
ibm.com/redbooks

Linux on IBM
zSeries and S/390:
Application Development

Gregory Geiselhart
Andrea Grahn

Frans Handoko
Jörg Hundertmark

Albert Krzymowski
Eliuth Pomar

Tools and techniques for Linux
application development

Using the Eclipse IDE and
Jakarta Project tools

Sample code to illustrate
programming techniques

Front cover

Linux on IBM ̂zSeries and S/390:
Application Development

July 2002

International Technical Support Organization

SG24-6807-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (July 2002)

This edition applies to zVM 4.2 (ESP) and many different Linux distributions. SuSE Linux
Enterprise Server 7.0 was used.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xvi
Become a published author . xvii
Comments welcome. xvii

Part 1. Programming tools . 1

Chapter 1. The basic tools you need . 3
1.1 Where you can look for information. 4

1.1.1 Man pages . 4
1.1.2 Info - the help system . 5

1.2 Compiling C/C++ source code . 6
1.2.1 Starting gcc . 6
1.2.2 Source files . 6
1.2.3 Directory search . 7
1.2.4 Compilation stages . 7
1.2.5 Macros . 8
1.2.6 Warnings . 8
1.2.7 Extra information for debuggers . 8
1.2.8 Code optimization . 9
1.2.9 Configuring gcc as a cross-compiler . 9

1.3 Linking object code . 13
1.4 Automating the build process . 14

1.4.1 GNU make . 14
1.4.2 Writing your Makefile. 14
1.4.3 Building with make . 16
1.4.4 Makedepend . 17
1.4.5 File dependencies from gcc . 17

1.5 Libraries. 18
1.6 Tracking changes . 19

1.6.1 Using diff to find differences . 19
1.6.2 Applying changes . 21
1.6.3 Running diff against source tree . 22
1.6.4 Distributing patches. 24
1.6.5 Before you distribute your patch . 25
© Copyright IBM Corp. 2002. All rights reserved. iii

Chapter 2. The IBM Java Software Development Kit 27
2.1 Java 2 Platform, Software Development Kit . 28

2.1.1 References . 28
2.2 IBM Java Developer Kit for Linux running on zSeries 28

2.2.1 Obtaining the IBM Java Developer Kit . 28
2.2.2 Installing the IBM Java Developer Kit . 28

2.3 Jikes . 29
2.3.1 Installing Jikes. 30
2.3.2 Using Jikes . 30

Chapter 3. Source code control using CVS . 33
3.1 Introduction to CVS . 34

3.1.1 Definitions . 34
3.1.2 Revision numbering . 35
3.1.3 File locking . 35

3.2 CVS command syntax. 35
3.2.1 Global options . 36
3.2.2 CVS commands . 36
3.2.3 Command options . 37
3.2.4 Command arguments . 37
3.2.5 Log messages. 38
3.2.6 Date formats . 38

3.3 Administering CVS . 38
3.3.1 Creating a repository . 38

3.4 Root directory . 39
3.5 ssh access. 40
3.6 Environment variables and the ~/.cvsrc file. 40
3.7 Creating a project . 41

3.7.1 Importing the files . 41
3.8 Obtaining a working copy . 42

3.8.1 Special files . 43
3.9 Making changes in the working copy . 44
3.10 Adding files and directories . 45
3.11 Committing changes to the repository . 46
3.12 Updating the working copy . 48
3.13 Resolving conflicts. 51
3.14 Viewing log messages. 51
3.15 Recovering versions . 52

Chapter 4. The Emacs editor . 55
4.1 Editing files using Emacs . 56

4.1.1 Starting Emacs . 56
4.1.2 Basic commands. 57
iv Linux on zSeries: Application Development

4.1.3 Invoking Lisp functions . 57
4.1.4 Editing multiple files . 58
4.1.5 Moving text . 59
4.1.6 Search and replace . 61
4.1.7 Modes . 61

4.2 Building applications using emacs . 62
4.2.1 Editing program files . 62
4.2.2 Compiling your application . 63

Chapter 5. The vi editor . 65
5.1 First encounter with vi . 66
5.2 Modes of operation . 66
5.3 Customizing vi . 68
5.4 Commands categorized by functionality . 68

5.4.1 Moving the cursor . 68
5.4.2 Insertion point . 69
5.4.3 Locating a string pattern . 69
5.4.4 Replacing . 69
5.4.5 Deleting . 70
5.4.6 Moving and copying . 71
5.4.7 Miscellaneous . 71
5.4.8 Saving and closing file . 71

5.5 To probe further. 72
5.6 An editor for the CMS aficionados. 72

Chapter 6. The Jakarta project . 75
6.1 The Tomcat application server . 76

6.1.1 Obtaining Tomcat . 76
6.1.2 Installing Tomcat . 76
6.1.3 Configuring the Tomcat server . 78
6.1.4 Deploying an application under Tomcat . 79
6.1.5 Tomcat application manager. 79

6.2 Ant . 80
6.2.1 Installing Ant . 80
6.2.2 Using Ant. 80

6.3 Log4J. 81
6.3.1 Installing Log4j . 81

6.4 Taglibs. 82
6.4.1 Installing taglibs. 82
6.4.2 Configuring taglibs . 82

6.5 Struts . 84
6.5.1 Struts components . 84
6.5.2 Installing Struts . 87
 Contents v

Chapter 7. Running Linux applications in a zSeries environment 89
7.1 Architecture consideration. 90

7.1.1 Bits and bytes . 90
7.1.2 Virtual address space . 92
7.1.3 Function calling convention. 93

7.2 When things go wrong. 96
7.2.1 Debugging with gdb . 96
7.2.2 Tracing system calls . 101
7.2.3 Debugging under zVM . 102
7.2.4 Performance profiling . 102

7.3 Optimizing for performance . 102
7.3.1 General options. 102
7.3.2 Inline functions and unrolled loops . 103
7.3.3 Architecture-dependent options . 103
7.3.4 String operations . 104
7.3.5 Sources of information . 104

7.4 Signals. 104
7.4.1 Linux signals and zSeries exceptions . 105

Part 2. Eclipse . 107

Chapter 8. Eclipse overview . 109
8.1 Eclipse Software Developer Kit . 110
8.2 The Eclipse platform . 110

8.2.1 Ant . 110
8.2.2 Compare . 111
8.2.3 Core . 111
8.2.4 Debug . 111
8.2.5 Help. 111
8.2.6 Release Engineering. 111
8.2.7 Scripting . 111
8.2.8 Search . 112
8.2.9 Standard Widget Toolkit . 112
8.2.10 User Interface . 112
8.2.11 Update. 112
8.2.12 Version Control Mechanism . 112
8.2.13 WebDav . 112

8.3 The Java Development Toolkit . 113
8.3.1 JDT Core. 113
8.3.2 JDT Debug . 113
8.3.3 JDT UI . 113

8.4 The Plug-in Development Environment. 113
8.4.1 PDE Core . 114
vi Linux on zSeries: Application Development

8.4.2 PDE UI . 114
8.5 Getting started with Eclipse. 114

Chapter 9. Installing Eclipse. 115
9.1 Prerequisite software for Eclipse. 116
9.2 Eclipse installation. 116

9.2.1 Rebuilding Eclipse. 117
9.2.2 Build the Standard Widget Toolkit . 118

9.3 Set up the environment . 118
9.3.1 Testing the installation . 119

9.4 Installing the C/C++ Development Tools plug-in 119
9.4.1 Installing the CDT client . 121
9.4.2 Installing the CDT server code . 121

Chapter 10. Configuring Eclipse . 123
10.1 Starting Eclipse . 124

10.1.1 The -vm option . 124
10.1.2 The -data option . 124
10.1.3 The -vmargs . 124
10.1.4 Other start options. 124
10.1.5 Simplifying options . 125

10.2 Configuring Eclipse to use CVS . 125
10.3 Eclipse and editors . 128
10.4 Modifying Eclipse . 128

10.4.1 Workbench . 128
10.4.2 Perspectives and components . 129

Chapter 11. Eclipse as an integrated development environment 131
11.1 Concepts . 132

11.1.1 Workbench . 132
11.1.2 Perspective . 132
11.1.3 View . 132
11.1.4 Editors . 132
11.1.5 External editors . 132
11.1.6 Resources . 132
11.1.7 Graphical concept view . 133

11.2 Using the Java Development Toolkit . 134
11.2.1 Menu bar and tool bar . 134
11.2.2 JDT initialization . 135
11.2.3 JDT Java project . 135
11.2.4 Running the application. 139
11.2.5 Debugging the application. 140

11.3 Using Eclipse with Ant . 142
11.4 Using Eclipse with CVS. 144
 Contents vii

11.5 Using the C Development Toolkit . 147
11.5.1 Sample project . 147
11.5.2 Navigating code . 149
11.5.3 Compiling the project . 150
11.5.4 Running the code . 150
11.5.5 Debugging the application. 151
11.5.6 Packaging and managing projects . 152

11.6 Using the Plugin Development Environment . 153
11.6.1 Setting up the development environment 153
11.6.2 First plug-in . 153
11.6.3 Making sense . 154
11.6.4 Adding extensions. 156
11.6.5 Running the plug-in . 157
11.6.6 Deploying a plug-in . 157

Part 3. Programming techniques . 159

Chapter 12. zSeries as a development platform . 161
12.1 Example applications . 162

12.1.1 Application overview . 162
12.1.2 The development environment . 163

Chapter 13. Using the Struts framework . 167
13.1 The Struts application components . 168
13.2 The model component. 169

13.2.1 User class . 169
13.2.2 ActionForm class. 170
13.2.3 Form validation and ActionErrors . 171
13.2.4 Internationalization and application resources 171

13.3 The view component . 172
13.3.1 Struts-html taglib . 172
13.3.2 Mapping form input to ActionForm beans 174

13.4 The controller component . 174
13.4.1 Action class . 174

13.5 Logging using Log4j . 176
13.5.1 Using Log4j . 177
13.5.2 Configuring Log4j . 177

13.6 Struts framework configuration . 178
13.6.1 Registering ActionForm beans . 178
13.6.2 Registering ActionMapping and ActionForward 179
13.6.3 Configuring ActionServlet . 179

13.7 The persistence layer . 180
13.7.1 Data abstraction in the persistence layer 181

13.8 The JDBC interface . 182
viii Linux on zSeries: Application Development

13.9 Connection pooling . 184
13.9.1 Connection configuration . 186

13.10 The Java Native Interface . 188
13.10.1 Using JNI in Java code . 188
13.10.2 Implementing the native code in C . 189
13.10.3 Building the JNI shared library . 191

Chapter 14. Shared libraries and more . 193
14.1 Example overview . 194

14.1.1 Components of the address book example. 194
14.1.2 Implemented functionality . 195

14.2 Creating and using libraries. 196
14.2.1 Preparing object files. 196
14.2.2 Inspecting object files . 197
14.2.3 Static libraries . 198
14.2.4 Shared libraries . 199
14.2.5 Using shared libraries . 200
14.2.6 Building shared libraries . 202
14.2.7 Investigating shared object dependencies 202
14.2.8 Dynamically linked libraries. 203
14.2.9 Include files . 205

14.3 A poor man’s database . 207
14.3.1 Memory mapped files . 207
14.3.2 Synchronizing memory and disk storage 210

14.4 Graphical user interface . 211
14.4.1 Graphical interface in a UNIX environment 212
14.4.2 Qt library . 213

Chapter 15. Designing for concurrent access . 217
15.1 UNIX processes . 218
15.2 The pthreads library . 219

15.2.1 Using threads . 220
15.2.2 Creating threads . 221
15.2.3 Thread termination . 222
15.2.4 Thread attributes . 224
15.2.5 Setting thread stack size . 224
15.2.6 Synchronizing threads. 226
15.2.7 Mutexes. 227
15.2.8 Conditional variables. 228

15.3 Controlling concurrent access . 230
15.3.1 Locking using files . 230
15.3.2 IPC semaphores . 230
15.3.3 Pthread resources. 231
 Contents ix

Chapter 16. Concurrency in embedded SQL . 237
16.1 Using embedded SQL in DB2 UDB applications. 238

16.1.1 Components of a DB2 UDB application . 238
16.1.2 Creating a package . 238
16.1.3 Incorporating prep/bind into make. 240
16.1.4 Embedded SQL files as libraries. 241

16.2 Multiple connections in embedded SQL programs 241
16.2.1 Connection context . 242
16.2.2 Context operations . 242
16.2.3 Client-server considerations . 249

Chapter 17. Packaging applications for deployment 251
17.1 Creating a project . 252

17.1.1 Example source structure . 252
17.1.2 Adding prerequisite libraries to the project 254
17.1.3 Prepare the database . 254
17.1.4 Customize the application . 255

17.2 Creating RPM packages . 255
17.2.1 Before you begin . 256
17.2.2 Preparing the source archive . 256
17.2.3 Preparing package specification . 257
17.2.4 Building the package. 257
17.2.5 Installing packages . 258

17.3 Creating WAR packages . 258
17.3.1 Building a WAR package using Ant . 259
17.3.2 Deploying WAR packages . 262
17.3.3 Deployment on WebSphere Application Server 4.0 263

Part 4. Appendixes . 265

Appendix A. DB2 for Linux on zSeries . 267
Installing DB2 . 268

Before you begin . 268
Prerequisites . 268
Installation procedure . 269

Configuring DB2 . 272

Appendix B. Porting applications to Linux on zSeries 275
Linux for S/390 and zSeries porting - hints and tips. 276
Graphics support on the mainframe . 280
Memory debuggers . 281
Application profilers . 281
Porting UNIX applications to Linux: Hints and tips . 282
Key questions to consider before starting . 282
x Linux on zSeries: Application Development

Will migration involve a huge initial investment . 282
How much will it cost, and how long will it take . 283
Will my application continue to work on the original UNIX platform 283
Porting from Linux to Linux on zSeries . 284
Summary. 284

Solaris-to-Linux porting guide. 285
Java applications. 285
Fortran applications. 285
Run-time interfaces . 286
Additional considerations . 286

Technical guide for Solaris to Linux application porting 286
Porting overview . 286
Use the grep command. 287
Identify potential problems . 287
Use a porting tool . 287

Appendix C. Tools for Windows workstations . 289
PuTTY - a Telnet/SSH client for Windows . 290
Cygwin - a UNIX emulator for Windows . 291

Using XFree86 as an X Server under Cygwin . 292
Using WebSphere Application Server on Windows . 293

Filenames . 293
Carriage return/line feed . 293
Property files under WebSphere Studio Application Developer 294
Command line completion under Windows. 294
Copying files from Windows to Linux . 294
Java Virtual Machine environment . 295
Just in Time compiler (JIT) . 295

Appendix D. Linux for S/390 VM HONE pilot . 297
Introduction. 298
Background . 300

HONE/LINK. 300
Green screens. 301

HONEWeb/LINKWeb . 302
GWA. 304

Linux for S/390 . 305
Production rollout . 305

System configuration . 305
Conclusion . 306

Appendix E. Additional material . 307
Locating the Web material . 307
Using the Web material . 307
 Contents xi

System requirements for downloading the Web material 308
How to use the Web material . 308

Abbreviations and acronyms . 309

Related publications . 311
IBM Redbooks . 311

Other resources . 311
Referenced Web sites . 312
How to get IBM Redbooks . 315

IBM Redbooks collections. 315

Index . 317
xii Linux on zSeries: Application Development

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AlphaWorks®
DB2 Connect™
DB2®
^™
Home Director™
Hummingbird®
IBM®
IBMLink™
iSeries™

Lotus®
MQSeries®
MVS™
Notes®
OS/390®
Perform™
RACF®
Redbooks(logo)™
S/390®
SP™

VisualAge®
VM/ESA®
WebSphere®
Word Pro®
z/Architecture™
z/OS™
z/VM™
zSeries™

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus® Word Pro®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xiv Linux on zSeries: Application Development

Preface

This IBM Redbook describes application development for Linux on the
IBM ^ zSeries platform. The target audience is application developers
writing primarily in C/C++ and Java. The topics covered will be familiar to
programmers familiar with Linux application development on other hardware
platforms; we note differences and optimizations specific to the zSeries platform
where applicable.

The Linux development environment for zSeries is quite similar to the
development environment on other platforms running Linux since the operating
system services and development tools share a common code base. Linux on
zSeries offers many of the same application languages: C and C+, Java, Perl,
and Python, to name just a few.

Programmers writing in a language that provides a runtime environment (such as
Java or Perl) are accustomed to the portability that runtime can provide. In fact,
Java’s platform-neutral implementation is one of its key benefits, and Perl’s
runtime has been implemented on a wide variety of platforms. Porting C and C++
applications across hardware platforms has typically required more effort and
expense. Linux has helped to greatly reduce those porting costs because porting
many C and C++ applications simply requires recompilation.

On the zSeries platform, Linux application development can offer some unique
advantages. Running Linux images as guests under zVM allows consolidation of
development servers on a centrally managed machine, thus simplifying system
administration of the development environment. Hardware virtualization provided
by zVM allows physical resources to be shared by multiple Linux guests.

This redbook is divided into three parts:

� In part one, we discuss some standard development tools available for Linux
on the zSeries platform. We provide complete details for using the IBM Java
Software Development Toolkit, CVS, Emacs, the vi editor, and applications
that make up the Jakarta project.

� In part two, the open source Eclipse Integrated Development Environment is
introduced. We describe the basic concepts it incorporates, and provide
step-by-step instructions for installing, configuring, and working with Eclipse.

� In part three, we demonstrate programming techniques using an example
J2EE application as an illustration. All the code necessary to implement the
sample project in your own environment is included.
© Copyright IBM Corp. 2002. All rights reserved. xv

An appendix provides details about installing DB2 for Linux on zSeries, presents
topics related to porting applications, and describes a pilot project that produced
an e-business solution on Linux for S/390.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Gregory Geiselhart is a project leader for Linux on zSeries at the International
Technical Support Organization, Poughkeepsie Center.

Andrea Grahn is an I/T Architect for IBM Global Services in Poughkeepsie, New
York. She has 5 years of experience in Internet application development. She
holds a bachelor of science degree in Computer Science from Polytechnic
University in Brooklyn, New York. Her areas of expertise include developing and
designing J2EE applications for both IBM internal and commercial customers.

Frans Handoko is a senior IT specialist for IBM Global Services in Uithoorn, the
Netherlands. He joined IBM as hardware engineer, then moved to application
development, mostly in the VM/CMS platform and recently in the VM/Linux
platform as well. He holds a master of science degree in Electrical Engineering
from the Technical University of Delft (the Netherlands). His areas of expertise
include text retrieval and pricing.

Jörg Hundertmark is an IT Specialist for IBM Global Services in Cologne,
Germany. He has 4 years of experience developing e-business applications. He
holds a master degree in Computer Science from the University of Paderborn,
Germany. His areas of expertise include J2EE Web applications, and he has
written extensively on Java topics.

Albert Krzymowski is an Advisory Education Specialist for IBM Global Learning
Services in Warsaw, Poland. His area of expertise include DB2 UDB and
MQSeries running on all IBM ^ branches. He has over 5 years
experience in C applications development. He holds a master of science degree
in Computer Science from Warsaw University. He has written extensively on C
and C++ topics.

Eliuth Pomar is a software engineer for the IBM Server Group in Poughkeepsie,
New York. He has 10 years of experience in VM, OS/390, Linux, and DB2
application and system programming. He holds a bachelor of science degree in
Information Systems from York College, and a master of science degree in
Computer Science from Rensselaer Polytechnic Institute. His areas of expertise
xvi Linux on zSeries: Application Development

include application development for Linux/390. He has written extensively on
Eclipse.

Thanks to the following people for their contributions to this project:

Terry Barthel, Dave Bennin, Ella Buslovich, Alison Chandler, Roy Costa, and
Al Schwab
International Technical Support Organization, Poughkeepsie Center

Paul Sutera
IBM Poughkeepsie

Theresa Halloran
IBM Poughkeepsie

Malcolm Zung
IBM Canada

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:
 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xviii Linux on zSeries: Application Development

http://www.redbooks.ibm.com/contacts.html

Part 1 Programming
tools

In this part of the book, we introduce some tools for application development
available for Linux on zSeries. Topics discussed include:

� An assortment of tools traditionally used for C and C++ development

� IBM Java Software Development Kit for Java development

� CVS revision control system

� emacs editor

� vi editor

� The Jakarta project, an assortment of Java development tools

� zSeries architectural consideration, including debugging and optimization

Part 1
© Copyright IBM Corp. 2002. All rights reserved. 1

2 Linux on zSeries: Application Development

Chapter 1. The basic tools you need

In this chapter, we discuss programming tools used in development on Linux for
zSeries. We focus mainly on utilities for C and C++ applications; however, you
may find some of these topics helpful when you write programs in other
programming languages like Java or Perl.

Most of the tools we describe have very good documentation available on the
Internet or in Linux distributions. Therefore, we only:

� Describe the benefits of using a tool

� Highlight the most useful features

� Provide simple examples

� Provide references to the documentation

� Discuss functions or differences (if any) specific to Linux for zSeries

1

© Copyright IBM Corp. 2002. All rights reserved. 3

1.1 Where you can look for information
If you work with most popular Linux distributions, there are four major sources of
information available to you:

• Man pages

• Info help systems

• Numerous HOW-TOs

• Books you have received with your Linux CDs

All contain information useful for a programmer. In this section, we briefly
describe the first two.

1.1.1 Man pages
Man pages are common to most UNIX systems and have been a main source of
information for programmers and users for years. You can invoke the man
manual with a man command:

man [section] keyword

For example, type:

man man

to get to know how to use the manual system. Usually, the content you can see
on man pages is presented by a program called more. Press q to end it and get
back to the command prompt.

Often there are more entries for a single keyword. For example, write is a shell
command and it is also a system function. In such a case, man displays the first
entry it comes across when searching sections in the following order:

1. Executable programs or shell commands
2. System calls (functions provided by the kernel)
3. Library calls (functions within system libraries)
4. Special files (usually found in /dev)

Note: Linux provides an improved version of more called less. Yes, the less
utility has more features than does more (for example, backward scroll when
reading from a pipe). It is advisable to set:

alias more=less

in your ~/.profile. The man command uses less if it is available on your Linux
distributions.
4 Linux on zSeries: Application Development

5. File formats and conventions, for example /etc/passwd
6. Games
7. Macro packages and conventions (such as man(7), groff(7)).
8. System administration commands (usually only for root)
9. Kernel routines (non-standard)

For example, if you want information on the system function write, type:

man 2 write

1.1.2 Info - the help system
Info usually contains more information on a particular topic than man. Moreover,
it often offers many interesting examples and tips.

You can invoke info either as a standalone program or as an Emacs specialized
buffer (press Ctrl - h i once you have run the text editor).

The information you see can be considered as hypertext (organized in tree-like
structure) and viewed in a read-only buffer of a text editor. All Emacs shortcuts
and commands can be used to scroll or search through the text (refer to
Chapter 4, “The Emacs editor” on page 55 for further details).

You can select a link (text after an asterisk, usually in bold face) by placing the
cursor at the beginning of the line and pressing Enter.

Other useful shortcuts are:

u Moves up a node
n Moves to the next
p Moves to the previous node
Ctrl - x Ctrl- c Ends a standalone program
Ctrl - x k Closes an info buffer in Emacs

Tip: If you want to search for man pages related to the particular topic, you
can use the shell command apropos topic, where topic is a topic to search
on. For instance, the command

apropos pthread

displays all man page titles where pthreads are mentioned. The topic may be
a regular expression.
 Chapter 1. The basic tools you need 5

1.2 Compiling C/C++ source code
In the following section we discuss the GUN collection of compilers. Although we
talk mainly about the C compiler, described features apply to other programming
languages like: C++, Objective C, and Fortran.

1.2.1 Starting gcc
To produce a standalone program from a collection of source files, start gcc from
a command line as follows:

gcc -o output_name main.c somefun1.c somefun2.c ...

Option:

-o specifies the output file name. If not specified, the default will be
a.out.

Source files may be compiled separately:

gcc -c module.c

This command creates an object file called module.o, which can be incorporated
into a:

– Program (one of the modules should contain a function named main with
proper declaration):

gcc -o program_name module1.o module2.o ...

– Static library:

ar csr libname.a module1.o module2.o ...

– Dynamic library:

gcc -shared -o libname.so -Wl,-soname,libname.so module1.o module2.o ...

Refer to 14.2.6, “Building shared libraries” on page 202 for more details on how
to create libraries in Linux.

1.2.2 Source files
Naming convention for source files are listed below.

*.c C source code which must be preprocessed
*.i C source code which should not be preprocessed
*.ii C++ source code which should not be preprocessed
*.m Objective-C source code
*.h C header file (not to be compiled or linked)
*.cxx C++ source code which must be preprocessed
6 Linux on zSeries: Application Development

*.cc C++ source code which must be preprocessed
*.C C++ source code which must be preprocessed
*.s Assembler code
*.S Assembler code which must be preprocessed

1.2.3 Directory search
The following options specify directories to search for header files and libraries.

-I directory Specifies a directory for header files searches.

-I - All directories following this option will be searched for header
files specified as #include "hdr.h" (#include <hdr.h> are not
affected.)

-L directory Specifies a directory for library file search.

Directories are searched in the order they were specified. Standard directories
like /usr/include or /usr/lib are searched at the end.

1.2.4 Compilation stages
A compilation can consist of four stages:

1. Preprocessing
2. Compilation
3. Assembly
4. Linking

The steps always appear in this order.

Note that the first three stages apply to an individual source file. Linking
combines all the objects into a single executable file.

The following options determine where compilation stops:

-c Compile or assemble the source files, but do not link. The object
file name for a source file is made by replacing the suffix '.c', '.i', '.s'
with '.o'.

-S Stop after the compilation phase; do not assemble. The output is in
the form of an assembler code file for each non-assembler input file
specified. The assembler file name for a source file is made by
replacing the suffix '.c', '.i', etc., with '.s'.

-E Stop after the preprocessing stage and do not run the compiler.
This option sends results to standard output or to the specified file.
 Chapter 1. The basic tools you need 7

1.2.5 Macros
Some options relevant to macro pre-processing are:

-D Name Define macro Name setting its value as 1.

-D Name=Def Define macro Name setting its value as Def.

-U Name Undefine macro Name. This option is evaluated after all define
(-D) options.

1.2.6 Warnings
Some options relevant to compile warnings are:

-Wall Warns about constructions which are questionable or ugly,
although satisfying the syntax (compilation continues).

-w Inhibit all warning messages (note that the w is lowercase).

-Werror Treat all warnings as errors.

1.2.7 Extra information for debuggers
Some options relevant to debugging are:

-g Add debugging information for programs like gdb, dbx. Unlike
most other C compilers, gcc allows you to use -g with -O.
However, the effects seen during debugging may surprise you.

-ggdb Include GDB extensions if possible.

-p Add extra code to write profile information suitable for the
analysis program prof. Refer to the notes on profiling in 7.2.4,
“Performance profiling” on page 102 and the gprof manual in
the info system.

Tip: You will find this option very useful while tracking syntax errors in
macro definitions. You can run gcc with -E to see how the code looks after
all macros, includes, or conditional statements like #ifdef have been
applied.

Tip: We strongly advise you to use this option. Often such warnings help
find errors related to wrong castings.

Tip: Use the same debug options for modules when compiling a program.
8 Linux on zSeries: Application Development

1.2.8 Code optimization
Following are descriptions of general optimization switches. For more details on
an optimization process and its consequences, refer to 7.3, “Optimizing for
performance” on page 102.

-O or -O1 Turn optimization on.

-O2 Optimize better then -O and improve the output unless it does
not lead to the significant conflicts between space and speed
factors. Compiler does not perform loop unrolling or function
illumining.

-O3 Optimize better than -O2, try to improve execution time.

-Os Optimize for size. -Os enables all '-O2' optimizations that do not
typically increase code size. It also performs further
optimizations designed to reduce code size.

-O0 Do not optimize (uppercase letter ‘o’ followed by zero).

If you turn on optimization, compilation may take longer and consume more
memory (especially when compiling large functions or case statements). Unless
explicitly specified, the compiler tries to reduce code size and execution time.

1.2.9 Configuring gcc as a cross-compiler
By default, gcc compiles code for the same type of machine it runs on. However,
it may be configured as a cross-compiler. A cross-compiler allows you to create
programs that can be run on architectures different from the one used for a
compilation. In this section we describe how we compiled and configured the gcc
complier on Linux for zSeries in order to produce binaries for i386.

Cross-compiler configuration consists of the following steps:

1. Downloading and installing prerequisites.
2. Compiling binutils.
3. Installing libraries.
4. Compiling the cross-compiler.

We describe installing the complier along with utilities in the /usr/cross-devel/
directory. This simplifies sharing this directory among VM Linux images.

Downloading and installing prerequisites
Make sure to have a full development environment on your machine. At least the
following packages should be present:

� gcc-compiler and standard C/C++ development libraries
� binutils package
 Chapter 1. The basic tools you need 9

� autoconf (provides autoheader utility)
� yacc and flex packages

Compiling binutils
Before you compile the binutils package, you must obtain the source code. We
used the binutils.spm package provided by SuSE distribution.

1. Install binutils.spm. The source tarball will be extracted to the
/usr/src/packages/SOURCE directory.

2. Unpack it to the temporary directory:

bunzip2 < /usr/src/packages/SOURCES/binutils-2.11.90.0.27.tar.bz2 | \
tar -C /tmp -xf -

3. Change your working directory to the binutils source and run configure:

cd /tmp/binutils-2.11.90.0.27/
./configure --prefix=/usr/cross-devel --target=i386-pc-linux s390-ibm-linux

4. Start the compilation:

make

5. Install the binaries:

mkdir /usr/cross-devel
make install

6. Now examine the contents of the /usr/devel-i386/bin directory:

ls /usr/cross-devel/bin/
. i386-pc-linux-gasp i386-pc-linux-readelf
.. i386-pc-linux-ld i386-pc-linux-size
i386-pc-linux-addr2line i386-pc-linux-nm i386-pc-linux-strings
i386-pc-linux-ar i386-pc-linux-objcopy i386-pc-linux-strip
i386-pc-linux-as i386-pc-linux-objdump
i386-pc-linux-c++filt i386-pc-linux-ranlib

Installing libraries
In order to produce executable files, you need to install libraries precompiled for a
particular architecture. Compiling glibc from source is possible, but we suggest
using the precompiled version that is commonly used on Linux for i386. You can
download glibc from:

http://www.rpmfind.net

Look for the version closest to that installed on your platform:

rpm -q glibc
glibc-2.2.2-25
rpm -q glibc-devel
glibc-devel-2.2.2-25
10 Linux on zSeries: Application Development

http://rpmfind.org
http://rpmfind.org

In our example we used version 2.2.2-38 (part of the SuSE Distribution for Linux
on i386). We needed both glibc.rpm and glibc-devel.rpm.

Include files and libraries should be installed in the directories whose names
begin with compiler_prefix/architecture. In this case we used:

/usr/cross-devel/i386-pc-linux/include

and

/usr/cross-devel/i386-pc-linux/lib

These library packages cannot be installed using the rpm tool (this would conflict
with existing libraries). Instead, use the following procedure:

1. Create a temporary directory:

mkdir /tmp/i386

2. Unpack libraries with cpio:

cd /tmp/i386
rpm2cpio ../glibc.rpm | cpio -id
rpm2cpio ../glibc-devel.rpm | cpio -id

3. Move the include part to /usr/cross-devel/i386-pc-linux. You don’t have to
create /usr/cross-devel/i386-pc-linux. It is created during installation of the
binutils package as described in step 5 on page 10.

cd /tmp/i386/usr
cp -a include /usr/cross-devel/i386-pc-linux

4. Move the contents of lib and usr/lib directories to the
/usr/cross-devel/i386-pc-linux/lib directory:

cd /tmp/i386
cp -a lib /usr/cross-devel/i386-pc-linux
cd usr
cp -a lib /usr/cross-devel/i386-pc-linux

5. Merge files from the two directories. Now you have to fix some symbolic links
in /usr/cross-devel/i386-pc-linux/lib.

cd /usr/cross-devel/i386-pc-linux/lib

6. All you need to do is remove the prefix ../../lib/ from symbolic links. Be
careful typing. This is a single command:

ls -l | grep ../../lib | cut -c57- | cut -d' ' -f1,3 | \
sed 's^../../lib/^^' | \
while read a b ; do rm -f $a ; ln -s $b $a ; done

7. Correct libc.so accordingly (this is a plain text file):

/* GNU ld script
 Use the shared library, but some functions are only in
 Chapter 1. The basic tools you need 11

 the static library, so try that secondarily. */
GROUP (

/usr/cross-devel/i386-pc-linux/lib/libc.so.6
/usr/cross-devel/i386-pc-linux/lib/libc_nonshared.a

)

Compiling the cross-compiler
The gcc.spm package that comes with SuSE Linux 7.2 for zSeries contains the
main source gcc-2.95.3.tar.gz and patches specific for S/390. Look for:

– gcc-2.95.3-s390.tar.gz
– gcc-2.95.3-s390-1.tar.gz
– gcc-2.95.3-s390-2.tar.gz

Use the following steps to prepare the source code.

1. Unpack the main source package:

tar -C /tmp -zxf /usr/src/packages/SOURCES/gcc-2.95.3.tar.gz

2. Unpack patches in the temporary directory:

mkdir /tmp/gcc-patches
cd /tmp/gcc-patches
tar -zxf /usr/src/packages/SOURCES/gcc-2.95.3-s390.tar.gz
tar -zxf /usr/src/packages/SOURCES/gcc-2.95.3-s390-1.tar.gz
tar -zxf /usr/src/packages/SOURCES/gcc-2.95.3-s390-2.tar.gz

3. Apply the patches:

cd /tmp/gcc-2.95.3
patch -p1 < /tmp/gcc-patches/gcc-2.95.3-s390.diff
patch -p1 < /tmp/gcc-patches/gcc-2.95.3-s390-1.diff
patch -p1 < /tmp/gcc-patches/gcc-2.95.3-s390-2.diff

4. Configure the gcc as a cross compiler:

./configure --prefix=/usr/cross-devel \
--with-headers=/usr/cross-devel/i386-pc-linux/include/ \
--target=i386-pc-linux s390-ibm-linux

5. Compile:

make

Note: We have found that the --with-headers option is essential in order to
avoid having to specify the -I option when working with the cross-complier
later on.
12 Linux on zSeries: Application Development

6. Install package:

make install

Using cross complier
Once the complier has been installed, you should update your PATH environment
variable:

export PATH=/usr/cross-devel/bin:$PATH

Executable files for the i386 platform are created when gcc is invoked with a
proper prefix. In this example, use the i386-pc-linux-gcc command. We
suggest setting the CC variable to this command to instruct make what complier is
to be used.

For example, to make executable test from source file test.c, issue:

$ export CC=i386-pc-linux-gcc
$ make test
i386-pc-linux-gcc t.c -o t
$ file test
test: ELF 32-bit LSB executable, Intel 80386, version 1, dynamically linked
(uses shared libs), not stripped

To build applications for i386 (or other platforms) on Linux zSeries, you should
install all needed libraries as described in “Installing libraries” on page 10. Cross
compilation of libraries is also possible. We recommend you use the same
version that is available on the target machines.

1.3 Linking object code
The following options can change behavior of the linker when you compile your
code with gcc.

Note: In some configurations, the PATH_MAX constant is not defined
properly. Add the following lines after the include section if you encounter
this problem.

#ifndef _POSIX_PATH_MAX
#define _POSIX_PATH_MAX 255

#endif

Note: Remember that if any of the -c, -S, or -E options are specified, the linker
is not invoked and the following options are meaningless.
 Chapter 1. The basic tools you need 13

Some relevant options are:

-s Remove all symbol table and relocation information from the
executable. Same as the strip command.

-static Link with the static libraries.

-shared Produce a shared object that can then be linked with other
objects to form an executable. Refer to 14.2.6, “Building
shared libraries” on page 202.

-Wl,option Pass option as a parameter to the linker.

1.4 Automating the build process
Most projects consist of a number of files that are compiled separately and then,
if required, linked together into standalone programs or libraries. If you change
the source file, you should recompile all other files which depend on that file. If it
is a header file, you should recompile all files in which it is included. On the other
hand, if you change a C source file (*.c), only this file needs to be recompiled
and linked.

The make tool checks the timestamps on your source files and invokes
compilation only if necessary. Make operates on a configuration file (commonly
referred to as a Makefile).

The default configuration file names are makefile and Makefile.

1.4.1 GNU make
The make command included in Linux distributions is a GNU version of make. It is
compliant with POSIX.2 standards. However, there are a lot of extensions,
especially regarding implicit rules. Sophisticated makefiles may not work with
standard make utilities supplied with systems other than Linux. In such a case
you will have to adjust a makefile or install gmake (GNU version of make).

1.4.2 Writing your Makefile
In the following example, input for the make tool will produce a program called
sample. It consists of two modules compiled separately (line 14 and 17) and
linked together (line 11). The interface for functions exported in the somefun
module is provided in a header file called somefun.h. Both modules will be
recompiled whenever this file is changed.
14 Linux on zSeries: Application Development

Example 1-1 Makefile rules

01: # Sample Makefile
02:
03: INCS = -I/usr/lib/qt-2.3.0/include -I ../itsodb
04: LIBS = -lpthread -ldl
05:
06: OBJS =main.o somefun.o
07:
08: CFLAGS = -g $(INCS)
09:
10: sample: $(OBJS)
11: gcc -o sample $(OBJS) $(LIBS)
12:
13: main.o: main.c somefun.h
14: gcc $(CFLAGS) -c main.c
15:
16: somefun.o: somefun.c somefun.h
17: gcc $(CFLAGS) -c somefun.c
18:
19: clean:
20: rm -f *.o *~

Now we take a closer look at Makefile syntax.

Comments
line 01 Text on the right of the # sign is considered to be a comment.

Variables
lines 03-08 We define some useful variables here. Values associated with

variables can be accessed by the following expression:
$(variable_name).

line 08 The definition can have a reference to another variable.

Rules
lines 10-20 A single rule for a make tool has the following format:

<target>: <prerequisites>
<TAB><command 1>
<TAB><command 2>

<target> Name of the file to created

Note: Variable values can be set in the shell. If you set shell variable CC,
make may use its value as a command in rules like this one:

$(CC) $(CFLAGS) mymodule.c
 Chapter 1. The basic tools you need 15

<prerequisites> List of the file names that must exist before the
commands are executed. List items are separated by
spaces. If the list is too long to fit into the line, you can
end it with the backslash sign and continue in the next
one.

<command ..> Shell command to be executed. Note that the single
<TAB> is essential to satisfy Makefile syntax.

Rules are used to:

• Define the commands that are to be invoked to produce a target

• Decide whether the target is out of date

Rules may be generic; and you specify patterns. The following example
shows how the make tool produces object files (*.o) from C source code
(*.c) when there is no explicit definition.

This pattern is predefined in the GNU implementation of make:

%.o : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

Some of the automatic variables are:

$@ File name of the target of the rule

$% Target member name

$^ Names of all the prerequisites, with spaces between them

$< Name of the first prerequisite

1.4.3 Building with make
When make is invoked, you can specify the target you want to build. By default,
the first one is created (and of course, all other files that are necessary). To make
target myecho, issue:

make myecho

Conventions
When preparing a Makefile for your project, you should consider the following
targets:

all Provide an all rule and place it at the beginning. This rule should
define the default target.

clean This rule tells make how to remove all unnecessary files (like *.o
objects and temporary entries).
16 Linux on zSeries: Application Development

install This rule tells make how to install your project. Look at the Make ->
Makefile Conventions -> Directory Variables in the Linux info help
system for some hints on how to define this rule.

depend If your project consists of many files, you will probably find creating
dependencies very confusing. If your project is compiled for another
target platform, header files may be located in other places and the
compilation may not succeed. Use the makedepend utility to prepare
the list of dependencies and append that list to the end of Makefile.

1.4.4 Makedepend
The makedepend program reads each of the source files specified as an argument
and looks for all include statements. Information on every file that was included is
stored in Makefile as a dependency:

sourcefile.o: dfile1 dfile2

In this example sourcefile.o is the name from the command line with its suffix
replaced with .o and dfile1 is a dependency discovered in the #include directive
while parsing sourcefile or one of the files it includes.

By default, the output is placed at the end of Makefile, after the line which looks
like this:

DO NOT DELETE THIS LINE -- make depend depends on it

All subsequent calls will replace the content below this message.

makedepend respects other C-preprocessor statements such as #define and
#ifdef. You should invoke the program with the options

-D... For define statements

-I... For include directories

in addition to any compiler options you supply to gcc.

1.4.5 File dependencies from gcc
The gcc compiler may be used to generate dependencies as well. Use the
following options:

-M Tells the preprocessor to output a rule suitable for make

-MM Like '-M' but the output uses only the user header (files included
with #include "FILE"). System header files using #include <FILE>
are omitted.
 Chapter 1. The basic tools you need 17

1.5 Libraries
Libraries provide functions and data constructs that can be used in your
programs. Since an end user needs different library packaging than a
programmer, several kinds of archives are usually available:

� Binary distribution - shared objects for use with compiled programs.
Distributed as libname.rpm.

� Include files for library objects, static version of a library and other necessary
files you need to build your program. Distributed as libname-devel.rpm.

� Library source files. Distributed as libname.spm or libname.src.rpm

� Precompiled version of a library with settings for profiling or debugging.
Distributed as libname-profile.rpm

Refer to 14.2.5, “Using shared libraries” on page 200 for details about how to use
libraries.

Standard C and C++ libraries
SuSE Linux Enterprise Server 7 contains packages with libg++-libc6.2-2
libraries.

� Include files are in gpp.rpm

� Shared objects are in gppshared.rpm

Some of the precompiled programs (including IBM DB2 UDB v.7.1) require an
older version. You might see an error like this:

libstdc++libc6.1-2.so.3:cannot load shared object file: No such file or
directory

You can find the missing files on SuSE 7.2 for S390 distribution in a package
named in exactly the same way: gppshare.rpm. Although it provides the
2.95.2-165 version of the library, we cannot install it due to rpm version rules.

The rpm2cpio tool can used instead, using the following steps.

1. Download the gppshare.rpm into a temporary directory.

2. Unpack the library.

mkdir /tmp/gppshare
cd /tmp/gppshare
rpm2cpio /tmp/gppshare.rpm | cpio -di

3. Copy the files you need.

cp -a /tmp/usr/lib/libstdc++* /usr/lib
18 Linux on zSeries: Application Development

What libraries are available?
An up-to-date list of the libraries available on Linux for zSeries is available at:

http://www.ibm.com/servers/eserver/zseries/os/linux/ldt/slate_enablers.html

For more information on libraries go to the following site:

http://www.rpmfind.net

Even if you do not find the precompiled version for zSeries, the link to source
code is often provided. Download the source package and build it with the rpm
command.

rpm --rebuild packagename.src.rpm

Be sure to install all prerequisite software in advance. Note that this command
does not install the package, but it builds the rpm file and stores it in the
/usr/src/packages/RPM/s390 directory. This name may vary depending on your
architecture and Linux distribution.

1.6 Tracking changes
In this section we show how two Linux utilities, diff and patch, can be used to
distribute new versions of software.

1.6.1 Using diff to find differences
The diff command shows differences between two files. Running diff on text
files generates a line by line report on differences (for binary files, diff will only
report that the files differ). This output is often called a diff. For identical files, no
report is generated.

