that can simultaneously run for the user. Regardless of this limit, there is
no limit to the number of jobs a user can submit.

82 Using and Administering LoadLeveler

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 314 .

maxqueued = number
where number is the maximum number of jobs allowed in the queue for this
user. This is the maximum number of jobs which can be either running or being
considered to be dispatched by the negotiator for that user. Jobs above this
maximum are placed in the NotQueued state. This prevents individual users
from dominating the number of jobs that are either running or are being
considered to run. If no maxqueued is specified in the user stanza, or if there
is no user stanza, the maximum number of jobs that can simultaneously be in
the queue is defined in the default stanza. The default is -1, which means that
no limit is placed on the number of jobs that can simultaneously be in the job
queue for that user. Regardless of this limit, there is no limit to the number of
jobs a user can submit.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 314.

max_node = number
where number specifies the maximum number of nodes this user can request
for a parallel job in a job command file using the node keyword. The default is
-1, which means there is no limit. The max_node keyword will not affect the use
of the min_processors and max_processors keywords in the job command file.

max_processors = number
where number specifies the maximum number of processors this user can
request for a parallel job in a job command file using the min_processors and
max_processors keywords. The default is -1, which means there is no limit.

priority = number
where number is a integer that specifies the priority for jobs submitted by the
user. The default is 0. The number specified for priority is referenced as
UserSysprio in the configuration file. UserSysprio can be used in the
assignment of job priorities. If the variable UserSysprio does not appear in the
SYSPRIO expression in the configuration file, the priority numbers for users
specified here in the administration file have no effect. See “Step 6: Prioritize
the Queue Maintained by the Negotiator” on page 105 for more information
about the UserSysprio keyword.

total_tasks = number
where number specifies the maximum number of tasks this user can request for
a parallel job in a job command file using the total_tasks keyword. The default
is -1, which means there is no limit.

Examples of User Stanzas

Example 1: In this example, user fred is being provided with a user stanza. His
jobs will have a user priority of 100. If he does not specify a job class in his job
command file, the default job class class_a will be used. In addition, he can have a
maximum of 15 jobs running at the same time.
Define user stanzas
fred: type = user
priority = 100
default_class = class_a
maxjobs = 15

Chapter 5. Administering and Configuring LoadLeveler 83

Example 2: This example explains how a default interactive class for a parallel job
is set by presenting a series of user stanzas and class stanzas. This example
assumes that users do not specify the LOADL_INTERACTIVE_CLASS environment
variable.
default: type =user

default_interactive_class = red
default_class = blue

carol: type = user
default_class = single double
default_interactive_class = ijobs

steve: type = user
default_class = single double

ijobs: type = class
wall_clock_limit = 08:00:00

red: type = class
wall_clock_limit = 30:00

If the user Carol submits an interactive job, the job is assigned to the default
interactive class called ijobs . The job is assigned a wall clock limit of 8 hours. If the
user Steve submits an interactive job, the job is assigned to the red class from the
default user stanza. The job is assigned a wall clock limit of 30 minues.

Example 3: In this example, Jane’s jobs have a user priority of 50, and if she
does not specify a job class in her job command file the default job class
small_jobs is used. This user stanza does not specify the maximum number of
jobs that Jane can run at the same time so this value defaults to the value defined
in the default stanza. Also, suppose Jane is a member of the primary UNIX group
“staff.” Jobs submitted by Jane will use the default LoadLeveler group “staff.” Lastly,
Jane can use three different account numbers.
Define user stanzas
jane: type = user
priority = 50
default_class = small_jobs
default_group = Unix_Group
account = dept10 user3 user4

Step 3: Specify Class Stanzas
The information in a class stanza defines characteristics for that class. Class
stanzas are optional. Class stanzas take the following format. Default values for
keywords appear in bold.

84 Using and Administering LoadLeveler

You can specify the following keywords in a class stanza:

admin = list
where list is a blank-delimited list of administrators for this class. These
administrators can hold, release, and cancel jobs in this class.

class_comment = ″string″
where string is text characterizing the class. This information appears when the
user is building a job command file using the GUI and requests Choice
information on the classes to which he or she is authorized to submit jobs. The
length of the string cannot exceed 1024 characters.

default_resources = name(count) name(count)...name(count)

Specifies the default amount of resources consumed by a task of a job step,
provided that no resources keyword is coded for the step in the job command
file. If a resources keyword is coded for a job step, then it overrides any
default_resources associated with the associated job class. The syntax is:
resources=name(count) name(count) ... name(count)

where name(count) could also be ConsumableMemory (count units) or
ConsumableVirtualMemory (count units). ConsumableMemory and
ConsumableVirtualMemory are the only two consumable resources that can
be specified with both a count and units. The count for each specified resource
must be an integer greater than or equal to zero, with three exceptions:
ConsumableCpus , and ConsumableMemory must be specified with a value
which is greater than zero, and ConsumableVirtualMemory must be specified
with a value greater than 0, and greater than or equal to the image_size . If the
count is not valid, then LoadLeveler will issue an error message, and will not
submit the job. The allowable units are those normally used with LoadLeveler
data limits:

label: type = class
admin= list
class_comment = "string"
default_resources = name(count) name(count)...name(count)
exclude_groups = list
exclude_users = list
include_groups = list
include_users = list
master_node_requirement = true | false
maxjobs = number
max_node = number
max_processors = number
nice = value
NQS_class = true | false
NQS_submit = name
NQS_query = queue names
priority = number
total_tasks = number
core_limit = hardlimit,softlimit
cpu_limit = hardlimit,softlimit
data_limit = hardlimit,softlimit
file_limit = hardlimit,softlimit
job_cpu_limit = hardlimit,softlimit
rss_limit = hardlimit,softlimit
stack_limit = hardlimit,softlimit
wall_clock_limit = hardlimit,softlimit

Figure 27. Format of a Class Stanza

Chapter 5. Administering and Configuring LoadLeveler 85

b bytes
w words
kb kilobytes (2** 10 bytes)
kw kilowords (2** 10 words)
mb megabytes (2** 20 bytes)
mw megawords (2**20 words)
gb gigabytes (2** 30 bytes)
gw gigawords (2** 30 words)

ConsumableMemory and ConsumableVirtualMemory values are stored in
mb (megabytes) and rounded up. Therefore, the smallest amount of
ConsumableMemory or ConsumableVirtualMemory which you can request is
one megabyte. If no units are specified, then megabytes are assumed.
However, image size units are in kilobytes. Resources defined here that are not
in the SCHEDULE_BY_RESOURCES list in the global configuration file will not
effect the scheduling of the job. If the resources keyword is not specified in the
job step, then the default_resources (if any) defined in the administration file
for the class will be used for each task of the job step.

exclude_groups = list
where list is a blank-delimited list of groups who are not allowed to submit jobs
of that class name. Do not specify both a list of included groups and a list of
excluded groups. Only one of these may be used for any class. The default is
that no groups are excluded.

exclude_users = list
where list is a blank-delimited list of users who are not permitted to submit jobs
of that class name. Do not specify both a list of included users and a list of
excluded users. Only one of these may be used for any class. The default is
that no users are excluded.

include_groups = list
where list is a blank-delimited list of groups who are allowed to submit jobs of
that class name. If provided, this list limits groups of that class to those on the
list. Do not specify both a list of included groups and a list of excluded groups.
Only one of these may be used for any class. The default is to include all
groups.

include_users = list
where list is a blank-delimited list of users who are permitted to submit jobs of
that class name. If provided, this list limits users of that class to those on the
list. Do not specify both a list of included users and a list of excluded users.
Only one of these may be used for any class. The default is to include all users.

master_node_requirement = true|false
where true specifies that parallel jobs in this class require the master node
feature. For these jobs, LoadLeveler allocates the first node (called the
“master”) on a machine having the master_node_exclusive = true setting in its
machine stanza. If most or all of your parallel jobs require this feature, you
should consider placing the statement master_node_requirement = true in
your default class stanza. Then, for classes that do not require this feature, you
can use the statement master_node_requirement = false in their class
stanzas to override the default setting. One machine per class should have the
true setting; if more than one machine has this setting, normal scheduling
selection is performed.

maxjobs = number
where number is the maximum number of jobs that can run in this class. If the
class stanza does not specify maxjobs , or if there is no class stanza at all, the

86 Using and Administering LoadLeveler

maximum jobs that can be simultaneously run in this class is defined in the
default stanza. The default is -1, which means that no limit is placed on the
number of jobs a user can submit.

max_processors = number
where number specifies the maximum number of processors a user submitting
jobs to this class can request for a parallel job in a job command file using the
min_processors and max_processors keywords. The default is -1 which
means that there is no limit.

max_node = number
where number specifies the maximum number of nodes a user submitting jobs
in this class can request for a parallel job in a job command file using the node
keyword. The default is -1, which means there is no limit. The max_node
keyword will not affect the use of the min_processors and max_processors
keywords in the job command file.

nice = value
where value is the amount by which the current UNIX nice value is
incremented. The nice value is one factor in a job’s run priority. The lower the
number, the higher the run priority. If two jobs are running on a machine, the
nice value determines the percentage of the CPU allocated to each job.

This value ranges from -20 to 20. Values out of this range are placed at the top
(or bottom) of the range. For example, if your current nice value is 15, and you
specify nice = 10, the resulting value is 20 (the upper limit) rather than 25. The
default is 0.

For more information, consult the appropriate UNIX documentaion.

NQS_class = true|false
When true , any job submitted to this class will be routed to an NQS machine.

NQS_submit = name
where name is the name of the NQS pipe queue to which the job will be routed.
When the job is dispatched to LoadLeveler, LoadLeveler will invoke the qsub
command using the name of this queue. There is no default.

NQS_query = queue names
where queue names is a blank-delimited list of queue names (including host
names if necessary) to be used with the qstat command to monitor the job and
with the qdel command to cancel the job. There is no default.

For more information on routing jobs to machines running NQS, refer to
Figure 31 on page 159

priority = number
where number is an integer that specifies the priority for jobs in this class. The
default is 0. The number specified for priority is referenced as ClassSysprio in
the configuration file. You can use ClassSysprio when assigning job priorities.
If the variable ClassSysprio does not appear in the SYSPRIO expression, then
the priority specified here in the administration file is ignored. See “Step 6:
Prioritize the Queue Maintained by the Negotiator” on page 105 for more
information about the ClassSysprio keyword.

total_tasks = number
where number specifies the maximum number of tasks a user submitting jobs in
this class can request for a parallel job in a job command file using the
total_tasks keyword. The default is -1, which means there is no limit.

Chapter 5. Administering and Configuring LoadLeveler 87

Limit Keywords
The class stanza includes the following limit keywords, which allow you to control
the amount of resources used by a job step or a job process.

Table 10. Types of Limit Keywords

Limit How It Is Enforced

core_limit Per process

cpu_limit Per process

data_limit Per process

file_limit Per process

job_cpu_limit Per job step

rss_limit Per process

stack_limit Per process

wall_clock_limit Per job step

Individual keywords are described in “Specifying Limits in the Class Stanza” on
page 90. The following section gives you a general overview of limits.

Overview of Limits: A limit is the amount of a resource that a job step or a
process is allowed to use. (A process is a dispatchable unit of work.) A job step
may be made up of several processes.

Limits include both a hard limit and a soft limit . When a hard limit is exceeded,
the job is usually terminated. When a soft limit is exceeded, the job is usually given
a chance to perform some recovery actions. For more information, see “Exceeding
Limits”.

Limits are enforced either per process or per job step, depending on the type of
limit. For parallel jobs steps, which consist of multiple tasks running on multiple
machines, limits are enforced on a per task basis.

For example, a common limit is the cpu_limit , which limits the amount of CPU time
a single process can use. If you set cpu_limit to five hours and you have a job
step that forks five processes, each process can use up to five hours of CPU time,
for a total of 25 CPU hours. Another limit that controls the amount of CPU used is
job_cpu_limit . This is the total amount of CPU that the entire serial job step can
use. If you impose a job_cpu_limit of five hours, the entire job step (made up of all
five processes) cannot consume more than five CPU hours.

You can specify limits in either the class stanza of the administration file or in the
job command file. The lowest of these two limits will be used to run the job. If the
class limit is used the job will be started regardless of the users system limit.

Exceeding Limits: Process limits are enforced by the operating system. Job step
limits are enforced by LoadLeveler.

Exceeding Job Step Limits: When a hard limit is exceeded LoadLeveler sends a
non-trappable signal to the process (except in the case of a parallel job). When a
soft limit is exceeded, LoadLeveler sends a trappable signal to the process. The
following chart summarizes the actions that occur when a job step limit is exceeded:

88 Using and Administering LoadLeveler

Table 11. Exceeding Job Step Limits

Type of Job When a Soft Limit is Exceeded When a Hard Limit is Exceeded

Serial SIGXCPU or SIGKILL issued SIGKILL issued

Parallel
(non-PVM)

SIGXCPU issued to both the user
program and to the parallel
daemon

SIGTERM issued

PVM SIGXCPU issued to the user
prgram

pvm_halt invoked to shut down
PVM

On systems that do not support SIGXCPU, LoadLeveler does not distinguish
between hard and soft limits. When a soft limit is reached on these platforms,
LoadLeveler issues a SIGKILL.

Exceeding Per Process Limits: For per process limits, what happens when your
job reaches and exceeds either the soft limit or the hard limit depends on the
operating system you are using.

Note that when a job forks a process which exceeds a per process limit, such as
the CPU limit, the operating system (and not LoadLeveler) terminates the process
by issuing a SIGXCPU. As a result, you will not see an entry in the LoadLeveler
logs indicating that the process exceeded the limit. The job will complete with a 0
return code. LoadLeveler can only report the status of any processes it has started.

If you need more specific information, refer to your operating system
documentation.

Syntax: The syntax for setting a limit is
limit_type = hardlimit,softlimit

For example:
core_limit = 120kb,100kb

To specify only a hard limit, you can enter, for example:
core_limit = 120kb

To specify only a soft limit, you can enter, for example:
core_limit = ,100kb

In a keyword statement, you cannot have any blanks between the numerical value
(100 in the above example) and the units (kb). Also, you cannot have any blanks to
the left or right of the comma when you define a limit in a job command file.

For limit keywords that refer to a data limit — such as data_limit , core_limit ,
file_limit , stack_limit , and rss_limit — the hard limit and the soft limit are
expressed as:
integer[.fraction][units]

where integer and fraction represent numerical strings of up to eight characters.
units can be:
b bytes
w words
kb kilobytes (2 10 bytes)
kw kilowords (2 10 words)

Chapter 5. Administering and Configuring LoadLeveler 89

mb megabytes (2 20 bytes)
mw megawords (2 20 words)
gb gigabytes (2 30 bytes)
gw gigawords (2 30 words)

If no units are specified for data limits, then bytes are assumed.

For limit keywords that refer to a time limit — such as cpu_limit , job_cpu_limit ,
and wall_clock_limit — the hard limit and the soft limit are expressed as:
[[hours:]minutes:]seconds[.fraction]

Fractions are rounded to seconds.

You can use the following character strings with all limit keywords except the copy
keyword for wall_clock_limit :
rlim_infinity

Represents the largest positive number.
unlimited

Has same effect as rlim_infinity .
copy Uses the limit currently active when the job is submitted.

See Table 12 for more information on specifying limits.

Table 12. Setting limits

If the hard limit: Then the:

Is set in both the class stanza and the job
command file

Smaller of the two limits is taken into consideration. If the smaller
limit is the job limit, the job limit is then compared with the user limit
set on the machine that runs the job. The smaller of these two values
is used. If the limit used is the class limit, the class limit is used
without being compared to the machine limit.

Is not set in either the class stanza or the job
command file

User per process limit set on the machine that runs the job is used.

Is set in the job command file and is less than
its respective job soft limit

The job is not submitted.

Is set in the class stanza and is less than its
respective class stanza soft limit

Soft limit is adjusted downward to equal the hard limit.

Is specified in the job command file Hard limit must be greater than or equal to the specified soft limit and
less than or equal to the limit set by the administrator in the class
stanza of the administration file.

Note: If the per process limit is not defined in the administration file
and the hard limit defined by the user in the job command file is
greater than the limit on the executing machine, then the hard limit is
set to the machine limit.

Specifying Limits in the Class Stanza: You can specify the following limit
keywords:

core_limit = hardlimit,softlimit
Specifies the hard limit and/or soft limit for the size of a core file.

Examples:
core_limit = unlimited
core_limit = 30mb

90 Using and Administering LoadLeveler

For more information, see “Overview of Limits” on page 88

cpu_limit = hardlimit,softlimit
Specifies hard limit and/or soft limit for the CPU time to be used by each
individual process of a job step. For example, if you impose a cpu_limit of five
hours and you have a job step composed of five processes, each process can
consume five CPU hours; the entire job step can therefore consume 25 total
hours of CPU.

Examples:
cpu_limit = 12:56:21 # hardlimit = 12 hours 56 minutes 21 seconds
cpu_limit = 56:00,50:00 # hardlimit = 56 minutes 0 seconds
softlimit = 50 minutes 0 seconds
cpu_limit = 1:03 # hardlimit = 1 minute 3 seconds
cpu_limit = unlimited # hardlimit = 2,147,483,647 seconds
(X'7FFFFFFF')
cpu_limit = rlim_infinity # hardlimit = 2,147,483,647 seconds
(X'7FFFFFFF')
cpu_limit = copy # current CPU hardlimit value on the
submitting machine.

For more information, see “Overview of Limits” on page 88.

data_limit = hardlimit,softlimit
Specifies hard limit and/or soft limit for the data segment to be used by each
process of the submitted job.

Examples:
data_limit = 125621 # hardlimit = 125621 bytes
data_limit = 5621kb # hardlimit = 5621 kilobytes
data_limit = 2mb # hardlimit = 2 megabytes
data_limit = 2.5mw # hardlimit = 2.5 megawords
data_limit = unlimited # hardlimit = 2,147,483,647 bytes
(X'7FFFFFF')
data_limit = rlim_infinity # hardlimit = 2,147,483,647 bytes
(X'7FFFFFF')
data_limit = copy # copy data hardlimit value from submitting

machine.

For more information, see “Overview of Limits” on page 88.

file_limit = hardlimit,softlimit
Specifies the hard limit and/or soft limit for the size of a file. For more
information, see “Overview of Limits” on page 88.

job_cpu_limit = hardlimit,softlimit
Specifies the maximum total CPU time to be used by all processes of a job
step. That is, if a job step forks to produce multiple processes, the sum total of
CPU consumed by all of the processes is added and controlled by this limit.

For example:
job_cpu_limit = 10000

For more information on this keyword, see the JOB_LIMIT_POLICY keyword in
“Chapter 7. Gathering Job Accounting Data” on page 153. For more general
information on limits, see “Overview of Limits” on page 88.

rss_limit = hardlimit,softlimit
Specifies the hard limit and/or soft limit for the resident size. For more
information, see “Overview of Limits” on page 88.

Chapter 5. Administering and Configuring LoadLeveler 91

stack_limit = hardlimit,softlimit
Specifies the hard limit and/or soft limit for the size of a stack. For more
information, see “Overview of Limits” on page 88.

wall_clock_limit = hardlimit,softlimit
Specifies the hard limit and/or soft limit for the elapsed time for which a job can
run. Note that LoadLeveler uses the time the negotiator daemon dispatches the
job as the start time of the job. When a job is checkpointed, vacated, and then
restarted, the wall_clock_limit is not adjusted to account for the amount of
time that elapsed before the checkpoint occured. This keyword is not supported
for NQS jobs. Also, if the startd daemon terminates abnormally with running
jobs, any wall clock limits are not supported when the daemon is restarted.

If you are running the Backfill scheduler, you must set a wall clock limit either in
the job command file or in a class stanza (for the class associated with the job
you submit). LoadLeveler administrators should consider setting a default wall
clock limit in a default class stanza. For more information on setting a wall clock
limit when using the Backfill scheduler, see “Choosing a Scheduler” on
page 100.

For more general information on limits, see “Overview of Limits” on page 88.

Examples of Class Stanzas

Example 1: Creating a Class that Excludes Certain Users:
class_a: type=class # class that excludes users
priority=10 # ClassSysprio
exclude_users=green judy # Excluded users

Example 2: Creating a Class for Small-Size Jobs:
small: type=class # class for small jobs
priority=80 # ClassSysprio (max=100)
cpu_limit=00:02:00 # 2 minute limit
data_limit=30mb # max 30 MB data segment
default_resources=ConsumbableVirtualMemory(10mb) # resources consumed by each
ConsumableCpus(1) resA(3) floatinglicenseX(1) # task of a small job step if

resources are not explicitly
specified in the job command file

core_limit=10mb # max 10 MB core file
file_limit=50mb # max file size 50 MB
stack_limit=10mb # max stack size 10 MB
rss_limit=35mb # max resident set size 35 MB
include_users = bob sally # authorized users

Example 3: Creating a Class for Medium-Size Jobs:
medium: type=class # class for medium jobs
priority=70 # ClassSysprio
cpu_limit=00:10:00 # 10 minute run time limit
data_limit=80mb,60mb # max 80 MB data segment

soft limit 60 MB data segment
core_limit=30mb # max 30 MB core file
file_limit=80mb # max file size 80 MB
stack_limit=30mb # max stack size 30 MB
rss_limit=100mb # max resident set size 100 MB
job_cpu_limit=1800,1200 # hard limit is 30 minutes,

soft limit is 20 minutes

Example 4: Creating a Class for Large-Size Jobs:
large: type=class # class for large jobs
priority=60 # ClassSysprio
cpu_limit=00:10:00 # 10 minute run time limit

92 Using and Administering LoadLeveler

data_limit=120mb # max 120 MB data segment
default_resources=ConsumableVirtualMemory(40mb) # resources consumed by each
ConsumableCpus(2) resA(8) floatinglicenseX(1) resB(1) # task of a large job step if

resources are not explicitly
specified in the job command file

core_limit=30mb # max 30 MB core file
file_limit=120mb # max file size 120 MB
stack_limit=unlimited # unlimited stack size
rss_limit=150mb # max resident set size 150 MB
job_cpu_limit = 3600,2700 # hard limit 60 minutes

soft limit 45 minutes
wall_clock_limit=12:00:00,11:59:55 # hard limit is 12 hours

Example 5: Creating a Class to Route Jobs to NQS Machines:
nqs: type=class # class for NQS jobs
NQS_class=true
NQS_submit=pipe_queue # NQS pipe queue name
NQS_query=one two three # list of queue names

You can use the class names in control expressions in both the global and local
configuration file.

Example 6: Creating a Class for PVM Jobs:
PVM3: type=class # class for PVM jobs
priority=60 # ClassSysprio (max=100)
max_processors=15 # maximum number of processors

Example 7: Creating a Class for Master Node Machines:
sp-6hr-sp: type=class # class for master node machines
priority=50 # ClassSysprio (max=100)
cpu_limit = 06:00:00 # 6 hour limit
job_cpu_limit = 06:00:00 # hard limit is 6 hours
core_limit = lmb # max 1MB core file
master_node_requirement = true # master node definition

Step 4: Specify Group Stanzas
LoadLeveler groups are another way of granting control to the system administrator.
Although a LoadLeveler group is independent from a UNIX group, you can
configure a LoadLeveler group to have the same users as a UNIX group by using
the include_users keyword, which is explained in this section.

The information specified in a group stanza defines the characteristics of that group.
Group stanzas are optional and take the following format:
You can specify the following keywords in a group stanza:
label: type = group
admin = list
exclude_users = list
include_users = list
maxidle = number
maxjobs = number
maxqueued = number
max_node = number
max_processors = number
priority = number
total_tasks = number

Figure 28. Format of a Group Stanza

Chapter 5. Administering and Configuring LoadLeveler 93

admin = list
where list is a blank-delimited list of administrators for this group. These
administrators can hold, release, and cancel jobs submitted by users in the
group.

exclude_users = list
where list is a blank-delimited list of users that do not belong to the group. Do
not specify both a list of included users and a list of excluded users. Only one
of these may be used for any group. The default is that no users will be
excluded.

include_users = list
where list is a blank-delimited list of users that belong to the group. If provided,
this list limits users of that group to those on the list. Do not specify both a list
of included users and a list of excluded users. Only one of these can be used
for any group. The default is that all users are included.

maxidle = number
where number is the maximum number of idle jobs this group can have in
queue. That is, number is the maximum number of jobs which the negotiator
will consider for dispatch for this group. Jobs above this maximum are placed in
the NotQueued state. This prevents groups from flooding the job queue. If the
group stanza does not specify maxidle or if there is no group stanza at all, the
maximum number of jobs that can be simultaneously in queue for the group is
defined in the default stanza. The default is -1, which means that no limit is
placed on the number of jobs that can be simultaneously idle for the group.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 314 .

maxjobs = number
where number is a maximum number of jobs this group can run at any time. If
the group stanza does not specify the maxjobs or if there is no group stanza at
all, the maximum number of jobs that can be simultaneously run the group is
defined in the default stanza. The default is -1, which means that no limit is
placed on the number of jobs that can be simultaneously run for the group.
Regardless of the limit set to running jobs, there is no limit to the number of
jobs that a group can submit.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 314.

maxqueued = number
where number is the maximum number of jobs allowed in the queue for this
group. This prevents groups from flooding the job queue. Jobs above this
maximum are placed in the NotQueued state. If no maxqueued is specified in
the group stanza, or if there is no group stanza, the maximum number of jobs
that can simultaneously be in the queue is defined in the default stanza. The
default is -1, which means that no limit is placed on the number of jobs that can
simultaneously be in the job queue for that group. Regardless of the limit set to
the number of jobs queued, there is no limit to the number of jobs a group can
submit.

For more information, see “Controlling the Mix of Idle and Running Jobs” on
page 314.

max_node = number
where number specifies the maximum number of nodes a user can request for
a parallel job in a job command file using the node keyword. The default is -1,

94 Using and Administering LoadLeveler

which means there is no limit. The max_node keyword will not affect the use of
the min_processors and max_processors keywords in the job command file.

max_processors = number
where number specifies the maximum number of processors a user can request
for a parallel job in a job command file using the min_processors and
max_processors keywords. The default is -1, which means there is no limit.

priority = number
where number is an integer that specifies the job priority for jobs associated
with this group. The higher priority numbers result in a better job dispatch order.
If the group stanza does not specify a priority or if there is no priority at all, the
priority is defined in the default group stanza. The default priority is 0. The
number specified for priority is referenced as GroupSysprio in the configuration
file. GroupSysprio can be used in the assignment of job priorities. If the
variable GroupSysprio does not appear in the SYSPRIO expression in the
configuration file, the priority numbers for group specified in the administration
file have no effect. See “Step 6: Prioritize the Queue Maintained by the
Negotiator” on page 105 for more information about the GroupSysprio
keyword.

total_tasks = number
where number specifies the maximum number of tasks a user specifying this
group can request for a parallel job in a job command file using the total_tasks
keyword. The default is -1, which means there is no limit.

Examples of Group Stanzas

Example 1: In this example, the group name is department_a . The jobs issued
by users belonging to this group will have a priority of 80. There are three members
in this group.
Define group stanzas
department_a: type = group
priority = 80
include_users = susann holly fran

Example 2: In this example, the group called great_lakes has five members and
these user’s jobs have a priority of 100:
Define group stanzas
great_lakes: type = group
priority = 100
include_users = huron ontario michigan erie superior

Step 5: Specify Adapter Stanzas
An adapter stanza identifies network adapters that are available on the machines in
the LoadLeveler cluster. Adapter stanzas are optional, but you need to specify them
when you want LoadLeveler jobs to be able to request a specific adapter. You do
not need to specify an adapter stanza when you want LoadLeveler jobs to access a
shared, default adapter via TCP/IP.

Note the following when using an adapter stanza:

v An adapter stanza is required for each adapter stanza name you specify on the
adapter_stanzas keyword of the machine stanza.

v The adapter_name , interface_address , and interface_name keywords are
required. For an SP switch adapter, the switch_node_number keyword is also
required.

Chapter 5. Administering and Configuring LoadLeveler 95

For information on creating adapter stanzas for an SP system, see “llextSDR -
Extract adapter information from the SDR” on page 182.

An adapter stanza has the following format:
You can specify the following keywords in an adapter stanza:

adapter_name = string
Where string is the name used to refer to a particular interface card installed on
the node. Some examples are en0, tk1, and css0. This keyword defines the
adapters a user can specify in a job command file using the network keyword.
This keyword is required.

css_type = type
Where type is the designation for the type of switch adapter to be used. The
allowable choices are: SP_Switch_Adapter, SP_Switch_MX_Adapter,
SP_Switch_MX2_Adapter, RS/6000_SP_System_Attachment_Adapter, and
SP_Switch2_Adapter. This keyword must be specified in combination with a
switch adapter (″css . . .″), otherwise it will be ignored. The css_type attribute
for the available adapters are defined in the SDR. Execute the command
SDRGetObjects Adapter css_type to obtain a list of css_types, or use
llextSDR to obtain all of the adapter information from the SDR.

interface_address = string
Where string is the IP address by which the adapter is known to other nodes in
the network. For example: 7.14.21.28. This keyword is required.

interface_name = string
Where string is the name by which the adapter is known by other nodes in the
network. This keyword is required.

network_type = string
Where string specifies the type of network that the adapter supports (for
example, Ethernet). This is an administrator defined name. This keyword
defines the types of networks a user can specify in a job command file using
the network keyword.

switch_node_number = integer
Where integer specifies the node on which the SP switch adapter is installed.
This keyword is required for SP switch adapters. Its value is defined in the
switch_node_number field in the Node class in the SDR. This value must match
the value in the /spdata/sys1/st/switch_node_number file of the Parallel
System Support Programs (PSSP).

Example of an Adapter Stanza

Example 1: Specifying an SP Switch Adapter: In the following example, the
adapter stanza called “sp01sw.ibm.com” specifies an SP switch adapter. Note that
sp01sw.ibm.com is also specified on the adapter_stanzas keyword of the machine
stanza for the “yugo” machine.

label: type = adapter
adapter_name = name
css_type = type
interface_address = IP_address
interface_name = name
network_type = type
switch_node_number = integer

Figure 29. Format of an Adapter Stanza

96 Using and Administering LoadLeveler

yugo: type=machine
adapter_stanzas = sp01sw.ibm.com
...

sp01sw.ibm.com: type = adapter
adapter_name = css0
interface_address = 12.148.44.218
interface_name = sp01sw.ibm.com
network_type = switch
switch_node_number = 7
css_type = SP_Switch_MX2_Adapter

Configuring LoadLeveler
One of your main tasks as system administrator is to configure LoadLeveler. To
configure LoadLeveler, you need to know what the configuration information is and
where it is located. Configuration information includes the following:
v The LoadLeveler user ID and group ID
v The configuration directory
v The global configuration file

LoadLeveler sets up the following default values for the configuration information:
v loadl is the LoadLeveler user ID and the LoadLeveler group ID. LoadLeveler

daemons run under this user ID in order to perform file I/O, and many
LoadLeveler files are owned by this user ID.

v The home directory of loadl is the configuration directory.
v LoadL_config is the name of the configuration file.

You can run your installation with these default values, or you can change any or all
of them. To override the defaults, you must update the following keywords in the
/etc/LoadL.cfg file:
LoadLUserid

Specifies the LoadLeveler user ID.
LoadLGroupid

Specifies the LoadLeveler group ID.
LoadLConfig

Specifies the full path name of the configuration file.

Note that if you change the LoadLeveler user ID to something other than loadl , you
will have to make sure your configuration files are owned by this ID.

You can also override the /etc/LoadL.cfg file. For an example of when you might
want to do this, see “Querying Multiple LoadLeveler Clusters” on page 27.

The Configuration Files
By taking a look at the configuration files that come with LoadLeveler, you will find
that there are many parameters that you can set. In most cases, you will only have
to modify a few of these parameters. In some cases, though, depending upon the
LoadLeveler nodes, network connection, and hardware availability, you may need to
modify additional parameters. This chapter describes these configuration files and
the parameters you can set.

Configuring LoadLeveler involves modifying the configuration files that specify the
terms under which LoadLeveler can use machines. There are two types of
configuration files:

Chapter 5. Administering and Configuring LoadLeveler 97

v Global Configuration File: This file by default is called the LoadL_config file and
it contains configuration information common to all nodes in the LoadLeveler
cluster.

v Local Configuration File: This file is generally called LoadL_config.local
(although it is possible for you to rename it). This file contains specific
configuration information for an individual node. The LoadL_config.local file is in
the same format as LoadL_config and the information in this file overrides any
information specified in LoadL_config . It is an optional file that you use to
modify information on a local machine. Its full pathname is specified in the
LoadL_config file by using the LOCAL_CONFIG keyword. See “Step 11:
Specify Where Files and Directories are Located” on page 112 for more
information. “Customizing the Global and Local Configuration Files” on page 99
describes how to tailor this file to suit your needs.

Configuration File Structure and Syntax
The information in both the LoadL_config and the LoadL_config.local files is in
the form of a statement. These statements are made up of keywords and values.
There are three types of configuration file keywords:
v Keywords, described in “Customizing the Global and Local Configuration Files”

on page 99 and in “Step 17: Specify Additional Configuration File Keywords” on
page 129

v User-defined variables, described in “User-Defined Variables” on page 132
v LoadLeveler variables, described in “LoadLeveler Variables” on page 132

Configuration file statements take one of the following formats:
keyword=value
keyword:value

Statements in the form keyword=value are used primarily to customize an
environment. Statements in the form keyword:value are used by LoadLeveler to
characterize the machine and are known as part of the machine description. Every
machine in LoadLeveler has its own machine description which is read by the
central manager when LoadLeveler is started.

To continue configuration file statements, use the back-slash character (\).

In the configuration file, comments must be on a separate line from keyword
statements.

You can use the following types of constants and operators in the configuration file.

Numerical and Alphabetical Constants
Constants may be represented as:
v Boolean expressions
v Signed integers
v Floating point values
v Strings enclosed in double quotes (″ ″).

Mathematical Operators
You can use the following C operators. The operators are listed in order of
precedence. All of these operators are evaluated from left to right:

!
* /
- +
< <= > >=
== !=
&&

98 Using and Administering LoadLeveler

||

Customizing the Global and Local Configuration Files
This section presents a step-by-step approach to configuring LoadLeveler. You do
not have to perform the steps in the order that they appear here. Other keywords
which are not specifically mentioned in any of these steps are discussed in “Step
17: Specify Additional Configuration File Keywords” on page 129.

Step 1: Define LoadLeveler Administrators
Specify the following keyword:

LOADL_ADMIN = list of user names (required)
where list of user names is a blank-delimited list of those individuals who will
have administrative authority. These users are able to invoke the
administrator-only commands such as llctl , llfavorjob , and llfavoruser . These
administrators can also invoke the administrator-only GUI functions. For more
information, see “Administrative Uses for the Graphical User Interface” on
page 244.

LoadLeveler administrators on this list also receive mail describing problems
that are encountered by the master daemon. When DCE is enabled, the
LOADL_ADMIN list is used only as a mailing list. For more information, see
“Step 16: Configuring LoadLeveler to use DCE Security Services” on page 123.

An administrator on a machine is granted administrative privileges on that
machine. It does not grant him administrative privileges on other machines. To
be an administrator on all machines in the LoadLeveler cluster either specify
your user ID in the global configuration file with no entries in the local
configuration file or specify your userid in every local configuration file that
exists in the LoadLeveler cluster.

For example, to grant administrative authority to users bob and mary, enter the
following in the configuration file:
LOADL_ADMIN = bob mary

Step 2: Define LoadLeveler Cluster Characteristics
You can use the following keywords to define the characteristics of the LoadLeveler
cluster:

CUSTOM_METRIC = number
Specifies a machine’s relative priority to run jobs. This is an an arbitrary number
which you can use in the MACHPRIO expression. If you specify neither
CUSTOM_METRIC nor CUSTOM_METRIC_COMMAND, CUSTOM_METRIC =
1 is assumed. For more information, see “Step 7: Prioritize the Order of
Executing Machines Maintained by the Negotiator” on page 106.

CUSTOM_METRIC_COMMAND = command
Specifies an executable and any required arguments. The exit code of this
command is assigned to CUSTOM_METRIC. If this command does not exit
normally, CUSTOM_METRIC is assigned a value of 1. This command is forked
every (POLLING_FREQUENCY * POLLS_PER_UPDATE) period.

MACHINE_AUTHENTICATE = true|false
Specifies whether machine validation is performed. When set to true ,
LoadLeveler only accepts connections from machines specified in the
administration file. When set to false , LoadLeveler accepts connections from
any machine.

Chapter 5. Administering and Configuring LoadLeveler 99

When set to true , every communication between LoadLeveler processes will
verify that the sending process is running on a machine which is identified via a
machine stanza in the administration file. The validation is done by capturing
the address of the sending machine when the accept function call is issued to
accept a connection. The gethostbyaddr function is called to translate the
address to a name, and the name is matched with the list derived from the
administration file.

Choosing a Scheduler: This section discusses the types of schedulers that are
available under LoadLeveler, and the keywords you use to define these schedulers.

v The default LoadLeveler scheduler. This scheduler runs both serial and parallel
jobs, but is primarily meant for serial jobs. It efficiently uses CPU time by
scheduling jobs on what otherwise would be idle nodes (and workstations). It
does not require that users set a wall clock limit. Also, this scheduler starts,
suspends, and resumes jobs based on workload. The default scheduler uses a
reservation method to schedule parallel jobs. A possible drawback to the
reservation method occurs when LoadLeveler tries to schedule a job requiring a
large number of nodes. As LoadLeveler reserves nodes for the job, the reserved
nodes will be idle for a period of time. Also, if the job cannot accumulate all the
nodes it needs to run, the job may not get dispatched.

See “Keyword Considerations for Parallel Jobs” on page 59 for information on
which keywords associated with parallel jobs are supported by the default
scheduler.

v The Backfill scheduler. This scheduler runs both serial and parallel jobs, but is
primarily meant for parallel jobs. Backfilling is the capability to schedule a job that
is short in duration, or which requires a small number of nodes, before a higher
priority job. Any idle resources available between the current time and the earliest
projected start time of the highest priority job can be used to run other waiting
jobs. Jobs will only be backfilled if they will not delay the start of the higher
priority job. The scheduler makes this determination by comparing the projected
start time of the highest priority job with the wall_clock_limit of the potential
backfilled job. If the backfilled job will end before the higher priority job’s start
time, then it is eligible to run.

For example: on a rack with 10 nodes, 8 of the nodes are being used by Job A.
Job B has the highest priority in the queue, and requires 10 nodes. Job C has
the next highest priority in the queue, and requires only two nodes. Job B has to
wait for Job A to finish so that it can use the freed nodes. Because Job A is only
using 8 of the 10 nodes, the Backfill scheduler can schedule Job C (which only
needs the two available nodes) to run as long as it finishes before Job A finishes
(and Job B starts). To determine whether or not Job C has time to run, the
Backfill scheduler uses Job C’s wall_clock_limit value to determine whether or
not it will finish before Job A ends. If Job C has a wall_clock_limit of unlimited ,
it may not finish before Job B’s start time, and it won’t be dispatched.

The Backfill scheduler supports:

– The scheduling of multiple tasks per node.

– The scheduling of multiple user space tasks per adapter.

The above functions are not supported by the default LoadLeveler scheduler.

Note the following when using the Backfill scheduler:

– To use this scheduler, either users must set a wall clock limit in their job
command file or the administrator must define a wall clock limit value for the
class to which a job is assigned. Jobs with the wall_clock_limit of unlimited
cannot be used to backfill because they may not finish in time.

100 Using and Administering LoadLeveler

– You should use only the default settings for the START expression and the
other job control functions described in “Step 8: Manage a Job’s Status Using
Control Expressions” on page 109. If you do not use these default settings,
jobs will still run but the scheduler will not be as efficient. For example, the
scheduler will not be able to guarantee a time at which the highest priority job
will run.

– You should configure any multiprocessor (SMP) nodes such that the number
of jobs that can run on a node (determined by the MAX_STARTERS keyword)
is always less than or equal to the number of processors on the node.

– Due to the characteristics of the Backfill algorithm, in some cases this
scheduler may not honor the MACHPRIO statement. For more information on
MACHPRIO, see “Step 7: Prioritize the Order of Executing Machines
Maintained by the Negotiator” on page 106.

See “Keyword Considerations for Parallel Jobs” on page 59 for information on
which keywords associated with parallel jobs are supported by the Backfill
scheduler.

v The Workload Management API. This API allows you to enable an external
scheduler, such as the Extensible Argonne Scheduling sYstem (EASY). The API
is intended for installations that want to create a scheduling algorithm for parallel
jobs based on site-specific requirements. This API provides a time-based (rather
than an event-based) interface. That is, your application must use the API to poll
LoadLeveler at specific times for machine and job information. Also, some
LoadLeveler functions are not available when you use this API. For more
information, see “Workload Management API” on page 283.

Use the following keywords to define your scheduler:

SCHEDULER_API = YES|NO
where YES disables the default LoadLeveler scheduling algorithm. Specifying
YES implies you will use the job control API to communicate to LoadLeveler
scheduling decisions made by an external scheduler. For more information, see
“Workload Management API” on page 283. Note that if you change the
scheduler from SCHEDULER=BACKFILL to SCHEDULER_API=YES , you
must stop and restart LoadLeveler using llctl .

Specify NO to run the default LoadLeveler scheduler.

SCHEDULER_TYPE = BACKFILL
where BACKFILL specifies the LoadLeveler Backfill scheduler. Note that when
you specify this keyword:

v You override the SCHEDULER_API keyword (if it is used).

v You should use only the default settings for the START expression and the
other job control expressions described in “Step 8: Manage a Job’s Status
Using Control Expressions” on page 109.

Step 3: Define LoadLeveler Machine Characteristics
You can use the following keywords to define the characteristics of machines in the
LoadLeveler cluster:

ARCH = string (required)
Indicates the standard architecture of the system. The architecture you specify
here must be specified in the same format in the requirements and
preferences statements in job command files. The administrator defines the
character string for each architecture.

Chapter 5. Administering and Configuring LoadLeveler 101

For example, to define a machine as a RISC System/6000, the keyword would
look like:
ARCH = R6000

CLASS = { " class1" " class2" ... } | { "No_Class" }
where "class1" "class2" ... is a blank delimited list of class names. This keyword
determines whether a machine will accept jobs of a certain job class. For
parallel jobs, you must define a class for each task you want to run on a node.

You can specify a default_class in the default user stanza of the administration
file to set a default class. If you don’t, jobs will be assigned the class called
No_Class .

In order for a LoadLeveler job to run on a machine, the machine must have a
vacancy for the class of that job. If the machine is configured for only one
No_Class job and a LoadLeveler job is already running there, then no further
LoadLeveler jobs are started on that machine until the current job completes.

You can have a maximum of 1024 characters in the class statement. You
cannot use allclasses as a class name, since this is a reserved LoadLeveler
keyword.

You can assign multiple classes to the same machine by specifying the classes
in the LoadLeveler configuration file (called LoadL_config) or in the local
configuration file (called LoadL_config.local). The classes, themselves, should
be defined in the administration file. See “Setting Up a Single Machine To Have
Multiple Job Classes” on page 315 and “Step 3: Specify Class Stanzas” on
page 84 for more information on classes.

Defining Classes – Examples:

Example 1: This example defines the default class:
Class = { "No_Class" }

This is the default. The machine will only run one LoadLeveler job at a time that
has either defaulted to, or explicitly requested class No_Class . A LoadLeveler job
with class CPU_bound , for example, would not be eligible to run here. Only one
LoadLeveler job at a time will run on the machine.

Example 2: This example specifies multiple classes:
Class = { "No_Class" "No_Class" }

The machine will only run jobs that have either defaulted to or explicitly requested
class No_Class . A maximum of two LoadLeveler jobs are permitted to run
simultaneously on the machine if the MAX_STARTERS keyword is not specified.
See “Step 5: Specify How Many Jobs a Machine Can Run” on page 104 for more
information on MAX_STARTERS .

Example 3: This example specifies multiple classes:
Class = { "No_Class" "Small" "Medium" "Large" }

The machine will only run a maximum of four LoadLeveler jobs that have either
defaulted to, or explicitly requested No_Class , Small , Medium , or Large class. A
LoadLeveler job with class IO_bound , for example, would not be eligible to run
here.

102 Using and Administering LoadLeveler

Example 4: This example specifies multiple classes:
Class = { "B" "B" "D" }

The machine will run only LoadLeveler jobs that have explicitly requested class B or
D. Up to three LoadLeveler jobs may run simultaneously: two of class B and one of
class D. A LoadLeveler job with class No_Class , for example, would not be eligible
to run here.

Feature = {"string" ...}
where string is the (optional) characteristic to use to match jobs with machines.

You can specify unique characteristics for any machine using this keyword.
When evaluating job submissions, LoadLeveler compares any required features
specified in the job command file to those specified using this keyword. You can
have a maximum of 1024 characters in the feature statement.

For example, if a machine has licenses for installed products ABC and XYZ, in
the local configuration file you can enter the following:
Feature = {"abc" "xyz"}

When submitting a job that requires both of these products, you should enter
the following in your job command file:
requirements = (Feature == "abc") && (Feature == "xyz")

START_DAEMONS = true| false
Specifies whether to start the LoadLeveler daemons on the node. When true ,
the daemons are started.

In most cases, you will probably want to set this keyword to true . An example
of why this keyword would be set to false is if you want to run the daemons on
most of the machines in the cluster but some individual users with their own
local configuration files do not want their machines to run the daemons. The
individual users would modify their local configuration files and set this keyword
to false . Because the global configuration file has the keyword set to true , their
individual machines would still be able to participate in the LoadLeveler cluster.

Also, to define the machine as strictly a submit-only machine, set this keyword
to false . For more information, see “the submit-only keyword” on page 80.

SCHEDD_RUNS_HERE = true| false
Specifies whether the schedd daemon runs on the host. If you do not want to
run the schedd daemon, specify false .

To define the machine as an executing machine only, set this keyword to false .
For more information, see “the submit-only keyword” on page 80.

SCHEDD_SUBMIT_AFFINITY = true| false
Specifies that the llsubmit command submits a job to the machine where the
command was invoked, provided that the schedd daemon is running on that
machine (this is called schedd affinity). Installations with a large number of
nodes should consider setting this keyword to false . For more information, see
“Scaling Considerations” on page 312.

STARTD_RUNS_HERE = true| false
Specifies whether the startd daemon runs on the host. If you do not want to run
the startd daemon, specify false .

Chapter 5. Administering and Configuring LoadLeveler 103

X_RUNS_HERE = true| false
Set X_RUNS_HERE to true if you want to start the keyboard daemon.

Step 4: Define Consumable Resources
The LoadLeveler scheduler can schedule jobs based on the availability of
consumable resources. You can use the following keywords to use Consumable
Resources:

SCHEDULE_BY_RESOURCES = name name ... name
specifies which consumable resources are considered by the LoadLeveler
schedulers. Each consumable resource name may be an administrator-defined
alphanumeric string, or may be one of the following predefined resources:
ConsumableCpus , ConsumableMemory , or ConsumableVirtualMemory .
Each string may only appear in the list once. These resources are either
floating resources, or machine resources. If any resource is specified incorrectly
with the SCHEDULE_BY_RESOURCES keyword, then all scheduling resources
will be ignored.

FLOATING_RESOURCES = name(count) name(count) ... name(count)
specifies which consumable resources are available collectively on all of the
machines in the LoadLeveler cluster. The count for each resource must be an
integer greater than or equal to zero, and each resource can only be specified
once in the list. Any resource specified for this keyword that is not already listed
in the SCHEDULE_BY_RESOURCES keyword will not affect job scheduling. If
any resource is specified incorrectly with the FLOATING_RESOURCES
keyword, then all floating resources will be ignored. ConsumableCpus ,
ConsumableMemory , and ConsumableVirtualMemory may not be specified
as floating resources.

Step 5: Specify How Many Jobs a Machine Can Run
To specify how many jobs a machine can run, you need to take into consideration
both the MAX_STARTERS keyword, which is described in this section, and the
Class statement, which is mentioned here and described in more detail in “Step 3:
Define LoadLeveler Machine Characteristics” on page 101

The syntax for MAX_STARTERS is:

MAX_STARTERS = number
Where number specifies the maximum number of tasks that can run
simultaneously on a machine. In this case, a task can be a serial job step, a
parallel task, or an instance of the PVM daemon (PVMD). If not specified, the
default is the number of elements in the Class statement. MAX_STARTERS
defines the number of initiators on the machine (the number of tasks that can
be initiated from a startd).

For example, if the configuration file contains these statements:
Class = { "A" "B" "B" "C"}
MAX_STARTERS = 2

the machine can run a maximum of two LoadLeveler jobs simultaneously. The
possible combinations of LoadLeveler jobs are:
v A and B
v A and C
v B and B
v B and C
v Only A, or only B, or only C

104 Using and Administering LoadLeveler

If this keyword is specified in conjunction with a Class statement, the maximum
number of jobs that can be run is equal to the lower of the two numbers. For
example, if:
MAX_STARTERS = 2
Class = { "class_a" }

then the maximum number of job steps that can be run is one (the Class statement
above defines one class).

If you specify MAX_STARTERS keyword without specifying a Class statement, by
default one class still exists (called No_Class). Therefore, the maximum number of
jobs that can be run when you do not specify a Class statement is one.

If this keyword is not defined in either the global configuration file or the local
configuration file, the maximum number of jobs that the machine can run is equal to
the number of classes in the Class statement.

Step 6: Prioritize the Queue Maintained by the Negotiator
Each job submitted to LoadLeveler is assigned a system priority number, based on
the evaluation of the SYSPRIO keyword expression in the configuration file of the
central manager. The LoadLeveler system priority number is assigned when the
central manager adds the new job to the queue of jobs eligible for dispatch. Once
assigned, the system priority number for a job is never changed (unless jobs for a
user swap their SYSPRIO, or
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL is not zero). Jobs assigned
higher SYSPRIO numbers are considered for dispatch before jobs with lower
numbers. See “How Does a Job’s Priority Affect Dispatching Order?” on page 28 for
more information on job priorities.

You can use the following LoadLeveler variables to define the SYSPRIO
expression:

ClassSysprio
The priority for the class of the job step, defined in the class stanza in the
administration file. The default is 0.

GroupQueuedJobs
The number of job steps associated with a LoadLeveler group which are
either running or queued. (That is, job steps which are in one of these
states: Running, Starting, Pending, or Idle.)

GroupRunningJobs
The number of job steps for the LoadLeveler group which are in one of
these states: Running, Starting, or Pending.

GroupSysprio
The priority for the group of the job step, defined in the group stanza in the
administration file. The default is 0.

GroupTotalJobs
The total number of job steps associated with this LoadLeveler group. Total
job steps are all job steps reported by the llq command.

QDate The difference in the UNIX date when the job step enters the queue and
the UNIX date when the negotiator starts up.

UserPrio
The user-defined priority of the job step, specified in the job command file
with the user_priority keyword. The default is 50.

Chapter 5. Administering and Configuring LoadLeveler 105

UserQueuedJobs
The number of job steps either running or queued for the user. (That is, job
steps which are in one of these states: Running, Starting, Pending, or Idle.)

UserRunningJobs
The number of job step steps for the user which are in one of these states:
Running, Starting, or Pending.

UserSysprio
The priority of the user who submitted the job step, defined in the user
stanza in the administration file. The default is 0.

UserTotalJobs
The total number of job steps associated with this user. Total job steps are
all job steps reported by the llq command.

Usage Notes for the SYSPRIO Keyword:
v The SYSPRIO keyword is valid only on the machine where the central manager

is running. Using this keyword in a local configuration file has no effect.

v It is recommended that you do not use UserPrio in the SYSPRIO expression,
since user jobs are already ordered by UserPrio .

v You can use the UserRunningJobs , GroupRunningJobs , UserQueuedJobs ,
GroupQueuedJobs , UserQueuedJobs , GroupQueuedJobs UserTotalJobs ,
and GroupTotalJobs parameters to prioritize the queue based on current usage.
You should also set NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL so
that the priorities are adjusted according to current usage rather than usage only
at submission time.

Using the SYSPRIO Keyword – Examples:

Example 1: This example creates a FIFO job queue based on submission time:
SYSPRIO : 0 - (QDate)

Example 2: This example accounts for Class, User, and Group system priorities:
SYSPRIO : (ClassSysprio * 100) + (UserSysprio * 10) + (GroupSysprio * 1) - (QDate)

Example 3: This example orders the queue based on the number of jobs a user is
currently running. The user who has the fewest jobs running is first in the queue.
You should set NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL in
conjunction with this SYSPRIO expression.
SYSPRIO : 0 - UserRunningJobs

Step 7: Prioritize the Order of Executing Machines Maintained by
the Negotiator
Each executing machine is assigned a machine priority number, based on the
evaluation of the MACHPRIO keyword expression in the configuration file of the
central manager. The LoadLeveler machine priority number is updated every time
the central manager updates its machine data. Machines assigned higher
MACHPRIO numbers are considered to run jobs before machines with lower
numbers. For example, a machine with a MACHPRIO of 10 is considered to run a
job before a machine with a MACHPRIO of 5. Similarly, a machine with a
MACHPRIO of -2 would be considered to run a job before a machine with a
MACHPRIO of -3.

Note that the MACHPRIO keyword is valid only on the machine where the central
manager is running. Using this keyword in a local configuration file has no effect.

106 Using and Administering LoadLeveler

When you use a MACHPRIO expression that is based on load average, the
machine may be temporarily ordered later in the list immediately after a job is
scheduled to that machine. This is because the negotiator adds a compensating
factor to the startd machine’s load average every time the negotiator assigns a job.
For more information, see “the NEGOTIATOR_INTERVAL keyword” on page 130.

You can use the following LoadLeveler variables in the MACHPRIO expression:

LoadAvg
The Berkeley one-minute load average of the machine, reported by startd.

Cpus The number of processors of the machine, reported by startd.

Speed The relative speed of the machine, defined in a machine stanza in the
administration file. The default is 1.

Memory
The size of real memory in megabytes of the machine, reported by startd.

VirtualMemory
The size of available swap space in kilobytes of the machine, reported by
startd.

Disk The size of free disk space in kilobytes on the filesystem where the
executables reside.

CustomMetric
Allows you to set a relative priority number for one or more machines,
based on the value of the CUSTOM_METRIC keyword. (See “Example 4”
for more information.)

MasterMachPriority
A value that is equal to 1 for nodes which are master nodes (those with
master_node_exclusive = true); this value is equal to 0 for nodes which
are not master nodes. Assigning a high priority to master nodes may help
job scheduling performance for parallel jobs which require master node
features.

ConsumableCpus
If ConsumableCpus is specified in the SCHEDULE_BY_RESOURCES
keyword, then this is the number of ConsumableCpus available on the
machine. If ConsumableCpus is not specified in the
SCHEDULE_BY_RESOURCES keyword, then this is the same as Cpus .

ConsumableMemory
This is the number of megabytes of ConsumableMemory available on the
machine, provided that ConsumableMemory is specified in the
SCHEDULE_BY_RESOURCES keyword. If ConsumableMemory is not
specified in the SCHEDULE_BY_RESOURCES keyword, then this is the
same as Memory .

ConsumableVirtualMemory
This is the number of megabytes of ConsumableVirtualMemory available
on the machine, provided that ConsumableVirtualMemory is specified in
the SCHEDULE_BY_RESOURCES keyword. If ConsumableVirtualMemory
is not specified in the SCHEDULE_BY_RESOURCES keyword, then this is
the same as VirtualMemory .

PagesFreed
The number of pages freed per second by the page replacement algorithm
of the virtual memory manager.

Chapter 5. Administering and Configuring LoadLeveler 107

PagesScanned
The number of pages scanned per second by the page replacement
algorithm of the virtual memory manager.

FreeRealMemory
The amount of free real mrmory in megabytes on the machine.

Using the MACHPRIO Keyword – Examples:

Example 1: This example orders machines by the Berkeley one-minute load
average.
MACHPRIO : 0 - (LoadAvg)

Therefore, if LoadAvg equals .7, this example would read:
MACHPRIO : 0 - (.7)

The MACHPRIO would evaluate to -.7.

Example 2: This example orders machines by the Berkeley one-minute load
average normalized for machine speed:
MACHPRIO : 0 - (1000 * (LoadAvg / (Cpus * Speed)))

Therefore, if LoadAvg equals .7, Cpus equals 1, and Speed equals 2, this example
would read:
MACHPRIO : 0 - (1000 * (.7 / (1 * 2)))

This example further evaluates to:
MACHPRIO : 0 - (350)

The MACHPRIO would evaluate to -350.

Notice that if the speed of the machine were increased to 3, the equation would
read:
MACHPRIO : 0 - (1000 * (.7 / (1 * 3)))

The MACHPRIO would evaluate to approximately -233. Therefore, as the speed of
the machine increases, the MACHPRIO also increases.

Example 3: This example orders machines accounting for real memory and
available swap space (remembering that Memory is in Mbytes and VirtualMemory is
in Kbytes):
MACHPRIO : 0 - (10000 * (LoadAvg / (Cpus * Speed))) +
(10 * Memory) + (VirtualMemory / 1000)

Example 4: This example sets a relative machine priority based on the value of
the CUSTOM_METRIC keyword.
MACHPRIO : CustomMetric

To do this, you must specify a value for the CUSTOM_METRIC keyword or the
CUSTOM_METRIC_COMMAND keyword in either the LoadL_config.local file of a
machine or in the global LoadL_config file. To assign the same relative priority to
all machines, specify the CUSTOM_METRIC keyword in the global configuration
file. For example:
CUSTOM_METRIC = 5

108 Using and Administering LoadLeveler

You can override this value for an individual machine by specifying a different value
in that machine’s LoadL_config.local file.

Example 5: This example gives master nodes the highest priority:
MACHPRIO : (MasterMachPriority * 10000)

Step 8: Manage a Job’s Status Using Control Expressions
You can control running jobs by using five control functions as Boolean expressions
in the configuration file. These functions are useful primarily for serial jobs. You
define the expressions, using normal C conventions, with the following functions:

START
SUSPEND
CONTINUE
VACATE
KILL

The expressions are evaluated for each job running on a machine using both the
job and machine attributes. Some jobs running on a machine may be suspended
while others are allowed to continue.

The START expression is evaluated twice; once to see if the machine can accept
jobs to run and second to see if the specific job can be run on the machine. The
other expressions are evaluated after the jobs have been dispatched and in some
cases, already running.

When evaluating the START expression to determine if the machine can accept
jobs, Class != { "Z" } evaluates to true only if Z is not in the class definition. This
means that if two different classes are defined on a machine, Class != { "Z" }
(where Z is one of the defined classes) always evaluates to false when specified in
the START expression and, therefore, the machine will not be considered to start
jobs.

START: expression that evaluates to T or F (true or false)
Determines whether a machine can run a LoadLeveler job. When the
expression evaluates to T, LoadLeveler considers dispatching a job to the
machine.

When you use a START expression that is based on the CPU load average, the
negotiator may evaluate the expression as F even though the load average
indicates the machine is Idle. This is because the negotiator adds a
compensating factor to the startd machine’s load average every time the
negotiator assigns a job. For more information, see “the
NEGOTIATOR_INTERVAL keyword” on page 130.

SUSPEND: expression that evaluates to T or F (true or false)
Determines whether running jobs should be suspended. When T, LoadLeveler
temporarily suspends jobs currently running on the machine. Suspended
LoadLeveler jobs will either be continued or vacated. This keyword is not
supported for parallel jobs.

CONTINUE: expression that evaluates to T or F (true or false)
Determines whether suspended jobs should continue execution. When T,
suspended LoadLeveler jobs resume execution on the machine.

VACATE: expression that evaluates to T or F (true or false)
Determines whether suspended jobs should be vacated. When T, suspended
LoadLeveler jobs are removed from the machine and placed back into the

Chapter 5. Administering and Configuring LoadLeveler 109

queue (provided you specify restart=yes in the job command file). If a
checkpoint was taken, the job restarts from the checkpoint. Otherwise, the job
restarts from the beginning.

KILL: expression that evaluates to T or F (true or false)
Determines whether or not vacated jobs should be killed and replaced in the
queue. It is used to remove a job that is taking too long to vacate. When T,
vacated LoadLeveler jobs are removed from the machine with no attempt to
take checkpoints.

Typically, machine load average, keyboard activity, time intervals, and job class are
used within these various expressions to dynamically control job execution.

How Control Expressions Affect Jobs: After LoadLeveler selects a job for
execution, the job can be in any of several states. Figure 30 shows how the control
expressions can affect the state a job is in. The rectangles represent job or daemon
states, and the diamonds represent the control expressions.

Criteria used to determine when a LoadLeveler job will enter Start, Suspend,
Continue, Vacate, and Kill states are defined in the LoadLeveler configuration files
and may be different for each machine in the cluster. They may be modified to meet
local requirements.

Step 9: Define Job Accounting
LoadLeveler provides accounting information on completed LoadLeveler jobs. For
detailed information on this function, refer to “Chapter 7. Gathering Job Accounting
Data” on page 153.

Idle

Completed START
F

T

T

T

T

T

F

F

F
F

SUSPEND

CONTINUE

VACATE

KILL

Running

Suspended

Vacating

Figure 30. How Control Expressions Affect Jobs

110 Using and Administering LoadLeveler

The following keywords allow you to control accounting functions:

ACCT = flag
The available flags are:

A_ON Turns accounting data recording on. If specified without the A_DETAIL
flag, the following is recorded:
v The total amount of CPU time consumed by the entire job
v The maximum memory consumption of all tasks (or nodes).

A_OFF
Turns accounting data recording off. This is the default.

A_VALIDATE
Turns account validation on.

A_DETAIL
Enables extended accounting. Using this flag causes LoadLeveler to
record detail resource consumption by machine and by events for each
job step. This flag also enables the -x flag of the llq command,
permitting users to view resource consumption for active jobs.

For example:
ACCT = A_ON A_DETAIL

This example specifies that accounting should be turned on and that extended
accounting data should be collected and that the -x flag of the llq command be
enabled.

ACCT_VALIDATION = $(BIN/llacctval (optional)
Keyword used to identify the executable that is called to perform account
validation. You can replace the llacctval executable with your own validation
program by specifying your program in this keyword.

GLOBAL_HISTORY = $(SPOOL) (optional)
Keyword used to identify the directory that will contain the global history files
produced by llacctmrg command when no directory is specified as a command
argument.

For example, the following section of the configuration file specifies that the
accounting function is turned on. It also identifies the module used to perform
account validation and the directory containing the global history files:
ACCT = A_ON A_VALIDATE
ACCT_VALIDATION = $(BIN)/llacctval
GLOBAL_HISTORY = $(SPOOL)

Step 10: Specify Alternate Central Managers
In one of your machine stanzas specified in the administration file, you specified
that the machine would serve as the central manager. It is possible for some
problem to cause this central manager to become unusable such as network
communication or software or hardware failures. In such cases, the other machines
in the LoadLeveler cluster believe that the central manager machine is no longer
operating. To remedy this situation, you can assign one or more alternate central
managers in the machine stanza to take control.

