EPC and PL Series

Site Preparation Guide for Rack Systems

ESCALA

EPC and PL Series

Site Preparation Guide for Rack

 SystemsHardware

May 2003
BULL CEDOC
357 AVENUE PATTON
B.P. 20845

49008 ANGERS CEDEX 01
frANCE

REFERENCE

86 Al 30PX 14

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not limited to, copying, distributing, modifying, and making derivative works.

Copyright © Bull SAS 1992, 2003
Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.
AIX® is a registered trademark of International Business Machines Corporation, and is being used under licence.
UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through the Open Group.

Linux $®$ is the registered trademark of Linus Torvalds in the U.S. and other countries

The information in this document is subject to change without notice. Bull will not be liable for errors contained herein, or for incidental or consequential damages in connection with the use of this material.

About This Book

This book provides an approach to prepare a customer site for the installation of single (Escala) and multiple rack-mounted machines (Powercluster) together with their sub-systems and peripherals.

The following racks are documented:

- EPC400 rack (36U), in Chapter 2.
- EPC1200 rack (32U), in Chapter 3.
- T00 rack (36U) and T42 rack (42U), in Chapter 4.
- PL3200R rack (42U), in chapter 5.

A rack unit supports different types of EPC and PL nodes. Other drawers (e.g. DAS drawers or disk/media drawers), and other devices, such as interconnects hubs or switches and external libraries, can also be installed in a rack unit, depending on the rack dispatching rules in the marketing configurator.

Optional rack unit(s) can be required to accommodate all drawers/devices.

The following disk subsystems are documented in Chapter 6.

- DAS - DAE (Disk Array Storage / Enclosure), NDAS,
- AMDAS JDA,
- SSA.

The following tape drive subsystems are documented in Chapter 7.

- DLT,
- VDAT.

The following operator consoles are documented in Chapter 8.

- System Console (Questar 306),
- Graphics Display (Multiscan Color Display),
- Cluster Console (X-Console),
- PowerConsole (Escala S100 and S120).

The following external peripherals are documented in Chapter 9.

- Fast Ethernet Switch 3000, on page 9-2.
- 1GB Ethernet Switch 9300, on page 9-3.
- SilkWorm 2000 Brocade Switch, on page 9-4.
- FC-AL Hub, on page 9-5.
- Ethernet Hub (Administration), on page 9-6.
- Vixel Hub, on page 9-7.
- Console concentrator, on page 9-8.
- Micro-Modem, on page 9-10.

Audience

This manual is designed to assist customer site engineers plan and prepare a site for the installation of a rack-mounted system. It gives procedures for site planning and preparation, and includes site facility requirements and individual device specifications.
To help achieve an efficient system installation, the procedures, design requirements, and recommendations in this manual should be observed. A successful system installation also depends on how individual responsibilities are allocated and how overall planning and follow-up work are performed.

Document Overview

This book contains the following chapters:

Chapter 1	Overview of Site Preparation Introduces the need for careful site preparation.
Chapter 2.	EPC 400 Rack (36U) Describes requirements for the Escala EPC400 Series of machines (EPC400, EPC430, EPC440, EPC450).
Chapter 3.	EPC 1200 Rack (32U) Describes requirements for the Escala EPC440/ 610/ 810/ 1200/ 1200A/ 2400 and RL470/RL470A machines.
Chapter 4.	T00 Rack (36U) and T42 Rack (42U) Describes requirements for the Escala EPC440/450/610/810/2450 and PL820R/800R/600R/400R/420R/240R/220R machines.
Chapter 5.	PL3200R and PL1600R Rack Describes requirements for the Escala PL3200R and PL1600R machines.
Chapter 6.	Disk Subsystems Describes requirements for site using shared disks.
Chapter 7.	Tape Subsystems Describes requirements for site using shared tape drives.
Chapter 8.	Operator Consoles Describes console requirements.
Chapter 9.	Network External Peripherals Taking into account other network external peripheral devices.
Chapter 10.	Site Interconnections Describes extended site interconnections.
Appendix A.	Conversion Tables Correspondence between Metric and Imperial Measures.
Appendix B.	Service Inspection Hardware delivery inspection guidelines.
Glossary	Alphabetical list of terms and abbreviations used in this manual.
Index	General index.

Terminology

The term "machine" is used to indicate the proprietary hardware, in this case Escala.

Related Publications

User Documents

- General Guide to Data Processing Site Preparation Reference: URL http://bbs.bull.net/aise
- Escala EPC400 Setting Up the System Reference: 86 A1 18PX
- Escala EPC400 Rack Service Guide

Reference: 86 A1 20PX

- Escala EPC430 and EPC450 Setup Guide Reference: 86 A1 42PX
- Escala EPC430 and EPC450 Maintenance Guide Reference: 86 A1 43PX
- Escala EPC440 Installation and Service Guide

Reference: 86 A1 84KX

- T00 and T42 Racks Installation and Service Guide Reference: 86 A1 94KX
- Escala EPC610, PL400R and PL600R Installation Guide Reference: 86 A1 92KX
- Escala EPC610, PL400R and PL600R User's Guide Reference: 86 A1 28KX
- Escala EPC610, PL400R and PL600R Service Guide Reference: 86 A1 30KX
- Escala PL420R Installation Guide

Reference: 86 A1 40EG

- Escala PL420R User's Guide

Reference: 86 A1 41EG

- Escala PL420R Service Guide

Reference: 86 A1 42EG

- ESCALA PL 220T and PL 220R User's Guide

Reference: 86 A1 77EF

- ESCALA PL 220T and PL 220 R Installation Guide Reference: 86 A1 78EF
- ESCALA PL 220T and PL 220R Service Guide Reference: 86 A1 79EF
- ESCALA PL 240T and PL 240R User's Guide

Reference: 86 A1 55EG

- ESCALA PL 240T and PL 240 R Installation Guide

Reference: 86 A1 54EG

- ESCALA PL 240T and PL 240R Service Guide

Reference: 86 A1 56EG

- Escala EPC810 and PL800R Installation Guide Reference: 86 A1 93KX
- Escala EPC810 and PL800R User's Guide Reference: 86 A1 36KX
- Escala EPC810 and PL800R Service Guide Reference: 86 A1 37KX
- ESCALA PL 820R Installation Guide

Reference: 86 A1 19EG

- ESCALA PL 820R User's Guide Reference: 86 A1 20EG
- ESCALA PL 820R Service Guide

Reference: 86 A1 21EG

- D10 I/O Drawer Installation Guide

Reference: 86 A1 32EG

- D20 I/O Drawer Installation Guide

Reference: 86 A1 39EG

- D1 and D20 I/O Drawers Service Guide

Reference: 86 A1 38EG

- PL1600R Installation Guide

Reference: 86 A1 92EF

- PL1600R User's Guide Reference: 86 A1 93EF
- PL1600R Service Guide Reference: 86 A1 94EF
- PL3200R Installation Guide Reference: 86 A1 80EF
- PL3200R User's Guide

Reference: 86 A1 81EF

- PL3200R Service Guide Reference: 86 A1 82EF
- Escala RL470 and EPC1200 Series Installation \& Service Guide Reference: 86 A1 14HX
- Escala RL470/EPC1200 Installation Procedures for Drawers Reference: 86 A1 29PX
- Escala EPC2400 \& EPC2450 User's Guide

Reference: 86 A1 18KX

- Escala EPC2400 \& EPC2450 Installation Guide Reference: 86 A1 10EF
- Escala EPC2400 \& EPC2450 Service Guide

Reference: 86 A1 19KX

- Escala S Series System Service Guide Reference: 86 A1 91JX
- Planning a DAS Disk-Array Storage System Installation - SCSI Environments Reference: 86 A1 84GX
- Planning a DAS Disk-Array Storage System Installation - Fibre Channel Environments
Reference: 86 A1 94JX
- Installing and Maintaining a Disk-Array Storage System DAS 2900 Rackmount Reference: 86 A1 76GX
- DAS 3200 - Disk-Array Storage System Installation and Service for Rackmount Models
Reference: 86 A1 63HX
- DAS 3500 - Disk-Array Storage System Installation and Service for Rackmount Models
Reference: 86 A1 47JX
- DAS 4500 Series Rackmount Models Installation and Service Guide Reference: 86 A1 02EF
- DAS 4700 Configuration Planning Guide

Reference: 86 A1 73EF

- DAS 4700 Rackmount Model Hardware Reference

Reference: 86 A1 70EF

- DAS 5300 Series Rackmount Models Installation and Service Guide Reference: 86 A1 24KX
- DAS 5700 Rackmount Installation and Service Guide Reference: 86 A1 43KX
- DAE 5000 Rackmount Installation and Service Guide Reference: 86 A1 45KX
- AMDAS Site Preparation Guide Reference: 77 A1 54UG
- JDA/SDA Storage Subsystem Hardware Installation \& Maintenance Guide Reference: 00 A1 52UG
- 7133 SSA Disk Subsystems Service Guide Reference: 86 A1 94GX
- PCI Fibre Channel Adapter Installation \& Configuration Guide Reference: 86 A1 95HX
- EXABYTE VDAT 8mm Mammoth - Care \& Handling Guide Reference: 82 A1 61HX
- Bull Questar 306 User’s Guide

Reference: 80 A2 AJ27

- PowerConsole \& Cluster Assistant Setup Guide

Reference: 86 A1 81HX

- EPC and HA Solutions - Setup Guide

Reference: 86 A2 79HX

- EPC Connecting Guide

Reference: 86 A1 65JX

- Cabling Guide for Multiple Bus Systems

Reference: 86 A1 70JX

- Cabling Guide for MCA Systems Reference: 86 A1 87AQ
- FDDI Adapter - Installation and Configuration Guide Reference: 86 A1 53GX
- Bull DPX/20 Escala 7133 SSA Disk Subsystems - Service Guide Reference: 86 A1 94GX

Ordering Publications

To order additional copies of this book, use CEDOC Order Number 86 A1 30PX.

Standards

Standards are referenced in the Chapters to which they apply.

Communication Statements

The following statements apply to all racks described in this document.

Communication Statements

Federal Communications Commission (FCC) Statement

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
Properly shielded and grounded cables and connectors must be used in order to meet FCC emission limits. Neither the provider or the manufacturer are responsible for any radio or television interference caused by using other than recommended cables and connectors or by unauthorized changes or modifications to this equipment. Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

EC Council Directive

This product is in conformity with the protection requirements of the following EC Council Directives:

- 89/336/EEC and 92/31/EEC (for the electromagnetic compatibility)
- 73/23/EEC (for the low voltage)
- 93/68/EEC (for CE marking).

Neither the provider nor the manufacturer can accept responsibility for any failure to satisfy the protection requirements resulting from a non-recommended modification of the product, including the fitting of option cards not supplied by the manufacturer.

International Electrotechnical Commission (IEC) Statement

This product has been designed and built to comply with IEC Standard 950.
Avis de conformité aux normes du ministère des Communications du Canada

Cet appareil numérique de la classe A respecte toutes les exigences du Réglement sur le matériel brouilleur du Canada.

Canadian Department of Communications Compliance Statement

This Class A digital apparatus meets all requirements of the Canadian Interference Causing Equipment Regulations.

VCCI Statement

> この装置は，情報処理装置等電波障害自主規制協議会（VCCI）の基準 に基づくクラス A 情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ず るよう要求されることがあります。

The following is the translation of the VCCI Japanese statement in the box above．
This is a Class A product based on the standard of the Voluntary Control Council for Interferences by Information Technology Equipment（VCCI）．If this equipment is used in a domestic environment，radio disturbance may arise．When such trouble occurs，the user may be required to take corrective actions．

Safety Notices

Use of Safety Notices

Definitions

Danger indicates the presence of a hazard that has the potential of causing death or serious personal injury.

Caution indicates the presence of a hazard that has the potential of causing moderate or minor personal injury.

Warning indicates an action that could cause damage to a program, device, system, or data.

Placement of Safety Notices Inside This Manual

System safety notices which do not refer to a specific situation are included in these pages.
Any specific safety notices are mentioned inside this manual whenever these must be observed during system operating or handling.

What We Do to Protect the Environment

Your new computer system is implemented following some principles aimed to reduce risks and harm to the environment, considering the impact that products can have during their life cycle: production, transport, installation, use at customer site and disposal at end of life.

- Only materials free from dangerous or polluting additives are used (e.g. polybrominated free material)
- All plastic parts are marked in order to correctly address the recycling operations
- The unit is designed taking into account the requirements for disassembly, largest parts are made of homogeneous material to facilitate recycling and, where possible, sub-assemblies are designed to be reused
- Packing is designed with the intent to reduce environmental impacts
- The unit itself does not produce polluting or dangerous emissions (lubricant, solvent, or other dangerous/polluting substances are not present in the unit)
- Production processes use water-based materials (e.g. paint). For electronic sub-assemblies, either hydro-soluble fluxes (Freon free) or no clean processes are used.

Table of Contents

About This Book iii
Terminology v
Related Publications v
Ordering Publications viii
Standards viii
Communication Statements ix
Communication Statements ix
Federal Communications Commission (FCC) Statement ix
EC Council Directive ix
International Electrotechnical Commission (IEC) Statement ix
Avis de conformité aux normes du ministère des Communications du Canada ix
Canadian Department of Communications Compliance Statement ix
VCCI Statement x
Safety Notices xi
Use of Safety Notices xi
Definitions xi
Placement of Safety Notices Inside This Manual xi
What We Do to Protect the Environment xii
Chapter 1. Overview of Site Preparation 1-1
Overview 1-1
General 1-2
Environmental Requirements 1-2
Fire Protection 1-2
Reception / Unpacking Resources 1-2
Safety \& Regulatory Agency Compliance 1-3
Electrical Outlets 1-4
Branch Circuit Protection 1-4
Checking Electrical Outlets 1-4
Rack Drawer Power Consumption 1-5
Plan for the Future 1-7
Site Layout 1-8
Chapter 2. EPC400 Rack 2-1
EPC400 Rack - Overview 2-1
Additional Powercluster Nodes 2-1
Network External Peripherals for EPC400 Series 2-1
Drawers 2-1
Escala EPC400 Series Specifications 2-3
Rack 400 Specifications 2-3
EPC430 and EPC450 CPU Drawer Specifications 2-4
EPC440 CPU Drawer Specifications 2-5
EPC400 Standards 2-6
System Service Clearances 2-6
Power Cables (Escala EPC400 Series) 2-7
Power Cable - PDU to Drawer 2-7
PDU Plugs 2-7
PDU-User Electrical System Cables (External Supply to PDU) 2-8
Configuration Rules 2-9
Rack Drawer Location: Rack 400 2-11
Example of Configuration 2-13
Rack Power Distribution 2-14
Additional Power Distribution Unit 2-14
Un-interruptible Power Supply (UPS 3 KVA) 2-14
Power Requirements 2-14
Chapter 3. EPC1200 Rack 3-1
Overview 3-1
Network External Peripherals 3-1
Drawers 3-1
EPC1200 Rack Specifications 3-2
System Rack EPC1200/1200A and RL470/470A 3-2
System Rack EPC2400 3-3
Input/Output Rack 3-4
10 EIA Unit I/O Drawer 3-5
7 EIA Unit I/O Drawer 3-6
System Service Clearances 3-7
Noise Emission Notes 3-8
Power Cables (Escala EPC1200/1200A/2400 and RL470/470A) 3-9
-48 V dc Power Cables 3-9
Configuration Rules 3-10
Rack Configuration Rule Policy 3-10
Drawer Location in EPC1200 I/O Rack 3-12
Example of Configurations 3-16
Power Requirements 3-16
Chapter 4. T00 (36U) Rack \& T42 (42U) Rack 4-1
Overview 4-1
T00 (36U) \& T42 (42U) Rack Specifications 4-2
System Rack Specifications 4-2
36U I/O Rack Specifications 4-3
EPC610, PL400R, PL600R CEC Drawer (5 EIA Units) Specifications 4-4
PL 420R Drawer (4 EIA Units) Specifications 4-6
EPC810 and PL800R CEC Drawer (8 EIA Units) Specifications 4-8
PL820R Drawer (8 EIA Units) Specifications 4-10
PL240R Drawer (4 EIA Units) Specifications 4-11
PL220R Drawer (5 EIA Units) Specifications 4-12
I/O Drawer (5 EIA Units) EPC610, PL400R, PL600R, EPC810, PL800R 4-13
D10 I/O Drawer (4 EIA Units) 4-14
D20 I/O Drawer (4 EIA Units) 4-15
System Service Clearances 4-16
Noise Emission Notes 4-17
Rack Drawer Power Consumption 4-17
Configuration Rules 4-18
Drawer Location in T00 Rack 4-19
Drawer Location in T42 Rack 4-31
Chapter 5. Escala PL3200R and PL1600R 5-1
PL3200R Components 5-2
PL1600R Components 5-3
Doors and Covers 5-3
System Movement to the Installation Site 5-4
Power and Electrical Requirements 5-4
PL3200R Phase Imbalance and BPR Configuration 5-5
PL1600R Phase Imbalance and BPR Configuration 5-5
Balancing Power Panel Loads 5-6
Power Cord Configuration 5-8
Checking the Facility Outlets and Power Source 5-8
Dual Power Installation 5-10
Addtional Installation Considerations 5-11
Physical Specifications and Loads 5-11
PL3200R Dimensions and Weight 5-11
PL1600R Dimensions and Weight 5-12
PL3200R System Weights by Configuration 5-12
PL1600R System Weights by Configuration 5-13
PL3200R and PL1600R Acoustical Noise Emissions 5-13
PL3200R and PL1600R Environmental Specifications 5-14
PL3200R Weight Distribution 5-14
PL1600R Weight Distribution 5-17
Plan Views 5-19
Total System Power Consumption 5-20
PL3200R Power Consumption 5-20
PL1600R Power Consumption 5-22
Wattage Addition/Subtraction for Minimum and Maximum Configurations 5-23
Unit Emergency Power Off 5-23
Computer Room Emergency Power Off (EPO) 5-24
Battery Holdup Times 5-25
Guide for Raised-Floor Preparation 5-25
Cutting and Placement of Floor Panels 5-26
Securing the Rack 5-27
Considerations for Multiple System Installations 5-36
Service Clearance 5-38
Cooling Requirements 5-40
PL3200R Cooling Requirements 5-40
PL1600R Cooling Requirements 5-41
Cooling Requirements Graph 5-42
Requirements for the Chilled Air Flow Area 5-43
Hardware Management Console (HMC) 5-44
Chapter 6. Disk Subsystems 6-1
Disk Subsystems - Overview 6-1
Disk Array Storage / Enclosures (DAS - DAE) 6-2
DAS 1300 Rackmount 6-2
DAS 2300/2900 Rackmount (20-Slot RAID Disk Array) 6-3
DAS 3200 Rackmount 6-4
DAS 3500 Rackmount 6-5
DAS 4500 Rackmount 6-6
DAS 4700 Rackmount 6-7
DAS 5300 Rackmount 6-8
DAS 57x0 Rackmount 6-9
DAE 5000 Rackmount 6-10
NDAS CX600 6-11
NDAS CX400 and CX200 6-12
AMDAS JBOD 6-13
Footprint 6-14
SSA 7133 Model 020 6-15
Operational Considerations 6-16
Use of SSA for Disaster Recovery Solutions 6-16
Chapter 7. Tape Subsystems 7-1
Tape Subsystems - Overview 7-1
DLT 4000 7-2
General Parameters 7-2
Power Cord 7-2
DLT 7000 7-3
VDAT Mammoth 8mm Tape Drive 7-4
General Parameters 7-4
Cleaning Procedures 7-4
Chapter 8. Operator Consoles 8-1
Operator Consoles - Overview 8-1
System Console (BQ306) 8-2
Specifications 8-2
Standards 8-2
Working Clearances 8-3
Power Connection 8-3
Signal Connections 8-3
Typical Configuration 8-4
Graphics Display 8-5
Specifications 8-5
Typical Configuration 8-5
Cluster Console (X-terminal "Explora") 8-6
Base \& Power Supply 8-6
Standards 8-6
X-terminal (17-inch) 8-7
Standards 8-7
Working Clearances 8-8
Power Connection 8-8
Signal Connections 8-8
Typical Configuration 8-9
PowerConsole 8-11
PowerConsole (Escala S Series) 8-11
Monitor 8-12
Standards 8-14
Chapter 9. Network External Peripherals 9-1
Network External Peripherals - Overview 9-1
Fast Ethernet Switch 3000 9-2
Specifications 9-2
1GB Ethernet Switch 9300 9-3
Specifications 9-3
SilkWorm 2000 Brocade Switch 9-4
SilkWorm 2010/2040/2050 Switch Specifications 9-4
FC-AL Hub 9-5
Specifications 9-5
Ethernet Hub 9-6
Specifications 9-6
Vixel 1000 Hub 9-7
Specifications 9-7
Console Concentrator 9-8
CS/2600 Specifications 9-8
PortServer Specifications 9-9
Micro-Modem 9-10
Chapter 10. Site Interconnections 10-1
Site Interconnections 10-1
Site Interconnection Examples 10-1
Appendix A. Conversion Tables A-1
Conversion Tables - Overview A-1
English to Metric A-1
Metric to English A-1
Celsius to Fahrenheit Conversion A-2
Fahrenheit to Celsius Conversion A-2
Appendix B. Service Inspection B-1
Service Inspection - Overview B-1
Glossary G-1
Index X-1

$\overline{\text { Chapter 1. Overview of Site Preparation }}$

Introduces the need for careful site preparation.

Overview

Details in:

- General, on page 1-2.
- Fire Protection, on page 1-2.
- Safety \& Regulatory Agency Compliance, on page 1-3.
- Electrical Outlets, on page 1-4.
- Rack drawer Power Consumption, on page 1-5.
- Plan for the Future, on page 1-7.
- Site Layout, on page 1-8.

General

The extent of site preparation tasks depends upon the size and complexity of the system. This document, concerned with single and multiple rack systems, assumes preparation for complex installations, but the guidelines apply equally to small systems.
Installations must provide:

- a level of security (for both personnel and material) demanded by the Standards and the Laws in force in the country where system is to be used
- the continuity of service required by the client, in accordance with the advice of Bull engineers, for reasons of hardware reliability.
Assign a local coordinator to evaluate dependencies and compromises and to interface with the system supplier's representative.
Note: It is wise to anticipate future expansion when making provision for working space, power requirements, data connections and operating conditions.

Environmental Requirements

The data-processing environment needs to provide optimal operational conditions. General information concerning the the physical attributes of the building, air conditioning and electrical installation are described in the General Guide to Data Processing Site Preparation which is available on-line, via the Web.
URL address is:
http:/bbs.bull.net/aise

Fire Protection

The importance of fire protection for a computer installation cannot be overstated. If a fire is detected quickly enough, it can be extinguished before any serious damage is caused to the system.
To contain the continuity of service demanded, fire protection must be established to the level required by the client's fire insurance contract.

Reception / Unpacking Resources

Anticipate additional resources for unpacking and movement of racks and drawer-mounted sub-systems.

Certain hardware items exceed 50 kg in weight. Use assistance when lifting and moving equipment.

When moving racks a minimum of three people are required. Avoid ramps with an angle of more than 20°.

Safety \& Regulatory Agency Compliance

Identification	Conformance	Certification	Comments
Electrical and Environmental Requirements			
Power			
EN 60950	Y	Y	Product ranking
IEC 555-2	Y	Y	
Safety Standards			
UL 1950	Y	Y	Underwriters Laboratories
CSA C22.2 No. 950-M89	Y	Y	
EN 60950 (1992 + A1 1993)	Y	Y	European Norm
IEC 950 Edition 1	Y	Y	International Electrotechnical Commission
European Directive 73/23/EEC	Y	Y	CE Marking
EMC/EMI			Disturbances produced by devices
FCC CFR47 Class A	Y	Y	US
CSA C108.8 Class A	Y	Y	Canada
VCCI Class A	Y		Japan
EN 55022 (1988) Class A	Y	Y	Europe
CISPR 22 Class A	Y	Y	Taiwan
European Directive 89/336/EEC	Y	Y	CE Marking
Susceptibility to External Electromagnetic Disturbance			
EN 61000-4-2	Y	Y	Electrostatic discharges
EN 61000-4-3	Y	Y	Radiated, radio frequency, electromagnetic field
EN 61000-4-4	Y	Y	Electrical fast transient/burst
EN 61000-4-5	Y	Y	Surge immunity test
EN 61000-4-6	Y	Y	Conducted disturbances induced by radio frequency fields
EN 61000-4-11	Y	Y	Voltage dips, short interruptions and voltage variations
EN 61000-3-2	Y	Y	Limits for harmonic current emissions
EN 61000-3-3	Y	Y	Limitation of voltage fluctuation and flicker
European Directive 89/336/EEC	Y	Y	CE Marking
Acoustic Noise			
ISO 7779			Reference
C012C Class 2	Y		
Mechanical Constraints			
IEC 68-2			Reference
C013C class 1	Y		Bull standard
Packing and Packaging			
$\begin{aligned} & \text { ISO 780, 2234, 2248, 3676, 4180-2, } \\ & 4189-2 \end{aligned}$	Y		
C138C	Y		Bull standard: Packaging configuration and labels
European Directives			
73/23/EEC	Y	Y	
89/336/EEC	Y	Y	

Electrical Outlets

Branch Circuit Protection

Building installation shall be provided with a protective device for short-circuit and over-current protection. Provide a two-pole circuit breaker with a 32A current rating for this purpose.

Checking Electrical Outlets

Before installing equipment on a site or after any mains power cabling modifications, check the electrical outlets as follows.

CAUTION:
Do not touch the receptacle or the receptacle faceplate with anything other than your test probes.

Note: All measurements are made with the receptacle faceplate in the normal installed position.

Some receptacles are enclosed in metal housings. On receptacles of this type, perform the following steps:
a. Check for less than 1 V from the receptacle case to any grounded metal structure in the building, such as a raised-floor metal structure, water pipe, building steel, or similar structure.
b. Check for less than 1 V from receptacle ground pin to a grounded point in the building.

Note: If the receptacle case or faceplate is painted, be sure the probe tip penetrates the paint and makes good electrical contact with the metal.
c. Check the resistance from the ground pin of the receptacle to the receptacle case. Check resistance from ground pin to building ground. The reading should be less than 1.0Ω, which indicates the presence of a continuous grounding conductor.
If any of the three checks made in the previous sub-step are not correct, remove the power from the electrical outlet and make the wiring corrections. Then, check the receptacle again.
Note: To measure grounding resistance use tool tester such as CGM 30 (Sefelec), SK 21 (ETL) and GT-02 (ABAG). Do not use the digital multimeter.
Check for infinite resistance between the ground pin of the receptacle and each of the phase pins. This is a check for a wiring short to ground or a wiring reversal.
Check for infinite resistance between the phase pins. This is a check for a wiring short.

CAUTION:

If the reading is other than infinity, do not proceed! Have the user make necessary wiring corrections before continuing. Do not turn on the branch circuit CB until all the above steps are satisfactorily completed.

Measure for appropriate voltages between phases. If no voltage is present on the receptacle case or grounded pin, the receptacle is safe to touch.
With an appropriate meter, verify that the voltage at the outlet is correct.
Verify that the grounding impedance is correct by using the ECOS 1020, 1023, B7106, C7106, or an appropriately approved ground impedance tester.
Note: Do not use the mains power (convenience) outlets inside a machine to power the tester.

Rack Drawer Power Consumption

Typically the first drawers in any configuration are the UPS, when requested, and the PDU. Once the UPS is inserted in a configuration, look for total power drawn from all the drawers that should not exceed UPS capability. The following table specifies power consumption of the drawers.

System Unit or Device	Power Source Loading (Typical in kVA)	Voltage range (Vac)	Power Requirement (Typical in Watts)
PL240R	0.75	100 to 127 or 200 to 240 (single phase)	350 (minimum load) 670 (maximum load)
PL220R	0.31	100 to 127 or 200 to 240 (autoranging)	300
EPC400-CPU drawer	0.748	200 to 245	-
EPC430-CPU drawer	0.748	200 to 245	-
EPC440-CPU drawer	0.46	200 to 240	434
EPC450 - CPU drawer	0.748	200 to 245	-
PL400R CEC I/O drawer Disk drawer	$\begin{gathered} - \\ 0.32 \\ 0.23 \\ 0.43 \\ \hline \end{gathered}$	$\begin{gathered} 200 \text { to } 240 \\ 200 \text { to } 240 \\ 90 \text { to } 260 \end{gathered}$	$\begin{aligned} & - \\ & 300 \\ & 220 \\ & 330 \end{aligned}$
PL420R Base	0.348	200 to 240	330
EPC610 CEC I/O drawer Disk drawer	$\begin{aligned} & - \\ & 0.32 \\ & 0.23 \\ & 0.43 \end{aligned}$	$\begin{gathered} 200 \text { to } 240 \\ 200 \text { to } 240 \\ 90 \text { to } 260 \end{gathered}$	$\begin{gathered} - \\ 300 \\ 220 \\ 330 \end{gathered}$
PL600R CEC I/O drawer Disk drawer	$\begin{gathered} - \\ 0.32 \\ 0.23 \\ 0.43 \\ \hline \end{gathered}$	$\begin{gathered} 200 \text { to } 240 \\ 200 \text { to } 240 \\ 90 \text { to } 260 \end{gathered}$	$\begin{aligned} & - \\ & 300 \\ & 220 \\ & 330 \end{aligned}$
EPC800 - CPU drawer	1.1	90 to 137 or 180 to 253 (autoranging)	1000
EPC810 CEC I/O drawer Disk drawer	$\begin{gathered} - \\ 0.39 \\ 0.23 \\ 0.43 \end{gathered}$	$\begin{gathered} 200 \text { to } 240 \\ 200 \text { to } 240 \\ 90 \text { to } 260 \end{gathered}$	$\begin{gathered} - \\ 370 \\ 220 \\ 330 \end{gathered}$
PL800R CEC I/O drawer Disk drawer	$\begin{gathered} - \\ 0.39 \\ 0.23 \\ 0.43 \end{gathered}$	$\begin{gathered} - \\ 200 \text { to } 240 \\ 200 \text { to } 240 \\ 90 \text { to } 260 \end{gathered}$	$\begin{aligned} & 370 \\ & 220 \\ & 330 \end{aligned}$
PL820R Base I/O drawer Disk drawer	$\begin{gathered} - \\ 1.126 \\ 1.35 \\ 0.43 \end{gathered}$	$\begin{gathered} - \\ 200 \text { to } 240 \\ 200 \text { to } 240 \\ 90 \text { to } 260 \end{gathered}$	$\begin{gathered} - \\ 1070 \\ 135 \\ 330 \end{gathered}$
$\begin{aligned} & \text { EPC1200/1200A } \\ & \text { CEC rack } \\ & \text { I/O rack } \\ & \text { I/O drawer } \\ & \text { (EPC1200/1200A) } \end{aligned}$	$\begin{gathered} 1.887 \\ \text { up to } 4.8 \text { per PDU } \\ 0.52 \end{gathered}$	200 to 240	$\begin{gathered} 1774 \\ 900 \end{gathered}$
EPC2400 CEC rack I/O rack I/O drawer	$\begin{gathered} 1.887 \\ 4.8 \text { per PDU } \\ 0.4 \end{gathered}$	200 to 240	$\begin{gathered} 1774 \\ - \\ 360 \end{gathered}$
EPC2450 CEC rack I/O rack I/O drawer	$\begin{gathered} 2.129 \\ - \\ - \end{gathered}$	$\begin{gathered} 200 \text { to } 240 \\ - \\ - \end{gathered}$	$\begin{gathered} 2023 \text { (max) } \\ - \\ - \end{gathered}$

System Unit or Device	Power Source Loading (Typical in kVA)	Voltage range (Vac)	Power Requirement (Typical in Watts)
PL1600R	15.4 (max)	$\begin{gathered} 200 \text { to } 240 \\ 380 \text { to } 415 \\ 480 \end{gathered}$	-
PL3200R	15.0 (max)	$\begin{gathered} 200 \text { to } 240 \\ 380 \text { to } 415 \\ 480 \end{gathered}$	-
DAS1300 - Rack unit	0.6 (max)	$\begin{aligned} & 100 \text { to } 240 \\ & \text { (autoranging) } \end{aligned}$	575
DAS2900 - Rack unit	0.9 (max)	$\begin{gathered} 100 \text { to } 240 \\ \text { (autoranging) } \end{gathered}$	880
DAS3200 - Rack unit	1.05 (max)	200 to 240 (autoranging)	1000
DAS3500 - Rack unit	1.2 (max)	$200 \text { to } 240$ (autoranging)	1150
DAS4500: DPE Enclosure rackmount	0.4 (max)	90 to 264 (autoranging)	392
DAS4700: DPE Enclosure rackmount	-	90 to 264	-
DAS5700: DPE Enclosure rackmount	0.4 (max)	$\begin{gathered} 90 \text { to } 264 \\ \text { (autoranging) } \end{gathered}$	392
DAS4500: DAE Enclosure rackmount	0.4 (max)	$\begin{gathered} 90 \text { to } 264 \\ \text { (autoranging) } \end{gathered}$	392
DAS5700: DAE Enclosure rackmount	0.4 (max)	$\begin{gathered} 90 \text { to } 264 \\ \text { (autoranging) } \end{gathered}$	392
DAS5300: iDAE Enclosure rackmount	0.4 (max)	90 to 264 (autoranging)	392
DAS5300: DAE Enclosure rackmount	0.4 (max)	90 to 264 (autoranging)	392
DAE5000: DAE Enclosure rackmount	0.4 (max)	$\begin{gathered} 90 \text { to } 264 \\ \text { (autoranging) } \end{gathered}$	392
CX600	-	90 to 264 (autoranging)	510
CX400		90 to 264 (autoranging)	618
CX200		90 to 264 (autoranging)	618
SSA - Rack unit	0.657	$\begin{gathered} 90 \text { to } 260 \\ \text { (autoranging) } \end{gathered}$	657
DLT4000/DLT7000 Rack unit	-	$\begin{aligned} & 100 \text { to } 240 \\ & \text { (autoranging) } \end{aligned}$	50
DLT8000E - Tabletop	-	$\begin{aligned} & 100 \text { to } 240 \\ & \text { (autoranging) } \end{aligned}$	56 (max)
Storage Plus Drawer	0.43	90 to 260	330

Plan for the Future

Make sure you have an adequate number of proper telephone plugs, grounded electrical outlets for your system, display console and any other options you intend to install.

Other factors should be considered:

- Allow for future expansion. Even if the infrastructure in place can handle the site's immediate needs, what are the future plans? It is always much easier to provide enough space, power, air conditioning capacity in advance than it is to add it later.
- Create a storage area for documents and media files.

Site Layout

It is recommended to prepare a layout plan for the site map.
The grid shown in Figure 1 is designed to help you. Each square of the grid represents a standard raised floor panel which is 60 cm square. The scale of this grid is $1 / 50$, i.e. $2 \mathrm{~cm}=$ 1 meter.
The layout plan should show:

- where the system and its peripheral devices are to be located,
- the passage of cables,
- any extension cables,
- the locations of modems (if required by the configuration),
- the storage cabinets.

For the dimensions of the system and its peripheral devices, refer to Clearance Footprints (Figures), in this document.

Take care to leave at least 1.5 meters free space (3 standard raised floor panels) at the rear of system racks to facilitate installation and maintenance activities.

Note: Site layout plans will be required by the rack supplier's installation team.

Scale 1:50
Figure 1. Site Layout Plan

Chapter 2. EPC400 Rack

Describes requirements for the ESCALA EPC400, EPC430, EPC440 and EPC450 series of machines.

EPC400 Rack - Overview

- Specifications, on page 2-3.
- System Service Clearances, on page 2-6.
- Power cables (EPC400 Series), on page 2-7.

The Rack 400 configuration must respect certain rules. Rule principles are detailed in:

- Rack Configuration Rule Policy, on page 2-9.
- Rack Drawer Location, on page 2-11.
- Example Configuration, on page 2-13.
- Rack Power Distribution, on page 2-14.

Additional Powercluster Nodes

Additional nodes can be added. The node type is EPC4XO-N.
Node features are identical to that of the EPC4X0 models.

Network External Peripherals for EPC400 Series

Include:

- Fast Ethernet Switch 3000, on page 9-2.
- 1 Gigabit Ethernet Switch 9300, on page 9-3
- Brocade Switch, on page 9-4.
- FC-AL Hub, on page 9-5.
- Ethernet Hub (Administration), on page 9-6.
- Vixel Hub, on page 9-7.
- Console concentrator, on page 9-8.
- Modem, on page 9-10.

Drawers

Include:

- CPU drawer
- DAS 1300
- DAS 2900 drawer
- DAS 3200 drawer
- DAS 3500 drawer
- DAS 4500 drawer
- DAS 4700 drawer
- DAS 5300 drawer
- DAS 57x0 drawer
- SSA drawer
- Overland drawer
- VDAT Mammoth
- DEE 5000 drawer
- PCI Expansion drawer

Mounting of equipment drawers requires the assistance of 2 or 3 persons and the use of a Caution special tool (supplied). Keep this tool on site.

Escala EPC400 Series Specifications

Rack 400 Specifications

EPC430 and EPC450 CPU Drawer Specifications

EPC440 CPU Drawer Specifications

EPC400 Standards

The rack system complies with the following standards:

Hardware

- EMC-CISPR 22 Class A
- VDE871-2 Class A
- FCC CFR47 Class A
- VCCI Class A
- Safety: EN60950 / IEC950-CSA950 - UL1950.

Electrical

Power International Standard

IEC 555-2 (IEC 1000-3-2).

CE Directives

The system is also compliant with the following European directives:

- 73/23/EEC
- 89/336/EEC and 92/31/EEC
- 93/68/EEC.

System Service Clearances

The amount of space you should leave around the rack system, including the space needed for maintenance and service operations, is indicated by the broken lines.

$$
\begin{array}{ll}
\text { A (front side) } & 39 \mathrm{in.} .(1000 \mathrm{~mm}) \\
\mathrm{B} \text { (rear side) } & 59 \mathrm{in.}(1500 \mathrm{~mm}) .
\end{array}
$$

Power Cables (Escala EPC400 Series)

To avoid electrical shock, the manufacturer provides a power cable with a grounded attachment plug. Use only properly grounded outlets.

Two power cord levels exist:

- The first one is between each drawer and the PDU
- The second one is between the PDU and the external electrical system.

Power Cable - PDU to Drawer

The power cord connecting each drawer to the PDU presents the following characteristics:
Length: 2.5 meters
Voltage rating: $\quad 250 \mathrm{~V}$
Frequency: $\quad 50 / 60 \mathrm{~Hz}$
Standard: IEC 320 C13 and C14
Current rating: 10 A

Male Plug Characteristics

The power cord male plug is an IEC 320-C14 10A 250 V connector.

Female Plug Characteristics

The power cord female plug is an IEC 320-C13 10A 250 V connector.

PDU Plugs

The PDU distributes the power from a male plug to 8 female plugs.