As an example, we use two versions of the simple program echo. Example 1-2
shows the first version of the echo.c program.

Example 1-2 echo.c

01: #include<stdio.h>
02:
03: main(int argc, char *argv[]){
04:

Note: There is also a diff3 command that compares three input files and lets
you inspect two different sets of changes to the same file. Emacs offers an
emerge-files function that let you to incorporate two tiers of changes into a
single file.
 Chapter 1. The basic tools you need 19

http://www.ibm.com/servers/eserver/zseries/os/linux/ldt/slate_enablers.html
http://www.rpmfind.net

05: int i;
06:
07: i=1;
08:
09: while(i<argc)
10: printf(argv[i++]);
11:
12: printf("\n");
13: }

The improved version, where you can suppress printing an end of line character,
is presented in Example 1-3,

Example 1-3 echo2.c

01: #include<stdio.h>
02: #include<unistd.h>
03:
04: main(int argc, char *argv[]){
05:
06: int i;
07: int no_nl;
08:
09: no_nl = getopt(argc,argv,"n") == 'n';
10: i=optind;
11:
12: while(i<argc)
13: printf(argv[i++]);
14:
15: if(!no_nl)
16: printf("\n");
17: }

Let’s have a look at how the diff command works. Tto compare the two files,
type in:

diff echo1.c echo2.c > echo.diff

We intercept the text sent to standard output and store it in the separate file
named echo.diff. Example 1-4 on page 21 shows the result. The line numbers
are provided for convenience - they are not part of the diff output.

Tip: We used the getopt function to intercept the -n switch. Refer to man 3
getopt for more information on getopt (a shell command called getopt also
exists to deal with parameters in shell scripts).
20 Linux on zSeries: Application Development

Example 1-4 echo.diff

01: 1a2
02: > #include<unistd.h>
03: 5a7
04: > int no_nl;
05: 7c9,10
06: < i=1;
07: ---
08: > no_nl = getopt(argc,argv,"n") == 'n';
09: > i=optind;
10: 11,12c14,16
11: < printf("\n");
12: ---
13: > if(!no_nl)
14: > printf("\n");

The diff discovered that:

– Two lines are added (01-02,03-04),

– There are also two changes (05-09,11-14).

Notice that diff does not get lost, and matches printf instructions properly. The
the line with printf instruction is noted as changed due to the extra space added
as an indentation following the if statement.

1.6.2 Applying changes
Provided the output from the diff is placed in the echo.diff file, changes may
be applied to the echo1.c file using the patch command:

patch echo1.diff < echo.diff

Now there should be no difference between echo1.c and echo2.c.

Even if you modify your echo1.c program slightly (for example, by adding the
following to line 6 in the main function):

printf("Welcome to echo example\n");

patch is likely to update the source code properly. It always tries to anchor the
changes somewhere within context.
 Chapter 1. The basic tools you need 21

1.6.3 Running diff against source tree
In practice, the procedure described previously cannot be used to apply patches
for a new software version for at least two reasons:

� Only one file was updated, not the whole source tree.

� The patch command easily gets lost if significant changes are made.

For example, if we had deleted the printf(“\n”); statement in line 12, the tail of
the new version proposed by patch looks like:

while(i<argc)
 if(!no_nl)
 printf(argv[i++]);

This is definitely not the version we would like to see. In the next two sections,
these problems are addressed.

Recursive comparison
You can run diff against directories. When diff arguments are directories,
comparisons are made against all files contained in both directories (examining
files in alphabetical order).

Some options related to this kind of operation are:

-r Compares corresponding pair of files in the directory, stepping
down into subdirectories if necessary. By default, diff reports
subdirectories common to both directories without comparing files
(equivalent to the --recursive option).

-s Reports pairs of identical files. By default, diff prints nothing on
files that contain no differences.

-N If a file is found in only one directory, treat it as present but empty in
the other directory.

-P This option is similar to -N except it only inserts the contents of files
that appear in the second directory but not the first (patch
describes only the files that were added). This may reduce the size
of your patch, but use it with caution.

Context patch
If you want to distribute new versions of your files in the form of a diff patch, you
should use one of context output formats. The patch tool can apply the diffs in
this case by searching in the files for the lines of context around the differing
lines. If those lines are not far away from where the diff says they are, the patch
can adjust the line numbers accordingly and carry on its work.
22 Linux on zSeries: Application Development

Options related to the context output are:

-c Use the context output format that shows several lines around the
the fragments that differ.

-u Use the unified output format. This is a more compact version of
the context patch. You can also switch this format on with-U.

-Ulines Similar to -u, but the argument lines specifies the number of lines
of context to show. By default, it is set to three.

Let’s get back to our example and move the old version of the echo program to
the directory echo-v1, naming it echo.c. The new version is moved to directory
echo-v2 and is also named echo.c.

Now we allow the context output and invoke the diff command to run
recursively:

diff -Nua echo-v1 echo-v2 > echo.patch

The obtained output is shown on Example 1-5.

Example 1-5 echo.patch

01: diff -Nua echo-v1/echo.c echo-v2/echo.c
02: --- echo-v1/echo.cWed May 8 16:23:05 2002
03: +++ echo-v2/echo.cWed May 8 16:23:10 2002
04: @@ -1,13 +1,17 @@
05: #include<stdio.h>
06: +#include<unistd.h>
07:
08: main(int argc, char *argv[]){
09:
10: int i;
11: + int no_nl;
12:
13: - i=1;
14: + no_nl = getopt(argc,argv,"n") == 'n';
15: + i=optind;
16:
17: while(i<argc)
18: printf(argv[i++]);
19:
20: + if(!no_nl)
21: printf("\n");
22: }

The diff uses the following markers:

+ Stands for an inserted line
 Chapter 1. The basic tools you need 23

- Stands for a deleted line

! Stands for a line that is part of a group of one or more lines that
were changed (not shown in this example)

We suggest the following invocation of the diff command when the patch for a
new version of source code is being produced:

diff -Nur new_dir old_dir > project-version.patch

You should always check whether the patch applied against the old version
produces a new one without any rejects. If not, add a few more lines of context, to
help the patch tool:

diff -Nur -U5 new_dir old_dir > project-version.patch

1.6.4 Distributing patches
The patch tool takes comparison output produced by diff and applies the
differences to a copy of the original file, producing a patched version. With patch,
you can distribute just the changes to a set of files instead of distributing the
entire file set.

The patch tool automatically determines the diff format, skips any leading or
trailing headers, and uses the headers to determine which file to patch. It detects
and warns about common problems like forward patches and, in such a case,
saves the original version of the file as well as any patches that could not be
applied.

If you have a patch for a new version of the source directory, look at its contents
and find the diff command that has been used. In the next two lines after the diff
invocation you will find the names of the files to be patched (lines number 02 and
03 in Example 1-5).

In most cases, names of your directories differ from those specified in the patch.
You can deal with it with the following options:

-pnumber Sets how many slashes (along with the directory
names between them) are to be stripped from the front
of file names. Option -p with no number given is
equivalent to -p0. By default, patch strips off all
leading directories, leaving just the base file names.

-d directory Sets directory as the current directory for interpreting
both file names in the patch file.

Let’s get back to our echo.c example. We upgrade the original source
(~/src/echo/echo.c) using the patch (/tmp/echo.patch) as follows:
24 Linux on zSeries: Application Development

patch -d ~/src/echo -p1 < /tmp/echo.patch

We use the -p1 option to strip the directory names echo-v1 and echo-v2 from the
file names.

1.6.5 Before you distribute your patch
When you distribute a patch:

� Always write a short info indicating how it should be applied. Be sure to
mention the prerequisites.

� Remove all unnecessary files from your directories before creating a patch.

If you provide users with source code for your application (that is, you work on an
open source project), new versions should provide both a full distribution and a
patch to be applied against the previous version whenever possible. One
advantage of sharing source code is the fact that users can modify the
application simply be changing the source. Users that have modified your source
(to customize the code or to fix bugs) will appreciate your diff. These changes
can be merged into the new version if you supply a patch.

Tip: Sometimes people run diff using the new file as the first file name. If you
get such a reversed patch, apply it with the -R or --reverse option.
 Chapter 1. The basic tools you need 25

26 Linux on zSeries: Application Development

Chapter 2. The IBM Java Software
Development Kit

This chapter briefly describes Java as an application platform and discusses:

� The Java 2 platform

� The IBM Java Software Developer Kit for Linux

� The IBM Java SDK

� The Jikes Java compiler

2

© Copyright IBM Corp. 2002. All rights reserved. 27

2.1 Java 2 Platform, Software Development Kit
The Java 2 Platform is distributed with the Software Development Kit (SDK). The
Java 2 Platform SDK (also referred to as the J2SDK) provides development tools
such as:

– Java compiler

– Java debugger

– Java documentation builder

2.1.1 References
More information on Java, including the documentation for the J2SE and J2EE
specifications, can be found at the Sun Microsystems Web site for Java located
at:

http://java.sun.com

2.2 IBM Java Developer Kit for Linux running on zSeries
Sun does not provide a Java 2 implementation for Linux running on zSeries.
However, as part of its commitment to the Java platform, IBM has ported the
J2SDK implementation to zSeries Linux. For a complete list of platforms
supported by the IBM Java SDK, see:

http://www.ibm.com/developerworks/java/jdk/

2.2.1 Obtaining the IBM Java Developer Kit
This redbook is based on version 1.3.1 of the IBM J2SDK. This version is freely
available for download at:

http://www.ibm.com/developerworks/java/jdk/linux130/

The RPM version (we used file IBMJava2-SDK-1.3.1-1.0.s390.rpm) should be
selected for easy installation.

2.2.2 Installing the IBM Java Developer Kit
As root, install the package using the command:

rpm -ivh IBMJava2-SDK-1.3.1-1.0.s390.rpm
28 Linux on zSeries: Application Development

http://java.sun.com
http://www.ibm.com/developerworks/java/jdk/
http://www.ibm.com/developerworks/java/jdk/linux130

By default, rpm will install the J2SDK in the directory /opt/IBMJava2-s390-131.
This will be the Java home directory. An outline of the package contents is
presented in Table 2-1.

Table 2-1 Contents of the IBM J2SDK package

2.3 Jikes
Developed by the IBM T.J. Watson Research Center, Jikes is a Java command
line compiler like the standard Java compiler javac. The Jikes compiler was
released in binary form on the IBM AlphaWorks site in 1997. Jikes for Linux
followed in July 1998. Now the source code is available under IBM’s Public
License, which has been approved by the Open Source Initiative (OSI) as a fully
certified open source license. Officially it is no longer supported by IBM; instead,
it survives today solely on free contributions from the open source community.

Jikes offers some advantages over the standard Java compiler. For example,
Jikes provides:

� Better performance (Jikes is written in C++)

� Better error messages

� Dependency analysis, which can be used for incremental builds and Makefile
generation

The Jikes home page is located at:

Directory Purpose

/opt/IBMJava2-s390-131/ Java home directory - also contains source
code for IBM J2SDK

/opt/IBMJava2-s390-131/bin Executable directory - contains compiler,
debugger, archiver, applet viewer

/opt/IBMJava2-s390-131/demo Example code directory - contains various
ready-to-run Java demonstrations

/opt/IBMJava2-s390-131/docs Documentation directory - contains license
and readme files

/opt/IBMJava2-s390-131/include Include directory - contains include files for
Java native interface (JNI)

/opt/IBMJava2-s390-131/jre Runtime directory - contains shared libraries
and executables for JRE

/opt/IBMJava2-s390-131/lib Archive directory - contains Java archive (JAR)
for J2SDK
 Chapter 2. The IBM Java Software Development Kit 29

http://www.ibm.com/developerworks/oss/jikes/

For Linux on zSeries, we had to take the source rpm file (available in the
download section) and build the binary ourselves.

2.3.1 Installing Jikes
Here are the steps to install Jikes in Linux:

1. Download the jikes-1.15.-1.src.rpm file from the Jikes site.

2. In the download directory, issue the commands:

rpm --rebuild jikes-1.15-1.src.rpm
rpm -ivh /usr/src/packages/RPMS/s390/jikes-1.15-1.s390.rpm

Note that the second command requires root rights.

3. Add Jikes to the CLASSPATH:

export CLASSPATH=$CLASSPATH:/opt/IBMJava2-s390-131/jre/lib/rt.jar

You must have a version of the JDK or JRE to run Jikes because the compiler
needs to access the standard class files. Note that since version 1.1 of the JDK it
is no longer necessary to provide a definition of CLASSPATH to run javac or java.
However, jikes does not know what version of the JDK you are using and
therefore you must indicate where it should find the standard library files.

2.3.2 Using Jikes
Invoke Jikes in the form:

jikes [options] filename

Invoke Jikes without arguments to get a summary of the options. Some options in
Jikes that are not found with javac are:

++ Compile in incremental mode.

+E List errors in a form commonly used by Emacs to scan for errors.
By default, errors are listed in a more readable form.

+M Generate makefiles with dependencies.

Jikes can compile more than one file at a time, for example:

jikes Test1.java Test2.java Test3.java

Jikes also accepts arguments starting with an at sign (@). Such arguments are
taken to be the name of a file, with each line then processed as though it were
itself an argument, except that lines starting with @ are not processed recursively.
For example, the above command could also be written as:
30 Linux on zSeries: Application Development

http://www.ibm.com/developerworks/oss/jikes/

jikes @file.list

where the file file.list contains the lines:

Test1.java
Test2.java
Test3.java

See the Jikes home page for more details.
 Chapter 2. The IBM Java Software Development Kit 31

32 Linux on zSeries: Application Development

Chapter 3. Source code control using
CVS

In this chapter we discuss CVS, an open source version control system for
project file management. Some of the basic features will be demonstrated; many
more are available. For a full explanation of CVS and all its features, refer to the
CVS manual Version Management with CVS by Per Cederqvist, et al., available
at:

http://www.cvshome.org/docs/manual/

3

© Copyright IBM Corp. 2002. All rights reserved. 33

http://www.cvshome.org/docs/manual/

3.1 Introduction to CVS
CVS operates on a client-server model, allowing developers in widely dispersed
geographic locations to collaborate on a common software project. CVS relies on
the diff command to determine version differences. By recording version
differences and applying the patch command to previous revisions, it is possible
to recover any file revision stored in CVS. As it relies on the diff and patch
commands to recreate a file history, CVS works best on text files.

3.1.1 Definitions
Before going into details on CVS operation, some terms should be defined.

Repository The copy of all files and directories under CVS version
control.

Module A directory contained within a repository. Repositories
may contain multiple modules. Modules are used to group
files in the repository.

Working copy The local copy of the module on which developers make
modifications.

Check out The action to obtain a working copy.

Commit The action to reflect changes made to a working copy
back to the repository.

Update The action to incorporate changes made and committed
to a repository module back into a working copy. Updates
are required when more than one developer works
concurrently on a module.

Revision number A unique number for each file, used to identify committed
revisions.

Tip: Do not check in CVS files generated during the build process (particularly
binary files such as object code, byte-compiled Java class files, or binary
executable files). Rather, check in text files created by developers (such as
source files, configuration files, and Makefiles), and allow the defined build
process to generate the binaries. The binaries can then be packaged along
with other CVS-maintained files (using the tar command, for instance) for
application deployment.
34 Linux on zSeries: Application Development

3.1.2 Revision numbering
Each file stored in the repository is assigned its own revision number. Revision
numbers take the form of a series of period-separated digits. By default, CVS will
assign 1.1 to the first revision of a file. As revisions are made to a file, increases
are made to the last digit in the revision. For instance, revision numbering
proceeds from 1.1 to 1.2 to 1.3. It is possible to assign a specific revision number
to a file, although normally it is simpler to allow CVS to maintain revision
numbering.

3.1.3 File locking
Unlike some source code control systems, CVS does not by default rely on
reserved checkouts to maintain version integrity. (Reserved checkout implies that
only a single developer is allowed to edit any file; this is typically enforced by file
locking in the version code system.)

Instead, CVS allows multiple editors to operate on any given file in their
respective working copy. The first editor to commit changes will succeed in
getting their changes reflected into the repository. When other editors attempt to
commit their changes, they will receive an error message indicating their working
copy is out of date with respect to the repository. At that point, it is possible to
incorporate the previously committed revision into the working copy without
losing changes (see 3.13, “Resolving conflicts” on page 51).

It is possible to get CVS to perform reserved checkouts, but this feature is rarely
used and will not be discussed here. For details, see the CVS manual.

3.2 CVS command syntax
The syntax for CVS commands is as follows:

cvs [global_opts] command [cmd_opts] [args]

where:

cvs is the cvs program name
global_opts are global options passed to the cvs command
command is the sub-command to execute
cmd_opt are options passed to the sub-command
args are arguments passed to the sub-command
 Chapter 3. Source code control using CVS 35

3.2.1 Global options
In general, global options specify behavior common to all sub-commands, such
as the level of verbosity generated on stdout. Most of the global options can be
set as exported shell variables, or as entries in the ~/.cvsrc file (see 3.6,
“Environment variables and the ~/.cvsrc file” on page 40). Some of the more
commonly used global options are listed in Table 3-1.

Table 3-1 Common CVS global options

3.2.2 CVS commands
Command names indicate the action CVS is to take. For instance, the command
add indicates CVS is to add files from the working copy to the repository. Some
commands have aliases that can be used in place of the command name. Some
of the more commonly used commands are listed in Table 3-2.

Table 3-2 Common CVS commands

Option Description

-T tempdir Use tempdir as the location for temp files; overrides the $TMPDIR
environment variable.

-d cvsroot Specifies root directory of CVS repository; overrides the $CVSROOT
environment variable.

-e editor Use editor to enter log information; overrides the $CVSEDITOR and
$EDITOR environment variables.

-f Do not read ~/.cvsrc file.

-n Execute command but do not add, remove, or update files.

-Q Very quiet mode; report only serious errors.

-q Quiet mode; informational messages are not reported.

Command Description

init Initialize a repository.

checkout Create or update a working copy (alias: co and get).

add Add files or directories to repository (alias: ad and new).

commit Commit changes to repository (alias: ci).

diff Show differences between revisions.

import Import files to repository.
36 Linux on zSeries: Application Development

3.2.3 Command options
Commands may take additional options in addition to global options. In general,
command options are specific to each command. Additionally, not all command
options are supported by every command, and some command options conflict
with global options. The cvs man should be consulted for details. Some of the
more commonly used command options are listed in Table 3-3.

Command options are options passed to the specific command. Unfortunately,
some command option names conflict with global option names, the global
option having a completely distinct meaning from the command option meaning.
Consult the man pages for reference.

Table 3-3 Common CVS command options

3.2.4 Command arguments
Arguments are also specific to commands. In general, arguments refer to file
names or module names. By default, CVS commands operate recursively in the
current working directory. This means that when executing the command with no
file arguments in the root directory of a working copy, cvs will operate on all files
in that directory as well as files in all sub-directories.

log Print log information found in repository.

status Display the status of files in working relative to repository (alias: st and
stat).

update Bring working copy up to date with respect to repository (alias: up and
upd).

Command Description

Option Description

-D date Specify a revision no later than date (see 3.2.6, “Date formats” on
page 38).

-l Operate only in current working directory - do not act recursively.

-m message Use message as log entry (see 3.2.5, “Log messages” on page 38).

-P Prune empty directories.

-p Pipe files to stdout rather than write to working copy.

-R Recursively descend directories (this is the default behavior).

-r tag Use tag to identify revision on which to operate.
 Chapter 3. Source code control using CVS 37

3.2.5 Log messages
Commands which change revisions to files in the repository require messages to
be supplied as command options (these messages become part of the revision
history and may be examined). To specify a log message, use the -m message
option. As usual, surrounding a message with double quotes (") enables shell
variable expansion, surrounding a message with single quotes (') disables shell
variable expansion. If no -m option is supplied, cvs will invoke an editor to prompt
the user for message text.

3.2.6 Date formats
CVS accepts dates expressed in many formats. The standard ISO8601 date
formats as well as the standard e-mail formats (RFC822 and RFC1123) are
recognized. Dates are interpreted to be expressed in the local timezone unless a
timezone is explicitly included. CVS tolerates partial date formats and even dates
expressed as offsets for the current time. Be aware that if a date does not specify
a timezone, the timezone specified on the local machine will be used. Some
examples of valid dates are:

– 13 May 2001 21:00 GMT
– 13 May 2001
– 13 May
– 3 days ago
– 2 hours ago

Do not forget to quote the date when supplied as an option to -D.

3.3 Administering CVS
The first step in CVS administration is to ensure the code has been installed on
all machines requiring access to the repository. Most distributions provide CVS
packaged as an rpm file, usually located in the development section. For SuSE
7.0 SLES, CVS is packaged as the cvs.rpm file found on CD 1.

3.3.1 Creating a repository
Once CVS is installed, it is necessary to create the repository. After deciding
where in the file system the repository is to reside, issue the following command
as root:

Tip: While accepted as valid, date formats of the form month/day/year can be
confusing (some people use this form as day/month/year). Use another date
format to avoid any confusion.
38 Linux on zSeries: Application Development

cvs -d /var/cvs init

where /var/cvs is the directory path chosen to hold the repository.

Administrative files
On initialization, a directory named CVSROOT and containing administrative files
is created in the repository. The files inside this directory are used to control the
behavior of CVS. These files should not be edited directly; they are under CVS
revision control.

Setting file permissions
Once a repository is created, file ownership and permissions should be set.
Create a group for all developers requiring access to the repository (group cvs
for example), add developers to that group, and change group ownership and
permissions on repository, as illustrated in Example 3-1.

Example 3-1 Creating a CVS repository

$ cvs -d /var/cvs init
$ cd /var/cvs
$ chgrp -R cvs .
$ chmod -R o-rwx .
$ chmod u+rwx . CVSROOT
$ chmod g+rwxs . CVSROOT

Enabling remote access
Upon creation, the repository is immediately accessible (subject to UNIX file
permissions) to developers on the local machine. CVS supports a variety of
access methods for remote repositories. Remote repositories are identified by
the form of the root directory name for the repository specified on the cvs
command (see the -d global option in Table 3-1).

3.4 Root directory
The CVS repository root directory is specified in the form:

:method:[[user][:password]@host:[port]/repository-root

where:

method Specifies the access method
user Connect using userid
password Password for userid
host Host on which the repository resides
 Chapter 3. Source code control using CVS 39

port Port to connect over
repository-root Full path to the CVS repository

In the case where only a repository root directory is specified, CVS recognizes
the repository as residing locally. In general, the password parameter should not
be specified (to prevent cleartext passwords from exposure). Leaving it out will
cause CVS to prompt for it on the command line. To simplify the process of
defining the repository root directory, CVS accepts the value of environment
variable CVSROOT as a default. Typically, developers will define this variable in
their login profile and not specify the -d global CVS option.

The access method is described in the next section. For more details, consult the
CVS reference manual.

3.5 ssh access
Using remote shell execution, the CVS client can perform actions on the
repository. The default remote shell for CVS is rsh. Due to security
considerations, rsh is typically disabled on most Linux machines. However, CVS
supports ssh as an rsh replacement. To enable ssh access, an ssh server must
be running on the remote repository machine and an ssh client must be installed
in the local developer machine. Each developer must also have a login userid
defined on the remote repository machine (this being the userid and password
defined in the root directory specification). For rsh and ssh access, the method is
defined as ext3. To distinguish between rsh and ssh, the environment variable
CVS_RSH should set to the value ssh (export CVS_RSH=ssh).

3.6 Environment variables and the ~/.cvsrc file
Environment variables affect the behavior of CVS—typically in providing default
values to global options. Some of the more widely used environment variables
are detailed in Table 3-4.

Table 3-4 Common environment variables used by CVS

Variable Name Usage

$CVSROOT Specifies the repository root directory (see “Root directory”
on page 39); overridden by the -d global option.

$CVS_RSH Specifies the :ext: access method; defaults to rsh.
40 Linux on zSeries: Application Development

To alleviate the need to continually provide default options to commands, CVS
will read the ~/.cvsrc file to add defaults on a per-command basis. For instance, if
the -P (prune) option is always to be supplied to the checkout command, an entry
such as

checkout -P

may be added to the ~/.cvsrc file. Default options are specific to each command.
So, to add a default -l option to the commit command, the ~/.cvsrc file would
appear as:

checkout -P
commit -l

If a command has an alias, the actual command name should be specified in the
file.

3.7 Creating a project
The first step in creating a project is to start with a local directory structure (or at
least as much as is known at the beginning of the project) that matches the
structure to be saved in the repository. Add files to the project in the appropriate
place in the directory structure.

3.7.1 Importing the files
Once the local directory is populated, the CVS import command can be used to
bring the project into the repository. Example 3-2 illustrates creating a simple
project consisting of the following files:

– Makefile
– src/file1.c
– include/hdr1.h

$EDITOR
$CVSEDITOR
$VISUAL

Specifies the editor to use when providing log messages for
commit. Use the -m global option to provide log messages
from the command line.

Tip: Developers typically export $CVSROOT and $CVS_RSH (when using the
ssh access method) in their login shell profile. This eliminates the need to
continually provide a long -d option string on cvs commands.

Variable Name Usage
 Chapter 3. Source code control using CVS 41

Example 3-2 Creating a new project using CVS import

$ echo "$CVSROOT $CVS_RSH" 1
:ext:myuser@cvshome:/var/cvs ssh
$
$ mkdir -p proj/src proj/include 2
$ cd proj
$ echo "initial revision" > Makefile
$ echo "initial revision" > src/file1.c
$ echo "initial revision" > include/hdr1.h
$ echo "delete this line" >> include/hdr1.h
$
$ cvs import -m'initial import' proj myuser start 3
myuser@cvshome's password:
N proj/Makefile
cvs server: Importing /var/cvs/proj/src
N proj/src/file1.c
cvs server: Importing /var/cvs/proj/include
N proj/include/hdr1.h

No conflicts created by this import

$ cd .. 4
$ mv proj proj-save
$

1. The $CVSROOT and $CVS_RSH variables indicate the repository is remote with
the ssh access method.

2. The project initially consists of files Makefile, src/file1.c, and
include/hdr1.h.

3. Project is imported to directory /var/cvs/proj on remote repository. The
myuser argument specifies a vendortag, start specifies a releasetag.
Typically a userid and character string (such as start) are used. Later, both
files and directories may be added to the repository (see 3.10, “Adding files
and directories” on page 45).

4. Directory is renamed to permit a working copy to be checked out in this
directory.

3.8 Obtaining a working copy
Before operating on a repository, it is necessary to check out a local copy on
which to edit - the working copy. Continuing with the example begun in
previously, the command sequence illustrated in Example 3-3 will check out a
working copy.
42 Linux on zSeries: Application Development

Example 3-3 Checking out a working copy

$ cvs co proj 1
myuser@cvshome's password:
cvs server: Updating proj
U proj/Makefile
cvs server: Updating proj/include
U proj/include/hdr1.h
cvs server: Updating proj/src
U proj/src/file1.c
$
$ cd proj
$ ls 2
CVS Makefile include src
$
$ ls CVS
Entries Entries.Log Repository Root 3
$

1. Check out module proj. A working copy will exist in the proj sub-directory.

2. List files in the working copy.

3. CVS directory contains special files.

3.8.1 Special files
In the working copy, CVS creates a special directory named CVS that is used to
assist CVS in managing the working copy. These files should not be edited.
Some of these files are shown in Table 3-5; refer to the manual for complete
documentation.

Table 3-5 CVS administrative files in the working copy

File Purpose

Entries Lists each file and directory in the working copy.

Entries.Log A copy of the Entries file.

Repository Records the directory in the repository from which the working
copy is derived.

Root Records CVS root directory ($CVSROOT).

Important: The name CVS is reserved as both a file and directory name by
CVS. Do not name any file or directory CVS.
 Chapter 3. Source code control using CVS 43

3.9 Making changes in the working copy
Changes are made to files in the working copy. CVS is able to distinguish
modifications to the working copy relative to the repository using the cvs diff
command (see 1.6.1, “Using diff to find differences” on page 19). Note the
recursive behavior of CVS commands exhibited in Example 3-4.

Example 3-4 CVS tracks changes made to working copy relative to repository

$ sed s/initial/next/ Makefile > temp; mv temp Makefile 1
$ sed '/delete this line/d' include/hdr1.h > temp; mv temp include/hdr1.h
$ echo 'added this line' >> src/file1.c
$
$ cvs diff 2
myuser@cvshome's password:
cvs server: Diffing .
Index: Makefile
===
RCS file: /var/cvs/proj/Makefile,v 3
retrieving revision 1.1.1.1
diff -r1.1.1.1 Makefile
1c1
< initial revision

> next revision
cvs server: Diffing include
Index: include/hdr1.h
===
RCS file: /var/cvs/proj/include/hdr1.h,v 4
retrieving revision 1.1.1.1
diff -r1.1.1.1 hdr1.h
2d1
< delete this line
cvs server: Diffing src
Index: src/file1.c
===
RCS file: /var/cvs/proj/src/file1.c,v 5
retrieving revision 1.1.1.1
diff -r1.1.1.1 file1.c
1a2
> added this line
$

1. A line is modified in Makefile, deleted from include/hdr1.h, and added to
src/file1.c.

2. Use cvs diff to report differences in the working copy with respect to the
repository.
44 Linux on zSeries: Application Development

3. Modification to line 1 in the Makefile (1c1) is noted.

4. Deletion of line 2 in include/hdr1.h (2d1) is noted.

5. Addition of line 2 in src/file1.c (1a2) is noted.

3.10 Adding files and directories
Next, an additional directory (etc) will be added to the repository. Then files will
be added to that directory and to the src directory. Note that before files can be
added to a directory, the directory must be added to the repository. The
sequence is illustrated in Example 3-5.

Example 3-5 Adding files and directories to working copy

$ mkdir etc 1
$ echo 'initial revision' > etc/proj.conf
$ echo 'initial revision' > src/file2.c
$
$ cvs add -m'add etc/ dir' etc 2
myuser@cvshome's password:
? etc/proj.conf
Directory /var/cvs/proj/etc added to the repository
$
$ cvs add -m'add etc/proj.conf src/file2.c' etc/proj.conf src/file2.c 3
myuser@cvshome's password:
cvs server: scheduling file `etc/proj.conf' for addition
cvs server: scheduling file `src/file2.c' for addition
cvs server: use 'cvs commit' to add these files permanently
$

1. A new etc directory is created in the working copy, new files are added to etc
and src directories.

2. The etc directory is added to the repository.

3. The etc/proj.conf and src/file2.c files are added to the repository.

Note that the cvs add command takes a required file specification argument list.

Important: Adding a file will not cause the file to be added to the repository—
it simply schedules the file for addition. To complete the action, it is necessary
to issue the cvs commit command. Unlike files, directories are added
immediately to the repository.
 Chapter 3. Source code control using CVS 45

3.11 Committing changes to the repository
To complete file additions as well as file revisions to the repository, it is necessary
to execute the cvs commit command, as illustrated in Example 3-6.

Example 3-6 Committing changes to the repository

$ cvs -Q status 1
myuser@cvshome's password:
===
File: Makefile Status: Locally Modified 2

 Working revision: 1.1.1.1
 Repository revision: 1.1.1.1 /var/cvs/proj/Makefile,v

===
File: proj.conf Status: Locally Added 3

 Working revision: New file!
 Repository revision: No revision control file

===
File: hdr1.h Status: Locally Modified 4

 Working revision: 1.1.1.1
 Repository revision: 1.1.1.1 /var/cvs/proj/include/hdr1.h,v

===
File: file1.c Status: Locally Modified 5

 Working revision: 1.1.1.1
 Repository revision: 1.1.1.1 /var/cvs/proj/src/file1.c,v

===
File: file2.c Status: Locally Added 6

 Working revision: New file!
 Repository revision: No revision control file

$
$ cvs ci -m'commit #1' 7
cvs commit: Examining .
cvs commit: Examining etc
cvs commit: Examining include
cvs commit: Examining src
myuser@cvshome's password:
Checking in Makefile;
/var/cvs/proj/Makefile,v <-- Makefile
new revision: 1.2; previous revision: 1.1
46 Linux on zSeries: Application Development

done
RCS file: /var/cvs/proj/etc/proj.conf,v
done
Checking in etc/proj.conf;
/var/cvs/proj/etc/proj.conf,v <-- proj.conf
initial revision: 1.1
done
Checking in include/hdr1.h;
/var/cvs/proj/include/hdr1.h,v <-- hdr1.h
new revision: 1.2; previous revision: 1.1
done
Checking in src/file1.c;
/var/cvs/proj/src/file1.c,v <-- file1.c
new revision: 1.2; previous revision: 1.1
done
RCS file: /var/cvs/proj/src/file2.c,v
done
Checking in src/file2.c;
/var/cvs/proj/src/file2.c,v <-- file2.c
initial revision: 1.1
done
$
etc/proj.conf src/file2.c

1. The cvs status command is issued to verify only intended changes are
committed. The file status field is explained in Table 3-6.

2. The file Makefile is noted as Locally Modified.

3. The file etc/proj.conf is noted as Locally Added.

4. The file include/hdr1.h is noted as Locally Modified.

5. The file src/file1.c is noted as Locally Modified.

6. The file src/file2.c is noted as Locally Added.

7. Revisions are committed using the ci alias for the cvs commit command.
Note the command’s recursive behavior.

Important: To avoid committing unintended revisions, always issue the cvs
status or cvs diff command before cvs commit. Check command output to
ensure only files you wish to commit are changed before proceeding.
 Chapter 3. Source code control using CVS 47

3.12 Updating the working copy
When collaborating on a project, revisions committed by one developer act to
make the working copy of other developers out of date with respect to the
repository. The cvs update command is used to bring a working copy up to date.

In general, two types of updates are possible:

� An update from the repository that does not conflict with the revision present
in the working copy

� An update that does conflict with the working copy

Non-conflicting updates occur when no modifications have been made to the file
in the working copy: CVS can simply replace or apply a patch to the file. Conflicts
occur when the file has been modified in the working copy: changes present in
the repository must then be merged into the working copy while preserving the
local modifications.

CVS is capable of recognizing and dealing with both types of updates. The cvs
status is used to identify files requiring updates. Table 3-6 lists file status states
as reported by status. The cvs update command is used to update to the
working copy.

Table 3-6 CVS working copy status states

Note: When a file is imported using cvs import, it is assigned an initial
revision number of 1.1.1.1. On the first commit, that revision number is
changed to 1.1. The 1.1.1.1 revision can be viewed as equivalent to revision
number 1.1.

Status state Meaning

Up-to-date File in working copy is current relative to repository.

Locally Modified File has been modified in working copy but not yet
committed.

Locally Added File is new in working copy but not yet added to repository.

Locally Removed File has been deleted in working copy but not yet
committed.

Needs Checkout File has a newer revision in repository than exists in
working copy.
48 Linux on zSeries: Application Development

Example 3-7 illustrates a situation where the working copy of one user (myuser)
requires an update due to revisions committed by another user (otheruser).
Revisions to the file Makefile are non-conflicting in this working copy, while
revisions to the file include/hdr1.h conflict in this working copy.

Example 3-7 Updating the CVS working copy

$ echo "added by myuser" >> include/hdr1.h 1
$
$ cvs -Q status 2
myuser@cvshome's password:
===
File: Makefile Status: Needs Patch 3

 Working revision: 1.2
 Repository revision: 1.3 /var/cvs/proj/Makefile,v

===
File: proj.conf Status: Up-to-date

 Working revision: 1.1
 Repository revision: 1.1 /var/cvs/proj/etc/proj.conf,v

===
File: hdr1.h Status: Needs Merge 4

 Working revision: 1.2
 Repository revision: 1.3 /var/cvs/proj/include/hdr1.h,v

===
File: file1.c Status: Up-to-date

 Working revision: 1.2
 Repository revision: 1.2 /var/cvs/proj/src/file1.c,v

Needs Patch Like Needs Checkout, but rather than replacing the
working copy file, CVS can apply a patch to bring file up
to date.

Needs Merge File has a newer revision in repository and modifications
have been made to working copy.

File had conflicts on
merge

CVS has merged revisions into working copy. Conflict
needs to be manually resolved.

Unknown File exists in working copy but is unknown to repository;
the cvs add command needs to be executed on the file.

Status state Meaning
 Chapter 3. Source code control using CVS 49

===
File: file2.c Status: Up-to-date

 Working revision: 1.1
 Repository revision: 1.1 /var/cvs/proj/src/file2.c,v

$
$ cvs update 5
myuser@cvshome's password:
cvs server: Updating .
P Makefile 6
cvs server: Updating etc
cvs server: Updating include
RCS file: /var/cvs/proj/include/hdr1.h,v
retrieving revision 1.2
retrieving revision 1.3
Merging differences between 1.2 and 1.3 into hdr1.h
rcsmerge: warning: conflicts during merge
cvs server: conflicts found in include/hdr1.h
C include/hdr1.h 7
cvs server: Updating src
$
$ cat include/hdr1.h 8
initial revision
<<<<<<< hdr1.h 9
added by myuser
======= 10
added by otheruser
>>>>>>> 1.3 11
$

1. Revisions are made to the file include/hdr1.h in the working copy.

2. The cvs status command is issued prior to commit.

3. The file Makefile is in status Needs Patch, indicating another user has
committed revisions to the file since the update of this working copy.

4. The file include/hdr1.h is in status Needs Merge. This indicates another user
has committed revisions to the file and the file has been modified in the
working copy of myuser. This has resulted in a conflict which needs to be
resolved before this file can be committed by myuser.

5. To resolve the conflict and to get the latest revision of Makefile, the cvs
update command is executed.

6. CVS applies a patch to Makefile to bring it up to date.

7. Revisions to the file include/hdr1.h are merged into the working copy. CVS
notes the conflict.
50 Linux on zSeries: Application Development

8. Examination of include/hdr1.h reveals the line added by otheruser that is
causing the conflict.

9. Line added by CVS to indicate start of revisions made in working copy.

10.Line added by CVS to indicate end of revisions made in working copy. Lines
that follow are revisions merged from the repository.

11.Line added by CVS to indicate end of revisions merged from repository (1.3).

3.13 Resolving conflicts
To resolve the conflict identified in Example 3-7, it is necessary to edit the file.
The CVS indicators must be removed, and revisions merged in the correct order.
The result is shown in Example 3-8.

Example 3-8 Resolving CVS conflicts

$ cat include/hdr1.h
initial revision
added by otheruser
added by myuser
$

3.14 Viewing log messages
Log messages provided on commit may be viewed using the cvs log command.
Example 3-9 shows the log file for include/hdr1.h.

Example 3-9 CVS message log

$ cvs log include/hdr1.h
myuser@cvshome's password:

RCS file: /var/cvs/proj/include/hdr1.h,v
Working file: include/hdr1.h

Tip: To reduce the possibility of conflicts, it is best to have clearly assigned
ownership of project files among developers.

Important: Because cvs update brings revisions from the repository into the
working copy, it is important to ensure only operational revisions are
committed to the repository. Incomplete or untested changes should never be
committed because they can easily break the working copy for all developers.
 Chapter 3. Source code control using CVS 51

head: 1.4
branch:
locks: strict
access list:
symbolic names:
 start: 1.1.1.1
 myuser: 1.1.1
keyword substitution: kv
total revisions: 5; selected revisions: 5
description:

revision 1.4
date: 2002/05/10 15:31:53; author: myuser; state: Exp; lines: +1 -0
commit by myuser

revision 1.3
date: 2002/05/10 15:23:13; author: otheruser; state: Exp; lines: +1 -0
otheruser revision

revision 1.2
date: 2002/05/10 15:00:37; author: myuser; state: Exp; lines: +0 -1
commit #1

revision 1.1
date: 2002/05/10 14:47:28; author: myuser; state: Exp;
branches: 1.1.1;
Initial revision

revision 1.1.1.1
date: 2002/05/10 14:47:28; author: myuser; state: Exp; lines: +0 -0
initial import
===
$

3.15 Recovering versions
CVS allows for recovery of any file revision using cvs update. In Example 3-10,
revision 1.1 of file include/hdr1.h is recovered.

Example 3-10 Recovery of a prior CVS revision

$ cat include/hdr1.h 1
initial revision
added by otheruser
added by myuser
$
$ cvs update -p -r 1.1 include/hdr1.h > include/hdr1.h 2
52 Linux on zSeries: Application Development

myuser@cvshome's password:
===
Checking out include/hdr1.h
RCS: /var/cvs/proj/include/hdr1.h,v
VERS: 1.1

$ cat include/hdr1.h 3
initial revision
delete this line
$

1. File contents before revision recovery.

2. Using cvs update to recover revision 1.1 (-p option indicates output to be
piped to stdout, -r 1.1 indicates revision 1.1 is to be recovered).

3. File contents after revision recovery.
 Chapter 3. Source code control using CVS 53

54 Linux on zSeries: Application Development

Chapter 4. The Emacs editor

This chapter describes how to use Emacs as an integrated tool for writing and
building programs. We discuss the features of Emacs that may be helpful in
developing both C/C++ and Java applications.

4

© Copyright IBM Corp. 2002. All rights reserved. 55

4.1 Editing files using Emacs
In this section we introduce the basic features of the Emacs editor.

4.1.1 Starting Emacs
Depending on the display you work with, Emacs will execute in one of two
modes. On a text-based terminal, the Emacs display occupies the whole screen;
on the X Windows System, Emacs opens its own windows. The benefit of using
Emacs in the second mode is that you can take advantage of the scroll bars,
mouse, copy-and-paste clipboard, and additional frames1.

Type emacs to start the editor.

Figure 4-1 Emacs screen in an X Windows environment

1 We use the term frame to mean an entire text screen or an entire X Windows
used by Emacs, and window to describe the area where a buffer is displayed.

Tip: If Emacs does not start in the mode you expect, check the DISPLAY
environment variable. If set, Emacs will open a window on the display pointed
to by this variable. Otherwise the text editor will run in the text mode and
occupy the whole terminal from which it was called. Refer to “Using XFree86
as an X Server under Cygwin” on page 292 for further details on the X
Windows environment.
56 Linux on zSeries: Application Development

4.1.2 Basic commands
Once the Emacs is started you can open existing files or create new ones.

The basic shortcuts are described as follows:

Ctrl-x Ctrl-f Open a file or create a new one.
You can also edit remote files accessible through an ftp server.
Use the following convention:

/user@hostname:path

You will be asked for your password on the remote machine.
(also Files -> Open File)

Ctrl-x Ctrl-s Save the current file.
(also Files -> Save Buffer)

Ctrl-x Ctrl-w Save the current file under a new name.
(also Files -> Save Buffer As)

Ctrl-x S Save all files.

Ctrl-x Ctrl-c Exit Emacs.
(also Files -> Exit Emacs)

4.1.3 Invoking Lisp functions
Unlike other text editors, Emacs does not assign meanings to keys directly. Since
Emacs has a built-in Lisp interpreter, most editing commands are written in Lisp
and identified by the function name. There are three ways you can invoke such a
function:

1. Call it explicitly.

Press Meta-x. M-x should appear in the minibuffer (Meta-key is commonly
defined as LeftAlt on a PC keyboard; if it does not work, press Esc-x).

Enter the function name in the minibuffer (for example, replace-string) and
press Enter.