The following machine stanza example defines the machine deep_blue as an
alternate central manager:
#
deep_blue: type=machine
central_manager = alt

Chapter 5. Administering and Configuring LoadLeveler 111

If the primary central manager fails, the alternate central manager then becomes
the central manager. The alternate central manager is chosen based upon the order
in which its respective machine stanza appears in the administration file.

When an alternate becomes the central manager, jobs will not be lost, but it may
take a few minutes for all of the machines in the cluster to check in with the new
central manager. As a result, job status queries may be incorrect for a short time.

When you define alternate central managers, you should set the following keywords
in the configuration file:

CENTRAL_MANAGER_HEARTBEAT_INTERVAL = number
where number is the amount of time in seconds that defines how frequently
primary and alternate central managers communicate with each other. The
default is 300 seconds or 5 minutes.

CENTRAL_MANAGER_TIMEOUT = number
where number is the number of heartbeat intervals that an alternate central
manager will wait without hearing from the primary central manager before
declaring that the primary central manager is not operating. The default is 6.

In the following example, the alternate central manager will wait for 30 intervals,
where each interval is 45 seconds:
Set a 45 second interval
CENTRAL_MANAGER_HEARTBEAT_INTERVAL = 45
Set the number of intervals to wait
CENTRAL_MANAGER_TIMEOUT = 30

For more information on central manager backup, refer to “What Happens if the
Central Manager Isn’t Operating?” on page 309.

Step 11: Specify Where Files and Directories are Located
The configuration file provided with LoadLeveler specifies default locations for all of
the files and directories. You can modify their locations using the following
keywords. Keep in mind that the LoadLeveler installation process installs files in
these directories and these files may be periodically cleaned up. Therefore, you
should not keep any files that do not belong to LoadLeveler in these directories.

To specify the location of
the: Specify these keywords:

Administration File
ADMIN_FILE = pathname (required)

points to the administration file containing user, class, group, machine, and
adapter stanzas. For example,

ADMIN_FILE = $(tilde)/admin_file

112 Using and Administering LoadLeveler

To specify the location of
the: Specify these keywords:

Local Configuration File
LOCAL_CONFIG = pathname

defines the pathname of the optional local configuration file containing information
specific to a node in the LoadLeveler network. If you are using a distributed file
system like NFS, some examples are:

LOCAL_CONFIG = $(tilde)/$(host).LoadL_config.local
LOCAL_CONFIG = $(tilde)/LoadL_config.$(host).$(domain)
LOCAL_CONFIG = $(tilde)/LoadL_config.local.$(hostname)

If you are using a local file system, an example is:

LOCAL_CONFIG = /var/LoadL/LoadL_config.local

See “LoadLeveler Variables” on page 132 for information about the tilde , host ,
and domain variables.

Local Directory The following subdirectories reside in the local directory. It is possible that the local
directory and LoadLeveler’s home directory are the same.

EXECUTE = local directory/execute (required)
defines the local directory to store the executables of jobs submitted by other
machines.

LOG = local directory/log (required)
defines the local directory to store log files. It is not necessary to keep all the log
files created by the various LoadLeveler daemons and programs in one directory
but you will probably find it convenient.

SPOOL = local directory/spool (required)
Defines the local directory where LoadLeveler keeps the local job queue and
checkpoint files, as well as:

HISTORY = $(SPOOL)/history (required)
defines the pathname where a file containing the history of local LoadLeveler
jobs is kept.

Release Directory
RELEASEDIR = release directory (required)

defines the directory where all the LoadLeveler software resides. The following
subdirectories are created during installation and they reside in the release
directory. You can change their locations.

BIN = $(RELEASEDIR)/bin (required)
defines the directory where LoadLeveler binaries are kept.

LIB = $(RELEASEDIR)/lib (required)
defines the directory where LoadLeveler libraries are kept.

NQS_DIR = NQS directory (optional)
defines the directory where NQS commands qsub , qstat , and qdel reside. The
default is /usr/bin .

Step 12: Record and Control Log Files
The LoadLeveler daemons and processes keep log files according to the
specifications in the configuration file. A number of keywords are used to describe
where LoadLeveler maintains the logs and how much information is recorded in
each log. These keywords, shown in Table 13 on page 114, are repeated in similar
form to specify the pathname of the log file, its maximum length, and the debug
flags to be used.

Chapter 5. Administering and Configuring LoadLeveler 113

“Controlling Debugging Output” describes the events that can be reported through
logging controls.

Table 13. Log Control Statements

Daemon/ Process Log File (required)

(See note 1)

Max Length (required)

(See note 2)

Debug Control (required)

(See note 4)

Master MASTER_LOG = path MAX_MASTER_LOG = bytes MASTER_DEBUG = flags

Schedd SCHEDD_LOG = path MAX_SCHEDD_LOG = bytes SCHEDD_DEBUG = flags

Startd STARTD_LOG = path MAX_STARTD_LOG = bytes STARTD_DEBUG = flags

Starter STARTER_LOG = path MAX_STARTER_LOG = bytes STARTER_DEBUG = flags

Negotiator NEGOTIATOR_LOG =
path

MAX_NEGOTIATOR_LOG = bytes NEGOTIATOR_DEBUG = flags

Kbdd KBDD_LOG = path MAX_KBDD_LOG = bytes KBDD_DEBUG = flags

GSmonitor GSMONITOR_LOG =
path

MAX_GSMONITOR_LOG = bytes GSMONITOR_DEBUG = flags

Notes:

1. When coding the path for the log files, it is not necessary that all LoadLeveler
daemons keep their log files in the same directory, however, you will probably
find it a convenient arrangement.

2. There is a maximum length, in bytes, beyond which the various log files cannot
grow. Each file is allowed to grow to the specified length and is then saved to
an .old file. The .old files are overwritten each time the log is saved, thus the
maximum space devoted to logging for any one program will be twice the
maximum length of its log file. The default length is 64KB. To obtain records
over a longer period of time, that don’t get overwritten, you can use the
SAVELOGS keyword in the local or global configuration files. See“Saving Log
Files” on page 116 for more information on extended capturing of LoadLeveler
logs.

You can also specify that the log file be started anew with every invocation of
the daemon by setting the TRUNC statement to true as follows:

TRUNC_MASTER_LOG_ON_OPEN = true|false
TRUNC_STARTD_LOG_ON_OPEN = true|false
TRUNC_SCHEDD_LOG_ON_OPEN = true|false
TRUNC_KBDD_LOG_ON_OPEN = true|false
TRUNC_STARTER_LOG_ON_OPEN = true|false
TRUNC_NEGOTIATOR_LOG_ON_OPEN = true|false
TRUNC_GSMONITOR_LOG_ON_OPEN = true|false

3. LoadLeveler creates temporary log files used by the starter daemon. These
files are used for synchronization purposes. When a job starts, a StarterLog. pid
file is created. When the job ends, this file is appended to the StarterLog file.

4. Normally, only those who are installing or debugging LoadLeveler will need to
use the debug flags, described in “Controlling Debugging Output” The default
error logging, obtained by leaving the right side of the debug control statement
null, will be sufficient for most installations.

Controlling Debugging Output: You can control the level of debugging output
logged by LoadLeveler programs. The following flags are presented here for your
information, though they are used primarily by IBM personnel for debugging
purposes:

114 Using and Administering LoadLeveler

D_ACCOUNT
Logs accounting information about processes. If used, it may slow down the
network.

D_AFS
Logs information related to AFS credentials.

D_DAEMON
Logs information regarding basic daemon set up and operation, including
information on the communication between daemons.

D_DBX
Bypasses certain signal settings to permit debugging of the processes as
they execute in certain critical regions.

D_DCE
Logs information related to DCE credentials.

D_EXPR
Logs steps in parsing and evaluating control expressions.

D_FULLDEBUG
Logs details about most actions performed by each daemon but doesn’t log
as much activity as setting all the flags.

D_JOB
Logs job requirements and preferences when making decisions regarding
whether a particular job should run on a particular machine.

D_KERNEL
Activates diagnostics for errors involving the process tracking kernel
extension.

D_LOAD
Displays the load average on the startd machine.

D_LOCKING
Logs requests to acquire and release locks.

D_MACHINE
Logs machine control functions and variables when making decisions
regarding starting, suspending, resuming, and aborting remote jobs.

D_NEGOTIATE
Displays the process of looking for a job to run in the negotiator. It only
pertains to this daemon.

D_NQS
Provides more information regarding the processing of NQS files.

D_PROC
Logs information about jobs being started remotely such as the number of
bytes fetched and stored for each job.

D_QUEUE
Logs changes to the job queue.

D_STANZAS
Displays internal information about the parsing of the administration file.

D_SCHEDD
Displays how the schedd works internally.

D_STARTD
Displays how the startd works internally.

D_STARTER
Displays how the starter works internally.

D_THREAD
Displays the ID of the thread producing the log message. The thread ID is
displayed immediately following the date and time. This flag is useful for
debugging threaded daemons.

D_XDR
Logs information regarding External Data Representation (XDR)
communication protocols.

Chapter 5. Administering and Configuring LoadLeveler 115

For example,
SCHEDD_DEBUG = D_CKPT D_XDR

causes the scheduler to log information about checkpointing user jobs and
exchange xdr messages with other LoadLeveler daemons. These flags will primarily
be of interest to LoadLeveler implementers and debuggers.

Saving Log Files: By default, LoadLeveler stores only the two most recent
iterations of a daemon’s log file (<daemon name>_Log, and <daemon
name>_Log.old). Occasionally, for problem diagnosing, users will need to capture
LoadLeveler logs over an extended period. Users can specify that all log files be
saved to a particular directory by using the SAVELOGS keyword in a local or global
configuration file. Be aware that LoadLeveler does not provide any way to manage
and clean out all of those log files, so users must be sure to specify a directory in a
file system with enough space to accomodate them. This file system should be
separate from the one used for the LoadLeveler log, spool, and execute directories.
The syntax is:
SAVELOGS = <directory>

where <directory> is the directory in which log files will be archived.

Each log file is represented by the name of the daemon that generated it, the exact
time the file was generated, and the name of the machine on which the daemon is
running. When you list the contents of the SAVELOGS directory, the list of log file
names looks like this:
NegotiatorLogNov02.16:10:39c163n10.ppd.pok.ibm.com
NegotiatorLogNov02.16:10:42c163n10.ppd.pok.ibm.com
NegotiatorLogNov02.16:10:46c163n10.ppd.pok.ibm.com
NegotiatorLogNov02.16:10:48c163n10.ppd.pok.ibm.com
NegotiatorLogNov02.16:10:51c163n10.ppd.pok.ibm.com
NegotiatorLogNov02.16:10:53c163n10.ppd.pok.ibm.com
StarterLogNov02.16:09:19c163n10.ppd.pok.ibm.com
StarterLogNov02.16:09:51c163n10.ppd.pok.ibm.com
StarterLogNov02.16:10:30c163n10.ppd.pok.ibm.com
SchedLogNov02.16:09:05c163n10.ppd.pok.ibm.com
SchedLogNov02.16:09:26c163n10.ppd.pok.ibm.com
SchedLogNov02.16:09:47c163n10.ppd.pok.ibm.com
SchedLogNov02.16:10:12c163n10.ppd.pok.ibm.com
SchedLogNov02.16:10:37c163n10.ppd.pok.ibm.com
StartLogNov02.16:09:05c163n10.ppd.pok.ibm.com
StartLogNov02.16:09:26c163n10.ppd.pok.ibm.com
StartLogNov02.16:09:47c163n10.ppd.pok.ibm.com
StartLogNov02.16:10:12c163n10.ppd.pok.ibm.com
StartLogNov02.16:10:37c163n10.ppd.pok.ibm.com

Step 13: Define Network Characteristics
A port number is an integer that specifies the port number to use to connect to the
specified daemon. You can define these port numbers in the configuration file or the
/etc/services file or you can accept the defaults. LoadLeveler first looks in the
configuration file for these port numbers. If the port number is in the configuration
file and is valid, this value is used. If it is an invalid value, the default value is used.

If LoadLeveler does not find the value in the configuration file, it looks in the
/etc/services file. If the value is not found in this file, the default is used.

The configuration file keywords associated with port numbers are the following:

CLIENT_TIMEOUT = number
where number specifies the maximum time, in seconds, that a LoadLeveler

116 Using and Administering LoadLeveler

daemon waits for a response over TCP/IP from a process. If the waiting time
exceeds the specified amount, the daemon tries again to communicate with the
process. The default is 30 seconds. In general, you should use this default
setting unless you are experiencing delays due to an excessively loaded
network. If so, you should try increasing this value. CLIENT_TIMEOUT is used
by all LoadLeveler daemons.

CM_COLLECTOR_PORT = port number
The default is 9612.

MASTER_STREAM_PORT = port number
The default is 9616.

NEGOTIATOR_STREAM_PORT = port number
The default is 9614.

SCHEDD_STATUS_PORT = port number
The default is 9606.

SCHEDD_STREAM_PORT = port number
The default is 9605.

STARTD_STREAM_PORT = port number
The default is 9611.

STARTD_DGRAM_PORT = port number
The default is 9615.

MASTER_DGRAM_PORT = port number
The default is 9617.

As stated earlier, if LoadLeveler does not find the value in the configuration file, it
looks in the /etc/services file. If the value is not found in this file, the default is
used. The first field on each line in the example that follows represents the name of
a ″service″. In most cases, these services are also the names of daemons because
few daemons need more than one udp and one tcp connection. There are two
exceptions: LoadL_negotiator_collector is the service name for a second stream
port that is used by the LoadL_negotiator daemon; LoadL_schedd_status is the
service name for a second stream port used by the LoadL_schedd daemon.
LoadL_master 9616/tcp # Master port number for stream port
LoadL_negotiator 9614/tcp # Negotiator port number
LoadL_negotiator_collector 9612/tcp # Second negotiator stream port
LoadL_schedd 9605/tcp # Schedd port number for stream port
LoadL_schedd_status 9606/tcp # Schedd stream port for job status data
LoadL_startd 9611/tcp # Startd port number for stream port
LoadL_master 9617/udp # Master port number for dgram port
LoadL_startd 9615/udp # Startd port number for dgram port

Step 14: Enable Checkpointing
This section tells you how to set up checkpointing for jobs. For more information on
the job command file keywords mentioned here, see “Job Command File Keywords”
on page 36. To enable checkpointing for parallel jobs, you must use the APIs
provided with the Parallel Environment (PE) program. For information on parallel
checkpointing, see IBM Parallel Environment for AIX: Operation and Use, Volume 1.

Checkpointing is a method of periodically saving the state of a job so that if the job
does not complete it can be restarted from the saved state. You can checkpoint
both serial and parallel jobs.

You can specify the following types of checkpointing:

Chapter 5. Administering and Configuring LoadLeveler 117

user initiated
The user’s application program determines when the checkpoint is taken.
This type of checkpointing is available to both serial and parallel jobs.

system initiated
The checkpoint is taken at administrator-defined intervals. This type of
checkpointing is available only to serial jobs.

At checkpoint time, a checkpoint file is created, by default, on the executing
machine and stored on the scheduling machine. You can control where the file is
created and stored by using the CHKPT_FILE and CHKPT_DIR environment
variables, which are described in “Set the Appropriate Environment Variables”. The
checkpoint file contains the program’s data segment, stack, heap, register contents,
signal state and the states of the open files at the time of the checkpoint. The
checkpoint file is often much larger in size than the executable.

When a job is vacated, the most recent checkpoint file taken before the job was
vacated is used to restart the job when it is scheduled to run on a new machine.
Note that a vacating job may be killed by LoadLeveler if the job takes too long to
write its checkpoint file. This occurs only when a job is vacated by the executing
machine after the job’s VACATE expression evaluates to TRUE. See “Step 8:
Manage a Job’s Status Using Control Expressions” on page 109 for more
information on the VACATE and KILL expressions.

If the executing machine fails, then when the machine restarts LoadLeveler
reschedules the job, which restores its state from the most recent checkpoint file.
LoadLeveler waits for the original executing machine to restart before scheduling
the job to run on another machine in order to ensure that only one copy of the job
will run.

Planning Considerations for Checkpointing Jobs
Review the following guidelines before you submit a checkpointing job:

Set the Appropriate Environment Variables: This section discusses the
CHKPT_STATE, CHKPT_FILE, and CHKPT_DIR environment variables.

The CHKPT_STATE environment variable allows you to enable and disable
checkpointing. CHKPT_STATE can be set to the following:

enable
Enables checkpointing.

restart
Restarts the executable from an existing checkpoint file.

If you set checkpoint=no in your job command file, no checkpoints are taken,
regardless of the value of the CHKPT_STATE environment variable. See
“checkpoint” on page 37 for more information.

The CHKPT_FILE and CHKPT_DIR environment variables help you manage your
checkpoint files. For parallel jobs, you must specify at least one of these variables
in order to designate the location of the checkpoint file. For serial jobs, if you do not
specify either of these variables, LoadLeveler manages your checkpoint files.
LoadLeveler stores the checkpoint file in its working directories and deletes the file
as soon as the job terminates (that is, when the job exits the LoadLeveler system.)
If your job terminates abnormally, there is no checkpoint file from which
LoadLeveler can restart the job. When you resubmit the job, it will start running
from the beginning.

118 Using and Administering LoadLeveler

To avoid this problem, use CHKPT_FILE and CHKPT_DIR to control where your
checkpoint file is stored. CHKPT_DIR specifies the directory where it is stored, and
CHKPT_FILE specifies the checkpoint file name. (You can use just CHKPT_FILE
provided you specify a full path name. Also, you can use just CHKPT_DIR; in this
case the checkpoint file is copied to the directory you specify with a file name of
executable.chkpt .) You can use these variables to have your checkpoint file written
to a the file system of your choice. This allows you to resubmit your job and have it
restart from the last checkpoint file, since the file will not be erased if your job is
terminated. If your job completes normally, the checkpoint library deletes all
checkpoint files associated with the job.

Note that two or more job steps running at the same time cannot both write to the
same checkpoint file, since the file will be corrupted.

See “How to Checkpoint a Job” on page 121 for more information.

Plan for Jobs that You Will Migrate: If you plan to migrate jobs (restart jobs on a
different node or set of nodes), you should understand the difference between
writing checkpoint files to a local file system (such as JFS) versus a global file
system (such as AFS or GPFS). The CHKPT_DIR and CHKPT_FILE environment
variables allow you to write to either type of file system. If you are using a local file
system, you must first move the checkpoint file(s) to the target node(s) before
resubmitting the job. Then you must ensure that the job runs on those specific
nodes. If you are using a global file system, the checkpointing may take longer, but
there is no additional work required to migrate the job.

Reserve Adequate Disk Space in the Execute Directory: A checkpoint file
requires a significant amount of disk space. Your job may fail if the directory where
the checkpoint file is written does not have adequate space. For serial jobs, the
directory must be able to contain two checkpoint files. For parallel jobs, the
directory must be able to contain 2*n checkpoint files, where n is the number of
tasks. You can make an accurate size estimate only after you’ve run your job and
noticed the size of the checkpoint file that is created. LoadLeveler attempts to
reserve enough disk space for the checkpoint file when the job is started. However,
only you can ensure that enough space is available.

Set your Checkpoint File Size to the Maximum: To make sure that your job is
not prevented from writing a checkpoint file due to system limits, assign your job to
a job class that has its file creation limit set to the maximum (unlimited). In the
administration file, set up a class stanza for checkpointing jobs with the following
entry:

file_limit = unlimited,unlimited

This statement specifies that there is no limit on the maximum size of a file that
your program can create.

Checkpoint Programs Whose States are Simple to Checkpoint and Recreate:
For some processes, it is impossible to obtain or recreate the state of the process.
For this reason, you should only checkpoint programs whose states are simple to
checkpoint and recreate. A program that is long-running, computation-intensive, and
does not fork any processes is an example of a job well suited for checkpointing.

Avoid Using Certain System Services in Checkpointed Jobs: In order to
prevent unpredictable results from occurring, checkpointing jobs should not use the
following system services:
v Threads

Chapter 5. Administering and Configuring LoadLeveler 119

v Shared libraries
v Dynamic loading
v Shared memory (such as pfork and shmget)
v IPC (sockets, pipes, semaphores, and message queues)
v Memory-mapped files
v Fork and exec system calls
v Device I/O
v File locks
v Set/get user or group IDs and process IDs
v Open system calls from inside a signal handler
v Time and timer services
v Administrative calls (for example, DCE security, audit, and swapqry)
v 64 bit addressing

Another limitation of checkpointing jobs is file I/O. Since individual write calls are not
traced, the file recovery scheme requires that all I/O operations, when repeated,
must yield the same result. A job that opens all files as read only can be
checkpointed. A job that writes to a file and then reads the data back may also be
checkpointed. An example of I/O that could cause unpredictable results is reading,
writing, and then reading again the same area of a file.

Ensure Jobs are Restarted on an Appropriate Machine: A checkpointed serial
job must be restarted on a machine with the same processor and the same
operating system level, including service fixes, as the machine on which the
checkpoint was taken.

A checkpointed parallel job must be restarted on a machine with the same
processor, the same operating system level, including service fixes, and the same
SP switch adapter(s) as the machine on which the checkpoint was taken.

Choose a Supported Compiler: Compile your program with one of the following
supported compilers:

v For FORTRAN: xlf 5.1.1 or later releases

v For C and C++: xlC 3.6.x, or Visual Age C, C++ (VAC++) 4.1

Ensure all User’s Jobs are Linked to Checkpointing Libraries: All serial
checkpointing programs must be linked with the LoadLeveler libraries libchkrst.a
and chkrst_wrap.o . To ensure your checkpointing jobs are linked correctly, compile
your programs using the compile scripts found in the bin subdirectory of the
LoadLeveler release directory. These compile scripts are as follows:

crxlc (for use with C)
crxlC (for use with C++)
crxlf (for use with FORTRAN)

In all these scripts, be sure to substitute all occurrences of “RELEASEDIR” with the
location of the LoadLeveler release directory.

C Syntax
crxlc executable [args] source_file

Where:

executable
Is your checkpointable binary.

args Is one or more arguments you supply to the compiler (xlc -c).

120 Using and Administering LoadLeveler

source_file
Is your C source code.

Some examples are:
crxlc myprog myprog.c
crxlc myprog -qlanglvl=extended myprog.c

C++ Syntax
crxlC executable [args] source_file

Where:

executable
Is your checkpointable binary.

args Is one or more arguments you supply to the compiler (xlC -c).

source_file
Is your C++ source code.

Some examples are:
crxlC myprog myprog.C
crxlC myprog -qlanglvl=extended myprog.C

FORTRAN Syntax
crxlf executable [args] source_file

Where:

executable
Is your checkpointable binary.

args Is one or more arguments you supply to the compiler (xlf -c).

source_file
Is your FORTRAN source code.

Some examples are:
crxlf myprog myprog.f
crxlf myprog -qintlog -qfullpath myprog.f

How to Checkpoint a Job
There are several ways to checkpoint a job. To determine which type of
checkpointing is appropriate for your situation, refer to the following table:

To specify that: Do this:

Your serial job determines
when the checkpoint occurs

Add the following option to your job command file:

checkpoint = user_initiated

You can also select this option on the Build a Job window of the GUI.

User initiated checkpointing is available to FORTRAN, C, and C++ programs which
call the ckpt serial checkpointing API. See “Serial Checkpointing API” on page 253 for
more information.

Chapter 5. Administering and Configuring LoadLeveler 121

To specify that: Do this:

LoadLeveler automatically
checkpoints your serial job.

Add the following option to your job command file:

checkpoint = system_initiated

You can also select this option on the Build a Job window of the GUI.

For this type of checkpointing to work, system administrators must set two keywords in
the configuration file to specify how often LoadLeveler would take a checkpoint of the
job. These two keywords are:

MIN_CKPT_INTERVAL = number MAX_CKPT_INTERVAL = number
where number specifies a period, in seconds, between checkpoints taken for
running jobs. The time between checkpoints will be increased after each
checkpoint within these limits as follows:

v The first checkpoint is taken after a period of time equal to the
MIN_CKPT_INTERVAL has passed.

v The second checkpoint is taken after LoadLeveler waits twice as long
(MIN_CKPT_INTERVAL X 2)

v The third checkpoint is taken after LoadLeveler waits twice as long again
(MIN_CKPT_INTERVAL X 4) before taking the third checkpoint.

LoadLeveler continues to double this period until the value of
MAX_CKPT_INTERVAL has been reached, where it stays for the remainder of
the job.

A minimum value of 900 (15 minutes) and a maximum value of 7200 (2 hours) are
the defaults.

You can set these keyword values globally in the global configuration file so that all
machines in the cluster have the same value, or you can specify a different value for
each machine by modifying the local configuration files.

To enable both user initiated and system initiated checkpointing for a job, specify
checkpoint=system_initiated in your job command file, and code the ckpt API call in
your program.

System initiated checkpointing is not available to parallel jobs.

LoadLeveler restarts your
executable from an existing
checkpoint file when you
submit the job.

Pass the CHKPT_STATE environment variable using the LoadLeveler environment
keyword in your job command file. For more information, see “environment” on
page 41. You must also set the CHKPT_DIR and/or CHKPT_FILE environment
variables.

Your job not be
checkpointed

Add the following option to your job command file:

checkpoint = no

You can also select this option on the Build a Job window of the GUI. This option is
the default.

Step 15: Specify Process Tracking
When a job terminates, it’s orphaned processes may continue to consume or hold
resources, thereby degrading system performance, or causing jobs to hang or fail.
Process tracking allows LoadLeveler to cancel any processes (throughout the entire
cluster), left behind when a job terminates. Using process tracking is optional. There
are two keywords used in specifying process tracking:

PROCESS_TRACKING
To activate process tracking, set PROCESS_TRACKING=TRUE in the
LoadLeveler global configuration file. By default, PROCESS_TRACKING is set
to FALSE .

122 Using and Administering LoadLeveler

PROCESS_TRACKING_EXTENSION
This keyword is used to specify the path to the kernel extension binary
LoadL_pt_ke in the local or global configuration file. If the
PROCESS_TRACKING_EXTENSION keyword is not supplied, then
LoadLeveler will search the default directory $HOME/bin .

Step 16: Configuring LoadLeveler to use DCE Security Services
When LoadLeveler is configured to exploit DCE security, it uses PSSP and DCE
security services to:

v Authenticate the identity of users and programs interacting with LoadLeveler.

v Authorize users and programs to use LoadLeveler services. It will prevent
unauthorized users and programs from misusing resources or disrupting services.

v Delegate the user credentials at submit time to the Starter process to give the
user’s job the same DCE permissions at run time.

You can skip this section if you do not plan to use these security features or if you
plan to continue to use only the limited support for DCE available in LoadLeveler
2.1. Please consult “Usage Notes” on page 128 for additional information.

When LoadLeveler is configured to exploit DCE security, most of its interactions
with DCE are through the PSSP security services API. For this reason, it is
important that you configure PSSP security services before you configure
LoadLeveler for DCE. For more information on PSSP security services, please refer
to: RS/6000 SP Planning Volume 2, Control Workstation and Software Environment
(GA22-7281-05), Parallel System Support Programs for AIX Installation and
Migration Guide Version 3 Release 2 (GA22-7347-02), and Parallel System Support
Programs for AIX Administration Guide Version 3 Release 2 (SA22-7348-02).

DCE maintains a registry of all DCE principals which have been authorized to login
to the DCE cell. In order for LoadLeveler daemons to login to DCE, DCE accounts
must be set up, and DCE key files must be created for these daemons. In
LoadLeveler 2.2 each LoadLeveler daemon on each node is associated with a
different DCE principal. The DCE principal of the Schedd daemon running on node
A is distinct from the DCE principal of the Schedd daemon running on node B.
Since it is possible for up to seven LoadLeveler daemons to run on any particular
node (Master, Negotiator, Schedd, Startd, Kbdd, Starter, and GSmonitor), the
number of DCE principal accounts and key files that must be created could reach
as high as 7x(number of nodes). Since it is not always possible to know in advance
on which node a particular daemon will run, a conservative approach would be to
create accounts and key files for all seven daemons on all nodes in a given
LoadLeveler cluster. However, it is only necessary to create accounts and keyfiles
for DCE principals which will actually be instantiated and run in the cluster.

These are the steps used for configuring LoadLeveler for DCE. We recommend that
you use SMIT and the lldcegrpmaint command to perform this task. The manual
steps are also described in “Manual Configuration” on page 125, and may be useful
should you need to create a highly customized LoadLeveler environment. Some of
the names used in this section are the default names as defined in the file
/usr/lpp/ssp/config/spsec_defaults and can be overridden with appropriate
specifications in the file /spdata/sys1/spsec/spsec_overrides. Also, the term
″LoadLeveler node″ is used to refer to a node on an SP system that will be part of
a LoadLeveler cluster.

Using SMIT and the lldcegrpmaint command:
1. Login to the SP control workstation as root , then login to DCE as cell_admin .

Chapter 5. Administering and Configuring LoadLeveler 123

2. Start the SMIT program. From SMIT’s main menu, select the RS/6000 SP
System Management option, then select the RS/6000 SP Security option in
the next menu.

3. Perform the appropriate steps associated with this menu to configure the
security features of this SP system. From LoadLeveler’s perspective, the
important actions are:

v Create dcehostnames

v Configure SP Trusted Services to use DCE Authentication

Before continuing to step 4, ensure that:

v DCE hostnames for LoadLeveler nodes are defined.

v A DCE group named spsec-services and a DCE organization named
spsec-services are created.

v The DCE principals of the LoadLeveler daemons on LoadLeveler nodes are
created.

v The DCE principals of the LoadLeveler daemons on LoadLeveler nodes are
added to the spsec-services group and the spsec-services organization.

v A DCE account is created for each DCE principal associated with the
LoadLeveler daemons on the SP system.

v A DCE key file is created for each LoadLeveler daemon on the LoadLeveler
nodes.

4. If the LoadLeveler cluster consists of nodes spanning several SP systems, then
you should repeat step 1 on page 123 through step 3 for each SP system.

5. PSSP security services use certain fields in the SDR (System Data Repository)
to determine the current software configuration. Use the command ″splstdata
-p″ to verify that the field ts_auth_methods is set to either dce or dce:compat .
If ts_auth_methods is set to dce:compat then either DCE or non-DCE
authentication is allowed. For some PSSP applications, this setting also implies
that if DCE authentication is activated but, DCE authentication cannot be
performed, then non-DCE authentication will be used. However, LoadLeveler
can not change authentication methods dynamically, and the dce:compat
setting simply indicates that LoadLeveler can be brought up in either DCE or
non-DCE authentication modes using the DCE_ENABLEMENT keyword.

6. Add these statements to the LoadLeveler global configuration file:
DCE_ENABLEMENT = TRUE
DCE_ADMIN_GROUP = LoadL-admin
DCE_SERVICES_GROUP = LoadL-services

DCE_ENABLEMENT must be set to TRUE to activate the DCE security
features of LoadLeveler version 2.2. The LoadL-admin group should be
populated with DCE principals of users who are to be given LoadLeveler
administrative priviledges. For more information on populating the LoadL-admin
group, see 9 on page 125. The LoadL-services group should be populated with
the DCE principals of all the LoadLeveler daemons that will be running in the
current cluster. You can use the lldcegrpmaint command to automate this
process. For more information on populating the LoadL-services group, see step
8 on page 125. Note that these daemons are already members of the
spsec-services group. If there is more than one DCE-enabled LoadLeveler
cluster within the same DCE cell, then it is important that the name assigned to
DCE_SERVICES_GROUP for each cluster be distinct; this will avoid any
potential operational conflict.

124 Using and Administering LoadLeveler

7. Add DCE hostnames to the machine stanzas of the LoadLeveler administration
file. The machine stanza of each node defined in the LoadLeveler administration
file must contain a statement with this format:
dce_host_name = DCE hostname

Execute either ″SDRGetObjects Node dcehostname, ″ or ″llextSDR ″ to obtain
a listing of DCE hostnames of nodes on an SP system.

8. Execute the command:
lldcegrpmaint config_pathname admin_pathname

where config_pathname is the pathname of the LoadLeveler global configuration
file and admin_pathname is the pathname of the LoadLeveler administration file.
The lldcegrpmaint command will:

v Create the LoadL-services and LoadL-admin DCE groups (if they do not
already exist).

v Add the DCE principals of all the LoadLeveler daemons in the LoadLeveler
cluster defined by the admin_pathname file to the LoadL-services group.

For more information about the lldcegrpmaint command, see “lldcegrpmaint -
LoadLeveler DCE group Maintenance Utility” on page 180.

9. Add the DCE principals of users who will have LoadLeveler administrative
authority for the cluster to the LoadL-admin group. For example, this command
adds loadl to the LoadL-admin group:
dcecp -c group add LoadL-admin -member loadl

Manual Configuration: Here is an example of the steps you must take to
configure LoadLeveler for DCE.

In this example, the LoadLeveler cluster consists of 3 nodes of an SP system which
belong to the same DCE cell. Their hostnames and DCE hostnames are the same:
c163n01.pok.ibm.com, c163n02.pok.ibm.com, and c163n03.pok.ibm.com. Assume
that the basic PSSP security setup steps have been performed, and that the DCE
group spsec-services and the DCE organization spsec-services have been
created.

1. Login to any node in the DCE cell as root and login to DCE as cell_admin .

2. Create LoadLeveler’s product directory if it does not already exist. First, see if
the directory has already been created:
dcecp -c cdsli /.:/subsys

This command lists the contents of the /.:/subsys directory in DCE.
LoadLeveler’s product name within DCE is LoadL , so its product directory is
/.:/subsys/LoadL . If this directory already exists, then continue to the next
step. If it does not exist, issue to following command to create it:
dcecp -c directory create /.:/subsys/LoadL

3. Create the DCE principal names for all of the LoadLeveler daemons in the
LoadLeveler cluster. PSSP security services expect the DCE principal name of
a LoadLeveler daemon to have the format:
product_name/dce_host_name/dce_daemon_name

where:

product_name
is the product name and should always be set to LoadL .

Chapter 5. Administering and Configuring LoadLeveler 125

dce_host_name
is the DCE hostname of the node on which the daemon will run.

dce_daemon_name
is the DCE name of the daemon and is defined in the file
/usr/lpp/ssp/config/spsec_defaults . Go to the LoadLeveler section of this
file. You will find a SERVICE record similar to this for all the seven
daemons:
SERVICE:LoadL/Master:kw:root:system

The relevant portion of this record is Master ; this is the DCE daemon
name of LoadL_master . The DCE daemon names of other daemons can
be identified in a similar manner.

For the c163n01.pok.ibm.com node, the following commands will create the
desired principal names:
dcecp -c principal create LoadL/c163n01.pok.ibm.com/Master
dcecp -c principal create LoadL/c163n01.pok.ibm.com/Negotiator
dcecp -c principal create LoadL/c163n01.pok.ibm.com/Schedd
dcecp -c principal create LoadL/c163n01.pok.ibm.com/Kbdd
dcecp -c principal create LoadL/c163n01.pok.ibm.com/Startd
dcecp -c principal create LoadL/c163n01.pok.ibm.com/Starter
dcecp -c principal create LoadL/c163n01.pok.ibm.com/GSmonitor

These commands must then be repeated for each node in the LoadLeveler
cluster, replacing the dce_host_name with the DCE hostname of each
respective node.

4. Add the principals defined in step 3 on page 125 to the PSSP security
services’ services group. This group is named spsec-services . PSSP security
services require that any daemon using their APIs be members of this group.
This command will add the DCE principal of the Master daemon on node
c163n01 to the spsec-services group.
dcecp -c group add spsec-services -member LoadL/c163n01.pok.ibm.com/Master

This operation must be repeated for all of the other LoadLeveler daemons on
c163n01, and the complete set of operations must be repeated for all of the
nodes in the LoadLeveler cluster.

5. Add the principals defined in step 3 on page 125 to the spsec-services
organization. The following command will add the DCE principal of the Master
daemon on node c163n01 to the spsec-services organization.
dcecp -c organization add spsec-services -member LoadL/c163n01.pok.ibm.com/Master

This operation must be repeated for all of the other LoadLeveler daemons on
c163n01, and the complete set of operations must be repeated for all of the
nodes in the LoadLeveler cluster.

6. Create a DCE account for each of the principals defined in step 3 on
page 125. This series of commands will create a DCE account for the Master
daemon on node c163n01:
dcecp <Enter>
dcecp> account create LoadL/c163n01.pok.ibm.com/Master \

-group spsec-services -organization spsec-services \
-password service-password -mypwd cell_admin's-password

dcecp> quit

The service-password passed to DCE in this command can be any valid DCE
password. Please take note of it since you will need it when you create the key
file for this daemon in step 8 on page 127. The continuation character ″\″ is not

126 Using and Administering LoadLeveler

supported by dcecp , but appears in the example merely for clarity. This
operation must be repeated for the other LoadLeveler daemons on c163n01,
and the complete set of operations must be repeated for all of the nodes in the
LoadLeveler cluster.

7. Create directories to contain the key files for the principals defined in step 3 on
page 125.
mkdir -p /spdata/sys1/keyfiles/LoadL/dce_host_name

You must login to the appropriate node to perform this operation. This
operation must be repeated for every node in the LoadLeveler cluster.

NOTE: The directory /spdata/sys1/keyfiles should already exist on each node
in the cluster which has been installed with a level of PSSP software that
supports DCE Security exploitation. If this directory does not exist, then the
node cannot support DCE Security and LoadLeveler 2.2 in DCE mode will not
run on it. If this configuration seems to be in error, contact your system
administrator to determine which nodes in the cluster should support DCE
Security.

8. Create a key file for each LoadLeveler daemon on the node on which it will
run. The key file contains security-related information specific to each daemon.
Use this series of commands:
dcecp <Enter>
dcecp> keytab create LoadL/c163n01.pok.ibm.com/Master \

-storage /spdata/sys1/keyfiles/LoadL/c163n01.pok.ibm.com/Master \
-data { LoadL/c163n01.pok.ibm.com/Master plain 1 service-password }

dcecp> quit

You must login to node c163n01 to perform this operation. DCE must be able
to locate the key file locally, otherwise the daemon’s login to DCE on startup
will fail. The principal name passed to DCE in the preceeding example is the
same principal name defined in step 3 on page 125. The AIX path passed with
the ″-storage″ flag should point to the same directory created in step 7. The
principal name passed with the ″-data″ flag should match the principal name
used at the beginning of the command. The password used in the
service-password field must be the same as the service password defined
when this principal’s account was created in step 6 on page 126.

This operation must be repeated for all of the other LoadLeveler daemons on
node c163n01, and the complete set of operations must be repeated for all of
the nodes in the LoadLeveler cluster.

9. Perform steps 5 on page 124, 6 on page 124, and 7 on page 125 of “Using
SMIT and the lldcegrpmaint command” on page 123.

10. Create the DCE groups LoadL-admin, and LoadL-services. This command
creates the DCE group LoadL-admin :
dcecp -c group create LoadL-admin

11. Add the DCE principals of users who will have LoadLeveler administrative
authority for the cluster to the LoadL-admin group. This command adds loadl
to the LoadL-admin group:
dcecp -c group add LoadL-admin -member loadl

12. Add the principals defined in step 3 on page 125 to the LoadL-services group.
This command will add the DCE principal of the Master daemon on node
c163n01.pok.ibm.com to LoadL-services :
dcecp -c group add LoadL-services -member LoadL/c163n01.pok.ibm.com/Master

Chapter 5. Administering and Configuring LoadLeveler 127

This operation must be repeated for all of the other LoadLeveler daemons on
node c163n01, and the complete set of operations must be repeated for all of
the nodes in the LoadLeveler cluster.

Usage Notes:
1. Limited support for DCE security was available in a previous version of

LoadLeveler. In version 2.1, the configuration keyword
″DCE_AUTHENTICATION_PAIR = program1, program2″ was used to activate
LoadLeveler support for DCE security and to specify to LoadLeveler which
programs should be used to authenticate DCE security credentials. program1
obtains a handle (an opaque credentials object), at the time the job is submitted
to LoadLeveler, which is used to authenticate to DCE. program2 uses the
handle obtained by program1 to authenticate to DCE before starting the job on
the executing machine(s). These programs could be the default LoadLeveler
binaries llgetdce and llsetdce , or a pair of installation defined binaries. See
pages 129, and 295 for more information on the
DCE_AUTHENTICATION_PAIR keyword.

In LoadLeveler 2.2, this limited form of support for DCE is still available. If the
DCE_ENABLEMENT keyword is not defined, then the
DCE_AUTHENTICATION_PAIR keyword can still be used to activate this legacy
feature. If this level of DCE support meets your requirements, then you can
ignore the setup steps in this section. However, setting the
DCE_ENABLEMENT configuration keyword to TRUE activates a more
comprehensive level of support for DCE . In this case, LoadLeveler will use the
PSSP security services API to perform mutual authentication of all appropriate
transactions in addition to using llgetdce and llsetdce (or the pair of programs
specified by DCE_AUTHENTICATION_PAIR) to obtain the opaque credentials
object and to authenticate to DCE before starting the job. Unless you want to
specify a pair of programs other than the default llgetdce and llsetdce binaries,
the use of the DCE_AUTHENTICATION_PAIR keyword in the configuration file
is optional when ″DCE_ENABLEMENT = TRUE ″.

2. When DCE_ENABLEMENT is set to TRUE, LoadLeveler uses a different set of
criteria to determine who owns job steps, and who has administrator privileges.

v LoadLeveler considers you to be the owner of a job step if your DCE
principal matches the DCE principal associated with that job step.

v LoadLeveler administrators are usually defined to LoadLeveler through a list
of names associated with the LOADL_ADMIN keyword. However, when
DCE_ENABLEMENT is TRUE, this list is no longer used for this purpose.
Instead, users and processes whose DCE principals are members of the
LoadL-admin DCE group are given LoadLeveler administrative privileges.

Note: The LOADL_ADMIN keyword is also used to provide LoadLeveler with a
list of users who are to receive mail notification of problems encountered by the
LoadL_master daemon. This function is not affected by the
DCE_ENABLEMENT keyword.

3. If DCE_ENABLEMENT is set to TRUE, you must login to DCE with the
dce_login command before attempting to execute any LoadLeveler command.
Also, if an AIX user’s user name is different from the user’s DCE principal
name, then the AIX user must have a .k5login file in the home directory
specifying which DCE principal may execute using the AIX account. For
example, if your DCE principal in the cell local_dce_cell is user1_dce , and
your AIX user name is user1 , then you will have to add an entry such as
″user1_dce@local_dce_cell″ to the .k5login file in your home directory.

128 Using and Administering LoadLeveler

Step 17: Specify Additional Configuration File Keywords
This section describes keywords that were not mentioned in the previous
configuration steps. Unless your installation has special requirements for any of
these keywords, you can use them with their default settings.

Note: For the keywords listed below which have a number as the value on the right
side of the equal sign, that number must be a numerical value and cannot be
an arithmetic expression.

ACTION_ON_MAX_REJECT = HOLD | SYSHOLD | CANCEL
Specifies the state in which jobs are placed when their rejection count has
reached the value of the MAX_JOB_REJECT keyword. HOLD specifies that
jobs are placed in User Hold status; SYSHOLD specifies that jobs are placed in
System Hold status; CANCEL specifies that jobs are canceled. The default is
HOLD. When a job is rejected, LoadLeveler sends a mail message stating why
the job was rejected.

AFS_GETNEWTOKEN = myprog
where myprog is an administrator supplied program that, for example, can be
used to refresh an AFS token. The default is to not run a program.

For more information, see “Handling an AFS Token” on page 295.

DCE_AUTHENTICATION_PAIR = program1, program2
where program1 and program2 are LoadLeveler or installation supplied
programs that are used to authenticate DCE security credentials. program1
obtains a handle (an opaque credentials object), at the time the job is
submitted, which is used to authenticate to DCE. program2 is the path name of
a LoadLeveler or installation supplied program that uses the handle obtained by
program1 to authenticate to DCE before starting the job on the executing
machine(s).

You must specify this keyword in order to enable DCE authentication. To use
LoadLeveler’s default DCE authentication method, specify:
DCE_AUTHENTICATION_PAIR = $(BIN)/llgetdce, $(BIN)/llsetdce

To use your own DCE authentication method, substitute your own programs into
the keyword definition. For more information on DCE security credentials, see
“Handling DCE Security Credentials” on page 294.

DRAIN_ON_SWITCH_TABLE_ERROR = true | false
When DRAIN_ON_SWITCH_TABLE_ERROR is set to true, the startd will be
drained when the switch table fails to unload. This will flag the administator that
intervention may be required to unload the switch table. The default is false .

MACHINE_UPDATE_INTERVAL = number
where number specifies the time period, in seconds, during which machines
must report to the central manager. Machines that do not report in this number
of seconds are considered down. The default is 300 seconds.

MAX_JOB_REJECT = number
where number specifies the number of times a job can be rejected before it is
removed (cancelled) or put in User Hold or System Hold status. That is, a
rejected job is redispatched until the MAX_JOB_REJECT value is reached. The
default is -1, meaning a job is redispatched an unlimited number of times. A job
that cannot run for various reasons (such as a uid mismatch, unavailable
resources, or wrong permissions) on one machine will be rejected on that
machine, and LoadLeveler will attempt to run the job on another machine. A

Chapter 5. Administering and Configuring LoadLeveler 129

value of 0 means that if the job is rejected, it is immediately removed. (For
related information, see the NEGOTIATOR_REJECT_DEFER keyword in this
section.)

NEGOTIATOR_INTERVAL = number
where number specifies the interval, in seconds, at which the negotiator
daemon performs a “negotiation loop” during which it attempts to assign
available machines to waiting jobs. A negotiation loop also occurs whenever job
states or machine states change. The default is 30 seconds.

NEGOTIATOR_CYCLE_DELAY = number
where number specifies the time, in seconds, the negotiator delays between
periods when it attempts to schedule jobs. This time is used by the negotiator
daemon to respond to queries, reorder job queues, collect information about
changes in the states of jobs, etc. Delaying the scheduling of jobs might
improve the overall performance of the negotiator by preventing it from
spending excessive time attempting to schedule jobs. The
NEGOTIATOR_CYCLE_DELAY must be less than the
NEGOTIATOR_INTERVAL . The default is 0 seconds.

NEGOTIATOR_LOADAVG_INCREMENT = number
where number specifies the value the negotiator adds to the startd machine’s
load average whenever a job in the Pending state is queued on that machine.
This value is used to compensate for the increased load caused by starting
another job. The default value is .5.

NEGOTIATOR_PARALLEL_DEFER = number
where number specifies the amount of time in seconds that defines how long a
job stays out of the queue after it fails to get the correct number of processors.
This keyword applies only to the default LoadLeveler scheduler. This keyword
must be greater than the NEGOTIATOR_INTERVAL . value; if it is not, the
default is used. The default, set internally by LoadLeveler, is
NEGOTIATOR_INTERVAL multiplied by 5.

NEGOTIATOR_PARALLEL_HOLD = number
where number specifies the amount of time in seconds that defines how long a
job is given to accumulate processors. This keyword applies only to the default
LoadLeveler scheduler. This keyword must be greater than the
NEGOTIATOR_INTERVAL value; if it is not, the default is used. The default, set
internally by LoadLeveler, is NEGOTIATOR_INTERVAL multiplied by 5.

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = number
where number specifies the amount of time in seconds between calculation of
the SYSPRIO values for waiting jobs. The default is 120 seconds. Recalculating
the priority can be CPU-intensive; specifying low values for the
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL keyword may lead to a
heavy CPU load on the negotiator if a large number of jobs are running or
waiting for resources. A value of 0 means the SYSPRIO values are not
recalculated.

You can use this keyword to base the order in which jobs are run on the current
number of running, queued, or total jobs for a user or a group. For more
information, see “Step 6: Prioritize the Queue Maintained by the Negotiator” on
page 105.

NEGOTIATOR_REJECT_DEFER = number
where number specifies the amount of time in seconds the negotiator waits
before it considers scheduling a job to a machine that recently rejected the job.

130 Using and Administering LoadLeveler

The default is 120 seconds. (For related information, see the
MAX_JOB_REJECT keyword in this section.)

NEGOTIATOR_REMOVE_COMPLETED = number
where number is the amount of time in seconds that you want the negotiator to
keep information regarding completed and removed jobs so that you can query
this information using the llq command. The default is 0 seconds.

NEGOTIATOR_RESCAN_QUEUE = number
where number specifies the amount of time in seconds that defines how long
the negotiator waits to rescan the job queue for machines which have bypassed
jobs which could not run due to conditions which may change over time. This
keyword must be greater than the NEGOTIATOR_INTERVAL value; if it is not,
the default is used. The default is 900 seconds.

OBITUARY_LOG_LENGTH = number
where number specifies the number of lines from the end of the file that are
appended to the mail message. The master daemon mails this log to the
LoadLeveler administrators when one of the daemons dies. The default is 25.

POLLING_FREQUENCY = number
where number specifies the interval, in seconds, with which the startd daemon
evaluates the load on the local machine and decides whether to suspend,
resume, or abort jobs. This is also the minimum interval at which the kbdd
daemon reports keyboard or mouse activity to the startd daemon. A value of 5
is the default.

POLLS_PER_UPDATE = number
where number specifies how often, in POLLING_FREQUENCY intervals, startd
daemon updates the central manager. Due to the communication overhead, it is
impractical to do this with the frequency defined by the
POLLING_FREQUENCY keyword. Therefore, the startd daemon only updates
the central manager every nth (where n is the number specified for
POLLS_PER_UPDATE) local update. Change POLLS_PER_UPDATE when
changing the POLLING_FREQUENCY . The default is 6.

PUBLISH_OBITUARIES = true| false
where true specifies that the master daemon sends mail to the administrator(s),
identified by LOADL_ADMIN keyword, when any of the daemons it manages
dies abnormally.

RESTARTS_PER_HOUR = number
where number specifies how many times the master daemon attempts to restart
a daemon that dies abnormally. Because one or more of the daemons may be
unable to run due to a permanent error, the master only attempts
$(RESTARTS_PER_HOUR) restarts within a 60 minute period. Failing that, it
sends mail to the administrator(s) identified by the LOADL_ADMIN keyword
and exits. The default is 12.

SCHEDD_INTERVAL = number
where number specifies the interval, in seconds, at which the schedd daemon
checks the local job queue and updates the negotiator daemon. The default is
60 seconds.

WALLCLOCK_ENFORCE = true| false
Where true specifies that the wall_clock_limit on the job will be enforced. The
WALLCLOCK_ENFORCE keyword is only valid when the External Scheduler is
enabled.

Chapter 5. Administering and Configuring LoadLeveler 131

User-Defined Variables
This type of variable, which is generally created and defined by the user, can be
named using any combination of letters and numbers. A user-defined variable is set
equal to values, where the value defines conditions, names files, or sets numeric
values. For example, you can create a variable named MY_MACHINE and set it
equal to the name of your machine named iron as follows:

MY_MACHINE = iron.ore.met.com

You can then identify the keyword using a dollar sign ($) and parentheses. For
example, the literal $(MY_MACHINE) following the definition in the previous
example results in the automatic substitution of iron.ore.met.com in place of
$(MY_MACHINE).

User-defined definitions may contain references, enclosed in parentheses, to
previously defined keywords. Therefore:

A = xxx
C = $(A)

is a valid expression and the resulting value of C is xxx. Note that C is actually
bound to A, not to its value, so that

A = xxx
C = $(A)
A = yyy

is also legal and the resulting value of C is yyy.

The sample configuration file shipped with the product defines and uses some
“user-defined” variables.

LoadLeveler Variables
The LoadLeveler product includes variables that you can use in the configuration
file. LoadLeveler variables are evaluated by the LoadLeveler daemons at various
stages. They do not require you to use any special characters (such as a
parenthesis or a dollar sign) to identify them.

LoadLeveler provides the following variables that you can use in your configuration
file statements.

Arch
indicates the system architecture. Note that Arch is a special case of a
LoadLeveler variable called a machine variable. You specify a machine variable
using the the following format:
variable : $(value)

ConsumableCpus
the number of ConsumableCpus currently available on the machine, if
ConsumableCpus is defined in the SCHEDULE_BY_RESOURCES . If it is not
defined in the SCHEDULE_BY_RESOURCES , then it is equivalent to Cpus .

ConsumableMemory
the amount of ConsumableMemory currently available on the machine, if
ConsumableMemory is defined in the SCHEDULE_BY_RESOURCES . If it is
not defined in the SCHEDULE_BY_RESOURCES , then it is equivalent to
Memory .

ConsumableVirtualMemory
the amount of ConsumableVirtualMemory currently available on the machine,
if ConsumableVirtualMemory is defined in the

132 Using and Administering LoadLeveler

SCHEDULE_BY_RESOURCES . If it is not defined in the
SCHEDULE_BY_RESOURCES , then it is equivalent to VirtualMemory .

Cpus
the number of CPU’s installed.

CurrentTime
the UNIX date ; the current system time, in seconds, since January 1, 1970, as
returned by the time() function.

CustomMetric
sets a relative machine priority.

Disk
the free disk space in kilobytes on the file system where the executables for the
LoadLeveler jobs assigned to this machine are stored. This refers to the file
system that is defined by the execute keyword.

domain or domainname
dynamically indicates the official name of the domain of the current host
machine where the program is running. Whenever a machine name can be
specified or one is assumed, a domain name is assigned if none is present.

EnteredCurrentState
the value of CurrentTime when the current state (START, SUSPEND, etc) was
entered.

host or hostname
dynamically indicates the official name of the host machine where the program
is running. host returns the machine name without the domain name;
hostname returns the machine and the domain.

KeyboardIdle
the number of seconds since the keyboard or mouse was last used. It also
includes any telnet or interactive activity from any remote machine.

LoadAvg
The Berkely one-minute load average, a measure of the CPU load on the
system. The load average is the average of the number of processes ready to
run or waiting for disk I/O to complete. The load average does not map to CPU
time.

Machine
indicates the name of the current machine. Note that Machine is a special case
of a LoadLeveler variable called a machine variable. See the description of the
Arch variable for more information.

Memory
the physical memory installed on the machine in megabytes.

MasterMachPriority
a value that is equal to 1 for nodes which are master nodes, and is equal to 0
otherwise.

OpSys
indicates the operating system on the host where the program is running. This
value is automatically determined and need not be defined in the configuration
file. Note that OpSys is a special case of a LoadLeveler variable called a
machine variable. See the description of the Arch variable for more information.

QDate
the difference in seconds between when LoadLeveler (specifically the negotiator
daemon) comes up and when the job is submitted using llsubmit.

Chapter 5. Administering and Configuring LoadLeveler 133

Speed
the relative speed of a machine.

State
the state of the startd daemon.

tilde
the home directory for the LoadLeveler userid.

UserPrio
the user defined priority of the job. The priority ranges from 0 to 100, with
higher numbers corresponding to greater priority.

VirtualMemory
the size of available swap space on the machine in kilobytes.

Time: You can use the following time variables in the START, SUSPEND,
CONTINUE, VACATE, and KILL expressions. If you use these variables in the
START expression and you are operating across multiple time zones, unexpected
results may occur. This is because the negotiator daemon evaluates the START
expressions and this evaluation is done in the time zone in which the negotiator
resides. Your executing machine also evaluates the START expression and if your
executing machine is in a different time zone, the results you may receive may be
inconsistent. To prevent this inconsistency from occurring, ensure that both your
negotiator daemon and your executing machine are in the same time zone.

tm_hour
the number of hours since midnight (0-23).

tm_min
number of minutes after the hour (0-59).

tm_sec
number of seconds after the minute (0-59).

tm_isdst
Daylight Savings Time flag: positive when in effect, zero when not in effect,
negative when information is unavailable. For example, to start jobs between
5PM and 8AM during the month of October, factoring in an adjustment for
Daylight Savings Time, you can issue:
START: (tm_mon == 9) && (tm_hour < 8) && (tm_hour > 17) && (tm_isdst = 1)

Date:

tm_mday
the number of the day of the month (1-31).

tm_wday
number of days since Sunday (0-6).

tm_yday
number of days since January 1 (0-365).

tm_mon
number of months since January (0-11).

tm_year
the number of years since 1900 (0-9999). For example:
tm_year == 100

denotes the year 2000.

134 Using and Administering LoadLeveler

tm4_year
The integer representation of the current year. For example:
tm4_year == 2010

denotes the year 2010.

Keyword Summary
This section contains summaries keywords you can use in the administration file
and those you can use in the configuration file.

Administration File Keywords

The following table contains a brief description of the keywords you can use in the
administration file. For more information on a specific keyword, see the section and
page number referenced in the “For Details” column.

Admin. File Keyword Stanza(s) Brief Description For Details

account User, Group A list of account numbers available
to a user submitting jobs.

“Step 2: Specify User
Stanzas” on page 81

adapter_name Adapter Specifies the name the operating
system uses to refer to an interface
card installed on a node (such as
en0).

“Step 5: Specify Adapter
Stanzas” on page 95

adapter_stanzas Machine A list of adapter stanza names that
define the adapters on a machine
which can be requested.

“Step 1: Specify Machine
Stanzas” on page 75

admin Group, Class A list of administrators for a group or
class.

“Step 3: Specify Class
Stanzas” on page 84

alias Machine Lists one or more alias names to
associate with the machine name.

“Step 1: Specify Machine
Stanzas” on page 75

central_manager Machine When true , this designates the
machine as the LoadLeveler central
manager.

“Step 1: Specify Machine
Stanzas” on page 75

class_comment Class Text characterizing the class “Step 3: Specify Class
Stanzas” on page 84

core_limit Class Specifies the hard limit and/or soft
limit for the size of a core file a job
can create.

“Limit Keywords” on page 88

cpu_limit Class Specifies the hard limit and/or soft
limit for the CPU time a job can use.

“Limit Keywords” on page 88

cpu_speed_scale Machine Determines whether CPU time is
normalized according to machine
speed.

“Step 1: Specify Machine
Stanzas” on page 75

data_limit Class Specifies the hard limit and/or soft
limit for the size of a data segment a
job can use.

“Limit Keywords” on page 88

default_class User A class name that is the default
value assigned to jobs submitted by
users for which no class statement
appears.

“Step 2: Specify User
Stanzas” on page 81

default_group User A group name to which the user
belongs.

“Step 2: Specify User
Stanzas” on page 81

Chapter 5. Administering and Configuring LoadLeveler 135

Admin. File Keyword Stanza(s) Brief Description For Details

default_interactive_class User A class to which interactive jobs are
assigned for jobs submitted by users
who do not specify a class using
LOADL_INTERACTIVE_CLASS.

“Step 2: Specify User
Stanzas” on page 81

default_resources Class Specifies the default amount of
resources consumed by a task of a
job step, provided that no resources
keyword is coded for the step in the
job command file.

“Step 3: Specify Class
Stanzas” on page 84

exclude_groups Class A list of groups names identifying
those who cannot submit jobs of a
particular class.

“Step 3: Specify Class
Stanzas” on page 84

exclude_users Class, Group A list of user names identifying those
who cannot submit jobs of a
particular class or who are not
members of the group.

“Step 3: Specify Class
Stanzas” on page 84

feature Machine A string specifying unique
characteristics of a machine.

“Step 3: Define LoadLeveler
Machine Characteristics” on
page 101

file_limit Class Specifies the hard limit and/or soft
limit for the size of a file that a job
can create.

“Limit Keywords” on page 88

include_groups Class A list of groups names identifying
those who can submit jobs of a
particular class.

“Step 3: Specify Class
Stanzas” on page 84

include_users Class, Group A list of user names identifying those
who can submit jobs of a particular
class or who do belong to the group.

“Step 3: Specify Class
Stanzas” on page 84

interface_address Adapter Specifies the IP address by which
the adapter is known to other nodes
in the network.

“Step 5: Specify Adapter
Stanzas” on page 95

interface_name Adapter Specifies the name by which the
adapter is known to other nodes in
the network.

“Step 5: Specify Adapter
Stanzas” on page 95

job_cpu_limit Class Specifies the hard limit and/or soft
limit for the amount of CPU time an
individual job step can use per
processor.

“Limit Keywords” on page 88

machine_mode Machine Specifies the type of jobs this
machine can run (batch, interactive,
or both).

“Step 1: Specify Machine
Stanzas” on page 75

master_node_exclusive Machine When true , this machine is used
only as a master node for parallel
jobs.

“Step 1: Specify Machine
Stanzas” on page 75

master_node_requirement Class When true , jobs in this class have
the requirement that they run on a
master node having the
master_node_exclusive setting.

“Step 3: Specify Class
Stanzas” on page 84

max_adapter_windows Machine Specifies how many of a machine’s
available adapter windows
LoadLeveler can use.

“Step 1: Specify Machine
Stanzas” on page 75

136 Using and Administering LoadLeveler

Admin. File Keyword Stanza(s) Brief Description For Details

maxidle User, Group Maximum number of idle jobs this
user or group can have
simultaneously.

“Step 2: Specify User
Stanzas” on page 81

maxjobs User, Class,
Group

Maximum number of jobs this user,
class, or group can have running
simultaneously.

“Step 2: Specify User
Stanzas” on page 81

max_jobs_scheduled Machine The maximum number of jobs that
this machine can run.

“Step 1: Specify Machine
Stanzas” on page 75

max_node User, Class,
Group

The maximum number of nodes a
user can request for a parallel job.

“Step 2: Specify User
Stanzas” on page 81

max_processors User, Class,
Group

The maximum number of machines
a user can request for a parallel job.

“Step 2: Specify User
Stanzas” on page 81

maxqueued Group, User The maximum number of jobs a
single group or user can have
queued at the same time.

“Step 2: Specify User
Stanzas” on page 81

name_server Machine A list of nameservers used for a
machine.

“Step 1: Specify Machine
Stanzas” on page 75

network_type Adapter The type of network the adapter
supports (for example, Ethernet).
This is an administrator defined
name.

“Step 5: Specify Adapter
Stanzas” on page 95

nice Class Increments the nice value of a job. “Step 3: Specify Class
Stanzas” on page 84

NQS_class Class When true , any job submitted to this
class is routed to an NQS machine.

“Step 3: Specify Class
Stanzas” on page 84

NQS_query Class A list of queue names to use to
monitor and cancel jobs.

“Step 3: Specify Class
Stanzas” on page 84

NQS_submit Class A name that identifies the name of
the NQS pipe queue to which the job
will be routed.

“Step 3: Specify Class
Stanzas” on page 84

pool_list Machine Specifies a list of pool numbers to
which the machine belongs. Do not
use negative numbers in a machine
pool_list.

“Step 1: Specify Machine
Stanzas” on page 75

priority User, Class,
Group

A number that identifies the priority
of the appropriate user, class, or
group.

“Step 2: Specify User
Stanzas” on page 81

pvm_root Machine A directory in which PVM 3.3 is
installed.

“Step 1: Specify Machine
Stanzas” on page 75

resources Machine Specifies quantities of the
consumable resources initially
available on the machine.

“Step 1: Specify Machine
Stanzas” on page 75

rss_limit Class Specifies the hard limit and/or soft
limit for the resident set size for a
job.

