Note

Before using this information and the product it supports, be sure to read the general information under Appendix B, “Notices” on page 379. Also read the general information under “Product Warranties and Notices” in the User’s Reference.

Second Edition (May 1996)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that IBM intends to announce such IBM products, programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM reseller or IBM marketing representative.

© Copyright International Business Machines Corporation 1995, 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
Contents

Safety Information .. v
Laser Compliance Statement vii

About This Book .. ix
How This Book is Organized ix
Notices Used in This Book xi
Related Publications xii

Welcome and Thank You xiii

Chapter 1. Introducing the PC Server 520 1
Features at a Glance 3
Controls and Status Indicators 4
Input/Output Connectors 6
Expansion Bays .. 8
Before You Begin 9
Moving the Server 10
Starting the Server 11
Using the CD-ROM Drive 16
Getting Help on the World Wide Web 18
IBM PC Server Startup Support 19

Chapter 2. Installing Software 21
Software Considerations 22
Installing an Operating System 22
Before You Begin 23
OS/2 and Novell NetWare Installation 24
OS/2 LAN Server 4.0 Fixpaks 25
SCO OpenServer Installation 25
Windows NT Installation 25
DOS Installation 26
All Other Installations 26
About ServerGuide 26
Starting the ServerGuide Main CD 27
Device Drivers 30
Network Adapter Device Drivers 31
Hardware Device Drivers 32
Installing the PeerMaster LAN Software 33
Installing PeerMaster Software for OS/2 34
Installing PeerMaster Software for Windows NT 35
Running RAID Subsystem Diagnostic Tests 118
Additional Disk-Array Tasks 119
 Backing Up Your Disk-Array Configuration 119
 Restoring the Disk-Array Configuration 120
Changing the Write Policy 120
Formatting Drives 123
Changing the RAID Parameters 124
Changing the ServeRAID Adapter Parameters 127
Using the Mini-Configuration Program 130
Viewing the Adapter Status 131
Viewing Configuration Information 132
Using Advanced Configuration Functions 132

Chapter 4. Configuring the PeerMaster Adapter 133
Choosing a Mode of Operation 134
 Traditional Adapter Mode 134
 VNET Switch Mode 135
 Configuration Examples 136
Using the PeerMaster Setup Utility Program 143
 Displaying the PeerMaster Adapter 144
 Guidelines for Assigning Slot Numbers 145
Running PeerMaster Diagnostic Programs 147
 Displaying PeerMaster PCI Configuration Registers 149
Attaching Network Cables to Your Adapter 151

Chapter 5. Installing Options 153
Before You Begin 154
Moving the Server 155
Electrical Safety 156
Handling Static-Sensitive Devices 157
Preparing to Install Options 158
Installing Memory-Module Kits 164
Removing Memory-Module Kits 170
Installing Adapters 175
 Considerations 176
 Installation Sequence 179
 Installation Procedure 180
Removing Adapters 187
Installing Internal Drives 192
 Considerations 195
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSI Drives</td>
<td>196</td>
</tr>
<tr>
<td>Preinstallation Steps (All Bays)</td>
<td>199</td>
</tr>
<tr>
<td>Installing a Drive in Bay B</td>
<td>202</td>
</tr>
<tr>
<td>Installing a Drive in Bank C</td>
<td>211</td>
</tr>
<tr>
<td>Installing a Drive in Bank D</td>
<td>216</td>
</tr>
<tr>
<td>Installing a Drive in Bank E</td>
<td>228</td>
</tr>
<tr>
<td>Removing Internal Drives</td>
<td>236</td>
</tr>
<tr>
<td>Removing a Drive from Bay B</td>
<td>237</td>
</tr>
<tr>
<td>Removing a Drive from Bank C, D, or E</td>
<td>240</td>
</tr>
<tr>
<td>Changing Jumper Settings</td>
<td>244</td>
</tr>
<tr>
<td>Installing a Microprocessor</td>
<td>250</td>
</tr>
<tr>
<td>Security Procedures</td>
<td>257</td>
</tr>
<tr>
<td>Security-Cover Option</td>
<td>258</td>
</tr>
<tr>
<td>Installing a U-Bolt</td>
<td>259</td>
</tr>
<tr>
<td>Completing the Installation</td>
<td>261</td>
</tr>
<tr>
<td>Connecting External Options</td>
<td>265</td>
</tr>
<tr>
<td>Adding a Hot-Swap Storage Expansion Enclosure</td>
<td>265</td>
</tr>
<tr>
<td>Connecting External SCSI Devices</td>
<td>265</td>
</tr>
<tr>
<td>Chapter 6. Configuring Your Server</td>
<td></td>
</tr>
<tr>
<td>Configuration Overview</td>
<td>274</td>
</tr>
<tr>
<td>Using the Setup Program</td>
<td>275</td>
</tr>
<tr>
<td>Changing Settings</td>
<td>275</td>
</tr>
<tr>
<td>Starting the Setup Program</td>
<td>276</td>
</tr>
<tr>
<td>Recording and Restoring Default Settings</td>
<td>277</td>
</tr>
<tr>
<td>Setting Passwords</td>
<td>277</td>
</tr>
<tr>
<td>Setting the Selectable Drive-Startup Sequence</td>
<td>281</td>
</tr>
<tr>
<td>Configuring EISA, ISA, and PCI Adapters</td>
<td>282</td>
</tr>
<tr>
<td>Configuring ISA or EISA Features and Options</td>
<td>283</td>
</tr>
<tr>
<td>Configuring PCI Features and Options</td>
<td>287</td>
</tr>
<tr>
<td>Configuring Memory</td>
<td>287</td>
</tr>
<tr>
<td>Using the EISA Configuration Diskette</td>
<td>289</td>
</tr>
<tr>
<td>Backing Up the EISA Configuration Diskette</td>
<td>289</td>
</tr>
<tr>
<td>Making Menu Selections</td>
<td>289</td>
</tr>
<tr>
<td>Recording EISA Configuration Settings</td>
<td>291</td>
</tr>
<tr>
<td>Starting the EISA Configuration Diskette</td>
<td>291</td>
</tr>
<tr>
<td>Using the Advanced Functions</td>
<td>292</td>
</tr>
<tr>
<td>Configuration Conflicts</td>
<td>293</td>
</tr>
<tr>
<td>Resolving Hardware Configuration Conflicts</td>
<td>294</td>
</tr>
<tr>
<td>Resolving Software Configuration Conflicts</td>
<td>295</td>
</tr>
</tbody>
</table>
Using the SCSISelect Utility Program 297
Starting the SCSISelect Utility Program 297
SCSISelect Utility Program Options 297

Chapter 7. Solving Problems 299
Getting Started .. 300
Overview of the Diagnostic Tools 300
 Power-On Self-Test (POST) 301
 POST Beep Codes 301
 Test Programs .. 301
 Error Messages ... 303
 Troubleshooting Charts 304
 Option Diskettes 304
About the Test Programs 305
 The Main Menu of the Diagnostic Diskette 306
 Program Navigation 307
 IntruderAlert .. 310
Starting the Test Programs 311
 Using the Module Tests 313
 Changing Selected Tests in Test Groups 314
 Creating Test Scripts 314
 Test Options .. 315
POST Error Message Table 318
SCSI Messages ... 323
ServeRAID Adapter Messages 324
 ServeRAID Adapter POST and Setup Messages 324
 ServeRAID Adapter Status and Error Messages 328
PeerMaster Adapter Screen Messages 330
 Diagnostic and Setup Error Messages 330
 Novell NetWare Load-Time Error Messages 334
 Novell NetWare Run-Time Messages 339
Beep Codes .. 342
Troubleshooting Charts 343
Checking the System for Damage 351
 After Dropping It 351
 After Spilling Liquid on It 352
Installing Additional Test Programs 353
Using the Utility Programs 356
 Formatting Diskettes 356
 Using the File Editor 356
Chapter 8. Getting Help, Service, and Information 359
Before You Call for Service ... 359
Using the HelpWare Support Family 360
 Using Electronic Support Services 360
 Getting Information by Fax 361
 Getting Help by Telephone 361
 Getting Help Around the World 362
Purchasing Additional HelpWare Services 363
 Using the World Wide Web 363
 Enhanced PC Support Line 363
900-Number Operating System and Hardware Support Line 364
 Network and Server Support Line 364
 Ordering Support Line Services 365
 Warranty and Repair Services 365
Obtaining IBM Operating System Updates 366
Ordering Publications .. 367

Appendix A. Server Records 369
 Recording the Server Serial Number 369
 Installed Device Records 370

Appendix B. Notices ... 379
 Trademarks .. 379

Index ... 381
DANGER:
Electrical current from power, telephone, and communication cables is hazardous. To avoid shock hazard, connect and disconnect cables as shown below when installing, moving or opening the covers of this product or attached devices. The power cord must be used with a properly grounded outlet.

To Connect

1. Turn everything OFF.
2. First, attach all cables to devices.¹
3. Attach signal cables to receptacles.
4. Attach power cord to outlet.
5. Turn device ON.

To Disconnect

1. Turn everything OFF.
2. First, remove power cord from outlet.²
3. Remove signal cables from receptacles.
4. Remove all cables from devices.

¹ In the U.K., by law, the telephone cable must be connected after the power cord.
² In the U.K., by law, the power cord must be disconnected after the telephone line cable.
DANGER:

Le courant électrique provenant des câbles d'alimentation, téléphoniques et de transmission peut présenter un danger. Pour éviter tout risque de choc électrique, connectez et déconnectez ces câbles comme indiqué ci-dessous lorsque vous installez ou déplacez ce matériel ou les unités connectées, ou que vous soulevez un carter.*

Pour connecter
- Mettez tout hors tension.
- Connectez d’abord tous les câbles sur les unités.
- Connectez les câbles de signaux sur les prises murales.
- Branchez le cordon d’alimentation sur la prise murale.
- Mettez l’unité sous tension.

Pour déconnecter
- Mettez tout hors tension.
- Débranchez d’abord le cordon d’alimentation de la prise murale.
- Déconnectez les câbles de signaux des prises murales.
- Déconnectez tous les câbles de unités.

Le cordon d’alimentation doit être branché sur un socle de prise de courant correctement mis à la terre.

Laser Compliance Statement

The PC Server 520 is a laser product. The drive has a label that identifies its classification. The label, located on the drive, is shown below.

<table>
<thead>
<tr>
<th>CLASS 1 LASER PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASER KLASSE 1</td>
</tr>
<tr>
<td>LUOKAN 1 LASERLAITE</td>
</tr>
<tr>
<td>KLASS 1 LASER APPARAT</td>
</tr>
<tr>
<td>APPAREIL À LASER DE CLASSE 1</td>
</tr>
<tr>
<td>EN 60825</td>
</tr>
</tbody>
</table>

The PC Server 520 is certified in the U.S. to conform to the requirements of the Department of Health and Human Services 21 Code of Federal Regulations (DHHS 21 CFR) Subchapter J for Class 1 laser products. Elsewhere, the drive is certified to conform to the requirements of EN 60825.

⚠️

CAUTION:
Do not open the drive; no user adjustments or serviceable parts are inside.

Class 1 laser products are not considered to be hazardous. The PC Server 520 has an internal Class 1 gallium-arsenide laser that is nominally 0.14 milliwatts at 765 to 815 nanometers wavelength.
About This Book
About This Book

This book provides the instructions for completing your installation; installing and removing server options; and configuring, modifying, and troubleshooting your server. This book also provides information to help you solve some of the simpler problems that might occur. If you have not yet set up your server, refer to the Setup sheet for instructions on unpacking and cabling the server. See Chapter 2, “Installing Software” on page 21 for details about installing an operating system and other software. Refer to the User’s Reference for more detailed information about the server’s features.

How This Book is Organized

Chapter 1, “Introducing the PC Server 520,” introduces and describes the PC Server 520. This chapter also includes an overview of the server’s features and components. In addition, this chapter contains instructions for starting the server and using the CD-ROM drive.

Chapter 2, “Installing Software,” describes factors that you might want to consider before installing hardware and software in your server. This chapter also provides instructions for completing your installation. This includes installing device drivers, installing an operating system using some of the programs that are provided on compact discs (CDs) in the IBM ServerGuide package, and installing the PeerMaster LAN software that is required for models that come with the PeerMaster adapter.

Chapter 3, “Configuring the Disk Array,” applies only to disk-array models. This chapter provides instructions for configuring models that come with a ServeRAID disk-array controller. These instructions include step-by-step procedures for the tasks necessary to configure, add, change, and delete one or more disk arrays. This chapter also contains information about the disk-array adapter configuration program, drive maintenance, and the RAID diagnostic program.

Chapter 4, “Configuring the PeerMaster Adapter,” contains instructions for configuring, cabling, and testing the PeerMaster adapter.
Chapter 5, “Installing Options,” contains step-by-step instructions for installing and removing hardware options, such as memory-module kits, adapters, and internal drives. Instructions for connecting external options are also included in this chapter.

Chapter 6, “Configuring Your Server,” contains instructions for configuring your server. This chapter also provides instructions for using various utility programs.

Chapter 7, “Solving Problems,” contains information to help you solve simple problems that you might encounter with your server. This chapter includes an overview of diagnostic tools, instructions for testing the server, lists of error messages, and troubleshooting charts. This chapter also contains information about checking the server for damage, and resolving configuration conflicts.

Chapter 8, “Getting Help, Service, and Information,” contains information to help you solve more complex problems that you might encounter with your server. This chapter provides instructions on how to obtain service and technical assistance for your PC Server 520 and other IBM products that you might plan to use. This chapter also contains information about other publications, products, warranties, and services that IBM offers. Also included are fax numbers, toll-free telephone numbers, and access information for electronic bulletin boards, online services, and the World Wide Web.

Appendix A, “Server Records,” provides a section to record and update important information about your server, including the serial numbers, key number, and device records (which contain configuration information). Whenever you add options to your server, be sure to update the information in this appendix.

If you find a term that you are not familiar with, refer to the glossary located in the back of the User’s Reference.
Notices Used in This Book

This book contains information notices that relate to a specific topic. The notice definitions are as follows:

- **Notes**
 These notices provide important tips, guidance, or advice.

- **Attention**
 These notices indicate possible damage to programs, devices, or data. An attention notice appears just before the instruction or situation in which damage could occur.

- **Caution**
 These notices indicate situations that potentially can be hazardous to you. A caution notice appears just before the instruction or situation that could be hazardous.
Welcome and Thank You

Related Publications
In addition to this handbook, the following publications are included with your server:

- The Setup sheet contains the instructions for unpacking, setting up, and cabling your server.
- The User's Reference contains detailed information about the advanced features of your server.
- The PC Server Service and Support pamphlet contains important information and phone numbers to call for different types of support for your PC Server.
- Included with the ServerGuide package is a publication that describes the advantages of the IBM ServerGuide.

The IBM PC Servers Hardware Maintenance Manual Supplement is available for purchase. It contains error codes, advanced diagnostic procedures, and a parts catalog for most models. This manual is intended for trained service technicians. (Diagnostic Diskettes are not included.)

For a complete listing of publications available in the U.S. and Puerto Rico, call 1-800-426-7282. In Canada, call Customer Assistance at 1-800-465-1234. In all other countries, contact the IBM support organization that services your area, your IBM marketing representative, or your IBM reseller.
Welcome and Thank You

We appreciate your decision to purchase an IBM PC Server 520. Your server offers speed, power, expandability, and compatibility with various existing Network Operating Systems and application programs.

The publications that come with your server are: the Setup sheet, this User’s Handbook, the User’s Reference, and a PC Server Service and Support pamphlet. The Setup sheet contains instructions to help you set up your server. See “How This Book is Organized” on page ix for a complete description of the User’s Handbook. The User’s Reference contains detailed information about the advanced features of your server. The PC Server Service and Support pamphlet contains important information and phone numbers to call for different types of support for your server. Review these publications thoroughly before you install an operating system, additional software, or optional hardware in your server.

Also included is the ServerGuide package, which contains several CDs. These CDs contain operating systems, application programs, utility programs, online documentation, and more. Refer to the ServerGuide documentation that comes with ServerGuide for more information.

The PC Server 520 also comes with IBM PC Server Startup Support, which provides coverage during the first 90 days after installation. IBM PC Server Startup Support is available to PC Server customers at no additional charge. This comprehensive program enhances IBM’s support for setup, installation, configuration, and problem determination. It provides assistance for popular network operating systems and network adapters from IBM and other vendors. If you need assistance, call IBM at 1-800-772-2227 in the U.S., or call IBM at 1-800-565-3344 in Canada. In all other countries, contact the IBM support organization that services your area, your IBM marketing representative, or your IBM reseller.
Welcome and Thank You
Chapter 1. Introducing the PC Server 520

Your IBM PC Server 520 has an Intel Pentium microprocessor and symmetric multiprocessing (SMP) upgradability, along with a peripheral component interconnect (PCI) advanced bus, large data-storage capacity, and improved system expandability. The server supports SCSI devices with an IBM PC Server SCSI-2 Fast/Wide PCI Adapter or IBM PC ServeRAID Adapter, depending on the model. This server is specifically designed by IBM to handle heavy file-server applications or moderate database applications in today's network environment. The super video graphics array (SVGA) controller provides compatibility with a wide range of various existing Network Operating Systems and application programs.

As an open-architecture, industry-standard system, the PC Server 520 has been tested for compatibility with numerous IBM and non-IBM adapters and devices. Rugged dependability is achieved by incorporating various quality standards and design points, such as stringent IBM systems assurance testing, and a cooling design called FloThru. FloThru cooling helps keep internal electronic components of the PC Server 520 running cool to improve reliability and accommodate the full configurations necessary in today's LAN environments.

Refer to the Setup sheet for instructions for setting up your server. Be sure to read the publications that come with the IBM ServerGuide package before you set up your server.

This chapter contains an overview of the server features and components. In addition, this chapter describes how to start the server and use the CD-ROM drive.

See Chapter 2, “Installing Software” on page 21 for details about installing an operating system and other software. In addition, this book describes how to configure and use the server, and how to install and remove options. The troubleshooting information will help you solve some of the simpler problems that might occur. Appendix A, “Server Records” on page 369 provides a section for you to record all the important information about your server.
Refer to the User’s Reference for more detailed information about the server features. That book also includes a glossary, warranty information, and other important notices.

This chapter contains:
Features at a Glance .. 3
Controls and Status Indicators 4
Input/Output Connectors .. 6
Expansion Bays ... 8
Before You Begin ... 9
Moving the Server ... 10
Starting the Server .. 11
Using the CD-ROM Drive ... 16
Getting Help on the World Wide Web 18
IBM PC Server Startup Support 19
Features at a Glance

The features in your server vary according to the model that you purchased. The following is a summary of the features that are available with the PC Server 520.

<table>
<thead>
<tr>
<th>Microprocessor</th>
<th>Keyboard and Auxiliary Device</th>
<th>SCSI-2 Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Intel Pentium microprocessor with 16 KB of internal cache; clock rate varies by model</td>
<td>• 101-key keyboard</td>
<td>• IBM PC Server SCSI-2 Fast/Wide PCI Adapter on non-disk-array models</td>
</tr>
<tr>
<td>• A processor upgrade, which adds another Pentium microprocessor, is available for symmetric multiprocessing</td>
<td>• Mouse</td>
<td>• IBM PC ServeRAID Adapter on disk-array models</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cache Memory</th>
<th>Expansion Bays and Slots</th>
<th>Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 512 KB of level-2 cache</td>
<td>• Two PCI slots</td>
<td>• 434 watt with automatic range voltage selection (115–230 V ac)</td>
</tr>
<tr>
<td></td>
<td>• Error Correcting Code on SIMM (EOS), 70 ns</td>
<td>• Built-in overload and surge protection</td>
</tr>
<tr>
<td></td>
<td>• 32 MB minimum, expandable to 256 MB</td>
<td>• Power supply upgrade expansion option</td>
</tr>
<tr>
<td></td>
<td>• Amount of memory is model dependent</td>
<td>– 220 watt automatic range voltage selection add-on</td>
</tr>
<tr>
<td></td>
<td>• Eight 72-pin, single-inline memory-module (SIMM) sockets</td>
<td>– Built-in overload and surge protection</td>
</tr>
<tr>
<td>Diskette Drives</td>
<td>Video</td>
<td>• IBM PC Server 780W Redundant Power Option</td>
</tr>
<tr>
<td>• Standard: One 3.5-inch, 1.44 MB</td>
<td>• Super video graphics array (SVGA) connector</td>
<td>– 780 watt with automatic range voltage selection (115–230 V ac)</td>
</tr>
<tr>
<td>• Optional (internal):</td>
<td>• Compatibility:</td>
<td>– Built-in overload and surge protection</td>
</tr>
<tr>
<td>– 3.5-inch, 1.44 MB</td>
<td>– Video graphics array (VGA)</td>
<td></td>
</tr>
<tr>
<td>– 3.5-inch, 2.88 MB</td>
<td>– Color graphics adapter (CGA)</td>
<td></td>
</tr>
<tr>
<td>– 5.25-inch, 1.2 MB</td>
<td>– Multicolor graphics array (MCGA)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hard Disk Drives</th>
<th>Security Features</th>
<th>Upgradable Power-On Self-Test (POST) and Basic Input/Output System (BIOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Number of drives and drive capacities are model dependent</td>
<td>• Bolt-down capability</td>
<td>• Upgradable electrically erasable programmable read-only memory (EEPROM) on the system board</td>
</tr>
<tr>
<td>• Can support up to 20 hard disk drives, 18 of them hot-swappable</td>
<td>• Door lock</td>
<td>• POST/BIOS upgrades (when available)</td>
</tr>
<tr>
<td>CD-ROM Drive</td>
<td>• Selectable drive-startup</td>
<td></td>
</tr>
<tr>
<td>• Standard: SCSI-2 CD-ROM</td>
<td>• Security cover (optional)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Supervisor and User passwords</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrated Functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LED usability support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Video connector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Two serial connectors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Parallel connector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Auxiliary device connector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Keyboard connector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Battery-backed clock and calendar</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 1. Introducing the PC Server 520
Controls and Status Indicators

Your server front panel contains one switch: *Power On/Off*. This switch is illustrated below and is described in the following list.

Your server has two light-emitting diode (LED) indicators that show the system status. The amber indicators highlight the alert conditions; the green indicators confirm that the server is operating properly. The two indicators on your server are *Power OK* and *Hard Disk Drive Activity*. These indicators are illustrated below and are described in the following list.
Power On/Off: Use this switch to turn your server on and off.

To turn on the server, press the Power On/Off switch momentarily, and the Power OK indicator will illuminate in approximately one second. The Power On/Off switch is located under a transparent cover on the right side of the front of the server. Before you can turn the server on or off, you must lift this cover to reach the switch.

To avoid accidentally pressing the Power On/Off switch after you have turned the server on or off, return the transparent cover to its original position.

Power OK: This green indicator shows that the server power supply is working properly.

Hard Disk Drive Activity: This amber indicator shows the server hard disk drive activity.
Input/Output Connectors

Notes:

1. Some models come with a preinstalled ServeRAID adapter in a PCI expansion slot.
2. Some models come with a preinstalled PeerMaster adapter in a PCI expansion slot.
3. For pin assignments and other details about these connectors, see the User’s Reference.
Input/Output Connectors

- **Power Connector**: The power cable connects here.

- **Mouse Connector**: The mouse cable connects here. This port also is called an auxiliary-device or pointing-device port.

- **Keyboard Connector**: The keyboard cable connects here.

- **Parallel Connector**: One 25-pin parallel connector is provided. This is where the signal cable for a parallel printer or other parallel device connects to your server.

- **SCSI Connector Knockout**: This knockout allows access to the internal connector on a second SCSI-2 adapter.

- **Serial Connectors**: Two 9-pin serial connectors (A and B) are provided. The serial signal cable for a modem or other serial device usually connects here. If you are using a 25-pin signal cable, you need a 9-pin-to-25-pin adapter cable.

- **SCSI-2 Connector**: For non-disk-array models, external small computer system interface (SCSI) devices attach here. For disk-array models, the SCSI-2 connector is located in the bottom PCI adapter slot.

- **Monitor Connector**: The monitor signal cable attaches to the connector on this adapter.
Expansion Bays

Your server comes with one 3.5-inch, 1.44 MB diskette drive, a SCSI CD-ROM drive, and a removable CD-ROM storage compartment. (1 MB equals approximately 1,000,000 bytes.) The number of preinstalled hard disk drives in your server varies according to the model that you purchased.

CD-ROM Drive: All models come with a SCSI-2 CD-ROM drive.

Diskette Drive: The 3.5-inch, 1.44 MB diskette drive uses 1 MB and 2 MB diskettes.

Open Bays: Your server has a special design that gives you the flexibility to use up to 18 hot-swap, 3.5-inch hard disk drives. There is additional open space in the top left bay for two more diskette drives or an additional SCSI drive. For installation instructions and information on the types of drives that you can install in each bay, see Chapter 5, “Installing Options” on page 153.
Before You Begin

Hard Disk Drive: All models come with a SCSI-2 adapter to support SCSI drives. The number, capacity, and location of the hard disk drives vary, depending on your model.

Note: For the latest information on available options, contact your IBM reseller or IBM marketing representative.

Before You Begin

- Make sure you have an adequate number of properly grounded electrical outlets for your server, monitor, and any other options that you intend to install.
- Place your server in a location that is dry. Rain or spilled liquids might damage your server.
- Leave about 51 mm (2 in.) of space around the front and rear of your server to allow the server's cooling system to work properly.
- Have a supply of 1 MB and 2 MB, 3.5-inch diskettes available. You will need these diskettes later, when you install your operating system and backup your configuration and all important data.
- Have small, flat-blade and Phillips screwdrivers available.

If you have not already done so, perform the following tasks. Instructions are located on a separate sheet that comes with your server.

- Unpack your server.
- Remove the packing material.
- If you are not installing any optional hardware at this time, connect the cables and power cord.

After you complete these tasks, return here for further instructions.
Moving the Server

⚠️

CAUTION:
Due to the weight of the server, do not attempt to lift the server by yourself. To avoid possible injury while moving or lifting the server, ask another person to help you.

When the server is in the normal upright position, move it by lifting up on the handle and rolling it forward or backward as shown. (A roller is built into the rear of the server base.)
Starting the Server

1. Turn on your monitor and adjust the Brightness and Contrast controls to the approximate midpoint.

 You can readjust these controls and the monitor location for personal viewing comfort after you turn on your server.

 ![Monitor and keyboard setup images]

 Note: The locations of the Power Switch and the Brightness and Contrast controls on your monitor might be different from those shown above.

2. Adjust the keyboard feet and position the keyboard for personal typing comfort.
Starting the Server

3. Locate the keys; then, unlock and open the door (turn the key 90 degrees to the left).
Starting the Server

4. If the diskette drive contains packing material or a diskette, remove it from the drive.

5. If the server is turned on, turn it off.

 Note: The Power On/Off switch is located under a transparent cover on the right side of the server. You must lift this transparent cover to reach the Power On/Off switch.

6. If you installed any external devices, such as printers, plotters, or modems, turn them on now.
Starting the Server

7. Turn on the server.

To turn on the server, press the Power On/Off switch momentarily, and the Power OK indicator will illuminate. The *power-on self-test (POST)* begins.
8. Check your monitor. The screen displays the IBM logo and a number that represents the amount of available server memory. The server beeps once to indicate that it is working properly.

Notes:

- If you hear more than one beep, or no beep, check to see if an error message appears. If an error message appears, or if your screen is blank, see Chapter 7, “Solving Problems” on page 299.

- If your server stops running during testing or normal operation, call for service. Describe the problem to the service technician.

- If no operating system is installed, a code of 1300 appears on the screen. Before you install an operating system, be sure to start the ServerGuide Main compact disc (CD) and review the README file in the Start Here section. See “About ServerGuide” on page 26 for additional information and instructions.
Using the CD-ROM Drive

A SCSI-2 CD-ROM drive is a standard feature on all PC Server 520 models. To use the CD-ROM drive:

1. Have the main CD ready.

2. Press the CD-ROM tray-release button. The CD-ROM tray will extend out approximately 25 mm (1 in.) from the server. Pull the tray straight out until it stops.

Note: If the CD-ROM tray does not extend out, insert the end of a paper clip into the manual tray-release opening and gently pull the tray open.
3. Locate the tabs in the corners of the tray.

4. With the label information facing right, center and hold the ServerGuide Main CD on the tray as shown.

5. Insert a fingertip or a small, blunt object such as the tip of a pen into the depression on each tab; then, slide the tabs over the CD.

6. Push the CD-ROM tray back into the server.

7. Insert the ServerGuide License Diskette into the diskette drive.

8. Press the Ctrl+Alt+Del key sequence to restart the server.
Getting Help on the World Wide Web

The ServerGuide logo screen appears, followed by a language-selection screen.

9. Select a language; the Main Menu appears.

10. Select **Start Here** and review the information.

 The README file in the **Start Here** section of the ServerGuide Main CD contains important information about ServerGuide, the operating systems, and device drivers. Be sure to review the README file before you install your operating system.

Getting Help on the World Wide Web

- Current updates to device drivers, flash BIOS, and other code.
- Certification and compatibility information about Network Operating Systems (NOS) and Operating Systems (OS).
- A listing of products that have been tested for compatibility with IBM PC Server.

For additional information, service, or assistance, see Chapter 8, “Getting Help, Service, and Information” on page 359.
IBM PC Server Startup Support

The IBM PC Server Startup Support program provides comprehensive telephone assistance 24 hours a day, 7 days a week, during the first 90 days after installation of your server, at no additional charge.

IBM gives you direct access to trained specialists who can help you set up, install, and configure your server.*

Help is available for IBM and non-IBM network operating systems, network interface adapters, and other optional peripherals. To receive a list of the network products supported by the IBM PC Server Startup Support program, call the IBM PC Company Automated Fax System at 1-800-426-3395 in the U.S., or call 1-800-465-3299 in Canada, and ask for document number 16125. For more information about this program, or for help with the installation of your server:

- In the U.S., call IBM at 1-800-772-2227
- In Canada, call IBM at 1-800-565-3344
- In all other countries, contact the IBM support organization that services your area, your IBM marketing representative, or your IBM reseller.

*Response time might vary depending on the number and nature of calls received.

*Note: For additional information, service, or assistance, see Chapter 8, “Getting Help, Service, and Information” on page 359.
Before you install software in your server, you must determine the software, hardware, and operating system requirements for your operating environment. Because some models come with special adapters, you might need to use the configuration programs on an adapter’s configuration diskette, such as the ServeRAID Configuration diskette, before you install an operating system and other software.

This chapter describes the factors that you might want to consider before selecting and installing an operating system and other software in your server. This chapter also describes operating system installation. You can install an operating system through ServerGuide or a separately purchased, off-the-shelf operating system.

This chapter also includes instructions for configuring the IBM Ethernet Quad PeerMaster PCI Server Adapter that comes in some models. Finally, this chapter contains a comprehensive checklist for completing the installation.

At this time, you should have unpacked your server and attached cables to it. (Refer to the Setup sheet for instructions.) Be sure to read the publications that come with the IBM ServerGuide package before you set up your server. That chapter also includes instructions for using the CD-ROM drive.

Note: If you need service or assistance, see Chapter 8, “Getting Help, Service, and Information” on page 359.

This chapter contains:
Software Considerations .. 22
Installing an Operating System 22
Before You Begin ... 23
OS/2 and Novell NetWare Installation 24
OS/2 LAN Server 4.0 Fixpaks 25
SCO OpenServer Installation 25
Windows NT Installation .. 25
DOS Installation .. 26
All Other Installations .. 26
About ServerGuide ... 26
Starting the ServerGuide Main CD 27
Installing an Operating System

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Drivers</td>
<td>30</td>
</tr>
<tr>
<td>Network Adapter Device Drivers</td>
<td>31</td>
</tr>
<tr>
<td>Hardware Device Drivers</td>
<td>32</td>
</tr>
<tr>
<td>Installing the PeerMaster LAN Software</td>
<td>33</td>
</tr>
<tr>
<td>Installing PeerMaster Software for OS/2</td>
<td>34</td>
</tr>
<tr>
<td>Installing PeerMaster Software for Windows NT</td>
<td>35</td>
</tr>
<tr>
<td>Installing PeerMaster Software for Novell NetWare</td>
<td>36</td>
</tr>
<tr>
<td>Installing Device Drivers for SCO Open Server</td>
<td>36</td>
</tr>
<tr>
<td>Using NetFinity with Your PeerMaster Adapter</td>
<td>61</td>
</tr>
<tr>
<td>Arranging Your Workspace</td>
<td>69</td>
</tr>
<tr>
<td>Comfort</td>
<td>69</td>
</tr>
<tr>
<td>Glare and Lighting</td>
<td>70</td>
</tr>
<tr>
<td>Air Circulation</td>
<td>70</td>
</tr>
<tr>
<td>Electrical Outlets and Cable Lengths</td>
<td>71</td>
</tr>
<tr>
<td>Installation Checklist</td>
<td>72</td>
</tr>
</tbody>
</table>
Software Considerations

IBM and other manufacturers of operating systems, network programs, and application programs periodically make software updates available. These updates provide enhancements and corrections. To ensure that the software that you install functions properly, contact the manufacturers to obtain the most current updates.

If you intend to install an IBM operating system or network programs, such as OS/2 for SMP or OS/2 LAN Server, you can obtain the most current software updates from the IBM OS/2 Technical Support Center. These software updates are called ServicePaks or corrective-service diskettes (CSDs). In the U.S., you can call the IBM OS/2 Technical Support Center at 1-800-992-4777.

For the latest information about hardware device drivers and SMP operating systems supported by your PC Server 520:

- In the U.S., call IBM at 1-800-772-2227.
- In Canada, call 1-800-565-3344.
- In all other countries, contact the IBM support organization that services your area, your IBM marketing representative, or your IBM reseller.

To install your system management device drivers, follow the instructions in the README file on the IBM PC Server Windows NT Support Diskette that comes with the server.

Installing an Operating System

The IBM PC Server 520 combines powerful microprocessor performance, large data-storage capacity, and system expandability, ensuring that your server adapts to handle ever-changing operating requirements. The operating system that you select allows you to optimize some of the features in your server. Your server offers dual-processor capability through a second processor socket, using SMP technology. You can maximize the benefits of this technology,
Installing an Operating System

provided that you have an SMP-capable operating system, such as one of the following, installed in your server:

- OS/2 for SMP
- Novell NetWare 4.1 for SMP
- Microsoft Windows NT

Some security features are operating system-dependent, which means that if you want to use them, you must install an operating system that supports them. To find out whether an operating system supports specific security features, see the documentation that comes with the operating system.

Before You Begin
You can install an operating system from ServerGuide or from separately purchased diskettes or CDs.

- For all disk-array models, a ServeRAID Configuration diskette is included. Before you install an operating system on a disk-array model, use the configuration programs on the ServeRAID Configuration diskette to view or change the existing disk-array configuration. See Chapter 3, “Configuring the Disk Array” on page 75 for detailed instructions; then, return here.

- Before you install an operating system on a system with a PeerMaster adapter, use the configuration programs on the PeerMaster Adapter Option Diskette to view or change the existing configuration. Refer to Chapter 4, “Configuring the PeerMaster Adapter” on page 133 for detailed instructions; then, return here.

- If you have not already installed your options, do so now, before you install your operating system. Installing your options now enables ServerGuide to install the necessary device drivers during the operating-system installation process. See Chapter 5, “Installing Options” on page 153 for step-by-step instructions; then, return here. Some options might require device drivers that are not available on ServerGuide. In this case, follow the installation instructions that come with the option; then, return here.
Installing an Operating System

• If you are installing an operating system from the ServerGuide CD, select Start Here and follow the instructions on the screen; then, go to “Installation Checklist” on page 72.

• If you are installing your own operating system:
 1. Review “Software Considerations” on page 22 and “Installing an Operating System” on page 22; then, return here.
 2. Follow the installation instructions that come with your operating system; then, go to “Installation Checklist” on page 72.

The following operating systems require special considerations.

• OS/2
• Novell NetWare
• SCO OpenServer 5.0 (UNIX operating system)
• Windows NT

These considerations are discussed in the following sections.

OS/2 and Novell NetWare Installation
For installation instructions for OS/2 or Novell NetWare, refer to the README files in the Start Here section of the ServerGuide Main CD.

If you have a disk-array model, refer to the README file on the ServeRAID diskettes for installation instructions.

If you have an OS/2 2.11 SMP license and you want to install OS/2 2.11 SMP on your PC Server 520 without using ServerGuide, call IBM HelpWare at one of the following numbers and request authorized program analysis report (APAR) II08627.

• In the U.S. and Puerto Rico, call 1-800-772-2227.
• In Canada, call 1-800-565-3344.
• In all other countries, contact your IBM reseller or IBM marketing representative.
You must provide your OS/2 license information. The HelpWare group will ship you a CD and installation diskettes.

OS/2 LAN Server 4.0 Fixpaks
There are several Fixpaks available for OS/2 LAN Server 4.0. These Fixpaks are updated periodically to provide optimum support of OS/2 LAN Server 4.0 functions across a wide range of hardware configurations. To receive these updates in the U.S., call the IBM OS/2 Technical Support Center at 1-800-992-4777. In all other countries, contact the IBM support organization that services your area, your IBM marketing representative, or your IBM reseller.

SCO OpenServer Installation
If you are installing Santa Cruz Operation (SCO) OpenServer 5.0 in a disk-array model, you must have 3 GB for an HPFS partition. You must obtain an additional device driver, *ips*. The Boot-Time Loadable Driver is required for the ServeRAID Administration and Monitoring program in your PC Server 520.

If you are installing an SCO operating system, you might need updated device drivers for full compatibility with the latest hardware used in IBM servers. Refer to the **Start Here** section on the ServerGuide Main CD for information on how to obtain the latest device drivers that are available from SCO. To install an SCO operating system, follow the installation instructions that come with the SCO operating system.

Windows NT Installation
For installation instructions for Windows NT, refer to the README files on the diskette that comes with your operating system and on the ServeRAID diskette that comes with your server.

If you have a disk-array model, and more than one logical drive is present in a single drive configuration, and you intend to install Windows NT, install DOS on the first logical drive. Then, install Windows NT.
Starting ServerGuide

For installation instructions for Windows NT Version 3.5 or later, refer to the README file on the ServeRAID Configuration diskette that comes with your server.

DOS Installation
If you are installing DOS, refer to the README files on the ServeRAID Configuration diskette.

All Other Installations
If you are installing other operating systems, such as UnixWare, use the installation instructions that come with the operating system.

About ServerGuide
It is important that you read and understand the following information, whether you choose to install an operating system that is available in the ServerGuide package or you choose to install your own operating system.

Note: The IBM ServerGuide package contains various operating-system update programs, some of which are designed specifically for the IBM PC Server 520. Some of these updates might not be provided in existing, off-the-shelf versions of the operating systems. For this reason, if you intend to use one or more of the operating systems that are provided in the ServerGuide package, you should use ServerGuide for the installation.

You can install an operating system from ServerGuide, or you can install your own operating system and still use many of the features that are available on ServerGuide. (For example, you can install NetFinity, which is a LAN systems-management program; run demonstration programs; use the performance-tuning feature; and do much more.) Take the time now to read the information that comes with the ServerGuide package; then, return here.

The ServerGuide CDs contain SCSI and VGA device drivers that will be installed automatically if you install one of the operating systems from the ServerGuide CD package. However, if you choose to install SVGA applications or your own operating system, you will
need to install the SCSI device drivers and the SVGA device drivers. These device drivers are on the diskettes that come with the server. Refer to the README files on the diskettes for installation instructions.

For additional considerations regarding device drivers and operating systems, be sure to read “Software Considerations” on page 22, “Installing an Operating System” on page 22, and “Device Drivers” on page 30.

Starting the ServerGuide Main CD
One of the easiest and most efficient ways to install an operating system and take advantage of a wide variety of the latest software for the network environment is to use ServerGuide.

To start the ServerGuide Main CD:
1. If you have not already done so, turn on the server (see “Starting the Server” on page 11).
2. Locate the ServerGuide CD package and diskettes.
3. Have the main CD ready.
4. Press the CD-ROM tray-release button. The CD-ROM tray will extend out approximately 25 mm (1 in.) from the server. Pull the tray straight out until it stops.

Note: If the CD-ROM tray does not extend out, insert the end of a paper clip into the manual tray-release opening and gently pull the tray open.
Device Drivers

5. Locate the tabs in the corners of the tray.

6. With the label information facing right, center and hold the ServerGuide Main CD on the tray as shown.

7. Insert a fingertip or a small, blunt object such as the tip of a pen into the depression on each tab; then, slide the tabs over the CD.

8. Push the CD-ROM tray back into the server.

9. Insert the ServerGuide License Diskette into the diskette drive.
10. Press the Ctrl+Alt+Del key sequence to restart the server.

 The ServerGuide logo screen appears, followed by a language-selection screen.

11. Select a language; the Main Menu appears.

12. Select Start Here and review the information.

 The README files in the Start Here section of the ServerGuide Main CD contain important information about ServerGuide, operating systems, and device drivers. Be sure to review the README files before you install your operating system.

 Note: After using ServerGuide, verify that the date and time are correct. Update these values if necessary.

Device Drivers

Device drivers are programs designed to support a specific type of hardware device. They provide instructions that enable the computer to interact with the device, or to take advantage of a device's special feature. Not all devices require device drivers. However, the RAID adapter and the PeerMaster adapter require the installation of device drivers.

If you have a non-disk-array model, your IBM PC Server SCSI-2 Fast/Wide PCI Adapter Support Package contains device-driver files that must be installed when you use OS/2, Novell NetWare, Windows NT, and SCO UNIX. If you have a disk-array model, your ServeRAID Device Driver/Administration and Monitoring diskette contains device-driver files that must be installed when you use OS/2, Novell NetWare, Windows NT, and SCO UNIX.

 Note: See the README file in the IBM PC Server SCSI-2 Fast/Wide PCI Adapter Support Package or on the Device Driver/Administration and Monitoring diskette that comes with your server for detailed instructions.
Device Drivers

Network Adapter Device Drivers
If you are using OS/2 LAN Server and you want to install a
network adapter in your PC Server 520 that does not appear as a
selectable choice in the ServerGuide window box, use the following
instructions:

1. Use the information and instructions provided with the
 ServerGuide package to install OS/2 and OS/2 LAN Server.

 Note: If there are other products provided on ServerGuide that
 you want to install, install them now.

2. When the list of network adapters appears in the window box,
 select **None**.

 Note: The IBM Ethernet extended industry-standard
 architecture (EISA) Adapter and the IBM 16/4 Busmaster
 EISA Adapter, which appear on the ServerGuide device
driver installation menus, are not supported in the IBM
 PC Server 520. However, the IBM PC Server 520 does
 support the IBM Auto LANStreamer PCI Adapter, which
 is a replacement product.

3. When the installation has completed, restart the server.

4. Press **Enter** to bypass the BIND error messages.

 Note: If you installed NetFinity, a *driver could not be found*
 message might appear. Select **OK** to continue.

5. After the operating system loads, access MPTS (for OS/2 LAN
 Server 4.0) or LAPS (for OS/2 LAN Server 3.0) and configure
 your server with the appropriate network adapter device driver.

 Note:

 - MPTS = Multiple Protocol Transport Services
 - LAPS = LAN Adapter Protocol Support

6. Go to the operating system prompt, then type:

 `COPY E:\GO4.CMD C:`

7. Press **Enter**.
8. At the operating system prompt, type:

 COPY E:\RESTART2.CMD C:\

9. Press **Enter**.

10. Perform a Shutdown of your server.

11. Restart your server. This will enable OS/2 LAN Server to install with the device driver configuration that you selected in step 5 on page 31.

 Note: All of the products that you selected during the initial installation will be reinstalled.

Hardware Device Drivers

For the latest information about hardware device drivers for the IBM PC Server 520, OS/2 for SMP 2.11, and OS/2 LAN Server 4.0:

- In the U.S. and Puerto Rico, call IBM at 1-800-772-2227
- In Canada, call IBM at 1-800-565-3344
- In all other countries, contact the IBM support organization that services your area, your IBM marketing representative, or your IBM reseller.

Note: In the United States and Canada, service is available toll-free, 24 hours a day, 7 days a week.
Installing PeerMaster LAN Software

Installing the PeerMaster LAN Software

Some PC Server 520 models come with an IBM Ethernet Quad PeerMaster PCI Server Adapter (hereafter referred to as the PeerMaster adapter) installed as a standard feature. This section contains instructions for installing the PeerMaster LAN software provided on the IBM PeerMaster Server Adapter Option Diskette (hereafter referred to as the PeerMaster Option Diskette) that comes with your server.

Before installing the LAN software, be sure your PeerMaster adapter is configured, functional, and properly cabled to your network. (For more information, see Chapter 4, “Configuring the PeerMaster Adapter” on page 133.)

Note: You must install your network operating system before you can install the PeerMaster LAN software.

To install and configure the PeerMaster LAN software:

<table>
<thead>
<tr>
<th>If you have:</th>
<th>Go to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM OS/2 LAN Server Version 3x or Version 4x</td>
<td>“Installing PeerMaster Software for OS/2.”</td>
</tr>
<tr>
<td>Novell NetWare Version 3.1x or Version 4.x</td>
<td>“Installing PeerMaster Software for Novell NetWare” on page 36.</td>
</tr>
</tbody>
</table>

For the latest version of the PeerMaster adapter diskette image file, check the IBM bulletin board service (BBS), the IBM Personal Computer Web site, or the IBM Personal Computer FTP site. Search on the keyword **PeerMaster** to locate the file. Compare the file date to your diskette date, to determine the latest version level.

The IBM BBS telephone number is: (919) 517-0001
The IBM Personal Computer Web site URL address is: http://www.pc.ibm.com/
The IBM Personal Computer FTP site address is: ftp.pc.ibm.com
Installing PeerMaster LAN Software

Use “anonymous” as the user name and your e-mail address as the password.

Installing PeerMaster Software for OS/2
Before continuing, be sure you have properly completed the hardware installation of your PeerMaster adapter.

The installation instructions and device drivers for IBM OS/2 LAN Server Version 3x or 4x are provided on the The PeerMaster Server Adapter Option Diskette that comes with your PeerMaster adapter. The files are located in the OS2 directory.

The OS2 directory includes:

A:\OS2\NDIS.TXT
(where A: is the primary drive where OS2 is installed)

The NDIS.TXT file contains installation instructions for the OS/2 LAN Server device driver. This file also contains all the files in the OS/2 and NETFINITY/OS2 directories.

Be sure to print and read the NDIS.TXT file before you begin this portion of the installation.

If you have the IBM NetFinity Services for OS/2 installed on your server, or if you install these services later:

1. Follow the instructions in the NDIS.TXT file on the PeerMaster Server Adapter Option Diskette for installing the PeerMaster LAN software for OS/2 server.

2. Then, continue with “Using NetFinity with Your PeerMaster Adapter” on page 61.
Installing PeerMaster LAN Software

Installing PeerMaster Software for Windows NT
Before continuing, be sure you have properly completed the hardware installation of your PeerMaster adapters.

The installation instructions and device drivers for Microsoft Windows NT Version 3.5x are provided on the PeerMaster Server Adapter Option Diskette that comes with your PeerMaster adapter. These files are located in the NT directory.

The NT directory includes:

A:\NT\README.TXT
(where A: is the primary drive)

The README.TXT file contains installation instructions for the PeerMaster Program files for Microsoft Windows. This file also contains a description of all the files in the NT directory.

Be sure to print the README.TXT file before you begin this portion of the installation.
Installing PeerMaster LAN Software

Installing PeerMaster Software for Novell NetWare
Before continuing, be sure you have completed the hardware installation and configuration of your PeerMaster adapter.

This section contains instructions for installing and configuring the Novell NetWare LAN software. For more information about Novell NetWare, refer to the documentation that comes with the software.

Installing Device Drivers for SCO Open Server
Before continuing, be sure you have properly completed the hardware installation of your PeerMaster adapter.

An adapter diskette image file containing a link layer interface (LLI) driver is available for the SCO Open Server Enterprise Release 3.x operating system. Search the IBM BBS or the IBM Personal Computer Web site for the keyword PeerMaster to locate the file. The file is compressed in the Z format. It can be downloaded to a DOS or OS/2 system and written to a DOS diskette, or downloaded to a UNIX system. Copy the file to the server hard disk and expand it using the UNIX UNCOMPRESS command. Use the UNIX DD command to create a UNIX diskette containing the drivers. For detailed instructions, configuration information, and usage information, review the SCO driver README file.

Installation Overview
The following list provides the basic flow of the LAN software installation process. The details required to install the software begin with “Precautions, Limitations, and Guidelines” on page 38.

Note: The software supplied with the PeerMaster adapter enables multiple physical LAN segments to be registered with Novell NetWare as a single VNET.

1. Review “Precautions, Limitations, and Guidelines” on page 38 for specific Novell NetWare information.

2. Copy the LAN software onto your server hard disk. Install the files for the PeerMaster adapter onto the DOS partition of your server by copying them from the PeerMaster Server Adapter Option Diskette. “Installing Network Device Drivers” on page 39 guides you through this process.
Installing PeerMaster LAN Software

3. Start the server and activate the Novell NetWare operating system at this time. “Starting Novell NetWare” on page 39 guides you through this process.

4. Load the PeerMaster adapter device drivers. Two device drivers are provided for the PeerMaster adapter. MXPCI4BT.LAN is the LAN device driver for the PeerMaster adapter. This device driver enables the PeerMaster adapter to perform traditional network functions. The other device driver, VNET.LAN, is the virtual network device driver. This device driver enables the PeerMaster adapter to operate in VNET Switch mode. “Loading the Network Device Drivers” on page 40 and “Sample AUTOEXEC.NCF Files” on page 53 guide you through this process.

5. Update the Novell NetWare system files. The PeerMaster adapter is shipped with the latest versions of several Novell NetWare loadable module (NLM) files. These NLM files are required for the proper operation of the PeerMaster adapter under various versions of Novell NetWare. Copy these files directly onto the Novell NetWare partition of your server. “Updating Novell NetWare System Files” on page 46 guides you through this process.

6. Modify the AUTOEXEC.NCF file, if desired. Update your server startup configuration files to enable automatic loading of your newly installed PeerMaster adapter. “Loading the Network Device Drivers” on page 40 and “Sample AUTOEXEC.NCF Files” on page 53 guide you through this process.
Installing PeerMaster LAN Software

Precautions, Limitations, and Guidelines
Review this section before you begin the installation and configuration of the Novell NetWare device drivers.

- All ports within a VNET must be configured to the same frame type.

- To support multiple frame types, you can load VNET.LAN multiple times. When this is done, each instance of VNET.LAN must be bound to a different network number and include the identical grouping of the PeerMaster adapters.

- You must configure a single PeerMaster adapter to operate exclusively either as a VNET switch or as a traditional adapter. Both modes cannot be supported simultaneously by a single PeerMaster adapter.

- Frame types loaded for VNET.LAN must be loaded for MXPCI4BT.LAN. Examples of frame types include the IEEE 802.2 and 802.3 format as well as the Ethernet II and Ethernet SNAP.

- A newly loaded instance of VNET.LAN assumes control of all currently active ports on each PeerMaster adapter included in the VNET. A port is considered active after MXPCI4BT.LAN is successfully loaded with the slot parameter value equal to the number for that port.

- To include previously inactive ports in an existing VNET, it is necessary to unload VNET.LAN, activate additional ports, and then reload VNET.LAN. Thus, it is best to activate all ports of a PeerMaster adapter before loading VNET.LAN.
Installing PeerMaster LAN Software

Installing Network Device Drivers
To install the network device drivers, create a subdirectory using the DOS command. In the following examples we are using the subdirectory name NETWARE.

1. Insert the PeerMaster Server Adapter Option Diskette into an available diskette drive and change to the Novell NetWare device driver directory, for example:

   ```
   CD A:\NETWARE
   ```

2. Create a subdirectory on a DOS partition of your server hard disk, for example:

   ```
   C:\NETWARE
   ```

3. Copy the contents of the device driver directory on the PeerMaster Server Adapter Option Diskette to the target directory, for example:

   ```
   COPY A:\NETWARE\.* C:\NETWARE\.*
   ```

 The directory on the PeerMaster Server Adapter Option Diskette contains the open data-link interface (ODI) device drivers for your PeerMaster adapter, the latest versions of various Novell NetWare NLM files, and several sample AUTOEXEC.NCF files.