While you type something in the minibuffer you can use the Tab key to let
Emacs complete the name. If there is more then one function that matches
the typed prefix, you will be presented with all possible options. Moreover,

Note: Most of the Linux distributions define basic navigation keys (like PgUp,
PgDown, cursor) for PC displays properly. If you came across problems while
trying to get them working, remember that you can always use the
corresponding Ctrl-<key> sequences described in the GNU Emacs Reference
Card available at:

http://www.stanford.edu/group/dcg/leland-docs/emacs.html
 Chapter 4. The Emacs editor 57

http://www.stanford.edu/group/dcg/leland-docs/emacs.html
http://www.stanford.edu/group/dcg/leland-docs/emacs.html

recently used functions are remembered (as well as their arguments, such as
the string to be found) and easily accessible with cursor up and down keys.

You can use Emacs help to find out what a particular function does. Press
Ctrl-h d and enter the function name.

2. Type in a Ctrl-<key> sequence.

Press Ctrl-h b to see the list of all available key bindings.

3. Click on a desired option in the menu at the top of the frame.

4.1.4 Editing multiple files
You can edit more than one file in an Emacs session.

Concept of buffers
Each time you create a new file or open an existing one, Emacs assigns a new
buffer to hold the contents. Many files may be opened at the same time and each
of them will be stored in its own buffer.

To select the buffer you want to work with, press Ctrl-x b and type the buffer
name. Remember that Emacs maintains the list of the most frequently used
names and you can access this list with cursor keys.

You can also pick the buffer from the list with these steps:

1. Press Ctrl-x Ctrl-b and the list of all available buffers is displayed.

2. Pick the buffer by placing the cursor on the beginning of the corresponding
line and press Enter.

Although most of the buffers are created by visiting the file, there are some
specialized ones, as follows:

scratch Used for notes you do not want to save or for Lisp
evaluation.

Buffer List Contains all buffers and files names.

info Contains emacs help system. When you activate this
function (M-x info) it works in its own buffer.

compilation Contains output from the compilation.

Tip: To cancel the function that works in minibuffer (like open-file) you can
press Crtl-g at any time.
58 Linux on zSeries: Application Development

If you work in Emacs for a while, you may have a large number of buffers
opened. To close some of them, use any of the following:

Ctrl-x k Enter Close (kill) the current buffer.

Ctrl-x k <buffer name> Enter Close the buffer you have specified.

Meta-x kill-some-buffers To be asked, for each buffer, whether it
should be closed.

Working with multiple windows
When you start Emacs without parameters, it pops up a frame that shows only
one buffer at time (see Figure 4-1 on page 56). To see more than one buffer at
the same time (or two different fragments of the same buffer), do the following:

� If you work with X Windows display and you want to open the new frame:
Click Files -> Make New Frame

� If you want to divide an existing window, press:

Ctrl-x 2 To split into two windows, one above the other

Ctrl-x 3 To split into two windows, positioned side by side

Adjust the size of the split part by dragging the status line (X Windows system) or
press Ctrl-^ to resize the current window.

Ctrl-x o Moves the cursor to the next visible window within the frame
(including minibuffer).

To close windows within the frame, press:

Ctrl-x 0 Close the active window.

Ctrl-x 1 Close all windows in the selected frame except the selected one.

4.1.5 Moving text
Emacs makes it easy to move text around a buffer.

Selecting text
Some Emacs commands operate only on a part of the text, so before you invoke
them, you should select this fragment. We use the term region to refer to a
selected area. How you specify the region of interest depends on your
environment:

Note: Emacs has many interesting buffers like, for example, those which
appear when you play tetris (M - x tetris) or talk to psychiatrist
(M - x doctor).
 Chapter 4. The Emacs editor 59

� When using X Windows, either:

– Click the left mouse button and hold it down while dragging across the
region.

– Click the left mouse button to place the cursor at one end of the region,
move the mouse pointer to the other end and click the right mouse button.

� When using a keyboard:

a. Place the cursor at one end of the region.
b. Press Ctrl-<space> to set “the mark".
c. Move the cursor to the other end.
d. There is no special mark for the second end of the region. One end is

always referred to by the position of the cursor. Therefore, call the function
you want immediately after you have established the region, or press
Ctrl-g to cancel. Press Ctrl-x Ctrl-x to interchange the mark and the cursor.

When you select text with a mouse, the highlighted background disappears after
you click to move the cursor, but Emacs (unlike most of the editors) still
remembers the fragment. You can paste it with a middle mouse button click (even
to a different application), or use the yank command (Ctrl-y) described in the next
section.

Other useful commands related to regions are:

Meta-x append-to-buffer Appends region to contents of specified buffer.

Meta-x copy-to-buffer Copies region into specified buffer, deleting old
contents.

Meta-x insert-buffer Inserts contents of specified buffer into current
buffer, at point.

Meta-x append-to-file Appends region to contents of specified file, at
the end.

Copy and paste
Probably the easiest way to move fragments of a program to a different place is
to cut the lines with a kill command and insert them with yank.

Ctrl-k Kills all the text on the right of the cursor line, leaving it blank.
To kill an entire non-blank line, go to the beginning of the line and
press Ctrl-k twice.

Ctrl-y Inserts the last killed text in place before the cursor (y stands for
yank).
60 Linux on zSeries: Application Development

4.1.6 Search and replace
Emacs is supplied with several functions that allow you to search for a string and
replace it with a new one. Most of them work with regular expressions, too.

One commonly used function is an incremental search:

Ctrl-s incremental search forward (isearch-forward).

Ctrl-r incremental search backward (isearch-backward).

Immediately after you start it, Emacs reads from your keyboard and places the
cursor at the first occurrence of the characters that you have typed. You can
move to the next (or previous) occurrence by pressing Ctrl-s (Ctrl-r) once again.
Press the Delete key to remove the most recently typed character. Enter exits the
function, leaving the cursor at the last visited location.

The search and replace function is often used in conjunction with regular
expressions, as follows:

Meta-x replace-regexp <Enter> REGEXPR <Enter> NEWSTRING <Enter>

If you want to refer to the matched string of REGEXPR in NEWSTRING use \&. In the
following example we instruct Emacs to take numbers into parenthesis.

Meta-x replace-regexp <Enter> [0-9]+ <Enter> (\&) <Enter>

See emacs help (Meta-x info or Ctrl-h i) for further details on regular
expressions.

4.1.7 Modes
Depending on the sort of file you edit, Emacs provides alternative customized
modes. Each mode can have different key bindings and rules for how to format
and highlight the text. The least specialized mode is Fundamental mode. It has
no specific redefinitions or variable settings, so each Emacs command behaves
in the most general manner, and options are in default states. If you want to edit
text of a specific type that Emacs knows about, such as C code or English text,
you should switch to the appropriate mode, such as c-mode or text-mode.

Whenever you open a file or write it under a new name, Emacs determines the
file type according to its suffix. If the extension is known, the proper mode for this
file will be activated. The current mode is shown between parentheses on the
status line (see Figure 4-1 on page 56).

If you edit files with non-standard extension (like .sqc for DB2 Embedded SQL),
you have to switch to the desired mode manually (c-mode in this case):

Meta-x c-mode for C-style highlighting and key bindings.
 Chapter 4. The Emacs editor 61

Add the following lines to the configuration file .emacs located in your home
directory for permanent settings and restart Emacs:

(setq auto-mode-alist
(cons ‘(“\\.sqc” . c-mode) auto-mode-alist)

Whenever you open or create a file with a suffix .sqc, Emacs will turn on c-mode
automatically.

4.2 Building applications using emacs
Emacs is also a development environment.

4.2.1 Editing program files
When you enter a specialized mode, Emacs helps you write nicely formatted
code and (what is more important) avoid syntax errors in your programs. It saves
a lot of time during compilation.

Whenever you are in C, C++, Java, or Lisp mode:

� Text syntax is highlighted accordingly. You can toggle this feature on and off
with Meta-x font-lock-mode.

� Code is indented by the text editor. The default settings are reasonable, and if
you do not like Emacs spacing you can customize it, but do not turn this
feature off. It is very helpful. Emacs indents your code properly and pays
attention to parentheses, semicolons and declarations.

To have Emacs indent a line, place the cursor there and press Tab. To save CPU
cycles, Emacs does not start indentation automatically.

If you load a file that was not indented according to current emacs setting, or
make significant changes in your code (for example, remove an enclosing brace
brackets block), you have to invoke this function explicitly:

Ctrl-c Ctrl-q Indents the current top-level function definition or aggregate
type declaration (c-indent-defun).

Meta-Ctrl-\ Indents all lines in the region (indent-region).

Tip: If you find Emacs indentation odd (especially lines moved too far to the
left), check your code for syntax errors. Look for missing semicolons and
unbalanced parentheses.
62 Linux on zSeries: Application Development

4.2.2 Compiling your application
Many programmers use Emacs not only as an editor but as a fully integrated
environment. In this section we show how to build programs and correct
compilation errors.

In most popular distributions, a Lisp function compile does not have a predefined
shortcut. We suggest adding a permanent key binding to your configuration file
(~/.emacs). The following line sets Ctrl-c c as a sequence for compilations.

(global-set-key “\C-cc” ‘compile)

Once the compilation is started you will be asked for a command you would like
to be invoked. The default is make -k with no arguments. You can change the
parameters for a make tool or call your compiler explicitly. Emacs stores the
command you have entered and this will be a default during subsequent calls.

Figure 4-2 Compiling with Emacs

The compilation is started as a background process and its output is sent to a
special buffer *compilation*. This buffer tells you whether compilation is
finished (watch the word in parenthesis). Note that by default the contents of this
window is not scrolled automatically as new lines appear.
 Chapter 4. The Emacs editor 63

Even before the compilation is finished, Emacs starts to examine the log file and
lets you go through the errors. You can visit the file and jump to the line with an
error by either:

� Clicking on it with the middle mouse button.

� Scrolling through the file to the error with the Lisp function next-error.

Since it is very inconvenient to call this function with Meta-x next-error, we
defined a new shortcut (Ctrl-c Ctrl-n) in our configuration file:

(global-set-key "\C-cn" ’next-error)

Ctrl-u Ctrl-x starts scanning from the beginning of the compilation log.

To kill compilation at any time, enter Meta-x kill-compilation. This function
should be issued only when you want to stop running processes. If the
compilation is finished, it is sufficient to close this buffer.
64 Linux on zSeries: Application Development

Chapter 5. The vi editor

This chapter introduces the venerable vi editor, which comes with UNIX and
with the standard Linux distribution. Actually, in Linux we use vim (vi Improved).

We describe the three operating modes of vi, how to switch from one mode to
another, how to customize vi, and we list the most useful commands in vi.

5

© Copyright IBM Corp. 2002. All rights reserved. 65

5.1 First encounter with vi
Consider the initial screen that you get when you create a new file by entering:

vi newfile.txt

(See Example 5-1.)

If you are totally new to vi, you will probably get stuck on that screen, since vi
seems to ignore all your input, and you cannot even move the cursor. The reason
you cannot move the cursor is that the file is still empty. The tilde (~) represents
an empty line, and vi will not allow you to move the cursor to an empty line.The
best you can do here is to type i, vi will then be receptive to you.

Example 5-1 vi initial screen

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
"newfile.txt" [New File]

5.2 Modes of operation
It is important to know that vi operates in three modes:

Command mode You enter commands in this mode.

Insert mode You insert characters at the cursor position.
66 Linux on zSeries: Application Development

Replace mode You overwrite the character at the cursor position.

To switch from one mode to another:

� From Command mode to Insert mode, press one of these single characters:
i, I, a, A, o, O.

� From Command mode to Replace mode, press R (again, without Enter).

� From Replace or Insert mode to Command mode, press Esc.

Figure 5-1 illustrates the three modes in which vi operates and the keys needed
to go from one mode to the other.

Figure 5-1 vi operating modes

Check the bottom left corner of the vi screen for an indication of the operating
mode. There are three possibilities:

� -- REPLACE --
� -- INSERT --
� blanks for Command mode

Normally vi starts in Command mode, and in the initial screen the bottom left
corner displays the filename until the first input is entered.

Some utilities like PuTTY make vi easier to use. With PuTTY, for example, it is
possible to switch to Insert mode from the other two modes. The Insert key will
also bring you from Insert mode to Replace mode.

Note: Typing a single character (of the listed set) immediately brings vi to
Insert mode. Do not make the mistake of pressing Enter after that. If you
do, it will be treated as input in the Insert mode.

Insert
mode

Replace
mode

Command
mode

<esc>

<esc>R

i/I/a/A/o/O
 Chapter 5. The vi editor 67

5.3 Customizing vi
vi has a number of switches you can use to customize the session. These two
are particularly useful:

:set number Use this to display line numbers. A lot of vi commands
depend on line numbers.

:set ic Ignore the case when locating a string.

You may want to put the two statements in a file called .vimrc in your home
directory; these switches will then be activated with each vi session.

In cases when you do not want the line numbers to prefix each record, specify
:set nonumber to get rid of them. Likewise use :set noic to respect the case
when locating a string.

To view the file without changing it, it is safest to use the read-only option like
this:

vi -R filename

5.4 Commands categorized by functionality
This section does not pretend to be an exhaustive reference, but it contains a
collection of the most frequently used vi command.

5.4.1 Moving the cursor
The commands listed in Table 5-1 move the cursor as shown.

Table 5-1 Cursor movement

Important: Do not terminate a command with Enter unless it starts with a
colon (:). The locate commands (Appendix 5.4.3, “Locating a string pattern”
on page 69) also need Enter.

Command Moves the cursor to

0 The beginning of the current line

$ The end of the current line

Enter The beginning of the next line

w The beginning of the next word

G The first non-blank position of the last line
68 Linux on zSeries: Application Development

Note: When working under PuTTY you may prefer the Home key to 0 and the
End key to $.

5.4.2 Insertion point
Remember that you can switch from command mode to insert mode. First, place
the cursor and then type one of the following single-character commands; this
will establish the insertion point as specified:

Command Insertion point

i Before the current character

I Before the beginning of the current line

a After the current character

A After the end of the current line

o At the beginning of a new line that will be inserted before the
current line

O At the beginning of a new line that will be inserted after the
current line

After the command is entered the cursor will appear at the insertion point.

5.4.3 Locating a string pattern
Command What will be located

/xxx <Enter> Pattern xxx

/ <Enter> Pattern xxx of a previous /xxx command

?xxx <Enter> Pattern xxx (search direction is reversed towards the top of the
file)

? <Enter> Pattern xxx of a previous /xxx or ?xxx command

It is possible to use a so-called “regular” expression in the string pattern. For
example [0-9] represents any digit and [a,e,i,o,u] represents any vowel.

5.4.4 Replacing
rc Replace the current character by c
:s/ppp/qqq/ In the current line, replace the first occurrence of pattern

ppp by qqq
:s/ppp/qqq/g In the current line, replace all occurrences of pattern ppp by

qqq
cw (See the detailed explanation that follows.)
 Chapter 5. The vi editor 69

70
While editing programs, you frequently have to change a word (or part of it). This
is where the cw (change word) command will come in handy.

Suppose you want to change “equals” in line (1) to “startsWith” as in the line (3).
While in Command mode, place the cursor under the e of “equals,” then enter cw.
The second line will now appear, with the cursor under the second left
parenthesis. You will notice that the word “equals” has disappeared and the
cursor is positioned to accept insertions for a new word in the place of the word
that you want replaced (vi is now in Insert mode). At this point type “startsWith”
and press Esc, you will then get line (3).

1. if (command.equals(prefix))
^

2. if (command.(prefix))
^

3. if (command.startsWith(prefix))

5.4.5 Deleting
Command What will be deleted

x The current character

nx n consecutive characters starting from the current character

dw The current word

D From the current character to the end of the line

dd The entire current line

dtc The current line through the next occurrence of character c

:id Line number i

:i,jd Line number i until (and including) line number j

:1,.d The first line of the file through (and including) the current line

:.,$d The current line through (and including) the last line of the file

In the last two commands the dot (.) refers to the current line. The $ in the last
command refers to the last line.

Important: In vi, words are delimited by space, but also by any character that
is not a digit and not a letter.
 Linux on zSeries: Application Development

5.4.6 Moving and copying
Command Explanation

:i mj Move line i, insert after line j

:i,jmk Move lines number i through j (inclusive), insert after line k

:icoj Copy line number i, insert after line j

:i,jcok Copy lines number i through j (inclusive), insert after line k

5.4.7 Miscellaneous
Command Effect

:j Go to line j (cursor at the beginning of this line)

u Undo the most recent change in the current line

U Restore the current line to the state when it was first
visited

xp Transpose the current character with the one next to it

ddp Exchange the current line with the next line

~ Toggle the case of the current character

n~ Same as above, but for n consecutive characters

:help ccc Get information about command ccc

The xp (transpose) command corrects a lot of typing errors by exchanging the
order of two consecutive characters.

In case-sensitive programming languages such as Java and C many mistakes
pertain to a wrong case. The ~ (tilde) command is convenient to correct this.

5.4.8 Saving and closing file
Command Effect

:w Write to file (save it)

:q Quit the vi session

:q! Quit without saving

:wq Save first, then quit
 Chapter 5. The vi editor 71

5.5 To probe further
For more information about the vi editor, you can study the tutorial that is
available on your system. Copy the file vimtutor from the /usr/bin directory (or
from some other directory, depending on your installation) to your home directory.
Then execute vmtutor from your home directory. In addition to the explanations,
there are also exercises to practice the commands.

You can also refer to Learning the Vi Editor, by Linda Lamb, O’Reilly &
Associates Inc.

5.6 An editor for the CMS aficionados
We briefly discuss an editor called the here. Developers coming from the
VM/CMS platform will find the (the Hessling editor) quite familiar since the is
developed to mimic XEDIT, and incorporates features of Manfield Software’s
Kedit. For more information check:

http://hessling-editor.sourceforge.net/

Create a file called .therc in your home directory containing these lines:

SET COMPAT XEDIT XEDIT XEDIT
SET CASE MIXED IGNORE
SET CURLINE 3
SET CMDLINE TOP
SET SCALE ON 1
SET NUM ON

A screen sample using this .therc is shown Example 5-2 on page 73. Don’t
forget you are working with Linux, not with CMS!
72 Linux on zSeries: Application Development

http://hessling-editor.sourceforge.net/

Example 5-2 Sample screen of the

/home/somebody/pgm03.java
====>

|...+....1....+....2....+....3....+....4....+....5....+....6....+
00000 *** Top of File ***
00001 /** Show makes a component visible; this method became deprecated
00002 public void show() {
00003 setVisible(true)
00004 }
00005
00006 /** An applet must have a public no-argument constructor.
00007 * @throws java.lang.IllegalArgumentException on Sundays.
00008 */
00009 public JavadocDemo() {
00010 if (new java.util.Date().getDay() == 0 {
00011 throw new IllegalAgumentException(“Never on a Sunday”);

THE3.0 Files=1 Width=512 CR
 Chapter 5. The vi editor 73

74 Linux on zSeries: Application Development

Chapter 6. The Jakarta project

Jakarta is a project hosted by the Apache Software Foundation. The Jakarta
project currently consists of twenty-two subprojects, all written in Java. The
projects are categorized into the following groups:

� Libraries, Tools, and APIs

� Frameworks and Engines

� Server Applications

For a complete description of all the Jakarta subprojects, refer to the Jakarta
home page:

http://jakarta.apache.org/

In this chapter, we introduce:

� Jakarta Tomcat application server

� Jakarta Ant, a make replacement

� Jakarta Log4j

� Jakarta Taglibs

� Jakarta Struts

6

© Copyright IBM Corp. 2002. All rights reserved. 75

http://jakarta.apache.org/

6.1 The Tomcat application server
Tomcat is the designated reference implementation for the Java servlet and JSP
standard. It can be used as a lightweight stand-alone server for testing servlets
and JSP pages, or it can be integrated into the Apache Web server.

For the authoritative documentation, see:

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/index.html

6.1.1 Obtaining Tomcat
The most convenient method to install Tomcat is to use RPM packages. Other
Jakarta components are required in addition to Tomcat. For this redbook, we
used the most current stable release (V4.0.3) available at:

http://jakarta.apache.org/builds/jakarta-tomcat-4.0/release/v4.0.3/rpms/

A complete list of all required components is summarized in Table 6-1.

Table 6-1 Components required for Tomcat installation

6.1.2 Installing Tomcat
To install Tomcat, use rpm to install the downloaded packages, then create the
userid and group under which the server will run (typically named tomcat4).
These steps are illustrated in Example 6-1.

Example 6-1 Tomcat installation

$ rpm -ivh regexp-1.2.1.noarch.rpm \
 servletapi4.4.03-1.noarch.rpm \
 xerces-j-1.4.4-2.noarch.rpm \
 tomcat4-4.0.3-1.noarch.rpm \
 tomcat4-webapps-4.0.3-1.noarch.rpm
$ groupadd tomcat4
$ useradd -c ’Tomcat4 user’ -d /var/tomcat4 -g tomcat4 \
 -s /bin/false -p password tomcat4

File name Description

regexp-1.2.1.noarch.rpm Java regular expression package

servletapi4.4.03-1.noarch.rpm Servlet container

xerces-j-1.4.4-2.noarch.rpm Java XML parser

tomcat4-4.0.3-1.noarch.rpm Tomcat server

tomcat4-webapps-4.0.3-1.noarch.rpm Sample applications for Tomcat
76 Linux on zSeries: Application Development

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/index.html
http://jakarta.apache.org/builds/jakarta-tomcat-4.0/release/v4.0.3/rpms/

Starting and stopping the server
Next, modify Tomcat’s startup configuration file
/etc/tomcat4/conf/tomcat4.conf, assigning the JAVA_HOME variable to the IBM
J2SDK home directory and the TOMCAT_USER to the previously created userid:

.

.
Where your Java installation lives
JAVA_HOME=/opt/IBMJava2-s390-131/
.
.
What user should run tomcat
TOMCAT_USER=tomcat4

The Tomcat server startup and shutdown script is /etc/rc.d/init.d/tomcat4. To
start Tomcat issue the command:

/etc/rc.d/init.d/tomcat4 start

To stop Tomcat issue the command:

/etc/rc.d/init.d/tomcat4 stop

Note: Tomcat configuration file

The Tomcat startup configuration file (/etc/tomcat4/conf/tomcat4.conf) is
sourced by the server startup script (/etc/rc.d/init.d/tomcat4). Variable
assignments in the startup configuration file equate to environment variable
assignments seen by the Tomcat server on startup. Another important variable
specified in the startup configuration file is CATALINA_HOME, the Tomcat server
root directory.

Note: Tomcat Stop

If you stop Tomcat and it is already stopped, you see the following Java
exception:

Catalina.stop: java.net.ConnectException: Connection refused
java.net.ConnectException: Connection refused
 at java.lang.Integer.equals(Integer.java(Compiled Code))
 at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:345)
 ...

Use the command ps -ef | grep tomcat to see if Tomcat is still alive. If not,
find the main Tomcat process using ps -Hef | less and kill this process. The
dependent processes should also stop.
 Chapter 6. The Jakarta project 77

Verifying the installation
By default, Tomcat will listen on port 8180 for incoming requests. To verify the
installation has succeeded, in a browser attempt to access URL:

http://localhost:8180/

This should bring up the home page of the Web application that comes with
Tomcat. Navigate to the Servlet examples page and execute some of the
example servlets to ensure the container is working correctly.

6.1.3 Configuring the Tomcat server
The Tomcat server is configured using an XML configuration file found in the
$CATALINA_HOME/conf directory. The server configuration file defaults to
/var/tomcat4/conf/server.xml. The complete server configuration reference
can be found at:

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config/index.html

In brief, the Tomcat server port defaults to 8180 to avoid conflicts with an existing
Tomcat 3 server (which by default uses port 8080), and to permit non-privileged
users to start the server (which implies a port greater than 1024). A summary of
the server directory structure is given in Table 6-2.

Table 6-2 Tomcat server directory structure

Directory Contains

$CATALINA_HOME/bin Scripts for startup, shutdown etc.

$CATALINA_HOME/common/lib Jar files that are shared between Tomcat
components

$CATALINA_HOME/conf Tomcat configuration files: server.xml and
web.xml

$CATALINA_HOME/lib Jar files for the servlet engine

$CATALINA_HOME/log Tomcat log files

$CATALINA_HOME/server Jar files

$CATALINA_HOME/temp Miscellaneous temporary files

$CATALINA_HOME/webapps Tomcat Web application directory

$CATALINA_HOME/work Servlets generated from JSPs
78 Linux on zSeries: Application Development

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config/index.html

6.1.4 Deploying an application under Tomcat
The easiest way to deploy a Web application is to first package it as WAR file. Copy
the .war file to the directory $CATALINA_HOME/webapps. In compliance with the
servlet API 2.3, Tomcat will create all the necessary files and subdirectories from
the .war file so that everything is ready when the server is restarted. This feature
is referred to as auto-deploy. Once restarted, the application can be accessed
from URL:

http://localhost:8180/appl-name

where appl-name is the application name specified in the application Web
descriptor file ($CATALINA_HOME/webapps/appl-name/WEB-INF/web.xml).

6.1.5 Tomcat application manager
Tomcat provides a special Web application to provide application deployment
functions - the application manager. Using the manager, it is possible to list,
deploy, restart, and stop applications running under the server. For security
reasons, the application manager is disabled by default. To enable it, add the
following line to the Tomcat $CATALINA_HOME/conf/tomcat-users.xml
configuration file:

<user name="userid" password="passwd" roles="manager"/>

where userid is the user under which Tomcat runs, and passwd is the
corresponding login password.

After restarting Tomcat, the application manager be accessed from an HTTP
agent using requests of the form:

http://tomcat-server/manager/command?parameters

where

tomcat-server is the Tomcat server (hostname and port number)
command is the manager command
parameters are parameters to be passed to command

Commands provide for:

� Listing currently deployed applications
� Deployment of new applications
� Reloading existing applications
� Stopping deployed applications

For a complete description, consult the manager documentation at:

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/manager-howto.html
 Chapter 6. The Jakarta project 79

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/manager-howto.html

6.2 Ant
Ant is a Java-based replacement for the UNIX make utility (see “Automating the
build process” on page 14). In the same way make operates on an input
configuration file, Ant also takes an input configuration file (named build.xml) to
control what parts of a project are to be built, and how.

6.2.1 Installing Ant
The current release of Ant (v1.4.1) can be obtained in binary form at:

http://jakarta.apache.org/builds/jakarta-ant/release/v1.4.1/bin/

Download both the base install file and the optional task file:

jakarta-ant-1.4.1-bin.tar.gz
jakarta-ant-1.4.1-optional.jar

Unpack the distribution into the desired directory (for instance /usr/local/ant),
define that directory in the ANT_HOME environment variable, and ensure the
$ANT_HOME/bin directory is added to $PATH.

6.2.2 Using Ant
Ant utilizes concepts similar to make: targets may specify prerequisites, tasks
correspond to makefile rules and define the steps to build targets, properties
correspond to makefile variables. A number of predefined properties and tasks
are available. Ant attempts to simply the process of building an application: it
operates on an XML file, and its built-in rules are designed to be platform
independent.

To invoke ant, simply issue the command ant. A sample build.xml file is shown
in Example 6-2.

Example 6-2 Sample Ant build.xml file

<?xml version="1.0"?>
<project name="sg246807" default="compile" basedir="."> 1
 <property name="src" value="src" /> 2
 <property name="build" value="build" />
 <property file="build.properties" /> 3

Important: The Ant optional package is required for our build process (see
“Packaging applications for deployment” on page 251) because we use the
task javah.
80 Linux on zSeries: Application Development

http://jakarta.apache.org/builds/jakarta-ant/release/v1.4.1/bin/

 <target name="init"> 4
 <tstamp/> 5
 <mkdir dir="${build}" /> 6
 </target>

 <target name="compile" depends="init" description="compile phase" /> 7
 <javac srcdir="${src}" destdir="${build}" />
 </target>
</project>

1. The project statement defines a default target (compile) and sets all
directory paths relative to the current directory.

2. Variable names are assigned values using the property statement. All
system properties and a number of Ant built-in properties are also available.

3. Additional property values may be defined in an external file and imported.

4. Target init defines initialization tasks.

5. The tstamp task sets a timestamp on the created directory to ensure the task
is executed only if the target is out-of-date.

6. The Ant-defined mkdir task creates the build directory.

7. Target compile defines the compilation phase. It depends upon the init task,
and provides a description attribute that will appear on output when issuing
the command:

ant -projecthelp

Ant has over 70 built-in task definitions; see the Ant reference manual for
complete details at:

http://jakarta.apache.org/ant/manual/index.html

6.3 Log4J
Log4j is a Java package designed to provide runtime logging with little
performance overhead. Using Log4j, you can build logging into an application
and not be overly concerned with incurring a performance penalty when the
application goes into production, since you can simply disable logging using the
Log4j runtime configuration.

6.3.1 Installing Log4j
1. Download the latest release of Log4j. We used jakarta-log4j-1.2rc1.zip:

http://jakarta.apache.org/log4j/docs/download.html
 Chapter 6. The Jakarta project 81

http://jakarta.apache.org/log4j/docs/download.html
http://jakarta.apache.org/ant/manual/index.html

2. Uncompress the distribution with:

unzip jakarta-log4j-1.2rc1.zip

and add the file dist/lib/log4j-1.2rc1.jar to the WEB-INF/lib directory.

For information on using Log4j in your application, refer to “Logging using Log4j”
on page 176.

6.4 Taglibs
Tag libraries, or taglibs, are custom tags which may be included in JavaServer
Page (JSP) files. Taglibs alleviate the need to include custom scripting code in
JSP files. They encourage reuse of customized presentation features because
tags are referenced inside JSP files—not simply copied as blocks of script. There
are several taglibs packages available from the Jakarta Taglibs site:

http://jakarta.apache.org/taglibs/index.html

These packages are grouped by functionality and are described in the contents.

6.4.1 Installing taglibs
Taglibs are distributed with:

� A tag library descriptor (TLD) file
� A Java implementation (jar) file

Tag library descriptors
Taglibs are declared in tag library descriptors (TLD), and packaged as .tld files.
A TLD defines a tag library and its respective tags. Descriptors contain metadata
about tags, such as tag name and parameters. The elements in the TLD
document are used by the JSP page compiler to access the tag Java
components.

Installing tag Java classes
The tag Java classes must be available to the Web application context. Tag Java
classes are packaged as a JAR and deployed in the Web application
WEB-INF/lib directory.

6.4.2 Configuring taglibs
Using taglibs as part of a Web application requires some setup before tags can
be used in JSP pages. Taglibs must be visible to the Web application context to
use JSP tags.
82 Linux on zSeries: Application Development

http://jakarta.apache.org/taglibs/index.html

Declaring taglibs in the Web application descriptor
A Web application descriptor points to existing taglibs that will be used by JSP
pages. Taglibs are referenced and mapped in a Web application descriptor,
WEB-INF/web.xml. Taglib URIs are mapped to a local or remote location which
contains the tag library descriptor. In Example 6-3, the Struts HTML taglib is
mapped to a local Web application path.

Example 6-3 Struts taglib definition [WEB-INF/web.xml]

<taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>

Using tags in JSP pages
To use JSP tags, the taglib directive must be included in the JSP page. A JSP
page can use tags from more than one taglib, but each taglib used must be
declared in a directive. Example 6-4 illustrates taglib usage in a JSP page.

Example 6-4 Using taglib directives in a JSP page

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %> 1

<html>
<head>
 <title>SG246807 - Taglib Usage</title>
</head>
<body>
 <h1>Using Taglibs</h1>

 <html:link page="/useradmin/addUser.jsp"> 2
 Follow this link
 </html:link>

</body>
</html>

1. Taglib references are defined to the JSP engine using the taglib directive.
Two attribute definitions are required:

a. uri identifies the application-relative location of the taglib TLD file.

b. prefix specifies a unique identifier associated with tags specific to the
TLD. (The prefix allows multiple taglibs to be included in a single JSP
page.)
 Chapter 6. The Jakarta project 83

2. The link tag is used to create an HTML hyperlink to the URL
/useradmin/addUser.jsp. The html prefix refers to the previous taglib directive,
the link tag is defined in the struts-html.tld descriptor, and the page
attribute is a required parameter to the link tag.

On compilation, the JSP engine will syntax-check taglib usage based on the TLD
specification.

6.5 Struts
Struts is a framework based on the Model-View-Controller (MVC) pattern utilizing
JSP, taglibs, and Java servlet technology. In brief, the model corresponds to an
application’s business logic; the view corresponds to the application presentation
(typically implemented using JSP); and the controller corresponds to the Struts
controller itself. Taglibs and JavaBean technology form the basis of the Struts
framework. Struts taglibs are used to standardize HTML form creation and
validation, provide simple access to JavaBeans in JSP pages, and enable
iterative and condition logic inside JSP pages.

6.5.1 Struts components
We begin by defining some Struts components.

ActionServlet The Struts controller, a single instance of the
org.apache.struts.action.ActionServlet class which
controls Struts operation. Applications typically only configure
the ActionServlet using the WEB-INF/web.xml file.

Action An instance of the org.apache.struts.action.Action class
that acts on HTTP requests. Applications derive from the
Action class to act as request handlers implementing
application-specific business logic in the perform method.

ActionMapping The org.apache.struts.action.ActionMapping class which
maps HTTP requests to the Action class instance intended to
handle that request. Applications generally specify this
mapping in a configuration file (WEB-INF/struts-config.xml).

ActionForward The org.apache.struts.action.ActionForward class which
directs the ActionServlet to forward a request to another
Action instance or JSP servlet. ActionForwards are typically
returned by Action instances request handlers (to allow Action
handlers to be stacked, and JSP servlets to be conditionally
executed).
84 Linux on zSeries: Application Development

ActionForm The org.apache.struts.action.ActionForm JavaBean class
associated with ActionMapping instances. ActionForm
instances are initialized by ActionServlet from values supplied
on HTTP form submission and passed to Action request
handlers as a parameter to the perform method. Applications
may derive from ActionForm to implement form validation (via
the validate method).

Figure 6-1 illustrates the relationship between these components.

Figure 6-1 Struts framework component interaction

1. An incoming HTTP POST request (generated by an HTML form submittal) is
intercepted by the ActionServlet instance.

2. An ActionMapping associates the request to a specific ActionForm instance.
The ActionServlet instance instantiates an ActionForm JavaBean instance
based on that mapping. The HTML <form> input parameters correspond to
data members of the ActionForm instance (form parameters are mapped to
ActionForm instance data by name).

ActionServlet

2

ActionForm

ActionJSP

3

45

6

1

 Chapter 6. The Jakarta project 85

3. The ActionServlet invokes the validate method of ActionForm. Any validation
errors are returned to the ActionServlet.

4. If no validation errors are reported, the ActionServlet then invokes the
perform method of the Action instance corresponding to this request (passing
the ActionForm as a parameter). The ActionMapping association determines
which Action instance to invoke. Business logic in the Action instance is
executed in the perform method. On completion, the Action returns an
ActionForward to the ActionServlet (indicating where control should pass
next).

5. The ActionServlet passes the request to the next phase (based on the
returned ActionForward). In this case, forwarding is directed to a JSP page,
but forwarding to another Action instance is also possible (stacked handlers).
Because forwarding is controlled by the ActionForward returned to the
ActionServlet, the Action instance can maintain runtime control over logic
flow.

6. An HTTP response is generated and returned to the client.

Struts taglibs
Custom taglibs form an integral part of the Struts framework. Struts taglibs are
grouped by functionality:

struts-html Provides tags that render to HTML elements. These tags
are typically used to assist in mapping HTML forms to an
ActionForm JavaBean instance.

stuts-bean Provides tags to assist in creating and accessing
JavaBeans in JSP pages.

stuts-logic Provides tags to conditionally render HTML elements
based on the state of JavaBeans. Iteration logic is also
provided.

stuts-template Provides a mechanism to render HTML based on
templates (useful for HTML pages that share a common
layout structure).

Note: The ActionForm instance is instantiated on processing the first HTTP
request. ActionServlet will reuse this instance on subsequent requests.

Important: Only a single Action instance exists per servlet container. It is
crucial to ensure the Action class implementation be thread-safe.
86 Linux on zSeries: Application Development

Each of these taglibs is distributed with its own TLD file. Tag implementation is
provided in a common jar file (struts.jar). The complete Struts taglib reference
can be found in the Struts documentation page at:

http://jakarta.apache.org/struts/doc-1.0.2/

See the Taglib Documentation section.

6.5.2 Installing Struts
Struts can be obtained from the Struts download page:

http://jakarta.apache.org/builds/jakarta-struts/release/v1.0.2/

1. Unpack the distribution to a convenient directory (for example, the
/usr/local/struts directory).

2. Copy the distribution lib/struts.jar file to your application WEB-INF/lib
directory.

3. Copy the distribution taglib descriptor files (lib/*.tld) to your application
WEB-INF/lib directory.

Some example applications are included in the distribution (packaged as WAR
files found in the webapps directory). We demonstrate how to use Struts in
Chapter 13, “Using the Struts framework” on page 167.
 Chapter 6. The Jakarta project 87

http://jakarta.apache.org/builds/jakarta-struts/release/v1.0.2
http://jakarta.apache.org/struts/doc-1.0.2/

88 Linux on zSeries: Application Development

Chapter 7. Running Linux applications
in a zSeries environment

In this chapter we discuss some aspects of running Linux programs on zSeries
architecture.

We focus on:

� zSeries and s/390-specific features

� Stack layout and function call conventions

� Debugging with the gdb tool

� Optimization issues

� Linux signals

7

© Copyright IBM Corp. 2002. All rights reserved. 89

7.1 Architecture consideration
In this section we consider some of the specific features of the zSeries
architecture, particularly the differences in comparison to the i386 platform.

7.1.1 Bits and bytes
For the 16-bit (halfword), 32-bit (word), 64-bit (double word) data types, zSeries
architecture puts the most significant byte first. This type of byte ordering is often
called big-endian.

Table 7-1 shows how C data types are implemented in Linux on zSeries.

Table 7-1 ANSI C data types

The alignments for these data types is the same as their respective sizes. You
should consider this when composing C structures or unions.

Type ANSI C Size and alignment
in bytes

byte
character

char
unsigned char

1

sort
(halfword)

short
unsigned short

2

integer
(word)

int
unsigned int
enum
long
unsigned long

4

doubleword long long
unsigned long long

8

pointer (type *)
type (*) ()

4

single precision float 4

double precision double 8

extended precision long double 16
90 Linux on zSeries: Application Development

Structures
Example 7-1 shows some C structures implemented on zSeries. The structures
are of the following sizes:

– struct one is 24 bytes
– struct two is 16 bytes
– struct three is 16 bytes

Example 7-1 Data alignment in C structures

struct one{
 short s1;
 long long l1;
 short s2;
 };

struct two{
 long long l1;
 short s2;
 short s1;
 }two;

struct three{
 long long l1;
 char c1;
}three;

Unions
When defining a union, its size is the size of its longest component plus a proper
alignment.

The order of bits is big-endian, too. Let us have a look at Example 7-2.

Example 7-2 Structure with bit fields

union u{
 struct four{
 unsigned char i:1;
 unsigned char j:2;
 unsigned char k:2;
 }four;
 unsigned char all;
}u;
 Chapter 7. Running Linux applications in a zSeries environment 91

When the following two lines are executed:

u.all=0;
u.four.i=1;

the value of u.all is 128.

Maintaining portability
Different architectures and different compilers may have their own approach to
the composition of a physical data representation. We suggest creating data
structure with types like int16_t defined in sys/types.h and checking the final
layout when sending arrays of structures is over the network.

Before you start to write your own assembler routines performing some
operations on bits, you should consult files in the /usr/include/asm directory—
especially asm/bitops.h. You may find some of the routines already written. The
advantage is obvious: these routines are likely to be present on the other
platforms, so your program has a better chance to be portable.

7.1.2 Virtual address space
Processes are executed in the user mode (program state) while the kernel runs
in supervisor mode. A supervisor call (svc) is used to pass control to a different
mode.Virtual memory is addressed in 31-bit mode.

The most significant bit is always set to 0. Figure 7-1 shows the layout of the four
process segments:

� Executable code
� Heap
� Dynamic segments (mmap)
� Stack

Note: You can check for the existence of __platform__ macros to discover the
platform you work with. On zSeries, the __s390__ flag is predefined.
92 Linux on zSeries: Application Development

Figure 7-1 Virtual memory layout in Linux on zSeries

A process can also use setrlimit to set its own maximum stack size or memory
limit. For details, see the man pages for setrlimit system calls and ulimit bash
commands.

Functions that map data into the process virtual memory are all permitted to
specify the address where the mapping is to occur. If you use this parameter (for
example, on mmap or shmat function calls), the address you specify must be
proper for zSeries architecture. The most significant bit must be set to 0 and the
address must be valid.

7.1.3 Function calling convention
When a C function is called (unless in-lined due to optimization), the compiler will
save local function-local data on the stack. Some function parameters are
passed in registers, others are placed on stack. Register usage is summarized in
Table 7-2.

mmap segments
(including shared libraries)

0x7fffffff

Stack

Heap
malloc
Heap
malloc

Program text

unused (4KB)
0x00000000

0x00400000

0x40000000

0x7fffa000

The first page (4KB) is usually
used to handle invalid

address mappings and is not
used by the process it self
 Chapter 7. Running Linux applications in a zSeries environment 93

Table 7-2 Register usage in Linux on zSeries

If there are more than five arguments, subsequent ones are passed on a stack.
Moreover, long long values are passed in two consecutive registers. Double
word parameters are never split between the R6 register and stack (in this case,
the parameter is placed on stack).

Figure 7-2 presents the stack layout for Linux on zSeries.

Register Usage Saved

R0,R1 General purpose No

R2 First argument and return value No

R3 Second argument and second word of return
value if necessary

No

R4,R5 Next arguments No

R6 Next arguments Yes

R7-R9 Local variables Yes

R10 static-chain (or a local variable) Yes

R11 frame-pointer (or a local variable) Yes

R12 GOT pointer (or a local variable) Yes

R13 Base-pointer the literal pool which stores
constants used in a function

Yes

R14 Return address No

R15 Stack pointer Yes

F0,F2 Parameters No

F4,F6 General purpose Yes

F1,F3,F5,F7-F15 General purpose No
94 Linux on zSeries: Application Development

Figure 7-2 Frame layout for Linux on zSeries

Unless the optimization option is in use, a function epilog and prolog are
generated as shown in Example 7-3. The code presented here was produced by
gcc for a function which takes one parameter (four-byte word) and passes the
return value in four-byte word:

int f(int i){
 a=i;
}

As shown in Example 7-3, we reserve 96 bytes (4 for an automatic variable and 4
for double-word alignment).

Example 7-3 Prolog and epilog for non-optimized code

.globl f
 .type f,@function
f:
leaf function 1
automatics 8
outgoing args 0
need frame pointer 1
call alloca 0
has varargs 0
incoming args (stack) 0

back-chain

back-chain

top of the stack

automatics (local variables)
alloca area

rest of parameters
(first few are passed in R2-R6)

F0,F2,F4,F6

R6-R15

scratch pad or R2-R5

reserved (not used on zSeries)

+96

+64

+24
+8

...
previous frame

...
 Chapter 7. Running Linux applications in a zSeries environment 95

function length 14
register live 0110000000010100000000000000000010
 stm %r11,%r15,44(%r15)
 bras %r13,.LTN0_0
.LT0_0:
.LC0:
 .long a
.LTN0_0:
 lr %r1,%r15
 ahi %r15,-104
 st %r1,0(%r15)
 lr %r11,%r15
 st %r2,96(%r11)
 l %r1,.LC0-.LT0_0(%r13)
 mvc 0(4,%r1),96(%r11)
.L2:
 l %r4,160(%r11)
 lm %r11,%r15,148(%r11)
 br %r4

7.2 When things go wrong
A debugger is a tool that allows a developer to step through code to locate
problems. In the following section we describe gdb, one of several such tools
available for Linux.