Male Plug Characteristics

Voltage rating: 250 V
Standard: IEC 30932 A. 250V 3 pin for a European plug
NEMA HUK-2 50 A. 250 V for a North American plug

Female Plug Characteristics

The 8 female plugs on PDU have a current of 8 A for each.
The Maximum total output current capability is 29.5 A (RMS).
Voltage rating: 250 V
Standard: IEC 320-C13 10 A. 250 V

PDU-User Electrical System Cables (External Supply to PDU)

North American Power Cable

Female Plug Characteristics

The US power cord female plug is a NEMA HUK-2 250 V 50 A. plug.
Pin-Out Information

European Power Cable

Female Plug Characteristics
The power cord female plug is an IEC 309250 V 32 A. plug.
Pin-Out Information

Configuration Rules

The following provides for the rules involved with drawer mounting inside a 19 " 36 U rack.

- The 19" Rack is divided in several areas, each of them of a predefined height expressed in U (one U is 44.45 mm).

Area Number	Area Height	Starts at U\#	Ends at U\#
$\mathbf{1}$	2 U	1	2
$\mathbf{2}$	2 U	3	4
$\mathbf{3}$	2 U	5	6
$\mathbf{4}$	4 U	7	10
$\mathbf{5}$	4 U	11	14
$\mathbf{6}$	4 U	15	18
$\mathbf{7}$	2 U	19	20
$\mathbf{8}$	4 U	21	24
$\mathbf{9}$	4 U	25	28
$\mathbf{1 0}$	4 U	29	32
$\mathbf{1 1}$	4 U	33	36

Table 1. Rack Configuration Rules (EPC400)

- Each drawer is characterized by its own U height.

Note: Each drawer is affected by a priority. This attribute is useful during the configuration phase.

- The criteria used to assign a priority to a drawer are:
- Drawer height
- Drawer weight. See drawer weights in Table .

So, a $12 \mathrm{U}, 20 \mathrm{Kg}$ drawer will have a higher priority than a $8 \mathrm{U}, 30 \mathrm{~kg}$ one.

- CPU drawer is an exception to this. Its priority, especially for the first CPU drawer, is based on its media accessibility: floppy, disk, tape, CD-Rom, and operator panel. Therefore a CPU drawer is always placed at a convenient height.
- An additional rack is generated when there is no room left that suits to the remaining drawers.
- 8 U are reserved for the pair (CPU drawer and PCI Expansion drawer). In some cases, the expansion drawer can be above or below the CPU drawer.
- In case of more than 8 connections, an additional PDU is needed.
- For mechanical stability, it is advised to start loading from the bottom, if possible.
- The list of all available drawers that can be put inside the rack is specified in the following section.

Figure 2 depicts the rack area assignment.
Note: Area 7 is reserved for cabling.

Figure 2. Rack Area Assignment

Rack Drawer Location: Rack 400

To establish location of drawers inside a rack, follow location rules given in the following table. Then, in compliance with priorities, assign for each drawer its own location. It is important to recall that more than one rack may compose a Powercluster.

Notes:

1. Two yellow mechanical parts should be put on the rear side of the rack at area U14 \& on the front side of the rack at area U19.
2. Cabling may limit the number of drawers in a rack.
3. Even if an area is not fully filled, the remaining space must be kept free.

$\begin{array}{\|l} \hline \text { Prio } \\ \text { rity } \end{array}$	Drawer	$\begin{array}{\|l} \hline \text { Heig } \\ \text { ht } \end{array}$	1st Pos.	2nd pos.	$\begin{array}{\|l\|} \hline \text { 3rd } \\ \text { Pos. } \end{array}$	$\begin{array}{\|l\|} \hline \text { 4th } \\ \text { Pos. } \end{array}$	5th pos.	6th Pos.	7th Pos.	$\begin{aligned} & \text { 8th } \\ & \text { Pos. } \end{aligned}$	$\begin{aligned} & \text { 9th } \\ & \text { Pos. } \end{aligned}$	$\begin{aligned} & \text { 10th } \\ & \text { Pos. } \end{aligned}$
1	integrated PDU	$\begin{aligned} & 2 \mathrm{U} \\ & \text { rear } \end{aligned}$	1-2									
2	Add. 'I PDU	$\begin{aligned} & 2 \mathrm{U} \\ & \text { rear } \end{aligned}$	3-4									
3	PCI Expansion + CPU drawer	8U	21-28	11-18	3-10							
4	PCI 430/450 Expansion + CPU drawer	8U	21-28	11-18	3-10							
5	EPC 440	8U	21-28	11-18	3-10							
6	CPU 400 drawer	4U	21-24	25-28	15-18	11-14	7-10	3-6				
7	PCI 400 Exp. drawer	4U	21-24	25-28	15-18	11-14	7-10	3-6				
8	CPU 430/450 drawer	4U	21-24	25-28	15-18	11-14	7-10	3-6				
9	PCI 430/450 Exp. drawer	4U	21-24	25-28	15-18	11-14	7-10	3-6				
10	EPC 440 Add'I	8U	21-28	11-18	3-10							
11	DAS 3200-3500	12 U	3-14	7-18	21-32	25-36						
12	DAS 2900	8U	3-10	7-14	11-18	29-36						
13	DAS 1300	6U	5-10	11-16	29-34							
14	$\begin{aligned} & \hline \text { SPS/DAS 5300/ 2DAE } \\ & 5000 \end{aligned}$	13U	5-17	21-33								
15	$\begin{aligned} & \text { SPS/DAS 5300/ 1DAE } \\ & 5000 \end{aligned}$	9 U	5-13	25-33	15-23							
16	SPS/DAS 5300	5 U	5-9	11-15	29-33	21-25						
17	SSA	4U	3-6	7-10	11-14	15-18	25-28	29-32				
18	LXB4000/7000	4U	15-18	11-14	29-32	33-36	7-10	3-6				
19	LXB \& LXG	8U	11-18	29-36								
20	DLT4000/7000	4U	3-6	7-10	11-14	15-18	25-28	29-32	33-36			
21	VDAT Mammoth	3 U	3-5	7-9	11-13	15-17	25-27	29-31	33-35			
22	SPS/DPE5700/4500 6DAE5000	32U	5-36									
23	SPS/DPE5700/4500 5DAE5000	28U	5-32									
24	SPS/DPE5700/4500 4DAE5000	24U	5-28									
25	SPS/DPE5700/4500 3DAE5000	20 U	5-24									
26	SPS/DPE5700/4500 2DAE5000	16U	priority \#26 is the application of priorities \#27 and \#29									
27	$\begin{aligned} & \hline \text { SPS/DPE5700/ } \\ & \text { 1DAE5000 } \end{aligned}$	12U	5-16	21-32								

28	SPS/DPE5700	8 U	$7-14$	$21-28$	$25-32$	$29-36$						
29	DAE5000	4 U	$11-14$	$15-18$	$21-24$	$25-28$	$29-32$	$33-36$	$3-6$	$7-10$		
30	FC-AL Hub / Vixel	1 U rear	$15-15$	$29-29$	$33-33$	$5-5$	$7-7$	$11-11$	$21-21$	$25-25$	$3-3$	
31	 Cluster Hub	4 U	$11-14$	$15-18$	$3-6$	$7-10$	$29-32$	$33-36$	$21-24$	$25-28$		
32	Console Concentr.	4 U	$11-14$	$15-18$	$3-6$	$7-10$	$29-32$	$33-36$	$21-24$	$25-28$		
33	Switch FC 8-Port	1 U	position 5-5 to 36-36 exept 19 \& 20									
34	Switch FC 16-Port	2 U rear	$17-18$	$27-28$	$31-32$	$13-14$	$9-10$	$5-6$				
35	Fast Eth Switch	2 U rear	$5-6$	$9-10$	$13-14$	$17-18$	$27-28$	$31-32$				
36	Gigabit Eth Switch	2 U rear	$5-6$	$9-10$	$13-14$	$17-18$	$27-28$	$31-32$				
37	Cluster Hub	2 U rear	$5-6$	$7-8$	$11-12$	$17-18$	$25-26$	$29-30$	$33-34$	$3-4$		
38	Cons. Conc 16-Port	2 U	$5-6$	$7-8$	$11-12$	$17-18$	$25-26$	$29-30$	$33-34$			
39	Cons. Conc \& cluster Hib	2 U	$5-6$	$7-8$	$11-12$	$17-18$	$25-26$	$29-30$	$33-34$			
40	Bridge FC	1 U rear	$15-15$	$29-29$	$33-33$	$5-5$	$7-7$	$11-11$	$21-21$	$25-25$	$3-3$	
41	Rack Content Specify	4 U	$11-14$	$15-18$	$3-6$	$7-10$	$29-32$	$33-36$	$21-24$	$25-28$		
42	Rack Content Specify	2 U	$5-6$	$7-8$	$11-12$	$17-18$	$25-26$	$29-30$	$33-34$	$3-4$	$3-3$	
43	Rack Content Specify	1 U	$15-15$	$29-29$	$33-33$	$5-5$	$7-7$	$11-11$	$21-21$	$25-25$	$3-3$	

Table 2. Drawer priority and positions in the rack EPC400

Example of Configuration

36	CS2600	LXG4000/7000			DAS 3X00	DAS 2900	36
35			Cluster Hub				35
34							34
33				BRIDGE FC			33
32	SSA	LXB	SSA	CS2600			32
31							31
30							30
29							29
28	PCI Expansion	PCI Expansion	EPC440 CPU	PCI Expansion			28
27							27
26							26
25							25
24	EPC400 CPU	EPC400 CPU		EPC400 CPU	EPC400 CPU	EPC400 CPU	24
23							23
22							22
21							21
20							20
19							19
18	EPC400 CPU	DAS 2900	EPC440 CPU	VDAT Mammoth	Switch FC	PCI Expansion	18
17							17
16							16
15					FC-AL Hub		15
14	DAS 2900			DAS 3X00	DAS 3X00	EPC400 CPU	14
13							13
12							12
11							11
10		DAS 2900	DAS 1300				10
9							9
8							8
7						DAS 2900	7
6						DAS 200	6
5							5
4	Add' L PDU						4
3							3
2	PDU	PDU	PDU	PDU	PDU	PDU	2
1	PDU		PDU	PDU	PDU	PDU	1

Figure 3. Rack Configuration Example: EPC400

Rack Power Distribution

Additional Power Distribution Unit

An additional PDU (Power Distribution Unit) is required in a rack:

- if the number of drawer power cords is greater than 8. See Power Cables (Escala EPC400 Series), on page 2-7.
- to ensure redundant AC distribution only if drawers have redundant Power Supplies and two power cords.

How to Calculate the Number of Drawer Power Cords Per Rack
Rack per rack, take the drawers installed in the rack (only from the drawer types in table), and calculate the number of power cords. If the total number of power cords is greater than 6, configure an additional PDU for this rack or move drawers from this rack to another.
Repeat this operation for each rack.

Drawers with Redundant Power Supplies and Two Power Cords

The drawers having redundant power supplies and two power cords are: DAS5700, SSA.
Two cases are possible:

- without Power fault tolerance = 2 PDU
- with Power fault tolerance = 2 PDU + 1 UPS (1 PDU is supported by the UPS).

Un-interruptible Power Supply (UPS 3 KVA)

There is at most one UPS per rack.
An UPS 3 KVA can support a certain number of drawers. The maximum of drawers depends on the type and number of drawers. Use the table to calculate the number and type of drawers that can be supported by one UPS 3 KVA (3000 VA).

Notes:

1. All drawers being supported by the UPS should be placed in the same rack as the UPS.
2. Take care about the number of PDU ports.

Power Requirements

See Rack Drawer Power Consumption, on page 1-5.

Chapter 3. EPC1200 Rack

Describes requirements for the ESCALA EPC1200, EPC1200A, EPC2400 and EPC400 series of machines.

Overview

- Escala EPC1200/1200A/2400/400 \& RI470/470A Model Specifications, on page 3-2.
- System Service Clearances, on page 3-7.
- Power cables, on page 3-9.

The Powercluster rack configuration must respect certain rules.
Rule principles are detailed in:

- Rack Configuration Rule Policy, on page 3-10.
- Rack Drawer Location, on page 3-12.
- Example Configuration, on page 3-16.

Network External Peripherals

Include:

- Fast Ethernet Switch 3000, on page 9-2.
- 1GB Ethernet Switch 9300, on page 9-3.
- Brocade Switch, on page 9-4.
- FC-AL Hub, on page 9-5.
- Ethernet Hub (Administration), on page 9-6.
- Vixel Hub, on page 9-7.
- Console concentrator, on page 9-8.
- Micro-Modem, on page 9-10.

Drawers

 Include:- I/O Drawer
- Overland DLT4000/7000 Library
- Storagetek Library
- DAS 2900 / 3200
- DAS 3500
- SSA
- DAS 4500
- DAS 4700
- DAS 5300
- DAS 5300
- DAS 5700
- DAE 5000

EPC1200 Rack Specifications

This section contains specifications for the Escala EPC1200/1200A/2400 and RL470/470A models.
The mechanical packaging, cooling, power supply, and environmental requirements for the System Rack are shown in the following tables:

System Rack EPC1200/1200A and RL470/470A

Dimensions Height 1577 mm 62.0 in. Width 567 mm 22.3 in. Depth 1041 mm 40.9 in. Weight Minimum (Configuration dependant) 400 kg 880 lbs.

Electrical

Power source loading
(maximum in kVA)
Voltage range (V ac) 200 to 240
Frequency (hertz) 50 - 60
Voltage range (V dc)
-40 to -60
Thermal output (Maximum)
1.7 kW (5796 BTU/hr)

Power requirements (Maximum)
1698 watts
Power factor
0.9

Inrush current ${ }^{3}$
102 amps

| Maximum altitude | 2135 m (7000 ft.) |
| :--- | :---: | :---: |
|
 Temperature Range 4 Operating Non-Operating
 10 to $37.8^{\circ} \mathrm{C}$ 1 to $60^{\circ} \mathrm{C}$
 $\left(50\right.$ to $\left.100^{\circ} \mathrm{F}\right)$ $\left(34\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ | |

	Operating	Non-Operating
Humidity (Noncondensing)	8 to 80%	8 to 80%
Wet Bulb Requirements ${ }^{5}$	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$

Noise Emissions ${ }^{1,2}$	Operating	Idle
$\mathrm{L}_{\text {WAd }}$	7.0 bels	7.0 bels
$\mathrm{L}_{\text {pAm }}$	N / A	N / A
$<\mathrm{L}_{\text {pA }}>\mathrm{m}$	N / A	N / A
Impulsive or prominent $^{\text {discrete tones }}$	No	No

Clearances See System Service Clearances, on page 3-7.

Install/Air Flow	Maintenance of a proper service clearance should allow proper air flow		
Service 6 $915 \mathrm{~mm}(36 \mathrm{in})$ $915 \mathrm{~mm}(36 \mathrm{in})$ $915 \mathrm{~mm}(36 \mathrm{in})$ $915 \mathrm{~mm}(36 \mathrm{in})$		$>.$	
:---			

System Rack EPC2400

Dimensions		
Height	1577 mm	62.0 in.
Width	567 mm	22.3 in.
Depth	1041 mm	40.9 in.

Weight Minimum (Configuration dependant)	400 kg	880 lbs.

Electrical	
Power source loading	2.129 kVA
(maximum in kVA)	200 to 240
Voltage range (V ac)	$50-60$
Frequency (hertz)	$6904 \mathrm{BTU} / \mathrm{hr}$
Thermal output (Maximum)	2023 watts
Power requirements (Maximum)	0.92 to 0.98
Power factor	43 amps

Maximum altitude	$2135 \mathrm{~m}(7000 \mathrm{ft})$.

	Operating	Non-Operating
Temperature Range ${ }^{4}$	10 to $37.8^{\circ} \mathrm{C}$	1 to $60^{\circ} \mathrm{C}$
	$\left(50\right.$ to $\left.100^{\circ} \mathrm{F}\right)$	$\left(34\right.$ to $\left.140^{\circ} \mathrm{F}\right)$

	Operating	Non-Operating
Humidity (Noncondensing)	8 to 80%	8 to 80%
Wet Bulb Requirements ${ }^{5}$	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$

Noise Emissions ${ }^{1,2}$	Operating	Idle
$L_{\text {WAd }}$	7.0 bels	7.0 bels
$L_{\text {pAm }}$	N / A	N / A
$<L_{p A}>_{m}$	$\mathrm{~N} / \mathrm{A}$	N / A
$I_{\text {mpulsive or prominent }}$	No	No
discrete tones		

Clearances See System Service Clearances, on page 3-7.

Install/Air Flow	Maintenance of a proper service clearance should allow proper air flow		
Service ${ }^{6}$	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$

Notes:

1. See "Noise Emission Notes" on page 4-17 for definitions of noise emissions positions.
2. Noise emissions data are based on a system with the doors closed.
3. Inrush currents occur only at initial application of power, no inrush occurs during normal power off-on cycle.
4. The upper limit of the dry bulb temperature must be derated 1 degree C per 137 m (450 ft .) above 1295 m (4250 ft.)
5. The upper limit of the wet bulb temperature must be derated 1 degree C per 274 m (882 ft.) elevation above $1370 \mathrm{~m}(4500 \mathrm{ft}$.)
6. The use of the PCI SSA Multi-Initiater/RAID EL in the I/O Drawer limits the system usage to a $28^{\circ} \mathrm{C}\left(82^{\circ} \mathrm{F}\right)$.

Input/Output Rack

Dimensions	1577 mm	62.0 in.
Height	650 mm	25.5 in.
Width	1019 mm	40.1 in.

Weight Minimum (Configuration dependant)	159 kg	349 lbs.

Clearances	Front	Back	Left	Right

Install/Air Flow Maintenance of a proper service clearance should allow proper air

Service 6	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$

Dimensions		
Height	440.0 mm	17.3 in.
Width	443.2 mm	17.5 in.
Depth	843.2 mm	33.2 in.
Weight		
Minimum Configuration	89 kg	195 lbs.
Maximum Configuration	93 kg	205 lbs.

Electrical	AC
Power source loading	0.4
(typical in kVA)	
Power source loading	1.0
(maximum in kVA)	200 to 240 (autoranging)
Voltage range (V ac)	$50-60$
Frequency (hertz)	1228 BTU/hr
Thermal output (typical)	$3071 \mathrm{BTU} / \mathrm{hr}$
Thermal output (maximum)	360 watts
Power requirements (typical)	900 watts
Power requirements (maximum)	0.9
Power factor	170 amps
Inrush current 3	$2135 \mathrm{~m}(7000 \mathrm{ft}$.)

Temperature Range ${ }^{4}$	Operating	Non-Operating
	10 to $40^{\circ} \mathrm{C}$	1 to $52^{\circ} \mathrm{C}$
	$\left(50\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	$\left(34\right.$ to $\left.125.6^{\circ} \mathrm{F}\right)$

Humidity (Noncondens-	Operating	Non-Operating
ing)		
Without tape drive	8 to 80%	8 to 80%
With tape drive	20 to 80%	20 to 80%
Wet Bulb Requirements		
Without tape drive	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$
With tape drive	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$

Noise Emissions ${ }^{1,2}$	Operating	Idle
$L_{\text {WAd }}$	7.0 bels	7.0 bels
$L_{\text {pAm }}$	N / A	N / A
$<L_{\text {PA }}>m$	$\mathrm{~N} / \mathrm{A}$	N / A
Impulsive or prominent $^{\text {discrete tones }}$	No	No

Clearances	Front	Back	Left	Right

Install/Air Flow	Maintenance of a proper service clearance should allow proper air flow			
Service 6	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$

Notes:

1. See "Noise Emission Notes" on page 4-17 for definitions of noise emissions positions.
2. Noise emissions data for the SCSI I/O Drawer are based on the I/O drawer mounted in a rack. See Input/Output Rack".
3. Inrush currents occur only at initial application of power, no inrush occurs during normal power off-on cycle.

7 EIA Unit I/O Drawer

Dimensions		
Height	306.2 mm	12.1 in.
Width	442.4 mm	17.4 in.
Depth	748.2 mm	29.5 in.
Weight		
Minimum Configuration	43 kg	95 lbs.
Maximum Configuration	61 kg	135 lbs .
Electrical	AC	DC
Power source loading (typical)	0.4KVA	0.4KVA
Power source loading (maximum)	1.0KVA	1.0KVA
Voltage range	200 to 240 V ac	40 to 60 VDC
Frequency (hertz)	50-60	N/A
Thermal output (typical)	1288 BTU/hr	1365 BTU/hr
Thermal output (maximum)	3071 BTU/hr	3412 BTU/hr
Power requirements (typical)	360 watts	400 watts
Power requirements (maximum)	900 watts	1000 watts
Power factor	0.9	N/A
Inrush current ${ }^{3}$	120 amps	300 amps

Maximum altitude	$2135 \mathrm{~m}(7000 \mathrm{ft}$.)

	Operating	Non-Operating
Temperature Range ${ }^{4}$	10 to $40^{\circ} \mathrm{C}$	1 to $52^{\circ} \mathrm{C}$
	$\left(50\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	$\left(34\right.$ to $\left.125.6^{\circ} \mathrm{F}\right)$

Humidity (Noncondens-	Operating	Non-Operating	
ing)	Without tape drive	8 to 80%	8 to 80%
With tape drive	20 to 80%	20 to 80%	
Wet Bulb Requirements			
Without tape drive	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$	
With tape drive	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$	

Noise Emissions ${ }^{1,2}$	Operating	Idle
$L_{\text {WAd }}$	5.9 bels	5.8 bels
$\mathrm{L}_{\text {pAm }}$	N / A	N / A
$<L_{p A}>m$	39 dBA	38 dBA
Impulsive or prominent discrete tones	No	No

Clearances	Front	Back	Left	Right
Install/Air Flow	Maintenance of a proper service clearance should allow proper air flow			
Service ${ }^{6}$		$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$

Notes:

1. See "Noise Emission Notes" on page 4-17 for definitions of noise emissions positions.
2. Noise emissions data for the SCSI I/O Drawer are based on the I/O drawer mounted in a rack. See "Input/Output Rack".
3. Inrush currents occur only at initial application of power, no inrush occurs during normal power off-on cycle.
4. The use of the PCI SSA Multi-Initiater/RAID EL in the I/O Drawer limits the system usage to a $28^{\circ} \mathrm{C}\left(82^{\circ} \mathrm{F}\right)$ environment maximum.

System Service Clearances

The amount of space needed by the units during service is indicated by large box of the footprint.

For multiple racks placed side by side, the left and right clearances apply only to the leftmost and rightmost rack.

Air flow is from front to rear.

Rack Configuration (AC Systems)

Note: Maintenance activities require access at both the front and back and extra room needs to be allowed. The footprint shows the radius of the swinging doors on the I/O rack. The illustration shows the minimum space required.

Rack Configuration (DC Systems)

Note: Maintenance activities require access at both the front and back and extra room needs to be allowed. The footprint shows the radius of the swinging doors on the I/O rack. The illustration shows the minimum space required.

Noise Emission Notes

1. Lwad is the declared sound power emission level for a production series of machines.
2. $L_{p A m}$ is the mean value of the sound pressure emission levels at the operator position (if any) for a production series of machines.
3. $\left\langle L_{p A}\right\rangle_{m}$ is the mean value of the space-averaged sound pressure emission levels at the one-meter positions for a production series of machines.
4. $N / A=$ Not Applicable (no operator position).
5. All measurements are made in accordance with ISO DIS 779 and reported in conformance with ISO DIS 7574/4.

Power Cables (Escala EPC1200/1200A/2400 and RL470/470A)

To avoid electrical shock, a power cable with a grounded attachment plug is provided. Use only properly grounded outlets.

Power cables used in the United States and Canada are listed by Underwriter's Laboratories (UL) and certified by the Canadian Standards Association (CSA). These power cords consist of:

- Electrical cables, type ST
- Attachment plugs complying with National Electrical Manufacturers Association (NEMA) L6-30P
- Appliance couplers complying with International Electrotechnical Commission (IEC) Standard 320, Sheet C13 and C14

Power cables used in other countries are as follows:

- Electrical cables, Type HD21 or HD22
- Attachment plugs approved by the appropriate testing organization for the specific countries where they are used
- Appliance couplers complying with the International Electrotechnical Commission (IEC) Standard 320, Sheet C13 and C14.

Refer to "Power Cords" in the Escala Installation and Service Guide for power cable information.

-48 V dc Power Cables

The customer is responsible for providing power cables from the customer's power source to the circuit breaker panel (CBP)
-48 V dc systems must be connected to a -48 V dc supply source which is electrically isolated from its AC power source. In addition, the -48 V dc supply source is to be reliably connected to earth (grounded).
Note: A redundant -48 V dc source may be added. This source must also be electrically isolated from its AC power source and be reliably connect to earth (grounded).

Power cables used in the United States and Canada are listed by Underwriters Laboratories (UL) and certified by the Canadian Standards Association (CSA). These power cables have the following characteristics:

- Power cables and ground cables must be a minimum of 6 AWG stranded copper (or equivalent) for lengths up to 50 feet from the power source.
- All connectors must be the copper crimp type (compression). Connector metal must be compatible with the cable metal.
Refer to "Power Cords" in the Escala RL470 Installation and Service Guide for power cable information.

Configuration Rules

The following provides for the rules involved with drawer mounting inside a 19 " 32 U rack.

Rack Configuration Rule Policy

The given configuration rules are constructed on the following:

- The 19" Rack is divided in several areas, each of them of a predefined height expressed in U (one U is 44.45 mm).

Area Number	Area Height	Starts at U\#	Ends at U\#
$\mathbf{1}$	4 U	1	4
$\mathbf{2}$	4 U	5	8
$\mathbf{3}$	4 U	9	12
$\mathbf{4}$	4 U	13	16
$\mathbf{5}$	2 U	17	18
$\mathbf{6}$	2 U	19	20
$\mathbf{7}$	4 U	21	24
$\mathbf{8}$	1 U	25	25
$\mathbf{9}$	3 U	26	28
$\mathbf{1 0}$	4 U	29	32

Table 3. Rack Configuration Rules

- Each drawer is characterized by its own U height.

Note: Each drawer is affected by a priority. This attribute is useful during the configuration phase.

- The criteria used to assign a priority to a drawer are:
- Drawer height
- Drawer weight. See drawer weights in Table .

So, a $12 \mathrm{U}, 20 \mathrm{Kg}$ drawer will have a higher priority than a $8 \mathrm{U}, 30 \mathrm{~kg}$ one.

- CPU drawer is an exception to this. Its priority, especially for the first CPU drawer, is based on its media accessibility: floppy, disk, tape, CD-Rom, and operator panel. Therefore a CPU drawer is always placed at a convenient height.
- An additional rack is provided when there is no room left that suits the remaining drawers.
- An I/O drawer cannot be put into an expansion rack.
- An additional rack can be an EPC400 rack.
- There can be 0,1 or $2 \mathrm{I} / \mathrm{O}$ drawers located at the top of the I / O rack.
- The list of all available drawers that can be put inside the rack is specified in the following section.

32	AREA 10		32
31			31
30			30
29			29
28	AREA 9		28
27			27
26			26
25	AREA 8		25
24	AREA 7		24
23			23
22			22
21			21
20	AREA 6		20
19			19
18	AREA 5		18
17			17
16	AREA 4		16
15			15
14			14
13			13
12	AREA 3		12
11			11
10			10
9			9
8	AREA 2	Power Distribution Unit	8
7			7
6			6
5			5
4	AREA $]$		4
3			3
2			2
1			1

Figure 4. Rack Area Assignment

Drawer Location in EPC1200 I/O Rack

To establish location of drawers inside a rack, follow location rules given in the following table. Then, in compliance with priorities, assign for each drawer its own location. It is important to recall that more than one rack may compose a Powercluster.

Notes:

1. Even if an area is not fully filled, the remaining space must be kept free.

Priority	Drawer	Height	$\begin{aligned} & \text { 1st } \\ & \text { Pos. } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { pos. } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 3rd } \\ \text { Pos. } \end{array}$	$\begin{array}{\|l\|} \hline \text { 4th } \\ \text { Pos. } \end{array}$	$\begin{aligned} & \hline \text { 5th } \\ & \text { pos. } \end{aligned}$	6th pos.	$\begin{array}{\|c\|} \hline 7 \text { th } \\ \text { pos. } \end{array}$	$\begin{array}{\|c\|} \hline \text { 8th } \\ \text { pos. } \end{array}$	$\begin{array}{\|c} \hline \text { 9th } \\ \text { pos. } \end{array}$	10th pos.
1	$\begin{aligned} & \hline \text { I/O Drawer 10U } \\ & \text { (2400) } \end{aligned}$	10U	23-32	13-22								
2	I/O Drawer 10U (rackless)	10 U	23-32	13-22								
3	$\begin{aligned} & \hline \text { I/O Drawer 10U } \\ & \text { (1200A) } \end{aligned}$	10U	23-32	13-22								
4	I/O Drawer 10U (rackless)	10 U	23-32	13-22								
5	I/O Drawer 7U (1200)	7U	26-32	19-25								
6	610 CEC + I/O Dr	10U	23-32	13-22	10-19							
7	810 CEC + //O Dr	13U	20-32	10-22	7-19							
8	$810 \mathrm{sec}+\mathrm{l} / \mathrm{O} \mathrm{Dr}$	5 U	28-32	23-27	18-22	15-19	13-17	10-14	8-12	5-9	3-7	2-6
9	Disk Drawer	3 U	30-32	29-31	28-30	27-29	26-28	25-27	24-26	23-25	22-24	21-23
10	Upgrade 610-810	3 U	20-22	19-21	18-20	17-19	16-18	15-17	14-16	13-15	12-14	11-13
11	EPC 440 add'I	8 U	25-32	17-24	13-20	9-16	5-12					
12	DAS 3500	12U	1-12	13-24								
13	DAS 3200	12U	1-12	13-24								
14	DAS 2900	8U	1-8	9-16	17-24	25-32						
15	SPS/DAS 5300/ 2DAE 5000	13 U	1-13	17-29								
16	SPS/DAS 5300/ 1DAE 5000	9 U	1-9	13-21								
17	SPS/DAS 5300	5 U	1-5	9-13	17-21	25-29						
18	SSA	4U	25-28	21-24	17-20	13-16	9-12	5-8				
19	Overland Library (LBX4000/LBX7000)	4 U	1-4	5-8	9-12	13-16	17-20	21-24				
20	DLT 4000/7000	4U	9-12	5-8	1-4	13-16	17-20	21-24				
21	$\begin{aligned} & \text { SPS/DPE5700/4500 } \\ & 5 \text { DAE5000 } \end{aligned}$	28U	1-28									
22	$\begin{aligned} & \text { SPS/DPE5700/4500 } \\ & 4 \text { DAE5000 } \end{aligned}$	24U	1-24									
23	$\begin{aligned} & \text { SPS/DPE5700/4500 } \\ & 3 \text { DAE5000 } \end{aligned}$	20U	1-20									
24	$\begin{aligned} & \text { SPS/DPE5700/4500 } \\ & 2 \text { DAE5000 } \end{aligned}$	16U	priority \#24 is the application of priorities \#25 and \#27									
25	$\begin{aligned} & \hline \text { SPS/DPE5700/4500 } \\ & 1 \text { DAF5000 } \end{aligned}$	12U	1-12	13-24								
26	SPS/DPE5700/4500	8U	1-8	9-16	17-24	25-32						
27	DAE5000	4U	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32		
28	FC-AL Hub / vixel	1U	1-1	5-5	9-9	13-13	17-17	19-19	21-21	25-25	26-26	29-29

Priority	Drawer	Height	1st Pos.	2nd pos.	$\begin{array}{\|l\|} \hline \text { 3rd } \\ \text { Pos. } \end{array}$	$\begin{aligned} & \hline \text { 4th } \\ & \text { Pos. } \end{aligned}$	5th pos.	6th pos.	$\begin{array}{\|c} \hline \text { 7th } \\ \text { pos. } \end{array}$	$\begin{aligned} & \hline \text { 8th } \\ & \text { pos. } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { 9th } \\ \text { pos. } \end{array}$	$\begin{aligned} & \text { 10th } \\ & \text { pos. } \end{aligned}$
29	Console Concent. \& ClusterHub	4 U	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32		
30	Console Concent.	4 U	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32		
31	Switch 8-port	1 U	anywhere from 1-1 to 32-32									
32	Switch FC 16-port	2U rear	17-18	19-20	21-22	25-26	26-27	29-30	13-14	9-10	5-6	1-2
33	Switch Fast Ethernet	2U rear	1-2	5-6	9-10	13-14	17-18	19-20	21-22	25-26	26-27	29-30
34	Switch Gbit Ethernet	2U rear	1-2	5-6	9-10	13-14	17-18	19-20	21-22	25-26	26-27	29-30
35	Cluster Hub	2U rear	1-2	5-6	9-10	13-14	17-18	19-20	21-22	25-26	26-27	29-30
36	Cons Conc 16-port	2 U	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11
37	Cons Conc 16-port \& Cluster Hub	2 U	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11
38	Bridge FC	1U rear	1-1	5-5	9-9	13-13	17-17	19-19	21-21	25-25	26-26	29-29
39	Rack Content Specify	7U	1-7	2-8	3-9	4-10	5-11	6-12	7-13	8-14	9-15	10-16
40	Rack Content Specify	4 U	1-4	5-8	9-12	13-16	17-20	21-24	25-28	29-32		
41	Rack Content Specify	3U	1-3	2-4	3-5	4-6	5-7	6-8	7-9	8-10	9-11	10-12
42	Rack Content Specify	2 U	1-2	5-6	9-10	13-14	17-18	19-20	21-22	25-26	26-27	29-30
43	Rack Content Specify	1U	1-1	5-5	9-9	13-13	17-17	19-19	21-21	25-25	26-26	29-29

Table 4. Drawer priority and positions in the rack (positions 1 to 10)

Priority	Drawer	Height	$\begin{aligned} & \text { 11th } \\ & \text { Pos. } \end{aligned}$	$\begin{aligned} & \text { 12th } \\ & \text { pos. } \end{aligned}$	$\begin{aligned} & \text { 13th } \\ & \text { Pos. } \end{aligned}$	$\begin{aligned} & \text { 14th } \\ & \text { Pos. } \end{aligned}$	15th pos.	16th pos.	17th pos.	$\begin{array}{\|l\|} \hline \text { 18th } \\ \text { pos. } \end{array}$	$\begin{array}{\|l\|} \hline \text { 19th } \\ \text { pos. } \end{array}$	$\begin{aligned} & \text { 20th } \\ & \text { pos. } \end{aligned}$
1	$\begin{aligned} & \hline \text { I/O Drawer 10U } \\ & \text { (2400) } \end{aligned}$	10U										
2	I/O Drawer 10U (rackless)	10U										
3	$\begin{aligned} & \text { I/O Drawer 10U } \\ & (1200 \mathrm{~A}) \end{aligned}$	10U										
4	I/O Drawer 10U (rackless)	10U										
5	I/O Drawer 7U (1200)	7 U										
6	610 CEC + I/O Dr	10U										
7	810 CEC +//O Dr	13U										
8	$810 \mathrm{sec}+\mathrm{l} / \mathrm{O} \mathrm{Dr}$	5 U										
9	Disk Drawer	3 U	20-22	19-21	18-20	17-19	16-18	15-17	14-16	13-15	12-14	11-13
10	Upgrade 610-810	3U	10-12	9-11	8-10	7-9	6-8	5-7	4-6	3-5	2-4	1-3
11	EPC 440 add'I	8U										
12	DAS 3500	12U										
13	DAS 3200	12U										
14	DAS 2900	8U										
15	SPS/DAS 5300/ 2DAE 5000	13U										
16	SPS/DAS $5300 /$ 1DAE 5000	9 U										
17	SPS/DAS 5300	5U										
18	SSA	4 U										
19	Overland Library (LBX4000/LBX7000)	4U										

Priority	Drawer	Height	$\begin{aligned} & \text { 11th } \\ & \text { Pos. } \end{aligned}$	$\begin{aligned} & \text { 12th } \\ & \text { pos. } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 13th } \\ \text { Pos. } \end{array}$	$\begin{aligned} & \hline \text { 14th } \\ & \text { Pos. } \end{aligned}$	$\begin{array}{\|l\|} \hline 15 \mathrm{th} \\ \text { pos. } \end{array}$	$\begin{aligned} & \text { 16th } \\ & \text { pos. } \end{aligned}$	$\begin{aligned} & \text { 17th } \\ & \text { pos. } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 18th } \\ \text { pos. } \end{array}$	19th pos.	20th pos.
20	DLT 4000/7000	4 U										
21	SPS/DPE5700/4500 5 DAE5000	28 U										
22	$\begin{aligned} & \text { SPS/DPE5700/4500 } \\ & 4 \text { DAE5000 } \end{aligned}$	24 U										
23	SPS/DPE5700/4500 3 DAE5000	20 U										
24	SPS/DPE5700/4500 2 DAE5000	16 U	priority \#24 is the application of priorities \#25 and \#27									
25	$\begin{aligned} & \text { SPS/DPE5700/4500 } \\ & 1 \text { DAE5000 } \end{aligned}$	12U										
26	SPS/DPE5700/4500	8U										
27	DAE5000	4 U										
28	FC-AL Hub / vixel	1U										
29	Console Concent. \& ClusterHub	4 U										
30	Console Concent.	4U										
31	Switch 8-port	1U	anywhere from 1-1 to 32-32									
32	Switch FC 16-port	2U rear										
33	Switch Fast Ethernet	2U rear										
34	Switch Gbit Ethernet	2U rear										
35	Cluster Hub	2U rear										
36	Cons Conc 16-port	2 U	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21
37	Cons Conc 16-port \& Cluster Hub	2 U	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21
38	Bridge FC	1U rear										
39	Rack Content Specify	7U	11-17	12-18	13-19	14-20	15-21	16-22	17-23	18-24	19-25	20-26
40	Rack Content Specify	4 U										
41	Rack Content Specify	3U	11-13	12-14	13-15	14-16	15-17	16-18	17-19	18-20	19-21	20-22
42	Rack Content Specify	2 U										
43	Rack Content Specify	1U										

Table 5. Drawer priority and positions in the rack (positions 11 to 20)

Prior- ity	Drawer	Height	21th Pos.	22th pos.	23th Pos.	24th Pos.	25th pos.	26th pos.	27th pos.	28th pos.	29th pos.	30th pos.
1	I/O Drawer 10U (2400)	10U										
2	I/O Drawer 10U (rackless)	10U										
3	I/O Drawer 10U (1200A)	10U										
4	I/O Drawer 10U (rackless)	10U										
5	I/O Drawer 7U (1200)	7 U										
6	610 CEC + I/O Dr	10 U										
7	810 CEC +I/O Dr	13 U										
8	810 sec +I/O Dr	5 U										

Priority	Drawer	Height	$\begin{array}{\|l} \text { 21th } \\ \text { Pos. } \end{array}$	$\begin{array}{\|l} \text { 22th } \\ \text { pos. } \end{array}$	$\begin{aligned} & \text { 23th } \\ & \text { Pos. } \end{aligned}$	$\begin{array}{\|l} \hline \text { 24th } \\ \text { Pos. } \end{array}$	$\begin{aligned} & \text { 25th } \\ & \text { pos. } \end{aligned}$	$\begin{array}{\|l\|} \hline 26 \text { th } \\ \text { pos. } \end{array}$	$\begin{array}{\|l} 27 \mathrm{th} \\ \text { pos. } \end{array}$	$\begin{array}{\|l\|} \hline \text { 28th } \\ \text { pos. } \end{array}$	$\begin{array}{\|l\|} \hline \text { 29th } \\ \text { pos. } \end{array}$	30th pos.
9	Disk Drawer	3 U	10-12	9-11	8-10	7-9	6-8	5-7	4-6	3-5	2-4	1-3
10	Upgrade 610-810	3U										
11	EPC 440 add'I	8U										
12	DAS 3500	12U										
13	DAS 3200	12U										
14	DAS 2900	8U										
15	SPS/DAS 5300/ 2DAE 5000	13U										
16	SPS/DAS 1DAE 5000	9 U										
17	SPS/DAS 5300	5 U										
18	SSA	4U										
19	Overland Library (LBX4000/LBX7000)	4U										
20	DLT 4000/7000	4U										
21	$\begin{aligned} & \text { SPS/DPE5700/4500 } \\ & 5 \text { DAE5000 } \end{aligned}$	28U										
22	SPS/DPE5700/4500 4 DAE5000	24U										
23	$\begin{aligned} & \text { SPS/DPE5700/4500 } \\ & 3 \text { DAE5000 } \end{aligned}$	20U										
24	$\begin{aligned} & \text { SPS/DPE5700/4500 } \\ & 2 \text { DAE5000 } \end{aligned}$	16U	priority \#24 is the application of priorities \#25 and \#27									
25	SPS/DPE5700/4500 1 DAE5000	12U										
26	SPS/DPE5700/4500	8U										
27	DAE5000	4U										
28	FC-AL Hub / vixel	1U										
29	Console Concent. \& ClusterHub	4U										
30	Console Concent.	4U										
31	Switch 8-port	1U	anywhere from 1-1 to 32-32									
32	Switch FC 16-port	2U rear										
33	Switch Fast Ethernet	2U rear										
34	Switch Gbit Ethernet	2U rear										
35	Cluster Hub	2U rear										
36	Cons Conc 16-port	2U	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31
37	Cons Conc 16-port \& Cluster Hub	2U	21-22	22-23	23-24	24-25	25-26	26-27	27-28	28-29	29-30	30-31
38	Bridge FC	1U rear										
39	Rack Content Specify	7U	21-27	22-28	23-29	24-30	25-31	26-32				
40	Rack Content Specify	4U										
41	Rack Content Specify	3U	21-23	22-24	23-25	24-26	25-27	26-28	27-29	28-30	29-31	30-32
42	Rack Content Specify	2 U										
43	Rack Content Specify	1U										

Table 6. Drawer priority and positions in the rack (positions 21 to 30)

Example of Configurations

Figure 5. Rack Configuration Example: EPC1200

Power Requirements

See Rack Drawer Power Consumption, on page 1-5.