Starting Novell NetWare
To start Novell NetWare:

1. Start your server and enter the command to start the Novell NetWare server software. If your server is running Novell NetWare Version 3.11, manually load the system file, LSLENH.NLM.

2. Load the file from the DOS drive and directory into where the device drivers from the PeerMaster Server Adapter Option Diskette were copied, for example:

   ```
   :LOAD C:\PATH\LSLENH
   ```

 (where C: is the primary drive and PATH is the directory)

 The power-on self-test (POST) results are displayed at device driver load time. POST failures typically indicate an installation or
Installing PeerMaster LAN Software

hardware problem with the PeerMaster adapter. For more information on POST errors, see “PeerMaster Adapter Screen Messages” on page 330.

Loading the Network Device Drivers
Your PeerMaster adapter comes with two network device drivers:

- MXPCI4BT.LAN: This is the base device driver for using your PeerMaster adapter. Once loaded and bound to a protocol, this device driver enables your PeerMaster adapter to deliver the functions associated with traditional network adapters.

- VNET.LAN: This device driver enables several ports to be bound to a protocol, such as internetwork packet exchange (IPX), as a single VNET. VNETs enable PeerMaster adapters to provide high-performance Ethernet switching functions transparently under Novell NetWare.

It is necessary to understand pseudo slot numbers to load PeerMaster device drivers. Traditional Novell NetWare device drivers use expansion-slot numbers to associate specific LAN segments with device-driver instances. PeerMaster adapters, however, provide multiple LAN segments per expansion slot. For this reason, pseudo slot numbers are used to uniquely identify each of the four ports on a PeerMaster adapter. Pseudo slot numbers are two-digit, decimal numbers, \(xy \), where \(x \) is the unique BIOS or Flash slot number assigned to the target PeerMaster adapter and \(y \) is the PeerMaster adapter port number being configured. For example, a pseudo slot number of 23 represents port 3 of the PeerMaster adapter configured as slot number 2.

Most Significant Digit = Slot Number
(Slot 1, 2, 3, ..., 8)

The configured slot number is the number that you assigned to the PeerMaster adapter. See “Using the PeerMaster Setup Utility Program” on page 143 for more information.

Least Significant Digit = Port Number
(Port 1, 2, 3, 4)
Installing PeerMaster LAN Software

The Port Number refers to one of the four Ethernet ports on the PeerMaster adapter.

You can specify unique configuration information for each instance of the device driver by entering keywords on the command line. The following sections provide descriptions of the keywords that each device driver supports.

Keywords Supported Only by MXPCI4BT.LAN

- **SLOT**
 This keyword is used to specify the port associated with the device driver instance being loaded. Slot values are expressed as pseudo slot numbers. The following example illustrates the use of the SLOT keyword.

 SLOT=SLOT21

- **RXCOUNT**
 This keyword is used to specify the amount of resources allocated for reception from the PeerMaster adapter. For more information on this keyword, see “Adjusting Transmit and Receive Resources” on page 59.

Keywords Supported Only by VNET.LAN

- **in**, where n can be any number 1 through 8.
 This keyword is used to indicate that the PeerMaster adapter configured as slot n is to be included in the VNET.

Keywords Supported by Both MXPCI4BT.LAN and VNET.LAN

- **NAME**
 This keyword is used to associate a unique name with a device-driver name for each instance as it is loaded. The device-driver name can be used later to uniquely bind the device driver instance to a protocol. For more information on this parameter, refer to the documentation that comes with your version of Novell NetWare. The following example illustrates the use of the NAME keyword.

 NAME=SLOT21
Installing PeerMaster LAN Software

FRAME This keyword is used to load a frame type for the
device driver instance being loaded. For more
information on this parameter, refer to the
documentation that comes with your version of Novell
NetWare. The following example illustrates the use of
the FRAME keyword.

```
FRAME=ETHERNET_802.2
```

NODE This keyword is used to override the factory-provided
MAC address present on your PeerMaster adapter.
When specified for MXPCI4BT.LAN, this keyword
overrides the factory-provided address. When
specified for VNET.LAN, this keyword overrides both
factory-provided and MXPCI4BT.LAN-specified node
addresses. The specified address must not be a group
address. The following example illustrates the use of
the NODE keyword.

```
NODE=00000123456
```

AGE This keyword is used to adjust the length of the aging
timeout used by the device driver and microcode to
purge unused entries from the address learning table
used by the packet switching function. For more
information on this keyword, see “Adjusting the Aging
Timer” on page 58.

TXCOUNT This keyword is used to specify the amount of
resources allocated for transmission to the PeerMaster
adapter. For more information on this keyword, see
“Adjusting Transmit and Receive Resources” on
page 59.
Installing PeerMaster LAN Software

Loading Procedure for PeerMaster Adapter Device Drivers

The manner in which the PeerMaster adapter device drivers are loaded and configured defines the operational characteristics of the PeerMaster adapter. You must take special care to properly load and configure the device drivers.

This section provides three examples of the load process. The first example illustrates the device driver loading procedure to configure a PeerMaster adapter to operate in the traditional adapter mode. The second example illustrates the procedure to configure a PeerMaster adapter to operate in the VNET switch mode. The third example illustrates the procedure to configure multiple PeerMaster adapters to operate in a combined traditional adapter and VNET switch mode.

Loading Procedure for Traditional Adapter Mode

Each PeerMaster port must be registered as a separate network segment to operate as a traditional network adapter. In this mode, the protocol treats each PeerMaster port as a separate PeerMaster adapter.

When loading the device drivers, use pseudo slot numbers in place of physical slot numbers. In all other respects, load device drivers for PeerMaster adapters in the same manner as device drivers for traditional, single-port adapters. If the SLOT keyword is not used on a load command, the device driver presents a list of available pseudo slot numbers. Pseudo slot numbers that have already been used will not be included. The following example is a typical load command, assuming the device drivers are in the C:\NETWARE directory.

:LOAD C:\NETWARE\MXPCI4BT.LAN SLOT=21

This command will cause Novell NetWare to load the device driver for port 1 of the PeerMaster adapter that is configured as slot number 2.

For each PeerMaster adapter, the base driver MXPCI4BT.LAN can issue a maximum of four load commands per frame type. Novell NetWare loads the default frame type for each device driver instance unless the FRAME keyword is used to request a specific
frame type. The PeerMaster adapter comes configured with four unique Ethernet MAC addresses. Thus, you do not need to use the NODE keyword to create unique addresses for each port. You can, however, override the factory-provided MAC address using the NODE keyword.

Each time the load command is issued, Novell NetWare creates a unique instance of the LAN device driver. You can use the NAME keyword to bind a unique name to each instance of the device driver. You can use this unique name with each device driver when binding a specific instance of the device driver network protocol. The following example illustrates use of the NAME keyword:

```bash
:LOAD C:|PATH|MXPCI4BT.LAN SLOT=21 NAME=SLOT21
:LOAD C:|PATH|MXPCI4BT.LAN SLOT=22 NAME=SLOT22
:LOAD C:|PATH|MXPCI4BT.LAN SLOT=23 NAME=SLOT23
:LOAD C:|PATH|MXPCI4BT.LAN SLOT=24 NAME=SLOT24
```

(where C: is the primary drive and PATH is the directory)

These commands cause Novell NetWare to load one instance of the LAN device driver for each port of the PeerMaster adapter that is configured as slot number 2. The NAME keyword associates each device driver instance with a unique name (such as slot21, slot22, and so forth).

In the traditional adapter mode, you must bind each device driver instance to a network protocol using a unique network number. The unique device driver names established using the NAME keyword bind each device driver instance to a protocol. The following example illustrates the bind process:

```bash
:BIND IPX SLOT21 NET=21
:BIND IPX SLOT22 NET=22
:BIND IPX SLOT23 NET=23
:BIND IPX SLOT24 NET=24
```

When you issue the load command, the NAME keyword is optional. Alternatively, you can specify the actual device driver name (MXPCI4BT.LAN) in the bind command. The bind command presents you with the list of device driver instances to choose from if a specific instance is not specified. Unique device driver names
Installing PeerMaster LAN Software

enable the bind process to occur without manual intervention. You can automate the binding process by adding these statements to the AUTOEXEC.NCF file.

The process for loading multiple PeerMaster adapters is identical to the process for loading a single PeerMaster adapter. Load successive PeerMaster adapters in the same manner as the first, with the exception that the Most Significant Digit of the pseudo slot number is the expansion slot number of the adapter being loaded.

Loading Procedure for VNET Switch Mode
This section describes the loading procedure for VNET switch mode.

1. Load the PeerMaster adapter device driver once for each port, using the following commands.

 :LOAD C:\PATH\MXPCI4BT.LAN SLOT=21
 :LOAD C:\PATH\MXPCI4BT.LAN SLOT=22
 :LOAD C:\PATH\MXPCI4BT.LAN SLOT=23
 :LOAD C:\PATH\MXPCI4BT.LAN SLOT=24
 (where C: is the primary drive and PATH is the directory)

2. Load the VNET.LAN device driver using the following command.

 :LOAD C:\PATH\VNET.LAN
 (where C: is the primary drive and PATH is the directory)

3. Bind all active ports to the protocol using a common network number, such as:

 :BIND IPX VNET NET=2

You can load multiple instances of VNET.LAN to create multiple VNETs. The command line syntax for loading multiple VNETs is described in “Sample AUTOEXEC.NCF Files” on page 53.

Frame types, other than the default frame type, specified when loading MXPCI4BT.LAN must also be specified when loading VNET.LAN. The VNET.LAN load command will fail if the proper frame types are not specified. The following example shows how to create a VNET that supports multiple frame types.
Installing PeerMaster LAN Software

:LOAD C:\PATH\MXPCI4BT.LAN SLOT=21 FRAME=ETHERNET_II
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=22 FRAME=ETHERNET_II
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=23 FRAME=ETHERNET_II
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=24 FRAME=ETHERNET_II
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=21 FRAME=ETHERNET_8/zerodot2.2
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=22 FRAME=ETHERNET_8/zerodot2.2
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=23 FRAME=ETHERNET_8/zerodot2.2
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=24 FRAME=ETHERNET_8/zerodot2.2

:LOAD C:\PATH\VNET.LAN FRAME=ETHERNET_II NAME=VNET2
:LOAD C:\PATH\VNET.LAN FRAME=ETHERNET_8/zerodot2.2 NAME=VNET3
(where C: is the primary drive and PATH is the directory)

:BIND IPX VNET2 NET=2
:BIND IPX VNET2 NET=3

Loading Combined VNETs and Traditional Networks
Various transmit and receive control blocks and buffers exist to support the bus-master interface between the PeerMaster adapter and the host-based device driver. The resources determine the number of transmit and receive packets that can be enqueued by the bus-master interface. Increase the number of these resources only if you have determined that packets are being lost due to lack of resources.

To determine if packets have been lost due to lack of resources, view the custom statistics using MONITOR.NLM. See “Custom Statistics for VNET.LAN” on page 48 for details. If you need to modify the count of these resources, see “Adjusting Transmit and Receive Resources” on page 59 for details.

Specific instructions on how to create combined networks are provided in “Sample AUTOEXEC.NCF Files” on page 53.

Updating Novell NetWare System Files
Your PeerMaster adapter comes with the latest versions of several Novell NetWare NLM files. These files include fixes required for the proper operation of your PeerMaster adapter under various versions of Novell NetWare. Copy these files directly into the Novell NetWare partition of your server. The following table indicates the system files to replace.
Installing PeerMaster LAN Software

<table>
<thead>
<tr>
<th>Filename</th>
<th>Novell NetWare 3.11</th>
<th>Novell NetWare 3.12</th>
<th>Novell NetWare 4.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONITOR.NLM</td>
<td>replace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSLENH.NLM</td>
<td>replace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSM.NLM</td>
<td></td>
<td>replace</td>
<td></td>
</tr>
<tr>
<td>MSM31X.NLM</td>
<td>replace</td>
<td>replace</td>
<td></td>
</tr>
<tr>
<td>ETHERTSM.NLM</td>
<td>replace</td>
<td>replace</td>
<td></td>
</tr>
<tr>
<td>PATCHMAN.NLM</td>
<td>replace</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To update the system files, do the following steps:

1. Insert the PeerMaster Server Adapter Option Diskette into the diskette drive of a workstation attached to your server.

2. Compare the file dates of the NLM files on your PeerMaster Server Adapter Option Diskette with the dates of the same files located in the SYS:\SYSTEM directory of your server. If the specified file does not already exist, or if it is an old version, replace the file with the newer version provided on the PeerMaster Server Adapter Option Diskette.

 Note: To copy a file, you might require supervisor access to your server. Some files might be restricted to read-only access. You must alter the attributes of such files to successfully overwrite them.

After you copy the system files to your server, you will no longer have to manually load system files from your DOS partition.

Unloading the Network Device Drivers
Using Novell NetWare, you can unload LAN device drivers after they are loaded and operational. When both MXPCI4BT.LAN and VNET.LAN are loaded, it is important to unload VNET.LAN first, then unload MXPCI4BT.LAN. When you unload a device driver, all ports controlled by that device driver will become unbound from the protocol stack. Specific named instances of the device driver may not be selectively unloaded.
Using Novell NetWare Monitor
The Novell NetWare MONITOR.NLM provides custom statistics for VNET.LAN and MXPCI4BT.LAN.

Custom Statistics for VNET.LAN You can display custom statistics for VNET.LAN using MONITOR.NLM. You can select a specific instance of VNET.LAN when multiple instances are loaded. A specific instance of VNET.LAN can be uniquely identified when multiple instances are loaded by two parameters: slot number and frame type. The following example shows how MONITOR.NLM prompts you to select among three instances of VNET.LAN.

VNET SLOT=4100 FRAME=ETHERNET_802.2
VNET SLOT=0C00 FRAME=ETHERNET_802.3
VNET SLOT=0C00 FRAME=ETHERNET_802.2

Note: Slot numbers do not correspond to either physical or pseudo slot numbers. This is because a single instance of VNET.LAN might include multiple physical PeerMaster adapters. For this reason, VNET.LAN slot numbers are represented as bit masks. To ensure that VNET.LAN slot numbers do not conflict with physical slot numbers, the least significant eight bits of the mask are always set to 0. The upper eight bits of the mask—bits 8 through 15—represent the physical slots 1 through 8. The following table shows the relationship between VNET.LAN slot numbers and physical slot numbers.

<table>
<thead>
<tr>
<th>VNET.LAN Slot</th>
<th>Slot Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>400</td>
<td>3</td>
</tr>
<tr>
<td>800</td>
<td>4</td>
</tr>
<tr>
<td>1000</td>
<td>5</td>
</tr>
<tr>
<td>2000</td>
<td>6</td>
</tr>
<tr>
<td>4000</td>
<td>7</td>
</tr>
<tr>
<td>8000</td>
<td>8</td>
</tr>
</tbody>
</table>

The VNET slot number of 4100 specifies an instance of VNET.LAN that includes the PeerMaster adapters configured to slots 7 and 1. The sample slot value of 0C00 specifies a VNET.LAN including the PeerMaster adapters configured to slots 3 and 4. Note that multiple instances of VNET.LAN include the PeerMaster adapters configured
Installing PeerMaster LAN Software

to slots 3 and 4. Instances of VNET.LAN with identical slot numbers can be uniquely selected by their frame type.

The following list provides the custom statistics presented by VNET.LAN for each PeerMaster adapter.

- **Learned Entry Discards**
 The number of Forwarding Database entries, which have been or would have been learned, but have been discarded due to a lack of space to store them in the Forwarding Database.

 If this counter is increasing, it indicates that the Forwarding Database is regularly becoming full. If this counter has a significant value but is not presently increasing, it indicates that the problem has been occurring but is not persistent.

- **Peer Packets Received**
 The number of packets sourced from other PeerMaster adapters that have been received from the system bus interface by this PeerMaster adapter.

 A packet received from the system bus interface is counted only if it is for a protocol being processed by the local switching function.

- **Peer Packets Transmitted**
 The number of packets that were sent to other PeerMaster adapters that have been transmitted to the system bus interface by this PeerMaster adapter.

 A packet transmitted on the system bus interface is counted only if it is for a protocol being processed by the local switching function.
Installing PeerMaster LAN Software

- **Peer Packets Discarded**
 The number of valid packets begun by other PeerMaster adapters and received from the system bus interface by this adapter that were discarded by the following process.

- **Port n Packets Received**
 The number of packets that have been received from its segment by port n (where $n = 1, 2, 3,$ or 4).
 A packet received by the port is counted only if it is for a protocol being processed by the local switching function.

- **Port n Packets Transmitted**
 The number of packets that have been transmitted to its segment by port n (where $n = 1, 2, 3,$ or 4).
 A packet transmitted to the port is counted only if it is for a protocol being processed by the local switching function.

- **Port n Packets Discarded**
 The number of valid packets received from its segment by port n (where $n = 1, 2, 3,$ or 4) that were discarded by the switch-forwarding process.
Installing PeerMaster LAN Software

Custom Statistics for MXPCI4BT.LAN
You can display custom statistics for MXPCI4BT.LAN using MONITOR.NLM. You can select a specific instance of MXPCI4BT.LAN when multiple instances are loaded by two parameters: slot number and packet type. The following example shows how MONITOR.NLM prompts you to select among multiple instances of MXPCI4BT.

MXPCI4BT SLOT=15 FRAME=ETHERNET_802.2
MXPCI4BT SLOT=16 FRAME=ETHERNET_802.2
MXPCI4BT SLOT=17 FRAME=ETHERNET_802.2
MXPCI4BT SLOT=18 FRAME=ETHERNET_802.2

Slot numbers appear in hex format. Slot numbers specified when loading the device driver, however, must be specified in decimal format. Therefore, you must translate slot numbers from hex to decimal when loading the device drivers. The preceding example represents the device drivers loaded with decimal slot numbers 21, 22, 23, and 24. This corresponds to ports 1, 2, 3, and 4 on the PeerMaster adapter installed in physical slot 2.

The following custom statistics are presented on a peer-port basis:

- Bytes Received: The total number of bytes that the port received from its segment.
- Unicast Packets Received: The total number of unicast packets that the port received from its segment.
- Multicast Packets Received: The total number of multicast packets that the port received from its segment.
- Broadcast Packets Received: The total number of broadcast packets that the port received from its segment.
- Discarded Received Packets: The total number of incoming packets that the port was unable to receive from its segment due to lack of resources.
- Receive Errors: The total number of damaged packets that the port received from its segment.
- Bytes Transmitted: The total number of bytes that the port transmitted to its segment.
Installing PeerMaster LAN Software

- **Unicast Packets Transmitted**: The total number of unicast packets that the port transmitted to its segment.
- **Multicast Packets Transmitted**: The total number of multicast packets that the port transmitted to its segment.
- **Broadcast Packets Transmitted**: The total number of broadcast packets that the port transmitted to its segment.
- **Discarded Transmitted Packets**: The total number of packets that the port was unable to transmit to its segment due to lack of resources.
- **Transmit Packets**: The total number of packets transmitted by the port to its segment.
- **Bus Transfer Errors**: The total number of transmission errors that occurred when data was transferred between other PeerMaster adapters, or between the host system and a PeerMaster adapter.
- **Host Transfer Errors**: The total number of transmission errors that occurred when data was transferred between the host system and a PeerMaster adapter.
- **Peer Receive Out of Resources**: The total number of packets that a PeerMaster adapter received from other PeerMaster adapters that were discarded due to insufficient resources to transmit the packet.
- **Peer Transmit Out of Resources**: The total number of packets sent to other PeerMaster adapters that were discarded due to insufficient resources on the adapters.
- **Adapter Receive Out of Resources**: The total number of packets sent to the host system that were discarded due to insufficient resources on the host system.
- **Adapter Transmit Out of Resources**: The total number of packets sourced by the host system that were discarded by a PeerMaster adapter due to insufficient resources to transmit the packets.
- **Microcode Version**: The revision level of the operational microcode on the PeerMaster adapter.
Installing PeerMaster LAN Software

Generic Statistics
When operating in VNET switch mode, PeerMaster adapters switch receive packets, as needed, to other LAN segments. This creates transmit and receive statistics that alter the traditional meaning of various generic statistic counters. The following generic counters have a unique interpretation in VNET switch mode operation.

- **Total Packets Sent**: The total number of packet transmissions requested by the host open data-link interface (ODI) device driver.
- **Total Packets Received**: The total number of packets received by the host ODI device driver.
- **Total Send OK Byte Count (Low or High)**: The total number of bytes sent by the host ODI device driver.
- **Total Receive OK Byte Count (Low or High)**: The total number of bytes received by the host ODI device driver.
- **All Ethernet-Specific Statistical Counters**: This includes all Ethernet-specific statistics, such as collisions, transmit status, and receive status. These counters contain the sum of all transmit and receive statistics resulting from both the host ODI device driver and VNET switch activities. Thus, it is possible to observe a value of zero for “Total Packets Sent” at the same time as a nonzero value for a transmit statistic, such as “Send OK Single Collision Count.” This combination of statistics indicates that no packets were transmitted through the host device driver, and that a nonzero number of VNET switch packets for the specified port experienced single collisions.

Sample AUTOEXEC.NCF Files
You must add the following command line to your AUTOEXEC.NCF file for Novell NetWare Version 3.11:

```
LOAD C:\PATH\LSLENH
```

(where $C:$ is the primary drive and $PATH$ is the directory)

The following AUTOEXEC.NCF files provide information for servers that have one, two, or three PeerMaster adapters installed.
Installing PeerMaster LAN Software

One PeerMaster Adapter: Adding the following commands to your AUTOEXEC.NCF file will cause your PeerMaster adapter to operate in the traditional adapter mode. In this mode, each port is bound to the protocol stack with a different network number. The PeerMaster adapter will not be able to switch packets between segments. Cross-segment traffic, if any, must be routed by a server microprocessor.

:LOAD C:\PATH\MXPCI4BT.LAN SLOT=21 NAME=SLOT21
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=22 NAME=SLOT22
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=23 NAME=SLOT23
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=24 NAME=SLOT24
(where C: is the primary drive and PATH is the directory)

:BIND IPX SLOT21 NET=21
:BIND IPX SLOT22 NET=22
:BIND IPX SLOT23 NET=23
:BIND IPX SLOT24 NET=24

Two PeerMaster Adapters: Adding the following commands to your AUTOEXEC.NCF file will cause your PeerMaster adapters to operate in the VNET switch mode. In this mode, all ports are bound to the protocol stack with the same network number. The PeerMaster adapter can switch packets between segments in this mode.

:LOAD C:\PATH\MXPCI4BT.LAN SLOT=11
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=12
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=13
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=14

:LOAD C:\PATH\MXPCI4BT.LAN SLOT=21
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=22
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=23
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=24
(where C: is the primary drive and PATH is the directory)
Installing PeerMaster LAN Software

Create a VNET that globally includes all ports (no slots are specifically included)

:LOAD C:\PATH\VNET.LAN
:BIND IPX VNET NET=2
(where C: is the primary drive and PATH is the directory)

Three PeerMaster Adapters - Example 1: Adding the following commands to your AUTOEXEC.NCF file will cause your PeerMaster adapter to form a combined network that is composed of an 8-segment VNET and four traditional networks. Cross-segment traffic within the 8 segments of the VNET is switched by the PeerMaster adapters. Cross-segment traffic from the VNET to a traditional network, or between traditional network segments, is routed internally by the server.

You can load the VNET.LAN device driver multiple times to create multiple VNETs. The keywords to include a specific PeerMaster adapter into a VNET are i1, i2, ... i8. The keyword i1 indicates a request to include the PeerMaster adapter in expansion slot 1 into the VNET being formed, i2 indicates the PeerMaster adapter in slot 2, and so forth.

The following example shows a server with three PeerMaster adapters installed in expansion slots 1, 2, and 3.

:LOAD C:\PATH\MXPCI4BT.LAN SLOT=11
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=12
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=13
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=14
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=21 NAME=SLOT21
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=22 NAME=SLOT22
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=23 NAME=SLOT23
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=24 NAME=SLOT24
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=31
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=32
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=33
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=34
(where C: is the primary drive and PATH is the directory)
Installing PeerMaster LAN Software

Create four traditional networks:

:BIND IPX SLOT21 NET=21
:BIND IPX SLOT22 NET=22
:BIND IPX SLOT23 NET=23
:BIND IPX SLOT24 NET=24

Create an eight-segment VNET consisting of adapters 1 and 3. Use the i1 and i3 keywords to include adapters 1 and 3 into the VNET:

:LOAD C:\VNET.LAN i1 i3
:BIND IPX VNET NET=2
(where C: is the primary drive)

In the preceding example, the PeerMaster adapters in slots 1 and 3 create an 8-segment VNET and are configured as network number 2. The PeerMaster adapter in slot 2 is loaded in the traditional manner, and the four ports are each bound to the protocol with a different network number. The protocol is configured to operate as if a total of five physical Ethernet segments exist. All ports controlled by VNET.LAN share the network number configured on the VNET.LAN bind command.

Three PeerMaster Adapters - Example 2: Adding the following commands to your AUTOEXEC.NCF will cause your PeerMaster adapter to form a combined network that is composed of two 4-segment VNETs and four traditional single segment networks. Cross-segment traffic within the two 4-segment VNETs is switched by the two PeerMaster adapters. Cross-segment traffic entering or leaving the VNET, or between one of the four traditional network segments, is routed internally by the server.

The load command for VNET.LAN device drivers provides keywords that configure the device driver to include specific PeerMaster adapters into the VNET. You can load the VNET.LAN device driver multiple times to create multiple VNETs. The keywords to include a specific PeerMaster adapter into a VNET are i1, i2, ... i8. The keyword i1 indicates a request to include the
Installing PeerMaster LAN Software

PeerMaster adapter in expansion slot 1 into the VNET being formed, i2 indicates the PeerMaster adapter in slot 2, and so forth. You can name each VNET separately, using the NAME keyword on the load command. Each VNET, when bound to a protocol, must be assigned a different network number. The following example shows the loading of multiple VNETs.

```
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=11 NAME=SLOT11
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=12 NAME=SLOT12
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=13 NAME=SLOT13
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=14 NAME=SLOT14

:BIND IPX SLOT11 NET=11
:BIND IPX SLOT12 NET=12
:BIND IPX SLOT13 NET=13
:BIND IPX SLOT14 NET=14

:LOAD C:\PATH\MXPCI4BT.LAN SLOT=21
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=22
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=23
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=24

:LOAD C:\PATH\MXPCI4BT.LAN SLOT=31
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=32
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=33
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=34
```

(where C: is the primary drive and PATH is the directory)

Create two named VNETs (VNET2 and VNET3) using the 'i_' keywords to include specific adapters into each VNET.

```
:LOAD C:\PATH\VNET.LAN i2 NAME=VNET2
:LOAD C:\PATH\VNET.LAN i3 NAME=VNET3
:BIND IPX VNET2 NET=2
:BIND IPX VNET3 NET=3
```

(where C: is the primary drive and PATH is the directory)
Installing PeerMaster LAN Software

Adjusting the Aging Timer
To support packet-switching functions, your PeerMaster adapter maintains an internal database containing packet-forwarding information. This information table can contain up to 4096 entries. To prevent the overflow of information in the table, unused entries are purged on a periodic basis. Aging timers define the length of this period, with a default value of 60 seconds. Entries not accessed during this time are purged from the database.

Once purged, a destination address is treated as an unlearned address. Packets to unlearned destinations are sent out to all ports to ensure delivery of the packets. When the PeerMaster adapter receives a response from the destination, the forwarding information is updated in the table and subsequent packets to that address are no longer forwarded to all ports.

Thus, a long duration for the aging timer reduces traffic caused by unlearned destinations. A duration that is too long, however, results in unused entries remaining in the table for long periods of time. This can result in an overflow of the table. New destinations, which cannot be stored in the data base, are treated as unlearned traffic.

Use the AGE keyword to customize the aging timer to meet the specific needs of your network. This keyword specifies aging-timer values as follows:

:LOAD C:\PATH\MXPCI4BT.LAN SLOT=11 AGE=N
:LOAD C:\PATH\VNET.LAN AGE=N
(where C: is the primary drive and PATH is the directory)

Where N specifies a duration in seconds. Thus, a value of 30 specifies a duration of 30 seconds.

Minimum value of N = 1
Maximum value of N = 65535
Default value of N = 60

Note that the keyword must be specified on the load command lines for MXPCI4BT.LAN and VNET.LAN. Use the same value on both command lines.
Installing PeerMaster LAN Software

Novell NetWare servers poll idle workstations every 15 minutes. Thus, an aging duration of 30 minutes (N=1800) would safely prevent unlearned traffic due to idle workstations. In very large networks, however, a duration of this length might result in the overflow of the forwarding database.

Adjusting Transmit and Receive Resources

Various transmit and receive control blocks and buffers exist to support the bus-master interface between the PeerMaster adapter and the host-based device driver. The number of transmit and receive packets that the interface can handle is controlled by the number of these resources. Increase the number of these resources only if you have determined that packets are being lost due to lack of resources.

The TXCOUNT keyword is used to allocate the amount of resources allocated to transmit packets to the adapter, as follows:

```
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=11 TXCOUNT=nnn
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=12
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=13
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=14
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=21 TXCOUNT=nnn
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=22
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=23
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=24
:LOAD C:\PATH\VNET.LAN TXCOUNT=nnn
```

(where C: is the primary drive and PATH is the directory)

The parameter nnn is a 3-digit decimal number that specifies the number of control blocks. The first port that is loaded on a PeerMaster adapter sets the TXCOUNT of resources for that adapter. The TXCOUNT keyword for subsequent loads of the same PeerMaster adapter is ignored by the device driver. The keyword must be specified on the load command line for MXPCI4BT.LAN and VNET.LAN. The value of TXCOUNT for VNET.LAN must equal the sum of all PeerMaster adapters included in the VNET. For instance, the value of TXCOUNT for VNET.LAN in the previous example is 40 if the values for slots 11 and 21 were each specified as 20.
Installing PeerMaster LAN Software

TXCOUNT values for MXPCI4BT.LAN
Minimum value of nnn = 2
Maximum value of nnn = 80
Default value of nnn = 10

TXCOUNT values for VNET.LAN
Minimum value of nnn = 10
Maximum value of nnn = 500
Default value of nnn = 20

The maximum TXCOUNT value of 80 is recommended. The actual maximum can vary as a function of the configured size of the PeerMaster adapter memory window and the amount of available memory on that PeerMaster adapter. If the requested number is greater than the device driver can provide, the default value will be used. Do not set TXCOUNT below the default value of 10.

The RXCOUNT keyword allows you to customize the number of receive control blocks and host buffers used to receive packets from the PeerMaster adapter, as follows:

:LOAD C:\PATH\MXPCI4BT.LAN SLOT=11 RXCOUNT=nn
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=12
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=13
:LOAD C:\PATH\MXPCI4BT.LAN SLOT=14
(where C: is the primary drive and PATH is the directory)

The parameter nn is a 2-digit decimal number that specifies the number of control blocks and buffers. The keyword must be specified on the load command line for MXPCI4BT.LAN. The first port loaded on a PeerMaster adapter sets the RXCOUNT of resources for that adapter. The RXCOUNT keyword for subsequent loads of the same PeerMaster adapter is ignored by the device driver.

Minimum value of nn = 2
Maximum value of nn = 80
Default value of nn = 10

The maximum value of 80 is recommended. The actual maximum might vary as a function of the configured size of the PeerMaster
Installing PeerMaster LAN Software

adapter memory window and the amount of available memory on that adapter. If the requested number is greater than the device driver can provide, the default value will be used. *Do not set RXCOUNT below the default value of 10.*

Note: The RXCOUNT keyword is not recognized by VNET.LAN.

Using NetFinity with Your PeerMaster Adapter

IBM NetFinity Services is a complete network system-management environment that combines monitoring and management features with intuitive graphical user interfaces. The monitoring services built into NetFinity enable LAN administrators to gather critical server, LAN, and PeerMaster adapter information from the NetFinity Manager system.

NetFinity provides the following services:

- **System Monitor**
 Charts and monitors the activity for a variety of server resources, including microprocessor, disks, and memory. Alerts can be sent to the Alert Manager when user-defined thresholds are exceeded. The following operational parameters of PeerMaster adapters and attached LAN segments are continually monitored and can be viewed over time as line graphs, as instantaneous real-time monitors, or as text monitors.
 - **LAN utilization**
 Displays the utilization of attached LAN segments in kilobytes-per-second (KBps) or packets-per-second (pps).
 - **LAN switch statistics**
 Displays the number of packets that the switching function forwarded to a specified port for transmission onto its segment. They also show the number of packets that were received by a port from its segment.
 - **Peer switch statistics**
 Displays the number of packets that the switching function sent to, or received from, other PeerMaster adapters across the system bus.
Installing PeerMaster LAN Software

• Alert Manager

 Receives and processes application-generated alerts. Alerts are generated when user-defined thresholds are exceeded. The types of alerts that NetFinity can provide are:

 – Logging
 – Notifying user
 – Forwarding alert to another system
 – Executing a program
 – Taking an application-defined action

 NetFinity sends simple network management protocol (SNMP) messages to management consoles in response to an alert.

• Remote System Manager

 Enables you to access and control all NetFinity Services installed on remote systems in your network.

• Remote Session

 Enables you to establish a fully active session with a remote system.

• Screen View

 Enables you to take a snapshot of any remote system current screen.

• System Information Tool

 Detects and reports detailed information on the hardware and software configuration of your system.
Installing PeerMaster LAN Software

Installing PeerMaster Software for NetFinity
Your PeerMaster Server Adapter Option Diskette comes with program files that enable you to monitor and manage your PeerMaster adapter using NetFinity Manager for OS/2, Services for OS/2, or NetFinity Services for NetWare.

Installing NetFinity Software for OS/2
Before installing these programs, make sure that the installation of NetFinity Services and the PeerMaster adapters is complete.

Note: A README file is present in the directory of \NETFINITY\OS2 for installation instructions.

The NetFinity program files on your PeerMaster Server Adapter Option Diskette support the following versions of IBM LAN Server:

- IBM LAN Server 3.x and 4.x

The following file contain the NetFinity program files which monitor the operation of your PeerMaster adapter and make information available to the NetFinity Manager.

- **MONMX4BT.DLL**

 This file is the NetFinity base monitor for MXPCI4BT.OS2 which is required for Quad-BT adapters.
Installing PeerMaster LAN Software

Assumptions:

1. Your PeerMaster adapters are installed and fully operational.

2. NetFinity Service or Manager for OS/2 that comes with NetFinity are installed and fully operational. You should be able to monitor the basic operations and configuration of your server at this time.

To install the PeerMaster Adapter NetFinity support program files, follow this procedure:

1. Insert the PeerMaster Server Adapter Option Diskette that comes with your PeerMaster adapter into the diskette drive of your OS/2 server.

2. Make the directory current where the NetFinity program files for your PeerMaster adapter is located current, for example,

\texttt{CD A:\NETFINITY\OS2}

3. Change the directory so that the NetFinity default directory and drive for installation is \texttt{C:\NETFIN}. Your installation may be different.

4. Copy the program files for your PeerMaster adapter into the NETFIN directory on the server, for example,

\texttt{COPY A:*.* C:*.*}

5. Restart the server to load the new program files.

Continue with “Monitoring Your PeerMaster Adapter” on page 66 to complete the installation.
Installing PeerMaster LAN Software

Installing PeerMaster Software for Novell NetWare

Before installing these programs, make sure that the installation of NetFinity Services and the PeerMaster adapters is completely installed.

Note: A README file is present in the directory of the diskette `\NETFINITY\NETWARE` for installation instructions.

The NetFinity program files on your PeerMaster Server Adapter Option Diskette support the following versions of Novell NetWare:

- Novell NetWare Version 3.1x and 4.x

The following two files are in the NETFINITY/NETWARE directory of the PeerMaster Server Adapter Option Diskette that comes with your adapter.

- **MONPC4BT.NLM**

 This file is the NetFinity base monitor for MXPCI4BT.NLM that monitors the traditional operation of the PeerMaster adapter and provides Ethernet information.

- **MONVNET.NLM**

 This file is the NetFinity base monitor for VNET.LAN that monitors the switching operations of the PeerMaster adapters.

Assumptions:

1. Your PeerMaster adapters are installed and fully operational.

2. The NetFinity Services and NetWare Server programs that come with NetFinity are installed and fully operational. You should be able to monitor the basic operations and configuration of your server at this time.
Installing PeerMaster LAN Software

To install the programs, follow this procedure:

1. Insert the PeerMaster Server Adapter Option Diskette that comes with your PeerMaster adapter into the diskette drive of the server.

2. Make the directory current where the NetFinity program files for your PeerMaster adapter is located, for example,

   ```
   CD A:\NETFINITY\NETWARE
   ```

3. Change the directory so that the NetFinity default directory and drive for installation is `C:\NETFINITY`. Your installation may be different.

4. Copy the program files for your PeerMaster adapter into the `NETFINITY` directory on the server, for example,

   ```
   COPY A:.* C:*.*
   ```

5. Restart the server to load the new program files.

You can now monitor the functions of your PeerMaster adapters from NetFinity Manager.

Continue with “Monitoring Your PeerMaster Adapter” on page 66 to complete the installation.

Monitoring Your PeerMaster Adapter

The PeerMaster monitor programs expand the capability of the NetFinity Services installed on your server. This section describes these services. For information about the basic operation of NetFinity, refer to the documentation that comes with it.

If you are installing a PeerMaster adapter in a server that is running Novell NetWare, you can only gather data from the server from an OS/2 or Windows system running NetFinity Manager. NetFinity Services is not available locally on systems running Novell NetWare.

Remote System Manager

The Remote System Manager on your NetFinity Manager system allows you to monitor the configuration and operation of remote systems that have been recognized by NetFinity. If your server has not been discovered by NetFinity, perform the following steps:
Installing PeerMaster LAN Software

1. From the Remote System Manager screen, select **Add Group**.
2. Select **Discover System**.

 After communication with your server is established, an icon (graphic symbol) will appear for your new server.
3. Double-click on the new icon.

After adding your server to the Remote System Manager, you may use all the services on your PeerMaster adapter.

To display hardware configuration information about the PeerMaster adapter installed in your server:

1. Select **System Information**.
2. Select **Adapter Information**.

The first time you use this feature, you will be prompted to insert the PeerMaster Server Adapter Option Diskette into the diskette drive of the system that has NetFinity manager installed. NetFinity will copy the appropriate files onto the local hard disk for future reference.

Additional System Monitors

The System Monitor Service allows you to monitor the statistical data gathered by the programs provided with your PeerMaster adapters. Expansion slot numbers are used to select a specific PeerMaster adapter to monitor. Pseudo slot numbers are used to select a specific port to monitor. Pseudo slot numbers are expressed as two-digit, decimal numbers, xy, where x is the expansion-slot location of the target PeerMaster adapter and y is the target port on the adapter. For example, a pseudo slot number of 23 represents port 3 of the PeerMaster adapter in slot 2.

The following monitor windows are currently provided:

- Slot xy LAN Utilization (pps)
- Slot xy LAN Utilization (KBps)
- Slot xy LAN Switch In (pps)
- Slot xy LAN Switch Out (pps)
- Slot x Peer Switch In (pps)
Arranging Your Workspace

- Slot x Peer Switch Out (pps)

LAN Utilization

In either VNET switch mode or traditional adapter mode, each active port on your PeerMaster adapter is attached to a separate LAN segment. The port receives data from the segment in a promiscuous mode (accepts all frames transmitted on the LAN segment). Each port can provide information on the actual use of the LAN segment onto which it is attached. This information is provided in kilobytes-per-second (KBps) and packets-per-second (pps).

LAN Switch In

When the switching function on this port is enabled, the monitor displays the number of packets that the switching function accepted from the port and then forwarded to another LAN segment.

LAN Switch Out

When the switching function on this port is enabled, the monitor displays the number of packets that the switching function forwarded to the specified port for transmission into its segment.

Peer Switch In

When the switching function on this port is enabled, the monitor displays the number of packets that the switching function received from other PeerMaster adapters and forwards them to local ports for transmission into their segments.

When the switching function on this port is enabled, the monitor displays the number of packets that the switching function received and forwards them to local ports for transmission onto segments controlled by other ports.
Arranging Your Workspace

To get the most from your server, arrange both the equipment you use and your work area to suit your needs and the kind of work you do. Your comfort is of foremost importance, but light sources, air circulation, and the location of electrical outlets also can affect the way you arrange your workspace.

Comfort
Although no single working position is ideal for everyone, here are a few guidelines to help you find a position that suits you best.

Sitting in the same position for a long time can cause fatigue. A good chair can make a big difference. The backrest and seat should adjust independently and provide good support. The seat should have a curved front to relieve pressure on the thighs. Adjust the seat so that your thighs are parallel to the floor and your feet are either flat on the floor or on a footrest.

When using the keyboard, keep your forearms parallel to the floor and your wrists in a neutral, comfortable position. Try to keep a light touch on the keyboard and your hands and fingers relaxed. You can change the angle of the keyboard for maximum comfort by adjusting the position of the keyboard feet.

Adjust the monitor so the top of the screen is at, or slightly below, eye level. Place the monitor at a comfortable viewing distance,
Arranging Your Workspace

usually 51 to 61 cm (20 to 24 in.), and position it so you can view it without having to twist your body. Also position other equipment you use regularly, such as the telephone or a mouse, within easy reach.

Glare and Lighting
Position the monitor to minimize glare and reflections from overhead lights, windows, and other light sources. Even reflected light from shiny surfaces can cause annoying reflections on your monitor screen. Place the monitor at right angles to windows and other light sources, when possible. Reduce overhead lighting, if necessary, by turning off lights or using lower wattage bulbs. If you install the monitor near a window, use curtains or blinds to block the sunlight. You might have to adjust the Brightness and Contrast controls on the monitor as the room lighting changes throughout the day.

Where it is impossible to avoid reflections or to adjust the lighting, an antiglare filter placed over the screen might be helpful. However, these filters might affect the clarity of the image on the screen; try them only after you have exhausted other methods of reducing glare.

Dust buildup compounds problems associated with glare. Remember to clean your monitor screen periodically using a soft cloth moistened with a nonabrasive liquid glass cleaner.

Air Circulation
Your server and monitor produce heat. Your server has one or more fans that pull in fresh air and force out hot air. The monitor lets hot air escape through vents. Blocking the air vents can cause overheating, which might result in a malfunction or damage. Place the server and monitor so that nothing blocks the air vents; usually, 51 mm (2 in.) of air space is sufficient. Also, make sure the vented air is not blowing on someone else.
Installation Checklist

Electrical Outlets and Cable Lengths
The location of electrical outlets and the length of power cords and cables that connect to the monitor, printer, and other devices might determine the final placement of your server.

When arranging your workspace:

- Avoid the use of extension cords. When possible, plug the server power cord directly into an electrical outlet.
- Keep power cords and cables neatly routed away from walkways and other areas where they might get kicked accidentally.

For more information about power cords, refer to the User's Reference.
Installation Checklist

Be sure to maintain at least 51 mm (2 in.) of space at the rear of the server to allow the server’s cooling system to work properly. Blocking the air vents can cause overheating, which might result in a malfunction or permanent damage.

Your server hardware is set up, and you are ready to learn about your server. The order in which you do these tasks is up to you. Use the following checklist as a guide.

- Learn about your server and the system utility programs

 Your server comes with utility programs to help you configure your server and troubleshoot problems. See Chapter 6, “Configuring Your Server” on page 273 for information about configuring your server and using these utility programs. See Chapter 7, “Solving Problems” on page 299 for details about troubleshooting. If your server is a disk-array model, read and become familiar with Chapter 3, “Configuring the Disk Array” on page 75. Follow the instructions to back up your disk-array configuration information. If your server comes with a PeerMaster adapter, read and become familiar with Chapter 4, “Configuring the PeerMaster Adapter” on page 133.

- Record your identification numbers

 Your server has important identification information that you will need if you have it serviced. Appendix A, “Server Records” on page 369 shows where to find these numbers, and provides space to record and retain information. Be sure to record your ServerGuide License Diskette serial number in Appendix A.
Installation Checklist

☐ Install options
 If you decided earlier to delay installing your options, you might want to complete these installations now. See Chapter 5, “Installing Options” on page 153 for step-by-step installation instructions.

☐ Complete setting up your PC Server 520
 If you need to set passwords or drive-startup sequences, or do other system setup tasks, use the procedures in “Using the Setup Program” on page 275.

☐ Install SVGA and SCSI device drivers
 If you installed SVGA applications, or if you did not install one of the operating systems from the ServerGuide CD package, get the SVGA and SCSI device driver diskettes that come with your server, and install these device drivers now. If your server came with a preinstalled PeerMaster or ServeRAID adapter, install the device drivers from the appropriate diskette.
 These diskettes contain README files to help you install device drivers and complete your installation. Be sure to review the README files before you install the device drivers.

☐ Install option files and monitoring programs (ServeRAID)
 Some options that you install might come with a diskette that contains device drivers, configuration files, or test programs. To install these files (after your operating system is installed), follow the instructions that come with the diskettes.

☐ Install application programs
 To install application programs, follow the instructions supplied with each application program.
Review your User’s Reference

The User’s Reference contains information about the hardware and software features and expansion capabilities of your server. This book also contains information about the microprocessors, memory, data-storage devices, video subsystems, input and output (I/O) ports, SCSI subsystem, and security. For your convenience, the User’s Reference also includes a glossary and product warranty information.
Device Drivers
Chapter 3. Configuring the Disk Array

The information in this chapter applies only to models that have an IBM PC ServeRAID Adapter installed. This chapter provides step-by-step procedures to perform the tasks necessary to configure, add, change, or delete one or more disk arrays. In addition, this chapter outlines procedures for some of the more common disk-array configuration and maintenance tasks.

After you complete the instructions in this chapter, you must install an operating system. Review the software and operating system-considerations in Chapter 2, “Installing Software” on page 21; then, follow the instructions in your operating system-documentation.

This chapter contains:
- Before You Begin .. 79
- Device Drivers ... 79
- Administration and Monitoring Utilities 80
 - Monitoring the Adapter Status in a Local System 81
 - Monitoring Adapter Status from a Remote System 81
- RAID Technology .. 82
 - Hard Disk Drive Capacities 82
 - Additional Storage Capacity 83
 - The ServeRAID Configuration Program Screens 83
- Starting the ServeRAID Configuration Program 86
 - The ServeRAID Adapter Main Menu 87
- Viewing the ServeRAID Configuration 90
- Performing Common Tasks 91
 - Creating a Disk Array 91
 - Defining Logical Drives 93
 - Defining a Hot-Spare Drive 98
 - Deleting a Disk Array 99
 - Deleting a Logical Drive 101
 - Redefining Space in an Array 102
- Drive Maintenance 104
 - Obtaining Drive Status 104
 - Defining the State of a Drive 108
 - Results of a Hard Disk Drive Failure 110
 - Logical and Hard Disk Drive Status Indications 111
 - Replacing a Faulty Drive 112
 - Rebuilding a Logical Drive 115
Device Drivers

Before You Begin

- Familiarize yourself with the information contained in this chapter and the RAID (redundant array of independent disks) information in the User’s Reference.

- Verify the disk-array configuration. The hard disk drives in your disk-array model come configured as one logical drive.
 - To view the disk-array configuration, go to “Viewing the ServeRAID Configuration” on page 90.
 - To create a disk array, go to “Creating a Disk Array” on page 91.

- Backup the disk-array configuration. See “Backing Up Your Disk-Array Configuration” on page 122.

After you configure the disk array, you can complete setup by installing your operating system (from the ServerGuide compact disc that comes with your server or from the diskettes that come with your operating system). Before you install an operating system, review the README file in Start Here on the ServerGuide Main CD. To install your operating system from the ServerGuide CD, see “About ServerGuide” on page 27 for instructions.

Device Drivers

The ServeRAID adapter requires the installation of device drivers. See the README file on the Device Driver/Administration and Monitoring diskette for detailed instructions.

If you install an operating system from the ServerGuide CD, the device drivers will be installed automatically. However, if you install your operating system from diskettes, you will need to install the device drivers. See the README file on the Device Driver/Administration and Monitoring diskette for installation instructions.
Administration and Monitoring Utilities

The Administration and Monitoring program contains RAID monitoring utility programs for several operating systems that your ServeRAID adapter supports. You can monitor your ServeRAID configuration program in the local and remote systems by using these programs.

The following is an example of an Administration and Monitoring program screen. Your screen might look different.
Administration and Monitoring Utilities

Monitoring the Adapter Status in a Local System
The Device Driver/Administration Monitoring Program diskette provides monitoring programs that you can use to perform disk-array maintenance tasks. Because the monitoring programs reside on top of your operating system, you do not need to restart the server. Instead, you can perform tasks such as the following from your active operating system desktop:

- Select the adapter that you want to monitor.
- View information about drives connected to the adapter, and change the drive state.
- Reassign a drive to replace a defunct drive.

Some operating systems provide additional features, such as adding and deleting a logical drive. Refer to the README file on the Device Driver/Administration and Monitoring diskette for specific information and installation instructions.

Monitoring Adapter Status from a Remote System
The ServeRAID Administration and Monitoring programs support the Client/Server environment using TCP/IP on a variety of platforms. The server programs run on the system containing a ServeRAID adapter and is supported on a number of operating systems. See the README file on the Device Driver/Administration and Monitoring diskette for more information. The Client program runs in various Windows environments:

- Windows NT Server Version 3.51
- Windows NT Workstation Version 3.51
- Windows 95

The Client program includes many of the functions contained in the ServeRAID configuration program. Because it resides on top of your operating system, you do not need to restart the server to add and remove capacity dynamically when creating or deleting an array. You can start the Administration and Monitoring program from your active operating system desktop.
This monitoring program allows you to view the ServeRAID configuration and associated devices, reassign a drive to replace a defunct drive, create a logical drive, create an array, and delete an array.

In addition, in an array that contains only one logical drive, and the total number of logical drives in all arrays is less than 7, you can change the logical drive RAID level from level 0 to level 5 (or level 5 to level 0).

See the README file on the Device Driver/Administration and Monitoring diskette for instructions on installing and using this monitoring utility.

RAID Technology

RAID is the technology of grouping several hard disk drives in a server into an array that can be defined as a single logical drive. This logical drive then appears to the operating system as a single physical drive. This grouping technique greatly enhances logical-drive capacity and performance. In addition, if one of the hard-disk drives fails (becomes defunct) the system continues to run, with no operator intervention required, at reduced performance. You can replace the defunct drive without turning off the server (hot-swap). For more information about hot-swappable hard disk drives, see “Installing Internal Drives” on page 197.

Hard Disk Drive Capacities

With a server, it is important to understand the implications of hard disk drive capacities and how they influence the way you create disk arrays.
RAID Technology

Although the drives in the disk array can be of different capacities (for example, 1 GB or 2 GB), they are treated in the disk array configuration as if they all have the capacity of the smallest disk drive. Therefore, if you have four drives of 1 GB, 1 GB, 1 GB, and 2 GB grouped in one disk array, the total capacity of the array is 1 GB times 4, or 4 GB (instead of the 5 GB physically available).

Notes:

1. The total capacity of the array without protection would be 4 GB. With RAID level 5, the usable data capacity would be 3 GB.

2. When referring to hard-disk-drive capacity, GB means 1 000 000 000 bytes; total user-accessible capacity may vary depending on operating environment.

Additional Storage Capacity

With the Administration and Monitoring program Remote Monitor, you can dynamically add capacity to your server by defining additional arrays and logical drives (when your operating system supports this). When you use the Remote Monitor, you do not have to restart the server to create an array.

When you add hard disk drives to your server, you must configure a new disk array before you can use the drives. You can either reconfigure the existing disk array to include the capacity offered with the added drives, or group the added drives into their own array (see “Creating a Disk Array” on page 91). You also can create an array with only one drive.

The ServeRAID Configuration Program Screens

When you configure your disk array, or even just view its configuration, you will be using the IBM ServeRAID configuration program on the IBM PC ServeRAID Configuration Diskette (also called the ServeRAID Configuration diskette). The following figure is a compilation of many of the IBM ServeRAID Controller Disk Array Configuration (also called the ServeRAID configuration program) screens. The list that follows the figure gives explanations of the numbered areas of the figure.
RAID Technology

1. This area displays pop-ups that apply to the current menu. For example, a pop-up allows you to select the logical drive size by entering the size in megabytes; or, to accept the default value shown. Another pop-up allows you to select the RAID level you want to assign to the logical drive you are defining. When you need to confirm an action, the Confirm pop-up appears in this area.