7.2.1 Debugging with gdb
Before you start debugging, you need to include some extra information when
compiling your program. This data is stored in the object file; it describes the data
type of each variable or function, and the correspondence between source line
numbers and addresses in the executable code.

To include debugging information, specify the -g option for every module you
compile.

Let’s look at a short session with gdb. Example 7-4 shows faulty.c, the program
we would like to debug.

Compile the code with this command:

gcc -g -o faulty faulty.c

The first time you run it, you should see the following output:

$faulty
96 Linux on zSeries: Application Development

i = 00
i = 01
i = 02
i = 03
i = 04
i = 05
Segmentation fault

The program was stopped by the system since it tried to access an invalid area in
memory. It is much easier to figure out what has happen when we have a
snapshot of memory at the time of termination.

Example 7-4 faulty.c

#include<stdio.h>

int a[10];

buggy(int arg){

 int i;
 int *p1=0;
 int *p2=a;

 i=13;
 p1=i; / 'p' in not initialized */

 printf("Am I still alive ?\n");
}

loop(int arg){
int i;

 for(i=0; i<arg; i++){

 printf("i = %02d\n", i);
 a[i]=i;

 if(i % 10 == 5)
 buggy(i);

 }
}

main(int argc, char *argv[]){
 loop(10);

 }
 Chapter 7. Running Linux applications in a zSeries environment 97

By default, core dumps are not stored in the file system:

$ulimit -a
data seg size (kbytes) unlimited
file size (blocks) unlimited
max locked memory (kbytes) unlimited
max memory size (kbytes) unlimited
open files 1024
pipe size (512 bytes) 8
stack size (kbytes) unlimited
cpu time (seconds) unlimited
max user processes 256
virtual memory (kbytes) unlimited

We can change this using ulimit with the -c option in shell:

$ulimit -c unlimited

Now we can run our program once again.

$faulty
i = 00
...
i = 05
Segmentation fault (core dumped)

Since we have the contents of memory stored in the core file, we can ask gdb to
work with both the program code and the snapshot.

$gdb buggy core
GNU gdb 5.0
Copyright 2000 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you
are
welcome to change it and/or distribute copies of it under certain
conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "s390-suse-linux"...
Core was generated by './faulty'.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x804842a in faulty (arg=5) at faulty.c:13
13 *p1=i;
(gdb)
98 Linux on zSeries: Application Development

If the program was compiled with the -g option, gdb analyzes the core dump file
and can immediately point out where the execution was interrupted: line 13 from
the file faulty.c.

We can look at how the function containing this line was called.

(gdb) info stack
#0 0x804842a in buggy (arg=5) at buggy01.c:13
#1 0x80484c9 in loop (arg=10) at buggy01.c:29
#2 0x80484f0 in main (argc=1, argv=0xbffff674) at buggy01.c:35
#3 0x40041c6f in __libc_start_main () from /lib/libc.so.6

We can also examine variable values as if the program was still being executed:

(gdb) p i
$1 = 13

If you need access to a variable from a different scope, use the operator ::, as
follows:

(gdb) p loop::i
$2 = 5

Starting your program
Type run arg1 arg2 ... to start a program under gdb. Note that the working
directory and standard input and output are inherited from gdb.

attach pid Attach to a running process that was started outside gdb.

detach Release the program from gdb control.

kill Stop the child process in which your program is running
under gdb.

Linux threads are also supported by gdb. You can be notified when a new thread
begins execution and use thread-specific breakpoints. Use the following
commands:

thread tid Switch among threads.

info threads Inquire about existing threads.

thread apply Apply a command to a list of threads.

Breakpoints
Breakpoints are used to inform the debugger where it should stop execution of a
program.

break line Set a breakpoint at line in the current file.

break file:line Set a breakpoint at line in file.
 Chapter 7. Running Linux applications in a zSeries environment 99

break function Set a breakpoint at the start of function in current file.

break file:function Set a breakpoint at the start of function in file.

break Set a breakpoint at the next instruction to be executed
in the selected stack frame. This is useful when
debugging loops and functions.

break ... if expr Set a breakpoint with condition expr. The expression
expr is evaluated each time the breakpoint is reached,
and the execution stops only if the expression is true
(non-zero).

ignore bnum count Ignore count passes through breakpoint number
bnum.

info break Shows information on breakpoints.

watch expr Watch an expression. The gdb will break when expr is
changed.

Source files
gdb maintains the list of directories to search for source files, which is called the
source path. By default this list contains only the compilation directory (cdir) and
the working directory (cwd).

To add other directories, use the directory command.

dir dirname ... Add directory dirname to the front of the source path.
Multiple entries are separated by a colon (:).

directory Reset the source path to an empty one.

show directories Print the source path: show which directories it
contains.

You can list the source code with the following commands:

list linenum Print lines centered around line number linenum in the
current source file.

list function Print lines centered around the beginning of function
in the current file.

list Print more lines.

Printing data
print expr Prints value of an expr.

Note: The gdb can only watch the value of an expression in a single thread.
100 Linux on zSeries: Application Development

Useful operators for this command are:

:: Allows you to specify a variable in terms of the file or
function where it is defined.

{type} addr Evaluates to an object of type stored at address addr in
memory (addr may be any expression whose value is an
integer or pointer).

display expr Expression expr is printed each time the program stops.

7.2.2 Tracing system calls
The strace tool intercepts and records system calls invoked by a process. In
addition, signals received by the process are intercepted. The name of each
system call, its arguments, and its return value are printed (to standard error or to
the file specified with the -o option).

The ptrace system call provides a means by which a parent process may
observe and control the execution of a child process. The child’s core image and
registers can be examined and altered. This call is primarily used to implement
breakpoint debugging and system call tracing.

-c Count time, calls, and errors for each system call and report a
summary on program exit.

-T Show the time spent in system calls. This records the time
difference between the beginning and the end of each system
call.

-p pid Attach to the process with the process ID pid and begin
tracing. The trace can be terminated by issuing an interrupt
signal (Ctrl-C).

-u username Run command with the user ID, group ID, and supplementary
groups of username.

-f Trace child processes.

The strace command traces system calls only. You will notice no printf or
pthread_create in strace output. The list of system calls is available in the
/usr/include/asm/unistd.h header file.

You will find this tool very handy when you want to get to know what files are
opened by the application or what DLLs are loaded (and from which directory).

Tip: If you want to call a system function directly from your program, use
_syscalln from /usr/include/asm/unistd.h
 Chapter 7. Running Linux applications in a zSeries environment 101

7.2.3 Debugging under zVM
zVM has its own debugger that can be used to track Linux activities. Refer to
Debugging on Linux for 390 by Denis Joseph Barrow. You can find this
comprehensive document in your kernel source directory or at:

http://linuxvm.org/penguinvm/notes.html

The zVM reference books are available at:

http://www.vm.ibm.com/library/

The zVM debugger is useful for debugging kernel activity. However, you can also
use it to trace the system calls. If you know the system call number (see the
/usr/include/asm/unistd.h header file), turn on tracing with the following cp
command:

#cp trace svc syscall_number

To stop tracing:

#cp trace end

7.2.4 Performance profiling
In addition to option -g (which includes debugger information), you can compile
your program with support for profiling using the -gp option. The prof tool allows
you to determine the execution time for each part of your program. The profiler
that is available in Linux installations is a GNU program called gprof. You can find
a gprof tutorial in the info help system, and on the Internet at:

http://sources.redhat.com/binutils/docs-2.10/gprof.html

7.3 Optimizing for performance
In this section we discuss some of the gcc compiler options that can improve
performance of an application.

7.3.1 General options
The main switch for optimization in the gcc compiler is -On. The higher the
number, the better optimizing. By default, the optimization is turned off (-O0). The
most frequently used level is -O2, which gives (in most cases) the best
performance without necessarily enlarging code size or introducing significant
changes that may lead to performance degradation. The -On option is an
abbreviation for more specific switches set with -ffeature.
102 Linux on zSeries: Application Development

http://linuxvm.org/penguinvm/notes.html
http://www.vm.ibm.com/library/
http://sources.redhat.com/binutils/docs-2.10/gprof_toc.html#SEC_Contents
http://linuxvm.org/penguinvm/notes.html

7.3.2 Inline functions and unrolled loops
Inline functions are a convenient programming feature. You can decompose your
application into small, easy-to-understand fragments without worrying about the
overhead caused by epilog and prolog code (the compiler expands inlined
functions directly where the function call is made). To use inline functions, you
must specify the -finline-functions option in addition to the -O2 option when
compiling.

The -funroll-loops allows the optimizer to repeat the loop statements one after
the other when the number of iterations can be determined at compile time or run
time.

7.3.3 Architecture-dependent options
We now look at architecture-dependent gcc options.

-mno-backchain / -mbackchain
This option eliminates a back-chain:

lr %r1,%r15
...
st %r1,0(%r15)

It saves a few cycles on every function call.

-msmall-exec / -mnosmall-exec
Be default, function calls are implemented with BASR (BRANCH AND SAVE)
instruction. The -msmall-exec option can be used to instruct the compiler that a
small executable is to be produced. In this case, the relative jump BRAS
(BRANCH RELATIVE AND SAVE) instruction can be used. This instruction uses

Note: Be advised that this mechanism does not work for library functions. If
you want some of your library functions to be compiled into the code on every
call, you should define them with the inline attribute in the library header file
explicitly.

Note: The optimization process (particularly the two options described here)
may produce slower code that an unoptimized version. This is often related to
the effects optimization has on paging and CPU caching. We found that loops
containing function calls often performed better when the -funroll-loops
option was not specified.
 Chapter 7. Running Linux applications in a zSeries environment 103

16-bit offset (in halfwords). This limits branches to locations within a 64 KB range
in both directions.

-mhard-float / -msoft-float
Instructs the compiler to use hardware (-mhard-float) or software
(-msoft-float) floating-point instructions and registers for floating-point
operations. When option -msoft-float is specified, functions in libgcc.a will be
used to perform floating-point operations. The -mhard-float is the default.

-m31 / -m64
When -m31 is specified, gcc generates code compliant to the Linux for S/390 API.
The -m64 option generates code compliant to the Linux for zSeries API (allowing
the compiler to generate 64-bit instructions). For s390 targets the default is -m31,
s390x targets default to -m64.

-mmvcle / -mno-mvcle
Instructs the compiler to use the mvcle (-mmvcle) or to mvc (-mno-mvcle)
instruction to perform block moves (-mno-mvcle is the default).

7.3.4 String operations
On the i386 platform, gcc uses inline replacements for string functions like strcpy
or strlen when optimization is enabled. For the zSeries platform, you must
enable string optimization using the -D__USE_STRING_INLINES compiler option
accompanied by -O2 option.

7.3.5 Sources of information
An excellent reference - Optimizing with gcc on Linux for S/390, by Dr. Eberhard
Pasch - can be found at

http://www-1.ibm.com/servers/esdd/articles/gcc_opt/index.html

The GCC Documentation pages can be found at

http://gcc.gnu.org/onlinedocs/gcc-3.0.4/gcc.html

7.4 Signals
Signals are a basic method of communication between processes in UNIX. They
do not pass any information (except for a signal type), but can trigger an action in
a target process.
104 Linux on zSeries: Application Development

http://www-1.ibm.com/servers/esdd/articles/gcc_opt/index.html
http://gcc.gnu.org/onlinedocs/gcc-3.0.4/gcc.html

A signal can be generated by the system or by another process with the kill
system call. Signals can be intercepted by a process using signal handlers. See
the kill and signal pages in section 2 of the man manual. The complete list of
signals is provided by the signal man page in section 7:

man 7 signal

For more information about how the application can handle signals, see:

� The Linux Programmer's Guide

http://www.linuxhq.com/guides/LPG/

� The article A Look at the Signal API by Erik Troan, available at:

http://www.linux-mag.com/2000-01/compile_01.html

7.4.1 Linux signals and zSeries exceptions
The zSeries architecture raises an exception when a program tries to execute an
illegal operation. When the exception occurs, the program context is saved and
execution flows to the address pointed to by a vector predefined for the
exception.

The operating system handles an exception either by completing the faulty
operation or by delivering a signal to the process. The correspondence between
exceptions and signals is defined in a kernel source file (trap_init function)
found in the linux/arch/s390/kernel/traps.c file in the kernel source.

Although Linux implementation of signals covers most of System V and BSD
features, there are still some differences.

For more information on zSeries exceptions, see z/Architecture Principles of
Operation, SA22-7832.

Important: Since there is no single process ID in multithreaded Linux
programs (see 15.2, “The pthreads library” on page 219), each thread has its
own PID number and the kernel delivers the signal to that thread.
 Chapter 7. Running Linux applications in a zSeries environment 105

http://www.linuxhq.com/guides/LPG/
http://www.linux-mag.com/2000-01/compile_01.html

106 Linux on zSeries: Application Development

Part 2 Eclipse

In this part we introduce Eclipse, an open source Integrated Development
Environment.

Part 2
© Copyright IBM Corp. 2002. All rights reserved. 107

108 Linux on zSeries: Application Development

Chapter 8. Eclipse overview

In this chapter we introduce Eclipse as a tool development platform for Linux on
zSeries. We begin our discussion by looking at Eclipse at its highest level. Then,
we describe the building blocks that make up Eclipse. Finally, we point you to
where you can get started with Eclipse.

8

© Copyright IBM Corp. 2002. All rights reserved. 109

8.1 Eclipse Software Developer Kit
Eclipse at its highest level is known as the Eclipse Software Developer Kit (SDK).
The Eclipse SDK consists of three parts: the platform, the Java Development
Tools (JDT), and the Plug-in Development Environment (PDE).

In short, Eclipse provides a development environment that allows tool developers
to build integrated tools within Eclipse. A tool that has been integrated with
Eclipse is known as a plug-in. An example of a plug-in is the C/C++ Development
Tool (CDT). A plug-in can facilitate further development of applications in a
particular environment. In the case of the CDT, the plug-in becomes an IDE for
C/C++ applications development.

The next few sections focus on the three components that make up the Eclipse
SDK.

8.2 The Eclipse platform
The platform provides the frameworks that allow tool builders to create an
Eclipse plug-in. The platform also provides the runtime out of which plug-ins are
loaded, integrated, and executed.

The platform itself provides the IDE and framework for the development of
plug-ins while maintaining file type independence. For example, C files or HTML
files are just files to the platform. They do not promote a particular behavior from
it. However, the plug-in itself can teach Eclipse how to behave according to a
specific file type under the plug-in environment. Therein lies the value of the
Eclipse platform.

The platform can further be divided into components. The rest of this section will
describe the components that build the platform.

8.2.1 Ant
Ant is a Java build tool similar to make that has been incorporated into Eclipse.
For more information about Ant see 6.2, “Ant” on page 80. This component
allows users to run Ant scripts on Eclipse resources. Ant works on Eclipse
projects by running against the information contained in the project’s xml and
build properties files.
110 Linux on zSeries: Application Development

8.2.2 Compare
The universal compare facility of Eclipse allows the user to compare multiple
resources. It displays the results inside a special editor. The editor allows the
user to manipulate changes between resources. In addition, the facility allows the
user to revert to previous copies in the local history contained within Eclipse.
With this functionality, Eclipse allows an extra level of recovery.

8.2.3 Core
The core component controls the platform runtime configuration. It is responsible
for loading and running the platform. In addition, it is responsible for plug-in and
resource management.

8.2.4 Debug
The debug component provides a way to facilitate language-independent debug
functionality. This is achieved through a language-independent model which
provides abstracts of commonly used debug functions in various languages.

8.2.5 Help
The help component is responsible for presenting the online documentation as
well as F1 functionality. The online documentation is provided through HTML files
and it is displayed using native HTML browsers.

8.2.6 Release Engineering
The Release Engineering (Releng) component focuses on release issues. It
provides for naming, coding, and documentation conventions to ensure that the
product is delivered as a cohesive product and not a bunch of parts placed
together.

8.2.7 Scripting
The scripting component allows Eclipse script support using the Rhino script
engine. This engine provides the features of JavaScript, direct scripting of Java, a
shell for executing JavaScript scripts, and a compiler to transform JavaScript files
into Java classes. The component allows for workbench extensions and plug-in
extensions using scripts.
 Chapter 8. Eclipse overview 111

8.2.8 Search
The search component handles the search capability that is found within the
workbench. The base component provides text searches and its functionality can
be extended by other plug-ins.

8.2.9 Standard Widget Toolkit
The Standard Widget Toolkit (SWT) component provides the windowing system
for Eclipse. This windowing system has been developed to allow development of
tools with native environment look and feel.

8.2.10 User Interface
The User Interface (UI) component provides a way to build user interfaces with
Eclipse. JFace, the workbench, and the standard subcomponent make up the UI
component. JFace is designed to work with SWT and includes image, font
registry, text, dialog, wizard preference, frameworks, and progress reporting
components for long-running tasks. The workbench provides the user interface
for Eclipse. The standard subcomponent includes editors and views that allow
the user to navigate resources, present outlines and properties, and manage
bookmarks and tasks.

8.2.11 Update
The update component provides a mechanism to locate new plug-ins, add new
plug-ins to Eclipse, update existing plug-ins, and manage user Eclipse
installation configurations.

8.2.12 Version Control Mechanism
The Version Control Mechanism (VCM) component provides a mechanism for
team development support. Currently the VCM works with CVS to provide a team
development solution for projects developed under Eclipse.

8.2.13 WebDav
The Web distributed authoring and versioning component (WebDav) client allows
Eclipse tools access to the WebDav technology. WebDav is a standard set of
extension for HTTP 1.1. WebDav adds methods to manage documents in a Web
environment.
112 Linux on zSeries: Application Development

8.3 The Java Development Toolkit
The Java Development Toolkit (JDT) is a complete Java IDE for Java application
development, including Eclipse plug-in development. The JDT provides the
Eclipse workbench with a Java perspective. As such, it provides a view complete
with editors and other tools inherent to Java application development. We can
further view the JDT as the sum of three components: Core, Debug, and UI
subcomponents. Each provides its own functionality to the perspective.

8.3.1 JDT Core
The JDT Core component is responsible for the incremental Java compiler. It
provides a Java model for navigation, as well as documentation of Java projects
and resources. In addition, it provides code assistance plus source code
formatting functionality during development.

8.3.2 JDT Debug
The JDT Debug component provides the debugging capability within the Java
perspective. It is responsible for providing launch functions in running and debug
modes, the attaching to a running JVM, expression evaluation within a stack
frame, and dynamic class reloading where supported by the JVM.

8.3.3 JDT UI
The JDT UI provides the user interface for the Java perspective. It arms the user
with various project views with which to see the project at different levels and
formats. In addition, it provides a Java editor with syntax coloring, checking, and
code assist functions, along with wizards to create Java elements like projects,
packages, classes, and interfaces.

8.4 The Plug-in Development Environment
In order to create a plug-in, a user needs to specify a plug-in manifest, specify a
run time environment, describe required plug-ins, specify extension points, and
specify required schema. The Plug-in Development Environment (PDE) is a
perspective that allows the user to describe the items required by a plug-in in a
fast and easy way through editors, views, and wizards. The PDE itself consists of
the Core and UI subcomponents.
 Chapter 8. Eclipse overview 113

8.4.1 PDE Core
The function of the Core component is to facilitate the building and packaging of
plug-ins. It uses Ant, in combination with the plug-in manifest and build properties
files, to generate scripts to package the plug-in in a format that is ready for
distribution.

8.4.2 PDE UI
The UI component aids in the building of plug-ins by providing the user with
Eclipse patterns, testing capabilities, trouble shooting capabilities, and packaging
functions.

8.5 Getting started with Eclipse
The focal point for Eclipse development and resources is found at:

http://www.eclipse.org/

Resources like available code downloads, Frequently Asked Questions (FAQ),
and the problem support database are found there. A word of advice: always
download the most stable build for a specific distribution. Integration and nightly
builds can be fairly unstable.
114 Linux on zSeries: Application Development

http://www.eclipse.org/

Chapter 9. Installing Eclipse

This chapter describes the installation for Eclipse on Linux for zSeries. This
particular Eclipse installation uses the M5 Linux-Motif stable build from April 16,
2002. This build and all other builds for Eclipse are found under the download
section at:

http://www.eclipse.org/

9

© Copyright IBM Corp. 2002. All rights reserved. 115

http://www.eclipse.org/

9.1 Prerequisite software for Eclipse
Eclipse requires a Java Runtime Environment (JRE) or Java Development Kit
(JDK) at version 1.3 or higher. The JDK installation instructions are discussed in
2.2.2, “Installing the IBM Java Developer Kit” on page 28.

Given that our Eclipse download is for Motif, we need Motif or a Motif substitute
plus QT in order to display Eclipse’s Graphical User Interface (GUI) from the
Linux host to the client machine. Our Motif substitute is Openmotif. Openmotif
and QT are standard packages that come with the SuSE distribution and they are
installed as part of the standard installation.

In addition, we need a Xserver installed on the client machine to complete the
GUI display connection. Examples of common Xservers are Hummingbird
Exceed and Cygwin/XFree86, which is a port of XFree86 to Cygwin. The
Hummingbird Xserver can be found at:

http://www.hummingbird.com/

The XFree86 server for Cygwin can be found at:

http://xfree86.cygwin.com/

The following packages were used in our setup to start our installation of Eclipse:

� JDK version 1.3

� Openmotif version 2.1.3

� QT version 2.3.0

9.2 Eclipse installation
The binaries that come with Eclipse do not work for Linux on zSeries at this time.
To complete the installation, the C source distribution must be recompiled. The
following sections describe the steps needed to compile and install Eclipse and
the Standard Widget Toolkit.
116 Linux on zSeries: Application Development

http://www.hummingbird.com/
http://xfree86.cygwin.com/

9.2.1 Rebuilding Eclipse

To rebuild from source, perform the following steps:

1. Unzip the source package:

unzip eclipse-SDK-20020416-linux-motif.zip -d /usr/local

2. Add /usr/local/eclipse directory to the PATH environment variable:

export PATH=/usr/local/eclipse:$PATH

3. Unzip the launcher source to the /usr/local/eclipse directory:

unzip launchersrc.zip

4. Compile the launcher source:

a. Change directory to the extracted library/motif directory:

cd library/motif

b. Customize the make_linux.mak file, assigning the MOTIF_HOME variable the
appropriate value.

c. Build the source tree. From /usr/local/eclipse, issue:

./build.csh

d. Replace the original eclipse with the newly created binary:

cp eclipse ../..

Note: These commands are specific to the M5 Linux-Motif stable build and
assume the eclipse executable will be written to the /usr/local/bin/eclipse
directory. We suggest that you place Eclipse in this directory for common use
by multiple users. However, the installation instructions can be used for a
stand-alone installation as well. Make adjustments accordingly if there is a
different build or if Eclipse is unpacked to a different directory

Note: We suggest that you update the /etc/profile.local file with this
command to make the command permanently available to users.

Note: For our installation, this was MOTIF_HOME=$(X11_HOME). This
variable should point to the directory containing the libXm.so.2 file.

Note: Be sure the script is executable before issuing this command.
 Chapter 9. Installing Eclipse 117

9.2.2 Build the Standard Widget Toolkit
The Standard Widget Toolkit (SWT) needs to be compiled to be compatible with
the newly installed Eclipse binary. The following steps outline the process:

1. Unzip the SWT source files in the SWT library directory:

cd /usr/local/eclipse/plugins/org.eclipse.swt/ws/motif
unzip swtsrc.zip

2. Customize the make_linux.mak file. Table 9-1 summarizes the required
variables and the values we used.

3. Build the library:

./build.csh

Table 9-1 Customized make_linux.mak variables for SWT build

9.3 Set up the environment
1. Make the swt-motif-2034.so module available to the $LD_LIBRARY_PATH.

This can be done by either:

ECLIPSE_ROOT=/usr/local/eclipse
ECLIPSE_MOTIF=$ECLIPSE_ROOT/plugins/org.eclipse.swt/ws/motif/library
export LD_LIBRARY_PATH=$ECLIPSE_MOTIF:$LD_LIBRARY_PATH

or

Copy the swt-motif-2034.so module to a path were it can be found (for
example, the JDK’s jre/bin directory).

Note: Be sure the script is executable before issuing this command

Attention!: If Gnome or KDE is not installed, this command will display
error messages. These can be ignored provided the
libswt-motif-2034.so module has been successfully created.

Variable Points to Value used

IVE_HOME Java home directory /opt/IBMJava2-s390-13

MOTIF_HOME Motif home directory /usr/X11R6

QT_HOME Qt home directory /usr/lib/qt-2.3.0
118 Linux on zSeries: Application Development

2. Export the DISPLAY variable to the Xserver IP address from the client on the
Linux host with the following command:

export DISPLAY=Xserver_IP_Address:0.0

3. Remove the Motif library references that come with Eclipse under the
/usr/local/eclipse directory with the following commands:

rm /usr/local/eclipse/libXm.so
rm /usr/local/eclipse/libXm.so.2
rm /usr/local/eclipse/libXm.so.2.1

9.3.1 Testing the installation
Make sure the Xserver is running on the client machine.

From the Linux host, type the following command at the Eclipse installation root
directory:

eclipse -vm Java_Jre_Bin_Command

where Java_Jre_Bin_Command is the Java command located on the JDK’s jre/bin
directory.

In our installation this command looks like:

eclipse -vm /opt/IBMJava2-s390-13/jre/bin/java

At this time the Eclipse initial GUI screen should appear on the client machine.

9.4 Installing the C/C++ Development Tools plug-in
The Eclipse Software Developer Kit (SDK) comes with the platform, the Java
Development Toolkit (JDT) plug-in, and the Plug-in Development Environment
(PDE). The JDT provides a full development environment for Java. The PDE
provides a way to develop Eclipse plug-ins while inside the Eclipse workbench.

Note: We suggest that you update the /etc/profile.local file to make the
change available to all users.

Note: The Xserver_IP_Address is the IP address of the client machine.
Therefore, this command should be done independent for each user. We
suggest the users update their own .profile with this command to make
the setting permanent. Make sure the client Xserver is running.
 Chapter 9. Installing Eclipse 119

In order to achieve a C/C++ development environment, the C/C++ Development
Tools (CDT) Plug-in needs to be installed. The code for this plug-in can be
downloaded from the projects option at:

http://www.eclipse.org/tools/index.html

The CDT consists of two parts: server and client. What we mean by that
statement is that code can be remotely developed from a client machine. If code
is developed remotely from a client machine, the server part of the CDT needs to
be installed on the host and the client code installed on the client. On the other
hand, if code is developed locally, then only the client part of the CDT needs to
be installed. Figure 9-1 shows one configuration that is possible using this setup.

Figure 9-1 CDT client/server configuration

To start the installation after downloading the code, type the following command:

unzip cdt-eclipse-R2-20020408.zip

Note: These installation instructions refer to the CDT download from April 8th,
2002. Adjust the commands according to the download you use.

Client machines running Eclipse
plus CDT client code

Server machine running
Eclipse plus CDT server
code
 - Applications and work space for
 client machines are managed by
 the host

Remote connection to host
120 Linux on zSeries: Application Development

http://www.eclipse.org/tools/index.html

9.4.1 Installing the CDT client
Follow these instruction to install the CDT client code:

1. Go to the directory where the CDT is unpacked. If the current directory is
where the cdt-eclipse-R2-20020408.zip file exists, type:

cd cdt

2. Unpack the client code to the Eclipse plugins directory. Under our setup this
command is:

unzip cdt-eclipse-R2-20020408-local.zip -d /usr/local/eclipse/plugins

At this time the Eclipse workbench should be able to create C/C++ projects from
the local machine.

9.4.2 Installing the CDT server code
If some people need to work remotely from the host, the CDT server should be
installed. The next set of instructions shows how to accomplish this task.

1. Go to the directory where the CDT is unpacked. If the current directory is
where the cdt-eclipse-R2-20020408.zip file exists, type:

cd cdt

2. Unpack the server code to the plugins directory under the installation
directory for Eclipse. Under our setup this command is:

unzip cdt-eclipse-R2-20020408-server.zip -d /usr/local/eclipse/plugins

3. Start the DSTORE server by running the server.linux script. Make sure the
PATH variable contains the IBMJava2 bin directory. The CLASSPATH variable
needs to be updated to include the server files. In our setup these variables
are set and the script is started with the following commands:

export PATH=/opt/IBMJava2-s390-13/bin:$PATH
PLUGINS=/usr/local/eclipse/plugins
DSTORE=org.eclipse.cdt.dstore
CPP=cpp.miners
J1=$PLUGINS/$DSTORE.extra.server/extra_server.jar

Note: This command makes and unpacks the installation files under the
cdt directory under the current directory.

Note: Respond A to replace all files if a prompt to replace any file is
displayed. This can occur if the client code is installed and later it is
decided that the server code is needed.
 Chapter 9. Installing Eclipse 121

J2=$PLUGINS/$DSTORE.core/dstore_core.jar
J3=$PLUGINS/$DSTORE.miners/dstore_miners.jar
J4=$PLUGINS/$CPP.miners/cpp_miners.jar
J5=$PLUGINS/$CPP.miners.parser/miners_parser.jar
export CLASSPATH=$J1:$J2:$J3:$J4:$J5:$CLASSPATH
$PLUGINS/$DSTORE.core/server.linux &

Once the DSTORE server is started, the DSTORE daemon needs to be started with
the daemon.linux script to allow for user connections (run as root to allow for
user authentication). In our setup, it could be started using:

/usr/local/eclipse/plugins/org.eclipse.cdt.dstore.core/daemon.linux &

Note: We took the default port (4033) to accept the connections. If the port
number needs to be changed or the procedure fails, look at the server.htm file
for further information. In our setup this file is located in directory:

/usr/local/eclipse/plugins/org.eclipse.cdt.cpp.docs.user/tasks/remote
122 Linux on zSeries: Application Development

Chapter 10. Configuring Eclipse

This chapter describes some guidelines, ideas, and facts to keep in mind while
working with Eclipse. They deal specifically with the way Eclipse works and
behaves under our particular stable build. Future builds and releases of Eclipse
may behave differently.

10
© Copyright IBM Corp. 2002. All rights reserved. 123

10.1 Starting Eclipse
There are some initialization parameters for starting Eclipse that are necessary
to launch the application. Some others are necessary for Eclipse to behave
properly under some circumstances. In this section we discuss some of these
parameters, plus a small procedure to make life easier.

10.1.1 The -vm option
In 9.3.1, “Testing the installation” we use the -vm parameter to start Eclipse. This
parameter is needed in order to specify the Java VM to run the Eclipse platform.
The location defaults to the ../jre/bin/java directory (relative to the executable)
if the command line option is not specified. This is not the case in our setup, so
we have to type the option as a command line argument. This option is also
important if a different Java VM needs to be specified either for support or
development reasons.

10.1.2 The -data option
The -data option specifies the working data directory for the running instance of
Eclipse. This option becomes important in a multi-user environment where there
is a common executable. By allowing developers to specify this option, we can
ensure that a developer does not inadvertently corrupt or use the wrong project.
By default, Eclipse creates and uses projects under the
.metadata/.plugins/org.eclipse.core.resources/.projects directory under
the current working directory if the -data option is not specified.

10.1.3 The -vmargs
The -vmargs option allows the user to pass a parameter directly to the Java VM.
For some Java VMs, passing a parameter with this option may be critical for
Eclipse to behave correctly. An example of a Java VM in this situation is the IBM
Developer Kit, Java™ Technology Edition VM. It is recommended to call eclipse
with the -vmargs -Xmx256M arguments to allow the Java heap to increase to
256 MB. This heap is usually recommended for large projects.

10.1.4 Other start options
The previously described options are the ones we consider to be of interest.
There are other options that can be specified to modify the behavior of Eclipse. A
complete list can be found in the Running Eclipse subsection under the Working
with a Team section of the Workbench User Guide online help.
124 Linux on zSeries: Application Development

10.1.5 Simplifying options
A simple trick to get away from constantly typing startup options is to build a
simple script file. Following is a simple procedure to accomplish this task.

1. Make a file called “myeclipse” with an editor like vi with the following
command:

vi myeclipse

2. Type eclipse and follow it with the parameters. For simplicity, let’s follow some
of the installation parameters in our installation section. Then save and close
the file.

eclipse -vm /opt/IBMJava2-s390-13/jre/bin/java -data $HOME -vmargs /
-Xmx256MB

3. Attach the directory where the myeclipse file resides to the PATH environment
variable. If the file is under the current directory this can be done with the
following command:

export PATH=$PWD:$PATH

4. Make the file executable with a command such as:

chmod 755 myeclipse

Let’s analyze what we are doing. We can call the myeclipse file from anywhere by
making it executable and by attaching its path to the PATH environment variable.
When the myeclipse script is called we are calling Eclipse with our own
parameters. In this case, we tell it where to find the Java VM. We also indicate we
want to create or use the projects under the
$HOME/.metadata/.plugins/org.eclipse.core.resources/.projects directory,
and that we want to allow the Java VM to increase its heap to 256MB.

10.2 Configuring Eclipse to use CVS
Eclipse works with CVS to provide a team development environment. In this
section, we describe a procedure for achieving a working environment between
Eclipse and CVS.

Eclipse and CVS, in a team environment, work on a principle called repositories.
A repository is a location where a code structure is stored. The team members
can then access the code in the repository in order to work with it. Eclipse uses
source code control mechanisms that are known to CVS to prevent conflicts that
arise when multiple people work on a project, as well as code release
mechanisms.
 Chapter 10. Configuring Eclipse 125

The first step to work with a CVS repository with Eclipse is to tell Eclipse where
the repository is located. We found some discrepancies on how to achieve this in
the current documentation, so this procedure may come in handy.

1. Bring up the CVS Repository Exploring Perspective. This is done through the
Window menu option. Click Window -> Open Perspective -> CVS
Repository Exploring.

2. Right-click in the working space of the CVS Repositories view. Select New ->
CVS Repository Location.

3. This brings up a a screen similar to Figure 10-1 on page 127. The screen shot
contains sample parameters particular to our installation for CVS. For more
information on CVS and our setup, look at 3.3, “Administering CVS” .

Following is a quick description on the parameters:

– Connection type can be pserver, ext, or extssh. In our CVS host setup we
use ssh as our authentication method. In this scenario we can either use
ext or extssh as our connection type from Eclipse. An ext connection from
Eclipse prompts the user for a userid and password every time a
connection is made to CVS from the place that Eclipse is launched. A way
to prevent the prompts for userid and passwords is to specify an extssh
connection from Eclipse. However, be aware that this connection is only
known by Eclipse and not CVS. The CVS administrator can provide the
information on the authentication method used by CVS.

– User and Password are the user ID and password of a user that has been
given authority to access the CVS repository. This information can be
obtained from the CVS administrator.

Note: Extssh is only known to Eclipse. This authentication method is
not known to CVS. CVS commands are not recognized by CVS when
issued on the command line when this mode has been established by
Eclipse. For example, if an extssh connection has been established by
Eclipse, a project has been checked out and resources has been
changed in Eclipse. See 11.4, “Using Eclipse with CVS” . The following
CVS command will not work:

cvs diff

This command produces a message similar to:

cvs diff: unknown method in CVSroot:
:extssh:eliuth@cvshome:/var/cvs
cvs [diff aborted]: Bad CVSROOT.
126 Linux on zSeries: Application Development

– Host is the name of the host machine that contains the CVS repository.
The user can specify the IP address of the CVS host machine as well, and
this may be the only way when problems with the DNS server arise.

– The connection port is the port through which the CVS server listens for
connections. If the default port does not work, contact the CVS
administrator to find the connection port. Chances are that the connection
port is not correct if the user gets a message stating that “Eclipse cannot
connect to host” while attempting the connection.

– Repository path is the path of the root repository for CVS. Refer to 3.7,
“Creating a project” to correlate the information that is displayed in
Figure 10-1.

4. To test the connection, click the Finish button. At this time the CVS repository
resources can be accessed from Eclipse.

Figure 10-1 Defining a CVS repository to Eclipse
 Chapter 10. Configuring Eclipse 127

10.3 Eclipse and editors
Eclipse uses default editors for code resources. The default editors are very
helpful, especially for Java and C/C++ resources. However, there are many
editors out there. Some editors are adored by code developers. Some others are
equally despised. Eclipse provides a way to specify a favorite editor to edit
resource files according to file types. Following is a procedure to have Emacs be
the default editor for C files.

1. From the main menu select Window -> Preferences.

2. In the Preferences window select Workbench -> File Editors

3. In the File types pane select *.c to change the default editor for this type of
files.

4. Click the Add button corresponding to the Associated editors pane.

5. In the Editor Selection window, select External Programs and click Browse.

6. Point the Filter file to where Emacs is located. In our installation, Emacs is
located in /usr/bin; therefore, our Filter input is /usr/bin/*

7. On the files pane, select emacs and click OK.

8. Click OK under the Editor Selection window.

9. Select emacs from the Associated editors pane and click the Default button.

10.Click OK in the Preferences window to activate the change.

Open a file inside a project that has a file type of c to test the above procedure.

10.4 Modifying Eclipse
The appearance and behaviors of Eclipse can be modified to suit user taste and
needs. The procedure described in the previous section is an example of such a
modification.

10.4.1 Workbench
Changing the default editor for a particular file type is an example of a workbench
configuration change. The workbench has other selections that allow for changes
as well. It is not our intent to go over every single selection since they are self
explanatory, documented in the online help, and follow the same procedure
described in 10.3, “Eclipse and editors” .
128 Linux on zSeries: Application Development

10.4.2 Perspectives and components
The behavior and appearance of perspectives and components can be changed
the same way that workbench can be configured.

The following items can be configured for specific behavior:

� Ant
� C/C++
� Debug
� Help
� Java
� LPEX Editor
� Plug-In Development
� Team

Each of these items have a list of selectable sub-items. Each can be configured
using the dame procedure described in 10.3, “Eclipse and editors” .
 Chapter 10. Configuring Eclipse 129

130 Linux on zSeries: Application Development

Chapter 11. Eclipse as an integrated
development environment

In this chapter we discuss Eclipse as a integrated development environment
(IDE). We start by looking at Eclipse concepts through the workbench. Then, we
advance our understanding by exploring the JDT, PDE, and CDT as
self-contained IDEs for Java, Plug-in, and C/C++ development. Along the way,
we demonstrate the use of other tools that can be integrated to enhance the
functionality of Eclipse.

11
© Copyright IBM Corp. 2002. All rights reserved. 131

11.1 Concepts
This section focuses on concepts that are essential to understand the Eclipse
working environment. We keep the discussion simple to provide a quick
overview. The online documentation provides more detailed information for those
who want to investigate further.

11.1.1 Workbench
The workbench is the window that is visible when Eclipse is running.

11.1.2 Perspective
Perspectives exist inside the workbench. The perspective is the working
environment within the workbench. Examples are the resource and JDT
perspectives.

11.1.3 View
Views exist inside a perspective. We can consider a view as a pane inside a
perspective. An example of a view is the navigator area which displays
information about the structure of projects.

11.1.4 Editors
Editors are usually found inside the editor view. They help the user manipulate,
edit, and change resources.

11.1.5 External editors
External editors are found outside the workbench. Eclipse provides a way to
specify a favorite editor for resource manipulation. More information can be found
in 10.3, “Eclipse and editors” on page 128.

11.1.6 Resources
Resources in Eclipse can be mapped directly to a directory file structure. Eclipse
resources are known as projects, folders, and resources. In a directory structure,
a project is similar to a directory, a folder is similar to directory inside a directory,
and a resource is similar to a file.
132 Linux on zSeries: Application Development

We can view this structure in another way. A project is the parent, which can
contain folders. A folder is a child of a project; it can contain other folders or
resources. A resource is a child of a folder.

11.1.7 Graphical concept view
Figure 11-1 illustrates the concepts in this section.

Figure 11-1 Graphical concept view

With respect to Figure 11-1, the workbench is the displayed window. The current
perspective is the Resource perspective. We know that because the window title
tells us. There are two active perspectives on the workbench: the Resource and
Java perspectives. We know that because of the icons on the left side. There are
four active views inside the Resource perspective: the Navigator, Outline, Editor,
and Tasks views. We can see the resources simpleProject, simpleFolder,
simpleFile, and .project file inside the Navigator view. We see that two

Resources inside the
Navigator window

Active
perspectives

Current active
perspective

Editor view - contents of
simpleFile

Menu bar Tool barWorkbench
 Chapter 11. Eclipse as an integrated development environment 133

resources are opened by the editor: simpleFile and .project. We can further see
that the current resource being edited is simpleFile because its folder tag inside
the editor view is active.

11.2 Using the Java Development Toolkit
In the previous section we introduced the principles upon which Eclipse works.
We can see the structure of a project at the resource level. However, notice that a
resource is just a resource to Eclipse. Resources do not produce any special
treatment at this level.

Now we turn our attention at the idea of a plug-in. A plug-in is an extension to the
platform that enhances its functionality. The JDT is a plug-in that comes as part
of the Eclipse installation and that enhances the functionality of the platform. In
this case it offers an IDE for the development of Java applications. So what is an
IDE, one may ask? An IDE is simply a development environment that allows
developers to design, create, build, debug, and distribute applications within a
working environment. Some of these functions may be missing in some IDEs, but
that is the basic idea. Armed with that definition, we now look at the JDT as an
IDE.

11.2.1 Menu bar and tool bar
In Figure 11-1 on page 133 we can see the menu bar for Eclipse. Start the
workbench if it is not already started. Activate the Java perspective by making the
following selections from the menu bar:

Window -> Open Perspective -> Java

A menu bar similar to the one on Figure 11-2 should be displayed.

Figure 11-2 JDT menu bar

When you compare the two figures, you see that the Java perspective has added
new functionality to the workbench. There are three new options on the menu
bar:

� Source allows the Java developer to add code functionality and it allows a fast
way to comment code.

� Refactor provides functions to quickly make system-wide code changes
without changing its initial behavior.

� Debug provides a test environment to check code.
134 Linux on zSeries: Application Development

From our initial definition of an IDE we can see how this is starting to make
sense. The JDT is a plug-in since it adds functionality. The definition can be
extended to assert that an IDE for Eclipse is a plug-in, but not all plug-ins are
IDEs.

We see similar changes when we compare the tool bars. This makes sense since
tool bars are usually shortcuts to functionality made available inside a menu bar
option.

11.2.2 JDT initialization
When working on a project, make certain that your environment is set properly.
Otherwise, the code may not work properly or it may not compile. There are two
variables in the preference window that affect the behavior of the JDT. These are
the classpath and the installed JREs variables.

The classpath variables instructs Eclipse to look for JAR files in the path
specified by these variables. Eclipse has three default classpath variables:
JRE_LIB, JRE_SRC, and JRE_SRCROOT. The path inside these variables is
decided by the path of the JRE being used. The user can add a variable to the
classpath and thus extend it. If code does not compile because it cannot find a
function or resource, this may be a good place to look for the problem.

Installed JREs variables can alter the way Eclipse behaves. In the preference
window the user can add a JRE location and select the JRE that Eclipse uses to
build and run Java programs. This option come in handy when the user wants to
test code under different environments or test functionality under different JREs.
It can also be considered a debugging tool if one runs into problems.