Chapter 4. T00 (36U) Rack \& T42 (42U) Rack

Describes requirements for the ESCALA EPC440, EPC450, EPC610, EPC810, PL 400R, PL 420R, PL 600R, PL 800R, PL 820R, PL240R, PL 220R and EPC2450.

Overview

- T00 (36U) \& T42 (42U) Rack Specifications, on page 4-2
- EPC610, PL400R and PL600R CPU Drawer Specifications, on page 4-4
- PL 420R Drawer on page 4-6
- EPC810 and PL800R CPU Drawer Specifications, on page 4-8
- PL 820R Drawer Specifications, on page 4-10
- PL 240R Drawer Specifications, on page 4-11
- PL 220R Drawer Specifications, on page 4-12
- I/O Drawer Specifications, on page 4-13
- D10 I/O Drawer Specifications, on page 4-14
- D20 I/O Drawer Specifications on page 4-15
- System Service Clearances, on page 4-16.

The rack configuration must respect certain rules. Rule principles are detailed in:

- Configuration Rules, on page 4-18.

T00 (36U) \& T42 (42U) Rack Specifications

System Rack Specifications

Dimensions		
T00 Height	1804 mm	71.0 in.
T00 Height with power distribution panel	1926 mm	75.8 in.
T42 Height	2015 mm	79.3 in.
T00 and T42 Width without side panels	623 mm	24.5 in.
T00 and T42 Width with side panels	644 mm	25.4 in.
T00 and T42 Depth with rear door		
T00 and T42 Depth with rear and front door	1042 mm	41 in.
\quad (depending on the Escala drawer)	1098 mm	43.3 in
	or 1147 mm	or 45.2 in.
T00 EIA units	36 EIA units	
T42 EIA units	42 EIA units	

Weight		
T00 Base Empty Rack	244 kg	535 lbs
T00 Full Rack	1795 lbs	
T42 Base Empty Rack	816 kg	575 lbs
T42 Full Rack		

Electrical 2	
Power source loading maximum	4.8 kVA
(per PDB) 3	200 to 240 V ac
Voltage range	50 or 60 hertz
Frequency	

Temperature Requirements	See specifications for drawers or enclosures
Humidity Requirements	See specifications for drawers or enclosures
Noise Emissions	See specifications for drawers or enclosures

Clearances See System Service Clearances, on page 4-16.

Install/Air Flow	Maintenance of a proper service clearance should allow proper air flow			
Service	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$	$915 \mathrm{~mm}(36 \mathrm{in})$

Notes:

1. Configuration dependent, base rack weight plus the weight of the drawers mounted in the rack. The TOO rack can support up to a maximum weight of $35 \mathrm{lbs} / \mathrm{EIA}$ (Unit).
2. The total rack power should be derived from the sum of the power used by the drawers in the rack.
3. Each AC Power Distribution Bus (PDB) can supply 4.8 kVA . A rack can have up to four PDB's as required by the drawers mounted in the rack.

36U I/O Rack Specifications

Dimensions		
Height	1804 mm	71.0 in.
Width	644 mm	25.5 in.
Depth	1098 mm	43.3 in.

Weight Minimum (Configuration dependant)	244 kg	535 lbs.

EPC610, PL400R, PL600R CEC Drawer (5 EIA Units) Specifications

Dimensions		
Height	218 mm	8.58 in.
Width	445 mm	17.5 in.
Depth	820 mm	32.3 in.

Weight		
Minimum Configuration	41 kg	90 lbs.
Maximum Configuration	52 kg	115 lbs.

Electrical	
Power source loading typical	0.32 kVA
Power source loading maximum	0.48 kVA
Voltage range (V ac)	200 to 240
Frequency (hertz)	50 or 60
Thermal output (typical)	$1025 \mathrm{BTU} / \mathrm{hr}$
Thermal output (maximum)	$1536 \mathrm{BTU} / \mathrm{hr}$
Power requirements (typical)	300 watts
Power requirements (maximum)	450 watts
Power factor	0.95
Inrush current 1	40 amps

Maximum altitude $^{2} \quad 2135 \mathrm{~m}$ (7000 ft.)

Temperature Range 2	Operating	Non-Operating
	10 to $40^{\circ} \mathrm{C}$	10 to $52^{\circ} \mathrm{C}$
	$\left(50\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	$\left(50\right.$ to $\left.125.6^{\circ} \mathrm{F}\right)$

Humidity (Noncondensing)	Operating	Non-Operating
Without tape drive	8 to 80%	8 to 80%
With tape drive	20 to 80%	8 to 80%
Wet Bulb Requirements	$27^{\circ} \mathrm{C}\left(80.6^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80.6^{\circ} \mathrm{F}\right)$
Without tape drive	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80.6^{\circ} \mathrm{F}\right)$

Noise Emissions ${ }^{3}$	Operating	Idle
With CEC drawer only		5.8 bels
$L_{\text {WAd }}$	5.8 bels	N / A
$\mathrm{L}_{\text {pAm }}$	N / A	45 dBA
$<\mathrm{L}_{\text {pA }}$	45 dBA	No
Impulsive or prominent $^{\text {discrete tones }}$	No	
With CEC and Primary I/O		
$\mathrm{L}_{\text {WAd }}$	6.2 bels	6.2 bels
$\mathrm{L}_{\text {pAm }}$	N / A	N / A
$<\mathrm{L}_{\text {pA }}>m$	48 dBA	48 dBA
lmpulsive or prominent $^{\text {discrete tones }}$	No	No

Clearances See System Service Clearances, on page 4-16.

Install/Air Flow Maintenance of a proper service clearance should allow proper air flow

Notes:

1. Inrush currents occur only at initial application of power, no inrush occurs during normal power off-on cycle.
2. For altitudes above 915 meters, the maximum temperature limit is derated by 1 degree C for every 137 meters of elevation above 915 meters.
3. See "Noise Emission Notes" on page 4-17 for definitions of noise emissions positions.

PL 420R Drawer (4 EIA Units) Specifications

Dimensions		
Height	172.8 mm	6.8 in.
Width	444 mm	17.5 in.
Depth	609.6 mm	24 in.

Weight		
Minimum Configuration	32 kg	70.4 lbs.
Maximum Configuration	47.3 kg	104.8 lbs.

Electrical
Power source loading (typical)
Power source loading (maximum)
Voltage range (V ac)
Frequency (hertz)
Thermal output (typical)
Thermal output (maximum)
Power requirements (typical)
Power requirements (maximum)
Power factor
Inrush current ${ }^{2}$

1-way, 2-way processors: 0.348 kVA, 4-way processor: 0.522
1-way, 2-way processors: 0.522 kVA, 4-way processor: 0.783 200 to 240 (autoranging) 50 or 60 Hz
1-way, 2-way processors: 1129 Btu/hr, 4-way processor: 1693 Btu/hr
1-way, 2-way processors: 1693 Btu/hr, 4-way processor: 2540 Btu/hr
1-way, 2-way processors: 330 Watts, 4-way processor: 500 Watts
-way, 2-way processors: 500 Watts, 4-way processor: 750 Watts
0.96

Inrush current ${ }^{2}$
50 amps

Maximum altitude ${ }^{3,4}$	$2135 \mathrm{~m}(7000 \mathrm{ft})$.

${\text { Temperature } \text { Range }^{3}}^{3}$ Operating	Non-Operating	
	5 to $35^{\circ} \mathrm{C}$	10 to $52^{\circ} \mathrm{C}$
	$\left(41\right.$ to $\left.95^{\circ} \mathrm{F}\right)$	$\left(50\right.$ to $\left.126^{\circ} \mathrm{F}\right)$

Humidity	Operating	Non-Operating
(Noncondensing) 4	8 to 80%	8 to 80%
Wet Bulb Requirements	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$

Noise Emissions ${ }^{1,5}$	Operating	Idle
Lwad	6.1 bels 5	6.0 bels 5
$<L_{\text {pA }}$ >m	$44 \mathrm{dBA}^{6}$	$43 \mathrm{dBA}{ }^{6}$

Clearances See System Service Clearances, on page 4-16.

Install/Air Flow | Maintenance of a proper service clearance should allow proper air |
| :--- |
| flow |

Notes:

1. See "Noise Emission Notes" on page 4-17 for definitions of noise emissions positions.
2. Inrush currents occur only at initial application of power, no inrush occurs during normal power off-on cycle.
3. The upper limit of the dry bulb temperature must be derated 1 degree C per 137 m (450 ft .) above $915 \mathrm{~m} .(3000 \mathrm{ft}$.)
4. The upper limit of the wet bulb temperature must be derated 1 degree C per 274 m (900 ft.) above $305 \mathrm{~m} .(1000 \mathrm{ft}$.)
5. Levels are for a single system installed in a T00 32 EIA rack with the center of the unit approximately 1500 mm (59 in.) off the floor.
6. All measurements made in accordance with ISO 7779, and declared in conformance with ISO 9296.

EPC810 and PL800R CEC Drawer (8 EIA Units) Specifications

Dimensions		
Height	355.6 mm	14.0 in.
Width	445 mm	17.5 in.
Depth	825.5 mm	32.5 in.
Weight		
Minimum Configuration	69.7 kg	158 lbs.
Maximum Configuration	74.6 kg	169 lbs.

Electrical

Power source loading typical 0.39 kVA
Power source loading maximum
Voltage range (V ac)
Frequency (hertz)
Thermal output (typical)
200 to 240 (autoranging)
50-60
EPC810: 1265 BTU/hr
PL800R: 772 BTU/hr
Thermal output (maximum)
EPC810: 1877 BTU/hr
PL800R: 1378 BTU/hr
EPC810: 370 watts
PL800R: 226 watts
EPC810: 550 watts PL800R: 406 watts
Power factor
0.95

Inrush current ${ }^{3}$
34 amps

Maximum altitude	$2135 \mathrm{~m}(7000 \mathrm{ft})$.	
Temperature Range	Operating	Non-Operating
	10 to $40^{\circ} \mathrm{C}$	10 to $52^{\circ} \mathrm{C}$
	$\left(50\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	$\left(50\right.$ to $\left.125.6^{\circ} \mathrm{F}\right)$

| Humidity (Noncondens- Operating Non-Operating
 ing) 8 to 80% 8 to 80%
 Wet Bulb Requirements $27^{\circ} \mathrm{C}\left(80.6^{\circ} \mathrm{F}\right)$ $27^{\circ} \mathrm{C}\left(80.6^{\circ} \mathrm{F}\right)$ |
| :--- | :---: | :---: |

Noise Emissions ${ }^{\mathbf{1 , 2}}$	Operating	Idle
With EPC810 drawer only		
LwAd	6.4 bels	6.4 bels
$\mathrm{L}_{\text {pAm }}$	N/A	N/A
< $L_{p A}>m$	48 dBA	48 dBA
Impulsive or prominent discrete tones	No	No
With EPC810 drawer and Primary I/O drawer		
Lwad	6.5 bels	6.5 bels
$\mathrm{L}_{\text {pAm }}$	N/A	N/A
< $L_{\text {pA }}>{ }^{\text {m }}$	49 dBA	49 dBA
Impulsive or prominent discrete tones	No	No

Clearances See System Service Clearances, on page 4-16.

Install/Air Flow Maintenance of a proper service clearance should allow proper air flow

Notes:

1. See "Noise Emission Notes" on page 4-17 for definitions of noise emissions positions.
2. Noise emissions data for the following configuration: the drawer is mounted in a T00 rack, a power distribution unit is installed in the rack, and the system is operating in a normal environment of $25^{\circ} \mathrm{C}\left(78^{\circ} \mathrm{F}\right)$.
3. Inrush currents occur only at initial application of power, no inrush occurs during normal power off-on cycle.

PL820R Drawer (8 EIA Units) Specifications

Maximum altitude ${ }^{3,4} 3048 \mathrm{~m}(10000 \mathrm{ft}$.)

Temperature	Operating	Non-Operating	Storage
Range 3	10 to $38^{\circ} \mathrm{C}$	1 to $43^{\circ} \mathrm{C}$	1 to $60^{\circ} \mathrm{C}$
	$\left(50\right.$ to $\left.100^{\circ} \mathrm{F}\right)$	$\left(34\right.$ to $\left.109^{\circ} \mathrm{F}\right)$	$\left(34\right.$ to $\left.140^{\circ} \mathrm{F}\right)$

Humidity	Operating	Non-Operating	Storage
(Noncondensing) ${ }^{4}$	8 to 80%	8 to 80%	5 to 80%
Wet Bulb Require-	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(81^{\circ} \mathrm{F}\right)$	$29^{\circ} \mathrm{C}\left(84.2^{\circ} \mathrm{F}\right)$
ments			

Noise Emissions ${ }^{1,5,6}$	Operating	Idle
$L_{\text {WAd }}$	6.1 bels 5	6.1 bels 5
$<L_{p A>m}$	$44 \mathrm{dBA}^{6}$	$44 \mathrm{dBA}^{6}$

Clearances See System Service Clearances, on page 4-16.

Install/Air Flow | Maintenance of a proper service clearance should allow proper air |
| :--- |
| flow |

Notes:

1. See "Noise Emission Notes" on page 4-17 for definitions of noise emissions positions.
2. Inrush currents occur only at initial application of power, no inrush occurs during normal power off-on cycle.
3. The upper limit of the dry bulb temperature must be derated 1 degree C per 137 m (450 ft .) above 915 m . (3000 ft .)
4. The upper limit of the wet bulb temperature must be derated 1 degree C per 274 m (900 ft .) above 305 m . (1000 ft .)
5. The LWAd emission increases to 6.5 bels with a configuration of one PL820R and four I/O drawers.
6. The $<L_{p A>m}$ emission increases to 48 dBA with a configuration of one PL820R and four I/O drawers.

PL240R Drawer (4 EIA Units) Specifications

Dimensions		
Height	173 mm	6.8 in.
Width	444 mm	17.5 in.
Depth	610 mm	24 in.

Weight		
Minimum Configuration	32.0 kg	70.4 lbs.
Maximum Configuration	47.3 kg	104.0 lbs.

Electrical	
Power source loading typical	0.75 kVA
Power source loading maximum	1.20 kVA
Voltage range (V ac)	100 to 127 or 200 to 240 (single phase)
Frequency (hertz)	$50-60$
Thermal output (maximum)	$2540 \mathrm{BTU} / \mathrm{hr}$
Power requirements (min. load)	350 watts
Power requirements (max. load)	670 watts
Power factor	0.95
Inrush current ${ }^{1}$	75 /amps (max. at < 10 ms)
	25 /amps (max. at $10 \mathrm{~ms}-150 \mathrm{~ms})$
Note: The above amps are held for the full input range of $180 \mathrm{~V} / \mathrm{ac} \mathrm{to} 259 \mathrm{~V} / \mathrm{ac}$ and 47 to 63 Hz.	

Maximum altitude ${ }^{2,3}$ 2135 m (7000 ft.)

Temperature Range ${ }^{3}$	Operating	Storage
	5 to $35^{\circ} \mathrm{C}$	1 to $60^{\circ} \mathrm{C}$
	$\left(41\right.$ to $\left.95^{\circ} \mathrm{F}\right)$	$\left(34\right.$ to $\left.140^{\circ} \mathrm{F}\right)$

Humidity Requirements	Operating	Storage
(Noncondensing)	8 to 80%	5 to 80%
Wet Bulb	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$

Noise Emissions ${ }^{4}$	Operating	Idle
	6.1 bels	6.0 bels
$L_{\text {WAd }}$	44 dBA	43 dBA
$<\mathrm{L}_{\mathrm{pA}}>\mathrm{m}$		

Clearances See System Service Clearances, on page 4-16.

Install/Air Flow Maintenance of a proper service clearance should allow proper air-

 flow
Notes:

1. Inrush currents occur only at initial application of power, no inrush occurs during normal power off-on cycle.
2. The upper limit of the dry bulb temperature must be derated 1 degree C per 137 m (450 ft.) above 915 m . (3000 ft.)
3. The upper limit of the wet bulb temperature must be derated 1 degree C per 274 m (900 ft .) above 305 m . (1000 ft .)
4. Levels are for a single system installed on a T00 32 EIA rack with the center of the unit approximately 1500 mm (59 in.) off the floor.

PL220R Drawer (5 EIA Units) Specifications

Dimensions		
Height	215 mm	8.5 in.
Width	426 mm	16.8 in.
Depth	617 mm	24 in.
Weight		
Minimum Configuration	35.5 kg	78 lbs.
Maximum Configuration	43.1 kg	94.8 lbs.

Electrical	
Power source loading typical	0.31 kVA
Power source loading maximum	0.46 kVA
Voltage range (V ac)	100 to 127 or 200 to 240 (autoranging)
Frequency (hertz)	$50-60$
Thermal output (typical)	$1024 \mathrm{BTU} / \mathrm{hr}$
Thermal output (maximum)	$1536 \mathrm{BTU} / \mathrm{hr}$
Power requirements (typical)	300 watts
Power requirements (maximum)	450 watts
Power factor	0.98
Inrush current ${ }^{1}$	34 amps

Maximum altitude ${ }^{2},{ }^{3}$	2135 m (7000 ft.)	
	Operating	Non-Operating
Temperature Range ${ }^{3}$	$\begin{aligned} & 10 \text { to } 40^{\circ} \mathrm{C} \\ & \left(50 \text { to } 104^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 10 \text { to } 52^{\circ} \mathrm{C} \\ \left(50 \text { to } 125.6^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$

Humidity Requirements	Operating	Non-Operating
(Noncondensing)	8 to 80%	8 to 80%
Wet Bulb	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$

Noise Emissions ${ }^{4}$	Operating	Idle
$L_{\text {WAd }}$	6.4 bels	6.1 bels
$\mathrm{L}_{\text {pAm }}$	N / A	N / A
$\left\langle\mathrm{L}_{\text {pA }}>m\right.$	44 dBA	41 dBA

| Clearances \quad See System Service Clearances, on page 4-16. |
| :--- | :--- |

Install/Air Flow	Maintenance of a proper service clearance should allow proper air flow

Notes:

1. Inrush currents occur only at initial application of power, no inrush occurs during normal power off-on cycle.
2. The upper limit of the dry bulb temperature must be derated 1 degree C per 137 m (450 ft .) above $915 \mathrm{~m} .(3000 \mathrm{ft}$.)
3. The upper limit of the wet bulb temperature must be derated 1 degree C per 274 m (900 ft.) above 305 m . (1000 ft .)
4. Levels are for a single system installed on a T00 32 EIA rack with the center of the unit approximately 1500 mm (59 in .) off the floor.

Dimensions		
Height	218 mm	8.6 in.
Width	445 mm	17.5 in.
Depth	820 mm	
Weight		
Minimum Configuration	41 kg	90 lbs.
Maximum Configuration	52 kg	115 lbs.

Electrical	
Power source loading typical	0.23 kVA
Power source loading maximum	0.54 kVA
Voltage range (V ac)	200 to 240
Frequency (hertz)	$50-60$
Thermal output (typical)	$750 \mathrm{BTU} / \mathrm{hr}$
Thermal output (maximum)	$1750 \mathrm{BTU} / \mathrm{hr}$
Power requirements (typical)	220 watts
Power requirements (maximum)	515 watts
Power factor	0.95
Inrush current 3	41 amps

Maximum altitude	2135 m (7000 ft.)	
Temperature Requirements	$\begin{aligned} & \text { Operating } \\ & 10 \text { to } 40^{\circ} \mathrm{C} \\ & \left(50 \text { to } 104^{\circ} \mathrm{F}\right. \text {) } \end{aligned}$	Non-Operating 10 to $52^{\circ} \mathrm{C}$ (50 to $125.6^{\circ} \mathrm{F}$)
Humidity (Noncondensing)	Operating	Non-Operating
Without tape drive	8 to 80\%	8 to 80\%
With tape drive	20 to 80\%	20 to 80\%
Wet Bulb		
Without tape drive	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$
With tape drive	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$
Noise Emissions ${ }^{1,2}$	Operating	Idle
Lwad	5.8 bels	5.8 bels
$\mathrm{L}_{\text {pAm }}$	N/A	N/A
$<L_{p A}>_{m}$	45 dBA	45 dBA
Impulsive or prominent discrete tones	No	No

Clearances See System Service Clearances, on page 4-16.

Install/Air Flow	Maintenance of a proper service clearance should allow proper air flow

Notes:

1. See "Noise Emission Notes" on page 4-17 for definitions of noise emissions positions.
2. Noise emissions data for the SCSI I/O Drawer are based on the I/O drawer mounted in a rack. See "Input/Output Rack".
3. Inrush currents occur only at initial application of power, no inrush occurs during normal power off-on cycle.

D10 I/O Drawer (4 EIA Units)

Dimensions	D10	Two D10s with Enclosure
Height	$170 \mathrm{~mm}(6.6 \mathrm{in})$	$178 \mathrm{~mm}(7 \mathrm{in})$
Width	$220 \mathrm{~mm}(8.7 \mathrm{in})$	$445 \mathrm{~mm}(17.5 \mathrm{in})$
Depth	$711 \mathrm{~mm}(28 \mathrm{in})$	$711 \mathrm{~mm}(28.0 \mathrm{in})$
Weight		
Maximum	$16.8 \mathrm{~kg}(37 \mathrm{lbs})$	$39.1 \mathrm{~kg}(86 \mathrm{lbs})$

Electrical	
Power source loading typical	0.21 kVA
Voltage range (V ac)	200 to 240
Frequency (hertz)	$50-60$
Thermal output per D10 (typical)	$461 \mathrm{BTU} / \mathrm{hr}$
Thermal output per D10 (max.)	$683 \mathrm{BTU} / \mathrm{hr}$
Power requirements (typical)	135 watts
Power requirements (max.)	200 watts
Power factor	0.91
Inrush current per D10 2	64 amps

Maximum altitude ${ }^{3,4} 3048 \mathrm{~m}(10000 \mathrm{ft}$.)

Temperature $_{\text {Range }^{3}}$	Operating	Non-Operating	Storage
	10 to $38^{\circ} \mathrm{C}$	1 to $60^{\circ} \mathrm{C}$	1 to $60^{\circ} \mathrm{C}$
	$\left(50\right.$ to $\left.100^{\circ} \mathrm{F}\right)$	$\left(34\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	$\left(34\right.$ to $\left.140^{\circ} \mathrm{F}\right)$

Humidity	Operating	Non-Operating	Storage
(Noncondensing) ${ }^{4}$	8 to 80%	8 to 80%	8 to 80%
Wet Bulb Require-	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(81^{\circ} \mathrm{F}\right)$	$29^{\circ} \mathrm{C}\left(84.2^{\circ} \mathrm{F}\right)$
ments			

Noise Emissions ${ }^{1,4}$	Operating	Idle
Lwad one D10	5.6 bels	5.6 bels
Lwad two D10	5.9 bels	5.9 bels
Lwad four D10	6.2 bels	6.2 bels
<L $L_{p A}>_{\text {m }}$ one D10	40 dBA	40 dBA
<LpA>m two D10	43 dBA	43 dBA
$<L_{p A}>$ m four D10	46 dBA	46 dBA

Clearances See System Service Clearances, on page 4-16.

Install/Air Flow | Maintenance of a proper service clearance should allow proper air |
| :--- |
| flow |

Notes:

1. See "Noise Emission Notes" on page 4-17 for definitions of noise emissions positions.
2. Inrush currents occur only at initial application of power, no inrush occurs during normal power-off cycle.
3. The upper limit of the dry bulb temperature must be derated 1 degree C per 137 m (450 ft .) above 915 m . (3000 ft .)
4. The upper limit of the wet bulb temperature must be derated 1 degree C per 274 m (900 ft .) above 305 m . (1000 ft .)

Dimensions	
Height	$178 \mathrm{~mm}(7.0 \mathrm{in})$
Width	$445 \mathrm{~mm}(17.5 \mathrm{in})$
Depth	$610 \mathrm{~mm}(24.0 \mathrm{in})$

Weight Maximum	$45.9 \mathrm{~kg}(101 \mathrm{lbs})$

Electrical	
Power source loading typical	0.358 kVA
Voltage range (V ac)	200 to 240
Frequency (hertz)	$50-60$
Thermal output (typical)	$774 \mathrm{BTU} / \mathrm{hr}$
Thermal output (max.)	$1161 \mathrm{BTU} / \mathrm{hr}$
Power requirements (typical)	227 watts
Power requirements (max.)	340 watts
Power factor	0.91
Inrush current ${ }^{2}$	60 amps

Maximum altitude ${ }^{3,4} 3048 \mathrm{~m}(10000 \mathrm{ft}$.)

Temperature Range 3	Operating	Non-Operating	Storage
	5 to $35^{\circ} \mathrm{C}$	1 to $60^{\circ} \mathrm{C}$	1 to $60^{\circ} \mathrm{C}$
	$\left(41\right.$ to $\left.95^{\circ} \mathrm{F}\right)$	$\left(34\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	$\left(34\right.$ to $\left.140^{\circ} \mathrm{F}\right)$

Humidity	Operating	Non-Operating	Storage
(Noncondensing) ${ }^{4}$	8 to 80%	8 to 80%	8 to 80%
Wet Bulb Require-	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(81^{\circ} \mathrm{F}\right)$	$29^{\circ} \mathrm{C}\left(84.2^{\circ} \mathrm{F}\right)$
ments			

Noise Emissions ${ }^{1,4}$	Operating	Idle
$L_{\text {WAd }}$	6.1 bels	6.0 bels
$\left\langle L_{p A}\right\rangle_{m}$	44 dBA	43 dBA

| Clearances \quad See System Service Clearances, on page 4-16. |
| :--- | :--- |

Install/Air Flow | Maintenance of a proper service clearance should allow proper air |
| :--- |
| flow |

Notes:

1. See "Noise Emission Notes" on page 4-17 for definitions of noise emissions positions.
2. Inrush currents occur only at initial application of power, no inrush occurs during normal power-off cycle.
3. The upper limit of the dry bulb temperature must be derated 1 degree C per 137 m (450 ft .) above 915 m . (3000 ft.)
4. The upper limit of the wet bulb temperature must be derated 1 degree C per 274 m (900 ft .) above 305 m . (1000 ft.)

System Service Clearances

The amount of space needed by the units during service is indicated by the dotted line in the figure below

For multiple racks placed side by side, the left and right clearances apply only to the leftmost and rightmost rack.

Note: Rack units are large and heavy and are not easily moved. Because maintenance activities require access at both the front and the back, allow for extra room. The footprint shows the radius of the swinging doors on the I/O rack. The figure shows the minimum space required.

Noise Emission Notes

1. LWAd is the declared (upper limit) sound power emission level for a production series of machines.
2. $L_{p A m}$ is the mean value of the A-weighted sound pressure emission levels at the operator position (if any) for a production series of machines.
3. $\left\langle L_{p A}\right\rangle_{m}$ is the mean value of the space-averaged A-weighted sound pressure emission levels at the one-meter positions for a production series of machines.
4. N/A = Not Applicable (no operator position).
5. All measurements are made in accordance with ISO DIS 7779 and reported in conformance with ISO DIS 7574/4.

Rack Drawer Power Consumption

See Rack Drawer Power Consumption, on page 1-5.

Configuration Rules

The following provides you with the rules involved with drawer mounting inside a 19 " 36 U T00 rack and 42U T42 rack.

- Each drawer is characterized by its own U height.

Note: Each drawer is affected by a priority. This attribute is useful during the configuration phase.

- The criteria used to assign a priority to a drawer are:
- Drawer height
- Drawer weight

So, a $12 \mathrm{U}, 20 \mathrm{Kg}$ drawer will have a higher priority than a $8 \mathrm{U}, 30 \mathrm{~kg}$ one.

- CPU drawer is an exception to this. Its priority, especially for the first CPU drawer, is based on its media accessibility: floppy, disk, tape, CD-Rom, and operator panel. Therefore a CPU drawer is always placed at a convenient height.
- An additional rack is generated when there is no room left that suits to the remaining drawers.
- For mechanical stability, it is advised to start loading from the bottom, if possible.
- The list of all available drawers that can be put inside the rack is specified in the following section.
To establish location of drawers inside a rack, follow location rules given in the following table. Then, in compliance with priorities, assign for each drawer its own location. It is important to recall that more than one rack may compose a Powercluster.

Note: Even if an area is not fully filled, the remaining space must be kept free.

Drawer Location in TOO Rack

Note: 1 : RPS : Redondant Power Supply , 2 : For DAS : RPS = Dual -SP
Table 7. Rack 36U - Positions 1 to 9

Prty	Drawer	Power-Cord		Height	Position 1		Position 2		Position 3		Position 4		Position 5		Position 6		Position 7		Position 8		Position 9	
		1PS	RPS ${ }^{1}$		Start	End																
1	$\begin{aligned} & \text { PL600/400R } \\ & \text { CEC+I/O } \end{aligned}$	2	41	10 U	27	36	26	35	25	34	24	33	23	32	22	31	21	30	20	29	19	28
2	PL800R CEC+1/O	N/A	41	13 U	24	36	23	35	22	34	21	33	20	32	19	31	18	30	17	29	16	28
3	Secondary I/O Drawer	1	2^{1}	5 U	32	36	31	35	30	34	29	33	28	32	27	31	26	30	25	29	24	28
4	Disk Drawer (2104 / DU3)	1	2^{1}	3 U	34	36	33	35	32	34	31	33	30	32	29	31	28	30	27	29	26	28
5	PL220R	2	3^{1}	5 U	32	36	31	35	30	34	29	33	28	32	27	31	26	30	25	29	24	28
6	$\begin{gathered} \text { CX600 } \\ \& \text { 9DAE2 } \end{gathered}$	20^{2}		35 U	1	35	2	36														
7	$\begin{gathered} \text { CX600 } \\ \& 8 \mathrm{DAE} 2 \end{gathered}$	18^{2}		32 U	1	32	2	33	3	34	4	35	5	36								
8	$\begin{gathered} \text { CX600 } \\ \text { \& 7DAE2 } \end{gathered}$	16^{2}		29 U	1	29	2	30	3	31	4	32	5	33	6	34	7	35	8	36		
9	$\begin{gathered} \text { CX600 } \\ \& 6 D A E 2 \end{gathered}$	14^{2}		26 U	1	26	2	27	3	28	4	29	5	30	6	31	7	32	8	33	9	34
10	$\begin{gathered} \text { CX600 } \\ \& 5 \text { DAE2 } \end{gathered}$	12^{2}		23 U	1	23	2	24	3	25	4	26	5	27	6	28	7	29	8	30	9	31
11	$\begin{gathered} \text { CX600 } \\ \& 4 D A E 2 \end{gathered}$	10^{2}		20 U	1	20	2	21	3	22	4	23	5	24	6	25	7	26	8	27	9	28
12	$\begin{gathered} \text { CX600 } \\ \& 3 D A E 2 \end{gathered}$	8^{2}		17 U	1	17	2	18	3	19	4	20	5	21	6	22	7	23	8	24	9	25
13	$\begin{gathered} \text { CX600 } \\ \& 2 D A E 2 \end{gathered}$	6^{2}		14 U	1	14	2	15	3	16	4	17	5	18	6	19	7	20	8	21	9	22
14	$\begin{gathered} \text { CX600 } \\ \text { \& 1DAE2 } \end{gathered}$	4^{2}		11U	1	11	2	12	3	13	4	14	5	15	6	16	7	17	8	18	9	19
15	$\begin{aligned} & \hline \text { CX600 } \\ & \text { BASE } \end{aligned}$	2^{2}		8U	1	8	2	9	3	10	4	11	5	12	6	13	7	14	8	15	9	16
16	$\begin{gathered} \text { CX400 } \\ \& 3 D A E 2 \end{gathered}$	8^{2}		13 U	1	13	2	14	3	15	4	16	5	17	6	18	7	19	8	20	9	21

Prty	Drawer	Power-Cord		Height	Position 1		Position 2		Position 3		Position 4		Position 5		Position 6		Position 7		Position 8		Position 9	
17	$\begin{gathered} \text { CX400 } \\ \& \text { 2DAE2 } \end{gathered}$	$\overline{6^{2}}$		10U	1	10	2	11	3	12	4	13	5	14	6	15	7	16	8	17	9	18
18	$\begin{gathered} \text { CX400 } \\ \& \text { 1DAE2 } \end{gathered}$	4^{2}		7 U	1	7	2	8	3	9	4	10	5	11	6	12	7	13	8	14	9	15
19	$\begin{aligned} & \text { CX400 } \\ & \text { BASE } \end{aligned}$	2^{2}		4 U	1	4	2	5	3	6	4	7	5	8	6	9	7	10	8	11	9	12
20	$\begin{gathered} \text { CX200 } \\ \& \text { 1DAE2 } \end{gathered}$	1	N/A	7 U	1	7	2	8	3	9	4	10	5	11	6	12	7	13	8	14	9	15
		1																				
21	$\begin{aligned} & \text { CX200 } \\ & \text { BASE } \end{aligned}$	1	N/A	4 U	1	4	2	5	3	6	4	7	5	8	6	9	7	10	8	11	9	12
22	$\begin{gathered} \text { CX200 } \\ \text { MONO-SP } \end{gathered}$	1	N/A	3 U	1	3	2	4	3	5	4	6	5	7	6	8	7	9	8	10	9	11
23	PL820R	N/A	2^{1}	8 U	16	9	15	8	14	7	13	6	12	5	11	4	10	3	9	2	8	1
24	I/O drawer (PCI)	N/A	2^{1}	4 U	8	5	7	4	6	3	5	2	4	1	36	33	35	32	34	31	33	30
25	PL420R	1	2	4 U	12	9	11	8	10	7	9	6	8	5	7	4	6	3	5	2	4	1
26	BASE EXPANSION DRAWER (PCI\&DISKS)	1	2	4 U	8	5	7	4	6	3	5	2	4	1	36	33	35	32	34	31	33	30
27	NDAE2	2^{2}		3 U	1	3	2	4	3	5	4	6	5	7	6	8	7	9	8	10	9	11
28	$\begin{aligned} & \text { SPS / } 47002 \mathrm{Gbps} \\ & \text { \& 7DAE } \end{aligned}$	8	16^{2}	36 U	1	36																
29	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \& 6 D A E \end{gathered}$	7	14^{2}	32 U	1	32																
30	$\begin{aligned} & \text { SPS / } 47002 \mathrm{Gbps} \\ & \text { \& 5DAE } \end{aligned}$	6	12^{2}	28U	1	28																
31	$\begin{aligned} & \text { SPS / 4700 2Gbps \& } \\ & \text { 4DAE } \end{aligned}$	5	10^{2}	24 U	1	24	3	26														
32	$\begin{gathered} \hline \text { SPS / } 4700 \text { 2Gbps } \\ \text { \& 3DAE } \end{gathered}$	4	8^{2}	20 U	1	20	3	22	21	40												
33	$\begin{aligned} & \hline \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 2DAE } \end{aligned}$	3	6^{2}	16 U	1	16	3	18	17	32	19	34										
34	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \text { \& 1DAE } \end{gathered}$	2	4^{2}	12U	1	12	3	14	13	24	15	26	25	36								
35	SPS / 4700 2Gbps	1	2^{2}	8 U	1	8	3	10	9	16	11	18	17	24	19	26	25	32	27	34		
36	DAE5000	1	2^{2}	4 U	1	4	2	5	3	6	4	7	5	8	6	9	7	10	8	11	9	12
37	Switch FC 16-p. 2Gb/s	2		2 U	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10

Prty	Drawer	Power-Cord	Height	Position 1		Position 2		Position 3		Position 4		Position 5		Position 6		Position 7		Position 8		Position 9	
38	Switch FC 8-port 2Gbps	1	1U	Positions 1-1 à 36-36																	
39	Switch Fast Eth	1	2 U	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10
40	Switch Gbit Eth	1	2 U	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10
41	DLT4000/7000/8000	1	4 U	33	36	32	35	31	34	30	33	29	32	28	31	27	30	26	29	25	28
42	Cons Conc 16-port	1	2 U	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10
43	Cons conc 16-port \& Switch Admin	2	2 U	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10
44	Switch Admin	1	1 U	Positions 1-1 à 36-36																	
45	Switch Fast Eth	1	1 U	Positions 1-1 à 36-36																	
46	Rack Cont Spec 7EIA	1	7 U	1	7	2	8	3	9	4	10	5	11	6	12	7	13	8	14	9	15
47	Rack Cont Spec 4EIA	1	4U	1	4	2	5	3	6	4	7	5	8	6	9	7	10	8	11	9	12
48	Rack Cont Spec 3EIA	1	3 U	1	3	2	4	3	5	4	6	5	7	6	8	7	9	8	10	9	11
49	Rack Cont Spec 2EIA	1	2 U	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10
50	Rack Cont Spec 1EIA	1	1 U	Positions 1-1 à 36-36																	