2. You can select any of the choices that appear on the menus.

3. The Bay/Array selection list shows 15 bays for each of the adapter's three channels. For each bay that contains a drive, the list indicates the state of the physical drive and the array in which the drive is grouped. For example, in the illustration, the drive in Channel 2, Bay 1, has a drive status of ONL and is a part of Array B. Selections are made from this list to determine which bays (hard disk drives) are in your arrays.
Notes:

- The Bay/Array area on the screen does not reflect the physical configuration of the server. In your server, the default numbering for the hard disk drive bays in each bank is 1 through 6 (from left to right). See “Installing Internal Drives” on page 197 to see the physical location of the hard disk drives.

- The IDs for the hot-swap drives are set by the backplanes. This allows you to define the IDs as low (0 to 5) or high (8 to 13). See “Setting Backplane SCSI ID Jumpers (J12)” on page 252 for information on setting the jumpers on the backplanes.

One channel on the ServeRAID adapter can support two daisy-chained banks of bays. The SCSI ID jumpers on the backplanes must be set to avoid SCSI ID conflicts.

- The Bay Number corresponds to the SCSI ID of the device plus 1. When the SCSI IDs are set to high, the hard disk drive with SCSI ID 8 is installed in the leftmost bay; its status displays in Bay Number 9.

4. The Array list indicates the array ID and the size (in megabytes) of the array. When a drive is being rebuilt, this area, along with the Logical Drive list area, shows the progression of the rebuilding process.

5. The Logical Drive list identifies the logical drive (for example, A1), including its size, the RAID level, date of creation, and its write policy.

The status of the logical drive also is shown. OKY means that no problem conditions are associated with the drive. CRT means that you must replace the defunct drive and do a rebuild operation. (You will have received a message telling you what has happened to the drive.) OFL means that the logical drive is irrecoverable; the data in that drive is lost.

When a drive is being rebuilt, this area, along with the Array list area, shows the progression of the rebuilding process.
Starting the ServeRAID Configuration Program

During an initialization process, the Write Policy area displays the percent initialized; during a synchronization process, it displays the percent synchronized.

6. The information area tells you the action you can perform on this screen or pop-up.

Starting the ServeRAID Configuration Program

You can use the Administration and Monitoring program or the ServeRAID configuration program to perform ServeRAID configuration tasks.

You can dynamically view or change the configuration of your server by using the Administration and Monitoring program from your active operating system desktop. This means that you do not have to restart the server. Refer to the README file on the Device Driver/Administration and Monitoring diskette for instructions for your operating system.

To start the ServeRAID configuration program from the ServeRAID Configuration diskette, insert the diskette into the primary diskette drive and turn on the system. If the system already is turned on, press Ctrl+Alt+Del.

During the power-on self test (POST), the ServeRAID adapter checks the configuration information on the adapter and on the hard disk drives connected to it.

- If POST does not detect problems or changes, the Main Menu appears. See “The ServeRAID Adapter Main Menu” on page 87.
- If POST detects any change in the adapter configuration, a configuration error message displays. See “ServeRAID Adapter POST and Setup Messages” on page 331.
- If POST detects an adapter hardware problem, an error message displays. See “ServeRAID Adapter Status and Error Messages” on page 335.
The ServeRAID Adapter Main Menu

If you have more than one ServeRAID adapter installed in your server, you will get an adapter selection screen similar to the following before the Main Menu appears.

![Select Adapter Menu](image)

Notes:

1. The version numbers on your screens might be different. Some menus might differ slightly, depending on the version that comes with your server.

2. The primary diskette drive is the first diskette drive that your system tries to start from.
Starting the ServeRAID Configuration Program

You can select Help from any menu. To return to the previous screen or to the previous work area of a screen, press Esc. To select a menu item, press the number of the item or use the Up Arrow (↑) key or Down Arrow (↓) key to highlight the item, then press Enter.

The Main Menu contains the following choices:

- **Help**: Select this choice when you need additional information.
- **View Configuration**: Select this choice to see the existing disk array configuration.
- **Create/Delete Array/Log Drive**: Select this choice to select the drives for an array you want to create, or to delete an existing array. This choice also allows you to define and delete a logical drive.

Whenever you make changes to the disk-array configuration and select Exit, the Confirm pop-up window will appear. You must select Yes to save and activate the changes.
Starting the ServeRAID Configuration Program

• **Initialize/Synchronize Log Drive:** Select this choice after creating an array:

 – **Initialize Logical Drive:** You *must* select this choice to set the logical drive to a predetermined value. Any data existing on the drive is overwritten with zeros.

 You can choose to initialize more than one logical drive at a time. You can interrupt the initialization process at any time by pressing **Esc**. Then, you can either restart the initialization process by pressing **Enter**, or you can end the process by pressing **Esc** again.

 – **Synchronize Logical Drive:** You *must* select this choice to recompute and rewrite the parity data on the selected drive for RAID level 5 before storing data. This selection does not alter data on the drive.

 Note: It is good practice to synchronize logical drives with RAID level 1 and 5 weekly.

• **Rebuild/Device Management:** Select this choice to rebuild logical drives. The rebuild operation is supported only for RAID levels 1 and 5. You also use this option to define or change the state of a drive, display drive information, and clear the device error table.

• **Advanced Functions:** Select this choice to change the write policy (the way data is written to the drive), to save your configuration information to a diskette, to restore it from a diskette, or to change ServeRAID parameters. This choice also allows you to perform a low-level format on a hard disk and run the RAID subsystems diagnostics. You can initialize the adapter configuration, which resets the configuration values to the factory defaults. You can also synchronize the primary and backup copies of the adapter configuration information.

• **Exit:** Select this choice to leave the Main Menu.
Viewing the ServeRAID Configuration

Before creating or changing a disk array, you can look at the current configuration with the Administration and Monitoring program or the ServeRAID configuration program. By using the Administration and Monitoring program, you can dynamically view the configuration from your active operating system desktop. Refer to the README file on the Device Driver/Administration and Monitoring diskette.

To view the disk-array configuration from the ServeRAID configuration program:

1. Start the server using the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).

2. Select View Configuration. The current disk-array configuration information appears on the screen.

3. Press Enter to see the stripe order in the Bay/Array list. In the following example, data for the A array is striped across Channel 1, from bay 1, then bay 2, and so on, through bay 6.

4. Press any key to return to the View Configuration screen.

5. Press Esc to return to the Main Menu.
Performing Common Tasks

The Create/Delete Array menu of the ServeRAID configuration program contains the more common tasks for configuring disk arrays. Procedures to complete these tasks are contained in this section as follows:

- “Creating a Disk Array”
- “Defining Logical Drives” on page 93
- “Defining a Hot-Spare Drive” on page 98
- “Deleting a Disk Array” on page 99
- “Deleting a Logical Drive” on page 101
- “Redefining Space in an Array” on page 102
- “Defining the State of a Drive” on page 108

Creating a Disk Array

You can create disk arrays from your existing drives. Later, you can add storage capacity to your server without disturbing existing data by installing additional hard disk drives and creating additional arrays. You can use the Administration and Monitoring program or the ServeRAID configuration program to create a disk-array.

You can dynamically add capacity to your server (when your operating system supports this) by using the Administration and Monitoring program to add or create an array. By using the Administration and Monitoring program from your active operating system desktop, you do not have to restart the server. Refer to the README file on the Device Driver/Administration and Monitoring diskette for instructions for your operating system.

To create a disk array using the ServeRAID configuration program:

1. Start the server using the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).

 Note: To create an array using hard disks in an existing array, see “Redefining Space in an Array” on page 102.

2. Select Create/Delete Array/Log Drive from the Main Menu.
Performing Common Tasks

3. Select **Create Disk Array** from the Create/Delete Array menu.

 The cursor becomes active in the Bay/Array selection list.

 ![IBM PC ServeRAID Adapter Disk Array Configuration Ver. 1.XX](image)

 Create/Delete Array
 1. Help
 2. Delete Disk Array
 3. Create Disk Array
 4. Define Logical Drive
 5. Define/undefine Hot-spare Drive
 6. Delete Logical Drive
 7. Exit

 Note: Carefully determine which drives you want to include in the array before beginning the selection process. If you change your mind after selecting the drives for an array, you can delete the array (by selecting **Delete Disk Array** from the Create/Delete Array menu) and then begin again.

4. Select each drive you want in the array by using the Up Arrow (↑) key or the Down Arrow (↓) key to highlight the drive and then pressing Enter. As you select each drive, the status will change from RDY (Ready) to ONL (Online).

5. When you have selected all the drives you want to include in the array, press Esc. The cursor will become active in the menu.

 Note: When the stripe unit size is 8 K or 16 K, the maximum number of drives in an array is 16. When the stripe unit size is 32 K or 64 K, the maximum number of drives in an array is 8.
Performing Common Tasks

6. If you have drives you did not use in this array and you want to create another array, you can do one of the following:
 - Define the logical drive or drives for this array; then create another array and its logical drives. See “Defining Logical Drives.”
 - Create another array now by repeating steps 2 through 5 in this procedure; then define logical drives for both arrays.

 Note: You must define at least one logical drive for each created array before you can exit from the ServeRAID configuration program.

Defining Logical Drives

After you have created an array, you must define a logical drive. You can use the Administration and Monitoring program or the ServeRAID configuration program. When you use the Administration and Monitoring program from your active operating system desktop, you do not have to restart the server. Refer to the README file on the Device Driver/Administration and Monitoring diskette for instructions for your operating system. (You cannot leave the ServeRAID configuration program until you define the logical drives for any created arrays.)

To define a logical drive:

1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).
2. Select Define Logical Drive from the Create/Delete Array menu. The following screen appears; the cursor is active in the Bay/Array list.
Performing Common Tasks

3. Use the Up Arrow (↑) key or the Down Arrow (↓) key to highlight the array you want to define; then press Enter. The Select RAID Level pop-up window appears, and the cursor is active in the window.

Note: The system automatically assigns RAID level 0 to any logical drives defined in an array containing only one hard disk drive. When this is the case, the Select RAID Level pop-up window will not appear.

If you have only two hard disk drives in the array, the Select RAID Level pop-up window appears, but RAID level 5 is not selectable because you need at least three hard disk drives in an array to assign RAID level 5 to one of the logical drives. You can define more than one logical drive for your array. The maximum number of logical drives you can define is eight; the maximum number of physical drives in an array is 8 or 16, depending on the stripe unit size.

Notes:

- If you are planning to change RAID levels using the Administration and Monitoring program, the maximum number of logical drives that can be defined is 7. The RAID conversion procedure requires one free logical drive.
Performing Common Tasks

- When the stripe unit size is 8 K or 16 K, the maximum number of drives in an array is 16. When the stripe unit size is 32 K or 64 K, the maximum number of drives in an array is 8.

4. Use the Up Arrow (↑) key or the Down Arrow (↓) key to highlight the RAID level you want to assign to these logical drives; then press Enter.

 Note: Because the level you assign can influence the space needed for the drive, you must assign a RAID level before you enter the size of the logical drive.

The Logical Drive list contains the logical drive ID, the size of each logical drive, the RAID level you assigned to that logical drive, and the date that the logical drive was created.

The status of the logical drive also is shown. OKY means that all is well with the drive. CRT means that you must replace the hard disk drive or rebuild the logical drive. (You will have received a message during system startup telling you what has happened to the drive.) OFL means that the logical drive is irrecoverable; the data on that drive is lost.

If this is the first logical drive to be defined, the Logical Drive Size pop-up window shows the space in the array that is available for logical drives.

If other logical drives have been defined, the Allocation Table appears, showing the logical drive sizes already created, and the amount of free space available.

5. Type the size, in megabytes, that you want for the logical drive; then press Enter. A pop-up window appears, asking you to confirm your action.

Information about the new logical drive appears in the Logical Drive list.

 Note: The size appearing in the Logical Drive list might be different from the size you typed. The size of a logical drive is determined by a number of factors, but basically the size must be divisible by the number of drives in the array.
Performing Common Tasks

Consider the following scenarios:

Scenario 1:
The array consists of three 1 GB drives. You assign RAID level 0 (which uses all the drives in the array with no parity storage), and type 1000MB. The number in the Size (MB) field will be 999, which is the number closest to and lower than 1000 that is divisible by 3.

Scenario 2:
The array consists of three 1 GB drives. You assign RAID level 1, which provides a disk mirroring that stripes data across all drives in the array. Because the data is mirrored, the capacity of the logical drive is 50 per cent of the physical capacity of the hard disk drives grouped in the array. Type 1060MB; the number in the Size (MB) field will be 999. The physical capacity used is 2000 MB, twice that of the logical drive size. The number that is closest to or lower than 2000 and is divisible by 3 is 1998. The logical drive size is 999, which is 50% of the physical capacity.

Scenario 3:
The array consists of three 1 GB drives, and you assign RAID level 5. Data is striped across all three drives in the array, but the space equivalent to that of one drive is used for redundant storage. Therefore, if you type 1000MB, the number in the Size (MB) field remains 1000 because it is divisible by 2 (drives), which is the space available for data.

If you do not use the entire array for this logical drive, you can create another by assigning either the same or a different RAID level for an additional logical drive. You can have as many as eight logical drives among eight disk arrays.

6. To return to the Create/Delete Array menu, press Esc. To define more logical drives, repeat steps 1 through 5 of this procedure.

7. To leave this screen, select Exit or press Esc. A pop-up window appears asking you to confirm your action.

8. To save your changes, select Yes. To maintain the disk-array configuration that was in place before you made changes, select No.
Performing Common Tasks

9. To ensure that your server operates correctly, you must select **Initialize Logical Drive**. This sets the drive to a predetermined state. The initialization process overwrites any data on the drive with zeros.

 a. Select **Initialize/Synchronize Log Drive** from the Main Menu; then select **Initialize Logical Drive**.

 b. Select the logical drives you want to initialize from the Logical Drive list by pressing the Spacebar (the selected drives will appear highlighted). To start the initialization, press **Enter**. A pop-up window appears, asking you to confirm your action.

 Attention: If you select **Yes** in the Confirm pop-up window, information in the logical drive will be overwritten with zeros.

 c. Select **Yes** to confirm that you want to initialize this logical drive.

 The initialization process begins, and you can see its progress in the **Pct. Int.** (Percent Initialized) column of the Logical Drive list.

 d. To stop the initialization at any time, press **Esc**. Then press **Esc** again to return to the menu, or press **Enter** to continue initializing the drive.

 e. If you defined the drive as RAID level 5, select **Initialize/Synchronize Log Drive** from the Main Menu; then, select **Synchronize Logical Drive** before storing data.

10. To back up the disk-array configuration to diskette, you will need a 3.5-inch formatted diskette. To back up the disk-array configuration:

 a. Select **Advanced Functions** from the Main Menu.

 b. Select **Backup config. to diskette**.

 Follow the instructions on the screen. A pop-up window shows the default file name of CONFIG. You can change the file name by typing over the default. The Backup program will assign a file-name extension of **.ips**.
Performing Common Tasks

Defining a Hot-Spare Drive
You can use the Administration and Monitoring program or the ServeRAID configuration program to define a hot-spare drive. By using the Administration and Monitoring program from your active operating system desktop, you do not have to restart the server. Refer to the README file on the Device Driver/Administration and Monitoring diskette for instructions for your operating system.

You can define a hot-spare drive from the Create/Delete Array/Log. Drive menu or the Rebuild/Device Management menu (see “Defining the State of a Drive” on page 108).

To define a drive as a hot-spare drive from the Create/Delete Array/Log. Drive menu:

1. Start the server using the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).

2. Select Create/Delete Array/Log. Drive from the Main Menu.
 The following screen appears.

IBM PC ServeRAID Adapter Disk Array Configuration Ver. 1.XX
Adapter Number: 1 Bus Number: 0 Host ID = Null Config

<table>
<thead>
<tr>
<th>Create/Delete Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Help</td>
</tr>
<tr>
<td>2. Delete Disk Array</td>
</tr>
<tr>
<td>3. Create Disk Array</td>
</tr>
<tr>
<td>4. Define Logical Drive</td>
</tr>
<tr>
<td>5. Define/undefine Hot-spare Drive</td>
</tr>
<tr>
<td>6. Delete Logical Drive</td>
</tr>
<tr>
<td>7. Exit</td>
</tr>
</tbody>
</table>

Select a choice using the p Arrow (↑) and Down Arrow (↓) keys and press Enter. Press Esc to return to previous menu.
Performing Common Tasks

3. Select **Define/Undeﬁne Hot-spare Drive**. The cursor will become active in the Bay/Array selection list.

4. Use the Up Arrow (↑) key or the Down Arrow (↓) key to highlight the RDY (Ready) drive you want to deﬁne as the hot spare; then press Enter. The RDY changes to HSP (Hot Spare). You can press Enter again to toggle between HSP and RDY.

5. Press Esc when you have ﬁnished. The cursor will become active in the Create/Delete Array/Log Drive

6. If you want to create a disk array, go to “Creating a Disk Array” on page 91.

7. If you are ﬁnished:
 a. Select Exit or press Esc. A pop-up window will appear asking you to conﬁrm your change.

 Note: The changes you make are not saved until you conﬁrm them by selecting Yes in the Conﬁrm pop-up window.

 b. Select No if you do not want the drive you selected to be a hot spare; select Yes to deﬁne it as a hot-spare drive.

 c. Back up the disk-array conﬁguration information to diskette.

 See “Backing Up Your Disk-Array Conﬁguration” on page 122 for instructions.

Deleting a Disk Array

Attention: All the data and programs in the array are lost during this procedure. Before proceeding, back up any data and programs that you want to save.

To delete a disk array:

1. Start the ServeRAID conﬁguration program (see “Starting the ServeRAID Conﬁguration Program” on page 86).

2. Select Create/Delete Array/Log Drive from the Main Menu.

3. Select Delete Disk Array from the Create/Delete Array menu. The cursor will be active in the Array list.

4. Select the array that you want to delete.
Performing Common Tasks

Attention: All the data and programs in the array will be lost during this procedure.

5. Press Del. The Confirm pop-up window appears.

6. If you do not want to delete the array, select No. To delete the array, select Yes.

Notes:

- To use hard disks from the existing array when creating a new array, you must confirm the deletion of the existing array.
- In some operating systems, deleting an array and associated logical drives might change the drive letters assigned to the existing drives.

If a defunct drive is still in a bay, the status shows a Defunct Hot-spare (DHS) drive. You can select Rebuild/Device Management, then reset the drive state by selecting Set Device State (see “Defining the State of a Drive” on page 108 for more information). If the drive is good, set the drive state to Hot-Spare (HSP); then, select the drive again and set the drive to Ready (RDY). If the drive is defective, replace it with a good drive; then set the new drive state to Ready (RDY).
Performing Common Tasks

Deleting a Logical Drive

You can use the Administration and Monitoring program or the ServeRAID configuration program to delete a logical drive. By using the Administration and Monitoring program from your active operating system desktop, you do not have to restart the server. Refer to the README file on the Device Driver/Administration and Monitoring diskette for instructions for your operating system.

To delete a logical drive from the ServeRAID configuration program:

1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).
2. Select **Create/Delete Array/Log Drive** from the Main Menu.
3. Select **Delete Logical Drive** from the Create/Delete Array menu and press **Enter**.
4. Press the Up Arrow (↑) or Down Arrow (↓) key to highlight the logical drive that you want to delete.
5. Press **Del**. The Confirm pop-up window appears.
6. If you do not want to delete the logical drive, select **No**. To delete the logical drive, select **Yes**.
7. Select **Exit** or **Esc** to return to the main menu.
Performing Common Tasks

Note: In some operating systems, deleting an array and associated logical drives might change the drive letters assigned to the existing drives.

Redefining Space in an Array
You can redefine space in a disk array in a number of ways. For example, you can combine a number of small logical drives to create a larger one, or you can redefine the existing logical drive into several smaller drives. Also, you can install additional hard disk drives and create a larger logical drive than was possible with the existing storage capacity.

One method to redefine space in an array is to change the RAID level assigned to a logical drive. For example, if you assigned RAID level 1 to a logical drive and then decided you needed the capacity offered with RAID level 5, you can use this procedure to replace the existing logical drive with a logical drive assigned the new RAID level.

To redefine the space in a disk array, first you must delete the array. In all cases, when you delete an array, all the data and programs in the array are lost.

If you have data and programs that you want to save, they must be backed up and then restored. You might want to use a high-speed backup device, such as a tape drive, for that purpose.

To redefine the space in an array:

Note: You need a 3.5-inch, formatted diskette to backup the configuration file, as described in this procedure.

1. Back up all data and programs in the array.
2. If needed, install additional hard disk drives.

 See “Hard Disk Drive Capacities” on page 82 for information about drive sizes.

 Attention: In all cases, when you delete an array, all the data and programs in the array are lost.
Performing Common Tasks

3. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).

4. Delete the existing array:
 a. Select Create/Delete Array/Log Drive from the Main Menu.
 b. Select Delete Disk Array. The cursor will be active in the Bay/Array selection list.
 c. Select the array that you want to delete.
 d. Press Del. The Confirm pop-up window appears.

 Attention: All the data in the array will be lost during this procedure. Be sure to back up all data and programs that you want to save.

 e. If you do not want to delete the array, select No. To delete the array, select Yes.

 Note: To use the hard disks from the existing array when creating a new array, you must confirm the deletion of the existing array. After you make your selection, the Confirm pop-up window will disappear, and the cursor will be active in the menu.

5. If you want to define a hot spare drive, see “Defining the State of a Drive” on page 108 for step-by-step instructions.

6. Create a new disk array and define logical drives.

 See “Creating a Disk Array” on page 91 for instructions on creating a disk array and defining logical drives.

7. After you have established the new array and logical drive or drives, select Initialize/Synchronize Log Drive from the Main Menu; then select Initialize Logical Drive to prepare the drives in the array to receive data. This sets the drive to a predetermined state. Any data existing in the drive is overwritten with zeros.

8. If you defined the drive as RAID level 5, select Initialize/Synchronize Log Drive from the Main Menu; then, select Synchronize Logical Drive before storing data. Once synchronization starts, it cannot be interrupted until the operation is complete.
9. Insert a 3.5-inch formatted diskette in the primary diskette drive, select **Advanced Functions** from the Main Menu; then select **Backup config. to diskette**. Follow the instructions on the screen.

10. Exit the ServeRAID configuration program by pressing **Esc** or selecting **Exit** from the Main Menu. A pop-up window will appear asking you to confirm your action.

11. Reinstall your operating system and device drivers, then restore your data and programs.

Drive Maintenance

The following section provides information about the status indicators for logical and hard disk drives, and the results of a hard disk drive failure. It also contains procedures for defining the state of a hard disk drive and replacing defunct drives.

Obtaining Drive Status

To see the ID, capacity, type of errors that occurred, and other information about each of the hard disk drives attached to the ServeRAID adapter, you can use the Administration and Monitoring program or the ServeRAID configuration program. When you use the Administration and Monitoring program from your active operating system desktop, you do not have to restart the server. Review the README file on the Device Driver/Administration and Monitoring diskette for instructions for your operating system.

To obtain drive information from the ServeRAID configuration program:

1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).

2. Select **Rebuild/Device Management** from the Main Menu.

3. Select **Display Drive Information** from the Rebuild/Device Management menu. The cursor becomes active in the Bay/Array selection list.
Drive Maintenance

4. Use the Up Arrow (↑) key or the Down Arrow (↓) key to highlight each of the drives in the Bay/Array selection list. As a drive is highlighted, the drive information appears.

- **Soft Errors** displays the number of SCSI Check Conditions Returned from the Drive status messages (except Unit Attention messages) since the Device Error Table was last cleared.

- **Hard Errors** displays the number of SCSI I/O processor errors or Predictive Failure Analysis (PFA errors) that occurred on the drive since the Device Error Table was last cleared.

- **Parity Errors** displays the number of parity errors that occurred on the SCSI bus since the Device Error Table was last cleared.

- **Misc Errors** displays the number of other errors (such as selection timeout, unexpected bus free, or SCSI phase error) that have occurred on the drive since the Device Error Table was last cleared.

5. Press Esc to return to the previous menu.
Drive Maintenance

Notes:

- The status of the hard disk drive determines the status of the logical drives in the array in which the hard disk is grouped.

- The device error table, located in the ServeRAID adapter NVRAM, collects statistics on the number and type of errors that occurred on all hard disk drives attached to the ServeRAID adapter.

After correcting a problem with the disk array, you might want to clear the table, so that any subsequent errors can be identified quickly. Select **Erase Device Error Table** from the Rebuild/Device Management menu.

Bay/Array Selection List

The physical devices connected to each Channel are defined in the Bay/Array selection list as follows:

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDR</td>
<td>A CD-ROM drive is installed.</td>
</tr>
<tr>
<td>DDD</td>
<td>A drive in the Online (ONL) or Rebuild (RBL) state has become defunct; it does not respond to commands.</td>
</tr>
<tr>
<td>DHS</td>
<td>A hot spare or standby hot spare drive enters the Defunct Hot-spare (DHS) state if it fails to respond to the adapter commands.</td>
</tr>
<tr>
<td>EMP</td>
<td>No device is present in the bay. This state is represented on the screen with blanks or dashes (– – –).</td>
</tr>
<tr>
<td>HSP</td>
<td>A hot-spare drive is a hard disk drive that is defined for automatic use when a similar drive fails. The drive capacity of the replacement HSP drive must be equal to or greater than the capacity of the drive being replaced. You must have at least four hard disk drives if you want a hot spare and RAID level 5.</td>
</tr>
<tr>
<td>ONL</td>
<td>The drive is online and part of an array.</td>
</tr>
</tbody>
</table>
Drive Maintenance

RBL The drive is being rebuilt. A physical hard drive can enter the RBL state if:

- A good working drive replaces a defunct (DDD) drive that is part of the critical logical drive. At the end of a successful rebuild, the state of the physical drive becomes online (ONL), and the state of the corresponding logical drives changes to OKY.
- An online drive that is part of a logical drive becomes defunct (DDD) and an HSP or SHS drive with the same or greater capacity is available. The state of the hot-spare drive becomes RBL during the rebuild. When the rebuild completes successfully, the state changes to ONL; the former hot-spare drive is now part of the logical drive.
- A Ready (RDY) or Standby (SBY) drive replaces a defunct (DDD) drive that is part of the critical logical drives. The state of the RDY or SBY drive becomes RBL during the rebuild. At the end of a successful rebuild, the state of the drive becomes online (ONL); the drive is now part of the logical drive.

For more information on rebuilding a drive, see “Rebuilding a Logical Drive” on page 115.

RDY The ready drive is recognized by the adapter and is available for definition. A RDY drive becomes EMP when the drive is physically removed from the bay.

SBY A standby drive is a hard disk drive that has been spun down. Devices such as tape drives and CD-ROM drives are considered to be in a Standby state.

SHS A standby hot-spare is a hot spare drive that has been spun down. If a drive becomes defunct and no suitable Hot-Spare drive is available, a Standby Hot-Spare of the appropriate size spins up, and enters the Rebuild process. You must have at least four hard disk drives if you want a standby hot spare and RAID level 5.

TAP A tape drive is installed.
Drive Maintenance

Logical Drive States
The state of the logical drive is determined by the state of the physical drives. Replacing a defunct drive with a good drive changes the state of the logical drive from offline (OFL) to critical (CRT) or good (OKY). When a defunct drive is replaced in a critical logical drive, the data is rebuilt in the replaced drive, before the state of the logical drive changes to OKY.

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKY</td>
<td>The drive is in a good functional state.</td>
</tr>
<tr>
<td>FRE</td>
<td>The drive is not defined.</td>
</tr>
<tr>
<td>OFL</td>
<td>The logical drive is offline and not accessible. This state occurs if one or more physical drives in a non-redundant logical drive (RAID level 0) is defunct. This state also occurs when two or more physical drives in a redundant logical drive (RAID levels 1 and 5) are defunct.</td>
</tr>
<tr>
<td>CRT</td>
<td>A logical drive that is defined as RAID level 1 or 5 contains a defunct physical drive. A critical (CRT) logical drive is accessible despite a physical drive failure.</td>
</tr>
</tbody>
</table>

Note: If the logical drive is critical, you must rebuild the defunct drive.

Defining the State of a Drive
To define the state of a physical hard disk drive attached to the ServeRAID adapter, you can use the Administration and Monitoring program or the ServeRAID configuration program. By using the Administration and Monitoring program from your active operating system desktop, you do not have to restart the server. Refer to the README file on the Device Driver/Administration and Monitoring diskette for instructions for your operating system.

To define the state of a drive from the ServeRAID configuration program:
1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).
2. Select Rebuild/Device Management from the Main Menu.
Drive Maintenance

3. Select **Set Device State**. The cursor will become active in the Bay/Array selection list.

4. Use the Up Arrow (↑) key or the Down Arrow (↓) key to highlight the appropriate drive; then, press **Enter**. The Drive States pop-up window appears, listing all hard disk drive states.

5. Highlight the appropriate drive state and press **Enter**. The cursor will become active in the Bay/Array selection list, and will display the new state.

The numbers shown on the left in the Bay/Array selection list area in the previous figure are the bay numbers. See “Bay/Array Selection List” on page 106 for an explanation of the bay numbers.
6. If you want to create a disk array, go to “Creating a Disk Array” on page 91.

7. If you are finished:
 a. Select Exit or press Esc. A pop-up window will appear asking you to confirm your change.

 Note: The changes you make are not saved until you confirm them by selecting Yes in the Confirm pop-up window.

 b. Select No if you do not want the drive you selected to use the new drive state. Select Yes to accept the new drive state.

 c. Back up the disk-array configuration information to diskette. See “Backing Up Your Disk-Array Configuration” on page 122 for instructions.

Results of a Hard Disk Drive Failure

Depending on the circumstances, a drive failure can result in several possible situations.

Scenario 1:

- Only one hard disk drive fails.
- A hot-spare drive is defined that is the same size or larger than the failed drive.

The hot spare will take over immediately.

Note: Any logical drives with RAID level 0 are blocked during the Rebuild process, and remain blocked until unblocked. The ServeRAID configuration program automatically unblocks all drives at the end of the rebuild operation.
Scenario 2:

- Only one hard disk drive fails.
- A hot-spare drive is not defined or is smaller than the failed drive.
- The logical drives in the array are assigned RAID levels 0, 1, 5, or a combination of these levels.

All data in logical drives assigned RAID level 0 will be lost. In this array, the logical drives that are assigned RAID level 1 or 5 will be in Critical (CRT) state. The logical drives assigned RAID level 0 will be in the Offline (OFL) state.

Scenario 3:

If more than one drive in an array fails, all the data is lost in all of the logical drives of the array. For this reason, it is important that you replace and rebuild a defunct drive as soon as possible.

Logical and Hard Disk Drive Status Indications

The status of the hard disk drive determines the status of the logical drives in the array in which the hard disk is grouped.

- A single hard disk drive failure, (indicated by a DDD status in the Bay/Array selection list), generates a CRT status for the array’s logical drives that are assigned levels 1 and 5. Data in logical drives with a CRT is not lost. You must replace the one defunct hard disk drive promptly, and perform a Rebuild operation. If two hard disk drives were to fail, all of the data in the array would be lost.

After you install a new hard disk drive, the Replace process changes the drive status from DDD to RBL if the array contains a CRT logical drive. After the Rebuild process, the hard disk drive status changes from RBL to ONL.

- A multiple hard disk drive failure causes logical drives in that array that to have an Offline (OFL) status. This means that data is lost in all the logical drives in that array, regardless of which RAID level is assigned.
Drive Maintenance

Replacing a Faulty Drive

Note: The LEDs on the hard disk drive tray provide information about the status of the drive.

The following table summarizes the LED states and their meanings.

<table>
<thead>
<tr>
<th>Green</th>
<th>Amber</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Off</td>
<td>Drive tray is powered on; the hard disk drive is inactive; and the drive should not be removed.</td>
</tr>
<tr>
<td>Blinking</td>
<td>Off</td>
<td>The hard disk drive is inactive. The hot-swap drive can be removed safely.</td>
</tr>
<tr>
<td>On</td>
<td>On or Blinking</td>
<td>The hard disk drive is in use, and should not be removed.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>The drive is defective, or no power is being supplied to the drive. The hot-swap drive can be removed safely.</td>
</tr>
</tbody>
</table>

Check the drive for damage. If the drive is not damaged, check the position of the drive. If it is not inserted correctly, reposition the drive. Verify that the drive is positioned correctly.
Drive Maintenance

If you are using one of the Administration and Monitoring programs provided with your disk-array model, you can use it to identify the defunct drive and designate a drive to replace the defunct drive without restarting the server. Refer to the README file on the Device Driver/Administration and Monitoring diskette for instructions on your operating system.

Do the following steps to replace a faulty drive using the ServeRAID configuration program:

1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).

 If the drive failed while the system was powered down, a message identifying the defunct drive appears the next time the system is powered on.

2. Physically replace the drive or assign a hot-spare or other appropriate drive as a replacement:

 Attention: Removing the wrong hard disk drive can cause loss of all data in the array.

3. If you are assigning a hot-spare or another appropriate drive to replace the defunct drive, go to “Rebuilding a Logical Drive” on page 115. If you are physically replacing the hard disk drive, go to step 4.

4. Press the power-off switch on the drive tray. When the green LED begins to blink, it is safe to remove the drive.

5. Unlock the drive by turning the knob clockwise 90 degrees.
Drive Maintenance

6. Disconnect the drive from the connector on the backplane, by grasping the handle on the drive tray and pulling the drive out of the server. Store the drive in a safe place.

7. Install the hard disk drive:
 a. Move the tray knob to the unlocked position.

 ![Unlocked Position]

 b. Position the drive tray assembly vertically, with the connector facing the rear of the server.

 c. Align the side of the tray with the raised guides on the bottom of the bay. (Note the arrows pointing towards the backs of the bays.)
d. Slide the drive tray to the rear of the bay until it connects to the backplane. Be sure it is connected properly to the backplane.
e. Move the tray knob to the locked position.

Note: The green light on the front of the drive tray illuminates, indicating that the drive was installed correctly.

8. Go to “Rebuilding a Logical Drive.”

Rebuilding a Logical Drive
Review this section before you rebuild a logical drive.

- If the logical drive is critical, you must rebuild the defunct drive.
- Data in a logical drive assigned RAID level 0 is lost during a rebuild. If you backed up your drive before the drive failed, you can restore the data to this drive.
Drive Maintenance

- If a physical drive being rebuilt contains logical drives defined as RAID level 1 or 5 and a logical drive at RAID level 0, the RAID level 0 drive is blocked to external access during the rebuild.
 - If you initiated the rebuild through the Administration and Monitoring program, you must unblock the RAID level 0 drive when the rebuild is complete.
 - If you initiated the rebuild through the ServeRAID configuration program and the rebuild was interrupted, drives with RAID Level 0 can be automatically unblocked when you restart the server.
- Only one rebuild operation can take place at a time.
- The drive being rebuilt must be the same size or larger than the failed drive.
- If multiple hot-spare drives are available, the adapter searches all bays on each channel for a hot-spare drive of the appropriate size; the first one found enters the Rebuild state.
- Under the following circumstances, a Rebuild operation can be completed quickly:
 - The defunct (DDD) drive was not defective.
 - The drive is in the same bay.
 - No write operations or configuration changes that require rebuilding data in the drive have occurred since the hard disk drive entered the DDD state.

If you are using one of the Administration and Monitoring programs provided with your disk-array model, you can use it to identify the defunct drive and designate a drive to replace the defunct drive without restarting the server. Refer to the README file on the Device Driver/Administration and Monitoring diskette for instructions on your operating system.
Resetting the Adapter Configuration

To replace a faulty drive using the ServeRAID configuration program:

1. Start the ServeRAID configuration program. When the Following drives not responding prompt appears, press F5 to continue loading the ServeRAID configuration program.

2. Select Rebuild/Device Management from the Main Menu.

3. Select Rebuild Drive from the Rebuild/Device Management menu. The cursor becomes active in the Bay/Array list.

4. Select the replacement drive that you want to use for the rebuild operation. A pop-up window appears.
 - Select Same Location if you physically replaced a hard disk drive in the same bay.
 - Select New Location to assign a hard disk drive in a new location. You will be prompted to select the drive that you want.

Information and status messages about each stage of the rebuilding process appears on the screen.

5. When the rebuilding process is completed, press Esc to return to the Main Menu. The new configuration will be saved automatically.

6. Backup the new configuration (see “Backing Up Your Disk-Array Configuration” on page 122).

7. Select Exit to end the ServeRAID configuration program.

8. Remove the diskette and press Ctrl+Alt+Del to restart the system.

Resetting the Adapter Configuration

The RAID configuration information stored in the adapter NVRAM is critical to reliable operation of the disk-array. Therefore, to protect the integrity of the configuration information, copies of the configuration information are stored in the adapter EEPROM and on each hard disk drive in a Rebuild or Online state that is defined in the adapter NVRAM configuration. Each time the configuration information is changed, all corresponding copies are updated.
Resetting the Adapter Configuration

During POST, if the configuration information in the adapter NVRAM, EEPROM, and hard disk drive does not match, an error message appears. You can view each configuration to determine which you want to use.

The Init/View/Synchronize Configuration menu enables you to view or reset the following parameters:

- **Initialize Configuration** restores the factory default settings, and resets all functional, connected, hard disk drives to the Ready (RDY) state.

- **View NVRAM Configuration** displays the current configuration settings for the adapter’s NVRAM.

- **View EEPROM Configuration** displays the current configuration settings for the adapter’s EEPROM.

- **View Hard Drive Configuration** displays the current configuration settings for the selected hard disk drive that is in the online (ONL) or rebuild (RBL) state.

- **View Change List** displays the configuration conflicts that the ServeRAID adapter reported since the last time the server was powered on or restarted. For more information, see “Viewing Configuration Changes” on page 119.

To initialize, reset, or view the adapter configuration:

1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).

2. Select **Advanced Functions** from the Main Menu.

3. Select **Init/View/Synchronize Config**.
Resetting the Adapter Configuration

4. Select your choice from the next menu; then press Enter.

5. Follow the instructions on the screen.

Viewing Configuration Changes
This option allows you to view the configuration changes that might have occurred since the last time the server was powered on or restarted.

- **View Power-on Change List** displays any drives that have changed states since the last time the server was powered on or restarted.

- **View Wrong SCSI ID List** provides a list of hard disk drives that were found at a different SCSI ID location than the last time the server was powered on or restarted.

- **View Unidentified Drive List** provides a list of hard disk drives that have an identifier that does not match the stored configuration information.

 The identifier consists of both the configuration host ID and a time stamp. You can define the host ID as the server serial number or any string, up to 12 characters. (See “Changing the ServeRAID Adapter Parameters” on page 130 for more information.)
Resetting the Adapter Configuration

Synchronizing the Adapter Configuration
When the configuration information in the adapter NVRAM, EEPROM, and hard disk drives does not match, you can select one source, and copy the selected configuration information to the other locations. This menu provides options to synchronize this configuration information.

- **EEPROM as Source** copies configuration information from the adapter EEPROM to NVRAM and to all hard disk drives in a Rebuild or Online state that are defined in the adapter EEPROM configuration.

- **NVRAM as Source** copies the configuration information from NVRAM to the adapter EEPROM and to all hard disk drives in a Rebuild or Online state defined in the NVRAM configuration.

- **NVRAM and POCL as Source** updates information from the power-on change list with the information in NVRAM. This information is then copied to the adapter EEPROM and to all hard disk drives in a Rebuild or Online state that are defined in the NVRAM configuration.

- **Hard Disk Drives as Source** retrieves configuration information from hard disk drives. The configuration information is then copied to the adapter NVRAM and EEPROM.
Running RAID Subsystem Diagnostics

- **Identified HDD as Source** updates the configuration information with stored configuration information on a hard disk drive that matches the identifiers stored in the NVRAM. The updated configuration information is then copied to NVRAM, the adapter EEPROM, and the hard disk drives configured in an array.

- **Specific HDD as Source** retrieves the configuration information with stored configuration information on the hard disk drive that you select. The updated configuration information is then copied to NVRAM, EEPROM, and configured hard disk drives.

Running RAID Subsystem Diagnostic Tests

The ServeRAID Subsystem Diagnostic program provides several utility programs that allow you to test the ServeRAID adapter and the devices connected to it.

To run the RAID diagnostic utility programs, do the following steps:

1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).
2. Select **Advanced Functions** from the Main Menu.
3. Select **IBM RAID Subsystem Diagnostic**.
4. Select the diagnostic test that you want to run and press **Enter**:
 - **Run Adapter Self-test** runs diagnostic tests on the ServeRAID adapter.
 - **SCSI Device Self-test** runs diagnostic tests on the SCSI devices attached to the ServeRAID adapter.
 - **Drive Media Test** verifies that all sectors on a hard disk drive can be accessed. The drive must be in the RDY or HSP state.
 - **Format Drive** performs a low-level format on a hard disk drive. For more information, see “Formatting Drives” on page 126.
5. Follow the instructions on the screen.
Additional Disk-Array Tasks

This section contains procedures for performing additional, less common, disk-array tasks. You can select several utility programs:

- Back up configuration to diskette
- Restore configuration to diskette
- Change the write policy
- Change the RAID parameters
- Format a drive
- Obtain drive status
- Change the ServeRAID adapter parameters

Attention notices appear throughout this section to alert you about potential loss of data. Similar warning messages appear on the screens for these procedures. Read these warnings carefully before answering yes to the confirmation requests.

Backing Up Your Disk-Array Configuration

The ServeRAID adapter maintains a record of the disk-array configuration information in its nonvolatile RAM (NVRAM) and electrically erasable programmable read-only memory (EEPROM) module. The disk-array configuration is vital information. To protect this information, back up the information to diskette as soon as you have completed your tasks.

To back up the disk-array configuration information to diskette:

Note: You need a blank, formatted, 3.5-inch diskette.

1. Label a blank diskette “Disk Array Configuration Backup,” and date it.
2. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).
3. Select Advanced Functions from the Main Menu.
4. Select Backup config. to diskette.
5. Remove the ServeRAID Configuration diskette from the drive and insert the blank diskette.
6. Follow the instructions on the screen.
Restoring the Disk-Array Configuration
To restore the disk-array configuration information in the ServeRAID adapter, use the ServeRAID Configuration diskette and an up-to-date Disk Array Configuration Backup diskette.

Note: Because dynamic changes in the configuration of your disk array occur due to hot-spare drive replacement or other drive maintenance activity, the configuration backup information on the diskette might be different from that in the adapter. It is important that you back up the disk-array configuration information frequently, to keep the backup information on the diskette current.

To restore the ServeRAID configuration information:
1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).
2. Select Advanced Functions from the Main Menu.
3. Select Restore config. from diskette.
4. Follow the instructions on the screen.

Changing the Write Policy
When you configure a logical drive, the RAID adapter automatically sets the write policy to write-through (WT) mode, where the completion status is sent after the data is written to the hard disk drive. Under certain workloads, you can improve performance by changing this write policy to write-back (WB) mode, where the completion status is sent after the data is copied to adapter cache memory, but before the data is actually written to the hard disk drive.

Although you gain performance with write-back mode, it creates a greater risk of losing data due to a power failure. This is because the system gets a completion status message when the data reaches adapter cache memory, but before data is actually written to the hard disk drive.

If you change the write policy to write-back, wait at least 10 seconds after your last operation before you turn off the server. It takes that
Additional Disk-Array Tasks

long for the system to move the data from the adapter cache
memory to the hard disk drive. Failure to follow this practice can
result in lost data.

To change the write policy:

1. Start the ServeRAID configuration program (see “Starting the
ServeRAID Configuration Program” on page 86).

2. Select Advanced Functions from the Main Menu.

3. Select Change Write Policy from the Advanced Functions menu.
The cursor will be active in the Logical Drive list.

4. Select the logical drive whose write policy you want to change.
A screen similar to the following appears:

Note: Your information might be different from that shown in
this screen.

The Logical Drive list contains the logical drive ID, the size in
megabytes of each logical drive, the RAID level you assigned to
that logical drive, and the date you created it.

The status of the logical drive is also shown. OKY means that
no problem conditions are associated with the drive; CRT
means that you must replace the hard disk drive and rebuild the
logical drive. (You will have received a message telling you
what has happened to the drive.) **OFL** means that the logical drive is irrecoverable; the data in that drive is lost.

5. Locate the **Wrt pol** (Write Policy) field in the Logical Drive list.

 The write policy is shown as either **WT** (write-through, which is the default setting) or **WB** (write-back).

6. Select the logical drive whose write policy you want to change.

 Attention: If you change the write policy to write-back, wait at least 10 seconds after your last operation before you turn off the server. It takes that long for the system to move the data from the cache memory to the storage device. Failure to follow this practice can result in lost data.

7. Press **Enter** to change the write policy.

 Notice that **WT** changes to **WB**. You can press **Enter** to alternate between **WT** and **WB**.

8. When you have made your choice, press **Esc** to return to the Advanced Functions menu.

9. Select **Exit**. The Confirm pop-up window appears asking you to confirm your action.

10. To return the setting to its original state, select **No**. To save your changes, select **Yes**.

11. Back up the disk-array configuration information to diskette. See “Backing Up Your Disk-Array Configuration” on page 122 for more information.
Additional Disk-Array Tasks

Formatting Drives
You can perform a low-level format on drives with RDY (Ready) EMP (Empty), SBY (Standby), SHS (Standby Hot-Spare), or HSP (Hot-spare) state.

Note: The Format Drive choice on the IBM RAID Subsystems Diagnostics menu provides a low-level format. If you install a new hard disk drive that requires a standard format, use the Format command provided by your operating system.

The ServeRAID configuration program provides the Format program so that you can perform a low-level format on a drive controlled by the ServeRAID adapter.

To perform a low-level format:

1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).
2. Select Advanced Functions from the Main Menu.
3. Select IBM RAID Subsystems Diagnostics from the Advanced Functions menu.

 Attention: A low-level format erases all data and programs from the hard disk drive. Before proceeding, back up any data and programs that you want to save.
4. Select Format Drive. The low-level format program starts.
5. Follow the instructions on the screen.

 You can perform a low-level format on one drive at a time.

Note: If formatting is interrupted, the drive being formatted might display as an Empty state (- - -) or blank in the Bay/Array selection list. Select the drive, and format it again.
Changing the RAID Parameters

To change the RAID parameters:

1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).
2. Select **Advanced Functions** from the Main Menu.
3. Select **Change RAID Parameters**.

The default settings are:

- **Stripe unit size** — 8K

Attention: Once the stripe unit is chosen and data is stored in the logical drives, the stripe unit cannot be changed without destroying data in the logical drives.

The stripe unit size is the amount of data written on a given disk before writing on the next disk. To maximize the overall performance, choose the stripe unit such that the stripe-unit size is close to the size of the system I/O request. The default is set to 8 K data bytes.

Note: When the stripe unit size is 8 K or 16 K, the maximum number of drives in an array is 16. When the stripe unit
Additional Disk-Array Tasks

- Rebuild Priority — High

Rebuild priority can be set to high, medium, or low. When the rebuild request is set to high, the rebuild I/O request gets high priority in the execution order.

When the rebuild request is set to medium in a heavily loaded system (with a medium rate of system I/O requests), the medium-priority rebuild can reduce the disk rebuild time at the expense of degraded handling of I/O requests.

When the rebuild priority is set to low, in a moderate to heavily loaded system, low rebuild priority will increase the disk rebuild time but provides better system performance.

Note: Rebuild priority can be changed without affecting data in the logical drives.

- Unattended Mode — Off

You can enable the adapter to accept changes in the configuration without user input. Unattended mode is useful when the server operates remotely. See “Unattended Mode of Operation” on page 129 for more information.

When Unattended Mode is On, and a hard disk drive is found in a location other than the one defined in the adapter configuration, the program pauses briefly for user input, then, automatically rearranges the configuration information to correct the logical drive configuration. Unattended mode also clears any blocked drives.

When Unattended Mode is Off, the program waits for user input.
Additional Disk-Array Tasks

- **Read ahead — On**

 Normally, the ServeRAID adapter transfers data from disk to its local cache in steps of stripe-unit size. This provides excellent overall performance when workloads tend to be sequential. However, if the workload is random and system I/O requests are smaller than stripe-unit size, reading ahead to the end of the stripe unit will result in a wasted SCSI bus bandwidth and wasted disk utilization. When read-ahead is set to Off, the size of data transfer from the disk to local cache is equal to the system I/O request size, and no read-ahead to the end of the stripe unit is performed.

Notes:

1. The read-ahead setting can be changed without destroying data in a logical drive.

2. When the configuration is saved on a diskette, the RAID parameters are saved also.

Unattended Mode of Operation

You can enable the adapter to accept changes in the configuration without user input. When this mode is enabled (see “Changing the RAID Parameters” on page 127 for information), the adapter pauses briefly to permit a user to override the default action; then the adapter rearranges the configuration information. Unattended mode also clears any blocked logical drives. This mode is useful when the server operates remotely.

The adapter “chooses” an action that is equivalent to pressing one of the following function key:

F5: The server continues the startup operation after identifying the drive that is defunct. For example, an HSP drive failed to respond during POST. Startup continues without the HSP drive; its drive state will display as DHS.

F6: When a drive has been removed from the server, for example, for maintenance or security, and was returned, but in a different bay, the adapter adjusts the configuration to the drive’s new location.
Additional Disk-Array Tasks

F7: An adapter with stored configuration information that does not match that of the configured drives present, imports the configuration information from the drives.

The ServeRAID adapter assigns the following priorities to the function keys:

<table>
<thead>
<tr>
<th>If this action/key is available</th>
<th>Priority of actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>F7</td>
<td>F7, F6, F5</td>
</tr>
<tr>
<td>F6</td>
<td>F6, F5</td>
</tr>
<tr>
<td>F5</td>
<td>F5</td>
</tr>
</tbody>
</table>

Changing the ServeRAID Adapter Parameters

Display/Change Adapter Parameters allows you to view and change the adapter’s configuration parameters.

To display or change the adapter parameters:

1. Start the ServeRAID configuration program (see “Starting the ServeRAID Configuration Program” on page 86).
2. Select Advanced Functions from the Main Menu.
3. Select Display/Change Adapter Params and press Enter. The following screen appears.
Additional Disk-Array Tasks

IBM PC ServeRAID Adapter Disk Array Configuration Ver. 1.XX
Adapter Number: 1 Bus Number: 0 Host ID = Null Config

<table>
<thead>
<tr>
<th>Display/Change Adapter Parameter</th>
<th>Ch 1 Array Bay</th>
<th>Ch 2 Array Bay</th>
<th>Ch 3 Array Bay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Help</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Display Adapter Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Change Adapter Host/SCSI ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Set BIOS Compatibility Mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Set Channel → Bank Mapping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Exit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set BIOS Compatibility Mapping

1. Extended BIOS Mapping (8GB)
2. Limited BIOS Mapping (2GB)

Select option for which to set BIOS compatibility bit.

- **Display/Adapter Status** allows you to view the status of the adapter.

- **Change Adapter Host/SCSI ID** allows you to change the adapter SCSI ID and the SCSI transfer rate. You can also define the host configuration ID as any 12 characters. In addition, you can change the number of drives in a group that will startup simultaneously, and set the startup delay in seconds between groups of drives.

- **Set BIOS Compatibility Mapping** allows you to set the BIOS mapping to 2 GB or 8 GB.
Additional Disk-Array Tasks

- **Set Channel => Bank Mapping** allows you to specify which bank is connected to each of the internal Channels on the ServeRAID adapter. The following table shows the default mapping.

<table>
<thead>
<tr>
<th>Bank</th>
<th>Default connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Channel 3</td>
</tr>
<tr>
<td>D</td>
<td>Channel 2</td>
</tr>
<tr>
<td>E</td>
<td>Channel 1</td>
</tr>
</tbody>
</table>

You can also specify the setting of the SCSI ID backplane jumper. This mapping is critical for the correct operation of the Administration and Monitoring program, which uses the settings to identify drives, control power to specific drives, and operate the SCSI LEDs.

For example, suppose you daisy-chained banks D and E, connecting the input connector on bank D to Channel 2 on the adapter. The SCSI ID backplane jumper on bank E is set to HI. (See “Setting Backplane SCSI ID Jumpers (J12)” on page 252.) In this configuration, Channel 1 is available for external devices. Set the Bank Mapping as shown:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Low ID</th>
<th>High ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Channel 3</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

4. Follow the instructions on the screen.
Using the Mini-Configuration Program

The Mini-Configuration program is a quick way to display the adapter settings, and to perform a limited set of the configuration functions without using the IBM PC ServeRAID Configuration Diskette.