To make changes to these variable use the following steps:

1. From the menu bar click Window -> Preferences.

2. Expand Java by clicking on the expansion sign (+).

3. Select the individual variables under Java.

4. When the variables are selected, a corresponding right pane is presented to
make changes. Make the changes necessary using the functions in the right
pane.

11.2.3 JDT Java project
Let’s establish that this is not a tutorial on Java code development—there are
plenty of books that deal with that subject. The online documentation that comes
with Eclipse also talks about additional Java resources. We concentrate on
functionality and usability of the IDE in this section.
 Chapter 11. Eclipse as an integrated development environment 135

Start by opening the Java perspective with the following selections:

Window -> Open Perspective -> Java

Create a project by using the following steps:

1. Click the Create a Java Project icon on the tool bar.

2. Enter the name Prj when prompted for a name and click Finish.

3. Click the Create a Java Package icon on the tool bar.

4. Enter the name pkg when prompted for a name and click Finish.

5. Select the pkg package in the Packages view.

6. Click the Create a Java Class icon.

7. Enter Class1 in the name field. Select Public in the modifiers section. Select
public static void main(String[] args) and inherit abstract methods
under the method stubs selections. Click Finish

8. Select pkg in the Packages view.

9. Click the Create a Java Class icon.

10.Enter Class2 in the name field. Select Public under modifiers and only select
Inherit abstract methods in the Method stubs sections.

11.At this point the Packages view should look like Figure 11-3.

Figure 11-3 Packages view
136 Linux on zSeries: Application Development

We discuss this view later on this section. For now, we concentrate on our
application.

We are going to build an application that shows the power of the IDE. We
decided on a simple application that is composed of two classes. The first class
shows some Java polymorphic characteristics with the myprint function. The
correct function is called depending on the data type that is used. We use the
other class to demonstrate the class structure between classes inside a package
and projects. With that in mind, let’s build a simple application.

1. Click the Class2 icon in the Packages view. Notice that the IDE already
generated a stub for the class plus header documentation.

2. Enter the code shown in Example 11-1 using the editor view. Note the code
generation help capabilities that are available shown in Figure 11-4, which
illustrates a case where the spelling of the println function is forgotten.

Example 11-1 Class2 code

public static void myprint(String parm) {
 System.out.println("String parm = " + parm);
 }

Figure 11-4 Editor help

3. Click the Class1 class in the Packages view and enter the code shown in
Example 11-2. The IDE detects there is something wrong, and signals the
user that there is something wrong from the Packages view. Notice the x
signs around the objects. The Editor view can provide further analysis of the
problem: place the cursor on top of the offending function call to obtain this
information. Another level of analysis is provided if you click on the x sign on
the edge of the editor view next to the problematic function. When the x sign is
 Chapter 11. Eclipse as an integrated development environment 137

clicked on the Editor view, the Task window provides additional details about
the problem. This is shown on Figure 11-5.

4. You can correct the problem by telling the code you explicitly want the method
in Class2. Change the myprint(stringData) method call to
Class2.myprint(stringData) in Class1.

5. Save the resource by right-clicking the Editor view and selecting the Save
option. Note that this can be done as well by using the Ctrl-S shortcut key
combination.

Example 11-2 Class1 code

public class Class1 {
public static void main(String[] args) {

 int intData = 1;
 double doubleData = 1;
 String stringData = "Hello Redbook World";

 myprint(intData);
 myprint(doubleData);
 myprint(stringData);
 }
 public static void myprint(int parm) {
 System.out.println("Integer parm = " + parm);
 }
 public static void myprint(double parm) {
 System.out.println("Double parm = " + parm);
 }
}

138 Linux on zSeries: Application Development

Figure 11-5 Editor task error view

11.2.4 Running the application
At this time the application should not have any errors. If it does, the following
procedure will not work.

1. Make sure the Java perspective is active. The perspective is opened by
clicking Windows -> Open Perspective -> Java.

2. Click the “running man” icon on the tool bar to start the launch configuration
window.

3. Select Java application and click the New button.

4. Enter Redbook_configuration in the Name field.

5. Enter Prj in the Project field.

6. Enter pkg.Class1 in the Main class field.

7. Click the Run button.

8. The debug perspective is made active and the console view should look
similar to Figure 11-6 on page 140.
 Chapter 11. Eclipse as an integrated development environment 139

Figure 11-6 Console view

11.2.5 Debugging the application
Eclipse provides a debug environment for application development and testing,
holding true to our definition of an IDE. The following procedure is geared to help
the user debug the sample application.

1. Make the Java perspective active if it is not the current perspective by clicking
Window -> Open Perspective -> Java.

2. In the Editor window, double-click the edge of the editor where a breakpoint is
desired, as show on Figure 11-7 on page 141.

3. Select the Class1 object on the packages view. Click on the debug icon on the
tool bar and select the Reedbook_configuration under the Java Application
option on the launch configurations window. Note: The debug icon needs to
be selected. If the run icon is selected the application only runs and the break
point is not hit.
140 Linux on zSeries: Application Development

Figure 11-7 Setting breakpoints

4. Click the Debug button. Notice that the debug perspective is made current
and the process is halted at the break point. Navigate the code using the
debug toolbar provided on the debug view. Use the editor view to quickly
check for variable values. See Figure 11-8 for examples. The other views in
the perspective are designed to help debug the code by checking variables,
setting break points, and checking expression within the code. For more
information on debugging an application look at the Java Development User
Guide online documentation for Eclipse.
 Chapter 11. Eclipse as an integrated development environment 141

Figure 11-8 Debug and editor views

11.3 Using Eclipse with Ant
Eclipse, when generating plug-ins, automatically generates a build.properties file
and a plug-in.xml file. The information contained in the build.properties file is
used to create the plug-in.xml file, which in turn serves as input for Ant.

In our simple project example, these files are not generated. However, this does
not stop you from using Ant with your sample project. The following procedure
allows you to integrated Ant for compilation and distribution of your project:

1. Select the Prj project object on the Navigator view.

2. Right click and select New -> file to create a file under the Prj project.

3. Enter build.xml in the File name field on the New file window. Click Finish to
create the file.

4. Select the build.xml file on the Navigator window and enter the code shown
in Example 11-3 on page 143 on the Editor view for the file. The xml file
provides four options for Ant when it is invoked. These options are clean,
compile, dist, and init. Clean deletes the dist and build directories. Compile
compiles the source code and places the compiled code under a build/pkg
directory in relation to your Prj directory. Dist creates your distribution and
142 Linux on zSeries: Application Development

places it under the Prj/dist/lib directory. The file name that is created is
Prj-timestamp.jar. The timestamp is created by init every time Ant is run.

Example 11-3 Ant script

<project name="Prj" default="dist" basedir=".">
 <description>
 Build Prj project
 </description>
 <!-- set global properties for this build -->
 <property name="sourceloc" location="pkg"/>
 <property name="buildloc" location="build"/>
 <property name="distloc" location="dist"/>

 <target name="init">
 <!-- Create the time stamp -->
 <tstamp/>
 <!-- Create the build directory -->
 <mkdir dir="${buildloc}"/>
 </target>

 <target name="compile" depends="init"
 description="compile source code" >
 <!-- Compile the java code from ${sourceloc} into ${buildloc} -->
 <javac srcdir="${sourceloc}" destdir="${buildloc}"/>
 </target>

 <target name="dist" depends="compile"
 description="generate distribution" >
 <!-- Create the distribution directory -->
 <mkdir dir="${distloc}/lib"/>

 <!-- Put in ${buildloc} into the Prj-${DSTAMP}.jar file -->
 <jar jarfile="${distloc}/lib/Prj-${DSTAMP}.jar" basedir="${buildloc}"/>
 </target>

 <target name="clean"
 description="clean up" >
 <!-- Delete ${buildloc} and ${distloc} directories -->
 <delete dir="${buildloc}"/>
 <delete dir="${distloc}"/>
 </target>
</project>

5. Select the build.xml file and right-click it. Select Run Ant and select
Compile and dist in the Run Ant window. Click Finish. The Ant Console view
is displayed, with a result similar to Figure 11-9.
 Chapter 11. Eclipse as an integrated development environment 143

Figure 11-9 Ant console

This procedure is intended to quickly integrated Ant into Eclipse. Caution should
be taken when working with plug-ins since the xml file for the build process is
automatically generated. Manual build changes to the build.properties and
plug-in.xml files can be undone by Eclipse when auto generating these files.
There is a way to tell Eclipse to leave this file alone, but this is beyond the scope
of this exercise. For further information, see the PDE Guide online
documentation.

11.4 Using Eclipse with CVS
In a perfect world, we would all write code alone from our basements. Since this
is not a perfect world, we have to work with others when writing applications. In a
team environment, communication and understanding of the code structure is
vital when working in a project.

Teamwork gives us the speed to accomplish major tasks in less time, but it
comes at a price when handling code. One of these problems is that we need a
common repository for all developers. Release and check-in mechanisms are
vital to prevent people from overwriting one another’s changes. Eclipse interfaces
with CVS to minimize some of these problems.

The following procedure introduces CVS in combination with Eclipse as a source
code management mechanism. Let’s continue with the sample application to
incorporate a team concept.

1. Make a connection to a CVS repository. See 10.2, “Configuring Eclipse to use
CVS” on page 125 for instructions.

2. Make the Java perspective the current perspective and select the Prj project.

3. Right-click the Prj project and select Team -> Share Project.
144 Linux on zSeries: Application Development

4. Select the CVS repository in the Share Project window and click Next.

5. Select Use module name as project and click Finish to continue.

6. Select the Prj project item in the Synchronize - Outgoing mode view.
Right-click it and select Commit. Enter a comment on the Commit Comment
window and click OK.

7. Select the CVS perspective. Select the CVS repository. Right-click and select
Refresh View. The Prj project should be displayed, as shown in Figure 11-10.

Figure 11-10 CVS Repository view

8. Bring up another instance of Eclipse and point it to another working directory
with the -data command line option. The reason you want to do this is have a
workspace that doesn’t know about your Prj project. In essence, you are
simulating another user. An example is:

eclipse -vm /opt/IBMJava2-s390-13/jre/bin/java -data $HOME/ws2

9. Open the CVS Repository Exploring perspective by clicking on Window ->
Open Perspective -> CVS Repository Exploring.

10.Establish a CVS repository connection. Point this connection to the CVS that
has the Prj project.

11.Expand the CVS repository and locate the Prj project. Check out the project,
as shown on Figure 11-11 on page 146.
 Chapter 11. Eclipse as an integrated development environment 145

Figure 11-11 CVS check out

12.Make the Java perspective current by clicking Window -> Open Perspective
-> Java.

13.Note that the Prj project is now on the Navigator view. Edit the Class1 class
and enter a comment after the header documentation, such as the one
displayed on Figure 11-12. Save the file after entering the change.

Figure 11-12 Comment change

14.Select the Prj project from the Navigator view and right-click it. Select Team
-> Synchronize with Repository.

15.On the Synchronize - Outgoing Mode view, select Prj. Right-click it and select
Commit. Notice that only the Class1 object is detected.

16.Enter a comment on the Commit Comment window and click OK.
146 Linux on zSeries: Application Development

17.Go to the previous instance of Eclipse. Note that the change is not on the
Class1 resource.

18.Select the Prj project and right-click it. Select Team -> Synchronize with
Repository.

19.Note that the Synchronizing - Incoming Mode view detects the change that
was made to Class1.

20.Select the Prj project and right-click it. Select the Update from Repository
option. After precessing the change, Class1 shows the change made by
another user.

This is a small example on how to share resources. Other issues, like versioning
control, are discussed in detail in the online documentation that comes with
Eclipse. Refer to the online documentation for further information on how to use
CVS to control team projects.

11.5 Using the C Development Toolkit
The C Development Toolkit (CDT) is an Eclipse plug-in that serves as an IDE for
C and C++ application development. In this section we take a look at some
sample code that comes as part of the CDT installation. In 11.2.3, “JDT Java
project” on page 135 we demonstrated how to create and manipulate a project.
The basic concepts are the same for the CDT except for a few name changes in
the file structure. For example, in the JDT a directory is called a package. In the
CDT a directory is called a directory. However, it is the same file structure.

11.5.1 Sample project
The CDT plug-in comes with a sample application called “payroll.” This
application is discussed in detail in the online CDT documentation. The purpose
of this exercise is to show the reader how a project is structured and the
functionality that is provided by the IDE. Begin by bringing the sample payroll
project into the IDE using the following procedure:

1. Bring up the CDT perspective by selecting Window -> Open Perspective ->
Other, then choose C/C++ in the Select Probative window.

2. In the Navigator view, click the C/C++ Projects folder at the bottom of the
view. The title of the view should change to C/C++ Projects.

3. Select File -> New -> C/C++ Project from the menu bar.

4. In the Create a new project resource window, enter payroll in the project
name field.
 Chapter 11. Eclipse as an integrated development environment 147

5. In the Project resource location section there are three options:

– Default workbench location.
If this option is chosen the project is placed under a directory under the
current working space. The name of the directory is the name of the
project specified.

– Local directory
This option allows the user to specify a directory location on the local
machine where Eclipse is running.

– Host
The Host option allows the user to work on a remote machine that is
running the CDT server code. (Review “Installing the CDT server code” on
page 121 if necessary.) The user can specify a remote machine if that
machine is running the CDT server. The project resides on the host
machine and the processing occurs remotely on the host. Figure 11-13
shows a host connection that is asking for authentication from the user to
connect to the remote machine. Note that 4033 is the default port where
the server code waits for connections. The login window is displayed when
the browse button is clicked.

Figure 11-13 CDT host connection
148 Linux on zSeries: Application Development

Regardless of the connection being used, point the project location to where
Eclipse is installed:
./eclipse/plugins/org.eclipse.cdt.cpp.docs.user/sample/payroll.

This is where the sample code resides.

6. Click Finish. The C/C++ view should look like Figure 11-14. From this window
the user can look at the source code and make file.

Note: Lpex is the default editor for C and C++ file types. On our version of
Eclipse on zSeries, Lpex core dumps Eclipse. Use the procedure described in
10.3, “Eclipse and editors” on page 128 to change the default editor for these
files if you encounter this problem.

Figure 11-14 C/C++ payroll project view

11.5.2 Navigating code
You can double-click a specific file in the C/C++ Projects view and edit the file. A
faster and easier way to navigate the code is by parsing it. Select the payroll
project in the C/C++ Projects view and right-click it. Select Parse -> Begin
Parse. After some processing the Project objects view displays the objects that
are found in the code. From this view you can go directly to the code by
double-clicking an object. Figure 11-15 illustrates this procedure. The items
displayed in the Project object view can also be changed by clicking the double
triangle icon in the view.
 Chapter 11. Eclipse as an integrated development environment 149

Figure 11-15 Object editor view

11.5.3 Compiling the project
To compile the project, select the payroll project in the C/C++ Projects view and
right-click it. Select Build project. At this time the Output view shows the output
of the build. If you have a host connection, this build is done at the host machine.
Also note that after you build the project two new files appear on the C/C++
projects view. These files are payroll.o and payroll. These are the names
specified inside the makefile when building the project.

11.5.4 Running the code
Use the following procedure to run the code:

1. Change the view to the Command Launcher view by clicking the Command
Launcher folder ion the command view.

2. Type payroll in the command input field and click Run to execute the
application. Figure 11-16 shows this process.

Notice that the Output view contains the output from the application.

Tip: The Command Launcher can be use to input any valid Linux command;
the output of the command is displayed on the Output window.
150 Linux on zSeries: Application Development

Figure 11-16 CDT running payroll

11.5.5 Debugging the application
We encountered some problems using the debugging capabilities documented
by Eclipse with our version of the CDT. The main reason has to do with launching
the Lpex editor in our version. However, this will not stop us from providing a work
around. The following procedure describes how you can debug the payroll
application.

1. Get a favorite debugger. In our case we used the Data Display Debugger
(DDD), which can be downloaded from:

http://www.gnu.org/software/ddd/

2. Make sure the code is compiled with the -g compiler option in the makefile.

3. Go to the Command Launcher view and type ddd payroll. DDD should
display the code inside its environment. Then DDD’s functionality can be use
to debug the code. Figure 11-17 shows DDD being used to debug the payroll
application.

Command Launcher folder tag
 Chapter 11. Eclipse as an integrated development environment 151

http://www.gnu.org/software/ddd/

Figure 11-17 DDD view

11.5.6 Packaging and managing projects
The CDT uses autoconf to create and manage project configuration files. Using
autoconf solves portability problems that occur on different system platforms. Be
sure automake is found on the system before attempting to create configuration
files.

To start autoconf for the payroll project, follow this procedure:

1. Select the payroll project from the C/C++ Project view and right-click it. Select
autoconf and click Configure.

2. Choose Application for the type of deployment in the next window and click
Finish.

3. At this time the configuration files for the project are built along with other files
for documentation like AUTHORS, COPYRIGHT, Change.log, and INSTALL.

More information on autoconf and automake can be found at:

http://www.gnu.org/manual/autoconf/
152 Linux on zSeries: Application Development

http://www.gnu.org/software/autoconf/autoconf.html

http://www.gnu.org/manual/automake/

For more information on managing projects see the CDT online documentation
that comes with Eclipse.

11.6 Using the Plugin Development Environment
Eclipse provides a way to quickly develop plug-ins by providing the framework
necessary. While plug-ins can be developed and deployed using the JDT
perspective, this requires an extremely detailed understanding of the Eclipse
framework. The Plugin Development Environment (PDE) provides an alternative,
simpler way to create plug-ins. In this section we look at key components for
developing a plug-in for Eclipse using the PDE perspective.

11.6.1 Setting up the development environment
Use the following procedure to set up the environment for plug-in development. If
this is not done the generated code may not compile.

1. Select Window -> Preferences.

2. In the Preferences window, expand Plug-in Development and select Target
platform.

3. In the Target platform window, choose the application radio button and click
Select All to choose the required plug-ins for the application.

4. Click OK to accept the changes.

11.6.2 First plug-in
Use the following steps to build a plug-in using the templates already provided by
Eclipse.

1. Activate the PDE perspective by selecting Window -> Open Perspective ->
Other.

2. Select Plug-in Development from the Select Perspective window and click
OK.

3. Select File -> New -> Project.

4. Select Plug-in Development and Plug-in Project in the New Project window
and click Next.

5. In the next window, enter myplugin in the project name field and click Next.
 Chapter 11. Eclipse as an integrated development environment 153

http://www.gnu.org/software/autoconf/automake.html

6. In the next window, select Create a new plug-in using a code generation
wizard, and select Hello, World for simplicity. Click Next. On the next window
click Finish to accept the rest of the defaults.

At this time the Packages view should display the files that compose the project.

11.6.3 Making sense
To make sense of the procedure just completed, let’s start by restating our
definition of a plug-in. A plug-in is an extension to Eclipse that adds to its
functionality. This functionality is usually made available through the workbench.
Even though we are doing a simple Java println example called Hello something,
we should expect to use the workbench in some shape or form. Eclipse provides
a set of frameworks that allow developers to add to the workbench functionality.
The org.eclipse.ui.* package contains many of the application program
interfaces (APIs) to the workbench. In this example we implement some of these
interfaces to make this happen. See the Platform Plug-in Developer Guide that is
part of the Eclipse online documentation for an explanation of each API.

The Hello, World template that we used to create our application is a way to add
an action to the menu bar of Eclipse. When the user selects the new menu, it
provides the user with an action option. This option, in return, displays a window
with a message when selected. Figure 11-18 shows a sample run of the
application.

Figure 11-18 Sample run
154 Linux on zSeries: Application Development

Now we peek at how all this magic happens.

First we take a look at how the Sample Menu is created along with its Sample
action. When we create a plug-in, a plugin.xml file is created. Extensions are
specified using the graphical user interface for the plug-in.xml file, but we are
going to take a look at what is going on inside the file. View the source by
double-clicking the plugin.xml file on the Packages view. Then in the Plug-in
editor window click the source folder tag. You will see something similar to
Figure 11-20.

Figure 11-19 Build.xml source

Notice that this is an extension to org.eclipse.ui.actionSets. If we look at the
Platform Plug-in Developer Guide, we see that actionSets is the way that we add
menus to the tool bar. Further analysis of the source shows that we have a menu
and an action tag. Now all this is starting to make sense.

Now let’s look at the action tag content. We see the label that is displayed when
Sample Menu is clicked on the menu bar. We also see a class tag that references
myplugin.action.SampleAction. This is the class that implements SampleAction.
 Chapter 11. Eclipse as an integrated development environment 155

If we look at the code for SampleAction and look at its run method, we should
see the implementation. Figure 11-20 illustrates that is the case. It implements
the action by displaying a dialog box with myplugin Plugin title and the message
we want.

Figure 11-20 Plug-in implementation

11.6.4 Adding extensions
Now that we know how a plug-in works, we want to add extensions to one.
Editing the plug-in file is not the recommended way to add extensions to a plug-in
for several reasons. Not only is it hard work, but, more importantly, Eclipse may
overwrite the changes when the project is built.

Start by viewing the plugin.xml file by double-clicking it. In the Editor view, select
the extension folder tagt. Figure 11-21 is a graphical representation of the code
shown in Figure 11-19 on page 155 for extensions. At this time, you should have
enough understanding of how to use the workbench to create a similar layout. If
this is not the case, consult the PDE Guide online documentation that comes as
part of the help for Eclipse. It has a detailed description of how to accomplish this
task.
156 Linux on zSeries: Application Development

Figure 11-21 Plug-in extensions

11.6.5 Running the plug-in
The following procedure describes how to run the plug-in.

1. In the Packages view, select myplugin and right-click it.

2. In the Launch Configurations window, select Run-time Workbench and click
New.

3. Click the Plug-ins and Fragments folder and select the Choose plug-ins and
fragments to launch from the list option.

4. In the visible Plug-ins and fragments pane, click Select External Plug-ins and
then click Run.

This procedure will launch another instance of Eclipse. The reason why we want
to do that is to run a plug-in that is in the workbench but not yet installed. In
essence, we want to quickly test the plug-in.

11.6.6 Deploying a plug-in
The PDE Guide that comes with Eclipse’s online Help has a great section on how
to deploy a plug-in. Refer to that section to learn how to deploy plug-ins for
Eclipse distribution.
 Chapter 11. Eclipse as an integrated development environment 157

158 Linux on zSeries: Application Development

Part 3 Programming
techniques

In this part of the book, we discuss programming techniques based on the tools
presented in Part 1. We develop an address book sample application in two
ways: as a Java Web application using Jakarta Struts, and as a C/C++
stand-alone application using the Qt library. Then we describe how to package
and deploy the application.

Part 3
© Copyright IBM Corp. 2002. All rights reserved. 159

160 Linux on zSeries: Application Development

Chapter 12. zSeries as a development
platform

In this chapter, we introduce an example application to demonstrate the Linux on
zSeries development environment. We present an overview of the application,
and describe the environment used to develop the application.

12
© Copyright IBM Corp. 2002. All rights reserved. 161

12.1 Example applications
To demonstrate some of the programming techniques presented here, we
introduce two example applications:

� a Java Web application using Jakarta Struts,

� a C/C++ stand-alone application using the QT-Library.

These applications interact using the Java Native Interface (JNI). An architecture
overview is presented in Figure 12-1.

Figure 12-1 Application overview

12.1.1 Application overview
We examine several programming techniques and demonstrate those
techniques by example:

� The Java Web application, discussed in detail in Chapter 13, “Using the Struts
framework” on page 167, demonstrates application development using the
Jakarta Struts framework. It utilizes two persistence mechanisms to store and
retrieve data:

– The JDBC interface.

Business Logic
+ Control

View Persistence

HTTP

mmapX-Protocol

Web Browser

QT Library

Java Web
Application

C/C++
Stand-alone
Application

File-DB

RDBMSRDBMS

JDBC

JNI SQL
162 Linux on zSeries: Application Development

– The Java Native Interface, used to invoke a C shared library. The JNI
interface, in turn, utilizes static SQL to access the database (see
Chapter 16, “Concurrency in embedded SQL” on page 237).

� The C/C+ application, described in detail in Chapter 14, “Shared libraries and
more” on page 193, demonstrates several techniques specific to C
programmers:

– Using the Qt graphic libraries

– Creating and using shared libraries

– Using the mmap function

We discuss the application structure and how package the application for
deployment in Chapter 17, “Packaging applications for deployment” on page 251.

12.1.2 The development environment
A major advantage of developing on Linux for zSeries is the opportunity it
presents for consolidating the development environment onto a stable,
centrally-managed platform. In a typical environment, application developers
would not have root access on the machine. Installation and upgrades to
development tools invariably requires root access. This can present logistical
problems to the system administrator. For example, development machines may
be widely dispersed, and tracking software levels across multiple machines
becomes tedious.

In addition, application developers can face difficulties when working on a
common development machine. For example, Web-based development requires
a Web server. It is difficult for more than one developer to share a common Web
server because, for example, tracing the cause of application errors is harder,
and server restarts affect all developers.

Running Linux under zVM can help alleviate these problems because:

� Each developer can be assigned a Linux instance (minimizing adverse
interaction between developers).

� System administrators can centrally manage all instances.

In Figure 12-2, we illustrate the development environment used in this book.
 Chapter 12. zSeries as a development platform 163

Figure 12-2 The application development environment

The development environment has the following characteristics:

� Each developer is assigned a Linux instance running under zVM. The full set
of required development tools is installed on each developer’s instance.

� One Linux instance is used for integration test.

� The database server is installed on a separate Linux instance.

� The CVS repository runs on a separate Linux instance.

� A management instance connects all Linux instances:

– Linux instances exist in a distinct private subnet (10.1.1.0 for instance).

– Virtual CTC interfaces connect Linux images to the management server.

– The management server runs DNS for name and IP address resolution of
the private subnet.

– A single OSA interface (shared with zVM) connects the management
server to the intranet. This conserves both hardware resources and
intranet IP addresses (because the private subnet uses the reserved
10.1.1.0 network).

Developer Instances
Integration

Test CVS

Management Server
DNS
IP forwarder

Database

zVM

CTC connections

OSAOSA
164 Linux on zSeries: Application Development

– Using the iptables command, the management server uses IP forwarding
and network address translation (NAT) to route to and from the intranet.
See Chapter 11, “Network infrastructure design” in Linux on
IBM ^ zSeries and S/390: ISP/ASP Solutions,SG24-6299
for a description of how to set up NAT.
 Chapter 12. zSeries as a development platform 165

166 Linux on zSeries: Application Development

Chapter 13. Using the Struts framework

This chapter describes an example Web application created using the Jakarta
Struts Web application framework. Topics included are:

� How to implement an application in the Sruts framework

� Using Log4j to create logging messages

� How to use persistence in the Struts framework

13
© Copyright IBM Corp. 2002. All rights reserved. 167

13.1 The Struts application components
An address book Web application will be used to demonstrate the Struts
application framework. The application has two address book functions: add a
user and search for a user. Address book entries consist of users with a first
name, a last name, an e-mail address, and a phone number.

The application consists of:

� Model components

– Business Logic classes:

• User to manage address book entries. Users are stored and retrieved
by the persistence components, and acted on by the Struts Action
classes.

– Struts ActionForm classes:

• AddUserFormBean to validate the addUser form.

• SearchUserFormBean to validate the searchUser form.

� View components

– JSP pages:

• index.jsp - the application home page

• addUser.jsp - a form to add users

• searchUser.jsp - a form to search for users

• error.jsp - a page to handle unexpected errors

• log_error.jsp - an error logging page

� Controller components

– Struts Action classes:

• AddUserAction to process user additions

• SearchUserAction to process user searches

� Persistence classes

– ConnectionManager to manage database connections

– AddressBook - an abstract class to hide the underlying persistence
implementation

– JdbcAddressBook - class to implement persistence using JDBC

– JniAddressBook - class to implement persistence using the Java Native
Interface (JNI) to a C shared library
168 Linux on zSeries: Application Development

For a graphical version of the Struts framework operation, refer to Figure 6-1 on
page 85. We illustrate the framework using the add user scenario.

13.2 The model component
The model component is designed to isolate the business logic (as implemented
in the User class) from the Struts framework. This decoupling allows an entirely
different front-end (for instance, a Java application) to reuse the logic embodied
in the User class.

13.2.1 User class
The User class is implemented as a JavaBean and serves to mediate interaction
between the persistence layer and the Struts framework. Example 13-1
illustrates its implementation.

Example 13-1 Application business logic (User.java)

package com.ibm.itso.sg246807.bo;

public class User implements java.io.Serializable {
 private String firstname = "";
 private String lastname = "";
 private String email = "";
 private String phone = "";
 public User(String first, String last, String email, String phone) {
 this.firstname = first;
 this.lastname = last;
 this.email = email;
 this.phone = phone;
 }
 public User() { }
 public String getLastname() { return lastname; }
 public void setLastname(String lastname) { this.lastname = lastname; }
 public String getFirstname() { return firstname; }
 public void setFirstname(String firstname) { this.firstname = firstname; }
 public String getEmail() { return email; }
 public void setEmail(String email) { this.email = email; }
 public String getPhone() { return phone; }
 public void setPhone(String phone) { this.phone = phone; }

Tip: Although not mandatory, isolating business logic from the Struts
framework may promote reuse of your application classes. Whenever
possible, consider well-defined interfaces between Struts and your business
objects that decouple the framework from the application logic.
 Chapter 13. Using the Struts framework 169

 public String toString() {
 return new StringBuffer().append(firstname).append(", ")
 .append(lastname).append(", ")
 .append(email).append(", ")
 .append(phone).toString();
 }
}

13.2.2 ActionForm class
As introduced in Section 6.5.1, “Struts components” on page 84, applications
derive from ActionForm to enable creation of JavaBeans from HTML form input in
the framework. In Example 13-2, we show the implementation of an ActionForm
used to validate submission of the addUser.jsp form.

Example 13-2 Struts ActionForm (addUserFormBean.java)

package com.ibm.itso.sg246807.form;

import javax.servlet.http.HttpServletRequest;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMapping;

public final class AddUserFormBean extends ActionForm {
 private String firstname, lastname, email, phone;
 public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request) {
 ActionErrors errors = new ActionErrors();
 if (lastname==null || "".equals(lastname)) {
 errors.add("lastname",
 new ActionError("error.lastname.required"));
 }
 if (email==null || "".equals(email)) {
 errors.add("email",
 new ActionError("error.email.required"));
 } else {
 if (email.indexOf("@") < 0) {
 errors.add("email",
 new ActionError("error.email.invalid", email));
 }
 }

Note: Struts components are not referenced or imported in this class; this
isolates the User object from the Struts framework. The User class implements
java.io.Serializable to allow it to be stored in an HttpSession.
170 Linux on zSeries: Application Development

 return errors;
 }
 public String getFirstname() { return firstname; }
 public void setFirstname(String firstname) { this.firstname = firstname; }
 public String getLastname() { return lastname; }
 public void setLastname(String lastname) { this.lastname = lastname; }
 public String getEmail() { return email; }
 public void setEmail(String email) { this.email = email; }
 public String getPhone() { return phone; }
 public void setPhone(String phone) { this.phone = phone; }
}

The validate method ensures non-null, non-blank values for lastname and email
have been provided in the form. In addition, it checks the email value for the
presence of an ‘@’ character (a rudimentary check for valid e-mail format).

The HTML form on which the AddUserForm class operates is shown in
Example 13-4 on page 172.

13.2.3 Form validation and ActionErrors
The validate method performs validation prior to acting on the form
(corresponding to step 4 illustrated in Figure 6-1 on page 85). Errors are returned
as a collection of the ActionError instances. In the example, errors are
referenced by a unique key pointing to the actual error message text. This is an
important internationalization feature provide by Struts; further details about
internationalization are in the next section.

13.2.4 Internationalization and application resources
Internationalization (often referred as I18n) is built in to the Struts framework.
This mechanism is based on Java Internationalization features. For details on
Java Internationalization, consult:

http://java.sun.com/docs/books/tutorial/i18n/index.html

To provide language independent messages, code messages in a resource
properties file and refer to those messages by key. Example 13-3 shows the
resource properties used by the AddUserFormBean class in Example 13-2 to
display error message text.

Example 13-3 Resource properties (ApplicationResources.properties)

adduser.success=User has been created.
adduser.failed=User has NOT been created. Check log file for details.
searchuser.success=User(s) retrieved.
searchuser.failed=No users retrieved.
 Chapter 13. Using the Struts framework 171

http://java.sun.com/docs/books/tutorial/i18n/index.html

error.lastname.required=Lastname is required.
error.email.required=Email is required.
error.email.invalid=Email "{0}" not valid.
errors.header=Validation:
errors.footer=

13.3 The view component
The view component presents HTML forms for user input and subsequent
processing. The Struts framework provides custom taglibs to assist in the
rendering of HTML. Here we examine the struts-html taglib in more detail.

13.3.1 Struts-html taglib
Using struts-html tags simplifies the process of creating ActionForm beans.
Example 13-4 illustrates struts-html tags the framework will use in creating an
addUserFormBean class in Example 13-2.

Example 13-4 Using struts-html tags (addUser.jsp)

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %> 1
<html>
<head>
 <title>addUser.jsp</title>
 <html:base/> 2
 </head>
<body>
 <h2>Add User</h2>
 <html:errors/> 3
 <html:form action="/adduser" focus="firstname"> 4
 <table border="1">
 <tbody>
 <tr>
 <td>Firstname</td>
 <td><html:text property="firstname" size="20"/></td> 5
 </tr>
 <tr>
 <td>Lastname</td>
 <td><html:text property="lastname" size="20"/></td>
 </tr>
 <tr>
 <td>email</td>
 <td><html:text property="email" size="20"/></td>
 </tr>
 <tr>
 <td>Phone</td>
172 Linux on zSeries: Application Development

 <td><html:text property="phone" size="20"/></td>
 </tr>
 </tbody>
 </table>

 <input type="submit" name="adduserbutton" value="add">
 </html:form> 6
 <html:link href="/sg246807/">Home</html:link> 7
</body>
</html>

1. The struts-html taglib is defined to the JSP engine (see Section 6.4.2,
“Configuring taglibs” on page 82).

2. The html:base tag renders to an HTML <base> element. This can simplify
coding URLs on the page (by allowing all URL references to be relative).

3. The html:errors tag renders any errors reported in the ActionErrors
collection returned by AddUserFormBean validate method. In the event no
errors are returned, this tag renders to a null line.

4. The html:form tag renders an HTML <form> element.

5. The html:text tag renders an HTML <input type='text'> element.

6. An HTML </form> element is rendered.

7. The html:href tag renders an HTML <a href> element.

Note: Struts will render the action attribute to the form:

action="/webapp/adduser.do;jsessionid=nnnnnnn"

This enables the ActionServlet to handle the request on form submission
(see Section 13.6.3, “Configuring ActionServlet” on page 179).

Note: Input controls in the form (text, radio buttons, check boxes, and so
forth) are created with struts-html tags specific to that element. Attributes
on those tags map to their respective HTML options. The name attribute
maps the element to the appropriate data member of the ActionForm bean.
Be sure the name of these elements matches the corresponding data
member in the ActionForm bean.
 Chapter 13. Using the Struts framework 173

13.3.2 Mapping form input to ActionForm beans
Figure 13-1 illustrates the rendering of struts-html tags to HTML elements and
the mapping of those elements to the AddUserFormBean instance.

Figure 13-1 Mapping HTML form data to an ActionForm bean

13.4 The controller component
The controller component implements the application business logic. Much of the
function is provided by the Struts framework. In this section, we illustrate how the
add user function is developed, and how to configure the framework to recognize
this function.

13.4.1 Action class
Handlers are developed by inheriting from the Struts Action class. When a form
is to be processed, the appropriate Action instance perform method will be
invoked by the ActionServlet instance. Example 13-5 shows the implementation
that adds a user to the address book.

<input type="text" name="firstname" size="20" value="">

<input type="text" name="phone" size="20" value="">

<input type="text" name="email" size="20" value="">

<input type="text" name="lastname" size="20" value="">

<!-- HTML generated from adduser.jsp //-->

setFirstname(firstname)

setLastname(lastname)

setPhone(phone)

setEmail(email)

AddUserFormBean
174 Linux on zSeries: Application Development

Example 13-5 Struts Action (addUserAction.java)

package com.ibm.itso.sg246807.action;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionMapping;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.ibm.itso.sg246807.data.Addressbook;
import com.ibm.itso.sg246807.bo.User;
import com.ibm.itso.sg246807.form.AddUserFormBean;
import org.apache.log4j.Logger;

public final class AddUserAction extends Action {
 Logger log = Logger.getLogger(this.getClass());

 public ActionForward perform(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response) {
 ActionErrors errors = new ActionErrors();
 User aUser = new User();
 AddUserFormBean bean = (AddUserFormBean) form;
 aUser.setFirstname(bean.getFirstname());
 aUser.setLastname(bean.getLastname());
 aUser.setEmail(bean.getEmail());
 aUser.setPhone(bean.getPhone());
 try {
 Addressbook book = Addressbook.getInstance();
 book.addUser(aUser);
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("adduser.success"));
 } catch (java.sql.SQLException ex) {
 errors.add(ActionErrors.GLOBAL_ERROR,
 new ActionError("adduser.failed"));
 log.error("searchuser.failed", ex);
 }
 saveErrors(request, errors);
 return (mapping.findForward("success"));
 }
}

 Chapter 13. Using the Struts framework 175

ActionForward
On completion, perform returns an ActionForward to the ActionServlet
controller. In this manner, the Action object notifies the controller where control
should next transfer to. In our example, control will always pass to the handler
identified by the ActionMapping with key “success”. Configuration of
ActionMappings is discussed in 13.6.2, “Registering ActionMapping and
ActionForward” on page 179.

13.5 Logging using Log4j
The AddUserAction class utilizes Log4j to report error conditions; other classes
use Log4j to trace program execution (see Example 13-15 on page 189). The
complete Log4j reference manual can be found at:

http://jakarta.apache.org/log4j/docs/manual.html

We begin by introducing Log4j components:

Loggers Loggers enable independent application component
logging. They can be useful to selectively enable logging
in different application subsystems (for instance, enabling
in the model component while disabling controller
logging).

Appenders Appenders control log message destinations (console, log
files, or sockets, for example).

Layouts Layouts format log messages.

On startup, Log4j reads its configuration file to establish the appropriate Loggers,
Appender, and Layouts (configuration is discussed in 13.5.2, “Configuring Log4j”
on page 177). The address book uses a simple root Logger (control logging for
the entire application).

Note: The ActionForm bean is passed as a parameter to the perform method.
To access the specific bean for the handler, it is necessary to typecast to the
appropriate ActionForm sub-class.

Tip: Interaction with the persistence layer is mediated through the User
business object (note the book.addUser(aUser) method invocation). This
helps keeps the application logic decoupled from the Struts framework.
176 Linux on zSeries: Application Development

http://jakarta.apache.org/log4j/docs/manual.html

13.5.1 Using Log4j
Example 13-6 illustrates Log4j usage in application code.

Example 13-6 Using Log4j

import org.apache.log4j.logger; 1
public class Foo {
 static Logger log = Logger.getLogger(Foo.class); 2

 pubic Foo() {
 log.debug(“this is a debug msg”); 3
 log.info(“this is an info msg”); 4
 log.warn(“this is a warning msg”); 5
 log.error(“this is a warning msg”); 6
 log.fatal(“this is a error msg”); 7
}

1. Import the Log4j package.

2. Obtain a Logger instance (note the static Logger getLogger method takes a
Java Class parameter).

3. Invoke debug method to generate debugging messages.

4. Invoke info method to generate informational messages.

5. Invoke warn method to generate warning messages.

6. Invoke error method to generate error messages.

7. Invoke fatal method to generate error messages.

Each of the logging methods are overloaded to accept a second parameter of
type Throwable (this allows stack trace to be included with the log message).

13.5.2 Configuring Log4j
By default, Log4j will read a configuration file named log4j.properties
(illustrated in Example 13-7) located in the application root directory.

Example 13-7 Log4j configuration file (log4j.properties)

Development logging
log4j.rootLogger=DEBUG, stdout 1

Production logging
#log4j.rootLogger=INFO, stdfile, email 2

log4j.appender.stdout=org.apache.log4j.ConsoleAppender 3
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%r [%t] %p %c %x - %m%n
 Chapter 13. Using the Struts framework 177

log4j.appender.stdfile=org.apache.log4j.RollingFileAppender 4
log4j.appender.stdfile.File=sg246807_stdout.log
log4j.appender.stdfile.MaxFileSize=100KB
log4j.appender.stdfile.MaxBackupIndex=1
log4j.appender.stdfile.layout=org.apache.log4j.PatternLayout
log4j.appender.stdfile.layout.ConversionPattern=%r [%t] %p %c %x - %m%n

log4j.appender.email=org.apache.log4j.net.SMTPAppender 5
log4j.appender.email.SMTPHost=localhost
log4j.appender.email.From=tomcat4@lnxa.appdev.net
log4j.appender.email.To=maintenance@lnxa.appdev.net
log4j.appender.email.Subject=SG246807 Exception
log4j.appender.email.layout=org.apache.log4j.PatternLayout
log4j.appender.stdfile.layout.ConversionPattern=%r [%t] %p %c %x - %m%n

1. For development, logging is enabled for message level DEBUG and higher.
Messages are directed to Appender stdout.

2. For production, logging is enabled for message level INFO and higher.
Messages are directed to Appenders stdfile and email.

3. Appender stdout is defined to be the console, it uses a standard Layout, and
messages are formatted according to the defined ConversionPattern (see
the reference manual for formatting pattern specifications).

4. Appender stdfile is defined to be the file sg246807_stdout.log. Additional
parameters define log file size and backup frequency.

5. Appender email is defined to be an SMTP email message. Additional
parameters define the recipient, sender, and subject.

13.6 Struts framework configuration
We now discuss how to configure the Struts framework.

13.6.1 Registering ActionForm beans
To register ActionForm beans, add a <form-bean> stanza to the
WEB-INF/struts-config.xml file (in the <form-beans> section). Example 13-8
shows the stanza which registers AddUserFormBean (Java class
com.ibm.itso.sg246807.form.AddUserFormBean) using the name addUserForm.
178 Linux on zSeries: Application Development

Example 13-8 ActionForm configuration in WEB-INF/struts-config.xml

<!-- ========== Form Bean Definitions =================================== -->
 <form-beans>
 <form-bean name="addUserForm"
 type="com.ibm.itso.sg246807.form.AddUserFormBean"/>
 <form-bean name="searchUserForm"
 type="com.ibm.itso.sg246807.form.SearchUserFormBean"/>
 </form-beans>

13.6.2 Registering ActionMapping and ActionForward
To register ActionMappings, add an <action> stanza to the
WEB-INF/struts-config.xml file (in the <action> section). Associated with an
Action are ActionForwards (identified by a <forward> stanza). Example 13-9
shows the Action configuration for AddUserAction.

Example 13-9 ActionMapping configuration in WEB-INF/struts-config.xml

<!-- ========== Action Mapping Definitions ============================== -->
 <action-mappings>
 <action path="/adduser"
 type="com.ibm.itso.sg246807.action.AddUserAction"
 name="addUserForm"
 scope="request"
 input="/useradmin/addUser.jsp"
 validate="true">
 <forward name="success" path="/useradmin/addUser.jsp"/>
 </action>

13.6.3 Configuring ActionServlet
As a final step, the ActionServlet must be configured, and the application server
notified to direct HTTP requests to it.