Table 8. Rack 36U - Positions 10 to 18

Prty	Drawer	Power-Cord		Height	Position 10		Position 11		Position 12		Position 13		Position 14		Position 15		Position 16		Position 17		Position 18	
		1PS	RPS ${ }^{1}$		Start	End																
1	$\begin{gathered} \hline \text { PL600/400R } \\ \text { CEC+I/O } \end{gathered}$	2	41	10 U	18	27	17	26	16	25	15	24	14	23	13	22	12	21	11	20	10	19
2	PL800R CEC+I/O	N/A	41	13 U	15	27	14	26	13	25	12	24	11	23	10	22	9	21	8	20	7	19
3	Secondary I/O Drawer	1	2^{1}	5 U	23	27	22	26	21	25	20	24	19	23	18	22	17	21	16	20	15	19
4	Disk Drawer (2104 / DU3)	1	2^{1}	3 U	25	27	24	26	23	25	22	24	21	23	20	22	19	21	18	20	17	19
5	PL220R	2	3^{1}	5 U	23	27	22	26	21	25	20	24	19	23	18	22	17	21	16	20	15	19
6	$\begin{gathered} \text { CX600 } \\ \& \text { 9DAE2 } \end{gathered}$	20^{2}		35U																		
7	$\begin{gathered} \text { CX600 } \\ \& \text { 8DAE2 } \end{gathered}$	18^{2}		32 U																		
8	$\begin{gathered} \text { CX600 } \\ \& \text { 7DAE2 } \end{gathered}$	16^{2}		29 U																		
9	$\begin{gathered} \text { CX600 } \\ \& 6 \mathrm{DAE} 2 \end{gathered}$	14^{2}		26U	10	35	11	36														
10	$\begin{gathered} \text { CX600 } \\ \text { \& 5DAE2 } \end{gathered}$	12^{2}		23 U	10	32	11	33	12	34	13	35	14	36								
11	$\begin{gathered} \text { CX600 } \\ \& \text { 4DAE2 } \end{gathered}$	10^{2}		20 U	10	29	11	30	12	31	13	32	14	33	15	34	16	35	17	36		
12	$\begin{gathered} \text { CX600 } \\ \& 3 D A E 2 \end{gathered}$	8^{2}		17U	10	26	11	27	12	28	13	29	14	30	15	31	16	32	17	33	18	34
13	$\begin{gathered} \text { CX600 } \\ \text { \& 2DAE2 } \end{gathered}$	6^{2}		14 U	10	23	11	24	12	25	13	26	14	27	15	28	16	29	17	30	18	31
14	$\begin{aligned} & \text { CX600 } \\ & \text { \& 1DAE2 } \end{aligned}$	4^{2}		11 U	10	20	11	21	12	22	13	23	14	24	15	25	16	26	17	27	18	28
15	$\begin{aligned} & \text { CX600 } \\ & \text { BASE } \end{aligned}$	2^{2}		8U	10	17	11	18	12	19	13	20	14	21	15	22	16	23	17	24	18	25
16	$\begin{gathered} \text { CX400 } \\ \& \text { 3DAE2 } \end{gathered}$	8^{2}		13 U	10	22	11	23	12	24	13	25	14	26	15	27	16	28	17	29	18	30
17	$\begin{gathered} \text { CX400 } \\ \& 2 D A E 2 \end{gathered}$	6^{2}		10U	10	19	11	20	12	21	13	22	14	23	15	24	16	25	17	26	18	27
18	$\begin{gathered} \text { CX400 } \\ \text { \& 1DAE2 } \end{gathered}$	4^{2}		7U	10	16	11	17	12	18	13	19	14	20	15	21	16	22	17	23	18	24
19	$\begin{aligned} & \text { CX400 } \\ & \text { BASE } \end{aligned}$	2^{2}		4 U	10	13	11	14	12	15	13	16	14	17	15	18	16	19	17	20	18	21

Prty	Drawer	Power-Cord		Height 7	Position 10		Position 11		Position 12		Position 13		Position 14		Position 15		Position 16		Position 17		Position 18	
20	$\begin{gathered} \text { CX200 } \\ \& \text { 1DAE2 } \end{gathered}$	1	N/A		10	16	11	17	12	18	13	19	14	20	15	21	16	22	17	23	18	24
		1																				
21	$\begin{aligned} & \text { CX200 } \\ & \text { BASE } \end{aligned}$	1	N/A	4 U	10	13	11	14	12	15	13	16	14	17	15	18	16	19	17	20	18	21
22	CX200 MONO-SP	1	N/A	3 U	10	12	11	13	12	14	13	15	14	16	15	17	16	18	17	19	18	20
23	PL820R	N/A	2^{1}	8 U	36	29	35	28	34	27	33	26	32	25	31	24	30	23	29	22	28	21
24	1/O drawer (PCI)	N/A	2^{1}	4 U	32	29	31	28	30	27	29	26	28	25	27	24	26	23	25	22	24	21
25	PL420R	1	2	4 U	36	33	35	32	34	31	33	30	32	29	31	28	30	27	29	26	28	25
26	BASE EXPANSION DRAWER (PCI\&DISKS)	1	2	4 U	32	29	31	28	30	27	29	26	28	25	27	24	26	23	25	22	24	21
27	NDAE2	2^{2}		3 U	10	12	11	13	12	14	13	15	14	16	15	17	16	18	17	19	18	20
28	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \& 7 \mathrm{DAE} \end{gathered}$	8	16^{2}	36U																		
29	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \& 6 \mathrm{DAE} \end{gathered}$	7	14^{2}	32 U																		
30	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \& \text { 5DAE } \end{aligned}$	6	12^{2}	28 U																		
31	$\begin{gathered} \text { SPS / 4700 2Gbps \& } \\ \text { 4DAE } \end{gathered}$	5	10^{2}	24 U																		
32	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 3DAE } \end{aligned}$	4	8^{2}	20 U																		
33	$\begin{gathered} \hline \text { SPS / } 4700 \text { 2Gbps } \\ \text { \& 2DAE } \end{gathered}$	3	6^{2}	16 U																		
34	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \& 1 \text { 1DAE } \end{gathered}$	2	4^{2}	12 U																		
35	SPS / 4700 2Gbps	1	2^{2}	8 U																		
36	DAE5000	1	2^{2}	4 U	10	13	11	14	12	15	13	16	14	17	15	18	16	19	17	20	18	21
37	Switch FC 16-p. 2Gb/s	2		2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19
38	Switch FC 8-port 2Gbps	1		1 U	Positions 1-1 à 36-36																	
39	Switch Fast Eth		1	2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19
40	Switch Gbit Eth		1	2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19
41	DLT4000/7000/8000		1	4 U	24	27	23	26	22	25	21	24	20	23	19	22	18	21	17	20	16	19
42	Cons Conc 16-port		1	2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19

Prty	Drawer	Power-Cord	Height	Pos	10	Pos	n 11	Pos	12	Pos	n 13	Pos	n 14	Pos	15	Pos	n 16	Pos	n 17	Posi	n 18
43	Cons conc 16-port \& Switch Admin	2	2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19
44	Switch Admin	1	1 U	Positions 1-1 à $36-36$																	
45	Switch Fast Eth	1	1 U	Positions 1-1 à 36-36																	
46	Rack Cont Spec 7EIA	1	7 U	10	16	11	17	12	18	13	19	14	20	15	21	16	22	17	23	18	24
47	Rack Cont Spec 4EIA	1	4 U	10	13	11	14	12	15	13	16	14	17	15	18	16	19	17	20	18	21
48	Rack Cont Spec 3EIA	1	3 U	10	12	11	13	12	14	13	15	14	16	15	17	16	18	17	19	18	20
49	Rack Cont Spec 2EIA	1	2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19
50	Rack Cont Spec 1EIA	1	1 U	Positions 1-1 à 36-36																	

Table 9. Rack 36U - Positions 19 to 27

Prty	Drawer	Power-Cord		Height	Position 19		Position 20		Position 21		Position 22		Position 23		Position 24		Position 25		Position 26		Position 27	
		1PS	RPS ${ }^{1}$		Start	End																
1	$\begin{gathered} \hline \text { PL600/400R } \\ \text { CEC+I/O } \end{gathered}$	2	41	10 U	9	18	8	17	7	16	6	15	5	14	4	13	3	12	2	11	1	10
2	PL800R CEC+I/O	N/A	41	13 U	6	18	5	17	4	16	3	15	2	14	1	13						
3	Secondary I/O Drawer	1	2^{1}	5 U	14	18	13	17	12	16	11	15	10	14	9	13	8	12	7	11	6	10
4	Disk Drawer (2104 / DU3)	1	2^{1}	3 U	16	18	15	17	14	16	13	15	12	14	11	13	10	12	9	11	8	10
5	PL220R	2	3^{1}	5 U	14	18	13	17	12	16	11	15	10	14	9	13	8	12	7	11	6	10
6	$\begin{gathered} \text { CX600 } \\ \& 9 D A E 2 \end{gathered}$	20^{2}		35 U																		
7	$\begin{gathered} \text { CX600 } \\ \& \text { 8DAE2 } \end{gathered}$	18^{2}		32 U																		
8	$\begin{gathered} \text { CX600 } \\ \& \text { 7DAE2 } \end{gathered}$	16^{2}		29 U																		
9	$\begin{gathered} \text { CX600 } \\ \& \text { 6DAE2 } \end{gathered}$	14^{2}		26 U																		
10	$\begin{gathered} \text { CX600 } \\ \& 5 D A E 2 \end{gathered}$	12^{2}		23 U																		
11	$\begin{gathered} \text { CX600 } \\ \& \text { 4DAE2 } \end{gathered}$	10^{2}		20 U																		
12	$\begin{gathered} \text { CX600 } \\ \& \text { 3DAE2 } \end{gathered}$	8^{2}		17U	19	35	20	36														
13	$\begin{gathered} \text { CX600 } \\ \& 2 D A E 2 \end{gathered}$	6^{2}		14 U	19	32	20	33	21	34	22	35	23	36								
14	$\begin{gathered} \text { CX600 } \\ \& \text { 1DAE2 } \end{gathered}$	4^{2}		11U	19	29	20	30	21	31	22	32	23	33	24	34	25	35	26	36		
15	$\begin{aligned} & \text { CX600 } \\ & \text { BASE } \end{aligned}$	2^{2}		8 U	19	26	20	27	21	28	22	29	23	30	24	31	25	32	26	33	27	34
16	$\begin{gathered} \text { CX400 } \\ \& \text { 3DAE2 } \end{gathered}$	8^{2}		13 U	19	31	20	32	21	33	22	34	23	35	24	36						
17	$\begin{gathered} \text { CX400 } \\ \& 2 D A E 2 \end{gathered}$	6^{2}		10U	19	28	20	29	21	30	22	31	23	32	24	33	25	34	26	35	27	36
18	$\begin{gathered} \text { CX400 } \\ \& \text { 1DAE2 } \end{gathered}$	4^{2}		7 U	19	25	20	26	21	27	22	28	23	29	24	30	25	31	26	32	27	33
19	$\begin{aligned} & \text { CX400 } \\ & \text { BASE } \end{aligned}$	2^{2}		4 U	19	22	20	23	21	24	22	25	23	26	24	27	25	28	26	29	27	30

Prty	Drawer	Power-Cord		$\begin{array}{\|c\|} \hline \text { Height } \\ \hline 7 \mathrm{U} \\ \hline \end{array}$	Position 19		Position 20		Position 21		Position 22		Position 23		Position 24		Position 25		Position 26		Position 27	
20	$\begin{gathered} \text { CX200 } \\ \text { \& 1DAE2 } \end{gathered}$	1	N/A		19	25	20	26	21	27	22	28	23	29	24	30	25	31	26	32	27	33
		1																				
21	$\begin{aligned} & \text { CX200 } \\ & \text { BASE } \end{aligned}$	1	N/A	4 U	19	22	20	23	21	24	22	25	23	26	24	27	25	28	26	29	27	30
22	$\begin{gathered} \text { CX200 } \\ \text { MONO-SP } \end{gathered}$	1	N/A	3 U	19	21	20	22	21	23	22	24	23	25	24	26	25	27	26	28	27	29
23	PL820R	N/A	2^{1}	8 U	27	20	26	19	25	18	24	17	23	16	22	15	21	14	20	13	19	12
24	1/O drawer (PCI)	N/A	2^{1}	4 U	23	20	22	19	21	18	20	17	19	16	18	15	17	14	16	13	15	12
25	PL420R	1	2	4 U	27	24	26	23	25	22	24	21	23	20	22	19	21	18	20	17	19	16
26	BASE EXPANSION DRAWER (PCI\&DISKS)	1	2	4 U	23	20	22	19	21	18	20	17	19	16	18	15	17	14	16	13	15	12
27	NDAE2	2^{2}		3 U	19	21	20	22	21	23	22	24	23	25	24	26	25	27	26	28	27	29
28	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \& 7 \mathrm{DAE} \end{gathered}$																					
29	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \& 6 D A E \end{gathered}$	8	16^{2}	36 U																		
30	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \text { \& 5DAE } \end{gathered}$	7	14^{2}	32 U																		
31	$\begin{aligned} & \text { SPS / 4700 2Gbps \& } \\ & \text { 4DAE } \end{aligned}$	6	12^{2}	28 U																		
32	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 3DAE } \end{aligned}$	5	10^{2}	24 U																		
33	$\begin{gathered} \hline \text { SPS / } 4700 \text { 2Gbps } \\ \text { \& 2DAE } \end{gathered}$	4	8^{2}	20 U																		
34	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \& 1 \text { 1DAE } \end{gathered}$	3	6^{2}	16 U																		
35	SPS / 4700 2Gbps	2	4^{2}	12U																		
36	DAE5000	1	2^{2}	8 U																		
37	Switch FC 16-p. 2Gb/s	1	2^{2}	4 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28
38	Switch FC 8-port 2Gbps	1/2		1 U	Positions 1-1 à 36-36																	
39	Switch Fast Eth	1		1 U	Positions 1-1 à 36 -36																	
40	Switch Gbit Eth	1		2 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28
41	DLT4000/7000/8000	1		4 U	15	18	14	17	13	16	12	15	11	14	10	13	9	12	8	11	7	10
42	Cons Conc 16-port	1		2 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28

Prty	Drawer	Power-Cord	Height	Position 19		Position 20		Position 21		Position 22		Position 23		Position 24		Position 25		Position 26		Position 27	
43	Cons conc 16-port \& Switch Admin	1	2 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28
44	Switch Admin	2	2 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28
45	Switch Fast Eth	1	1 U	Positions 1-1 à 36-36																	
46	Rack Cont Spec 7EIA	1	1 U	Positions 1-1 à 36-36																	
47	Rack Cont Spec 4EIA	1	7 U	19	25	20	26	21	27	22	28	23	29	24	30	25	31	26	32	27	33
48	Rack Cont Spec 3EIA	1	4 U	19	22	20	23	21	24	22	25	23	26	24	27	25	28	26	29	27	30
49	Rack Cont Spec 2EIA	1	3 U	19	21	20	22	21	23	22	24	23	25	24	26	25	27	26	28	27	29
50	Rack Cont Spec 1EIA	1	2 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28

Table 10. Rack 36 U - Positions 28 to 36

Prty	Drawer	Power-Cord		Height	Position 28		Position 29		Position 30		Position 31		Position 32		Position 33		Position 34		Position 35		Position 36	
		1PS	RPS ${ }^{1}$		Start	End																
1	$\begin{gathered} \hline \text { PL600/400R } \\ \text { CEC+I/O } \end{gathered}$	2	41	10 U																		
2	PL800R CEC+1/O	N/A	41	13 U																		
3	Secondary I/O Drawer	1	2^{1}	5 U	5	9	4	8	3	7	2	6	1	5								
4	Disk Drawer (2104 / DU3)	1	2^{1}	3 U	7	9	6	8	5	7	4	6	3	5	2	4	1	3				
5	PL220R	2	3^{1}	5 U	5	9	4	8	3	7	2	6	1	5								
6	$\begin{gathered} \text { CX600 } \\ \& \text { 9DAE2 } \end{gathered}$	20^{2}		35 U																		
7	$\begin{gathered} \text { CX600 } \\ \& 8 \text { 8DE2 } \end{gathered}$	18^{2}		32 U																		
8	$\begin{gathered} \text { CX600 } \\ \& \text { 7DAE2 } \end{gathered}$	16^{2}		29 U																		
9	$\begin{gathered} \text { CX600 } \\ \& 6 D A E 2 \end{gathered}$	14^{2}		26 U																		
10	$\begin{gathered} \text { CX600 } \\ \text { \& 5DAE2 } \end{gathered}$	12^{2}		23 U																		
11	$\begin{gathered} \text { CX600 } \\ \& \text { 4DAE2 } \end{gathered}$	10^{2}		20 U																		
12	$\begin{gathered} \text { CX600 } \\ \& 3 D A E 2 \end{gathered}$	8^{2}		17 U																		
13	$\begin{gathered} \text { CX600 } \\ \& 2 D A E 2 \end{gathered}$	6^{2}		14U																		
14	$\begin{gathered} \text { CX600 } \\ \& \text { 1DAE2 } \end{gathered}$	4^{2}		11 U																		
15	$\begin{aligned} & \text { CX600 } \\ & \text { BASE } \end{aligned}$	2^{2}		8 U	28	35	29	36														
16	$\begin{gathered} \text { CX400 } \\ \& \text { 3DAE2 } \end{gathered}$	8^{2}		13 U																		
17	$\begin{gathered} \text { CX400 } \\ \& 2 D A E 2 \end{gathered}$	6^{2}		10 U																		
18	$\begin{gathered} \text { CX400 } \\ \& \text { 1DAE2 } \\ \hline \end{gathered}$	4^{2}		7 U	28	34	29	35	30	36												
19	$\begin{aligned} & \hline \text { CX400 } \\ & \text { BASE } \end{aligned}$	2^{2}		4 U	28	31	29	32	30	33	31	34	32	35	33	36						

Prty	Drawer	Power-Cord		$\begin{array}{c\|} \hline \text { Height } \\ \hline 7 \mathrm{U} \end{array}$	Position 28		Position 29		Position 30		Position 31		Position 32		Position 33		Position 34		Position 35		Position 36
20	$\begin{gathered} \text { CX200 } \\ \& \text { 1DAE2 } \end{gathered}$	1	N/A		28	34	29	35	30	36											
		1																			
21	$\begin{aligned} & \text { CX200 } \\ & \text { BASE } \end{aligned}$	1	N/A	4 U	28	31	29	32	30	33	31	34	32	35	33	36					
22	$\begin{gathered} \text { CX200 } \\ \text { MONO-SP } \end{gathered}$	1	N/A	3 U	28	30	29	31	30	32	31	33	32	34	33	35	34	36			
23	PL820R	N/A	2^{1}	8U	18	11	17	10													
24	I/O drawer (PCI)	N/A	2^{1}	4U	28	31	29	32	30	33	31	34	32	35	33	36					
25	PL420R	1	2	4U	18	15	17	14	16	13	15	12	14	11	13	10					
26	BASE EXPANSION DRAWER (PCI\&DISKS)	1	2	4 U	14	11	13	10	12	9	11	8	10	7	9	6					
27	NDAE2	2^{2}		3 U	28	30	29	31	30	32	31	33	32	34	33	35	34	36			
28	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \text { \& 7DAE } \end{gathered}$	8	16^{2}	36 U																	
29	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \& \text { 6DAE } \end{gathered}$	7	14^{2}	32 U																	
30	SPS / 4700 2Gbps \& 5DAE	6	12^{2}	28U																	
31	SPS / 4700 2Gbps \& 4DAE	5	10^{2}	24 U																	
32	SPS / 4700 2Gbps \& 3DAE	4	8^{2}	20 U																	
33	SPS / 4700 2Gbps \& 2DAE	3	6^{2}	16 U																	
34	$\begin{gathered} \text { SPS / } 4700 \text { 2Gbps } \\ \text { \& 1DAE } \end{gathered}$	2	4^{2}	12 U																	
35	SPS / 4700 2Gbps	1	2^{2}	8U																	
36	DAE5000	1	2^{2}	4 U	28	31	29	32	30	33	31	34	32	35	33	36					
37	Switch FC 16-p. 2Gb/s	2		2 U	28	29	29	30	30	31	31	32	32	33	33	34					
38	Switch FC 8-port 2Gbps	1		1 U	Positions 1-1 à 36-36																
39	Switch Fast Eth	1		2 U	28	29	29	30	30	31	31	32	32	33	33	34	34	35	35	36	
40	Switch Gbit Eth	1		2 U	28	29	29	30	30	31	31	32	32	33	33	34	34	35	35	36	
41	DLT4000/7000/8000	1		4 U	6	9	5	8	4	7	3	6	2	5	1	4					
42	Cons Conc 16-port	1		2 U	28	29	29	30	30	31	31	32	32	33	33	34	34	35	35	36	

Prty	Drawer	Power-Cord	Height	Position 28		Position 29		Position 30		Position 31		Position 32		Position 33		Position 34		Position 35		Position 36
43	Cons conc 16-port \& Switch Admin	2	2 U	28	29	29	30	30	31	31	32	32	33	33	34	34	35	35	36	
44	Switch Admin	1	1 U	Positions 1-1 à $36-36$																
45	Switch Fast Eth	1	1 U	Positions 1-1 à 36-36																
46	Rack Cont Spec 7EIA	1	7 U	28	34	29	35	30	36											
47	Rack Cont Spec 4EIA	1	4 U	28	31	29	32	30	33	31	34	32	35	33	36					
48	Rack Cont Spec 3EIA	1	3 U	28	30	29	31	30	32	31	33	32	34	33	35	34	36			
49	Rack Cont Spec 2EIA	1	2 U	28	29	29	30	30	31	31	32	32	33	33	34	34	35	35	36	
50	Rack Cont Spec 1EIA	1	1 U	Positions 1-1 à 36-36																

Drawer Location in T42 Rack

Note: 1 : RPS : Redondant Power Supply , 2 : For DAS : RPS = Dual -SP
Table 11. Rack 42U - Positions 1 to 9

Prty	Drawer	Power-Cord		Height	Position 1		Position 2		Position 3		Position 4		Position 5		Position 6		Position 7		Position 8		Position 9	
		1PS	RPS ${ }^{1}$		Start	End																
1	$\begin{aligned} & \text { PL600/400R } \\ & \text { CEC+I/O } \end{aligned}$	2	41	10 U	33	42	32	41	31	40	30	39	29	38	28	37	27	36	26	35	25	34
2	PL800R CEC+I/O	N/A	41	13 U	30	42	29	41	28	40	27	39	26	38	25	37	24	36	23	35	22	34
3	Secondary I/O Drawer	1	2^{1}	5 U	38	42	37	41	36	40	35	39	34	38	33	37	32	36	31	35	30	34
4	$\begin{array}{\|l} \text { Disk Drawer } \\ \text { (2104 / DU3) } \\ \hline \end{array}$	1	2^{1}	3 U	40	42	39	41	38	40	37	39	36	38	35	37	34	36	33	35	32	34
5	PL220R	2	3^{1}	5 U	38	42	37	41	36	40	35	39	34	38	33	37	32	36	31	35	30	34
6	$\begin{array}{\|l\|} \hline \text { CX600 } \\ \text { \& 9DAE2 } \end{array}$	20^{2}		35 U	1	35	2	36	3	37	4	38	5	39	6	40	7	41	8	42		
7	$\begin{array}{\|l\|l} \text { CX600 } \\ \& ~ 8 D A E 2 \end{array}$	18^{2}		32 U	1	32	2	33	3	34	4	35	5	36	6	37	7	38	8	39	9	40
8	$\begin{array}{\|l\|l} \hline \text { CX600 } \\ \& ~ 7 D A E 2 ~ \end{array}$	16^{2}		29 U	1	29	2	30	3	31	4	32	5	33	6	34	7	35	8	36	9	37
9	$\begin{array}{\|l\|} \hline \text { CX600 } \\ \text { \& 6DAE2 } \end{array}$	14^{2}		26 U	1	26	2	27	3	28	4	29	5	30	6	31	7	32	8	33	9	34
10	$\begin{aligned} & \text { CX600 } \\ & \text { \& 5DAE2 } \end{aligned}$	12^{2}		23 U	1	23	2	24	3	25	4	26	5	27	6	28	7	29	8	30	9	31
11	$\begin{array}{\|l\|} \hline \text { CX600 } \\ \& ~ 4 D A E 2 ~ \end{array}$	10^{2}		20 U	1	20	2	21	3	22	4	23	5	24	6	25	7	26	8	27	9	28
12	$\begin{aligned} & \text { CX600 } \\ & \text { \& 3DAE2 } \end{aligned}$	8^{2}		17 U	1	17	2	18	3	19	4	20	5	21	6	22	7	23	8	24	9	25
13	$\begin{aligned} & \hline \text { CX600 } \\ & \& 2 D A E 2 \end{aligned}$	6^{2}		14 U	1	14	2	15	3	16	4	17	5	18	6	19	7	20	8	21	9	22
14	$\begin{array}{\|l\|} \hline \text { CX600 } \\ \text { \& 1DAE2 } \end{array}$	4^{2}		11 U	1	11	2	12	3	13	4	14	5	15	6	16	7	17	8	18	9	19
15	$\begin{aligned} & \text { CX600 } \\ & \text { BASE } \end{aligned}$	2^{2}		8 U	1	8	2	9	3	10	4	11	5	12	6	13	7	14	8	15	9	16
16	$\begin{array}{\|l\|} \hline \text { CX400 } \\ \text { \& 3DAE2 } \\ \hline \end{array}$	8^{2}		13 U	1	13	2	14	3	15	4	16	5	17	6	18	7	19	8	20	9	21

Prty	Drawer	Power-Cord		$\begin{array}{\|l\|} \hline \text { Height } \\ \hline 10 \mathrm{U} \\ \hline \end{array}$	Position 1		Position 2		Position 3		Position 4		Position 5		Position 6		Position 7		Position 8		Position 9	
17	$\begin{aligned} & \text { CX400 } \\ & \text { \& 2DAE2 } \end{aligned}$	6^{2}			1	10	2	11	3	12	4	13	5	14	6	15	7	16	8	17	9	18
18	$\begin{aligned} & \text { CX400 } \\ & \text { \& 1DAE2 } \end{aligned}$	4^{2}		7 U	1	7	2	8	3	9	4	10	5	11	6	12	7	13	8	14	9	15
19	$\begin{aligned} & \text { CX400 } \\ & \text { BASE } \end{aligned}$	2^{2}		4 U	1	4	2	5	3	6	4	7	5	8	6	9	7	10	8	11	9	12
20	$\begin{aligned} & \text { CX200 } \\ & \text { \& 1DAE2 } \end{aligned}$	1	N/A	7 U	1	7	2	8	3	9	4	10	5	11	6	12	7	13	8	14	9	15
		1																				
21	$\begin{aligned} & \text { CX200 } \\ & \text { BASE } \end{aligned}$	1	N/A	4 U	1	4	2	5	3	6	4	7	5	8	6	9	7	10	8	11	9	12
22	$\begin{aligned} & \text { CX200 } \\ & \text { MONO-SP } \end{aligned}$	1	N/A	3 U	1	3	2	4	3	5	4	6	5	7	6	8	7	9	8	10	9	11
23	PL820R	N/A	2^{1}	8 U	16	9	15	8	14	7	13	6	12	5	11	4	10	3	9	2	8	1
24	I/O drawer (PCI)	N/A	2^{1}	4 U	8	5	7	4	6	3	5	2	4	1	42	39	41	38	40	37	39	36
25	PL420R	1	2	4 U	12	9	11	8	10	7	9	6	8	5	7	4	6	3	5	2	4	1
26	BASE EXPANSION DRAWER (PCI\&DISKS)	1	2	4 U	8	5	7	4	6	3	5	2	4	1	42	39	41	38	40	37	39	36
27	NDAE2	2^{2}		3 U	1	3	2	4	3	5	4	6	5	7	6	8	7	9	8	10	9	11
28	$\begin{aligned} & \hline \begin{array}{l} \text { SPS / } 4700 \text { 2Gbps } \\ \& \text { 7DAE } \end{array} \\ & \hline \end{aligned}$	8	16^{2}	36 U	1	36																
29	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 6DAE } \\ & \hline \end{aligned}$	7	14^{2}	32 U	1	32																
30	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 5DAE } \end{aligned}$	6	12^{2}	28 U	1	28																
31	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps \& } \\ & \text { 4DAE } \end{aligned}$	5	10^{2}	24 U	1	24	3	26														
32	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 3DAE } \end{aligned}$	4	8^{2}	20 U	1	20	3	22	21	40												
33	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 2DAE } \end{aligned}$	3	6^{2}	16 U	1	16	3	18	17	32	19	34										
34	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 1DAE } \end{aligned}$	2	4^{2}	12 U	1	12	3	14	13	24	15	26	25	36								
35	SPS / 4700 2Gbps	1	2^{2}	8 U	1	8	3	10	9	16	11	18	17	24	19	26	25	32	27	34		
36	DAE5000	1	2^{2}	4 U	1	4	2	5	3	6	4	7	5	8	6	9	7	10	8	11	9	12
37	$\begin{aligned} & \text { Switch FC 16-p. } \\ & \text { 2Gb/s } \end{aligned}$	2		2 U	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10

Prty	Drawer	Power-Cord	Height	Position 1		Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	
38	$\begin{aligned} & \text { Switch FC 8-port } \\ & \text { 2Gbps } \end{aligned}$	1	1U	Positions 1-1 à 42-42										
39	Switch Fast Eth	1	2 U	$1{ }^{1}$	2	2 l	3 3	$4{ }^{4} 5$	5 6	6 7	7 8	8 8 9	9 10	10
40	Switch Gbit Eth	1	2U	$1{ }^{1}$	2	23	3 4	4 5		6 7	$7{ }^{7}$	8 9	910	10
41	DLT4000/7000/8000	1	4 U	33 36	36	3235	31×34	$30-33$	29 32	28 31	27 30	$26-29$	25.28	28
42	Cons Conc 16-port	1	2 U	1 12	2	23	$3{ }^{3}$	$4{ }^{4} 5$	$5{ }^{5}$	6 7	7 7	8 9	9 9 10	10
43	Cons conc 16-port \& Switch Admin	2	2 U	$1{ }^{1}$	2	23	3 l	4 5	5 6	6 7	7 8	8 l	9 10	10
44	Switch Admin	1	1 U	Positions 1-1 à 36-36										
45	Switch Fast Eth	1	1U	Positions 1-1 à 42-42										
46	Rack Cont Spec 7EIA	1	7 U	$1{ }^{1} 7$	7	$2 \mathrm{l\mid l}$	 3 9	4 10	5 11	6 12	7 13	8 14	9 15	15
47	Rack Cont Spec 4EIA	1	4 U	1 4	4	2 5	3 6	4 7	5 8	6 9	7 10	8 11	9 12	12
48	Rack Cont Spec 3EIA	1	3 U	13	3	2 4	3 5	4 6	5 7	6 8	7 9	8 10	911	11
49	Rack Cont Spec 2EIA	1	2 U	$1{ }^{1}$	2	2 3	3 l	4 5	5 6	6 7	7 8	8 l	9 10	10
50	Rack Cont Spec 1EIA	1	1U	Positions 1-1 à 42-42										

Table 12. Rack 42 U - Positions 10 to 18

Prty	Drawer	Power-Cord		Height	Position 10		Position 11		Position 12		Position 13		Position 14		Position 15		Position 16		Position 17		Position 18	
		1PS	RPS ${ }^{1}$		Start	End																
1	$\begin{aligned} & \hline \text { PL600/400R } \\ & \text { CEC+I/O } \end{aligned}$	2	41	10U	24	33	23	32	22	31	21	30	20	29	19	28	18	27	17	26	16	25
2	PL800R CEC+1/O	N/A	41	13 U	21	33	20	32	19	31	18	30	17	29	16	28	15	27	14	26	13	25
3	Secondary I/O Drawer	1	2^{1}	5 U	29	33	28	32	27	31	26	30	25	29	24	28	23	27	22	26	21	25
4	Disk Drawer (2104 / DU3)	1	2^{1}	3 U	31	33	30	32	29	31	28	30	27	29	26	28	25	27	24	26	23	25
5	PL220R	2	3^{1}	5 U	29	33	28	32	27	31	26	30	25	29	24	28	23	27	22	26	21	25
6	$\begin{aligned} & \text { CX600 } \\ & \text { \& 9DAE2 } \end{aligned}$	20^{2}		35 U																		
7	$\begin{aligned} & \text { CX600 } \\ & \text { \& 8DAE2 } \end{aligned}$	18^{2}		32 U	10	41	11	42														
8	$\begin{aligned} & \text { CX600 } \\ & \text { \& 7DAE2 } \end{aligned}$	16^{2}		29 U	10	38	11	39	12	40	13	41	14	42								
9	$\begin{aligned} & \text { CX600 } \\ & \text { \& 6DAE2 } \end{aligned}$	14^{2}		26 U	10	35	11	36	12	37	13	38	14	39	15	40	16	41	17	42		
10	$\begin{aligned} & \hline \text { CX600 } \\ & \text { \& 5DAE2 } \end{aligned}$	12^{2}		23 U	10	32	11	33	12	34	13	35	14	36	15	37	16	38	17	39	18	40
11	$\begin{aligned} & \text { CX600 } \\ & \text { \& 4DAE2 } \end{aligned}$	10^{2}		20 U	10	29	11	30	12	31	13	32	14	33	15	34	16	35	17	36	18	37
12	$\begin{aligned} & \text { CX600 } \\ & \text { \& 3DAE2 } \end{aligned}$	8^{2}		17 U	10	26	11	27	12	28	13	29	14	30	15	31	16	32	17	33	18	34
13	$\begin{aligned} & \text { CX600 } \\ & \text { \& 2DAE2 } \end{aligned}$	6^{2}		14 U	10	23	11	24	12	25	13	26	14	27	15	28	16	29	17	30	18	31
14	$\begin{aligned} & \text { CX600 } \\ & \text { \& 1DAE2 } \end{aligned}$	4^{2}		11 U	10	20	11	21	12	22	13	23	14	24	15	25	16	26	17	27	18	28
15	$\begin{aligned} & \text { CX600 } \\ & \text { BASE } \end{aligned}$	2^{2}		8 U	10	17	11	18	12	19	13	20	14	21	15	22	16	23	17	24	18	25
16	$\begin{aligned} & \text { CX400 } \\ & \text { \& 3DAE2 } \end{aligned}$	8^{2}		13 U	10	22	11	23	12	24	13	25	14	26	15	27	16	28	17	29	18	30
17	$\begin{aligned} & \hline \text { CX400 } \\ & \text { \& 2DAE2 } \end{aligned}$	6^{2}		10U	10	19	11	20	12	21	13	22	14	23	15	24	16	25	17	26	18	27
18	$\begin{aligned} & \hline \text { CX400 } \\ & \text { \& 1DAE2 } \end{aligned}$	4^{2}		7 U	10	16	11	17	12	18	13	19	14	20	15	21	16	22	17	23	18	24
19	$\begin{aligned} & \text { CX400 } \\ & \text { BASE } \end{aligned}$	2^{2}		4 U	10	13	11	14	12	15	13	16	14	17	15	18	16	19	17	20	18	21

Prty	Drawer	Power-Cord		$\begin{array}{\|c\|} \hline \text { Height } \\ \hline 7 \mathrm{U} \\ \hline \end{array}$	Position 10		Position 11		Position 12		Position 13		Position 14		Position 15		Position 16		Position 17		Position 18	
20	$\begin{aligned} & \hline \text { CX200 } \\ & \text { \& 1DAE2 } \end{aligned}$	1	N/A		10	16	11	17	12	18	13	19	14	20	15	21	16	22	17	23	18	24
		1																				
21	$\begin{aligned} & \text { CX200 } \\ & \text { BASE } \end{aligned}$	1	N/A	4 U	10	13	11	14	12	15	13	16	14	17	15	18	16	19	17	20	18	21
22	$\begin{aligned} & \hline \text { CX200 } \\ & \text { MONO-SP } \end{aligned}$	1	N/A	3 U	10	12	11	13	12	14	13	15	14	16	15	17	16	18	17	19	18	20
23	PL820R	N/A	2^{1}	8 U	42	35	41	34	40	33	39	32	38	31	37	30	36	29	35	28	34	27
24	I/O drawer (PCI)	N/A	2^{1}	4 U	38	35	37	34	36	33	35	32	34	31	33	30	32	29	31	28	30	27
25	PL420R	1	2	4 U	42	39	41	38	40	37	39	36	38	35	37	34	36	33	35	32	34	31
26	BASE EXPANSION DRAWER (PCI\&DISKS)	1	2	4 U	38	35	37	34	36	33	35	32	34	31	33	30	32	29	31	28	30	27
27	NDAE2	2^{2}		3 U	10	12	11	13	12	14	13	15	14	16	15	17	16	18	17	19	18	20
28	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 7DAE } \end{aligned}$	8	16^{2}	36 U																		
29	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 6DAE } \end{aligned}$	7	14^{2}	32 U																		
30	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 5DAE } \end{aligned}$	6	12^{2}	28 U																		
31	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps \& } \\ & \text { 4DAE } \end{aligned}$	5	10^{2}	24 U																		
32	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 3DAE } \end{aligned}$	4	8^{2}	20 U																		
33	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 2DAE } \end{aligned}$	3	6^{2}	16 U																		
34	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 1DAE } \end{aligned}$	2	4^{2}	12 U																		
35	SPS / 4700 2Gbps	1	2^{2}	8 U																		
36	DAE5000	1	2^{2}	4 U	10	13	11	14	12	15	13	16	14	17	15	18	16	19	17	20	18	21
37	$\begin{aligned} & \text { Switch FC 16-p. } \\ & \text { 2Gb/s } \end{aligned}$	2		2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19
38	Switch FC 8-port 2Gbps 2Gbps	1		1U	Positions 1-1 à 42-42																	
39	Switch Fast Eth	1		2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19
40	Switch Gbit Eth	1		2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19
41	DLT4000/7000/8000	1		4 U	24	27	23	26	22	25	21	24	20	23	19	22	18	21	17	20	16	19
42	Cons Conc 16-port	1		2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19