To access the ServeRAID adapter Mini-Configuration program:
1. Turn on the server, or, if the system is on, press Ctrl+Alt+Del.
2. Press Ctrl+I immediately when the Mini-Configuration prompt appears on the screen.
3. Press Enter.
 If you have more than one ServeRAID adapter installed, you will get an adapter selection screen; otherwise, the Main Menu appears.
 - **View Adapter Status** displays the current status of the ServeRAID adapter. (See “Viewing the Adapter Status” on page 134 for information.)
 - **View Configuration** shows the current configuration information for the ServeRAID adapter. (See “Viewing Configuration Information” on page 135 for information.)
 - **Advanced Functions** resets the adapter, initializes the configuration, and imports the configuration from drives. (See “Using Advanced Configuration Functions” on page 135 for information.)
4. Select a menu item, press the number of the item or use the Up Arrow (↑) key or Down Arrow (↓) key to highlight the item, then press Enter.
5. Follow the instructions on the screen.
6. Select Exit to leave the Main Menu.
Using the Mini-Configuration Program

Viewing the Adapter Status

The View Adapter Status choice allows you to view the status of the adapter’s disk array.

The menu contains the following fields:

• **Unattend** displays the on/off state of Unattended Mode.

• **Boot Block Version** displays the current version number of the Boot Block.

• **Code Block Version** displays the current version number of the firmware on the adapter.

• **Rebuild Rate** displays the speed of rebuild. (See “Changing the RAID Parameters” on page 127.)

• **No. of DDD Drv.** displays the number of defunct drives.

• **No. of OFL Drv.** displays the number of offline logical drives.

• **No. of CRT Drv.** displays the number of critical logical drives.

• **Cfg. Updates** displays the number of times that the configuration has been updated.

• **Flash Pgms** displays the number of times that the firmware flash/EEPROM has been updated.

• **Logical Drive with Bad/Blocked Stripe** identifies any logical drive that has bad stripes, as well as logical drives that are in the blocked state.
Using the Mini-Configuration Program

Viewing Configuration Information

The View Configuration choice allows you to view the number and size of logical drives installed. It also displays the RAID level, current state, stripe size, write policy, read ahead status, and the creation date for each logical drive.

<table>
<thead>
<tr>
<th>Logical Drive</th>
<th>Size (MB)</th>
<th>RAID Level</th>
<th>Current Stripe Size</th>
<th>Write Policy</th>
<th>Read Ahead</th>
<th>Date Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>NO</td>
<td>01/18/96</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>NO</td>
<td>01/18/96</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>NO</td>
<td>01/18/96</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>OKY</td>
<td>8K</td>
<td>WB</td>
<td>NO</td>
<td>01/18/96</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>OKY</td>
<td>8K</td>
<td>WB</td>
<td>NO</td>
<td>01/18/96</td>
</tr>
<tr>
<td>5</td>
<td>99</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>NO</td>
<td>01/18/96</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>NO</td>
<td>01/18/96</td>
</tr>
<tr>
<td>7</td>
<td>300</td>
<td>OKY</td>
<td>8K</td>
<td>WT</td>
<td>NO</td>
<td>01/18/96</td>
</tr>
</tbody>
</table>

Using Advanced Configuration Functions

The Advanced Functions choice allows you to reset the ServeRAID adapter, initialize the configuration, and import the configuration from drives.

- **Reset the Adapter** resets the adapter configuration values to the factory defaults.
- **Initialize Configuration** restores the factory default settings and sets all functional, connected hard disk drive states to the Ready (RDY) state.
- **Import Configuration from Drives** reads the configuration information from the drives and copies it to NVRAM and the EEPROM modules on the adapter.
Using the Mini-Configuration Program
Chapter 4. Configuring the PeerMaster Adapter

Some PC Server 520 models come with an IBM Ethernet Quad-BT PeerMaster Server Adapter installed as a standard feature. This chapter contains instructions for configuring, cabling, and testing the PeerMaster adapter. You must configure, cable, and test the PeerMaster adapter before you install your network operating system and the PeerMaster LAN software.

This chapter contains:
Choosing a Mode of Operation 138
 Traditional Adapter Mode 138
 VNET Switch Mode 139
Configuration Examples .. 140
Using the PeerMaster Setup Utility Program 147
 Displaying the PeerMaster Adapter 148
Guidelines for Assigning Slot Numbers 149
Running PeerMaster Diagnostic Programs 151
 Displaying PeerMaster PCI Configuration Registers 153
Attaching Network Cables to Your Adapter 155
Choosing a Mode of Operation

Choosing a Mode of Operation
You can configure the PeerMaster adapter to operate in either of two modes:

• Traditional adapter mode, which is used when you expect little or no cross-subnetwork traffic. (Subnetwork is also called subnet.)

• Virtual subnetwork (VNET) switch mode, which is used when you need to configure multisegment subnetworks. The PeerMaster adapter provides media-rate Ethernet switching among all LAN segments within a virtual network without intervention by a server microprocessor.

Choose the mode of operation and configuration that fits the needs of your network. Both modes of operation are described in this section, and examples of configurations are provided in “Configuration Examples” on page 140.

Traditional Adapter Mode
When the PeerMaster adapter is operating in the traditional adapter mode, each LAN segment of the adapter is separately registered with the network operating system (NOS). The PeerMaster adapter appears as four separate, traditional adapters to the NOS; therefore, each network LAN segment must be configured with a unique network number.

All cross-segment traffic must be forwarded by a server microprocessor or by an external device, such as a bridge, router, or switch.
Choosing a Mode of Operation

VNET Switch Mode
When the PeerMaster adapter is operating in the VNET switch mode, multiple LAN segments of the adapter are jointly registered with the NOS as a single segment. This multisegment subnetwork is referred to as a virtual subnetwork or a VNET. You can configure multiple PeerMaster adapters to operate together in various ways, such as:

- One large VNET
- Multiple VNETs
- Traditional subnetworks
- Any combination of VNETs and traditional subnetworks

When configured in the VNET switch mode, the PeerMaster adapter serves as a high-performance Ethernet switching subsystem within your server; this subsystem provides media-rate frame forwarding across all segments within each VNET. This mode is well suited for creating switched, multisegment, high-bandwidth work groups or departments. The server microprocessor is shielded from the task of routing, and no external internetworking devices are required to support these bandwidth-intensive work groups.

Following are guidelines for using VNET switch mode:

- Do not externally join (with bridges, switches, or concentrators) PeerMaster adapter ports within a VNET.
- You may externally attach any number of devices to a VNET.
Choosing a Mode of Operation

Configuration Examples
The following configuration examples describe various possible PeerMaster adapter modes of operation that you can configure with two PeerMaster adapters.

- The example presented in the traditional adapter mode is an 8-segment configuration.
- The examples presented in the VNET switch mode are:
 - An 8-port VNET configuration
 - Two 4-port VNETs, each configured from one PeerMaster adapter
 - An 8-segment network configured as one 4-port VNET and four traditional subnetworks

Each PeerMaster adapter can be used to create a variety of network configurations. The following examples illustrate some basic network configurations that you can create. Use these examples as guidelines to determine the best configuration for your needs.
Choosing a Mode of Operation

Traditional Adapter Mode Configuration

The example in the preceding figure shows:

- A server with two PeerMaster adapters configured in the traditional adapter mode. Within this mode each of the eight network segments is registered with the protocol as a unique subnet network. Clients on all ports have direct access to the server.
- An 80 Mbps (Mb equals 1,000,000 bits) network composed of eight subnetworks.
- A server-based software router, above the protocol, that is required to provide cross-segment connectivity.

The advantage of the traditional adapter mode is that the internal router can be used to selectively restrict cross-segment traffic throughout the multisegment network. The disadvantage of this mode is that server responsiveness might be heavily impaired due to the burden of internal routing. Use this mode only when little or no cross-segment traffic is expected.

VNET Switch Mode Configurations

The following three configurations show examples of using the PeerMaster adapter in the VNET switch mode.

- VNET Switch Mode - Single VNET
- VNET Switch Mode - Multiple VNETs
- VNET Switch Mode - Combined VNETs and Traditional Nets
Choosing a Mode of Operation

VNET Switch Mode — Single VNET

The illustration shows:

- A subnet network (Net 1) composed of eight physical segments.
- Two PeerMaster adapters configured as one large VNET.

 When the PeerMaster adapters are configured as one large VNET, they act as a high-performance network adapter as well as an integrated subsystem (based upon BusBIOS) that provide media-rate Ethernet switching between network devices across all LAN segments.
- A VNET registering all eight active segments with the protocol as a single subnetwork.
- Curved arrows indicating the flow of cross-segment traffic in the VNET.

 Devices can roam (physically detached and reattached) among segments within a VNET, without loss of active sessions to the server or to peer devices throughout the VNET.

 The PeerMaster subsystem and the VNET driver dynamically detect the relocation of the device and remap traffic for that device in real time.

All cross-segment traffic is forwarded by the PeerMaster subsystem; therefore, server responsiveness is not compromised due to heavy cross-segment traffic.

The PeerMaster adapter performs two types of packet switching, port-to-port and peer-to-peer.
Choosing a Mode of Operation

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-to-port</td>
<td>This type of switching occurs when the source and destination segments reside on the same PeerMaster adapter.</td>
<td>Adapter 1 forwards data packets between port 1 and 2 of that adapter.</td>
</tr>
<tr>
<td>Peer-to-peer</td>
<td>This type of switching occurs when the source and destination segments reside on separate PeerMaster adapters.</td>
<td>The adapters forward data packets between port 1 of adapter 1 and port 1 of adapter 2.</td>
</tr>
</tbody>
</table>
Choosing a Mode of Operation

VNET Switch Mode — Multiple VNETs:
Choosing a Mode of Operation

The illustration shows:

- Two subnetworks (Net 1 and Net 2) each composed of one 4-segment VNET. All traffic between ports in Net 1 or between ports within Net 2 is port-to-port. All traffic between a port in Net 1 and a port in Net 2 is peer-to-peer.
- Two PeerMaster adapters, each configured as an independent VNET.
- Two instances of the VNET driver. All four ports of each PeerMaster adapter are registered with the protocol as a single subnetwork.
- A curved arrow that shows the flow of port-to-port traffic between VNETs. This traffic is forwarded by the internal router of the server.
- Curved arrows that indicate the flow of traffic within each VNET. This traffic is forwarded by the microprocessor on each PeerMaster adapter.

Each VNET can represent a different department or work group. This configuration provides two virtual switches. Creating multiple VNETs is a way of separating departments or work groups. The internal router of the server can then be configured to pass selected traffic between VNETs.
Choosing a Mode of Operation

VNET Switch Mode — Combined Net Types: Use a configuration that combines VNETs and Traditional Nets only when you expect little or no cross-VNET traffic.

The illustration shows:

- A 5-subnet network (Net 1, Net 2, Net 3, Net 4, and Net 5) configured as one 4-segment VNET on adapter 1 and four traditional subnet networks (Net 2, Net 3, Net 4, and Net 5) on adapter 2. In this configuration, all traffic in Net 1 is port-to-port. All traffic from Net 1 to any other Net is peer-to-peer. Any traffic between Net 2, 3, 4 and 5 is port-to-port.

- Curved arrows that show the flow of peer-to-peer traffic between subnet networks such as traffic between Net 1 and Net 2. This traffic is forwarded by the internal router of the server.

- Curved arrows that indicate the flow of port-to-port traffic within the VNET. This traffic is forwarded by the microprocessor on the each PeerMaster adapter.
Each VNET can represent a large department while the traditional subnet networks represent smaller work groups. You can configure the internal router to restrict traffic between the departments.

Using the PeerMaster Setup Utility Program

During system power-up, PCI BIOS detects, assigns, and initializes the following operational characteristics of the PeerMaster adapter:

- Host IRQ level
- Memory-mapped runtime registers
- I/O-mapped runtime registers
- Base address for shared memory
- PCI bus number
- PCI device number
- BIOS slot number (supported in systems with PCI BIOS 2.1 only)

Each PeerMaster adapter must be identified by a unique expansion-slot number.

The PeerMaster setup utility program, PSSETUP.EXE, is provided in the root directory of the PeerMaster PCI Server Adapter Option Diskette. You can use this DOS-based program to configure and verify the operation of the PeerMaster adapter. You can use the setup utility program with a startable DOS diskette if your server is not DOS-based.

The PeerMaster setup utility program, PSSETUP.EXE, also identifies the version of PCI BIOS in your system.
Using the PeerMaster Setup Utility Program

Displaying the PeerMaster Adapter

The /list parameter is used to display a list of all detected PeerMaster adapters. When PSSETUP is run with the /list parameter, a list of all PeerMaster adapters is displayed along with the bus and device numbers. The /bus and /device parameters can be used to specify a specific adapter if multiple adapters are present.

1. Insert the PeerMaster PCI Server Adapter Option Diskette into drive A.
2. At the DOS command prompt, type A:\PSSETUP /list and press Enter.

A screen similar to the following is displayed.

PSSETUP: IBM Ethernet PCI PeerMaster Setup Utility V1.0x
(c) Copyright 1995 Xpoint Technologies, Inc.

PCI BIOS Version Detected: 02.00

Bus: 0 Device: 8 Flash Slot: 2 BIOS Slot: N/A
*Flash slot number needs to be set with PCI BIOS 02.00

In the above example, the following information is provided:

- **Bus**: The PeerMaster adapters reside on PCI bus 0.
- **Device**: PCI BIOS assigned device number 8 to the PeerMaster adapter.
- **Flash Slot**: Flash slot numbers are retrieved from flash memory and displayed in this field.

 Note: In the above example, PSSETUP was used to assign flash slot number 2 to the detected PeerMaster adapter.

- **BIOS Slot**: This field displays the BIOS slot number of the adapter reported by PCI BIOS. The above example contains N/A in this field because PCI BIOS 2.0 does not assign BIOS slot numbers. A system with PCI BIOS 2.1 would contain the BIOS-reported slot number for each detected device.

Continue with “Guidelines for Assigning Slot Numbers” on page 149.
Guidelines for Assigning Slot Numbers

If you must assign slot number for the specific device driver that you intend to install, the README.TXT file on the PeerMaster Server Adapter Option Diskette states if you must manually assign slot numbers.

When assigning slot numbers, you are not constrained by physical slot numbers. If valid slot numbers are not clearly present on your system, then simply assign slot numbers in a manner that logically identifies the PeerMaster adapters in your system.

Valid slot numbers are defined as follows:

- Flash slot numbers must be assigned manually in the range of 1 through 8.
- Each PeerMaster adapter must be assigned a unique flash slot number.

Continue with “Manually Assigning Slot Numbers” on page 150.
Using the PeerMaster Setup Utility Program

Manually Assigning Slot Numbers

Note: Do not run the following function when the PeerMaster device drivers are active. This function will require a reset of the target PeerMaster adapter which will cause all active LAN connections to drop.

The `/slot` parameter is used to manually assign slot numbers to each PeerMaster adapter. The `/bus` and `/device` parameters can be used to specify a specific adapter if multiple adapters are present. If multiple adapters are present and the `/bus` and `/device` parameters are omitted, PSSETUP permits you to select a specific adapter from the list of detected adapters. See “Displaying the PeerMaster Adapter” on page 148.

The following example shows the use of PSSETUP to manually assign a slot number to a PeerMaster adapter in a system where PCI BIOS 2.0 is resident and the `/bus` and `/device` parameters are specified.

1. Insert the PeerMaster PCI Server Adapter Option Diskette into drive A.
2. At the DOS command prompt, type:

   ```
   A:\PSSETUP /slot:2 /device:8 /bus:0
   ```

 and press Enter.

A screen similar to the following is displayed.

 PSSETUP: IBM Ethernet PCI PeerMaster Setup Utility V1.0x
 (c) Copyright 1995 Xpoint Technologies, Inc.

 PCI BIOS Version Detected: 02.00

 Flash Programming in Progress...
 Flash Programming Result: Successful

In the above example, the target PeerMaster adapter (device: 8 on bus: 0) is manually assigned slot number 2. This value is stored in flash memory on the PeerMaster adapter. PSSETUP will now report a flash slot value of 2 for this adapter.
Using the PeerMaster Setup Utility Program

If the flash program is not successful, run the diagnostic program to diagnose the PeerMaster adapter.

Continue with “Running PeerMaster Diagnostic Programs.”

Running PeerMaster Diagnostic Programs

The /diag parameter is used to initiate the PeerMaster adapter diagnostics programs. The /bus and /device parameters specify a specific PeerMaster adapter if multiple adapters are present. If multiple adapters are present and the /bus and /device parameters are omitted, PSSETUP permits you to select the specific PeerMaster adapter from a list of detected adapters.

The /diag option also displays data stored in flash memory on the PeerMaster adapter.

Each PeerMaster adapter contains a power-on self-test (POST). You must run the PeerMaster diagnostics program to verify the proper installation and operation of a PeerMaster adapter.

To run the diagnostics programs:

1. Insert the PeerMaster PCI Server Adapter Option Diskette into drive A.

2. At the DOS command prompt, type: A:PSSETUP /diag and press Enter.
Using the PeerMaster Setup Utility Program

A screen similar to the following appears.

PSSETUP: IBM Ethernet PCI PeerMaster Setup Utility V1.0x
(c) Copyright 1995 Xpoint Technologies, Inc.

PCI BIOS Version Detected: 02.00

Bus 0
Device 8
Flash Slot 2
Flash Boot Sector Version 1.00
Flash Main Sector Version 1.00
Flash Main Life Counter 0
Flash 1st Param Life Counter 1
Flash 2nd Param Life Counter 0
DRAM Size 1048576
SRAM Size 524288
Number of MAC Addresses 5
MAC Address 1 nnnnn
MAC Address 2 nnnnn
MAC Address 3 nnnnn
MAC Address 4 nnnnn
MAC Address 5 nnnnn
POST Results Successful

The following list describes the fields reported by the /diag parameter:

- **Bus**: The target PeerMaster adapter resides on this PCI bus.
- **Device**: The PCI BIOS-assigned device number for the specific PeerMaster adapter.
- **Flash Slot**: The manually assigned slot number associated with this PeerMaster adapter.
- **Flash Boot Sector Version**: The version of microcode in this flash sector.
- **Flash Main Sector Version**: The version of microcode in this flash sector.
- **Flash Main Life Counter**: The number of times this flash sector is written to.
Using the PeerMaster Setup Utility Program

- **Flash 1st Param Life Counter**: The number of times this flash sector is written to.
- **Flash 2nd Param Life Counter**: The number of times this flash sector is written to.
- **DRAM Size**: The byte count of dynamic RAM resident on a PeerMaster adapter.
- **SRAM Size**: The byte count of static RAM resident on a PeerMaster adapter.
- **Number of MAC Addresses**: The number of medium access control (MAC) addresses programmed into the flash memory.
- **MAC Address 1—5**: The actual MAC addresses. MAC addresses 1 through 4 are assigned to ports 1 through 4 respectively. MAC address 5 is reserved for use by PeerMaster adapter resident management software.
- **POST Results**: This field displays the POST completion status reported by a PeerMaster adapter. If POST does not complete successfully, record the error number and see “POST Error Messages” on page 310 for a description of the error and suggested actions.

When the diagnostic program completes successfully, your PeerMaster adapter is properly configured, and operational.

Continue with “Displaying PeerMaster PCI Configuration Registers” to help diagnosis misconfigured systems or to view the configuration of the PeerMaster adapter.

Displaying PeerMaster PCI Configuration Registers

The `config` parameter displays the configuration space for a specific PeerMaster adapter. All PCI devices provide configuration registers that PCI BIOS initializes during system startup. These registers set the configuration for the device. Under normal conditions, it is not necessary to use this option. You can use this option to help diagnosis a misconfigured system, or view the configuration of the PeerMaster adapter.
Using the PeerMaster Setup Utility Program

To run the configuration programs:

1. Insert the PeerMaster PCI Server Adapter Option Diskette into drive A.

2. At the DOS command prompt, type A:PSSETUP /config and press Enter.

3. Select a specific PeerMaster adapter to configure.

The following example screen illustrates the configuration information displayed by the /config parameter. For a description of the PCI configuration registers, refer to the PCI BIOS 2.x Specification.

PSSETUP: IBM Ethernet PCI PeerMaster Setup Utility V1.0x
(c) Copyright 1995 Xpoint Technologies, Inc.

PCI BIOS Version Detected: 02.00

PCI CONFIGURATION REGISTERS

Vendor ID nnnnn
Device ID nnnnn
Command nnnnn
Status nnnnn
Revision ID nnnnn
Class Code nnnnn
Cache Line Size nnnnn
Latency Timer nnnnn
Header Type nnnnn
BIST nnnnn
Memory Mapped Runtime Registers nnnnn
I/O Mapped Runtime Registers nnnnn
Base Address for Shared Memory nnnnn
Interrupt Line nnnnn
Interrupt Pin nnnnn
Minimum Grant Period nnnnn
Maximum Latency Period nnnnn

Continue with “Attaching Network Cables to Your Adapter” on page 155.
Attaching Network Cables to Your Adapter

The following figure identifies the location of the four Ethernet connectors on the PeerMaster adapter. The top connector of each PeerMaster adapter is port 1; the bottom is port 4.

You can connect two types of network cables to a PeerMaster adapter: straight-through and crossover.

Use straight-through cables when connecting a PeerMaster adapter to an external 10Base-T concentrator hub.
Attaching Network Cables to Your Adapter

Use crossover cables to connect your PeerMaster adapter directly to another 10Base-T device, such as a workstation, server, or another adapter. Crossover cables create dedicated segments. A dedicated segment consists of two point-to-point devices connected to a dedicated link.

Attention:
To ensure proper operation of the PeerMaster adapter, do not externally join ports of PeerMaster adapters (using bridges, switches, or concentrators).
Chapter 5. Installing Options

This chapter provides instructions to help you add options to your server. Some option-removal instructions are provided, in case you need to remove one option to install another. If you have several internal options to install, these instructions enable you to add them all at one time. See “Installation Sequence” on page 184 for the required installation sequence for installing a combination of industry-standard architecture (ISA), extended industry-standard architecture (EISA), and peripheral component interconnect (PCI) adapters in your server.

This chapter contains:
Before You Begin 159
Moving the Server 160
Electrical Safety 161
Handling Static-Sensitive Devices 162
Preparing to Install Options 163
Installing Memory-Module Kits 169
Installing Adapters 180
 Considerations 181
 Installation Sequence 184
 Installation Procedure 185
Removing Adapters 192
Installing Internal Drives 197
 Considerations 200
 SCSI Drives 201
 Preinstallation Steps (All Bays) 204
 Installing a Drive in Bay B 207
 Installing a Drive in Bank C 216
 Installing a Drive in Bank D 221
 Installing a Drive in Bank E 233
Removing Internal Drives 241
 Removing a Drive from Bay B 242
 Removing a Drive from Bank C, D, or E 245
Changing Jumper Settings 249
Installing a Microprocessor 255
Security Procedures 262
 Security-Cover Option 263
 Installing a U-Bolt 264
Completing the Installation 266
<table>
<thead>
<tr>
<th>Connecting External Options</th>
<th>270</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding a Hot-Swap Storage Expansion Enclosure</td>
<td>270</td>
</tr>
<tr>
<td>Connecting External SCSI Devices</td>
<td>270</td>
</tr>
</tbody>
</table>
Before You Begin

Before You Begin

- If you have a disk-array model, you must configure your disk arrays after you install hard disk drives, as described in “Installing Internal Drives” on page 197. In this case, follow the instructions in Chapter 3, “Configuring the Disk Array” on page 77. After installing the drives. Return here to install your remaining options, if applicable. See Chapter 6, “Configuring Your Server” on page 279 for additional details about configuration, and a description of your server utility programs.

- Become familiar with the safety and handling guidelines specified under “Safety Information” on page ix, “Electrical Safety” on page 161, and “Handling Static-Sensitive Devices” on page 162. These guidelines will help you work safely while working with your server or options.
Moving the Server

CAUTION:
Due to the weight of the server, do not attempt to lift the server by yourself. To avoid risking possible injury, get another person to help you.

When the server is in the normal upright position, move it by lifting up on the handle and rolling it forward or backward, as shown. (A roller is built into the rear of the server base.)
Electrical Safety

CAUTION:
Electrical current from power, telephone, and communication cables can be hazardous. To avoid any shock hazard, disconnect all power cords and cables as described in the following information.

For your safety, always do the following before removing the cover:

1. Turn off the server and any attached devices, such as printers, monitors, and external drives.

 Notes:
 - If you are in the United Kingdom and have a modem or fax machine attached to your server, you must disconnect the telephone line from the server before unplugging any power cords (also known as power cables). When reassembling your server, you must reconnect the telephone line after you plug in the power cords.
 - The Power On/Off switch is located under a transparent cover on the right side of the server. Therefore, before you can turn off the server, you must lift this transparent cover to reach the Power On/Off switch and turn the server on or off.

2. Unplug all the power cords from electrical outlets.

3. Disconnect all communication cables from external receptacles.

4. Disconnect all cables and power cords from the back of the server.

 Note: Reconnect the cables or power cords only after you reassemble the server and put the covers back on.
Handling Static-Sensitive Devices

CAUTION:
Never remove the cover on the power supply. If you have a problem with the power supply, have your system serviced.

Handling Static-Sensitive Devices
Static electricity can seriously damage computer components and optional devices.

Attention: When you are adding an internal option, do not open the static-protective package that contains the option until you are instructed to do so.

When you handle options and other computer components, take these precautions to avoid damage from static electricity:

• Limit your movement. Movement can cause static electricity to build up around you.

• Always handle components carefully. Handle adapters and memory-module kits by the edges. Never touch any exposed circuitry.

• Prevent others from touching components.

• When you are installing a new option, touch the static-protective package containing the option to a metal expansion-slot screw or other unpainted metal surface on the server for at least 2 seconds. (This reduces static electricity from the package and from your body.)

• When possible, remove the option and install it directly into the server without setting the option down. When this is not possible, place the static-protective package that the option came in on a smooth, level surface and place the option on it.

• Do not place the option on the server covers or other metal surface.
Preparing to Install Options

Before you begin:

Be sure you have read “Electrical Safety” on page 161 and “Handling Static-Sensitive Devices” on page 162.

1. Unlock the door.
2. If you are installing options in the server:
 a. Rotate the key 180 degrees to the left.
 b. Swing the front cover to the left.
 c. If necessary, remove the front cover by lifting it up and off the hinge pins; then, store the cover in a safe place.
Preparing to Install Options

3. Remove all media (diskettes, CDs, optical discs, or tapes) from the drives; then, turn off the server and all attached options.

Note: To turn off the server, press the Power On/Off switch. The Power On/Off switch is located under a transparent cover on the right side of the front of the server. Therefore, before you can turn off the server, you must lift this transparent cover to reach the Power On/Off switch.

To avoid accidentally pressing the Power On/Off switch after you have turned the server off, return the transparent cover to its original position.
Preparing to Install Options

4. If you have a modem or fax machine attached to the server, disconnect the telephone line from the wall outlet.
Preparing to Install Options

5. Unplug all power cords (cables) from electrical outlets.

Note the locations of the following; then, disconnect them from the back of the server:

- Power cord
- Monitor cable
- Keyboard cable
- Any other cables and cords
6. If you did not already do so during setup, remove the cardboard packing material from the server.

7. Remove the side cover:
 a. Pivot the side cover away from the front of the server.
 b. Remove the cover by carefully lifting it up and off the hinges. Store it in a safe place.
Preparing to Install Options

What to do next?

- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive? — Go to “Installing Internal Drives” on page 197.
- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Installing Memory-Module Kits

Adding memory to your server is an easy way to make programs run faster. You can increase the amount of memory in your server by installing options called memory-module kits. Your server uses 72-pin, single-inline, Error Correcting Code on SIMM (EOS) memory modules. The EOS feature increases system reliability by detecting single-bit memory errors and correcting them in real time, without reducing system performance.

You install memory-module kits in connectors inside the server. Memory-module kits must be installed in pairs of the same size and speed. All models have eight memory connectors. You can install up to 256 MB of EOS memory in your server. The memory-module kit sizes available for your server are 16 MB and 32 MB. The correct speed for these kits is 70 ns.

Notes:

1. It is possible to install SIMMs in combinations where the total amount of installed memory does not appear on the memory configuration screen. In the unlikely event that this occurs, select the next lower setting on the memory configuration menu, and all of the installed memory will be supported on your server.

2. The PC Server 520 does not support memory expansion adapters.

3. Parity memory-module kits must not be used in combination with EOS memory-module kits.

Before you begin:

Be sure you have:

- Read “Electrical Safety” on page 161 and “Handling Static-Sensitive Devices” on page 162.
- Removed the server side cover (see “Preparing to Install Options” on page 163).
Installing Memory-Module Kits

The following illustration shows the memory-module connectors for all models.

1. Locate the memory connectors on the system board.

When you are instructed to install the kits (in step 4 on page 172), install them in pairs of adjacent memory connectors, with no vacant memory connectors in between. Each pair of connectors is a bank. Your server has four banks: 0, 1, 2, and 3. Your server is shipped with two memory-module kits installed in bank 0, located near the bottom of the system board. If additional memory is required, install two kits in bank 1, and then continue with banks 2 and 3, in that order. If you need to install kits of a different size in bank 0, remove the preinstalled kits as described in “Removing Memory-Module Kits” on page 175, and install two other kits as described in this section.

As a minimum, your server requires memory modules of the same size in bank 0. When you install memory-module kits in any given bank, all of the kits in that bank must be the same size.
Installing Memory-Module Kits

2. If necessary, disconnect the diskette cable 1 from the connector by pressing the plastic levers on each side of the cable.

3. Touch the static-protective package to any unpainted metal surface on the server. Then remove the memory-module kit from the package.
Installing Memory-Module Kits

4. Install the kit:

 Note: You must install the memory-module kits in pairs of the same size.

 a. Turn the memory-module kit so that the notched end is on the left.

 b. Insert the kit into the connector, downward at a 45-degree angle.

 c. Pivot the kit toward the bottom of the server, until it snaps into place.

 d. Repeat these steps for each kit that you install.
5. If you removed it, reconnect the diskette cable 1 to the connector.

6. Go to “Configuring Memory” on page 293 to reconfigure your PC Server 520. Then return here.

7. Go to Table 3 on page 379 to record the sizes of the memory-module kits and the connectors into which they are installed. Then return here and continue with “What to do next?” on page 174 to determine your next step.
Installing Memory-Module Kits

What to do next?

- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.

- Installing an adapter? — Go to “Installing Adapters” on page 180.

- Removing an adapter? — Go to “Removing Adapters” on page 192.

- Installing an internal drive? — Go to “Installing Internal Drives” on page 197.

- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.

- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.

- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.

- Installing or removing a security feature? — Go to “Security Procedures” on page 262.

- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.

- Installing an external option? — Go to “Connecting External Options” on page 270.
Removing Memory-Module Kits

Before you begin:

Be sure you have:

- Read “Electrical Safety” on page 161 and “Handling Static-Sensitive Devices” on page 162.
- Removed the server side cover (see “Preparing to Install Options” on page 163).

1. Locate the memory-module kit connectors and determine which memory-module kits you want to remove.

 Note: You must remove the memory-module kits in pairs, starting with the kits that are installed in the two bottom connectors (bank 0).
Removing Memory-Module Kits

2. If necessary, disconnect the diskette cable from the connector by pressing the plastic levers on each side of the cable.

![Diagram of diskette cable connection]

3. Remove the memory-module kit:
 a. Carefully press the two retainers on the connector outward.
 b. Pivot the kit forward and lift it out.
Removing Memory-Module Kits

4. Store any memory-module kits that you are no longer using in a static-protective package. Make a note of the kit size and speed for future reference.

5. If you are installing memory-module kits in the empty connectors, go to “Installing Memory-Module Kits” on page 169.

If you are not installing memory-module kits in the empty connectors, go to Table 3 on page 379 to update the memory information; then, return here.
Removing Memory-Module Kits

6. If you removed it, reconnect the diskette cable 1 to the connector.

7. Reinstall the cover (see “Completing the Installation” on page 266) and run the EISA Configuration program (see “Using the EISA Configuration Diskette” on page 295). The next time that you start the server, a message appears to indicate that memory has been added or removed.
Removing Memory-Module Kits

What to do next?

- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive? — Go to “Installing Internal Drives” on page 197.
- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Installing Adapters

Before you begin:

Be sure you have:

- Read “Electrical Safety” on page 161 and “Handling Static-Sensitive Devices” on page 162.
- Read the instructions that come with the adapter.
- Removed the server side cover (see “Preparing to Install Options” on page 163).

Your server has nine connectors called expansion slots. To locate the expansion slot numbers for your server, refer to the following illustration. The video adapter and the SCSI-2 adapter are installed in two of the slots.
Installing Adapters

The remaining slots are available for future expansion and growth. For example, you can add adapters to provide communication, specialized graphics, and sound. This extends the capabilities and power of your server. Many adapters provide bus-master capabilities, which enable the adapters to perform operations without interrupting the server's microprocessor.

Note: If you have four bus-master adapters, install them in slots 1, 2, 3, and 4. Slots 4, 5, and 6 share requests for system resources.

These expansion slots have Plug and Play capabilities. This feature requires a configuration file (.CFG) for each installed ISA adapter. See “Configuration Files” on page 289 for information about creating ISA Configuration files. When operating systems that support this feature become available, your server will automatically configure itself when you install ISA and PCI Plug and Play devices.

Considerations

Three types of adapters are available for your PC Server 520:

- ISA
- EISA
- PCI
Installing Adapters

- Review the documentation that comes with the adapter and follow those instructions in addition to the instructions given in this chapter. If you need to change the switch or jumper settings on your adapter, follow the instructions that come with the adapter documentation.

- Your server supports one monitor adapter. Your server comes with an SVGA monitor adapter preinstalled in EISA expansion slot 2.

- XGA adapters are not supported.

- You can install EISA or ISA adapters in EISA slots 1–6 only.

- You can install PCI adapters in PCI slots only.

- The bottom EISA slot and the top PCI slot are shared slots. That is, if you install an EISA or ISA adapter in the bottom EISA slot, you cannot install a PCI adapter in the top PCI slot, and vice versa. This means that only eight expansion slots can be occupied at any given time, although the server has nine expansion slots. Thus, your server has eight expansion slot covers, as shown in the following illustration.
Installing Adapters

- Your server comes with a half-length, SCSI-2 adapter preinstalled in one of the expansion slots.
 - If your server is a disk-array model, this adapter is an IBM PC ServeRAID Adapter, and it is preinstalled in the bottom PCI slot (PCI slot 3).
 - If your server is a non-disk-array model, this adapter is an IBM PC Server SCSI-2 Fast/Wide PCI Adapter, and it is preinstalled in a PCI slot.
 - If you are installing an additional PC ServeRAID Adapter, check the README file on your IBM PC ServeRAID Configuration Diskette for information regarding what you need to do.

- You can install full-length EISA or ISA adapters in EISA expansion slots 1–3.
- You can install full-length PCI adapters in PCI expansion slots 2 and 3.
- You can install half-length EISA and PCI adapters in the remaining expansion slots.
- Your PC Server 520 uses a rotational interrupt technique to configure PCI adapters. This technique enables you to install a variety of PCI adapters that currently do not support sharing of PCI interrupts.

Attention: To avoid possible damage to adapters and server components, be sure that the adapters you install do not touch each other or the components (such as the microprocessor) inside the server. For example, if the adapter that you are installing physically touches the microprocessor or another component, select a different expansion slot that can adequately accommodate the adapter.
Installing Adapters

Installation Sequence
To ensure that your server configures correctly, you must observe the following protocol if you install different types of adapters at the same time:

1. Install the ISA adapters.

 Note: Your PC Server 520 supports a new Plug and Play feature. This feature requires a configuration file (.CFG) for each installed ISA adapter. See “Configuration Files” on page 289.

2. Reinstall the cover (see “Completing the Installation” on page 266) and reconnect the cables (see step 4 on page 268).

3. Configure the ISA adapters (see “Configuring EISA, ISA, and PCI Adapters” on page 288).

 Note: ISA interrupts cannot be shared.

4. Disconnect the cables (see step 5 on page 166) and remove the cover (see “Preparing to Install Options” on page 163).

5. Install the EISA adapters.

6. Reinstall the cover (see “Completing the Installation” on page 266) and reconnect the cables (see step 4 on page 268).

7. Configure the EISA adapters by running the EISA Configuration program (see “Configuring EISA, ISA, and PCI Adapters” on page 288 and “Using the EISA Configuration Diskette” on page 295).

8. Disconnect the cables (see step 5 on page 166) and remove the cover (see “Preparing to Install Options” on page 163).

9. Install the PCI adapters.

10. Reinstall the cover (see “Completing the Installation” on page 266) and reconnect the cables (see step 4 on page 268).

 Note: During POST, your server automatically configures all currently installed ISA Plug and Play and PCI devices.

If you do not install and configure the adapters in this order, you might receive system configuration errors or encounter configuration conflicts. If a resource conflict occurs, resolve it by following the instructions in “Configuration Conflicts” on page 299.
Installing Adapters

Installation Procedure

1. Determine which expansion slot you will use for the adapter. The top six slots are for EISA or ISA adapters, and the bottom three slots are for PCI adapters. The bottom EISA slot and the top PCI slot together represent a shared slot. If you use one of these slots, you cannot use the other.

Check the instructions that come with the adapter for any requirements or restrictions. If there are no restrictions other than those listed in “Considerations” on page 181, you can use any empty EISA or PCI slot.
Installing Adapters

2. Remove the expansion-slot cover:
 a. Loosen and remove the screw on the top of the expansion-slot cover.
 b. Slide the expansion-slot cover out of the server.
 c. Store it in a safe place for future use.
3. If you are installing a full-length adapter or a half-length SCSI-2 adapter, disconnect the diskette cable [1] from the connector by pressing the plastic levers on each side of the cable.
Installing Adapters

4. Install the adapter:
 a. Carefully grasp the adapter and align it with the expansion slot.
 b. Press the adapter firmly into the expansion slot.
 c. Tighten the expansion-slot screw on the top of the adapter bracket.
5. If you removed it, reconnect the diskette cable 1 to the connector.

6. Go to Table 4 on page 380 or Table 5 on page 381 and write the adapter name next to the slot into which it is installed; then, return here.
Installing Adapters

Note: If you installed an ISA or EISA adapter, you must run the EISA Configuration program. See “Using the EISA Configuration Diskette” on page 295 for instructions on running this program.

Verifying Compatibility between Network Adapters and Device Drivers

If you are having trouble with the installation or operation of a network adapter using OS/2 for SMP 2.11 and OS/2 LAN Server 4.0, ensure that the network-adapter device driver supports dual processors.

Table 1 lists the network adapters and device drivers that support dual processors and have been verified to work with the IBM PC Server 520, OS/2 for SMP 2.11, and OS/2 LAN Server 4.0.

<table>
<thead>
<tr>
<th>Network Adapter</th>
<th>Device Driver</th>
<th>LAN Server 4.0 MPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Com TokenLink III EISA</td>
<td>IBMTOKMP.OS2</td>
<td>IBM SMP Token-Ring Network Adapter</td>
</tr>
<tr>
<td>3Com EtherLink II 3C503-16 ISA</td>
<td>ELNKII.OS2</td>
<td>3Com 3C503 EtherLink II Adapter</td>
</tr>
<tr>
<td>3Com EtherLink III EISA</td>
<td>ELNK3.OS2</td>
<td>3Com EtherLink III Family OS/2</td>
</tr>
<tr>
<td>3Com EtherLink III ISA</td>
<td>ELNK3.OS2</td>
<td>3Com EtherLink III Family OS/2</td>
</tr>
<tr>
<td>IBM Token-Ring Network 16/4 ISA</td>
<td>IBMTOKMP.OS2</td>
<td>IBM SMP Token-Ring Network Adapter</td>
</tr>
<tr>
<td>IBM Token-Ring 16/4 ISA-16</td>
<td>IBMTOKMP.OS2</td>
<td>IBM SMP Token-Ring Network Adapter</td>
</tr>
<tr>
<td>IBM LAN Adapter for Ethernet ISA</td>
<td>IBMENI.OS2</td>
<td>IBM LAN Adapter for Ethernet</td>
</tr>
<tr>
<td>Intel TokenExpress 16S ISA</td>
<td>OLITOK16.OS2</td>
<td>Use the network driver interface specification (NDIS) driver on the adapter diskette</td>
</tr>
<tr>
<td>Intel EtherExpress 16C ISA</td>
<td>EXP16.OS2</td>
<td>Intel EtherExpress 16 Family</td>
</tr>
<tr>
<td>SMC EtherCard Elite 16 Ultra ISA</td>
<td>SMC8000.OS2</td>
<td>Use the NDIS driver on the adapter diskette</td>
</tr>
</tbody>
</table>

Table 1. Network Adapters and Device Drivers for PC Server 520
Installing Adapters

If OS/2 LAN Server provides a device driver for your network adapter, use Table 1 on page 190 to determine the appropriate device driver to select during the installation process. If OS/2 LAN Server does not provide the device driver, use the NDIS device driver on the diskettes that come with the adapter. (Check the adapter documentation for installation instructions.)

What to do next?
- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive? — Go to “Installing Internal Drives” on page 197.
- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Removing Adapters

1. Remove the adapter:

 Note: If you are removing a PCI adapter, the screw is on the inside back of the server.

 a. If you are removing a full-length adapter or a half-length SCSI-2 adapter, disconnect the diskette cable from the connector by pressing the plastic levers on each side of the cable.

 b. Note the slot number of the adapter that you are removing.
 c. Loosen and remove the screw on top of the adapter bracket.
 d. If there are any internal cables attached to the adapter, disconnect them.
Removing Adapters

e. Deflect the card guide snap to release the front end of the adapter.
f. Carefully pull the adapter out of the slot.
Removing Adapters

2. If you are installing another adapter in this expansion slot, see “Installing Adapters” on page 180 for instructions.

If you are not installing another adapter in this expansion slot, replace the expansion-slot cover:

 a. Slide the cover over the open expansion slot.
 b. Tighten the expansion-slot screw on the top of the expansion-slot cover.
3. If you removed it, reconnect the diskette cable 1 to the connector.

4. Go to Table 4 on page 380 or Table 5 on page 381 and delete the name of the adapter that you removed; then, return here.

Note: If you removed an ISA or EISA adapter, you must run the EISA Configuration program. See "Using the EISA"
Removing Adapters

Configuration Diskette” on page 295 for instructions on running this program.

What to do next?

- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Installing an internal drive? — Go to “Installing Internal Drives” on page 197.
- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Installing Internal Drives

If you add different types of drives, your system can read different types of media and store more data. Several types of drives are available, such as:

- Diskette
- Hard disk
- Rewritable optical disc
- Tape

Your server has hardware that lets you replace a failed hard disk drive without turning off the server. Therefore, you have the advantage of continuing to operate your system while a hard disk drive is removed or installed. These drives are also known as hot-swap drives.

The hot-swap drive tray III for your server has a small switch that stops the movement of the disk drive. The tray also provides two LEDs (one green and one amber) to indicate the current state of the drive and tray.
Installing Internal Drives

The following table summarizes the LED states on your hot-swap tray and their meanings.

<table>
<thead>
<tr>
<th>Green</th>
<th>Amber</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Off</td>
<td>Drive tray is powered on; the hard disk drive is inactive; and the drive should not be removed.</td>
</tr>
<tr>
<td>Blinking</td>
<td>Off</td>
<td>The hard disk drive is inactive. The hot-swap drive can be removed safely.</td>
</tr>
<tr>
<td>On</td>
<td>On or Blinking</td>
<td>The hard disk drive is in use and should not be removed.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>The drive is defective, or no power is being supplied to the drive. The hot-swap drive can be removed safely.</td>
</tr>
</tbody>
</table>

Each hot-swap drive that you plan to install must have a hot-swap drive tray III attached. Trays are available for two drive types: narrow and wide. The narrow tray supports 8-bit drives; the wide tray supports 16-bit drives. Select the appropriate drive trays for your hot-swap drives. If necessary, contact your IBM reseller or IBM marketing representative to purchase the types of drive trays that you need.

Internal drives are installed in bays. A diskette drive and a CD-ROM drive are preinstalled in bay A in all models. A removable CD storage compartment is shipped in bay B1. You can install two drives in bay B. You can install hot-swap hard disk drives in banks C, D, and E only. Banks C, D, and E each contain The number of preinstalled hard disk drives in bank C varies according to the model that you purchased. You can install up to six drives in bank D and up to six drives in bank E.
Installing Internal Drives

In a disk-array model, you can use the SCSI output connector (daisy-chain connector) on the backplanes to serially link two adjacent backplanes in banks C, D, and E. When you connect two banks serially, each bank supports up to three half-high drives or six slim-high drives. When backplanes are daisy chained, you can control the hard disk drives in the banks with a single SCSI connector on the ServeRAID adapter. This allows you to support six half-high drives or 12 slim-high drives on a single SCSI-2 bus.

Note: The bank letter-designations are located on both vertical rails on the front of the server. The bay-slot numbers are located on the top of bank C and the bottom of bank E.

A cover plate (sometimes called a bezel or face plate) covers the front of bay B2 only. If you install a drive that uses removable media, such as diskettes, optical discs, or tapes, you might have to change this plate.
Installing Internal Drives

Considerations

- Bay A comes with one SCSI CD-ROM drive and one 3.5-inch, 1.44 MB diskette drive. Bay A supports one 5.25-inch and one 3.5-inch, half-high diskette-interface device.

- Bay B supports:
 - One 5.25-inch, full-high, removable-media or non-removable-media device, or
 - One 5.25-inch, half-high, removable-media device and one 3.5-inch, half-high or one-inch high, removable-media device, or
 - Two 3.5-inch or two 5.25-inch, slim-high or half-high, removable-media devices

- You cannot install hot-swap drives in bay B.

- PC Server 520 supports eighteen 3.5-inch, slim-high, hot-swap hard disk drives, or nine 3.5-inch, half-high hard disk drives in the bottom three banks (C, D, and E).

 Banks C, D, and E can accommodate six slim-high drives or three half-high drives, or a combination of both drive sizes. If you use a combination, remember that one half-high drive uses the equivalent space of two slim-high drives.

- If you install drives in bank D or E, you must remove the fan assembly on the rear of the server, install a direct access storage device (DASD) backplane in bank D or E, and have another power supply installed by your IBM service technician.

 (Instructions for removing the fan assembly and installing a backplane are given in “Installing a Drive in Bank D” on page 221.)

 You might need to install an additional SCSI-2 adapter.

 (Instructions are given in “Installing Adapters” on page 180.)

- Each backplane has six connectors, to support up to six hard disk drives.

- An address jumper is located on the rear of each backplane.

 You must set the jumpers on these backplanes as described in “Setting the Backplane Address Jumper (J2)” on page 251.
Installing Internal Drives

- A SCSI ID jumper (J12) is located on the rear of each backplane. When you daisy-chain two backplanes in a disk-array model, you must set the jumpers on these backplanes as described in “Setting Backplane SCSI ID Jumpers (J12)” on page 252.

- If the drive you are installing in a hot-swap tray has jumpers (for example, ID jumper), remove the jumper pin block from the drive.

SCSI Drives

Some drives have a special design called small computer system interface or SCSI. This design allows you to attach multiple drives to a single SCSI-2 adapter.

Note: Any information about SCSI drives also applies to other SCSI devices, such as scanners and printers.

The server comes with a SCSI-2 adapter. The number of preinstalled SCSI hard disk drives varies according to model. If you install additional SCSI devices, each SCSI device that is connected to the adapter needs a unique identification (ID) so that the SCSI-2 adapter can identify the devices and ensure that different devices do not attempt to transfer data at the same time. If you need to set IDs for SCSI devices, refer to the instructions that come with those devices.

Your server automatically sets SCSI IDs for hot-swap drives. These IDs are determined by the drive locations in the bays. The SCSI ID for the preinstalled CD-ROM drive in bay A is set to 6, and the SCSI ID for the SCSI-2 adapter is set to 7. The processing sequence for SCSI devices is set according to their IDs.

The SCSI-2 adapter has both internal and external ports. Depending on your server configuration, you can attach additional SCSI drives by chaining them (connecting them together with cables). Depending on the type of SCSI-2 adapter installed in your server, the adapter supports a total of 15 or 45 SCSI drives (internal and external). Refer to the User’s Reference for more information.
Installing Internal Drives

To configure the SCSI devices that you install in a non-disk-array model, use the SCSISelect utility program. See “Using the SCSISelect Utility Program” on page 303. For disk-array models, use the ServeRAID configuration program described in Chapter 3, “Configuring the Disk Array” on page 77.

There are two types of SCSI devices: wide and narrow. You must use 16-bit cables to attach wide devices. Use 8-bit cables to attach narrow devices. Wide device IDs can be set to any number from 0 to 15. Narrow devices can have their IDs set only from 0 to 7. The preinstalled CD-ROM drive in bay A is a narrow device.

Two devices on the same bus (internal or external) cannot have the same ID; however, your server can use the same ID for an internal device and an external device. The primary partitions on SCSI drives that are connected to the internal bus on a given adapter are assigned drive letters before the external drives that are connected to the same adapter are assigned drive letters. If multiple adapters are installed in your server, the drives that are connected to the adapter in the lowest number expansion slot are assigned drive letters first.
Installing Internal Drives

When SCSI devices are chained, both ends of the chain (cable) require a terminator. The purpose of these terminators is to ensure that the quality of the signal is maintained throughout the SCSI chain. If you attach SCSI devices (internal or external), you might need to terminate the last device in the chain.

Note: The backplanes automatically set termination for all the drives in the hot-swap bays.

The SCSI-2 adapter automatically adjusts for termination. (Refer to the instructions that come with the SCSI device for more information about terminators. Refer to the *User’s Reference* for additional information about your server SCSI subsystem.)

Note: Be sure to read the README file on the SCSI-2 Option Diskette for any last-minute updates.
Installing Internal Drives

Preinstallation Steps (All Bays)
Before you install drives in your server, verify that you have all of the cables, drive trays, and any other equipment specified in the documentation that comes with the drive. You might also need to perform certain preinstallation activities. Some of the steps are required only during the initial installation of an option. Refer to the following table.

<table>
<thead>
<tr>
<th>Required activity</th>
<th>Bay B</th>
<th>Bank C</th>
<th>Bank D</th>
<th>Bank E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preinstallation activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase hot-swap-drive trays</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Purchase and install backplane before installing first hot-swap drive</td>
<td>Not applicable</td>
<td>No(^1)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Purchase second power supply and have it installed</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes(^2)</td>
</tr>
</tbody>
</table>

Installation activities

<table>
<thead>
<tr>
<th>Installation activities</th>
<th>Bay B</th>
<th>Bank C</th>
<th>Bank D</th>
<th>Bank E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove fan assembly to attach cables before first use</td>
<td>Yes</td>
<td>No(^3)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:
1. Bank C comes with a preinstalled hot-swap backplane.
2. Another power supply must be installed by an IBM service technician (if not previously installed).
3. Bank C comes with a SCSI-2 cable that connects the SCSI-2 adapter to the SCSI-2 input connector on the backplane.

Before you begin:

Be sure you have:
- Read “Electrical Safety” on page 161 and “Handling Static-Sensitive Devices” on page 162.
- Read the documentation that comes with the internal drive.
- Opened the front cover. If you are installing or removing backplanes, cables, the fan assembly, and adapters, also remove the server side cover (see “Preparing to Install Options” on page 163).
Installing Internal Drives

Note: All internal drives in this server are mounted vertically.

1. Choose the bay in which you want to install the drive.

2. Touch the static-protective bag containing the drive to any unpainted metal surface on the server; then, remove the drive from the bag.

3. Check the instructions that come with the drive to see if you need to set any switches or jumpers on the drive, or if you need to attach a tray to the drive.

Notes:

- Automatic SCSI ID setting applies only to hot-swap hard disk drives. Therefore, if you install a non-hot-swap SCSI drive (in bay B only), you must set a SCSI ID for that drive.
- Remove the terminators from the drives that you plan to install in bay B. The cable that connects to bay B already has a terminator.
Installing Internal Drives

What to do next?
- To install a drive in bay B, go to “Installing a Drive in Bay B” on page 207.
- To install a drive in bank C, go to “Installing a Drive in Bank C” on page 216.
- To install a drive in bank D, go to “Installing a Drive in Bank D” on page 221.
- To install a drive in bank E, go to “Installing a Drive in Bank E” on page 233.
Installing Internal Drives

Installing a Drive in Bay B

Before you begin:

Be sure you have:

- Removed the side cover (see “Preparing to Install Options” on page 163).
- Prepared the drive for installation (see “Preinstallation Steps (All Bays)” on page 204).