Example 13-10 ActionServlet configuration in WEB-INF/web.xml

<!-- Action Servlet Configuration -->
 <servlet>
 <servlet-name>action</servlet-name> 1
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>application</param-name> 2

Note: Note the association of the AddUserFormBean to the AddUserAction
(using the name addUserForm defined in the <form-beans> section). This bean
is created in the addUser.jsp file (input="/useradmin/addUser.jsp").
 Chapter 13. Using the Struts framework 179

 <param-value>ApplResources</param-value>
 </init-param>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value> 3
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>validate</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>

 <!-- Action Servlet Mapping -->
 <servlet-mapping> 4
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>

1. Associates the Struts ActionServlet to name action.

2. Identifies the location of the application resource file.

3. Identifies the location of the Struts configuration file.

4. Maps URLs of the form *.do to the ActionServlet.

A complete description of all initialization parameters can be found at:

http://jakarta.apache.org/struts/api/index.html

See the javadoc section on ActionServlet.

13.7 The persistence layer
We now discuss adding persistence to the application. Relational databases are
commonly used to store data. When accessing a relational database using Java,
the JDBC interface is commonly used. It provides a standardized interface to a
wide variety of database implementations (enabling the application code to
180 Linux on zSeries: Application Development

http://jakarta.apache.org/struts/api/index.html

remain independent of that implementation). The complete JDBC reference can
be found at:

http://java.sun.com/products/jdbc/

In addition to JDBC, the address application implements a persistence layer
based on calls to a native C shared library. The shared library in turn executes
static SQL against a DB2 database. These alternative implementations are
represented in Figure 13-2.

Figure 13-2 The persistence layer implementation

13.7.1 Data abstraction in the persistence layer
To isolate the persistence layer implementation from the application, we use an
abstract Java class. Example 13-11 shows the Addressbook class the application
uses to interface to the persistence layer.

Example 13-11 The abstract AddressBook persistent class (Addressbook.java)

package com.ibm.itso.sg246807.data;

import java.sql.SQLException;

JDBCJNI

SQL

RDBMSRDBMS

persistence layer

shared library
 Chapter 13. Using the Struts framework 181

http://java.sun.com/products/jdbc/

import com.ibm.itso.sg246807.bo.User;
import com.ibm.itso.sg246807.ConfigurationManager;

public abstract class Addressbook {
 protected static Addressbook book;
 static {
 String connectionType =
 ConfigurationManager.getInstance().getProperty("connection.type");
 if (ConnectionManager.CON_NATIVE.equals(connectionType)) {
 book = new JniAddressbook();
 }
 if (ConnectionManager.CON_STUB.equals(connectionType)) {
 book = new StubAddressbook();
 }
 if (ConnectionManager.CON_POOL_STRUTS.equals(connectionType) ||
 ConnectionManager.CON_POOL.equals(connectionType) ||
 ConnectionManager.CON_SINGLE.equals(connectionType)) {
 book = new JdbcAddressbook();
 }
 if (book == null)
 throw (new IllegalStateException("Cannot instantiatiate“ +
 “ addressbook type " +
 connectionType));
 }
 protected Addressbook() {}
 public static Addressbook getInstance() throws SQLException {
 return book;
 }
 abstract public void addUser(User aUser) throws SQLException;
 abstract public java.util.Vector searchUser(User aUser)
 throws SQLException;
}

Note that the AddressBook expects subclasses to implement methods:

– addUser

– searchUser

13.8 The JDBC interface
In Example 13-12, we show the JDBC implementation for Addressbook - the
JdbcAddressbook class (examining only the methods relevant to add user).
182 Linux on zSeries: Application Development

Example 13-12 The JdbcAddressbook persistence class (JdbcAddressbook.java)

package com.ibm.itso.sg246807.data;

import java.util.Vector;
import java.sql.*;
import org.apache.log4j.Logger;
import com.ibm.itso.sg246807.bo.User;

public class JdbcAddressbook extends Addressbook {
 private static Logger log = Logger.getLogger(JdbcAddressbook.class);
 private ConnectionManager theConnectionManager;
 public JdbcAddressbook() {
 theConnectionManager = ConnectionManager.getInstance(); 1
 }
 public void addUser(User aUser) throws SQLException {
 Connection con = null;
 try {
 con = theConnectionManager.getConnection(); 2
 Statement stm = con.createStatement(); 3
 StringBuffer query =
 new StringBuffer("insert into adrbook values ('") 4
 .append(aUser.getFirstname())
 .append("','")
 .append(aUser.getLastname())
 .append("','")
 .append(aUser.getEmail())
 .append("','")
 .append(aUser.getPhone())
 .append("')");
 stm.executeUpdate(query.toString()); 5
 stm.close(); 6
 } catch (SQLException ex) {
 theConnectionManager.rollback(con, ex); 7
 throw (new SQLException());
 } finally {
 theConnectionManager.closeConnection(con); 8
 }
 }
}

1. The JdbcAddressbook constructor obtains the single instance of the
ConnectionManager class (used to manage connections to the database).

2. A database connection is obtained from the ConnectionManager.

3. An SQL statement handle (Statement) is obtained from the Connection.

4. An SQL insert statement is constructed using values from the User instance.

5. The insert statement is executed.
 Chapter 13. Using the Struts framework 183

6. Once executed, the Statement is closed (freeing any allocated resources).

7. In the event of an error, the unit of work is rolled-back (using the
ConnectionManager instance).

8. Finally, the Connection is released. This will either close the Connection
entirely, or return it to a pool (available for subsequent requests).

Connection pooling is discussed further in the next section.

13.9 Connection pooling
When using a relational database, an application must first establish a
connection to the database engine. Subsequent database operations utilize this
connection. On completion, an application is responsible for closing the
connection in order to free allocated resources (on both the server and the
client). The process of establishing a database connection can take a substantial
amount of time. (For operations that require one or two SQL operations, the time
required to connect may exceed the time required to execute the SQL
statements.)

Applications that wish to optimize performance should be aware of the overhead
involved in establishing database connections, and if possible attempt to
minimize the impact. One important technique is connection pooling, which
means that on startup, an application opens a pool of connections. When
servicing requests, rather than allocating a new connection (good only for the
duration of request servicing), the application will instead obtain a connection
from the available connections. On completion of the request, the connection is
returned to the connection pool. On application shutdown, all connections will be
released.

In our example, a separate class (named ConnectionManager) is responsible for
establishing connections, and pooling those connections. In Example 13-13 we
show the initialization of the ConnectionManager instance.

Example 13-13 Initializing a database connection - ConnectionManager.java

package com.ibm.itso.sg246807.data;
import java.sql.*;
import java.util.Properties;
import javax.sql.DataSource;
import org.apache.log4j.Logger;
import org.apache.struts.util.GenericDataSource;
import com.ibm.itso.sg246807.ConfigurationManager;

public class ConnectionManager {
 public final static String CON_SINGLE = "single";
184 Linux on zSeries: Application Development

 public final static String CON_POOL_STRUTS = "pool_struts";
 public final static String CON_NATIVE = "native";
 private static ConnectionManager manager;
 private static javax.sql.DataSource aDatasource;
 private static GenericDataSource strutsDataSource;
 private static Logger log = Logger.getLogger(ConnectionManager.class);
 private static native void nativeConnect(String connectname);
 private static native void nativeDisconnect();
 private static String mConnectionType;
 private static ConfigurationManager conf;
 static {
 manager = new ConnectionManager(); 1
 conf = ConfigurationManager.getInstance();
 mConnectionType = conf.getProperty("connection.type"); 2
 if (CON_NATIVE.equals(mConnectionType)) { 3
 String NATIVE_CONNECT_NAME = conf.getProperty("native.url");
 System.loadLibrary("JniAddressbook");
 nativeConnect(NATIVE_CONNECT_NAME);
 }
 if (CON_SINGLE.equals(mConnectionType)) { 4
 String JDBC_DRIVER_CLASS = conf.getProperty("db.driverclass");
 try {
 Class.forName(JDBC_DRIVER_CLASS);
 } catch (ClassNotFoundException ex) {
 log.error(JDBC_DRIVER_CLASS + “ not in classpath”);
 }
 }
 if (CON_POOL_STRUTS.equals(mConnectionType)) { 5
 strutsDataSource = new GenericDataSource();
 strutsDataSource.setAutoCommit(true);
 strutsDataSource.setDescription("DB Connection Pool");
 strutsDataSource.setDriverClass(
 conf.getProperty("db.driverclass"));
 strutsDataSource.setMaxCount(4);
 strutsDataSource.setMinCount(1);
 strutsDataSource.setUser(conf.getProperty("db.user"));
 strutsDataSource.setPassword(conf.getProperty("db.pass"));
 strutsDataSource.setUrl(conf.getProperty("db.url"));
 }
 }
 private ConnectionManager() {}
 public static ConnectionManager getInstance() { return manager; }
}

1. The single ConnectionManager instance is created as part the class
initialization.
 Chapter 13. Using the Struts framework 185

2. Connection configuration is read from a configuration file (see Example 13-14
for details on configuration). Connections are initialized based on those
parameters.

3. A native connection (discussed in Section 13.10, “The Java Native Interface”
on page 188) is requested.

a. The JNI shared library is loaded.

b. The JNI nativeConnect method is called to establish a connection.

4. A single, non-pooled connection type is requested. Using this connection
type, a database will be established on each request and discarded at
completion. The JDBC driver is loaded based on the configured driver name.

5. A pooled connection type is requested. Connections are reused across
requests and are managed by Struts (using the
org.apache.struts.util.GenericDataSource class). The GenericDataSource
is configured using input parameters. Some values to note are:

a. Maximum database connections is set to 4.

b. Minimum connections is set to 1.

A complete description of all configuration parameters can be found at:

http://jakarta.apache.org/struts/doc-1.0.2/api/index.html

See the GenericDataSource class documentation.

13.9.1 Connection configuration
ConnectionManager is configured from the sg246807.properties file (shown in
Example 13-14).

Example 13-14 Configuring connections (sg246807.properties)

Define postfix for the property names
com.ibm.itso.sg246807.ENVIRONMENT=dev 1

Development
Connection type: [native, single, pool_struts]
connection.type.dev=single 2
JDBC connection
db.user.dev=db2inst1 3
db.pass.dev=********
db.url.dev=jdbc:db2://10.1.1.136/sample
db.driverclass.dev=COM.ibm.db2.jdbc.net.DB2Driver
Native connection
native.url.dev=sample:db2inst1:ibmdb2 4
186 Linux on zSeries: Application Development

http://jakarta.apache.org/struts/doc-1.0.2/api/index.html

Production
connection.type.prod=pool_struts
JDBC connection
db.user.prod=db2inst1
db.pass.prod=*******
db.url.prod=jdbc:db2://10.1.1.136/ADRBOOK
db.driverclass.prod=COM.ibm.db2.jdbc.app.DB2Driver
Native connection
native.url.prod=ADRBOOK:db2inst1:ibmdb2

1. Configuration parameters may be set for development (dev) and for
production (prod) environments. Development values will be used.

2. Connection type is set to single, indicating no connection pooling will be
used.

3. JDBC parameters are assigned. The parameter definitions are as follows:

db.user.dev Userid used to connect to the DB2

db.pass.dev Password to supply

db.url.dev JDBC URL of the DB2 database

db.driverclass.dev DB2 JDBC driver to use (discussed in detail in the next
section)

4. JNI parameters are set.

DB2 JDBC Drivers
Two drivers are available with DB2: the JDBC net driver and the JDBC app driver.

Using the net driver, an application can access the DB2 server without installing
a DB2 client. However, the db2jstrt command must be executed on the server
machine. Figure 13-3 illustrates operation of the net driver. The net driver class
name (db.driverclass.dev) is:

COM.ibm.db2.jdbc.net.DB2Driver

To use the app driver, a DB2 client must be installed. The app driver performance
is better than the net driver, however. Figure 13-4 illustrates operation of the app
driver. The app driver class name (db.driverclass.dev) is:

COM.ibm.db2.jdbc.app.DB2Driver
 Chapter 13. Using the Struts framework 187

Figure 13-3 DB2 JDBC Net-Driver

Figure 13-4 DB2 JDBC App-Driver

13.10 The Java Native Interface
The Java Native Interface (JNI) framework allows Java classes to call functions
written in C or C++. In this section, we discuss a JNI interface which implements
persistence in a relational database using shared libraries written in C. See 14.2,
“Creating and using libraries” on page 196 for a discussion of the shared library
implementation. For an overview the static SQL implementation, see 16.1, “Using
embedded SQL in DB2 UDB applications” on page 238.

13.10.1 Using JNI in Java code
Use the following steps to incorporate native code in a Java program.

1. Begin by writing the Java program. Create a Java class that declares the
native method; this class contains the declaration for the native method. It
should also includes a static method which calls the native method.

2. Compile the Java program to create a Java class.

DB ServerApp Server

JDBC
Net-Driver DB2

UDB

db2jstrt
TCP/IP

DB ServerApp Server

JDBC
App-Driver

DB2
Connect

DB2
UDB

DRDA
188 Linux on zSeries: Application Development

3. Generate a header file for the native method using the javah tool with the
native interface flag -jni. Once you have generated the header file you have
the formal signature for your native method.

4. Write the implementation of the native method.

5. Compile the header and the implementation files into a shared library file.

In our example, we show the Java class (JniAddressBook - a subclass of
AddressBook) that invokes a number of native methods. These methods are all
implemented in JniAddressBook.c.

Example 13-15 JniAddressbook persistence class (JniAddressbook.java - partial)

package com.ibm.itso.sg246807.data;

import java.sql.SQLException;
import com.ibm.itso.sg246807.bo.User;

public class JniAddressbook extends Addressbook {
 private native void nativeAddUser(String firstname,
 String lastname,
 String email,
 String phone);
 public void addUser(User aUser) throws SQLException {
 nativeAddUser(aUser.getFirstname(),
 aUser.getLastname(),
 aUser.getEmail(),
 aUser.getPhone());
 }
}

13.10.2 Implementing the native code in C
The native C implementation is shown in Example 13-16.

Example 13-16 JniAddressbook native implementation (JniAddressbook.c - partial

#include <jni.h> 1
#include "com_ibm_itso_sg246807_data_JniAddressbook.h" 2
#include "itsodb.h" 3

JNIEXPORT void JNICALL
Java_com_ibm_itso_sg246807_data_JniAddressbook_nativeAddUser(4
 JNIEnv *env,
 jobject obj,
 jstring firstname,
 jstring lastname,
 jstring email,
 Chapter 13. Using the Struts framework 189

 jstring phone) {
 const char *str1 = (*env)->GetStringUTFChars(env, firstname, 0); 5
 const char *str2 = (*env)->GetStringUTFChars(env, lastname, 0);
 const char *str3 = (*env)->GetStringUTFChars(env, email, 0);
 const char *str4 = (*env)->GetStringUTFChars(env, phone, 0);
 struct ITSO_user newUser;
 ITSO_init_user(&newUser, str1, str2, str3, str4);
 ITSO_addUser(&newUser);
 (*env)->ReleaseStringUTFChars(env, firstname, str1); 6
 (*env)->ReleaseStringUTFChars(env, lastname, str1);
 (*env)->ReleaseStringUTFChars(env, email, str1);
 (*env)->ReleaseStringUTFChars(env, phone, str1);
 return;
}

1. Include the jni.h to define Java data types.

2. Include the header file generated by javah. This file is named using the
package and class name from Java implementation (JniAddressbook.java),
replacing ‘.’ characters with ‘_’.

3. Include the header file for the C shared library (defines ITSO_init_user and
ITSO_add_user functions).

4. Define the native function prototype.

a. JNIEXPORT void JNICALL defines a void return value callable by Java.

b. Java_com_ibm_itso_sg246807_data_JniAddressbook_nativeAddUser
defines the function name (Java + package name + class + method)
assigned by javah.

c. JNIEnv * is the first parameter passed to the function; jstring is the
datatype of a Java String.

5. GetStringUTFChars converts a Java String to C character array.

6. Every character array allocated by GetStringUTFChars should be freed by
ReleaseStringUTFChars.

The complete JNI reference is available at:

http://java.sun.com/products/jdk/1.2/docs/guide/jni/
190 Linux on zSeries: Application Development

http://java.sun.com/products/jdk/1.2/docs/guide/jni/

13.10.3 Building the JNI shared library
To create a shared library from the native C code, we use the make utility,
supplying the Makefile shown in Example 13-17.

Example 13-17 Makefile to build JNI shared library

CC = gcc
INCS = -I /usr/local/itsodb/include \ 1
 -I /opt/IBMJava2-s390-131/include

TARGET_DIR = ../../dist/lib 2

CFLAGS = -g -shared -L /usr/IBMdb2/V7.1/lib $(USRDEF) 3
LIBS = -litsodb -ldb2 4

all: libJniAddressbook.so 5

clean:
rm -f ${TARGET_DIR}/libJniAddressbook.so

libJniAddressbook.so: JniAddressbook.c
mkdir -p $(TARGET_DIR)
gcc $(CFLAGS) $(INCS) JniAddressbook.c $(LIBS) \

-o $(TARGET_DIR)/libJniAddressbook.so

1. The itso.h file is found in the /usr/local/itsodb/include directory.

2. The JNI shared library will be written to the ../../dist/lib directory.

3. The $USRDEF variable points to the directory location of the libitsodb.so
library.

4. The libitsodb.so library implements the ITSO_ SQL functions.

5. The JNI shared library is named libJniAddressbook.so.

In 14.2, “Creating and using libraries” on page 196, we discuss how to build the
libitsodb.so library, and 16.1.1, “Components of a DB2 UDB application” on
page 238 discusses how to create static SQL.

We need to add a rule in the application build.xml file to invoke make from Ant.
The rule is shown in Example 13-18.
 Chapter 13. Using the Struts framework 191

Example 13-18 Ant rule to invoke make

<!-- Create shared lib's which have to be in the LD_LIBRARY_PATH -->
 <target name="compile_c" depends="compile_java"
 if="native.support" description="Compile C part of application">
 <javah destdir="${src.c.dir}" classpath="${build.classes}"
 class="com.ibm.itso.sg246807.data.JniAddressbook"/>
 <javah destdir="${src.c.dir}" classpath="${build.classes}"
 class="com.ibm.itso.sg246807.data.ConnectionManager"/>
 <exec executable="make" dir="${src.c.dir}" failonerror="true"/>
 </target>

Note: No predefined Ant rule exists to invoke make. We define a rule using the
<exec> statement.
192 Linux on zSeries: Application Development

Chapter 14. Shared libraries and more

In this chapter we discuss some practical aspects of developing applications on
Linux for zSeries. We focus on:

� Creating and using libraries

� The mmap function

� Graphical user interface

The topics covered here are illustrated by the address book example.

14
© Copyright IBM Corp. 2002. All rights reserved. 193

14.1 Example overview
The address book is a simple application that allows users to add new entries or
search for existing ones. We built the application from reusable components.
Libraries described in this chapter also can be used in Java programs (see
13.10, “The Java Native Interface” on page 188). In this chapter the focus is on
the C and C++ parts. We describe the library itself and two standalone programs.

14.1.1 Components of the address book example
Figure 14-1 illustrates the application structure.

Figure 14-1 C and C++ part of the address book example

The address book example consists of the following parts:

1. Generic library wrapper (files libitso.c, libitso.h)

2. Poor man’s database using flat files (pmdb.c, pmdb.h)

3. Embedded DB2 SQL (sqldb.sqc, sqldb.h)

4. Multithreaded test program

5. GUI interface

mmap
function

Embeded
SQL

itsodb libitsodb.a
libitsodb.so

GUI addressbook

C++
qt2 library

pthread
example

db2example

DB2 UDB

~/data/adrbook.dat

1

2

4

3

5

194 Linux on zSeries: Application Development

14.1.2 Implemented functionality
This section briefly describes features of the components.

The address book library
This is the main part of our example and it implements two sets of interfaces:

� Poor man's database which stores data in flat files (utilizing the mmap
function).

� SQL database uses static DB2 SQL commands. In order to allow Java
programs to use this library, we provide mulitithreaded access with
connection pooling. We refer to this implementation as address book SQL
database.

Each of the interfaces implements the following functions:

create(fname) Creates a file-based database (does nothing in the
SQL database).

open(fname) Opens the database.

close() Closes the connection.

addUser(entry) Adds a new entry.

initSearch(lname) Initializes a search on last name. This function
returns a handle that should be used in the retrieve
function.

retrieve(handle,entry) Places the next record of the search result into the
entry field. Returns TRUE if the entry is a valid item
and FALSE if all records have been retrieved already.

We use these functions with the pmdb_ prefix when we refer to the poor man's
database implementation, or sqldb_ when we refer to the embedded SQL
version. For convenience, there are also macros with the ITSO_ prefix which point
to the first set of functions if ITSO_PMDB is defined, or to the second if not.

We show how we implement this library in the following sections:

� Section 14.2, “Creating and using libraries” on page 196

� Section 14.3, “A poor man’s database” on page 207

� Section 15.2.6, “Synchronizing threads” on page 226

� Section 16.1, “Using embedded SQL in DB2 UDB applications” on page 238

The db2example program
This program dynamically loads the library and starts a given number of threads.
Each of the tasks loads some data into the database in random periods.
 Chapter 14. Shared libraries and more 195

In this example we focus on the following topics:

� Creating and starting threads within an application (additional details are in
15.2.1, “Using threads” on page 220)

� Loading shared objects on demand (see 14.2.8, “Dynamically linked libraries”
on page 203 for details)

The Address book
GUI Addressable is a standalone application that can use both the poor man's
database and the SQL database functions (depending on whether the ITSO_PMDB
macro was defined during the compilation or not). By default, the makefile you
can find in the source directory creates a DB2 version of the program. If you want
to build the mmap example, invoke the make utility as follows:

make clean; make USRDEF=-DITSO_PMDB

In 14.4.1, “Graphical interface in a UNIX environment” on page 212 we describe
how Qt library can be used to build a front-end for your application.

14.2 Creating and using libraries
Libraries are collections of precompiled functions and data structures that are
ready to use in more than one program. There are three different ways of
incorporating them into your application:

static libraries Consist of compiled objects that are included in an
executable program file at the time of compilation

shared libraries Consist of compiled objects that are made available to
programs at the beginning of execution. Images that
reside in memory are shared between processes

dynamically linked libraries

Have the same format as a shared library but reload
on an explicit request from the process

In the next two sections, we describe how to create and use the libraries.

14.2.1 Preparing object files
To prepare an object file for your library, you should compile but not link it. The -c
option is essential. The following command produces the object file called
somefun.o from the source file:

gcc -c somefun.c
196 Linux on zSeries: Application Development

In Example 14-1 we use Makefile rules:

Example 14-1 Makefile rules to compile C source

pmdb.o: pmdb.c pmdb.h itsodb.h
$(CC) $(CCARG) -c $<

itsodb.o: itsodb.c itsodb.h
$(CC) $(CCARG) -c $<

We suggest that you compile all objects for your library with the same set of a
compiler options.

14.2.2 Inspecting object files

nm command
To check which symbols are implemented in an object file, use the nm command:

nm objectfile.o

Some of the more interesting information is related to the external symbols
(uppercase values in the second column):

T Function exported by the module
U Function used by the module
C Uninitialized global (non-static) variable
D Initialized global (non-static) variable
R Read-only data section

You can use these options:

-g To see external symbols only
-u To see undefined symbols only

This command works with static and shared libraries.

objdump command
The objdump command is useful for investigating the contents of the object file.
You can use the following options:

-d, -D Display assembler contents of executable (-d) or all (-D) sections

-S Display source code (if the file was compiled with -g option) mixed
with disassembly

-t Display the contents of the symbol tables

objdump displays a full list of operations when invoked with no parameters.
 Chapter 14. Shared libraries and more 197

14.2.3 Static libraries
Static libraries are created by the ar program from a set of compiled object files.
To produce a static library, we use the procedure described in the next section.

Preparing object files
Prepare an object file for your library by compiling but not linking it. The -c option
is essential. The following command produces the object file called somefun.o
from the source file:

gcc -c somefun.c

In our example we used these Makefile rules:

pmdb.o: pmdb.c pmdb.h itsodb.h
$(CC) $(CCARG) -c $<

itsodb.o: itsodb.c itsodb.h
$(CC) $(CCARG) -c $<

We suggest you compile all objects for your library with the same set of a
compiler options.

Creating the library
You can create the whole library from all your files in one step:

ar csr libyourname.a somefun1.o somefun2.o ..

The same set of option allows you to add new files to an existing library:

ar csr libyourname.a newfun1.o
ar csr libyourname.a newfun2.o

The most useful options are the following:

r Insert files into the archive (and replace exiting ones with the same
names).

x Extract members of the archive.

t Print the contents of the archive.

s Update an objects index in the archive (this option is equivalent to
running ranlib on the library).

d Delete modules from the archive.

Note: Both types of libraries also can be created by the libtool program,
which performs the same steps, but can apply options appropriate for your
environment. Refer to the info system binutils -> libtool for details.
198 Linux on zSeries: Application Development

Using static libraries
A static library is simply a collection of files included during the linking phase (see
1.2.4, “Compilation stages” on page 7). To include a static library in a executable,
specify its:

Name Using the -l option
Location Using the -L option

Do not include the lib prefix or the .a extension in the name. If the static library
resides in the /usr/lib or /lib directories, do not specify the -L option (these
directories are in the linker’s standard search path).

To include the static library /myproject/libitsodb.a, link your executable as
follows:

gcc -o myprog myprog.o objectfile.o -L/myproject/lib -litsodb

To include the static library /usr/lib/libitsodb.a, simply link as:

gcc -o myprog myprog.o objectfile.o -litsodb

When creating the executable, gcc searches for the main symbol and
subsequently adds other references as needed. The search order for symbols is
determined by the order specified on the command line (for both object and
library files). The standard C libraries are searched last. This allows you to
provide replacement implementations for standard functions. For example, to run
your program with a different implementation of the malloc function, simply
include the library or object file on the command line.

14.2.4 Shared libraries
Shared libraries are loaded into memory at program execution time. As a
consequence, an executable which refers to a shared library does not need to be
recompiled when that library is changed, provided the interface has not changed
(this provides backward compatibility).

Additionally, shared libraries conserve system memory: only one copy of the
library text code is in memory. That copy is shared between all processes
accessing that shared library.

Tip: To track memory leaks, try using Electric Fence, a replacement for the
standard malloc libraries (written by Bruce Perens). You can download it from:

ftp://ftp.perens.com/pub/ElectricFence/
 Chapter 14. Shared libraries and more 199

http://www.perens.com/FreeSoftware
http://www.perens.com/FreeSoftware

All variables declared in a shared library are stored in process-local memory.
This means each process maintains its own copy of shared library global
variables and those variables cannot be modified by another process. (This may
not be true of other non-UNIX operating systems.)

The process of loading shared libraries is quite complicated and can lead to a
performance penalty. However, because the size of an executable can be
reduced by using shared libraries and because the library may have been
previously loaded, there can be a performance improvement. As a rule of thumb,
shared libraries are best used when the cost of loading the library is low
compared to the amount of time spent executing library code. For example, if
your executable calls a library function only once, it may be better to use a static
library instead (static library functions are included in the executable during the
link phase and do not incur the cost of execution-time loading). If your executable
makes repeated calls to library functions, it may be better to use shared libraries
(the loading cost is low relative to execution time, the size of the executable may
be smaller, and the shared library may already have been loaded into memory).

Before we describe how to create shared libraries, let’s have a look at some
usage considerations.

14.2.5 Using shared libraries
A shared library is not loaded by the application, but rather by the operating
system loader. (This process depends on an executable format and is
system-dependent. Shared libraries are loaded in different ways on Linux, AIX,
and OS/390 UNIX). On Linux, the loader is named ld-linux.so and it relies on
the ELF object format. The loader is a special library implicitly linked to every
program that uses shared objects. When an executable using shared libraries
starts, the loader is responsible for loading all required libraries.

Note: In execute mode, no process may overwrite the text section of a shared
library.

Note: ld-linux.so has no lib prefix. It can be run as a standalone program in
order to start an application with preloaded objects.
200 Linux on zSeries: Application Development

Shared library names
Program-Library-HOWTO1 defines the categories of library names:

realname The name of the file that is produce by linker. Names follow the
convention: libname.so.major.minor.release

where:

name is the name of the library

major is the version number (it should be changed
whenever definition or behavior of exported
symbols is changed)

minor is the lower version number (optional)

release is the release (optional).

soname The name used by the application in selecting which realname
to load. Names follow the convention: libname.so.major

linkname The name specified at the linking stage (omitting the lib prefix
and .so suffix). Names follow the convention: libname.so

The libraries are placed in the lib (/usr/lib or /lib) directory using their
realname. The soname and linkname are symbolic links according to the
convention:

– soname points to the proper implementation of the library version major.
– linkname points to this version of the library to be used during compilation.

Loader and ldconfig
When it is required to load a library, the loader consults (in this order)
/etc/ld.so.preload and a cache stored in /etc/ld.so.cache. The cache is an
index that tells the loader where a library can be found. It is provided as an
efficiency mechanism. The cache is built using the ldconfig command:

 ldconfig -v dir1 dir2 dir3 ...

The cache is created by examining the following:

– Command line parameters dir1 dir2 dir3 ..
– The file /etc/ld.so.conf
– Trusted directories /usr/lib and /lib.

When searching through directories, ldconfig not only appends the library path
to the cache, but also creates a proper link to it (in soname style).

The linkname entry must be created explicitly on the library installation.

1 Linux how-to files can be found in almost every distribution. You can also download files (in various
formats: html, pdf, ps) from http://www.tldp.org/docs.html
 Chapter 14. Shared libraries and more 201

http://www.tldp.org/docs.html#howto

Environment variables
Environment variables that change the behavior of the loader are:

LD_PATH_LIBRARY A colon-separated list of directories where the loader
searches for a library before searching the cache.

LD_PRELOAD A colon-separated list of libraries (full or relative paths)
to be loaded before the loading default libraries.

LD_DEBUG Turns on tracking of the ld function. Set this to see all
possible libraries to be loaded.

14.2.6 Building shared libraries
Prior to building a shared library, all functions to be included in an executable
should be precompiled and stored in object files. To shorten the time required to
load a shared library, an option to produce position-independent code (the -fPIC
option) should be used when producing an executable. Do not use options like
-fomit-frame-pointer if you want to preserve hints for a debugger.

Building a shared library is a straightforward process2:

 gcc -shared -o libname.so.mj.mi.rl -Wl,-soname,libname.so.mj \
somefun1.o somefun1.o -lusedlib1 -lusedlib2

Options specify:

-o The output file name specified in realname format as described
previously.

-Wl Parameters passed to the linker, in this case, the soname
parameter (commas will be replaced by spaces).

14.2.7 Investigating shared object dependencies
The ldd command prints the shared library names required by each program or
shared library specified on the command line. All actual settings, like LD_PRELOAD
or LD_LIBRARY_PATH, are taken into account.

$ldd ../db2driver/db2driver
libpthread.so.0 => /lib/libpthread.so.0 (0x40025000)

2 If you plan to distribute your library on various platforms you may consider use of libtool.

Note: We advise you to set soname (using the -Wl option in the preceding
example) when creating shared libraries. When loading an application, the
linker will load the shared library using sonames. If you do not specify soname,
the loader will use the name specified during compilation (which may not be
the shared library version intended by the application).
202 Linux on zSeries: Application Development

libdl.so.2 => /lib/libdl.so.2 (0x4003b000)
libc.so.6 => /lib/libc.so.6 (0x40040000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

14.2.8 Dynamically linked libraries
Dynamically linked libraries (DLL) are the same shared objects described
previously. The difference is in when and how they are made available to a
program. DLLs are not automatically loaded into memory by the loader. Instead,
they are explicitly loaded by an application. It is the application’s responsibility to
resolve all symbols in the DLL it loads. The advantage of using DLLs is that the
application can decide which module is to be loaded and when it should be
loaded (determined at execution time). For instance, an application might read a
configuration file to determine which library to load in order to implement a given
functionality. This kind of library is often used to provide optional features that are
unknown at compilation time. (For example, DB2 and MQSeries exits are
implemented in this way.)

Now we describe the APIs you use to explicitly load libraries from your
application. To use these functions add the following include directive to your
source files:

#include <dlfcn.h>

and link your program with the ld library:

gcc -o myprog myprog.c -ldl

Dynamic loading of the libraries was used in our db2driver example (relevant
fragments are presented in Example 14-2).

Example 14-2 Loading shared objects (db2driver.c)

01: #include<dlfcn.h>
02: ...
03:
04: int (*sqldb_open_f)(char*);
05: int (*sqldb_close_f)();
06: int (*sqldb_addUser_f)(struct ITSO_user *);
07: int (*sqldb_initSearch_f)(const char *);
08: int (*sqldb_retrieve_f)(int, struct ITSO_user *);
09:
10: main(int argc, char *argv[]){
11:
12: int i;

Important: ldd internally executes the program and debugs its output. Do not
execute ldd on programs of unknown origin.
 Chapter 14. Shared libraries and more 203

13: void *lib=dlopen("libitsodb.so",RTLD_LAZY);
14: char *error;
15:
16: if(!lib){
17: fprintf(stderr,"Error while opening library:%s\n", dlerror());
18: exit(1);
19: }
20:
21: fprintf(stderr,"Resolving symbol :%s\n","sqldb_open");
22: sqldb_open_f = (int (*)(char *)) dlsym(lib, "sqldb_open");
23: if ((error = dlerror()) != NULL) {
24: fprintf (stderr, "%s\n", error);
25: exit(1);
26: }
27: /* main part of the program */
28: ...
29: dlclose(lib);
30: }

Opening libraries
To open a library file, use the following function:

void *dlopen (const char *filename, int flag);

If the filename does not begin with a "/", the following directories are searched:

– Colon-separated list in LD_LIBRARY_PATH environment variable
– Libraries cached in /etc/ld.so.cache
– /usr/lib
– /lib

The second parameter flag can be set to:

RTLD_LAZY Resolve undefined symbols as code from the dynamic
library is executed.

RTLD_NOW Resolve all undefined symbols on dlopen call.

RTLD_GLOBAL Makes the symbols from the library available to
subsequently loaded ones. This flag is ORed with
RTLD_NOW or RTLD_LAZY (for instance,
RTLD_LAZY|RTLD_GLOBAL)

If dlopen fails, it returns NULL.

Tip: The current executable file is opened if the filename is NULL.
204 Linux on zSeries: Application Development

Symbol lookup
Before using an object from a library, an executable must look for its symbol and
store a reference to that symbol in a variable. Example 14-2 on page 203 shows
how you can declare variables that point to functions (lines 04-09). The dlsym
function searches the library for a symbol and returns its address (line 22 in our
example).

 void *dlsym(void *handle, char *symbol);

Releasing libraries
Use the dlclose function to inform that your application no longer needs the
library. A reference count is maintained and the library is unloaded when the
count goes to zero.

int dlclose (void *handle);

Checking for errors
If any of the functions described above fails, an error message is returned by
dlerror.

const char *dlerror(void);

14.2.9 Include files
When you create the library, all the symbols you would like to export should be
declared in the header file supplied with the development version of the library.
There are three versions of your library:

1. Source code distribution

2. Development distribution, which includes compiled libraries, header files, and
some piece of documentation

3. Runtime, which is the library as shared object

The variables, functions, and data types that are exported should be declared as
extern ones. If a function or a variable should not be exported, define it as
static.

Note: This message is returned only once. Subsequent calls will return NULL.
You should store the returned value in a variable, as shown in line 23.
 Chapter 14. Shared libraries and more 205

To prevent the compiler from including your header files multiple times, surround
the header file with the following preprocessor statements:

#ifndef FILENAME_H
#define FILENAME_H
/* your definitions */
#endif

The C++ language allows a programmer to define more than one function with
the same name provided that they use different data types for parameters or
return values. Since the standard linkers distinguish symbols (functions being
one type of symbol) only by name, a different naming convention is used by the
C++ compiler. The C++ function names includes the data types separated by an
underscore character (_).

If your library is pure C code (like the address book library described here), you
should provide a proper header to use it in the C++ programs. All definitions
should be surrounded with the following construct:

extern "C" {
/* your definitions */
}

A C++ compilation may by identified with a __cplusplus flag, so often header
files look like the one shown in Figure 14-3.

Example 14-3 Header file template.

#ifndef FILENAME_H
#define FILENAME_H

#ifdef __cplusplus
extern "C" {
#endif

/*external declarations goes here*/

extern int mylibfun(int);
#ifdef __cplusplus
}
#endif

#endif
206 Linux on zSeries: Application Development

14.3 A poor man’s database
The basic facilities used to store data in Linux are files. The most commonly used
functions to manipulate file data are write and read. In this section, we describe
a different approach. File contents are mapped to the process address space
and manipulated in memory. This solution is used in a poor man’s version of the
address book database.

14.3.1 Memory mapped files
We use the mmap function to implement the file-based version of the address book
library. This system call has several advantages over the read/write combo:

� The file contents are not buffered by the kernel.

� Only one copy of the data may reside in the memory. When considering the
double buffering that occurs when running as a Linux guest under zVM, this
can lead to a big performance improvement.

Example 14-2 illustrates a memory-mapped file accessed by two processes.

Figure 14-2 Mapping files in Linux processes

PID:324

process
stack

write(...)
printf(...)
main(...)

addressbook

process
private

memory

opened
files

program code:
~/bin/addressbook

PID:874

process
stack

write(...)
printf(...)
main(...)

addressbook

program code:
~/bin/addressbook

process
private

memory

opened
files

single file image
in memory

mapped
file

mapped
file

maped file:
~/data/adrbook.dat
 Chapter 14. Shared libraries and more 207

The mmap call looks as follows:

void *mmap(
void *start,
size_t length,
int prot ,
int flags,
int fd,
off_t offset);

Parameters are defined as:

start Specifies where within the process address space the file is to be
mapped. This parameter is a hint only and often is set to 0. If you
provide a value, remember to obey the Linux for zSeries
addressing rules and align the address to the page size.

length Size of mapped data. You should allocate enough memory to
accommodate the mapped file size before calling mmap.
Otherwise the application may terminate with the SIGBUS signal.

prot Sets the memory protection access (must be compatible with the
mode in which the mapped file is opened):

PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

PROT_WRITE Pages may be written.

PROT_NONE Pages may not be accessed.

flags At least one of the following two must be specified:

MAP_SHARED Share this mapping with all other processes
that map this object. Writing to the region is
equivalent to writing to the file. The file itself
may not be see updates until the msync or
munmap functions are called.

MAP_PRIVATE Create a private copy-on-write mapping.
Writes to the region do not affect the original
file.

Other flags may be specified (see the man page for mmap). One of
the flags is MAP_LOCKED, which prevents the mapped data from
being swapped.

Note: You can get the page size for your architecture with the getpagesize
call. In case of Linux on zSeries, it is 4096 bytes.
208 Linux on zSeries: Application Development

The sample code using mmap is presented in Example 14-4.

To close the mapped file, you should call unmap and then close the file as shown
in lines 49-53.

int munmap(void *start, size_t length);

Parameters are defined as:

start Specifies the beginning of the memory to unmap
length Specifies the size of the memory to unmap

Example 14-4 Using mmap (pmdb.c - fragments)

01: #include"stdio.h"
02: #include"unistd.h"
03: #include"errno.h"
04: #include"sys/mman.h"
05: #include"sys/types.h"
06: #include"sys/stat.h"
07: #include<fcntl.h>
08:
09: struct pmdb_info{
10: int entries;
11: };
12:
13: #define MAXENTRIES 1000
14: #define MMAP_SIZE (sizeof(struct ITSO_user) \
15: *MAXENTRIES+sizeof(struct pmdb_info))
16:
17: int mmap_fd;
18:
19: static void *mmap_data;
20: static struct pmdb_info *info;
21: static struct ITSO_user *users;
22:
23: /* ... */
24:
25: int pmdb_open(char *fname){
26:
27: mmap_fd = open(fname, O_RDWR);
28:
29: CHECK_WITH_RETURN((mmap_fd < 0), -1);
30:
31: mmap_data=mmap(NULL,

Note: You can use also mlock to disable paging for the memory in the given
range. See the mlock man page for details.
 Chapter 14. Shared libraries and more 209

32: MMAP_SIZE,
33: PROT_READ|PROT_WRITE,
34: MAP_SHARED,
35: mmap_fd,
36: 0);
37:
38: CHECK_WITH_RETURN((mmap_data == MAP_FAILED) , -1);
39:
40: info = (struct pmdb_info *) mmap_data;
41: users = (struct ITSO_user *) (mmap_data + sizeof(struct pmdb_info));
42:
43:}
44:
45: /* ... */
46:
47: int pmdb_close(char *fname){
48:
49: if(mmap_data > 0)
50: munmap(mmap_data,MMAP_SIZE);
51:
52: if(mmap_fd >= 0)
53: close(mmap_fd);
54:
55: mmap_fd=0;
56: mmap_data=0;
57: }
58:
59: /* ... */

14.3.2 Synchronizing memory and disk storage
The msync function writes changes to the memory image back to disk. Without
this call, there is no guarantee that changes will be preserved.

msync syntax
The msync function has the following syntax:

int msync(const void *start, size_t length, int flags);

Parameters are:

start Beginning of the memory to be written to disk. This address must
be aligned to the page size.

length Amount of data to be written.
210 Linux on zSeries: Application Development

flags Must be one of the following:

MS_ASYNC Specifies that an update is to be scheduled,
but the call returns immediately

MS_SYNC Asks for an update and waits for it to
complete.

Optional flags which may be ORed include:

MS_INVALIDATE Invalidates other mappings of the same file
(causing those mapping to be refreshed with
the current file contents).

Logging changes
You can use this function to log changes in exactly the same way that real
databases do. A commonly used technique is to manage data in two files: a
snapshot and a log. On restart, the data is restored by replaying the snapshot
and the log. When the log grows to a specified length, the application writes a
new snapshot and empties the log. Log changes should be written
synchronously.

14.4 Graphical user interface
In this section, we briefly describe how the address book standalone version was
built. A sample screen from the application is in Figure 14-3.

Figure 14-3 Address book application
 Chapter 14. Shared libraries and more 211

The connection string is defined as:

� In the SQL version, it is defined as database:userid:password

� In the MMAP version, it is a path to the mapped file.

14.4.1 Graphical interface in a UNIX environment
At first sight, the X Windows concept may be a bit confusing. To clarify it, we
begin by defining some relevant terms.

X-server A server that displays output from an X-client on a graphic
terminal. It accepts user input from devices such as a keyboard
or mouse and transmits those commands to the X-client.

X-client An application that runs (either locally or remotely) under user
control from the X-server.

X-server communicates to X-clients using the X-Protocol. X applications
running on Linux for zSeries act as X-clients. To run an X application on Linux
for zSeries, an X-server is required to be running on the user machine (that
machine must also have X-supported graphic hardware). In “Using XFree86 as
an X Server under Cygwin” on page 292, we discuss one X-server available for
Windows-based machines.

Figure 14-4 presents a simple scenario running the address book application.

The address book application is started on the Linux for zSeries machine. It
reads the environmental variable DISPLAY and establishes a connection to the X
server. The value of the DISPLAY variable is set as follows:

export DISPLAY=X_server_IP_address:X_server_number.screen_number

Figure 14-4 X windows session

Linux for zSeries

Address Book
Application

X Windows
client application

IP Address: lnxbX server on PC

DISPLAY=pc10:0.0

IP Address: pc10

xhost lnxb
ssh lnxb
export DISPLAY=PC10:0.0
addressbook&

Address Book
Application
Window
212 Linux on zSeries: Application Development

The server address may be empty if your X-server runs on the same machine as
the X-client. It happens when you work with X windows on your PC and run
applications locally.