Prty	Drawer	Power-Cord	Height		n 10		n 11	Pos	n 12	Pos	n 13	Pos	n 14	Pos	n 15	Pos	n 16	Pos	n 17	Pos	n 18
43	Cons conc 16-port \& Switch Admin	2	2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19
44	Switch Admin	1	1U	Positions 1-1 à 36-36																	
45	Switch Fast Eth	1	1U	Positions 1-1 à 42-42																	
46	Rack Cont Spec 7EIA	1	7 U	10	16	11	17	12	18	13	19	14	20	15	21	16	22	17	23	18	24
47	Rack Cont Spec 4EIA	1	4 U	10	13	11	14	12	15	13	16	14	17	15	18	16	19	17	20	18	21
48	Rack Cont Spec 3EIA	1	3 U	10	12	11	13	12	14	13	15	14	16	15	17	16	18	17	19	18	20
49	Rack Cont Spec 2EIA	1	2 U	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19
50	Rack Cont Spec 1EIA	1	1U	Positions 1-1 à 42-42																	

Table 13. Rack 42 U - Positions 19 to 27

Prty	Drawer	Power-Cord		Height	Position 19		Position 20		Position 21		Position 22		Position 23		Position 24		Position 25		Position 26		Position 27	
		1PS	RPS ${ }^{1}$		Start	End																
1	$\begin{aligned} & \hline \text { PL600/400R } \\ & \text { CEC+I/O } \end{aligned}$	2	41	10U	15	24	14	23	13	22	12	21	11	20	10	19	9	18	8	17	7	16
2	PL800R CEC+I/O	N/A	41	13 U	12	24	11	23	10	22	9	21	8	20	7	19	6	18	5	17	4	16
3	Secondary I/O Drawer	1	2^{1}	5 U	20	24	19	23	18	22	17	21	16	20	15	19	14	18	13	17	12	16
4	$\begin{aligned} & \text { Disk Drawer } \\ & \text { (2104 / DU3) } \end{aligned}$	1	2^{1}	3 U	22	24	21	23	20	22	19	21	18	20	17	19	16	18	15	17	14	16
5	PL220R	2	3^{1}	5 U	20	24	19	23	18	22	17	21	16	20	15	19	14	18	13	17	12	16
6	$\begin{aligned} & \text { CX600 } \\ & \text { \& 9DAE2 } \end{aligned}$	20^{2}		35 U																		
7	$\begin{aligned} & \text { CX600 } \\ & \text { \& 8DAE2 } \end{aligned}$	18^{2}		32 U																		
8	$\begin{aligned} & \text { CX600 } \\ & \text { \& 7DAE2 } \end{aligned}$	16^{2}		29 U																		
9	$\begin{aligned} & \text { CX600 } \\ & \& 6 D A E 2 \end{aligned}$	14^{2}		26 U																		
10	$\begin{aligned} & \text { CX600 } \\ & \text { \& 5DAE2 } \end{aligned}$	12^{2}		23 U	19	41	20	42														
11	$\begin{aligned} & \hline \text { CX600 } \\ & \text { \& 4DAE2 } \end{aligned}$	10^{2}		20 U	19	38	20	39	21	40	22	41	23	42								
12	$\begin{aligned} & \text { CX600 } \\ & \text { \& 3DAE2 } \end{aligned}$	8^{2}		17 U	19	35	20	36	21	37	22	38	23	39	24	40	25	41	26	42		
13	$\begin{aligned} & \text { CX600 } \\ & \text { \& 2DAE2 } \end{aligned}$	6^{2}		14 U	19	32	20	33	21	34	22	35	23	36	24	37	25	38	26	39	27	40
14	$\begin{aligned} & \text { CX600 } \\ & \text { \& 1DAE2 } \end{aligned}$	4^{2}		11 U	19	29	20	30	21	31	22	32	23	33	24	34	25	35	26	36	27	37
15	$\begin{aligned} & \text { CX600 } \\ & \text { BASE } \end{aligned}$	2^{2}		8 U	19	26	20	27	21	28	22	29	23	30	24	31	25	32	26	33	27	34
16	$\begin{aligned} & \text { CX400 } \\ & \text { \& 3DAE2 } \end{aligned}$	8^{2}		13 U	19	31	20	32	21	33	22	34	23	35	24	36	25	37	26	38	27	39
17	$\begin{aligned} & \hline \text { CX400 } \\ & \text { \& 2DAE2 } \end{aligned}$	6^{2}		10U	19	28	20	29	21	30	22	31	23	32	24	33	25	34	26	35	27	36
18	$\begin{aligned} & \text { CX400 } \\ & \text { \& 1DAE2 } \end{aligned}$	4^{2}		7 U	19	25	20	26	21	27	22	28	23	29	24	30	25	31	26	32	27	33
19	$\begin{aligned} & \text { CX400 } \\ & \text { BASE } \end{aligned}$	2^{2}		4 U	19	22	20	23	21	24	22	25	23	26	24	27	25	28	26	29	27	30

Prty	Drawer	Power-Cord		Height 7 U	Position 19		Position 20		Position 21		Position 22		Position 23		Position 24		Position 25		Position 26		Position 27	
20	$\begin{aligned} & \hline \text { CX200 } \\ & \text { \& 1DAE2 } \end{aligned}$	1	N/A		19	25	20	26	21	27	22	28	23	29	24	30	25	31	26	32	27	33
		1																				
21	$\begin{aligned} & \text { CX200 } \\ & \text { BASE } \end{aligned}$	1	N/A	4 U	19	22	20	23	21	24	22	25	23	26	24	27	25	28	26	29	27	30
22	$\begin{array}{\|l\|} \hline \text { CX200 } \\ \text { MONO-SP } \end{array}$	1	N/A	3 U	19	21	20	22	21	23	22	24	23	25	24	26	25	27	26	28	27	29
23	PL820R	N/A	2^{1}	8 U	33	26	32	25	31	24	30	23	29	22	28	21	27	20	26	19	25	18
24	I/O drawer (PCI)	N/A	2^{1}	4 U	29	26	28	25	27	24	26	23	25	22	24	21	23	20	22	19	21	18
25	PL420R	1	2	4 U	33	30	32	29	31	28	30	27	29	26	28	25	27	24	26	23	25	22
26	BASE EXPANSION DRAWER (PCI\&DISKS)	1	2	4 U	29	26	28	25	27	24	26	23	25	22	24	21	23	20	22	19	21	18
27	NDAE2	2^{2}		3 U	19	21	20	22	21	23	22	24	23	25	24	26	25	27	26	28	27	29
28	SPS / 4700 2Gbps \& 7DAE																					
29	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \& 6 D A E \end{aligned}$	8	16^{2}	36 U																		
30	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 5DAE } \end{aligned}$	7	14^{2}	32 U																		
31	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps \& } \\ & \text { 4DAE } \end{aligned}$	6	12^{2}	28 U																		
32	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 3DAE } \end{aligned}$	5	10^{2}	24 U																		
33	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 2DAE } \end{aligned}$	4	8^{2}	20 U																		
34	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 1DAE } \end{aligned}$	3	6^{2}	16 U																		
35	SPS / 4700 2Gbps	2	4^{2}	12 U																		
36	DAE5000	1	2^{2}	8 U																		
37	$\begin{aligned} & \text { Switch FC 16-p. } \\ & \text { 2Gb/s } \end{aligned}$	1	2^{2}	4 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28
38	$\begin{aligned} & \text { Switch FC 8-port } \\ & \text { 2Gbps } \end{aligned}$	$1 / 2$		1U	Positions 1-1 à 42-42																	
39	Switch Fast Eth	1		1U	Positions 1-1 à 42-42																	
40	Switch Gbit Eth	1		2 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28
41	DLT4000/7000/8000	1		4 U	15	18	14	17	13	16	12	15	11	14	10	13	9	12	8	11	7	10
42	Cons Conc 16-port	1		2 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28

Prty	Drawer	Power-Cord	Height	Position 19		Position 20		Position 21		Position 22		Position 23		Position 24		Position 25		Position 26		Position 27	
43	Cons conc 16-port \& Switch Admin	1	2 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28
44	Switch Admin	2	2 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28
45	Switch Fast Eth	1	1 U	Positions 1-1 à 36-36																	
46	Rack Cont Spec 7EIA	1	1U	Positions 1-1 à 42-42																	
47	Rack Cont Spec 4EIA	1	7 U	19	25	20	26	21	27	22	28	23	29	24	30	25	31	26	32	27	33
48	Rack Cont Spec 3EIA	1	4 U	19	22	20	23	21	24	22	25	23	26	24	27	25	28	26	29	27	30
49	Rack Cont Spec 2EIA	1	3 U	19	21	20	22	21	23	22	24	23	25	24	26	25	27	26	28	27	29
50	Rack Cont Spec 1EIA	1	2 U	19	20	20	21	21	22	22	23	23	24	24	25	25	26	26	27	27	28

Table 14. Rack 42U - Positions 28 to 36

Prty	Drawer	Power-Cord		Height	Position 28		Position 29		Position 30		Position 31		Position 32		Position 33		Position 34		Position 35		Position 36	
		1PS	RPS ${ }^{1}$		Start	End																
1	$\begin{aligned} & \hline \text { PL600/400R } \\ & \text { CEC+I/O } \end{aligned}$	2	41	10U	6	15	5	14	4	13	3	12	2	11	1	10						
2	PL800R CEC+I/O	N/A	41	13 U	3	15	2	14	1	13												
3	Secondary I/O Drawer	1	2^{1}	5 U	11	15	10	14	9	13	8	12	7	11	6	10	5	9	4	8	3	7
4	Disk Drawer (2104 / DU3)	1	2^{1}	3 U	13	15	12	14	11	13	10	12	9	11	8	10	7	9	6	8	5	7
5	PL220R	2	3^{1}	5 U	11	15	10	14	9	13	8	12	7	11	6	10	5	9	4	8	3	7
6	$\begin{aligned} & \hline \text { CX600 } \\ & \text { \& 9DAE2 } \end{aligned}$	20^{2}		35 U																		
7	$\begin{array}{\|l\|} \hline \text { CX600 } \\ \text { \& 8DAE2 } \end{array}$	18^{2}		32 U																		
8		16^{2}		29 U																		
9	$\begin{array}{\|l\|l\|l\|l\|l} \text { CX600 } \\ \& ~ 6 D A E 2 ~ \end{array}$	14^{2}		26 U																		
10	$\begin{array}{\|l\|} \hline \text { CX600 } \\ \text { \& 5DAE2 } \end{array}$	12^{2}		23 U																		
11	$\begin{aligned} & \text { CX600 } \\ & \text { \& 4DAE2 } \end{aligned}$	10^{2}		20 U																		
12		8^{2}		17 U																		
13	$\begin{array}{\|l\|} \hline \text { CX600 } \\ \text { \& 2DAE2 } \end{array}$	6^{2}		14 U	28	41	29	42														
14	$\begin{array}{\|l\|l} \text { CX600 } \\ \text { \& 1DAE2 } \end{array}$	4^{2}		11U	28	38	29	39	30	40	31	41	32	42								
15	$\begin{aligned} & \text { CX600 } \\ & \text { BASE } \end{aligned}$	2^{2}		8 U	28	35	29	36	30	37	31	38	32	39	33	40	34	41	35	42		
16	$\begin{aligned} & \text { CX400 } \\ & \text { \& 3DAE2 } \end{aligned}$	8^{2}		13 U	28	40	29	41	30	42												
17	$\begin{aligned} & \text { CX400 } \\ & \text { \& 2DAE2 } \end{aligned}$	6^{2}		10 U	28	37	29	38	30	39	31	40	32	41	33	42						
18	$\begin{array}{\|l\|l} \text { CX400 } \\ \text { \& 1DAE2 } \end{array}$	4^{2}		7 U	28	34	29	35	30	36	31	37	32	38	33	39	34	40	35	41	36	42
19	$\begin{aligned} & \text { CX400 } \\ & \text { BASE } \end{aligned}$	2^{2}		4 U	28	31	29	32	30	33	31	34	32	35	33	36	34	37	35	38	36	39

Prty	Drawer	Power-Cord	Height		n 28	Pos	n 29	Pos	n 30	Pos	n 31	Pos	n 32		n 33	Pos	n 34	Pos	n 35	Pos	n 36
38	Cons conc 16-port \& Switch Admin	2	2 U	28	29	29	30	30	31	31	32	32	33	33	34	34	35	35	36	36	37
39	Switch Admin	1	1U	Positions 1-1 à 36-36																	
40	Switch Fast Eth	1	1U	Positions 1-1 à 42-42																	
41	Rack Cont Spec 7EIA	1	7 U	28	34	29	35	30	36	31	37	32	38	33	39	34	40	35	41	36	42
42	Rack Cont Spec 4EIA	1	4 U	28	31	29	32	30	33	31	34	32	35	33	36	34	37	35	38	36	39
43	$\begin{aligned} & \text { Rack Cont Spec } \\ & \text { 3EIA } \end{aligned}$	1	3 U	28	30	29	31	30	32	31	33	32	34	33	35	34	36	35	37	36	38
44	$\begin{aligned} & \text { Rack Cont Spec } \\ & \text { 2EIA } \end{aligned}$	1	2 U	28	29	29	30	30	31	31	32	32	33	33	34	34	35	35	36	36	37
45	Rack Cont Spec 1EIA	1	1 U	Positions 1-1 à 42-42																	

Table 15. Rack 42 U - Positions 37 to 42

Prty	Drawer	Power-Cord		Height	Position 37		Position 38		Position 39		Position 40		Position 41		Position 42	
		1PS	RPS ${ }^{1}$		Start	End										
1	$\begin{aligned} & \hline \text { PL600/400R } \\ & \text { CEC+I/O } \end{aligned}$	2	41	10 U												
2	PL800R CEC+I/O	N/A	41	13U												
3	Secondary I/O Drawer	1	2^{1}	5 U	2	6	1	5								
4	Disk Drawer (2104 / DU3)	1	2^{1}	3 U	4	6	3	5	2	4	1	3				
5	PL220R	2	3^{1}	5 U	2	6	1	5								
6	$\begin{aligned} & \text { CX600 } \\ & \& \text { 9DAE2 } \end{aligned}$	20^{2}		35U												
7	$\begin{aligned} & \text { CX600 } \\ & \text { \& 8DAE2 } \end{aligned}$	18^{2}		32 U												
8	$\begin{aligned} & \text { CX600 } \\ & \text { \& 7DAE2 } \end{aligned}$	16^{2}		29U												
9	$\begin{aligned} & \text { CX600 } \\ & \text { \& 6DAE2 } \end{aligned}$	14^{2}		26U												
10	$\begin{aligned} & \text { CX600 } \\ & \text { \& 5DAE2 } \end{aligned}$	12^{2}		23U												
11	$\begin{aligned} & \text { CX600 } \\ & \& \text { 4DAE2 } \end{aligned}$	10^{2}		20U												
12	$\begin{aligned} & \text { CX600 } \\ & \text { \& 3DAE2 } \end{aligned}$	8^{2}		17U												
13	$\begin{aligned} & \text { CX600 } \\ & \text { \& 2DAE2 } \end{aligned}$	6^{2}		14U												
14	$\begin{aligned} & \text { CX600 } \\ & \text { \& 1DAE2 } \end{aligned}$	4^{2}		11U												
15	$\begin{aligned} & \text { CX600 } \\ & \text { BASE } \end{aligned}$	2^{2}		8U												
16	$\begin{aligned} & \text { CX400 } \\ & \text { \& 3DAE2 } \end{aligned}$	8^{2}		13U												
17	$\begin{aligned} & \hline \text { CX400 } \\ & \text { \& 2DAE2 } \end{aligned}$	6^{2}		10U												
18	$\begin{aligned} & \text { CX400 } \\ & \text { \& 1DAE2 } \end{aligned}$	4^{2}		7 U												
19	CX400 BASE	2^{2}		4 U	37	40	38	41	39	42						

Prty	Drawer	Power-Cord		Height 7 U	Position 37		Position 38		Position 39		Position 40		Position 41		Position 42
20	$\begin{aligned} & \hline \text { CX200 } \\ & \text { \& 1DAE2 } \end{aligned}$	1	N/A												
		1													
21	$\begin{aligned} & \text { CX200 } \\ & \text { BASE } \end{aligned}$	1	N/A	4 U	37	40	38	41	39	42					
22	$\begin{aligned} & \text { CX200 } \\ & \text { MONO-SP } \end{aligned}$	1	N/A	3 U	37	39	38	40	39	41	40	42			
23	PL820R	N/A	2^{1}	8 U											
24	I/O drawer (PCI)	N/A	2^{1}	4 U	11	8	10	7	9	6					
25	PL420R	1	2	4 U	15	12	14	11	13	10					
26	BASE EXPANSION DRAWER (PCI\&DISKS)	1	2	4 U	11	8	10	7	9	6					
27	NDAE2	2^{2}		3 U	37	39	38	40	39	41	40	42			
28	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 7DAE } \end{aligned}$	8	16^{2}	36 U											
29	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 6DAE } \end{aligned}$	7	14^{2}	32 U											
30	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 5DAE } \end{aligned}$	6	12^{2}	28 U											
31	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps \& } \\ & \text { 4DAE } \end{aligned}$	5	10^{2}	24 U											
32	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 3DAE } \end{aligned}$	4	8^{2}	20 U											
33	$\begin{aligned} & \text { SPS / } 4700 \text { 2Gbps } \\ & \text { \& 2DAE } \end{aligned}$	3	6^{2}	16 U											
34	SPS / 4700 2Gbps \& 1DAE	2	4^{2}	12 U											
35	SPS / 4700 2Gbps	1	2^{2}	8 U											
36	DAE5000	1	2^{2}	4 U	37	40	38	41	39	42					
37	$\begin{aligned} & \text { Switch FC 16-p. } \\ & \text { 2Gb/s } \end{aligned}$	2		2 U	37	38	38	39	39	40	40	41	41	42	
38	$\begin{aligned} & \text { Switch FC 8-port } \\ & \text { 2Gbps } \end{aligned}$	1		1U	Positions 1-1 à 42-42										
39	Switch Fast Eth	1		2 U	37	38	38	39	39	40	40	41	41	42	
40	Switch Gbit Eth	1		2 U	37	38	38	39	39	40	40	41	41	42	
41	DLT4000/7000/8000	1		4 U	37	40	38	41	39	42					
42	Cons Conc 16-port	1		2 U	37	38	38	39	39	40	40	41	41	42	

Prty	Drawer	Power-Cord	Height	Position 37		Position 38		Position 39		Position 40		Position 41		Position 42
43	Cons conc 16-port \& Switch Admin	2	2 U	37	38	38	39	39	40	40	41	41	42	
44	Switch Admin	1	1 U	Positions 1-1 à 36-36										
45	Switch Fast Eth	1	1U	Positions 1-1 à 42-42										
46	Rack Cont Spec 7EIA	1	7 U											
47	Rack Cont Spec 4EIA	1	4U		40	38	41	39	42					
48	Rack Cont Spec 3EIA	1	3 U		39	38	40	39	41	40	42			
49	Rack Cont Spec 2EIA	1	2 U		38	38	39	39	40	40	41	41	42	
50	Rack Cont Spec 1EIA	1	1 U	Positions 1-1 à 42-42										

1:RPS: Redondant Power Supply,
2 : For DAS : RPS = Dual -SP

Chapter 5. Escala PL3200R and PL1600R

Describes requirements for the Escala PL3200R and PL1600R machines.

- PL3200R Components, on page 5-2.
- PL1600R Components, on page 5-3.
- Doors and Covers, on page 5-3.
- System Movement to the Installation Site, on page 5-4.
- Power and Electrical Requirements, on page 5-4.
- Physical Specifications and Loads, on page 5-11.
- Weight Distribution, on page 5-14.
- Total System Power Consumption, on page 5-20.
- Unit Emergency Power Off, on page 5-23.
- Battery Holdup Times, on page 5-25.
- Guide for Raised-Floor Preparation, on page 5-25.
- Considerations for Multiple System Installations, on page 5-36.
- Service Clearance, on page 5-38.
- Cooling Requirements, on page 5-40.
- Hardware Management Console (HMC), on page 5-44.

PL3200R Components

The Escala PL3200R system consists of multiple components, as summarized in the following table.

Description	Minimum per System	Maximum per System
Base Frame (Redundant power supplies as feature codes)	1	1
Optional Expansion Frame	0	1
Base Frame Universal Front Door	1	1
Expanson Frame Universal Front Door ${ }^{2}$	0	1
Base/Expansion Frame Slimline Rear Door ${ }^{2}$	1^{1}	2^{1}
Base/Expansion Frame Acoustical Rear Door ${ }^{2}$	1^{1}	2^{1}
Optional Integrated Battery Feature (IBF)	0	6
Managed Server (up to 32 processors, 8 GB to 256 GB memory)	1	1
Hardware Management Console (HMC)	0	2
Media Subsystem (Operation panel, 3.5-inch floppy drive, op- tional media devices)	1	1
IO Subsystem (20 PCI cards maximum, 16 DASD maximum)	1	6

Notes:

1. Either slimline doors or acoustical doors must be selected by the customer during the order process. Thin doors will not meet acoustic limits for Category 1A.
2. Door options determine which doors are included with your Escala PL3200R. See "Doors and Covers" below.

PL1600R Components

The Escala PL1600R system consists of multiple components, as summarized in the following table.

Description	Minimum per System	Maximum per System
Base Frame (Redundant power supplies as feature codes)	1	1
Base Frame Universal Front Door	1	1
Base Frame Slimline Rear Door ${ }^{2}$	$1{ }^{1}$	$1{ }^{1}$
Base Frame Acoustical Rear Door ${ }^{2}$	1^{1}	11
Optional Integrated Battery Feature (IBF)	0	2
Managed Server (up to 16 processors, 4 GB to 128 GB memory)	1	1
Hardware Management Console (HMC)	0	2
Media Subsystem (Operation panel, 3.5-inch floppy drive, optional media devices)	1	1
IO Subsystem (20 PCI cards maximum, 16 DASD maximum)	1	3
Notes: 1. Either slimline doors or acoustical doors must be selecte cess. Thin doors will not meet acoustic limits for Category 1A. 2. Door options determine which doors are included with y Covers" below.	by the customer du Escala PL1600R	ring the order pro- See "Doors and

Doors and Covers

Covers are an integral part of the Escala PL3200R and PL1600R and are required for product safety and EMC compliance. The following rear door options are available for the Escala PL3200R and PL1600R:

- "Enhanced Acoustical" Cover Option

This feature provides a low-noise option for customers or sites with stringent acoustical requirements and where a minimal system footprint is not critical . The Acoustical cover option consists of a special rear door which is approximately $200-\mathrm{mm}(8$ ") in depth and contains acoustical treatment that lowers the noise level of the machine by approximately 6 dB compared to the non-acoustical rear door. With this option, the PL3200R and the PL1600R meet the acoustical Specifications for Category 1A for Data Processing Areas, with a declared A-weighted sound power level, Lwad of 7.5 bels (B) for the most common system configuration.

- "Slimline" Cover Option

This feature provides a smaller-footprint and lower-cost option for customers or sites where space is more critical than acoustical noise levels. The Slimline cover option consists of rear door which is about $50-\mathrm{mm}\left(2^{\prime \prime}\right)$ in depth with no acoustical treatment. With this option, for the most common system configuration, the PL3200R has a declared A-weighted sound power level, Lwad, of 8.1 bels (B) and the PL1600R has a declared A-weighted sound power level, Lwad, of 7.9 bels (B).
Note: For declared levels of acoustical noise emissions, refer to "Acoustical Noise Emissions" on page 5-13.

System Movement to the Installation Site

The customer should determine the path that the system must take to be moved from the delivery location to the installation site. The customer should verify that the height of all doorways, elevators, and so on are sufficient to allow movement of the system to the installation site. The customer should also determine that the weight limitation of elevators, ramps, and so on are sufficient to allow movement of the system to the installation site. If it is determined that the height or weight of the system can cause a problem in movement to the installation site, contact your local site planning, marketing, or sales representative.

Power and Electrical Requirements

Redundant power and line cords are standard on PL3200R and PL1600R. The system uses dual A/C power cords. For maximum availability, each of the line cords should be fed from independent power grids.

The following table illustrates electrical and thermal characteristics.

Electrical/Thermal Characteristic			
Rated Voltage (V ac, 3 phase)	200 to 240	380 to 415	480
Rated Current (A, per phase)	45	25	20
Frequency (Hertz)	50 to 60	50 to 60	50 to 60
Power (Maximum in kVA)			
PL3200R	15.7	15.7	6.7
PL1600R	6.7	6.7	0.93
Typical, full load power factor (pf)	0.99	0.97	
Inrush current (Amps)	162 max (see note 1 below)		
Thermal output (Maximum kBtu/hr)			
PL3200R	53.3	53.3	22.8
PL1600R	22.8		
Notes:			
1. Inrush currents occur only at initial applicatoin of power (very short duration for charging capaci-			
tors). No inrush currents occur during the normal power off-on cycle.			
2. System will function normally with a nominal input voltage in the range of 200-480 V, AC, three			
phase.			

The following table illustrates the line cord options for the PL3200R and PL1600R with their geographic, breaker rating, and cord information.

3-Phase Supply Voltage $(50 / 60 \mathrm{~Hz})$	200-240 V	380-415 V	480 V
Geography	United States, Canada, Japan	Europe, Middle East, Africa, Asia Pacific	United States, Canada
Customer Circuit Breaker Rating (see Note 1 below)	60 A	30 A	30 A
Cord Information	6 and 14 foot, 6 AWG line cord	14 foot, 6 or 8 AWG line cord, (electrician installed)	6 and 14 foot, 10 AWG line cord
Recommended Receptacle	$\begin{aligned} & \text { IEC309, } 60 \text { A, type } \\ & \text { 460R9W } \\ & \text { (not provided) } \\ & \hline \end{aligned}$	Not specified, electrician installed	IEC309, 30 A, type 430R7W (not provided)
Notes: 1. The exact circuit breaker ratings may not be available in all countries. Where the specified circuit breaker ratings are not acceptable, use the nearest available rating. 2. In two-frame systems, frame B receives its power from frame A. The power to frame B is 350 V DC fed from the BPD through UPIC cables.			

PL3200R Phase Imbalance and BPR Configuration

Depending on the number of Bulk Power Regulators (BPRs) in your system, phase imbalance can occur in line currents. All systems are provided with 2 bulk power assemblies (BPAs), with seperate line cords. The following table illustrates phase imbalance as a function of BPR configuration.

Number of BPRs per BPA	Phase A Line Current	Phase B Line Current	Phase C Line Current
1	Power / Vline	Power / Vline	0
2	0.5 Power / Vline	0.866 Power / Vline	0.5 Power / Vline
3	0.577 Power / Vline	0.577 Power / Vline	0.577 Power / Vline

Note: Power is calculated from "Total System Power Consumption" on page 5-20. Vline is line-to-line nominal input voltage.

PL1600R Phase Imbalance and BPR Configuration

All systems are provided with 2 bulk power assemblies (BPAs), with seperate line cords. Each BPA will use only 2 phases of a 3 -phase power system, causing phase imbalance. Phase currents will be divided between 2 line cord in normal operation.

The PL1600R has one Bulk Power Regulator (BPR) per BPA, with its Phase A and Phase B Line Currents determined by Power/Vline, and a Phase C Line Current of 0 .
Note: Power is calculated from "Total System Power Consumption" on page 5-20. Vline is line-to-line nominal input voltage.

Balancing Power Panel Loads

The Escala PL3200R and PL1600R require three phase power. Depending on the system configuration, the phase currents can be fully balanced or unbalanced. System configurations with three BPRs per BPA have balanced power panel loads, while configurations with only one or two have unbalanced loads. With two BPRs per BPA, two of the three phases will draw an equal amount of current, and will be, nominally, 57.8% of the current on the third phase. With one BPR per BPA, two of three phases will carry an equal amount of current, with no current drawn on the third phase. The following figure is an example of feeding several loads of this type from two power panels in a way that balances the load among the three phases.

Power Panel 1

Power Panel 2

The method illustrated in the above figure requires that the connection from the three poles of each breaker to the three phase pins of a connector be varied. Some electricians may prefer to maintain a consistent wiring sequence from the breakers to the connectors. The following figure shows a way to balance the load without changing the wiring on the output of any breakers. The three-pole breakers are alternated with single-pole breakers. This way the three-pole breakers do not all begin on Phase A.

Power Panel 1

Power Panel 2

The following figure shows another way of distributing the unbalanced load evenly. In this case, the three-pole breakers are alternated with two-pole breakers.

Power Panel 1

Power Panel 2

Power Cord Configuration

The power cords exit the system from different points of the frame as indicated in the following illustration.

Checking the Facility Outlets and Power Source

CAUTION:

Do not touch the receptacle or the receptacle faceplate with anything other than your test probes before you have met the requirements in "Checking the Facility Outlets and Power Source" below.

Performing the following will ensure that appropriate power will be used by the system. The following checklist is for reference purposes, and will likely be performed by a service engineer prior to installation.

1. The Escala PL3200R and PL1600R are equipped to use $200-240 \mathrm{~V} / 380-415 \mathrm{~V} / 480 \mathrm{~V}$ AC, three-phase. Check that the correct power source is available.
2. Before system installation, locate and turn off the branch circuit CB (circuit breaker). Attach tag S229-0237, which reads "Do Not Operate."

Note: All measurements are made with the receptacle faceplate in the normally installed position.
3. Some receptacles are enclosed in metal housings. On receptacles of this type, perform the following steps:
a. Check for less than 1 volt from the receptacle case to any grounded metal structure in the building, such as a raised-floor metal structure, water pipe, building steel, or similar structure.
b. Check for less than 1 volt from receptacle ground pin to a grounded point in the building.

Note: If the receptacle case or faceplate is painted, be sure the probe tip penetrates the paint and makes good electrical contact with the metal.
4. Check the resistance from the ground pin of the receptacle to the receptacle case. Check resistance from the ground pin to building ground. The reading should be less than 1.0 ohm , which indicates the presence of a continuous grounding conductor.
5. If any of the checks made in substeps 2 and 3 are not correct, remove the power from the branch circuit and make the wiring corrections; then check the receptacle again.
Note: Do not use the digital multimeter to measure grounding resistance.
6. Check for infinite resistance between the phase pins. This is a check for a wiring short.

CAUTION:

If the reading is other than infinity, do not proceed! You must make the necessary wiring corrections to satisfy the above criteria before continuing. Do not turn on the branch circuit CB until all the above steps are satisfactorily completed.
7. Remove tag S229-0237, which reads "Do Not Operate."
8. Turn on the branch circuit CB. Measure for appropriate voltages between phases. If no voltage is present on the receptacle case or grounded pin, the receptacle is safe to touch.
9. With an appropriate meter, verify that the voltage at the outlet is correct.
10.Verify that the grounding impedance is correct by using the ECOS 1020, 1023, B7106, or an appropriately approved ground impedance tester.
11. Turn off the branch circuit CB
12.Attach tag S229-0237, which reads "Do Not Operate."
13. You are now ready to install and connect the power cables to the Escala PL3200R or PL1600R. Please refer to Chapter 1 of the "Escala PL3200R Installation Guide", order number 86 A1 80EF, or "Escala PL1600R Installation Guide", order number 86 A1 92EF, for this procedure.

Dual Power Installation

The PL3200R and PL1600R are designed with a fully redundant power system. Each system has two line cords attached to two power input ports which, in turn, power a fully redundant power distribution system within the system. To take full advantage of the redundancy/reliability that is built into the computer system, the system must be powered from two distribution panels. The possible power installation configurations are described as follows.

Dual Power Installation - Redundant Distribution Panel and Switch

This configuration requires that the system receives power from two separate power distribution panels. Each distribution panel receives power from a separate piece of building switch gear. This level of redundancy is not available in most facilities.

Dual Power Installation - Redundant Distribution Panel

This configuration requires that the system receives power from two separate power distribution panels. The two distribution panels receive power from the same piece of building switch gear. Most facilities should be able to achieve this level of redundancy.

Single Distribution Panel - Dual Circuit Breakers

This configuration requires that the system receives power from two separate circuit breakers in a single power panel. This configuration does not make full use of the redundancy provided by the processor. It is, however, acceptable if a second power distribution panel is not available.

Addtional Installation Considerations

In the United States, installation must be made in accordance with Article 645 of the National Electric Code (NEC). In Canada, installation must be in accordance with Article 12-020 of the Canadian Electrical Code (CEC).

Physical Specifications and Loads

The following tables illustrate the physical, electrical and thermal, acoustical, and environmental characteristics of various system configurations.

PL3200R Dimensions and Weight

Physical Characteristic	Slimline Doors		Acoustical Doors	
	1 Frame	2 Frames	1 Frame	2 Frames
Height	$\begin{aligned} & 2025 \mathrm{~mm} \\ & \text { (79.72 in.) } \end{aligned}$	$\begin{aligned} & 2025 \mathrm{~mm} \\ & \text { (79.72 in.) } \end{aligned}$	$\begin{aligned} & 2025 \mathrm{~mm} \\ & \text { (79.72 in.) } \end{aligned}$	$\begin{aligned} & 2025 \mathrm{~mm} \\ & \text { (79.72 in.) } \end{aligned}$
Width	$\begin{aligned} & 785 \mathrm{~mm} \\ & \text { (30.91 in.) } \end{aligned}$	$\begin{aligned} & 1575 \mathrm{~mm} \\ & \text { (62.00 in.) } \end{aligned}$	$\begin{aligned} & 785 \mathrm{~mm} \\ & \text { (30.91 in.) } \end{aligned}$	$\begin{aligned} & 1575 \mathrm{~mm} \\ & \text { (62.00 in.) } \end{aligned}$
Depth	$\begin{aligned} & 1342 \mathrm{~mm} \\ & \text { (52.83 in.) } \end{aligned}$	$1342 \mathrm{~mm}$ in.)	$\begin{aligned} & 1494 \mathrm{~mm} \\ & \text { (58.83 in.) } \end{aligned}$	$\begin{aligned} & 1494 \mathrm{~mm} \\ & \text { (58.83 in.) } \end{aligned}$
Weight (maximum configuration)	$\begin{aligned} & 1170 \mathrm{~kg} \\ & \text { (2580 lbs.) } \end{aligned}$	$\begin{aligned} & 1973 \mathrm{~kg} \\ & \text { (4349 lbs.) } \end{aligned}$	$\begin{aligned} & 1184 \mathrm{~kg} \\ & \text { (2610 lbs.) } \end{aligned}$	$\begin{aligned} & 2000 \mathrm{~kg} \\ & \text { (4409 lbs.) } \end{aligned}$
Notes: 1. Doors are tem with batteries 2. When movir (BPR's) must be cally, removal of single I/O drawe	t installed may exceed g or relocatin noved from R's from fra and more tha	duct shipment to 2500 lbs .). n configurations f the rack (front a B in the front and s installed per BP	customer. e system, rear) to ensu ear is required in the primary	um configured Power Regul uct stability. tems that ha

PL1600R Dimensions and Weight

Physical Characteristic	Slimline Doors	Acoustical Doors
Height	$2025 \mathrm{~mm}(79.72 \mathrm{in})$.	$2025 \mathrm{~mm}(79.72 \mathrm{in})$.
Width	$785 \mathrm{~mm}(30.91 \mathrm{in})$.	$785 \mathrm{~mm}(30.91 \mathrm{in})$.
Depth	$1342 \mathrm{~mm}(52.83 \mathrm{in})$.	$1494 \mathrm{~mm}(58.83 \mathrm{in})$.
Weight (maximum configuration)	$1085 \mathrm{~kg}(2392 \mathrm{lbs})$.	$1099 \mathrm{~kg}(2422 \mathrm{lbs})$.
W		

Note: When moving or relocating certain configurations of the system, the Bulk Power Regulators (BPR's) must be removed from the top of the rack (front and rear) to ensure product stability. Specifically, removal of BPR's from frame A and B in the front and rear is required in systems that have a single I/O drawer.

PL3200R System Weights by Configuration

Total System Weight (Pounds)

Number of I/O Subsystem	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Slimline Doors With IBF	2250	2415	2580	3633	3854	4019	4184	4349
Slimline Doors Without IBF	1865	2030	2195	2418	3266	3431	3596	3761
Acoustical Doors With IBF	2280	2445	2610	3693	3914	4079	4244	4409
Acoustical Doors Without IBF	1923	2088	2253	2506	3326	3491	3656	3821
No Doors With IBF	2192	2357	2522	3517	3738	3903	4068	4233
No Doors Without IBF	1807	1972	2137	2302	3150	3315	3480	3645
Ntaliz It								

Note: Italicized numbers indicate single-frame systems.

Total System Weight (Kilograms)

Number of I/O Subsystem	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Slimline Doors With IBF	1021	1095	1170	1648	1748	1823	1898	1973
Slimline Doors Without IBF	846	921	996	1097	1481	1556	1631	1706
Acoustical Doors With IBF	1034	1109	1184	1675	1775	1850	1925	2000
Acoustical Doors Without IBF	872	947	1022	1137	1509	1583	1658	1733
No Doors With IBF	994	1069	1144	1595	1696	1770	1845	1920
No Doors Without IBF	820	894	969	1044	1429	1504	1579	1653
Note: Italicized numbers indicate single-frame systems.								

PL1600R System Weights by Configuration

Total System Weight (Pounds)			
Number of I/O Subsystem	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Slimline Doors With IBF	2062	2227	2392
Slimline Doors Without IBF	1865	2030	2195
Acoustical Doors With IBF	2092	2257	2422
Acoustical Doors Without IBF	1923	2088	2253
No Doors With IBF	2004	2169	2334
No Doors Without IBF	1807	1972	2137

Total System Weight (Kilograms)			
Number of I/O Subsystem	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Slimline Doors With IBF	935	1010	1085
Slimline Doors Without IBF	846	921	996
Acoustical Doors With IBF	949	1024	1099
Acoustical Doors Without IBF	872	947	1022
No Doors With IBF	909	984	1059
No Doors Without IBF	820	894	969

PL3200R and PL1600R Acoustical Noise Emissions

	Acoustical Characteristic			
Product Configuration	Declared A-Weighted Sound Power Level,LWAd (B)		Declared A-Weighted Sound Pressure Level, LpAm (dB)	
	Operating	Idle	Operating	Idle
A-Frame (Acoustical Doors)	7.5	7.5	57	57
A-Frame (Slimline Doors)	7.9	7.9	62	62
Notes:				
1. Noise levels cited are for the typical configuration of each frame (A-Frame: Bulk Power, CEC cage, battery option, media drawer, and two I/O drawers).				
2. The $0.6-B(6-d B)$ reduction in noise emission levels with the acoustical rear door corresponds to a factor of 4 reduction. That is, the noise level of a single A-Frame with thin covers is about the same as the noise level of four A-Frames with acoustical covers.				
3. LWAd is the upper-limit A-weighted sound power level; LpAm is the mean A-weighted sound pressure level at the 1 -meter bystander positions; $1 \mathrm{~B}=10 \mathrm{~dB}$.				
4. All measurements made in conformance with ISO 7779 and declared in conformance with ISO 9296.				