“Limit Keywords” on page 88

schedd_fenced Machine When true , the central manager
ignores connections from this schedd
machine.

“Step 1: Specify Machine
Stanzas” on page 75

Chapter 5. Administering and Configuring LoadLeveler 137

Admin. File Keyword Stanza(s) Brief Description For Details

schedd_host Machine When true , this machine is used to
help submit-only machines access
LoadLeveler hosts that run
LoadLeveler jobs.

“Step 1: Specify Machine
Stanzas” on page 75

spacct_excluse_enable Machine Specifies whether the SP accounting
function is informed whenever this
machine is being used exclusively by
a particular job.

“Step 1: Specify Machine
Stanzas” on page 75

speed Machine The weight associated with the
machine.

“Step 1: Specify Machine
Stanzas” on page 75

stack_limit Class Specifies the hard limit and/or soft
limit for the size of a stack.

“Limit Keywords” on page 88

submit_only Machine When true , designates this as a
submit-only machine.

“Step 1: Specify Machine
Stanzas” on page 75

switch_node_number Adapter The node on which the SP switch
adapter is installed.

“Step 5: Specify Adapter
Stanzas” on page 95

total_tasks User, Class,
Group

The maximum number of tasks a
user can request for a parallel job.

“Step 2: Specify User
Stanzas” on page 81

type All The type of stanza. “Administering LoadLeveler”
on page 74

wall_clock_limit Class Specifies the hard limit and/or soft
limit for the amount of elapsed time
for which a job can run.

“Limit Keywords” on page 88

Configuration File Keywords and LoadLeveler Variables
The following tables contain a brief description of the keywords you can use in the
configuration file. The term configuration file keywords refers to keywords,
user-defined variables, and LoadLeveler variables. A summary table is provided for
each of the three types of configuration file keywords.

Keywords
The following table serves only as a reference. For more information on a specific
keyword, see the section and page number referenced in the “For Details” column.

Configuration File Keyword Brief Description For Details

ACCT Turns the accounting function on (or
off).

“Step 9: Define Job
Accounting” on page 110

ACCT_VALIDATION The module called to perform
account validation.

“Step 9: Define Job
Accounting” on page 110

ACTION_ON_MAX_REJECT Specifies whether a job is cancelled
or put in User Hold or System Hold
status when the job exceeds the
MAX_JOB_REJECT value.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

ADMIN_FILE Points to the administration file
containing user, class, and machine
list stanzas.

“Step 11: Specify Where
Files and Directories are
Located” on page 112

AFS_GETNEWTOKEN A filter which can be used to renew
an AFS token.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

138 Using and Administering LoadLeveler

Configuration File Keyword Brief Description For Details

ARCH The standard architecture of the
system.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 101

BIN The directory where LoadLeveler
binaries are kept.

“Step 11: Specify Where
Files and Directories are
Located” on page 112

CENTRAL_MANAGER_ HEARTBEAT_INTERVAL The amount of time in seconds that
defines how frequently primary and
alternate central manager
communicate with each other.

“Step 10: Specify
Alternate Central
Managers” on page 111

CENTRAL_MANAGER_TIMEOUT The number of heartbeat intervals
that an alternate central manager will
wait before declaring that the primary
central manager is not operating.

“Step 10: Specify
Alternate Central
Managers” on page 111

CLASS The class of jobs that can run on the
machine.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 101

CLIENT_TIMEOUT The maximum time, in seconds, that
a daemon waits for a response over
TCP/IP from a process .

“Step 13: Define Network
Characteristics” on
page 116

COLLECTOR_DGRAM_PORT The port number used when
connecting to a daemon.

“Step 13: Define Network
Characteristics” on
page 116

CONTINUE Continue expression. Determines if a
job should continue.

“Step 8: Manage a Job’s
Status Using Control
Expressions” on page 109

CUSTOM_METRIC A machine’s relative priority to run
jobs.

“Step 2: Define
LoadLeveler Cluster
Characteristics” on
page 99

CUSTOM_METRIC_COMMAND An executable whose exit code is
value is assigned to
CUSTOM_METRIC.

“Step 2: Define
LoadLeveler Cluster
Characteristics” on
page 99

DCE_ADMIN_GROUP Specifies the DCE group containing
the DCE ids of those users who will
have administrator authority for the
current cluster.

“Step 16: Configuring
LoadLeveler to use DCE
Security Services” on
page 123

DCE_AUTHENTICATION_PAIR A pair of installation supplied
programs that are used to
authenticate DCE security
credentials.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

DCE_ENABLEMENT Activates the exploitation of DCE
security.

“Step 16: Configuring
LoadLeveler to use DCE
Security Services” on
page 123

DCE_SERVICES_GROUP Specifies the DCE group containing
all of the principal names of the
LoadLeveler daemons that are
authorized to run in the current
cluster.

“Step 16: Configuring
LoadLeveler to use DCE
Security Services” on
page 123

Chapter 5. Administering and Configuring LoadLeveler 139

Configuration File Keyword Brief Description For Details

DRAIN_ON_SWITCH_TABLE_ERROR Specifies that the startd should be
drained when the switch table fails to
unload.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

EXECUTE The local directory to store the
executable checkpoints of jobs
submitted by other machines.

“Step 11: Specify Where
Files and Directories are
Located” on page 112

FLOATING_RESOURCES Specifies which consumable
resources are available collectively
on all of the machines in the
LoadLeveler cluster.

“Step 4: Define
Consumable Resources”
on page 104

GLOBAL_HISTORY The directory containing the global
history files.

“Step 9: Define Job
Accounting” on page 110

GSMONITOR Location of the gsmonitor executable
(LoadL_gsmonitor).

“The gsmonitor Daemon”
on page 18

GSMONITOR_RUNS_HERE When true, specifies that you want to
start the gsmonitor daemon (you
must have PSSP Groups Service).

“The gsmonitor Daemon”
on page 18

HISTORY The pathname of the history file for
local LoadLeveler jobs.

“Step 11: Specify Where
Files and Directories are
Located” on page 112

JOB_ACCT_Q_POLICY The amount of time in seconds that
determines how often the startd
daemon updates the schedd daemon
with accounting data of running jobs.

“Chapter 7. Gathering Job
Accounting Data” on
page 153

JOB_EPILOG Pathname of the epilog program. “Writing Prolog and Epilog
Programs” on page 297

JOB_LIMIT_POLICY The amount of time in seconds that
LoadLeveler checks to see if
job_cpu_limit has been exceeded.

“Chapter 7. Gathering Job
Accounting Data” on
page 153

JOB_PROLOG Pathname of the prolog program. “Writing Prolog and Epilog
Programs” on page 297

JOB_USER_EPILOG Pathname of the user epilog
program.

“Writing Prolog and Epilog
Programs” on page 297

JOB_USER_PROLOG Pathname of the user prolog
program.

“Writing Prolog and Epilog
Programs” on page 297

KBDD KBDD expression. Location of kbdd
executable (Loadl_kbdd).

“LoadLeveler Daemons”
on page 6

KILL Kill expression. Determines if vacated
jobs should be killed.

“Step 8: Manage a Job’s
Status Using Control
Expressions” on page 109

LIB The directory where LoadLeveler
libraries are kept.

“Step 11: Specify Where
Files and Directories are
Located” on page 112

LOADL_ADMIN List of LoadLeveler administrators. “Step 1: Define
LoadLeveler
Administrators” on
page 99

140 Using and Administering LoadLeveler

Configuration File Keyword Brief Description For Details

LOCAL_CONFIG Pathname of the optional local
configuration file containing
information specific to a node in the
LoadLeveler network.

“Step 11: Specify Where
Files and Directories are
Located” on page 112

LOG Local directory for storing log files. “Step 11: Specify Where
Files and Directories are
Located” on page 112

MACHINE_AUTHENTICATE Specifies whether machine validation
is performed.

“Step 2: Define
LoadLeveler Cluster
Characteristics” on
page 99

MACHINE_UPDATE_INTERVAL The time, in seconds, during which
machines must report to the central
manager.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

MACHPRIO Machine priority expression “Step 7: Prioritize the
Order of Executing
Machines Maintained by
the Negotiator” on
page 106

MAIL Name of a local mail program used
to override default mail notification.

“Using Your Own Mail
Program” on page 297

MASTER Location of the master executable
(LoadL_master).

“LoadLeveler Daemons”
on page 6

MASTER_DGRAM_PORT The port number used when
connecting to the daemon.

“Step 13: Define Network
Characteristics” on
page 116

MASTER_STREAM_PORT The port number to used when
connecting to the daemon.

“Step 13: Define Network
Characteristics” on
page 116

MAX_CKPT_INTERVAL The maximum number of seconds
between checkpoints for running
jobs.

“Step 14: Enable
Checkpointing” on
page 117

MAX_JOB_REJECT The number of times a job is rejected
before it is cancelled or put in User
Hold or System Hold status.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

MAX_STARTERS The maximum number of jobs that
can run simultaneously.

“Step 5: Specify How
Many Jobs a Machine
Can Run” on page 104

MIN_CKPT_INTERVAL The minimum number of seconds
between checkpoints for running
jobs.

“Step 14: Enable
Checkpointing” on
page 117

NEGOTIATOR Location of the negotiator executable
(LoadL_negotiator).

“LoadLeveler Daemons”
on page 6

NEGOTIATOR_INTERVAL The time interval, in seconds, at
which the negotiator daemon updates
the status of jobs in the LoadLeveler
cluster and negotiates with machines
that are available to run jobs.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

Chapter 5. Administering and Configuring LoadLeveler 141

Configuration File Keyword Brief Description For Details

NEGOTIATOR_CYCLE_DELAY The time, in seconds, the negotiator
delays between periods when it
attempts to schedule jobs. This time
is used by the negotiator daemon to
respond to queries, reorder job
queues, collect information about
changes in the states of jobs, etc.
Delaying the scheduling of jobs might
improve the overall performance of
the negotiator by preventing it from
spending excessive time attempting
to schedule jobs.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

NEGOTIATOR_LOADAVG_ INCREMENT The factor added to the startd
machine’s load average to
compenstate for the increased load
caused by starting another machine.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

NEGOTIATOR_PARALLEL_ DEFER The length of time that a job is given
to accumulate processors.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

NEGOTIATOR_PARALLEL_ HOLD The length of time a job attempts to
collect machines before releasing
them.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

NEGOTIATOR_RECALCULATE_
SYSPRIO_INTERVAL

The amount of time in seconds
between calculation of the SYSPRIO
values for waiting jobs.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

NEGOTIATOR_REJECT_DEFER The amount of time in seconds the
negotiator waits before it considers
scheduling a job to a machine that
recently rejected the job.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

NEGOTIATOR_REMOVE_COMPLETED The amount of time the negotiator
keeps information on completed and
removed jobs.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

NEGOTIATOR_RESCAN_QUEUE The amont of time the negotiator
waits to rescan the job queue for
machines that temporarily have
non-runnable jobs.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

NEGOTIATOR_STREAM_PORT The port number used when
connecting to the daemon.

“Step 13: Define Network
Characteristics” on
page 116

NQS_DIR The directory where NQS commands
reside.

“Step 11: Specify Where
Files and Directories are
Located” on page 112

OBITUARY_LOG_LENGTH The number of lines from the ned of
the file that are appended to the
Master_Log.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

142 Using and Administering LoadLeveler

Configuration File Keyword Brief Description For Details

POLLING_FREQUENCY The frequency in seconds the startd
daemon uses to evaluate the load on
the local machine and to decide
whether to suspend, resume, or abort
jobs.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

POLLS_PER_UPDATE The frequency, in
POLLING_FREQUENCY intervals,
with which the startd daemon
updates the central manager.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

PROCESS_TRACKING When true ensures that when a job
is terminated, no processes created
by the job will continue running.

“Step 15: Specify Process
Tracking” on page 122

PROCESS_TRACKING_EXTENSION The directory containing the kernel
extension binary LoadL_pt_ke .

“Step 15: Specify Process
Tracking” on page 122

PUBLISH_OBITUARIES When true , specifies that the master
daemon sends mail to the
administrator(s) when any daemon it
manages dies abnormally.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

RELEASEDIR The directory where all the
LoadLeveler software resides.

“Step 11: Specify Where
Files and Directories are
Located” on page 112

RESOURCES Specifies quantities of the
consumable resources ″consumed″
by each task of a job step.

“Step 4: Define
Consumable Resources”
on page 104

RESTARTS_PER_HOUR The number of times the master
daemon attempts to restart a daemon
that dies abnormally.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

SCHEDD Location of the schedd executable
(LoadL_schedd).

“LoadLeveler Daemons”
on page 6

SCHEDD_INTERVAL Specifies the interval, in seconds, at
which the schedd daemon checks the
local job queue.

“Step 17: Specify
Additional Configuration
File Keywords” on
page 129

SCHEDD_RUNS_HERE Specifies whether this daemon will
run on the host.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 101

SCHEDD_SUBMIT_AFFINITY Specifies whether the llsubmit
command submits a job to the
machine where the command was
invoked provided the schedd daemon
is running on the machine.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 101

SCHEDD_STREAM_PORT The port number used when
connecting to the daemon.

“Step 13: Define Network
Characteristics” on
page 116

SCHEDULE_BY_RESOURCES Specifies which consumable
resources are considered by the
LoadLeveler schedulers.

“Step 4: Define
Consumable Resources”
on page 104

Chapter 5. Administering and Configuring LoadLeveler 143

Configuration File Keyword Brief Description For Details

SCHEDULER_API When YES, disables the native
LoadLeveler scheduling algorithm.

“Step 2: Define
LoadLeveler Cluster
Characteristics” on
page 99

SCHEDULER_TYPE Specifies the LoadLeveler Backfill
scheduling algorithm.

“Step 2: Define
LoadLeveler Cluster
Characteristics” on
page 99

SPOOL The local directory where
LoadLeveler keeps the local job
queue and checkpoint files.

“Step 11: Specify Where
Files and Directories are
Located” on page 112

START Start expression. Determines if a
machine can run a job.

“Step 8: Manage a Job’s
Status Using Control
Expressions” on page 109

STARTD Location of the startd executable
(LoadL_startd).

“LoadLeveler Daemons”
on page 6

STARTER Location of the starter executable
(LoadL_starter).

“LoadLeveler Daemons”
on page 6

STARTD_RUNS_HERE Specifies whether this daemon will
run on the host.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 101

START_DAEMONS Specifies whether to start the
daemons on the machine.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 101

STARTD_DGRAM_PORT The port number used when
connecting to the daemon.

“Step 13: Define Network
Characteristics” on
page 116

STARTD_STREAM_PORT The port number used when
connecting to the daemon.

“Step 13: Define Network
Characteristics” on
page 116

SUBMIT_FILTER The program you want to run to filter
a job script when the job is
submitted.

“Filtering a Job Script” on
page 296

SUSPEND Suspend expresson. Determines if a
job should be suspended.

“Step 8: Manage a Job’s
Status Using Control
Expressions” on page 109

SYSPRIO System priority expression. “Step 6: Prioritize the
Queue Maintained by the
Negotiator” on page 105

TRUNC_GSMONITOR_LOG_ON_OPEN When true , specifies that the log file
is restarted with every invocation of
the daemon.

“Step 12: Record and
Control Log Files” on
page 113

TRUNC_KBDD_LOG_ON_OPEN When true , specifies the log file is
restarted with every invocation of the
daemon.

“Step 12: Record and
Control Log Files” on
page 113

TRUNC_MASTER_LOG_ON_OPEN When true , specifies the log file is re
started with every invocation of the
daemon.

“Step 12: Record and
Control Log Files” on
page 113

144 Using and Administering LoadLeveler

Configuration File Keyword Brief Description For Details

TRUNC_NEGOTIATOR_LOG_ON_OPEN When true , specifies the log file is
restarted with every invocation of the
daemon.

“Step 12: Record and
Control Log Files” on
page 113

TRUNC_SCHEDD_LOG_ON_OPEN When true , specifies the log file is
restarted with every invocation of the
daemon.

“Step 12: Record and
Control Log Files” on
page 113

TRUNC_STARTD_LOG_ON_OPEN When true , specifies the log file is
restarted with every invocation of the
daemon.

“Step 12: Record and
Control Log Files” on
page 113

TRUNC_STARTER_LOG_ON_OPEN When true , specifies the log file is
restarted with every invocation of the
daemon.

“Step 12: Record and
Control Log Files” on
page 113

VACATE The vacate expression. Determines
whether suspended jobs should be
vacated.

“Step 8: Manage a Job’s
Status Using Control
Expressions” on page 109

WALLCLOCK_ENFORCE When true , specifies that the
wall_clock_limit on the job will be
enforced. The
WALLCLOCK_ENFORCE keyword is
only valid when the External
Scheduler is enabled.

131

X_RUNS_HERE When true , specifies that you want to
start the keyboard daemon.

“Step 3: Define
LoadLeveler Machine
Characteristics” on
page 101

User-Defined Keywords
The following table serves only as a reference. These keywords are described in
more detail in “User-Defined Variables” on page 132.

Keyword Brief Description

BackgroundLoad Defines the variable BackgroundLoad and assigns to it a floating point constant. This
might be used as a noise factor indicating no activity.

CPU_Busy Defines the variable CPU_Busy and reassigns to it at each evaluation the Boolean value
True or False, depending on whether the Berkeley one-minute load average is equal to or
greater than the saturation level of 1.5.

CPU_Idle Defines the variable CPU_Idle and reassigns to it at each evaluation the Boolean value
True or False, depending on whether the Berkeley one-minute load average is equal or
less than 0.7.

HighLoad Is a keyword that the user can define to use as a saturation level at which no further jobs
should be started.

HOUR Defines the variable HOUR and assigns to it a constant integer value.

JobLoad Defines the variable JobLoad which defines the load on the machine caused by running
the job.

KeyboardBusy Defines the variable KeyboardBusy and reassigns to it at each evaluation the Boolean
value True or False, depending on whether the keyboard and mouse have been idle for
fifteen minutes.

LowLoad Defines the variable LowLoad and assigns to it the value of BackgroundLoad . This
might be used as a restart level at which jobs can be started again and assumes only
running 1 job on the machine.

Chapter 5. Administering and Configuring LoadLeveler 145

Keyword Brief Description

mail Specifies a local program you want to use in place of the LoadLeveler default mail
notification method.

MINUTE Defines the variable MINUTE and assigns to it a constant integer value.

StateTimer Defines the variable StateTimer and reassigns to it at each evaluation the number of
seconds since the current state was entered.

LoadLeveler Variables

The following table serves only as a reference. For more information on a specific
keyword, see the section and page number referenced in the “For Details” column.

Keyword Brief Description For Details

Arch Standard architecture of the system. “LoadLeveler Variables” on page 132

ClassSysprio Job priority for the class. “Step 6: Prioritize the Queue
Maintained by the Negotiator” on
page 105

Cpus Number of CPU’s installed. “LoadLeveler Variables” on page 132

ConsumableCpus Number of ConsumableCpus currently available
on the machine, if defined in
SCHEDULE_BY_RESOURCES . If not, then it is
the same as Cpus.

“LoadLeveler Variables” on page 132

ConsumableMemory Amount of ConsumableMemory currently available
on the machine, if defined in
SCHEDULE_BY_RESOURCES . If not, then it is
the same as Memory.

“LoadLeveler Variables” on page 132

ConsumableVirtualMemoryAmount of ConsumableVirtualMemory currently
available on the machine, if defined in
SCHEDULE_BY_RESOURCES . If not, then it is
the same as VirtualMemory.

“LoadLeveler Variables” on page 132

CurrentTime The UNIX date that includes the current system
time, in seconds, since January 1, 1970.

“LoadLeveler Variables” on page 132

CustomMetric The relative machine priority. “LoadLeveler Variables” on page 132

Disk Free disk in megabytes on the filesystem where
checkpoints are stored.

“LoadLeveler Variables” on page 132

domain or domainname Dynamically indicates the domain name of the
current host machine where the program is
running.

“LoadLeveler Variables” on page 132

EnteredCurrentState Value of CurrentTime when the current state was
entered.

“LoadLeveler Variables” on page 132

GroupQueuedJobs The number of jobs either running or queued for
the LoadLeveler group.

“Step 6: Prioritize the Queue
Maintained by the Negotiator” on
page 105

GroupRunningJobs The number of jobs currently running for the
LoadLeveler group.

“Step 6: Prioritize the Queue
Maintained by the Negotiator” on
page 105

GroupSysprio The job priority for the group. “Step 6: Prioritize the Queue
Maintained by the Negotiator” on
page 105

146 Using and Administering LoadLeveler

Keyword Brief Description For Details

GroupTotalJobs The total number of jobs associated with the
LoadLeveler group.

“Step 6: Prioritize the Queue
Maintained by the Negotiator” on
page 105

host or hostname Dynamically indicates the name of the host
machine where the program is running.

“LoadLeveler Variables” on page 132

KeyboardIdle Number of seconds since the keyboard or mouse
was last used.

“LoadLeveler Variables” on page 132

LoadAvg Berkeley one-minute load average. “LoadLeveler Variables” on page 132

Machine Name of the current machine. “LoadLeveler Variables” on page 132

MasterMachPrio A value that is 1 for master nodes and is 0
otherwise.

“LoadLeveler Variables” on page 132

Memory Physical memory installed on the machine in
megabytes.

“LoadLeveler Variables” on page 132

OpSys Indicates the operating system on the host where
the program is running.

“LoadLeveler Variables” on page 132

QDate Difference in seconds between when the
negotiator starts up and when the job is submitted.

“LoadLeveler Variables” on page 132

Speed The relative machine speed. “LoadLeveler Variables” on page 132

State State of the startd. Can be None, Busy, Running,
Idle, Suspend, Flush, or Drain.

“LoadLeveler Variables” on page 132

tilde Dynamically defines the pathname of the
LoadLeveler home directory.

“LoadLeveler Variables” on page 132

tm_hour Number of hours since midnight (0-23). “LoadLeveler Variables” on page 132

tm_isdst Daylight Savings Time flag: positive when in effect,
zero when not in effect, negative when information
is unavailable.

“LoadLeveler Variables” on page 132

tm_mday Number of the day of the month (1-31). “LoadLeveler Variables” on page 132

tm_min Number of minutes after the hour (0-59). “LoadLeveler Variables” on page 132

tm_mon Number of months since January (0-11). “LoadLeveler Variables” on page 132

tm_sec Number of seconds after the minute (0-59). “LoadLeveler Variables” on page 132

tm_wday Number of days since Sunday (0-6). “LoadLeveler Variables” on page 132

tm_yday Number of days since January 1 (0-365). “LoadLeveler Variables” on page 132

tm_year Number of years since 1900 (0-9999). “LoadLeveler Variables” on page 132

tm4_year The integer representation of the current year. “LoadLeveler Variables” on page 132

UserPrio User defined priority of a job. “Step 6: Prioritize the Queue
Maintained by the Negotiator” on
page 105

UserQueuedJobs The number of jobs either running or queued for
the user.

“Step 6: Prioritize the Queue
Maintained by the Negotiator” on
page 105

UserRunningJobs The number of jobs currently running for the user. “Step 6: Prioritize the Queue
Maintained by the Negotiator” on
page 105

UserSysprio The priority of the user who submitted the job. “Step 6: Prioritize the Queue
Maintained by the Negotiator” on
page 105

Chapter 5. Administering and Configuring LoadLeveler 147

Keyword Brief Description For Details

UserTotalJobs The total number of jobs associated with the this
user.

“Step 6: Prioritize the Queue
Maintained by the Negotiator” on
page 105

VirtualMemory The size of the available swap space on the
machine in kilobytes.

“LoadLeveler Variables” on page 132

148 Using and Administering LoadLeveler

Chapter 6. Administration Tasks for Parallel Jobs

This chapter describes administration tasks that apply to parallel jobs. For more
general information on administering and configuring LoadLeveler, see “Chapter 5.
Administering and Configuring LoadLeveler” on page 71. For information on
submitting parallel jobs, see “Chapter 4. Submitting and Managing Parallel Jobs” on
page 59.

Scheduling Considerations for Parallel Jobs
For parallel jobs, the LoadLeveler Backfill scheduler makes the most efficient use of
your resources. This scheduler runs both serial and parallel jobs, but is meant
primarily for installations running parallel jobs.

The Backfill scheduler also supports:

v Multiple tasks per node

v Multiple user space tasks per adapter

You specify the Backfill scheduler using the SCHEDULER_TYPE keyword. For
more information on this keyword and other schedulers you can run, see “Choosing
a Scheduler” on page 100.

Allowing Users to Submit Interactive POE Jobs
Follow the steps in this section to set up your system so that users can submit
interactive POE jobs to LoadLeveler.

1. Make sure that you have installed LoadLeveler and defined LoadLeveler
administrators. See “Quick Set Up” on page 73 for information on defining
LoadLeveler administrators.

2. Run the llextSDR command to extract node and adapter information from the
SDR. See “llextSDR - Extract adapter information from the SDR” on page 182
for information on using this command.

3. Incorporate the appropriate node and adapter information into your LoadLeveler
administration file stanzas.

For example, the following output represents two adapter stanzas and their
corresponding machine stanza:
k10n09.ppd.pok.ibm.com: type = adapter
adapter_name = en0
network_type = ethernet
interface_address = 9.114.51.73
interface_name = k10n09.ppd.pok.ibm.com

k10sn09.ppd.pok.ibm.com: type = adapter
adapter_name = css0
css_type = SP_Switch_MX_Adapter
network_type = switch
interface_address = 9.114.51.137
interface_name = k10sn09.ppd.pok.ibm.com
switch_node_number = 8

k10n09.ppd.pok.ibm.com: type=machine
adapter_stanzas = k10n09.ppd.pok.ibm.com k10sn09.ppd.pok.ibm.com
spacct_exclusive_enable = true

149

4. Define a machine to act as the LoadLeveler central manager. See “Quick Set
Up” on page 73 for more information.

5. Define your scheduler to be the LoadLeveler Backfill scheduler by specifying
SCHEDULER_TYPE = BACKFILL in the LoadLeveler configuration file. See
“Choosing a Scheduler” on page 100 for more information.

6. Consider setting up a class stanza for your interactive POE jobs. See “Setting
Up a Class for Parallel Jobs” on page 151 for more information. Define this
class to be your default class for interactive jobs by specifying this class name
on the default_interactive_class keyword. See “Step 2: Specify User Stanzas”
on page 81 for more information.

7. Configure optional functions, including:

v Setting up pools: you can organize nodes into pools by using the pool_list
keyword in the machine stanza. See “Step 1: Specify Machine Stanzas” on
page 75 for more information.

v Specifying batch, interactive, or general use for nodes: you can use the
machine_mode keyword in the machine stanza to specify the type of jobs
that can run on a node.

v Enabling SP exclusive use accounting: you can specify that the accounting
function on an SP system be informed that a job step has exclusive use of a
machine by specifying spacct_exclusive_enable = true in the machine
stanza (as shown in the previous example).

See “Step 1: Specify Machine Stanzas” on page 75 for more information on
these keywords.

8. Start LoadLeveler using the llctl command. See “Quick Set Up” on page 73 for
more information.

Allowing Users to Submit PVM Jobs
If users will be submitting PVM jobs, your installation must first obtain and install
PVM. PVM is a public domain package distributed through electronic mail by Oak
Ridge National Labs. To obtain information on PVM, issue the following:
echo "send index from pvm3" | mail netlib@ornl.gov

For RS6K architecture PVM, LoadLeveler expects to find PVM installed in
loadl/pvm3 . You can override this using the pvm_root entry in the machine stanza.
The value of pvm_root is used to set the environment variable $(PVM_ROOT)
required by PVM . For example:
gallifrey: type = machine
central_manager = true
schedd_host = true
alias = drwho
pvm_root = /home/userid/loadl/2.2.0/aix43/pvm3

For PVM 3.3.11+ (that is, SP2MPI architecture), LoadLeveler does not expect to
find PVM installed in loadl/pvm3 . PVM 3.3.11+ must be installed in a directory
accessable to, and executable by, all nodes in the LoadLeveler cluster.
Administrators must communicate the location of this directory to their users.

Running PVM requires that each user be allowed to run only one instance of PVM
per machine. In order to ensure that LoadLeveler does not attempt to start more
than one PVM job per machine, you can set up a class for PVM jobs. To do this,
you need to add a class stanza to your administration file and a class statement to
your configuration file. The following is an example of a PVM class stanza that you
can add to your administration file:

150 Using and Administering LoadLeveler

PVM3: type = class
max_node = 15 # max of 15 processors per user per job

The following is an example of statements that you can add to your configuration
file:
MAX_STARTERS = 2
Class = {"ClassA" "ClassA" "PVM3" }

This combination of the MAX_STARTERS keyword and the Class keyword allows
two jobs of Class A, or one job of Class A and one of class PVM3, to start. Limiting
PVM jobs by using a class where MAX_STARTERS is greater than 1 is only a
policy. The user can still submit a PVM job to Class A. Note also that specifying
MAX_STARTERS=1 would enforce a policy of one job per machine.

See “Common Set Up Problems with Parallel Jobs” on page 307 for more
information.

Restrictions and Limitations for PVM Jobs
For PVM 3.3, dynamic allocation and de-allocation of parallel machines are not
supported.

Setting Up a Class for Parallel Jobs
To define the characteristics of parallel jobs run by your installation you should set
up a class stanza in the administration file and define a class (in the Class
statement in the configuration file) for each task you want to run on a node.

Suppose your installation plans to submit long-running parallel jobs, and you want
to define the following characteristics:

v Only certain users can submit these jobs

v Jobs have a 30 hour run time limit

v A job can request a maximum of 60 nodes and 120 total tasks

v Jobs will have a relatively low run priority

The following is a sample class stanza for long-running parallel jobs which takes
into account the above characteristics:
long_parallel: type=class
wall_clock_limit = 1800
include_users = jack queen king ace
priority = 50
total_tasks = 120
max_node = 60
maxjobs = 2

Note the following about this class stanza:

v The wall_clock_limit keyword sets a wall clock limit of 1800 seconds (30 hours)
for jobs in this class

v The include_users keyword allows four users to submit jobs in this class

v The priority keyword sets a relative priority of 50 for jobs in this class

v The total_tasks keyword specifies that a user can request up to 120 total tasks
for a job in this class

v The max_node keyword specifies that a user can request up to 60 nodes for a
job in this class

Chapter 6. Administration Tasks for Parallel Jobs 151

v The maxjobs keyword specifies that a maximum of two jobs in this class can run
simultaneously

Suppose users need to submit job command files containing the following
statements:
node = 30
tasks_per_node = 4

You must code the Class statement such that at least 30 nodes have four or more
long_parallel classes defined. That is, the configuration file for each of these nodes
must include the following statement:
Class = { "long_parallel" "long_parallel" "long_parallel" "long_parallel" }

Setting Up a Parallel Master Node
LoadLeveler allows you to define a parallel master node–which LoadLeveler will use
as the first node for a job submitted to a particular class. To set up a parallel master
node, code the following keywords in the node’s class and machine stanzas in the
administration file:
MACHINE STANZA: (optional)
mach1: type = machine
master_node_exclusive = true

CLASS STANZA: (optional)
pmv3: type = class
master_node_requirement = true

Specifying master_node_requirement = true forces all parallel jobs in this class to
use–as their first node–a machine with the master_node_exclusive = true setting.
For more information of these keywords, see “Step 1: Specify Machine Stanzas” on
page 75 and “Step 3: Specify Class Stanzas” on page 84.

152 Using and Administering LoadLeveler

Chapter 7. Gathering Job Accounting Data

Your organization may have a policy of charging users or groups of users for the
amount of resources that their jobs consume. You can do this using LoadLeveler’s
accounting feature. Using this feature, you can produce accounting reports that
contain job resource information for completed serial and parallel jobs. You can also
view job resource information on jobs that are continuing to run.

Collecting Job Resource Data on Serial and Parallel Jobs
Information on completed serial and parallel jobs is gathered using the UNIX wait3
system call. Information on non-completed serial and parallel jobs is gathered in a
platform-dependent manner by examining data from the UNIX process.

Accounting information on a completed serial job is determined by accumulating
resources consumed by that job on the machine(s) that ran the job. Similarly,
accounting information on completed parallel jobs is gathered by accumulating
resources used on all of the nodes that ran the job.

You can also view resource consumption information on serial and parallel jobs that
are still running by specifying the -x option of the llq command. In order to enable
llq -x , you should specify the following keywords in the configuration file:

ACCT = A_ON A_DETAIL
Turns accounting data recording on. For more information on this keyword, see
“Step 9: Define Job Accounting” on page 110.

JOB_ACCT_Q_POLICY = number
where number is the amount of time in seconds that determines how often the
startd daemon updates the schedd daemon with accounting data of running
jobs. This controls the accuracy of the llq -x command. The default is 300
seconds.

JOB_LIMIT_POLICY = number
where number is an amount of time in seconds. The smaller of
JOB_LIMIT_POLICY and JOB_ACCT_Q_POLICY is used to control how often
the startd daemon collects resource consumption data on running jobs, and
how often the job_cpu_limit is checked. The default for JOB_LIMIT_POLICY
is POLLING_FREQUENCY multiplied by POLLS_PER_UPDATE .

Collecting Job Resource Data Based on Machines
LoadLeveler can collect job resource usage information for every machine on which
a job may run. A job may run on more than one machine because it is a parallel job
or because the job is vacated from one machine and rescheduled to another
machine.

To enable recording of resources by machine, you need to specify ACCT = A_ON
A_DETAIL in the configuration file.

The machine’s speed is part of the data collected. With this information, an
installation can develop a charge back program which can charge more or less for
resources consumed by a job on different machines. For more information on a
machine’s speed, refer to the machine stanza information. See “Step 1: Specify
Machine Stanzas” on page 75.

153

Collecting Job Resource Data Based on Events
In addition to collecting job resource information based upon machines used, you
can gather this information based upon an event or time that you specify. For
example, you may want to collect accounting information at the end of every work
shift or at the end of every week or month. To collect accounting information on all
machines in this manner, use the llctl command with the capture parameter:
llctl -g capture eventname

eventname is any string of continuous characters (no white space is allowed) that
defines the event about which you are collecting accounting data. For example, if
you were collecting accounting data on the graveyard work shift, your command
could be:
llctl -g capture graveyard

This command allows you to obtain a snapshot of the resources consumed by
active jobs up to and including the moment when you issued the command. If you
want to capture this type of information on a regular basis, you can set up a crontab
entry to invoke this command regularly. For example:
sample crontab for accounting
shift crontab 94/8/5
#
Set up three shifts, first, second, and graveyard shift.
Crontab entries indicate the end of shift.
#
#M H d m day command
#
00 08 * * * /u/loadl/bin/llctl -g capture graveyard
00 16 * * * /u/loadl/bin/llctl -g capture first
00 00 * * * /u/loadl/bin/llctl -g capture second

For more information on the llctl command, refer to “llctl - Control LoadLeveler
Daemons” on page 175. For more information on the collection of accounting
records, see “llq - Query Job Status” on page 193.

Collecting Job Resource Information Based on User Accounts
If your installation is interested in keeping track of resources used on an account
basis, you can require all users to specify an account number in their job command
files. They can specify this account number with the account_no keyword which is
explained in detail in “Job Command File Keywords” on page 36. Interactive POE
jobs can specify an account number using the LOADL_ACCOUNT_NO environment
variable.

LoadLeveler validates this account number by comparing it against a list of account
numbers specified for the user in the user stanza in the administration file.

Account validation is under the control of the ACCT keyword in the configuration
file. The routine which performs the validation is called llacctval . You can supply
your own validation routine by specifying the ACCT_VALIDATION keyword in the
configuration file. The following are passed as character string arguments to the
validation routine:

v User name

v User’s login group name

v Account number specified on the Job

154 Using and Administering LoadLeveler

v Blank separated list of account numbers obtained from the user’s stanza in the
administration file.

The account validation routine must exit with a return code of zero if the validation
succeeds. If it fails, the return code is a non-zero number.

Collecting the Accounting Information and Storing it into Files
LoadLeveler stores the accounting information that it collects in a file called history
in the spool directory of the machine that initially scheduled this job, the schedd
machine. Data on parallel jobs are also stored in the history files.

Resource information collected on the LoadLeveler job is constrained by the
capabilities of the wait3 system call. Information for processes which fork child
processes will include data for those child processes as long as the parent process
waits for the child process to terminate. Complete data may not be collected for
jobs which are not composed of simple parent/child processes. For example, if you
have a LoadLeveler job which invokes an rsh command to execute a function on
another machine, the resources consumed on the other machine will not be
collected as part of the LoadLeveler accounting data.

LoadLeveler accounting uses the following types of files:

v The local history file which is local to each schedd machine is where job
resource information is first recorded. These files are usually named history and
are located in the spool directory of each schedd machine, but you may specify
an alternate name with the HISTORY keyword in either the global or local
configuration file. For more information, refer to the “Step 9: Define Job
Accounting” on page 110.

v The global history file is a combination of the history files from some or all of the
machines in the LoadLeveler cluster merged together. The command llacctmrg
is used to collect files together into a global file. As the files are collected from
each machine, the local history file for that machine is reset to contain no data.
The file is named globalhist.YYYYMMDDHHmm. You may specify the directory in
which to place the file when you invoke the llacctmrg command or you can
specify the directory with the GLOBAL_HISTORY keyword in the configuration
file. The default value set up in the sample configuration file is the local spool
directory:

GLOBAL_HISTORY = $(SPOOL) (optional)

Accounting Reports
You can produce three types of reports using either the local or global history file.
These reports are called the short, long, and extended versions. As their names
imply, the short version of the report is a brief listing of the resources used by
LoadLeveler jobs. The long version provides more comprehensive detail with
summarized resource usage and the extended version of the report provides the
comprehensive detail with detailed resource usage. If you do not specify a report
type, you will receive the default short version.

The short report displays the number of jobs along with the total CPU usage
according to user, class, group, and account number. The extended version of the
report displays all of the data collected for every job. See the llsummary command,
“llsummary - Return Job Resource Information for Accounting” on page 214, for
examples of the short and extended versions of the report.

Chapter 7. Gathering Job Accounting Data 155

For information on the accounting Application Programming Interfaces, refer to
“Chapter 11. LoadLeveler APIs” on page 251.

Sample Job Accounting Scenario
The following sample scenario walks you through the process of collecting account
data. You can perform all of the steps or just the ones that apply to your situation.

Task 1: Update the Configuration File
Edit the configuration file according to the following table:

Edit this keyword: To:

GLOBAL_HISTORY Specify a directory in which to place the global history files.

ACCT Turn accounting and account validation on and off and specify detailed
accounting.

ACCT_VALIDATION Specify the account validation routine.

Note: See “Step 9: Define Job Accounting” on page 110 for more information on these keywords.

Task 2: Merge Multiple Files Collected From Each Machine Into One
File

You can accomplish this step using either the llacctmrg command or the graphical
user interface:

v Using llacctmrg : See “llacctmrg - Collect machine history files” on page 168 for
the syntax of this command.

v Using the graphical user Interface:

Select A machine from the Machines window

Select Admin → Collect Account Data... from the Machines window.

° A window appears prompting you to enter a directory name where the
file will be placed. If no directory is specified, the directory specified with
the GLOBAL_HISTORY keyword in the global configuration file is the
default directory.

Press OK

° The window closes and you return to the main window.

Task 3: Report Job Information on all the Jobs in the History File
You can accomplish this step using either the llsummary command or the graphical
user interface:

v Using llsummary : see “llsummary - Return Job Resource Information for
Accounting” on page 214 for the syntax of this command.

v Using the graphical user interface:

Select Admin → Create Account Report... from the Machines window.

Note : If you want to receive an extended accounting report, select the
extended cascading button.

° A window appears prompting you to enter the following information:

– A short, long, or extended version of the output. The short version is
the default version.

156 Using and Administering LoadLeveler

– Start and end date ranges for the report. If no date is specified, the
default is to report all of the data in the report.

– The name of the input data file.

– The name of the output data file.

Press OK

° The window closes and you return to the main window. The report
appears in the Messages window if no output data file was specified.

Task 4: Using Account Numbers and Setting Up Account Validation
1. Specify the following keyword in the user stanza in the administration file:

account = list
where list is a blank delimited list of account numbers a user may use when
submitting jobs.

2. Instruct users to associate an account number with their job:

v Using the job command file: add the account_no keyword to the job
command file. See “Job Command File Keywords” on page 36 for details.

v Using the graphical user interface:

Select File → Build a Job from the main window.

° The Build a Job window appears.

Type the account number in the account_no field on the Build a Job
window.

Press OK

° The window closes and you return to the main window.

3. Specify the ACCT_VALIDATION keyword in the configuration file that identifies
the module that will be called to perform account validation. The default module
is called llacctval . You can replace this module with your installation’s own
accounting routine by specifying a new module with this keyword.

Task 5: Specifying Machines and Their Weights
To specify weights to associate with machines, specify the following keyword in a
machine’s machine stanza in the administration file:

speed = number
where number defines the weight associated with a particular machine. The
higher numbers correspond with a greater weight. The default weight is 1.0.

Also, if you have in your cluster machines of differing speeds and you want
LoadLeveler accounting information to be normalized for these differences, specify
cpu_speed_scale=true in each machine’s respective machine stanza.

For example, suppose you have a cluster of two machines, called A and B, where
Machine B is three times as fast as Machine A. Machine A has speed=1.0 , and
Machine B has speed=3.0 . Suppose a job runs for 12 CPU seconds on Machine A.
The same job runs for 4 CPU seconds on Machine B. When you specify
cpu_speed_scale=true , the accounting information collected on Machine B for that
job shows the normalized value of 12 CPU seconds rather than the actual 4 CPU
seconds.

Chapter 7. Gathering Job Accounting Data 157

158 Using and Administering LoadLeveler

Chapter 8. Routing Jobs to NQS Machines

Users can submit NQS scripts to LoadLeveler and have them routed to a machine
outside of the LoadLeveler cluster that runs NQS. LoadLeveler supports COSMIC
NQS version 2.0 and other versions of NQS that support the same commands and
options and produce similar output for those commands.

The following diagram illustrates a typical environment that allows users to have
their jobs routed to machines outside of LoadLeveler for processing:

As the diagram illustrates, machines A, B, and C, are members of the LoadLeveler
cluster. Machine A has the central manager running on it and machine B has both
LoadLeveler and NQS running on it. Machine C is a third member of the cluster.
Machine D is outside of the cluster and is running NQS.

When a user submits a job to LoadLeveler, machine A, that runs the central
manager, schedules the job to machine B. LoadLeveler running on machine B
routes the job to machine D using NQS. Keep this diagram in mind as you continue
to read this chapter.

Setting Up the NQS Environment
Setting up the NQS environment involves the following:

v Install NQS on each node that an NQS class is defined. In the previous diagram,
this is machine B.

v Create an NQS pipe queue on the LoadLeveler machine whose destination is the
NQS batch queue on the machine designated to run the NQS jobs.

In the previous diagram, you would create the NQS pipe queue on machine B.

LoadLeveler & NQS

LoadLeveler Pool

Central Manager

Submitting Machine NQS

LoadLeveler
LoadLeveler

B

CA

D

Jo
b

N
Q

S P
ip

e
 Q

u
e

u
e

Figure 31. Environment illustrating jobs being routed to NQS machines.

159

v Create an NQS batch queue on the machine designated to run the NQS jobs. In
the previous diagram, this is machine D.

Designating Machines to Which Jobs Will be Routed
To designate a machine to which your jobs will be routed, follow these steps:

1. Set up a special class in the LoadL_admin file by adding the following class
definitions to the file:

NQS_class = true | false
When this flag is set to true , any job submitted to this class will be routed to
an NQS machine.

NQS_submit = name
The name of the NQS pipe queue to which the job will be routed. When the
job is dispatched by LoadLeveler, LoadLeveler will invoke the qsub
command using the name of the this queue.

NQS_query = queue names
A blank delimited list of queue names (including host names if necessary) to
be used with the qstat command to monitor the job and qdel to cancel the
job.

You can set up multiple classes to access different machines.

2. Modify the local configuration file on the machines that you want to accept this
class of jobs.

3. Add the NQS_DIR keyword to the LoadL_config file:

NQS_DIR = NQS directory
defines the directory where NQS commands qsub , qstat , and qdel reside.
The default is /usr/bin .

Sample Routing Jobs to NQS Machines Scenario
The following example walks you through the process of setting up your
environment to route jobs to machines that run NQS.

Assume Figure 31 on page 159 depicts your environment. You have three machines
in the cluster named A, B, and C. Outside of the cluster, you have machine D
running NQS.

Task 1: Modify the Administration File
After setting up your NQS environment, modify the LoadL_admin file by defining
the class NQS including the following stanzas:
NQS:
type = class
NQS_class = true
NQS_submit = pipe_a
NQS_query = queue@chevy.kgn.ibm.com

Task 2: Modify the Configuration File
Modify the LoadL_config.local on the machine(s) that you want to accept this
class of jobs. In this example, you would modify machine B’s LoadL_config.local
file. To do this, add a class statement similar to:
CLASS = {"NQS" "a" "b"}

160 Using and Administering LoadLeveler

where NQS is the name of the class of jobs that will be routed to the machines that
run NQS, and a and b are names of additional classes.

Task 3: Submit the Jobs
After you perform the previous tasks, users can route their jobs to machines
running NQS using the llsubmit command. The job command file must specify the
class keyword. For example:
class = NQS

The job command file must also contain the shell script to be submitted to the NQS
node. NQS accepts only shell scripts, binaries are not allowed. All options in the
command file pertaining to scheduling the job will be used by LoadLeveler to
schedule the job. When the job is dispatched to the node running the specified
NQS class, the LoadLeveler options pertaining to the runtime environment are
converted to NQS options and the job is submitted to the specified NQS queue.

LoadLeveler command file options are used as follows:

arguments
error message generated and job not submitted

checkpoint
error message generated and job not submitted

class used only for LoadLeveler scheduling

core_limit
converted to -lc option

cpu_limit
converted to -lt option

data_limit
converted to -ld option

environment
if COPY_ALL is specified, the option is converted to -x, otherwise error
message generated and job not submitted

error converted to -e

executable
error message generated and job not submitted

file_limit
converted to -lf option

hold used only for LoadLeveler scheduling

image_size
error message generated and job not submitted

initialdir
error message generated and job not submitted

input error message generated and job not submitted

notification
If the option specified is

always
converted to -mband -me options

error converted to -me option

Chapter 8. Routing Jobs to NQS Machines 161

start converted to -mb option

never ignored

complete
converted to -me option

notify_user
converted to -mu option

output
converted to -o option

preferences
used only for LoadLeveler scheduling

queue places one copy of job in the LoadLeveler queue

requirements
used only for LoadLeveler scheduling

restart
If the option specified is

yes ignored

no converted to -nr option

rss_limit
converted to -lw option

shell converted to -s option

stack_limit
converted to -ls option

start_date
used only for LoadLeveler scheduling

user_priority
used only for LoadLeveler scheduling

Users can also submit an NQS script. In this case, any NQS options in the script
are used to schedule the job and once dispatched by LoadLeveler, the file is sent to
NQS unmodified.

LoadLeveler schedules these jobs the same as it schedules other jobs. When the
job is dispatched, LoadLeveler determines whether or not it is running in an NQS
class. If it is, an NQS command qsub is issued.

LoadLeveler monitors the job by periodically invoking a qstat command. A qstat
command is first issued for the pipe queue on the local host. If the request id is not
found, a qstat is issued for each queue listed in the NQS_query class keyword. If
the request id is still not found, starter marks the job as complete.

When a job is sent to an NQS class, llsubmit saves the following environment
variables:
v HOME
v LOGNAME
v MAIL
v PATH
v SHELL
v TZ

162 Using and Administering LoadLeveler

v USER

When LoadLeveler dispatches the job, these environment variables are installed so
that they are available to qsub . llsubmit also saves the name of the current
directory (pwd) and the current value of the user file create mask (umask).

Task 4: Obtain Status of NQS Jobs
Users can obtain status of NQS jobs in the same way as they obtain status of
LoadLeveler jobs - either by using the llq command or by viewing the Jobs window
on the graphical user interface. The users can identify the NQS jobs by the class
field on the Jobs window.

LoadLeveler monitors the job until qstat shows the job is no longer in any specified
queue.

NQS does not provide job accounting. Therefore, the only accounting information
LoadLeveler will have is the total time for the job.

LoadLeveler will not send mail when the job completes. The LoadLeveler
notification option is translated to the appropriate NQS flag (me or mb) and NQS
will send the mail.

Task 5: Cancel NQS Jobs
Users can cancel NQS jobs using the LoadLeveler llcancel command. All they
need to know is the LoadLeveler job id for the NQS job. Once they submit their
request to cancel the job, LoadLeveler forwards their request to the appropriate
node and a qdel will be issued for the job for the queue listed in the the
NQS_submit and NQS_query keywords.

NQS Scripts
Scripts originally written for NQS that contain NQS options are acceptable to
LoadLeveler. The options are mapped as closely as possible to the features
provided by LoadLeveler, but the exact function is not always available. NQS
options map to LoadLeveler as follows:
a startdate
e error
ke ignored
ko ignored
lc core_limit
ld data_limit
lf file_limit
lm rss_limit
lM ignored
ln ignored
ls stack_limit
lt cpu_limit
lT ignored
lv ignored
lw ignored
mb notification (always)
me notification (complete)
mu notify_user
nr restart = no
o output

Chapter 8. Routing Jobs to NQS Machines 163

p user_priority
q class
r ignored
re ignored
ro ignored
s shell
x environment = copyall
z suppresses messages but not mail

164 Using and Administering LoadLeveler

Part 4. Command Reference

165

166 Using and Administering LoadLeveler

Chapter 9. LoadLeveler Commands

LoadLeveler provides two types of commands: those that are available to all users
of LoadLeveler, and those that are reserved for LoadLeveler administrators. If DCE
is not used, then administrators are identified by the LOADL_ADMIN keyword in the
configuration file. If DCE is enabled with DCE_ENABLEMENT=TRUE, the members
of the DCE group specified by the keyword DCE_ADMIN_GROUP are LoadLeveler
administrators.

The administrator commands can operate on the entire LoadLeveler job queue and
all machines configured. The user commands mainly affect those jobs submitted by
that user. Some commands, such as llhold , include options that can only be
performed by an administrator.

Summary of LoadLeveler Commands
The following table summarizes the LoadLeveler commands:

Command Description Who Can Issue?
For More
Information

llacctmrg Collects all individual machine history files together into
a single file.

Administrators See page 168

llcancel Cancels a submitted job. Users and
Administrators

See page 170

llclass Returns information about LoadLeveler classes. Users and
Administrators

See page 172

llctl Controls daemons on one or more machines in the
LoadLeveler cluster.

Administrators See page 175

lldcegrpmaint Sets up DCE groups and principal names. DCE
Administrators

See page180

llextSDR Extracts adapter information from the system data
repository (SDR).

Administrators See page 182

llfavorjob Raises one or more jobs to the highest priority, or
restores original priority.

Administrators See page 185

llfavoruser Raises job(s) submitted by one or more users to the
highest priority, or restores original priority.

Administrators See page 186

llhold Holds or releases a hold on a job. Users and
Administrators

See page 187

llinit Initializes a new machine as a member of the
LoadLeveler cluster.

Administrators See page 189

llprio Changes the user priority of a submitted job step. Users and
Administrators

See page 191

llq Queries the status of LoadLeveler jobs. Users and
Administrators

See page 193

llstatus Queries the status of LoadLeveler machines. Users and
Administrators

See page 205

llsubmit Submits a job. Users and
Administrators

See page 213

llsummary Returns resource information on completed jobs. Administrators See page 214

167

llacctmrg - Collect machine history files

Purpose
Collects individual machine history files together into a single file specified as a
parameter.

Syntax
llacctmrg [-?] [-H] [-v] [-h hostlist] [-d directory]

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-h hostlist
Specifies a blank delimited list of machines from which to collect data. The
default is all machines in the LoadLeveler cluster.

-d directory
Specifies the directory to hold the new global history file. If not specified, the
directory specified in the GLOBAL_HISTORY keyword in the configuration file
is used.

Description
This command by default collects data from all the machines identified in the
administration file. To override the default, specify a machine or a list of machines
using the -h flag.

When the llacctmrg command ends, accounting information is stored in a file called
globalhist. YYYYMMDDHHmm. Information such as the amount of resources
consumed by the job and other job-related data is stored in this file. In this file:
YYYY indicates the year
MM indicates the month
DD indicates the day
HH indicates the hour
mm indicates the minute.

You can use this file as input to the llsummary command. For example, if you
created the file globalhist.199808301050 , you can issue llsummary
globalhist.199808301050 to record information on all machines.

Data on processes which fork child processes will be included in the file only if the
parent process waits for the child process to end. Therefore, complete data may not
be collected for jobs which are not composed of simple parent/child processes. For
example, if a LoadLeveler job invokes an rsh command to execute some function
on another machine, the resources consumed on the other machine will not be
collected as part of the accounting data.

Examples
The following example collects data from machines named mars and pluto:
llacctmrg -h mars pluto

The following example collects data from the machine named mars and places the
data in an existing directory called merge :
llacctmrg -h mars -d merge

168 Using and Administering LoadLeveler

Results
The following shows a sample system response from the llacctmrg -h mars -d
merge command.
llacctmrg: History transferred successfully from mars (10080 bytes)

Chapter 9. LoadLeveler Commands 169

llcancel - Cancel a Submitted Job

Purpose
Cancels one or more jobs from the LoadLeveler queue.

Syntax
llcancel [-?] [-H] [-v] [-q] [-u userlist] [-h hostlist] [joblist]

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-q Specifies quiet mode: print no messages other than error messages.

-u userlist
Is a blank-delimited list of users. When used with the -h option, only the user’s
jobs monitored on the machines in the hostlist are cancelled. When used alone,
only the user’s jobs monitored by the machine issuing the command are
cancelled.

-h hostlist
Is a blank-delimited list of machine names. All jobs monitored on machines in
this list are cancelled. When issued with the -u option, the userlist is used to
further select jobs for cancellation.

joblist
Is a blank-delimited list of jobs of the form host.jobid.stepid where:

v host is the name of the machine to which the job was submitted (delimited by
dot). The default is the local machine.

v jobid is the job ID assigned to the job when it was submitted using the
llsubmit command. The jobid is required.

v stepid (delimited by dot) is the step ID assigned to the job when it was
submitted using the llsubmit command. The default is to include all steps of
the job.

The -u or -h flags override the host.jobid.stepid parameters.

When the -h flag is specified by a non-administrator, all jobs submitted from the
machines in hostlist by the user issuing the command are cancelled.

When the -h flag is specified by an administrator, all jobs submitted by the
administrator are canceled, unless the -u is also specified, in which case all jobs
both submitted by users in userlist and monitored on machines in hostlist are
cancelled.

Group administrators and class administrators are considered normal users unless
they are also LoadLeveler administrators.

Description
When you issue llcancel , the command is sent to the negotiator. You should then
use the llq command to verify your job was cancelled. A job state of RM (Removed)
indicates the job was cancelled. A job state of RP (Remove Pending) indicates the
job is in the process of being cancelled.

170 Using and Administering LoadLeveler

When cancelling a job from a submit-only machine, you must specify the machine
name that scheduled the job. For example, if you submitted the job from machine A,
a submit-only machine, and machine B, a scheduling machine, scheduled the job to
run, you must specify machine B’s name in the cancel command. If machine A and
B are in different sub-domains, you must specify the fully-qualified name of the job
in the cancel command. You can use the llq -l command to determine the
fully-qualified name of the job.

Examples
This example cancels the job step 3 that is part of the job 18 that is scheduled by
the machine named bronze:
llcancel bronze.18.3

This example cancels all the job steps that are a part of job 8 that are scheduled by
the machine named gold.
llcancel gold.8

Results
The following shows a sample system response for the llcancel gold.8 command.
llcancel: Cancel command has been sent to the central manager.

Chapter 9. LoadLeveler Commands 171

llclass - Query Class Information

Purpose
Returns information about classes.

Syntax
llclass [-?] [-H] [-v] [-l] [classlist]

Flags
-? Provides a short usage message.

-H Provides entended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-l Specifies that a long listing be generated for each class for which status is
requested. If -l is not specified, then the standard listing is generated.

classlist
Is a blank-delimited list of classes for which you are requesting status. If no
classlist is specified, all classes are queried.

If you have more than a few classes configured for LoadLeveler, consider
redirecting the output to a file when you use the -l flag.

Examples
This example generates a long listing for classes named silver and gold:
llclass -l silver gold

Results
The Standard Listing: . The standard listing is generated when you do not specify
-l with the llclass command. The following is sample output from the llclass silver
command, where there are five silver classes configured in the cluster, with one
silver class job currently running:

Name MaxJobCPU MaxProcCPU Free Max Description
d+hh:mm:ss d+hh:mm:ss Slots Slots

silver 0+00:30:00 0+00:10:00 4 5 silver grade jobs

The standard listing includes the following fields:

MaxJobCPU
The CPU limit for all the processes in a job of this class. For a parallel job,
this is the CPU limit for all processes in a task.

MaxProcCPU
The CPU limit for processes in this class.

Free Slots
The number of free slots (available classes) on this machine.

Max Slots
The total number of slots (configured classes) on this cluster.

Description
The description of this class.

172 Using and Administering LoadLeveler

The Long Listing: The long listing is generated when you specify the -l option on
the llclass command. The following is sample output from the llclass -l silver
command, where there are five silver classes configured in the cluster, with one
silver class job currently running:

=============== Class silver ===============
Name: silver

Priority: 50
Exclude_Users: user1
Exclude_Groups: 85ba

Admin: loadl:brownap:alice
NQS_class: F
NQS_submit:
NQS_query:

Max_processors: 1
Maxjobs: 15

Resource_requirement: spice2g6(2)
Class_comment: silver grade jobs

Wall_clock_limit: 0+02:00:00, 0+01:00:00
Job_cpu_limit: 0+00:59:59, 0+00:29:29

Cpu_limit: 0+00:30:00, 0+00:10:00
Data_limit: -1, -1
Core_limit: -1, -1
File_limit: -1, -1
Stack_limit: -1, -1
Rss_limit: -1, -1

Nice: 15
Free: 13

Maximum: 21

The long listing includes these fields:

Name The name of the class

Priority
The system priority of this class relative to other classes.

Exclude_Users
Users who are not permitted to submit jobs of this class.

Exclude_Groups
Groups who are not allowed to submit jobs of this class.

Admin
The list of administrators of this class.

NQS_class
Indicates whether this class is a gateway for an NQS system.

NQS_submit
The NQS queue where the job will be submitted.

NQS_query
The NQS queues to query where the job has been dispatched.

Max_processors
The maximum number of processors than can be used for parallel jobs.

Max_jobs
The maximum number of jobs the class can run at any time.

Resource_requirement
Default consumable resource requirements for jobs of this class.

Class_comment
The text supplied by the administrator describing this class.

Chapter 9. LoadLeveler Commands 173

Wall_clock_limit
The hard and soft wall clock limits (the elapsed time for which the job can
run).

Job_cpu_limit
The hard and soft CPU limits for all processes in a job of this class.

Cpu_limit
The hard and soft CPU limits for all processes in this class.

Data_limit
The hard and soft limits for the data area used for processes in this class.

Core_limit
The hard and soft core size limits.

File_limit
The hard and soft file size limits.

Stack_limit
The hard and soft stack size limits.

Rss_limit
The hard and soft rss size limits.

Nice The nice value of jobs in this class.

Free The number of classes available to new jobs.

Maximum
The total number of configured classes in this cluster.

Related Information
Each machine periodically updates the central manager with a snapshot of its
environment. Since the information returned by llclass is a collection of these
snapshots, all taken at varying times, the total picture may not be completely
consistent.

174 Using and Administering LoadLeveler

llctl - Control LoadLeveler Daemons

Purpose
Controls LoadLeveler daemons on all members of the LoadLeveler cluster.

Syntax
llctl [-?] [-H] [-v] [-q] [-g | -h host] [keyword]

Flags
-? Provides a short usage message.

-H Provides entended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-q Specifies quiet mode: print no messages other than error messages.

-g Indicates that the command applies globally to all machines in the
administration file.

-h host
Indicates that the command applies to only the host machine in the LoadLeveler
cluster. If neither -h nor -g is specified, the default is the machine on which the
llctl command is issued.

keyword
Must be specified after all flags and can be the following:

purge list_of_machines
Forces a schedd to delete any queued transaction to the machines in the
list_of_machines. If all jobs on the listed machines have completed, and
there are no messages pending to that machine, this option is not
necessary.

This option is intended for recovery and cleanup after a machine has
permanently crashed or was inadvertantly removed from the LoadLeveler
cluster before all activity on it was quiesced. Do not use this option unless
the specified list_of_machines are guaranteed not to return to the
LoadLeveler cluster.

If you need to return the machine to the cluster later, you must clear all files
from the spool and execute directory of the machine which was deleted.

capture eventname
Captures accounting data for all jobs running on the designated machines.
eventname is the name you associate with the data, and must be a
character string containing no blanks. For more information, see “Collecting
Job Resource Data Based on Events” on page 154.

drain [schedd|startd [classlist |allclasses]]
When you issue drain with no options, the following happens: (1) no more
LoadLeveler jobs can begin running on this machine, and (2) no more
LoadLeveler jobs can be submitted through this machine. When you issue
drain schedd , the following happens: (1) the schedd machine accepts no
more LoadLeveler jobs for submission, (2) jobs in the Starting or Running
state in the schedd queue are allowed to continue running, and (3) jobs in
the Idle state in the schedd queue are drained, meaning they will not get
dispatched. When you issue drain startd , the following happens: (1) the

Chapter 9. LoadLeveler Commands 175

startd machine accepts no more LoadLeveler jobs to be run, and (2) jobs
already running on the startd machine are allowed to complete. When you
issue drain startd classlist, the classes you specify which are available on
the startd machine are drained (made unavailable). When you issue drain
startd allclasses , all available classes on the startd machine are drained.

flush
Terminates running jobs on this machine and sends them back, in the Idle
state, to the negotiator to await redispatch (provided restart=yes in the job
command file). No new jobs are sent to this machine until resume is issued.
Forces a checkpoint if jobs are enabled for checkpointing. However, the
checkpoint gets cancelled if it does not complete within a five minute period.

purgeschedd
Requests that all jobs scheduled by the specified host machine be purged
(removed). To use this keyword, you must first specify schedd_fenced=true
in the machine stanza for this host. The -g option cannot be specified with
this keyword. For more information, see “How Do I Recover Resources
Allocated by a schedd Machine?” in the IBM LoadLeveler for AIX: Diagnosis
and Messages Guide.

reconfig
Forces all daemons to reread the configuration files.

recycle
Stops all LoadLeveler daemons and restarts them.

resume [schedd|startd [classlist |allclasses]]
When you issue resume with no options, job submission and job execution
on this machine is resumed. When you issue resume schedd , the schedd
machine resumes the submission of jobs. When you issue resume startd ,
the startd machine resumes the execution of jobs. When you issue resume
startd classlist, the startd machine resumes the execution of those job
classes you specify which are also configured (defined on the machine).
When you issue resume startd allclasses , the startd machine resumes the
execution of all configured classes.

start
Starts the LoadLeveler daemons on the specified machine. You must have
rsh privileges to start LoadLeveler on a remote machine.

stop
Stops the LoadLeveler daemons on the specified machine.

suspend
Suspends all jobs on this machine. This is not supported for parallel jobs.

version
Displays version and release data at the screen.