The SCSI cabling that is supplied with your server supports a maximum of seven internal SCSI drives (including those in bay B and bank C, and the CD-ROM drive in bay A).

If you are installing a SCSI drive in bay B, and bank C contains six drives, you must install an additional SCSI cable, or remove a drive from bank C as described in “Removing a Drive from Bank C, D, or E” on page 245. If you remove a drive from bank C, remove one of the drives that has a low-number ID, starting with the drive in bank C, bay 1 (SCSI ID 0).

You can connect the drives in bay B to bank C or bank D. However, when you install slow devices such as tape drives in bay B, performance of the drives in bank C or D is affected. You might choose to connect these devices to a separate SCSI-2 adapter.
Installing Internal Drives

1. Each drive that you install in bay B must have a tray like that shown below. An extra tray is shipped in bay B; attach it to your drive. If your drive comes with a different tray, remove it and install the IBM tray.
2. If you are installing a drive in bay B1, remove the CD storage compartment.
Installing Internal Drives

3. Install the drive:
 a. Position the drive vertically, with the connectors facing the rear of the server.
 b. Align the drive with the guides on the bottom of the bay and slide it to the rear of the bay until it stops.
Installing Internal Drives

4. Slide the diskette drive and the CD-ROM drive forward. If you do not have enough room to connect the cables to the new drive, remove the fan assembly:
 a. Disconnect the fan assembly cable from the fan bracket.

 Attention: To avoid damage and ensure proper server operation, handle the fan assembly carefully.

 b. Remove the two screws that hold the fan assembly in place.
 c. Remove the fan assembly by sliding it up and pulling it out.
Installing Internal Drives

5. Connect the cables:

a. If you are installing a diskette drive, locate the flat cable behind bay A. The cable has two available diskette drive connectors. The diskette drive in bay A is already attached to the diskette drive cable. Attach the appropriate connector to your drive.

 ![Diagram of diskette drive installation]

 Note: Empty cable connectors have been omitted for clarity.

b. If you are installing a SCSI drive, locate the SCSI drive connector. (There is only one SCSI connector available.)

c. Attach the power cable connector to the 4-pin connector on the drive.
Installing Internal Drives

6. If you removed the fan assembly, reinstall it with the two screws that you removed in step 4 on page 211.
 Reconnect the fan assembly cable.

7. If you installed a removable-media drive in bay B2, remove the cover plate from the front cover by pushing it, gently, out of the front cover.
Installing Internal Drives

8. Go to Table 6 on page 384 to record the drive location and SCSI ID, if applicable (diskette-interface devices do not require a SCSI ID); then, return here to determine your next step.
Installing Internal Drives

What to do next?

- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive in bank C? — Go to “Installing a Drive in Bank C” on page 216.
- Installing an internal drive in bank D? — Go to “Installing a Drive in Bank D” on page 221.
- Installing an internal drive in bank E? — Go to “Installing a Drive in Bank E” on page 233.
- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Installing Internal Drives

Installing a Drive in Bank C

Before you begin:

Be sure you have:

- Purchased a hot-swap-drive tray for each hot-swap drive that you plan to install.
- Prepared the drive for installation (see “Preinstallation Steps (All Bays)” on page 204).
- Opened the front cover (see “Preparing to Install Options” on page 163)

If you are also installing or removing backplanes, cables, the fan assembly, and adapters, be sure that you have:

- Removed the side cover (see “Preparing to Install Options” on page 163)
- Ensured that the backplane address jumper J2 is set to “C.”

Notes:

- Banks C, D, and E support hot-swap drives only.
- If your server is a disk-array model, you must reconfigure your disk arrays after you install hard disk drives. See “Starting the ServeRAID Configuration Program” on page 86 for details.
- You do not have to turn off the server to install additional hot-swap drives in bank C.

Attention: Before you hot-swap a drive, make sure it is defective. If you partially or completely remove a good drive instead of a defective one, your server might lose valuable data.

- If you have a SCSI drive in bay B, you can have up to five drives in bank C that are connected to the same SCSI cable. If no SCSI drive is in bay B, you can have up to six drives in bank C.
Installing Internal Drives

1. Each drive that you plan to install in bank C and connect to a hot-swap backplane must have a hot-swap drive tray attached. If your drive has a different tray attached, remove it and attach the appropriate drive tray to your drive. Follow the instructions in the kit that contains the hot-swap drive tray.

2. Install the hard disk drive:
 a. Move the tray knob to the open position.

 ![Unlocked Position]

 b. Position the drive tray assembly vertically, with the connector facing the rear of the server.
Installing Internal Drives

c. Align the side of the tray with the raised guides on the bottom of the bay. (Note the arrows pointing toward the backs of the bays.)

d. Slide the tray to the rear of the bay until it stops. Be sure it is connected properly to the backplane.

e. Move the tray knob to the locked position.
Installing Internal Drives

Note: If you turned on the server before installing the drive, the green light on the front of the drive tray illuminates, indicating that the drive was installed correctly.

3. Go to Table 6 on page 384 to record the drive location and the SCSI ID that is assigned to the drive (see “SCSI Drives” on page 201 for details); then, return here to determine your next step.

Note: If your server is a disk-array model, you must reconfigure your disk arrays after you install hard disk drives. See “Starting the ServeRAID Configuration Program” on page 86 for details.
What to do next?

- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive in bay B? — Go to “Installing a Drive in Bay B” on page 207.
- Installing an internal drive in bank D? — Go to “Installing a Drive in Bank D” on page 221.
- Installing an internal drive in bank E? — Go to “Installing a Drive in Bank E” on page 233.
- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Installing Internal Drives

Installing a Drive in Bank D

Before you begin:

Be sure you have:

- Purchased a hot-swap-drive tray for each hot-swap drive that you plan to install and prepared the drive for installation (see “Preinstallation Steps (All Bays)” on page 204).

- Opened the front cover (see “Preparing to Install Options” on page 163). If you are installing or removing backplanes, cables, the fan assembly, and adapters, also remove the side cover.

- Contacted an IBM reseller or IBM marketing representative to order an additional 220-watt power supply for you, or replace the existing power supply with an PC Server 780W Redundant Power Option. Contact an IBM service technician to install the power supply.

- Purchased a hot-swap backplane to be installed at the rear of bank D, as described in step 5 on page 224. (To order the backplane, contact your IBM reseller or IBM marketing representative.)

- Ensured that the backplane address jumper J2 is set to “D.”

- Removed the cardboard packing material from bank D.
Installing Internal Drives

Notes:

- Banks C, D, and E support hot-swap drives only.

- For non-disk-array models, you might need to install an additional SCSI-2 adapter. To order this adapter, contact your IBM reseller or IBM marketing representative.

- In a disk-array model, banks C and D or D and E can be daisy chained or linked together into a single SCSI-2 bus using the “daisy chain option” cable. However, the SCSI ID jumper (J12) on one backplane must be set to HI. (See the table under “Setting Backplane SCSI ID Jumpers (J12)” on page 252.)

- You can install up to three half-high drives or six slim-high drives in each of banks C, D, and E.

- If you have a SCSI drive in bay B, you can have up to five drives in bank D that are connected to the same SCSI cable. If there is no SCSI drive in bay B, you can install up to six drives in bank D.

- After the backplane is installed, you do not have to turn off the server to install hot-swap drives in bank D. However, you must turn off the server when performing the steps that involve installing or removing backplanes, cables, the fan assembly, and adapters.
Installing Internal Drives

If the fan assembly is installed, you must remove it before you can install the backplane in the rear of bank D.

1. Disconnect the fan assembly cable from the fan bracket.

 Attention: To avoid damage and ensure proper server operation, handle the fan assembly carefully.

2. Remove the two screws that hold the fan assembly in place.

3. Remove the fan assembly by sliding it up and pulling it out.
Installing Internal Drives

4. Make sure that the address jumper on the back of the backplane is set to D (see “Setting the Backplane Address Jumper (J2)” on page 251).

5. Install the backplane at the rear of bank D:
 a. Align the top screw hole on the left side of the backplane with the top screw hole on the left side of bank D, making sure the bumps on the backplane line up with the holes on the frame of the server.
 b. Secure the backplane with one screw, as shown.
 c. Install a power cable that connects the backplane to the additional power supply.
Installing Internal Drives

The SCSI-2 cable connectors on the rear of the backplane are shown in the following illustration. The SCSI ID address jumper on the backplane determines the SCSI IDs for the hot-swap drives in Bank D. See “Setting Backplane SCSI ID Jumpers (J12)” on page 252 for more information.

6. If your server is a disk-array model, go to step 10 on page 226 for cabling instructions. If your server is a non-disk-array model, continue with step 7.

7. If your server is a non-disk-array model, you might need to install an additional SCSI-2 adapter. If this is the case, refer to “Installing Adapters” on page 180 for installation instructions; otherwise, then, continue with step 8.

8. Refer to the following information for help in connecting the cables properly.

- **Example 1:** In the original cable routing in a non-disk-array model, a cable connects the CD-ROM drive to the SCSI-2 output connector on the bank C backplane. The SCSI-2 input connector on the bank C backplane connects to the internal 16-bit connector on the SCSI-2 adapter. A DASD status cable (also known as a system status cable) connects the adapter to the backplane in bank C.

- **Example 2:** A backplane is installed in bank D in a non-disk-array model; two SCSI-2 adapters are installed in PCI slots. A SCSI cable connects the CD-ROM drive to the SCSI-2 output connector on the bank C backplane. Separate SCSI cables connect the SCSI-2 input connectors on the backplanes in banks C and D to the internal 16-bit SCSI-2 connectors on the SCSI-2 adapters. In this example, you can also connect external devices to the external connectors on the SCSI-2 adapters. A DASD status cable (also known as a system status cable) connects the adapter to the backplanes in banks C and D.
Installing Internal Drives

10. If you have a disk-array model, an IBM PC ServeRAID Adapter is installed in your server. You can connect internal SCSI drives to the Channel 1, Channel 2, or Channel 3 connector on the top of the adapter. By default, the SCSI cable connects the SCSI-2 input connector on the bank C backplane to the Channel 3 connector on the ServeRAID adapter.

![Diagram of ServeRAID Adapter](image)

11. If you are connecting bank C serially to bank D in the server (daisy-chaining banks C and D), attach a SCSI-2 cable from the daisy-chain connector on bank C to the SCSI-2 connector on bank D.

Notes:

- Bank C can connect to either bay B or to the backplane in bank D. If bank C is connected to bay B, it cannot be connected to bank D.

- When you daisy chain two banks in a disk-array model, you must start the ServeRAID configuration program and specify which channel the banks are connected to. You must also define the SCSI IDs for each bank as LO or HI. (See “Changing the ServeRAID Adapter Parameters” on page 130 for more information.)
12. Refer to the following information for help in connecting the cables properly in a disk-array model.

- **Example 1:** In the original cable routing in a disk-array model, the backplane in bank C is cabled to Channel 3 on a ServeRAID adapter. A DASD status cable (also known as a system status cable) connects the adapter to the backplane.

- **Example 2:** A SCSI cable connects the adapter Channel 3 to the backplane in bank C; a second SCSI cable connects Channel 2 to the backplane in bank D. The external connector on Channel 1 is available for connecting external devices. A DASD status cable connects the adapter to the backplanes in banks C and D.

- **Example 3:** A SCSI cable connects the CD-ROM drive to the system board. A daisy-chain cable connects the input connector on the bank D backplane to the output connector on the bank C backplane. A SCSI cable connects the input connector on the bank C backplane to Channel 3 on the ServeRAID adapter. A DASD status cable (also known as a system status cable) connects the adapter to the backplanes in banks C and D. Channel 1 on the ServeRAID adapter is available for connecting external devices.

13. Connect the LED cable to connector J4 on the ServeRAID adapter.
14. Each drive that you plan to install in bank D must have a hot-swap-drive tray attached. If your drive comes with a different tray, remove it and attach the appropriate hot-swap-drive tray to your drive. Follow the instructions in the kit that contains the hot-swap-drive tray.

15. Reinstall the fan assembly that you removed in step 3 on page 223.

16. Reinstall the fan assembly screws that you removed in step 2 on page 223.

17. Reconnect the fan assembly cable that you disconnected in step 1 on page 223.
18. Install the hard disk drive in bank D:
 a. Move the tray knob to the open position.

 b. Position the drive tray assembly vertically, with the connector facing the rear of the server.

 c. Align the side of the tray with the raised guides on the bottom of the bay. (Note the arrows pointing towards the backs of the bays.)

 d. Slide the drive tray to the rear of the bay until it connects to the backplane. Be sure it is connected properly to the backplane.
Installing Internal Drives

e. Move the tray knob to the locked position.

Note: If you turned on the server before installing the drive, the green light on the front of the drive tray illuminates, indicating that the drive was installed correctly.
19. Go to Table 6 on page 384 to record the drive location and the SCSI ID that is assigned to the drive (see “SCSI Drives” on page 201 for details); then, return here to determine your next step.

Note: If your server is a disk-array model, you must reconfigure your disk arrays after you install hard disk drives. See “Starting the ServeRAID Configuration Program” on page 86 for details.
Installing Internal Drives

What to do next?

- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive in bay B? — Go to “Installing a Drive in Bay B” on page 207.
- Installing an internal drive in bank C? — Go to “Installing a Drive in Bank C” on page 216.
- Installing an internal drive in bank E? — Go to “Installing a Drive in Bank E” on page 233.
- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Installing Internal Drives

Installing a Drive in Bank E

Before you begin:

Be sure you have:

- Purchased a hot-swap drive tray III for each hot-swap drive that you plan to install and prepared the drive for installation (see “Preinstallation Steps (All Bays)” on page 204).

- Removed the side cover (see “Preparing to Install Options” on page 163).

- Removed the cardboard packing material from bank E.

You must also order a hot-swap backplane and install it at the rear of bank E. (To order the backplane, contact your IBM reseller or IBM marketing representative.)

- Contacted your IBM service technician to have another power supply installed (if it has not already been installed for bank D).

- Ensured that the backplane address jumper J2 is set to “E” (see “Setting the Backplane Address Jumper (J2)” on page 251).
Installing Internal Drives

Notes:

- Banks C, D, and E support hot-swap drives only.

- If your server is a disk-array model and you have drives installed in banks C and D, and attached to the external SCSI-2 connector, you must install an additional SCSI-2 adapter. If you have a non-disk-array model, you might need to install an additional SCSI-2 adapter. (See “Installing Adapters” on page 180 for instructions.)

- You can install up to three half-high hot-swap drive IIIIs in each of banks C, D, and E.

- In a disk-array model, banks C and D or D and E can be daisy chained or linked together into a single SCSI-2 bus using the “daisy chain option” cable. However, the SCSI ID jumper (J12) on one backplane must be set to HI. (See “Setting Backplane SCSI ID Jumpers (J12)” on page 252.)

- After the backplane is completely installed, you do not have to turn off the server to install hot-swap drives in bank E. However, you must turn off the server when performing the steps that involve installing or removing adapters, backplanes, cables, and the fan assembly.
Installing Internal Drives

1. If required for your server, install an additional SCSI-2 adapter in one of the empty expansion slots (see “Installing Adapters” on page 180).

If the fan assembly is installed, you must remove it before you can install the backplane at the rear of bank E.

2. Disconnect the fan assembly cable from the fan bracket.

 Attention: To avoid damage and ensure proper server operation, handle the fan assembly carefully. Remove the two screws that hold the fan assembly in place. Remove the fan assembly. (See steps 1 through 3 on page 223).

3. Make sure that the address jumper on the back of the backplane is set to E. See “Setting the Backplane Address Jumper (J2)” on page 251.

 Note: When you daisy chain two banks in a disk-array model, you must start the ServeRAID configuration program and specify which channel the banks are connected to, and the SCSI ID setting for each bank. (See “Changing the ServeRAID Adapter Parameters” on page 130 for more information on defining the Bank Mapping. See “Setting Backplane SCSI ID Jumpers (J12)” on page 252 for instructions on setting the SCSI ID jumpers.)

4. Install the backplane at the rear of bank E (see step 5 on page 224).

5. Install a power cable that connects the backplane to the additional power supply.

6. Connect a SCSI cable from the SCSI-2 adapter to the new backplane.

 Use one of the following examples to help you route the cables properly.
Installing Internal Drives

- **Example 1**: A non-disk-array model contains drives in bay B, and banks C, D, and E.

 A 16-bit SCSI cable connects the drive in Bay B to the CD-ROM drive, then to the output connector on the backplane in bank C. An internal SCSI cable connects the input connector on the backplane in bank C to the internal 16-bit SCSI-2 connector on one SCSI-2 adapter. Internal SCSI cables connect the SCSI-2 input connectors on the backplanes in bank D and bank E to the other SCSI-2 adapters. A DASD status cable (also known as a system status cable) connects to the backplanes in banks C, D, and E.

- **Example 2**: A disk-array model uses separate SCSI cables to connect from the ServeRAID adapter in a PCI expansion slot to banks C, D, and E. The DASD status cable (also known as a system status cable) connects the adapter to the backplane in bank C, and continues to the DASD status connector on the backplanes in bank D and bank E.

 In this example, you cannot connect external devices to the ServeRAID adapter. Instead, you must install a second ServeRAID adapter to support external devices.

- **Example 3**: A cable connects the CD-ROM drive and a tape drive installed in bay B of a disk-array model to the output connector on the bank C backplane. A cable connects the input connector on the bank C backplane to Channel 3 on the ServeRAID adapter. A daisy-chain cable connects the input connector on the bank D backplane to the output connector on the bank E backplane; the backplane in bank E is set to HI. A SCSI cable connects the input connector on the bank E backplane to Channel 2 on the ServeRAID adapter. Banks D and E contain three half-high drives each. The DASD status cable connects the adapter to the backplane in bank C, and continues to the DASD status connector on the backplanes in bank D and bank E.

 In this example, you can connect external devices to the external connector on the ServeRAID adapter.
7. Reinstall the fan assembly that you removed in step 2 on page 235 (see step 15 on page 228).

8. Reinstall the screws that you removed in step 2 on page 235.

9. Reconnect the fan assembly cable that you disconnected in step 2 on page 235.
Installing Internal Drives

10. Each drive that you plan to install in bank E must have a hot-swap-drive tray attached. If your drive comes with a different tray, remove it and attach the appropriate hot-swap-drive tray to your drive. Follow the instructions in the kit that contains the hot-swap-drive tray.

11. Install the hard disk drive in bank E (see step 18 on page 229 for detailed instructions).

Note: If you turned on the server before installing the drive, the light on the knob of the drive tray illuminates, indicating that the drive was installed correctly.
12. Go to Table 6 on page 384 to record the drive location and the SCSI ID that is assigned to the drive (see “SCSI Drives” on page 201 for details); then, return here to determine your next step.

Note: If your server is a disk-array model, you must reconfigure your disk arrays after you install hard disk drives. See “Starting the ServeRAID Configuration Program” on page 86 for details.
Installing Internal Drives

What to do next?

- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive in bay B? — Go to “Installing a Drive in Bay B” on page 207.
- Installing an internal drive in bank C? — Go to “Installing a Drive in Bank C” on page 216.
- Installing an internal drive in bank D? — Go to “Installing a Drive in Bank D” on page 221.
- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Removing Internal Drives

Before you begin:

Be sure you have:

- Read “Electrical Safety” on page 161 and “Handling Static-Sensitive Devices” on page 162.
- Opened the front cover, and if necessary, removed the side cover (see “Preparing to Install Options” on page 163).
- Determined the correct location of a failed hard disk drive. If you have a disk-array model, see “Logical and Hard Disk Drive Status Indications” on page 111 for additional information.

To remove a drive from bay B, go to “Removing a Drive from Bay B” on page 242.

To remove a drive from bank C, D, or E, go to “Removing a Drive from Bank C, D, or E” on page 245.
Removing Internal Drives

Removing a Drive from Bay B

Note: To locate bay B, see the illustration given under “Removing Internal Drives” on page 241.

To remove a drive from bay B, do the following steps:

1. Find the drive that you plan to remove.
2. Slide the drive halfway out of the front of the bay.
3. Disconnect the appropriate cables from the back of the drive.
4. Remove the drive from the bay. Store the drive in a safe place.
5. If you are not installing another removable media drive in the bay, replace the cover plate. A cover plate (complete bezel) was removed from the server front cover when you installed the drive. Insert the cover plate by pushing it, gently, into the front cover.

a. You can adjust the size of the cover plate as shown in the following illustration.
Removing Internal Drives

b. Press the cover plate into place in the front cover.

6. What to do next?

- If you are removing another internal drive from bay B, return to step 1 on page 242.
- If you are installing another internal drive in bay B, go to step 1 on page 205.
- If you are removing an internal drive from bank C, D, or E, go to “Removing a Drive from Bank C, D, or E” on page 245.
- If you are not installing or removing another internal drive, continue with the next step.
Removing Internal Drives

7. Go to Table 6 on page 384 and update the drive information; then, return here to determine your next step.

What to do next?
- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive? — Go to “Installing Internal Drives” on page 197.
- Removing an internal drive from bank C, D, or E? — Go to “Removing a Drive from Bank C, D, or E” on page 245.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Removing Internal Drives

Removing a Drive from Bank C, D, or E

Notes:

- To locate banks C, D, and E, see the illustration given under “Removing Internal Drives” on page 241.
- You do not have to turn off the server to remove a drive from banks C, D, and E.

Hot-swap drives have two lights on the front of the tray that contains the drive. If the drive has a good electrical connection upon installation, the green light illuminates.

The following table summarizes the LED states and their meanings.

<table>
<thead>
<tr>
<th>Green</th>
<th>Amber</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Off</td>
<td>Drive tray is powered on; the hard disk drive is inactive; and the drive should not be removed.</td>
</tr>
<tr>
<td>Blinking</td>
<td>Off</td>
<td>The hard disk drive is inactive. The hot-swap drive can be removed safely.</td>
</tr>
<tr>
<td>On</td>
<td>On or Blinking</td>
<td>The hard disk drive is in use, and should not be removed.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>The drive is defective, or no power is being supplied to the drive. The hot-swap drive can be removed safely.</td>
</tr>
</tbody>
</table>

Attention: Before you hot-swap a drive, make sure it is defective. If you partially or completely remove a good drive instead of a defective one, your server might lose valuable data.

Thoroughly review the information that appears on your server display to determine the location of the failed drive.

If you partially or completely remove a good drive instead of the defective one, your server might lose valuable data. This situation is especially relevant if you assigned RAID level 1 or 5 to the logical drives in your disk array. However, the RAID controller can rebuild the data that you need, provided that certain conditions are met. See Chapter 3, “Configuring the Disk Array” on page 77 for further details.
Removing Internal Drives

To remove a drive from bank C, D, or E, do the following steps:

1. Find the defective drive that you plan to remove.
2. Ensure that you have selected the correct drive for removal.
 Attention: Before you hot-swap a drive, make sure it is defective. If you partially or completely remove a good drive instead of a defective one, your server might lose valuable data.
3. Press the power-off switch on the drive tray. When the green LED begins to blink, it is safe to remove the drive.
4. Unlock the drive by turning the knob clockwise 90 degrees.

5. Disconnect the drive from the connector on the backplane, by grasping the handle on the drive tray and pulling the drive out of the server. Store the drive in a safe place.
Removing Internal Drives

Note: If you have a disk-array model, you must reconfigure your disk arrays after you remove hard disk drives. See “Starting the ServeRAID Configuration Program” on page 86 for details.

6. What to do next?

- If you are removing another hot-swap drive, return to step 1 on page 246.

- If you are installing another internal drive in bank C, D, or E, slide the drive vertically into the target bay until it connects to the backplane, and move the knob on the drive tray to the locked position. If you need details about installing an internal drive, go to step 1 on page 205.

- If you are not installing or removing another internal drive, continue with the next step.

7. Go to Table 6 on page 384 and update the drive information; then, return here to determine your next step.
What to do next?

- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive? — Go to “Installing Internal Drives” on page 197.
- Removing an internal drive from bay B? — Go to “Removing a Drive from Bay B” on page 242.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Changing Jumper Settings

The system board and the system-board jumper settings for your model appear on a label inside your server. These values are preset. If you need to change them, follow the instructions given in “How to Set Jumpers.” You will see the label when you remove the cover. (To remove the cover, go to “Preparing to Install Options” on page 163.)

You might also need to change jumper settings on other devices, including adapters and backplanes. Refer to the documentation that comes with the devices for specific information about the appropriate jumper settings.

How to Set Jumpers

A jumper covers pins on a pin block and might be positioned to the left or to the right. The jumper setting depends on which pins are covered. For example, on the three-pin administrator password jumper, you cover the left and center pins to set the change state.

Jumper positions are indicated on the system board with the jumper location identifier (for example, “J1”) and the “0” or “1” symbol. The following illustration shows a jumper on a pin block being moved from position 0 to position 1. The orientation and labels for the jumpers on your system board might be different from those shown here.
Changing Jumper Settings

The following illustration shows a jumper being placed over two pins on a four-pin block.

To change a jumper setting:
1. Lift the jumper straight up off the pin block.
2. Slide the jumper down over the correct pins.
Changing Jumper Settings

Setting the Backplane Address Jumper (J2)
A pin block with three pairs of pins is located on the rear of each backplane in banks C, D, and E. If more than one backplane is installed in your server, each backplane address jumper must have a unique setting to identify the backplane location within the server. This ensures proper server operation.

Locate the address jumper on the rear of the backplane, as shown in the following figure; then, read the table below to determine the setting for your system configuration.

<table>
<thead>
<tr>
<th>Jumper Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Address for a backplane installed in Bank E</td>
</tr>
<tr>
<td>D</td>
<td>Address for a backplane installed in Bank D</td>
</tr>
<tr>
<td>C</td>
<td>Address for a backplane installed in Bank C</td>
</tr>
</tbody>
</table>
Changing Jumper Settings

Setting Backplane SCSI ID Jumpers (J12)
The SCSI ID address jumper, a pin block with four pairs of pins (J12), is located on the rear of the backplanes in banks C, D, and E. The default, no jumper installed, sets the addresses to LO.

Each of the 16-bit SCSI connectors on the ServeRAID adapter and on the system board supports up to 15 devices. Thus, each supports SCSI IDs of 0 through 14.

When you daisy-chain two backplanes in a disk-array model, one backplane address jumper (for example, Bank C) must be set to LO, defining the SCSI IDs as 0 through 5. The backplane that is daisy-chained to Bank C (in this example, bank D) must be set to HI, defining the SCSI IDs as 8 through 13.

The following table summarizes the jumper settings for the SCSI ID jumper (J12).

<table>
<thead>
<tr>
<th>Jumper Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J12 2 4 6 8</td>
<td>No jumper installed, sets SCSI IDs to low, starting from 0 (bay 1) to 5 (bay 6). This is the default setting for Bank C.</td>
</tr>
<tr>
<td>J12 3 5 7</td>
<td>Sets SCSI IDs to high, starting from 8 (bay 1) to 13 (bay 6). Use this setting when you daisy-chain two banks, or when your configuration requires you to define some of the hot-swap drives with high IDs.</td>
</tr>
</tbody>
</table>
For example, suppose you install three half-high drives in both banks D and E of a disk-array model. Each half-high drive occupies two bays in the bank, thus covering two of the connectors on the backplane. The drive tray connects to the leftmost of the two connectors. Before you connect the banks with a daisy-chain cable, you must set the SCSI ID jumper (J12) on bank E to HI.

The following illustrations show the SCSI connectors, viewed from the front of the server. The jumper on backplane D is set to LO, the default. The half-high drives in bank D will have their SCSI IDs set to 0, 2, and 4.

The jumper on backplane E is set to HI. The half-high drives in Bank E will have their SCSI IDs set to 8, 10, and 12.

Note: When you view configuration screens for the ServeRAID adapter, remember that the Bay Number in the Bay/Array selection list corresponds to the SCSI ID number plus 1. Thus, a hard disk drive with SCSI ID 8 is found in the leftmost drive bay; the drive state is shown in Bay 9.

SCSI devices may also have jumpers. The jumpers on the devices must be removed when the devices are placed in hot-swap trays. For more information, see “SCSI Drives” on page 201.
Changing Jumper Settings

What to do next?

- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive? — Go to “Installing Internal Drives” on page 197.
- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.
- Installing a microprocessor? — Go to “Installing a Microprocessor” on page 255.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Installing a Microprocessor

You can install a second microprocessor in your PC Server 520. This microprocessor works with the Pentium microprocessor of the same speed that is in your PC Server 520.

After you install the second microprocessor, your PC Server 520 can operate as an SMP server. With SMP, certain operating systems and application programs can distribute the processing load between the two microprocessors. This enhances performance for applications, such as database transactions, graphics or computer-aided design (CAD) programs, and modeling or simulation programs.

Before you begin:

Be sure you have:

- Read “Electrical Safety” on page 161 and “Handling Static-Sensitive Devices” on page 162.
- Removed the side cover (see “Preparing to Install Options” on page 163).
- Obtained the Processor Upgrade Option Kit.
- Obtained one of the following operating systems (optional) at the specified release level:
 - IBM OS/2 for Symmetrical Multiprocessing Version 2.11 (OS/2 2.11 for SMP) or later
 - Microsoft Windows NT 3.5 or later
 - Novell NetWare 4.1 for SMP
- Located the documentation that comes with your server and operating system.
- Reviewed the system-board label and verified that both microprocessors have the same clock speed, and that the microprocessor-speed jumpers are set to that speed.
Installing a Microprocessor

Notes:

- The illustrations in this section might differ slightly from your hardware.
- Install the microprocessor before you install OS/2 2.11 for SMP. If you have already installed OS/2 2.11 for SMP, you must add the statement `PSD=OS2APIC.PSD` to the `CONFIG.SYS` file, or reinstall OS/2 2.11 for SMP.

1. Refer to the label inside the cover of your PC Server to locate the primary and secondary microprocessor sockets and the microprocessor-speed jumpers on the system board. Your server comes with a microprocessor preinstalled in the primary socket. Therefore, you will install the new microprocessor in the secondary socket (also known as an upgrade socket).

 Note: Both microprocessors must have the same speed to ensure proper server operation.

2. Remove the microprocessor from the static-protective bag. Locate the notch (beveled corner) on the microprocessor.

3. Lift the latch on the secondary socket.

4. Carefully align the notch (beveled corner) of the microprocessor with the notch (beveled corner) on the socket.
5. Center the microprocessor over the socket.

6. Carefully put the microprocessor into place. Ensure that the pins on the microprocessor align with the holes in the socket.

Attention: Do not force the pins into the socket. If you feel any resistance, remove the microprocessor and check the orientation and alignment.
Installing a Microprocessor

7. Note the heat-sink clip that comes with the microprocessor, and match it to one of the following figures.
 - If it is the top clip, go to step 8.
 - If it is the bottom clip, go to step 12 on page 259.

8. Move the latch downward until the microprocessor is completely locked into the socket. Make sure the latch is in the fully closed position.

9. Position the heat-sink clip over the flange, as shown.
 Note: Make sure that the tab on the heat-sink clip faces away from the middle of the two sockets.
Installing a Microprocessor

10. Clip one end of the heat-sink clip over the flange. Then, place the clip on top of the heat sink and press down until it is secure on both sides of the socket.

12. Move the latch downward until the microprocessor is completely locked into the socket. Make sure the latch is in the fully closed position.
Installing a Microprocessor

13. Push down on one of the rounded ends of the heat-sink clip until it catches under the flange. Then, do the same to the other end of the heat-sink clip to lock the microprocessor into position.

14. Push down on one of the rounded ends of the heat-sink clip until it catches under the flange. Then, do the same to the other end of the heat-sink clip to lock the microprocessor into position.

15. If you have no other options to install, replace the cover on the server (see “Completing the Installation” on page 266) and reconnect the cables and power cord (see step 4 on page 268).

16. Because you installed a new microprocessor in your server, you might want to upgrade your operating system. You must update your server configuration.

 a. Install one of the operating systems that is listed at the beginning of this section. Follow the instructions in your operating system-documentation and review the software and operating system-considerations in Chapter 2, “Installing Software” on page 21.

 b. Run the Setup program. See “Using the Setup Program” on page 281 for instructions.

 c. If applicable, record your updated configuration information in the appropriate tables in “Installed Device Records” on page 378. Then, return here to determine your next step.
Installing a Microprocessor

What to do next?
- Installing memory-module kits? — Go to “Installing Memory-Module Kits” on page 169.
- Removing memory-module kits? — Go to “Removing Memory-Module Kits” on page 175.
- Installing an adapter? — Go to “Installing Adapters” on page 180.
- Removing an adapter? — Go to “Removing Adapters” on page 192.
- Installing an internal drive? — Go to “Installing Internal Drives” on page 197.
- Removing an internal drive? — Go to “Removing Internal Drives” on page 241.
- Setting a jumper? — Go to “Changing Jumper Settings” on page 249.
- Installing or removing a security feature? — Go to “Security Procedures” on page 262.
- No internal devices to install or remove? — Go to “Completing the Installation” on page 266.
- Installing an external option? — Go to “Connecting External Options” on page 270.
Security Procedures

Your server is equipped with security features to help prevent theft or unauthorized use of your server. Your User’s Reference contains a complete explanation of these features. To use or change some of these features, you might need to remove the server cover.

Two types of system passwords are available to prevent unauthorized access to your server. These are the supervisor and user passwords. They are described in detail in your User’s Reference. To set or change these passwords, follow the instructions given in “Setting Passwords” on page 283.
Security Procedures

Security-Cover Option

For additional security, you might want to control access to the cables and cable connectors on your server. The optional IBM PC Server Security Cover restricts cable access while creating a sleek, streamlined profile. This optional cable cover also protects your server identification numbers, which are located on a label. Your User’s Reference describes this feature. Instructions for installing this option are in a separate booklet that comes with the security-cover option. If you want to purchase this option, contact your IBM reseller or IBM marketing representative for additional information.
Installing a U-Bolt

Before you begin:

Be sure you have:

- Obtained a 19 mm (3/4 in.) U-bolt or wire rope (similar to National Manufacturing No. 3230, STK No. 176-735).
- Obtained a security cable.
- Obtained a lock, such as a combination lock or padlock.
- Read “Electrical Safety” on page 161 and “Handling Static-Sensitive Devices” on page 162.
- Removed the server side cover (see “Preparing to Install Options” on page 163).

1. Install the U-bolt:

 a. Locate the two holes for the U-bolt in the rear panel of the server.
b. Insert the U-bolt through the holes and secure it in place with the nuts.

2. Reinstall the server side and front covers, and attach the cables (see “Completing the Installation” on page 266).

3. Insert the security cable through the U-bolt. Loop the cable around (or through) an object from which it cannot be removed; then, fasten the cable ends together with the lock.
Completing the Installation

1. Reinstall the side cover:
 a. Align the pins on the rear of the side cover with the two hinges on the rear of the server. Open the side cover to a 90-degree angle.
 b. Slide the side cover down.
 c. Push the side cover to close it.
Completing the Installation

2. If you removed the front cover, reinstall it:

 Note: Before installing the front cover, verify that the side cover is installed correctly. If the side cover is not properly installed, the front cover will not align correctly when you attempt to install it.

 a. Align the hinges on the front cover with the pins on the server.

 b. Slide the door down.

3. Close and lock the door.

 Attention: Be sure to maintain a clearance of at least 51 mm (2 inches) on all sides of the server to allow for air circulation.
Completing the Installation

4. Connect all cables to the back of the server, then plug all power cords into properly grounded electrical outlets.

Note: If you are in the United Kingdom and have a modem or fax machine attached to your server, reconnect the telephone line *after* you plug in the power cords.
Completing the Installation

What to do next?

• Installing an external option? — Go to “Connecting External Options” on page 270.

• No external options to install?
 – If you installed options during the initial setup of your server, go to Chapter 2, “Installing Software” on page 21 to complete the installation procedure. Then return here.
 – If you installed hot-swap drives, you might need to update your server configuration parameters.
 If your server is a disk-array model, go to Chapter 3, “Configuring the Disk Array” on page 77 to see if you need to update your RAID configuration information, and then go to Chapter 6, “Configuring Your Server” on page 279 for additional details about configuration.
 If your server is a non-disk-array model, go to Chapter 6, “Configuring Your Server” on page 279 to see if you need to configure your server.
 – If you removed memory modules or internal drives, you must run the Setup program. See “Using the Setup Program” on page 281 for instructions.
 – If you removed an ISA or EISA adapter, you must run the EISA Configuration program. See “Using the EISA Configuration Diskette” on page 295 for instructions.
 – Device drivers to install? (The instructions that come with the option will tell you if device drivers are required and how to install them.) If you do not need to install any device drivers or configure the system, your server is ready to use.
Connecting External Options

Before you begin:

Be sure you have read “Electrical Safety” on page 161 and “Handling Static-Sensitive Devices” on page 162.

To connect external options (printer, scanner, SCSI devices, and so on) to your PC Server 520, see the documentation that comes with the options.

Adding a Hot-Swap Storage Expansion Enclosure

The IBM PC Server Enterprise Expansion Enclosure is one of several SCSI storage enclosures that you can attach to the external SCSI-2 connector on your server. Contact your IBM reseller or IBM marketing representative for additional information.

Connecting External SCSI Devices

Note: If you plan to install both internal and external SCSI devices, you must follow the instructions given in “SCSI Drives” on page 201 in addition to the instructions in this section. Read “SCSI Drives,” and then return here.
Connecting External Options

If you plan to install external SCSI devices, you must order an additional SCSI cable. That is, to use external devices with the PC Server 520, you must connect them to the external SCSI-2 connector, using a SCSI cable. This SCSI cable must have the proper connector for the SCSI-2 external connector on one end, and the proper connector for the first external device on the other end.

The SCSI-2 adapter for disk-array models has three channels, each of which supports up to 15 devices. You can use all three channels to support internal devices. If you want to connect external devices, you can connect them to Channel 1, and connect internal devices to Channels 2 and 3.

The SCSI-2 adapter for non-disk-array models can support a total of 15 devices. If your server has seven internal devices, the SCSI-2 adapter can support up to seven external devices.

Note: You cannot use both internal connectors on the SCSI-2 adapter and also use the external connector. You cannot use the internal channel 1 connector and the external connector at the same time. If you intend to use the external connector, connect internal SCSI-2 devices to the internal channel 2 connector. Refer to the following illustration.

Termination Requirements
The requirements for terminating external SCSI devices are:

- If you attach both internal and external SCSI devices, you must terminate the last internal device and the last external device.

For non-disk-array models, you must also change the
Connecting External Options

termination setting of the SCSI-2 adapter in the SCSISelect utility program, as described in “Using the SCSISelect Utility Program” on page 303, so that the SCSI-2 adapter is no longer terminated.

- If you attach only external devices to the SCSI-2 adapter, you must terminate the last device on the cable. If you install only one external device, it must be terminated. Since the SCSI-2 adapter is already terminated, do not change the termination setting.

Cabling Requirements

If you plan to install external SCSI devices, you must order an additional SCSI cable. That is, to use external devices with the PC Server 520, you must connect them to the SCSI-2 adapter, using a SCSI cable. Before you install external SCSI devices, you must have the correct external SCSI cables. See Table 2 on page 273 for information on cable lengths. The cables must have the proper connector for the SCSI-2 adapter on one end, and the proper connector for the first external device on the other end. To select and order the correct cables for use with external devices, contact your IBM reseller or IBM marketing representative.

The SCSI-2 Fast/Wide PCI Adapter can support a total of 15 devices and the PC ServeRAID Adapter can support a total of 45 devices. However, you must not exceed the maximum cable lengths listed in Table 2 on page 273.

If you are using a SCSI data transfer rate greater than 5 MB per second, the maximum length of the SCSI bus (cable) must not exceed 3 meters (9.8 feet). If you are using a SCSI data transfer rate of 5 MB per second or slower, the maximum length of the SCSI bus cable must not exceed 6 meters (19.7 feet). These lengths apply to the combined lengths of the internal and external cables. Adhering to these standards ensures that your server operates properly.
Connecting External Options

The following table shows the maximum cable lengths for connecting SCSI devices, based on data-transmission rates.

Note: The maximum cable length for an external cable is determined by subtracting the length of the internal cable being used from the maximum length of SCSI cable that can be used based on the speed of the data transfer.

<table>
<thead>
<tr>
<th>5 MB Per Second or Slower Data Transmission Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: Maximum cable length – internal cable length = external cable length.</td>
</tr>
<tr>
<td>Maximum Length of SCSI cable = 6 meters (19.7 ft.)</td>
</tr>
<tr>
<td>Length of SCSI narrow cable = 1 meter (3.3 ft.)</td>
</tr>
<tr>
<td>Length of SCSI Fast/Wide cable = 1.5 meters (4.9 ft.)</td>
</tr>
<tr>
<td>When a narrow internal cable is used, the maximum length of the SCSI external cable = 5 meters (16.4 ft.)</td>
</tr>
<tr>
<td>6 meters – 1 meter = 5 meters, or</td>
</tr>
<tr>
<td>19.7 ft. – 3.3 ft. = 16.4 ft.</td>
</tr>
<tr>
<td>When a Fast/Wide internal cable is used, the maximum length of the SCSI external cable = 4.5 meters (14.8 ft.)</td>
</tr>
<tr>
<td>6 meters – 1.5 meters = 4.5 meters, or</td>
</tr>
<tr>
<td>19.7 ft. – 4.9 ft. = 14.8 ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greater Than 5 MB Per Second Data Transmission Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: Maximum cable length – internal cable length = external cable length.</td>
</tr>
<tr>
<td>Maximum Length of SCSI cable = 3 meters (9.8 ft.)</td>
</tr>
<tr>
<td>Length of SCSI narrow cable = 1 meter (3.3 ft.)</td>
</tr>
<tr>
<td>Length of SCSI Fast/Wide cable = 1.5 meters (4.9 ft.)</td>
</tr>
<tr>
<td>When a narrow internal cable is used, the maximum length of the SCSI external cable = 2 meters (6.5 ft.)</td>
</tr>
<tr>
<td>3 meters – 1 meter = 2 meters, or</td>
</tr>
<tr>
<td>9.8 ft. – 3.3 ft. = 6.5 ft.</td>
</tr>
<tr>
<td>When a Fast/Wide internal cable is used, the maximum length of the SCSI external cable = 1.5 meters (4.9 ft.)</td>
</tr>
<tr>
<td>3 meters – 1.5 meters = 1.5 meters, or</td>
</tr>
<tr>
<td>9.8 ft. – 4.9 ft. = 4.9 ft.</td>
</tr>
</tbody>
</table>

Table 2. Maximum External SCSI Cable Lengths
Connecting External Options

Setting SCSI IDs for External Devices
The internal channel connectors and the external channel connector on the PC ServeRAID Adapter accept SCSI IDs from 0 through 14.
(You cannot use the internal Channel 1 connector when you use the external connector.) Each device that is attached to the external channel connector must have a unique SCSI ID, and each device that is attached to the internal channel connector must have a unique SCSI ID.

For example, you can have a SCSI ID of 0 for a device that is attached to the channel 1 connector, and a SCSI ID of 0 for a device that is attached to the channel 2 connector of the same PC ServeRAID Adapter. However, you cannot have a SCSI ID of 0 for two devices that are attached to the same channel connector.

Note: Read the README file on the ServeRAID Configuration diskette for updated information. Select Option Diskette from the first menu screen.

You must set a unique SCSI ID for each external SCSI device that is connected to the SCSI-2 adapter, so that the SCSI-2 adapter can identify the devices and ensure that different devices do not attempt to transfer data at the same time. Therefore, do not set the SCSI IDs for external devices to the values that you use for internal devices. (See “SCSI Drives” on page 201 for additional SCSI IDs.) Refer to the instructions that come with the SCSI devices for more information about setting a SCSI ID.

Your server automatically sets SCSI IDs for hot-swap drives. These IDs are determined by the drive locations in the bays. The SCSI ID for the preinstalled CD-ROM drive in bay A is set to 6, and the SCSI ID for the SCSI-2 adapter is set to 7. The processing sequence for SCSI devices is set according to their IDs.

Note: If you install a second SCSI-2 adapter, you can use the same SCSI IDs that you use for the preinstalled SCSI-2 adapter.
Connecting External Options

Installation Procedure
To attach an external device:

1. Turn off the server and all attached devices.

 Note: To turn off the server, press the Power On/Off switch. The Power On/Off switch is located under a transparent cover on the right side of the front of the server. Therefore, before you can turn off the server, you must lift this transparent cover to reach the Power On/Off switch.

 To avoid accidentally pressing the Power On/Off switch after you have turned the server off, return the transparent cover to its original position.

2. Follow the instructions that come with the option to prepare it for installation and to connect it to the server.
3. Go to Table 7 on page 385 to record the type of external device that you installed and the location into which it is installed; then, go to “What to do next?” on page 277 to determine your next step.
Connecting External Options

What to do next?

- If you installed options during the initial setup of your server, go to Chapter 2, “Installing Software” on page 21 to complete the installation procedure. Then return here.

- If you installed hot-swap drives, you might need to update your server configuration parameters.

 If your server is a disk-array model, go to Chapter 3, “Configuring the Disk Array” on page 77 to see if you need to update your RAID configuration information; then, go to Chapter 6, “Configuring Your Server” on page 279 for additional details about configuration.

 If your server is a non-disk-array model, go to Chapter 6, “Configuring Your Server” on page 279 to see if you need to configure your server.

- If you removed memory modules or internal drives, you must run the Setup program. See “Using the Setup Program” on page 281 for instructions.

- If you installed or removed an ISA or EISA adapter, you must run the EISA Configuration program. See Chapter 6, “Configuring Your Server” on page 279 for instructions.

- Device drivers to install? (The instructions that come with the option will tell you if device drivers are required and how to install them.) If you do not need to install any device drivers or configure the system, your server is ready to use.
Connecting External Options
Chapter 6. Configuring Your Server

This chapter provides information about each of the configuration and utility programs that come with your server, as well as instructions that tell you when and how to use them.

For information about configuring the IBM PC ServeRAID Adapter, see “Starting the ServeRAID Configuration Program” on page 86.

This chapter contains:

<table>
<thead>
<tr>
<th>Configuration Overview</th>
<th>280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the Setup Program</td>
<td>281</td>
</tr>
<tr>
<td>Changing Settings</td>
<td>281</td>
</tr>
<tr>
<td>Starting the Setup Program</td>
<td>282</td>
</tr>
<tr>
<td>Recording and Restoring Default Settings</td>
<td>283</td>
</tr>
<tr>
<td>Setting Passwords</td>
<td>283</td>
</tr>
<tr>
<td>Setting the Selectable Drive-Startup Sequence</td>
<td>287</td>
</tr>
<tr>
<td>Configuring EISA, ISA, and PCI Adapters</td>
<td>288</td>
</tr>
<tr>
<td>Configuring ISA or EISA Features and Options</td>
<td>289</td>
</tr>
<tr>
<td>Configuring PCI Features and Options</td>
<td>293</td>
</tr>
<tr>
<td>Configuring Memory</td>
<td>293</td>
</tr>
<tr>
<td>Using the EISA Configuration Diskette</td>
<td>295</td>
</tr>
<tr>
<td>Backing Up the EISA Configuration Diskette</td>
<td>295</td>
</tr>
<tr>
<td>Making Menu Selections</td>
<td>295</td>
</tr>
<tr>
<td>Recording EISA Configuration Settings</td>
<td>297</td>
</tr>
<tr>
<td>Starting the EISA Configuration Diskette</td>
<td>297</td>
</tr>
<tr>
<td>Using the Advanced Functions</td>
<td>298</td>
</tr>
<tr>
<td>Configuration Conflicts</td>
<td>299</td>
</tr>
<tr>
<td>Resolving Hardware Configuration Conflicts</td>
<td>300</td>
</tr>
<tr>
<td>Resolving Software Configuration Conflicts</td>
<td>301</td>
</tr>
<tr>
<td>Using the SCISISelect Utility Program</td>
<td>303</td>
</tr>
<tr>
<td>Starting the SCISISelect Utility Program</td>
<td>303</td>
</tr>
<tr>
<td>SCISISelect Utility Program Options</td>
<td>303</td>
</tr>
</tbody>
</table>
Configuration Overview

You play a key role in how your server allocates resources to organize and interconnect hardware devices and software programs. This allocation process is referred to as configuration. The steps required to configure your server depend on the number and variety of devices and programs that you install.

Your server has the flexibility and power to support several types of adapters. This flexibility lets you choose from among thousands of adapters and devices that comply with any of the following standards:

- Peripheral Component Interconnect (PCI)
- Extended Industry Standard Architecture (EISA)
- Industry Standard Architecture (ISA)

In general, the greater the number and variety of hardware devices and software programs you install in your server, the more you will have to interact with your server and your devices to correctly configure your system.

Three hardware configuration utility programs come with your server. The built-in Setup program configures system board functions, such as the serial and parallel port assignments. It also allows you to set passwords for starting up and accessing the Setup program. Use the PC Server 520 EISA Configuration Diskette to configure EISA and ISA adapters (boards). For non-disk-array models, use the built-in SCSI-2 adapter utility program (SCSISelect Utility program) to configure the SCSI devices that you install in your server. For disk-array models, use the program that is provided on the ServeRAID Configuration diskette.
Using the Setup Program

The built-in Setup program is used for system board configuration. The configuration information is stored in the nonvolatile random-access memory (NVRAM). In most cases, the server operates using the default settings, and you need to change the settings only to resolve configuration conflicts or to enable or change device function (for example, defining diskette drive types).

Review this section and the information that came with the device before making changes. Also, record the current settings (see “Recording and Restoring Default Settings” on page 283) before making any changes.

Changing Settings

You can advance through the screens by pressing the Page Up (PgUp) or Page Down (PgDn) key. Use the Up Arrow (↑) or Down Arrow (↓) key to advance through the items on the screen. Change selections by first advancing to the item that you want to change; then, use the plus key (+) or minus key (−) to make the change.

Online Help information is available on the right side of the screen for each selection. To access menu-bar selections within the Setup program, use the Right Arrow (→) or Left Arrow (←) key.

The Setup program consists of the following menu bar selections:

Main: Use the Main selection to set the System Time and Date. This menu also allows you to view or change configuration settings for diskette drives, memory, video, and cache.

Advanced: The Advanced selection allows you to enable boot (startup) options, to set up integrated peripherals, and to enable the Plug and Play O/S (operating system) feature.

Attention: Be sure to set the correct values for your server. Otherwise, your server might not operate properly.
Setup Program

Security: Use the Security selection to set a supervisor-level password to control access to the Setup program, or to set a password on boot (startup). Also, use this menu selection to control diskette drive access to a supervisor, user, or both. This selection also allows you to write-protect the boot sector of a hard disk drive. Write-protecting the boot sector is a form of virus protection.

Help: When you scroll to any screen choice, the Item Specific Help panel displays alongside the choices. General help information is available by pressing F1.

Starting the Setup Program

To access the Setup program:

1. Remove all diskettes from the server.

 Note: Do not start the Setup program while you are using the EISA Configuration program.

2. Turn on the server and watch the screen. Be ready to act quickly.

3. After the IBM logo screen appears and then quickly disappears, you are prompted to Press <F2> to enter SETUP. As soon as you see that prompt, press F2. If the Setup program screen does not appear, restart your system and try again.

 Note: If a configuration error occurs, a prompt appears before the operating system starts (see “Configuration Conflicts” on page 299).

4. Follow the instructions on the screen to view or change the configuration.

 You must correctly exit from the Setup program to save the configuration information.

5. Press Esc or move the cursor to the Exit option on the menu bar.

6. Select Exit from the menu bar.

7. Select Save Changes and Exit.
Recording and Restoring Default Settings
If you have a printer attached to your server, you can use the Print Screen key to print the configuration settings. The default settings are helpful when you install additional options, or if you need to have your system serviced. Also, record the new settings each time that you make changes. Be sure to record the current configuration settings in “Installed Device Records” on page 378. You can restore default settings easily by using the Setup program.

To restore default settings:
1. Turn on the server.
2. Press F2 to enter the Setup program.
3. Press F9 to restore the default settings.
4. Select Exit from the menu bar.
5. Select Save Changes and Exit.

Setting Passwords
To control access to your server, you can implement several of the security measures described in your User’s Reference, including password protection. Two types of passwords are available with the PC Server 520. These are the supervisor and user passwords. To set these passwords and other security features, select the Security menu bar from the Setup program and follow the instructions on the screen.