PL3200R and PL1600R Environmental Specifications

Environmental Specification	Operating	Non-Operating	Storage	Shipping
Temperature	$\begin{aligned} & 10 \text { to } 32^{\circ} \mathrm{C} \\ & \left(50 \text { to } 90^{\circ} \mathrm{F}\right) \end{aligned}$ Max. of $24^{\circ} \mathrm{C}$ $\left(75.2^{\circ} \mathrm{F}\right)$ with 4 mm tape or DVD RAM in rear positions of the Media Subsystem	$\begin{aligned} & 10 \text { to } 43^{\circ} \mathrm{C} \\ & \left(50 \text { to } 109^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 1 \text { to } 60^{\circ} \mathrm{C} \\ & \left(34 \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & -40 \text { to } 60^{\circ} \mathrm{C} \\ & \left(-40 \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$
Relative Humidity (Noncondensing)	8 to 80 \%	8 to 80 \%	5 to 80%	5 to 100%
Maximum Wet Bulb	$23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$27^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$	$29^{\circ} \mathrm{C}\left(84{ }^{\circ} \mathrm{F}\right)$	$29^{\circ} \mathrm{C}\left(84^{\circ} \mathrm{F}\right)$
Notes:				
$\begin{array}{\|ll} \text { 1. } \quad \text { Storage and } \\ \text { 2. } \quad \text { The upper } \lim \\ \text { 1295 } \mathrm{m}(4250 \mathrm{ft}) . & \mathrm{Mz} \\ \text { is } 2134 \mathrm{~m}(7000 \mathrm{ft}) \end{array}$	shipping specifications are it of the dry bulb temperatu ximum altitude for 1.1 GHz	valid for a max re must be derat modules is 3048	um duration of 1 degree C per (10,000 ft.) and	weeks each. m (619 ft.) abo 1.3 GHz modu

PL3200R Weight Distribution

The following table shows dimensions and wrights used to calculate floor loading for the system. All floor-loading calculations are intended for a raised-floor environment.

	1 Frame with Slimline Covers	2 Frames with Slimline Covers	1 Frame with Acoustical Covers	2 Frames with Acoustical Covers
Weight	$1170 \mathrm{~kg}(2580 \mathrm{lbs})$.	$1973 \mathrm{~kg}(4349 \mathrm{lbs})$.	$1184 \mathrm{~kg}(2610 \mathrm{lbs})$.	$2000 \mathrm{~kg}(4409 \mathrm{lbs})$.
Width	$750 \mathrm{~mm}(29.5 \mathrm{in})$.	$1539 \mathrm{~mm}(60.6 \mathrm{in})$.	$750 \mathrm{~mm}(29.5 \mathrm{in})$.	$1539 \mathrm{~mm}(60.6 \mathrm{in})$.
Depth	$1173 \mathrm{~mm}(46.2 \mathrm{in})$.	$1173 \mathrm{~mm}(46.2 \mathrm{in})$.	$1173 \mathrm{~mm}(46.2 \mathrm{in})$.	$1173 \mathrm{~mm}(46.2 \mathrm{in})$.
Notes:				
1. For 2 frame systems, widths of Frame A and Frame B were added (the depth remains 1069 mm				
(42.1 in.), not including frame extenders).				
2. For 2 frame systems, weights are based on maximum configuration (less than addition of maxi-				
mum weights for each frame).				
3. The values in the table may be used with the Floor Loading Calculation Program available on the IP Website. 4. All floor-loading calculations are intended for a raised-floor environment.				

The following table shows floor-loading specifications for systems with slimline covers. The values contained in the Condition column are described following the table.

Condition	a (sides) (mm, in.)	b (front) (mm, in.)	c (back) (mm, in.)	1 Framekg/m² (lb./ft. ${ }^{2}$)	$\begin{array}{\|ll} \hline 2 \quad \text { Frameskg/ } \\ \mathrm{m}^{2}\left(\mathrm{lb} . / \mathrm{ft} .^{2}\right) \\ \hline \end{array}$
1	25 (1.0)	135 (5.3)	135 (5.3)	1080.1(221.2)	924.4 (189.3)
2	25 (1.0)	554 (21.8)	655 (25.8)	702.2 (143.8)	607.9 (124.5)
3	25 (1.0)	762 (30.0)	762 (30.0)	634.5 (129.9)	551.2(112.9)
4	254 (10.0)	554 (21.8)	655 (25.8)	491.2 (100.6)	499.4(102.3)
5	254 (10.0)	762 (30.0)	762 (30.0)	448.1 (91.8)	455.3(93.3)
6	508 (20.0)	554 (21.8)	655 (25.8)	385.0(78.9)	424.4(86.9)
7	508 (20.0)	762 (30.0)	762 (30.0)	354.3 (72.6)	389.1(79.7)
8	554 (21.8)	554 (21.8)	655 (25.8)	372.1 (76.2)	413.9 (84.8)
9	559 (22)	762 (30.0)	762 (30.0)	341.7 (70.0)	378.9(77.6)
10	762 (30.0)	521 (20.5)	521 (20.5)	341.7 (70.0)	393.3 (80.6)
11	762 (30.0)	762 (30.0)	762 (30.0)	302.4 (61.9)	344.8 (70.6)

- Condition 1 indicates maximum floor loading when systems are stored cover-to-cover on all four sides with covers installed.
- Conditions 2 and 3 indicate floor loading when the system has no side clearance (beyond side covers) on both sides while front/back distances varied.
- Conditions 4 through 8 indicate floor loading at various points below the maximum weight-distribution distance of 762 mm (30.0 in .) from each edge of the frame.
- Conditions 9 through 10 indicate floor-loading options when the installation is limited to 342.0 $\mathrm{kg} / \mathrm{m}^{2}\left(70.0 \mathrm{lb} / \mathrm{ft}^{2}\right)$.
- \quad Condition 11 is the minimum floor loading required, based on the maximum weight-distribution area (30.0 in . from each side of the base frame).
Notes:

1. Service clearance is independent from weight distribution distance and must be at least 45 in . for the front of the frame and 36 in . for the rear of the frame (measured from the base frame).
2. Weight-distribution areas should not be overlapped.
3. Floor-loading weight distribution distances should not exceed $762 \mathrm{~mm}(30 \mathrm{in}$.$) in any direction$ when measured from the base frame.

The following table shows floor-loading specifications for systems with acoustical covers. The values contained in the Condition column are described following the table.

Condition	a (sides) (mm, in.)	b (front) (mm, in.)	c (back) (mm, in.)	1 Framekg/m² (lb./ft. ${ }^{2}$)	
1	25 (1.0)	135 (5.3)	135 (5.3)	1091.9 (223.6)	936.2 (197.7)
2	25 (1.0)	554(21.8)	757 (29.8)	685.3 (140.4)	594.9 (121.8)
3	25 (1.0)	762 (30.0)	762 (30.0)	640.8 (131.2)	557.5(114.2)
4	254 (10.0)	554(21.8)	757 (29.8)	480.5 (98.4)	489.3 (100.2)
5	254 (10.0)	762 (30.0)	762 (30.0)	452.2 (92.6)	460.3 (94.3)
6	508 (20.0)	554(21.8)	757 (29.8)	377.4 (77.3)	416.3 (85.3)
7	508 (20.0)	762 (30.0)	762 (30.0)	357.2 (73.2)	393.0 (80.5)
8	569 (22.4)	762 (30.0)	762 (30.0)	342.0 (70.0)	380.7 (78.0)
9	762 (30.0)	554(21.8)	757 (29.8)	320.3 (65.6)	367.5 (75.3)
10	762 (30.0)	533 (21.0)	533 (21.0)	342.0 (70.0)	394.2 (80.7)
11	762 (30.0)	762 (30.0)	762 (30.0)	304.6 (62.4)	348.1 (71.3)

Definition of Conditions:

- Condition 1 indicates maximum floor loading when systems are stored cover-to-cover on all four sides with covers installed.
- Conditions 2 and 3 indicate floor loading when the system has no side clearance (beyond side covers) on both sides while front/back distances varied.
- \quad Conditions 4 through 8 indicate floor loading at various points below the maximum weight-distribution distance of 762 mm (30.0 in .) from each edge of the frame.
- Conditions 9 through 10 indicate floor-loading options when the installation is limited to 342.0 $\mathrm{kg} / \mathrm{m}^{2}\left(70.0 \mathrm{lb} / \mathrm{t}^{2}\right)$.
- Condition 11 is the minimum floor loading required, based on the maximum weight-distribution area (30.0 in . from each side of the base frame).
Notes:

1. Service clearance is independent from weight-distribution distance and must be at least 45 in . at the front of the frame and 36 in . at the rear of the frame (measured from the base frame).
2. Weight-distribution areas should not be overlapped.
3. Floor-loading weight distribution distances should not exceed $762 \mathrm{~mm}(30 \mathrm{in}$.$) in any direction$ when measured from the base frame.

Floor loading for the system is illustrated in the Proposed Floor Layout for Multiple Systems in "Considerations for Multiple System Installations" on page 5-36.

PL1600R Weight Distribution

The following table shows dimensions and wrights used to calculate floor loading for the system. All floor-loading calculations are intended for a raised-floor environment.

	1 Frame with Slimline Covers	1 Frame with Acoustical Covers
Weight	$1085 \mathrm{~kg}(2392 \mathrm{lbs})$.	$1099 \mathrm{~kg}(2422 \mathrm{lbs})$.
Width	$750 \mathrm{~mm}(29.5 \mathrm{in})$.	$750 \mathrm{~mm}(29.5 \mathrm{in})$.
Depth	$1173 \mathrm{~mm}(46.2 \mathrm{in})$.	$1173 \mathrm{~mm}(46.2 \mathrm{in})$.
Notes: 1. IP Website. 2.		

The following table shows floor-loading specifications for systems with slimline covers. The values contained in the Condition column are described following the table.

Condition	a (sides) (mm, in.)	b (front) (mm, in.)	c (back) (mm, in.)	1 Framekg/m² $\left(\right.$ (lb./ft. $\left.{ }^{2}\right)$
1	$25(1.0)$	$135(5.3)$	$135(5.3)$	$1006.2(206.1)$
2	$25(1.0)$	$554(21.8)$	$655(25.8)$	$657.5(134.7)$
3	$25(1.0)$	$762(30.0)$	$762(30.0)$	$595.0(121.9)$
4	$254(10.0)$	$554(21.8)$	$655(25.8)$	$462.8(94.8)$
5	$254(10.0)$	$762(30.0)$	$762(30.0)$	$423.0(86.6)$
6	$508(20.0)$	$554(21.8)$	$655(25.8)$	$364.7(74.7)$
7	$508(20.0)$	$762(30.0)$	$762(30.0)$	$336.4(68.9)$
8	$554(21.8)$	$762(30.0)$	$655(25.8)$	$352.8(72.3)$
9	$486(19.1)$	$554(21.8)$	$762(30.0)$	$342.0(70.0)$
10	$762(30.0)$	$434(17.1)$	$434(17.1)$	$342.0(70.0)$
11	$762(30.0)$	$762(30.0)$	$762(30.0)$	$288.5(59.1)$
efinition				

Definition of Conditions:

- \quad Condition 1 indicates maximum floor loading when systems are stored cover-to-cover on all four sides with covers installed.
- \quad Conditions 2 and 3 indicate floor loading when the system has no side clearance (beyond side covers) on both sides while front/back distances varied.
- Conditions 4 through 8 indicate floor loading at various points below the maximum weight-distribution distance of 762 mm (30.0 in .) from each edge of the frame.
- Conditions 9 through 10 indicate floor-loading options when the installation is limited to 342.0 $\mathrm{kg} / \mathrm{m}^{2}\left(70.0 \mathrm{lb} / \mathrm{ft}^{2}\right)$.
- \quad Condition 11 is the minimum floor loading required, based on the maximum weight-distribution area (30.0 in . from each side of the base frame).
Notes:

1. Service clearance is independent from weight distribution distance and must be at least 45 in . for the front of the frame and 36 in . for the rear of the frame (measured from the base frame).
2. Weight-distribution areas should not be overlapped.
3. Floor-loading weight distribution distances should not exceed $762 \mathrm{~mm}(30 \mathrm{in}$.$) in any direction$ when measured from the base frame.

The following table shows floor-loading specifications for systems with acoustical covers. The values contained in the Condition column are described following the table.

Condition	a (sides) (mm, in.)	b (front) (mm, in.)	c (back) (mm, in.)	1 Framekg/m (lb./ft. ${ }^{\mathbf{2}}$
1	$25(1.0)$	$135(5.3)$	$135(5.3)$	$1019.7(208.9)$
2	$25(1.0)$	$554(21.8)$	$757(29.8)$	$643.0(131.7)$
3	$25(1.0)$	$762(30.0)$	$762(30.0)$	$601.8(123.3)$
4	$254(10.0)$	$554(21.8)$	$757(29.8)$	$453.6(92.9)$
5	$254(10.0)$	$762(30.0)$	$762(30.0)$	$427.3(87.5)$
6	$508(20.0)$	$554(21.8)$	$757(29.8)$	$358.2(73.4)$
7	$508(20.0)$	$762(30.0)$	$762(30.0)$	$339.5(69.5)$
8	$498(19.6)$	$762(30.0)$	$762(30.0)$	$342.0(70.0)$
9	$762(30.0)$	$554(21.8)$	$757(29.8)$	$305.4(62.6)$
10	$762(30.0)$	$450(17.7)$	$450(17.7)$	$341.9(70.0)$
11	$762(30.0)$	$762(30.0)$	$762(30.0)$	$290.9(59.6)$

Definition of Conditions:

- Condition 1 indicates maximum floor loading when systems are stored cover-to-cover on all four sides with covers installed.
- Conditions 2 and 3 indicate floor loading when the system has no side clearance (beyond side covers) on both sides while front/back distances varied.
- \quad Conditions 4 through 8 indicate floor loading at various points below the maximum weight-distribution distance of 762 mm (30.0 in .) from each edge of the frame.
- Conditions 9 through 10 indicate floor-loading options when the installation is limited to 342.0 $\mathrm{kg} / \mathrm{m}^{2}\left(70.0 \mathrm{lb} / \mathrm{ft}^{2}\right)$.
- Condition 11 is the minimum floor loading required, based on the maximum weight-distribution area (30.0 in . from each side of the base frame).
Notes:

1. Service clearance is independent from weight-distribution distance and must be at least 45 in . at the front of the frame and 36 in . at the rear of the frame (measured from the base frame).
2. Weight-distribution areas should not be overlapped.
3. Floor-loading weight distribution distances should not exceed $762 \mathrm{~mm}(30 \mathrm{in}$.$) in any direction$ when measured from the base frame.

Floor loading for the system is illustrated in the Proposed Floor Layout for Multiple Systems in "Considerations for Multiple System Installations" on page 5-36.

The following illustration shows dimensional planning information for single-frame systems and double-frame systems.

FRAME	ENTRY/EXIT	D IMENSION	
		(mm)	(in.)
FRONT		117 by 403	4.6 by 15.9
REAR		117 by 403	4.6 by 15.9

Total System Power Consumption

The following tables contain minimum and maximum power consumption for the 1.1 and 1.3 GHz PL3200R and for the 1.1 GHz PL1600R. Minimum power consumption is based on a configuration consisting of a single 4 GB memory card, 1 PCl card per I/O subsystem, and 1 DASD device per I/O subsystem.

Maximum power consumption is based on a configuration consisting of a two 32 GB memory cards per MCM module, maximum PCl cards (20 per I/O drawer), and maximum DASD (16 per I/O drawer).
Power consumption calculations are estimates. Actual values may vary.
Calculate heat load (Btu per hour) by multiplying the power (in watts) for the configuration by a factor of 3.4.

PL3200R Power Consumption

Number of I/O Drawers	1.1 GHz 8-way Modules (minimum power consumption, in watts)							1.1 GHz 8-way Modules (maximum pow- er consumption, in watts)					
	8-way	16-way	24-way	32-way	8-way	16-way	24-way	32-way					
1	1911	2867	3823	4779	3042	4586	6130	7674					
2	2279	3235	4191	5147	4090	5634	7178	8722					
3	N/A	3603	4559	5515	N/A	6682	8226	9770					
4	N/A	3971	4927	5883	N/A	7730	9274	10818					
5	N/A	N/A	5295	6251	N/A	N/A	10322	11866					
6	N/A	N/A	5663	6619	N/A	N/A	11370	12914					
7	N/A	N/A	N/A	6987	N/A	N/A	N/A	13962					
8	N/A	N/A	N/A	7355	N/A	N/A	N/A	15010					

Number of I/O Drawers	1.3 GHz 4-way Modules (minimum power consumption, in watts)		1.3 GHz 4-way Modules (maximum power consumption, in watts)	
	8-way	16-way	8-way	16-way
1	3213	5471	4932	8366
2	3581	5839	5980	9414
3	3949	6207	7028	10462
4	4317	6575	8076	11510
5	N/A	6943	N/A	12558
6	N/A	7311	N/A	13606
7	N/A	7679	N/A	14654
8	N/A	8047	N/A	15702

Number of I/O Drawers	1.3 GHz 8-way Modules (minimum power consumption, in watts)							1.3 GHz 8-way Modules (maximum power consumption, in watts)		
	8-way	16-way	24-way	32-way	8-way	16-way	24-way	32-way		
1	2084	3213	4342	5471	3215	4932	6649	8366		
2	2452	3581	4710	5839	4263	5980	7697	9414		
3	N/A	3949	5078	6207	N/A	7028	8745	10462		
4	N/A	4317	5446	6575	N/A	8076	9793	11510		
5	N/A	N/A	5814	6943	N/A	N/A	10841	12558		
6	N/A	N/A	6182	7311	N/A	N/A	11889	13606		
7	N/A	N/A	N/A	7679	N/A	N/A	N/A	14654		
8	N/A	N/A	N/A	8047	N/A	N/A	N/A	15702		

Number of I/O Drawers	1.5 GHz 4-way Modules (minimum power consumption, in watts)							1.5 GHz 4-way Modules (maximum power consumption, in watts)			
	4-way	8-way	12-way	16-way	4-way	8-way	12-way	16-way			
1	1714	2473	3232	4946	2931	4364	5797	7230			
2	2082	2841	3600	5314	3979	5412	6845	8278			
3	N/A	3209	3968	5682	N/A	6460	7893	9326			
4	N/A	3577	4336	6050	N/A	7508	8941	10374			
5	N/A	N/A	4704	6418	N/A	N/A	9989	11422			
6	N/A	N/A	5072	6786	N/A	N/A	11037	12470			
7	N/A	N/A	N/A	7154	N/A	N/A	N/A	13518			
8	N/A	N/A	N/A	7522	N/A	N/A	N/A	14566			

Number of I/O Drawers	1.5 GHz 8-way Modules (minimum power consumption, in watts)				1.5 GHz 8-way Modules (maximum power consumption, in watts)			
	8-way	16-way	24-way	32-way	8-way	16-way	24-way	32-way
1	1839	2723	3607	4491	3056	4614	6172	7730
2	2207	3091	3975	4859	4104	5662	7220	8778
3	N/A	3459	4343	5227	N/A	6710	8268	9826
4	N/A	3827	4711	5595	N/A	7758	9316	10874
5	N/A	N/A	5079	5963	N/A	N/A	10364	11922
6	N/A	N/A	5447	6331	N/A	N/A	11412	12970
7	N/A	N/A	N/A	6699	N/A	N/A	N/A	14018
8	N/A	N/A	N/A	7067	N/A	N/A	N/A	15066

Number of I/O Drawers	1.7 GHz 8-way Modules (minimum power consumption, in watts)							
	8-way	16-way	24-way	1.7 GHz power consumption, in watts)				
1	2017	3079	4141	5203	3234	4970	6706	8442
2	2385	3447	4509	5571	4282	6018	7754	9490
3	N/A	3815	4877	5939	N/A	7066	8802	10538
4	N/A	4183	5245	6307	N/A	8114	9850	11586
5	N/A	N/A	5613	6675	N/A	N/A	10898	12634
6	N/A	N/A	5981	7043	N/A	N/A	11946	13682
7	N/A	N/A	N/A	7411	N/A	N/A	N/A	14730
8	N/A	N/A	N/A	7779	N/A	N/A	N/A	15778

PL1600R Power Consumption

Number of I/O Drawers	$\mathbf{1 . 1 ~ G H z ~ 4 - w a y ~ M o d u l e s ~ (m i n i m u m ~}$ power consumption, in watts)	$\mathbf{1 . 1} \mathrm{GHz}$ 4-way Modules (maximum power consumption, in watts)
1	1835	2966
2	2203	4014
3	2571	5062

Number of I/O Drawers	1.1 GHz 8-way Modules (minimum power consumption, in watts)	1.1 GHz 8-way Modules (maximum power consumption, in watts)		
	8-way	16-way	8-way	16-way
1	1911	2867	3042	4586
2	2279	3235	4090	5634
3	2647	3603	5138	6682

Number of I/O Drawers	1.5 GHz 4-way Modules (minimum power consumption, in watts)	1.5 GHz 4-way Modules (maximum power consumption, in watts)
	4-way	4-way
1	1714	2931
2	2082	3979
3	N/A	N/A

Number of I/O Drawers	1.5 GHz 8-way Modules (minimum power consumption, in watts)	1.5 GHz 8-way Modules (maximum power consumption, in watts)		
	8-way	16-way	8-way	16-way
1	1839	2723	3056	4614
2	2207	3091	4104	5662
3	N/A	3459	N/A	6710

Wattage Addition/Subtraction for Minimum and Maximum Configurations

Minimum configurations are based on a single 4GB memory card and a single DASD/PCI card in each I/O subsytem. Maximum configurations are based on two 32GB memory cards per MCM module, sixteen DASD per I/O subsystem and twenty PCI cards per I/O subsystem. To determine the typical power consumption for a specific configuration, use the following typical power values:

- 4GB memory card - 137 Watts
- 8GB memory card - 151 Watts
- 16GB memory card - 235 Watts
- 32GB memory card - 294 Watts
- Each PCI card - 20 Watts Each
- DASD - 20 Watts

Unit Emergency Power Off

The server has a unit emergency power off (UEPO) switch on the front of the first frame (A Frame). Refer to the following illustration, which shows a simplified UEPO panel.

When the switch is tripped, the utility power is confined to the system power compartment. All volatile data will be lost.

It is possible to attach the computer room emergency power off (EPO) system to the system UEPO. When this is done, tripping the computer room EPO disconnects all power from the line cords and the internal battery backup unit, if it is provided. All volatile data will be lost in this case also.

If the room EPO is not connected to the UEPO, tripping the computer room EPO removes ac power from the system. If the interlock bypass feature is used, the system remains powered for a short time based on system configuration.

Computer Room Emergency Power Off (EPO)

When the internal battery backup feature (IBF) is installed and the room EPO is tripped, the batteries will engage and the computer will continue to run. It is possible to attach the computer room EPO system to the machine EPO. When this is done, tripping the room EPO will disconnect all power from the line cords and the internal battery backup unit. In this event all volatile data will be lost.

To incorporate the IBF into the room Emergency Power Off systems (EPO), a cable must be made to connect to the back of the system EPO panel. The following diagrams illustrate how this connection is made.

The preceding figure illustrates the back of the machine UEPO panel with the room EPO cable plugging into the machine. Notice the switch actuator. After it is moved to make the cable connection possible, the room EPO cable must be installed for the machine to power on.
In the following figure, an AMP connector 770019-1 is needed to connect to the system EPO panel. For room EPO cables using wire sizes \#20 AWG to \#24 AWG use AMP pins part number 770010-4.

Battery Holdup Times

The following tables illustrate typical machine holdup time vs load in minutes for fresh and aged batteries. All times listed are in minutes. Machine load is listed in total AC input power (power for both line cords combined). A fresh battery is defined as 2.5 years old or less, while an aged battery as 6.5 years old. Capacity will gradually decay from fresh battery value to the aged battery value, with the amount of decay shown being worst case. The system will diagnose a "failed battery" if the capacity falls below the aged battery level.

Typical Machine Holdup Time vs. Load in Minutes (Fresh Battery)														
Machine Load	3 kW		6 kW		9 kW		12 kW		15 kW		18 kW		19.5 kW	
IBF Configuration	N	R	N	R	N	R	N	R	N	R	N	R	N	R
1 BPR	7.0	21	2.1	7.0										
2 BPR	21	50	7.0	21	4.0	11	2.1	7.0						
3 BPR	32	68	12	32	7.0	21	4.9	12	3.2	9.5	2.1	7.0	1.7	6.5
$\mathrm{N}=$ non-redundant, $\mathrm{R}=$ redundant														

Typical Machine Holdup Time vs. Load in Minutes (Aged Battery)

Machine Load	3 kW		6 kW		9 kW		12 kW		15 kW		18 kW		19.5 kW	
IBF Configuration	N	R	N	R	N	R	N	R	N	R	N	R	N	R
1 BPR	4.2	12.6	1.3	4.2										
2 BPR	12.6	30	4.2	12.6	2.4	6.6	1.3	4.2						
3 BPR	19.2	41	7.2	19.2	4.2	12.6	2.9	7.2	1.9	5.7	1.3	4.2	1.0	3.9
$\mathrm{N}=$ non-redundant, $\mathrm{R}=$ redundant														

Guide for Raised-Floor Preparation

A raised floor is not required for the PL3200R and PL1600R (except in Canada), however, it is recommended for optimum system cooling and cable management. Raised floor cutouts should be protected by electrically nonconductive molding, appropriately sized, with edges treated to prevent cable damage and to prevent casters from rolling into the floor cutouts.

Front-service access is necessary on the PL3200R and PL1600R to accommodate a lift tool for the servicing of large drawers (the managed server, IO drawer, and media subsystems). Front and rear service access is necessary to accomodate the a lift tool for servicing of the optional integrated battery feature (IBF).

Cutting and Placement of Floor Panels

This section provides recommendations for making the necessary openings in the raised floor for installing the PL3200R and PL1600R.
Note: The following illustration is intended only to show relative positions and accurate dimensions of floor cutouts. The illustration is not intended to be a machine template and is not drawn to scale.

The $\mathrm{x}-\mathrm{y}$ alphanumeric grid positions are used to identify relative positions of cutout floor panels that may be cut in advance.

1. For a PL3200R, determine whether the system you will be installing has one or two frames.
2. Measure the panel size of the raised floor.
3. Verify the floor panel size. The floor panel size illustrated is 600 mm (23.6 in .) and 610 mm (24 in.) panels.
4. Ensure adequate floor space is available to place the frames over the floor panels exactly as shown in the illustration. Refer to "Considerations for Multiple System Installations" on page 5-36 for front-to-back and side-to-side clearances. Use the plan view if necessary. Consider all obstructions above and below the floor.
5. Identify the panels needed, and list the total quantity of each panel required for the installation.
6. Cut the required quantity of panels. When cutting the panels, you must adjust the size of the cut for the thickness of the edge molding you are using. The dimensions shown in the illustrations are finished dimensions. For ease of installation, number each panel as it is cut, as shown in the following illustrations.
Note: Depending on the panel type, additional panel support (pedestals) may be required to restore structural integrity of the panel. Consult the panel manufacturer to insure that the panel can sustain a concentrated load of 900 lbs . For multiple frame installation it is possible that two casters will produce concentrated loads as high as 1800 lbs.
7. Use the raised floor diagram on the next page to install the panels in the proper positions.
Note: Panel cutout sizes are optimized for parallel-channel external cables.

Panel Cutout Dimensions

	1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
A				
B				
		(B)	(A)	
C			(B)	
D			\square	

(Panel B3)

(Panels B2, C3)

Raised Floor with 610-mm (24-inch) Floor Panels

Securing the Rack

The customer can order:

- RPQ 8A1183 for attaching the rack mounting plates to the concrete floor (non raised floor)
- RPQ8A1185 to attach the rack to a concrete floor when on a rasied floor (9 $1 / 2^{\prime \prime}$ to $113 / 4$ " high)
- RPQ 8A1186 to attach the rack to a concrete floor when on a raised floor (11 3/4" to 16 " high)

Positioning the Rack

Note: The customer should unpack the rack and position it in the room. If this has not been done, consult the customer and the marketing representative as necessary.

1. If the customer has not unpacked and positioned the rack, remove all packing and tape from the rack.
2. Position the rack according to the customer floor plan.
3. Lock each caster wheel by tightening the screw on the caster.

Installing the Frame Kit

The following tables show the parts required for each of the tie down kits (a non-raised floor, short-raised floor, and a long raised floor).

Rack Tie-Down Kits
11P4759 Frame Tie Down Kit (Non - Raised Floor) (RPQ 8A1183)

Item	Part Number	QTY	Description
Item 3 in illustration on page 5-30.	11 P 3527	2	Shipping bar (low)
Item 5 in illustration on page 5-30.	11 P 3529	4	Hinge plate
Item 8 in illustration on page 5-30.	11 P 3530	2	Latch plate
Item 6 in illustration on page 5-30.	11 P 3531	2	EQ support
Item 2 in illustration on page 5-30.	11 P 3532	2	Shipping bar (upper)
Item 7 in illustration on page 5-30.	76 X 4687	2	Latch bolt
Item 1 in illustration on page 5-30.	1624804	20	Screw (hex flange, 20mm, long)
Item 9 in illustration on page 5-30.	1621546	8	Screw (hex, 25mm, long, hinge)
Item 10 in illustration on page 5-30.	1622307	8	Washer (M8, hinge)
Item 1 in illustration on page 5-31.	11 P 3528	2	Plate lock down
Item 2 in illustration on page 5-31.	05 N 6345	4	Spacer
Item 4 in illustration on page 5-31.	05 N 6344	4	Bushing
Item 5 in illustration on page 5-31.	$21 \mathrm{L4309}$	4	Washer
Item 3 in illustration on page 5-31.	0130985	4	Washer
Item 6 in illustration on page 5-31.	05 N 6346	4	Bolt

11P4757 Frame Tie Down Kit (Short - Raised Floor) (RPQ 8A1185)

Item	Part Number	QTY	Description
Illustration on page 5-35.	44 P 0673	4	Turnbuckle ASM (short)
Item 3 in illustration on page 5-30.	11 P 3527	2	Shipping bar (low)
Item 5 in illustration on page 5-30.	11 P 3529	4	Hinge plate
Item 8 in illustration on page 5-30.	11 P 3530	2	Latch plate
Item 6 in illustration on page 5-30.	11 P 3531	2	EQ support
Item 2 in illustration on page 5-30.	11 P 3532	2	Shipping bar (upper)
Item 7 in illustration on page 5-30.	$76 \mathrm{X4687}$	2	Latch bolt
Item 1 in illustration on page 5-30.	1624804	20	Screw (hex flange, 20mm, long)
Item 9 in illustration on page 5-30.	1621546	8	Screw (hex, 25mm, long, hinge)
Item 10 in illustration on page 5-30.	1622307	8	Washer (M8, hinge)

11P4758 Frame Tie Down Kit (Long - Raised Floor) (RPQ 8A1186)			
Item	Part Number	QTY	Description
Illustration on page 5-35.	44 P 0673	4	Turnbuckle ASM (long)
Item 3 in illustration on page 5-30.	11 P 3527	2	Shipping bar (low)
Item 5 in illustration on page 5-30.	11 P 3529	4	Hinge plate
Item 8 in illustration on page 5-30.	11 P 3530	2	Latch plate

Item 6 in illustration on page 5-30.	11 P 3531	2	EQ support
Item 2 in illustration on page 5-30.	11 P 3532	2	Shipping bar (upper)
Item 7 in illustration on page 5-30.	76 X 4687	2	Latch bolt
Item 1 in illustration on page 5-30.	1624804	20	Screw (hex flange, 20mm, long)
Item 9 in illustration on page 5-30.	1621546	8	Screw (hex, 25mm, long, hinge)
Item 10 in illustration on page 5-30.	1622307	8	Washer (M8, hinge)

Mounting Internal Rack Parts

Attention: This procedure is performed by the service representative.

1. Using four $\mathrm{M}-8$ (20 mm) screws (item 1 in illustration on page 5-30), install the top shipping bracket (item 2 in illustration on page 5-30). The top shipping bar is installed at EIA unit location 32.
2. Using four $\mathrm{M}-8$ screws (item 1 in illustration on page $5-30$) install the bottom shipping bracket (item 3 in illustration on page 5-30). The top shipping bar is installed at EIA unit location 18.
3. Repeat steps $1-2$ to install shipping bars in the rear of the rack.
4. Attach the top hinge (item 5 in illustration on page $5-30$) on the vertical rail (it is approximately on EIA unit 29-30 on the vertical rail) with two 25 mm screws (item 9 in illustration on page 5-30) and two washers (item 10 in illustration on page 5-30).
5. Attach the bottom hinge (item 5 in illustration on page $5-30$) on the vertical rail (it is approximately on EIA unit 6-7 on the vertical rail) with two 25 mm screws (item 9 in illustration on page 5-30) and two washers (item 10 in illustration on page 5-30).
6. Repeat steps 4 and 5 to install the hinges on the rear rail.
7. Attach the latch plate (item 8 in illustration on page $5-30$) with two $\mathrm{M}-8(20 \mathrm{~mm})$ screws (item 1 in illustration on page 5-30).
8. Repeat step 7 in the rear of the rack.
9. Attach the triangular braces (item 6 in illustration on page 5-30) in both the front and rear of the rack.
10. Install the brace latch bolts (item 7 in illustration on page 5-30).

Determine Your Next Step

Use the following to determine your next step:

- If the rack is being attached to a concrete (non-raised) floor, proceed to "Attach the Rack to a Concrete (Non-Raised) Floor" on page 5-31.
- If the rack is being attached to a raised floor, proceed to "Attaching the Rack to a Short or Long Raised Floor" on page 5-33.

Attach the Rack to a Concrete (Non-Raised) Floor

Attention: It is the customer's responsibility to ensure the following steps are completed before the service representative performs the tie down procedure.
The mounting plates should be able to withstand 2700 pounds pulling force on each end. The customer should obtain the service of a qualified consultant or structural engineer to determine the appropriate anchoring method for these mounting plates.

1. Be sure the rack is in the correct location.

2. Place the mounting plates (item 1 in illustration on page 5-31), front and rear, in the approximate mounting position under the system rack.
3. To align the mounting plates to the system rack, do the following:
a. Place the four rack-mounting bolts (item 6 in illustration on page 5-31) through the plate assembly holes at the bottom of the rack (install the bushings and washers (item 4 and 5 in illustration on page 5-31) to ensure bolt positioning).
b. Position the mounting plates (item 1 in illustration on page 5-31) under the four rack-mounting bolts (item 6 in illustration on page 5-31) so that the mounting bolts are centered directly over the tapped holes.
c. Insert the rack-mounting bolts (item 6 in illustration on page 5-31) three or four rotations into the tapped holes.
4. Mark the floor around the edge of the mounting plates.

5. Remove the mounting bolts from the threaded holes.
6. Move the rack away from the mounting plates.
7. Mark the floor at the center of each hole in the mounting plate (including tapped holes).
8. Remove the mounting plates from the marked locations.
9. At the marked location of the tapped mounting holes, drill two holes approximately 1 inch to allow clearance for the ends of the two rack-mounting bolts. The ends of the rack-mounting bolts may protrude past the thickness of the mounting plate.

Note: The customer should obtain the service of a qualified structural engineer to determine appropriate anchoring of the mounting plates. A minimum of three anchor bolts for each mounting plate must be used to secure the plates to the concrete floor. Because some of the drilled holes may be aligned with concrete reinforcement rods below the surface of the concrete floor, additional holes must be drilled. Each mounting plate must have at least three usable holes, two that are on opposite sides and opposite ends of each other, and one hole at the center.
Drill one hole in each group of anchor bolt location marks as indicated on the marked floor.
10.Using at least three bolts for each mounting plate, mount the mounting plates to the concrete floor.
Attention: It is the service representative's responsibility to complete the following steps.

1. Reposition the system rack over the mounting plates.
2. Place the four rack-mounting bolts through the plate assemblies with the D-washer positioned so that the straight side of the washer is facing inward toward the system rack.
3. Place the isolator bushing (item 4 in illustration on page $5-31$) inside the leveling foot with a washer between the isolator bushing and the floor plate.
4. Insert the rack-mounting bolts three or four rotations into the tapped holes.
5. Turn the leveling foot of the plate assembly down until it contacts the mounting plate, and then level the rack using the four leveling feet.
6. Lock the leveling feet by tightening the lock nut.
7. Tighten the four rack-mounting bolts into the mounting plates.

Attaching the Rack to a Short or Long Raised Floor

Attention: It is the customer's responsibility to ensure the following steps are completed before the service representative performs the tie down procedure.
Note: A steel beam or a steel channel adapter for mounting the sub floor eyebolts are required in order to accommodate a floor with a depth more than 16 ". The floor eyebolts must be supplied by the customer.
Consider the following when preparing the floor for tie-down.

- The hardware is designed to support a frame weighing no more than 2636 lbs.
- The estimated maximum concentrated load on one caster for 2636 lbs system is 900 lbs . For a multiple system installation it is possible that one floor tile will bear a total concentrated load of 1800 lbs . Please contact the raised floor tile manufacturer to insure the floor tile with cable).

1. Obtain the service of a qualified structural engineer to determine appropriate anchoring of the eyebolts.
2. Considering the following before installing the eyebolts:

- Floor eyebolts should be securely anchored to the concrete floor.
- The minimum height of the center of the internal diameter is 1 " above the concrete floor surface.
- The maximum is 2.5 " above the concrete floor surface. Higher than 2.5 " can cause excessive lateral deflection to the tie down hardware.
- The eyebolts internal diameter should be $13 / 16$ " and each eyebolt should be able to withstand 2700 pounds. The customer should obtain the service of a qualified consultant or structural engineer to determine the appropriate anchoring method for these eyebolts and to insure that the raised floor can support the required floor loading.
- A steel beam or a steel channel adapter for mounting the floor eyebolts is needed in order to accommodate a floor with more than $16^{\prime \prime}$ in height.

3. Plan for installing four eyebolts positioned to match the dimensions given in the following illustrations. (For a one-frame system consider only the right part of the illustrations.)

23.6 Inch Floor Tile Layout
4. Install the eyebolts to the floor.

Attention: It is the service representative's responsibility to complete the following steps.

1. Before starting the installation, all cable openings in the floor panel and location of the rubber bushing holes should also be checked and match the dimensions given in the following illustrations.
2. The system should be powered off and all cables and connectors should not be connected or dangling around the frame. The frame should be free to roll.
3. The floor eyebolts should be already secured to the concrete floor. The height of the center of the floor eyebolt to the concrete floor or the steel beam/channel adapter mounted to the concrete floor should be checked and verified so that the turnbuckles can accommodate the total height of the raised floor.
4. Remove the floor tiles around the area where the frame(s) will be installed.
5. Remove the pin and the spacer from the lower jaw (see the following illustrations).

Note: The difference between the two turnbuckle assemblies is the length of the turnbuckle.
The Short Turnbuckle Assembly (P/N is 11P4755) is used for a $91 / 2^{\prime \prime}-113 / 4$ " raised floor. The Long Turnbuckle Assembly (P/N 11P4756) is used for an $113 / 4^{\prime \prime}-16^{\prime \prime}$ raised floor.