Description
This command sends a message to the master daemon on the target machine
requesting that action be taken on the members of the LoadLeveler cluster. Note
the following when using this command:

v After you make changes to the configuration files for a running cluster, be sure to
issue llctl reconfig . This command causes the LoadLeveler daemons to reread
the configuration files, and prevents problems that can occur when the
LoadLeveler commands are using a new configuration while the daemons are
using an old configuration.

176 Using and Administering LoadLeveler

v The llctl drain startd classlist command drains classes on the startd machine,
and the startd daemon remains operational. If you reconfigure the daemon, the
draining of classes remains in effect. However, if the startd goes down and is
brought up again (either by the master daemon or by a LoadLeveler
administrator), the startd daemon is configured according to the global or local
configuration file in effect, and therefore the draining of classes is lost.

Draining all the classes on a startd machine is not equivalent to draining the
startd machine. When you drain all the classes, the startd enters the Idle state.
When you drain the startd, the startd enters the Drained state. Similarly,
resuming all the classes on a startd machine is not equivalent to resuming the
startd machine.

v If a parallel job is running on a machine that receives the llctl recycle command,
or the llctl stop and llctl start commands, the running job is terminated. You can
restart the job by resubmitting the job or by specifying the restart=yes option in
the job command file.

If a serial job is running on a machine that receives the llctl recycle command,
or the llctl stop and llctl start commands, the running job is terminated. You can
restart the job by resubmitting the job or by enabling checkpointing and
specifying the restart=yes option in the job command file.

v If you find that the llctl -g command (even if it is specified with additional
options) is taking a long time to complete, you should consider using the SP dsh
command to send llctl commands (omitting the -g flag) to multiple nodes in a
parallel fashion. For more information on dsh , see IBM RS/6000 Scalable
POWERparallel Systems: Administration Guide , (SH26-2486).

v When a node running a schedd daemon fails, resources that have been allocated
to any of the jobs scheduled by that schedd are unavailable until the schedd is
restarted. Administrators can, however, recover these resources by using the llctl
command’s purgeschedd keyword to purge (remove) all of the jobs scheduled
by the schedd on the down node. The purgeschedd keyword can only work in
conjunction with the schedd_fenced keyword, which causes the central manager
to ignore (fence) the target schedd node. You must reconfigure the central
manager so it can recognize this fence. To use the purgeschedd keyword:

1. Recognize that a node running a schedd daemon is down, and that the node
will be down long enough to necessitate that you recover the resources
allocated to jobs scheduled by that schedd.

2. Add the statement ″schedd_fenced = true″ to the failed node’s administration
file machine stanza.

3. Reconfigure the central manager node, so that the central manager
recognizes the fenced node.

4. Invoke ″llctl -h host purgeschedd″ to purge all of the jobs scheduled by the
schedd on the failed node.

5. Remove all of the files in the LoadLeveler spool directory for that node. Once
the failed node is working again, remove the ″schedd_fenced = true″
statement from the administration file, then reconfigure the central manager
node.

Examples
This example stops LoadLeveler on the machine named iron:
llctl -h iron stop

This example starts the LoadLeveler daemons on all members of the LoadLeveler
cluster, starting with the central manager, as defined in the machine stanzas of the
administration file:

Chapter 9. LoadLeveler Commands 177

llctl -g start

This example causes the LoadLeveler daemons on machine iron to re-read the
configuration files, which may contain new configuration information for the iron
machine:
llctl -h iron reconfig

For the next three examples, suppose the classes small, medium, and large are
available on the machine called iron.

This example drains the classes medium and large on the machine named iron.
llctl -h iron drain startd medium large

This example drains the classes medium and large on all machines.
llctl -g drain startd medium large

This example stops all the jobs on the system, then allows only jobs of a certain
class (medium) to run.
llctl -g drain startd allclasses
llctl -g flush
llctl -g resume
llctl -g resume startd medium

This example resumes the classes medium and large on the machine named iron.
llctl -h iron resume startd medium large

This example illustrates how to capture accounting information on a work shift
called day on the machine iron:
llctl -h iron capture day

You can capture accounting information on all the machines in the LoadLeveler
cluster by using the -g option, or you can collect accounting information on the local
machine by simply issuing the following:
llctl capture day

Capturing information on the local machine is the default. For more information, see
“Collecting Job Resource Data Based on Events” on page 154.

Assume the machine earth has crashed while running jobs. Its hard disk needs to
be replaced. You try to cancel the jobs that were running on that machine. The
schedd marks the job Remove Pending until it gets confirmation from earth that the
jobs were removed. Since earth will be reinstalled, you need to inform schedd that it
should not wait for confirmation.

Assume the schedd is named mars, and the running jobs are named mars.1.0 and
mars.1.1. First you want to tell the negotiator to remove the jobs:
llcancel mars.1.0
llcancel mars.1.1

Next, tell the schedd not to wait for confirmation from earth before marking the jobs
removed:
llctl -h mars purge earth

178 Using and Administering LoadLeveler

Results
The following shows the result of the llctl -h mars purge earth command:
llctl: Sent purge command to host mars

Chapter 9. LoadLeveler Commands 179

lldcegrpmaint - LoadLeveler DCE group Maintenance Utility

Purpose
This command extracts the names of the DCE groups associated with the
DCE_ADMIN_GROUP and DCE_SERVICES_GROUP keywords from the
LoadLeveler configuration file. It will create these groups if they do not already
exist. This command also adds the DCE principal names of the LoadLeveler
daemons to the group specified by the DCE_SERVICES-GROUP keyword.

Syntax
lldcegrpmaint [-?] [-H] [-v] config_pathname admin_pathname

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

config_pathname
Pathname of the LoadLeveler configuration file.

admin_pathname
Pathname of the LoadLeveler administration file.

Description
The lldcegrpmaint command is available to DCE administrators who have logged in
to DCE as cell_admin . The command performs the following functions:

1. Extracts the names of the DCE groups associated with the
DCE_ADMIN_GROUP and DCE_SERVICES_GROUP keywords from the
LoadLeveler global configuration file. These groups are known generically as
the LoadL-admin group and the LoadL-services group. The LoadL-admin group
contains the DCE principal names of users who have administrative authority for
LoadLeveler. The LoadL-services group contains the DCE principal names of all
the LoadLeveler daemons which run in the current LoadLeveler cluster. The
lldcegrpmaint command will create these groups if they do not already exist.

2. Populates the LoadL-services group with the DCE principal names of the
LoadLeveler daemons. These names are derived from the DCE hostnames
associated with the dce_host_name keyword in the LoadLeveler administration
file, and LoadLeveler related information defined in the
/usr/lpp/ssp/config/spsec_defaults file. In order for this step to work, the machine
stanzas in the administration file must contain the DCE hostnames of the all the
machines in the LoadLeveler cluster. The llextSDR command can be used to
retrieve the DCE hostnames.

Before running the lldcegrpmaint command, a DCE administrator should make sure
that basic DCE Security setup steps have been performed. If SMIT panels are
used, the steps under the ″RS/6000 SP Security″ panel should be performed in
sequence (from top to bottom) to properly update the DCE Registry. This measure
is important for LoadLeveler, and for any other function that exploits DCE Security
on the SP. For the purposes of the lldcegrpmaint command, the important actions
are: (1) ″Create dcehostnames″ and (2) ″Configure SP Trusted Services to use
DCE Authentication.″

Note: lldcegrpmaint does not add the names associated with the LOADL_ADMIN
keyword in the configuration file to the LoadL-admin group. It is the administrator’s
responsibility to add appropriate DCE principals to this group.

180 Using and Administering LoadLeveler

Examples
In this example, it is assumed that the DCE cell name is /.../c163.ppd.pok.ibm.com
and that LoadLeveler configuration and administration files are named
/u/loadl/LoadL_config and /u/loadl/LoadL_admin, respectively, and contain the
statements:
DCE_ENABLEMENT=TRUE
DCE_ADMIN_GROUP=LoadL-admin4
DCE_SERVICES_GROUP=LoadL-services4

and
c163n02.ppd.pok.ibm.com: type = machine central_manager = true
machine_mode = general
schedd_host = true
dce_host_name = c163n02.ppd.pok.ibm.com

c163n03.ppd.pok.ibm.com: type = machine central_manager = false
machine_mode = general
schedd_host = true
dce_host_name = c163n03.ppd.pok.ibm.com

It is also assumed that there is no override specification in the file
/spdata/sys1/spsec/spsec_overrides and that the file
/usr/lpp/ssp/config/spsec_defaults contains the following:
SERVICE:LoadL/Master:kw:root:system
SERVICE:LoadL/Negotiator:kw:root:system
SERVICE:LoadL/Schedd:kw:root:system
SERVICE:LoadL/Startd:kw:root:system
SERVICE:LoadL/Starter:kw:root:system
SERVICE:LoadL/Kbdd:kw:root:system
SERVICE:LoadL/GSmonitor:kw:root:system

Executing the command:
lldcegrpmaint /u/loadl/LoadL_config /u/loadl/LoadL_admin

results in:

1. The creation of the DCE groups:
/.../c163.ppd.pok.ibm.com/LoadL-admin4
/.../c163.ppd.pok.ibm.com/LoadL-services4

2. The population of the DCE group LoadL-services4 with the DCE principals:
/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Master
/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Negotiator
/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Schedd
/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Startd
/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Starter
/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Kbdd
/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/GSmonitor
/.../c163.ppd.pok.ibm.com/LoadL/c163n02.ppd.pok.ibm.com/Master
/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/Negotiator
/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/Schedd
/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/Startd
/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/Starter
/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/Kbdd
/.../c163.ppd.pok.ibm.com/LoadL/c163n03.ppd.pok.ibm.com/GSmonitor

Chapter 9. LoadLeveler Commands 181

llextSDR - Extract adapter information from the SDR

Purpose
Extracts adapter information from the system data repository (SDR) and creates
adapter and machine stanzas for each node in an RS/6000 SP partition. You can
use the information in these stanzas in the LoadLeveler administration file. This
command writes the stanzas to standard output.

Syntax
llextSDR [-?] [-H] [-v] [-a adapter]

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-a adapter
Specifies that the interface name of the given adapter on each node is used as
the label (machine stanza name) of the generated machine stanza. If you do
not specify an adapter, the label used is the initial_hostname field of the Node
class in the SDR.

Description
In the SDR, the Node class contains an entry for each node in the SP partition. The
Adapter class contains an entry for each adapter configured on a node. This
command extracts the information in the Adapter class and creates an adapter
stanza. This command also creates a machine stanza which identifies the node and
the adapters attached to the node. The generated machine stanza also includes the
spacct_excluse_enable keyword, whose value is obtained from the
spacct_excluse_enable attribute in the SP class of the SDR. For more information
on adapter stanzas, see “Step 5: Specify Adapter Stanzas” on page 95. For more
information on machine stanzas, see “Step 1: Specify Machine Stanzas” on
page 75.

The partition for which information is extracted is either the default partition or that
specified with the SP_NAME environment variable. For the control workstation, the
default partition is the default system partition. For an SP node, the default partition
is the partition to which the node belongs.

You must issue this command on a machine with the ssp.clients file set installed. If
you issue this command from a non-SP workstation, you must set SP_NAME to the
IP address of the appropriate SDR instance for the partition.

Examples
The following example creates adapter and machine stanzas for all nodes in a
partition:
llextSDR

The following example creates machine stanzas with each node’s css0 interface
name as the label:
llextSDR -a css0

Results
You may need to alter or add information to the stanzas produced by this command
when you incorporate the stanzas into the administration file. For example,

182 Using and Administering LoadLeveler

administrators may want to have each network_type field use a value that reflects
the type of nodes installed on the network. Users will need to know the values used
for network_type so that they can specify an appropriate value in their job
command files.

Also, the output of this command includes fully-qualified machine names. If your
existing administration file uses short names, you may need to change either the
command output or your existing administration file so that you use either all
fully-qualified names or all short names.

This is sample output for the llextSDR command, where the default partition is
c187s. This sample shows machine and adapter stanzas for three of the nodes in a
16-node partition.
#llextSDR: System Partition = "c187s" on Thu Sep 30 10:15:47 1999

c187n16.ppd.pok.ibm.com: type = machine
adapter_stanzas = c187sn16.ppd.pok.ibm.com c187n16.ppd.pok.ibm.com
spacct_excluse_enable = true
dce_host_name = c187n16.ppd.pok.ibm.com
alias = c187sn16.ppd.pok.ibm.com

c187sn16.ppd.pok.ibm.com: type = adapter
adapter_name = css0
network_type = switch
interface_address = 9.114.45.144
interface_name = c187sn16.ppd.pok.ibm.com
switch_node_number = 15
css_type = SP_Switch_MX_Adapter

c187n16.ppd.pok.ibm.com: type = adapter
adapter_name = en0
network_type = ethernet
interface_address = 9.114.45.80
interface_name = c187n16.ppd.pok.ibm.com

c187n14.ppd.pok.ibm.com: type = machine
adapter_stanzas = c187sn14.ppd.pok.ibm.com c187n14.ppd.pok.ibm.com
spacct_excluse_enable = true
dce_host_name = c187n14.ppd.pok.ibm.com
alias = c187sn14.ppd.pok.ibm.com

c187sn14.ppd.pok.ibm.com: type = adapter
adapter_name = css0
network_type = switch
interface_address = 9.114.45.142
interface_name = c187sn14.ppd.pok.ibm.com
switch_node_number = 13
css_type = SP_Switch_Adapter

c187n14.ppd.pok.ibm.com: type = adapter
adapter_name = en0
network_type = ethernet
interface_address = 9.114.45.78
interface_name = c187n14.ppd.pok.ibm.com

.

.

.

c187n01.ppd.pok.ibm.com: type = machine
adapter_stanzas = c187sn01.ppd.pok.ibm.com c187n01.ppd.pok.ibm.com
spacct_excluse_enable = true
dce_host_name = c187n01.ppd.pok.ibm.com
alias = c187sn01.ppd.pok.ibm.com

Chapter 9. LoadLeveler Commands 183

c187sn01.ppd.pok.ibm.com: type = adapter
adapter_name = css0
network_type = switch
interface_address = 9.114.45.129
interface_name = c187sn01.ppd.pok.ibm.com
switch_node_number = 0
css_type = SP_Switch_MX_Adapter

c187n01.ppd.pok.ibm.com: type = adapter
adapter_name = en0
network_type = ethernet
interface_address = 9.114.45.65
interface_name = c187n01.ppd.pok.ibm.com

The following shows sample output for the llextSDR -a css0 command for a single
node:
k10sn09.ppd.pok.ibm.com: type = machine
adapter_stanzas = k10sn09.ppd.pok.ibm.com k10n09.ppd.pok.ibm.com
spacct_excluse_enable = true

k10sn09.ppd.pok.ibm.com: type = adapter
adapter_name = css0
network_type = switch
interface_address = 9.114.51.137
interface_name = k10sn09.ppd.pok.ibm.com
switch_node_number = 8
css_type = SP_Switch_MX_Adapter

k10n09.ppd.pok.ibm.com: type = adapter
adapter_name = en0
network_type = ethernet
interface_address = 9.114.51,73
interface_name = k10n09.ppd.pok.ibm.com

184 Using and Administering LoadLeveler

llfavorjob - Reorder System Queue by Job

Purpose
Sets specified jobs to a higher system priority than all jobs that are not favored.
This command also unfavors previously favored job(s), restoring the original priority,
when you specify the -u flag.

Syntax
llfavorjob [-?] [-H] [-v] [-q] [-u] joblist

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-q Specifies quiet mode: print no messages other than error messages.

-u Unfavors previously favored jobs, requeuing them according to their original
priority levels.

joblist
Is a blank-delimited list of jobs of the form host.jobid.stepid where:

v host is the name of the machine to which the job was submitted (delimited by
dot). The default is the local machine.

v jobid is the job ID assigned to the job by LoadLeveler when it was submitted
using the llsubmit command. jobid is required.

v stepid (delimited by dot) Is the job step ID assigned to the job by
LoadLeveler when it was submitted using the llsubmit command. The default
is to include all members of the job.

Description
If this command is issued against jobs that are already running, it has no effect. If
the job vacates, however, and returns to the queue, the job gets re-ordered with the
new priority.

If more than one job is affected by this command, then the jobs are ordered by the
sysprio expression and are scanned before the not favored jobs. However, favored
jobs which do not match the job requirements with available machines may run
after not favored jobs. This command remains in effect until reversed with the -u
option.

Examples
This example assigns jobs 12.4 on the machine iron and 8.2 on zinc the highest
priorities in the system, with the jobs ordered by the sysprio expression:
llfavorjob iron.12.4 zinc.8.2

This example unfavors jobs 12.4 on the machine iron and 8.2 on the machine zinc:
llfavorjob -u iron.12.4 zinc.8.2

Chapter 9. LoadLeveler Commands 185

llfavoruser - Reorder System Queue by User

Purpose
Sets a user’s job(s) to the highest priority in the system, regardless of the current
setting of the job priority. Jobs already running are not affected. This command also
unfavors the user’s job(s), restoring the original priority, when you specify the -u
flag.

Syntax
llfavoruser [-?] [-H] [-v] [-q] [-u] userlist

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-q Specifies quiet mode: print no messages other than error messages.

-u Unfavors previously favored users, reordering their job(s) according to their
original priority level(s). If -u is not specified, the user’s job(s) are favored.

userlist
Is a blank-delimited list of users whose jobs are given the highest priority. If -u
is specified, userlist jobs are unfavored.

Description
This command affects your current and future jobs until you remove the favor.

When the central manager daemon is restarted, any favor applied to users is
revoked.

The user’s jobs still remain ordered by user priority (which may cause jobs for the
user to swap sysprio). If more than one user is affected by this command, the jobs
of favored users are ordered by sysprio and are scanned before the jobs of not
favored users. However, jobs of favored users which do not match job requirements
with available machines may run after jobs of not favored users.

Examples
This example grants highest priority to all queued jobs submitted by users ellen
and fred according to the sysprio expression:
llfavoruser ellen fred

This example unfavors all queued jobs submitted by users ellen and fred:
llfavoruser -u ellen fred

186 Using and Administering LoadLeveler

llhold - Hold or Release a Submitted Job

Purpose
Places jobs in user hold or system hold and releases jobs from both types of hold.
Users can only move their own jobs into and out of user hold. Only LoadLeveler
administrators can move jobs into and release them from system hold.

Syntax
llhold [-?] [-H] [-v] [-q] [-s] [-r] [-u userlist] [-h hostlist] [joblist]

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-q Specifies quiet mode: print no messages other than error messages.

-s Puts job(s) in system hold. Only a LoadLeveler administrator can use this
option.

If neither -s nor -r is specified, LoadLeveler puts the job(s) in user hold.

-r Releases a job from hold. A job in user hold is released unless it is also in
system hold, where it remains. A job in system hold is released unless it is also
in user hold, where it remains.

Only a LoadLeveler administrator can release jobs from system hold. Only an
administrator or the owner of a job can release it from user hold.

If neither -s nor -r is specified, LoadLeveler puts the job(s) in user hold.

-u userlist
Is a blank-delimited list of users. When used with the -h option, only the user’s
jobs monitored on the machines in the hostlist are held or released. When used
alone, only the user’s jobs monitored on the schedd machine are held or
released.

-h hostlist
Is a blank-delimited list of machine names. All jobs monitored on machines in
this list are held or released. When issued with the -u option, the userlist is
used to further select jobs for holding or releasing.

When issued by a non-administrator, this option only acts upon jobs that user
has submitted to the machines in hostlist.

When issued by an administrator, all jobs monitored on the machines are acted
upon unless the -u option is also used. In that case, the userlist is also part of
the selection process, and only jobs both submitted by users in userlist and
monitored on the machines in the hostlist are acted upon.

joblist
Is a blank-delimited list of jobs of the form host.jobid.stepid where:

v host is the name of the machine to which the job was submitted (delimited by
dot). The default is the local machine.

If the job was submitted from a submit-only machine, this is the name of the
schedd machine that sent the job to the negotiator.

Chapter 9. LoadLeveler Commands 187

v jobid is the job ID assigned to the job when it was submitted using the
llsubmit command. jobid is required.

v stepid (delimited by dot) is the step ID assigned to the job by LoadLeveler
when it was submitted using the llsubmit command. The default is to include
all steps of the job.

Description
This command does not affect a job step that is running unless the job step
attempts to enter the Idle state. At this point, the job step is placed in the Hold
state.

To ensure a job is released from both system hold and user hold, the administrator
must issue the command with -r specified to release it from system hold. The
administrator or the submitting user can reissue the command to release the job
from user hold.

This command will fail if:

v a non-administrator attempts to move a job into or out of system hold.

v a non-administrator attempts to move a job submitted by someone else into or
out of user hold.

Examples
This example places job 23, job step 0 and job 19, job step 1 on hold:
llhold 23.0 19.1

This example releases job 23, job step 0, job 19, job step 1, and job 20, job step 3
fron a hold state:
llhold -r 23.0 19.1 20.3

This example places all jobs from users abe, barbara, and carol2 in system hold:
llhold -s -u abe barbara carol2

This example releases from a hold state all jobs on machines bronze, iron, and
steel:
llhold -r -h bronze iron steel

This example releases from a hold state all jobs on machines bronze, iron, and
steel that smith submitted:
llhold -r -u smith -h bronze iron steel

Results
The following shows a sample system response for the llhold -r -h bronze
command:
llhold: Hold command has been sent to the central manager.

188 Using and Administering LoadLeveler

llinit - Initialize Machines in the LoadLeveler Cluster

Purpose
Initializes a new machine as a member of the LoadLeveler hardware resource
cluster

Syntax
llinit [-?] [-H] [-q] [-prompt] [-local pathname] [-release pathname] [-cm machine]
[-debug]

Flags
-? Provides a short usage message.

-H Provides extended help information.

-q Specifies quiet mode: print no messages other than error messages.

-prompt
Prompts or leads you through a set of questions that help you to complete the
llinit command.

-local pathname
Where pathname is the local directory on which to create the spool, execute,
and log sub-directories. The default, if this flag is not used, is the home
directory.

There must be a unique local directory for each LoadLeveler cluster member.

-release pathname
Where pathname is the release directory, where the LoadLeveler bin, lib, man,
include, and samples subdirectories are located. The default, if this flag is not
used, is the /usr/lpp/LoadL/full directory.

-cm machine
Where machine is the central manager machine, where the negotiator daemon
runs.

-debug
Displays a large amount of messages, tracing the path through llinit during
execution. This is intended for debugging purposes only.

Description
This command runs once on each machine during the installation process. It must
be run by the user ID you have defined as the LoadLeveler user ID. The log, spool,
and execute directories are created with the correct modes and ownerships. The
LoadLeveler configuration and administration files, LoadL_config and
LoadL_admin , respectively, are copied from LoadLeveler’s release directory to
LoadLeveler’s home directory. The local configuration file, LoadL_config.local , is
copied from LoadLeveler’s release directory to LoadLeveler’s local directory.

llinit initializes a new machine as a member of the LoadLeveler resource cluster by
doing the following:

v Creates the following LoadLeveler subdirectories with the given permissions:
spool subdirectory, with permissions set to 700.
execute subdirectory, with permissions set to 1777.
log subdirectory, with permissions set to 775.

v Copies the LoadL_config and LoadL_admin files from the release directory
samples subdirectory into the loadl home directory.

Chapter 9. LoadLeveler Commands 189

v Copies the LoadL_config.local file from the release directory samples
subdirectory into the local directory.

v Creates symbolic links from the loadl home directory to the spool, execute, and
log subdirectories and the LoadL_config.local file in the local directory (if home
and local directories are not identical).

v Creates symbolic links from the home directory to the bin, lib, man, samples, and
include subdirectories in the release directory.

v Updates the LoadL_config with the release directory name.

v Updates the LoadL_admin with the central manager machine name.

Before running llinit ensure that your HOME environment variable is set to
LoadLeveler’s home directory. To run llinit you must have:
v Write privileges in the LoadLeveler home directory
v Write privileges in the LoadLeveler release directory
v Write privileges in the LoadLeveler local directory.

Examples
The following example initializes a machine, assigning /var/loadl as the local
directory, /usr/lpp/LoadL/full as the release directory, and the machine named
bronze as the central manager.
llinit -local /var/loadl -release /usr/lpp/LoadL/full -cm bronze

Results
The command:
llinit -local /home/ll_admin -release /usr/lpp/LoadL/full -cm mars

will yield the following output:
llinit: creating directory "/home/ll_admin/spool"
llinit: creating directory "/home/ll_admin/log"
llinit: creating directory "/home/ll_admin/execute"
llinit: set permission "700" on "/home/ll_admin/spool"
llinit: set permission "775" on "/home/ll_admin/log"
llinit: set permission "1777" on "/home/ll_admin/execute"
llinit: creating file "/home/ll_admin/LoadL_admin"
llinit: creating file "/home/ll_admin/LoadL_config"
llinit: creating file "/home/ll_admin/LoadL_config.local"
llinit: editing file /home/ll_admin/LoadL_config
llinit: editing file /home/ll_admin/LoadL_admin
llinit: creating symbolic link "/home/ll_admin/bin -> /usr/lpp/LoadL/full/bin"
llinit: creating symbolic link "/home/ll_admin/lib -> /usr/lpp/LoadL/full/lib"
llinit: creating symbolic link "/home/ll_admin/man -> /usr/lpp/LoadL/full/man"
llinit: creating symbolic link "/home/ll_admin/samples -> /usr/lpp/LoadL/full/samples"
llinit: creating symbolic link "/home/ll_admin/include -> /usr/lpp/LoadL/full/include"
llinit: program complete.

190 Using and Administering LoadLeveler

llprio - Change the User Priority of Submitted Job Steps

Purpose
Changes the user priority of one or more job steps in the LoadLeveler queue. You
can adjust the priority by supplying a + (plus) or − (minus) immediately followed by
an integer value. llprio does not affect a job step that is running, even if its priority
is lower than other jobs steps, unless the job step goes into the Idle state.

Syntax
llprio [-?] [-H] [-v] [-q] [+integer | −integer | -p priority] joblist

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-q Specifies quiet mode: print no messages other than error messages.

+ | − integer
Operates on the current priority of the job step, making it higher (closer to
execution) or lower (further from execution) by adding or subtracting the value
of integer.

-p priority
Is the new absolute value for priority. The valid range is 0–100 (inclusive) where
0 is the lowest possible priority and 100 is highest.

joblist
Is a blank-delimited list of jobs of the form host.jobid.stepid where:

v host is the name of the machine to which the job step was submitted
(delimited by dot). The default is the local machine.

If the job step was submitted from a submit-only machine, this is the name of
the machine where the schedd daemon that sent the job to the negotiator
resides.

v jobid is the job ID assigned to the job when it was submitted using the
llsubmit command. jobid is required.

v stepid (delimited by dot) is the job step ID assigned to the job when it was
submitted using the llsubmit command.

Description
The user priority of a job step ranges from 0 to 100 inclusively, with higher numbers
corresponding to greater priority. The default priority is 50. Only the owner of a job
step or the LoadLeveler administrator can change the priority of that job step. Note
that the priority is not the UNIX nice priority.

Priority changes resulting in a value less than 0 become 0.

Priority changes resulting in a value greater than 100 become 100.

Any change to a job step’s priority applied by a user is relative only to that user’s
other job steps in the same class. If you have three job steps enqueued, you can
reorder those three job steps with llprio but the result does not affect job steps
submitted by other users, regardless of their priority and position in the queue.

See “Setting and Changing the Priority of a Job” on page 28 for more information.

Chapter 9. LoadLeveler Commands 191

Examples
This example raises the priority of job 4, job step 1 submitted to machine bronze by
a value of 25:
llprio +25 bronze.4.1

This example sets the priority of job 18, job step 4 submitted to machine silver to
100, the highest possible value:
llprio -p 100 silver.18.4

Results
The following shows a sample system response for the llprio -p 100 silver.18.4
command:
llprio: Priority command has been sent to the central manager.

192 Using and Administering LoadLeveler

llq - Query Job Status

Purpose
Returns information about jobs that have been dispatched.

Syntax
llq [-?] [-H] [-v] [-x] [-s] [-l] [joblist] [-u userlist] [-h hostlist] [-c classlist]
[-f category_list] [-r category_list]

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-x Provides extended information about the selected job. If the -x flag is used with
the -r, -s, or -f flag, an error message is generated.

CPU usage and other resource consumption information on active jobs can only
be reported using the -x flag if the LoadLeveler administrator has enabled it by
specifying A_ON and A_DETAIL for the ACCT keyword in the LoadLeveler
configuration file.

Normally, llq connects with the central manager to obtain job information. When
you specify -x, llq connects to the schedd machine that received the specified
job to get extended job information.

When specified without -l, CPU usage for active jobs is reported in the short
format. Using -x can produce a very long report and can cause excess network
traffic.

-s Provides information on why a selected list of jobs remain in the NotQueued,
Idle or Deferred state. Along with this flag, users must specify a list of jobs. The
user can also optionally supply a list of machines to be considered when
determining why the job(s) cannot run. If a list of machines is not provided, the
default is the list of machines in the LoadLeveler cluster. For each job, llq
determines why the job remains in one of the given states instead of Running.

-l Specifies that a long listing be generated for each job for which status is
requested. Fields included in the long listing are shown in “Results” on
page 195.

If -l is not specified, then the standard listing is generated as shown in “Results”
on page 195.

joblist
Is a blank-delimited list of jobs of the form host.jobid.stepid where:

v host is the name of the machine to which the job was submitted (delimited by
dot). The default is the local machine.

If the job was submitted from a submit-only machine, this is the name of the
machine where the schedd daemon that sent the job to the negotiator
resides.

v jobid is the job id assigned to the job when it was submitted using the
llsubmit command.

Chapter 9. LoadLeveler Commands 193

v stepid (delimited by dot) Is the step id assigned to the job when it was
submitted using the llsubmit command. The default is to include all
members of the cluster.

-u userlist
Is a blank-delimited list of users. When used with the -h option, only the user’s
jobs monitored on the machines in the hostlist are queried. When used alone,
only the user’s jobs monitored on the schedd machine are queried.

-h hostlist
Is a blank-delimited list of machines. If the -s flag is not specified, all jobs
monitored on machines in this list are queried. If the -s flag is specified, the list
of machines is considered when determining why a job remains in Idle state.
When issued with the -u option, the userlist is used to further select jobs for
querying.

-c classlist
Is a blank-delimited list of classes. When used with -h, only those jobs
monitored on the machines in the hostlist are queried.

-f category_list
Is a blank-delimited list of categories you want to query. Each category you
specify must be preceded by a percent sign. The category_list cannot contain
duplicate entries. This flag allows you to create a customized version of the
standard llq listing. You cannot use this flag with the -l flag. The output fields
produced by this flag all have a fixed length. The output is displayed in the
order in which you specify the categories. category_list can be one or more of
the following:

%a Account number
%c Class
%cc Completion code
%dc Completion date
%dd Dispatch Date
%dh Hold date
%dq Queue date
%gl LoadLeveler group
%gu UNIX group
%h Host (First hostname if more than one is allocated to the job)
%id Step ID
%is Virtual image size
%jn Job name
%jt Job type
%nh Number of hosts allocated to the job
%o Job owner
%p User priority
%sn Step name
%st Status

-r category_list
Is a blank-delimited list of formats (categories) you want to query. Each
category you specify must be preceded by a percent sign. The category_list
cannot contain duplicate entries. This flag allows you to create a customized
version of the standard llq listing. You cannot use this flag with the -l flag. The
output produced by this flag is considered raw, in that the fields can be variable
in length. Output fields are separated by an exclamation point (!). The output is
displayed in the order in which you specify the formats. category_list can be
one or more of the formats listed under the -f flag.

194 Using and Administering LoadLeveler

If the -u or -h options are not specified, and if no jobid is specified, then all jobs are
queried.

The -u and -h options override the jobid parameters.

Examples
This example generates a long listing for job 8, job step 2 submitted to machine
gold:
llq -l gold.8.2

This example generates a standard listing for all job steps of job name 12 submitted
to the local machine:
llq 12

Results
In this section, the term “job step” refers to either a serial job step or a parallel task.

Standard Listing: The standard listing is generated when you do not specify the -l
option with the llq command. The following is sample output from the llq -h mars
command, where the machine mars has two jobs running and one job waiting:

Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
mars.498.0 brownap 5/20 11:31 R 100 silver mars
mars.499.0 brownap 5/20 11:31 R 50 No_Class mars
mars.501.0 brownap 5/20 11:31 I 50 silver

3 job steps in queue, 1 waiting, 0 pending, 2 running, 0 held.

The standard listing includes the following fields:

Id job identifier presented in the format: host.jobid.stepid. When the llq
command returns information about a job owned by a schedd in the same
domain, then the domain of the hostname won’t appear in the output.
However, when the llq command reports information about a job owned by
a schedd in a different domain, the fully qualified hostname is always
included. Due to space limitations, the host’s domain may be truncated to fit
in the space allocated to the Id field. If the domain is truncated, a dash (-)
will appear at the end to indicate that characters have been left out. To see
the full job ID, run llq with the -l flag.

Owner
userid of the job submitter.

Submitted
date and time of job submission.

ST current job status (state). Job status can be:

C Completed
CA Cancelled
CP Complete Pending
D Deferred
H User Hold
HS User Hold and System Hold
I Idle
NR Not Run
NQ Not Queued
P Pending

Chapter 9. LoadLeveler Commands 195

R Running
RM Removed
RP Remove Pending
S System Hold
ST Starting
SX Submission Error
TX Terminated
V Vacated
VP Vacate Pending
X Rejected
XP Reject Pending

For a detailed explanation of job states, see “LoadLeveler Job States” on
page 18.

PRI user priority of the job, where the values are defined with the user_priority
keyword in the job command file or changed by the llprio command. See
“llprio - Change the User Priority of Submitted Job Steps” on page 191

Class job class.

Running On
if running, the machine the job is running on. This is blank when the job is
not running. For parallel jobs, only the first machine is shown.

Customized, Formatted Standard Listing: A customized and formatted standard
listing is generated when you specify llq with the -f flag. The following is sample
output from this command:

llq -f %id %c %dq %dd %gl %h

Step Id Class Queue Date Disp. Date LL Group Running On
----------------- ---------- ----------- ----------- ---------- ---------------
ll6.2.0 No_Class 04/08 09:19 04/08 09:21 No_Group ll6.pok.ibm.com
ll6.1.0 No_Class 04/08 09:19 04/08 09:21 No_Group ll6.pok.ibm.com
ll6.3.0 No_Class 04/08 09:19 04/08 09:21 No_Group ll5.pok.ibm.com

3 job steps in queue, 0 waiting, 0 pending, 3 running, 0 held

Customized, Unformatted Standard Listing: A customized and unformatted (raw)
standard listing is generated when you specify llq with the -r flag. Output fields are
separated by an exclamation point (!). The following is sample output from this
command:

llq -r %id %c %dq %dd %gl %h

ll6.pok.ibm.com.2.0!No_Class!04/08 09:19!04/08 09:21!No_Group!ll6.pok.ibm.com
ll6.pok.ibm.com.1.0!No_Class!04/08 09:19!04/08 09:21!No_Group!ll6.pok.ibm.com
ll6.pok.ibm.com.3.0!No_Class!04/08 09:19!04/08 09:21!No_Group!ll5.pok.ibm.com

The Long Listing: The long listing is generated when you specify the -l option with
the llq command. This section contains sample output for two llq commands: one
querying a serial job and one querying a parallel job. Following the sample output is
an explanation of all possible fields displayed by the llq command.

The following is sample output for the llq -l command for the serial job
“c163n12.ppd.pok.ibm.com.9 ”:

196 Using and Administering LoadLeveler

=============== Job Step c163n12.ppd.pok.ibm.com.9.0 ===============
Job Step Id: c163n12.ppd.pok.ibm.com.9.0

Job Name: c163n12.ppd.pok.ibm.com.9
Step Name: batch_job_1

Structure Version: 9
Owner: loadl

Queue Date: Mon Jun 28 10:33:59 EDT 1999
Status: Running

Dispatch Time: Mon Jun 28 10:34:02 EDT 1999
Completion Date:
Completion Code:
User Priority: 50
user_sysprio: 0
class_sysprio: 45
group_sysprio: 0

System Priority: -4042
q_sysprio: -4042

Notifications: Complete
Virtual Image Size: 1 kilobytes

Checkpoint:
Restart: yes

Hold Job Until:
Cmd: batch1.cmd
Args: arg_1 arg_2 arg_3
Env:
In: /dev/null
Out: job1.c163n12.9.0.out
Err: job1.c163n12.9.0.err

Initial Working Dir: /test/loadl
Dependency:
Resources: spice3f5(2)

Requirements: (Memory > 32) && (Arch == "R6000") && (OpSys == "AIX43")
Preferences: (Memory > 128) && (Feature == "ESSL")
Step Type: Serial

Min Processors:
Max Processors:
Allocated Host: c163n12.ppd.pok.ibm.com

Node Usage: shared
Submitting Host: c163n12.ppd.pok.ibm.com

Notify User: loadl@c163n12.ppd.pok.ibm.com
Shell: /bin/ksh

LoadLeveler Group: No_Group
Class: small

Cpu Hard Limit: 1800 seconds
Cpu Soft Limit: 600 seconds
Data Hard Limit: -1
Data Soft Limit: -1
Core Hard Limit: -1
Core Soft Limit: -1
File Hard Limit: -1
File Soft Limit: -1
Stack Hard Limit: -1
Stack Soft Limit: -1
Rss Hard Limit: -1
Rss Soft Limit: -1

Step Cpu Hard Limit: 3599 seconds
Step Cpu Soft Limit: 1769 seconds
Wall Clk Hard Limit: 4000 seconds
Wall Clk Soft Limit: 3600 seconds

Comment: Test batch job 1.
Account: 99999

Unix Group: loadl
NQS Submit Queue:
NQS Query Queues:

Negotiator Messages:
Adapter Requirement:
Step CPUs:
Step Virtual Memory:
Step Real Memory:
Step Adapter Memory:

Chapter 9. LoadLeveler Commands 197

The following is sample output for the llq -l -x c163n12.6.0 command, where
c163n12.6.0 is a parallel job.

***************** llq -l -x : PARALLEL JOB ******************************

=============== Job Step c163n12.ppd.pok.ibm.com.6.0 ===============
Job Step Id: c163n12.ppd.pok.ibm.com.6.0

Job Name: c163n12.ppd.pok.ibm.com.6
Step Name: 0

Structure Version: 9
Owner: loadl

Queue Date: Mon Jun 28 09:35:21 EDT 1999
Status: Running

Dispatch Time: Mon Jun 28 09:35:21 EDT 1999
Completion Date:
Completion Code:
User Priority: 50
user_sysprio: 0
class_sysprio: 30
group_sysprio: 0

System Priority: 0
q_sysprio: 0

Notifications: Complete
Virtual Image Size: 376 kilobytes

Checkpoint:
Restart: yes

Hold Job Until:
Env: MANPATH=/usr/local/man:/usr/share/man: LANG=en_US LOGIN= ...
In: /dev/null
Out: poe5_1.c163n12.6.0.out
Err: poe5_1.c163n12.6.0.err

Initial Working Dir: /test/loadl
Dependency:

Task_geometry:
Resources:
Step Type: General Parallel
Node Usage: not_shared

Submitting Host: c163n12.ppd.pok.ibm.com
Notify User: loadl

Shell: /bin/ksh
LoadLeveler Group: No_Group

Class: Parallel
Cpu Hard Limit: 3600 seconds
Cpu Soft Limit: 1200 seconds
Data Hard Limit: -1
Data Soft Limit: -1
Core Hard Limit: -1
Core Soft Limit: -1
File Hard Limit: -1
File Soft Limit: -1
Stack Hard Limit: -1
Stack Soft Limit: -1
Rss Hard Limit: -1
Rss Soft Limit: -1

Step Cpu Hard Limit: 5400 seconds
Step Cpu Soft Limit: 2400 seconds
Wall Clk Hard Limit: 6000 seconds
Wall Clk Soft Limit: 3600 seconds

Comment:
Account: 99999

Unix Group: loadl
DCE Principal: tvdfs

User Space Windows: 8
NQS Submit Queue:
NQS Query Queues:

Negotiator Messages:
Adapter Requirement: (css0,LAPI,shared,US),(css0,MPI,shared,US)

198 Using and Administering LoadLeveler

--------------- Detail for c163n12.ppd.pok.ibm.com.6.0 ---------------
Running Host: c163n12.ppd.pok.ibm.com
Machine Speed: 1.000000

Starter User Time: 0+00:00:00.200000
Starter System Time: 0+00:00:00.340000
Starter Total Time: 0+00:00:00.540000

Starter maxrss: 1720
Starter ixrss: 11392
Starter idrss: 13520
Starter isrss: 0
Starter minflt: 1352
Starter majflt: 2
Starter nswap: 0

Starter inblock: 0
Starter oublock: 0
Starter msgsnd: 0
Starter msgrcv: 0

Starter nsignals: 1
Starter nvcsw: 76
Starter nivcsw: 27
Step User Time: 0+00:00:12.0

Step System Time: 0+00:00:00.830000
Step Total Time: 0+00:00:12.830000

Step maxrss: 1368
Step ixrss: 15528
Step idrss: 426068
Step isrss: 0
Step minflt: 5947
Step majflt: 12
Step nswap: 0

Step inblock: 0
Step oublock: 0
Step msgsnd: 0
Step msgrcv: 0

Step nsignals: 322
Step nvcsw: 771
Step nivcsw: 591

Step CPUs: 18
Step Virtual Memory: 180 megabytes
Step Real Memory: 90 megabytes
Step Adapter Memory: 2097152 bytes

--
Node

Name :
Requirements :
Preferences :
Node minimum : 2
Node maximum : 2
Node actual : 2
Allocated Hosts : c163n12.ppd.pok.ibm.com:RUNNING:css0(1,LAPI,US,1M),

css0(2,MPI,US,1M),css0(3,LAPI,US,1M),css0(4,MPI,US,1M)
+ c163n11.ppd.pok.ibm.com:RUNNING:css0(1,LAPI,US,1M),
css0(2,MPI,US,1M),css0(3,LAPI,US,1M),css0(4,MPI,US,1M)

Master Task

Executable : /bin/poe
Exec Args : /test/loadl/ivp_600 -euilib us -ilevel 6 -labelio yes -pmdlog yes
Num Task Inst: 1
Task Instance: c163n12:-1

Task

Num Task Inst: 4
Task Instance: c163n12:0:css0(1,LAPI,US,1M),css0(2,MPI,US,1M)
Task Instance: c163n12:1:css0(3,LAPI,US,1M),css0(4,MPI,US,1M)
Task Instance: c163n11:2:css0(1,LAPI,US,1M),css0(2,MPI,US,1M)
Task Instance: c163n11:3:css0(3,LAPI,US,1M),css0(4,MPI,US,1M)

Chapter 9. LoadLeveler Commands 199

The long listing includes these fields:

Job Step ID
The job step identifier.

Job Name
The name of the job.

Step Name
The name of the job step

Structure Version
An internal version identifier.

Owner
The userid of the user submitting the job.

Queue Date
The date and time that LoadLeveler received the job.

Status
The status (state) of the job. A job’s status can be:

Cancelled
Completed
Complete Pending
Deferred
Idle
Not Queued
Not Run
Pending
Rejected
Reject Pending
Removed
Remove Pending
Running
Starting
Submission Error
System Hold
System and User Hold
Terminated
User Hold
Vacated
Vacate Pending

For a detailed explanation of these job states, see “LoadLeveler Job States” on
page 18.

Dispatch Time
the time the job was dispatched.

Completion Date
date and time job completed or exited.

Completion Code
the status returned by the wait3 UNIX system call.

User Priority
The priority of the job, as specified by the user in the job command, or
changed by the llprio command.

200 Using and Administering LoadLeveler

user_sysprio
The user system priority of the job, where the value is defined in the
administration file.

class_sysprio
The class priority of the job, where the value is defined in the administration
files.

group_sysprio
The group priority of the job, where the value is defined in the
administration files.

System Priority
The overall system priority of the job, where the value is defined by the
SYSPRIO expression in the configuration file.

q_sysprio
The adjusted system priority of the job (See “How Does a Job’s Priority
Affect Dispatching Order?” on page 28.)

Notifications
The notification status for the job, where:

always
indicates notification is sent through the mail for all four notification
categories below.

complete
indicates notification is sent through the mail only when the job
completes.

error
indicates notification is sent through the mail only when the job
terminates abnormally.

never
indicates notification is never sent.

start
indicates notification is sent through the mail only when starting or
restarting the job.

Virtual Image Size
of the executable that was submitted.

Checkpoint
checkpoint status (yes or no)

Restart
restart status (yes or no)

Hold Job Until
job is deferred until this date and time.

Cmd name of the executable that was submitted.

Args arguments that were passed to the executable.

Env environment variables to be set before executable runs. Appears only when
the -x option is specified.

In file to be used for stdin.

Out file to be used for stdout.

Err The file to be used for stderr.

Chapter 9. LoadLeveler Commands 201

Init Working Directory
The directory from which the job is run. The relative directory from which
the stdio files are accessed, if appropriate.

Dependency
Job dependencies as specified at job submission.

Requirements
Job requirements as specified at job submission.

Preferences
Job preferences as specified at job submission.

Task_geometry
Reflects the settings for the task_geometry keyword in the job command
file.

Resources
Reflects the settings for the resources keyword in the job command file.

Blocking
Reflects the settings for the blocking keyword in the job command file.

Step Type
Type of job step (serial or parallel).

Min Processors
The minimum number of processors needed for this job.

Max Processors
The maximum number of processors needed for this job.

Allocated Hosts
The machines that have been allocated for this job.

Node Usage
A request that a node be shared or not shared; the user specifies this
request while submitting the job.

Submitting Host
The name of the machine to which the job is submitted.

Notify User
The user to be notified by mail of a job’s status.

Shell The shell to be used when the job runs.

LoadLeveler Group
The LoadLeveler group associated with the job.

Class The job’s class as specified at job submission.

CPU Hard Limit
CPU hard limit as specified at job submission.

CPU Soft Limit
CPU soft limit as specified at job submission.

Data Hard Limit
Data hard limit as specified at job submission.

Data Soft Limit
Data soft limit as specified at job submission.

Core Hard Limit
Core hard limit as specified at job submission.

202 Using and Administering LoadLeveler

Core Soft Limit
Core soft limit as specified at job submission.

File Hard Limit
File hard limits as specified at job submission.

File Soft Limit
File soft limit as specified at job submission.

Stack Hard Limit
Stack hard limit as specified at job submission.

Stack Soft Limit
Stack soft limit as specified at job submission.

Rss Hard Limit
RSS hard limit as specified when job was submitted.

Rss Soft Limit
RSS soft limit as specified at job submission.

Job Cpu Hard Limit
Job CPU hard limit as specified at job submission.

Job Cpu Soft Limit
Job CPU soft limit as specified at job submission.

Wall Clock Hard Limit
Wall clock hard limit as specified at job submission.

Wall Clock Soft Limit
Wall clock soft limit as specified at job submission.

NQS Submit Queue
The name of the NQS pipe queue to which the NQS job will be routed.

NQS Query Queue
The NQS queue names you can use to monitor the job.

Comment
The comment specified by the comment keyword in the job command file.

Account
The account number specified in the job command file.

UNIX Group
The effective UNIX group name.

DCE Principal
The DCE pricipal name associated with the process that submitted the job
to LoadLeveler.

User Space Windows
The number of switch adapter windows assigned to the job.

Negotiator Messages
Informational message(s) for jobs in the Idle or NotQueued state.

Adapter Requirement
Reflects the settings of the network keyword in the job command file.

Step CPUs
The total Consumable CPUs for the job step.

Step Virtual Memory
The total Consumable Virtual Memory for the job step.

Chapter 9. LoadLeveler Commands 203

Step Real Memory
The total Consumable Memory for the job step.

Step Adapter Memory
The total adapter pinned memory for the job step.

Other fields displayed when issuing llq -x -l are:

maxrss
maximum resident set size utilized.

ixrss size of the text segment of the jobs.

idrss size of the data segement of the jobs.

isrss Integral unshared stack used.

minflt # Page faults (re-claimed).

majflt # Page faults (I/O required).

nswap
times swapped out.

inblock
times file system performed input.

oublock
times file system performed output.

msgsnd
of IPC messages sent.

msgrcv
of IPC messages received.

nsignals
of signals delivered.

nvcsw
of context switches due to voluntarily giving up processor.

nivcsw
of involuntary context switches.

Other fields displayed for parallel jobs are:

Allocated Hosts
allocated hostname information in the format hostname:task status:adapter
usage. The adapter usage information is in the format adapter name
(adapter window ID,network protocol,mode, adapter window memory).

Task Instance
task instance information in the format hostname:task ID:adapter usage.
The adapter usage information is in the format adapter name (adapter
window ID,network protocol,mode, adapter window memory).

204 Using and Administering LoadLeveler

llstatus - Query Machine Status

Purpose
Returns status information about machines in the LoadLeveler cluster. It does not
provide status on any NQS machine.

Syntax
llstatus [-?] [-H][-R][-F] [-v] [-l] [-f category_list] [-r category_list] [hostlist]

Flags
-? Provides a short usage message.

-H Provides extended help information.

-R Lists all of the machine consumable resources associated with all of the
machines in the LoadLeveler cluster (when specified alone). When a host list is
specified, the option only displays machine consumable resources associated
with the specified hosts. This option should not be used with any other option.

-F Lists all of the floating consumable resources associated with the LoadLeveler
cluster. This option should not be used with any other option.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-l Specifies that a long listing be generated for each machine for which status is
requested. If -l is not specified, the standard list, described below, is generated.

-f category_list
Is a blank-delimited list of categories you want to query. Each category you
specify must be preceded by a percent sign. The category_list cannot contain
duplicate entries. This flag allows you to create a customized version of the
standard llstatus listing. The output fields produced by this flag all have a fixed
length. The output is displayed in the order in which you specify the categories.
category_list can be one or more of the following:

%a Hardware architecture
%act Number of jobs dispatched by the schedd on this machine
%cm Custom Metric value
%cpu Number of CPUs on this machine
%d Available disk space in the LoadLeveler execute directory
%i Number of seconds since last keyboard or mouse activity
%inq Number of jobs in queue that were scheduled from this machine
%l Berkeley one-minute load average
%m Physical memory on this machine
%mt Maximum number of tasks that can run simultaneously on this machine
%n Machine name
%o Operating system on this machine
%r Number of jobs running on this machine
%sca Availability of the schedd daemon
%scs State of the schedd daemon
%sta Availability of the startd daemon
%sts State of the startd daemon
%v Available swap space of this machine

-r category_list
Is a blank-delimited list of categories you want to query. Each category you
specify must be preceded by a percent sign. The category_list cannot contain
duplicate entries. This flag allows you to create a customized version of the

Chapter 9. LoadLeveler Commands 205

standard llstatus listing. The output produced by this flag is considered raw, in
that the fields can be variable in length. The output is displayed in the order in
which you specify the formats. Output fields are separated by an exclamation
point (!). category_list can be one or more of the categories listed under the -f
flag.

hostlist
Is a blank-delimited list of machines for which status is requested.

Description
If no hostlist is specified, all machines are queried.

If you have more than a few machines configured for LoadLeveler, consider
redirecting the output to a file when using the -l flag.

Each machine periodically updates the central manager with a snapshot of its
situation. Since the information returned by using llstatus is a collection of such
snapshots, all taken at varying times, the total picture may not be completely
consistent.

Examples
This example requests a long status listing for machines named silver and gold:
llstatus -l silver gold

Results
In this section, the term “job step” refers to either a serial job step or a parallel task.

The Standard Listing: The standard listing is generated when you do not specify
the -l option with the llstatus command. The following is sample output from the
llstatus command, where there are two nodes in the cluster.

Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys
k10n09.ppd.pok.ibm.com Avail 3 1 Run 1 2.72 0 R6000 AIX43
k10n12.ppd.pok.ibm.com Avail 0 0 Idle 0 0.00 365 R6000 AIX43

R6000/AIX43 2 machines 3 jobs 1 running
Total Machines 2 machines 3 jobs 1 running

The Central Manager is defined on k10n09.ppd.pok.ibm.com

All machines on the machine_list are present.

The standard listing includes the following fields:

Name hostname of the machine.

Schedd
state of the schedd daemon, which can be one of the following:

Down
Drned (Drained)
Drning (Draining)
Avail (Available)

For a detailed explanation of these states, see “The schedd Daemon” on page 14.

InQ number of job steps in the queue that were scheduled from this machine.

Act number of job steps that the schedd has dispatched.

Startd state of the startd daemon, which can be:
Busy

206 Using and Administering LoadLeveler

Down
Drned (Drained)
Drning (Draining)
Flush
Idle
None
Run (Running)
Suspnd (Suspend)

For a detailed explanation of these states, see “The startd Daemon” on page 15.

Run The number of initiators used to run LoadLeveler jobs. One initiator is used
for each serial job step. One initiator is used for each task of a parallel job
step.

LdAvg
Berkeley one-minute load average on this machine.

Idle The number of seconds since keyboard or mouse activity in a login session
was detected. Highest number displayed is 9999.

Arch The hardware architecture of the machine as listed in the configuration file.

OpSys
The operating system on this machine.

Consumable Resources Listing: The llstatus command, issued with the -R
option, generates a listing of all of the consumable resources associated with all of
the machines in the LoadLeveler cluster. When a host list is specified, this option
will only display resources associated with the specified hosts. The following is
sample output from this command:

llstatus -R

Machine Consumable Resource(Available, Total)
------------------------------ ---
c163n11.ppd.pok.ibm.com ConsumableCpus(2,4) resource_1(26,30)
c163n12.ppd.pok.ibm.com resource_1(10,15) res_2(15,24) spice2g6(13,13)
ll6.pok.ibm.com spice2g6(3,6) spice3f5(10,12)
ll7.pok.ibm.com res_2(10,10) res_3(0,24) spice3f5(4,12)

Floating Consumable Resources Listing: The llstatus command, issued with the
-F option, generates a listing of all of the floating consumable resources associated
with all of the machines in the LoadLeveler cluster. This option should not be
specified with any other option. The following is sample output from this command:

llstatus -F

Floating Resource Available Total
------------------------------ ------------- ---------------
EDA_licenses 20 29
Frame5 15 20
WorkBench6 5 7
XYZ_software 6 6

Customized, Formatted Standard Listing: A customized and formatted standard
listing is generated when you specify llstatus with the -f option. The following is
sample output from this command:

llstatus -f %n %scs %inq %m %v %sts %l %o

Chapter 9. LoadLeveler Commands 207

Name Schedd InQ Memory FreeVMemory Startd LdAvg OpSys
ll5.pok.ibm.com Avail 0 128 22708 Run 0.23 AIX43
ll6.pok.ibm.com Avail 3 224 16732 Run 0.51 AIX43

R6000/AIX43 2 machines 3 jobs 3 running
Total Machines 2 machines 3 jobs 3 running

The Central Manager is defined on ll5.pok.ibm.com

All machines on the machine_list are present.

Customized, Unformatted Standard Listing: A customized and unformatted (raw)
standard listing is generated when you specify llstatus with the -r flag. Output fields
are separated by an exclamation point (!). The following is sample output from this
command:
llstatus -r %n %scs %inq %m %v %sts %l %o

ll5.pok.ibm.com!Avail!0!128!22688!Running!0.14!AIX43
ll6.pok.ibm.com!Avail!3!224!16668!Running!0.37!AIX43

The Long Listing: The long listing is generated when you specify the -l option with
the llstatus command. Following the sample output is an explanation of all possible
fields displayed by the llstatus command.

The following is sample output from the llstatus -l ll6 command:

==
Name = ll6.pok.ibm.com
Machine = ll6.pok.ibm.com
Arch = R6000
OpSys = AIX43
SYSPRIO = (0 - QDate)
MACHPRIO = (0 - LoadAvg)
VirtualMemory = 16640
Disk = 23000
KeyboardIdle = 600
Tmp = 48868
LoadAvg = 0.302991
ConfiguredClasses = No_Class(2) osl(1) small(2) medium(1) POE(2)
AvailableClasses = No_Class(0) osl(1) small(2) medium(1) POE(2)
DrainingClasses =
DrainedClasses =
Pool = 1
Fabric Connectivity = 1
Adapter = css0(switch,c166sn39.ppd.pok.ibm.com,9.114.72.167,38,4/4,80M/80M,1,

READY) csss(striped,,,38,4/4,80M/80M,1,READY)
en0(ethernet,c168n07.ppd.pok.ibm.com,9.114.72.103)

Feature=
Max_Starters = 2
Memory = 224
FreeRealMemory = 83
PagesFreed = 0
PagesScanned = 0
PagesPagedIn = 0
PagesPagedOut = 0
ConsumableResources = ConsumableCpus(4,4) resA(26,26)
ConfigTimeStamp = Wed Apr 8 09:05:36 1998
Cpus = 1
Speed = 1.000000
Subnet = 9.117.17
MasterMachPriority = 0.000000
CustomMetric = 1
StartdAvail = 1
State = Running

208 Using and Administering LoadLeveler

EnteredCurrentState = Wed Apr 8 09:46:33 1998
START = T
SUSPEND = F
CONTINUE = T
VACATE = F
KILL = F
Machine Mode = general
Running = 2
ScheddAvail = 1
ScheddState = Avail
ScheddRunning = 3
Pending = 0
Starting = 0
Idle = 0
Unexpanded = 0
Held = 0
Removed = 0
RemovedPending = 0
Completed = 0
TotalJobs = 3
TimeStamp = Wed Apr 8 09:47:45 1998

The long listing includes these fields:

Name hostname of the machine.

Running
The number of initiators used to run LoadLeveler jobs. One initiator is used
for each serial job step. One initiator is used for each task of a parallel job
step.

ScheddAvail
flag indicating if machine is running a schedd daemon (0=no, 1=yes).

StartdAvail
flag indicating if machine is running a startd daemon (0=no, 1=yes).

State state of the startd daemon, which can be:
Busy
Down
Drain
Flush
Idle
None
Running
Suspend

For a detailed explanation of these states, see “The startd Daemon” on page 15.

OpSys
operating system on this machine.

Arch hardware architecture of machine as listed in configuration file.

Machine
fully qualified name of the machine.

START
the expression, defined following C conventions in the configuration file, that
evaluates to true or false (T/F). This determines whether jobs can be
started on this machine.

SUSPEND
the expression, defined following C conventions in the configuration file, that

Chapter 9. LoadLeveler Commands 209

evaluates to true or false (T/F). This determines whether running jobs
should be suspended on this machine.

CONTINUE
the expression, defined following C conventions in the configuration file, that
evaluates to true or false (T/F). This determines whether suspended jobs
are continued on this machine.

VACATE
the expression, defined following C conventions in the configuration file, that
evaluates to true or false (T/F). This determines whether suspended jobs
are vacated on this machine.

KILL the expression, defined following C conventions in the configuration file, that
evaluates to true or false (T/F). This determines whether running jobs
should be killed on this machine.

SYSPRIO
actual expression that determines overall system priority of the job, defined
in the configuration file.

MACHPRIO
actual expression that determines machine priority, defined in the
configuration file.

Machine Mode
the type of job this machine can run. This can be: batch, interactive, or
general.

Virtual Memory
available swap space, in kilobytes, on this machine.

Entered Current State
date and time when machine state was set.

Disk available space, in kilobytes (less 512KB) in LoadLeveler’s execute
directory on this machine.

Keyboard Idle
number of seconds since last keyboard or mouse activity.

LoadAvg
Berkely one-minute load average on machine.

AvailableClasses
set of currently available classes.

DrainingClasses
set of names of classes which are currently being drained on this machine.

DrainedClasses
set of names of classes which have been drained on this machine and are
therefore unavailable.

ConfiguredClasses
set of all classes supported on this machine, both those in use and those
not in use, as defined in the configuration file.

Pool the identifier of the pool where this startd machine is located.

Adapter
Network adapter information associated with this machine. For a switch
adapter, the format of this information is adapter_name(network_type,
interface_name, interface_address, switch_node_number,

210 Using and Administering LoadLeveler

available_adapter_windows/ total_adapter_windows,
available_device_memory/total_device_memory,
adapter_fabric_connectivity, adapter_state). For non-switch adapters, the
format is adapter name (network_type, interface_name, interface_address).

Feature
set of all features on this machine.

Memory
physical memory, in megabytes, on this machine.

Max_Starters
maximum number of initiators that can be used simultaneously on this
machine.

Config Time Stamp
date and time of last (re)configuration.

Cpus number of CPUs on this machine.

Speed speed associated with the machine.

MasterMachPriority
The machine priority for the parallel master node.

Subnet
The TCP/IP subnet that this machine resides on.

CustomMetric
The number that indicates the order of the machines for scheduling
purposes.

ScheddRunning
The number of job steps submitted to this machine that are running
somewhere in the LoadLeveler cluster.

Pending
The number of job steps in this state on this schedd machine.

Starting
The number of job steps in this state on this schedd machine.

Idle The number of job steps in this state on this schedd machine.

Unexpanded
The number of job steps in this state on this schedd machine.

Held The number of job steps in this state on this schedd machine.

Removed
The number of job steps in this state on this schedd machine.

Remove Pending
The number of job steps in this state on this schedd machine.

Completed
The number of job steps in this state on this schedd machine.

Total Jobs
The number of total job steps submitted to this schedd machine.

ScheddState
The state of the schedd on this schedd machine.

Chapter 9. LoadLeveler Commands 211

time stamp
The date and time the central manager last received a status update from
this schedd machine.

FabricConnectivity
A boolean vector representing the current state of connectivity of this
machine’s switch adapter to the SP switch.

FreeRealMemory
Free real memory, in megabytes, on this machine. This value corresponds
to the ″fre″ value of the vmstat command output, which is measured in
page blocks.

PagesFreed
Pages freed per second. This value corresponds to the ″fr″ value of the
vmstat command output.

PagesPaged In
Pages paged in from paging space per second. This value corresponds to
the ″pi″ value of the vmstat command output.

PagesPagedOut
Pages paged out to paging space per second. This value corresponds to
the ″po″ value of the vmstat command output.

PagesScanned
Pages scanned by the page-replacement algorithm per second. This value
corresponds to the ″sr″ value of the vmstat command output.

ConsumableResources
Consumable resources associated with this machine. The format of this
information is resource_name(available, total).

212 Using and Administering LoadLeveler

llsubmit - Submit a Job

Purpose
Submits a job to LoadLeveler to be dispatched based upon job requirements in the
job command file.

You can submit both LoadLeveler jobs and NQS jobs. To submit NQS jobs, the job
command file must contain the shell script to be submitted to the NQS node.