Note: The default values for all security-related data fields are given in Table 3 on page 379.

After you set the supervisor password, Enter password appears on the screen each time that you attempt to access the Setup program. After you set the user password, Enter password appears on the screen each time you attempt to access your operating system. (The passwords do not appear on the screen as you type them.) If you enter the wrong password, Invalid password appears on the screen, and Enter password appears again. After three incorrect attempts, you must turn off the server and start again.
Setup Program

Supervisor Password
The supervisor password allows you to control who has access to the Setup program. If a supervisor password is set, you must enter it to use the Setup program. Only someone who knows the supervisor password can change it.

Before you can set a supervisor password, you must first set your selectable drive-startup sequence, as described in “Setting the Selectable Drive-Startup Sequence” on page 287.

Attention: If a supervisor password is set and then forgotten, it cannot be overridden or removed. If you forget your supervisor password, you must place a service call to regain access to your server.

Note: To remove a supervisor password, press Enter when the Enter new password data field is blank.

To set a supervisor password:

1. Start the Setup program.
2. Select Set Supervisor Password from the Security menu screen.

 The Set Supervisor Password screen appears.
3. Type a password in the Enter new password data field.

 Note: You can use any combination of up to seven characters (A–Z, a–z, and 0–9) for your supervisor password. For additional security, the user and supervisor passwords should not be the same. Keep a record of your password in a secure place.
4. Press Enter.

 The cursor moves to the Re-enter new password data field.
5. To verify that you typed the correct password, type the password in the Re-enter new password data field. If you did not type the correct password, a warning message appears. Press Enter to return to the Enter new password data field. Return to step 3.
6. If you typed the correct password, press Enter to save it.
The password becomes effective immediately after you enter it.
After you set the supervisor password, you are prompted to enter it each time that you attempt to start the Setup program.

User Password
You do not need to set a user password, but a password helps to protect the information that you store in your server. The user password controls access to your operating system and the information stored on your hard disk drives.

Note: Before setting the user password, you must set the supervisor password.

To set a user password:
1. Start the Setup program.
 The Set User Password screen appears.
3. Type the password in the Enter new password data field.
 Note: You can use any combination of up to seven characters (A–Z, a–z, and 0–9) for your user password. For additional security, the user and supervisor passwords should not be the same. Keep a record of your password in a secure place.
4. Press Enter.
 The cursor moves to the Re-enter new password data field.
5. To verify that you typed the new password correctly, type the password in the Re-enter new password data field. If you did not type the correct password, a warning message appears. Press Enter to return to the Enter new password data field. Return to step 3.
6. If you typed the correct password, press Enter it.

The password becomes effective immediately after you enter it. You are prompted to enter the user password each time you start your operating system, after POST occurs.
Setup Program

Password on Boot
Your server comes with the Password on boot feature set to **Disabled**. If you enable this feature, you must enter a password each time you start the system. To enable this feature:

1. Start the Setup program.
2. Select the Security menu option.
3. Type either your supervisor or user password in the **Password on boot** data field.

Diskette Drive Access
The setting for this option controls who has access to the diskette drives (user and supervisor, or supervisor only). Your server is shipped with this feature set to **User**, so that both the user and supervisor have diskette drive access. To change this setting so that only the supervisor has access, select the Security menu option and enter the word **Supervisor** in the **Diskette access** data field. If the supervisor and user passwords are enabled, only the supervisor can change this setting.

Fixed Disk Boot Sector
The setting for this option indicates whether the boot sector of your hard disk is write-protected. Write-protecting the boot sector helps to prevent viruses from corrupting your hard disk. (See your User’s Reference for additional information about viruses.) Your server is shipped with this feature set to **Normal**. To change this setting so that the disk is write-protected, select the Security menu option and enter **Write Protect** in the **Fixed disk boot sector** data field. If the supervisor and user passwords are enabled, only the supervisor can change this setting.
Setting the Selectable Drive-Startup Sequence

Selectable drive startup (referred to as Boot Sequence on the Advanced Setup program screen, under the Boot Options choice) allows you to control the startup sequence of the drives in your server. Each time you turn on the server, it checks the drives as it looks for the operating system. The order in which the system checks the drives is the drive-startup sequence.

In most cases, you do not need to change the default drive-startup sequence. However, you might want to do so if you are working with multiple operating systems, or diskette drives of different sizes.

The default drive-startup sequence first checks the primary diskette drive for a self-starting (bootable) diskette. If one is present, the operating system or program is loaded from the diskette. If not, the system then checks the primary hard disk for an operating system. If one is present, it loads the operating system from that hard disk.

If you start the system from a diskette, the drive that contains the diskette becomes drive A, regardless of the defined sequence, and the first hard disk that you select in the startup sequence becomes drive C.

If you elect to switch the startup sequence of the diskette drives, use the Swap Floppies selection.

To change the startup sequence:

1. Turn on the server. Be ready to act quickly.
2. After the IBM logo screen appears and then quickly disappears, you are prompted to Press <F2> to enter SETUP. As soon as you see that prompt, press F2. If the Setup program screen does not appear, restart your system and try again.
3. Press the right cursor key to go to the Advanced menu of the Setup program.
4. Select Boot Options; then, follow the instructions on the screen.
Configuring EISA, ISA, and PCI Adapters

Before installing a new device or program, read the documentation that came with it. Reading the instructions helps you to determine the steps that are required for installation and configuration. The following list provides a preview of the actions that might be required to configure your server.

When installing different types of adapters at the same time, install and configure them in the following sequence:

1. ISA
2. EISA
3. PCI

Note: During POST, your server automatically configures ISA Plug and Play and PCI devices.

1. Run the Setup program and record the current configuration settings.
 See “Starting the Setup Program” on page 282.
2. Backup the EISA Configuration Diskette.
 See “Backing Up the EISA Configuration Diskette” on page 295.
3. Start the EISA Configuration Diskette and:
 a. Record the current settings.
 b. Install configuration files (.CFG).
 Note: If the .CFG files didn't come with the adapter, see “Configuration Files” on page 289.
 See “Recording EISA Configuration Settings” on page 297 and “Starting the EISA Configuration Diskette” on page 297.
4. Set jumpers or switches on the server system board.
 See “Changing Jumper Settings” on page 249.
5. Set jumpers or switches on the device.
 See the instructions that came with the adapter.
6. Install the adapter in the server.
 See “Installing Adapters” on page 180.

7. Install software programs.
 See the installation instructions that came with the software.

8. Resolve configuration conflicts.
 See “Configuration Conflicts” on page 299.

Configuring ISA or EISA Features and Options

Some ISA and most EISA devices come with option diskettes. These diskettes can contain any or all of the following types of information:

- Configuration files (.CFG)
- Diagnostic files (.DGS)
- Device drivers
- Sample applications (mini-applications)

Configuration Files

A configuration file is required to configure the server for ISA or EISA adapters. You have to copy this configuration file, which has a file-name extension of .CFG, from the device diskette to the EISA Configuration Diskette before installing the device in the server. The configuration file reserves the system resources that the adapter needs to function properly.

Some ISA adapters come with a diskette that contains the CFG file for the adapter. If you want to install ISA adapters that did not come with their own CFG files, you must use your PC Server 520 EISA Configuration Diskette to create a unique CFG file for each adapter.

Note: The unique .CFG files are slot sensitive. That is, they should not be used to configure identical adapters in multiple systems unless you install the adapters in the same expansion slots within each system.
ISA/EISA Configuration

To create a unique CFG file for an ISA adapter:

1. Insert the IBM PC Server 520 EISA Configuration Diskette into diskette drive A.

2. Start the configuration utility program.

3. At the main menu, select Step 2, **Add or remove boards**.

4. At the next menu, select the slot in which you installed the adapter.

5. At the next screen, select **OK**.

6. At the next screen, press **F5**; then, select **Create .CFG file**.

7. Press **Enter**.

8. At the Create a board CFG file screen, type in the adapter manufacturer and description (for example, IBM Token Ring); then press **Enter**.

9. Refer to the adapter documentation for information about specific configuration parameters (such as IRQ or DMA channel) required for the adapter. Then, follow the instructions on the screen to enter the appropriate parameters on the menu.

Note:

a. Normally, ISA adapters do not use every parameter. Most adapters require only a port address.

b. The SVGA video adapter in your server requires specific memory and I/O address assignments to function properly. To avoid configuration conflicts, do not assign the following SVGA memory and I/O addresses to other adapters or options in your server:

 - Memory address space:
 A000H – C7FFH

 - I/O address spaces:
 02E0h – 02EFh
 03B0h – 03Dh
 46E8h

10. After you type in all of the appropriate parameters, press **F10**.
11. At the next screen, carefully verify that the information is correct; then, press Enter.

12. At the Add Confirmation window, press Enter again.

13. In the next window (add), press Enter.

 The adapter description appears in the selected slot.

14. Verify the installation; then press F10.

15. At the next menu, select Save and exit the configuration utility.

 Note: PCI devices do not require .CFG files.

Diagnostic Files
The Diagnostic program that comes with your server is the primary method of testing the server. Some optional devices and adapters come with option-specific diagnostic files. These files provide a more specialized test of the option. “Installing Additional Test Programs” on page 360 provides additional information about installing and using diagnostic files. Also, refer to the documentation that came with the option for information on installing and running option-specific diagnostics.

Device Drivers
Device drivers are programs designed to support a specific type of hardware device. They provide instructions that enable the computer to interact with the device, or to take advantage of a device's special feature. The device driver might ship with the operating system, the application program, or on the option diskette. Not all devices require device drivers. Refer to the documentation that came with the option for additional information.
ISA/EISA Configuration

Sample Applications
Some optional devices provide small applications or sampler files. These applications demonstrate the capabilities of the device and serve as software examples for programming the device. Refer to the documentation that came with the option for additional information.

To configure your server for an ISA or EISA adapter:

1. Read the documentation that came with the adapter.
2. Copy any files with the extension of .CFG from the option diskette to the EISA Configuration Diskette. See “Configuration Files” on page 289 for important information about configuring ISA adapters.
3. Start the EISA Configuration Diskette (see “Starting the EISA Configuration Diskette” on page 297).
4. Record the new configuration information (see “Recording EISA Configuration Settings” on page 297).
5. Save the new configuration settings to the EISA Configuration Diskette and to the NVRAM (see “Starting the EISA Configuration Diskette” on page 297).
6. Set any jumpers or switches on the adapter.
7. Install the adapter in the server (see “Installing Adapters” on page 180).
Configuring Memory

Configuring PCI Features and Options
PCI devices automatically communicate with the server configuration information. This usually results in automatic configuration of a PCI device. If a conflict does occur, see “Configuration Conflicts” on page 299.

Assigning Interrupt Levels
Your PC Server 520 uses a rotational interrupt technique to configure PCI adapters. This technique enables you to install a variety of PCI adapters that currently do not support sharing of PCI interrupts.

Always use the backup copy of the IBM PC Server 520 EISA Configuration Diskette when assigning interrupts for EISA and ISA adapters. You cannot assign an EISA or ISA adapter the same interrupt that you have assigned to a PCI adapter. This is because the PC Server 520 does not support interrupt sharing among PCI, EISA, and ISA adapters.

If a situation occurs where you need an additional interrupt, you can use an interrupt from another function that you might not need, such as COM2 (Interrupt 3).

Configuring Memory
After you add (or remove) extended memory, you must update the EISA Configuration Diskette.

Note: Not performing the following procedure could result in memory errors, and in your operating system not recognizing your added (or removed) memory.

1. Start the EISA Configuration Diskette (see “Starting the EISA Configuration Diskette” on page 297).
2. Select Step 3, **View or edit details.** The system information appears.
3. Under **Advanced System Feature Setup,** select **Total System Memory.**
Configuring Memory

4. Select the correct amount of memory; then, press F10.

 Note: It is possible to install single-inline memory modules (SIMMs) in combinations where the total amount of installed memory does not appear on the memory configuration screen. In the unlikely event that this occurs, select the next lower setting on the memory configuration menu, and all of the installed memory will be supported on your server.

5. Return to the Main Menu, save the configuration, and exit from the utility program.
Using the EISA Configuration Diskette

You must use the EISA Configuration Diskette anytime you want to change resource allocations, such as:

- Adding or removing devices
- Moving devices
- Changing device function
- Resolving conflicts
- Adding or removing PCI adapters

Each time you use the EISA Configuration Diskette to configure your server, the configuration information is saved in a *System Configuration Information (SCI)* file and in the NVRAM configuration. Only devices that you install and configure correctly appear on the EISA Configuration screens.

Backing Up the EISA Configuration Diskette

Use an operating system command, such as the DOS DISKCOPY command, to make a *complete* backup copy of the EISA Configuration Diskette. Using the backup copy can prevent damage to the original diskette. Your operating system documentation provides information on backing up diskettes.

Making Menu Selections

When you start the backup copy of the EISA Configuration Diskette, an introductory screen appears. Press Y. The Main Menu, *Steps in configuring your computer*, appears. The EISA Configuration program main menu contains five steps:

Step 1

Important EISA configuration information: This step provides information about the differences between the ISA configuration process and the EISA configuration process.

Step 2

Add or remove boards: If the server is configured correctly, this step provides a list of the devices installed in the EISA expansion
slots. The **Add** choice allows you to add ISA devices to the configuration. If EISA adapters are installed in your server, and you have not copied the `.CFG` file to the EISA Configuration Diskette, you are prompted to insert the adapter configuration diskette into the diskette drive. The `.CFG` file is copied to your diskette. If the adapter `.CFG` file is copied to the EISA Configuration Diskette before starting the diskette, and the adapter is installed in your server, EISA devices are added automatically.

Step 3

View or edit details: After adding EISA or ISA adapters in Step 2, use the **Edit** selection of this step to configure them. Use the **Edit Resources** selection of this step for complex configurations. If you change a setting in this step, you might have to change a switch or jumper setting on the system board or on a device.

Step 4

Examine switches or print report: After Steps 1 and 2 have been completed correctly, this step displays the correct switch and jumper settings for the installed devices that have switches and jumpers. Also, you can choose to print a system configuration report.

Step 5

Save and exit: This step allows you to save your configuration or to discard the changes before you exit from the program.

Use the Up Arrow (↑) or Down Arrow (↓) key to highlight your selection; then press **Enter** to make your selection. To help you track your progress, a checkmark (✓) appears on the main menu next to the completed steps.

You can access help information through:

- Help windows, which remain active.
- Information windows, which appear automatically as a result of some configuration activities.
• The Help=F1 prompt, which allows you to access the Help Menu for screens displaying the prompt. To remove the Help Menu, press Esc.

Recording EISA Configuration Settings
Record the configuration settings you made in Step 3, View or edit details and Step 4, Examine switches or print report on a separate sheet and store it in a safe place for future reference. If you have a printer attached to your server, you can use the Print Screen key to print these settings. The settings are helpful when you install additional options, or if you need to have your system serviced. Also, record the new settings each time you make changes. Be sure to record the current configuration settings in the tables in “Installed Device Records” on page 378.

Starting the EISA Configuration Diskette
Using a backup copy of the EISA Configuration Diskette can prevent damage to the original diskette (see “Backing Up the EISA Configuration Diskette” on page 295).

To start the EISA Configuration Diskette:

1. Insert the backup copy of the EISA Configuration Diskette into the diskette drive.
2. Turn on the server, or if it is already on, shut down the operating system and restart the server.
3. When the first screen appears, press Y. Follow the instructions on the screen until the Main Menu, Steps in configuring your computer, appears.
4. Use the Up Arrow (↑) or Down Arrow (↓) key to advance through the items on the screen. Use the Tab key to select choices on the bottom of the screen. Press the Esc key to return to a previous menu.
5. Press Enter to make a selection.
EISA Configuration Diskette

6. Follow the instructions on the screen to view or change (edit) the configuration information.

Note: Adapters that are installed in your server appear automatically on the EISA Configuration screens after you copy the adapter configuration file (file with an extension of .CFG) to the EISA Configuration Diskette. If you want to manually add an EISA adapter that you have not yet installed in your server, add it using Step 2 from the menu. (see “Making Menu Selections” on page 295). To configure ISA adapters, follow the instructions on the screen.

Using the Advanced Functions
Locking an ISA adapter reserves the selected resources and prevents the system from using them to resolve resource conflicts. Use the Advanced function to lock ISA boards. An exclamation mark (!) appears next to locked adapters.

To use the Advanced functions:

1. Start the backup copy of the EISA Configuration Diskette (see “Starting the EISA Configuration Diskette” on page 297).
2. At the main menu, select Step 3, View or edit details.
4. Follow the instructions on the screen to:
 a. Lock or unlock boards
 b. View additional system information
 c. Set verification mode
 d. Maintain SCI files
The resources used by your server consist of interrupt request levels (IRQs), direct memory access channels (DMAs), I/O ports (for example, serial and parallel), and memory. This information is useful when a resource configuration conflict occurs.

Conflicts in the configuration occur if:

- An installed device requires the same resource as another device. (For example, if you install an ISA network adapter and an EISA network adapter, both requesting IRQ 5, only one of the adapters can be configured.)
- A device resource is changed (for example, changing jumper settings).
- A device function is changed (for example, assigning COM 1 to two different serial ports).
- An installed software program requires the same resource as a hardware device (for example, an expanded memory specification (EMS) device driver that uses the address required by the SVGA video adapter).

The steps required to resolve a configuration error depends on the number and variety of hardware devices and software programs that you install. If a hardware configuration error is detected, a configuration error message appears after the server completes POST, but before the operating system starts. You can bypass the error or start one of the configuration utility programs. Press F1 to bypass the error and load the operating system. Press F2 to start the Setup program. To start the EISA Configuration Diskette, insert the diskette in the diskette drive and press F1.

The Setup program and the EISA Configuration program only configure the system hardware. These programs do not consider the requirements of the operating system or the application programs. See “Resolving Software Configuration Conflicts” on page 301 for additional information.
Resolving Hardware Configuration Conflicts

Use the following information to help resolve hardware configuration conflicts:

1. Run the Setup program to view and change the resources that are used by the system board functions. Record the current settings before making any changes. (See “Starting the Setup Program” on page 282 for instructions.)

2. Determine which adapter or device is causing the error. The EISA Configuration program specifies how the server checks for resource conflicts. Initially, this verification mode is set to automatic. When the mode is set to automatic, the EISA Configuration program tries to resolve configuration conflicts for you. Use the Advanced selection of the EISA Configuration Diskette’s View or edit details screen to change the setting (see “Using the Advanced Functions” on page 298).

 If the automatic verification mode is set, the configuration program attempts to resolve conflicts for you. However, this might disable adapters or system board features. For example, if you choose IRQ 4 for an adapter, the program disables Serial Port 1, which uses IRQ 4. If this happens, and you do not want this feature disabled, choose another IRQ for your adapter.

 If you set the verification mode to manual, the configuration utility program does not try to resolve a conflict. Instead, you have to determine if a resource conflict has occurred and then resolve the conflict. When the verification mode is set to manual, an asterisk (*) appears on the View or edit details screen next to adapters in conflict.

 If the EISA Configuration program cannot resolve a configuration error, it deactivates the adapter and displays the deactivated status (_) on the View or edit details screen.

3. Update system configuration information (.SCI) files. Use the Advanced selection of the EISA Configuration Diskette’s View or edit details screen to update or copy the server system configuration information file (see “Using the Advanced Functions” on page 298).
4. Change configuration resource allocations. Use the built-in Setup program to view or change system board resource allocations. Use the Advanced selection of the EISA Configuration Diskette’s View or edit details screen to view the available or the used system resources (see “Using the Advanced Functions” on page 298). Use the Edit Changes selection to change resource allocations for complex configurations.

5. Change adapter jumpers or switches. Jumpers and switches define the system resources that a device can use. If the settings are incorrect or set to use a resource that cannot be shared, a conflict occurs and the device remains deactivated by the configuration program. Use the EISA Configuration Diskette’s Step 4, Examine switches or print report screen to verify switches (see “Making Menu Selections” on page 295). If a change is required, see “Preparing to Install Options” on page 163, to remove the cover. In addition, read the documentation that came with the device.

6. Change system board jumpers or switches. See “Preparing to Install Options” on page 163, to remove the cover. Then refer to the system-board diagram inside your server.

7. Remove the device or adapter. Some configurations are not supported (for example, you cannot operate the server with two ISA SVGA adapters installed). If you must remove an adapter, see “Removing Adapters” on page 192.

Resolving Software Configuration Conflicts

The memory-address space and interrupt levels (IRQs) used by some hardware options might conflict with addresses defined for use through application programs or the EMS. (EMS is used only with DOS.)

If there is a conflict, one or more of the following conditions might exist:

- The system cannot load the operating system.
- The system does not work.
- An application program does not operate, or it returns an error.
- Screen messages indicate a conflict exists.
Configuration Conflicts

You can resolve conflicts by changing either the software or the hardware configuration.

Note: Start the EISA Configuration Diskette to view the addresses used by your system board functions. Use the Advanced function of Step 3, View or edit details to view the addresses used by your adapters. (See “Using the Advanced Functions” on page 298 for instructions.)

Changing the Software Configuration
The best way to resolve memory-address conflicts is to change the addresses used by the application program or the device driver. To do this, use the EISA Configuration program.

If a device driver is causing a memory-address conflict, refer to your operating-system documentation or the documentation supplied with the device drivers.
Using the SCSISelect Utility Program

The SCSI-2 Fast/Wide PCI Adapter on a non-disk-array model has a built-in menu-driven configuration utility program that allows you to view and change SCSI settings.

You can use the SCSISelect Utility program to:

- Change the default values
- Verify and change configuration conflicts
- Format a new SCSI hard disk

Starting the SCSISelect Utility Program

You can access this program when you start your non-disk-array server. The SCSISelect prompt appears after the IBM PC Server screen. Press Ctrl+A immediately after the SCSISelect prompt appears.

Use the Up Arrow (↑) or Down Arrow (↓) key to move the highlight bar to the various menu choices. Press Esc to return to the previous menu. Also, you can press F5 to switch between color and monochrome modes (if your monitor permits). To change the current settings of the items displayed in the menus, follow the directions on the screen.

SCSISelect Utility Program Options

The following options appear on the SCSISelect Utility program menu:

- Configure/View Host Adapter Settings
- SCSI Disk Utilities
Configure/View Host Adapter Settings
To view or change the SCSI-2 controller settings, select Configure/View Host Adapter Settings and follow the directions on the screen. Refer to the following table for information on the choices on this menu.

<table>
<thead>
<tr>
<th>SCSI Controller Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Adapter SCSI ID</td>
<td>Changes the SCSI ID of the SCSI-2 controller from its default value of 7.</td>
</tr>
<tr>
<td>SCSI Parity Checking</td>
<td>Enables or disables parity checking on the SCSI-2 adapter or controller. The default value is Enabled.</td>
</tr>
<tr>
<td>Host Adapter SCSI Termination</td>
<td>Configures SCSI-2 adapter or controller termination. The default value is Low On / High On.</td>
</tr>
<tr>
<td>SCSI Device Configuration</td>
<td>Configures SCSI device parameters. Before you can make updates, you must know the ID of the device whose parameters you want to configure.</td>
</tr>
<tr>
<td>Advanced Configuration Options</td>
<td>Allows you to view or change the settings for advanced configuration options. These include:</td>
</tr>
<tr>
<td></td>
<td>• Startable CD-ROM drive. When set to On, the CD-ROM drive can be included as a startup device. For this option to take effect, you must insert a CD-ROM in the CD-ROM drive.</td>
</tr>
<tr>
<td></td>
<td>• Init13Extensions. When set to On, these BIOS extensions are enabled.</td>
</tr>
</tbody>
</table>

SCSI Disk Utility Programs
To see the SCSI device IDs or to format a drive, select SCSI Disk Utilities from the SCISISelct Utility program menu.

To use the utility program, select a drive from the list. Read the screens carefully before making a selection.
Chapter 7. Solving Problems

This chapter contains information to help you solve some of the simpler problems you might have with your IBM PC Server 520. For more complex technical problems, see Chapter 8, “Getting Help, Service, and Information” on page 367.

This chapter contains:
- Getting Started .. 307
- Overview of the Diagnostic Tools 307
- Power-On Self-Test (POST) 308
- POST Beep Codes 308
- Test Programs 308
- Error Messages 310
- Troubleshooting Charts 311
- Option Diskettes 311
- About the Test Programs 312
- The Main Menu of the Diagnostic Diskette 313
- Program Navigation 314
- IntruderAlert .. 317
- Starting the Test Programs 318
- Using the Module Tests 320
- Changing Selected Tests in Test Groups 321
- Creating Test Scripts 321
- Test Options .. 322
- POST Error Message Table 325
- SCSI Messages 330
- ServeRAID Adapter Messages 331
- ServeRAID Adapter POST and Setup Messages .. 331
- ServeRAID Adapter Status and Error Messages .. 335
- PeerMaster Adapter Screen Messages 337
- Diagnostic and Setup Error Messages 337
- Novell NetWare Load-Time Error Messages 341
- Novell NetWare Run-Time Messages 346
- Beep Codes .. 349
- Troubleshooting Charts 350
- Checking the System for Damage 358
- After Dropping It 358
- After Spilling Liquid on It 359
- Installing Additional Test Programs 360
- Using the Utility Programs 363
- Formatting Diskettes 363
Using the File Editor . 363
Overview of the Diagnostic Tools

Getting Started
If you are not familiar with the diagnostic tools and programs, continue reading this chapter, then return here. If you are familiar with these topics, select the appropriate instructions from the following list:

• To interpret an error message (for example, you have a 0164 on the screen), go to “POST Error Message Table” on page 325.
• If you want to verify that the system is operating correctly, go to “About the Test Programs” on page 312.
• For more information about a hardware failure (for example, keys on the keyboard not working) or a screen prompt, go to “Troubleshooting Charts” on page 350.

Overview of the Diagnostic Tools
System problems can be caused by hardware, software, or user error. (An example of a user error is pressing the wrong key.) You might be able to solve the problem yourself or provide helpful information to a service technician.

The following tools are available to help you identify and resolve hardware-related problems:
• Power-on self-test (POST)
• POST beep codes
• Test programs
• Error messages
• Troubleshooting charts
• Option Diskettes
Overview of the Diagnostic Tools

Power-On Self-Test (POST)
Each time you turn on the system, it performs a series of tests that check the operation of the system and some options. This series of tests is called the power-on self-test, or POST. POST does the following:

- Checks some basic system-board operations
- Checks the memory operation
- Starts the video operation
- Verifies that the diskette drives are working
- Verifies that the hard disk drive is working

If POST finishes without detecting any problems, a single beep sounds and the first screen of your operating system or application program appears.

If POST detects a problem, an error message appears on your screen. A single problem can cause several error messages to appear. When you correct the cause of the first error message, the other error messages probably will not appear on the screen the next time you turn on the system.

POST Beep Codes
POST generates a beeping sound to indicate successful completion of POST or to indicate that the tests detect an error.

One beep and the appearance of text on the monitor indicates successful completion of the POST. More than one beep indicates that POST detects an error.

Test Programs
The QAPlus/PRO test programs, developed by DiagSoft, Inc. for IBM, are the primary method of testing the IBM PC Server 520. These programs require minimal interaction from you. You can use them to test the IBM components of the system and some external devices. The amount of time required to test all components depends on the number of components. The more optional adapters and devices you have attached to your system, the longer the testing takes.
Overview of the Diagnostic Tools

If you cannot determine whether a problem is caused by the hardware or by the software, you can run the test programs to confirm that the hardware is working correctly.

The programs on the Diagnostic Diskette include the following:

- **Diagnostic Tests**

 The diagnostic tests identify most problems associated with the major components of your system. These programs test the system board, hard disk drives, diskette drives, CD-ROM drives, RAM, serial and parallel ports, video adapter, printer, keyboard, and mouse.

 Test options let you run groups of tests in a batch, specify parameters to use for each test (for example, video modes, port addresses, and so on), specify the number of passes you want to run (one to continuous), log the test results to a text format file, and save all test settings for future use.

 These test programs also allow you to view the server configuration information. For example, you can view the IRQ/DMA assignments, memory usage, device drivers, and so on.

- **Utility Programs**

 The Diagnostic Diskette also contains utility programs, such as an ASCII text editor and a diskette format program.
Overview of the Diagnostic Tools

Error Messages
Error messages indicate that a problem exists; they are not intended to be used to identify a failing part. Troubleshooting and servicing of complex problems indicated by error messages should be performed by a trained service technician. Hardware error messages that appear on the screen can be text, numeric, or both.

Messages generated by your software—the operating system or application programs—generally are text messages, but they also can be numeric. Basically, there are four types of error messages. These include POST error messages, diagnostic error messages, POST beep codes, and software-generated messages.

POST Error Messages
POST error messages appear when, during startup, POST finds problems with the hardware or detects a change in the hardware configuration. A list of these error messages is given in “POST Error Message Table” on page 325.

POST Beep Codes
POST beep codes are sounds emitted from the speaker, if POST finds a problem. One beep indicates the POST completed successfully. Multiple beeps indicate that a problem was found by the POST. A list of the beep error codes is given in “Beep Codes” on page 349.
Overview of the Diagnostic Tools

Diagnostic Error Messages
Diagnostic error messages appear when a test program finds a problem with a hardware option. Normally, these messages are text, but they can be numeric. The test programs will generate one of the following return codes:

- **0**: A return code of “0” indicates that the device passed its test.
- **1**: A return code of “1” indicates that the device failed its test.
- **2 or higher**: A return code of “2” or higher indicates that the test stopped.

Software-Generated Error Messages
These messages appear if a problem or conflict is found by an application program, the operating system, or both. For an explanation of these messages, refer to the information that comes with your software package.

Troubleshooting Charts
The troubleshooting charts given in “Troubleshooting Charts” on page 350 list symptoms of problems (for example, perhaps the symptom is “the mouse is not working”), as well as steps to correct the problems.

Option Diskettes
An optional device or adapter might come with a diskette. Option Diskettes usually contain diagnostic files or configuration files that the system needs to recognize and activate the option.

If your optional device or adapter comes with an Option Diskette, you might need to install some configuration (.CFG) files or diagnostic files (.EXE or .COM). See Chapter 5, “Installing Options” on page 157 for instructions on installing the configuration or see “Installing Additional Test Programs” on page 360 for installing diagnostic files.
About the Test Programs

About the Test Programs

This section includes useful information about navigating through the test programs, as well as procedures for starting and stopping them. These programs are designed to test the IBM PC Server 520. Non-IBM products tested with these programs might present misleading error messages or unexpected system responses. If you want to test a non-IBM product, refer to the information that comes with that product.

Note: You might have to install a wrap connector on your active parallel port to obtain accurate parallel-port test results. If you do not have a wrap connector, contact your IBM reseller or IBM marketing representative.
About the Test Programs

The Main Menu of the Diagnostic Diskette
The Main Menu is the starting point for all of the diagnostic tests. It contains the following choices:

- **Diagnostics**: When you select this choice from the Main Menu, the Diagnostics Menu appears. The Diagnostic Menu contains the following selections:
 - **Quick Check** automatically checks the hardware configuration and builds a group of tests based on the configuration check. The diagnostic program then runs the tests for each of the devices or modules found during the configuration check. Upon completion of the Quick Check, you are prompted to: Press any key to continue. Pressing any key at that point brings you back to the Diagnostic Menu.
 - **Module Tests** allow you to more rigorously test an individual module (or device such as a diskette drive) or specify a group of tests for several modules. In addition, you can specify how many times to run an individual test and how the test program should note and log any errors it finds. See “Using the Module Tests” on page 320 for more information about running the module tests.
 - **Options** allows you to set or change defaults that affect the reporting, error logging, and presentation of the error information. For more information about the options available, see “Test Options” on page 322.

- **System Info**: When you select this choice from the Main Menu, the System Info Menu appears. The System Info Menu allows you to view the server hardware and software configuration information. For example, you can view the IRQ/DMA assignments, memory usage, device drivers, and so on.

- **Reports**: When you select this choice from the Main Menu, the Reports Menu appears. The Reports Menu allows you to print the system information.

- **Utilities**: When you select this choice from the Main Menu, the Utilities Menu appears. The Utilities Menu provides access to additional programs on the Diagnostic Diskette. These utility programs include: the File Editor, the Format Diskette, and the
About the Test Programs

Hard Disk Utilities. For more information about the File Editor, see “Using the File Editor” on page 363.

- Exit: Select this choice to exit from the Diagnostic Diskette.

Program Navigation
You can maneuver within the test programs by typing the first letter of a menu choice, using the function keys, or using command-line options.

Using the Function Keys
You can use the following keys to maneuver within the test programs:

Enter
Selects an item, runs the test module, or runs the test.

Down Arrow (↓)
Moves the cursor down.

Up Arrow (↑)
Moves the cursor up.

F1
Displays the appropriate Help information. Use the Up Arrow (↑) or Down Arrow (↓) key to scroll through the information. Pressing F1 from within a Help screen provides a Help index from which you can select different categories. One of the important help categories is function key usage. Pressing Esc exits Help and returns to where you were previously.

Esc
Returns to the previous menu.

Additional keys are active in the Test Module Selection and Test Group screens. These include:

Tab
Moves the highlight bar (or cursor) to the test group (or moves to parameters).

Spacebar
Toggles modules on or off (or toggles tests on or off).

F2
Displays current test results log.
About the Test Programs

F10 Displays the Local Menu when the Module Tests Menu is displayed or from individual Test Group test screens. Local Menu includes the following selections:

- Test Options serves as a shortcut to accessing and changing the test options without having to back up through menus.

- Single Test moves from the Module Test Menu to the relevant Test Group window for test selection.

- Next and Previous LUN changes from one Logical Unit Number (LUN) or device to another (for example, HD1 to HD2, or Base Memory to Extended Memory).

+ Displays next logical unit number (for example, COM1, COM2, or First Microprocessor, Second Microprocessor, and so on).

- Displays previous logical unit number.
About the Test Programs

Using the Command Line Options
The following Command Line Options allow you to define specific conditions for running the diagnostic programs at startup time.

At the operating system prompt, type QAPRO /XXX (where /XXX represents one of the following from the list below); then press Enter:

/B&W
The /B&W option forces the program to load in black and white (monochrome) mode.

/LOG=\file
The /LOG=\file option directs the test programs to start using a specified Error Log file.

/INT10
The /INT10 option forces the test programs to use the Basic Input/Output System (BIOS) for screen writes.

/OXXX
The /OXXX option, where XXX=test group, omits the designated test group from testing. (See /IXXX for a list of valid test groups.)

/OALL
The /OALL option omits all test groups from testing. (See /IXXX for more information.)

/IXXX
The /IXXX option, where XXX=test group, includes the designated test group. When used in conjunction with the /OALL option, you can specify the tests that you want to include. These options are helpful if you have insufficient memory available to load all of the test programs simultaneously, or if you want to test specific test groups.

The valid test groups are:

<table>
<thead>
<tr>
<th>Test Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPT</td>
<td>Parallel port</td>
</tr>
<tr>
<td>COM</td>
<td>Serial ports</td>
</tr>
<tr>
<td>HDU</td>
<td>Hard disk (IDE only)</td>
</tr>
<tr>
<td>FDU</td>
<td>Diskette drive</td>
</tr>
<tr>
<td>VID</td>
<td>Video</td>
</tr>
<tr>
<td>MBD</td>
<td>System board</td>
</tr>
<tr>
<td>KBD</td>
<td>Keyboard</td>
</tr>
<tr>
<td>PDV</td>
<td>Pointing device or mouse</td>
</tr>
</tbody>
</table>
About the Test Programs

MEM Memory
SCU SCSI
CDR CD-ROM
SYS System information/Utilities

You can include this option multiple times. For example, to run the keyboard, SCSI, and CD-ROM test groups, type:
QAPRO.EXE /OALL /IKBD /ISCU /ICDR

/USRCONFIG=file The /USERCONFIG=file option tells the test programs to look for a user diagnostic configuration file other than the default USERDIAG.CFG.

/SCRIPT=file[R] The /SCRIPT=file[R] option with the [R] runs the selected script.

Note: You can use a “-” instead of a “/” as the command line switch.

IntruderAlert
Each time you start the diagnostic programs, IntruderAlert checks for damage to the Diagnostic Diskette. If a virus or program alteration is detected, the diagnostic programs will not load.

To suspend IntruderAlert and continue loading the diagnostic programs, press Esc.
Starting the Test Programs

To start the test programs from diskette:

Note: Use your backup copy of the Diagnostic Diskette to run the diagnostic programs.

1. Insert the backup copy of the Diagnostic Diskette into the primary diskette drive (usually drive A).
2. Turn on the system. The IBM PC Server 520 logo appears on your screen, followed by the system running POST. When POST completes, QAPlus/PRO for IBM appears on your screen.
3. Press any key to continue. The Welcome window appears.
4. Press any key to continue.

Note: IntruderAlert starts and runs automatically after you press any key. If IntruderAlert detects a problem with the diagnostic diskette, it will automatically stop further testing. See “IntruderAlert” on page 317 for more information.

5. Press Enter.

Several analysis programs start and run automatically. When they complete, the Main Menu appears.

6. Use the Up Arrow (↑) or Down Arrow (↓) key to move the highlight bar to your desired Main Menu selection.

7. Press Enter.

Note: To stop running a specific test or stop testing after you have started a test, press Esc while the test is running. The test pauses at the first possible opportunity, and the Skip/Abort Test Menu appears.
Starting the Test Programs

The Test Group Window
When you select **Quick Tests** or **Module Tests** from the Diagnostic Menu, a Test Group window appears. (For Module Tests, if you press Tab, the window expands to a full screen.) The Test Group window shows the attributes, parameters, and selected tests of the corresponding Test Group. The diamond “♦” mark indicates a module or device selected for testing.

Test Group Specifications: In the upper portion of the Test Group window are the specifications for the related test group.

The following illustration is an example of the Test Group Window when the System Board is selected from the Module Tests Menu.
Starting the Test Programs

Using the Module Tests
To start the Module Tests from the Main Menu of the Diagnostic Diskette:

1. Start the diagnostic programs. If you do not know how to do this, see “Starting the Test Programs” on page 318.

2. Select Diagnostic from the Main Menu, then press Enter.

3. Select Module Tests, then press Enter. Use the Up Arrow (↑) or Down Arrow (↓) key to move the highlight bar from one selection to the next within the Module Tests menu.

4. To select or deselect a test, use the Spacebar (the Spacebar toggles your selection on or off). When you have selected a test, a ♦ appears next to the selection.

5. If you want to run all of the selected tests, you can do so by moving the highlight bar to the last choice, Run All Selected Modules, then pressing Enter. If you want to run each test, one at a time, press Enter at the highlight bar of the desired selection.

 Attention: An (*) directly adjacent to an item indicates that running that test might damage your data. Make sure to back up all of your data before running the tests.

6. When you are done, press Esc to return to the Test Group window.

Note: As you move the highlight bar up or down the selection menu, the Test Group window to the right changes to correspond to the highlighted module.
Starting the Test Programs

Changing Selected Tests in Test Groups
To add or remove a test from a Test Group:
1. In the Module Tests Menu, use the Up Arrow (^) or Down Arrow (v) key to move the highlight bar to your selection.
2. Press Tab to move into the expanded Test Group window.
3. Move the highlight bar to the test you want to select or deselect.
4. Press the Spacebar at the highlighted test to toggle between select (indicated by a “♣”) and deselect.
 Attention: An (*) directly adjacent to an item indicates that running that test might damage your data. Make sure to back up all of your data before running the tests.
5. Press Enter.

Creating Test Scripts
Scripting allows you to select specific groups of tests, testing parameters, and options. You can then save your selections for later use as a test script.

To set up a test script:
1. Select **Diagnostics** from the Main Menu; then press Enter.
2. Select **Module Tests**; then press Enter.
3. Select the test groups and specific tests.
4. Select **Save Script** (the last item on the Options Menu).
5. Type in a file name. The test program automatically adds the extension “QA.”
6. To load and run the test program with this test setting, type: QAPRO /SCRIPT-Filename,R and then, press Enter.
 Note: Adding the “,R” runs the tests listed in the named Test Script. If this is omitted, the diagnostic program loads only the program with the test settings as previously saved in the chosen Script File.
Starting the Test Programs

Test Options
Each option that appears on the Options Menu is briefly described below.

- **Halt on Error**: The default is **No**. If you select **Yes**, you can resume testing after a halt by pressing any key. If you select **No**, any error detected is logged (only if you enabled the Test Log) and the program continues testing without halting.

- **Beep on Error**: The default is **No**. If you select **Yes**, a beep sounds whenever the test program detects an error.

- **Lap Count**: This option allows you to set the number of times to run each group of tests. The default setting is 1. You can enter a number from 0 to 10. The looping is controlled on a block basis, not on an individual test basis. Therefore, if you select tests A, B, and C and the Lap Count is set to 3, the test sequence is ABC/ABC/ABC.

- **Pause Control**: You can choose to have the test programs pause between test modules and wait for you to press any key to continue. Also, you can choose to have the test program wait for a user response to indicate if the video tests pass. The default setting is **Pause Between**. The available choices are **Pause Between** and **No Pause**. If you choose **No Pause**, the test programs continue testing without a pause from one video test to the next, and from one test module to the next.

- **Test Log**: Allows you to select whether or not to do logging. You can select one of the following five choices:
 - **No Logging**
 - **COM1**
 - **LPT1**
 - **ASCII**
 - **.DBF**

No Logging is the only selection that turns off Test Log. The other four selections enable Test Logging.
Starting the Test Programs

When Test Log starts, the test programs create a log with the following information:

- The date and time the log was opened
- The start and end times of each module tested and for each test selected for that module
- The results of testing
- The date and time that the log was closed

Disabling the Test Log writes the date and time to the Test Log along with a message that the log was closed. Any Test Log is automatically closed upon exiting the program.

If you enable Test Log, the hardware configuration is automatically entered at the beginning of the log.

If you select ASCII File, the test programs prompt you to type in the name of the Test Log file. The test programs automatically assign the extension .LOG to the file if you do not specify a file-name extension. The file is stored in ASCII text format. You can then examine the file with most word processors at a later time.

If you select .DBF File, the test programs prompt you to fill in the information on an Open DBF File screen. This creates a new file or opens an existing data base compatible file to insert new information on the current test machine. The Machine Type, Serial Number, and Work Center lines identify the system that is being tested.

Note: If you plan to run hard disk tests and to do test logging, do the test logging on a drive other than the drive to be tested. If you log to a drive that is to be tested, the logging is disabled for the remainder of the test cycle.
Starting the Test Programs

- **Test Log Mode**: This choice determines the amount of data to be logged after you select COM1, LPT1, ASCII, or .DBF. The available options are LogAll or LogFail. LogAll logs all test information. LogFail logs only failures.

- **Log Message Queue**: Pressing F2 allows you to examine the test results to date via a Log Message Queue. This information is generated whether or not you select a Test Log. It does not, however, allow you to examine previous Test Logs.

- **Save Script**: This choice enables you to save a custom test script. See “Creating Test Scripts” on page 321 for a more detailed description of scripting.
POST Error Messages Table

The following table shows error messages that might appear on the screen during the power-on self-test (POST).

Sometimes the first error to occur causes additional errors. In this case, the system displays more than one error message. Always follow the suggested action instructions for the first error message that appears.

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0103 | A failure occurred during testing of the system board and microprocessor.
 Action: Turn off the system, wait 30 seconds, then turn it back on. If the error message recurs, have the system serviced. |
| 0107 | A hardware error occurred.
 Action: Have the system serviced. |
| 0115 | Previous Boot Incomplete. (Cache disabled). Reboot to restore previous configuration.
 Action: The server was powered-off during POST. The cache was disabled, and a default configuration has been loaded. Restart the server to restore the previously defined configuration. |
| 0120 | A system-board 256 KB ROM error occurred.
 Action: Run the test programs to determine the cause of the problem and the action to take. If the test programs find nothing wrong, but the problem remains, have the system serviced. |
| 0130 | The system is not able to start the diskette in the drive. The diskette might be damaged, incorrectly formatted, or inserted incorrectly.
 Action: Try another startable diskette. If the problem recurs, have the system serviced. |
| 0163 | The time-of-day clock is not set.
 Action: Run the Setup program to set the correct date and time. To start the Setup program, turn on the server, or press Ctrl+Alt+Del to restart the server. When the IBM logo screen disappears, press F2 quickly, when prompted, to enter Setup. If the problem recurs, have the system serviced. |
POST Error Messages

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0164 | A change in the memory configuration occurred. Installing memory, incorrectly installing memory, or removing memory can cause this problem. It also can occur if a defective memory module is disabled.
 Action:
 - If you have just added or removed memory, you must run the EISA Configuration Diskette and update the EISA configuration information. If the problem recurs, have the system serviced.
 - If you have not just installed memory, have the system serviced. |
| 0165 | A change in the adapter configuration occurred. This error generally occurs under one or more of the following conditions:
 - A new adapter was installed and the system was not reconfigured.
 - One or more adapters were moved to a different slot.
 - An adapter is failing and is no longer recognized by the system as being installed.
 Action:
 - If you have just added, removed, or changed the location of an EISA or an ISA adapter, start the EISA Configuration Diskette and update the configuration information. If the problem recurs, have the system serviced.
 Some adapters have an additional diskette containing a configuration file (CFG) for the adapter. If the adapter comes with its own configuration file, use the EISA Configuration programs to install the file.
 - If you did not add, remove, or change the location of an adapter, an adapter probably failed. Have the system serviced. |
| 0168 | An error occurred during the testing of the real-time clock.
 Action: Run the test programs to determine the cause of the problem and the action to take. If the problem recurs, have the system serviced. |
| 0171 | An error occurred during testing of the battery-backed memory that stores the configuration information.
 Action: Have the system serviced. |
POST Error Messages

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0173</td>
<td>A change in device configuration occurred. This error occurs under one or more of the following conditions:</td>
</tr>
<tr>
<td></td>
<td>- A new device was installed</td>
</tr>
<tr>
<td></td>
<td>- A device was moved to a different location or cable connection</td>
</tr>
<tr>
<td></td>
<td>- A device was removed</td>
</tr>
<tr>
<td></td>
<td>- A device is failing and is no longer recognized by the system as being installed</td>
</tr>
<tr>
<td></td>
<td>- An external device is not turned on</td>
</tr>
<tr>
<td></td>
<td>Action: Verify that all external devices are turned on. External devices must be turned on before the system is turned on.</td>
</tr>
<tr>
<td></td>
<td>- If you have just added, removed, or changed the location of an EISA or an ISA adapter, start the EISA Configuration Diskette and update the configuration information. If the problem recurs, have the system serviced.</td>
</tr>
<tr>
<td></td>
<td>- If you have not just added, removed, or changed the location of a device, run the test programs to identify the failing device. Then have the system serviced.</td>
</tr>
<tr>
<td>0174</td>
<td>A memory error occurred during testing of the system board.</td>
</tr>
<tr>
<td></td>
<td>Action: Ensure that the memory modules are installed properly. If the modules are properly installed, run the test programs to determine the cause of the problem and the action to take. If the test programs do not find the problem, replace the failing memory module.</td>
</tr>
<tr>
<td>0201</td>
<td>Memory Size Mismatch, Memory has been added or removed or is defective.</td>
</tr>
<tr>
<td></td>
<td>Action:</td>
</tr>
<tr>
<td></td>
<td>- If you have just added or removed memory-module kits, start the EISA Configuration Diskette and update the configuration information. If the problem recurs, call for service.</td>
</tr>
<tr>
<td></td>
<td>- If you have not just added or removed memory-module kits, run the test programs to identify the failing memory module kit. Replace the defective memory module kit, or call for service.</td>
</tr>
</tbody>
</table>
POST Error Messages

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0301</td>
<td>An error occurred during testing of the keyboard and its controller.</td>
</tr>
<tr>
<td>0303</td>
<td>Action:</td>
</tr>
</tbody>
</table>
| 0304 | • Make sure that nothing is resting on the keyboard and pressing a key.
• Verify that the keyboard cable is connected correctly to the keyboard and to the correct port on the system.
• If you have just connected a new mouse or other pointing device, turn the system off and disconnect that device. Wait at least five seconds; then turn on the system. If the error message goes away, replace the device.
If the error message recurs, have the system, keyboard, and cable serviced. |
| 0601 | An error occurred during testing of the diskette drive and diskette-drive controller. This error can be caused by a loose or incorrectly connected cable, a failing drive, or a failing system board. Error code 0610 signifies that the test program cannot find the diskette-drive controller for drive A. Error code 0612 signifies that the test program cannot find the diskette-drive controller for drive B. Error code 0632 signifies that diskette drive A is failing. Error code 0642 signifies that diskette drive B is failing. |
| 0610 | Action: The system can be used, but one or more diskette drives might not work. Check the configuration information and ensure that it is correct. If the configuration information is correct, start the test programs and test the failing diskette drive. If the problem recurs, have the system serviced. |
| 0612 | |
| 0616 | |
| 0632 | |
| 0642 | |
| 0653 | The system is not able to start the diskette in the drive. The diskette might be damaged, incorrectly formatted, or inserted incorrectly. |
| 0655 | Action: Try another startable diskette. If the problem recurs, have the system serviced. |
| 1300 | A hardware error occurred. |
| 1301 | Action: Have the system serviced. |
| 1300 | No operating system or startable diskette was found. |
| 1301 | Action: Install an operating system (see Chapter 2, “Installing Software” on page 21), or insert a startable (bootable) diskette into the primary diskette drive and press any key. |
POST Error Messages

<table>
<thead>
<tr>
<th>POST Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1701</td>
<td>A hard disk drive failure occurred.</td>
</tr>
<tr>
<td>1702</td>
<td>Action: Press F1 to restart the system. If the problem recurs, have the system serviced.</td>
</tr>
<tr>
<td>1726</td>
<td></td>
</tr>
<tr>
<td>02401</td>
<td>An error occurred during testing of the video controller. This error can be caused by a monitor, system board, or video adapter failure.</td>
</tr>
<tr>
<td></td>
<td>Action: Verify that the monitor is connected correctly to the video adapter or video port. Then ensure that the switch or jumper settings for your video adapter are set correctly. If the above items are correct, have the monitor and system serviced.</td>
</tr>
</tbody>
</table>
SCSI Messages

If your server has at least one hard disk drive, review the following information before having the system serviced.

Note: If your server has a CD-ROM drive but does not have a hard disk drive, ignore any message that indicates that the BIOS is not installed.

<table>
<thead>
<tr>
<th>SCSI Messages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>One or more of the following might be causing the problem.</td>
</tr>
<tr>
<td></td>
<td>• A failing SCSI device (adapter, drive, controller)</td>
</tr>
<tr>
<td></td>
<td>• An improper SCSI configuration</td>
</tr>
<tr>
<td></td>
<td>• Duplicate SCSI IDs in the same SCSI chain</td>
</tr>
<tr>
<td></td>
<td>• An improperly installed SCSI terminator</td>
</tr>
<tr>
<td></td>
<td>• A defective SCSI terminator</td>
</tr>
<tr>
<td></td>
<td>• An improperly installed cable</td>
</tr>
<tr>
<td></td>
<td>• A defective cable</td>
</tr>
</tbody>
</table>

Action: Verify that:

• The external SCSI devices are turned on. External SCSI devices must be turned on before the system.
• The cables for all external SCSI devices are connected correctly.
• The last device in each SCSI chain is terminated correctly. (See “SCSI Drives” on page 201 for more SCSI chain information.)
• The SCSI devices are configured correctly.

When you daisy chain two banks in a disk-array model, you must start the ServeRAID configuration program and specify which channel the banks are connected to. You must also define the SCSI IDs for each bank as LO or HI. (See “Changing the ServeRAID Adapter Parameters” on page 130 for more information on the channel and bank mapping.)

If the above are correct, run the diagnostics for additional information about the failing device. If the error recurs, have the system serviced.
ServeRAID Adapter Messages

This section lists the ServeRAID diagnostic and run-time error messages that might appear during startup of a PC Server 520 disk-array model.

The ServeRAID adapter contains a device-error table that collects statistics on the number and type of errors that occur on a selected hard disk drive. After correcting a problem with the disk array, you should clear the table so that you can identify any subsequent errors quickly. For more information, see “Obtaining Drive Status” on page 104.

All hard disk drives contain unique identifiers, such as the drive serial number and manufacturer. During configuration, the ServeRAID adapter stores this information.