1	Frame	8	Floor Eyebolt (customer supplied)
2	Jam Nut	9	Threaded Rod
3	Rack Leveler	10	Nut
4	Rubber Bushing	11	Washer
5	Turnbuckle (Short or Long)	12	Spacer
6	Jaw	13	Shaft
7	Pin		

6. Place the spacer inside the floor eyebolt and put the floor eyebolt between the lower jaw. Install the shaft, pin and spacer back.
7. Take the threaded rod and rubber bushing out of the turnbuckle assembly.
8. Install the floor tile that has the rubber bushing holes that aligned with the eyebolt locations
9. Install the rubber bushings in the floor tiles.
10.Move the frame so that the frame leveler is located over the rubber bushings.

Attention: To avoid a tipping hazard, make sure that the frame casters do not roll into the cable opening.
11. Insert the threaded rod into the inner hole of the leveler and the rubber bushing.
12. Thread down the threaded rod until the tip of the rod is approximately 1 inch inside the turnbuckle.
13. Insert the nuts and tighten the nuts (hand tight).
14. Repeat the previous three steps so that all assemblies are completely installed as shown in the previous illustration.
15. Tighten all the nuts to $40 \mathrm{ft}-\mathrm{lbs}$.
16. Securing the frame is now complete.

Considerations for Multiple System Installations

In a multi-frame installation it is possible that a floor tile with cable cutouts (refer to "Cutting and Placement of Floor Panels" on page 5-26) will bear two concentrated static loads up to 900 lbs (per caster/leveler). Thus, the total concentrated load can be as high as 1800 lbs. Please contact the floor tile manufacturer or consult a structural engineer to insure that the raised floor assembly can support this load.

When you are integrating an Escala PL3200R or PL1600R into an existing multiple-system environment, or when adding additional systems to an installed Escala PL3200R or PL1600R, consider the following factors:

- Minimum aisle width

For multiple rows of systems containing one or more Escala PL3200R or PL1600R, the minimum aisle width in the front of the system is 1041 mm (41 in .) and 838 mm (33 in.) in the rear of the system to allow room to perform service operations. The minimium aisle width is in addition to the front and rear service clearances of 1143 mm (45 in .) and 914 mm (36 in.) respectively. Service clearances are measured from the edges of the frame (with doors open) to the nearest obstacle.

- Thermal interactions

The minimum aisle width between rows on the computer room floor is 33 or 41 inches for optimal cooling. Aisle width is independent of which door or cover set is used. In addition, systems should be faced front-to-front and rear-to-rear to create "cool" and "hot" aisles to maintain effective system thermal conditions, as shown in the following illustration.
Cool aisles need to be of sufficient width to support the airflow requirements of the installed systems as indicated in Cooling Requirements on Page 90. The airflow per tile will be dependent on the underfloor pressure and perforations in the tile. A typical underfloor pressure of 0.025 " of water will supply 300-400 cfm through a 25% open 2'x2' floor tile.

- Floor loading

The system can induce a concentrated load of 900 lbs per caster. It is possible that a panel structure has to sustain a total load as high as 1800 lbs . Consult the panel manufacturer and obtain the services of a qualified consultant or structural engineer to insure the concrete floor and the structure panel can support these loads.

Proposed Floor Layout for Multiple Systems

Service Clearance

The minimum service clearance for single-frame and double-frame systems with thin doors is shown in the following illustration.

Single-F rame S ystem with Slimline Doors

Single-F rame S ystem with Slimline Doors (with alternative right-side service clearance)

Double-F rame S ystem with Slimline D oors

```
d=1143 mm (45.0 in.)
e=914 mm (36.0 in.)
f=1511 mm (59.5 in.)
f (alternate)=1577 mm (62.1 in.)
g=1640 mm (64.6 in.)
```

The minimum service clearance for single-frame and double-frame systems with acoustical doors is shown in the following illustration.

Single-F rame System
with Acoustical Doors

Single-F rame System
with Acoustical Doors
(alternative right-side service clearance)

Double-F rame System with Acoustical Doors
$\mathrm{d}=1143 \quad \mathrm{~mm} \quad(45.0 \quad$ in. $)$
$\mathrm{e}=914 \quad \mathrm{~mm} \quad\left(\begin{array}{ll}36.0 & \text { in. })\end{array}\right.$
$\mathrm{f}=1511 \mathrm{~mm} \quad(59.5 \mathrm{in}$.)
$\mathrm{f}($ alternate $)=1796 \quad \mathrm{~mm} \quad\left(\begin{array}{ll}70.7 & \text { in. })\end{array}\right.$
$\mathrm{g}=1859 \mathrm{~mm} \quad(73.2 \mathrm{in}$.

Refer to the illustration in "Guide for Raised-Floor Preparation" on page 5-25 for service clearances shown in a raised-floor installation.

Cooling Requirements

The PL3200R and PL1600R require air for cooling. As shown in "Proposed Floor Layout for Multiple Systems" on page 5-37, rows of PL3200R and PL1600R systems must face front-to-front. The use of a raised floor is recommended to provide air through perforated floor panels placed in rows between the fronts of systems (the cold aisles shown in the figure on page 5-37).
Note: Do not place perforated tiles in the hot aisles. Heated exhaust air must exit the computer room through the ceiling air-return system.
The following table provides system cooling requirements based on system configuration. The letter designations in the table correspond to the letter designations in the graph shown in "Cooling Requirements Graph" on page 5-42.

PL3200R Cooling Requirements

Number of I/O Drawers				
	8-way	16-way	24-way Modules (Cooling Chart Reference)	
1	A	B	32-way	
2	B	B	C	
3	N/A	C	C	C
4	N/A	C	C	D
5	N/A	N/A	D	E
6	N/A	N/A	D	E
7	N/A	N/A	D	E
8	N/A	N/A	N/A	E

Number of I/O Drawers	$\mathbf{1 . 3} \mathbf{~ G H z}$ 4-way Modules (Cooling Chart Reference)	
	8-way	16 -way
1	B	C
2	B	D
3	C	D
4	C	D
5	N/A	E
6	N/A	E
7	N/A	F
8	N/A	F

Number of I/O Drawers				
	8-way GHz 8-way Modules (Cooling Chart Reference)			
1	A	16-way	24-way	32-way
2	B	B	C	C
3	N/A	B	C	D
4	N/A	C	C	D
5	N/A	C	D	D
6	N/A	N/A	D	E
7	N/A	N/A	D	E
8	N/A	N/A	N/A	F

PL1600R Cooling Requirements

Number of I/O Drawers	1.1 GHz 4-way Modules (Cooling Chart Reference)
1	A
2	A
3	B

Number of I/O Drawers	1.1 GHz 8-way Modules (Cooling Chart Reference)	
	8 -way	16 -way
1	A	A
2	A	B
3	B	C

Cooling Requirements Graph

Requirements for the Chilled Air Flow Area

The following illustration shows the chilled air flow area required for a system. Use the system cooling requirements tables and the preceding graph to determine the area of floor tiles to supply chilled air to the system.

Hardware Management Console (HMC)

The Hardware Management Console (HMC) is a user interface that provides the functions needed to create and maintain a multiple-partitioned environment. The HMC is a feature of the Escala models that support partitioning (typically PL3200R and PL1600R, but also PL820R and PL420R). The interface allows you to directly manipulate HMC-defined objects and learn more about detected changes in hardware conditions. The HMC also provides service technicians with diagnostic information.

Chapter 6. Disk Subsystems

Describes requirements for site using shared disks.

Disk Subsystems - Overview

Disk subsystems include:

- DAS - DAE (Disk Array Storage / Enclosure).

Characteristics are provided for the following rack-mounted DAS and DAE units:

- DAS 1300, on page 6-2.
- DAS 2300, on page 6-3.
- DAS 2900, on page 6-3.
- DAS 3200, on page 6-4.
- DAS 3500, on page 6-5.
- DAS 4500, on page 6-6.
- DAS 4700, on page 6-7
- DAS 5300, on page 6-8.
- DAS 57x0, on page 6-9.
- NDAS CX600, on page 6-11.
- NDAS CX400 and CX200, on page 6-12.
- DAE 5000, on page 6-10.
- AMDAS JBOD, on page 6-13.
- SSA (Serial Storage Architecture), on page 6-15.

Warning: After delivery, remove the transport packaging, leaving the equipment in its plastic environmental bag unopened at room temperature for at least 12 hours. Disk drives can be damaged by severe temperature and humidity changes.

Disk Array Storage / Enclosures (DAS - DAE)

DAS 1300 Rackmount

Dimensions			
Height	26.7 cm (10.5 in)		
Width	48.3 cm (19.0 in)		
Depth	76.2 cm (30.0 in)		
Weight			
Minimum (chassis with 5 disk modules, 1 SP, 1 VSC,			
without packaging)	49.5 kg	110 lb	
Maximum (chassis with10 disk modules, 2 SPs, $2 \mathrm{VSCs}, \mathrm{BBU}$			
without packaging)	63 kg	140 lb	
Add-on modules:			
Disk-drive module	1.6 kg	3.5 lb	
Second VSC	3.0 kg	6.7 lb	
Second SP	1.1 kg	2.5 lb	
BBU	5.9 kg	13.0 lb	
Electrical	(power supplies are auto-sensing and auto-ranging)		
Voltage range (V ac)		s are auto-sensing and auto-ranging) 90 V ac to 264 V ac, single-phase,	
Frequency		47 to 63 Hz	
Current draw		6.0 A max. at 100 V ac input	
Power consumption:			
apparent power		600 VA max	
true power		575 W max	
Connector Type C22 Appliance Coupler			
Operating / Non-operating Limits			
	Operating 10 to $38^{\circ} \mathrm{C}$ (50 to $100^{\circ} \mathrm{F}$)	Non-operating	
Ambient temperature $\quad 10$ to $38^{\circ} \mathrm{C}\left(50\right.$ to $\left.100^{\circ} \mathrm{F}\right) \quad-40$ to $65^{\circ} \mathrm{C}\left(-40\right.$ to $\left.149^{\circ} \mathrm{F}\right)$			
Relative humidity			
(noncondensing)	20 to 80\%	10 to 90\%	
Elevation	2439 m (8000 ft) $\quad 7625 \mathrm{~m}$ (25000 ft)		
Heat dissipation	$2070 \times 10^{3} \mathrm{~J} / \mathrm{hr}$ ($1963 \mathrm{Btu} / \mathrm{hr}$) max		
Gradient, maximum	3 g @ 11ms $\quad 24^{\circ} \mathrm{C} / \mathrm{hr}\left(43.2^{\circ} \mathrm{F} / \mathrm{hr}\right)$		
Shock			
Vibration	0.25 g peak @ 5 Hz to 500 Hz		
Service clearance			
Front	81.3 cm (32.0 in)		
Back	81.3 cm (32.0 in)		
Miscellaneous			
External host bus	Differential SCSI-2 (synchronous)		
Internal storage-system buses Two single-ended SCSI buses			

DAS 2300/2900 Rackmount (20-Slot RAID Disk Array)

Dimensions		
Height	356 mm	14.0 in (8 EIA units)
Width	483 mm	19.0 in
Depth	762 mm	30.0 in
Weight		
Minimum (chassis with 5 disk modules, 1SP, 2 VSCs,		
Maximum (chassis with 20 disk modules, 2 SPs, 3 VSCs, BBU, without packaging): $\quad 78 \mathrm{~kg} \quad 173.2 \mathrm{lb}$		
Add-on modules:		
Disk-drive module	1.6 kg	3.5 lb
Third VSC module	2.4 kg	5.3 lb
Second SP	1.2 kg	2.6 lb
BBU	5.4 kg	12.0 lb
Electrical (power supplies are auto-sensing and auto-ranging)		
Voltage range (V ac) 90 V ac to 264 V ac		
Frequency $\quad 47$ to 63 Hz		
Current draw 9.0 A max. at 100 V ac input		
Power consumption:		
apparent power 900 VA max		
true power	880 W m	
Operating / Non-operating Limits		
Ambient temperature	Operating 10 to $38^{\circ} \mathrm{C}\left(50\right.$ to $100^{\circ} \mathrm{F}$)	Non-operating -40 to $65^{\circ} \mathrm{C}\left(-40\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
Relative humidity		
(noncondensing)	20 to 80\%	10 to 90\%
Elevation $\quad 2439 \mathrm{~m}(8000 \mathrm{ft}) \quad 7625 \mathrm{~m}(25000 \mathrm{ft})$		
Heat dissipation $3168 \times 10^{3} \mathrm{~J} / \mathrm{hr}(3000 \mathrm{Btu} / \mathrm{hr}) \max$		
Gradient, maximum		$24^{\circ} \mathrm{C} / \mathrm{hr}\left(43.2^{\circ} \mathrm{F} / \mathrm{hr}\right)$
Service clearance		
Front $\quad 81.3 \mathrm{~cm}$ (32.0 in)		
Back	81.3 cm	

Dimensions		
Height	46.74 cm	18.4 in
Width	48.2 cm	19 in
Depth	76.2 cm	30 in
Weight		
Maximum (chassis with 30 disk	modules, 2 SPs, 3 VSCs,	BBU,
without packaging)):	106.6 kg	235 lb
Add-on modules:		
Disk-drive module	1.6 kg	3.5 lb
Second SP	1.2 kg	2.6 lb
BBU	5.9 kg	13 lb
Electrical (power supplies are auto-ranging)		
Voltage range (V ac)single-phase		
Frequency $\quad 47$ to 63 Hz		
Current draw 5.0 A max. at 200 V ac input		
Power consumption:		
Input power	950 W ma	
Power factor	. 95 (min at	power)
Phase		
Power cables:		
USA primary power		NEMA 5-15P connection, connection
Other locations Local standard ac connection		
Operating / Non-operating Limits		
Ambient temperature	Operating 10 to $38^{\circ} \mathrm{C}\left(50\right.$ to $100^{\circ} \mathrm{F}$)	Non-operating -40 to $65^{\circ} \mathrm{C}\left(-40\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
Relative humidity		
		10 to 90\%
Elevation $2439 \mathrm{~m}(8000 \mathrm{ft})$		
Heat dissipation $3300 \mathrm{Btu} / \mathrm{hr}$ max		
IMPORTANT: The operating limits listed above for temperature and humidity must not be exceeded inside the closed cabinet in which the 30 -slot chassis is mounted. Mounting equipment in a cabinet directly above or below a storage system does not restrict air flow to the storage system because air flows through the storage system from front to back. Cabinet doors must not impede the front-to-back air flow.		
Gradient, maximum		$24^{\circ} \mathrm{C} / \mathrm{hr}\left(43.2^{\circ} \mathrm{F} / \mathrm{hr}\right)$
Shock 3 g @ 11ms		
Vibration $\quad 0.25 \mathrm{~g}$ peak @ 5 Hz to 500 Hz		
Service clearance		
Front $\quad 8.13 \mathrm{~cm}$ (32.0 in)		
Back	8.13 cm (3	
Miscellaneous		
External host bus	Differential	SI-2 (synchronous)
Internal storage-system buses	Five single	ded SCSI buses

Dimensions		
Height	28.59 cm (11.25 in) 6.5 NEMA units including mounting hardware	
Width	44.5 cm (17.5 in); mount NEMA cabinets	rs fit standard 19-inch
Depth	$70.02 \mathrm{~cm}(27.57 \mathrm{in})$ front door to back of drive fan pack $67.10 \mathrm{~cm}(26.42 \mathrm{in})$ enclosure front to back of drive fan pack	
	64.12 cm (25.24 in) rail fro	back of drive fan pack
Weight		
Maximum	52.0 kg (114.4 lbs) highly available max	
	$1.0 \mathrm{~kg}(2.3 \mathrm{lbs})$ disk-drive module	
	1.8 kg (4.0 lbs) disk fan pack	
	$1.8 \mathrm{~kg}(4.0 \mathrm{lbs}) \mathrm{SP}$	
	$1.8 \mathrm{~kg}(4.0 \mathrm{lbs}) \mathrm{SP}$ fan pack	
	0.8 kg (1.7 lbs) LCC (Link Control Card)	
	5.4 kg (12 lbs) power supply	
Electrical	(power supp	are auto-ranging)
Voltage range (V ac)	100 V ac to 240 V	0\%/+10\%, single-phase,
Frequency	47 to 63 Hz	
Current draw	8.0 A max. at 100	(fully configured)
Power consumption:		
apparent power	800 VA max estimate (fully configured)	
dissipation	700 W max estimate (fully configured)	
power factor	0.87 (min at full power, low voltage)	
Chassis power inlet	IEC 320-C14 Appliance coupler	
ac protection	12 A thermal circuit breaker on each power supply	
In-rush current	50 A max estimate for $1 / 2$ line cycle, per power supply	
Hold-up time	10 ms min at 50 Hz	
Current sharing	60\% max, 40\% min	
Power cables:		
USA primary power	$1.8 \mathrm{~m}(6.0 \mathrm{ft})$: NEMA 6-15P connector, (requires NEMA 6-15R receptacle)	
Other locations	Local standard ac connection	
Operating Limits / Non-operating Limits		
	Operating10 to $40^{\circ} \mathrm{C}\left(50\right.$ to $\left.104^{\circ} \mathrm{F}\right)$	Non-operating
Ambient temperature		-40 to $65^{\circ} \mathrm{C}\left(-40\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
Relative humidity		
(noncondensing)	20 to 80%	10 to 90\%
Elevation	$2439 \mathrm{~m}(8000 \mathrm{ft})$ at $40^{\circ} \mathrm{C} \quad 7625 \mathrm{~m}(25,000 \mathrm{ft})$	
	$\begin{aligned} & 3077 \mathrm{~m}(10000 \mathrm{ft}) \text { at } 37^{\circ} \mathrm{C} \\ & 10^{\circ} \mathrm{C} / \mathrm{hr}\left(18{ }^{\circ} \mathrm{F} / \mathrm{hr}\right) \end{aligned}$	
Gradient, maximum		
Shock	3 g @ 11ms	
Vibration	0.25 g peak @ 5 Hz to 500 Hz	
Service clearance		
Front	81.3 cm (32.0 in)	
Back	81.3 cm (32.0 in)	

Dimensions		
Height	28.59 cm (11.25 in)	
Width	44.5 cm (17.5 in); mounting bars fit standard 19-inch NEMA cabinets	
Depth	70.02 cm (27.57 in) front door to back of drive fan pack	
	$67.10 \mathrm{~cm}(26.42 \mathrm{in})$ enclosure front to back of drive fan pack$64.12 \mathrm{~cm}(25.24 \mathrm{in})$ rail front to back of drive fan pack	
Weight		
Maximum	55.0 kg (114.4 lbs) DPE with 2 SPs, 2 LCCs, 2 power supplies, and 10 disk modules	
	1.0 kg (2.3 lbs) disk-drive module	
	$1.8 \mathrm{~kg}(4.0 \mathrm{lbs})$ disk fan pack	
	3.3 kg (7.3 lbs) SP	
	$1.8 \mathrm{~kg}(4.0 \mathrm{lbs}) \mathrm{SP}$ fan pack	
	$0.8 \mathrm{~kg}(1.7 \mathrm{lbs}) \mathrm{LCC}$ (Link Control Card)	
	5.4 kg (12 lbs) power supply	
Electrical		
Voltage range (V ac)		
Current ac line	8.0 A max. at 100 V ac (fully configured)	
Power consumption:	800 VA max estimate (fully configured)	
Power dissipation	792 W max estimate (fully configured)	
Power factor	0.99 (min at full load, low voltage)	
Heat dissipation	$2851 \times 10^{3} \mathrm{~J} / \mathrm{hr}(2703 \mathrm{TU} / \mathrm{hr})$ max estimate	
In-rush current	50 A max estimate for $1 / 2$ line cycle, per power supply	
ac protection	12 A thermal circuit breaker on each power supIEC 320-C14 Appliance couple	
ac inlet time		
Hold-up time	10 ms min at 50 Hz	
Current sharing	60\% max, 40\% min	
Power cables:		
USA primary power	$1.8 \mathrm{~m}(6.0 \mathrm{ft})$: NEMA 6-15P connector, (requires NEMA 6-15R receptacle)	
Other locations	Local standard ac connection	
Operating limits / Non-operating Limits		
	Operating$10 \text { to } 40^{\circ} \mathrm{C}\left(50 \text { to } 104^{\circ} \mathrm{F}\right)$	Non-operating
Ambient temperature		-40 to $65^{\circ} \mathrm{C}\left(-40\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
Relative humidity		
(noncondensing)	20 to 80\%	10 to 90%
Elevation	$2438 \mathrm{~m}(8000 \mathrm{ft})$ at $40^{\circ} \mathrm{C} \quad 7625 \mathrm{~m}(25,000 \mathrm{ft})$	
	$3077 \mathrm{~m}(10000 \mathrm{ft})$ at $37^{\circ} \mathrm{C}$ $10^{\circ} \mathrm{C} / \mathrm{hr}\left(18^{\circ} \mathrm{F} / \mathrm{hr}\right)$	
Temperature Gradient		
Shock	3 g @ 11ms	
Vibration	0.25 g peak @ 5 Hz to 500 Hz	
Service clearance		
Front	30.3 cm (1 ft)	
Back	$60.6 \mathrm{~cm}(2 \mathrm{ft})$	

DAS 57x0 Rackmount

Rackmount model

Dimensions				
Height	28.59 cm (7.00 in)			
	4 NEMA units including mounting hardware			
Width	44.5 cm (17.5 in); mounting bars fit standard 19-inch NEMA cabinets			
Depth	$70.02 \mathrm{~cm}(27.57 \mathrm{in})$ front door to rear			
$67.10 \mathrm{~cm}(26.42 \mathrm{in})$ chassis to rear$64.12 \mathrm{~cm}(25.24 \mathrm{in})$ rail front to back				
Weight				
Maximum	52.2 kg (115 lbs) (fully configured)			
Electrical				
Voltage range (V ac)	100 V ac to $240 \mathrm{~V} \mathrm{ac}-10 \% /+10 \%$, single-phase,			
Frequency	47 to 63 Hz			
Current ac line	5.2 A max. at 100 V ac (fully configured)			
	$2.6 \mathrm{~A} \mathrm{max}$.at 200 V ac (fully configured)			
Power consumption	$520 \mathrm{VA}(510 \mathrm{~W})$ max (fully configured)			
Power factor	0.98 (min at full load, 100 Vac)			
Heat dissipation	$1840 \times 10^{3} \mathrm{~J} / \mathrm{hr}$ ($1740 \mathrm{BTU} / \mathrm{hr}$) max estimate			
In-rush current	25 A max for $1 / 2$ line cycle, per power supply at 240 Vac			
	15 A max for $1 / 2$ line cycle, per power supply at 120 Vac			
ac protection	10 A internal fuse (non-serviceable)			
ac inlet time	IEC 320-C14 Appliance couple			
Ride-through	30 ms min at full load			
Current sharing	60\% max, 40\% min between power supplies			
Operating limits / Non-operating Limits				
	Operating	Non-operating		
Ambient temperature	10 to $40^{\circ} \mathrm{C}$ (50 to $104{ }^{\circ} \mathrm{F}$)	-40 to $65^{\circ} \mathrm{C}\left(-40\right.$ to $\left.149^{\circ} \mathrm{F}\right)$		
Relative humidity				
(noncondensing)	20 to 80\%	10 to 90\%		
Elevation	2438 m (8000 ft) at $40^{\circ} \mathrm{C}$	7625 m (25,000 ft)		
	3077 m (10000 ft) at $37^{\circ} \mathrm{C}$			
Temperature Gradient	$10^{\circ} \mathrm{C} / \mathrm{hr}\left(50^{\circ} \mathrm{F} / \mathrm{hr}\right)$	$25^{\circ} \mathrm{C} / \mathrm{hr}\left(77^{\circ} \mathrm{F} / \mathrm{hr}\right)$		

Dimensions		
Height	13.34 cm (5.25 in) 3 NEMA units including mounting hardware	
Width	45 cm (17.72 in)	
Depth	$60.33 \mathrm{~cm}(23.75 \mathrm{in})$ front door to rear	
Weight		
Maximum	40 kg (88 lbs) (fully configured)	
Electrical		
Frequency	$47-63 \mathrm{~Hz}$	
Voltage range (V ac)	100 V ac to $240 \mathrm{~V} \mathrm{ac}-10 \% /+10 \%$, single-phase,	
Current ac line	5.9 A max. at 100 V ac (fully configured *)	
	2.9 A max. at 200 V ac (fully configured *)	
Power consumption	590 VA (578 W) max (fully configured *)	
Power factor	0.98 (min at full load, 100 Vac)	
Heat dissipation	$2080 \times 10^{3} \mathrm{~J} / \mathrm{hr}$ ($1975 \mathrm{BTU} / \mathrm{hr}$) $\left.\max { }^{*}{ }^{*}\right)$	
In-rush current	25 A max for $1 / 2$ line cycle, per power supply at 240 Vac	
	15 A max for $1 / 2$ line cycle, per power supply at 120 Vac	
ac protection	10 A fuse in each power supply, both phases	
ac receptacle type	IEC 320-C14 Appliance coupler, per power supply	
Hold-up time	20 ms min at full load	
Current sharing	60\% max, 40\% min between power supplies	
Operating limits / Non-operating Limits		
	Operating	Non-operating
Ambient temperature $\quad 10$ to $40^{\circ} \mathrm{C}\left(50\right.$ to $\left.104^{\circ} \mathrm{F}\right) \quad-40$ to $65^{\circ} \mathrm{C}\left(-40\right.$ to $\left.149{ }^{\circ} \mathrm{F}\right)$		
Relative humidity		
(noncondensing)	20 to 80\%	10 to 90\%
Elevation	2438 m (8000 ft) at $40^{\circ} \mathrm{C} \quad 7625 \mathrm{~m}(25,000 \mathrm{ft})$	
Temperature Gradient	$10^{\circ} \mathrm{C} / \mathrm{hr}\left(50^{\circ} \mathrm{F} / \mathrm{hr}\right)$	$25^{\circ} \mathrm{C} / \mathrm{hr}\left(77^{\circ} \mathrm{F} / \mathrm{hr}\right)$
* A fully configured CX	includes 2 Power Supplies, 2SPs and	disk drives

AMDAS JBOD

Just a Bunch of Disks Subsystem rack mount model comprises:

- 1 Disk array adapter
- Up to 4 disk trays
- Up to 24 disk-drive modules
- 1 DAS power supply
- 1 fan assembly (or optional 2nd DAS power supply)
- RS232 interface.

Note: If the chosen Disk Array has two power supplies, two power cables are needed. For High Availability purposes, they must be connected to two different power sources.

The following figure shows the Disk Array rack floor space requirements:

Measurements in mm
Note: When cutting a false floor to pass the Disk Array Cables, remember that each rack can contain up to 4 Disk Array units, each with up to 4 cables. A maximum number of 16 cables must be anticipated.

SSA 7133 Model 020

Dimensions		
Height	171	m (6.7 in.)
Width	444	m (17.5 in.)
Depth	665	m (26.2 in.)
Weight		
Maximum:	50 kg	(110 lb)
Minimum:	36 kg	(79 lb)
Add-on modules:		
Base Model		
2 Fan \& Power Supply		
1 Dummy Fan \& Power Supply		
Maximum:	36 kg	(79 lb)
Minimum:	37.5	(83 lb)
Expanded Model		
2-3 Fan \& Power Supply		
0-1 Dummy Fan \& Power Supply		
5-8 Disk Drive Modules		
Maximum:	37 kg	(81 lb)
Minimum:	43 kg	(95 lb)
Maximum Model		
3 Fan \& Power Supply		
0 Dummy Fan \& Power Supply		
9-16 Disk Drive Modules		
Maximum:		(96 lb)
Minimum:	50 kg	(110 lb)
Electrical		
AC Voltage range (V ac)	90 V	c to 260 V ac
Frequency		4 Hz
Current draw	Not	uoted
Power consumption:		
apparent power	VA m	
Input powerpower factor		
Phase 1		
DC Voltage range (V dc)Chassis power inlet		-60V DC
		oted
Power cables:		
USA primary power	Not	oted
Other locations	Not	oted
Operating / Non-operating Limits		
Ambient temperature	Operating 10 to $40^{\circ} \mathrm{C}\left(50\right.$ to $\left.{ }^{\circ} \mathrm{F}\right)$	$40 \text { to } 52^{\circ} \mathrm{C}$
Relative humidity		
(noncondensing) 8	8 to 80\%	
Elevation		
Heat dissipation (base config.)	140	atts (478 Btu
Heat dissipation (expanded config.)	g.) 275	atts (938 Btu/
Heat dissipation (max. config.)	480	atts (1638 Btu
Gradient, maximum	not q	oted
Shock	not quoted	
Vibration no	not quoted	
Service clearance		
Front	81.3	m (32.0 in)
Back	81.3	(32.0 in)

Operational Considerations

Each 7133 rack-mounted unit requires an airflow of $1.56 \mathrm{~m}^{3} / \mathrm{min}$. (55 CFM). When racks containing many 7133 units are to be installed together, the following requirements must be met to ensure that the 7133 units are adequately cooled:

- The airflow enters at the front of the rack and leaves at the back. To prevent the air that is leaving the rack from entering the intake of another piece of equipment, racks should be positioned in alternate rows, back-to-back and front-to-front.
- The front of racks should be positioned on floor-tile seams, with a full line of perforated tiles immediately in front of the racks. Each perforated tile should have an air flow of at least $11.34 \mathrm{~m} / \mathrm{min}$. (400 CFM). The underfloor temperature must be at most $15^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$.
- Where racks are in rows front-to-front or back-to-back, there should be a gap of at least 1220 mm (48 in.) separating the rows.
- To ensure proper air flow within each rack, the rack filler plates must be installed in unused positions. also, all the gaps in the front of the racks must be sealed, including the gaps between the 7133 units.
The recommended operating temperature is $22^{\circ} \mathrm{C}\left(72^{\circ} \mathrm{F}\right)$ or lower. At lower temperatures, the risk of failure in the unit is reduced. If the operating temperature is above $22^{\circ} \mathrm{C}\left(72^{\circ} \mathrm{F}\right)$ for long periods, the unit is exposed to a greater risk of failure.

Use of SSA for Disaster Recovery Solutions

Using a Fibre Optic Extender with STII Fibre-Optic Connectors, Figure 6, an SSA loop can be extended to up to 600 meters (between buildings, for example). See Site
Interconnection Examples, on page 10-1.

Figure 6. Fibre-Optic Extender with STII Connectors

$\overline{\text { Chapter 7. Tape Subsystems }}$

Describes requirements for site using shared tape drives.

Tape Subsystems - Overview

Tape subsystems include:

- Overland libraries with DLT 4000 \& DLT 7000 drives
- Storagetek libraries with DLT 4000 \& DLT 7000 drives
- VDAT Mammoth External 8mm tape drive.

Specifications:

- DLT 4000, on page 7-2.
- DLT 7000, on page 7-3.
- VDAT Mammoth External 8 mm tape drive, on page 7-4.

DLT 4000

General Parameters

Power Cord

Warning: Do not attempt to modify or use and external 100-115 VAC power cord for 220 240 VAC input power. Modifying the power cord can cause personal injury and severe equipment damage.

The AC power cord used with this equipment must meet the following criteria:

- UL and CSA Certified cordage rate for use at 250 VAV with a current rating that is at least 125% of the current rating of the product. In Europe, the cordage must have the <HAR> mark.
- The AC plug must be terminated in a grounding-type male plug designed for operation in the country of use. It must also have marks showing certification by an agency acceptable in the country.
- The connector at the product end must be an IEC type CEE-22 female connector.
- The cord must be no longer than 14.5 feet (4.5 meters).

Note: the power cord should be a minimum of $18 / 3$ AWG, $60^{\circ} \mathrm{C}$, Type SJT or SVT.

DLT 7000

| Dimensions |
| :--- | :--- | :--- |
| Height |
| Width |
| Depth |

VDAT Mammoth 8mm Tape Drive

General Parameters

Note: Operating limits include media.

Media Storage Parameters

	Storage
Ambient temperature	5 to $32^{\circ} \mathrm{C}\left(41-90^{\circ} \mathrm{F}\right)$
Relative humidity	20 to 60%
(noncondensing)	not quoted
Humidity gradient	$26^{\circ} \mathrm{C}\left(79^{\circ} \mathrm{F}\right)$
Max. Wet Bulb	

Cleaning Procedures

This product demands stringent cleaning operations. The user must be familiar with cleaning procedures which are detailed in the vendor's documentation:

- 7208 20GB External 8mm Tape drive Model 341 - Setup \& Operator Guide
- 7208 20GB External $8 m m$ Tape drive Model 341 - Service Guide.

See also, EXABYTE VDAT 8mm Mammoth - Care \& Handling Guide.

Chapter 8. Operator Consoles

Describes various console specifications.

Operator Consoles - Overview

The following consoles can be used with rack systems:

- System Console (Bull Questar 306), on page 8-2.
- Graphics Display, on page 8-5.
- Cluster Console (X-terminal "Explora"), on page 8-6.
- PowerConsole, on page 8-11.

System Console (BQ306)

The System Console is in three separate modules: the monitor, keyboard and mouse.

Specifications

Dimensions	
Height	320 mm (12.5 in.)
Width	340 mm (13.4 in.)
Depth	310 mm (12.2 in.)
Weight	
Maximum (Display Console with Keyboard):	$11.4 \mathrm{~kg}(25.0 \mathrm{lb})$
Keyboard:	2.3 kg (5.0 lbs)
Electrical	(power supplies are auto-ranging)
Voltage range (V ac)	120 V ac to 240 V ac
120 V ac	$90-132 \mathrm{Vac}$
240 V ac	180-240 V ac
Frequency	$47-63 \mathrm{~Hz}$
Current draw 120 V ac	1.0 A
240 V ac	0.5 A
Power consumption:	45 W (maximum)
Phase	1
Chassis power inlet	IEC 320-C14 Appliance Connector
Power cables:	
USA primary power	$1.8 \mathrm{~m}(6.0 \mathrm{ft})$: NEMA 6-15P connector, (requires NEMA 6-15R receptacle)
Other locations	Local standard ac connection
Operating / Non-operating Limits	
Operating	
Ambient temperature $\quad 10$ to $40^{\circ} \mathrm{C}$	10 to $40^{\circ} \mathrm{C}$ (50 to $104{ }^{\circ} \mathrm{F}$)
Relative humidity Not quoted	Not quoted
Gradient, maximum Not quoted	Not quoted
Shock Not quoted	Not quoted
Vibration Not quoted	Not quoted

Standards

CISPR, IEC. EN Statements
CISPR 22 and EN 55022 Class B.
IEC 950 and EN 60950.

Electro-Magnetic Interference

FCC-A and Canadian Department of Communications - Class A.

Working Clearances

Console to be placed on a flat, hard surface, allowing 76.2 mm (3 in.) on all sides for ventilation and external cabling.

Mouse

Figure 7. Clearance Footprint - System Console

Power Connection

Grounded power outlet accommodating a 3-pronged plug.
Three-core power cord suited to local regulations.

Signal Connections

Console can be connected directly to a host computer or indirectly to a remote system via a terminal server or modem. A serial printer can also be connected directly, for use with application which support it.

Host Port (RS-232C / RS-422)

RS-232C or RS-422 shielded serial cable with a 25 -pin male connector on the console end.
Printer Port (RS-232C)
RS-232C shielded serial cable with a 25 -pin male connector on the console end.

Typical Configuration

The System Console is offered in the following cluster configurations:

- Uni-node Powercluster: the System Console is connected to a node's S1 port.
- Two-node Powercluster: the System Console can be used alone. In this case the System Console is connected to a node's S1 port.
- Powercluster with 3 to 8 nodes: the System Console can be used with a Cluster Console or a Cluster Powerconsole. In this case, the System Console is connected to a console concentrator.

Note: A 9M/25M RS232 cable (CBL1912) shipped with any Escala node, is connected to the node's S1 plug (9 F)

Figure 8. System Console Connected With a 2-Node Powercluster

Graphics Display

The Graphics Display is in three separate modules: the monitor, keyboard and mouse.

Specifications

The display can be one of the following:

- 15 " or 17" Color display.
- 17 " or 20 " Multiscan Color Display.

For details, see Vendor's Publications.

Typical Configuration

The Graphics Display is offered in the following cluster configurations:

- Uni-node Powercluster: the Graphics Display can be ordered in lieu of a System Console (an ASCII terminal)
- Two-node Powercluster: there can be a System Console attached to a first node and a Graphics Display attached to a second node.
- The latter applies to an EPC400 or anEPC1200 node. There is no Graphics Display on EPC800 nodes.

Figure 9. Graphics Display and System Console and Connected With a 2-node Powercluster.

Cluster Console (X-terminal "Explora")

The Cluster Console is in four separate modules: the Explora Base, base power supply, Monitor WY-917P and keyboard.

Base \& Power Supply

Note: The Explora Base module may be mounted vertically. An optional bracket, with screws is available.

Standards

Safety

EN 55022, EN 50082-1, EN 60950.

Application of Council Directives

89/336/EEC, 73/23/EEC.

Electro-Magnetic Interference

FCC-A.

X-terminal (17-inch)

Dimensions:	
Height	425 mm (16.73 in.)
Width	408 mm (16.06 in.)
Depth	435 mm (17.13 in.)
Weight	
Electrical Voltage range (V ac)	(power supplies are auto-ranging)
	180 V ac to 264 V ac
	88 V ac to 132 V ac
Frequency	48 to 62 Hz
Current draw	Not quoted
Power consumption:	130 W (maximum ON)
	6 W (power-saving mode OFF)
Phase	
Chassis power inlet	IEC 320-C14 Appliance Connector
Power cables: USA primary power	
	1.8 m (6.0 ft): NEMA 6-15P connector, (requires NEMA 6-15R receptacle)
Other locations	Local standard ac connection
Operating / Non-operating Limits	
Ambient temperature	Operating
	0 to $40^{\circ} \mathrm{C}$ (32 to $104^{\circ} \mathrm{F}$)
Relative humidity	
(noncondensing)	10 to 85%
Elevation	up to 3,050 meters ($10,000 \mathrm{ft}$)
Gradient, maximum	Not quoted
Shock	Not quoted
Vibration	Not quoted
Video Signals	
Video	Anaog: RGB, 0.7 V p-p / 75 Ohms
Synch	separate, Composite or Synch. on Green Positive or Negative TTL
Display Data Channel Compatibility	
	VESA DDC 1/2B

For US market a 21 -inch X-terminal is available).

Standards

Safety

UL, CSA, GS, CE, NEMKO, SEMKO, DEMKO, FIMKO, TUN/GS.

Electro-Magnetic Interference

FCC-B, BZT-B, CISPR 22-B, VCCI.

Ergonomics

ISO 9241-3
Emissions
MPR II (MPR 1990:10), TC092 (Option, identified by label on monitor's rear cover).

Ionizing Radiation (X-Rays)

DHHS, PTB (Self Certificated)

Energy Saving

EPA Energy Star, VESA DPMS.

Working Clearances

Console to be placed on a flat, hard surface, allowing 76.2 mm (3 in.) on all sides for ventilation and external cabling.

Figure 10. Clearance Footprint - Cluster Console

Power Connection

Grounded power outlet accommodating a 3-pronged plug.
Three-core power cord suited to local regulations.