Syntax
llsubmit [-?] [-H] [-v] [-q] [cmdfile | –]

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-q Specifies quiet mode: print no messages other than error messages.

cmdfile
Is the name of the job command file containing LoadLeveler commands.

– Specifies that LoadLeveler commands that would normally be in the job
command file are read from stdin. When entry is complete, press Ctrl-D to end
the input.

Related Information
v Users with uid or gid equal to 0 are not allowed to issue the llsubmit command.

v When a LoadLeveler job ends, you may receive UNIX mail notification indicating
the job exit status. For example, you could get the following mail message:
Your LoadLeveler job
myjob1
exited with status 139.

The return code 139 is from the user’s job, and is not a LoadLeveler return code.

v For information on writing a program to filter job scripts when they are submitted,
see “Filtering a Job Script” on page 296.

Examples
In this example, a job command file named qtrlyrun.cmd is submitted:
llsubmit qtrlyrun.cmd

Results
The following shows the results of the llsubmit qtrlyrun.cmd command issued
from the machine earth :
llsubmit: The job "earth.505" has been submitted.

Note that 505 is the job ID generated by LoadLeveler.

Chapter 9. LoadLeveler Commands 213

llsummary - Return Job Resource Information for Accounting

Purpose
Returns job resource information on completed jobs for accounting purposes.

Syntax
llsummary [-?] [-H] [-v] [-x] [-l] [-s MM/DD/YYYY to MM/DD/YYYY]
[-e MM/DD/YYYY to MM/DD/YYYY] [-u user] [-c class] [-g group] [-G unixgroup]
[-a allocated] [-r report] [-j host.jobid] [-d section] [filename]

Flags
-? Provides a short usage message.

-H Provides extended help information.

-v Outputs the name of the command, release number, service level, service level
date, and operating system used to build the command.

-x Provides extended information. Using -x can produce a very long report. This
option is meaningful only when used with the -l option. You must enable the
recording of accounting data in order to collect information with the -x flag. To
do this, specify ACCT=A_ON A_DETAIL in your LoadL_config file.

-l Specifies that the long form of output is displayed.

-s Specifies a range for the start date (queue date) for accounting data to be
included in this report. The format for entering the date is either MM/DD/YYYY
(where MM is month, DD is day, and YYYY is year), MM/DD/YY (where YY is a
two-digit year value), or a string of digits representing the number of seconds
since 1970. If a two-digit year value is used, then 69-99 maps to 1969-1999,
and 00-68 maps to 2000-2068. The default is to include all the data in the
report.

-e Specifies a range for the end date (completion date) for accounting data to be
included in this report. The format for entering the date is either MM/DD/YYYY
(where MM is month, DD is day, and YYYY is year), MM/DD/YY (where YY is a
two-digit year value), or a string of digits representing the number of seconds
since 1970. The default is to include all the data in the report.

-u user
Specifies the user ID for whom accounting data is reported.

-c class
Specifies the class for which accounting data is reported. For reports of all
formats (short, long and extended), llsummary will report information about
every job which contains at least one step of the specified class. For the short
format, llsummary also reports a job count and step count for each class; for
these counts, a job’s class is determined by the class of its first step.

-g group
Specifies the LoadLeveler group for which accounting data is reported. For
reports of all formats (short, long and extended), llsummary reports information
about every job which contains at least one step of the specified group. For the
short format, llsummary also reports a job count and step count for each group;
for these counts, a job’s group is determined by the group of its first step.

-G unixgroup
Specifies the UNIX group for which accounting data is reported.

214 Using and Administering LoadLeveler

-a allocated
Specifies the hostname that was allocated to run the job. You can specify the
allocated host in short or long form.

-r report
Specifies the report type. You can choose one or more of the following reports:

resource
Provides CPU usage for all submitted jobs, including those that did not
run. This is the default.

avgthroughput
Provides average queue time, run time, and CPU time for jobs that ran
for at least some period of time.

maxthroughput
Provides maximum queue time, run time, and CPU time for jobs that ran
for at least some period of time.

minthroughput
Provides minimum queue time, run time, and CPU time for jobs that ran
for at least some period of time.

throughput
Selects all throughput reports.

numeric
Reports CPU times in seconds rather than hours, minutes, and seconds

You must enable the recording of accounting data in order to generate any of the
four throughput reports. To do this, specify ACCT=A_ON A_DETAIL in your
LoadL_config file.

-d section
Specifies the category (data section) for which you want to generate a report.
You can specify one or more of the following: user , group , unixgroup , class ,
account , day , week , month , jobid , jobname , allocated .

-j host.jobid
The job for which accounting data is reported. host is the name of the machine
to which the job was submitted. The default is the local machine. jobid is the job
ID assigned to the job when it was submitted using the llsubmit command. The
entire host.jobid string is required.

filename
The file containing the accounting data. If not specified, the default is the local
history file on the machine from which the command was issued. You can use
the llacctmrg command to produce such a file.

Examples
The following example requests summary reports (standard listing) of all the jobs
submitted on your machine between the days of September 12, 1999 and October
12, 1999:
llsummary -s 09/12/1999 to 10/12/1999

Results
The Standard Listing: The standard listing is generated when you do not specify
-l. -r, or -d with llsummary . This sample report includes summaries of the following
data:
v Number of jobs, Total CPU usage, per user.
v Number of jobs, Total CPU usage, per class.

Chapter 9. LoadLeveler Commands 215

v Number of jobs, Total CPU usage, per group.
v Number of jobs, Total CPU usage, per account number.

The following is an example of the standard listing:

Name Jobs Steps Job Cpu Starter Cpu Leverage
krystal 15 36 0+00:09:50 0+00:00:10 59.0
lixin3 18 54 0+00:08:28 0+00:00:16 31.8
TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

Class Jobs Steps Job Cpu Starter Cpu Leverage
small 9 21 0+00:01:03 0+00:00:06 10.5
large 12 36 0+00:13:45 0+00:00:11 75.0
osl2 3 9 0+00:00:27 0+00:00:02 13.5

No_Class 9 24 0+00:03:01 0+00:00:06 30.2
TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

Group Jobs Steps Job Cpu Starter Cpu Leverage
No_Group 12 30 0+00:09:32 0+00:00:09 63.6
chemistry 7 18 0+00:04:50 0+00:00:05 58.0

engineering 14 42 0+00:03:56 0+00:00:12 19.7
TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

Account Jobs Steps Job Cpu Starter Cpu Leverage
33333 16 39 0+00:05:54 0+00:00:11 32.2
22222 15 45 0+00:12:05 0+00:00:13 55.8
99999 2 6 0+00:00:18 0+00:00:01 18.0
TOTAL 33 90 0+00:18:18 0+00:00:27 40.7

The standard listing includes the following fields:

Name User ID submitting jobs.

Class Class specified or defaulted for the jobs.

Group User’s login group.

Account
Account number specified for the jobs.

Jobs Count of the total number of jobs submitted by this user, class, group, or
account.

Steps Count of the total number of job steps submitted by this user, class, group,
or account.

Job CPU
Total CPU time consumed by user’s jobs.

Starter CPU
Total CPU time consumed by LoadLeveler starter processes on behalf of
the user jobs.

Leverage
Ratio of job CPU to starter CPU.

The -r Listing: The following is sample output from the llsummary -r throughput
command. Only the user output is shown; the class, group, and account lines are
not shown.

216 Using and Administering LoadLeveler

Name Jobs Steps AvgQueueTime AvgRealTime AvgCPUTime
loadl 1 4 0+00:00:03 0+00:05:27 0+00:05:17
user1 2 6 0+00:03:05 0+00:03:45 0+00:03:04
ALL 3 10 0+00:01:52 0+00:04:26 0+00:03:58

Name Jobs Steps MinQueueTime MinRealTime MinCPUTime
loadl 1 4 0+00:00:01 0+00:02:49 0+00:02:44
user1 2 6 0+00:02:02 0+00:03:43 0+00:03:02
ALL 3 10 0+00:00:01 0+00:02:49 0+00:02:44

Name Jobs Steps MaxQueueTime MaxRealTime MaxCPUTime
loadl 1 4 0+00:00:06 0+00:12:58 0+00:12:37
user1 2 6 0+00:06:21 0+00:03:48 0+00:03:07
ALL 3 10 0+00:06:21 0+00:12:58 0+00:12:37

The -r listing includes the following fields:

AvgQueueTime
Average amount of time the job spent queued before running for this user,
class, group, or account.

AvgRealTime
Average amount of accumulated wall clock time for jobs associated with this
user, class, group, or account.

AvgCPUTime
Average amount of accumulated CPU time for jobs associated with this
user, class, group, or account.

MinQueueTime
Time of the job that spent the least amount of time in queue before running
for this user, class, group, or account.

MinRealTime
Time of the job with the least amount of wall clock time for this user, class,
group, or account.

MinCPUime
Time of the job with the least amount of CPU time for this user, class,
group, or account.

The MaxQueueTime, MaxRealTime, and MaxCPUTime fields display the time of the
job with the greatest amount of queue, wall clock, and CPU time, respectively. The
ALL line for the Average listing displays the average time for all users, classes,
groups, and accounts. The ALL line for the Minimum listing displays the time of the
job with the least amount of time for all users, classes, groups, and accounts. The
ALL line for the Maximum listing displays the time of the job with the greatest
amount of time for all users, classes, groups, and accounts.

The Long Listing: When you specify the -x option in conjunction with the -l option
on the llsummary command, the long report resembles the following:

================== Job c163n12.ppd.pok.ibm.com 10 ==================
Job Id: c163n12.ppd.pok.ibm.com 10

Job Name: c163n12.ppd.pok.ibm.com.10
Structure Version: 210

Owner: loadl
Unix Group: loadl

Submitting Host: c163n12.ppd.pok.ibm.com
Submitting Userid: 1064
Submitting Groupid: 222

Number of Steps: 1

Chapter 9. LoadLeveler Commands 217

------------------ Step c163n12.ppd.pok.ibm.com.10.0 ------------------
Job Step Id: c163n12.ppd.pok.ibm.com.10.0
Step Name: 0
Queue Date: Mon Jun 28 11:27:28 EDT 1999
Dependency:

Status: Completed
Dispatch Time: Mon Jun 28 11:27:28 EDT 1999

Completion Date: Mon Jun 28 11:37:48 EDT 1999
Completion Code: 0

Start Count: 1
User Priority: 50
user_sysprio: 50
class_sysprio: 30
group_sysprio: 0
Notifications: Complete

Virtual Image Size: 376 kilobytes
Checkpoint: no

Restart: yes
Hold Job Until:

Cmd: /bin/poe
Args: /test/loadl/ivp_600 -euilib us -ilevel 6 -labelio yes -pmdlog yes
Env: MANPATH=/usr/local/man:/usr/share/man; LANG=en_US; LOGIN= ...
In: /dev/null
Out: poe5_1.c163n12.10.0.out
Err: poe5_1.c163n12.10.0.err

Initial Working Dir: /test/loadl
Requirements: (Arch == "R6000") && (OpSys == "AIX43")
Preferences:
Step Type: General Parallel

Min Processors: 2
Max Processors: 2

Alloc. Host Count: 2
Allocated Host: c163n12.ppd.pok.ibm.com

c163n11.ppd.pok.ibm.com
Node Usage: shared
Notify User: loadl

Shell: /bin/ksh
LoadLeveler Group: No_Group

Class: Parallel
Cpu Hard Limit: 3600 seconds
Cpu Soft Limit: 1200 seconds
Data Hard Limit: -1
Data Soft Limit: -1
Core Hard Limit: -1
Core Soft Limit: -1
File Hard Limit: -1
File Soft Limit: -1
Stack Hard Limit: -1
Stack Soft Limit: -1
Rss Hard Limit: -1
Rss Soft Limit: -1

Step Cpu Hard Limit: 5400 seconds
Step Cpu Soft Limit: 2400 seconds
Wall Clk Hard Limit: 6000 seconds
Wall Clk Soft Limit: 3600 seconds

Comment:
Account: 99999

NQS Submit Queue:
NQS Query Queues:
Job Tracking Exit:
Job Tracking Args:

Task_geometry:
Resources:
Blocking: UNSPECIFIED

218 Using and Administering LoadLeveler

--------------- Detail for c163n12.ppd.pok.ibm.com.10.0 ---------------
Running Host: c163n12.ppd.pok.ibm.com
Machine Speed: 1.000000

Event: System
Event Name: started

Time of Event: Mon Jun 28 11:27:28 EDT 1999
Starter User Time: 0+00:00:00.0

Starter System Time: 0+00:00:00.0
Starter Total Time: 0+00:00:00.0

...

...
Event: System

Event Name: completed
Time of Event: Mon Jun 28 11:37:48 EDT 1999

Starter User Time: 0+00:00:00.140000
Starter System Time: 0+00:00:00.190000
Starter Total Time: 0+00:00:00.330000

Starter maxrss: 1732
Starter ixrss: 10720

...

...
Running Host: c163n11.ppd.pok.ibm.com
Machine Speed: 1.000000

Event: System
Event Name: started

Time of Event: Mon Jun 28 11:28:31 EDT 1999
Starter User Time: 0+00:00:00.0

Starter System Time: 0+00:00:00.0
Starter Total Time: 0+00:00:00.0

...

...
Event: System

Event Name: completed
Time of Event: Mon Jun 28 11:38:41 EDT 1999

Starter User Time: 0+00:00:00.150000
Starter System Time: 0+00:00:00.190000
Starter Total Time: 0+00:00:00.340000
Starter maxrss: 1668

Starter ixrss: 11088
Starter idrss: 16452
Starter isrss: 0
Starter minflt: 1373
Starter majflt: 0
Starter nswap: 0

Starter inblock: 0
Starter oublock: 0
Starter msgsnd: 0
Starter msgrcv: 0

Starter nsignals: 2
Starter nvcsw: 50
Starter nivcsw: 28
Step User Time: 0+00:00:06.480000

Step System Time: 0+00:00:01.690000
Step Total Time: 0+00:00:08.170000

Step maxrss: 1292
Step ixrss: 17960
Step idrss: 437844
Step isrss: 0
Step minflt: 2433
Step majflt: 2
Step nswap: 0

Step inblock: 0
Step oublock: 0
Step msgsnd: 0
Step msgrcv: 0

Step nsignals: 3058
Step nvcsw: 155458
Step nivcsw: 498
Step CPUs: 18
Step Virtual Memory: 180 megabytes
Step Real Memory: 90 megabytes
Step Adapter Memory: 2097152 bytes

Chapter 9. LoadLeveler Commands 219

For an explanation of these fields, see the description of the output fields for the
long listing of the llq command.

220 Using and Administering LoadLeveler

Part 5. The LoadLeveler Graphical User Interface

221

222 Using and Administering LoadLeveler

Chapter 10. Graphical User Interface Overview

This chapter provides some introductory information on the LoadLeveler graphical
user interface (GUI). This section provides neither complete nor detailed instructions
on using either the LoadLeveler GUI or any other graphical user interface. If this is
the first time you are using a Motif-based GUI, you should refer to the appropriate
Motif documentation for general GUI information.

This chapter also discusses how to customize your graphical user interface by
modifying the Xloadl and Xloadl_so files and provides a discussion of the
skel.cmd file.

Note that LoadLeveler provides an installation with two types of graphical user
interfaces. One interface is for LoadLeveler users whose machines are interacting
fully with LoadLeveler. The second interface is available to users whose machines
are only participating on a limited basis. This second type of machine is called a
submit-only machine.

Starting the Graphical User Interface
To start the GUI, check your PATH variable to ensure that it is pointing to the
LoadLeveler binaries. Also, check to see that your DISPLAY variable is set to your
display. Then, type one of the following to start the GUI in the background:

xloadl_so & (if you are running a submit-only machine)
xloadl & (for all other users)

Specifying Options
In general, you can specify GUI options in any of the following ways:

v Within the GUI using menu selections

v On the xloadl (or xloadl_so) command line. Enter xloadl -h or xloadl_so -h to
see a list of the available options.

v In the Xloadl file. See “Customizing the Graphical User Interface” on page 241
for more information.

The LoadLeveler Main Window
LoadLeveler’s main window has three sub-windows, titled Jobs, Machines, and
Messages, as shown in Figure 32 on page 224. Each of these sub-windows has its
own menu bar.

223

The menu bar on the Jobs window relates to actions you can perform on jobs. The
menu bar on the Machines window relates to actions you can perform on machines.
Similarly, the menu bar on the Messages window displays actions you can perform
related to LoadLeveler generated messages.

When you select an item from a menu bar, a pull-down menu appears. You can
select an item from the pull-down menu to carry out an action or to bring up another
pull-down menu originating from the first one.

Figure 32. Main Window of the LoadLeveler GUI

224 Using and Administering LoadLeveler

Getting Help Using the Graphical User Interface
You can get help when using the GUI by pressing the Help key. This key is function
key 1 (F1) on most keyboards. To receive help on specific parts of the LoadLeveler
GUI, place the cursor over the area or field on which you want help and press F1. A
help screen appears describing that area. You can also get help by using the Help
pulldown menu and the Help push buttons available in pop-up windows.

Before you invoke the GUI, make sure your PATH statement includes the directory
containing the LoadLeveler executable. Otherwise, some GUI functions may not
work correctly.

Differences Between LoadLeveler’s Graphical User Interface and Other
Graphical User Interfaces

LoadLeveler’s GUI contains many items common to other GUIs. There are,
however, some differences that you should be aware of. These differences are:
v Accelerators or mnemonics do not appear on the menu bars.
v Submerged windows do not necessarily rise to the top when refreshed.

Building and Submitting Jobs Using the Graphical User Interface
This chapter explains how to build and submit a job to LoadLeveler using the GUI.
In addition, you will learn how to perform other job related tasks. You can
accomplish these same tasks by using the LoadLeveler commands. For information
on these commands, refer to “Part 4. Command Reference” on page 165.

This manual presents step-by-step instructions for performing tasks. For each step
in a task, a user action and a system response to the action are included. User
actions appear in uppercase boldface type, for example: SELECT. The system
response to an action follows a °. For example:

° The main window appears.

An action is sometimes represented by itself, for example:

SELECT OK

Other actions can require a selection or decision. Selection and decision actions are
presented in tables.

Selection tables list all possible selections in the left column of the table. The
following is an example of a selection table:

To Do This

Submit a job Refer to “Step 3: Submit a Job Command File” on page 235.

Cancel a job Refer to “Step 9: Cancel a Job” on page 237.

Decision tables present a question or series of questions before indicating the
action. The following is an example of a decision table:

Did the job you submitted complete processing?

Yes Submit another job.

No Check the status of the job.

Chapter 10. Graphical User Interface Overview 225

Selections from a menu bar are indicated with an →. For example, if a menu bar
included an option called Actions and Actions included an option called Cancel ,
the instructions would read:

SELECT Actions → Cancel

Task Scenario Using the Graphical User Interface
The tasks described in this chapter are those that you, as a user might be
interested in accomplishing and are presented in a typical step-by-step scenario.
You do not have to follow the steps shown here and may perform certain tasks
before others without any difficulty. Some tasks must be performed prior to others in
order for succeeding tasks to work. For example, you cannot submit a job if you do
not have a job command file that you built using either the GUI or an editor.

Step 1: Build a Parallel Job
From the Jobs window:

SELECT File → Build a Job → Parallel

° The dialog box shown in Figure 33 on page 227 appears:

226 Using and Administering LoadLeveler

Complete those fields for which you want to override what is
currently specified in your skel.cmd defaults file. A sample
skel.cmd file is found in /usr/LoadL/full/samples . You can update
this file to define defaults for your site, and then update the
*skelfile resource in Xloadl to point to your new skel.cmd file. If

Figure 33. LoadLeveler Build a Job Window

Chapter 10. Graphical User Interface Overview 227

you want a personal defaults file, copy skel.cmd to one of your
directories, edit the file, and update the *skelfile resource in
.Xdefaults .

Field Input

Executable Name of the program to run. It must be an executable file.

Optional. If omitted, the command file is executed as if it were a shell script.

Arguments Parameters to pass to the program.

Required only if the executable requires them.

Stdin Filename to use as standard input (stdin) by the program.

Optional. The default is /dev/null .

Stdout Filename to use as standard output (stdout) by the program.

Optional. The default is /dev/null .

Stderr Filename to use as standard error (stderr) by the program.

Optional. The default is /dev/null .

Initialdir Initial directory. LoadLeveler changes to this directory before running the job.

Optional. The default is your current working directory.

Notify User User id of person to notify regarding status of submitted job.

Optional. The default is your userid.

StartDate Month, day, and year in the format mm/dd/yy. The job will not start before this date.

Optional. The default is to run the job as soon as possible.

StartTime Hour, minute, second in the format hh:mm:ss. The job will not start before this time.

Optional. The default is to run the job as soon as possible.

If you specify StartTime but not StartDate, the default StartDate is the current day. If you
specify StartDate but not StartTime, the default StartTime is 00:00:00. This means that the
job will start as soon as possible on the specified date.

Priority Number between 0 and 100, inclusive.

Optional. The default is 50.

This is the user priority. For more information on this priority, refer to “Setting and Changing
the Priority of a Job” on page 28.

Image size Number in kilobytes that reflects the maximum size you expect your program to grow to as it
runs.

Optional.

Class Class type. The job will only run on machines that support the specified class type. Your
system administrator defines the class types.

Optional. You can press the Choices button to get a list of available classes. Press the
Details button under the class list to verify your permissions.

Hold Hold status of the submitted job. Permitted values are:
user user hold
system system hold (only valid for LoadLeveler administrators)
usersys user and system hold (only valid for LoadLeveler administrators)

Optional. The default is a no-hold state. Press the set button to this field.

228 Using and Administering LoadLeveler

Field Input

Account Number Number associated with the job. For use with the llacctmrg and llsummary commands for
acquiring job accounting data.

Optional. Required only if the ACCT keyword is set to A_VALIDATE in the configuration file.

Environment Specifies your initial environment variables when your job starts. Separate environment
specifications with semicolons.

Optional.

Shell The name of the shell to use for the job.

Optional. If not specified, the shell used in the owner’s password file entry is used. If none is
specified, /bin/sh is used.

Group The LoadLeveler group name to which the job belongs.

Optional.

Step Name The name of this job step.

Optional.

Node Usage How the node is used. Permitted values are:

shared The node can be shared with other tasks of other job steps. This is the
default.

not shared The node cannot be shared.

Optional. Press the Set button to set this field.

Dependency A Boolean expression defining the relationship between the job steps.

Optional.

Comments Comments associated with the job. These comments help to distinguish one job from
another job.

Optional.

Note: The fields that appear in this table are what you see when viewing the Build a Job window. The text in these
fields does not necessarily correspond with the keywords listed in “Job Command File Keywords” on page 36.

See “Job Command File Keywords” on page 36 for information on
the defaults associated with these keywords.

SELECT a Job Type if you want to change the job type you selected on the
Build A Job cascading window.

Your choices are:
Serial Specifies a serial job.
Parallel Specifies a non-PVM parallel job.
PVM Specifies a PVM parallel job.

Note that the job type you select affects the choices that are active
on the Build A Job window.

SELECT a Notification option

Your choices are:
Always Notify you when the job starts, completes, and if it

incurs errors.
Complete Notify you when the job completes. This is the

default option as initially defined in the skel.cmd file.

Chapter 10. Graphical User Interface Overview 229

Error Notify you if the job cannot run because of an error.
Never Do not notify you.
Start Notify you when the job starts.

SELECT a Checkpoint option.

Your choices are:
No Do not checkpoint the job. This is the default.
User Yes, checkpoint the job at intervals you determine.

See “checkpoint” on page 37 for more information.
System Yes, checkpoint the job at intervals determined by

LoadLeveler. See “checkpoint” on page 37 for more
information.

SELECT a Restart option

Your choices are:
No Do not restart the job.
Yes Yes, restart the job from an existing checkpoint file when

you submit the job.

SELECT Nodes (available when the job type is parallel)

° The Nodes dialog box appears.

Complete the necessary fields to specify node information for a
parallel job. Depending upon which model you choose, different
fields will be available; any unavailable fields will be greyed out.
LoadLeveler will assign defaults for any fields that you leave blank.

Field Available in: Input

Min # of Nodes Tasks Per Node Model
and Tasks with
Uniform Blocking
Model

Minimum number of nodes required for running the parallel job. For
more information, see “node” on page 47.

Optional. The default is one.

Max # of Nodes Tasks Per Node Model Maximum number of nodes required for running the parallel job. For
more information, see “node” on page 47.

Optional. The default is the minimum number of nodes.

Tasks per Node Tasks Per Node Model The number of tasks of the parallel job you want to run per node.
For more information, see “tasks_per_node” on page 54.

Optional.

Total Tasks Tasks with Uniform
Blocking Model, and
Custom Blocking
Model

The total number of tasks of the parallel job you want to run on all
available nodes. For more information, see “total_tasks” on page 55.

Optional for Uniform, required for Custom Blocking. The default is
one.

Blocking Custom Blocking
Model

The number of tasks assigned (as a block) to each consecutive
node until all of a job’s tasks have been assigned. For more
information, see “blocking” on page 37

Task Geometry Custom Geometry
Model

The task ids of each task that you want to run on each node. You
can use the ″Set Geometry″ button for step-by-step directions. For
more information, see “task_geometry” on page 54

SELECT Close to return to the Build a Job dialog box.

SELECT Network (available when the job type is parallel)

° The Network dialog box appears.

230 Using and Administering LoadLeveler

Complete those fields for which you want to specify network
information. For more information, see “network” on page 45.

Field Input

MPI/LAPI Choose one, both, or none of these boxes to specify the MPI (Message Passing
Interface) protocol, the (LAPI Low-level Application Programming Interface) protocol,
both protocols, or neither protocol.

Optional.

Adapter/Network Select an adapter name or a network type from the list.

Required for each protocol you select.

Adapter Usage Specifies that the adapter is either shared or not shared.

Optional. The default is shared.

Communication Mode Specifies the mode in which an SP switch adapter is used, and can be either IP
(internet Protocol) or US (User Space).

Optional. The default is IP.

Communication Level Implies the amount of memory to be allocated to each window for the corresponding
protocol, and can be Low, Average, or High.

SELECT Close to return to the Build a Job dialog box.

SELECT Requirements

° The Requirements dialog box appears.

Complete those fields for which you want to specify requirements.
Defaults are used for those fields that you leave blank. LoadLeveler
dispatches your job only to one of those machines with resources
that matches the requirements you specify.

Field Input

Architecture* Machine type. The job will not run on any other machine type.

Optional. The default is the architecture of your current machine.

Operating System* Operating system. The job will not run on any other operating system.

Optional. The default is the operating system of your current machine.

Disk Amount of disk space in the execute directory. The job will only run on a machine with at
least this much disk space.

Optional. The default is defined in your local configuration file.

Memory Amount of memory. The job will only run on a machine with at least this much memory.

Optional. The default is defined in your local configuration file.

Machine(s) Machine name(s). The job will only run on the specified machines.

Optional.

Feature(s) Features. The job will only run on machines with specified features.

Optional.

Chapter 10. Graphical User Interface Overview 231

Field Input

LoadLeveler Version Specifies the version of LoadLeveler, in dotted decimal format, on the machine where you
want the job to run. For example: 2.1.0.0 specifies that your job will run on a machine
running LoadLeveler Version 2.1.0.0 or higher.

Optional.

Pool Specifies the number associated with the pool you want to use. All available pools listed in
the administration file appear as choices. The default is to select nodes from any pool.

Requirement Requirements. The job will only run if these requirements are met.

Note:

If you enter a resource that is not available, you will NOT receive a message. LoadLeveler holds your job in the Idle
state until the resource becomes available. Therefore, ensure the spelling of your entry is correct. You can issue llq
-s jobID to find out if you have a job for which requirements were not met.

*If you do not specify an architecture or operating system, LoadLeveler assumes that your job can run only on your
machine’s architecture and operating system. If your job is not a shell script that can be run successfully on any
platform, you should specify a required architecture and operating system.

SELECT Close to return to the Build a Job dialog box.

SELECT Resources

° The Resources dialog box appears.

This dialog box allows you to set the amount of defined
consumable resources required for a job step. Resources with an
″*″ appended to their names are not in the
SCHEDULE_BY_RESOURCES list. For more information, see
“resources” on page 52.

SELECT Close to return to the Build a Job dialog box.

SELECT Preferences

° The Preferences dialog box appears.

This dialog box is similar to the Requirements dialog box, with the
exception of the Adapter choice, which is not supported as a
Preference. Complete the fields for those parameters that you want
to specify. These parameters are not binding. For any preferences
that you specify, LoadLeveler attempts to find a machine that
matches these preferences along with your requirements. If it
cannot find the machine, LoadLeveler chooses the first machine
that matches the requirements.

SELECT Close to return to the Build a Job dialog box.

SELECT Limits

° The Limits dialog box appears.

Complete the fields for those limits that you want to impose upon
your job. If you type copy in any field, the limits in effect on the
submit machine are used. If you leave any field blank, the default
limits in effect for your userid on the machine that runs the job are
used.

232 Using and Administering LoadLeveler

Field Input

CPU Limit Maximum amount of CPU time that the submitted job can use. Express the amount as:

[hours:[minutes:][seconds][.fraction]

For example, 12:56:21 is 12 hours, 56 minutes, and 21 seconds.

Optional

Data Limit Maximum amount of the data segment that the submitted job can use. Express the amount
as:

integer[.fraction][units]

where integer and fraction represent strings of up to eight digits.

Optional

Core Limit Maximum size of a core file.

Optional

RSS Limit Maximum size of the resident set size. It is the largest amount of physical memory a user’s
process can allocate.

Optional

File Limit Maximum size of a file that is created.

Optional

Stack Limit Maximum size of the stack.

Optional

Job CPU Limit Maximum amount of CPU a single job step can use per processor.

Optional

Wall Clock Limit Maximum amount of elapsed time for which a job can run.

Optional

SELECT Close to return to the Build a Job dialog box.

SELECT PVM to select a PVM job.

° The PVM dialog box appears.

Complete those fields for which you want to specify requirements.
Defaults are used for those fields that you leave blank.

Field Input

Min # of Processors Minimum number of processors required for running the PVM job.

Optional. The default is one.

Max # of Processors Maximum number of processors required for running the PVM job.

Optional. The default is one.

Parallel Path The directory that defines where the PVM3 executables are located.

PVM Specifies that an adapter is used for this PVM job.

Adapter/Network Select an adapter name or a network type from the list.

Required.

Chapter 10. Graphical User Interface Overview 233

Field Input

Adapter Usage Specifies that the adapter is either shared or not shared.

Optional. The default is shared.

SELECT Close to return to the Build a Job dialog box.

Step 2: Edit the Job Command File
There are several ways that you can edit the job command file that you just built:

1. Using the Jobs window:

SELECT File → Submit a Job

° The Submit a Job dialog box appears.

SELECT the job file you want to edit from the file column.

SELECT Edit

° Your job command file appears in a window. You can use any
editor to edit the job command file. The default editor is
specified in your .Xdefaults file.

If you have an icon manager, an icon may appear. An icon
manager is a program that creates a graphic symbol, displayed
on a screen, that you can point to with a device such as a
mouse in order to select a particular function or application.
Select this icon to view your job command file.

2. Using the Tools Edit pulldown menus on the Build a Job window:

Using the Edit pulldown menu, you can modify the job command file. Your
choices appear in the following table:

To Select

Add a step to the job command file Add a Step

Delete a step from the job command file Delete a Step

Clear the fields in the Build a Job window Clear Fields

Select defaults to use in the fields Set Field Defaults

Note: Other options include Go to Next Step, Go to Previous Step, and Go to Last Step
that allow you to edit various steps in the job command file.

Using the Tools pulldown menu, you can modify the job command file. Your
choices appear in the following table:

To Select

Name the job Set Job Name

Open a window where you can enter a script file Append Script

Fill in the fields using another file Restore from File

View the job command file in a window View Entire Job

Determine which step you are viewing What is step #

Start a new job command file Start a new job

234 Using and Administering LoadLeveler

To Do This

Save the information you
entered into a file which you
can submit later

SELECT Save

° A window appears prompting you to
enter a job filename.

ENTER a job filename in the text entry field.

SELECT OK

° The window closes and the information
you entered is saved in the file you
specified.

Submit the program
immediately and discard the
information you entered

SELECT Submit

GO TO Step 4

If you already submitted your job, go to “Step 4: Display, Refresh and Obtain Job
Status”. Otherwise, go to “Step 3: Submit a Job Command File”.

Step 3: Submit a Job Command File
After building a job command file, you can submit it to one or more machines for
processing. In addition to scripts with LoadLeveler keywords, you can also submit
scripts that contain NQS options. You cannot, however, in this release of
LoadLeveler, combine NQS and LoadLeveler options.

To submit a job, from the Jobs window:

SELECT File → Submit a Job

° The Submit a Job dialog box appears.

SELECT the job file that you want to submit from the file column.

You can also use the filter field and the directories column to select
the file or you can type in the file name in the text entry field.

SELECT Submit

° The job is submitted for processing.

You can now submit another job or you can press Close to exit the
window.

Go to the next step.

Step 4: Display, Refresh and Obtain Job Status
When you submit a job, the status of the job is automatically displayed in the Jobs
window. You can update or refresh this status using the Jobs window and selecting
one of the following:

v Refresh → Refresh Jobs

v Refresh → Refresh All .

To change how often the amount of time should pass before the jobs window is
automatically refreshed, use the Jobs window.

SELECT Refresh → Set Auto Refresh

° A window appears.

Chapter 10. Graphical User Interface Overview 235

TYPE IN a value for the number of seconds to pass before the Jobs window
is updated.

Automatic refresh can be expensive in terms of network usage and
CPU cycles. You should specify a refresh interval of 120 seconds or
more for normal use.

SELECT OK

° The window closes and the value you specified takes effect.

To receive detailed information on a job:

SELECT Actions → Extended Status to receive additional information on the
job. Selecting this option is the same as typing llq -x command.

You can also get information in the following way:

SELECT Actions → Extended Details

Selecting this option is the same as typing llq -x -l command. You
can also double click on the job in the Jobs window to get details
on the job.

Note: Obtaining extended status or details on multiple jobs can be
expensive in terms of network usage and CPU cycles.

SELECT Actions → Job Status

You can also use the llq -s command to determine why a submitted
job remains in the Idle or Deferred state.

For more information on these states, see “llq - Query Job Status” on page 193.

Go to the next step.

Step 5: Sort the Jobs Window
You can specify up to two sorting options for the Jobs window. The options you
specify determine the order in which the jobs appear in the Jobs window.

From the Jobs window:

Action Select Sort → Type of Sort

Sort jobs by the machine from which they were
submitted

Sort by Submitting
Machine →

[Primary|Secondary]

Sort by owner Sort by Owner → [Primary|Secondary]

Sort by the time the jobs were submitted Sort by Submission Time
→

[Primary|Secondary]

Sort by the state of the job Sort by State → [Primary|Secondary]

Sort jobs by their user priority (last job listed runs first) Sort by Priority → [Primary|Secondary]

Sort by the class of the job Sort by Class → [Primary|Secondary]

Sort by the group associated with the job Sort by Group → [Primary|Secondary]

Sort by the machine running the job Sort by Running Machine
→

[Primary|Secondary]

Sort by dispatch order Sort by Dispatch Order → [Primary|Secondary]

Not specify a sort No Sort [Primary|Secondary]

236 Using and Administering LoadLeveler

Each sorting option contains a cascading window which allows you to select this
option as either a Primary or Secondary sorting option. For example, suppose you
select Sort by Owner as the primary sorting option and Sort by Class as the
secondary sorting option. The Jobs window is sorted by owner and, within each
owner, by class.

Go to the next step.

Step 6: Change Priorities of Jobs in a Queue
If your job has not yet begun to run and is still in the queue, you can change the
priority of the job in relation to your other jobs in the queue that belong to the same
class. This only affects the user priority of the job. For more information on this
priority, refer to “Setting and Changing the Priority of a Job” on page 28. Only the
owner of a job or the LoadLeveler administrator can change the priority of a job.

From the Jobs window:

SELECT a job by clicking on it with the mouse

SELECT Actions → Priority

° A window appears.

TYPE IN a number between 0 and 100, inclusive, to indicate a new priority.

SELECT OK

° The window closes and the priority of your job changes.

Go to the next step.

Step 7: Hold a Job
Only the owner of a job or the LoadLeveler administrator can place a hold on a job.

From the Jobs window:

SELECT the job you want to hold by clicking on it with the mouse

SELECT Actions → Hold

° The job is put on hold and its status changes in the Jobs window.

Go to the next step.

Step 8: Release a Hold on a Job
Only the owner of a job or the LoadLeveler administrator can release a hold on a
job.

From the Jobs window:

SELECT the job you want to release by clicking on it with the mouse

SELECT Actions → Release from Hold

° The job is released from hold and its status is updated in the Jobs
window.

Go to the next step.

Step 9: Cancel a Job
Only the owner of a job or the LoadLeveler administrator can cancel a job.

From the Jobs window:

Chapter 10. Graphical User Interface Overview 237

SELECT the job you want to cancel by clicking on it with the mouse

SELECT Actions → Cancel

° A warning dialog box appears prompting you to confirm your
cancellation request. Once you confirm your request, LoadLeveler
cancels the job and the job information disappears from the Jobs
window.

Go to the next step.

Step 10: Display and Refresh Machine Status
The status of the machines is automatically displayed in the Machines window. You
can update or refresh this status using the Machines window and selecting one of
the following:

v Refresh → Refresh Machines

v Refresh → Refresh All .

To specify an amount of time to pass before the Machines window is automatically
refreshed, from the Machines window:

SELECT Refresh → Set Auto Refresh

° A window appears.

TYPE IN a value for the number of seconds to pass before the Machines
window is updated.

Automatic refresh can be expensive in terms of network usage and
CPU cycles. You should specify a refresh interval of 120 seconds or
more for normal use.

SELECT OK

° The window closes and the value you specified takes effect.

Go to the next step.

Step 11: Sort the Machines Window
You can specify up to two sorting options for the Machines window. The options you
specify determine the order in which machines appear in the window.

From the Machines window:

Action Select Sort → Sort Type

Sort by machine name Sort by Name → [Primary|Secondary]

Sort by schedd state Sort by Schedd → [Primary|Secondary]

Sort by total number of jobs scheduled Sort by InQ → [Primary|Secondary]

Sort by number of running jobs scheduled by this
machine

Sort by Act → [Primary|Secondary]

Sort by startd state Sort by Startd → [Primary|Secondary]

Sort by the number of jobs running on this machine Sort by Run → [Primary|Secondary]

Sort by load average Sort by LdAvg → [Primary|Secondary]

Sort by keyboard idle time Sort by Idle → [Primary|Secondary]

Sort by hardware architecture Sort by Arch → [Primary|Secondary]

Sort by operating system type Sort by OpSys → [Primary|Secondary]

238 Using and Administering LoadLeveler

Action Select Sort → Sort Type

Not specify a sort No Sort [Primary|Secondary]

Each sorting option contains a cascading window which allows you to select this
option as either a Primary or Secondary sorting option. For example, suppose you
select Sort by Arch as the primary sorting option and Sort by Name as the
secondary sorting option. The Machines window is sorted by by hardware
architecture, and within each architecture type, by machine name.

Go to the next step.

Step 12: Find the Location of the Central Manager
The LoadLeveler administrator designates one of the nodes in the LoadLeveler
cluster as the central manager. When jobs are submitted at any node, the central
manager is notified and decides where to schedule the jobs. In addition, it keeps
track of the status of machines in the cluster and the jobs in the system by
communicating with each node. LoadLeveler uses this information to make the
scheduling decisions and to respond to queries.

To find the location of the central manager, from the Machines window:

SELECT Actions → Find Central Manager

° A message appears in the message window declaring on which
machine the central manager is located.

Go to the next step.

Step 13: Find the Location of the Public Scheduling Machines
Public scheduling machines are those machines that participate in the scheduling of
LoadLeveler jobs on behalf of the submit-only machines.

To get a list of these machines in your cluster, use the Machines window:

SELECT Actions → Find Public Scheduler

° A message appears displaying the names of these machines.

Go to the next step.

Step 14: Specify Which Jobs Appear in the Jobs Window
Normally, only your jobs appear in the Jobs window. You can, however, specify
which jobs you want to appear by using the Select pull-down menu on the Jobs
window.

To Display Select Select →

All jobs in the queue All

All jobs belonging to a specific user (or users) By User

° A window appears
prompting you to enter the
user IDs whose jobs you
want to view.

Chapter 10. Graphical User Interface Overview 239

To Display Select Select →

All jobs submitted to a specific machine (or machines) By Machine

° A window appears
prompting you to enter the
machine names on which the
jobs you want to view are
running.

All jobs belonging to a specific group (or groups) By Group

° A window appears
prompting you to enter the
LoadLeveler group names to
which the jobs you want to
view belong.

All jobs having a particular ID By Job Id

A dialog box prompts you to
enter the id of the job you
want to appear. This ID
appears in the left column of
the Jobs window. Type in the
ID and press OK.

Note:

When you choose By User, By Machines, or By Group, you can use a UNIX regular
expression enclosed in parentheses. For example, you can enter (|k10) to display all
machines beginning with the characters “k10”.

SELECT Select → Show Selection to show the selection parameters.

Go to the next step.

Step 15: Specify Which Machines Appear in Machines Window
You can specify which machines will appear in the Machines window. The default is
to view all of the machines in the LoadLeveler pool.

From the Machines window:

To Select Select →

View all of the machines All

View machines by operating system by OpSys

° A window appears
prompting you to enter the
operating system of those
machines you want to view.

View machines by hardware architecture by Arch

° A window appears
prompting you to enter the
hardware architecture of
those machines you want to
view.

240 Using and Administering LoadLeveler

To Select Select →

View machines by state by State

° A cascading pulldown menu
appears prompting you to
select the state of the
machines that you want to
view.

SELECTt Select → Show Selection to show the selection parameters.

Go to the next step.

Step 16: Save LoadLeveler Messages in a File
Normally, all the messages that LoadLeveler generates appear in the Messages
window. If you would also like to have these messages written to a file, use the
Messages window.

SELECT Actions → Start logging to a file

° A window appears prompting you to enter a filename in which to
log the messages.

TYPE IN the filename in the text entry field.

SELECT OK

° The window closes.

Customizing the Graphical User Interface
You can customize the GUI to suit your needs by overriding the default settings of
the LoadLeveler resource variables. For example, you can set the color, initial size,
and location of the main window.

This section tells you how to customize the GUI by modifying either (or both) of the
following files:

Xloadl for fully participating machines

Xloadl_so for submit-only machines

If the system administrator has set up these resource files, the files are located in
the /usr/lib/X11/app-defaults directory. Otherwise, the files are located in the lib
directory of the LoadLeveler release directory. This is /usr/lpp/LoadL/full/lib and
/usr/lpp/LoadL/so/lib , respectively. These files contain the default values for the
graphical user interface. This section discusses the syntax of these files, and gives
you an overview of some of the resources you can modify.

An administrator with root authority can make changes to the resources for the
entire installation by editing the Xloadl file. Any user can make local changes by
placing the resource names with their new values in the user’s .Xdefaults file.

Syntax of an Xloadl File
v Comments begin with !
v Resource variables may begin with *
v Colons follow resource variables
v Resource variable values follow colons.

Chapter 10. Graphical User Interface Overview 241

Modifying Windows and Buttons
All of the windows and buttons that are part of the GUI have certain characteristics
in common. For example, they all have a foreground and background color, as well
as a size and a location. Each one of these characteristics is represented by a
resource variable. For example, the foreground characteristic is represented by the
resource variable foreground . In addition, every resource variable has a value
associated with it. The values of the resource variable foreground are a range of
colors.

Before customizing a window, you need to locate the resource variables associated
with the desired window. To do this, search for the window identifier in your Xloadl
file. The following table lists the windows and their respective identifiers:

Table 14. Window Indentifiers in the Xloadl File

Window Identifier

Jobs job_status

Machines machine_status

Messages message_area

Build a Job builder

Submit a Job submit

Requirements requirements

Preferences preferences

Limits limits

Account Report Data reporter

Nodes nodes

Network network

PVM pvm

Script script

The following table lists the resource variables for all the windows and the buttons
along with a description of each resource variable. Use the information in this table
to modify your graphical user interface by changing the values of desired resource
variables. The values of these resource variables depend upon Motif requirements.

Resource Variable Description

geometry The location of the object

foreground The foreground color of the object

background The background color of the object

width The width of the object

height The height of the object

labelString The text associated with the object

Creating Your Own Pulldown Menus
You can add a pulldown menu to both the Jobs window and the Machines window.

To add a pulldown menu to the Jobs window, in the Xloadl file:

1. Set userJobPulldown to True

242 Using and Administering LoadLeveler

2. Set userJob.labelString to the name of your menu.

3. Fill in the appropriate information for your first menu item, userJob_Option1

4. To define more menu items, fill in the appropriate information for
userJob_Option2 , userJob_Option3 , and so on. You can define up to ten
menu items.

For more information, refer to the comments in the Xloadl file.

To add a pulldown menu to the Machines window, in the Xloadl file:

1. Set userMachinePulldown to True

2. Set userMachine.labelString to the name of your menu.

3. Fill in the appropriate information for your first menu item,
userMachine_Option1

4. To define more menu items, fill in the appropriate information for
userMachine_Option2 , userMachine_Option3 , and so on. You can define up
to ten menu items.

Example – Creating a New Pulldown
Suppose you want to create a new menu bar item containing a selection which
executes the ping command against a machine you select on the Machines
window.

The Xloadl definitions shown in the Figure 34 create a menu bar item called
“Commands”. The first item in the Commands pulldown menu is called “ping”. When
you select this item, the command ping -c1 is executed, with the machine you
selected on the Machines window passed to this command. Your output is
displayed in an informational window.

For more information, refer to the comments in the Xloadl file.

Customizing Fields on the Jobs Window and the Machines Window
You can control which fields are displayed and which fields are not displayed on the
Jobs window and the Machine window by changing the Xloadl file. Look in the
Xloadl file for “Resources for specifying lengths of fields displayed in the Jobs and
Machines windows”.

In most cases, you can remove a field from a window by setting its associated
resource value to 0. To remove the Arch field from the Machines window, enter the
following:
*mach_arch_len : 0

Note that the Job ID and Machine Name fields must always be displayed and
therefore cannot be set to 0.

*userMachinePulldown: True
*userMachine.labelString: Commands
*userMachine_Option1: True
*userMachine_Option1_command: ping -c1
*userMachine_Option1.labelString: ping
*userMachine_Option1_parameter: True
*userMachine_Option1_output: Window

Figure 34. Creating a New Pulldown Menu

Chapter 10. Graphical User Interface Overview 243

All fields have a minimum length value. If you specify a smaller value, the minimum
is used.

Modifying Help Panels
Help panels have the same characteristics as all of the windows plus a few unique
ones:

Resource Variable Values Description

help*work_area.width Any integer* The width of the help panel.

help*work_area.height Any integer* The height of the help panel.

help*scrollHorizontal [true|false] The default is
False.

Sets the scrolling option on or off.

help*wordWrap [true|false] The default is
True.

Sets word wrapping on or off.

Note:

* The work area and height depend upon your screen limitations.

Administrative Uses for the Graphical User Interface
The end user can perform many tasks more efficiently and faster using the
graphical user interface (GUI) but there are certain tasks that end users cannot
perform unless they have the proper authority. If you are defined as a LoadLeveler
administrator in the LoadLeveler configuration file then you are immediately granted
administrative authority and can perform the administrative tasks discussed in this
section. To find out how to grant someone administrative authority, see “Step 1:
Define LoadLeveler Administrators” on page 99.

You can access LoadLeveler administrative commands using the Admin pulldown
menu on both the Jobs window and the Machines window of the GUI. The Admin
pulldown menu on the Jobs window corresponds to the command options available
in the llhold , llfavoruser , and llfavorjob commands. The Admin pulldown menu
on the Machines window corresponds to the command options available in the llctl
command.

The main window of the GUI, as shown in Figure 32 on page 224, has three
sub-windows: one for job status with pull-down menus for job-related commands,
one for machine status with pull-down menus for machine-related commands, and
one for messages and logs. There are a variety of facilities available that allow you
to sort and select the items displayed.

Job Related Administrative Actions
You access the administrative commands that act on jobs through the Admin
pulldown menu in the Jobs window of the GUI.

You can perform the following tasks with this menu:

Favor Users Allows you to favor users. This means that you can select one or
more users whose jobs you want to move up in the job queue. This
corresponds to the llfavoruser command.

Select Admin from the Jobs window

Select Favor User

°The Order by User window appears.

244 Using and Administering LoadLeveler

Type in
the name of the user for whom you want to favor their jobs.

Press OK

Unfavor Users
Allows you to unfavor users. This means that you want to unfavor
the user’s jobs which you previously favored. This corresponds to
the llfavoruser command.

Select Admin from the Jobs window

Select Unfavor User

°The Order by User window appears.

Type in
the name of the user for whom you want to unfavor their
jobs.

Press OK

Favor Jobs Allows you to select a job that you want to favor. This corresponds
to the llfavorjob command.

Select one or more jobs from the Jobs window

Select Admin from the Jobs window

Select Favor Jobs

°The selected jobs are favored.

Press OK

Unfavor Jobs
Allows you select a job that you want to unfavor. This corresponds
to the llfavorjob command.

Select one or more jobs from the Jobs window

Select Admin from the Jobs window

Select Unfavor Jobs

°Unfavors the jobs that you previously selected.

Syshold Allows you to place a system hold on a job. This corresponds to the
llhold command.

Select a job from the Jobs window

Select Admin pulldown menu from the Jobs window

Select Syshold to place a system hold on the job.

Release From Hold
Allows you to release the system hold on a job. This corresponds to
the llhold command.

Select a job from the Jobs window

Select Admin pulldown menu from the Jobs window

Select Release From Hold to release the system hold on the job.

Machine Related Administrative Actions
You access the administrative commands that act on machines using the Admin
pulldown menu in the Machines window of the GUI.

Chapter 10. Graphical User Interface Overview 245

Using the GUI pulldown menu, you can perform the tasks described in this section.

Start All Starts LoadLeveler on all machines listed in machine stanzas
beginning with the central manager. Use this option when specifying
alternate central managers.

Select Admin from the Machines window.

Select Start All

Start LoadLeveler
Allows you to start LoadLeveler on selected machines.

Select one or more machines on which you want to start
LoadLeveler.

Select Admin from the Machines window.

Select Start LoadLeveler

Stop LoadLeveler
Allows you to stop LoadLeveler on selected machines.

Select on or more machines on which you want to stop
LoadLeveler.

Select Admin from the Machines window.

Select Stop LoadLeveler .

Stop All Stops LoadLeveler on all machines listed in machine stanzas. Use
this option when specifying alternate central managers.

Select Admin from the Machines window.

Select Stop All

reconfig forces all daemons to reread the configuration files.

Select the machine on which you want to operate. To reconfigure
this xloadl session, choose reconfig but do not select a
machine.

Select Admin from the Machines window.

Select reconfig .

recycle stops all LoadLeveler daemons and restarts them.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select recycle .

Configuration Tasks
starts Configuration Tasks TaskGuide

Select Admin from the Machines window.

Select Config Tasks

Note: Use the invoking script lltg to start the TaskGuide outside of
xloadl . This option will appear on the pulldown only if the
LoadL.tguides fileset is installed.

drain allows no more LoadLeveler jobs to begin running on this machine
but it does allow running jobs to complete.

246 Using and Administering LoadLeveler

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select drain .

A cascading menu allows you to select either daemons ,
schedd , startd , or startd by class . If you select daemons ,
both machines will be drained. If you select schedd , only
the schedd on the selected machine will be drained. If you
select startd , only the startd on the selected machine will
be drained. If you select startd by class , a window
appears which allows you to select classes to be started.

flush terminates running jobs on this host and sends them back to the
system queue to await redispatch. No new jobs are redispatched to
this machine until resume is issued. Forces a checkpoint if jobs are
enabled for checkpointing.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select flush .

suspend suspends all jobs on this host.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select suspend .

resume resumes all jobs on this machine.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select resume .

A cascading menu allows you to select either daemons ,
schedd , startd , or startd by class . If you select daemons ,
both machines will be resumed. If you select schedd , only
the schedd on the selected machine will be resumed. If you
select startd , only the startd on the selected machine will
be resumed. If you select startd by class , a window
appears which allows you to select classes to be resumed.

Capture Data collects information on the machines selected.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select Capture Data .

Collect Account Data
collects accounting data on the machines selected.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select Collect Account Data .

A window appears prompting you to enter the name of the
directory in which you want the collected data stored.

Chapter 10. Graphical User Interface Overview 247

Create Account Report
creates an accounting report for you.

Select Admin → Create Account Report...

Note : If you want to receive an extended accounting report,
select the extended cascading button.

A window appears prompting you to enter the following
information:

v A short, long, or extended version of the output. The
short version is the default.

v The user ID

v The class name

v The LoadL (LoadLeveler) group name

v The UNIX group name

v The Allocated host

v The job ID

v The report Type

v The section

v A start and end date for the report. If no date is specified,
the default is to report all of the data in the report.

v The name of the input data file.

v The name of the output data file. This is the same as
stdout.

Press OK

The window closes and you return to the main window. The
report appears in the Messages window if no output data
file was specified.

version displays version and release data for LoadLeveler on the machines
selected in an information window.

Select the machine on which you want to operate.

Select Admin from the Machines window.

Select version .

248 Using and Administering LoadLeveler

Part 6. The LoadLeveler Application Programming Interfaces

249

250 Using and Administering LoadLeveler

Chapter 11. LoadLeveler APIs

LoadLeveler provides several Application Programming Interfaces (API) that you
can use. LoadLeveler’s APIs are interfaces that allow application programs written
by customers to interact with the LoadLeveler environment by using specific data or
functions that are a part of LoadLeveler. These interfaces can be subroutines within
a library or installation exits. This chapter also describes configuration file keywords
required to enable these APIs.

This chapter discusses the following:

v “Accounting API”.

v “Serial Checkpointing API” on page 253.

v “The Submit API” on page 254.

v “Data Access API” on page 256.

v “Parallel Job API” on page 278.

v “Workload Management API” on page 283.

v “Query API” on page 291.

v “User Exits” on page 294.

The header file llapi.h defines all of the API data structures and subroutines. This
file is located in the include subdirectory of the LoadLeveler release directory. You
must include this file when you call any API subroutine.

The library libllapi.a is a shared library containing all of the LoadLeveler API
subroutines. This library is located in the lib subdirectory of the LoadLeveler release
directory.

Attention: These APIs are not thread safe; they should not be linked to by a
threaded application.

Accounting API
LoadLeveler provides two subroutines for accounting: one for account validation
and one for extracting accounting data.

Account Validation Subroutine
LoadLeveler provides the llacctval executable to perform account validation.

Purpose
llacctval compares the account number a user specifies in a job command file with
the account numbers defined for that user in the LoadLeveler administration file. If
the account numbers match, llacctval returns a value of zero. Otherwise, it returns
a non-zero value.

Syntax
program user_name user_group user_acct# acct1 acct2 ...

Parameters
program

Is the name of the program that performs the account validation. The default is
llacctval . The name you specify here must match the value specified on the
ACCT_VALIDATION keyword. in the configuration file.

251

user_name
Is the name of the user whose account number you want to validate.

user_group
Is the login group name of the user.

user_acct#
Is the account number specified by the user in the job command file.

acct1 acct2 ...
Are the account numbers obtained from the user stanza in the LoadLeveler
administration file.

Description
llacctval is invoked from within the llsubmit command. If the return code is
non-zero, llsubmit does not submit the job.

You can replace llacctval with your own accounting user exit (see below).

To enable account validation, you must specify the following keyword in the
configuration file:

ACCT = A_VALIDATE

To use your own accounting exit, specify the following keyword in the configuration
file:
ACCT_VALIDATION = pathname

where pathname is the name of your accounting exit.

Return Values
If the validation succeeds, the exit status must be zero. If it does not succeed, the
exit status must be a non-zero number.

Report Generation Subroutine
LoadLeveler provides the GetHistory subroutine to generate accounting reports.

Purpose
GetHistory processes local or global LoadLeveler history files.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int GetHistory(char *filename, int (*func) (LL_job *), int version);

Parameters
filename

Specifies the name of the history file.

(*func) (LL_job *)
Specifies the user-supplied function you want to call to process each history
record. The function must return an integer and must accept as input a pointer
to the LL_job structure. The LL_job structure is defined in the llapi.h file.

version
Specifies the version of the history record you want to create.
LL_JOB_VERSION in the llapi.h file creates an LL_job history record.

252 Using and Administering LoadLeveler

Description
GetHistory opens the history file you specify, reads one LL_job accounting record,
and calls a user-supplied routine, passing to the routine the address of an LL_job
structure. GetHistory processes all history records one at a time and then closes
the file. Any user can call this subroutine.

The user-supplied function must include the following files:
#include <sys/resource.h>
#include <sys/types.h>
#include <sys/time.h>

The ll_event_usage structure is part of the LL_job structure and contains the
following LoadLeveler defined data:

int event
Specifies the event identifier. This is an integer whose value is one of the
following:
1 Represents a LoadLeveler-generated event.
2 Represents an installation-generated event.

char * name
Specifies a character string identifying the event. This can be one of the
following:

v An installation generated string that uses the command llctl capture
eventname.

v LoadLeveler-generated strings, which can be the following:
started
checkpoint
vacated
completed
rejected
removed

Return Values
GetHistory returns a zero when successful.

Error Values
GetHistory returns -1 to indicate that the version is not supported or that an error
occurred opening the history file.

Examples
Makefiles and examples which use this API are located in the samples/llphist
subdirectory of the release directory. The examples include the executable llpjob ,
which invokes GetHistory to print every record in the history file. In order to
compile llpjob , the sample Makefile must update the RELEASE_DIR field to
represent the current LoadLeveler release directory. The syntax for llpjob is:
llpjob history_file

Where history_file is a local or global history file.

Serial Checkpointing API
This section describes ckpt , the subroutine used for user-initiated checkpointing of
serial jobs. “Step 14: Enable Checkpointing” on page 117 describes how to
checkpoint your jobs in various ways including system-initiated and user-initiated.
For information of checkpointing parallel jobs, see IBM Parallel Environment for AIX:
Operation and Use, Volume 1.

Chapter 11. LoadLeveler APIs 253

ckpt Subroutine

Purpose
Specify the ckpt subroutine in a FORTRAN, C, or C++ program to activate
user-initiated checkpointing. Whenever this subroutine is invoked, a checkpoint of
the program is taken.

C++ Syntax
extern "C"{void ckpt();}

C Syntax
void ckpt();

FORTRAN Syntax
call ckpt()

Related Information
FORTRAN, C, and C++ programs can be compiled with the crxlf, crxlc, and crxlC
programs, respectively. These programs are found in the bin subdirectory of the
LoadLeveler release directory. See “Ensure all User’s Jobs are Linked to
Checkpointing Libraries” on page 120 for information on using these compile
programs.

The Submit API
This API allows you to submit jobs to LoadLeveler. The submit API consists of the
llsubmit subroutine, the llfree_job_info subroutine, and the monitor program.

llsubmit Subroutine
llsubmit is both the name of a LoadLeveler command used to submit jobs as well
as the subroutine described here.

Purpose
The llsubmit subroutine submits jobs to LoadLeveler for scheduling.

Syntax
int llsubmit (char *job_cmd_file, char *monitor_program,
char *monitor_arg, LL_job *job_info, int job_version);

Parameters
job_cmd_file

Is a pointer to a string containing the name of the job command file.

monitor_program
Is a pointer to a string containing the name of the monitor program to be
invoked when the state of the job is changed. It is set to NULL if a monitoring
program is not provided.

monitor_arg
Is a pointer to a string which is stored in the job object and is passed to the
monitor program. The maximum length of the string is 1023 bytes. If the length
exceeds this value, it is truncated to 1023 bytes. The string is set to NULL if an
argument is not provided.

job_info
Is a pointer to a structure defined in the llapi.h header file. No fields are
required to be filled in. Upon return, the structure will contain the number of job
steps in the job command file and a pointer to an array of pointers to

254 Using and Administering LoadLeveler

information about each job step. Space for the array and the job step
information is allocated by llsubmit . The caller should free this space using the
llfree_job_info subroutine.

job_version
Is an integer indicating the version of llsubmit being used. This argument
should be set to LL_JOB_VERSION which is defined in the llapi.h include file.

Description
LoadLeveler must be installed and configured correctly on the machine on which
the submit application is run.

The uid and gid in effect when llsubmit is invoked is the uid and gid used when the
job is run.

Return Values
0 The job was submitted.

Error Values
-1 The job was not submitted. Error messages are written to stderr.

llfree_job_info Subroutine

Purpose
llfree_job_info frees space for the array and the job step information used by
llsubmit .

Syntax
void llfree_job_info(LL_job *job_info, int job_version);

Parameters
job_info

Is a pointer to a LL_job structure. Upon return, the space pointed to by the
step_list variable and the space associated with the LL_job step structures
pointed to by the step_list array are freed. All fields in the LL_job structure are
set to zero.

job_version
Is an integer indicating the version of llfree_job_info being used. This
argument should be set to LL_JOB_VERSION which is defined in the llapi.h
header file.

The Monitor Program

Purpose
You can create a monitor program that monitors jobs submitted using the llsubmit
subroutine. The schedd daemon invokes this monitor program if the
monitor_program argument to llsubmit is not null. The monitor program is invoked
each time a job step changes state. This means that the monitor program will be
informed when the job step is started, completed, vacated, removed, or rejected. If
you suspect the monitor program encountered problems or didn’t run, you should
check the listing in the schedd log. In the event of a monitor program failure, the
job is still run.

Syntax
monitor_program job_id user_arg state exit_status

Chapter 11. LoadLeveler APIs 255

Parameters
monitor_program

Is the name of the program supplied in the monitor_program argument passed
to the llsubmit function.

job_id
Is the full ID for the job step.

user_arg
The string supplied to the monitor_arg argument that is passed to the llsubmit
function.

state
Is the current state of the job step. Possible values for the state are:

JOB_STARTED
The job step has started.

JOB_COMPLETED
The job step has completed.

JOB_VACATED
The job step has been vacated. The job step will be rescheduled if the job
step is restartable or if it is checkpointable.

JOB_REJECTED
A startd daemon has rejected the job. The job will be rescheduled to
another machine if possible.

JOB_REMOVED
The job step was cancelled or could not be started.

JOB_NOTRUN
The job step cannot be run because a dependency cannot be met.

exit_status
Is the exit status from the job step. The argument is meaningful only if the state
is JOB_COMPLETED.

Data Access API
This API gives you access to LoadLeveler objects and allows you to retrieve
specific data from the objects. You can use this API to query the negotiator daemon
for information about its current set of jobs and machines. The Data Access API
consists of the following subroutines:ll_query , ll_set_request , ll_reset_request ,
ll_get_objs , ll_get_data , ll_next_obj , ll_free_objs , and ll_deallocate .