The ServeRAID adapter also adds an additional unique identifier, called the host ID, to each hard disk drive that is part of a logical drive. The host ID is a user-defined 12-character string. (See “Changing the ServeRAID Adapter Parameters” on page 130 for information on assigning a host ID.)

ServeRAID Adapter POST and Setup Messages

During POST, the ServeRAID adapter compares the stored configuration information to the configuration that is actually present. If a discrepancy exists, one or more status messages appear after POST completes, but before the operating system loads. When the ServeRAID adapter requires your input, a list of function keys will appear below the message.

New Drive Installed

When the ServeRAID adapter detects a new drive that is not part of the current configuration, the following message appears:

(old state: new state ch: bay)

This is an information message. No action is required.
ServeRAID Adapter Messages

Configured Drives are Missing
When the ServeRAID adapter detects that a previously configured drive is missing, the following message appears:

old state: new state: ch: bay

where old state is the configured state of the drive, new state is the state that the ServeRAID adapter will assign to the drive, ch and bay are the channel and bay where the drive was located previously.

Examples of the possible state changes include:

- (ONL: DDD x: y)
- (RDY: EMP x: y)
- (SBY: EMP x: y)
- (RBL: DDD x: y)
- (HSP: DHS x: y)
- (SHS: DHS x: y)

Two choices will follow this message:

F4 Retry. Select this key after correcting a problem. For example, select retry after you turn on the external storage enclosure that contains the hard disk drive.

F5 Select this key to accept the new state that the ServeRAID adapter will assign to the drive. For example, the adapter will assign the drive a state of defunct or empty.

You can also select F5 when you must remove a drive, RAID level 1 and RAID level 5 logical drives are present, and performance in a degraded mode is acceptable. The ServeRAID adapter will assign the drive a state of defunct, but the server can complete startup. However, the array will remain in Critical mode and the potential for data loss will exist until you replace and rebuild the defunct drive. To prevent the loss of data, replace and rebuild the defunct drive in a timely manner.
ServeRAID Adapter Messages

Configured Drives Are Not in the Configured Location
When the ServeRAID adapter detects that a previously configured drive is present, but the drive is in a new location, the following message appears:

(old ch: old bay: > new ch: new bay)

where old channel is the channel that matches the existing drive configuration information, old bay is the bay that matches the existing drive configuration information, new ch is the channel where the drive is now located, and new bay is the bay where the drive is now located.

For example:

(1 :6 > 2:14)
(2 :5 > 2: 6)

In this example, the message indicates that the drive from Channel 1, Bay 6 is now located at Channel 2, Bay 14, and the drive from Channel 2, Bay 5 is now located at Channel 2, Bay 6. The drive might have been physically moved to the new bay.

Three choices will follow this message:

F4
Retry. Select this key after correcting a problem. For example, select retry after you move the hard disk drive to its previously assigned location.

F5
Select this key to accept the new state that the ServeRAID adapter will assign to the drive. For example, the adapter will assign the drive a state of defunct.

F6
Select this key to modify the configuration to match the current drive location.

You might remove the hot-swap drives from the server for security reasons. If you replace the drives but install them in different bays, you can press F6 to accept the new locations, and the ServeRAID adapter will update the configuration.
ServeRAID Adapter Messages

New Adapter Installed in a Configured Server
When the ServeRAID adapter detects that the identifiers of the drives do not match the adapter configuration information, the following message appears:

host id: old ch: old bay: new ch: new bay

where host ID is the adapter identification, old channel is the channel that matches the drive configuration information, and old bay is the bay that matches the drive configuration information. New ch is the channel where the drive is now located, and new bay is the bay where the drive is now located.

For example:
(My Machine: 1:6 > 2:10)

In this example, the message indicates that the drive from Channel 1, Bay 6 is now located at Channel 2, Bay 10. The drive might have been physically moved to the new bay.

Two choices will follow this message:

F4 Retry. Select this key after correcting the problem. For example, select retry after you move the hard disk drive to its previously assigned location, or after you install the original ServeRAID adapter.

F7 Select this key to import the configuration information from the drive and to update the configuration information on the ServeRAID adapter. This choice is useful when you replace the ServeRAID adapter in an existing disk-array model.

You also might select F7 if you replace a whole set of drives with drives that were configured in another server with a ServeRAID adapter.

Note: When you install drives in a server that has no logical drives defined, the F7 choice will not appear. This can occur when you replace the ServeRAID adapter itself. The adapter does not contain any logical drives in its factory configuration. Therefore, F7 will not appear.
ServeRAID Adapter Messages

this case, restart the server and press Ctrl+I to enter the Mini-Configuration (see “Using the Mini-Configuration Program” on page 133); then, select Advanced Functions. From that menu, select Import Configuration from Drives to Adapter.

ServeRAID Adapter Status and Error Messages
This table lists, in alphabetic order, messages associated with the IBM PC ServeRAID Adapter.

Where the “Action” information tells you to start the IBM ServeRAID configuration program, insert the ServeRAID Configuration diskette in the primary diskette drive (usually drive A); then, press Ctrl+Alt+Del. The action column also provides general information about the message.

Where m or n appears in these messages, a number will appear in the actual message.

<table>
<thead>
<tr>
<th>RAID Adapter Message</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>n logical drives are installed.</td>
<td>n represents the number of defined logical drives. This is an information message. No action is required.</td>
</tr>
<tr>
<td>Controller is not responding to commands. No logical drives are installed.</td>
<td>The ServeRAID adapter is not operational. Make sure that the adapter is fully seated. If the problem persists, have the system serviced.</td>
</tr>
<tr>
<td>Error: Cannot disable this adapter BIOS.</td>
<td>The adapter was unable to prevent an extra copy of the adapter BIOS from being stored on the server. This condition occurs when the server contains multiple ServeRAID adapters. When the prompt to disable extra copies of the adapter BIOS appears, type N (No).</td>
</tr>
</tbody>
</table>
ServeRAID Adapter Messages

<table>
<thead>
<tr>
<th>RAID Adapter Message</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Following drives not responding. (old state: new state ch: bay)</td>
<td>One or more drives did not respond to the adapter. For example, the adapter detected a new drive in an unconfigured bay, and the drive is not part of the current configuration. This might also occur if the adapter detected that a configured drive is missing. Select F5 to accept the new state that the ServeRAID adapter will assign to the drive. For example, the adapter will assign the drive a state of defunct or empty.</td>
</tr>
<tr>
<td>Following new drives found. (old state: new state ch: bay)</td>
<td>One or more drives were found in an unconfigured bay. For each drive listed, a new state of Ready (RDY) appears. This is an information message. No action is required.</td>
</tr>
<tr>
<td>Following drives found in new location (old ch: old bay > new ch: new bay)</td>
<td>POST found that the location of one or more drives does not match the stored configuration information. (See “Configured Drives Are Not in the Configured Location” on page 333 for more information.)</td>
</tr>
<tr>
<td>Installation stopped.</td>
<td>The server cannot access the ServeRAID adapter. This is a follow-on message to a preceding message. Follow the “Action” instructions for the preceding message to resolve the problem.</td>
</tr>
<tr>
<td>Recoverable configuration error; run Configuration program.</td>
<td>The configuration data stored on the adapter NVRAM does not match the configuration data stored in the adapter EEPROM. Insert the IBM ServeRAID Configuration diskette; then, press Ctrl+Alt+Del to restart the system. Select Advanced Functions and synchronize the adapter configuration. See “Resetting the Adapter Configuration” on page 117 for more information.</td>
</tr>
<tr>
<td>ServeRAID firmware version xx.yy</td>
<td>This is the version level of the ServeRAID adapter’s firmware. This is an information message. No action is required.</td>
</tr>
<tr>
<td>WARNING: n logical drives are critical; n logical drives are offline.</td>
<td>One or more drives have failed. Replace the defunct drives as soon as possible to prevent data loss.</td>
</tr>
<tr>
<td>Your server has an error due to a Blocked Logical Drive.</td>
<td>One or more logical drives are in a blocked state. Press F4 to unblock the logical drive. Or press F5 to continue without any changes.</td>
</tr>
</tbody>
</table>
PeerMaster Adapter Screen Messages

This section lists the PeerMaster diagnostic and setup error messages, Novell NetWare load-time error messages, and Novell NetWare run-time error messages. The messages are in bold type; their descriptions or actions are listed in numeric order for each type of message.

Diagnostic and Setup Error Messages

Diagnostic error messages include POST, load-time, and run-time error messages. You may invoke these self tests using the setup and diagnostics program, PSSETUP.EXE, provided on your PeerMaster Server Adapter Option Diskette. Refer to “Running PeerMaster Diagnostic Programs” on page 151 for more information.

1: POST Flash Main Sector Checksum Failure
Action: Call for service.

2: POST was not performed - adapter restarted
Action: Call for service.

3: POST Test Sequence Internal Failure
Action: Call for service.

4: POST Flash Boot Sector Checksum Failure
Action: Call for service.

5: POST DRAM Size Detection Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service.

6: POST DRAM Byte (8 bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service.
<table>
<thead>
<tr>
<th></th>
<th>PeerMaster Adapter Screen Messages</th>
</tr>
</thead>
</table>
| 7 | POST DRAM Short (16 bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service. |
| 8 | POST DRAM Word (32 bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service. |
| 9 | POST DRAM Long (64 bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service. |
| 10 | POST DRAM Trip (96 bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service. |
| 11 | POST DRAM Quad (128 bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service. |
| 12 | POST DRAM Addressability Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service. |
| 13 | POST SRAM Size Detection Failure
Action: Call for service. |
| 14 | POST SRAM Byte (8 bit) Wide Failure
Action: Call for service. |
| 15 | POST SRAM Short (16 bit) Wide Failure
Action: Call for service. |
| 16 | POST SRAM Word (32 bit) Wide Failure
Action: Call for service. |
17: POST SRAM Long (64 bit) Wide Failure
Action: Call for service.

18: POST SRAM Trip (96 bit) Wide Failure
Action: Call for service.

19: POST SRAM Quad (128 bit) Wide Failure
Action: Call for service.

20: POST SRAM Addressability Failure
Action: Call for service.

21: POST Timer Failure
Action: Call for service.

22: POST Ethernet Port N Internal Loopback Failure
\(N = 1, 2, 3,\) or 4
Action: Call for service.

23: POST Ethernet Port N Internal Loopback Failure
\(N = 1, 2, 3,\) or 4
Action: Call for service.

24: POST Ethernet Port N Internal Loopback Failure
\(N = 1, 2, 3,\) or 4
Action: Call for service.

25: POST Ethernet Port N Internal Loopback Failure
\(N = 1, 2, 3,\) or 4
Action: Call for service.

26: POST Ethernet Port N External Loopback Failure
\(N = 1, 2, 3,\) or 4
Action: Call for service.
PeerMaster Adapter Screen Messages

27: POST Ethernet Port N External Loopback Failure
 \(N = 1, 2, 3, \text{ or } 4 \)
 Action: Call for service.

28: POST Ethernet Port N External Loopback Failure
 \(N = 1, 2, 3, \text{ or } 4 \)
 Action: Call for service.

29: POST Ethernet Port N External Loopback Failure
 \(N = 1, 2, 3, \text{ or } 4 \)
 Action: Call for service.

30: POST Ethernet Port N Device Verification Failure
 \(N = 1, 2, 3, \text{ or } 4 \)
 Action: Call for service.

31: POST Ethernet Port N Device Verification Failure
 \(N = 1, 2, 3, \text{ or } 4 \)
 Action: Call for service.

32: POST Ethernet Port N Device Verification Failure
 \(N = 1, 2, 3, \text{ or } 4 \)
 Action: Call for service.

33: POST Ethernet Port N Device Verification Failure
 \(N = 1, 2, 3, \text{ or } 4 \)
 Action: Call for service.

34: POST Ethernet Port N Device Verification Failure
 \(N = 1, 2, 3, \text{ or } 4 \)
 Action: Call for service.
Novell NetWare Load-Time Error Messages
Load-time errors might occur under two conditions. If POST completes successfully, the device driver attempts to initialize and download the PeerMaster adapter software. If POST completes unsuccessfully, the device driver will not attempt to load the adapter software. This section describes the error messages that might appear during load time.

050: The adapter cannot be found
Description: The device driver assumes that your PeerMaster adapter has not been installed. Verify that your PeerMaster adapter is properly installed. If so, then treat this error in the same manner as “The adapter has failed.”

058: The adapter does not respond
Description: The device driver is not able to communicate with the PeerMaster adapter. If this occurs when the device driver is being loaded, it is an irrecoverable error that causes the device driver to terminate the load process. It might help to restart the server or run your system configuration program to check for possible system conflicts. If restarting your server does not clear the problem, and system conflicts do not exist, call for service.

070: The adapter has failed
Description: The device driver is not able to communicate with the PeerMaster adapter. If this occurs when the device driver is being loaded, it is an irrecoverable error that causes the device driver to terminate the load process. It might help to restart the server or run your system configuration program to check for possible system conflicts. If restarting your server does not clear the problem, and system conflicts do not exist, call for service.

073: Unable to allocate memory
Description: The device driver was unable to allocate sufficient memory to perform its functions. Unload the device driver and unnecessary NLMs and try again. If this does not help, exit and restart the server and try again. If the problem persists, you must install additional memory into your server.
PeerMaster Adapter Screen Messages

110: Unable to download the firmware
Description: The device driver is not able to communicate with the PeerMaster adapter. If this occurs when the device driver is being loaded, it is an irrecoverable error that causes the device driver to terminate the load process. It might help to restart the server or run your system configuration program to check for possible system conflicts. If restarting your server does not clear the problem, and system conflicts do not exist, call for service.

203: Adapter diagnostics failed to complete
Description: The device driver is not able to communicate with the PeerMaster adapter. If this occurs when the device driver is being loaded, it is an irrecoverable error that causes the device driver to terminate the load process. It might help to restart the computer or run your system configuration program to check for possible system conflicts. If restarting your computer does not clear the problem, and system conflicts do not exist, call for service.

301: POST Flash Main Sector Checksum Failure
Action: Call for service.

302: POST was not performed - adapter restarted
Action: Call for service.

303: POST Test Sequencer Internal Failure
Action: Call for service.

304: POST Flash Boot Sector Checksum Failure
Action: Call for service.

305: POST DRAM Size Detection Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service.
PeerMaster Adapter Screen Messages

306: POST DRAM Byte (8-bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service.

307: POST DRAM Short (16-bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service.

308: POST DRAM Word (32-bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service.

309: POST DRAM Long (64-bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service.

310: POST DRAM Trip (96-bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service.

311: POST DRAM Quad (128-bit) Wide Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service.

312: POST DRAM Addressability Failure
Action: Power down the server. Verify proper seating of the DRAM SIMM on the adapter and try again. If failure persists, call for service.

313: POST SRAM Size Detection Failure
Action: Call for service.

314: POST SRAM Byte (8-bit) Wide Failure
Action: Call for service.
PeerMaster Adapter Screen Messages

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td>POST SRAM Short (16-bit) Wide Failure</td>
<td>Call for service.</td>
</tr>
<tr>
<td>316</td>
<td>POST SRAM Word (32-bit) Wide Failure</td>
<td>Call for service.</td>
</tr>
<tr>
<td>317</td>
<td>POST SRAM Long (64-bit) Wide Failure</td>
<td>Call for service.</td>
</tr>
<tr>
<td>318</td>
<td>POST SRAM Trip (96-bit) Wide Failure</td>
<td>Call for service.</td>
</tr>
<tr>
<td>319</td>
<td>POST SRAM Quad (128-bit) Wide Failure</td>
<td>Call for service.</td>
</tr>
<tr>
<td>320</td>
<td>POST SRAM Addressability Failure</td>
<td>Call for service.</td>
</tr>
<tr>
<td>321</td>
<td>POST Timer Failure</td>
<td>Call for service.</td>
</tr>
<tr>
<td>322</td>
<td>POST Ethernet Port N Internal Loopback Failure</td>
<td>Call for service.</td>
</tr>
<tr>
<td>323</td>
<td>POST Ethernet Port N Internal Loopback Failure</td>
<td>Call for service.</td>
</tr>
<tr>
<td>324</td>
<td>POST Ethernet Port N Internal Loopback Failure</td>
<td>Call for service.</td>
</tr>
</tbody>
</table>
325: POST Ethernet Port N Internal Loopback Failure
(N = 1, 2, 3, or 4)
Action: Call for service.

326: POST Ethernet Port N External Loopback Failure
(N = 1, 2, 3, or 4)
Action: Call for service.

327: POST Ethernet Port N External Loopback Failure
(N = 1, 2, 3, or 4)
Action: Call for service.

328: POST Ethernet Port N External Loopback Failure
(N = 1, 2, 3, or 4)
Action: Call for service.

329: POST Ethernet Port N External Loopback Failure
(N = 1, 2, 3, or 4)
Action: Call for service.

330: POST Ethernet Port N Device Verification Failure
(N = 1, 2, 3, or 4)
Action: Call for service.

331: POST Ethernet Port N Device Verification Failure
(N = 1, 2, 3, or 4)
Action: Call for service.

332: POST Ethernet Port N Device Verification Failure
(N = 1, 2, 3, or 4)
Action: Call for service.

333: POST Ethernet Port N Device Verification Failure
(N = 1, 2, 3, or 4)
Action: Call for service.
Novell NetWare Run-Time Messages

It is possible that a recoverable or irrecoverable error might occur during normal operation of the PeerMaster adapter. The following tables describe the run-time errors that might appear.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 58: | The adapter does not respond
Description: To clear a detected run-time error, the device driver has attempted to reset, reload, and reinitialize the PeerMaster adapter. This message indicates that an error occurred during the recovery process. This message does not indicate that the device driver has terminated the recovery process. The device driver will attempt to recover control of the PeerMaster adapter at periodic intervals. The message will not display each time the device driver attempts to recover from the error. If, after several minutes, the device driver is not able to recover from this error, call for service. |
| 110: | Unable to download the microcode
Description: To clear a detected run-time error, the device driver has attempted to reset, reload, and reinitialize the PeerMaster adapter. This message indicates that an error occurred during the recovery process. This message does not indicate that the device driver has terminated the recovery process. The device driver will attempt to recover control of the PeerMaster adapter at periodic intervals. The message will not display each time the device driver attempts to recover from the error. If, after several minutes, the device driver is not able to recover from this error, call for service. |
| 111: | Invalid Pipe Command
Description: To clear a detected run-time error, the device driver has attempted to reset, reload, and reinitialize the PeerMaster adapter. This message indicates that an error occurred during the recovery process. This message does not indicate that the device driver has terminated the recovery process. The device driver will attempt to recover control of the PeerMaster adapter at periodic intervals. The message will not display each time the device driver attempts to recover from the error. If, after several minutes, the device driver is not able to recover from this error, call for service. |
PeerMaster Adapter Screen Messages

112: The adapter watchdog failed

Description: To clear a detected run-time error, the device driver has attempted to reset, reload, and reinitialize the PeerMaster adapter. This message indicates that an error occurred during the recovery process. This message does not indicate that the device driver has terminated the recovery process. The device driver will attempt to recover control of the PeerMaster adapter at periodic intervals. The message will not display each time the device driver attempts to recover from the error. If, after several minutes, the device driver is not able to recover from this error, call for service.

113: Adapter resetting... please wait

Description: To clear a detected run-time error, the device driver has attempted to reset, reload, and reinitialize the PeerMaster adapter. This message indicates that an error occurred during the recovery process. This message does not indicate that the device driver has terminated the recovery process. The device driver will attempt to recover control of the PeerMaster adapter at periodic intervals. The message will not display each time the device driver attempts to recover from the error. If, after several minutes, the device driver is not able to recover from this error, call for service.

229: PeerMaster adapter alert condition has been corrected

Description: This message indicates the successful recovery from one of the previous run-time error conditions.

388: Ethernet Media Port N Tx Carrier Sense Errors, check your cable (N = 1, 2, 3, or 4)

Action: Check your cables or concentrator.

389: Ethernet Media Port N Tx Carrier Sense Errors, check your cable (N = 1, 2, 3, or 4)

Action: Check your cables or concentrator.

390: Ethernet Media Port N Tx Carrier Sense Errors, check your cable (N = 1, 2, 3, or 4)

Action: Check your cables or concentrator.
PeerMaster Adapter Screen Messages

391: Ethernet Media Port N Tx Carrier Sense Errors, check your cable
(N = 1, 2, 3, or 4)
Action: Check your cables or concentrator.

395: Ethernet Media Port N Tx Carrier Sense Errors corrected
Action: The problem is corrected.

396: Ethernet Media Port N Tx Carrier Sense Errors corrected
Action: The problem is corrected.

397: Ethernet Media Port N Tx Carrier Sense Errors corrected
Action: The problem is corrected.

398: Ethernet Media Port N Tx Carrier Sense Errors corrected
Action: The problem is corrected.

n Technical Description
Action: Call for service and report the technical description.
Beep Codes

One beep and the appearance of text on the monitor indicates successful completion of POST. More than one beep indicates that POST detects an error.

Beep codes are sounded in a series of four sets of beeps. The duration of each beep is constant, but the length of the pause between the beeps varies. For example, a 1–2–3–3 beep code sounds like one beep, a pause, two consecutive beeps, another pause, three more consecutive beeps, another pause, and three more consecutive beeps.

It is possible to misinterpret a beep code if you do not understand exactly how they work. Keeping in mind that POST error codes vary in the length of the pause, and not the duration of the beep tones will help you to distinguish the beeps.

Beep Code Chart

<table>
<thead>
<tr>
<th>Beep Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2-3-3</td>
<td>BIOS ROM check failure.</td>
</tr>
<tr>
<td>1-3-1-3</td>
<td>The keyboard controller failed.</td>
</tr>
<tr>
<td>2-1-2-3</td>
<td>ROM copyright notice test failed.</td>
</tr>
<tr>
<td>2-2-3-1</td>
<td>The interrupt test failed.</td>
</tr>
<tr>
<td></td>
<td>Action: Have the system serviced.</td>
</tr>
<tr>
<td>1-3-1-1</td>
<td>RAM refresh verification failed.</td>
</tr>
<tr>
<td>1-3-4-1</td>
<td>There is an address line failure within the first 512 KB of RAM.</td>
</tr>
<tr>
<td>1-3-4-3</td>
<td>There is a memory test failure within the first 512 KB of RAM.</td>
</tr>
<tr>
<td></td>
<td>Action:</td>
</tr>
<tr>
<td></td>
<td>1. Reseat the memory module.</td>
</tr>
<tr>
<td></td>
<td>2. Run the diagnostic program. See “Starting the Test Programs” on page 318.</td>
</tr>
<tr>
<td></td>
<td>If the problem recurs, have the system serviced.</td>
</tr>
</tbody>
</table>
Troubleshooting Charts

You can use the troubleshooting charts in this section to find solutions to problems that have definite symptoms.

Look for the symptom in the left column of the chart. Instructions and probable solutions to the problem are in the right column of the chart.

In these charts, an X can be any alphanumerical character.

<table>
<thead>
<tr>
<th>CD-ROM Drive Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-ROM Drive Tray Not Working</td>
<td>The system must be turned on. If the system is on and the tray does not eject, insert the end of a paper clip into the small hole (to the left of the tray load and eject button) on the front of the CD-ROM drive. If the drive still does not work correctly, have the system serviced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diskette Drive Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diskette drive In-Use light stays on, or the system bypasses the diskette drive.</td>
<td>If there is a diskette in the drive, verify that:</td>
</tr>
<tr>
<td></td>
<td>1. The diskette is good and not damaged. (Try another diskette if you have one.)</td>
</tr>
<tr>
<td></td>
<td>2. The diskette is inserted correctly (label up and metal-shutter end first) in the drive.</td>
</tr>
<tr>
<td></td>
<td>3. The diskette contains the necessary files to start the system.</td>
</tr>
<tr>
<td></td>
<td>4. Your software program is OK (see the Software Problems troubleshooting chart provided later in this section).</td>
</tr>
<tr>
<td></td>
<td>5. Your Boot Sequence is set correctly (check the Boot Sequence setting in the Setup program).</td>
</tr>
<tr>
<td></td>
<td>If the diskette drive In-Use light stays on, or the system continues to bypass the diskette drive, have the system serviced.</td>
</tr>
</tbody>
</table>
Troubleshooting Charts

<table>
<thead>
<tr>
<th>Monitor Self-Tests</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some IBM monitors have their own self-tests. If you suspect a problem with your monitor, refer to the information that comes with the monitor for adjusting and testing instructions. If you still cannot find the problem, have the monitor and system serviced.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitor Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavy, unreadable, rolling, distorted screen, or screen jitter.</td>
<td>If the monitor self-tests show that the monitor is OK, consider the location of the monitor. Magnetic fields around other devices (such as transformers, appliances, fluorescent lights, and other monitors) can cause screen jitter or wavy, unreadable, rolling, or distorted screen images. If this happens, turn off the monitor. (Moving a color monitor while it is turned on might cause screen discoloration.) Then move the device and the monitor at least 305 mm (12 in.) apart. Turn on the monitor. Notes:</td>
</tr>
<tr>
<td>1. The distance between monitors and diskette drives should be at least 76 mm (3 in.) to prevent diskette drive read/write errors.</td>
<td></td>
</tr>
<tr>
<td>2. Non-IBM monitor cables might cause unpredictable problems.</td>
<td></td>
</tr>
<tr>
<td>3. An enhanced monitor cable with additional shielding is available for the 9521 and 9527 monitors. See your IBM reseller or IBM marketing representative for information about the enhanced monitor cable.</td>
<td></td>
</tr>
<tr>
<td>If the problem recurs, have the monitor and system serviced.</td>
<td></td>
</tr>
</tbody>
</table>

| The monitor works when you turn on the system, but goes blank when you start some application programs. | Verify that the primary monitor cable is connected to the video port. To find the video port, see “Input/Output Connectors” on page 6. Be sure you installed the necessary drivers for the application. |
Troubleshooting Charts

<table>
<thead>
<tr>
<th>Monitor Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank screen</td>
<td>Verify that:</td>
</tr>
<tr>
<td></td>
<td>1. The voltage-selection switch is set to the correct setting.</td>
</tr>
<tr>
<td></td>
<td>2. The system power cord is plugged into the system and a working electrical outlet.</td>
</tr>
<tr>
<td></td>
<td>3. The monitor is turned on and the Brightness and Contrast controls are adjusted correctly.</td>
</tr>
<tr>
<td></td>
<td>4. The monitor signal cable is connected to the correct connector on the system.</td>
</tr>
<tr>
<td></td>
<td>If the items above are correct and the screen remains blank, have the system serviced.</td>
</tr>
<tr>
<td>Only the cursor appears.</td>
<td>Have the system serviced.</td>
</tr>
<tr>
<td>Wrong characters appear on the screen.</td>
<td>Have the system serviced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EISA Adapter Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLK default setting causing system to hang when using EISA Adaptec SCSI adapter.</td>
<td>Change the default setting from 28 to 12.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems such as broken cover locks or indicator lights not working.</td>
<td>Have the system serviced.</td>
</tr>
<tr>
<td>System continuously restarts.</td>
<td>Have the system serviced.</td>
</tr>
</tbody>
</table>
Troubleshooting Charts

Intermittent Problems

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A problem occurs only occasionally and is difficult to detect.</td>
</tr>
</tbody>
</table>

Verify that:

1. All cables and cords are securely connected to the rear of the system and attached options.
2. When the system is turned on, air is flowing from the rear of the system at the fan grill. If there is no air flow, the fan is not working. This causes the system to overheat and shut down.
3. The last external device in each SCSI chain is terminated correctly. (See “SCSI Drives” on page 201 for more information about SCSI terminators.)

If the items above are correct, have the system serviced.

Keyboard, Mouse, or Pointing-Device Problems

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>All or some keys on the keyboard do not work.</td>
</tr>
</tbody>
</table>

Verify that:

1. Make sure the keyboard cable is properly connected to the system.
2. Make sure that the system and the monitor are turned on.

If the items above are correct, have the system serviced.

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The mouse or pointing device does not work.</td>
</tr>
</tbody>
</table>

Verify that the mouse or pointing-device cable is securely connected and the device drivers are installed correctly.

Note: The pointing-device port is also known as the auxiliary-device port or mouse port.

If the problem recurs, have the system and the device serviced.
Troubleshooting Charts

<table>
<thead>
<tr>
<th>Memory Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The amount of memory displayed is less than the amount of memory installed.</td>
<td>Verify that:</td>
</tr>
<tr>
<td></td>
<td>1. The memory modules are seated properly.</td>
</tr>
<tr>
<td></td>
<td>2. Memory modules must be installed in pairs. See “Installing Memory-Module Kits” on page 169 for more information.</td>
</tr>
<tr>
<td></td>
<td>3. You updated the configuration information.</td>
</tr>
<tr>
<td></td>
<td>Whenever you change the memory or an option, you must update the configuration by running the EISA Configuration program (see “Starting the EISA Configuration Diskette” on page 297).</td>
</tr>
<tr>
<td></td>
<td>If the above items are correct, have the system serviced.</td>
</tr>
<tr>
<td></td>
<td>Run the memory test program from your Diagnostic Diskette (see “Starting the Test Programs” on page 318). The system might have detected a bad memory module and automatically reallocated memory to enable you to continue to operate. If the memory tests fail, have the system serviced.</td>
</tr>
<tr>
<td>Experiencing client dropoff due to heavy traffic on the server.</td>
<td>Increase memory. For example, you might install 16 MB of EOS memory in bank 1.</td>
</tr>
</tbody>
</table>
Troubleshooting Charts

<table>
<thead>
<tr>
<th>Option Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>An IBM option that was just installed does not work.</td>
<td>Verify that:</td>
</tr>
<tr>
<td></td>
<td>1. The option is designed for the system.</td>
</tr>
<tr>
<td></td>
<td>2. You followed the installation instructions that were supplied with the option.</td>
</tr>
<tr>
<td></td>
<td>3. The option is installed correctly.</td>
</tr>
<tr>
<td></td>
<td>4. You have not loosened any other installed options or cables.</td>
</tr>
<tr>
<td></td>
<td>5. You updated the configuration information.</td>
</tr>
<tr>
<td></td>
<td>Whenever you change the memory or an option, you must update the configuration by running the EISA Configuration program (see “Starting the EISA Configuration Diskette” on page 297). Press F2 quickly, when prompted, to enter Setup.</td>
</tr>
<tr>
<td></td>
<td>If you are using an expanded- or enhanced-memory manager, such as the DOS Expanded Memory Specification (EMS) driver, go to Chapter 5, “Installing Options” on page 157.</td>
</tr>
<tr>
<td></td>
<td>If all of the above items are correct, start the test programs. If the test programs find no problem, have the system and the option serviced.</td>
</tr>
<tr>
<td>An IBM option that used to work does not work now.</td>
<td>Verify that all of the option hardware and cable connections are secure.</td>
</tr>
<tr>
<td></td>
<td>If the option comes with its own test instructions, use those instructions to test the option.</td>
</tr>
<tr>
<td></td>
<td>If the items above are correct and the test programs found no problem, have the system and the option serviced.</td>
</tr>
<tr>
<td></td>
<td>If the failing option is a SCSI option, verify that:</td>
</tr>
<tr>
<td></td>
<td>1. The cables for all external SCSI options are connected correctly.</td>
</tr>
<tr>
<td></td>
<td>2. The last option in each SCSI chain, or the end of the SCSI cable, is terminated correctly. (See “SCSI Drives” on page 201 for more information on SCSI terminators.)</td>
</tr>
<tr>
<td></td>
<td>3. All external SCSI options are turned on. External SCSI options must be turned on before the system is turned on.</td>
</tr>
<tr>
<td></td>
<td>If the problem recurs, have the system serviced.</td>
</tr>
</tbody>
</table>
Troubleshooting Charts

<table>
<thead>
<tr>
<th>Troubleshooting Chart</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Port Problems</td>
<td>Verify that:</td>
</tr>
</tbody>
</table>
| The number of parallel ports displayed is less than the number of parallel ports installed. | 1. Each port is assigned a unique address.
2. The parallel-port adapter, if you installed one, is seated properly.
If the items above are correct, have the system serviced. |
| **Serial Port Problems** | Verify that: |
| The number of serial ports displayed is less than the number of serial ports installed. | 1. Each port is assigned a unique address.
2. The serial-port adapter, if you installed one, is seated properly.
If the items above are correct, have the system serviced. |
| **Printer Problems** | Verify that: |
| The printer does not work. | 1. The printer is turned on and is online.
2. The printer signal cable is connected to the correct serial or parallel-port on the system. (For the location of the serial or parallel port, see “Input/Output Connectors” on page 6.)
Note: Non-IBM printer cables might cause unpredictable problems.
3. You have assigned the printer port correctly in your operating system or application program.
4. You have assigned the printer port correctly using the Setup program.
If the items above are correct and the printer still does not work, run the tests described in the manual that comes with your printer. If the tests show the printer is OK, have the system serviced. |
Troubleshooting Charts

<table>
<thead>
<tr>
<th>Software Problems</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is your software program OK?</td>
<td>To determine if problems are caused by the software, verify that:</td>
</tr>
<tr>
<td></td>
<td>1. Your system has the minimum memory requirements needed to use the software. Refer to the information supplied with the software to verify memory requirements.</td>
</tr>
<tr>
<td></td>
<td>Note: If you have just installed an adapter or memory, you might have a memory address conflict (see “Configuration Conflicts” on page 299).</td>
</tr>
<tr>
<td></td>
<td>2. The software is designed to operate on your system.</td>
</tr>
<tr>
<td></td>
<td>3. Other software works on your system.</td>
</tr>
<tr>
<td></td>
<td>4. The software you are using works on another system.</td>
</tr>
<tr>
<td></td>
<td>If you received any error messages when using the software program, refer to the information supplied with the software for a description of the messages and solutions to the problem.</td>
</tr>
<tr>
<td></td>
<td>If the items above are correct and the problem remains, contact your place of purchase or service technician for help.</td>
</tr>
</tbody>
</table>
Checking for Damage

Checking the System for Damage
This section provides instructions on what to do if your system is damaged.

After Dropping It

Obvious damage:
Look for loose cables and obvious damage. If any cables are loose, reconnect them securely. If there is obvious damage to the system, have it serviced.

No obvious damage:
If you see no damage, turn on the system. If it works correctly, the system probably did not suffer any damage.

⚠️

CAUTION:
Observe all safety and electrostatic precautions listed in “Safety Information” on page ix to avoid personal injury or damage to your system.

If it does not work correctly, turn off the system and check the adapters and memory modules to ensure that they are seated correctly. See Chapter 5, “Installing Options” on page 157 and follow the instructions for opening your system; then, reseat all adapters and memory modules.

If the system still does not work correctly, start the test programs and test the system. See “Starting the Test Programs” on page 318 for instructions.
Checking for Damage

After Spilling Liquid on It

If liquid gets on the keyboard:

1. Turn off the system.
2. Unplug the keyboard from the back of the system.
3. Turn the keyboard upside down to drain excess liquid.
4. Dry off the keyboard with a lint-free cloth.

After the keyboard is completely dry, plug it in and turn on the system. If it does not work correctly, have the keyboard serviced.

If liquid gets inside the monitor:

1. Turn off the monitor.
2. Turn off the system.
3. Unplug the monitor from the system and the electrical outlet.
4. Have the monitor serviced immediately.

If liquid gets inside the system:

1. Turn off the system and all attached devices.
2. Unplug the system from the electrical outlet and all attached devices.
3. Have the system serviced immediately.
Installing Additional Test Programs

You can add other test programs to the Diagnostic Diskette. These other programs are usually provided on the diskette that comes with a device. After you add the programs to the Diagnostic Diskette, you can include information from the programs in the Test Log.

Before the test programs can find these programs to run as the User Diags test group, information about them must be included in a file called USERDIAG.CFG. This is an ASCII text file. It must include the following three items for each test to run:

- Program Name (.COM and .EXE files only)
- Test Description of the test to be run
- Command-line parameters to be passed to the program identified in the first item of this list

The user diagnostic tests must generate the following return codes upon completion so that the tests can be registered properly in the test log:

0 The test passed.
1 The test failed.
2 or greater The test aborted.

Abort messages from the user diagnostic test program also report the ABORT return code.

Notes:

1. All of the information for a given test must be on a single line, and a semicolon (;) must separate the items on the line.

2. Make sure you press Enter at the end of each line of text in the USERDIAG.CFG file. This creates a carriage return line feed (CR LF) which is necessary for the User Diagnostics to be found and executed.

3. If the program executable file is in a directory other than the QA directory (or other directory you have designated
Installing Additional Test Programs

to contain the QA files), that directory must be listed in
the PATH= section of the AUTOEXEC.BAT.

4. You can use a .CFG file other than USERDIAG.CFG if
you use the command line “USRCOMFIG=filename,” when
running the diagnostic programs. For example, you
might use: QAPLPRO /USRCOMFIG=MYTESTS.CFG.

USERDIAG.CFG Example

An example USERDIAG.CFG file might look like the following:

<table>
<thead>
<tr>
<th>Program Name</th>
<th>Test Description</th>
<th>Command-Line Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBSMODEM.EXE;</td>
<td>9600 Baud 5 Line</td>
<td>5</td>
</tr>
<tr>
<td>TEST1.EXE;</td>
<td>Generic 1;</td>
<td></td>
</tr>
<tr>
<td>TEST2.EXE;</td>
<td>Generic 2;</td>
<td></td>
</tr>
<tr>
<td>TESTALL.EXE;</td>
<td>CMD 1;</td>
<td>1</td>
</tr>
<tr>
<td>TESTALL.EXE;</td>
<td>CMD 2;</td>
<td>2</td>
</tr>
<tr>
<td>TESTALL.EXE;</td>
<td>CMD 3;</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: You can have more than one command-line parameter for
any given test.

When you view these tests on the Test Group window for the User
Diag test group, they appear as follows:

- (♦) 9600 Baud 5 Line Modem
- (♦) Generic 1
- (♦) Generic 2
- (♦) CMD 1
- (♦) CMD 2
- (♦) CMD 3

The diagnostic program automatically assigns a test number to each
test. The test numbers start at 201 and continue upward as needed.
The numbers for the tests listed above are as follows:

- 202 9600 Baud 5 Line Modem
- 203 Generic 1
- 204 Generic 2
- 205 CMD 1
- 206 CMD 2
Installing Additional Test Programs

207 CMD 3
Using the Utility Programs

The Diagnostic Diskette contains utility programs for formatting diskettes and editing.

Formatting Diskettes
To format a diskette within the diagnostic programs, select one of the following options:

Format A: high density

After selecting one of the above options to format a diskette, follow the instructions that appear on the screen.

Using the File Editor
The file editor allows you to modify text files. By modifying files, such as your AUTOEXEC.BAT or CONFIG.SYS files, you can improve the test system's performance and eliminate unnecessary lines of information in those files.

Note: Always make a backup copy on a self-starting diskette of the AUTOEXEC.BAT and CONFIG.SYS files before making any changes.

The File Editor is an ASCII text editor that uses the following function keys:

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrows</td>
<td>Use the arrow keys to move the cursor to the place in the text where you want to make changes.</td>
</tr>
<tr>
<td>Home</td>
<td>To move the cursor to the start of the current line, press Home once. To move to the beginning of the current screen, press Home twice. To move to the beginning of the file, press Home three times.</td>
</tr>
<tr>
<td>End</td>
<td>To move the cursor to the end of the current line, press End once. To move the cursor to the end of the current screen, press End twice. To move the end of the file, press End three times.</td>
</tr>
</tbody>
</table>
Using the Utility Programs

F2 To be in search mode, press F2. You are prompted to enter the search word or words on a reverse highlighted line at the bottom of the File Edit Screen. After typing in the search word, press Enter.

F3 To find the next occurrence of a search word, press F3.

F4 To mark the start of a block of text (if you have not previously marked it), press F4. If you previously marked the block of text, pressing this key unmarks the text block.

F5 To complete the block marking (started with F4), press F5. If you did not previously press F4 to start marking a block of text, F5 is ignored.

F6 To move an active (marked) block of text, first press F6 while the cursor is within the active block. Then, move the cursor to the new location where the active block is to be moved, and press F6 again. If there is no active block of text, F6 is ignored.

F7 To copy an active (marked) block of text to the new location, move the cursor to the new location and press F7. If there is no active block of text, F7 is ignored.

F8 To delete an active (marked) block of text, move the cursor within the active block and press F8. If there is no active text block, F8 is ignored.

F10 To save all changes and exit the file, press F10.

Insert Insert is the default text-editing mode of the File Editor. To toggle between replace and insert modes, press Insert.

To access the File Editor:

1. Select File Editor from the Utilities Menu; then, press Enter.

2. Insert a diskette into drive A or drive B before selecting the file that you want to edit; then, select the file from the Files Selection box.

3. Press Enter.

4. Make your changes.
5. When you are done, press **F10** to update the file with the changes that you made, or press **Esc** to quit the editing process without saving the changes.

Note: When you are using the File Editor, you may press F1 to display all of the available keyboard functions.
Using the Utility Programs
Chapter 8. Getting Help, Service, and Information

If you need help, service, technical assistance, or just want more information about IBM products, you will find a wide variety of sources available from IBM to assist you. This section provides information about those sources.

Services available and telephone numbers listed are subject to change without notice.

Before You Call for Service

Many server problems can be solved without outside assistance, by using the online help or by looking in the online or printed documentation that comes with your server or software. Also, be sure to read the information in any README files that come with your software.

Most servers, operating systems, and application programs come with documentation that contains troubleshooting procedures and explanations of error messages. (For troubleshooting and error information about your PC Server 520, see “Troubleshooting Charts” on page 350, “POST Error Message Table” on page 325, “SCSI Messages” on page 330, and “ServeRAID Adapter Status and Error Messages” on page 335). The documentation that comes with your server also contains information about the diagnostic tests that you can perform (see “Starting the Test Programs” on page 318).

If you suspect a hardware problem, run the diagnostic tests and make a note of any error messages you receive. Then look up the message in Chapter 7, “Solving Problems” on page 305, and take the appropriate action.

If you suspect a software problem, consult the documentation (including README files) for the operating system or application program.
Using the HelpWare Support Family

IBM HelpWare is the solution for IBM PC service and support wherever IBM products are sold and serviced. Purchasing an IBM PC hardware product entitles you to standard help and support during the warranty period. If you need additional support and services, HelpWare provides a wide variety of extended services that address almost any need.

Using Electronic Support Services

If you have a modem, you can get help from several popular services. Bulletin boards and online information services provide assistance through question-and-answer message areas, live chat rooms, searchable databases, and more.

Technical information is available on a wide range of topics, such as:

- Hardware setup and configuration
- Preinstalled software
- OS/2, DOS, and Windows
- Networking
- Communications
- Multimedia

The IBM PC Company Bulletin Board System (BBS) can be reached 24 hours a day, 7 days a week. Modem speeds of up to 14400 baud are supported. Long distance telephone charges might apply. To access the PC Company BBS:

- In the U.S., call 1-919-517-0001.
- In Canada:
 - In Markham, call 905-316-4255.
 - In Montreal, call 514-938-3022.
 - In Toronto, call 416-492-1823.
 - In Vancouver, call 604-664-6466.

Commercial online services that contain information about IBM products include:

- CompuServe
Using the HelpWare Support Family

Use the following GO words: APTIVA, IBMPS2, ThinkPad, PowerPC, ValuePoint, IBMSVR, or IBMOMI.

- PRODIGY
 Use the Jump command; type IBM and select PC Product Support.

- America Online
 Use the “Go to” keyword IBM Connect.

On the World Wide Web, the IBM Personal Computers home page has information about IBM Personal Computer products and support. The address for the IBM Personal Computer home page is:

 http://www.pc.ibm.com

Getting Information by Fax
If you have a touch-tone telephone and access to a fax machine, in the U.S. and Canada you can receive by fax free marketing and technical information on many topics, including hardware, operating systems, and local area networks (LANs). You can call the IBM PC Company Automated Fax System 24 hours a day, 7 days a week. Follow the recorded instructions, and the requested information will be sent to your fax machine.

To access the IBM PC Company Automated Fax System, do the following:

- In the U.S., call 1-800-426-3395.
- In Canada, call 1-800-465-3299.

Getting Help by Telephone
During the warranty period, you can get help and information by telephone through the IBM HelpWare PC Support Line. Expert technical-support representatives are available to assist you with questions you might have on the following:

- Setting up your server and IBM monitor
- Installing and setting up IBM options purchased from IBM or an IBM reseller
- 60-day, preinstalled-operating-system support
Using the HelpWare Support Family

- Arranging for service (on-site or carry-in)
- Arranging for overnight shipment of customer-replaceable parts

In addition, if you purchased an IBM PC Server, you are eligible for PC Server Startup Support for 90 days after installation. This service provides assistance for:

- Setting up your network operating system
- Installing and configuring interface cards
- Installing and configuring network adapters

Please have the following information ready when you call:

- Serial numbers of your server, monitor, and other components, or your proof of purchase
- Description of the problem
- Exact wording of any error messages
- Hardware and software configuration information for your system

If possible, be at your server when you call.

These services are available 24 hours a day, 7 days a week (excluding some holidays).

- In the U.S. and Puerto Rico, call 1-800-772-2227.
- In Canada, call 1-800-565-3344.
- In all other countries, contact your IBM reseller or IBM marketing representative.

Getting Help Around the World
If you need to move your server to another country, you can register for International Warranty Service. When you register with the International Warranty Service Office, you will receive an International Warranty Service Certificate that is honored virtually worldwide, wherever IBM or IBM resellers sell and service IBM PC products.

For more information or to register for International Warranty Service in the U.S. or Canada, call 1-800-497-7426.
Purchasing Additional HelpWare Services

During and after the warranty period, you can purchase additional HelpWare services, such as support for IBM and non-IBM hardware, operating systems, and application programs; network setup and configuration; upgraded or extended hardware repair services; and custom installations. Service availability and name might vary by country.

Using the World Wide Web

Also available to you is the latest information about product compatibility and configuration. This information is updated as new PC Server products are announced. For a product to be included in the PC Server compatibility list, it must pass a strict set of hardware and operating system compatibility tests. The following is a sample of the information available at http://www.pc.ibm.com/servers/ on the World Wide Web.

- A listing of products that have been tested for compatibility with IBM PC Server.
- Certification and compatibility information about Network Operating Systems (NOS) and Operating Systems (OS).
- Direct access to device drivers, flash BIOS updates, and other code.
- Descriptions of PC Server compatibility and certification tests.
- Detailed reports about the performance of PC Servers.

Enhanced PC Support Line

Enhanced PC Support is available for desktop and mobile IBM computers that are not connected to a network. Technical support is provided for IBM computers and IBM or non-IBM options, operating systems, and application programs on the Supported Products list.

This service includes technical support for:

- Installing and configuring your out-of-warranty IBM computer
- Installing and configuring non-IBM options in IBM computers
- Using IBM operating systems in IBM and non-IBM computers
Purchasing Additional HelpWare Services

- Using application programs and games
- Tuning performance
- Installing device drivers remotely
- Setting up and using multimedia devices
- Identifying system problems
- Interpreting documentation

You can purchase this service on a per-call basis, as a multiple-incident package, or as an annual contract with a 10-incident limit. For more information about purchasing Enhanced PC Support, see “Ordering Support Line Services” on page 373.

900-Number Operating System and Hardware Support Line

In the U.S., if you prefer to obtain technical support on a pay-as-you go basis, you can use the 900-number support line. The 900-number support line provides the same support as the Enhanced PC Support line, except for application and non-IBM option support.

To access this support, call 1-900-555-CLUB (2582). You will be notified of the charge per minute.

Network and Server Support Line

Network and Server Support is available for simple or complex networks made up of IBM servers and workstations using major network operating systems. In addition, many popular non-IBM adapters and network interface cards are supported.

This service includes all of the features of the Enhanced PC Support Line, plus:

- Installing and configuring client workstations and servers
- Identifying system problems and correcting problems on the client or the server
- Using IBM and non-IBM network operating systems
- Interpreting documentation

You can purchase this service on a per-call basis, as a multiple-incident package, or as an annual contract with a 10-incident limit. For more information about purchasing Network
and Server Support, see “Ordering Support Line Services” on page 373.

Ordering Support Line Services
Enhanced PC Support Line and Network and Server Support Line services are available for products on the Supported Products list. To receive a Supported Products list:

- In the U.S.:
 1. Call 1-800-426-3395.
 2. Select document number 11683 for Network and Server support.
 3. Select document number 11682 for Enhanced PC support.
- In Canada, contact IBM Direct at 1-800-465-7999, or:
 1. Call 1-800-465-3299.
 2. Select the HelpWare catalog.
- In all other countries, contact your IBM reseller or IBM marketing representative.

For more information or to purchase these services:

- In the U.S., call 1-800-772-2227.
- In Canada, call 1-800-465-7999.
- In all other countries, contact your IBM reseller or IBM marketing representative.

Warranty and Repair Services
You can upgrade your standard hardware warranty service or extend the service beyond the warranty period.

Warranty upgrades in the U.S. include:

- Carry-in service to on-site service
 If your warranty provides carry-in repair service, you can upgrade to on-site repair service, either standard or premium. The standard upgrade provides a trained servicer within the next business day (9 a.m. to 5 p.m., local time, Monday through Thursday).
Obtaining IBM Operating System Updates

Obtaining IBM Operating System Updates

IBM provides update diskettes, called ServicePaks or corrective service diskettes (CSDs), to customers who report a DOS or OS/2 problem for which there is or will be a corrective program.

You can obtain update diskettes from the following sources:

- IBM PC Company BBS. See “Using Electronic Support Services” on page 368 for information on how to access this bulletin board system.
- OS/2 BBS. In the U.S. or Canada, call 1-800-547-1283.
- OS/2 Technical Support Center. In the U.S. or Canada, call 1-800-992-4777.
- CompuServe and PRODIGY.
- IBM reseller or IBM marketing representative.
Ordering Publications

Additional publications are available for purchase from IBM. For a list of publications available in your country:

- In the U.S. and Puerto Rico, call 1-800-879-2755.
- In other countries, contact your IBM reseller or IBM marketing representative.
Ordering Publications
Whenever you add options to your server, be sure to update the information in this appendix. Accurate, up-to-date records make it easier to add other options and, if the need should arise, to report a hardware problem.

Recording the Server Serial Number

Record and retain the following information. In the box below, check or highlight the applicable server information for future reference.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>IBM PC Server 520</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Type 8641</td>
<td>Pentium Microprocessor</td>
</tr>
<tr>
<td>Model</td>
<td>□ with preinstalled hard disk drive</td>
</tr>
<tr>
<td></td>
<td>□ without preinstalled hard disk drive</td>
</tr>
<tr>
<td>Serial Number</td>
<td>__________________</td>
</tr>
<tr>
<td>Key Serial Number</td>
<td>__________________</td>
</tr>
<tr>
<td>ServerGuide License Diskette Serial Number</td>
<td>__________________</td>
</tr>
</tbody>
</table>
The server serial number and other identification numbers are located on a label on the rear of the server. If you installed a cable cover on your server, you must remove it to see this label.

The server serial number is also located on the handle on the front of the server. To see the server identification numbers on this label, you must first remove the front cover.

Attention: Anyone who has access to the key serial number and manufacturer address can order duplicate keys, so store the tag in a safe place.

Installed Device Records

Use the following tables to keep a record of your system default configuration settings and the options currently installed in or attached to your system. This information can be helpful when you install additional options in your server or if you ever need to have your server serviced. It is recommended that you copy these tables before recording information in them, in case you need extra space to write in new values later, when you update your system configuration.
Installed Device Records

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Value</th>
<th>New Value</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diskette A</td>
<td>1.44 MB, 3.5 in.</td>
<td></td>
<td>Record additional drive information</td>
</tr>
<tr>
<td>Diskette B</td>
<td>Not installed</td>
<td></td>
<td>in Table 6 on page 384.</td>
</tr>
<tr>
<td>Video System</td>
<td>SVGA</td>
<td></td>
<td>Record additional information in Table 4 on page 380.</td>
</tr>
<tr>
<td>Video BIOS Shadow</td>
<td>Enabled</td>
<td></td>
<td>Select Disabled for adapters that cannot be shadowed.</td>
</tr>
<tr>
<td>System Memory</td>
<td>640 MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 0 Socket 1</td>
<td>16 MB Kit</td>
<td></td>
<td>16 MB Kit □ 32 MB □</td>
</tr>
<tr>
<td>Bank 0 Socket 2</td>
<td>16 MB Kit</td>
<td></td>
<td>16 MB Kit □ 32 MB □</td>
</tr>
<tr>
<td>Bank 1 Socket 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 1 Socket 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 2 Socket 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 2 Socket 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 3 Socket 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank 3 Socket 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Memory</td>
<td>32 MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cache State</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM1 Port</td>
<td>3F8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM2 Port</td>
<td>2F8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPT Port</td>
<td>378, IRQ 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPT mode</td>
<td>Output only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diskette controller</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large disk DOS</td>
<td>DOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory gap</td>
<td>Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boot sequence</td>
<td>A: then C:</td>
<td></td>
<td>C: First will not check Drive A.</td>
</tr>
<tr>
<td>Swap diskettes</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diskette check</td>
<td>Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SETUP prompt</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post Errors</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supervisor Password is</td>
<td>Enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Password is</td>
<td>Disabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set Supervisor Password</td>
<td>Press Enter</td>
<td></td>
<td>Controls access to the Setup program.</td>
</tr>
<tr>
<td>Password</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set User Password</td>
<td>Press Enter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Password on boot</td>
<td>Disabled</td>
<td></td>
<td>Must set supervisor password first.</td>
</tr>
<tr>
<td>Diskette access</td>
<td>User</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard disk boot sector</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Setup Program Configuration Defaults and Changes
Refer to the following system-board illustration when completing Table 4 and Table 5 on page 381.