Signal Connections

Video Connector

15-pin mini D-sub.
Host Port (RS-232C / RS-422)
RS-232C or RS-422 shielded serial cable with a 25 -pin male connector on the console end.

Typical Configuration

The Cluster Console needs a Console Concentrator with the option of dedicated administration network.

If there is no Cluster Administration Hub, that is to say no dedicated administration network, the Console Concentrator and the Cluster Console will be connected to the customer's LAN network (an Ethernet network) in customer's premises.
In this case, if the customer's network is COAXIAL THICK or COAXIAL THIN then the Customer is in charge of connecting the Console Concentrator and the Powerconsole to his network with his own cables (As usual for all the Escala platforms).

Powercluster >2 nodes

Figure 11. Cluster Console Connected with > 2-Nodes

Figure 12. Cluster Console Connected with 2-Nodes

PowerConsole

PowerConsole (Escala S Series)

Specifications

Dimensions		
In horizontal orientation	165 mm (6.5 in.)	
Height		
Depth	460 mm (18.1 in.)	
Width	420 mm (16.5 in.)	
In vertical orientation (support foot included)		
Height	450 mm (17.7 in.)	
Depth	460 mm ($18.1 \mathrm{in}$. .)	
Width	235 mm (9.25 in.)	
Weight		
minimum:	14.5 kg (29 lbs)	
maximum:	$18.2 \mathrm{~kg}(40 \mathrm{lbs})$	
Maximum weight supportable on top	of $\quad 27.3 \mathrm{~kg}(40 \mathrm{lbs})$	
System Unit (Horizontal Position):		
Electrical	(selectable power supplies)	
Voltage range (V ac)	100 to 125 V ac / 200 to 240 V ac	
Frequency	50 to 60 Hz	
Current draw	Not quoted	
Power source loading:	0.3k VA typical	
Power source loading:	0.5 k VA maximum	
Power supply	250 watts	
Operating / Non-operating Limits		
	Operating16° to $32^{\circ} \mathrm{C}\left(60^{\circ}\right.$ to $\left.90^{\circ} \mathrm{F}\right) \quad$ Non-operating	
Ambient temperature		
Relative humidity		
(noncondensing)	8 to 80\%	
Elevation	2135 m (7,000 ft)796 BTUs per hour	
Heat output (maximum)		597 BTUs per hour
Gradient, maximum	796 BTUs per hour	
Shock	$0.5 \mathrm{~g} @ 11 \mathrm{~ms}$Not quoted	$15 \mathrm{~g} @ 11 \mathrm{~ms}$
Vibration		
Acoustics:		
Average sound-pressure levels:		
At operator position:	43 dB	38 dB
At bystander position (1 m.)	38 dB	36 dB
Upper limit sound power levels:		
	5.3 Bels	5.0 Bels
Acoustics		
	Operating	Non-operating
Average sound-pressure levels:	43 dB	
At operator position:		38 dB
At bystander position (1 meter)	38 dB	36 dB
Declared (upper limit) sound power levels:		
	5.3 Bels	5.0 Bels

The monitor is a 17 " color display.

Working Clearances

Console to be placed on a flat, hard surface, allowing 762 mm (3 in.) on all sides for ventilation and external cabling.

Power Connection

Grounded power outlet accommodating a 3-pronged plug.
Three-core power cord suited to local regulations.

Signal Connections

For details, see the Powercluster Cabling Guide.
Host Port (RS-232C / RS-422)
RS-232C or RS-422 shielded serial cable with a 25 -pin male connector on the machine end.

Typical Configuration

The Cluster PowerConsole needs a Cluster Administration Hub for setting up a dedicated-administration network. A Console Concentrator is used per default in any configuration.
RS232 cables can also be used on the one hand to connect a modem for remote maintenance purpose, and on the other hand to establish a remote asynchronous connection via the switched telephone network.

An LSA board is used to connect a node to the administration Ethernet hub.
The PowerConsole is connected onto the administration hub from its integrated ethernet plug.

There is an optional extra communication board that can be ordered to allow the PowerConsole to be connected to the customer's LAN network. With that option, an X-Terminal attached to the customer's network can remotely access to the PowerConsole, provided that it is configured to run with the CDE windows manager of the PowerConsole.
If there is no Cluster Administration Hub, that is to say no dedicated administration network, the Console Concentrator and the PowerConsole will be connected to the customer's LAN network (it must be an Ethernet network) in customer's premises. An Ethernet cable (VCW3630) is provided for doing this. If the customer's network is COAXIAL THICK or COAXIAL THIN then the Customer is in charge of connecting the Console Concentrator and the PowerConsole to his network with his own cables (As usual for all the Escala platforms).

Figures 13 and 14 illustrate the two possible implementations - with or without dedicated administration network. In the former case, the nodes, the PowerConsole and the Console concentrator are linked to the Administration Hub to make an independent Ethernet network, said the dedicated-administration network. In the second case, the PowerConsole and the Console Concentrator are directly connected to the customer's Ethernet network.
Note: In both cases, the Powercluster nodes are connected to the customer's LAN network.

Figure 13. PowerConsole Connected with a Dedicated Administration Network

Figure 14. PowerConsole Connected without a Dedicated Administration Network

Standards

Safety

UL1950, CSA C22.2/950, VDE 0805, EN 60 950/IEC 950.

Electro-Magnetic Interference

FCC-B
CE Notices
CE, EN 55022, EN 50082-1 (IEC 801-2, IEC 801-3, IEC 801-4), EN 60950, EN 60555-2, EN 60555-2.

Chapter 9. Network External Peripherals

Taking into account network external peripheral requirements.

Network External Peripherals - Overview

Includes:

- Fast Ethernet Switch 3000, on page 9-2.
- 1GB Ethernet Switch 9300, on page 9-3.
- Brocade Switch, on page 9-4.
- FC-AL Hub, on page 9-5.
- Ethernet Hub (Administration), on page 9-6.
- Vixel Hub, on page 9-7.
- Console concentrator, on page 9-8.
- Micro-Modem, on page 9-10.

Fast Ethernet Switch 3000

The Fast Ethernet Switch is a high performance switch for Local Area Networks (Type: 3Com® ${ }^{\circledR}$ SuperStack ${ }^{\oplus}$ II Switch 3000 10/100, Part No. 3C16942A).

This switch has 12 auto-negotiating 10BASE-T 100BASE-TX RJ45 ports. These ports can be set to 10BASE-T, 100BASE-TX or they can automatically detect the speed of a link.

It allows connection to Ethernet or Fast Ethernet devices over a maximum length of 100 m using data grade category 5 twisted pair cable.
Note: If this switch is not used, it is recommended to not leave it in auto-negotiating mode. Automatic speed detection consumes too much CPU time. Either disconnect the switch or set it to one or other of the speed settings.
This equipment is described in the 3Com® SuperStack II Switch 3000 10/100 (3C16942A) User Guide.

A rack mount kit allows the server to be installed in a 19" rack.

Specifications

Manufacturer's Specifications

Figure 15. Fast Ethernet Switch - Front View.

1GB Ethernet Switch 9300

The 1GB Ethernet Switch 9300 is a high performance switch for Local Area Networks (Type: 3Com® SuperStack ${ }^{\circledR}$ II Switch 9300, Part No. 3C93012).

The switch 9300 delivers full line rate, nonbocking switching among all 12 Gigabit Ethernet ports. It supports full-duplex mode on all ports

This equipment is described in the 3Com® SuperStack II Switch 9300 CDROM documentation.

A rack mount kit allows the server to be installed in a 19" rack.

Specifications

Manufacturer's Specifications

Figure 16. 1 GB Ethernet Switch 9300 - Front View.

SilkWorm 2000 Brocade Switch

This equipment is described in the Brocade ${ }^{\circledR}$ SilkWorm 2000 Entry Family Hardware Reference Guide.

This swith has 8 ports (7 fixed optical and 1 GBIC).
This equipment fits Dual SC connectors.
A rack mount kit allows the server to be installed in a 19" rack.

SilkWorm 2010/2040/2050 Switch Specifications

Manufacturer's Specifications.

FC-AL Hub

The Fibre Channel Arbitrated Loop Hub is an active hub providing the same functions as a 10 Base-T hub while supporting 100 times the bandwidth. (Type: Gadzoox FCL1063TW, Part No. 110903 Rev 2).

This equipment is described in the Gadzoox FCL1063TW - 1.0625 Gigabit/second Fibre Channel Arbritrated Loop Hub Product Manual.
A rack mount kit allows the hub to be installed in a19" rack.

Specifications

Dimensions							
Height Width Depth		$\begin{aligned} & 4.4 \mathrm{~cm}(1.7 \mathrm{in}) \text { or } 1 \mathrm{U} \text { for the rack } \\ & 44.0 \mathrm{~cm}(17.3 \mathrm{in}) \\ & 22.4 \mathrm{~cm}(8.8 \mathrm{in}) \end{aligned}$					
	$44 .$						
Weight							
	2.6	kg	(5.7	lb)			
ElectricalVoltage range (V ac)	(power supplies are auto-sensing and auto-ranging)						
	110 V ac to 240 Vac , single-phase,						
Frequency	50 to 60 Hz						
Current draw Power consumption:	not quoted						
Power consumption: apparent power	100 VA						
Operating / Non-operating Limits							
OperatingAmbient temperature $\quad 0$ to $40^{\circ} \mathrm{C}\left(32\right.$ to $\left.104^{\circ} \mathrm{F}\right)-40$ to $70^{\circ} \mathrm{C}\left(-40\right.$ to $\left.158^{\circ} \mathrm{F}\right)$							
Relative humidity (noncondensing) 95\% max.							
Elevation	95\% max. not quoted						
Heat dissipation	$\mathrm{J} / \mathrm{hr} \mathrm{(73} \mathrm{Btu/hr)}$						

Manufacturer's Specifications

Figure 17. FC-AL Hub (fitted with Rack mounting brackets) - Front View.

Ethernet Hub

The Ethernet Hub is an IEEE 802.3 Standard repeater for Local Area Networks (Type: 3Com ${ }^{\circledR}$ SuperStack ${ }^{\circledR}$ II HUb 10 12-Port TP, Part No. 3C16670A).

This hub has 12 RJ45 twisted pair ports, and an AUI port, allowing connections over a maximum length of 100 m using data grade category 5 twisted pair cable.

This equipment fits a 25 F (female) micro-modem.
Hub expansion connectors allow the stacking of several hubs, using hub expansion cables.
This equipment is described in the 3Com ${ }^{\oplus}$ SuperStack II Hub 10 12-Port TP (3C16670A) User Guide.
A rack mount kit allows the server to be installed in a 19" rack.

Specifications

Manufacturer's Specifications

Figure 18. Ethernet Hub - Front View.

Vixel 1000 Hub

The VIXEL 1000 Hub is an unmanaged 7-port Fibre Channel-Arbitrated Loop (FC-AL) device.

This equipment fits Dual SC connectors.
A rack mount kit allows the server to be installed in a 19" rack.

Specifications

Manufacturer's Specifications.

Figure 19. Vixel 1000 Hub - Front View.

Console Concentrator

The Console Concentrator is a communications server (Type: 3Com® CS/2600 or Type: Digi® Portserver).

CS/2600 Specifications

This equipment is described in the 3Com ${ }^{\circledR}$ CS/2500 Series Communications Server Installation Guide and the release notes delivered with the hardware.
This equipment fits a 25 M (male) micro-modem.

Manufacturer's Specifications

Figure 20. Console Concentrator (fitted with Rack mounting brackets) - Front View.

PortServer Specifications

This equipment is described in the Digi® PortServer User's Guide delivered with the hardware.

This equipment fits a 10 pin RJ45 female (RJ48).

Manufacturer's Specifications

Micro-Modem

The HACMP facility requires the use of two micro-modems to extend the RS232 cabling required for the "Heartbeat" disaster recovery solution.

Micro-modems can be used to connect S1 or COM1 system console port of an EPC node to a CS2600 concentrator port when distance is too long.

The micro-modem referenced ME762A-F is an example of what you can purchase to extend RS232 lines.

CAUTION:
Both 25M (male) and 25F (female) micro-modems are available.

- a ME762A-F micro-modem fits the serial port of an EPC node
- a ME762A-M micro-modem fits Console Concentrator CS/2600 .

Specifications (typical)

Protocol	Asynchronous
Speed	Up to 19.2 Kbps
Operation	Unconditioned 4-wire line (two twisted pairs), full- or half-duplex, point to point
Interface	RS-232/CCITT V.24
Connectors DTE/DCE	DB25 female
Transmission Level	-6 dBm
Power	From RS-232 interface (+6 VDC on pins 2, 4 or 20)
Size	$\mathrm{H}=2.3 \mathrm{~cm} \times \mathrm{W}=5.3 \mathrm{~cm} \times \mathrm{D}=10.9 \mathrm{~cm}$ $\mathrm{H}=0.9$ inch $\times \mathrm{W}=2.1 \mathrm{inch} \times \mathrm{D}=4.3 \mathrm{inch}$
Weight	0.1 kg (0.2 lb.)
Distance	See table below

The table below shows the relationship between expected data rate and wire gauge.

Speed	Wire Gauge		
	$\mathbf{0 . 9} \mathbf{~ m m} / \mathbf{1 9 - A W G}$	$\mathbf{0 . 5} \mathbf{~ m m} / \mathbf{2 4 - A W G}$	$\mathbf{0 . 4 ~ \mathbf { ~ m m } / \mathbf { 2 6 - A W G }}$
1200 pbs	$10.5 \mathrm{~km} / 5.5 \mathrm{mi}$	$8.0 \mathrm{~km} / 5.0 \mathrm{mi}$	$5.6 \mathrm{~km} / 3.5 \mathrm{mi}$
2400 pbs	$10.5 \mathrm{~km} / 5.5 \mathrm{mi}$	$8.0 \mathrm{~km} / 5.0 \mathrm{mi}$	$5.6 \mathrm{~km} / 3.5 \mathrm{mi}$
4800 pbs	$10.5 \mathrm{~km} / 5.5 \mathrm{mi}$	$8.0 \mathrm{~km} / 5.0 \mathrm{mi}$	$5.6 \mathrm{~km} / 3.5 \mathrm{mi}$
9600 pbs	$8.0 \mathrm{~km} / 5.0 \mathrm{mi}$	$6.4 \mathrm{~km} / 4.0 \mathrm{mi}$	$4.0 \mathrm{~km} / 2.5 \mathrm{mi}$
19200 pbs	$3.2 \mathrm{~km} / 2.0 \mathrm{mi}$	$2.5 \mathrm{~km} / 1.5 \mathrm{mi}$	$1.6 \mathrm{~km} / 1.0 \mathrm{mi}$

Chapter 10. Site Interconnections

Describes extended site interconnections.

Site Interconnections

A site installation can extend beyond the limits of a building requiring particular disaster recovery solutions. These make use of extended RS232 "Heartbeat" connections using a micro-modem and/or fibre optic links.

Site Interconnection Examples

The Escala Powercluster offer only contains the optic fibre extender. The cabling (in double optic fibre) between separate building or inside a building, is out of scope of Powercluster product and must be performed by external professional services. This applies equally to external RS232 cabling.

Use of RS232 Lines

RS232 lines can be used between the nodes for exchanging "keep-alive" messages and the RS232 line used between two possible Console Concentrators. Since some nodes can be 600 m distant from other nodes, it is necessary to provide a means to extend an RS232 line to such a length capability. The solution is to use a pair of micro-modems for each RS232 link to be extended. See Micro-Modem, on page 9-10.

Use of Fibre Channel (FC-AL)

With the introduction of Fibre Channel Arbitrated Loop, an FC-AL loop can be extended enabling the construction of an architecture for disaster recovery where the Powercluster configuration is spread over two sites. The maximum length of a fibre link between two sites is 10 kilometers. It is assumed that there is a customer's public network, and also a customer's private network for implementing a HA/CRM solution, which link all the nodes. The public network and the private network must be separate subnets, and at least one of them must provide an ethernet LAN segment in order to connect the Powerconsole or Cluster Console and associated equipments.
See figure 21 an example of configuration with 2 nodes, Dual Loop, 4 Hubs and 2 DAS.

Use of Optic Fibre Extender

With the introduction of Optic Fibre Extender, an SSA loop can be extended enabling the construction of an architecture for disaster recovery where the Powercluster configuration is spread over two buildings within a campus. The maximum length of a fibre link between two optic fibre extenders is 600 meters. It is assumed that there is a customer's public network, and also a customer's private network for implementing a HA/CRM solution, which link all the nodes. The public network and the private network must be separate subnets, and at least one of them must provide an ethernet LAN segment in order to connect the Powerconsole or Cluster Console and associated equipments.

Figures 22 to 25 illustrate disaster recovery solutions which differ in terms of number of nodes and shared SSA cabinets. They are extensions of basic configurations. In these extended configurations two physical loops are implemented. Figure 24 shows an implementation with one SSA cabinet per loop with an extended optic fibre link between each node and the distant cabinet. Figure 25 illustrates two cabinets per loop with is an extended optic fibre link between the two distant cabinets of each loop.

Figure 21. Configuration with 2 Nodes, Dual Loop, 4 Hubs, 2 DAS.

Cabling Schema with 1 Node and 1 SSA Cabinet on Each Side
Note: The schema shows a configuration with 2 loops and 1 adapter per node. For High Availability it is better to have 2 adapters, one per loop.

Figure 22. Configuration with 2 Loops and Fibre Optic Extenders.

Cabling Schema with 1 Node and 2 SSA Cabinets on Each Side
Note: The schema shows a configuration with 2 loops and 1 adapter per node. For High Availability it is better to have 2 adapters, one per loop.

Figure 23. Configuration with 2 Loops and Fibre Optic Extenders.

Figure 24. Example with a Pair of Nodes and 1 SSA Cabinet

Cabling Schema with a Pair of Nodes and 2 SSA Cabinets on Each Side

Figure 25. Example with a Pair of Nodes and 2 SSA Cabinets.

$\overline{\text { Appendix A. Conversion Tables }}$

Correspondence between Metric and Imperial Measures.

Conversion Tables - Overview

Conversions between Metric Measure and Imperial Measure (length, area, volume, mass and temperature) are provided below.

English to Metric

1 inch (")	2.54 cm (centimeters)
1 foot (')	30.48 cm
1 yards (yd)	0.91 m (meters)
1 mile (mi)	1.6093 km (kilometers)
1 pound (avdp) (lb)	0.5 kg (Kilograms)
1 ounce (avdp) (oz)	28.4 g (grams)
1 square foot ($\left.\mathrm{ft}^{2}\right)$	$0.093 \mathrm{~m}^{2}$ (square meters)
1 square inch (in^{2})	$6.5 \mathrm{~cm}^{2}$ (square centimeters)
1 square yard (yd^{2})	$0.8 \mathrm{~m}^{2}$ (square meters)
1 acre	0.4 ha (hectares)
1 cubic foot ($\left.\mathrm{ft}^{3}\right)$	$0.03 \mathrm{~m}^{3}$ (cubic meters)
1 horsepower (hp)	$0.7 \mathrm{kw}($ kilowatts)
$1 \mathrm{lb} / \mathrm{ft}^{2}$	$4.88 \mathrm{~kg} / \mathrm{m}^{2}$

Note: 12 inches = 1 foot, 36 inches or 3 feet $=1$ yard, 1760 yards or 5280 feet $=1$ mile.

Metric to English

1 meter (meter)	3.3^{\prime} (feet)
1 meter (meter)	1.09 yd (yards)
1 centimeter (cm)	$0.3937^{\prime \prime}$
1 kilometer (km)	0.62 mi (miles)
1 gram (g)	0.04 oz (ounces (avdp))
1 kilogram (kg)	2.2 lbs (pounds (avdp))
1 sq. centimeter ($\left.\mathrm{cm}^{2}\right)$	$0.15 \mathrm{in}^{2}$ (square inches)
1 square meter $\left(\mathrm{m}^{2}\right)$	$10.76 \mathrm{ft}^{2}$ (square feet)
1 square meter $\left(\mathrm{m}^{2}\right)$	$1.2 \mathrm{yd}^{2}$ (square yards)
1 hectare $($ ha)	2.5 acres
1 cubic meters $\left(\mathrm{m}^{3}\right)$	$35.3 \mathrm{ft}^{3}$ (cubic feet)
1 kilowatts (kW)	$1.3 \mathrm{hp}($ horsepower)
$1 \mathrm{~kg} / \mathrm{m}^{2}$	$0.205 \mathrm{lb} / \mathrm{ft}^{2}$

1 kW hour	3412 Btu (British thermal units)

Celsius to Fahrenheit Conversion

Multiply the temperature in Celsius by 9, divide by 5, and add 32:
$\left(C^{\circ} \times 9 / 5\right)+32=F^{\circ}$

Fahrenheit to Celsius Conversion

Subtract 32 degrees from the temperature in Fahrenheit, multiply by 5 , and divide by 9 : $\left(F^{\circ}-32\right) \times 5 / 9=C^{\circ}$

Appendix B. Service Inspection

Hardware delivery inspection guidelines.

Service Inspection - Overview

A service inspection should be made upon receipt of a new system from the supplier. In addition perform a service inspection on the system when the following conditions occur:

- The system is inspected for a maintenance agreement.
- Service is requested and service has not recently been performed.
- An alterations-and-attachments review is performed.
- Changes have been made to the equipment that might affect the safe operation of the equipment.
- External devices with an attached power cord are connected to the system unit.

If the inspection indicates an unacceptable safety condition, the condition must be corrected before representatives service the machine.
Note: The correction of any unsafe condition is the responsibility of the owner of the system.

Do the following checks:

1. Check the covers for sharp edges and for damages or alterations that expose the internal parts of the system unit.
2. Check the covers for a proper fit to the system unit. They should be in place and secure.
3. Open the back cover.
4. Check for alterations or attachments. If there are any, check for obvious safety hazards such as broken wires, sharp edges, or broken insulation.
5. Check the internal cables for damage.
6. Check for dirt, water, and any other contamination within the system unit.
7. Check the voltage label on the back of the system unit to ensure that it matches the voltage at the outlet.
8. Check the external power cable for damage.
9. With the external power cable connected to the system unit, check for 0.1 ohm or less resistance between the ground lug on the external power cable plug and the metal frame.
10. Using the appropriate probe, check for 0.1 ohm or less resistance between the metal frame and the grounding pin on each of the power outlets on the power distribution bus.
11. Check the following conditions for each external device that has an attached power cord:
a. Damage to the power cord.
b. The correct grounded power cord.
c. With the external power cord connected to the device, check for 0.1 ohm or less resistance between the ground lug on the external power cord plug and the metal frame of the device.
12. Close the rear cover of the rack.

B-2 Escala - Site Preparation for Rack Systems

Glossary

This glossary contains abbreviations, key-words and phrases that can be found in this document.

A

Ampere.
AC or ac
Alternating Current.

ANSI:

American National Standards Institute.

AWG

American Wire Gauge.

CBP

Circuit Breaker Panel.
CSA
Canadian Standards Association.

DAS:

Disk Array Storage System. A RAID disk drawer, available in different models.

DAE:

Disk-Array Enclosure.
DC or dc:
Direct Current generated by the power supply.

device areas:

See media and disk device areas.

disk cage:

A metallic box which can host two or three disk carriers.
disk carrier:
A sled used to install hard disk drives into the system.

DPE:

Disk-Array Processor Enclosure.

drawer:

Each system or subsystem installed in a rack is a drawer. There are several types of drawers, such as CPU drawers, expansion drawers, DAS drawers.

ECMA:

European Computer Manufacturers Association.

EIA:

Electronic Industries Association.

EMI:

Electromagnetic Interference.
EPO:
Emergency Power Off.

ESD:
Electrostatic Discharge. An undesirable discharge of static electricity that can damage equipment and degrade electrical circuitry.

FAST-10 WIDE-16:

A standard SCSI interface, 16 bits, providing synchronous transfer rate of up to 10 MHz , with a data transfer speed of 20M bytes per second.
FAST-20 WIDE-16:
An enhanced standard SCSI interface, 16 bits, providing synchronous transfer rate of up to 20 MHz , with a data transfer speed of up to 40M bytes per second. It is also called ULTRA WIDE.

FC-AL

Fibre Channel Arbritrated Loop. Fibre channel stations arranged such that messages pass from one to the next in a ring.

GUI:

Graphical User Interface.

high availability:

A particular configuration which shares resources between two CPU drawers, so that if one CPU drawer fails, the other one takes the control without interrupting any activity.

hot swapping:

The operation of removing a faulty hard disk drive and replacing it with a good one without interrupting the system activity.
IEC:
International Electrotechnical Commission.
I/O:
Input/Output.

ISA:

Industry Standard Architecture.

JBOD

Just a Bunch Of Disks.
JDA
Just Disk Array.
MCA
Micro Channel Architecture.
media and disk device areas:
Areas which house the media drives and the hard disk drives.

NEMA

National Electrical Manufacturers Association.

PCI:

Peripheral Component Interface. A bus architecture that supports high-performance peripherals such as graphic boards, multimedia video cards and high-speed network adapters.

PDB:

Power Distribution Box.

PDU:

Power Distribution Unit. The rack power distribution system for the installed drawers.

Power Supply:

The CPU drawer is equipped with one power supply module. See Redundant Power Supply.

rack:

The metallic structure which houses the drawers and provides them power through its Power Distribution Unit (PDU).

RAID:

Redundant Array of Inexpensive Disks. A method of combining hard disk drives into one logical storage unit which offers disk-fault tolerance.

Redundant Power Supply:

The power supply composed by two modules in redundant configuration. They are the same and work in parallel. In case of a power supply fault, the second module takes over automatically providing the needed power.

RS-232:

An EIA interface standard that defines the physical, electronic and functional characteristics of an interface line.

RS-485:
A line for drawer interconnection. It is used for the connection of expansion drawers.

RSF:
Remote Services Facilities.

SCSI:

Small Computer System Interface. An input and output bus that provides a standard interface used to connect peripherals such as disks or tape drives in a daisy chain.

SID:

System Identifier.

SYSID:

System Identification.

system console:

A console, usually equipped with a keyboard and display screen, that is used by an operator to control and communicate with a system.

U:

Unit of measure. Racks and drawers are measured in Units. Each U corresponds to 44.45 mm (1.75 inches).

ULTRA SCSI:

See Fast-20 WIDE-16.

UPS:

Uninterruptible Power Supply. A device which provides continuous power and sustains the system it is connected to, in case of outages.

V:
Volt.
VCC:
Voltage Continuous Current.

VCCI:

Voluntary Control Council for Interference.

Index

Numbers

1 Pair of Nodes \& 1 SSA Cabinet, Site Interconnections (Figure), 10-5
1 Pair of Nodes \& 2 SSA Cabinets, Site Interconnections (Figure), 10-6
1GB Ethernet Switch, (Figure), 9-3
36U Rack, 4-1
42U Rack, 4-1
A
AMDAS JBOD, Disk subsystem, 6-13
AMDAS JDA, Footprint, 6-14

B

BQ306, 8-2
C
Characteristics
CX200, 6-12
CX600, 6-11, 6-12
DAE 5000, 6-10
DAS 1300, 6-2
DAS 2300, 6-3
DAS 2900, 6-3
DAS 3200, 6-4
DAS 3500, 6-5
DAS 4500, 6-6
DAS 4700, 6-7
DAS 5300, 6-8
DAS 57x0, 6-9
NDAS CX200, 6-12
NDAS CX400, 6-12
NDAS CX600, 6-11
Check, Electrical Outlets, 1-4
Checklist, Reception / Unpacking Resources, 1-2
Circuit Protection, 1-4
Clearance Footprint
Cluster Console (Figure), 8-8
System Console (Figure), 8-3
Clearances, Escala EPC400, 2-6
Cluster Console, 8-6
Typical Configuration > 2-Nodes (Figure), 8-9, 8-10
Configuration
Typical, Cluster Console, 8-9
Typical, PowerConsole, 8-12
Configuration Rules (36U rack), Powercluster, 4-18
Configuration Rules (EPC1200), Powercluster, 3-10
Configuration Rules (EPC400), Powercluster, 2-9
Console, PL3200R and PL1600R, 5-44
Console Concentrator, 9-8
(Figure), 9-8

D

DAE, 6-2
DAS, 6-2
Disaster Recovery, 10-1
Disk Array Enclosure, 6-2
Disk Array Storage Systems, 6-2
Disk Subsystems
AMDAS JBOD, 6-13
Overview, 6-1
SSA 7133 Model 020, 6-15
DLT 4000, Specifications, 7-2
DLT 7000, Specifications, 7-3
E
Electrical, Circuit Protection, 1-4
Electrical Outlets
Checking, 1-4
Safety, 1-4
Environmental Requirements, 1-2
EPC1200, Example configuration, 3-16
EPC1200/1200A/2400/400, 3-1
EPC400, 2-1
Example configuration, 2-13
ESCALA 470A 10 EIA Unit Input/Output Drawer, specifications, 3-5
ESCALA EPC1200 \& 1200A Input/Output Rack, specifications, 3-4
ESCALA EPC1200 7 EIA Unit Input/Output Drawer, specifications, 3-6
ESCALA EPC1200/1200A Models, 3-2
ESCALA EPC1200A/2400 10 EIA Unit Input/Output
Drawer, specifications, 3-5
ESCALA EPC2400 Model, 3-2
ESCALA EPC400, Standards, 2-6
Escala EPC400, Clearances, 2-6
ESCALA EPC400 Series, 2-3
Escala PL1600R, Components, 5-3
Escala PL3200R, Components, 5-2
ESCALA RL470 \& 470A Input/Output Rack, specifications, 3-4
ESCALA RL470 EIA Unit Input/Output Drawer, specifications, 3-6
ESCALA RL470/470A Models, 3-2
Escala S Series, 8-11
Ethernet Hub, 9-6
(Figure), 9-6
Explora console, 8-6
Extender, Fibre-Optic, 6-16
External Peripherals, Ethernet Hub, 9-6

F

Fast Ethernet Switch, (Figure), 9-2
FC-AL Hub, 9-5
(Figure), 9-5
Fibre Channel, Use of, 10-1
Fibre-Optic Extender, 6-16
Footprints, DAS, 6-14
Future Expansion, 1-7

G

General Information, 1-2
Graphics Display, 8-5
Typical Configuration (Figure), 8-5

H

Hardware Management Console, 5-44
Heartbeat, 10-1
How to, Calculate Number of Power Cords Per Rack, 2-14

M

Micro modem, 9-6, 9-8, 9-10
Micro-Modem, 9-10
micro-modem, 10-1
Moving PL3200R and PL1600R, 5-4
Multiple Systems Installations, PL3200R and PL1600R, 5-36

N

Network External Peripherals
1GB Ethernet Switch 9300, 9-3
Console Concentrator, 9-8
Fast Ethernet Switch 3000, 9-2
FC-AL Hub, 9-5
Micro-Modem, 9-10
Nodes, Additional, EPC400-N, 2-1

0

Operator Consoles
Cluster Console (X-terminal), 8-6
Graphics Display, 8-5
PowerConsole, 8-11
System Console (BQ306), 8-2
Optical Fibre Extender, Use of, 10-1
Ordering Publications, viii
Overviews
Disk Subsystems, 6-1
Tape Subsystems, 7-1

P

Peripherals, External
EPC1200/1200A, 3-1
EPC400, 2-1
RL470/470A, 3-1
PL 3200R and PL1600R, System Movement, 5-4
PL3200R, PL1600R, Doors and Covers, 5-3
PL1600R, Specifications, 5-11
PL3200R, Specifications, 5-11
PL3200R and PL 1600R, Service Clearance, 5-38

PL3200R and PL1600R
Cooling Requirements, 5-40
HMC (Hardware Management Console), 5-44
Power cables, 5-4
Power Consumption, 5-20
Power source, 5-8
Raised-Floor Preparation, 5-25
Securing the Rack, 5-27
Unit Emergency Power Off, 5-23
Plan, Site Layout, 1-9
Planning for the future, 1-7
Power cables
Escala EPC1200, 1200A and 2400 Models, 3-9
Escala EPC400 Series, 2-7
Escala RL470 \& 470A Models, 3-9
PL3200R and PL1600R, 5-4
Power Connections
Cluster Console, 8-8
PowerConsole, 8-12
System Console, 8-3
Power Consumption
Drawer, 1-5
PL3200R and PL1600R, 5-20
Power Cords, DLT 4000, 7-2
Power Cords Per Rack, How to Calculate, 2-14
Power Distribution Unit, 2-14
Power Requirements
EPC1200, 3-16
EPC400, 2-14
Power source ckecking, 5-8
Powercluster
36U rack Configuration Rules, 4-18
EPC1200 Configuration Rules, 3-10
EPC400 Configuration Rules, 2-9
Powercluster Rack, Power Distribution, 2-14
PowerConsole, 8-11
Connected with a Dedicated Administration Network (Figure), 8-13
Connected without a Dedicated Administration
Network (Figure), 8-14
Powerconsole (Escala S Series), 8-11
Publications, Related, v

Q

Questar BQ306, 8-2

R

Rack Area Assignment
EPC1200 (Figure), 3-11
EPC400 (Figure), 2-10
Rack Configuration Rules
EPC1200 Policy, 3-10
EPC400 (table), 2-9
Rack Drawer Location
EPC1200 I/O rack, 3-12
EPC1200 rack, 3-12
EPC400 series, 2-11
T00 rack, 4-19
T42 rack, 4-31
Rack Drawer Power Consumption, 36U rack, 4-17
Rack Securing, PL3200R and PL1600R, 5-27

Redundant Power Supplies with Two Power Cords, 2-14
Related Publications, v
RL470/470A, 3-1
RS232 Lines, Use of, 10-1

S

Safety
Circuit Breaker, 32A, 1-4
Electrical Outlets, 1-4
Fire Protection, 1-2
Safety \& Regulatory Agency Compliance, 1-3
Service Clearance, PL3200R and PL1600R, 5-38
service clearance
DAE-only storage system, 6-10
DPE-based storage system, 6-9
Service inspection guide, B-1
Signal Connections
Cluster Console, 8-8
PowerConsole, 8-12
System Console, 8-3
Site Interconnection Configuration, Fibre Optic
Extenders (Figure), 10-3, 10-4
Site Interconnection Examples, 10-1
Site Interconnections, 10-1
Site Layout, 1-8
site preparation
Service Clearance, 5-38
Service Clearances, 2-6
standards, 2-6
Specifications
1GB Ethernet switch, 9-3
36U rack, 4-2
brocade switch, 9-4
Clusterconsole (X-terminal "Explora"), 8-6
CPU drawer
EPC610, 4-4
EPC810, 4-8
PL220R, 4-12
PL240R, 4-11
PL400R, 4-4
PL600R, 4-4
PL800R, 4-8
CS/2600 Console Concentrator, 9-8
D10 I/O drawer (4 U), 4-14
D20 I/O drawer (4 U), 4-15
DLT 4000, 7-2
DLT 7000, 7-3
drawer
PL420R, 4-6
PL820R, 4-10
EPC1200 7 EIA Unit Input/Output Drawer, 3-6
EPC1200A/2400 10 EIA Unit Input/Output Drawer, 3-5
ESCALA EPC1200 \& 1200A Input/Output Rack, 3-4
ESCALA EPC1200/1200A Models, 3-2
ESCALA EPC2400 Model, 3-2
ESCALA EPC400 Series, 2-3

ESCALA RL470 \& 470A Input/Output Rack, 3-4
ESCALA RL470/470A Models, 3-2
Ethernet Hub, 9-4, 9-6
Fast Ethernet switch, 9-2
Fibre Channel Arbrited Loop Hub, 9-5
Graphics Display, 8-5
I/O drawer (5 U), 4-13
I/O drawer D10, 4-14
I/O drawer D20, 4-15
PL1600R, 5-11
PL3200R, 5-11
PortServer Console Concentrator, 9-9
Powerconsole (Escala S Series), 8-11
RL470 EIA Unit Input/Output Drawer, 3-6
RL470A 10 EIA Unit Input/Output Drawer, 3-5
System console, 8-2
T00 rack, 4-2
VDAT Mammoth 8mm, 7-4
vixel 1000 hub, 9-7
SSA 7133 Model 020, Disk subsystem, 6-15
Standards
Cluster Console, 8-2, 8-6, 8-7
ESCALA EPC400, 2-6
Escala S Series, 8-14
Switch, 1GB Ethernet, 9-3
Switch, Fast Ethernet, 9-2
System Console, 8-2
Typical Configuration (Figure), 8-4
T
T00 Rack, 4-1
T42 Rack, 4-1
Tape Storage Systems, 7-2, 7-3, 7-4
Tape Subsystems, Overview, 7-1

U

Uninterruptible Power Supply, 2-14
Unit Emergency Power Off, PL3200R and PL1600R, 5-23
UPS, 2-14
URL, Site Preparation, 1-2
User Documents, v
v
VDAT Mammoth 8mm, Specifications, 7-4
Vixel 1000 hub, 9-7
(Figure), 9-7
w
Working Clearances
Cluster Console, 8-8
PowerConsole, 8-12
System Console, 8-3
X
X-terminal, Explora, 8-6

X-4 Escala - Site Preparation for Rack Systems

Technical publication remarks form

Title :
ESCALA EPC and PL Series Site Preparation Guide for Rack Systems

Reference $\mathbf{N}^{\circ}:$	86 Al 30PX 14	May 2003

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

\square
Your comments will be promptly investigated by qualified technical personnel and action will be taken as required. If you require a written reply, please include your complete mailing address below.

NAME : \qquad Date : \qquad
COMPANY : \qquad
ADDRESS : \qquad

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation $\mathrm{D}^{\text {ept. }}$
1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
Phone:
+33(0) 241737266
B.P. 20845

49008 ANGERS CEDEX 01 FRANCE

FAX:
E-Mail: +33 (0) 241737066 srv.Duplicopy@bull.net

CEDOC Reference \#	Designation	Qty
-- -- -. - ${ }^{\text {- }}$ - 1		
-- - - - - - [-_)		
-- $-\ldots-\ldots-1-{ }^{\text {a }}$		
- - - - - - ${ }^{\text {- }}$ - ${ }^{\text {a }}$		
-- $--\ldots-{ }^{\text {a }}$		
-- $-\ldots \ldots-{ }^{\text {a }}$		
-- $--\ldots-{ }^{\text {a }}$		
$\mathrm{l}_{-\ldots}$: The latest revision will	be provided if no revision number is given.	

NAME: \qquad Date: \qquad
COMPANY: \qquad
ADDRESS: \qquad

PHONE: \qquad FAX: \qquad
E-MAIL: \qquad

For Bull Subsidiaries:

Identification: \qquad

For Bull Affiliated Customers:

Customer Code: \qquad
For Bull Internal Customers:
Budgetary Section: \qquad
For Others: Please ask your Bull representative.

BULL CEDOC
357 AVENUE PATTON
B.P. 20845

49008 ANGERS CEDEX 01
FRANCE
REFERENCE
86 Al 30PX 14

Use the cut marks to get the labels.

\qquad

Escala EPC

 and PL SeriesSite Preparation
Guide for Rack Systems

86 A1 30PX 14