Using the Data Access API
To use this API, you need to call the data access subroutines in the following order:

v Call ll_query to initialize the query object. See “ll_query Subroutine” on page 257
for more information.

v Call ll_set_request to filter the objects you want to query. See “ll_set_request
Subroutine” on page 257 for more information.

– Call ll_get_objs to retrieve a list of objects from a LoadLeveler daemon. See
“ll_get_objs Subroutine” on page 260 for more information.

- Call ll_get_data to retrieve specific data from an object. See “ll_get_data
Subroutine” on page 272 for more information.

– Call ll_next_obj to retrieve the next object in the list. See “ll_next_obj
Subroutine” on page 273 for more information.

256 Using and Administering LoadLeveler

v Call ll_free_objs to free the list of objects you received. See “ll_free_objs
Subroutine” on page 274 for more information.

v Call ll_deallocate to end the query. See “ll_deallocate Subroutine” on page 274
for more information.

To see code that uses these subroutines, refer to “Examples of Using the Data
Access API” on page 275. For more information on LoadLeveler objects, see
“Understanding the LoadLeveler Job Object Model” on page 262.

ll_query Subroutine

Purpose
The ll_query subroutine initializes the query object and defines the type of query
you want to perform. The LL_element created and the corresponding data returned
by this function is determined by the query_type you select.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

LL_element * ll_query(enum QueryType query_type);

Parameters
query_type

Can be JOBS (to query job information) or MACHINES (to query machine
information, or CLUSTER (to query cluster information).

Description
query_type is the input field for this subroutine.

This subroutine is used in conjunction with other data access subroutines to query
information about job and machine objects. You must call ll_query prior to using the
other data access subroutines.

Return Values
This subroutine returns a pointer to an LL_element object. The pointer is used by
subsequent data access subroutine calls.

Error Values
NULL The subroutine was unable to create the appropriate pointer.

Related Information
Subroutines: ll_get_data , ll_set_request , ll_reset_request , ll_get_objs ,
ll_free_objs , ll_next_obj , ll_deallocate .

ll_set_request Subroutine

Purpose
The ll_set_request subroutine determines the data requested during a subsequent
ll_get_objs call to query specific objects. You can filter your queries based on the
query_type, object_filter, and data_filter you select.

Library
LoadLeveler API library libllapi.a

Chapter 11. LoadLeveler APIs 257

Syntax
#include "llapi.h"

int ll_set_request(LL_element *query_element,QueryFlags query_flags,
char **object_filter,DataFilter data_filter);

Parameters
query_element

Is a pointer to the LL_element returned by the ll_query subroutine.

query_flags
When query_type (in ll_query) is JOBS, query_flags can be the following:

QUERY_ALL
Query all jobs.

QUERY_JOBID
Query by job ID.

QUERY_STEPID
Query by step ID.

QUERY_USER
Query by user ID.

QUERY_GROUP
Query by LoadLeveler group.

QUERY_CLASS
Query by LoadLeveler class.

QUERY_HOST
Query by machine name.

When query_type (in ll_query) is MACHINES, query_flags can be the following:

QUERY_ALL
Query all machines.

QUERY_HOST
Query by machine names.

object_filter
Specifies search criteria. The value you specify for object_filter is related to the
value you specify for query_flags:

v If you specify QUERY_ALL, you do not need an object_filter.

v If you specify QUERY_JOBID, the object_filter must contain a list of job IDs
(in the form schedd_host.cluster).

v If you specify QUERY_STEPID, the object_filter must contain a list of step
IDs (in the form schedd_host.cluster.step).

v If you specify QUERY_USER, the object_filter must contain a list of user IDs.

v If you specify QUERY_CLASS, the object_filter must contain a list of
LoadLeveler class names.

v If you specify QUERY_GROUP, the object_filter must contain a list of
LoadLeveler group names.

v If you specify QUERY_HOST, the object_filter must contain a list of
LoadLeveler machine names. When the query type is JOBS, the machine
names must be the names of machines to which the jobs are submitted.

The last entry in the object_filter array must be NULL.

258 Using and Administering LoadLeveler

data_filter
Filters the data returned from the object you query. The value you specify for
data_filter is related to the value you specify for query_type:

v If you specify JOBS, data_filter can be ALL_DATA (the default), which returns
the entire object, or Q_LINE, which returns the same information returned by
the llq -f flag. For more information, see “llq - Query Job Status” on
page 193.

v If you specify MACHINES, data_filter can be ALL_DATA (the default), which
returns the entire object, or STATUS_LINE, which returns the same
information returned by the llstatus -f flag. For more information, see
“llstatus - Query Machine Status” on page 205.

Description
query_element, query_flags, object_filter, and data_filter are the input fields for this
subroutine.

You can request a combination of object filters by calling ll_set_request more than
once. When you do this, the query flags you specify are or-ed together. The
following are valid combinations of object filters:

v QUERY_JOBID and QUERY_STEPID. The result is the union of both queries.

v QUERY_HOST and QUERY_USER. The result is the intersection of both
queries.

v QUERY_HOST and QUERY_CLASS. The result is the intersection of both
queries.

v QUERY_HOST and QUERY_GROUP. The result is the intersection of both
queries.

That is, to query jobs owned by certain users and on a specific machines, issue
ll_set_request first with QUERY_USER and the appropriate user IDs, and then
issue it again with QUERY_HOST and the appropriate host names.

For example, suppose you issue ll_set_request with a user ID list of anton and
meg, and then issue it again with a host list of k10n10 and k10n11. The objects
returned are all of the jobs on k10n10 and k10n11 which belong to anton or meg.

Note that if you use two consecutive calls with the same flag, the second call will
replace the previous call.

Also, you should not use the QUERY_ALL flag in combination with any other flag,
since QUERY_ALL will replace any existing requests.

Return Values
This subroutine returns a zero to indicate success.

Error Values
-1 You specified an invalid query_element.
-2 You specified an invalid query_flag.
-3 You specified an invalid object_filter.
-4 You specified an invalid data_filter.
-5 A system error occurred.

Related Information
Subroutines: ll_get_data , ll_query , ll_reset_request , ll_get_objs , ll_free_objs ,
ll_next_obj , ll_deallocate .

Chapter 11. LoadLeveler APIs 259

ll_reset_request Subroutine

Purpose
The ll_reset_request subroutine resets the request data to NULL for the
query_element you specify.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_reset_request(LL_element *query_element);

Parameters
query_element

Is a pointer to the LL_element returned by the ll_query function.

Description
query_element is the input field for this subroutine.

This subroutine is used in conjunction with ll_set_request to change the data
requested with the ll_get_objs subroutine.

Return Values
This subroutine returns a zero to indicate success.

Error Values
-1 The subroutine was unable to reset the appropriate data.

Related Information
Subroutines: ll_get_data , ll_set_request , ll_query , ll_get_objs , ll_free_objs ,
ll_next_obj , ll_deallocate .

ll_get_objs Subroutine

Purpose
The ll_get_objs subroutine sends a query request to the daemon you specify along
with the request data you specified in the ll_set_request subroutine. ll_get_objs
receives a list of objects matching the request.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

LL_element * ll_get_objs(LL_element *query_element,LL_Daemon query_daemon,
char *hostname,int *number_of_objs,int *error_code);

Parameters
query_element

Is a pointer to the LL_element returned by the ll_query function.

query_daemon
Specifies the LoadLeveler daemon you want to query. The enum LL_Daemon is
defined in llapi.h as:
enum LL_Daemon {LL_STARTD, LL_SCHEDD, LL_CM, LL_MASTER, LL_STARTER};

260 Using and Administering LoadLeveler

The following indicates which daemons respond to which query flags. When
query_type (in ll_query) is JOBS, the query_flags (in ll_set_request) listed in
the lefthand column are responded to by the daemons listed in the righthand
column:

QUERY_ALL negotiator (LL_CM) or schedd (LL_SCHEDD)

QUERY_JOBID negotiator (LL_CM) or schedd (LL_SCHEDD)

QUERY_STEPID negotiator (LL_CM)

QUERY_USER negotiator (LL_CM)

QUERY_GROUP negotiator (LL_CM)

QUERY_CLASS negotiator (LL_CM)

QUERY_HOST negotiator (LL_CM)

When query_type (in ll_query) is MACHINES, the query_flags (in
ll_set_request) listed in the lefthand column are responded to by the daemons
listed in the righthand column:

QUERY_ALL negotiator (LL_CM)

QUERY_HOST negotiator (LL_CM)

hostname
Specifies the host name where the schedd daemon is queried. If you specify
NULL, the schedd daemon on the local machine is queried. To contact the
negotiator daemon, you do not need to specify a hostname.

number_of_objs
Is a pointer to an integer representing the number of objects received from the
daemon.

error_code
Is a pointer to an integer representing the error code issued when the function
returns a NULL value. See “Error Values”.

Description
query_element, query_daemon, and hostname are the input fields for this
subroutine. number_of_objs and error_code are output fields.

Each LoadLeveler daemon returns only the objects that it knows about.

Return Values
This subroutine returns a pointer to the first object in the list. You must use the
ll_next_obj subroutine to access the next object in the list.

Error Values
This subroutine a NULL to indicate failure. The error_code parameter is set to one
of the following:
-1 You specified an invalid query_element.
-2 You specified an invalid query_daemon.
-3 The API could not resolve the hostname.
-4 You set an invalid request type for the specified daemon.
-5 A system error occurred.
-6 No objects exist matching your request.
-7 An internal error occurred.
-9 Connection to daemon failed.

Chapter 11. LoadLeveler APIs 261

Related Information
Subroutines: ll_get_data , ll_set_request , ll_query , ll_get_objs , ll_free_objs ,
ll_next_obj , ll_deallocate .

Understanding the LoadLeveler Job Object Model
The ll_get_data subroutine of the data access API allows you to access the
LoadLeveler job model. The LoadLeveler job model consists of objects that have
attributes and connections to other objects. An attribute is a characteristic of the
object and generally has a primitive data type (such as integer, float, or character).
The job name, submission time and job priority are examples of attributes.

Objects are connected to one or more other objects via relationships. An object can
be connected to other objects through more than one relationship, or through the
same relationship. For example, A Job object is connected to a Credential object
and to Step objects through two different relationships. A Job object can be
connected to more than one Step object through the same relationship of “having a
Step.” When an object is connected through different relationships, different
specifications are used to retrieve the appropriate object.

When an object is connected to more than one object through the same
relationship, there are Count, GetFirst and GetNext specifications associated with
the relationship. The Count operation returns the number of connections. You must
use the GetFirst operation to initialize access to the first such connected object. You
must use the GetNext operation to get the remaining objects in succession. You can
not use GetNext after the last object has been retrieved.

You can use the ll_get_data subroutine to access both attributes and connected
objects. See “ll_get_data Subroutine” on page 272 for more information.

The root of the job model is the Job object, as shown in Figure 35 on page 263.
The job is queried for information about the number of steps it contains and the
time it was submitted. The job is connected to a single Credential object and one or
more Step objects. Elements for these objects can be obtained from the job.

You can query the Credential object to obtain the ID and group of the submitter of
the job.

The Step object represents one executable unit of the job (all the tasks that are
executed together). It contains information about the execution state of the step,
messages generated during execution of the step, the number of nodes in the step,
the number of unique machines the step is running on, the time the step was
dispatched, the execution priority of the step, the unique identifier given to the step
by LoadLeveler, the class of the step and the number of processes running for the
step (task instances). The Step is connected to one or more Switch Table objects,
one or more Machine objects and one or more Node objects. The list of Machines
represents all of the hosts where one or more nodes of the step are running. If two
or more nodes are running on the same host, the Machine object for the host
occurs only once in the step’s Machine list. The Step object is connected to one
Switch Table object for each of the protocols (MPI and/or LAPI) used by the Step.

Each Node object manages a set of executables that share common requirements
and preferences. The Node can be queried for the number of tasks it manages, and
is connected to one or more Task objects.

262 Using and Administering LoadLeveler

The Task object represents one or more copies of the same executable. The Task
object can be queried for the executable, the executable arguments, and the
number of instances of the executable.

Figure 35. LoadLeveler Job Object Model

Chapter 11. LoadLeveler APIs 263

Table 15 describes the specifications and elements available when you use the
ll_get_data subroutine. Each specification name describes the object you need to
specify and the attribute returned. For example, the specification
LL_JobGetFirstStep includes the object you need to specify (LL_Job) and the
value returned (GetFirstStep).

This table is sorted alphabetically by object; within each object the specifications
are also sorted alphabetically.

When using the 2.1.0 release APi of ll_get_data , you must use the new 2.1 release
keywords. For instance, you can not use the min_processors and
max_processors from the 1.3.0 release with the 2.1 release API ll_get_data . You
must use the new keyword, node .

Table 15. Specifications for ll_get_data Subroutine

Object Specification
Resulting Data

Type
Description

Adapter LL_AdapterAvailWindowCount int* A pointer to an integer indicating the
number of windows not in use.

Adapter LL_AdapterCommInterface char* A pointer to a string containing the
adapter’s communication interface.

Adapter LL_AdapterInterfaceAddress char* A pointer to a string containing the
adapter’s interface IP address.

Adapter LL_AdapterMaxWindowSize int* A pointer to the integer indicating the
maximum allocatable window
memory.

Adapter LL_AdapterMemory int* A pointer to the integer indicating the
amount of total adapter memory.

Adapter LL_AdapterMinWindowSize int* A pointer to the integer indicating the
minimum allocatable window
memory.

Adapter LL_AdapterName char* A pointer to a string containing the
adapter name.

Adapter LL_AdapterTotalWindowCount int* A pointer to the integer indicating the
number of windows on the adapter.

Adapter LL_AdapterUsageMode char* A pointer to a string containing the
mode used for css IP or US.

Adapter LL_AdapterUsageProtocol char* A pointer to a string containing the
task’s protocol.

Adapter LL_AdapterUsageWindow char* A pointer to a string containing the
window assigned to the task.

Adapter LL_AdapterUsageWindowMemory char* A pointer to the integer indicating the
number of bytes used by the
window.

AdapterReq LL_AdapterReqCommLevel int* A pointer to the integer indicating the
adapter’s communication level.

AdapterReq LL_AdapterReqUsage char* A pointer to a string containing the
requested adapter usage.

Cluster LL_ClusterGetFirstResource LL_element* A pointer to the element associated
with the first resource.

Cluster LL_ClusterGetNextResource LL_element* A pointer to the element associated
with the next resource.

264 Using and Administering LoadLeveler

Table 15. Specifications for ll_get_data Subroutine (continued)

Object Specification
Resulting Data

Type
Description

Cluster LL_ClusterDefinedResources char** A pointer to an array containing the
names of consumable resources
defined in the cluster. The array
ends with a NULL string.

Cluster LL_ClusterDefinedResourceCount int* A pointer to an integer indicating the
number of consumable resources
defined in the cluster.

Cluster LL_ClusterSchedulingResources char** A pointer to an array containing the
names of consumable resources
considered by the scheduler for the
cluster. The array ends with a NULL
string.

Cluster LL_ClusterSchedulingResourceCount int* A pointer to an integer indicating the
number of consumable resources
considered by the scheduler for the
cluster.

Credential LL_CredentialGid int* A pointer to an integer containing the
UNIX gid of the user submitting the
job.

Credential LL_CredentialGroupName char* A pointer to a string containing the
UNIX group name of the user
submitting the job.

Credential LL_CredentialUid int* A pointer to an integer containing the
UNIX uid of the person submitting
the job.

Credential LL_CredentialUserName char* A pointer to a string containing the
user ID of the user submitting the
job.

Job LL_JobCredential LL_element* A pointer to the element associated
with the job credential.

Job LL_JobGetFirstStep LL_element* A pointer to the element associated
with the first step of the job, to be
used in subsequent ll_get_data
calls.

Job LL_JobGetNextStep LL_element* A pointer to the element associated
with the next step.

Job LL_JobName char* A pointer to a character string
containing the job name.

Job LL_JobStepCount int* A pointer to an integer indicating the
number of steps connected to the
job.

Job LL_JobStepType int* A pointer to an integer indicating the
type of job, which can be
INTERACTIVE_JOB or
BATCH_JOB.

Job LL_JobSubmitHost char* A pointer to a character string
containing the name of the host
machine from which the job was
submitted.

Chapter 11. LoadLeveler APIs 265

Table 15. Specifications for ll_get_data Subroutine (continued)

Object Specification
Resulting Data

Type
Description

Job LL_JobSubmitTime time_t* A pointer to the time_t structure
indicating when the job was
submitted.

Job LL_JobVersionNum int* A pointer to an integer indicating the
job’s version number

Machine LL_MachineAdapterList char** A pointer to an array containing the
list of adapters associated with the
machine. The array ends with a
NULL string.

Machine LL_MachineArchitecture char* A pointer to a string containing the
machine architecture.

Machine LL_MachineAvailableClassList char** A pointer to an array containing the
currently available job classes
defined on the machine. The array
ends with a NULL string.

Machine LL_MachineConfiguredClassList char** A pointer to an array containing the
initiators on the machine. The array
ends with a NULL string.

Machine LL_MachineCPUs int* A pointer to an integer containing the
number of CPUs on the machine.

Machine LL_MachineDisk int* A pointer to an integer indicating the
disk space in KBs on the machine.

Machine LL_MachineFeatureList char** A pointer to an array containing the
features defined on the machine.
The array ends with a NULL string.

Machine LL_MachineFreeRealMemory int* A pointer to an integer indicating the
amount of free real memory in MBs
on the machine.

Machine LL_MachineGetFirstAdapter LL_element* A pointer to the element associated
with the machine’s first adapter.

Machine LL_MachineGetFirstResource LL_element* A pointer to the element associated
with the machine’s first resource.

Machine LL_MachineGetNextAdapter LL_element* A pointer to the element associated
with the machine’s next adapter.

Machine LL_MachineGetNextResource LL_element* A pointer to the element associated
with the machine’s next resource.

Machine LL_MachineKbddIdle int* A pointer to an integer indicating the
number of seconds since the kbdd
daemon detected keyboard mouse
activity.

Machine LL_MachineLoadAverage double* A pointer to a double containing the
load average on the machine.

Machine LL_MachineMaxTasks int* A pointer to an integer indicating the
maximum number of tasks this
machine can run at one time.

Machine LL_MachineMachineMode char* A pointer to a string containing the
configured machine mode.

266 Using and Administering LoadLeveler

Table 15. Specifications for ll_get_data Subroutine (continued)

Object Specification
Resulting Data

Type
Description

Machine LL_MachineName char* A pointer to a string containing the
machine name.

Machine LL_MachineOperatingSystem char* A pointer to a string containing the
operating system on the machine.

Machine LL_MachinePagesFreed int* A pointer to an integer indicating the
number of pages freed per second
by the page replacement algorithm.

Machine LL_MachinePagesPagedIn int* A pointer to an integer indicating the
number of pages paged in per
second from paging space.

Machine LL_MachinePagesPagedOut int* A pointer to an integer indicating the
number of pages paged out per
second to paging space.

Machine LL_MachinePagesScanned int* A pointer to an integer indicating the
number of pages scanned per
second by the page replacement
algorithm.

Machine LL_MachinePoolList int** A pointer to an array indicating the
pool numbers to which this machine
belongs. The size of the array can
be determined by using
LL_MachinePoolListSize.

Machine LL_MachinePoolListSize int* A pointer to an integer indicating the
numbers of pools configured for the
machine.

Machine LL_MachineRealMemory int* A pointer to an integer indicating the
physical memory in MBs on the
machine.

Machine LL_MachineScheddRunningJobs int* A pointer to an integer indicating a
list of the running jobs assigned to
schedd.

Machine LL_MachineScheddState int* A pointer to an integer indicating the
machine’s schedd state.

Machine LL_MachineScheddTotalJobs int* A pointer to an integer indicating the
total number of jobs assigned to the
schedd.

Machine LL_MachineSpeed double* A pointer to a double containing the
configured speed of the machine.

Machine LL_MachineStartdRunningJobs int* A pointer to an integer containing the
number of running jobs known by the
startdd daemon.

Machine LL_MachineStartdState char* A pointer to a string containing the
state of the startdd daemon.

Machine LL_MachineStepList char** A pointer to an array containing the
steps running on the machine. The
array ends with a NULL string.

Machine LL_MachineTimeStamp time_t* A pointer to a time_t structure
indicating the time the machine last
reported to the negotiator.

Chapter 11. LoadLeveler APIs 267

Table 15. Specifications for ll_get_data Subroutine (continued)

Object Specification
Resulting Data

Type
Description

Machine LL_MachineVirtualMemory int* A pointer to an integer indicating the
free swap space in KBs on the
machine.

Node LL_NodeGetFirstTask LL_element* A pointer to the element associated
with the first task for this node.

Node LL_NodeGetNextTask LL_element* A pointer to the element associated
with the next task for this node.

Node LL_NodeInitiatorCount int* A pointer to an integer indicating the
number of tasks running on the
node.

Node LL_NodeMaxInstances int* A pointer to an integer indicating the
maximum number of machines
requested.

Node LL_NodeMinInstances int* A pointer to an integer indicating the
minimum number of machines
requested.

Node LL_NodeRequirements char* A pointer to a string containing the
node requirements.

Node LL_NodeTaskCount int* A pointer to an integer indicating the
different types of tasks running on
the node.

Resource LL_ResourceAvailableValue int* A pointer to an integer indicating the
value of available resources.

Resource LL_ResourceName char* A pointer to a string containing the
resource name.

Resource LL_ResourceInitialValue int* A pointer to an integer indicating the
initial resource value.

ResourceReq LL_ResourceRequirementName char* A pointer to a string containing the
resource requirement name.

ResourceReq LL_ResourceRequirementValue int* A pointer to an integer indicating the
value of the resource requirement.

Step LL_StepAccountNumber char* A pointer to a string containing the
account number specified by the
user submitting the job.

Step LL_StepComment char* A pointer to a string indicating the
comment specified by the user
submitting the job.

Step LL_StepCompletionCode int* A pointer to an integer indicating the
completion code of the step.

Step LL_StepCompletionDate time_t* A pointer to a time_t structure
indicating the completion date of the
step.

Step LL_StepCoreLimitHard int* A pointer to an integer indicating the
core hard limit set by the user in the
core_limit keyword.

Step LL_StepCoreLimitSoft int* A pointer to an integer indicating the
core soft limit set by the user in the
core_limit keyword.

268 Using and Administering LoadLeveler

Table 15. Specifications for ll_get_data Subroutine (continued)

Object Specification
Resulting Data

Type
Description

Step LL_StepCpuLimitHard int* A pointer to an integer indicating the
CPU hard limit set by the user in the
cpu_limit keyword.

Step LL_StepCpuLimitSoft int* A pointer to an integer indicating the
CPU soft limit set by the user in the
cpu_limit keyword.

Step LL_StepCpuStepLimitHard int* A pointer to an integer indicating the
CPU step hard limit set by the user
in the job_cpu_limit keyword.

Step LL_StepCpuStepLimitSoft int* A pointer to an integer indicating the
CPU step soft limit set by the user in
the job_cpu_limit keyword.

Step LL_StepDataLimitHard int* A pointer to an integer indicating the
data hard limit set by the user in the
data_limit keyword.

Step LL_StepDataLimitSoft int* A pointer to an integer indicating the
data soft limit set by the user in the
data_limit keyword.

Step LL_StepDispatchTime time_t* A pointer to a time_t structure
indicating the time the negotiator
dispatched the job.

Step LL_StepEnvironment char* A pointer to a string containing the
environment variables set by the
user in the executable.

Step LL_StepErrorFile char* A pointer to a string containing the
standard error file name used by the
executable.

Step LL_StepExecSize int* A pointer to an integer indicating the
executable size.

Step LL_StepFileLimitHard int* A pointer to an integer indicating the
file hard limit set by the user in the
file_limit keyword.

Step LL_StepFileLimitSoft int* A pointer to an integer indicating the
file soft limit set by the user in the
file_limit keyword.

Step LL_StepGetFirstAdapterReq LL_element* A pointer to the element associated
with the first adapter requirement.

Step LL_StepGetFirstMachine LL_element* A pointer to the element associated
with the first machine in the step.

Step LL_StepGetFirstNode LL_element* A pointer to the element associated
with the first node of the step.

Step LL_StepGetFirstSwitchTable LL_element* A pointer to the element associated
with the first switch table for this
step.

Step LL_StepGetMasterTask LL_element* A pointer to the element associated
with the master task of the step.

Step LL_StepGetNextAdapterReq LL_element* A pointer to the element associated
with the next adapter requirement.

Chapter 11. LoadLeveler APIs 269

Table 15. Specifications for ll_get_data Subroutine (continued)

Object Specification
Resulting Data

Type
Description

Step LL_StepGetNextMachine LL_element* A pointer to the element associated
with the next machine of the step.

Step LL_StepGetNextNode LL_element* A pointer to the element associated
with the next node of the step.

Step LL_StepGetNextSwitchTable LL_element* A pointer to the element associated
with the next switch table for this
step.

Step LL_StepHoldType int* A pointer to an integer indicating the
hold state of the step (user, system,
etc). The value returned is in the
HoldType enum.

Step LL_StepHostList char** A pointer to an array containing the
list of hosts in the host.list file
associated with the step. The array
ends with a null string.

Step LL_StepID char* A pointer to a string containing the
ID of the step.

Step LL_StepImageSize int* A pointer to an integer indicating the
image size of the executable.

Step LL_StepInputFile char* A pointer to a string containing the
standard input file name used by the
executable.

Step LL_StepIwd char* A pointer to a string containing the
initial working directory name used
by the executable.

Step LL_StepJobClass char* A pointer to a string containing the
class of the step.

Step LL_StepLoadLevelerGroup char* A pointer to a string containing the
name of the LoadLeveler group
specified by the step.

Step LL_StepMachineCount int* A pointer to an integer indicating the
number of machines assigned to the
step.

Step LL_StepMessages char* A pointer to a string containing a list
of messages from LL

Step LL_StepName char* A pointer to a string containing the
name of the step.

Step LL_StepNodeCount int* A pointer to an integer indicating the
number of node objects associated
with the step.

Step LL_StepNodeUsage int* A pointer to an integer indicating the
node usage specified by the user,
which can be SHARED or
NOT_SHARED.

Step LL_StepOutputFile char* A pointer to a character string
containing the standard output file
name used by the executable.

Step LL_StepParallelMode int* A pointer to an integer indicating the
mode of the step.

270 Using and Administering LoadLeveler

Table 15. Specifications for ll_get_data Subroutine (continued)

Object Specification
Resulting Data

Type
Description

Step LL_StepPriority int* A pointer to an integer indicating the
priority of the step.

Step LL_StepRssLimitHard int* A pointer to an integer indicating the
RSS hard limit set by the user in the
rss_limit keyword.

Step LL_StepRssLimitSoft int* A pointer to an integer indicating the
RSS soft limit set by the user in the
rss_limit keyword.

Step LL_StepShell char* A pointer to a character string
containing the shell name used by
the executable.

Step LL_StepStackLimitHard int* A pointer to an integer indicating the
stack hard limit set by the user in the
stack_limit keyword.

Step LL_StepStackLimitSoft int* A pointer to an integer indicating the
stack soft limit set by the user in the
stack_limit keyword.

Step LL_StepStartCount int* A pointer to an integer indicating the
number of times the step has been
started.

Step LL_StepStartDate time_t* A pointer to a time_t structure
indicating the value the user
specified in the startdate keyword.

Step LL_StepState int* A pointer to an integer indicating the
state of the Step (Idle, Pending,
Starting, etc.) The value returned is
in the StepState enum.

Step LL_StepTaskInstanceCount int* A pointer to an integer indicating the
number of task instances in the step.
This is only available from the
schedd daemon.

Step LL_StepWallClockLimitHard int* A pointer to an integer indicating the
wall clock hard limit set by the user
in the wall_clock_limit keyword.

Step LL_StepWallClockLimitSoft int* A pointer to an integer indicating the
wall clock soft limit set by the user in
the wall_clock_limit keyword.

Task LL_TaskExecutable char* A pointer to a string containing the
name of the executable.

Task LL_TaskExecutableArguments char* A pointer to a string containing the
arguments passed by the user in the
executable.

Task LL_TaskGetFirstResourceRequirement LL_element A pointer to the element associated
with the first resource requirement.

Task LL_TaskGetFirstTaskInstance LL_element* A pointer to the element associated
with the first task instance.

Task LL_TaskGetNextResourceRequirement LL_element* A pointer to the element associated
with the next resource requirement.

Chapter 11. LoadLeveler APIs 271

Table 15. Specifications for ll_get_data Subroutine (continued)

Object Specification
Resulting Data

Type
Description

Task LL_TaskIsMaster int* A pointer to an integer indicating
whether this is the master task.

Task LL_TaskTaskInstanceCount int* A pointer to an integer indicating the
number of task instances.

Task LL_TaskGetNextTaskInstance LL_element* A pointer to the element associated
with the next task instance.

Task Instance LL_TaskInstanceAdapterCount int* A pointer to the integer indicating the
number of adapters.

Task Instance LL_TaskInstanceGetFirstAdapter LL_element* A pointer to the element associated
with the first adapter.

Task Instance LL_TaskInstanceGetFirstAdapterUsage LL_element* A pointer to the element associated
with the first adapter usage.

Task Instance LL_TaskInstanceGetNextAdapter LL_element* A pointer to the element associated
with the next adapter.

Task Instance LL_TaskInstanceGetNextAdapterUsage LL_element* A pointer to the element associated
with the next adapter usage.

Task Instance LL_TaskInstanceMachineName char* A pointer to the string indicating the
machine assigned to a task.

Task Instance LL_TaskInstanceTaskID int* A pointer to the integer indicating the
task ID.

ll_get_data Subroutine
Before you use this subroutine, make sure you are familiar with “Understanding the
LoadLeveler Job Object Model” on page 262.

Purpose
The ll_get_data subroutine returns data from a valid LL_element .

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_get_data(LL_element *element, enum LLAPI_Specification specification,
void* resulting_data_type);

Parameters
element

Is a pointer to the LL_element returned by the ll_get_objs subroutine or by the
ll_get_data subroutine. For example: Job, Machine, Step, etc.

specification
Specifies the data field within the data object you want to read.

resulting_data_type
Is a pointer to where you want the data stored. If this parameter is equal to
NULL, then an error has occurred and the value could not be stored.

Description
object and specification are input fields, while resulting_data_type is an output field.

272 Using and Administering LoadLeveler

The ll_get_data subroutine of the data access API allows you to access
LoadLeveler objects. The parameters of ll_get_data are a LoadLeveler object
(LL_element), a specification that indicates what information about the object is
being requested, and a pointer to the area where the information being requested
should be stored.

If the specification indicates an attribute of the element that is passed in, the result
pointer must be the address of a variable of the appropriate type, and must be
initialized to NULL. The type returned by each specification is found in Table 15 on
page 264. If the specification queries the connection to another object, the returned
value is of type LL_element . You can use a subsequent ll_get_data call to query
information about the new object.

The data type char* and any arrays of type int or char must be freed by the caller.

LL_element pointers cannot be freed by the caller.

When using the 2.1.0 release APi of ll_get_data , you must use the new 2.1 release
keywords. For instance, you can not use the min_processors and
max_processors from the 1.3.0 release with the 2.1 release API ll_get_data . You
must use the new keyword, node .

Return Values
This subroutine returns a zero to indicate success.

Error Values
-1 You specified an invalid object.
-2 You specified an invalid LLAPI_Specification.

Related Information
Subroutines: ll_query , ll_set_request , ll_reset_request , ll_get_objs , lL_next_obj ,
ll_free_objs , ll_deallocate .

ll_next_obj Subroutine

Purpose
The ll_next_obj subroutine returns the next object in the query_element list you
specify.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

LL_element * ll_next_obj(LL_element *query_element);

Parameters
query_element

Is a pointer to the LL_element returned by the ll_query function.

Description
query_element is the input field for this subroutine.

Use this subroutine in conjunction with the ll_get_objs subroutine to “loop” through
the list of objects queried.

Chapter 11. LoadLeveler APIs 273

Return Values
This subroutine returns a pointer to the next object in the list.

Error Values
NULL Indicates an error or the end of the list of objects.

Related Information
Subroutines: ll_get_data , ll_set_request , ll_query , ll_get_objs , ll_free_objs ,
ll_deallocate .

ll_free_objs Subroutine

Purpose
The ll_free_objs subroutine frees all of the LL_element objects in the
query_element list that were obtained by the ll_get_objs subroutine. You must free
the query_element by using the ll_deallocate subroutine.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_free_objs(LL_element *query_element);

Parameters
query_element

Is a pointer to the LL_element returned by the ll_query function.

Description
query_element is the input field for this subroutine.

Return Values
This subroutine returns a zero to indicate success.

Error Values
-1 You specified an invalid query_element.

Related Information
Subroutines: ll_get_data , ll_set_request , ll_query , ll_get_objs , ll_reset_request ,
ll_free_objs .

ll_deallocate Subroutine

Purpose
The ll_deallocate subroutine deallocates the query_element allocated by the
ll_query subroutine.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_deallocate(LL_element *query_element);

274 Using and Administering LoadLeveler

Parameters
query_element

Is a pointer to the LL_element returned by the ll_query function.

Description
query_element is the input field for this subroutine.

Return Values
This subroutine returns a zero to indicate success.

Error Values
-1 You specified an invalid query_element.

Related Information
Subroutines: ll_get_data , ll_set_request , ll_query , ll_get_objs , ll_reset_request ,
ll_next_obj , ll_free_objs .

Examples of Using the Data Access API
Example 1: The following example shows how LoadLeveler’s Data Access API can
be used to obtain machine, job, and cluster information. The program consists of
three steps:

1. Getting information about selected hosts in the LoadLeveler cluster

2. Getting information about jobs of selected classes

3. Getting floating consumable resource information in the LoadLeveler cluster
#include <stdio.h>
#include "llapi.h"

main(int argc, char *argv[])
{

LL_element *queryObject, *machine, *resource, *cluster;
LL_element *job, *step, *node, *task, *credential, *resource_req;
int rc, obj_count, err_code, value;
double load_avg;
enum StepState step_state;
char **host_list, **class_list;
char *name, *res_name, *step_id, *job_class, *node_req;
char *task_exec, *ex_args, *startd_state;

/* Step 1: Display information of selected machines in the LL cluster */

/* Initialize the query: Machine query */
queryObject = ll_query(MACHINES);
if (!queryObject) {

printf("Query MACHINES: ll_query() returns NULL.\n"); exit(1);
}

/* Set query parameters: query specific machines by name */
host_list = (char **)malloc(3*sizeof(char *));
host_list[0] = "c163n12.ppd.pok.ibm.com";
host_list[1] = "c163n11.ppd.pok.ibm.com";
host_list[2] = NULL;
rc = ll_set_request(queryObject, QUERY_HOST, host_list, ALL_DATA);
if (rc) {

printf("Query MACHINES: ll_set_request() return code is non-zero.\n"); exit(1);
}

/* Get the machine objects from the LoadL_negotiator (central manager) daemon */
machine = ll_get_objs(queryObject, LL_CM, NULL, &obj_count, &err_code);
if (machine == NULL) {

printf("Query MACHINES: ll_get_objs() returns NULL. Error code = %d\n", err_code);
}

Chapter 11. LoadLeveler APIs 275

printf("Number of machines objects returned = %d\n", obj_count);

/* Process the machine objects */
while(machine) {

rc = ll_get_data(machine, LL_MachineName, &name);
if (!rc) {

printf("Machine name: %s ------------------\n", name); free(name);
}
rc = ll_get_data(machine, LL_MachineStartdState, &stard_state);
if (rc) {

printf("Query MACHINES: ll_get_data() return code is non-zero.\n"); exit(1);
}

printf("Startd State: %s\n", startd_state);
if (strcmp(startd_state, "Down") != 0) {

rc = ll_get_data(machine, LL_MachineRealMemory, &value);
if (!rc) printf("Total Real Memory: %d\n", value);
rc = ll_get_data(machine, LL_MachineVirtualMemory, &value);
if (!rc) printf("Free Swap Space: %d\n", value);
rc = ll_get_data(machine, LL_MachineLoadAverage, &load_avg);
if (!rc) printf("Load Average: %f\n", load_avg);

}
free(startd_state);

/* Consumable Resources associated with this machine */
resource = NULL;
ll_get_data(machine, LL_MachineGetFirstResource, &resource);
while(resource) {

rc = ll_get_data(resource, LL_ResourceName, &res_name);
if (!rc) {printf("Resource Name = %s\n", res_name); free (res_name);}
rc = ll_get_data(resource, LL_ResourceInitialValue, &value);
if (!rc) printf(" Total: %d\n", value);
rc = ll_get_data(resource, LL_ResourceAvailableValue, &value);
if (!rc) printf(" Available: %d\n", value);
resource = NULL;
ll_get_data(machine, LL_MachineGetNextResource, &resource);

}
machine = ll_next_obj(queryObject);

}

/* Free objects obtained from Negotiator */
ll_free_objs(queryObject);
/* Free query element */
ll_deallocate(queryObject);

/* Step 2: Display information of selected jobs */

/* Initialize the query: Job query */
queryObject = ll_query(JOBS);
if (!queryObject) {

printf("Query JOBS: ll_query() returns NULL.\n");
exit(1);

}

/* Query all class "Parallel" and "No_Class" jobs submitted to c163n11, c163n12 */
class_list = (char **)malloc(3*sizeof(char *));
class_list[0] = "Parallel";
class_list[1] = "No_Class";
class_list[2] = NULL;
rc = ll_set_request(queryObject, QUERY_HOST, host_list, ALL_DATA);
if (rc) {printf("Query JOBS: ll_set_request() return code is non-zero.\n"); exit(1);}
rc = ll_set_request(queryObject, QUERY_CLASS, class_list, ALL_DATA);
if (rc) {printf("Query JOBS: ll_set_request() return code is non-zero.\n"); exit(1);}

/* Get the requested job objects from the Central Manager */
job = ll_get_objs(queryObject, LL_CM, NULL, &obj_count, &err_code);
if (job == NULL) {

printf("Query JOBS: ll_get_objs() returns NULL. Error code = %d\n", err_code);
}

276 Using and Administering LoadLeveler

printf("Number of job objects returned = %d\n", obj_count);

/* Process the job objects and display selected information of each job step.

*
* Notes:
* 1. Since LL_element is defined as "void" in llapi.h, when using
* ll_get_data it is important that a valid "specification"
* parameter be used for a given "element" argument.
* 2. Checking of return code is not always made in the following
* loop to minimize the length of the listing.
*/

while(job) {
rc = ll_get_data(job, LL_JobName, &name);
if (!rc) {printf("Job name: %s\n", name); free(name);}

rc = ll_get_data(job, LL_JobCredential, &credential);
if (!rc) {

rc = ll_get_data(credential, LL_CredentialUserName, &name);
if (!rc) {printf("Job owner: %s\n", name); free(name);}
rc = ll_get_data(credential, LL_CredentialGroupName, &name);
if (!rc) {printf("Unix Group: %s\n", name); free(name);}

}
step = NULL;
ll_get_data(job, LL_JobGetFirstStep, &step);
while(step) {

rc = ll_get_data(step, LL_StepID, &step_id);
if (!rc) {printf(" Step ID: %s\n", step_id); free(step_id);}
rc = ll_get_data(step, LL_StepJobClass, &job_class);
if (!rc) {printf(" Step Job Class: %s\n", job_class); free(job_class);}
rc = ll_get_data(step, LL_StepState, &step_state);
if (!rc) {

if (step_state == STATE_RUNNING) {
printf(" Step Status: Running\n");
printf(" Allocated Hosts:\n");
machine = NULL;
ll_get_data(step, LL_StepGetFirstMachine, &machine);
while(machine) {

rc = ll_get_data(machine, LL_MachineName, &name);
if (!rc) { printf(" %s\n", name); free(name); }
machine = NULL;
ll_get_data(step, LL_StepGetNextMachine, &machine);

}
}else {

printf(" Step Status: Not Running\n");
}

}
node = NULL;
ll_get_data(step, LL_StepGetFirstNode, &node);
while(node) {

rc = ll_get_data(node, LL_NodeRequirements, &node_req);
if (!rc) {printf(" Node Requirements: %s\n", node_req); free(node_req);}
task = NULL;
ll_get_data(node, LL_NodeGetFirstTask, &task);
while(task) {

rc = ll_get_data(task, LL_TaskExecutable, &task_exec);
if (!rc) {printf(" Task Executable: %s\n", task_exec); free(task_exec);}
rc = ll_get_data(task, LL_TaskExecutableArguments, &ex_args);
if (!rc) {printf(" Task Executable Arguments: %s\n",ex_args);
free(ex_args);}
resource_req = NULL;
ll_get_data(task, LL_TaskGetFirstResourceRequirement, &resource_req);
while(resource_req) {

rc = ll_get_data(resource_req, LL_ResourceRequirementName, &name);
if (!rc) {printf(" Resource Req Name: %s\n", name); free(name);}
rc = ll_get_data(resource_req, LL_ResourceRequirementValue, &value);

Chapter 11. LoadLeveler APIs 277

if (!rc) {printf(" Resource Req Value: %d\n", value);}
resource_req = NULL;
ll_get_data(task, LL_TaskGetNextResourceRequirement, &resource_req);

}
task = NULL;
ll_get_data(node, LL_NodeGetNextTask, &task);

}
node = NULL;
ll_get_data(step, LL_StepGetNextNode, &node);

}
step = NULL;
ll_get_data(job, LL_JobGetNextStep, &step);

}
job = ll_next_obj(queryObject);

}
ll_free_objs(queryObject);
ll_deallocate(queryObject);

/* Step 3: Display Floating Consumable Resources information of LL cluster. */

/* Initialize the query: Cluster query */
queryObject = ll_query(CLUSTERS);
if (!queryObject) {

printf("Query CLUSTERS: ll_query() returns NULL.\n");
exit(1);

}
ll_set_request(queryObject, QUERY_ALL, NULL, ALL_DATA);
cluster = ll_get_objs(queryObject, LL_CM, NULL, &obj_count, &err_code);
if (!cluster) {

printf("Query CLUSTERS: ll_get_objs() returns NULL. Error code = %d\n", err_code);
}
printf("Number of Cluster objects = %d\n", obj_count);
while(cluster) {

resource = NULL;
ll_get_data(cluster, LL_ClusterGetFirstResource, &resource);

while(resource) {
rc = ll_get_data(resource, LL_ResourceName, &res_name);
if (!rc) {printf("Resource Name = %s\n", res_name); free(res_name);}
rc = ll_get_data(resource, LL_ResourceInitialValue, &value);
if (!rc) {printf("Resource Initial Value = %d\n", value);}
rc = ll_get_data(resource, LL_ResourceAvailableValue, &value);
if (!rc) {printf("Resource Available Value = %d\n", value);}
resource = NULL;
ll_get_data(cluster, LL_ClusterGetNextResource, &resource);

}
cluster = ll_next_obj(queryObject);

}
ll_free_objs(queryObject);
ll_deallocate(queryObject);

}

Parallel Job API
If you are using any of the parallel operating environments already supported by
LoadLeveler, you do not have to use the parallel API. However, if you have another
application environment that you want to use, you need to use the subroutines
described here to interface with LoadLeveler.

The parallel job API consists of two subroutines. ll_get_hostlist acquires the list of
LoadLeveler selected parallel nodes, and ll_start_host starts the parallel task
under the LoadLeveler starter.

The following section describes how parallel job submission works. Understanding
this will help you to better understand the parallel API.

278 Using and Administering LoadLeveler

Interaction Between LoadLeveler and the Parallel API
This API does not give you access to any new LoadLeveler functions from Version
2 Release 1.0, or later releases.

Program applications which use the parallel APIs to interface with LoadLeveler are
supported under a job type called parallel . When a user submits a job specifying
the keyword job_type equal to parallel, the LoadLeveler API job control flow is as
follows:

The negotiator selects nodes based on the resources you request. Once the nodes
have been obtained, the negotiator contacts the schedd to start the job. The schedd
marks the job pending and contacts the affected startds to start their starter
processes.

One machine becomes the Master Starter . The Master Starter is one of the
selected parallel nodes. After all starters are started and have completed
inititialization, the Master Starter starts the executable specified in the job command
file. The executable referred to as the Parallel Master uses this API to start tasks
on remote nodes. A LOADLBATCH environment variable is set to YES so that the
Parallel Master can distinguish between callers.

The Parallel Master must:

v Obtain the machine list through the ll_get_hostlist API.

v Start a task on all allocated machines through the ll_start_host API. It is
mandatory that one and only one task be started on each machine. Each task is
considered a Parallel Slave. Acquiring the task name, path and arguments is the
responsibility of the Parallel Master. The user may pass this information through
the arguments or environment keywords in the job command file.

When the Parallel Master starts, the job is marked Running. Once the Parallel
Master and all tasks exit, the job is marked Complete.

Termination Paths
The Parallel Master is expected to cleanup and exit when:

v All of the Parallel Slaves have exited.

v A negative value is returned by either the ll_get_hostlist or ll_start_host
subroutine.

v A SIGCONT, followed by a SIGTERM, is received. A possible reason for this is
that LoadLeveler receives a job cancel request.

The SIGTERM is also sent to all parallel tasks.

v A SIGCONT, followed by a SIGUSR1, is received. Reasons for this include:

– The Parallel Master receives a VACATE or FLUSH request.

– LoadLeveler receives a stop LoadLeveler daemons command.

The SIGUSR1 is also sent to all parallel tasks.

A SIGKILL is issued to any process which does not exit within two minutes of
receiving a termination signal.

Note that a SIGUSER1 indicates the job must terminate but will be restarted, while
a SIGTERM indicates the job must terminate but will not be restarted.

Chapter 11. LoadLeveler APIs 279

ll_get_hostlist Subroutine

Purpose
This subroutine obtains a list of machines from the Master Starter machine so that
the Parallel Master can start the Parallel Slaves. The Parallel Master is the
LoadLeveler executable specified in the job command file and the Parallel Slaves
are the processes started by the Parallel Master through the ll_start_host API.

Library
LoadLeveler API library libllapi.a

Syntax
int ll_get_hostlist(struct JM_JOB_INFO* jobinfo);

Parameters
jobinfo is a pointer to the JM_JOB_INFO structure defined in llapi.h . No fields are
required to be filled in. ll_get_hostlist allocates storage for an array of
JM_NODE_INFO structures and returns the pointer in the jm_min_node_info
pointer. It is the caller’s responsibility to free this storage.
struct JM_JOB_INFO {

int jm_request_type;
char jm_job_description[50];
enum JM_ADAPTER_TYPE jm_adapter_type;
int jm_css_authentication;
int jm_min_num_nodes;
struct JM_NODE_INFO *jm_min_node_info;

};
struct JM_NODE_INFO {

char jm_node_name [MAXHOSTNAMELEN];
char jm_node_address [50];
int jm_switch_node_number;
int jm_pool_id;
int jm_cpu_usage;
int jm_adapter_usage;
int jm_num_virtual_tasks;
int *jm_virtual_task_ids;
enum JM_RETURN_CODE jm_return_code;

};

The following data is filled in for the JM_JOB_INFO structure:

jm_min_num_nodes
Is the number of elements in the array of JM_NODE_INFO structures. It is the
number of hosts allocated to a job.

jm_min_node_info
Is the pointer to the array of JM_NODE_INFO structures. The first entry in this
array describes the node which is mapped to task 0. The second entry is
mapped to task 1, and so on.

The following data is filled in for each JM_NODE_INFO structure:

jm_node_name
Is the name of the node.

jm_node_address
Is the address corresponding to the adapter requested.

jm_switch_node_number
Is the relative node number set only for job running on the SP switch adapter.
For all other jobs it is set to -1.

280 Using and Administering LoadLeveler

Description
The Parallel Master must:

v Issue error messages as appropriate.

v Exit when ll_get_hostlist returns with a negative return value. The Parallel
Master exit status is included in the job mail returned to the user.

Return Values
This subroutine returns a zero to indicate success.

Error Values
-2 Cannot get LoadLeveler step ID from environment.

-5 Cannot make socket. This means that the UNIX stream socket could not be
created. This socket is needed to establish communications with the starter
for both of the API’s functions.

-6 Cannot connect to host.

-8 Cannot get hostlist.

ll_start_host Subroutine

Purpose
This subroutine starts a task on a selected machine.

Library
LoadLeveler API library libllapi.a

Syntax
int ll_start_host(char *host, char *start_cmd);

Parameters
host

Is the name of the node on which you want to start the task.

start_cmd
Is the actual command to execute on the node, including flags and arguments.

Description
This function must be invoked for all the machines returned from the ll_get_hostlist
subroutine once and only once by the Parallel Master. Acquiring the start_cmd is
the responsibility of the Parallel Master. The user may pass this information through
the arguments or environment keywords in the job command file.

The Parallel Master must:

v Issue error messages as appropriate.

v Exit when ll_start_host returns a negative value. The Parallel Master exit status
is included in the job mail returned to the user.

Return Values
This subroutine returns an integer greater than one to indicate the socket connected
to the Parallel Slave’s standard I/O (stdio).

Error Values
-2 Cannot get LoadLeveler step ID from environment

-4 Nameserver cannot resolve host

Chapter 11. LoadLeveler APIs 281

-6 Cannot connect to host

-7 Cannot send PASS_OPEN_SOCKET command to remote startd

-9 The command you specified failed.

Examples
A sample program called para_api.c is provided in the samples/llpara subdirectory
of the release directory, usually /usr/lpp/LoadL/full .

In order to run this example, you need to do the following:

1. Copy the sample Makefile and the sample program called para_api.c to your
home directory.

2. Update the startCmd variable in para_api.c to reflect your home directory
versus /usr/lpp/LoadL/full/samples/llpara . For example:
char *startCmd = "/home/user/para_api -s";

3. Issue make to create the executable para_api .

4. Update your job command file as follows:

5. Submit the job command file to LoadLeveler.

The syntax to invoke the Parallel Master is:
para_api

The syntax to invoke the Parallel Slave is:
para_api -s

The Parallel Master does the following:

v Acquires the hostlist through the ll_get_hostlist API and prints out the
returned fields.

v Starts a Parallel Slave task by executing the command specified in the
StartCmd variable on all hosts returned in the hostlist.

v Acquires the socket connected to the Parallel Slave’s standard I/O (stdio).

v Writes a command over the socket to verify stdin.

v Reads acknowledgments over the socket to verify stderr and stdout.

v Prints out host names and acknowledgments.

Example output follows:
num_nodes=2

name=host1.kgn.ibm.com address=9.115.8.162 switch_number=-1

name=host2.kgn.ibm.com address=9.115.8.164 switch_number=-1

Connected to host1.kgn.ibm.com at sock 3
Received acko "8000" and acke "10000" from host 0

#!/bin/ksh
@ initialdir = /home/user
@ executable = para_api
@ output = para_api.$(cluster).$(process).out
@ error = para_api.$(cluster).$(process).err
@ job_type = parallel
@ min_processors = 2
@ max_processors = 2
@ queue

282 Using and Administering LoadLeveler

Connected to host2.kgn.ibm.com at sock 4
Received acko "8001" and acke "10001" from host 1

<Master Exiting>

The Parallel Slave does the following:
v Reads command from stdin.
v Writes acknowledgment to stdout and stderr.

Workload Management API
The workload management API consists of three subroutines, ll_control ,
ll_start_job , and ll_terminate_job . The ll_control subroutine can be used to
perform most of the LoadLeveler control operations and is designed for general
use. The ll_start_job, and ll_terminate_job subroutines are intended to be used in
conjunction with an external scheduler.

To use an external scheduler, you must specify the following keyword in the global
LoadLeveler configuration file:
SCHEDULER_API = YES

Specifying YES disables the default LoadLeveler scheduling algorithm. When you
disable the default LoadLeveler scheduler, jobs do not start unless requested to do
so by the ll_start_job subroutine.

You can toggle between the default LoadLeveler scheduler and an external
scheduler.

If you are running the default LoadLeveler scheduler, this is how you can switch to
an external scheduler:
1. In the configuration file, set SCHEDULER_API = YES
2. On the central manager machine, issue the llctl -g stop and then llctl -g start

commands

If you are running an external scheduler, this is how you can re-enable the
LoadLeveler scheduling algorithm:
1. In the configuration file, set SCHEDULER_API = NO
2. On the central manager machine, issue the llctl -g stop and then llctl -g start

commands

Note that the ll_start_job and ll_terminate_job subroutines automatically connect to
an alternate central manager if they cannot contact the primary central manager.

An example of an external scheduler you can use is the Extensible Argonne
Scheduling sYstem (EASY), developed by Argonne National Laboratory and
available as public domain code.

You should use ll_start_job and ll_terminate_job in conjuction with the query API.
The query API collects information regarding which machines are available and
which jobs need to be scheduled. See “Query API” on page 291 for more
information.

Chapter 11. LoadLeveler APIs 283

ll_control Subroutine

Purpose
This subroutine allows an application program to perform most of the functions that
are currently available through the standalone commands: llctl , llfavorjob ,
llfavoruser , llhold , and llprio .

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_control(int control_version, enum LL_control_op control_op,
char **host_list,char **user_list, char **job_list, char **class_list,
int priority);

Parameters
int control_version

An integer indicating the version of ll_control being used. This argument
should be set to LL_CONTROL_VERSION .

enum LL_control_op
The control operation to be performed. The enum LL_control_op is defined in
llapi.h as:

enum LL_control_op {
LL_CONTROL_RECYCLE, LL_CONTROL_RECONFIG, LL_CONTROL_START, LL_CONTROL_STOP,
LL_CONTROL_DRAIN, LL_CONTROL_DRAIN_STARTD, LL_CONTROL_DRAIN_SCHEDD,
LL_CONTROL_PURGE_SCHEDD, LL_CONTROL_FLUSH, LL_CONTROL_SUSPEND,
LL_CONTROL_RESUME, LL_CONTROL_RESUME_STARTD, LL_CONTROL_RESUME_SCHEDD,
LL_CONTROL_FAVOR_JOB, LL_CONTROL_UNFAVOR_JOB, LL_CONTROL_FAVOR_USER,
LL_CONTROL_UNFAVOR_USER, LL_CONTROL_HOLD_USER, LL_CONTROL_HOLD_SYSTEM,
LL_CONTROL_HOLD_RELEASE, LL_CONTROL_PRIO_ABS, LL_CONTROL_PRIO_ADJ };

char **host_list
A NULL terminated array of host names.

char **user_list
A NULL terminated array of user names.

char **job_list
A NULL terminated array of job names. The job name that an element of
job_list points to is a character string with one of the following formats:
″host.jobid.stepid,″ ″jobid.stepid,″ ″jobid″. host is the name of the machine to
which the job was submitted (the default is the local machine), jobid is the job
ID assigned to the job by LoadLeveler, and stepid is the job step ID assigned to
a job step by LoadLeveler (the default is to include all the steps of a job).

char **class_list
A NULL terminated array of class names.

int priority
An integer representing the new absolute value of user priority or adjustment to
the current user priority of job steps.

Description
The ll_control subroutine performs operations that are essentially equivalent to
those performed by the standalone commands: llctl , llfavorjob , llfavoruser , llhold ,

284 Using and Administering LoadLeveler

and llprio . Because of this similarity, descriptions of the ll_control operations are
grouped according to the standalone command they resemble.

llctl type of operations: These are the ll_control operations which mirror
operations performed by the llctl command. This summary includes a brief
description of each of the allowed llctl types of operations. For more information on
the llctl command, see “llctl - Control LoadLeveler Daemons” on page 175.

LL_CONTROL_START:
Starts the LoadLeveler daemons on the specified machines. The calling
program must have rsh privileges to start LoadLeveler daemons on remote
machines.

LL_CONTROL_STOP:
Stops the LoadLeveler daemons on the specified machines.

LL_CONTROL_RECYCLE:
Stops, and then restarts, all of the LoadLeveler daemons on the specified
machines.

LL_CONTROL_RECONFIG:
Forces all of the LoadLeveler daemons on the specified machines to reread the
configuration files.

LL_CONTROL_DRAIN:
When this operation is selected, the following happens: (1) No LoadLeveler jobs
can start running on the specified machines, and (2) No LoadLeveler jobs can
be submitted to the specified machines.

LL_CONTROL_DRAIN_SCHEDD:
No LoadLeveler jobs can be submitted to the specified machines.

LL_CONTROL_DRAIN_STARTD:
Keeps LoadLeveler jobs from starting on the specified machines. If a class_list
is specified, then the classes specified will be drained (made unavailable). The
literal string ″allclasses ″ can be used as an abbreviation for all of the classes.

LL_CONTROL_FLUSH:
Terminates running jobs on the specified machines and send them back to the
negotiator to await redispatch (if restart=yes).

LL_CONTROL_PURGE_SCHEDD:
Purges the specified schedd host’s job queue; a host_list consisting of one host
name must be specified.

LL_CONTROL_SUSPEND:
Suspends all jobs on the specified machines. This operation is not supported
for parallel jobs.

LL_CONTROL_RESUME:
Resumes job submission to, and job execution on, the specified machines.

LL_CONTROL_RESUME_STARTD:
Resumes job execution on the specified machines; if a class_list is specified,
then execution of jobs associated with these classes is resumed.

LL_CONTROL_RESUME_SCHEDD:
Resumes job submission to the specified machines.

For these llctl type of operations, the user_list, job_list, and priority arguments are
not used and should be set to NULL or zero. The class_list argument is meaningful
only if the operation is LL_CONTROL_DRAIN_STARTD, or
LL_CONTROL_RESUME_STARTD. If class_list is not being used, then it should be

Chapter 11. LoadLeveler APIs 285

set to NULL . If host_list is NULL, then the scope of the operation is all machines in
the LoadLeveler cluster. Unlike the standalone llctl command, where the scope of
the operation is either global or one host, ll_control operations allow the user to
specify a list of hosts (through the host_list argument). To perform these operations,
the calling program must have LoadLeveler administrator authority.

llfavorjob type of operations: The llfavorjob type of control operations are:
LL_CONTROL_FAVOR_JOB , and LL_CONTROL_UNFAVOR_JOB . For these
operations, the user_list, host_list, class_list, and priority arguments are not used
and should be set to NULL or zero. LL_CONTROL_FAVOR_JOB is used to set
specified job steps to a higher system priority thatn all job steps that are not
favored. LL_CONTROL_UNFAVOR_JOB is used to unfavor previously favored job
steps, restoring the original priorities. The calling program must have LoadLeveler
administrator authority to perform these operations.

llfavoruser type of operations: The llfavoruser type of control operations are:
LL_CONTROL_FAVOR_USER , and LL_CONTROL_UNFAVOR_USER . For these
operations, the host_list, job_list, class_list, and priority arguments are not used and
should be set to NULL or zero. LL_CONTROL_FAVOR_USER sets jobs of one or
more users to the highest priority in the system, regardless of the current setting.
Jobs already running are not affected. LL_CONTROL_UNFAVOR_USER is used to
unfavor previously favored user’s jobs, restoring the original priorities. The calling
program must have LoadLeveler administrator authority to perform these
operations.

llhold type of operations: The llhold type of control operations are:
LL_CONTROL_HOLD_USER , LL_CONTROL_HOLD_SYSTEM , and
LL_CONTROL_HOLD_RELEASE . For these operations, the class_list and priority
arguments are not used, and should be set to NULL or zero.
LL_CONTROL_HOLD_USER and LL_CONTROL_HOLD_SYSTEM place jobs in
user hold and system hold, respectively. LL_CONTROL_HOLD_RELEASE is used
to release jobs from both types of hold. The calling program must have LoadLevler
administrator authority to put jobs into system hold, and to release jobs from system
hold. If a job is in both user and system holds then the
LL_CONTROL_HOLD_RELEASE operation must be performed twice to release the
job from both types of hold. If the user is not a LoadLeveler administrator then the
llhold types of operations have no effect on jobs that do not belong to him/her.

llprio type of operations: The llprio type of control operations are:
LL_CONTROL_PRIO_ABS , and LL_CONTROL_PRIO_ADJ . For these operations,
the user_list, host_list, and class_list arguments are not used, and should be set to
NULL . llprio type of operations change the user priority of one or more job steps in
the LoadLeveler queue. LL_CONTROL_PRIO_ABS specifies a new absolute value
of the user priority, and LL_CONTROL_PRIO_ADJ specifies an adjustment to the
current user priority. The valid range of LoadLeveler user priorities is 0–100
(inclusive); 0 is the lowest possible priority, and 100 is the highest. The llprio type
of operations have no effect on a running job step unless this job step returns to
Idle state. If the user is not a LoadLeveler administrator, then an llprio type of
operation has no effect on jobs that do not belong to him/her.

Return Values
0 The specified command has been sent to the appropriate LoadLeveler

daemon.

-2 The specified command cannot be sent to the central manager.

286 Using and Administering LoadLeveler

-3 The specified command cannot be sent to one of the LoadL_master
daemons.

-4 ll_control encountered an error while processing the administration or
configuration file.

-6 A data transmission failure has occurred.

-7 The calling program does not have LoadLeveler administrator authority.

-19 An incorrect ll_control version has been specified.

-20 A system error has occurred.

-21 The system cannot allocate memory.

-22 An invalid control_op operation has been specified.

-23 The job_list argument contains one or more errors.

-24 The host_list argument contains one or more errors.

-25 The user_list argument contains one or more errors.

-26 Incompatible arguments have been specified for HOLD operation.

-27 Incompatible arguments have been specified for PRIORITY operation.

-28 Incompatible arguments have been specified for FAVORJOB operation.

-29 Incompatible arguments have been specified for FAVORUSER operation.

-30 An error occurred while ll_control tried to start a child process.

-31 An error occurred while ll_control tried to start the LoadL_master daemon.

-32 An error occurred while ll_control tried to execute the llpurgeschedd
command.

-33 The class_list argument contains incompatible information.

-34 ll_control cannot create a file in the /tmp directory.

-35 LoadLeveler has encountered miscellaneous incompatible input
specifications.

Related Information
Commands: llprio , llhold , llfavoruser ,llfavorjob ,llctl .

ll_start_job Subroutine

Purpose
This subroutine tells the LoadLeveler negotiator to start a job on the specified
nodes.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_start_job(LL_start_job_info *ptr);

Parameters
ptr Specifies the pointer to the LL_start_job_info structure that was allocated by

the caller. The LL_start_job_info members are:

Chapter 11. LoadLeveler APIs 287

int version_num
Represents the version number of the LL_start_job_info structure. Should
be set to LL_PROC_VERSION

LL_STEP_ID StepId
Represents the step ID of the job step to be started.

char ** nodeList
Is a pointer to an array of node names where the job will be started. The
first member of the array is the parallel master node. The array must be
ended with a NULL.

Description
You must set SCHEDULER_API = YES in the global configuration file to use this
subroutine.

Only jobs steps currently in the Idle state are started.

Only processes having the LoadLeveler administrator user ID can invoke this
subroutine.

An external scheduler uses this subroutine in conjunction with the ll_get_nodes
and ll_get_jobs subroutines of the query API. The query API returns information
about which machines are avialable for scheduling and which jobs are currently in
the job queue waiting to be scheduled.