<table>
<thead>
<tr>
<th>Slot</th>
<th>IRQ</th>
<th>DMA</th>
<th>I/O Port</th>
<th>ROM/RAM Address</th>
<th>Option Description and Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Video: SVGA</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Do not use the bottom EISA slot if the adjacent PCI slot is occupied. Before setting values or installing options in these slots, review "Configuring EISA, ISA, and PCI Adapters" on page 288, "Using the EISA Configuration Diskette" on page 295, and "Installing Adapters" on page 180, and follow the instructions for avoiding configuration conflicts. If a conflict occurs, resolve it as described in "Configuration Conflicts" on page 299.

Table 4. EISA/ISA Expansion Slot Configuration Information
Table 5 (Page 1 of 2). Internal and External Options

<table>
<thead>
<tr>
<th>Location</th>
<th>Option Description</th>
<th>Bus Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>16 MB Kit □ 32 MB Kit □</td>
<td></td>
</tr>
<tr>
<td>Bank 0</td>
<td>16 MB Kit □ 32 MB Kit □</td>
<td></td>
</tr>
<tr>
<td>Bank 1</td>
<td>16 MB Kit □ 32 MB Kit □</td>
<td></td>
</tr>
<tr>
<td>Bank 2</td>
<td>16 MB Kit □ 32 MB Kit □</td>
<td></td>
</tr>
<tr>
<td>Bank 3</td>
<td>16 MB Kit □ 32 MB Kit □</td>
<td></td>
</tr>
<tr>
<td>Mouse Connector</td>
<td>IBM Mouse □ Other: _____________</td>
<td></td>
</tr>
<tr>
<td>Keyboard Connector</td>
<td>Space Saving □ Enhanced □ Other: ________</td>
<td></td>
</tr>
<tr>
<td>Expansion Slot 1</td>
<td></td>
<td>EISA 2 □ PCI □</td>
</tr>
<tr>
<td>Expansion Slot 2</td>
<td>SVGA (Monitor) Adapter (all models)</td>
<td></td>
</tr>
<tr>
<td>Expansion Slot 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion Slot 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion Slot 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion Slot 6</td>
<td>(shared EISA slot 6/PCI slot 1)</td>
<td></td>
</tr>
<tr>
<td>Expansion Slot 7 (PCI slot 2)</td>
<td>SCSI-2 Adapter (non-disk-array models only)</td>
<td>□ ✓</td>
</tr>
<tr>
<td>Expansion Slot 8 (PCI slot 3)</td>
<td>SCSI-2 Adapter (disk-array models only)</td>
<td>□ ✓</td>
</tr>
<tr>
<td>Parallel Port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Port A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial Port B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Installed Device Records

Table 5 (Page 2 of 2). Internal and External Options

Notes:
1. You must add SIMMs in matched pairs. Inside your server is a label that lists all of the available memory-module configurations.
2. EISA represents both EISA and ISA adapters.
Installed Device Records

Refer to the following illustration of your server bays when completing Table 6 on page 384.

Notes:

- If you attach a drive or other device to an adapter, record the expansion-slot number for that adapter in the Location field of Table 6 on page 384.
- Your model might have more preinstalled drives than shown in this table.
Installed Device Records

<table>
<thead>
<tr>
<th>Location</th>
<th>Drive Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bay A1</td>
<td>CD-ROM Drive</td>
</tr>
<tr>
<td>Bay A2</td>
<td>3.5-Inch 1.44 MB Diskette Drive</td>
</tr>
<tr>
<td>Bay B1</td>
<td></td>
</tr>
<tr>
<td>Bay B2</td>
<td></td>
</tr>
<tr>
<td>Bank C Bay 1</td>
<td></td>
</tr>
<tr>
<td>Bank C Bay 2</td>
<td></td>
</tr>
<tr>
<td>Bank C Bay 3</td>
<td></td>
</tr>
<tr>
<td>Bank C Bay 4</td>
<td></td>
</tr>
<tr>
<td>Bank C Bay 5</td>
<td></td>
</tr>
<tr>
<td>Bank C Bay 6</td>
<td></td>
</tr>
<tr>
<td>Bank D Bay 1</td>
<td></td>
</tr>
<tr>
<td>Bank D Bay 2</td>
<td></td>
</tr>
<tr>
<td>Bank D Bay 3</td>
<td></td>
</tr>
<tr>
<td>Bank D Bay 4</td>
<td></td>
</tr>
<tr>
<td>Bank D Bay 5</td>
<td></td>
</tr>
<tr>
<td>Bank D Bay 6</td>
<td></td>
</tr>
<tr>
<td>Bank E Bay 1</td>
<td></td>
</tr>
<tr>
<td>Bank E Bay 2</td>
<td></td>
</tr>
<tr>
<td>Bank E Bay 3</td>
<td></td>
</tr>
<tr>
<td>Bank E Bay 4</td>
<td></td>
</tr>
<tr>
<td>Bank E Bay 5</td>
<td></td>
</tr>
<tr>
<td>Bank E Bay 6</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Internal Drives and Devices
Installed Device Records

Table 7. External Devices

<table>
<thead>
<tr>
<th>Location</th>
<th>Device Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If you attach a drive or other device to an adapter, be sure to record the descriptive information in the appropriate column in Table 4 on page 380 (in the same row as the expansion-slot number of the adapter).

Table 7. External Devices
Installed Device Records

Table 8 shows the default cable connections from the ServeRAID adapter Channels to each bank in the server.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Default Cabling</th>
<th>New Cabling</th>
<th>Default J12 Setting<sup>1</sup></th>
<th>New J12 Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td>Bank E<sup>2</sup></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 2</td>
<td>Bank D<sup>2</sup></td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel 3</td>
<td>Bank C</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Backplane jumper J12 defines the SCSI IDs for drives installed in the bank as Low (0 to 5) or High (8 to 13).
2. When this backplane is installed.
References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Subject to IBM’s valid intellectual property or other legally protectable rights, any functionally equivalent product, program, or service may be used instead of the IBM product, program, or service. The evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

FloThru IBM
NetFinity NetFinity
OS/2 Personal System/2
Predictive Failure Analysis ServerGuide
ValuePoint
HelpWare LANStreamer
Operating System/2 PeerMaster
PowerPC PS/2
ThinkPad XGA
Trademarks

The following terms are trademarks of other companies:

3Com 3Com Corporation
Adaptec Adaptec, Inc.
America Online America Online, Inc.
BusBIOS XPoint Technologies, Inc.
CompuServe CompuServe Incorporated
DiagSoft DiagSoft, Inc.
EtherCard Standard Microsystems Corporation
EtherExpress Intel Corporation
EtherLink 3Com Corporation
Intel Intel Corporation
NetWare Novell, Inc.
Novell Novell, Inc.
OpenServer The Santa Cruz Operation, Inc.
Pentium Intel Corporation
PRODIGY Prodigy Services Company
QAPlus DiagSoft, Inc.
SCO The Santa Cruz Operation, Inc.
SCSISelect Adaptec, Inc.
SMC Standard Microsystems Corporation
TokenExpress Intel Corporation
TokenLink 3Com Corporation
UnixWare Novell, Inc.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

Microsoft, Windows NT, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.

SCO is a trademark of The Santa Cruz Operation, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or service marks of others.
Numerics
1-800 telephone assistance 19, 369
10Base-T
 concentrator hub 155
 devices 156
115 V ac 3
16-bit devices
 maximum SCSI cable lengths 273
 requirements 202
230 V ac 3
25-pin parallel port 6
8-bit devices
 maximum SCSI cable lengths 273
 requirements 202
9-pin serial port 6
900 number support 372
accessing (continued)
 support line services 373
 technical support services 371
 World Wide Web 18, 371
adapter
See also the User’s Reference
 automatic configuration 181
 bus-master 181
 compatibility 181, 184
 configuration, viewing 303
 configuring PeerMaster 137
 considerations 181
 deactivated 301
 disk-array model 183
 EISA/ISA locations 181, 380, 381
 illustration 181, 226
 installation sequence 184, 288
 installing 180, 185
 jumpers and switches, changing 301
 location 180, 181
 network, compatibility with
 device drivers 190
 non-disk-array model 183
 PCI locations 181, 381
 removing 192
 requirements for bank E 233
 SCSI-2
 attaching multiple drives 201
 changing SCSI ID 304
 controller settings 304
 parity checking 304
 termination 203
 settings, host 304
 status connectors 225, 226
 super video graphics array (SVGA) 182
 types 181
 using, with external devices 272

A
about this book xiii
accessing
 America Online 369
 CompuServe 368
 diskette drive 286
 EISA Configuration program 295
 electronic support services 368
 file editor 364
 HelpWare support family 368
 network support services 370, 372
 operating system 285
 operating system updates 374
 PC support services 371
 PRODIGY 369
 SCSISelect Utility program 303
 server support services 370, 372
 Setup program 282, 284, 285

© Copyright IBM Corp. 1995, 1996
adding
 adapter 180, 185
 cables 212
 drives 91
 external options 270, 275
 internal drive 197, 199, 200
 memory to server 169
 optional security cover 263
 security for server 262
 server door 267
 storage capacity 83, 91
 test programs 360
 U-bolt 264
adjusting
 chair 70
 controls 71
 cover plate sizes 213
 lighting 71
 monitor 70
Administration and Monitoring
 utilities
 in a local system 81
 in a remote system 81
 sample screen 80
advanced configuration
 options 304
advanced functions
 EISA Configuration Diskette 295
 Mini-Configuration Menu
 viewing configuration 135
 viewing status 134
 ServeRAID Main Menu
 backing up the RAID configuration 122
 backing up to diskette 122
 restoring the RAID configuration 123
 running RAID diagnostics 121
advantages of product 24, 197
AGE keyword 43, 59
aging timer 59
air circulation 70, 71
air circulation clearances 73, 267
air vents 71
America Online 369
antiglare filter 71
architecture
 See also the User's Reference
 EISA 181, 289
 ISA 181, 289
 PCI 181, 293
arranging workspace 70
array
 See also disk array
 backing up configuration 122
 creating 91
 redefining space in 102
 restoring the RAID configuration 123
 with one hard disk drive 94
Array list 84
assistance and service 19, 33
AUTOEXEC.NCF file 54
automatic configuration
 device change 327
 Plug and Play devices 181
back view 6
backing up
 disk-array model
 configuration 122
 EISA Configuration Diskette 295
backplane
 bank C 218
 bank D 200, 222
 bank E 200, 233
backplane (continued)
connections
to one adapter (disk-array
model) 227
to two adapters (disk-array
model) 227
description 200
installing
bank D 225
bank E 235
jumper
bank C 200, 251
bank D 200, 251
bank E 200, 251
bad stripes 134
bank mapping 132, 386
banks
for hard disk drives
See bays
Basic Input/Output System (BIOS)
See also the User’s Reference
upgrading 3
battery-backed clock 3
Bay Number 85
Bay/Array selection list 84
bays
See also the User’s Reference
B
installing a drive in 207
non-hot-swap drive 205
removing a drive from 242
bank C
installing a drive in 216
removing a drive from 245
setting backplane
address 200, 251
bank D
backplane requirements 200, 222
installing a drive in 221
power-supply
requirements 200, 222
bays (continued)
bank D (continued)
removing a drive from 245
setting backplane
address 200, 251
bank E
backplane requirements 200, 233
installing a drive in 233
power-supply
requirements 200, 233
removing a drive from 245
SCSI-2 adapter
requirements 233
setting backplane
address 200, 251
drive types and sizes 200
expansion 3, 8, 199
general information
installing drives 200, 205
preinstallation steps 205
removing drives 241
identification 199, 383
internal drive locations 381
locations 199, 383
number and SCSI ID 253
beep codes, POST 308
before you begin 9, 159
bezel
See cover plates
bind command 45
blank screen 351
blocked logical drive 110, 116
bolt-down capability 3
boot
CD-ROM drive 304
password 286
sector, write-protecting 282, 286
sequence 284, 287, 379
broadcast packets received 52
broadcast packets transmitted 53
broken cover lock 352
bulletin boards 368
bus-master adapters 181
buttons 4
bytes received 52
bytes transmitted 52

cables
See also the User's Reference
bay A 212
chaining drives with 201
connections
to one adapter (disk-array model) 227
to one adapter (non-disk-array model) 225
to two adapters (disk-array model) 227
to two adapters (non-disk-array model) 226
crossover 156
fan assembly 211, 213, 223
keyboard 166
lengths 72
maximum lengths for SCSI devices 272
optional security cover 263
PeerMaster adapter
crossover network 156
straight-through network 155
power, bay B 212
removing 161, 166
requirements for attaching
external devices 272
safety ix, x
SCSI 272
cables (continued)
security 265
straight-through 155
terminator 205
cache 281, 379
See also the User's Reference
calculating maximum SCSI cable lengths 272, 273
calendar, battery-backed 3
Canadian safety requirements x
capacity of hard disk drives 82
card
See adapter
cautions
clearances for air circulation 73, 267
damage to server components 183
genral information 9
handling static-sensitive devices 162
laser compliance statement xi
lifting the server 10, 160
removing covers 167
removing wrong disk drive 245
CD-ROM
See also the User's Reference
drive
preinstalled 8, 199
setting SCSI IDs 274
standard 3
startable 304
using 16, 28
ordering 26
problems 350
ServerGuide Main CD
starting 28
using 27
chaining SCSI drives 201
Index

chair adjustments 70
changing adapter SCSI ID 304
bank mapping 132
configuration defaults 281
resource allocations 301
settings 281
device function 295
device jumpers and switches 301
disk-array cabling 132
jumper settings 249, 301
memory addresses 301
RAID parameters 127
SCSI-2 host adapter settings 304
selectable drive-startup sequence 287
software configuration 302
switch settings 205, 301
termination on SCSI-2 adapter 271
write policy 123
channels, SCSI 226, 271, 274
channels, ServeRAID
mapping to banks 132
checklist, installation 73
circulation, air 71
cleaning the monitor 71
clearances for air circulation 73, 267
clock, battery-backed 3
comfort 70
Command Line Options 316
common tasks 91
communication modem and fax requirements for the United Kingdom 161, 268
requirements ix, x
compatibility adapter 181, 184
tests 18, 371
completing the installation 266
CompuServe 368
computer
See server
configuration adapters change 326
installation sequence 184, 288
locations 380, 381
advanced functions 295
advanced options 304
automatic, for Plug and Play devices 181
battery-backed information 326
before beginning 79
conflicts 184, 299
default settings changing 281
device records 379
EISA/ISA configuration values 380
options 381
recording and restoring 283, 297
device change 327
records 381
disk array 77
extended industry standard architecture (EISA)
adapters locations 181
Configuration Diskette 181, 295
devices 281
features and options 289
view or edit details 293, 298, 300
configuration (continued)
files (.CFG) 288, 289, 298
hardware change 325
host adapter settings 304
industry standard architecture (ISA)
 adapter locations 181
 features and options 289
installing or removing memory 293
NVRAM 281, 292
overview 280
PeerMaster adapters 137
peripheral component interconnect (PCI) architecture
 adapter locations 181
 devices 281
 features and options 293
power-on self-test (POST) 280
program 281
RAID 122
records, EISA/ISA expansion slot 380
SCSI
 adapter settings 303
 adapter termination 304
 device 304
 invalid 330
ServeRAID 77
Setup program 282
utility programs 280
viewing ServeRAID 90
Configure/View Host Adapter Settings 304
conflicts, configuration 184, 299
connecting adapter 180
cables 212, 268
 requirements for external devices 272
connecting (continued)
cables (continued)
safety requirements ix, x
external options 270, 275
internal drives
 all bays 199, 200, 383
 bank C 216
 bank D 221
 bank E 233
 bay B 207
optional security cover 263
SCSI devices
disk-array model 227
input/output connectors 6
maximum SCSI cable lengths 272
non-disk-array model 225
termination requirements 271
server door 267
telephone line 268
U-bolt 264
connectors
See also the User’s Reference
backplane 115, 229, 235
device records 381
expansion slots 6, 180
input/output locations 6
keyboard 6
memory 169, 170
monitor 6
mouse 6
parallel device 6, 379
pointing device 6
printer 6
rear view of server 6
SCSI
 location 6
 rules for using 270
 termination requirements 203
serial device 6, 379
connectors (continued)
status 226, 271
considerations
cable requirements 272
device drivers 31
hardware 33
installing
adapters 181
external SCSI devices 271
internal drives 197, 200
SCSI devices 201
operating system 23, 25, 26
removing hard disk drives 245
security 262
ServerGuide 27
software 23
termination requirements 203, 271
controller
See also the User’s Reference
configuring adapter
termination 304
illustration 380
SCSI-2 host adapter settings 304
controlling diskette drive
access 286
controls
front panel 4
monitor 11
cords, power
See the User’s Reference
corrective service diskette
(CSD) 374
cover
installing 266, 267
removing 167
security 263
cover lock broken 352
cover plates
adjusting the size 213
cover plates (continued)
description 199
installing 213
removing 213
CPU (central processing unit)
See microprocessor
Create/Delete Array/Log.
Drive 91
creating a disk array 91
cross-segment traffic 55, 56
CRT logical drive status 85, 95, 108, 115
CSD 374
customer assistance
error messages 310
getting assistance 19, 33
online 282, 367
ordering publications xvi, 375
solving problems 19, 33
telephone numbers 19, 33
toll-free numbers 19, 33
D
daisy chain
cabling example 227, 236
definition 199
in a disk array 132
damaged system
cover lock broken 352
dropped 358
spilled liquid 359
DASD (direct access storage device)
See also the User’s Reference
backplane 200, 251
hot-swap storage expansion
enclosure 270
date, setting 281
DDD (Defunct Disk Drive) physical
drive status 106
Index 395
deactivated adapters 301
dedicated segments 156
default
 configuration values 379, 381
 drive-startup sequence 287, 379
 settings, recording and
 restoring 283, 297
 values for Setup program 379
defective hard disk drive 245
defining
 drive state 108
 hot-spare drive 98
 logical drive pop-up 84
 logical drives 93
defunct
 definition 82
 disk drive 106
 hot spare 106
deleting arrays 99
deleting logical drives 101
description
 backplane 200
 chapters and appendixes xiii
 cover plate 199
 device drivers 291
 diagnostic messages 311
 drive 197
 error messages 310, 325
 hot-swap drive 197
 notices xv
 related publications xvi
 screen area 84
 server 1
 software messages 311
 system features 3
device
 configuration, SCSI 304
drivers
 compatibility with network
 adapters 190
 considerations 31
device (continued)
drivers (continued)
 description 291
 hardware 33
 installing 23, 74
 external 270
 failing 355
 jumpers and switches,
 changing 301
 locations
 connectors 381
 default 379
 EISA/ISA adapters 181, 380
 external 381, 385
 internal 381, 384
 PCI adapters 181
 system board 381
 Plug and Play 181
 preinstalled 8, 199
 SCSI 201
 ServeRAID drivers 79
 static-sensitive, handling 162
 video diskettes, installing 74
 Device Error Table 106
 DHS (Defunct Hot Spare) physical
 drive status 106
 Diagnostic Diskette
 starting 318
 diagnostic files 291
 diagnostic program
 description 308
 formatting diskettes 363
 insufficient memory for 317
 main menu 313
 on ServeRAID adapter 121
 PeerMaster 153
 PeerMaster adapter 151
 starting 316, 318
 tools overview 307
 using the file editor 363
discarded received packets 52
discarded transmitted packets 53
disconnecting
 adapter 192
cables
 before installing options 166
electrical safety
 requirements ix, x, 161
drives from bank C, D, or E 245
drives from bay B 242
memory-module kits 175
server door 163
telephone line 165
disk array
 adding to create an array 91
 backing up configuration information 122
cable connections
 to one adapter 227
 to two adapters 227
configuration 77
consequences of removing wrong
disk drive 245
controller 3, 226
creating an array 91
deleting an array 99, 100
installing hard disk drives 219, 231, 239
reconfiguring
 after installing hard disk
 drives 216, 231, 239
 after removing hard disk
 drives 246
redefining space in an array 102
restoring the configuration 123
saving the configuration 122
status connectors on SCSI-2
 adapter 227
disk drive
 See hard disk drive
disk utility programs 304
diskette drives
 See also the User’s Reference
 1.44 MB 3
default settings 379
EISA Configuration 295
installing 207, 210
preinstalled 8
problems 350
removing 242
sizes 3
testing 316
diskettes
 See also the User’s Reference
controlling access 286
corrective service 374
option 311
ordering 26
ServerGuide License 17, 30, 377
starting test programs from 318
support 74
video device driver,
 installing 74
display
 See monitor
door lock 3, 12
Drive Media Test 121
drivers
 See also the User’s Reference
device
 compatibility with network
 adapters 190
 considerations 31
description 291
 hardware 33
 installing 23, 74
PeerMaster adapter 44
ServeRAID device 79
video diskettes, installing 74
drives
See also the User's Reference
adding 91
CD-ROM
startable 304
using 16, 28
chaining 201
cover plates
description 199
installing 213
removing 213
default settings 379
description 197
diskette
See diskette drives externa, termination
requirements 271
formatting 304
full-high 200
half-high 200
hard disk
See hard disk drive
hot-swap 197, 199, 200
identification 199, 383
installation requirements 199,
200, 383
installing
all bays 197, 205
bank C 216
bank D 221
bank E 233
bay B 207
interface 115, 229, 235
locations
device records 381, 383, 384
illustration 199
logical 82
maintenance 104
non-hot-swap 205
position 205

drives (continued)
preinstalled 8, 199
removing
all bays 241
bank C, D, or E 245
bay B 242
SCSI 201, 203
setting switches and
jumpers 205
sizes 200
slim-high 200
startup sequence, selectable 287,
379
status 197
terminator 205
tray sizes 198
types 197, 199, 200
dropped system 358
duplicate keys 378

e
edit details 293, 298, 300
editor, ASCII text 363, 364
EEPROM 122
EISA (extended industry standard
architecture)
See also the User's Reference
adapters
configuration 288
installation 184, 185, 190
locations 181, 380, 381
problems 352
removal 192, 196
Configuration Diskette
advanced functions 295
backing up 295
requirements for using 295
view or edit details 293, 298, 300
EISA (extended industry standard architecture) (continued)
 default settings, recording and restoring 297
 features and options 289
 electrical outlets 72
 electrical safety ix, x, 161
 electronic support 368
 EMP (Empty) physical drive state 106, 126
 Erase Device Error Table 106
 Error Correcting Code on SIMM (EOS) 169
 error messages
 description 310
 diagnostic 310, 311
 disk array 331
 Novell NetWare 341
 numeric 325
 PeerMaster diagnostic 337
 POST 310, 325
 ServeRAID adapter 331
 software 311
 types 310
 errors
 POST 310
 software 312, 357
 expansion bays 3, 8, 199
 expansion slots
 adapter installation 185
 adapter locations 181, 380, 381
 description 3, 180
 location in server 6
 shared 182, 185
 extended industry standard architecture (EISA)
 See EISA (extended industry standard architecture)
 extension cords 72
 external
 options, connecting 270, 275
 SCSI cable
 maximum lengths 272, 273
 using 272
 SCSI connector
 location 6
 rules for using 270
 SCSI devices
 connectors 381
 default configuration values 379
 IDs 274
 records 385
 terminating 271
 termination requirements 203
 views 6, 8

F
 failed hard disk drive 110, 245
 fan problems 353
 Fast/Wide devices
 See 16-bit devices
 fatigue 70
 fax, getting information by 369
 features
 See also the User’s Reference
 1.44 MB diskette drive 3
 at a glance 3
 default configuration values 379
 diskette drives 3
 door lock 3
 EISA, configuring 289
 EISA/ISA configuration values 380
 floating-point unit 3
 front view 8
 hard disk drive 3
 hot-swap drives 197
features (continued)
 internal cache 3
 internal devices 384
 ISA, configuring 289
 microprocessor 3
 PCI, configuring 293
 Pentium 3
 rear view 6
 records 378
 security
 cable-cover option 263
 general information 262
 summary 3
 supervisor password 284
 U-bolt 264
 user password 285
 selectable drive-startup
 sequence 287, 379
 summary 3
 summary 3
 Federal Communications Commission (FCC) information
 See the User's Reference
 fee services 371
 file editor
 accessing 364
 using 363
 fixed disk
 See hard disk drive
 Fixpaks, OS/2 LAN Server 26
 flash memory 3
 See also the User's Reference
 floating-point unit
 See the User's Reference
 forgotten supervisor password 284
 format, low-level
 disk-array model 126
 formatting drives 126, 304
 FRAME keyword 43, 45
 frame type 46
 FRE logical drive status 108
 front cover
 installing 267
 removing 163
 front panel controls 4
 front view 8
 full-high drives 200
 function keys, using 314
 functions, integrated 3

G
 general information
 before installing options 159
 before you begin 9
 controls and status indicators 4
 error messages 310
 expansion bays 8
 input/output connectors 6
 installing drives 200, 205
 removing drives 241
 security 262
 using CD-ROM drive 16
 general problems 352
 Generic Statistics 54
 getting help and service 19, 33
 getting started 307
 glare 71
 glossary
 See the User's Reference

H
 half-high drives 200
 handling static-sensitive devices 162
 hard disk drive
 See also the User's Reference
 activity indicator 5
 adding 83, 102
 adding to an array 91
ID, SCSI 201, 203, 205
identification numbers 377, 378
in-use lights 350, 352
indicators 4
industry standard architecture (ISA)
 See ISA (industry standard architecture)
information area 84
information, drive 104
Initialize Logical Drive 89, 97
input/output (I/O)
 port locations 6
installation
 checklist 73
 completing 266
diskettes 26
hardware 9, 205
preparing for 163
problems 355
requirements 200
sequence, for adapters 184, 288
installing
 adapters 180, 185
 application programs 74
backplane (bank D) 225
backplane (bank E) 235
cables 268
cover 266
cover plates 213
device drivers 23, 74
diskette drives 207, 210
external options 270, 275
fan assembly 213, 228
front cover 267
hard disk drives 91
 in bank C 216
 in bank D 221
 in bank E 234
hot-swap drives 197, 199, 200
internal drives
 all bays 199
installing (continued)
 internal drives (continued)
 bank C 216
 bank D 221
 bank E 233
 bay B 207
 considerations 200
device records 383
genral information 197
locations 199
preinstallation steps 205
SCSI 201
internal options 157
LAN software 34
memory-module kits 169
microprocessor 255
network adapters 190
Novell NetWare 25
operating system 24, 27
optical disc drives 207
optional security cover 263
options 74
OS/2 operating system 25
SCO OpenServer 26
SCSI drives 203
security-cover option 263
server door 267
side cover 266
software 74
support diskettes 74
test programs 360
U-bolt 264
UnixWare 27
video device driver diskettes 74
Windows NT 26
integrated functions 3
interfaces
 See the User’s Reference
intermittent problems 353
internal
device records
default configuration
values 379
drive locations 384
EISA/ISA adapter
locations 381

drives
considerations 200
installing (all bays) 199
installing (bank C) 216
installing (bank D) 221
installing (bank E) 233
installing (bay B) 207
installing (general
information) 197
removing (banks C, D, and
E) 245
removing (bay B) 242
removing (general
information) 241
SCSI 201
EISA/ISA configuration
values 380
maximum SCSI cable
lengths 272
options, installed 381
preinstalled 8, 199
SCSI devices, terminating 271
setting jumpers 205
international warranty service 370
interrupt levels, assigning
(PCI) 293
interrupt request (IRQ) settings 379
introduction 1
IntruderAlert 317, 318
ISA (industry standard architecture)
(continued)
adapter (continued)
locations 181, 380, 381
removal 192, 196
features and options 289

J
jumpers
backplane requirements 200, 251
changing a setting 249, 301
microprocessor 255
on internal drives 205
recording SCSI ID settings 386
SCSI ID (J12) 252
settings 249

K
keyboard
angle of 70
arm and wrist position 70
cable 166
connector 6
port 3, 6
problems 353
types 3
keys
file editor 363
function 314
program navigation 314
replacing 378
serial number 378
keyword
entering 42
kits, memory-module
See also memory-module kits
sizes 379, 381

ISA (industry standard architecture)
(continued)
adapter (continued)
locations 181, 380, 381
removal 192, 196
features and options 289
LAN (local area network)
See also the User's Reference
Server Fixpaks 26
LAN Switch In 69
LAN Switch Out 69
LAN Utilization 62
laser compliance statement xi
Learned Entry Discards 50
LED (light-emitting diode)
See also lights
for hot-swappable drives 112
levels, logical drive
Level 0 drive 82, 94, 110, 115
Level 1 drive 89, 96
Level 5 drive 82, 96
License Diskette
serial number 377
ServerGuide 17, 30, 73
lifting the server, caution 10, 160
lighting 71
lights
hot-swap drive status 197, 219, 230
not working 352
system status 4
liquid spilled on system 359
locations
adapters 180, 181, 183
bays 199, 383
cover plates 199
EISA/ISA configuration values 380
expansion slots 180
external devices 385
external SCSI connector 203
features 6, 8
IBM PC Server SCSI-2 Fast/Wide PCI Adapter 183
internal and external options 381

locations (continued)
internal drives 199, 200, 384
jumpers 249
memory 169
memory-module kits 169
optional security cover 263
PC ServeRAID Adapter 183
Power On/Off switch 11, 14
power-on light 13, 14
SCSI ID jumper (J12) 252
server identification numbers 378
server records 379, 384, 385
termination 271
terminators 203
U-bolt 265
lock
cover, broken 352
door 3
locking adapters (boards) 298
logical drive
adding 91
blocked 134
defining 93
deleting 101
guidelines for rebuilding 115
initializing 89, 97
Level 0 drive 82, 94, 110, 115
Level 1 drive 89, 96
Level 5 drive 82, 96
list 84
maximum number 94
one hard disk drive 94
quick rebuilds 116
replacing existing 102
size, determination of 95
status 111
synchronizing 89, 97
unblocking after rebuild 110
with bad stripes 134
Logical Drive Size pop-up 85
loss of data 245
Low-Level Format program
using 126

M
machine type 377
Main Menu
 Diagnostic Diskette 313
 Mini-Configuration
 Program 133
 ServeRAID 87
maximum SCSI cable lengths 272, 273
memory
 See also the User's Reference
 configuring after adding or removing 293
default settings 379
device records 381
Error Correcting Code on SIMM (EOS) 169
features 3
nonvolatile 281, 292
parity 169
specifications 169
standard 3
memory-module kits
 compatibility requirements 169
 connector locations 169
 installing 169
 purpose 169
 removing 175
 sizes 169
 speed 169
 testing 317
menus
 Configure/View Host Adapter
 Settings 304
 menus (continued)
 Diagnostic Diskette 313
 EISA Configuration program
 description 295
 help information 296
 Local 315
 Module Tests 321
 Options 322
 SCSISelect Utility program 304
 Setup program 281
 view or edit details 293, 298, 300
messages
 diagnostic 311
disk array 331
error 310, 325
POST 325
SCSI 330
ServeRAID adapter 331
microprocessor
 See also the User's Reference
damage 183
description 3
installing 255
jumper 255
Pentium 3
preinstalled 256
Mini-Configuration Menu
 initializing configuration 135
 resetting ServeRAID adapter 135
 viewing adapter status 134
model type 377
module tests
 description 313
 starting 320
test group 319
 using 320
monitor
 See also the User's Reference
monitor (continued)
 adapter 182
 adjusting of 70
 blank screen 351
 cleaning 71
 connector 6
 controls 11
 distorted screen 351
 dusting of 71
 jittering screen 351
 placement of 71
 problems 351
 rolling screen 351
 self-tests 351
 wavy screen 351
monitoring drive function 31
monitoring programs 62, 80
mouse
 See also the User’s Reference
 connector 6
 port 3
 problems 353
 moving the server 10, 160
 multicast packets received 52
 multicast packets transmitted 53
 multiple drive failure 110

N
NAME keyword 42, 45
narrow devices
 See 8-bit devices
NetFinity Services 62
network
 See also LAN (local area network)
 adapter device drivers 32
 adapters, compatibility with device drivers 190
 and server startup support 370
 and server support services, fee 372
 environment, software for 28
 operating systems, compatibility 1, 18, 371
 NODE keyword 43
non-disk-array model
 backplane connections to two adapters 226
 cable connections to two adapters 226
 configuration, viewing 303
 installing hard disk drives 219, 231, 239
non-hot-swap drives
 installing 205
 setting jumpers 205
nonremovable media 199
nonvolatile random-access memory (NVRAM) 118, 120, 281, 292
notices
 definitions xv
 Federal Communications Commission
 See the User’s Reference
 laser compliance statement xi
 product 387
 safety information ix, 161
Novell Netware
 AUTOEXEC.NCF 54
 error messages 341
 installing drivers 40
 run time error messages 346
 starting 40
 unloading LAN device drivers 48
 updating system files 47
Novell NetWare installation 25
occasional problems 353
office space, arranging 70
OFL logical drive status 85, 95, 108
OKY logical drive status 85, 95, 108
ONL (Online) physical drive status 106
online help 282, 367
online information services 368
operating systems
See also the User’s Reference
compatibility 18, 371
considerations 23, 25, 26
controlling access to 285
installing 24, 27
LAN Server Fixpaks 26
Novell NetWare 25
OS/2 installation 25
overview 24
SCO OpenServer 26
UnixWare 27
updates 374
Windows NT 26
optical disc drive
installing 207
laser compliance statement xi
option diskette
PeerMaster 34
options
See also the User’s Reference
advanced configuration 304
Command Line 316
Diagnostic Diskette 313
diskettes 311
EISA, configuring 289
external, connecting 270, 275
failing 355
installation preparation 163
installation problems 355
options (continued)
installing 74, 157
internal
adapter 180
drives 197
memory-module kits 169
ISA, configuring 289
locations
default configuration values 379
EISA/ISA adapters 381
EISA/ISA configuration values 380
external devices 385
internal drives 384
PCI, configuring 293
SCSISelect Utility program 303
security cover 263
setting configuration values 281
test 322
order of
installing adapters 184, 288
installing memory-module kits 170
removing memory-module kits 175
ordering
additional power supply 222
backplane 222
CDs 26
diskettes 26
IBM tray 208
optional security cover 263
publications xvi, 375
replacement keys 378
SCSI cable 272
support line services 373
OS/2
See operating systems
output ports 6
overload protection 3

overview
 adapter installation
 considerations 181
 sequence 184
 configuration 280
 device drivers 31
 diagnostic tools 307
 electrical safety ix, x, 161
 handling static-sensitive
devices 162
 installing
 external options 270
 internal drives 197, 200
 microprocessors 255
 operating system
 considerations 23, 25
 installation 24
 preparing to install options 163
 ServerGuide 27
 software considerations 23
 system components 1
 test programs 308, 312
 troubleshooting 350
 utility programs 363

parity
 checking, SCSI-2 adapter 304
 memory 169

part numbers
 keys 378
 publications xvi
 serial 377

passwords
 See also the User’s Reference
 controlling diskette drive
 access 286
 default setting 379
 forgotten supervisor 284
 general information 283
 on boot 286
 purpose 262
 setting 284, 285
 supervisor 262, 283, 284
 user 262, 285
 write-protecting the hard disk
 boot sector 286

PC Server 780W Redundant Power
 Option 221
PC Server Security Cover 263
PC support services, fee 371
PCI (peripheral component
 interconnect) architecture
 See also the User’s Reference
 adapters
 configuration 288
 expansion slot numbers 185
 installation 184, 185, 190
 locations 181, 381
 removal 192, 196
 assigning interrupt levels 293
 features and options 293
 Peer Switch In 69
 PeerMaster adapter
 assigning slot numbers 149
 attaching cables 155
PeerMaster adapter (continued)
 bus transfer errors 53
 configuration examples 140
 configuration fields 148
 configuration registers 153
 configuring 137
 device drivers 44
 diagnostic error messages 337
 diagnostic programs 151
 displaying installed
 adapters 148
 generic statistics 54
 installing
 LAN software 34
 Novell NetWare 37
 OS/2 35
 overview 37
 SCO Open Server 37
 Windows NT 36
 NetWare error messages 341
 NetWare run time error
 messages 346
 run time error messages 346
 screen messages 337
 setup error messages 337
 setup utility program 147
 traditional adapter mode 138, 141
 VNET switch mode 139, 141
 Pentium microprocessor 255
 percent initialized 84
 percent synchronized 84
 peripheral component interconnect
 (PCI) architecture
 See PCI (peripheral component
 interconnect) architecture
 PFA errors, reporting 105
 phone numbers
 See telephone numbers
 physical drive
 maximum number 94
 state 106
 planning workspace 70
 plates, cover 199
 pointing device
 See mouse
 ports, input/output
 See also connectors
 9-pin serial 3
 IRQ settings 379
 keyboard 6
 monitor 6
 mouse 6
 parallel 6
 See also parallel port
 SCSI 201, 270
 serial 6
 See also serial port
 POST
 See power-on self-test (POST)
 power cords
 See also the User’s Reference
 lengths 72
 location 72
 power supply
 434 watt 3
 auxiliary 3
 requirements for banks D and
 E 222, 233
 surge protection 3
 voltage-switch feature 3
 power-on
 hot-swap drives 197
 light 13, 14
 Power OK indicator 5, 13, 14
 Power On/Off switch 5, 11, 14
 power-on change list 119
 power-on self-test (POST)
 See also the User’s Reference
power-on self-test (POST) (continued)
beep codes 308
definition 308
during configuration 280
during setup 14
message table 310, 325
overview 308
upgradable 3
preface xiii
preinstallation
activities 204
monitor adapter 182
SCSI-2 Fast/Wide PCI Adapter 183
steps 205
preinstalled devices 8, 199, 256
preparing for installation
external options 270, 275
internal drives 205
tasks required 163
tools and supplies 9
to remove internal drives 245
primary diskette drive 87
printer
port 6
problems 356
SCSI 201
priority 128
problems
fan 353
getting assistance and service 19
intermittent 353
keyboard 353
memory problem 354
monitor 351
network adapter
compatibility 190
occasional 353
only the cursor appears 351
problems (continued)
option 355
parallel port 356
POST 325
printer 356
screen jitter 351
serial port 356
software 357
SVGA 351
processor
See microprocessor
PRODIGY 369
product
advantages 24, 197
See also the User’s Reference
compatibility 18, 371
external options 381, 385
identification numbers 377, 378
internal options 381, 384
name 377
notices 387
See also the User’s Reference
warranty information
See the User’s Reference
programs
navigation 314
test 308
protecting
data 284, 285
hard disk boot sector 282, 286
the fan 211, 223, 235
the server 9, 183
pseudo slot numbers 42
publications
ordering xvi, 375
part numbers xvi
RAID (redundant array of independent disks)

See also disk array
changing logical drive level remotely 82
changing parameters 127
configuration
 after installing hard disk drives 216, 231, 239
 after removing hard disk drives 246
Level 0 drive 82, 94, 110, 115
Level 1 drive 89, 96
Level 5 drive 89, 96
technology 77
RAM (random-access memory)
See the User’s Reference
RBL (Rebuild) physical drive status 106
RDY (Ready) physical drive status 106
read-only memory (ROM)
See ROM (read-only memory)
rear view 6
Rebuild Logical Drive
 replacing a hard disk drive 117
Rebuild Priority 128
rebuilding a logical drive
 examples 107
 guidelines 115
 quick rebuilds 116
 remotely 82
receive errors 52
reconfiguring disk arrays
 after installing hard disk drives 216
 after removing hard disk drives 246
reconfiguring your disk array 83, 216
recording default settings 283, 297
records, device 378
redefining space in a disk array 102
reducing glare 71
related publications xvi
remote monitoring (ServeRAID)
 unattended mode 82, 128
Remote Session 63
Remote System Manager 63
removable media 199
removing
 adapters 192
 cover plates 213
diskette drives 242
fan assembly 211, 223
front cover 163
hard disk drives 245
hot-swap drives 245
internal drives
 banks C, D, and E 245
 bay B 242
general information 241
media 167
memory-module kits 175
server cables 161, 166
server door 163
side cover 167
wrong disk drive, consequences of 245
repairs, getting assistance and service 19
replacing
 existing logical drive 102
 keys 378
requirements for terminating SCSI devices 271
reserving resources 298
restoring
default settings 283, 297
disk-array model
configuration 123
rewritable optical disc drive
See optical disc drive
ROM (read-only memory)
See also the User’s Reference
description 3
router 141
run automatic configuration
Plug and Play devices 181
RXCOUNT keyword 42, 61

S
safety
electrical ix, x, 161
genral information 9
handling static-sensitive
devices 162
laser compliance statement xi
saving
Setup configuration settings 282
SBY (Standby) 107
scanners, SCSI 201
scenarios 96, 110
SCO OpenServer 26
screen filter 71
screens
blank 351
Configure/View Host Adapter
Settings 304
EISA Configuration program
menu 295
SCSISelect Utility program 304
View configuration
SCSI (small computer system
interface) (continued)
See also the User’s Reference
adapter
attaching devices 201
location 183
number of drives
supported 201
parity checking 304
SCSI ID, changing 304
termination 203, 304
chaining drives 201
configuration, viewing 303
connector
location 6
rules for using 270
termination requirements 203
description 201
device configuration 304
devices 8, 201
disk utility programs 304
drives
chaining 201
external 272
termination 203, 271
failing 355
ID
assignments 274
automatic setting 205
bay number 253
device records 381
illustration 203, 253
jumper settings 386
setting 201, 253
wrong ID list 119
maximum SCSI cable
lengths 272
messages 330
narrow devices
See 8-bit devices
SCSI (small computer system interface) (continued)
 port 6
 problems 330
 purpose 201
 requirements for bank E 233
 status connectors on
 adapter 225, 226
 terminators 203
SCSISelect Utility program
 advanced configuration
 options 304
 Configure/View Host Adapter
 Settings 304
 menu description 304
 starting 303
 using 303
security procedures
 See also password
 See also the User's Reference
bolt-down capability 3
controlling diskette drive
 access 286
 door lock 3
 features 3
general information 262
installing a U-bolt 264
installing the optional security cover 263
online menu 282
password on boot 286
replacing keys 377, 378
selectable drive-startup sequence 287, 379
setting passwords
 general information 283
 supervisor password 284
 user password 285
write-protecting the hard disk boot sector 286
selectable boot
 See selectable drive-startup sequence
selectable drive-startup sequence
 See also the User's Reference
 changing 287
 default 379
 description 287
 setting 287
self-tests, internal 308
sequence for installing adapters 184, 288
serial connectors 199
serial numbers
 keys 377, 378
 server 377
ServerGuide License
 Diskette 73, 377
serial port
 integrated function 3
 IRQ settings 379
 location 6
 problems 356
 testing 316
server
 See also the User's Reference
 adding drives 197
 adding memory 169
 advantages 197
 consequences of removing wrong disk drive 245
 cover
 installing 266, 267
 removing 167
 description 1
 disk arrays 219, 231, 239
doors
 installing 267
 removing 163
unlocking 163
server (continued)
 external options 270
 identification numbers 378
 illustrated views
 front 8
 rear 6
 installing drives
 in bank C 216
 in bank D 221
 in bank E 233
 in bay B 207
 internal options 169, 180
 jumper settings 249
 PCI adapter expansion slot
 numbers 185
 preparing, for installation of
 options 163
 problems 312
 records
 default configuration
 values 379
 EISA/ISA configuration
 values 380
 external devices 385
 internal and external
 options 381
 internal drives 384
 removing drives 241, 242, 245
 security features
 general information 262
 passwords 283, 284, 285
 security-cover option 263
 summary 3
 U-bolt 264
 ServerGuide License Diskette
 serial number 377
 software 74
 starting 11
 starting ServerGuide Main
 CD 28
server (continued)
 startup support 19, 370
 support 370
 support for SCSI drives 201
 using ServerGuide 27
 ServeRAID adapter
 advanced functions
 backing up to diskette 122
 changing adapter
 parameters 130
 changing RAID
 parameters 127
 changing the write
 policy 123
 restoring the RAID
 configuration 123
 backing up 122
 changing parameters 130
 configuration program
 common tasks 91
 overview 79
 starting 86
 synchronizing 120
 viewing changes 119
 Create/Delete Array/Log
 Drive 88
 creating an array 91
 defining drive state 108
 defining logical drives 93
 defining the host ID 131
 deleting a disk array 99
 deleting a logical drive 101
 description 89
 device drivers 79
 diagnostic 121
 good practices 89
 initialize/synchronize array 89
 level 5 not selectable 94
 low-level format 126
 Main Menu 87
ServeRAID adapter (continued)
 number of firmware updates 134
 obtaining drive status 104
 rebuilding a logical drive 89, 113, 115
 reconfiguring your disk array
 reddefining space in an array 102
 replacing a faulty drive 112
 resetting to default values 117, 135
 troubleshooting 331
 using the Mini-Configuration program 133
 view configuration 87, 90
 when a drive fails 110

ServerGuide
 License Diskette serial number 377
 Main CD
 starting 28
 using 27
 service, how to get 19, 33
 ServicePak 374
 services, fee 371
 Set Device State 109
 setting
 date 281
 jumpers
 instructions 249
 to resolve configuration conflicts 301
 passwords 283, 284, 285
 SCSI IDs 205, 274
 selectable drive-startup sequence 287
 switches and jumpers 205
 time 281
 Setup program
 cache setting 281
 (continued)
 controlling access to 284
 controlling diskette drive access 286
 default configuration values 379
 EISA/ISA configuration values 380
 menu description 281
 password on boot 286
 setting passwords 283, 284, 285
 setting the selectable drive-startup sequence 287
 starting 282
 using 281
 write-protecting the hard disk boot sector 286
 SHS (Standby Hot Spare)
 definition 107
 rebuilding a logical drive 115
 side cover
 installing 266
 removing 167
 single-inline memory module (SIMM) 169
 sizes
 cover plate 213
 drive trays 198
 internal drives 200
 memory 169
 slim-high drives 200
 SLOT keyword 42, 44
 slot number, VNET.LAN 42
 slot numbers, PeerMaster
 assigning slot numbers 150
 slots, expansion
 See expansion slots
 small computer system interface (SCSI)
 See SCSI (small computer system interface)
software
 considerations 23
 error 312, 357
 installing 74
 updates 374
solving problems
 See also troubleshooting charts
 getting assistance and service 19
speed, memory 169
spilled liquid on system 359
Standby drive 107
startable CD-ROM drive 304
starting
 EISA Configuration Diskette 297
 SCISISelect Utility program 303
 server 11
 ServeRAID configuration program 86
 ServerGuide Main CD 28
 Setup program 282
 test programs 318
 without operating system 15
startup
 CD-ROM drive 304
 sequence, selectable 284, 287, 379
 support 19
state, drive
 logical drive 108
 physical drive 106
 setting 109
static-sensitive devices, handling 162
statistics
 generic 54
 obtaining custom 49
 using MONITOR.NLM 52
status
 connectors 225, 226, 271
 indicators, on front panel 4
 (continued)
 indicators, on hot-swap drives 197, 219, 230
 monitoring 31
 storage capacity
 adding 83, 91
 storage devices 9, 197
 See also the User’s Reference
 stripe unit size 127
 summary of features 3
 super video graphics array (SVGA)
 adapter 3, 182
 device drivers 28
 supervisor password
 controlling diskette drive
 access 286
 forgotten 284
 password on boot 286
 purpose 262, 284
 setting 284
 supplies 9
 support diskettes, installing 74
 support line services, ordering 373
 surge protection 3
 surge protectors 72
 swap diskettes 287, 379
 switches
 changing 205, 301
 Power On/Off 4
 Synchronize Logical Drive 89
 synchronizing
 adapter configuration
 information 120
 logical drives 89, 97
 system architecture
 See architecture
 system board
 adapters 181
 illustration 380
 jumper settings 249
system board (continued)
 memory connectors 170
 testing 316
system damage 358
System Diskettes
 See the User’s Reference
system identification numbers 378
system utility programs 73

tape drives
 See also the User’s Reference
 location in disk-array model 107
tasks, common 91
technical support
 fee 371
 warranty 369
telephone assistance 369
telephone line requirements for the
 United Kingdom ix, 161, 268
telephone numbers
 See also the User’s Reference
 IBM service center 19, 33
 ordering publications xvi, 375
termination 271, 304
 See also the User’s Reference
terminators 203
test
 compatibility 18, 371
diskette drive 316
group specifications 319
group window 319
hard disk (IDE) 316
memory 317
module 320, 321
monitor 351
options 322
parallel port 316
programs
 description 308

test (continued)
 programs (continued)
 installing 360
 starting 318
 scripts 321
 serial port 316
 specifying 316
 system 312
 system board 316
text editor 363, 364
time, setting 281
timer, aging 59
toll-free numbers 19, 33
tools 9
trademarks 387, 388
Traditional Adapter mode
 binding drivers 45
 example configuration 141
 registering ports 44
 using 138
troubleshooting charts
 disk array 331
diskette drive problems 350
genral problems 352
 how to use 350
 keyboard problems 353
 monitor problems 351
 monitor self-tests 351
 mouse problems 353
 option problems 355
 overview 311
 parallel port problems 356
 pointing-device problems 353
 printer problems 356
 serial port problems 356
 ServeRAID adapter 331
 software problems 357
TXCOUNT keyword 60
U-bolt
 capability 3
 installing 264
 location 265

Unattended Mode 128
unblocking a logical drive 110
unicast packets received 52
unicast packets transmitted 53
United Kingdom’s telephone line requirements 268
United Kingdom’s telephone line requirements ix, 161
UnixWare installation 27
unlocking the server door 163
updates, operating system 374
upgrading
 configuration values 379, 381
 device records 378, 379, 381
 EISA Configuration Diskette 293
 RAID configuration 269, 277
 SCSI-2 adapter settings 303
 system configuration
 information (.SCI) files 295, 300
 installing adapters 288
upgrading the microprocessor 255
user password
 controlling diskette drive access 286
 password on boot 286
 purpose 262, 285
 setting 285
using
 electronic support services 368
 HelpWare support family 368
 ServerGuide 27
 World Wide Web 18, 371
utility programs
 configuration 280
diagnostic 313, 363
disk 304
SCSISelect 303, 304
Setup 282

venting of hot air 71

video
 See also the User’s Reference
 adapter location 180, 181
 compatibility 3
 connector 3
default settings 379
 port 6
 SVGA 3
 view
 configuration
 SCSISelect 303, 304
disk-array configuration 90
 front 8
 host adapter settings 304
 or edit details 293, 298, 300
 power-on change list 119
 rear 6
 SCSI IDs 304
 SCSI-2 adapter settings 303
 ServeRAID configuration 90
 unidentified drive list 119
 wrong SCSI ID list 119
 virtual subnetwork (VNET)
 advantages 41
 example configuration 141
 multiple VNETs 144
 single VNET 142
 switch mode 139
 virus checking 286, 317
W

warranty information
 See also the User's Reference
 extensions and upgrades 373
 service 369
welcome letter xvii
wide devices
 See 16-bit devices
Windows NT
 installation 26
work area, arranging 70
World Wide Web
 corrective service diskettes 374
 IBM Personal Computer home
 page 369
 PC Server information 371
 using 18
write policy
 changing 123
 display 85, 86
 WB (write-back) mode 123
 WT (write-through) mode 123
write-protecting the hard disk boot
 sector 286
Part Number: 78H6339

Printed in U.S.A.

May 1996