The X server must be authorized before an X Windows client can connect to it.
To authorize your server, issue the following command from any X terminal
window:

xhost IP_address

A typical session might look as follows (assuming you work with Linux on a PC in
an X Windows environment):

1. Authorize your server:

xhost lnxb.appdev.net

2. Telnet to the host or issue the ssh command:

ssh lnxb.appdev.net

3. On the server side, set the DISPLAY variable:

export DISPLAY=pc10.appdev.net:0.0

4. Start the application:

addressbook&

14.4.2 Qt library
Qt is a multi-platform, C++ library that allows you to write applications that run on
several platforms (including Linux, BSD, and Windows). The most noticeable
features in Qt are signal and slots. You connect them together to link an action to
be performed with the corresponding objects. For example, a user’s click on an
Add button should trigger an addEntry() method, as shown in Example 14-5.

Note: The X-server number is usually 0 (zero) since there is only one
X server running. You can start the second server on your PC with the
X command:

X :1

Add access to it from a remote machine by:

export DISPLAY=mypc.appdev.net:1

If you switch to the first server with Alt+Ctr+F7, the second one is available
under Alt+Ctr+F8.
 Chapter 14. Shared libraries and more 213

Example 14-5 Connecting signals and slots

In AddressBook.h file:
protected slots:

void addEntry();

In AddressBook.cc file:
add = new QPushButton("Add", input);
add->resize(add->sizeHint());
grid->addWidget(add, 3, 2);
connect(add, SIGNAL(clicked()), this, SLOT(addEntry()));

We do not describe the library any further since the comprehensive Qt tutorial is
available on the Internet at:

http://doc.trolltech.com/3.0/index.html

In the next section we focus on the build process.

The moc preprocessor and Makefiles
The extended syntax of Qt programs requires special preprocessing before the
compilation. Whenever you declare signals or slots in your classes you should
invoke the moc precompiler and include its output in your C++ files.

We use slots and signals in two modules: AddressBook and MainWindow.
Example 14-6 shows how the whole application is built with Makefile.

Example 14-6 Address book Makefile

#
Makefile (by default) creates DB2 version of an address book example
if you want to get a mmap example invoke the make utility as follows:
#
make clean; make USRDEF=-DITSO_PMDB
#

CC = g++
INCS = -I/usr/lib/qt2/include -I/usr/local/itsodb/include
LIBS = -litsodb -lqt
SRCS = AddressBook.cc main.cc MainWindow.cc
OBJS = AddressBook.o main.o MainWindow.o

CFLAGS = -g -L /usr/lib/qt2/lib -L $(USRDEF)

all: addressbook

clean:
rm -f *.o addressbook
rm -f *~
214 Linux on zSeries: Application Development

http://doc.trolltech.com/3.0/t2.html

rm -f *.moc

addressbook: $(OBJS)
gcc $(CFLAGS) $(LFLAGS) -o addressbook $(OBJS) $(LIBS)

AddressBook.o: AddressBook.cc AddressBook.h AddressBook.moc
$(CC) $(CFLAGS) $(INCS) -c $<

MainWindow.o: MainWindow.cc MainWindow.h MainWindow.moc
$(CC) $(CFLAGS) $(INCS) -c $<

main.o: main.cc MainWindow.h
$(CC) $(CFLAGS) $(INCS) -c $<

MainWindow.moc: MainWindow.h
moc -o MainWindow.moc MainWindow.h

AddressBook.moc: AddressBook.h
moc -o AddressBook.moc AddressBook.h

depend:
makedepend $(INCS) $(SRCS)

DO NOT DELETE
#make depend entries goes here

The AddressBook and MainWindow objects depend not only on *.cc and *.h but
on the corresponding *.moc file.

The moc file is included in the *.cc source file like a regular header. Here are the
first few lines of the AddressBook.cc file:

#include "AddressBook.h"
#include "AddressBook.moc"
 Chapter 14. Shared libraries and more 215

216 Linux on zSeries: Application Development

Chapter 15. Designing for concurrent
access

Presently, standard UNIX systems offers two levels of concurrency: processes
and threads. Linux implementation of threads conforms to the POSIX standard,
commonly called pthreads. In this chapter we describe:

� How pthreads can be used in applications

� How both processes and threads can be synchronized

15
© Copyright IBM Corp. 2002. All rights reserved. 217

15.1 UNIX processes
When a new program is started, Linux creates a process in which this program
will be executed. Every process has its own private memory area, program stack,
and collection of open files or other assigned resources. If data is to be
exchanged with another process, the operating system provides the following
mechanisms:

– Pipes
– Shared memory (IPC or MMAP)
– Files
– IPC message queues

Figure 15-1 Processes in a UNIX environment

Processes are distinguished by PID numbers. Linux implements the /proc files
system to obtain information on running processes.

Note that program code can be shared between processes using shared libraries
(although not shown in this example, this is discussed in 14.2.4, “Shared
libraries” on page 199). You can check what data and code segments are visible
in the process by issuing:

cat /proc/pid/maps

PID :324

process
stack

write(...)
prin tf(...)
m ain(...)

dbclient

process
private

m em ory

opened
files

P ID :652

process
stack

readl(...)
m ain(...)

dbserver

process
private

m em ory

opened
files

sh ared
m em ory

segem e nt

program code:
/usr/loca l/b in /dbc lient

/lib /lib c.so

program code:
/usr/loca l/b in /dbserver
218 Linux on zSeries: Application Development

A new process is created by cloning an existing one with the fork function.
Usually, the exec function is then called to execute a new program. This
procedure is shown in Example 15-1.

Example 15-1 Creating a new process with fork

switch(pid=fork()){
case -1:

/* handle an error */
break;

case 0:
/* child process, often the ‘exec’ function is called here */

default:
/* parent process,

value stored in pid equals PID of the child process */
}

The fork function returns to both the parent and the child process. You can
distinguish these cases with the return value from fork:

0 Returned to the child process
pid Process ID of the child is returned to the parent
-1 Returned to the parent in event of an error

Linux also has a system call named clone which allows the child process to
share parts of its execution context with its parent process (such as the memory
space, the table of file descriptors, and the table of signal handlers). For more
details, see the clone manual page.

15.2 The pthreads library
Unlike a new process, a new thread executes in the address space where it was
created. It has its own set of registers and stack, but its memory and process
resources are shared. Unlike many other operating systems, there is no special
ID for threads. An example of how PID numbers are assigned to threads is
shown in Figure 15-2. PPID refers to the parent’s PID.

Creating a new process is an expensive task. One benchmark that compares
operating system performance measures how many forks can be executed in a
given period of time. A new process uses system memory (impacting overall
system performance).
 Chapter 15. Designing for concurrent access 219

Figure 15-2 Multiple threads within an application

15.2.1 Using threads
In this section we describe how to start and terminate threads. Consider the code
shown in Example 15-2.

Example 15-2 db2example.c (parts only)

01:#include<pthread.h>
02:
03:/* ... */
04:
05:#define NO_THREADS 10
06:
07:struct ctx{
08: pthread_t pthread;
09: int no;
10:} ctx[NO_THREADS];
12:
13:
14:void *start_task(void *data){
15:
16: struct ctx *myctx=(struct ctx *)data;
17:

P ID :6 5 2

th re a d 1
(m a in)

th r e a d
s ta c k

p th re a d _ c re a te
fu n c (. ..)
m a in (. ..)

p th _ s e rv e r

p ro c e s s
p r iv a te

m e m o ry

o p e n e d
file s

th re a d 2

th re a d
s ta c k

g (...)
f(. . .)

s ta r t1 (.. .)

th re a d 3

th r e a d
s ta c k

re a d (. ..)
g e tc h a r (. . .)
s ta r t2 (.. .)

P ID :6 5 5
P P ID :6 5 2

P ID :6 7 0
P P ID :6 5 5

P ID :6 7 1
P P ID :6 5 5

p r o g ra m c o d e :
/u s r / lo c a l/b in /p th _ s e r v e r
220 Linux on zSeries: Application Development

18: /* ... */
19:}
20:
21:main(int argc, char *argv[]){
22:
23: int i;
24:
25: /* */
26:
27: for(i=0; i < NO_THREADS; i++){
28: ctx[i].no=i;
29: pthread_create(&ctx[i].pthread, NULL,
30: &start_task,(void*)&ctx[i]);
31: }
32:
33: for(i=0; i < NO_THREADS; i++){
34: printf("Waiting for a thread %c.\n",'A'+i);
35: pthread_join(ctx[i].pthread,NULL);
36: printf("Thread %c. ended\n",'A'+i);
37: }
38:
39: /* */
40:}

In this example, we prepare an array of thread contexts in lines 05-10 (struct
ctx) in order to run many symmetric threads. Each entry contains the thread
identifier (pthread_t) and the single parameter to be passed to the thread
parameter (no). This approach may be useful when you want to store some
thread private data in the data section of the main thread (instead on each thread
stack). Moreover, these variables may be shared between threads as necessary.
We pass a pointer to a struct ctx entry for each newly created thread in the
function pthread_create (line 29).

15.2.2 Creating threads
New threads are created with the function pthread_create:

int pthread_create(pthread_t *thread,
 pthread_attr_t *attr,
 void * (*start_routine)(void *),
 void * arg);

Note: To use pthreads, pass the -lpthread option to the linker.
 Chapter 15. Designing for concurrent access 221

Parameters are:

thread Pointer to a variable used to identify the newly created
thread.

attr Pointer to the data structure called thread attribute object.
See 15.2.4, “Thread attributes” on page 224 for further
details, and the pthread_attr_init man page for a
complete list of thread attributes.

start_routine Pointer to the function at which the new thread starts
execution.

arg Pointer to a parameter to be passed to the function.

15.2.3 Thread termination
Threads end when:

� The thread completes execution.

� The thread calls the pthread_exit function:

 void pthread_exit(void *retval)

� The tread was canceled with pthread_cancel call.

Another thread may be suspended until the thread ends. We used the function
pthread_join in line 35 for this purpose:

int pthread_join(pthread_t th, void **thread_return);

The meanings of the parameters are:

th Identifier of the thread to be waited on.

thread_return Pointer to the return value from the joined thread. If not null,
the value contains the return value of the thread. If equal to
PTHREAD_CANCELED, the thread was cancelled.

Thread cancellation
This mechanism allows one thread to terminate another. Be aware that the
thread that is to be canceled may have allocated resources and should be
allowed to release them. There are two facilities that may be helpful:

� Cancellation points, which determine when termination may occur (to assure
no resources will be left unallocated).

Note: The standard system call exit ends the whole process, including
threads.
222 Linux on zSeries: Application Development

� The cleanup stack, a collection of the procedures to be called when the
thread terminates (also when pthread_exit is invoked). Use
pthread_cleanup_push to register a function or pthread_clean_pop to remove
a function from the cleanup stack. When the thread terminates, routines are
executed in the reverse order they were registered.

The behavior of threads on cancellation is governed by both the thread’s
cancellation state and cancellation type - set respectively by the functions:

– pthread_setcancelstate

– pthread_setcanceltype

Table 15-1 summarizes thread cancellation behavior based on cancellation state
and cancellation type.

Table 15-1 Setting thread cancellation behavior

The default cancellation behavior is deferred. The behavior on cancellation is
summarized as follows:

deferred Cancellation is deferred until a cancellation point is
reached.

asynchronous Cancellation occurs immediately.

disabled The thread cannot be cancelled.

Cancellation points are classified as:

� Automatic
Cancellation occurs during a call to functions:

– pthread_cond_wait
– pthread_cond_timewait
– pthread_join

� User-defined
Cancellation occurs during a call to function:

– pthread_testcancel

Behavior Cancellation State Cancellation Type

deferred PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_DEFERRED

asynchronous PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_ASYNCHRONOUS

disabled PTHREAD_CANCEL_DISABLE -
 Chapter 15. Designing for concurrent access 223

15.2.4 Thread attributes
The pthreads standard defines attributes that allow you to specify thread
properties. Linux for zSeries implements the following settings:

detachstate Specifies the thread as:

PTHREAD_CREATE_JOINABLE Thread can joined (using
pthread_join)

PTHREAD_CREATE_DETACHED Thread is detached (cannot be
joined)

schedpolicy Specifies the scheduling policy:

SCHED_OTHER Regular, non-real-time

SCHED_RR Real-time, round-robin

SCHED_FIFO Real-time, first-in first-out

schedparam Contains the scheduling parameters (essentially, the scheduling
priority) for the thread.

inheritsched Determines how the scheduling policy and scheduling
parameters are set:

PTHREAD_EXPLICIT_SCHED Using the schedpolicy and
schedparam attributes

PTHREAD_INHERIT_SCHED Inherited from the parent thread

 scope Defines the scheduling contention scope.

stacksize Sets the private stack size. The minimum value is
THREAD_STACK_MI (16384).

stackaddr Sets the address for the thread stack. The address must follow
addressing rules of Linux and zSeries architecture.

15.2.5 Setting thread stack size
In this example, we show how the thread attribute stacksize can be set and the
impact of this attribute on the program. Compile the program shown in
Example 15-3 on page 225 (use default settings) and run it:

Note: The only value supported in the LinuxThreads implementation is
PTHREAD_SCOPE_SYSTEM, meaning that the threads contend for CPU time with
all processes running on the machine.

Note: Thread attributes can only be set when a thread is created.
224 Linux on zSeries: Application Development

$ gcc -o thread thread.c -lpthread
$./thread 1000 24000
Segmentation fault

The thread stack size is too small. Increasing the stack to 105000 (1000*104 plus
some extra space), we see:

$./thread 1000 105000
Done

Now we examine the optimization. Trying this example with a slightly greater
number of calls, we see:

$./thread 1010 105000
Segmentation fault

When the compiler optimizes this code, it can get rid of the frame pointer. This
saves some space on the thread stack.

$ gcc -O2 -o thread thread.c -lpthread
$./thread 1090 105000
Done

Example 15-3 Setting stack size for a thread

#include<stdio.h>
#include<unistd.h>
#include<pthread.h>
#include<bits/local_lim.h>

#ifndef _POSIX_THREAD_ATTR_STACKSIZE
#error No stack size
#endif
#ifndef _POSIX_THREAD_ATTR_STACKADDR
#error No stack addr
#endif
#ifndef _POSIX_THREAD_PRIORITY_SCHEDULING
#error No scheduling
#endif

pthread_t pthread;
pthread_attr_t pattr;

void f(int i){
if(i != 0)
 f(i-1);
}

Note: Results shown vary according to architecture. This program will not be
optimized in the same way on an i386 platform.
 Chapter 15. Designing for concurrent access 225

void *start_task(void *data){
 int i=*(int*)data;
 f(i);
 printf("Done\n");
}

main(int argc, char *argv[]){
int i;
int ssize;

 if(argc != 3 || (i=atoi(argv[1])) <= 0 || (ssize=atoi(argv[2])) <= 0){
 fprintf(stderr,"Usage:\n %s <count> <stack size>\n",argv[0]);
 exit(1);
 }

 pthread_attr_init(&pattr);
if(pthread_attr_setstacksize(&pattr, ssize) != 0){

 fprintf(stderr,"Invalid stack size ! \n",argv[0]);
 exit(1);
 }

pthread_create(&pthread, &pattr, &start_task,&i);
pthread_join(pthread,NULL);

}

15.2.6 Synchronizing threads
In this section, we describe two pthreads objects: mutexes and conditional
variables. We use these objects to prevent concurrent thread access to crucial
data in the address book library. The relevant fragments of the code are
presented in Example 15-4.

Example 15-4 Synchronizing access to data

01:#include<pthread.h>
02:/* ... */
03:
04:int ctx_free = NUM_CTX;
05:int ctx_close_connections = FALSE;
06:
07:pthread_mutex_t ctx_mutex;
08:pthread_cond_t ctx_cond;
09:
10:sqldb_open(char *conname){
11:
12: pthread_mutex_init(&ctx_mutex, NULL);
13: pthread_cond_init(&ctx_cond, NULL);
14: /* ... */
226 Linux on zSeries: Application Development

15:}
16:
17:int assign_ctx(int action){
18:
19: pthread_mutex_lock(&ctx_mutex);
20:
21: while(ctx_free <= 0)
22: pthread_cond_wait(&ctx_cond,&ctx_mutex);
23:
24: /* work with database contextes; ctx_free-- */
25:
26: pthread_mutex_unlock(&ctx_mutex);
27: return 0;
28:}
29:
30:int release_ctx(int ctx){
32:
33: pthread_mutex_lock(&ctx_mutex);
34: /* work with database contextes; ctx_free++ */
35:
36: pthread_cond_signal(&ctx_cond);
37: pthread_mutex_unlock(&ctx_mutex);
48: return 0;
49:}

15.2.7 Mutexes
A mutex is a variable that exists in one of two states:

unlocked Not owned by any thread
locked Owned by exactly one thread

A mutex can never be acquired by two different threads simultaneously.

Initializing a mutex
Mutexes are created and initialized using the function:

int pthread_mutex_init(pthread_mutex_t *mutex,
 const pthread_mutexattr_t *mutexattr);

See line 12 in Example 15-4 for an example. In LinuxThreads, mutex attributes
(the pthread_mutexattr data type) can assume values:

PTHREAD_MUTEX_FAST_NP No checking, suspends the thread forever

PTHREAD_MUTEX_RECURSIVE_NP Allows the thread to acquire the same mutex

PTHREAD_MUTEX_ERRORCHECK_NP Results in an error on such attempts
 Chapter 15. Designing for concurrent access 227

Acquiring a mutex
To obtain a mutex, use:

int pthread_mutex_lock(pthread_mutex_t *mutex);

Line 19 in Example 15-4 contains an example. This function locks the given
mutex if the mutex is currently unlocked. Otherwise, the thread is suspended until
the mutex is unlocked.

To conditionally obtain a mutex, use:

int pthread_mutex_trylock(pthread_mutex_t *mutex);

This acts like pthread_mutex_lock. However, if the mutex is already locked, it
ends immediately and returns EBUSY.

Releasing a mutex
To release a mutex, use:

int pthread_mutex_unlock(pthread_mutex_t *mutex);

Line 37 in Example 15-4 contains an example.

Destroying a mutex
Once all mutex operations are completed, use:

int pthread_mutex_destroy(pthread_mutex_t *mutex);

to free resources associated with the mutex.

15.2.8 Conditional variables
Conditional variables allow threads to suspend execution and wait until some
predicate on shared data is satisfied. We use a conditional variable in our
example to wait until one of the database connection become available.

Declaring conditional variables
To declare a conditional variable, use

int pthread_cond_init(pthread_cond_t *cond,
 pthread_condattr_t *cond_attr);

Tip: We recommend setting mutextattr to NULL (take the default settings).

Note: This parameter is not portable.
228 Linux on zSeries: Application Development

See line 13 in Example 15-4 for an example.

Waiting for conditions to occur
To temporarily release a mutex lock and wait on a conditional variable, use:

int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);

This atomically unlocks the mutex (like the pthread_unlock_mutex function) and
waits for the condition variable cond to be signaled. For example usage, see line
22 in Example 15-4.

To provide a time-out when waiting for the condition to occur, use:

int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 pthread_cond_timewait wait);

Signalling conditions
To pass a signal to other threads waiting on a condition, use:

int pthread_cond_signal(pthread_cond_t *cond);

This restarts one of the threads that are waiting on the condition variable cond. If
no threads are waiting on cond, nothing happens. If several threads are waiting
on cond, exactly one is restarted (which one is not specified, however thread
scheduling priorities play into the calculation). See line 36 in Example 15-4 for an
example.

To signal all threads waiting on a condition, use:

int pthread_cond_broadcast(pthread_cond_t *cond);

This restarts all threads that are waiting on cond. However, only one will acquire
the mutex lock. Other threads are stopped and will wait their turn to acquire the
mutex. The chosen thread may change the predicate and force other threads to
wait once again. We suggest using a loop when pthread_cond_wait is called, as
shown on line 2 in Example 15-4.

Note: The current LinuxThreads implementation does not support attributes
for conditions; the cond_attr parameter is ignored. Set it to NULL.
 Chapter 15. Designing for concurrent access 229

15.3 Controlling concurrent access
In this section we describe different ways of synchronizing access.

15.3.1 Locking using files
File locking can be used to protect resources from concurrent access by multiple
processes. There are three standards forms of file locking:

� lockf for System V

� flock for BSD4.3

� fcntl for POSIX

Linux conforms to all three; however, lockf and flock are implemented by
interfaces to fcntl. If any thread tries to get a lock on the file owned by the other
thread, the function succeeds provided both threads are running within the same
process.

15.3.2 IPC semaphores
A semaphore is a counter used to synchronize access to a shared data object.
When processing a request to acquire a semaphore, the operating system will:

1. Test the usage count of the semaphore.

2. If the value is positive, the resource is available. The operating system grants
the process access to the resource (allowing it to continue execution) and
decrements the usage count by 1.

3. If the value is zero, the resource is unavailable. The operating system denies
the process access to the process (putting it to sleep).

When a process releases a semaphore, the operating system will:

1. Increment the usage count of the resource.

2. Wake up any processes waiting on the resource and allow them to attempt to
acquire the resource as outlined previously. Only one will actually acquire the
resource (assuming only one process released the resource).

Semaphores have more functionally. Refer to the semget, semctl, and semop man
pages for a detailed description.

A process must explicitly destroy a semaphore before it is removed from the
system. Errant processes can sometimes leave residual semaphores on the
system. To manually list and remove these residual semaphores, use:

ipcs -s Lists allocated semaphores
230 Linux on zSeries: Application Development

ipcrm sem Removes specified resources.

15.3.3 Pthread resources
The pthread library features described in 15.2.6, “Synchronizing threads” on
page 226 work for threads operating within a single process. However, these
features cannot be used to synchronize threads across processes. An attempt to
do so will result in an error. To synchronize threads across processes, use
spinlocks.

Spinlocks
Spinlocks are synchronization objects used to allow multiple threads to serialize
access to shared data. Spinlocks are implemented as integer variables that are
changed and tested with an atomic instruction. This simple approach yields fast
operations; however, there are some side effects:

� Applications waiting for a lock actively consume CPU resources.

� There is no kernel protection for spinlocks. Any thread can change them using
a simple assignment instruction.

zSeries-specific features and spinlocks
On z/OS and earlier operating systems running on mainframe platforms,
synchronization was often provided by means of COMPARE AND SWAP (CS)
assembler instruction. CS can be used by programs sharing common storage
areas in either multiprogramming or multiprocessing environments since the
operation is atomic.

The kernel mechanism of spinlocks based on the CS instruction is shown in
Example 15-5.

Example 15-5 Spinlocks and CS instruction (linux/include/asm-s390/spinlocks.h)

extern inline void spin_lock(spinlock_t *lp) {
 __asm__ __volatile(" bras 1,1f\n"
 "0: diag 0,0,68\n"
 "1: slr 0,0\n"

Important: Semaphores cannot be used to synchronize threads within a
process. A waiting thread will not be notified when the semaphore value is
increased by another thread within the same process.

Important: Spinlocks are used to control access to small critical sections
which complete quickly. Incorrect use of spinlocks will have an adverse affect
on system performance.
 Chapter 15. Designing for concurrent access 231

 " cs 0,1,%1\n"
 " jl 0b\n"
 : "=m" (lp->lock)
 : "0" (lp->lock) : "0", "1", "cc");
}

The diag 68 (44 hex) instruction ends the current timeslice in a virtual machine.
This instruction can be called only in a supervisor mode, so this implementation
of spinlock is not useful for user mode.

Spinlock operations provided by pthread library
Unfortunately, pthread spinlocks are not described in man pages yet. You can
find the POSIX specification at:

http://www.opengroup.org/onlinepubs/007904975/basedefs/contents.html

Bear in mind that not all of the described features are implemented in Linux.

Creating spinlocks in shared memory
In order to use spinlock, you should allocate shared memory for the spinlock
variable (see Example 15-6).

Example 15-6 Creating spinlock in shared memory

#define _XOPEN_SOURCE 2000
#include<features.h>
#include<stdio.h>
#include<sys/ipc.h>
#include<sys/shm.h>
#include<pthread.h>

struct shmid_ds ds;
pthread_spinlock_t *p;
int mid;

main(){
 printf("%d\n",mid=shmget(111, 100,IPC_CREAT | 0777));
 p=shmat(mid,0,0);
 pthread_spin_init (p, PTHREAD_PROCESS_SHARED);
}

I

Important: It is essential to properly define the macro _XOPEN_SOURCE (set to
2000) and to include the features.h header file before any other header file (it
defines the __USE_XOPEN2K macro needed by the thread_spin_ functions).
232 Linux on zSeries: Application Development

http://www.opengroup.org/onlinepubs/007904975/basedefs/contents.html

Using spinlocks
Example 15-7 shows how the spinlock functions are used to protect a critical
section. This works for both threads and processes.

Example 15-7 Using spinlocks

#define _XOPEN_SOURCE 2000
#include<features.h>
#include<stdio.h>
#include<sys/ipc.h>
#include<sys/shm.h>
#include<pthread.h>
#include<bits/pthreadtypes.h>
#include<unistd.h>

pthread_spinlock_t *p;
int mid;

main(){
 mid=shmget(111, 100,IPC_CREAT | 0777);
 p=shmat(mid,0,0);
 while(1){
 printf("%5d: Waiting ...\n",getpid());
 pthread_spin_lock (p);
 printf("%5d: Entered ! \n",getpid());
 sleep(rand()%5 + 1);
 printf("%5d: Leaving ! \n",getpid());
 pthread_spin_unlock (p);
 sleep(rand()%5+1);
 }
}

Barrier functionality
A barrier is a synchronization object that allows multiple threads or processes to
synchronize at a particular execution point. All threads or processes wait in the
pthrear_barrier_wait function until a given number of tasks (specified in the
pthrear_barrier_init function) reaches this point. This mechanism is also
supported by the pthread library on Linux for zSeries. For details, see:

http://opengroup.org/onlinepubs/007904975/functions/pthread_barrier_wait.html
 Chapter 15. Designing for concurrent access 233

http://opengroup.org/onlinepubs/007904975/functions/pthread_barrier_wait.html
http://opengroup.org/onlinepubs/007904975/functions/pthread_barrier_wait.html

The pthread library - a problem
The version of the pthread we used (glibc-2.2.2 supplied with the SuSE SLES7
distribution) has a nasty bug. Look at the output from the objdump command:

objdump --disassemble /usr/lib/libpthread.a | less

Function __pthread_spin_unlock uses the register R1 instead of R2 when looking
for a parameter (see 7.1.3, “Function calling convention” on page 93).

Example 15-8 Incorrect unlock

00000030 <__pthread_spin_unlock>:
 30: d7 03 10 00 10 00 xc 0(4,%r1),0(%r1)
 36: 07 f0 br %r0
 38: a7 28 00 00 lhi %r2,0
 3c: 07 fe br %r14
 3e: 07 07 bcr 0,%r7

Recompiling glibc
To correct this problem, recompile glibc using the following steps:

1. Install the glibc.spm package.

2. Unpack the source tarballs:

cd /tmp
bunzip2 </usr/src/packages/SOURCES/glibc-2.2.2.tar.bz2 | tar xf -
cd glibc-2.2.2
bunzip2 </usr/src/packages/SOURCES/glibc-linuxthreads-2.2.2.tar.bz2 |\

tar xf-

3. Apply patches:

cd /tmp
tar zxvf usr/src/packages/SOURCES/glibc-2.2.2-s390.tar.gz
cd glibc-2.2.2
patch -p1 < ../glibc-2.2.2-s390.diff

4. Correct the linuxthreads/sysdeps/s390/pspinlock.c. The contents of the
__pthread_spin_unlock function should look as follows:

int __pthread_spin_unlock (pthread_spinlock_t *lock){
 asm volatile("xc 0(4,%0),0(%0)\n"
 "bcr 15,0"
 : ”=a”(lock) : “0” (lock) : “memory”,”cc”);
 return 0;
}

5. Compile the library:

cd /tmp/glibc-2.2.2
./configure --enable-add-ons
make
234 Linux on zSeries: Application Development

Now you can copy or install the pthread library from the
glibc-2.2.2/linuxthreads directory and use it in your programs.

Note: If you have problems with CVS commands in one of the make files, you
can remove this line. We do not use it here.
 Chapter 15. Designing for concurrent access 235

236 Linux on zSeries: Application Development

Chapter 16. Concurrency in embedded
SQL

In this chapter we discuss embedded SQL programs in DB2 UDB on Linux for
zSeries. We focus on multiple database connections within a single application.
This topic is closely related to the pthreads synchronization described in the
previous chapter.

16
© Copyright IBM Corp. 2002. All rights reserved. 237

16.1 Using embedded SQL in DB2 UDB applications
In this section we describe how DB2 UDB applications are built.

16.1.1 Components of a DB2 UDB application
An embedded DB2 SQL application consists of two parts:

� Application executable files

� A package stored in the database

A package is an object stored in the database that includes information needed
to execute specific SQL statements in a single source file. A database
application uses one package for every precompiled source file used to build the
application. Each package is a separate entity, and has no relationship to any
other packages used by the same or other applications. The package creation
process is called binding.

Database applications use packages for improved performance and
compactness. By precompiling an SQL statement, the statement is compiled into
the package at bind time—not at a run time. Each statement is parsed, and a
more efficiently interpreted operand string is stored in the package. At run time,
the code generated by the precompiler calls run-time services in the database
manager with any variable information required for input or output data. The
information stored in the package is then executed.

16.1.2 Creating a package
In this section we describe the process of preparing the embedded SQL program
shown on Figure 16-1.

Note: The advantages of precompilation apply only to static SQL statements.
SQL statements that are executed dynamically (using PREPARE and EXECUTE or
EXECUTE IMMEDIATE) are not precompiled. Therefore, they must go through the
entire set of processing steps at run time.
238 Linux on zSeries: Application Development

Figure 16-1 Creating a program with embedded SQL

Example 16-1 shows a very simple C program (myapp.sql) with static SQL
statements.

Example 16-1 Simple C program with embedded SQL statements - myapp.sqc

01: #include <stdio.h>
02: #include <stdlib.h>
03: #include <string.h>
04: #include "utilemb.h"
05:
06: EXEC SQL INCLUDE SQLCA;
07:
08: int main(int argc, char *argv[])
09: {
10: EXEC SQL CONNECT TO SAMPLE USER db2inst1 USING ibmdb2;
11: if(SQLCODE != 0){
12: printf("Cannot connect to the database\n");
13: exit(1);
14: }
15: EXEC SQL INSERT INTO T1 VALUES (1,2);
16: EXEC SQL DISCONNECT SAMPLE;
17: }

 myapp.sqc

db2 prep myapp.sqc bindfile 1

myapp.bnd

db2 bind myapp.sqc

DB2 UDB

2

myapp.c

cc -o myapp myapp.c -ldb2

myapp

3

 Chapter 16. Concurrency in embedded SQL 239

Line 6 includes some DB2 UDB-specific definitions and declares an instance of
the variable:

struct sqlca sqlca;

This variable is used by the DB2 API which replaces EXEC SQL statements (lines
10,15-16) in the preparation stage.

For a comprehensive discussion of static SQL programming, refer to IBM DB2
Universal Database Version 7 Application Development Guide, SC09-2949.

As shown in Figure 16-1, the application creation consists of three steps:

1. The prep command converts embedded SQL statements into DB2 run-time
API calls that a host compiler can process, and creates a bind file.

The bind file contains information on the SQL statements in the application
program. Optionally, the precompiler can perform the bind step at precompile
time (if you do not specify the bindfile option). We suggest you always
create a separate bind file. Precompiling with deferred binding allows an
application to access many databases because you can bind it against each
one. This approach to DB2 application development is more flexible since it
allows you to distribute only the binary executable along with the bind file to
get your application running on another machine.

2. The BIND command creates a package in the database.

3. The final executable is created and linked with the DB2 libraries. Use the
-ldb2 option and ensure this library is in the linker search list.

16.1.3 Incorporating prep/bind into make
Since the DB2 program is prepared in at least three steps, it is convenient to use
Makefile rules to go through the preparation and binding process. Example 16-2
quotes relevant lines form our Makefile.

Note that the adrbook.h file is generated automatically by the db2dclgn utility
based on the table declaration.

Tip: The bind file can be investigated with the db2bfd command. For
example:

db2bfd -s myapp.bnd

lists all SQL statements include in the myapp.bnd file.
240 Linux on zSeries: Application Development

Example 16-2 Makefile rules to create bindfile, bind it and compile the C source

sqldb.o: sqldb.sqc itsodb.h sqldb.h adrbook.h utilemb.h
db2 connect to $(DBNAME) user $(DBUSER) using $(DBPASS)
db2 prep sqldb.sqc bindfile
db2 bind sqldb.bnd
db2 terminate
$(CC) $(CCARG) -c sqldb.c

adrbook.h:
db2dclgn -d $(DBNAME) -u $(DBUSER) -p $(DBPASS) \

-i -t adrbook -o adrbook_add.h -c -a replace

16.1.4 Embedded SQL files as libraries
In projects that consists of many executable files, the same database statements
are often executed from different programs. In this case, you can create one
single library that implements all the functions you need and hides the database
implementation details. This library source file should be preprocessed and only
this library should be bound against the database, regardless how many
programs use it. The library may be static or dynamic.

If you want to use DB2 libraries in multithreaded applications, you must provide a
means to synchronize threads’ access to program data. However, do not attempt
to serialize database access—databases are designed to accommodate
multiple, concurrent clients.

In the next section we describe how the connection pooling is implemented
within the address book library.

16.2 Multiple connections in embedded SQL programs
DB2 UDB provides an API to maintain more than one context within embedded
SQL program. This allows a single threaded application to perform SQL
operation beyond the current transaction, and for multiple threads to perform
database functions simultaneously.

Tip: We advise you to use libraries, even if the functions are relatively small.
Libraries make your application more compact, and simplify subsequent
maintenance or migration to a different database version.
 Chapter 16. Concurrency in embedded SQL 241

16.2.1 Connection context
Context refers to the current state of database connection.

Contexts are used to connect to, operate on, and disconnect from a database.
Contexts may be shared by multiple threads. Figure 16-2 illustrates the logic flow
for the addUser function, which adds a user in the sample application.

To provide an efficient solution, a constant pool of connections is maintained.
When an application thread needs to perform a database operation, it acquires a
free context. Example 16-3 shows the relevant data structures involved.

Figure 16-2 Working with contexts in multithreaded applications

16.2.2 Context operations
In this section, we describe how a pool of connections was implemented in the
address book example.

Declarations
The sql_ctx array describes a pool of connections. Each context may be in one
of the following states:

CTX_NOTCONNECTED The context is not initialized

Note: Each context can be seen as a single entry in the following db2
command:

db2 list application

DB2 UDB

assign_context(...)
...
EXEC SQL INSERT
...
release_context(...)

itsodb libitsodb.a
libitsodb.so

connection
pool

multithreaded
application

addUser(...)
242 Linux on zSeries: Application Development

CTX_FREE The context is initialized and the database connection
is established. The context can be used.

CTX_ADD The context is used by the add_user function and
becomes available as soon as the function ends.

CTX_SEARCH The context is used by the search functionality and
becomes unavailable until all records are retrieved.

Example 16-3 Maintaining a pool of DB2 connections - the definitions (sqldb.sqc)

#include<unistd.h>
#include<sql.h>
#include<pthread.h>
#include"itsodb.h"

EXEC SQL INCLUDE SQLCA;

/* */

enum { CTX_NOTCONNECTED, CTX_FREE, CTX_ADD, CTX_SEARCH };

struct sql_ctx{
 void *ptr;
 int state;
} sql_ctx[NUM_CTX];

int ctx_free = NUM_CTX;
int ctx_close_connections = FALSE;

pthread_mutex_t ctx_mutex;
pthread_cond_t ctx_cond;

Initialization
Now we take a look at the initialization process shown in Example 16-4.

Important: The communication area has to be defined in each of the
functions locally:

struct sqlca sqlca;
 Chapter 16. Concurrency in embedded SQL 243

Example 16-4 Maintaining a pool of DB2 connections - the initialization(sqldb.sqc)

/***
 * sqldb_open(char *conname)
 * - creates and opens NUM_CTX database contexts
 * - initializes mutual exclusion variables
 ***/
EXEC SQL BEGIN DECLARE SECTION;
 char dbname[16];
 char dbuser[16];
 char dbpass[16];
EXEC SQL END DECLARE SECTION;

static sqldb_parse(char *conname){

 /* parse argument - split it into three parts
 and move them into: dbname, dbuser, dbpass */
}

sqldb_open(char *conname){
 int i;
 struct sqlca sqlca;

 sqldb_parse(conname);
 pthread_mutex_init(&ctx_mutex, NULL);
 pthread_cond_init(&ctx_cond, NULL);
 sqleSetTypeCtx(SQL_CTX_MULTI_MANUAL);
 for (i=0; i < NUM_CTX; i ++) {
 sqleBeginCtx(&(sql_ctx[i].ptr),
 SQL_CTX_BEGIN_ALL,
 NULL,
 &sqlca);
 ITSO_SQL_CHECK("sqleBeginCtx");
 if (SQLCODE != 0)
 return -1;
 EXEC SQL CONNECT TO :dbname USER :dbuser USING :dbpass;
 ITSO_SQL_CHECK("CONNECT");
 if (SQLCODE != 0)
 return -1;
 sqleDetachFromCtx(sql_ctx[i].ptr,
 NULL,
 &sqlca);
 ITSO_SQL_CHECK("sqleDetachFromCtx");
 if(SQLCODE != 0)
 return -1;
 sql_ctx[i].state=CTX_FREE;
 }
}

244 Linux on zSeries: Application Development

The DB2 API functions used in Example 16-4 are described in the following
subsections.

sqleSetTypeCtx
The sqleSetTypeCtx function should be the first database call made inside an
application. It sets the application context type. We use it enable contexts to be
shared across threads (SQL_CTX_ORIGINAL).

int sqleSetTypeCtx(sqlint32 options);

Valid options values are:

SQL_CTX_ORIGINAL Default setting. All threads will use the same
context, and concurrent access will be blocked.

SQL_CTX_MULTI_MANUAL All threads will use separate contexts, and it is up
to the application to manage the context for each
thread.

sqleBeginCtx
The sqleBeginCtx function creates an application context and optionally attaches
the calling thread to that context.

int sqleBeginCtx(void **ppCtx,
 sqlint32 options,
 void *reserved,
 struct sqlca *pstSqlca);

Parameters are:

ppCtx Data area allocated for context information.

options There are two possible options:

SQL_CTX_CREATE_ONLY Context memory will be allocated, but there will be
no attachment.

SQL_CTX_BEGIN_ALL Context memory will be allocated, and then a
thread is attached to the context by implicit
sqleAttachToCtx call.

reserved Reserved for future use. Must be set to NULL.

pstSqlca Pointer to the sqlca structure.

Note: Automatic COMMIT at process termination is disabled when using
SQL_CTX_MULTI_MANUAL mode.
 Chapter 16. Concurrency in embedded SQL 245

Assigning and freeing context
For simplicity, we implement two basic database functions in our example:

� Add a new entry.

A record is inserted and commit automatically performed on completion.

� Search for and retrieve records

An initialization phase prepares a query returning a handle to the context.

A retrieval phase uses the handle to the next record. Records may be
retrieved by the different threads. Threads are detached from the context but
the transaction remains active until all records are read.

An operation performed by a library function may be an auto-committed
transaction (in add_user for example) or may be part of a longer transaction
(when retrieving records for example).

In the first case, we assign a context and use that context for subsequent SQL
operations. Upon completing SQL operations, the transaction is committed by
the database engine (using auto-commit). The context is then returned to the
pool where it becomes available for use by another thread.

In the second case, we begin a transaction (by opening a cursor, for example) on
a threaded request. The context is then detached using the sqleDetachFromCtx
function (causing the context to be marked as CTX_SEARCH) and the threaded
request completes. The transaction remains uncommitted however. The context
id is returned in order to obtain the desired context for subsequent SQL
operations (later threaded requests will first obtain the correct context for SQL
operations using the context id). When all threaded requests complete, the
transaction will be explicitly committed. At that time, the context is marked
CTX_FREE and returned to the pool (thus making it available to process another
transaction.

We implemented four functions in order to provide this functionality:

assign_ctx Attach to a free context.

release_ctx Commit and detach from the context and mark it as a free
one.

join_ctx Attach to the context already assigned to an opened search
transaction.

join_ctx Detach from the context but do not commit the transaction,
and leave the context state set to CTX_SEARCH.

In the next sections we describe only assign_ctx (Example 16-5) and
release_ctx (Example 16-6). The code regarding DB2 connections does not
change in join_ctx and join_ctx significantly.
246 Linux on zSeries: Application Development

sqleAttachToCtx
Use of the sqleAttachToCtx function is straightforward.

Example 16-5 Maintaining a pool of DB2 connections - assign_ctx(sqldb.sqc)

int assign_ctx(int action) {
 int i;
 struct sqlca sqlca;

 /* wait for a free context <- pthread related section was removed !!!*/
 for (i=0; i < NUM_CTX; i++)
 if(sql_ctx[i].state == CTX_FREE){
 sqleAttachToCtx(sql_ctx[i].ptr,
 NULL,
 &sqlca);
 ITSO_SQL_CHECK("sqleAttachToCtx");
 if (SQLCODE != 0)
 return -1;
 sql_ctx[i].state = action;
 ctx_free--;
 return i;
 }
 return -1;
}

The sqleAttachToCtx function allows a thread to join a context. If more than one
thread is attached to a given context, access is serialized for these threads, and
they share a commit scope.

int sqleAttachToCtx(void *pCtx,
 void *reserved,
 struct sqlca *pstSqlca);

where parameters have the following meanings:

pCtx Valid context previously allocated by sqleBeginCtx.

reserved Reserved for future use (must be set to NULL).

pstSqlca Pointer to the sqlca structure.
 Chapter 16. Concurrency in embedded SQL 247

sqleDetachFromCtx
The sqleDetachFromCtx function detaches the context being used by the current
thread. Example 16-6 shows how the sqleDetachFromCtx function was used to
implement leave_ctx.

Example 16-6 Maintaining a pool of DB2 connections - leave_ctx(sqldb.sqc)

int release_ctx(int ctx){
 struct sqlca sqlca;

 sqleDetachFromCtx(sql_ctx[ctx].ptr,
 NULL,
 &sqlca);
 /* code maintaining concurrent access was removed */
 ITSO_SQL_CHECK("sqleDetachFromCtx");
 if(SQLCODE != 0)
 return -1;
 sql_ctx[ctx].state = CTX_FREE;
 ctx_free++;
 if (ctx_close_connections == TRUE)
 sqldb_close_ctx(ctx);
 return 0;
}

int sqleDetachFromCtx(void *pCtx,
 void *reserved,
 struct sqlca *pstSqlca);

Parameters of sqlDetachFromCtx have the following meanings:

pCtx Valid context previously allocated by sqleBeginCtx.

reserved Reserved for future use. Must be set to NULL.

pstSqlca Pointer to the sqlca structure.