Return Values
This subroutines return a value of zero to indicate the start job request was
accepted by the negotiator. However, a return code of zero does not necessarily
imply the job started. You can use the llq command to verify the job started.
Otherwise, this subroutine returns an integer value defined in the llapi.h file.

Error Values
-1 There is an error in the input parameter.

-2 The subroutine cannot connect to the central manager.

-4 An error occurred reading parameters from the administration or the
configuration file.

-5 The negotiator cannot find the specified StepId in the negotiator job queue.

-6 A data transmission failure occurred.

-7 The subroutine cannot authorize the action because you are not a
LoadLeveler administrator.

-8 The job object version number is incorrect.

-9 The StepId is not in the Idle state.

-10 One of the nodes specified is not available to run the job.

-11 One of the nodes specified does not have an available initiator for the class
of the job.

-12 For one of the nodes specified, the requirements statement does not satisfy
the job requirements.

-13 The number of nodes specified was less than the minimum or more than
the maximum requested by the job.

288 Using and Administering LoadLeveler

-14 The LoadLeveler default scheduler is enabled; that is,
SCHEDULING_API=NO .

-15 The same node was specified twice in ll_start_job nodeList.

Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory. The examples include the executable sch_api ,
which invokes the query API and the job control API to start the second job in the
list received from ll_get_jobs on two nodes. You should submit at least two jobs
prior to running the sample. To compile sch_api , copy the sample to a writeable
directory and update the RELEASE_DIR field to represent the current LoadLeveler
release directory.

Related Information
Subroutines: ll_get_jobs , ll_terminate_job , ll_get_nodes .

ll_terminate_job Subroutine

Purpose
This subroutine tells the negotiator to cancel the specified job step.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_terminate_job(LL_terminate_job_info *ptr);

Parameters
ptr Specifies the pointer to the LL_terminate_info structure that was allocated by

the caller. The LL_terminate_job_info members are:

int version_num
Represents the version number of the LL_terminate_job_info structure.
Should be set to LL_PROC_VERSION

LL_STEP_ID StepId
Represents the step ID of the job step to be terminated.

char *msg
A pointer to a null terminated array of characters. If this pointer is null or
points to a null string, a default message is used. This message will be
available through ll_get_data to tell the process why a program was
terminated.

Description
You do not need to disable the default LoadLeveler scheduler in order to use this
subroutine.

Only processes having the LoadLeveler administrator user ID can invoke this
subroutine.

An external scheduler uses this subroutine in conjunction with the ll_get_job
subroutine (of the job control API) and ll_start_jobs subroutine (of the query API).
The external scheduler must use this subroutine to return errors from ll_start_job
to interactive parallel jobs.

Chapter 11. LoadLeveler APIs 289

Return Values
This subroutine returns a value of zero when successful, to indicate the terminate
job request was accepted by the negotiator. However, a return code of zero does
not necessarily imply the negotiator cancelled the job. Use the llq command to
verify the job was cancelled. Otherwise, this subroutine returns an integer value
defined in the llapi.h file.

Error Values
-1 There is an error in the input parameter.

-4 An error occurred reading parameters from the administration or the
configuration file.

-6 A data transmission failure occurred.

-7 The subroutine cannot authorize the action because you are not a
LoadLeveler administrator or you are not the user who submitted the job.

-8 The job object version number is incorrect.

Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory. The examples include the executable sch_api ,
which invokes the query API and the job control API to terminate the first job
reported by the ll_get_jobs subroutine. You should submit at least two jobs prior to
running the sample. To compile sch_api , copy the sample to a writeable directory
and update the RELEASE_DIR field to represent the current LoadLeveler release
directory.

Related Information
Subroutines: ll_get_jobs , ll_start_job , ll_get_nodes .

Usage Notes
It is important to know how LoadLeveler keywords and commands behave when
you disable the default LoadLeveler scheduling algorithm. LoadLeveler scheduling
keywords and commands fall into the following categories:

v Keywords not involved in scheduling decisions are unchanged.

v Keywords kept in the job object or in the machine which are used by the
LoadLeveler default scheduler have their values maintained as before and
passed to the query API.

v Keywords used only by the LoadLeveler default scheduler have no effect.

The following sections discuss some specific keywords and commands and how
they behave when you disable the default LoadLeveler scheduling algorithm.

Job Command File Keywords
class – This value is provided by the query APIs. Machines chosen by
ll_start_job must have the class of the job available or the request will be
rejected.
dependency – Supported as before. Job objects for which dependency cannot
be evaluated (because a previous step has not run) are maintained in the
NotQueued state, and attempts to start them via ll_start_job will result in an
error. If the dependency is met, ll_start_job can start the proc.
hold – ll_start_job cannot start a job that is in Hold status.
min_processors – ll_start_job must specify at least this number of processors.
max_processors – ll_start_job must specify no more than this number of
processors.

290 Using and Administering LoadLeveler

preferences – Passed to the query API.
requirements – ll_start_job returns an error if the machine(s) specified do not
match the requirements of the job. This includes Disk and Virtual Memory
requirements.
startdate – The job remains in the Deferred state until the startdate specified in
the job is reached. ll_start_job cannot start a job in the Deferred state.
user_priority – Used in calculating the system priority (as described in “How
Does a Job’s Priority Affect Dispatching Order?” on page 28). The system
priority assigned to the job is available through the query API. No other control
of the order in which jobs are run is enforced.

Administration File Keywords
master_node_exclusive is ignored.
master_node_requirement is ignored.
maxidle is supported.
maxjobs is ignored.
maxqueued is supported.
max_jobs_scheduled is ignored.
priority is used to calculate the system priority (where appropriate).
speed is available through the query API.

Configuration File Keywords
MACHPRIO is calculated but is not used.
SYSPRIO is calulated and available to the query API.
MAX_STARTERS is calculated, and if starting the job causes this value to be
exceeded, ll_start_job returns an error.
NEGOTIATOR_PARALLEL_DEFER is ignored.
NEGOTIATOR_PARALLEL_HOLD is ignored.
NEGOTIATOR_RESCAN_QUEUE is ignored.
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL works as before. Set
this value to 0 if you do not want the SYSPRIOs of job objects recalulated.

Query API
This API provides information about the jobs and machines in the LoadLeveler
cluster. You can use this in conjuction with the job control API, since the job control
API requires you to know which machines are available and which jobs need to be
scheduled. See “Workload Management API” on page 283 for more information.

The query API consists of the following subroutines: ll_get_jobs , ll_free_jobs ,
ll_get_nodes , and ll_free_nodes .

ll_get_jobs Subroutine

Purpose
This subroutine, available to any user, returns information about all jobs in the
LoadLeveler job queue.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_get_jobs(LL_get_jobs_info *);

Chapter 11. LoadLeveler APIs 291

Parameters
ptr Specifies the pointer to the LL_get_jobs_info structure that was allocated by

the caller. The LL_get_jobs_info members are:

int version_num
Represents the version number of the LL_start_job_info structure. This
should be set to LL_PROC_VERSION.

int numJobs
Represents the number of entries in the array.

LL_job ** JobList
Represents the pointer to an array of LL_job structures. The LL_job
structure is defined in llapi.h .

Description
The LL_get_jobs_info structure contains an array of LL_job structures indicating
each job in the LoadLeveler system.

Some job information, such as the start time of the job, is not available to this API.
(It is recommended that you use the dispatch time, which is available, in place of
the start time.) Also, some accounting information is not available to this API.

Return Values
This subroutines returns a value of zero when successful. Otherwise, it returns an
integer value defined in the llapi.h file.

Error Values
-1 There is an error in the input parameter.

-2 The API cannot connect to the central manager.

-3 The API cannot allocate memory.

-4 A configuration error occurred.

Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory.

Related Information
Subroutines: ll_free_jobs , ll_free_nodes , ll_get_nodes .

ll_free_jobs Subroutine

Purpose
This subroutine, available to any user, frees storage that was allocated by
ll_get_jobs .

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_free_jobs(LL_get_jobs_info *ptr);

Parameters
ptr Specifies the address of the LL_get_jobs_info structure to be freed.

292 Using and Administering LoadLeveler

Description
This subroutine frees the storage pointed to by the LL_get_jobs_info pointer.

Return Values
This subroutines returns a value of zero when successful. Otherwise, it returns an
integer value defined in the llapi.h file.

Error Values
-8 The version_num member of the LL_get_jobs_info structure did not match

the current version.

Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory.

Related Information
Subroutines: ll_get_jobs , ll_free_nodes , ll_get_nodes .

ll_get_nodes Subroutine

Purpose
This subroutine, available to any user, returns information about all of nodes known
by the negotiator daemon.

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_get_nodes(LL_get_nodes_info *ptr);

Parameters
ptr Specifies the pointer to the LL_get_nodes_info structure that was allocated by

the caller. The LL_get_nodes_info members are:

int version_num
Represents the version number of the LL_start_job_info structure.

int numNodes
Represents the number of entries in the NodeList array.

LL_node ** NodeList
Represents the pointer to an array of LL_node structures. The LL_node
structure is defined in llapi.h .

Description
The LL_get_node_info structure contains an array of LL_job structures indicating
each node in the LoadLeveler system.

Return Values
This subroutines returns a value of zero when successful. Otherwise, it returns an
integer value defined in the llapi.h file.

Error Values
-1 There is an error in the input parameter.

-2 The API cannot connect to the central manager.

-3 The API cannot allocate memory.

Chapter 11. LoadLeveler APIs 293

-4 A configuration error occurred.

Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory.

Related Information
Subroutines: ll_free_jobs , ll_free_nodes , ll_get_jobs .

ll_free_nodes Subroutine

Purpose
This subroutine, available to any user, frees storage that was allocated by
ll_get_nodes .

Library
LoadLeveler API library libllapi.a

Syntax
#include "llapi.h"

int ll_nodes_jobs(LL_get_nodes_info *ptr);

Parameters
ptr Specifies the address of the LL_get_nodes_info structure to be freed.

Description
This subroutine frees the storage pointed to by the LL_get_nodes_info pointer.

Return Values
This subroutines returns a value of zero when successful. Otherwise, it returns an
integer value defined in the llapi.h file.

Error Values
-8 The version_num member of the LL_get_jobs_info structure did not match

the current version.

Examples
Makefiles and examples which use this subroutine are located in the samples/llsch
subdirectory of the release directory.

Related Information
Subroutines: ll_get_jobs , ll_free_nodes , ll_get_nodes .

User Exits
This section discusses separate user exits for the following:

v Handling DCE security credentials

v Handling an AFS token

v Filtering a job script

v Overriding the default mail notification method

Handling DCE Security Credentials
You can write a pair of programs to override the default LoadLeveler DCE
authentication method. To enable the programs, use the following keyword in your
configuration file:

294 Using and Administering LoadLeveler

DCE_AUTHENTICATION_PAIR = program1, program2
Where program1 and program2 are LoadLeveler or installation supplied
programs that are used to authenticate DCE security credentials. program1
obtains a handle (an opaque credentials object), at the time the job is
submitted, which is used to authenticate to DCE. program2 is the path name of
a LoadLeveler or an installation supplied program that uses the handle obtained
by program1 to authenticate to DCE before starting the job on the executing
machine(s).

An example of a credentials object is a character string containing the DCE
principle name and a password. program1 writes the following to standard output:

v The length of the handle to follow

v The handle

If program1 encounters errors, it writes error messages to standard error.

program2 receives the following as standard input:

v The length of the handle to follow

v The same handle written by program1

program2 writes the following to standard output:

v The length of the login context to follow

v An exportable DCE login context, which is the idl_byte array produced from the
sec_login_export_context DCE API call. For more information, see the DCE
Security Services API chapter in the Distributed Computing Environment for AIX
Application Development Reference.

v A character string suitable for assigning to the KRB5CCNAME environment
variable This string represents the location of the credentials cache established in
order for program2 to export the DCE login context.

If program2 encounters errors, it writes error messages to standard error. The
parent process, the LoadLeveler starter process, writes those messages to the
starter log.

Usage Notes
If you are using DCE on AIX 4.3, you need the proper DCE credentials for the
existing authentication method in order to run a command or function that uses
rshell (rsh). Otherwise, the rshell command may fail. You can use the lsauthent
command to determine the authentication method. If lsauthent indicates that DCE
authentication is in use, you must log in to DCE wth the dce_login command to
obtain the proper credentials.

LoadLeveler commands that run rshell include llctl version and llctl start .

For examples of programs that enable DCE security credentials, see the
/samples/lldce subdirectory in the release directory.

Handling an AFS Token
You can write a program, run by the scheduler, to refresh an AFS token when a job
is started. To invoke the program, use the following keyword in your configuration
file:

AFS_GETNEWTOKEN = myprog
where myprog is a filter that receives the AFS authentication information on

Chapter 11. LoadLeveler APIs 295

standard input and writes the new information to standard output. The filter is
run when the job is scheduled to run and can be used to refresh a token which
expired when the job was queued.

Before running the program, LoadLeveler sets up standard input and standard
output as pipes between the program and LoadLeveler. LoadLeveler also sets up
the following environment variables:

LOADL_STEP_OWNER
The owner (UNIX user name) of the job

LOADL_STEP_COMMAND
The name of the command the user’s job step invokes.

LOADL_STEP_CLASS
The class this job step will run.

LOADL_STEP_ID
The step identifier, generated by LoadLeveler.

LOADL_JOB_CPU_LIMIT
The number of CPU seconds the job is limited to.

LOADL_WALL_LIMIT
The number of wall clock seconds the job is limited to.

LoadLeveler writes the following current AFS credentials, in order, over the standard
input pipe:

The ktc_principal structure indicating the service.
The ktc_principal structure indicating the client.
The ktc_token structure containing the credentials.

The ktc_principal structure is defined in the AFS header file afs_rxkad.h . The
ktc_token structure is defined in the AFS header file afs_auth.h .

LoadLeveler expects to read these same structures in the same order from the
standard output pipe, except these should be refreshed credentials produced by the
user exit.

The user exit can modify the passed credentials (to extend their lifetime) and pass
them back, or it can obtain new credentials. LoadLeveler takes whatever is returned
and uses it to authenticate the user prior to starting the user’s job.

Filtering a Job Script
You can write a program to filter a job script when the job is submitted. This
program can, for example, modify defaults or perform site specific verification of
parameters. To invoke the program, specify the following keyword in your
configuration file:

SUBMIT_FILTER = myprog
where myprog is called with the job file as the standard input. The standard
output is submitted to LoadLeveler. If the program returns with a non-zero exit
code, the job submission is cancelled.

The following environment variables are set when the program is invoked:
LOADL_ACTIVE

LoadLeveler version
LOADL_STEP_COMMAND

Job command file name

296 Using and Administering LoadLeveler

LOADL_STEP_ID
The job identifier, generated by LoadLeveler

LOADL_STEP_OWNER
The owner (UNIX user name) of the job

Using Your Own Mail Program
You can write a program to override the LoadLeveler default mail notification
method. You can use this program to, for example, display your own messages to
users when a job completes, or to automate tasks such as sending error messages
to a network manager.

The syntax for the program is the same as it is for standard UNIX mail programs;
the command is called with a list of users as arguments, and the mail message is
taken from standard input. This syntax is as follows:

MAIL = program
where program specifies the path name of a local program you want to use.

Writing Prolog and Epilog Programs
An administrator can write prolog and epilog user exits that can run before and after
a LoadLeveler job runs, respectively.

Prolog and epilog programs fall into two categories: those that run as the
LoadLeveler user ID, and those that run in a user’s environment.

To specify prolog and epilog programs, specify the following keywords in the
configuration file:

JOB_PROLOG = pathname
where pathname is the full path name of the prolog program. This program runs
under the LoadLeveler user ID.

JOB_EPILOG = pathname
where pathname is the full path name of the epilog program. This program runs
under the LoadLeveler user ID.

JOB_USER_PROLOG = pathname
where pathname is the full path name of the user prolog program. This program
runs under the user’s environment.

JOB_USER_EPILOG = pathname
where pathname is the full path name of the user epilog program. This program
runs under the user’s environment.

A user environment prolog or epilog runs with AFS and/or DCE authentification (if
either is installed and enabled). For security reasons, you must code these
programs on the machines where the job runs and on the machine that schedules
the job. If you do not define a value for these keywords, the user enviroment prolog
and epilog settings on the executing machine are ignored.

The user environment prolog and epilog can set environment variables for the job
by sending information to standard output in the following format:
env id = value

Where:

id Is the name of the environment variable

Chapter 11. LoadLeveler APIs 297

value Is the value (setting) of the environment variable

For example, the user environment prolog below sets the environment variable
STAGE_HOST for the job:
#!/bin/sh
echo env STAGE_HOST=shd22

Prolog Programs
The prolog program is invoked by the starter process. Once the starter process
invokes the prolog program, the program obtains information about the job from
environment variables.

Syntax:
prolog_program

Where prolog_program is the name of the prolog program as defined in the
JOB_PROLOG keyword.

No arguments are passed to the program, but several environment variables are
set. For more information on these environment variables, see “Run-time
Environment Variables” on page 57.

The real and effective user ID of the prolog process is the LoadLeveler user ID. If
the prolog program requires root authority, the administrator must write a secure C
or perl program to perform the desired actions. You should not use shell scripts with
set uid permissions, since these scripts may make your system susceptible to
security problems.

Return Code Values:

0 The job will begin.

If the prolog program is killed, the job does not begin and a message is written to
the starter log.

Sample Prolog Programs:

Sample of a Prolog Program for Korn Shell:
#!/bin/ksh
#
Set up environment
set -a
. /etc/environment
. /.profile
export PATH="$PATH:/loctools/lladmin/bin"
export LOG="/tmp/$LOADL_STEP_OWNER.$LOADL_JOB_ID.prolog"
#
Do set up based upon job step class
#
case $LOADL_STEP_CLASS in

A OSL job is about to run, make sure the osl filesystem is
mounted. If status is negative then filesystem cannot be
mounted and the job step should not run.
"OSL")
mount_osl_files >> $LOG

if [status = 0]
then EXIT_CODE=1

else
EXIT_CODE=0

fi

298 Using and Administering LoadLeveler

;;
A simulation job is about to run, simulation data has to
be made available to the job. The status from copy script must
be zero or job step cannot run.
"sim")

copy_sim_data >> $LOG
if [status = 0]

then EXIT_CODE=0
else
EXIT_CODE=1

fi
;;

All other job will require free space in /tmp, make sure
enough space is available.
*)

check_tmp >> $LOG
EXIT_CODE=$?
;;

esac
The job step will run only if EXIT_CODE == 0
exit $EXIT_CODE

Sample of a Prolog Program for C Shell:
#!/bin/csh
#
Set up environment
source /u/loadl/.login
#
setenv PATH "${PATH}:/loctools/lladmin/bin"
setenv LOG "/tmp/${LOADL_STEP_OWNER}.${LOADL_JOB_ID}.prolog"
#
Do set up based upon job step class
#
switch ($LOADL_STEP_CLASS)

A OSL job is about to run, make sure the osl filesystem is
mounted. If status is negative then filesystem cannot be
mounted and the job step should not run.
case "OSL":
mount_osl_files >> $LOG
if ($status < 0) then
set EXIT_CODE = 1

else
set EXIT_CODE = 0

endif
breaksw

A simulation job is about to run, simulation data has to
be made available to the job. The status from copy script must
be zero or job step cannot run.
case "sim":

copy_sim_data >> $LOG
if ($status == 0) then

set EXIT_CODE = 0
else
set EXIT_CODE = 1

endif
breaksw

All other job will require free space in /tmp, make sure
enough space is available.
default:

check_tmp >> $LOG
set EXIT_CODE = $status
breaksw

endsw

The job step will run only if EXIT_CODE == 0
exit $EXIT_CODE

Chapter 11. LoadLeveler APIs 299

Epilog Programs
The installation defined epilog program is invoked after a job step has completed.
The purpose of the epilog program is to perform any required clean up such as
unmounting file systems, removing files, and copying results. The exit status of both
the prolog program and the job step is set in environment variables.

Syntax:
epilog_program

Where epilog_program is the name of the epilog program as defined in the
JOB_EPILOG keyword.

No arguments are passed to the program but several environment variables are set.
These environment variables are described in “Run-time Environment Variables” on
page 57. In addition, the following environment variables are set for the epilog
programs:

LOADL_PROLOG_EXIT_CODE
The exit code from the prolog program. This environment variable is set
only if a prolog program is configured to run.

LOADL_USER_PROLOG_EXIT_CODE
The exit code from the user prolog program. This environment variable is
set only if a user prolog program is configured to run.

LOADL_JOB_STEP_EXIT_CODE
The exit code from the job step.

Note: To interpret the exit status of the prolog program and the job step, convert
the string to an integer and use the structures found in the sys/wait.h file.

Sample Epilog Programs:

Sample of an Epilog Program for Korn Shell:
#!/bin/ksh
#
Set up environment
set -a
. /etc/environment
. /.profile
export PATH="$PATH:/loctools/lladmin/bin"
export LOG="/tmp/$LOADL_STEP_OWNER.$LOADL_JOB_ID.epilog"
#
if [[-z $LOADL_PROLOG_EXIT_CODE]]
then
echo "Prolog did not run" >> $LOG
else
echo "Prolog exit code = $LOADL_PROLOG_EXIT_CODE" >> $LOG
fi
#
if [[-z $LOADL_USER_PROLOG_EXIT_CODE]]

then
echo "User environment prolog did not run" >> $LOG

else
echo "User environment exit code = $LOADL_USER_PROLOG_EXIT_CODE" >> $LOG

fi
#
if [[-z $LOADL_JOB_STEP_EXIT_CODE]]

then
echo "Job step did not run" >> $LOG

else
echo "Job step exit code = $LOADL_JOB_STEP_EXIT_CODE" >> $LOG

300 Using and Administering LoadLeveler

fi
#
#
Do clean up based upon job step class
#
case $LOADL_STEP_CLASS in
A OSL job just ran, unmount the filesystem.
"OSL")
umount_osl_files >> $LOG
;;

A simulation job just ran, remove input files.
Copy results if simulation was successful (second argument
contains exit status from job step).
"sim")
rm_sim_data >> $LOG
if [$2 = 0]
then copy_sim_results >> $LOG

fi
;;

Clean up /tmp
*)
clean_tmp >> $LOG
;;

esac

Sample of an Epilog Program for C Shell:
#!/bin/csh
#
Set up environment
source /u/loadl/.login
#
setenv PATH "${PATH}:/loctools/lladmin/bin"
setenv LOG "/tmp/${LOADL_STEP_OWNER}.${LOADL_JOB_ID}.prolog"
#
if (${?LOADL_PROLOG_EXIT_CODE}) then
echo "Prolog exit code = $LOADL_PROLOG_EXIT_CODE" >> $LOG
else
echo "Prolog did not run" >> $LOG
endif
#
if (${?LOADL_USER_PROLOG_EXIT_CODE}) then

echo "User environment exit code = $LOADL_USER_PROLOG_EXIT_CODE" >> $LOG
else
echo "User environment prolog did not run" >> $LOG

endif
#
if (${?LOADL_JOB_STEP_EXIT_CODE}) then

echo "Job step exit code = $LOADL_JOB_STEP_EXIT_CODE" >> $LOG
else
echo "Job step did not run" >> $LOG

endif
#
Do clean up based upon job step class
#
switch ($LOADL_STEP_CLASS)
A OSL job just ran, unmount the filesystem.
case "OSL":
umount_osl_files >> $LOG
breaksw

A simulation job just ran, remove input files.
Copy results if simulation was successful (second argument
contains exit status from job step).
case "sim":
rm_sim_data >> $LOG
if ($argv{2} == 0) then
copy_sim_results >> $LOG

Chapter 11. LoadLeveler APIs 301

endif
breaksw

Clean up /tmp
default:
clean_tmp >> $LOG
breaksw

endsw

302 Using and Administering LoadLeveler

Part 7. Appendixes

303

304 Using and Administering LoadLeveler

Appendix A. Troubleshooting

Troubleshooting LoadLeveler
This chapter is divided into the following sections:

v “Frequently Asked Questions”, which contains answers to questions frequently
asked by LoadLeveler customers. This section focuses on answers that may help
you get out of problem situations. The questions and answers are organized into
the following categories:

– Jobs submitted to LoadLeveler do not run. See “Why Won’t My Job Run?”
for more information.

– One or more of your machines goes down. See “What Happens to
Running Jobs When a Machine Goes Down?” on page 308 for more
information.

– The central manager is not operating. See “What Happens if the Central
Manager Isn’t Operating?” on page 309 for more information.

– Miscellaneous questions. See “Other Questions” on page 311 for more
information.

v “Helpful Hints” on page 312, which contains tips on running LoadLeveler,
including some productivity aids.

v “Getting Help from IBM” on page 316, which tells you how to contact IBM for
assistance.

It is helpful to create error logs when you are diagnosing a problem. See to “Step
12: Record and Control Log Files” on page 113 for information on setting up error
logs.

Frequently Asked Questions
This section contains answers to questions frequently asked by LoadLeveler
customers.

Why Won’t My Job Run?
If you submitted your job and it is in the LoadLeveler queue but has not run, issue
llq -s first to help diagnose the problem. If you need more help diagnosing the
problem, refer to the following table:

Why Your Job May Not Be
Running:

Possible Soulution

Job requires specific
machine, operating system,
or other resource.

v Does the resource exist in the LoadLeveler cluster? If yes, wait until it becomes
available.

Check the GUI to compare the job requirements to the machine details, especially
Arch , OpSys , and Class . Ensure that the spelling and capitalization matches.

Job requires specific job
class

v Is the class defined in the administration file? Use llclass to determine this. If yes,
v Is there a machine in the cluster that supports that class? If yes, you need to wait

until the machine becomes available to run your job.

The maximum number of
jobs are already running on
all the eligible machines

Wait until one of the machines finishes a job before scheduling your job.

305

Why Your Job May Not Be
Running:

Possible Soulution

The start expression
evaluates to false.

Examine the configuration files (both LoadL_config and LoadL_config.local) to
determine the START control function expression used by LoadLeveler to start a job.
As a problem determination measure, set the START and SUSPEND values, as shown
in this example:

START: T
SUSPEND: F

The priority of your job is
lower than the priority of
other jobs.

You cannot affect the system priority given to this job by the negotiator daemon but
you can try to change your user priority to move this job ahead of other jobs you
previously submitted using the llprio command or the GUI.

The information the central
manager has about
machines and jobs may not
be current.

Wait a few minutes for the central manager to be updated and then the job may be
dispatched. This time limit (a few minutes) depends upon the polling frequency and
polls per update set in the LoadL_config file. The default polling frequency is five
minutes.

You do not have the same
user ID on all the machines
in the cluster.

To run jobs on any machine in the cluster, you have to have the same user ID and the
same uid number on every machine in the pool. If you do not have a userid on one
machine, your jobs will not be scheduled to that machine.

You can use the llq command to query the status of your job or the llstatus
command to query the status of machines in the cluster. Refer to “Chapter 9.
LoadLeveler Commands” on page 167 for information on these commands.

Why Won’t My Parallel Job Run?
If you submitted your parallel job and it is in the LoadLeveler queue but has not run,
issue llq -s first to help diagnose the problem. If issuing this command does not
help, refer to the previous table and to the following table for more information:

Why Your Job May Not Be
Running

Possible Solution

The minimum number of
processors requested by your
job is not available.

Sufficient resources must be available. Specifying a smaller number of processors
may help if your job can run with fewer resources.

The pool in your requirements
statement specifies a pool which
is invalid or not available.

The specified pool must be valid and available.

The adapter specified in the
requirements statement or the
network statement identifies an
adapter which is invalid or not
available.

The specified adapter must be valid and available.

PVM3 is not installed PVM3 must be installed on any machine you wish to use for pvm. The PVM3
system itself is not supplied with LoadLeveler.

You are already running a PVM3
job on one of the LoadLeveler
machines.

PVM3 restrictions prevent a user from running more than one pvm daemon per
user per machine. If you want to run pvm3 jobs on LoadLeveler, you must not run
any pvm3 jobs outside of LoadLeveler control on any machine being managed by
LoadLeveler.

The parallel_path keyword in
your job command file is
incorrect.

Use parallel_path to inform LoadLeveler where binaries that run your pvm tasks
are for the pvm_spawn() command. If this is incorrect, the job may not run.

The pvm_root keyword in the
administration file is incorrect.

This keyword corresponds to the pvm ep keyword and is required to tell
LoadLeveler where the pvm system is installed.

306 Using and Administering LoadLeveler

Why Your Job May Not Be
Running

Possible Solution

The file /tmp/pvmd. userid exists
on some LoadLeveler machine
but no PVM jobs are running.

If PVM3 exits unexpectedly, it will not properly clean up after itself. Although
LoadLeveler attempts to clean up after pvm, some situations are ambiguous and
you may have to remove this file yourself. Check all the systems specified as
being capable of running PVM3, and remove this file if it exists.

Common Set Up Problems with Parallel Jobs: This section presents a list of
common problems found in setting up parallel jobs:

v If jobs appear to remain in a Pending or Starting state: check that the
nameserver is consistent. Compare results of host machine_name and host
IP_address

v For POE:
– Specify the POE partition manager as the executable. Do not specify the

parallel job as the executable.
– Pass the parallel job as an argument to POE.
– The parallel job must exist and must be specified as a full path name.
– If the job runs in user space, specify the flag -euilib us .
– Specify the correct adapter (when needed).
– Specify a POE job only once in the job command file.
– Compile only with the supported level of POE.
– Specify only parallel as the job_type.

v For PVM:
– Specify the parallel job as the executable. Do not specify PVM as the

executable.
– Compile only with the supported level of PVM.
– Specify only pvm3 as the job_type.

PVM Problem Determination: If LoadLeveler is to manage PVM jobs on a
machine for a user, that user should not attempt to run PVM jobs on that machine
outside of LoadLeveler control. Because of PVM restrictions, only a single PVM
daemon per user per machine is permitted. If a user tries to run PVM jobs without
using LoadLeveler and LoadLeveler later attempts to start a job for that user on the
same machine, LoadLeveler may not be able to start PVM for the job. This will
cause the LoadLeveler job to be cancelled.

If a PVM job submitted through LoadLeveler is rejected, it is probably because PVM
was not correctly terminated the last time it ran on the rejecting machine.
LoadLeveler attempts to handle this by making sure that it cleans up PVM jobs
when they complete, but remember that you may need to clean up after the job
yourself. If a machine refuses to start a PVM job, check the following:

v See if there is a process with the name pvmd running on the machine in
question under the id of the user whose job will not start. Stop the process by
issuing:
ps -ef | grep pvmd
kill -TERM pid

Do not use either of the following variations to stop the daemon because this will
prevent pvmd from cleaning up and jobs will still not start:
kill -9 pid
kill -KILL pid

v If there is no pvmd process running, see if there is a file called /tmp/pvmd.
userid, where userid is the ID of the user whose job will not start. If the file
exists, remove it.

Appendix A. Troubleshooting 307

Why Won’t My Submit-Only Job Run?
If a job you submitted from a submit-only machine does not run, verify that you
have defined the following statements in the machine stanza of the administration
file of the submit-only machine:
submit_only = true
schedd_host = false
central_manager = false

Why Does a Job Stay in the Pending (or Starting) State?
If a job appears to stay in the Pending or Starting state, it is possible the job is
continually being dispatched and rejected. Check the setting of the
MAX_JOB_REJECT keyword. If it is set to the default, -1, the job will be rejected
an unlimited number of times. Try resetting this keyword to some finite number.
Also, check the setting of the ACTION_ON_MAX_REJECT keyword. These
keywords are described in “Step 17: Specify Additional Configuration File Keywords”
on page 129.

What Happens to Running Jobs When a Machine Goes Down?
Both the startd daemon and the schedd daemon maintain persistent states of all
jobs. Both daemons use a specific protocol to ensure that the state of all jobs is
consistent across LoadLeveler. In the event of a failure, the state can be recovered.
Neither the schedd nor the startd daemon discard the job state information until it is
passed onto and accepted by another daemon in the process.

If Then

The network goes down but the
machines are still running

If the network goes down but the machines are still running, when
LoadLeveler is restarted, it looks for all jobs that were marked running when
it went down. On the machine where the job is running, the startd daemon
searches for the job and if it can verify that the job is still running, it
continues to manage the job through completion. On the machine where
schedd is running, schedd queues a transaction to the startd to re-establish
the state of the job. This transaction stays queued until the state is
established. Until that time, LoadLeveler assumes the state is the same as
when the system went down.

The network partitions or goes down. All transactions are left queued until the recipient has acknowledged them.
Critical transactions such as those between the schedd and startd are
recorded on disk. This ensures complete delivery of messages and prevents
incorrect decisions based on incomplete state information.

The machine with startd goes down. Because job state is maintained on disk in startd, when LoadLeveler is
restarted it can forward correct status to the rest of LoadLeveler. In the case
of total machine failure, this is usually ″JOB VACATED″, which causes the
job to be restarted elsewhere. In the case that only LoadLeveler failed, it is
often possible to ″find″ the job if it is still running and resume management of
it. In this case LoadLeveler sends JOB RUNNING to the schedd and central
manager, thereby permitting the job to run to completion.

The central manager machine goes
down.

All machines in the cluster send current status to the central manager on a
regular basis. When the central manager restarts, it queries each machine
that checks in, requesting the entire queue from each machine. Over the
period of a few minutes the central manager restores itself to the state it was
in before the failure. Each schedd is responsible for maintaining the correct
state of each job as it progressed while the central manager is down.
Therefore, it is guaranteed that the central manager will correctly rebuild
itself.

All jobs started when the central manager was down will continue to run and
complete normally with no loss of information. Users may continue to submit
jobs. These new jobs will be forwarded correctly when the central manager is
restarted.

308 Using and Administering LoadLeveler

If Then

The schedd machine goes down When schedd starts up again, it reads the queue of jobs and for every job
which was in some sort of active state (i.e. PENDING, STARTING,
RUNNING), it queries the machine where it is marked active.

The running machine is required to return current status of the job. If the job
completed while schedd was down, JOB COMPLETE is returned with exit
status and accounting information. If the job is running, JOB RUNNING is
returned. If the job was vacated, JOB VACATED is returned. Because these
messages are left queued until delivery is confirmed, no job will be lost or
incorrectly dispatched due to schedd failure.

During the time the schedd is down, the central manager will not be able to
start new jobs that were submitted to that schedd.

To recover the resources allocated to jobs scheduled by a schedd machine,
see “How Do I Recover Resources Allocated by a schedd Machine?” on
page 311.

The llsubmit machine goes down schedd gets its own copy of the executable so it does not matter if the
llsubmit machine goes down.

Why Does llstatus Indicate that a Machine is Down when llq Indicates a Job is
Running on The Machine?: If a machine fails while a job is running on the
machine, the central manager does not change the status of any job on the
machine. When the machine comes back up the central manager will be updated.

What Happens if the Central Manager Isn’t Operating?
In one of your machine stanzas specified in the administration file, you specified a
machine to serve as the central manager. It is possible for some problem to cause
this central manager to become unusable such as network communication or
software or hardware failures. In such cases, the other machines in the LoadLeveler
cluster believe that the central manager machine is no longer operating. If you
assigned one or more alternate central managers in the machine stanza, a new
central manager will take control. The alternate central manager is chosen based
upon the order in which its respective machine stanza appears in the administration
file.

Once an alternate central manager takes control, it starts up its negotiator daemon
and notifies all of the other machines in the LoadLeveler cluster that a new central
manager has been selected. The following diagram illustrates how a machine can
become the alternate central manager:

Appendix A. Troubleshooting 309

The diagram illustrates that Machine Z is the primary central manager but Machine
A took control of the LoadLeveler cluster by becoming the alternate central
manager. Machine A remains in control as the alternate central manager until either:

v The primary central manager, Machine Z, resumes operation. In this case,
Machine Z notifies Machine A that it is operating again and, therefore, Machine A
terminates its negotiator daemon.

v Machine A also loses contact with the remaining machines in the pool. In this
case, another machine authorized to serve as an alternate central manager takes
control. Note that Machine A may remain as its own central manager.

The following diagram illustrates how multiple central managers can function within
the same LoadLeveler pool:
In this diagram, the primary central manager is serving Machines A and B. Due to

some network failure, Machines C, D, and E have lost contact with the primary
central manager machine and, therefore, Machine C which is authorized to serve as
an alternate central manager, assumes that role. Machine C remains as the
alternate central manager until either:

v The primary central manager is able to contact Machines C, D, and E. In this
case, the primary central manager notifies the alternate central managers that it
is operating again and, therefore, Machine C terminates its negotiator daemon.

Primary
Central

Manager
Z

Alternate
Central

Manager
A

Machine
B

Machine
C

Machine
D

Figure 36. When the Primary Central Manager is Unavailable

Primary
Central

Manager
Z

Alternate
Central

Manager
C

Machine
A

Machine
B

Machine
E

Machine
D

Figure 37. Multiple Central Managers

310 Using and Administering LoadLeveler

The negotiator daemon running on the primary central manager machine is
refreshed to discard any old job status information and to pick up the new job
status information from the newly re-joined machines.

v Machine C loses contact with Machines D and E. In this case, if machine D or E
is authorized to act as an alternate central manager, it assumes that role.
Otherwise, there will be no central manager serving these machines. Note that
Machine C remains as its own central manager.

While LoadLeveler can handle this situation of two concurrent central managers
without any loss of integrity, some installations may find administering it somewhat
confusing. To avoid any confusion, you should specify all primary and alternate
central managers on the same LAN segment.

For information on selecting alternate central managers, refer to “Step 1: Specify
Machine Stanzas” on page 75.

How Do I Recover Resources Allocated by a schedd Machine?
If a node running the schedd daemon fails, resources allocated to jobs scheduled
by this schedd cannot be freed up until you restart the schedd. Administrators must
do the following to enable the recovery of schedd resources:

1. Recognize that a node running the schedd daemon is down and will be down
long enough such that it is necessary for you to recover the schedd resources.

2. Add the statement schedd_fenced=true to the machine stanza of the failed
node. This statement specifies that the central manager ignores connections
from the schedd daemon running on this machine, and prevents conflicts from
arising when a schedd machine is restarted while a purge (see below) is taking
place.

3. Reconfigure the central manager node so that it recognizes the “fenced” node.
From the central manager machine issue llctl reconfig .

4. Issue llctl -h host purgeschedd to purge all jobs scheduled by the schedd on
the failed node.

5. Remove all files in the LoadLeveler spool directory of the failed node. Once the
failed node is working again, you can remove the schedd_fenced=true
statement.

Other Questions

Why do I have to setuid = 0?: The master daemon starts the startd daemon and
the startd daemon starts the starter process. The starter process runs the job. The
job needs to be run by the userid of the submitter. You either have to have a
separate master daemon running for every ID on the system or the master daemon
has to be able to su to every userid and the only user ID that can su any other
userid is root .

Why Doesn’t LoadLeveler Execute my .profile or .login Script?: When you
submit a batch job to LoadLeveler, the operating system will execute your .profile
script before executing the batch job if your login shell is the Korn shell. On the
other hand, if your login shell is the Bourne shell, on most operating systems
(including AIX), the .profile script is not executed. Similarly, if your login shell is the
C shell then AIX will execute your .login script before executing your LoadLeveler
batch job but some other variants of UNIX may not invoke this script.

The reason for this discrepancy is due to the interactions of the shells and the
operating system. To understand the nature of the problem, examine the following C
program that attempts to open a login Korn shell and execute the ″ls″ command:

Appendix A. Troubleshooting 311

#include <stdio.h>
main()
{
execl("/bin/ksh","-","-c","ls",NULL);
}

UNIX documentations in general (SunOS, HP-UX, AIX, IRIX) give the impression
that if the second argument is ″-″ then you get a login shell regardless of whether
the first argument is /bin/ksh or /bin/csh or /bin/sh. In practice, this is not the case.
Whether you get a login shell or not is implementation dependent and varies
depending upon the UNIX version you are using. On AIX you get a login shell for
/bin/ksh and /bin/csh but not the Bourne shell.

If your login shell is the Bourne shell and you would like the operating system to
execute your .profile script before starting your batch job, add the following
statement to your job command file:
@ shell = /bin/ksh

LoadLeveler will open a login Korn shell to start your batch job which may be a
shell script of any type (Bourne shell, C shell, or Korn shell) or just a simple
executable.

What Happens When a mksysb is Created When LoadLeveler is Running
Jobs?: When you create a mksysb (an image of the currently installed operating
system) at a time when LoadLeveler is running jobs, the state of the jobs is saved
as part of the mksysb. When the mksysb is restored on a node, those jobs will
appear to be on the node, in the same state as when they were saved, even
though the jobs are not actually there. To delete these phantom jobs, you must
remove all files from the LoadLeveler spool and execute directories and then
restart LoadLeveler.

Helpful Hints
This section contains tips on running LoadLeveler, including some productivity aids.

Scaling Considerations
If you are running LoadLeveler on a large number of nodes (128 or more), network
traffic between LoadLeveler daemons can become excessive to the point of
overwhelming a receiving daemon. To reduce network traffic, consider the following
daemon, keyword, and command recommendations for large installations.

v Set the POLLS_PER_UPDATE*POLLING_FREQUENCY interval to five minutes
or more. This limits the volume of machine updates the startd daemons send to
the negotiator. For example, set POLLS_PER_UPDATE to 10 and set
POLLING_FREQUENCY to 30 seconds.

v If your installation’s mix of jobs includes a high percentage of parallel jobs
requiring many nodes, specify schedd_host=yes in the machine stanza of each
schedd machine. The schedd daemons must communicate with hundreds of
startd daemons every time a job runs. You can distribute this communication by
activating many schedd daemons. You should activate as many schedd daemons
as there are jobs likely to be running at any one time. When you do this, each
schedd handles the dispatching of one parallel job.

v If your installation allows jobs to be submitted from machines running the schedd
daemon, you should consider avoiding “schedd affinity” by specifying
SCHEDD_SUBMIT_AFFINITY=FALSE in the LoadLeveler configuration file. By
default, the llsubmit command submits a job to the machine where the
command was invoked provided the schedd daemon is running on the machine.
(This is called schedd affinity.)

312 Using and Administering LoadLeveler

v You can decrease the amount of time the negotiator daemon spends running
negotiation loops by increasing the NEGOTIATOR_INTERVAL and the
NEGOTIATOR_CYCLE_DELAY . For example, set NEGOTIATOR_INTERVAL to
600, and set NEGOTIATOR_CYCLE_DELAY to 30.

v Make sure the machine update interval is not too short by setting the
MACHINE_UPDATE_INTERVAL to a value larger than three times the polling
interval (POLLS_PER_UPDATE*POLLING_FREQUENCY). This prevents the
negotiator from prematurely marking a machine as “down” or prematurely
cancelling jobs.

v In a large LoadLeveler cluster, issuing the llctl command with the -g can take
minutes to complete. To speed this up, set up a working collective containing the
machines in the cluster and use the PSSP dsh command; for example, dsh llctl
-g reconfig . This command also allows you to limit your operation to a subset of
machines by defining other working collectives.

Hints for Running Jobs

Determining When Your Job Started and Stopped: By reading the notification
mail you receive after submitting a job, you can determine the time the job was
submitted, started, and stopped. Suppose you submit a job and receive the
following mail when the job finishes:

Submitted at: Sun Apr 30 11:40:41 1996
Started at: Sun Apr 30 11:45:00 1996
Exited at: Sun Apr 30 12:49:10 1996

Real Time: 0 01:08:29
Job Step User Time: 0 00:30:15
Job Step System Time: 0 00:12:55
Total Job Step Time: 0 00:43:10

Starter User Time: 0 00:00:00
Starter System Time: 0 00:00:00
Total Starter Time: 0 00:00:00

This mail tells you the following:

Submitted at
The time you issued the llsubmit command or the time you submitted the
job with the graphical user interface.

Started at
The time the starter process executed the job.

Exited at
The actual time your job completed.

Real Time
The wall clock time from submit to completion.

Job Step User Time
The CPU time the job consumed executing in user space.

Job Step System Time
The CPU time the system (AIX) consumed on behalf of the job.

Total Job Step Time
The sum of the two fields above.

Starter User Time
The CPU time consumed by the LoadLeveler starter process for this job,

Appendix A. Troubleshooting 313

executing in user space. Time consumed by the starter process is the only
LoadLeveler overhead which can be directly attributed to a user’s job.

Starter System Time
The CPU time the system (AIX) consumed on behalf of the LoadLeveler
starter process running for this job.

Total Starter Time
The sum of the two fields above.

You can also get the starting time by issing llsummary -l -x and then issuing awk
/Date|Event/ against the resulting file. For this to work, you must have ACCT =
A_ON A_DETAIL set in the LoadL_config file.

Running Jobs at a Specific Time of Day: Using a machine’s local configuration
file, you can set up the machine to run jobs at a certain time of day (sometimes
called an execution window). The following coding in the local configuration file runs
jobs between 5:00 PM and 8:00AM daily, and suspends jobs the rest of the day:
START: (tm_day >= 1700) || (tm_day <= 0800)
SUSPEND: (tm_day > 0800) && (tm_day < 1700)
CONTINUE: (tm_day >= 1700) || (tm_day <= 0800)

Controlling the Mix of Idle and Running Jobs: Three keywords determine the
mix of idle and running jobs for a user. By a running job, we mean a job that is in
one of the following states: Running, Pending, or Starting. These keywords, which
are described in detail in “Step 2: Specify User Stanzas” on page 81, are:

maxqueued
Controls the number of jobs in any of these states: Idle, Running, Pending, or
Starting.

maxjobs
Controls the number of jobs in any of these states: Running, Pending, or
Starting; thus it controls a subset of what maxqueued controls. maxjobs
effectively controls the number of jobs in the Running state, since Pending and
Starting are usually temporary states.

maxidle
Controls the number of jobs in any of these states: Idle, Pending, or Starting;
thus it controls a subset of what maxqueued controls. maxidle effectively
controls the number of jobs in the Idle state, since Pending and Starting are
usually temporary states.

What Happens When You Submit a Job: For a user’s job to be allowed into the
job queue, the total of other jobs (in the Idle, Pending, Starting and Running states)
for that user must be less than the maxqueued value for that user. Also, the total
idle jobs (those in the Idle, Pending, and Starting states) must be less than the
maxidle value for the user. If either of these constraints are at the maximum, the
job is placed in the Not Queued state until one of the other jobs changes state. If
the user is at the maxqueued limit, a job must complete, be cancelled, or be held
before the new job can enter the queue. If the user is at the maxidle limit, a job
must start running, be cancelled, or be held before the new job can enter the
queue.

Once a job is in the queue, the job is not taken out of queue unless the user places
a hold on the job, the job completes, or the job is cancelled. (An exception to this,
when you are running the default LoadLeveler scheduler, is parallel jobs which do

314 Using and Administering LoadLeveler

not accumulate sufficient machines in a given time period. These jobs are moved to
the Deferred state, meaning they must vie for the queue when their Deferred period
expires.)

Once a job is in the queue, the job will run unless the maxjobs limit for the user is
at a maximum.

Note the following restrictions for using these keywords:

v If maxqueued is greater than (maxjobs + maxidle), the maxqueued value will
never be reached.

v If either maxjobs or maxidle is greater than maxqueued , then maxqueued will
be the only restriction in effect, since maxjobs and maxidle will never be
reached.

Sending Output from Several Job Steps to One Output File: You can use
dependencies in your job command file to send the output from many job steps to
the same output file. For example:
@ step_name = step1
@ executable = ssba.job
@ output = ssba.tmp
@ ...
@ queue
#
@ step_name = append1
@ dependency = (step1 != CC_REMOVED)
@ executable = append.ksh
@ output = /dev/null
@ queue
@
@ step_name = step2
@ dependency = (append1 == 0)
@ executable = ssba.job
@ output = ssba.tmp
@ ...
@ queue
@
@ step_name = append2
@ dependency = (step2 != CC_REMOVED)
@ executable = append.ksh
@ output = /dev/null
@ queue
#
...

Then, the file append.ksh could contain the line cat ssba.tmp >> ssba.log . All
your output will reside in ssba.log . (Your dependecies can look for different return
values, depending on what you need to accomplish.)

You can achieve the same result from within ssba.job by appending your output to
an output file rather than writing it to stdout . Then your output statement for each
step would be /dev/null and you wouldn’t need the append steps.

Hints for Using Machines

Setting Up a Single Machine To Have Multiple Job Classes: You can define a
machine to have multiple job classes which are active at different times. For
example, suppose you want a machine to run jobs of Class A any time, and you
want the same machine to run Class B jobs between 6 p.m. and 8 a.m.

Appendix A. Troubleshooting 315

You can combine the Class keyword with a user-defined macro (called Off_shift in
this example).

For example:
Off_Shift = ((tm_hour >= 18) || (tm_hour < 8))

Then define your START statement:
START : (Class == "A") || ((Class == "B") && $(Off_Shift))

Make sure you have the parenthesis around the Off_Shift macro, since the logical
OR has a lower precedence than the logical AND in the START statement.

Also, to take weekends into account, code the following statements. Remember that
Saturday is day 6 and Sunday is day 0.
Off_Shift = ((tm_wday == 6) || (tm_wday == 0) || (tm_hour >=18) \
|| (tm_hour < 8))

Prime_Shift = ((tm_wday != 6) && (tm_wday != 0) && (tm_hour >= 8) \
&& (tm_hour < 18))

Reporting the Load Average on Machines: You can use the /usr/bin/rup
command to report the load average on a machine. The rup machine_name
command gives you a report that looks similar to the following:
localhost up 23 days, 10:25, load average: 1.72, 1.05, 1.17

You can use this command to report the load average of your local machine or of
remote machines. Another command, /usr/bin/uptime , returns the load average
information for only your local host.

History Files and schedd
The schedd daemon writes to the spool/history file only when a job is completed or
removed. Therefore, you can delete the history file and restart schedd even when
some jobs are scheduled to run on other hosts.

However, you should clean up the spool/job_queue.dir and spool/job_queue.pag
files only when no jobs are being scheduled on the machine.

You should not delete these files if there are any jobs in the job queue that are
being scheduled from this machine (for example, jobs with names such as
thismachine.clusterno.jobno).

Getting Help from IBM
Should you require help from IBM in resolving a LoadLeveler problem, you can get
assistance by calling IBM Support. Before you call, be sure you have the following
information:

1. Your access code (customer number).

2. The LoadLeveler product number (5765-D61).

3. The name and version of the operating system you are using.

4. A telephone number where you can be reached.

In addition, issue the following command:
llctl version

This command will provide you with code level information. Provide this information
to the IBM representative.

316 Using and Administering LoadLeveler

The number for IBM support in the United States is 1-800-IBM-4YOU (426-4968).

The Facsimile number is 800-2IBM-FAX (2426-329).

Appendix A. Troubleshooting 317

318 Using and Administering LoadLeveler

Appendix B. Customer Case Studies

This chapter gives you an overview, including configuration information, of some
LoadLeveler customers. These profiles are meant to highlight how customers in
different industries use LoadLeveler.

Note that all of these configurations apply to Version 1 Release 3 of the default
LoadLeveler scheduler unless otherwise noted.

Customer 1: Technical Computing at the Cornell Theory Center
The Cornell Theory Center (CTC) of Cornell University provides a high-performance
computing environment to advance and facilitate research and education.

System Configuration
The CTC runs a 160-node SP with 16 wide nodes and 144 thin nodes. The SP
nodes include two interactive nodes and two submit-only nodes. The majority of the
other SP nodes run batch jobs. The LoadLeveler central manager runs on a
workstation outside of the SP. Also, two other non-SP workstations act as schedd
hosts.

LoadLeveler Configuration
The CTC runs parallel jobs by disabling the default LoadLeveler scheduler
SCHEDULER_API=YES) and running an external scheduler. The CTC has
developed this scheduler to meet the needs of its users.

The following figures represent sections of the CTC’s LoadL_admin file. Note that
not all nodes are shown here.
###
DEFAULTS FOR MACHINE, CLASS, USER, AND GROUP STANZAS:
Remove initial # (comment), and edit to suit.
###
default: type = machine

central_manager = false # default not central manager
schedd_host = false # default not a public scheduler
submit_only = false # default not a submit-only machine
pvm_root = /usr/local/app/pvm3 # default pvm3 directory
rm_host = true # default is parallel SP2 node

speed = 1 # default machine speed
cpu_speed_scale = false # scale cpu limits by speed

default: type = class # default class stanza
priority = 0 # default ClassSysprio
max_processors = -1 # default max processors for class (no

default: type = user # default user stanza
priority = 0 # default UserSysprio

default_class = DSI # default class
default_group = No_Group # default group = No_Group (not

optional)
maxjobs = -1 # default maximum jobs user is allowed

to run simultaneously (no limit)
maxqueued = -1 # default maximum jobs user is allowed

on system queue (no limit). does not
limit jobs submitted.

default: type = group # default group stanza
priority = 0 # default GroupSysprio
maxjobs = -1 # default maximum jobs group is allowed

319

to run simultaneously (no limit)
maxqueued = -1 # default maximum jobs group is allowed

on system queue (no limit). does not
limit jobs submitted.

###
MACHINE STANZAS:
These are the machine stanzas; the first machine is defined as
the central manager. mach1:, mach2:, etc. are machine name labels -
revise these placeholder labels with the names of the machines in the
pool, and specify any schedd_host and submit_only keywords and values
(true or false), if required.
###

spscheduler is a 43P running EASY-LL and the Central Manager
spscheduler.tc.cornell.edu: type = machine

central_manager = true
rm_host =false

ctc1 and ctc2 are two 43P's running as dedicated SchedDs
ctc1.tc.cornell.edu: type = machine

schedd_host = true

ctc2.tc.cornell.edu: type = machine
schedd_host = true

Submit only node for Sweb server
arms.tc.cornell.edu: type = machine

submit_only = true

#
Nodes of the SP2
#
Rack 1
#
PIOFS name server, HiPPi router, Switch & JMD primary
#r01n01.tc.cornell.edu: type = machine
alias = r01n01-css
r01n02 & r01n05 are interactive nodes
r01n03.tc.cornell.edu: type = machine

alias = r01n03-css
submit_only = true

r01n05.tc.cornell.edu: type = machine
alias = r01n05-css
submit_only = true

r01n07.tc.cornell.edu: type = machine
alias = r01n07-css

r01n09.tc.cornell.edu: type = machine
alias = r01n09-css

r01n11.tc.cornell.edu: type = machine
alias = r01n11-css

r01n13.tc.cornell.edu: type = machine
alias = r01n13-css

r01n15.tc.cornell.edu: type = machine
alias = r01n15-css

#
Rack 2
#
HPSS/PIOFS backup
#r02n01.tc.cornell.edu: type = machine
alias = r02n01-css
r02n03, r02n05, r02n07, r02n09 are splong nodes
r02n03.tc.cornell.edu: type = machine

alias = r02n03-css
submit_only = true

r02n05.tc.cornell.edu: type = machine
alias = r02n05-css
submit_only = true

r02n07.tc.cornell.edu: type = machine

320 Using and Administering LoadLeveler

alias = r02n07-css
submit_only = true

r02n09.tc.cornell.edu: type = machine
alias = r02n09-css
submit_only = true

VIS node
#r02n11.tc.cornell.edu: type = machine
alias = r02n11-css
r02n13.tc.cornell.edu: type = machine

alias = r02n13-css
r02n15.tc.cornell.edu: type = machine

alias = r02n15-css

#
Rack 3
#
r03n01.tc.cornell.edu: type = machine

alias = r03n01-css
r03n02.tc.cornell.edu: type = machine

alias = r03n02-css
r03n03.tc.cornell.edu: type = machine

alias = r03n03-css
r03n04.tc.cornell.edu: type = machine

alias = r03n04-css
r03n05.tc.cornell.edu: type = machine

alias = r03n05-css
r03n06.tc.cornell.edu: type = machine

alias = r03n06-css
r03n07.tc.cornell.edu: type = machine

alias = r03n07-css
r03n08.tc.cornell.edu: type = machine

alias = r03n08-css
r03n09.tc.cornell.edu: type = machine

alias = r03n09-css
r03n10.tc.cornell.edu: type = machine

alias = r03n10-css
r03n11.tc.cornell.edu: type = machine

alias = r03n11-css
r03n12.tc.cornell.edu: type = machine

alias = r03n12-css
r03n13.tc.cornell.edu: type = machine

alias = r03n13-css
r03n14.tc.cornell.edu: type = machine

alias = r03n14-css
r03n15.tc.cornell.edu: type = machine

alias = r03n15-css
ATM/FDDI routing node
#r03n16.tc.cornell.edu: type = machine
alias = r03n16-css

#
Rack 4
#
r04n01.tc.cornell.edu: type = machine

alias = r04n01-css
r04n02.tc.cornell.edu: type = machine

alias = r04n02-css
r04n03.tc.cornell.edu: type = machine

alias = r04n03-css
r04n04.tc.cornell.edu: type = machine

alias = r04n04-css
r04n05.tc.cornell.edu: type = machine

alias = r04n05-css
r04n06.tc.cornell.edu: type = machine

alias = r04n06-css
r04n07.tc.cornell.edu: type = machine

Appendix B. Customer Case Studies 321

alias = r04n07-css
r04n08.tc.cornell.edu: type = machine

alias = r04n08-css
r04n09.tc.cornell.edu: type = machine

alias = r04n09-css
r04n10.tc.cornell.edu: type = machine

alias = r04n10-css
r04n11.tc.cornell.edu: type = machine

alias = r04n11-css
r04n12 - r14n16 HPSS nodes
#r04n12.tc.cornell.edu: type = machine
alias = r04n12-css
#r04n13.tc.cornell.edu: type = machine
alias = r04n13-css
#r04n14.tc.cornell.edu: type = machine
alias = r04n14-css
#r04n15.tc.cornell.edu: type = machine
alias = r04n15-css
#r04n16.tc.cornell.edu: type = machine
alias = r04n16-css
#
###
CLASS STANZAS: (optional)
These are sample class stanzas; small, medium, large, and nqs are sample
labels for job classes - revise these labels and specify attributes
to each class.
###
DSI: type = class

piofs: type = class
###

The following represents the CTC’s LoadL_config file:
#
Machine Description
#
ARCH = R6000

#
Specify LoadLeveler Administrators here:
#
LOADL_ADMIN = loadl admin1 admin2 admin3 admin4

#
Default to starting LoadLeveler daemons when requested
#
START_DAEMONS = TRUE

#
Machine authentication
#
If TRUE, only connections from machines in the ADMIN_LIST are accepted.
If FALSE, connections from any machine are accepted. Default if not
specified is FALSE.
#
MACHINE_AUTHENTICATE = FALSE

#
Specify which daemons run on each node
#
SCHEDD_RUNS_HERE = False
STARTD_RUNS_HERE = True

322 Using and Administering LoadLeveler

#
Specify information for backup central manager
#
CENTRAL_MANAGER_HEARTBEAT_INTERVAL = 300
CENTRAL_MANAGER_TIMEOUT = 6

#
Specify pathnames
#
RELEASEDIR = /usr/lpp/LoadL/nfs
LOCAL_CONFIG = $(tilde)/local/configs/LoadL_config.$(host)
ADMIN_FILE = $(tilde)/LoadL_admin
LOG = /var/loadl/log
SPOOL = /var/loadl/spool
EXECUTE = /var/loadl/execute
HISTORY = $(SPOOL)/history
BIN = $(RELEASEDIR)/bin
LIB = $(RELEASEDIR)/lib
ETC = $(RELEASEDIR)/etc
#
Specify port numbers
#
COLLECTOR_STREAM_PORT = 9612
MASTER_STREAM_PORT = 9616
NEGOTIATOR_STREAM_PORT = 9614
SCHEDD_STREAM_PORT = 9605
STARTD_STREAM_PORT = 9611
COLLECTOR_DGRAM_PORT = 9613
STARTD_DGRAM_PORT = 9615
MASTER_DGRAM_PORT = 9617
SCHEDULER_API = YES
SCHEDULER_PORT = 9624

#
Specify accounting controls
#
ACCT = A_ON
ACCT_VALIDATION = $(BIN)/llacctval
GLOBAL_HISTORY = $(SPOOL)

#
Specify prolog and epilog path names
#
JOB_PROLOG = $(ETC)/llprolog
JOB_EPILOG = $(ETC)/llepilog
JOB_USER_PROLOG = $(ETC)/ll_user_prolog
JOB_USER_EPILOG = $(ETC)/ll_user_epilog
#
#
Refresh AFS token program.
#
AFS_GETNEWTOKEN = $(ETC)/tokenreviveclient

#
Customized mail delivery program.
#
MAIL =

#
Customized submit (job command file) filter program.
#
SUBMIT_FILTER =

#
Specify checkpointing intervals
#
MIN_CKPT_INTERVAL = 900
MAX_CKPT_INTERVAL = 7200

Appendix B. Customer Case Studies 323

LoadL_KeyboardD Macros
#
KBDD = $(BIN)/LoadL_kbdd
KBDD_LOG = $(LOG)/KbdLog
MAX_KBDD_LOG = 64000
KBDD_DEBUG =

#
Specify whether to start the keyboard daemon
#

X_RUNS_HERE = False

#
Specify whether to use X server XGetIdleTime() protocol extension
#

USE_X_IDLE_EXTENSION = False

#
LoadL_StartD Macros
#
STARTD = $(BIN)/LoadL_startd
STARTD_LOG = $(LOG)/StartLog
MAX_STARTD_LOG = 5000000
#STARTD_DEBUG = D_STARTD D_FULLDEBUG D_THREAD
STARTD_DEBUG = D_FULLDEBUG
POLLING_FREQUENCY = 10
POLLS_PER_UPDATE = 24
JOB_LIMIT_POLICY = 240
JOB_ACCT_Q_POLICY = 3600

#
LoadL_SchedD Macros
#
SCHEDD = $(BIN)/LoadL_schedd
SCHEDD_LOG = $(LOG)/SchedLog
MAX_SCHEDD_LOG = 5000000
SCHEDD_DEBUG = D_SCHEDD
SCHEDD_INTERVAL = 180

CLIENT_TIMEOUT = 300

#
Negotiator Macros
#
NEGOTIATOR = $(BIN)/LoadL_negotiator
NEGOTIATOR_DEBUG = D_FULLDEBUG D_ALWAYS D_NEGOTIATE
NEGOTIATOR_LOG = $(LOG)/NegotiatorLog
MAX_NEGOTIATOR_LOG = 5000000
NEGOTIATOR_INTERVAL = 60
MACHINE_UPDATE_INTERVAL = 600
NEGOTIATOR_PARALLEL_DEFER = 1800
NEGOTIATOR_PARALLEL_HOLD = 300
NEGOTIATOR_REDRIVE_PENDING = 1800
NEGOTIATOR_RESCAN_QUEUE = 180
NEGOTIATOR_REMOVE_COMPLETED = 0

#
Sets the interval between recalculation of the SYSPRIO values
for all the jobs in the queue
#
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = 0

#
Starter Macros
#

324 Using and Administering LoadLeveler

STARTER = $(BIN)/LoadL_starter
STARTER_DEBUG = D_FULLDEBUG
STARTER_LOG = $(LOG)/StarterLog
MAX_STARTER_LOG = 500000

#
LoadL_Master Macros
#
MASTER = $(BIN)/LoadL_master
MASTER_LOG = $(LOG)/MasterLog
MASTER_DEBUG = D_FULLDEBUG
MAX_MASTER_LOG = 64000
RESTARTS_PER_HOUR = 12
PUBLISH_OBITUARIES = TRUE
OBITUARY_LOG_LENGTH = 25

#
Specify whether log files are truncated when opened
#
TRUNC_MASTER_LOG_ON_OPEN = False
TRUNC_STARTD_LOG_ON_OPEN = False
TRUNC_SCHEDD_LOG_ON_OPEN = False
TRUNC_KBDD_LOG_ON_OPEN = False
TRUNC_STARTER_LOG_ON_OPEN = False
TRUNC_COLLECTOR_LOG_ON_OPEN = False
TRUNC_NEGOTIATOR_LOG_ON_OPEN = False

NQS Directory
#
#
For users of NQS resources:
Specify the directory containing qsub, qstat, qdel
#
NQS_DIR = /usr/bin

#
Specify Custom metric keywords
#
CUSTOM_METRIC =
CUSTOM_METRIC_COMMAND = $(ETC)/sw_chip_number
#
Machine control expressions and macros
#

OpSys : $(OPSYS)
Arch : $(ARCH)
Machine : $(HOST).$(DOMAIN)

#
Expressions used to control starting and stopping of foreign jobs
#
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (CurrentTime - EnteredCurrentState)

BackgroundLoad = 0.7
HighLoad = 1.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)
MaxVacateTime = 10 * $(MINUTE)

KeyboardBusy= KeyboardIdle < $(POLLING_FREQUENCY)
CPU_Idle = LoadAvg <= $(BackgroundLoad)
CPU_Busy = LoadAvg >= $(HighLoad)
START : $(CPU_Idle) && KeyboardIdle > $(StartIdleTime)
SUSPEND : $(CPU_Busy) || $(KeyboardBusy)
CONTINUE : $(CPU_Idle) && KeyboardIdle > $(ContinueIdleTime)

Appendix B. Customer Case Studies 325

VACATE : $(StateTimer) > $(MaxSuspendTime)
KILL : $(StateTimer) > $(MaxVacateTime)

START : T
SUSPEND : F
CONTINUE : T
VACATE : F
KILL : F

#
Expressions used to prioritize job queue
#
Values which can be part of the SYSPRIO expression are:
#
QDate Job submission time
UserPrio User priority
UserSysprio System priority value based on userid (from the user
list file with default of 0)
ClassSysprio System priority value based on job class (from the class
list file with default of 0)
UserRunningProcs Number of jobs running for the user
GroupRunningProcs Number of jobs running for the group
#
The following expression is an example.
#
#SYSPRIO: (ClassSysprio * 100) + (UserSysprio * 10) + (GroupSysprio * 1)- (QDate
)
#
The following (default) expression for SYSPRIO creates a FIFO job queue.
#
SYSPRIO: (ClassSysprio * 100) - (QDate)

#
Expressions used to prioritize machines
#
The following example orders machines by the load average
normalized for machine speed:
#
#MACHPRIO: 0 - (1000 * (LoadAvg / (Cpus * Speed)))
#
The following (default) expression for MACHPRIO orders
machines by load average.
#
#MACHPRIO: 0 - (LoadAvg) + (MasterMachPriority * 10000)
The following expression for MACHPRIO orders
machines by increasing ammount of memory and
decreasing node number.
#
MACHPRIO: 0 - (100 * Memory) + CustomMetric + (MasterMachPriority * 10000)

#
The MAX_JOB_REJECT value determines how many times a job can be
rejected before it is canceled or put on hold. The default value
is -1, which indicates no limit to the number of times a job can be
rejected.

#
MAX_JOB_REJECT = 0
#
When ACTION_ON_MAX_REJECT is HOLD, jobs will be put on user hold
when the number of rejects reaches the MAX_JOB_REJECT value. When
ACTION_ON_MAX_REJECT is CANCEL, jobs will be canceled when the
number of rejects reaches the MAX_JOB_REJECT value. The default
value is HOLD.
#
ACTION_ON_MAX_REJECT = CANCEL

326 Using and Administering LoadLeveler

Customer 2: Circuit Simulation
This customer performs CPU-intensive work in the area of circuit simulation using
Electronic Design Automation (EDA).

System Configuration
The customer has 752 batch servers; 209 are dedicated to run LoadLeveler jobs 24
hours a day (the central manager is excluded). The rest are used by LoadLeveler
when they are not in use by their respective owners.

The LoadLeveler administrators control all the 173 dedicated machines. That means
that users cannot get onto these systems without submitting a LoadLeveler job. 117
of the dedicated machines are public schedulers. The user machines are
submit-only machines, and users do not have access to their root password. If a
user needs root access to his or her machine, he or she is allowed alternate root
access only; he or she cannot get global root access to all the machines on site.
(Site administrators use a common global root password.)

This site runs over 31,000 jobs per week and about 2,800 CPU days of resource
utilization. The central manager is a RISC/System 6000 model 370 with 128MB of
RAM. The batch machines are generally 80 percent busy. The central manager is
about 35 percent to 70 percent busy. The central manager does not run any jobs, it
just manages. All of the LoadLeveler machines run one job at a time. (That is,
MAX_STARTERS=1 .)

This customer sees some machines in a down state occassionally. The
administrator feels the CPU on these machines are too busy to get a time slice to
report its state to the central manager. However, this down state does not cause
any problem for this customer.

117 public schedulers are subset of our 173 dedicated machines and are listed in
the admin file.

LoadLeveler Configuration
The following figures represent sections of this customer’s LoadL_admin file for
dedicated machines. Notice the default stanza. Also, every machine in the
LoadLeveler cluster is listed in this file.
#===#
type = machine default stanza
#===#

default: type = machine # defaults for machine stanzas
central_manager = false # no central manager on machine
schedd_host = true # public schedd on machine
#===#
Central Manager
#===#

mips1: type = machine # PRIMARY server - MANAGER 370 128M 3.2.5
central_manager = true # runs negotiator
#===#
Primary Servers
#===#

beast100: type = machine
PRIMARY C=a/b/o/s2/t2 . . 550 128M 3.2.5
beast101: type = machine
PRIMARY C=a/b/b1/b4/c/o/r/s/t F . 550 128M 3.2.5

Appendix B. Customer Case Studies 327

beast102: type = machine
PRIMARY C=a F . 550 128M 3.2.5
beast103: type = machine
PRIMARY C=a . . 550 128M 3.2.5

Later in the Loadl_admin file , user machines are defined. Notice the default
stanza.
#===#

default: type = machine # defaults for machine stanzas
central_manager = false # no central manager on machine
schedd_host = false # no public schedd on machine
#===#

agni: type = machine
SECONDARY server - rmkohn 550 64M 3.2.5
akama: type = machine
SECONDARY server - poulter 365 64M 3.2.5
alaska: type = machine
SECONDARY server - jcahill 340 64M 3.2.5
alcor: type = machine
SECONDARY server - drolson 340 64M 3.2.5

The following represents a local configuration file for a dedicated, public scheduler
machine:

PRIMARY LoadL SERVER ==> mips27
#
this loadl.config.local is tuned for a machine that is part of a compute
farm. Interactive users are discouraged.
#
Run up to one jobs at a time.
#
Always start a job if there is a class available.
#
Never suspend a job.
#
Since jobs never get suspended they never get vacated or killed.
#

SCHEDD_RUNS_HERE = True
STARTD_RUNS_HERE = True

Class = { "a" "b" "b1" "b4" "c" "k" "r" "s" "t" }
Feature = { "PRI" }

MAX_STARTERS = 1

POLLING_FREQUENCY = 30
POLLS_PER_UPDATE = 15

START : T
SUSPEND : F

START_DAEMONS = True
X_RUNS_HERE = False

The following represents a local configuration file for a user’s machine.
SECONDARY SERVER ==> common
#
This loadl_config.local is tuned to be "nice" to a workstation owner
who permits loadl jobs on his system but wants good response whenever
he is doing his own work.
#

328 Using and Administering LoadLeveler

Run only one LoadLeveler job at a time.
#
Check the keyboard for activity every five seconds.
#
#
Suspend a job if the load average exceeds 1.4
#
Continue a job when keyboard again goes idle for 10 minutes and the load
average is <.5

SCHEDD_RUNS_HERE = False
STARTD_RUNS_HERE = True

Class = { "a" "b" "b1" "b4" "c" "o" "r" "s" "t" }
MAX_STARTERS = 1

START : $(FirstShift_KB9999) && $(StartS1) || ($(Off_Shift) ||
$(Week_End)) && $(Mach_Idle_S)
SUSPEND : $(CPU_Busy) || $(KeyboardBusy)
CONTINUE : $(Mach_Idle_C)
VACATE : ((Class == "a") && $(Vacate_A)) || ($(Vacate_ClassesB)
&& $(Vacate_B)) || $(Vacate_X)
KILL : $(Kill_Job)

START_DAEMONS = True
X_RUNS_HERE = True

Customer 3: High-Energy Physics
This scientific customer provides experimental facilities for physicists from its 17
member states and for visiting scientists from throughout the world. The computing
requirements of these users vary from mail and text processing to heavy batch and
parallel processing.

System Configuration
Their processor is an SP2 using RISC System/6000 nodes linked by an internal
high-speed network with a centrally managed software environment. The nodes are
functionally divided into four groups of 16 each for different types of work:
interactive logins, sequential job batch processing, parallel job batch processing and
data, and tape and network services.

This customer uses AFS heavily. It provides the single system image for users’
home directories and the files common to their experiments. Many software
products are served directly out of AFS using symbolic links.

LoadLeveler provides this customer with the following facilities:

v Interactive load balancing of users across nodes on the SP2 and other UNIX
services on site

v Batch services for serial compute jobs

v Scheduling for parallel applications

LoadLeveler Batch Configuration
The batch configuration is designed to maximize short job turnaround while allowing
the heavy CPU jobs to get good usage of the resources available.

The basic configuration uses a range of classes – short, medium, long and verylong
– with a range of maximum job CPU times of from five minutes to six days. An

Appendix B. Customer Case Studies 329

additional class, night, provides off-peak and weekend computing time on the
interactive areas of the SP2 during periods of low demand. Access to this class is
limited to specific users.

Users in different experiments are defined in LoadLeveler groups which provide
associated queue priorities. This allows groups with a large computing budget to be
given higher priorities. An automated procedure calculates each group’s resource
utilization over the last month and adjusts their priorities accordingly. This ensures a
fair allocation of CPU time among the groups.

LoadLeveler Interactive Configuration
This customer uses the Interactive Session Support facility to provide a name
servier which returns the least loaded node according to a site defined metric. This
allows a user to be given the least loaded operational node when he or she logs in.

This metric is based on the number of logged in users, with some weight given to
those using Xstations. Every few minutes, the system is scanned to evaluate the
following:
Xterminals*3 + Telnet*2 + Process

Where:

v Xterminals is the number of users logged in from an Xstation

v Telnet is the number logged in via telnet or rlogin

v Process is the number of users who have processes running.

This metric tries to balance users across the system while providing some factor for
their likely future utilization. A metric based on the CPU load average is too
dependent on the current load to provide good balancing.

The metric can also be set to return a low priority if the file /etc/iss.nologin exists.
This allows the administrator to drain the interactive use of a node if there is
scheduled system maintenance. When the maintenance is completed, the file can
be removed and the metric will return the correct value for the node. Users will
therefore see an improved availability, since they will not be given a node that is
about to shutdown.

Processor Configuration
The processors are configured as follows:

v parallel nodes support a mixture of short, medium, long, and verylong classes.

v batch nodes support the same class mix as parallel. Additional paging space is
available on these nodes to provide multiple jobs running per node.

v interactive nodes support the night class only. The night class only allows jobs
to start after 6 PM and before midnight during the week and anytime on
weekends. A maximum CPU time of 8 hours ensures that the jobs are finished
when the prime shift starts. This is configured using LoadLeveler’s START
expression:
Is_Weekend = (tm_wday==0 || tm_wday==6)
Is_Start_Night_Time = (tm_hour>18)

START: $(Is_Start_Night_Time) || $(Is_Weekend)

Customer 4: Computer Chip Design
This customer uses EDA to perform work in the area of computer chip design.

330 Using and Administering LoadLeveler

System Configuration
The customer has seven clusters of RISC/System 6000 machines. The largest
cluster has 530 machines; the smallest cluster has 87 machines. The total number
of machines at this installation is over 1200.

Interactive Configuration
This customer has defined two configuration files for interactive work: one for
standard workstations and one for large interactive servers. These files are meant
to be tailored to machines of differing processing power.

Standard Workstation Configuration
#==#
Description: LoadL_config.local for Standard Workstations (<370 Class)
#==#
Need 2x Paging Space to Real Memory (minimum) For Worst Case Of One
Suspended and One Foreground Running Job.
*) All Jobs (btv,lp) Suspend on LoadAvg or Keyboard/Mouse Movement.
#==#
Class defines the permissable classes, MAX_STARTERS defines the max
total jobs to be permitted.
#==#
Class = { "btv" "lp" }
MAX_STARTERS = 1
#==#
The next definitions are used in the expressions below to regulate the
conditions under which jobs get started, suspended, and evicted.
All times are specified in units of seconds.
#==#
BackgroundLoad = 0.8
HighLoad = 1.6
StartIdleTime = 900
ContinueIdleTime = 900

#==#
LoadAvg is an internal variable whose value is the (Berkeley) load average
of the machine.
#
CPU_Idle - No LoadL job running, or One job just finishing.
CPU_Busy - One LoadL job running, second job (Foreground or Batch)
starting up.
CPU_Max - Two LoadL jobs running.
#==#
CPU_Idle = (LoadAvg <= $(BackgroundLoad))
CPU_Busy = (LoadAvg >= $(HighLoad))

#==#
This defines a boolean "KeyboardBusy" whose value is TRUE if the keyboard
or mouse has been used since loadl last checked. Thus if POLLING_FREQUENCY
is 5 seconds, KeyboardBusy is TRUE if anybody has used the kbd or mouse in
the last 5 seconds.
#==#
KeyboardBusy = KeyboardIdle < $(POLLING_FREQUENCY)

#==#
This statement indicates when a job should be started on this machine
#==#
Weekend = ((tm_wday >= 6) || (tm_wday < 1))
Day = ((tm_hour >= 7) && (tm_hour < 18))
Night = ((tm_hour >= 18) || (tm_hour < 4))
Inactive = ((KeyboardIdle > $(StartIdleTime)) && $(CPU_Idle))

HP = ((Class == "btv"))
LP = (($(Weekend) || $(Night)))

Appendix B. Customer Case Studies 331

START : (($(HP) || $(LP)) && $(Inactive))

#==#
The SUSPEND statement here says that a job should be suspended but not
killed if:
LoadAvg >= 1.6 Or KeyboardIdle < 5
#==#
SUSPEND : ($(CPU_Busy) || $(KeyboardBusy))

#==#
This CONTINUE statement indicates that a suspended job should be continued
if the cpu goes idle and the keyboard/mouse has not been used for the last
15 minutes.
#==#
CONTINUE : $(CPU_Idle) && KeyboardIdle > $(ContinueIdleTime)

#==#
Jobs in the SUSPEND state are never killed, after 60 minutes they are
relocated to a different machine if possible.
#==#
MaxSuspendTime = 60 * $(MINUTE)
VACATE : $(StateTimer) > $(MaxSuspendTime)
KILL : F

#==#
If you set START_DAEMONS to False loadl can never start on this machine.
For example you may want to stop loadl for a couple days for maintenance
and make sure no procedure automatically restarts it.
#==#
START_DAEMONS = True

#==#
Set the maximum size each of the logs can reach before wrapping.
#==#
MAX_SCHEDD_LOG = 128000
MAX_COLLECTOR_LOG = 128000
MAX_STARTD_LOG = 128000
MAX_SHADOW_LOG = 128000
MAX_KBDD_LOG = 128000

Large Interactive Server Configuration
#==#
Description: LoadL_config.local for Interactive Large Servers (580-590 Class)

#==#
Need 3x Real Memory To Paging Space (minimum) For Worst Case Of Two
Suspended and One Foreground Running Job.
*) All Jobs (btv,lp) Suspend on LoadAvg or Keyboard/Mouse Movement.
*) Real Memory >= 192meg.
#==#

#==#
Class defines the permissable classes, MAX_STARTERS defines the max
total jobs to be permitted.
#==#
Class = { "btv" "lp" }
MAX_STARTERS = 2

#==#
The next definitions are used in the expressions below to regulate the
conditions under which jobs get started, suspended, and evicted.
#
All times are specified in units of seconds.
#==#
BackgroundLoad = 0.8
LowLoad = 1.0

332 Using and Administering LoadLeveler

HighLoad = 1.6
MaxLoad = 2.0
StartIdleTime = 900
ContinueIdleTime = 900

#==#
LoadAvg is an internal variable whose value is the (Berkeley) load average
of the machine.
#
CPU_Idle - No LoadL job running, or One job just finishing.
CPU_Busy - One LoadL job running, second job (Foreground or Batch)
starting up.
CPU_Max - Two LoadL jobs running.
#==#
CPU_Idle = (LoadAvg <= $(BackgroundLoad))
CPU_Run = (LoadAvg <= $(LowLoad))
CPU_Busy = (LoadAvg >= $(HighLoad))
CPU_Max = (LoadAvg >= $(MaxLoad))

#==#
This defines a boolean "KeyboardBusy" whose value is TRUE if the keyboard
or mouse has been used since loadl last checked. Thus if POLLING_FREQUENCY
is 5 seconds, KeyboardBusy is TRUE if anybody has used the kbd or mouse in
the last 5 seconds.
#==#
KeyboardBusy = KeyboardIdle < $(POLLING_FREQUENCY)
#==#
This statement indicates when a job should be started on this machine
#==#
Weekend = ((tm_wday >= 6) || (tm_wday < 1))
Day = ((tm_hour >= 7) && (tm_hour < 18))
Night = ((tm_hour >= 18) || (tm_hour < 4))
Inactive1 = ((KeyboardIdle > $(StartIdleTime)))
Inactive2 = ((KeyboardIdle > $(ContinueIdleTime)))

HP = ((Class == "btv"))
LP = ((Class == "lp") && $(CPU_Idle))

START : (($(HP) || $(LP)) && $(Inactive1))

#==#
The SUSPEND statement here says that a job should be suspended but not
killed if:
KeyboardIdle < 5 Or
lp Class And LoadAvg >= 1.6 Or
btv Class And LoadAvg >= 2.0
#==#
SUSPEND : (((Class == "lp") && $(CPU_Busy)) || \
((Class == "btv") && $(CPU_Max)) || \
($(KeyboardBusy)))

#==#
This CONTINUE statement indicates that a suspended job should be continued
if:
lp Class And LoadAvg <= 0.8 And KeyboardIdle > 15 min Or
btv Class And LoadAvg <= 1.0 And KeyboardIdle > 15 min
#==#
CONTINUE : (((Class == "lp") && $(CPU_Idle) && $(Inactive2)) || \
((Class == "btv") && $(CPU_Run) && $(Inactive2)))

#==#
Jobs in the SUSPEND state are never killed, after 60 minutes they are
relocated to a different box if possible.
#==#
MaxSuspendTime = 60 * $(MINUTE)
VACATE : $(StateTimer) > $(MaxSuspendTime)
KILL : F

Appendix B. Customer Case Studies 333

#==#
If you set START_DAEMONS to False loadl can never start on this machine.
For example you may want to stop loadl for a couple days for maintenance
and make sure no procedure automatically restarts it.
#==#
START_DAEMONS = True

#==#
Set the maximum size each of the logs can reach before wrapping.
#==#
MAX_SCHEDD_LOG = 128000
MAX_COLLECTOR_LOG = 128000
MAX_STARTD_LOG = 128000
MAX_SHADOW_LOG = 128000
MAX_KBDD_LOG = 128000

Batch Configuration
The following configuration file defines dedicated batch machines. Notice, however,
that jobs in the lp class will suspend when a machine becomes too busy. So in this
sense, the machines are not fully dedicated.
#==#
Description: LoadL_config.local for Large Batch Servers (580 - 590 Class)
#==#
Need 3x Real Memory To Paging Space (minimum) For Worst Case Of One
Suspended and Two Foreground Running Job.
*) High Priority Jobs (btv) Never Suspend.
*) Job Suspension (lp) Based on LoadAvg Only.
*) Real Memory >= 192meg.
#==#

#==#
Class defines the permissable classes, MAX_STARTERS defines the max
total jobs to be permitted.
#==#
Class = { "btv" "lp" }
MAX_STARTERS = 2

#==#
The next definitions are used in the expressions below to regulate the
conditions under which jobs get started, suspended, and evicted.
#
All times are specified in units of seconds.
#==#
BackgroundLoad = 0.5
HighLoad = 1.6
StartIdleTime = 900
ContinueIdleTime = 900

#==#
LoadAvg is an internal variable whose value is the (Berkeley) load average
of the machine.
#
CPU_Idle - No LoadL job running, or One job just finishing.
CPU_Busy - One LoadL job running, second job (Foreground or Batch)
starting up.
CPU_Max - Two LoadL jobs running.
#==#
CPU_Idle = (LoadAvg <= $(BackgroundLoad))
CPU_Busy = (LoadAvg >= $(HighLoad))

#==#
This defines a boolean "KeyboardBusy" whose value is TRUE if the keyboard
or mouse has been used since loadl last checked. Thus if POLLING_FREQUENCY
is 5 seconds, KeyboardBusy is TRUE if anybody has used the kbd or mouse in
the last 5 seconds.
#==#

334 Using and Administering LoadLeveler

KeyboardBusy = KeyboardIdle < $(POLLING_FREQUENCY)

#==#
This statement indicates when a job should be started on this machine
#==#
HP = ((Class == "btv"))
LP = ((Class == "lp") && $(CPU_Idle))

START : ($(HP) || $(LP))

#==#
The SUSPEND statement here says that a "lp" job should be suspended but not
killed if a high priority job starts up or a foreground job causes the
Loadavg to be greater than CPU_Busy (1.6).
#==#
SUSPEND : (Class == "lp") && $(CPU_Busy)

#==#
This CONTINUE statement indicates that a suspended job should be continued
if the cpu goes idle and the keyboard/mouse has not been used for the last
15 minutes.
#==#
CONTINUE : $(CPU_Idle) && KeyboardIdle > $(ContinueIdleTime)

#==#
Jobs in the SUSPEND state are never killed, after 60 minutes they are
relocated to a different box if possible.
#==#
MaxSuspendTime = 60 * $(MINUTE)
VACATE : $(StateTimer) > $(MaxSuspendTime)
KILL : F

#==#
If you set START_DAEMONS to False loadl can never start on this machine.
For example you may want to stop loadl for a couple days for maintenance
and make sure no procedure automatically restarts it.
#==#
START_DAEMONS = True

#==#
Set the maximum size each of the logs can reach before wrapping.
#==#
MAX_SCHEDD_LOG = 128000
MAX_COLLECTOR_LOG = 128000
MAX_STARTD_LOG = 128000
MAX_SHADOW_LOG = 128000
MAX_KBDD_LOG = 128000

Configuration for a Machine That Schedules (But Doesn’t Run) Jobs
The following statements define a machine that schedules jobs but does not run
jobs. Notice that the schedd daemon is never forced to not run.
#
This loadl local configuration file is set up to make a machine a
submitter only.
#
No jobs are allowed to run on this system.
#
MAX_STARTERS = 0

START : F
#
If you set START_DAEMONS to False loadl can never start on this machine.

Appendix B. Customer Case Studies 335

For example you may want to stop loadl for a couple days for maintenance
and make sure no procedure automatically restarts it.
#
START_DAEMONS = True

336 Using and Administering LoadLeveler

Glossary

This section contains some of the terms that are
commonly used in the LoadLeveler books and in
this book in particular.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its
definitions from the American National Standard
Vocabulary for Information Processing (Copyright
1970 by American National Standards Institute,
Incorporated), which was prepared by
Subcommittee X3K5 on Terminology and Glossary
of the American National Standards Committee
X3. ANSI definitions are preceded by an asterisk
(*).

Other definitions in this glossary are taken from
IBM Vocabulary for Data Processing,
Telecommunications, and Office Systems
(GC20-1699), IBM DATABASE 2 Application
Programming Guide for TSO Users (SC26-4081),
and Internetworking With TCP/IP, Principles,
Protocols, and Architecture , by Douglas Comer,
Copyright 1988 by Prentice Hall, Incorporated

A
AFS. Andrew File System.

AIX. Abbreviation for Advanced Interactive Executive,
IBM’s licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high function graphics and
floating point computations.

Authentication. The process of validating the identity
of a user or server.

Authorization. The process of obtaining permission to
perform specific actions.

B
Berkeley Load Average. The average number of
processes on the operating system’s ready to run
queue.

C
C. A general purpose programming language. It was
formalized by ANSI standards committee for the C
language (X3J11) in 1984 and by Uniforum in 1983.

client. *(1) A function that requests services from a
server, and makes them available to the user. *(2) An

address space in MVS that is using TCP/IP services.
*(3) A term used in an environment to identify a
machine that uses the resources of the network.

cluster. (1) A group of processors interconnected
through a high speed network that can be used for high
performance computing. (2) A group of jobs submitted
from the same job command file. (3)A set of machines
with something in common between them. This
commonality could be that they are all backed up by
one machine or they are all in the LoadLeveler
administration file.

D
daemon. A process, not associated with a particular
user, that performs system-wide functions such as
administration and control of networks, execution of
time-dependent activities, line printer spooling, and so
on.

datagram. A protocal known as the User Datagram
Protocol (UDP). It is an internet standard protocol that
allows an application program on one machine to send
a datagram to an application program on another
machine. UDP uses the Internet Protocol to deliver
datagrams. Conceptually, the important difference
between UDP and IP is that UDP messages include a
protocol port number, allowing the sender to distinguish
among multiple destinations (application programs) on
the remote machines. In practice, UDP also includes a
checksum over the data being sent.

DCE. Distributed Computing Environment.

default. An alternative value, attribute, or option that is
assumed when none has been specified.

DFS. Distributed File System. A subset of the IBM
Distributed Computing Environment.

H
host. A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

M
menu. A display of a list of available functions for
selection by the user.

Motif. The UNIX industry’s standard user interface,
originally developed by the Open Systems Foundation.
Motif is based on the X-Window system and is a
Presentation Manager look-alike. Motif is available for
all IBM AIX workstations.

337

N
network. An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

NFS. Network File System.

node. In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network.

NQS. Network Queueing System.

P
parameter. *(1) A variable that is given a constant
value for a specified application and that may denote
the application. *(2) An item in a menu for which the
operator specifies a value or for which the system
provides a value when the menu is interpreted. *(3) A
name in a procedure that is used to refer to an
argument that is passed to the procedure. *(4) A
particular piece of information that a system or
application program needs to process a request.

process. *(1) A unique, finite course of events defined
by its purpose or by its effect, achieved under defined
conditions. *(2) Any operation or combination of
operations on data. *(3) A function being performed or
waiting to be performed. *(4) A program in operation.
For example, a daemon is a system process that is
always running on the system.

S
SDR. Abbreviation for System Data Repository. A
repository of system information describing SP
hardware and operating characteristics.

server. (1) A function that provides services for users.
A machine may run client and server processes at the
same time. (2) A machine that provides resources to the
network. It provides a network service, such as disk
storage and file transfer, or a program that uses such a
service.

shell. The shell is the primary user interface for the
UNIX operating system. It serves as command
language interpreter, programming language, and allows
foreground and background processing. There are three
different implementations of the shell concept: Bourne,
C and Korn.

stream. An internet standard transport level protocol
that provides the reliable, full duplex, stream service on
which many application protocols depend. TCP allows a
process on one machine to send a stream of data to a
process on another. It is connection-oriented in the
sense that before transmitting data, participants must
establish a connection. Software implementing TCP

usually resides in the operating system and uses the IP
protocol to transmit information across the Internet. It is
possible to terminate (shut down) one direction of flow
across a TCP connection, leaving a one-way (simplex)
connection. The Internet protocol suite is often referred
to as TCP/IP because TCP is one of the two most
fundamental protocols.

System Administrator. The user who is responsible
for setting up, modifying, and maintaining LoadLeveler.

U
user. Anyone who is using LoadLeveler.

W
working directory. All files without a fully qualified
path name are relative to this directory.

workstation. *(1) A configuration of input/output
equipment at which an operator works. *(2) A terminal
or microcomputer, usually one that is connected to a
mainframe or to a network, at which a user can perform
applications.

338 Using and Administering LoadLeveler

Index

Special Characters
/etc/LoadL.cfg file 27, 97
/etc/services file 116
.llrc script 13

A
account 81
account_no 36
accounting

API 251
collecting data 153
in job command file 36
llacctmrg command 168
llsummary command 214
reports 155

ACCT 111
ACCT_VALIDATION 111, 251
ACTION_ON_MAX_REJECT 129
adapter

dedicated 46
shared 46
specifying in job command file 45, 50

adapter information
extracting from SDR 182

adapter_name 96
adapter stanza keywords

adapter_name 96
css_type 96
interface_address 96
interface_name 96
network_type 96
switch_node_number 96

adapter stanzas
examples 96
format 95

adapter_stanzas 76
ADMIN_FILE 113
admin keyword 85, 93
administering LoadLeveler

administration file 71, 73
LoadL_admin file 74
overview 71
Quick Set Up 73
stanzas 75

administration file
keywords 135
structure and syntax 74

administrators 73, 99
AFS authentication 129
AFS authentication user exit 295
AFS_GETNEWTOKEN 129
AFS token handling 295
alias 76, 77
alternate central manager 111
application programming interfaces

accessing LoadLeveler objects 256
accounting 251

application programming interfaces (continued)
checkpointing serial jobs 253
job control 283
querying jobs and machines 291
running parallel jobs 278
scheduling 283
submitting jobs 254
workload management 283

Arch
requirement in job command file 50
variable 132

ARCH configuration file keyword 101
arguments 37

B
Backfill scheduler 100
BIN 113
blocking 37, 60
blocking factor 60
building jobs

using a job command file 23
using the GUI 226

C
cancelled job state 18
cancelling jobs

using llcancel 31
using the GUI 237

central manager 5, 31, 76, 111, 239, 309
CENTRAL_MANAGER_HEARTBEAT_INTERVAL 112
central_manager keyword 77
CENTRAL_MANAGER_TIMEOUT 112
changing job priority

example 31
using llprio 191
using the GUI 237

checkpoint 37
checkpointing

API for serial jobs 253
environment variables 118
planning considerations 118
system initiated 37, 117
user initiated 37, 117

CHKPT_DIR 118
CHKPT_FILE 118
CHKPT_STATE 118
choice button 229
ckpt (subroutine) 254
class

job command file keyword 38
multiple job classes 315
querying class information 172

Class
defining for a machine 102
keyword 102

class_comment 85

339

class stanza keywords
admin 85
class_comment 85
core_limit 90
cpu_limit 91
data_limit 91
default_resources 85
exclude_groups 86
exclude_users 86
file_limit 91
include_groups 86
include_users 86
master_node_requirement 86
max_node 87
max_processors 87
maxjobs 86
nice value keyword 87
NQS_class 87
NQS_query 87
NQS_submit 87
priority 87
rss_limit 91
stack_limit 92
total_tasks 87
wall_clock_limit 92

class stanzas
examples 92
format 84

ClassSysprio 105
CLIENT_TIMEOUT 116
cluster

definition 3
querying multiple clusters 27
submitting jobs to multiple clusters 27

CM_COLLECTOR_PORT 117
COLLECTOR_DGRAM_PORT 117
commands 167

llacctmrg 168
llcancel 170
llclass 172
llctl 175
lldcegrpmaint 180
llextSDR 182
llfavorjob 185
llfavoruser 186
llhold 187
llinit 189
llprio 191
llq 193
llstatus 205
llsubmit 213
llsummary 214

comment 38
common name space 71
communication level 45
completed job state 18
configuration file

keywords 138
structure and syntax 98

configuring LoadLeveler
global configuration file 97

configuring LoadLeveler (continued)
introduction 97
LoadLeveler user ID 97
local configuration file 97

Consumable Resources 104
introduction 11
when submitting and managing jobs 58

ConsumableCpus
variable 132

ConsumableMemory
variable 132

ConsumableVirtualMemory
variable 132

CONTINUE expression 109
control functions 109
copy 90
core_limit 38, 85, 90
cpu_limit 39, 85, 91
cpu_speed_scale 76, 78, 157
Cpus

using with MACHPRIO 107
variable 133

css_type 96
CurrentTime 133
CUSTOM_METRIC 99
CUSTOM_METRIC_COMMAND 99
customizing 98
CustomMetric 107, 133

D
daemons

definitions 6
gsmonitor 18
kbdd 17
master 13
negotiator 17
schedd 14
startd 15

data access
API 256

data_limit 39, 85, 91
DCE (Distributed Computing Environment) 123
DCE_ADMIN_GROUP 123
DCE Authentication 129
DCE_AUTHENTICATION_PAIR 123, 129
DCE_ENABLEMENT 123
dce groups

generating 180
maintaining 180

dce_host_name 76, 78
DCE security user exit 294
DCE_SERVICES_GROUP 123
debugging

controlling output 114
dedicated adapters 45
default_class 81
default_group 81, 82
default_interactive_class 81, 82
default LoadLeveler scheduler 100
default_resources 85
deferred job state 18

340 Using and Administering LoadLeveler

dependency 39, 315
diagnosing problems 305
Disk

requirement in job command file 50
using with MACHPRIO 107
variable 133

displaying job status
using the command llq 30
using the GUI 235

displaying machine status
public submit machines 239
using llstatus 31
using the GUI 238

Distributed Computing Environment (DCE) 123
domain 133
DRAIN_ON_SWITCH_TABLE_ERROR 129
dsh command (in PSSP) 313

E
editing jobs 26, 234
EnteredCurrentState 133
environment 41
environment variables 57
epilog programs 297
error job command file keyword 41
exclude_groups 85, 86
exclude_users 85, 86, 93, 94
executable 25, 34, 41

specified in a job command file 23
EXECUTE 113
executing machine 5
execution window for jobs 314
exit status 48, 213
expressions

CONTINUE 109
KILL 109
START 109
SUSPEND 109
VACATE 109

extended accounting report 155
external scheduler 100, 283

F
favor jobs 245

llfavorjob command 185
favor users 244

llfavoruser command 186
feature

requirement in job command file 50
Feature

configuration file keyword 103
file_limit 42, 85, 91
filtering a job script 296
FLOATING_RESOURCES 104

G
GetHistory 156
GetHistory (subroutine) 253

GLOBAL_HISTORY 111, 155
graphical user interface

building and submitting jobs 225
customizing 241
overview 223
starting 223
tasks 226
Xloadl 223, 241
Xloadl_so 223, 241

group 42
default 82
UNIX 82

group stanza keywords
admin 93
exclude_users 94
include_users 94
max_node 94
max_processors 95
maxidle 94
maxjobs 94
maxqueued 94
priority 95
total_tasks 95

group stanzas
examples 95
format 93

GroupQueuedJobs 105
GroupRunningJobs 105
GroupSysprio 105
GroupTotalJobs 105
gsmonitor daemon 18
GUI (see graphical user interface) 244

H
help

calling IBM 316
in the GUI 225

hints for running LoadLeveler 312
HISTORY 113
history file 316
hold 42
holding jobs

using llhold 27, 31
using the GUI 237

host 133
hostname 133

I
idle job state 19
image_size 43
include_groups 85, 86
include_users 85, 86, 93, 94
initialdir 43
initiators 104
input 43
integer blocking 60
interactive jobs

planning considerations 149
interface_address 96
interface_address keyword 96

Index 341

interface_name 96
interface_name keyword 96

J
job

accounting 153
batch 4
building a job command file 23, 226
cancelling 28, 237
class name 38
definition 4
diagnosing problems with 305, 306, 308
editing 26, 234
environment variables 25
exit status 48, 213
filter 296
holding 27, 237
interactive 149
parallel 59, 306
priority 28, 83, 87, 95, 191, 237
releasing a hold 237
running 313
samples 30
serial 23
states 18
status 26, 193, 195, 235
submit-only 308
submitting 23, 25, 235

JOB_ACCT_Q_POLICY 153
job command file

building 23
example 24, 32, 33, 34
keywords 36
parallel 25
serial 24
submitting 25
syntax 23

job_cpu_limit 43, 85
JOB_EPILOG 297
JOB_LIMIT_POLICY 153
job_name 44
job object 14, 262
JOB_PROLOG 297
job queue

definition 6
job_type 44
JOB_USER_EPILOG 297
JOB_USER_PROLOG 297

K
kbdd daemon 17
KeyboardIdle 133
keywords

adapter stanza 96
administration file 75, 135
class stanza 85
configuration file 98, 99, 132, 138

LoadLeveler variables 132, 146
user-defined 145

group stanza 93

keywords (continued)
job command file 36, 57
machine stanza 76
reserved 135
user stanza 81

KILL expression 110

L
LAPI 45
LIB 113
libckpt.a 122
libllapi.a 251
libload.a 122
limits 88, 90
ll_control (subroutine) 284
ll_deallocate (subroutine) 274
ll_free_jobs (subroutine) 292
ll_free_nodes (subroutine) 294
ll_free_objs (subroutine) 274
ll_get_data (subroutine) 272
ll_get_hostlist (subroutine) 280
ll_get_jobs (subroutine) 291
ll_get_nodes (subroutine) 293
ll_get_objs (subroutine) 260
ll_next_obj (subroutine) 273
ll_query (subroutine) 257
ll_reset_request (subroutine) 260
ll_set_request (subroutine) 257
ll_start_host (subroutine) 281
ll_start_job (subroutine) 287
ll_terminate_job (subroutine) 289
LL_Version

requirement in job command file 50
llacctmrg 168
llacctval (subroutine) 251
llapi.h 251
llcancel 170
llclass 172
llctl 175
lldcegrpmaint 180
llextSDR 182
llfavorjob 185
llfavoruser 186
llfree_job_info (subroutine) 255
llhold 187
llinit 189
llprio 191
llq 193
llstatus 205
llsubmit (command) 213
llsubmit (subroutine) 254
llsummary 214
load average 316
LoadAvg

using with MACHPRIO 107
variable 133

LoadL_admin file 74, 319, 327
LOADL_ADMIN keyword 99
LOADL_CONFIG 27
LoadL_config file 97
LoadL_config.local file 97, 328, 331

342 Using and Administering LoadLeveler

LOADL_INTERACTIVE_CLASS 82
LOADL_PROCESSOR_LIST 68
loadl user ID 97
LoadLeveler user ID 97
LoadLeveler variables 132

Arch 132
ConsumableCpus 132
ConsumableMemory 132
ConsumableVirtualMemory 132
Cpus 133
CurrentTime 133
CustomMetric 133
Disk 133
domain 133
EnteredCurrentState 133
host 133
in a job command file 56
KeyboardIdle 133
LoadAvg 133
MasterMachPriority 133
Memory 133
OpSys 133
QDate 133
Speed 134
state 134
tilde 134
UserPrio 134
VirtualMemory 134

LOCAL_CONFIG 113
LOG 113
log files 113

GSMONITOR_LOG 114
KBDD_LOG 114
MASTER_LOG 114
MAX_KBDD_LOG 114
MAX_NEGOTIATOR_LOG 114
MAX_STARTER_LOG 114
NEGOTIATOR_LOG 114
SCHEDD_LOG 114
STARTD_LOG 114
STARTER_LOG 114

M
Machine

requirement in job command file 50
MACHINE_AUTHENTICATE 99
machine_mode 76, 78
machine stanza keywords

adapter_stanzas 76
alias 77
central_manager 77
cpu_speed_scale 78, 157
dce_host_name 78
machine_mode 78
master_node_exclusive 78
max_jobs_scheduled 78
name_server 79
pool_list 79
pvm_root 79
resources 79

machine stanza keywords (continued)
schedd_fenced 79
schedd_host 80
spacct_excluse_enable 80
speed 80
submit_only 80

machine stanzas
examples 80
format 75

machine status 205
MACHINE_UPDATE_INTERVAL 129, 313
MACHPRIO 106
MAIL keyword 297
mail program 297
master daemon 13
MASTER_DGRAM_PORT 117
master node 152
master_node_exclusive 76, 78
master_node_requirement 86
MASTER_STREAM_PORT 117
MasterMachPriority 107

variable 133
max_adapter_windows 76
MAX_CKPT_INTERVAL 122
MAX_JOB_REJECT 129
max_jobs_scheduled 76, 78
max_node 81, 83, 85, 87, 93, 94
max_processors 44, 81, 83, 85, 87, 93, 95
MAX_STARTERS 102, 104
maxidle 81, 82, 93, 94, 314
maxjobs 81, 82, 85, 86, 93, 94, 314
maxqueued 81, 83, 93, 94, 314
Memory

requirement in job command file 51
using with MACHPRIO 107
variable 133

menu bar 223
messages 241
migration considerations xix
MIN_CKPT_INTERVAL 122
min_processors 45
monitor program 255
MPI 45

N
name_server 76, 79
NEGOTIATOR_CYCLE_DELAY 130
negotiator daemon

description 17
job states 18
keywords 130

NEGOTIATOR_INTERVAL 130, 312
NEGOTIATOR_LOADAVG_INCREMENT 130
NEGOTIATOR_PARALLEL_DEFER 130
NEGOTIATOR_PARALLEL_HOLD 130
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL 130
NEGOTIATOR_REJECT_DEFER 130
NEGOTIATOR_REMOVE_COMPLETED 131
NEGOTIATOR_RESCAN_QUEUE 131
NEGOTIATOR_STREAM_PORT 117
network 45

Index 343

network_type 96
network_type keyword 96
nice value 85, 87
node keyword 47, 60
node_usage 47
notification 48
notify_user 48
NotQueued job state 19
NQS

options 161
routing jobs to NQS machines 26, 159
scripts 163

NQS_class 85, 87, 160
NQS_DIR 113, 160
NQS jobs

cancelling 163
obtaining status 163
submitting 161

NQS_query 85, 87, 160
NQS scripts 163
NQS_submit 85, 87, 160

O
OBITUARY_LOG_LENGTH 131
online information xiii
operators 98
OpSys

requirement in job command file 51
variable 133

output 48, 315

P
parallel job command files 25
parallel jobs 151

administration 149
API 278
checklist 307
Class keyword 151
class stanza 151
job command file examples 62
master node 152
overview 59
scheduling considerations 149
supported keywords 149

parallel_path 49
pending job state 19, 308
performance 72
POE

environment variables 62
job command file 62
planning considerations 149

POLLING_FREQUENCY 131
POLLS_PER_UPDATE 131
Pool

requirement in job command file 51
pool_list 76, 79
port numbers 116
preferences 49
priority 28
priority (of jobs)

keyword in class stanza 87

priority (of jobs) (continued)
keyword in group stanza 95
keyword in user stanza 83
system priority 28
user priority 28, 83, 191

PROCESS_TRACKING 122
PROCESS_TRACKING_EXTENSION 122
productivity aids 312
prolog programs 297
public scheduling machines 5, 29, 32
PUBLISH_OBITUARIES 131
pull-down menus 224
PVM 45

job command file 64
planning considerations 150
restrictions 151

pvm_root 76, 79

Q
QDate 105, 133
query a job

llq command 193
using the GUI 236

query API 291
querying class information

llclass command 172
querying multiple clusters 27
questions and answers 305
queue 49
queue, see job queue 6

R
reject pending job state 19
release from hold 245
RELEASEDIR 113
remove pending job state 19
requirements 49
resources 76, 79

job command file keyword 52
restart 52
RESTARTS_PER_HOUR 131
rlim_infinity 90
rss_limit 52, 85, 91
running jobs at a specific time of day 314

S
SAVELOGS keyword 116
scaling considerations 312
schedd daemon 14, 308

recovery 311
schedd_fenced 76, 79
schedd_host 76, 80, 312
SCHEDD_INTERVAL 131
SCHEDD_RUNS_HERE 103
SCHEDD_STATUS_PORT 117
SCHEDD_STREAM_PORT 117
SCHEDD_SUBMIT_AFFINITY 103, 312
SCHEDULE_BY_RESOURCES 104

344 Using and Administering LoadLeveler

SCHEDULER_API 101
SCHEDULER_TYPE 101
schedulers

API 283
Backfill 100
choosing 100
default 100
external 100, 283
job control API 101
supported keywords 59

scheduling considerations for parallel jobs 149
scheduling machine 5
SDR

extracting information from 182
serial checkpointing

ckpt subroutine 254
serial job command files 24
service_class 45
service numbers 116
shell 53, 229
short report, accounting 155
signals 279
spacct_excluse_enable 76, 80
speed 76, 80, 157
Speed 107, 134
SPOOL

log 113
stack_limit 53, 85, 92
stanzas

adapter 95
class 84
default 75
label 75
machine 75
type 75
user 75

START_DAEMONS 103
START expression 109
start LoadLeveler 246
startd daemon 15, 312
STARTD_RUNS_HERE 103
STARTD_STREAM_PORT 117
startdate 53
starter process 16
state 134
states of a job 18
status 205, 213
step_name 53
stop LoadLeveler 246
SUBMIT_FILTER 296
submit_only keyword 76, 80
submit-only machine

cancelling jobs from 28
definition 3
keywords 80
master daemon interaction 13
querying jobs from 27
querying multiple clusters 27
schedd daemon interaction 14
submitting jobs from 26
troubleshooting 308

submit-only machine (continued)
types 5

submitting jobs
across multiple clusters 27
using a job command file 25
using an API 254
using llsubmit 30
using llsubmit command 213
using the GUI 235

subroutines
ckpt 254
GetHistory 252
ll_control 284
ll_deallocate 274
ll_free_jobs 292
ll_free_nodes 294
ll_free_objs 274
ll_get_data 272
ll_get_hostlist 280
ll_get_jobs 291
ll_get_nodes 293
ll_get_objs 260
ll_next_obj 273
ll_query 257
ll_reset_request 260
ll_set_request 257
ll_start_host 281
ll_start_job 287
ll_terminate_job 289
llacctval 251
llfree_job_info 255
llsubmit 254

support services 316
SUSPEND expression 109
switch_node_number 96
switch_node_number keyword 96
syshold 245
SYSPRIO 28, 105
system initiated checkpointing 37
system Initiated checkpointing 117
system priority 28

T
task assignment 60
task_geometry 54, 60
tasks_per_node 54
tasks_per_node keyword 60
TCP/IP service and port numbers 116
tilde 134
tm_hour 134
tm_isdst 134
tm_mday 134
tm_min 134
tm_mon 134
tm_sec 134
tm_wday 134
tm_yday 134
tm_year 134
tm4_year 134
total_tasks 55, 81, 83, 85, 87, 93, 95
total_tasks keyword 60

Index 345

troubleshooting 305
TRUNC_GSMONITOR_LOG_ON_OPEN 114
TRUNC_KBDD_LOG_ON_OPEN 114
TRUNC_MASTER_LOG_ON_OPEN 114
TRUNC_NEGOTIATOR_LOG_ON_OPEN 114
TRUNC_SCHEDD_LOG_ON_OPEN 114
TRUNC_STARTD_LOG_ON_OPEN 114
TRUNC_STARTER_LOG_ON_OPEN 114

U
unfavor jobs 245
unfavor users 245
UNIX group 82
unlimited blocking 37, 60
user-defined variables 132
user exits 294
user initiated checkpointing 37, 117
user name 71
user priority 28
user_priority 55
user stanza keywords

account 81
default_class 81
default_group 82
default_interactive_class 82
max_node 83
max_processors 83
maxidle 82
maxjobs 82
maxqueued 83
priority 81
total_tasks 83

user stanzas
examples 83
format 75

UserPrio 105, 134
UserQueuedJobs 105
UserRunningJobs 106
UserSysprio 106
UserTotalJobs 106

V
VACATE expression 109
vacated job state 20
variables

configuration file
user-defined 132

LoadLeveler 56
user-defined 132

VirtualMemory
using with MACHPRIO 107
variable 134

W
wall_clock_limit 56, 85, 92
world wide web information xiii

X
X_RUNS_HERE 104
xloadl 223

Xloadl 223, 241
Xloadl_so 223, 241

346 Using and Administering LoadLeveler

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull LoadLeveler V2R2 Using and Administering

Nº Reférence / Reference Nº : 86 A2 14EF 00 Daté / Dated : October 2000

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.
Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Technical Publications Ordering Form
Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:
Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL CEDOC
ATTN / MME DUMOULIN
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Managers / Gestionnaires :
Mrs. / Mme : C. DUMOULIN +33 (0) 2 41 73 76 65
Mr. / M : L. CHERUBIN +33 (0) 2 41 73 63 96

FAX : +33 (0) 2 41 73 60 19
E–Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web sites at: / Ou visitez nos sites web à:
http://www.logistics.bull.net/cedoc
http://www–frec.bull.com http://www.bull.com

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

[_ _] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E–MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander à votre contact Bull.

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

86 A2 14EF 00
ORDER REFERENCE

P
LA

C
E

 B
A

R
 C

O
D

E
 IN

 L
O

W
E

R
LE

F
T

 C
O

R
N

E
R

Utiliser les marques de découpe pour obtenir les étiquettes.
Use the cut marks to get the labels.

AIX

86 A2 14EF 00

LoadLeveler V2R2
Using and

Administering

AIX

86 A2 14EF 00

LoadLeveler V2R2
Using and

Administering

AIX

86 A2 14EF 00

LoadLeveler V2R2
Using and

Administering

	Contents
	Who Should Use This Book
	How this Book is Organized
	Typographic Conventions

	Related Information
	Information Formats
	Accessing This Book off the World Wide Web
	Accessing LoadLeveler Documentation Online
	LoadLeveler Man Pages

	What's New in 2.2
	gsmonitor Daemon
	Additional Job States
	New Job Command File Keywords
	Consumable Resources
	Task Assignment Section
	New Adapter Stanza Keyword
	New Machine Stanza Keyword
	Process Tracking
	llctl Command Enhancement
	Enhanced Support for DCE
	llstatus Command Enhancements
	llq Command Enhancements
	Task Guide
	Job Control API Renamed
	Scaling Considerations

	Migration Considerations
	Moving From 1.3 to 2.1
	Resource Manager Functions Now in LoadLeveler
	Keywords Supported for Parallel Jobs
	Migrating Your Existing Adapter Requirements Statements
	Changes in LoadLeveler Command Output
	Changes in the LoadLeveler Release Directory
	Changes in the GUI Resource File

	Moving From 2.1 to 2.2
	Keyword Added to Administration File
	Changes in LoadLeveler Command Output

	Part 1. Overview of LoadLeveler
	Chapter 1. What is LoadLeveler?
	How LoadLeveler Works
	What Does a Network Job Management and Job Scheduling SystemDo?
	Jobs
	Machines and Workstations

	LoadLeveler Daemons
	How Does LoadLeveler Schedule Jobs to Run on Machines?
	The LoadLeveler Job Cycle
	What are Consumable Resources and Why Should I Use Them?

	Chapter 2. LoadLeveler Daemons and Job States
	Daemons and Processes
	The master Daemon
	The schedd Daemon
	The startd Daemon
	The starter Process
	The negotiator Daemon
	The kbdd Daemon
	The gsmonitor Daemon

	LoadLeveler Job States

	Part 2. Using LoadLeveler
	Chapter 3. Submitting and Managing Jobs
	Building a Job Command File
	Job Command File Syntax
	Serial Job Command File
	Using Multiple Steps in a Job Command File
	Parallel Job Command File

	Submitting a Job Command File
	Managing Jobs
	Editing a Job Command File
	Querying the Status of a Job
	Querying Multiple LoadLeveler Clusters

	Placing and Releasing a Hold on a Job
	Cancelling a Job
	Checkpointing a Job
	Setting and Changing the Priority of a Job
	User Priority
	System Priority
	How Does a Job's Priority Affect Dispatching Order?

	Working with Machines

	A Simple Task Scenario Using Commands
	Step 1: Build a Job
	Step 2: Edit a Job
	Step 3: Submit a Job
	Step 4: Display the Status of a Job
	Step 5: Change the Priorities of Jobs in the Queue
	Step 6: Hold a Job
	Step 7: Release a Hold on a Job
	Step 8: Display the Status of a Machine
	Step 9: Cancel a Job
	Step 10: Find the Location of the Central Manager
	Step 11: Find the Location of the Public Scheduling Machines

	Additional Job Command File Examples
	Example 1: Generating Multiple Jobs With Varying Outputs
	Example 2: Using LoadLeveler Variables in a Job Command File
	Example 3: Using the Job Command File as the Executable

	Job Command File Keywords
	account_no
	arguments
	blocking
	checkpoint
	class
	comment
	core_limit
	cpu_limit
	data_limit
	dependency
	environment
	error
	executable
	file_limit
	group
	hold
	image_size
	initialdir
	input
	job_cpu_limit
	job_name
	job_type
	max_processors
	min_processors
	network
	node
	node_usage
	notification
	notify_user
	output
	parallel_path
	preferences
	queue
	requirements
	resources
	restart
	rss_limit
	shell
	stack_limit
	startdate
	step_name
	task_geometry
	tasks_per_node
	total_tasks
	user_priority
	wall_clock_limit
	Job Command File Variables
	Example 1
	Example 2

	Run-time Environment Variables
	Submitting and Managing Jobs that Consume Resources
	Specifying the Consumption of Resources by a Job Step
	Displaying Currently Available Resources

	Chapter 4. Submitting and Managing Parallel Jobs
	Supported Parallel Environments
	Keyword Considerations for Parallel Jobs
	Scheduler Considerations
	Task Assignment Considerations
	node and total_tasks
	node and tasks_per_node
	blocking
	unlimited blocking
	task_geometry

	Running Interactive POE Jobs
	Job Command File Examples
	POE 2.4.0
	PVM 3.3 (Non-SP)
	PVM 3.3.11+ (SP2MPI architecture)
	Sequence of Events in a PVM 3.3.11+ Job

	Obtaining Status of Parallel Jobs
	Obtaining Allocated Host Names

	Part 3. Administering LoadLeveler
	Chapter 5. Administering and Configuring LoadLeveler
	Overview
	Planning Considerations
	Where to Begin?
	Intermediate or Beginner
	Expert

	Quick Set Up
	Administering LoadLeveler
	Administration File Structure and Syntax
	Customizing the Administration File
	Step 1: Specify Machine Stanzas
	Examples of Machine Stanzas

	Step 2: Specify User Stanzas
	Examples of User Stanzas

	Step 3: Specify Class Stanzas
	Limit Keywords
	Examples of Class Stanzas

	Step 4: Specify Group Stanzas
	Examples of Group Stanzas

	Step 5: Specify Adapter Stanzas
	Example of an Adapter Stanza

	Configuring LoadLeveler
	The Configuration Files
	Configuration File Structure and Syntax
	Numerical and Alphabetical Constants
	Mathematical Operators
	Customizing the Global and Local Configuration Files
	Step 1: Define LoadLeveler Administrators
	Step 2: Define LoadLeveler Cluster Characteristics
	Step 3: Define LoadLeveler Machine Characteristics
	Step 4: Define Consumable Resources
	Step 5: Specify How Many Jobs a Machine Can Run
	Step 6: Prioritize the Queue Maintained by the Negotiator
	Step 7: Prioritize the Order of Executing Machines Maintained bythe Negotiator
	Step 8: Manage a Job's Status Using Control Expressions
	Step 9: Define Job Accounting
	Step 10: Specify Alternate Central Managers
	Step 11: Specify Where Files and Directories are Located
	Step 12: Record and Control Log Files
	Step 13: Define Network Characteristics
	Step 14: Enable Checkpointing
	Planning Considerations for Checkpointing Jobs
	How to Checkpoint a Job
	Step 15: Specify Process Tracking
	Step 16: Configuring LoadLeveler to use DCE Security Services
	Step 17: Specify Additional Configuration File Keywords
	User-Defined Variables
	LoadLeveler Variables

	Keyword Summary
	Administration File Keywords
	Configuration File Keywords and LoadLeveler Variables
	Keywords
	User-Defined Keywords
	LoadLeveler Variables

	Chapter 6. Administration Tasks for Parallel Jobs
	Scheduling Considerations for Parallel Jobs
	Allowing Users to Submit Interactive POE Jobs
	Allowing Users to Submit PVM Jobs
	Restrictions and Limitations for PVM Jobs

	Setting Up a Class for Parallel Jobs
	Setting Up a Parallel Master Node

	Chapter 7. Gathering Job Accounting Data
	Collecting Job Resource Data on Serial and Parallel Jobs
	Collecting Job Resource Data Based on Machines
	Collecting Job Resource Data Based on Events
	Collecting Job Resource Information Based on User Accounts
	Collecting the Accounting Information and Storing it into Files
	Accounting Reports
	Sample Job Accounting Scenario
	Task 1: Update the Configuration File
	Task 2: Merge Multiple Files Collected From Each Machine Into OneFile
	Task 3: Report Job Information on all the Jobs in the History File
	Task 4: Using Account Numbers and Setting Up Account Validation
	Task 5: Specifying Machines and Their Weights

	Chapter 8. Routing Jobs to NQS Machines
	Setting Up the NQS Environment
	Designating Machines to Which Jobs Will be Routed
	Sample Routing Jobs to NQS Machines Scenario
	Task 1: Modify the Administration File
	Task 2: Modify the Configuration File
	Task 3: Submit the Jobs
	Task 4: Obtain Status of NQS Jobs
	Task 5: Cancel NQS Jobs

	NQS Scripts

	Part 4. Command Reference
	Chapter 9. LoadLeveler Commands
	Summary of LoadLeveler Commands
	llacctmrg - Collect machine history files
	llcancel - Cancel a Submitted Job
	llclass - Query Class Information
	llctl - Control LoadLeveler Daemons
	lldcegrpmaint - LoadLeveler DCE group Maintenance Utility
	llextSDR - Extract adapter information from the SDR
	llfavorjob - Reorder System Queue by Job
	llfavoruser - Reorder System Queue by User
	llhold - Hold or Release a Submitted Job
	llinit - Initialize Machines in the LoadLeveler Cluster
	llprio - Change the User Priority of Submitted Job Steps
	llq - Query Job Status
	llstatus - Query Machine Status
	llsubmit - Submit a Job
	llsummary - Return Job Resource Information for Accounting

	Part 5. The LoadLeveler Graphical User Interface
	Chapter 10. Graphical User Interface Overview
	Starting the Graphical User Interface
	Specifying Options
	The LoadLeveler Main Window
	Getting Help Using the Graphical User Interface
	Differences Between LoadLeveler's Graphical User Interface and OtherGraphical User Interfaces

	Building and Submitting Jobs Using the Graphical User Interface
	Task Scenario Using the Graphical User Interface
	Step 1: Build a Parallel Job
	Step 2: Edit the Job Command File
	Step 3: Submit a Job Command File
	Step 4: Display, Refresh and Obtain Job Status
	Step 5: Sort the Jobs Window
	Step 6: Change Priorities of Jobs in a Queue
	Step 7: Hold a Job
	Step 8: Release a Hold on a Job
	Step 9: Cancel a Job
	Step 10: Display and Refresh Machine Status
	Step 11: Sort the Machines Window
	Step 12: Find the Location of the Central Manager
	Step 13: Find the Location of the Public Scheduling Machines
	Step 14: Specify Which Jobs Appear in the Jobs Window
	Step 15: Specify Which Machines Appear in Machines Window
	Step 16: Save LoadLeveler Messages in a File

	Customizing the Graphical User Interface
	Syntax of an Xloadl File
	Modifying Windows and Buttons
	Creating Your Own Pulldown Menus
	Example – Creating a New Pulldown

	Customizing Fields on the Jobs Window and the Machines Window
	Modifying Help Panels
	Administrative Uses for the Graphical User Interface
	Job Related Administrative Actions
	Machine Related Administrative Actions

	Part 6. The LoadLeveler Application Programming Interfaces
	Chapter 11. LoadLeveler APIs
	Accounting API
	Account Validation Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values

	Report Generation Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Examples

	Serial Checkpointing API
	ckpt Subroutine
	Purpose
	C++ Syntax
	C Syntax
	FORTRAN Syntax
	Related Information

	The Submit API
	llsubmit Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Values

	llfree_job_info Subroutine
	Purpose
	Syntax
	Parameters

	The Monitor Program
	Purpose
	Syntax
	Parameters

	Data Access API
	Using the Data Access API
	ll_query Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Related Information

	ll_set_request Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Related Information

	ll_reset_request Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Related Information

	ll_get_objs Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Related Information

	Understanding the LoadLeveler Job Object Model
	ll_get_data Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Related Information

	ll_next_obj Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Related Information

	ll_free_objs Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Related Information

	ll_deallocate Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Related Information

	Examples of Using the Data Access API

	Parallel Job API
	Interaction Between LoadLeveler and the Parallel API
	Termination Paths

	ll_get_hostlist Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values

	ll_start_host Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values

	Examples

	Workload Management API
	ll_control Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	ll_start_job Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Examples
	Related Information

	ll_terminate_job Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Examples
	Related Information

	Usage Notes
	Job Command File Keywords
	Administration File Keywords
	Configuration File Keywords

	Query API
	ll_get_jobs Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Examples
	Related Information

	ll_free_jobs Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Examples
	Related Information

	ll_get_nodes Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Examples
	Related Information

	ll_free_nodes Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Error Values
	Examples
	Related Information

	User Exits
	Handling DCE Security Credentials
	Usage Notes

	Handling an AFS Token
	Filtering a Job Script
	Using Your Own Mail Program
	Writing Prolog and Epilog Programs
	Prolog Programs
	Epilog Programs

	Part 7. Appendixes
	Appendix A. Troubleshooting
	Troubleshooting LoadLeveler
	Frequently Asked Questions
	Why Won't My Job Run?
	Why Won't My Parallel Job Run?
	Why Won't My Submit-Only Job Run?
	Why Does a Job Stay in the Pending (or Starting) State?
	What Happens to Running Jobs When a Machine Goes Down?
	What Happens if the Central Manager Isn't Operating?
	How Do I Recover Resources Allocated by a schedd Machine?
	Other Questions

	Helpful Hints
	Scaling Considerations
	Hints for Running Jobs
	Hints for Using Machines
	History Files and schedd

	Getting Help from IBM

	Appendix B. Customer Case Studies
	Customer 1: Technical Computing at the Cornell Theory Center
	System Configuration
	LoadLeveler Configuration

	Customer 2: Circuit Simulation
	System Configuration
	LoadLeveler Configuration

	Customer 3: High-Energy Physics
	System Configuration
	LoadLeveler Batch Configuration
	LoadLeveler Interactive Configuration
	Processor Configuration

	Customer 4: Computer Chip Design
	System Configuration
	Interactive Configuration
	Standard Workstation Configuration
	Large Interactive Server Configuration

	Batch Configuration
	Configuration for a Machine That Schedules (But Doesn't Run) Jobs

	Glossary
	

	Index