Finalization
When the connection is no longer needed it is closed with the SQL command:

EXEC SQL DISCONNECT database;

Finally, the context memory may be released. This is shown in Example 16-7.
248 Linux on zSeries: Application Development

Example 16-7 Maintaining a pool of DB2 connections - close_ctx(sqldb.sqc)

int sqldb_close_ctx(int ctx){
 struct sqlca sqlca;
 sqleAttachToCtx(sql_ctx[ctx].ptr,
 NULL,
 &sqlca);
 ITSO_SQL_CHECK("sqleAttachToCtx");
 EXEC SQL DISCONNECT :dbname;
 ITSO_SQL_CHECK("DISCONNECT");
 sqleEndCtx(&(sql_ctx[ctx].ptr),
 SQL_CTX_END_ALL,
 NULL,
 &sqlca);
 ITSO_SQL_CHECK("sqleEndCtx");
 ctx_free--;
}

sqleEndCtx
Call this function to free all memory associated with a given context. The context
must not by used by another thread.

int sqleEndCtx(void **ppCtx,
 sqlint32 options,
 void *reserved,
 struct sqlca *pstSqlca);

The parameters have the following meanings:

ppCtx Pointer to the context pointer previously set by sqleBeginCtx.

options Valid values are:

SQL_CTX_FREE_ONLY Context memory will be freed only if a
prior detach has been done.

SQL_CTX_END_ALL Call sqleDetachFromCtx, if necessary.

reserved Reserved for future use. Must be set to NULL.

pstSqlca Pointer to the sqlca structure.

In our example, we do not release the connection when it is used by the other
thread. The ctx_close_connection variable is set instead, and the context will be
detached on the subsequent release_ctx call.

16.2.3 Client-server considerations
Maintaining a connection pool may be used in client-server applications when
you do not want to, or for some reasons cannot use DB2 Runtime clients.
 Chapter 16. Concurrency in embedded SQL 249

An approach such as that shown on Figure 16-3 might be used when:

� You want to hide all knowledge of database operations from the clients.

� The DB2 runtime files cannot be installed on the client machines.

� The driver does some additional work apart from the database which cannot
be implemented as stored procedures.

� The client applications do not send messages frequently and you do not want
to maintain idle database connections (or keep your database server busy
with connect and disconnect operations).

Figure 16-3 Connection pooling with client-server scenario.

However, you should have strong reasons to design the application in this way.
Remember that you are building your own DB2 driver.

w h ile (1) {
g e t_ re q u e s t(. ..)
a s s ig n _ c o n te x t(. ..)
E X E C S Q L . ..
re le a s e _ c o n te x t(.. .)
} D B 2 U D B

c o n n e c tio n
p o o l

C lie n t

C lie n t

C lie n t

C lie n t

a p p lic a tio n
p ro to c o l
im p le m e n te d
o v e r T C P /IP

d b 2 d r iv e r
250 Linux on zSeries: Application Development

Chapter 17. Packaging applications for
deployment

This chapter describes how to configure and package our sample application for
deployment. Topics covered are:

� The application source structure and the prerequisite software needed to
build the application.

� How to build and package the C portion in RPM (Redhat Package Manager)
format for deployment.

� How to build and package the Java portion in WAR (Web Application aRchive)
format for deployment.

17
© Copyright IBM Corp. 2002. All rights reserved. 251

17.1 Creating a project
The first step in creating a project is to determine the directory structure for the
application source files. Using the sample applications, we illustrate a structure
that conforms to the Java Servlet specification for Web application deployment.
The specification can be found at:

http://java.sun.com/products/servlet/download.html

Some important tools we use here are:

� CVS - to maintain revision control (see 3.7, “Creating a project” on page 41)

� Ant - to build Java components (see 6.2.2, “Using Ant” on page 80)

� make - to build C components (see 1.4.1, “GNU make” on page 14)

17.1.1 Example source structure
The source code comprising the sample project is arranged as follows:

sg246807 Project root directory

lib Directory for external libraries

src Source code directory

web Web application directory

Project root directory
In the project root directory, we added the following files used by Ant to create the
project:

build.xml The Ant build descriptor file

build.properties Additional properties file included by build.xml

See 6.2.2, “Using Ant” on page 80 for an overview of using Ant.

Library directory
The lib directory will contain any external libraries (.jar files) referenced by the
application. For example, the struts.jar library file is placed in this directory,
along with any taglibs used by the application (see 6.4.1, “Installing taglibs” on
page 82). Ant will place the contents of this directory into the WEB-INF/lib
directory of the Web application archive (.war) file.

Source directory
The application source consists of both Java and C/C++ code placed in an
appropriate subdirectory.
252 Linux on zSeries: Application Development

http://java.sun.com/products/servlet/download

Java source directory
The Java directory consists of the source files that comprise the Struts example
application. (See Chapter 13, “Using the Struts framework” on page 167 for
complete details about the files referenced here). The following additional
application property files exist in this directory:

ApplResources.properties
The application resource descriptor

log4j.properties The Log4j configuration descriptor

sg246807.properties The application persistence descriptor

Java class files are placed in subdirectories based on their function:

action Struts Action sub-classes

bo The application business logic

data Application persistence classes

form Struts ActionForm sub-classes

C source directory
The c directory contains the JniAddresbook.c implemented for JNI database
access. Additionally, the shared library and Qt application implementation files
are found in the following subdirectories:

addressbook-1.2 The Qt front-end to the Address book application

db2driver The threaded embedded SQL example

itsodb-1.2 The example shared library for accessing DB2

rpm-specs RPM specification files to build rpm packages

Web application directory
The Web directory contains files used in deployment on an Java application
server: JSP pages and the WEB-INF subdirectory.

WEB-INF directory
The WEB-INF directory contains the following application deployment files:

struts-config.xml The Struts configuration descriptor

web.xml The application deployment descriptor
 Chapter 17. Packaging applications for deployment 253

17.1.2 Adding prerequisite libraries to the project
The sample project relies on some external libraries. These include:

� Struts framework

� Log4j Jakarta taglib

� JDBC 2.0 compliant driver (we used the driver supplied with DB2)

In addition, you will need to install Ant and a Java application server (Tomcat, for
instance). Follow these steps to install the prerequisites:

1. Install Ant (see 6.2.1, “Installing Ant” on page 80).

2. Install the Tomcat server (see 6.1.2, “Installing Tomcat” on page 76).

3. Install Struts to the project (see 6.5.2, “Installing Struts” on page 87).

a. Copy the struts.jar library to the sg246807/lib directory.

b. Copy the struts-*.tld taglib descriptor files to the sg246807/web/WEB-INF
directory.

4. Install Log4j to the project (see 6.3.1, “Installing Log4j” on page 81).

a. Copy the log4j-1.2rc1.jar library to the sg246807/lib directory.

17.1.3 Prepare the database
To use a relational database, the application server requires a JDBC 2.0
compliant driver to be added to its CLASSPATH. We used the driver supplied with
DB2.

1. Install DB2 (see “Installing DB2” on page 268).

2. Copy the DB2 JDBC driver ($DB2DIR/java12/db2java.zip) to the Tomcat
common/lib directory. A symbolic link works:

ln -s $DB2DIR/java12/db2java.zip /
$CATALINA_HOME/common/lib/db2java.jar

3. Create a database named SAMPLE.

4. Add a table named ADRBOOK to SAMPLE (see Example 17-1). A sample script
(sg246807/src/c/itsodb-1.2/crt_tables.db2) can be used to create this
table.

Example 17-1 ADRBOOK table (sg246807/src/c/itsodb-1.2/crt_tables.db2)

CREATE TABLE ADRBOOK(

Important: The driver must be named db2java.jar. Tomcat only adds .jar
files to its CLASSPATH.
254 Linux on zSeries: Application Development

 Chapter 17. Packaging applications for deployment 255

 FNAME VARCHAR(16) NOT NULL,
 LNAME VARCHAR(32) NOT NULL,
 PHONE VARCHAR(16),
 EMAIL VARCHAR(32)
);

17.1.4 Customize the application
To complete the setup, you need to customize some property files:

� sg246807/src/java/log4j.properties

Provide e-mail configuration parameters for logging (see Example 13-7 on
page 177).

� sg246807/src/java/sg246807.properties

Provide database configuration parameters (see Example 13-14 on
page 186).

17.2 Creating RPM packages
The RPM-HOW-TO available at:

http://www.tldp.org/HOWTO/RPM-HOWTO/

contains a detailed description of the package creation process. In the following
section, we describe how we built the package for the address book library and
the standalone application.

Example 17-2 RPM specification file (itsodb.rpmspec)

Summary: A simple address book library
Name: itsodb
Version: 1.2
Release: 1
Copyright: IBM
Group: Development/Libraries
Source: itsodb-1.2.1.tgz

%description

The address book example library as described in
"Linux for zSeries: Application Develpment"

%prep
%setup -q
make crttab

http://www.tldp.org/HOWTO/RPM-HOWTO/

%build
make

%install
make install-devel PREFIX=/usr/local
%post
ldconfig
%postun
ldconfig

%clean
make uninstall PREFIX=/usr/local

%files
/usr/local/itsodb
/usr/local/lib/libitso*

17.2.1 Before you begin
Before creating the RPM specification file, you should decide on:

� A package name

� The package version

� The package contents

� The destination directories for your files. We used the following:

/usr/local/itsodb Installation base

/usr/local/lib Links to the libraries

/usr/local/itsodb/include Header files. This directory should be added
to the search list when compiling applications
using this library (gcc option -I)

17.2.2 Preparing the source archive
The source directory should be named packagename-version according to the
RPM specification file. In our case the name is itsodb-1.2.

Prepare the source archive:

1. Remove all unnecessary files from this directory:

cd itsodb-1.2
make clean

2. Create the tar archive packagename-version.release:
256 Linux on zSeries: Application Development

cd ..
tar zcvf itsodb-1.2.1.tgz

3. Copy the archive to the /usr/src/packages/SOURCE directory:

cp itsodb-1.2.1.tgz /usr/src/packages/SOURCES/

17.2.3 Preparing package specification
The RPM specification shown in Example 17-2 present the following sections:

� General information

– Package name and version

– Description of the contents

– Package category (group)

� Prepare section: Invoked before building the binary package.

– setup -q - unpacks the archive and changes the current directory to it.

– crttable is the make rule for itsodb which creates tables in the database.

� Build: We invoke the make here.

� Install: We rely on the make rule install-devel which installs the libraries
and header files.

– post rules are to be invoked after the installation of a binary package.

– postun rules are to be invoked after the package is removed from the
system.

� Clean: Remove all files created during this process. Note that if you do not
specify a build root, the RPM uses your base files system (for example,
/usr/lib directories).

� Files: This section describes all the files that are included in the binary
archive. It is not possible to link the make install rule with this process.

17.2.4 Building the package
Issue the following command to produce the packages:

rpm -ba itsodb.rpmspec

This creates two files:

Note: This section may contain the build directory used when building a
binary archive. We left it out here for simplicity, but we advise you to use
this option.
 Chapter 17. Packaging applications for deployment 257

/usr/src/packages/SRPMS/itsodb-1.2-1.src.rpm
/usr/src/packages/RPMS/s390/itsodb-1.2-1.s390.rpm

You can also build the packages for different architectures provided that the
cross-compiler and the libraries were installed. Use the --target option in this
case.

17.2.5 Installing packages
Check the archive contents:

rpm -qilp itsodb-1.2-1.s390.rpm

The package is produced but not installed. Use the standard rpm options to install
it:

rpm -U itsodb-1.2.1.s390.rpm

This installs the library in /usr/local/itsodb/ and creates the proper links from
/usr/local/lib. Some other useful files are copied, too.

crt_tables.db2 DB2 UDB script to prepare the table

binder.sh Shell scripts to bind the library package to a database

include/*.h Include files for C programs

17.3 Creating WAR packages
A Web application archive (WAR) is a compressed package of a directory with
the following structure:

web-app The application root directory containing HTML, JSP, style
sheets, and other files to be served on client request.

WEB-INF The Web resources directory.

classes Java class file directory containing application
classes and .jar files.

lib Java library file directory containing external
libraries required by the application.

WAR packages are the standard mechanism for deploying Java servlets.

Note: The WEB-INF directory is inaccessible to client HTTP requests.
258 Linux on zSeries: Application Development

17.3.1 Building a WAR package using Ant
Ant provides a built-in task to create WAR packages—the war task.
Example 17-3 shows the process in detail; notes following the example explain
some significant parts.

Example 17-3 Building a WAR package (build.xml)

<?xml version="1.0"?>
<project name="sg246807" default="dist" basedir="."> 1
 <property name="src.base" value="src"/> 2
 <property name="src.java.dir" value="${src.base}/java"/>
 <property name="src.c.dir" value="${src.base}/c"/>
 <property name="web.dir" value="web"/>
 <property name="build.dir" value="build"/>
 <property name="dist.dir" value="dist"/>
 <property name="build.classes" value="${build.dir}/WEB-INF/classes"/>
 <property name="build.lib" value="${build.dir}/WEB-INF/lib"/>
 <property name="lib.dir" value="lib"/>
 <property file="${web.dir}/release.properties"/>
 <property file="build.properties"/>
 <property file="${user.home}/build.properties"/>

 <target name="init"> 3
 <tstamp/>
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${build.classes}"/>
 <mkdir dir="${dist.dir}"/>
 </target>

 <target name="compile" depends="init"> 4
 <javac srcdir="${src.java.dir}" destdir="${build.classes}"
 classpathref="classpath"/>
 </target>

 <target name="build" depends="compile"> 5
 <copy todir="${build.classes}">
 <fileset dir="${src.java.dir}">
 <include name="**/*.properties"/>
 </fileset>
 </copy>
 <copy todir="${build.lib}">
 <fileset dir="${lib.dir}">
 <include name="*.jar"/>
 </fileset>
 </copy>
 <copy todir="${build.dir}">
 <fileset dir="${web.dir}">
 <include name="**"/>
 Chapter 17. Packaging applications for deployment 259

 </fileset>
 </copy>
 </target>

 <target name="dist" depends="build" 6
 description="Create WAR-File for JSP 1.1/Servlet Engine 2.2">
 <war warfile="${dist.dir}/sg246807-${release.name}.war"
 webxml="${build.dir}/WEB-INF/web.xml">
 <fileset dir="${build.dir}"/>
 </war>
 </target>
</project>

1. The <project> stanza defines the Web application name (sg246087) and
defines a default target (dist).

2. Various <property> definitions are provided.

3. The init target creates directories:

build Web resource files (JSP, HTML, etc.)

build/classes Application classes

dist Application WAR package

4. The compile target compiles Java source files in the src/java directory and
places the resultant class files in the build/classes directory. It depends on
the init target.

5. The build target depends on compile, and creates a directory structure in the
build directory which matches the deployment structure.

6. The dist target, which depends on build, creates a WAR package in the dist
directory.

Checking library dependencies
To compile and run the example application, you need external Java libraries and
the installed RPM itsodb-1.2-1.s390.rpm. The RPM is for the C part of the
application. Example 17-4 shows the portion of the build file that checks these
dependencies.

Example 17-4 Checking library dependencies using Ant (build.xml)

<target name="-show_error" unless="required_libs_available"> 1
 <echo message="** ERROR **"/>
 <echo message="required libraries not found"/>
 <echo message="please read lib/README.TXT"/>
 <echo message="**"/>
 <fail message="Required Java libraries are missing."/>
</target>
260 Linux on zSeries: Application Development

<!-- Check library dependencies for native support -->
<target name="-rpm_cond" if="native.support"> 2
 <exec executable="rpm" failonerror="true">
 <arg line="-V --nodeps itsodb-1.2-1"/>
 </exec>
</target>

<!-- Check library dependencies for Java code. -->
<target name="-lib_cond"> 3
 <condition property="required_libs_available">
 <and>
 <available classname="org.apache.log4j.Logger"
 classpathref="classpath"/>
 <available classname="org.apache.struts.action.ActionMapping"
 classpathref="classpath"/>
 </and>
 </condition>
</target>

<target name="check_libs" depends="-lib_cond, -rpm_cond, -show_error" 4
 description="Compile Java and C code."/>
<target name="compile_java" depends="init, check_libs" 5
 if="required_libs_available" description="CompileJava">
 <javac srcdir="${src.java.dir}" destdir="${build.classes}"
 classpathref="classpath"/>
</target>

1. Target -show-error prints an error message to the console if the property
required_libs_available does not evaluate to true.

2. Target -rpm_cond is executed if property native.support is true. It checks for
existence of the itsodb-1.2.1 RPM package using an <exec> rule to execute
the rpm command. Ant terminates if the command fails to find the package.

3. Target -lib_cond checks for the existence of required library jar files in the
CLASSPATH.

4. Target -check_libs simply ensures the previous three rules are executed in
the correct order.

5. Target -compile_java compiles the Java source files. Its dependency on the
-check_libs initiates the checks before compilation.
 Chapter 17. Packaging applications for deployment 261

17.3.2 Deploying WAR packages
Use these steps to deploy the application:

1. Copy the WAR package to the Tomcat Web applications directory (naming it
sg246807.jar):

cp sg246807/dist/sg246807-release.war /var/tomcat4/webapps/sg246807.jar

2. Restart the Tomcat server.

The application can then be accessed using:

http://localhost:8180/sg246807

Configuring a server for JDBC
To access a relational database in the application using JDBC, the JDBC
interface needs to be configured in the application server. For DB2, the steps are:

1. Copy the DB2 JDBC (db2java.zip) driver to $CATALINA_HOME/common/lib
directory:

cp instance/sqllib/java12/db2java.zip /var/tomcat4/common/lib/db2java.jar

2. To use connection pooling, copy the Struts jdbc2_0-stdext.jar library to the
/var/tomcat4/common/lib directory.

Configuring a server for JNI database access
To access a relational database in the application using the JNI interface, the
server needs some configuration:

1. Build and install the itsodb RPM package.

2. Copy the libJniAdressbook.so shared library to the server
/var/tomcat4/common/lib directory.

Important: Use a .jar file extension when installing the driver. Tomcat will
not add .zip files to its CLASSPATH

Note: Use a symbolic link if you prefer:

ln -s instance/sqllib/java12/db2java.zip \

/var/tomcat4/common/lib/db2java.jar

Note: The driver belongs in the server CLASSPATH - not the application
CLASSPATH. Do not put the driver in the application WEB-INF/lib directory.
262 Linux on zSeries: Application Development

3. Edit the Tomcat startup configuration file (/etc/tomcat4/conf/tomcat4.conf)
to make the DB2 libraries available to the loader. Add the following lines:

source db2instance/sqllib/db2profile
export LD_LIBRARY_PATH=/var/tomcat4/common/lib

Configure the connection type
Finally, you will need to configure the application to use the appropriate
connection type (see Section 13.9.1, “Connection configuration” on page 186).

17.3.3 Deployment on WebSphere Application Server 4.0
The sample application can be deployed using WebSphere Application Server
4.0. To obtain a trial version, go to:

http://www14.software.ibm.com/webapp/download/search.jsp?go=y&rs=wasael

To build the sample application using WebSphere Application Server, you need
to specify the correct servlet.jar file to Ant. This property is defined in the
build.properties file (see , “Project root directory” on page 252) and should be
set to /opt/WebSphere/AppServer/lib/j2ee.jar. In addition, to use the
WebSphere Application Server JDBC 2.0 connection pooling mechanism,
specify the jdb20_opt.jar property as
/opt/WebSphere/AppServer/lib/j2ee.jar.

Connection pooling using Java Naming Directory Interface
WebSphere Application Server supports the Java Naming Directory Interface
(JNDI) to access a datasource. To use JNDI connection pooling with WebSphere
Application Server 4.0:

1. Start the WebSphere Application Server admin client using the command:

$WAS_HOME/bin/admclient.sh

2. Create a data source by navigating Console -> New -> Data Source. Define
the data source as:

NAME = sg246807
JNDI name = jdbc/sg246807
user = db2inst1
password = ibmdb2

3. Specify the db.driverclass.dev property in the sg246807.properties file
(see Section 13.9.1, “Connection configuration” on page 186) as:

db.driverclass.dev=COM.ibm.db2.jdbc.DB2COnnectionPoolDataSource

For details on connection pooling, see:

http://www-3.ibm.com/software/webservers/studio/appserver40pooling.html
 Chapter 17. Packaging applications for deployment 263

http://www14.software.ibm.com/webapp/download/search.jsp?go=y&rs=wasael
http://www-3.ibm.com/software/webservers/studio/appserver40pooling.html

Deploying the application
To deploy the application:

1. Start the WebSphere Application Server admin client using the command:

$WAS_HOME/bin/admclient.sh

2. Install the application WAR file:

a. Navigate Wizard -> Install Enterprise Application Server

b. Install the module using the default values and:

Path = $SG24_HOME/dist/sg246807-release.war
Application name = sg246807
Context root for module = /sg246807

c. Select resource sg246807 for the resource reference.
264 Linux on zSeries: Application Development

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2002. All rights reserved. 265

266 Linux on zSeries: Application Development

Appendix A. DB2 for Linux on zSeries

This appendix provides instructions to install and set up DB2 on Linux for
zSeries. This appendix refers to DB2 UDB v7.1.

A

© Copyright IBM Corp. 2002. All rights reserved. 267

Installing DB2
You must be logged on as root user in order to perform the installation.

Before you begin
IBM offers a 90-day trial copy of DB2 UDB EE (Enterprise Edition) for Linux for
S/390 and zSeries on the Internet, available at:

http://www6.software.ibm.com/dl/db2udbdl/db2udbdl-p/

Download DB2 UDB EE on Linux for S/390 and zSeries V7.1 for Linux. You can
also select the required language for the software product.

About 150 MB is needed to install DB2 UDB EE. Another 100 MB is necessary if
the DB2 HTML Manuals are installed. The target directory for the db2setup
program is /usr. In this directory an entry named /usr/IBMdb2/V7.1 is created.
Most of the installed files are located there; however, db2setup adds some data in
/var and /etc directories as well.

The installation files should be accessible from the Linux image on which to
install. You can:

� Copy the installation archive to the target machine and unpack it.

� Use the VM shared disk.

� Use a PC with an NFS-exported directory.

We assume the installation files for db2 are located in the /db2install directory.

The contents of the installation directory look like the following:

. NetData db2_deinstall db2setup doc.cmn

.. db2 db2_install doc readme.txt

Prerequisites
Only one non-standard package is needed—the Korn Shell. We used the Public
Domain Korn Shell implementation, which comes with most distributions; it can
also be download from:

http://rpmfind.org

The package is named pdksh and is located in cd1/suse/ap2. Install it using YaST
or the rpm command:

rpm -U pdksh.rpm
268 Linux on zSeries: Application Development

http://www6.software.ibm.com/dl/db2udbdl/db2udbdl-p/
http://rpmfind.org

Installation procedure
Following is the list of the installation steps to be performed:

1. Start the installation program:

./db2setup

2. The main screen of the installation program is shown in Figure A-1.

Figure A-1 DB2 initial installation screen

3. Select the product you would like to use:

– If you plan to install a standalone server, select DB2 UDB Enterprise
Edition.

Note: The setup program may abend because it needs the
libstdc++-libc6.1-2.so.3 library. Follow the procedure described in
“Standard C and C++ libraries” on page 18.

Tip: If the installation is interrupted, the /tmp/.db2inst.lck lock file has to be
removed.

+------------------------------- Install DB2 V7 -------------------------------+
| |
| Select the products you are licensed to install. Your Proof of |
| Entitlement and License Information booklet identify the products for |
| which you are licensed. |
| |
| To see the preselected components or customize the selection, select |
| Customize for the product. |
| [] DB2 Run-Time Client : Customize... : |
| [] DB2 UDB Enterprise Edition : Customize... : |
| [] DB2 Connect Enterprise Edition : Customize... : |
| [] DB2 Application Development Client : Customize... : |
| |
| To choose a language for the following components, select Customize for |
| the product. |
| DB2 Product Messages [Customize...] |
| DB2 Product Library [Customize...] |
| |
| |
| [OK] [Cancel] [Help] |
+--+
 Appendix A. DB2 for Linux on zSeries 269

– If you want to connect to remote databases (either DB2 UDB for
distributed platform, or DB2 on a host system like z/OS or iSeries), select
DB2 Connect.

– If you want to develop a DB2 application (regardless of the database
connection type), also select DB2 Application Development Client.

4. Next, choose OK and proceed to the next screen, shown in Figure A-2.

Figure A-2 DB2 instance creation screen

5. It is often convenient to create a database instance during installation. An
instance is an isolated environment where you can create and manage
databases.

An instance is always associated with a user account. The installation
program will create such an account and configure a TCP/IP connection to
your instance (port 50000). The details can be changed with the Customize
option shown in Figure A-3.

+---------------------------- Create DB2 Services -----------------------------+
| Select the items you want to create, and select OK when finished. |
| |
| A DB2 Instance is an environment where you store data and run |
| applications. An instance can contain multiple databases. |
| |
| () Create a DB2 Instance. : Customize... : |
| (*) Do not create a DB2 Instance. |
| |
| An Administration Server provides services to support client tools that |
| automate the configuration of connections to DB2 databases. |
| |
| () Create the Administration Server. : Customize... : |
| (*) Do not create the Administration Server. |
| |
| |
| |
| |
| |
| [OK] [Cancel] [Help] |
+--+

Tip: You can also create an instance later with the db2icrt command
located in the /usr/IBMdb2/V7.1/instance directory. Refer to the DB2
UDB Database Administration Guide for more details.
270 Linux on zSeries: Application Development

Figure A-3 DB2 services installation screen

6. You need Administration Server when you want to manage your databases
remotely. In our configuration we did not create an Administration Server
instance.

7. On the next few screens, do not set the following unless you plan to use them:

– DB2 Warehouse Control Database

– DB2 Distributed Join for DB2 Data Sources

8. Select OK on the screen shown. The following warning may be ignored
because we do not want to set up an Administration Server:

DBI1755W The Administration Server is not created.

Select OK to proceed to the next screen.

9. Select Continue -> OK in order to start the installation.

+---------------------------- Create DB2 Services -----------------------------+
| Select the items you want to create, and select OK when finished. |
|+--- DB2 Instance ---+|
	Authentication:	
	Enter User ID, Group ID, Home Directory and Password that will be	
	used for the DB2 Instance.	
	User Name [db2inst1]	
	User ID : : [*] Use default UID	
	Group Name [db2iadm1]	
	Group ID : : [*] Use default GID	
	Home Directory [/home/db2inst1]	
	Password []	
	Verify Password []	
	Select Properties to view or change more [Properties...]	
	options.	
	Select Default to restore all default [Default]	
	settings.	
	[OK] [Cancel] [Help]	
 +--+
 Appendix A. DB2 for Linux on zSeries 271

Configuring DB2
In our scenario, we used the single instance db2inst1 created during installation.
We created this instance on every Linux image.

Before you perform customizing, log on as the instance owne . The default is
user db2inst1 and the password is ibmdb2.

Creating a local database
We used the sample database provided with the DB2 UDB. To create the sample
database, issue:

db2samp

You can connect to the sample database by using the DB2 command line
interface. Enter the following:

$db2 connect to sample
Database Connection Information
Database server =DB2/LINUX 7.1.0
SQL authorization ID =DB2INST1
Local database alias =SAMPLE

Issue a sample query to verify the installation:

db2 "select * from staff"

Accessing remote databases
Before you access the data located on the remote host, you should catalog the
node and the database.

Note: The installation log is stored in the /tmp/db2setup.log file, and can be
viewed online with following command:

tail -f /tmp/db2setup.log

In case of an error, this file contains a lot of diagnostic information you can
refer to, as well as indications of which commands should be invoked to
complete the process.

Important: If you want to access the instance from a different user account,
set up the environment by reading the db2profile (use the dot and space at
the beginning):

. /home/db2inst1/sqllib/db2profile
272 Linux on zSeries: Application Development

UNIX or Windows database
If the remote side is a UNIX (including Linux for zSeries as shown in this
example) or Windows environment, prepare the script as follows:

catalog tcpip node nodename
 remote server_ip_address
 server server_port_number
 ostype linux;
catalog db remotedbname as mydbname at node nodename
 authentication server;

And run in the db2 shell:

db2 -t -f scriptname

DB2 UDB for z/OS or s/390 databases
If the remote side is a z/OS or s/390 environment, execute the following script:

catalog tcpip node nodename remote server_ip_address
 server server_port_number ostype mvs;

catalog dcs db remotedbname ;

catalog db remotedbname as mydbname at node mfnode
 authentication dcs;

You can find remotedbname and the port number in DB2 log in SDSF. Look for the
DSNL004I message and use the location and port fields, respectively; refer to
Example A-1 on page 274.

Tip: You can check the port the remote instance is listening on. Working as an
ADM on the remote site, issue:

db2 get dbm cfg | grep SVC

The SVCENAME attribute contains the port number or the service name form
/etc/services.
 Appendix A. DB2 for Linux on zSeries 273

Example: A-1 Obtaining the location and the port number

Display Filter View Print Options Help

SDSF OUTPUT DISPLAY DSNAMSTR STC00056 DSID 2 LINE 40 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> CSR
07.45.25 STC00056 DSNL519I @ DSNLILNR TCP/IP SERVICES AVAILABLE
 FOR DOMAIN os01.appdev.net AND PORT 5021
07.45.25 STC00056 DSNL519I @ DSNLIRSY TCP/IP SERVICES AVAILABLE
 FOR DOMAIN os01.appdev.net AND PORT 5022
07.45.25 STC00056 DSNL004I @ DDF START COMPLETE
 LOCATION OS01DB
 LU ITSOSITE.OS01LU
 GENERICLU -NONE
 DOMAIN os01.appdev.netl
 TCPPORT 5021
 RESPORT 5022
07.45.25 STC00056 DSN9022I @ DSNYASCP 'START DB2' NORMAL COMPLETION
00.00.00 STC00056 ---- FRIDAY, 24 MAY 2002 ----
274 Linux on zSeries: Application Development

Appendix B. Porting applications to
Linux on zSeries

This appendix describes efforts to port applications to Linux on zSeries, and
some application developer’s tools available for Linux on zSeries. It is extracted
from a number of white papers and Internet postings.

B

© Copyright IBM Corp. 2002. All rights reserved. 275

Linux for S/390 and zSeries porting - hints and tips

This section summarizes a variety of issues that our Linux Porting team has had
to consider when doing ports of applications and tools to S/390 and zSeries. It
includes things to look for when assessing your code to do a port, as well as
differences in implementation when compared to Linux on other platforms. The
topics covered in this section (presented in no particular order) are the following:

� va_args implementation
� Architecture-dependent code
� Assembler code
� ptrace & return structure
� Little endian to big endian
� Stack frame layout and linkage is specific to S/390
� sigcontext structure on S/390 Linux is different from Intel
� High-order bit
� Added support needed
� proc file system
� Supported languages
� Shared objects

va_args implementation
There are differences in implementation of va_args. These are a few notes
regarding variable argument handling under Linux 390. Commonly referred to as
"varargs", variable arguments can be processed under the stdarg.h model or
the varargs.h model. These header files have slightly different macros for
processing variable arguments. Some applications actually mix both types. In
implementations of version 2.2.16 and later, it is necessary to

#include <varargs.h>

prior to any

#include <stdarg.h>

if varargs.h behavior is desired. This behavior is subject to change. The
following discussion was derived from examples that used varargs.h.

Under Linux 390, a va_list definition is different from other platforms - it is a
structure with various members.

Note: This section was contributed by the S/390 Porting & Feasibility
department, IBM Poughkeepsie, N.Y.
276 Linux on zSeries: Application Development

On Linux 390, variable argument lists are processed with the va_start(va)
macro (where va is a va_list data type). va_start() fills in the structure above,
creating a va_list with all the correct members. These are needed by the
system to correctly find the arguments passed in a variable argument list.

Arguments are then processed with the va_arg macro as follows for an integer
argument:

varint = va_arg(va, int); /* pulls off one more argument, an integer and
 assign to varint (an integer variable) */

When a va_list is no longer needed, the storage should be cleared with a
va_end(va) macro (which generates an error if va is subsequently processed as
a va_list).

One non-portable use of va_lists is the “raw” assignment of one va_list to
another. This works on implementations where va_list is not implemented as a
struct.

The correct way to copy one va_list to another va_list is to replace the copy
with the macro:

__va_copy(dest, src); /* copies from src to dest */

When a va_list variable is passed as a parameter to a function, the variable is
initially a pointer to va_list structure (because a local variable has been created
and no va_start() has yet been performed). To access the actual arguments
inside this va_list, the recommended approach is to either process the variable
with va_start() or use a local variable and __va_copy(va2, va) to copy the
contents of the passed variable into the local variable. Without these steps, either
bad results or a segmentation violation is the likely outcome.

Architecture-dependent code
Programs residing in directories (on non-S/390 systems) with names like
/sysdeps or /arch typically contain architecture-dependent code. You need to
examine programs in these directories to ensure they are compatible with the
zSeries architecture.

Assembler code
Any assembler code needs to be rewritten in S/390 Assembler. Opcodes have to
be changed to S/390 opcodes, or if code uses assembler header files, you need
a S/390 version of the header. S/390 Assembler code for Linux uses the 390
opcodes but follows the syntax conventions of GNU assembler. The GNU
assembler manual can be downloaded at:

http://www.gnu.org/manual/gas-2.9.1/as.html
 Appendix B. Porting applications to Linux on zSeries 277

http://www.gnu.org/manual/gas-2.9.1/as.html

ptrace & return structure
The use of ptrace and the return structure is architecture-dependent.

Little endian to big endian
S/390 is a big endian system. Any code that processes data that originated on a
little endian system may need some byte-swapping.

Stack frame layout and linkage is specific to S/390
See /usr/src/linux/Documentation/Debugging390.txt for details. Location of
this file may vary depending on the distribution. In one instance, it was found in
the following file:

/usr/src/linux-2.2.16.SuSE/Documentation

sigcontext structure on S/390 Linux is different from Intel
The PSW address at the time of interrupt and page fault (for sigsegv) are not
stored in sigcontext on S/390. A patch may be developed to return this
information in registers instead. Check your version of sigcontext.h to see if any
additional fields are present that might return the address of the page that had
the sigsegv. To find the failing PSW, the following structures in sigcontext.h
may be used.

Figure B-1 Locating the PSW address

intpsw = (caddr_t)context->sregs->regs.psw.addr;

typedef struct
{
 _psw_t psw;
 unsigned long gprs[__NUM_GPRS];
 unsigned int acrs[__NUM_ACRS];
} _s390_regs_common __attribute__ ((packed));

typedef struct{
 unsigned int fpc;
 double fprs[__NUM_FPRS];
} _s390_fp_regs;

typedef struct
{
 _s390_regs_common regs;
 _s390_fp_regs fpregs;
} _sigregs;

struct sigcontext
{
 unsigned long oldmask[_SIGCONTEXT_NSIG_WORDS];
278 Linux on zSeries: Application Development

 _sigregs *sregs;
};

High-order bit
The high-order bit for some address fields may need to be "ANDed" off (31-bit
mode bit)—for example, if the address is used in arithmetic.

Added support needed
Configuration, build, and Makefile scripts or files probably need to add support
for the s/390 platform.

proc file system
The proc file system has some differences:

� /proc/cpuinfo format is different
� /proc/interrupts is not implemented
� /proc/stat does not contain INTR information

Supported languages
Programming languages for Linux on zSeries include:

– C and C++
– Perl
– Tcl
– Python
– Scheme
– Regina (Rexx)
– Java

Shared objects
Linux currently does not support shared objects like mutexes, semaphores and
conditional variables across different processes.

For example, calls to:

– pthread_mutex_attr_setpshared
– pthread_rwlockattr_setpshared
– pthread_condattr_setpshared

will fail if PTHREAD_PROCESS_SHARED is set in the respective flag argument passed
to these functions. When porting from platforms which support process sharing
with these functions, it will be necessary to rewrite the application if the
PTHREAD_PROCESS_SHARED flag is set (the Linux kernel will return a -1 if this flag is
used). For mutexes, simple lock-unlock type semaphores, and condition
 Appendix B. Porting applications to Linux on zSeries 279

variables, the pthread* calls have to be replaced with user-written code. See
/usr/include/asm/atomic.h for serializing functions.

Graphics support on the mainframe
If you need to load or generate an image on the server side, you might get into
problems, because there is no real X server available. With Java 1.4 you can use
“headless Java”1.

However, Java 1.4 is currently not available on Linux s/390 and many libraries,
including the Java AWT, require an X server. To get around this problem, you can
use the following:

� Pure Java AWT, available at:

http://www.eteks.com/pja/en/

“PJA (Pure Java AWT) Toolkit is a Java library for drawing graphics
developed by eTeks. It is 100% Pure Java and doesn't use any native
graphics resource of the system on which the Java Virtual Machine runs.”

� X Virtual Frame Buffer (Xvfb), available at:

http://www.linuxcentral.com/linux/man-pages/Xvfb.1x.html

“Xvfb is an X server that can run on machines with no display hardware and
no physical input devices. It emulates a dumb frame buffer using virtual
memory.”

1 http://java.sun.com/j2se/1.4/docs/guide/awt/AWTChanges.html#headless

Note: The PJA consumes a lot of memory and tends to be slow.

Note: For Xvfb, you might want to create a start script /etc/rc.was similar
to the following:

Xvfb :10&
sleep 120
export DISPLAY=:10
/opt/WebSphere/AppServer/bin/startupServer.sh
280 Linux on zSeries: Application Development

http://www.eteks.com/pja/en/
http://www.linuxcentral.com/linux/man-pages/Xvfb.1x.html
http://java.sun.com/j2se/1.4/docs/guide/awt/AWTChanges.html#headless

Memory debuggers
Reference:

http://www-1.ibm.com/servers/eserver/zseries/os/linux/ldt/whitepaper2.html

C and C++ developers have a great deal of control over dynamic memory
allocation. This freedom of control, however, can lead to significant memory
management problems. These problems can cause programs to experience
significant performance degradation, act unpredictably, or even crash.

Memory access errors are very difficult to find by visually inspecting the code and
very rarely cause observable errors. Often, a memory access occurs only in a
rare combination of circumstances; thus, memory access bugs can slip past even
extensive testing, to be discovered only after deployment.

Currently on S/390 there are a number of open source tools that can locate
memory management errors. These tools work by using malloc replacement
code. Each tool has its own code that intercepts the calls to malloc or similar
services (such as realloc) and sets up its own bookkeeping information for each
memory request. In some cases, a tool, when allocating requested memory,
implements memory protection schemes to catch improper memory accesses.
For C programs, “Memwatch” and “Electric Fence,” used in combination, provide
good coverage of potential memory errors.

Another tool called “YAMD” provides this coverage for both C and C++ programs.
An attractive feature of YAMD is that it can link dynamically to the existing
executable programs. (The latter need not be recompiled or rebuilt.)

Application profilers
Reference:

http://www-1.ibm.com/servers/eserver/zseries/os/linux/ldt/profs.html

The purpose of application profiling is to determine the behavior of an
application, in the context of performance, so that analyses can be conducted.
The goal of the analysis is to spot performance problems in the application. On
zSeries Linux there are currently three application profilers available:

gprof The GNU profiler that is part of the binutils component of Linux.
It supports profiling of single-threaded C applications.

vprof A visual profiler that is shipped with the SuSE distribution and
supports profiling of single-threaded C and C++ applications.
 Appendix B. Porting applications to Linux on zSeries 281

http://www-1.ibm.com/servers/eserver/zseries/os/linux/ldt/whitepaper2.html
http://www-1.ibm.com/servers/eserver/zseries/os/linux/ldt/profs.htm

cprof An open source profiler, distributed at:

http://www.sinenomine.net/downloads/cprof-build.php

which supports multithreaded C and C++ applications.

These tools work in a similar manner. Here is an overview of how to use them to
get profile information about your application.

1. Rebuild your application with appropriate hooks compiled into your code. This
is generally done by adding compiler and/or link options when the program is
built. These hooks generate calls to routines that get invoked at entry and exit
to the functions you want to get profile information about.

2. Data collection. The types of data that may be collected are:

– Call graph information
– Time spent in each function
– Statistical sampling

3. Post-processing of the output file to generate data in a format that can be
analyzed. Once this step is complete, the application execution
characteristics can be determined and improved accordingly.

Porting UNIX applications to Linux: Hints and tips
Reference:

http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130115.html

Then download the PDF file.

Key questions to consider before starting
Porting to Linux can be easy, simple, and straightforward, particularly if your
UNIX applications are written according to common open standards. If you think
that a move to Linux is attractive, you need to analyze the potential costs and
risks involved in the port and how to migrate them.

Will migration involve a huge initial investment
Costs - Will the porting involve a huge initial investment of time, people and
money? Will the project freeze all other new work and consume entire teams?
Are big capital outlay and retraining costs required up front? Is it an all-or-nothing
proposition that, once begun, can only either be completed or backed out in full?

The answer is that porting to Linux is manageable. The paper available at:
282 Linux on zSeries: Application Development

http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130115.html
http://www.sinenomine.net/downloads/cprof-build.php

http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130115.html

outlines how porting can be staged one step at a time, where each intermediate
step is stable by itself. This gives you the freedom to manage costs, people and
projects according to your priorities. It means you can commit each step
independently and reassess your priorities and goals after each one. The result
is a much more manageable risk, and less impact on your business.

How much will it cost, and how long will it take
To determine costs in time and money, thoroughly assess your application with
respect to factors relevant to porting:

� Compiler dialect
� Hardware-dependent constructs in the code (such as word length or

byte-endian)
� Platform run-time services
� Build-tool dependencies
� Availability of database, networking and messaging middleware
� User interface portability
� Test environment and test cases

The size and complexity of the porting effort varies directly in proportion to the
amount of system- and environment-dependent code. If your application uses
only standard language constructs and standard libraries, it may be relatively
easy to port. Java applications, for example, usually fall into this category.

If, on the other hand, your application is a C program that uses non-POSIX
services on Solaris, or depends on third-party products that are not available on
Linux, the move can be substantially harder. Usually the system test and testing
the configuration and installation of the software is an important step and makes
up a major part of the port.

Will my application continue to work on the original UNIX platform
Even after moving development to Linux, you can continue to keep the original
platform open in order to address your other market. Porting to Linux means that
build tools are replaced by GNU tools, and POSIX-compliant threading libraries
are used instead of platform-specific ones. GNU tools and libraries are both
available on other UNIX platforms, allowing you to serve your original platform
and Linux concurrently.
 Appendix B. Porting applications to Linux on zSeries 283

http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130115.html

Porting from Linux to Linux on zSeries
Now that the port to Linux on one platform, say Intel, is completed, what about
porting to Linux on the other hardware platforms? The short answer is: it’s a
piece of cake.

Why porting to Linux on zSeries?
Linux on zSeries is pure Linux. It is neither a Linux personality on an existing
zSeries operating system, nor a special version of Linux adapted to the zSeries
architecture. It has the same characteristics on zSeries that it would have on
other platforms; for example, it is a pure ASCII environment. The vast majority of
the Linux structure is common to all architectures. The zSeries-dependent
modifications enable Linux to communicate with memory, disk and
communications hardware. The parts of Linux which interface with applications
and users are unaffected.

Application advantages
Your Linux/UNIX applications on Linux on zSeries will give you the advantage of
accessing enterprise data (back-end integration) that is stored on zSeries
environments. This provides improved responsiveness and reduces unnecessary
duplication of data. The superior capacity, scalability, reliability and security of the
zSeries makes it the perfect deployment platform for enterprise server
applications. Linux on zSeries, in addition, can help to simplify operations and
reduce costs by cutting the number of servers in the business environments.

Special attention should be paid to the following items in porting to Linux on
zSeries:

� Little endian to big endian
� Assembler code
� Absolute addresses and high-order bit
� Application development tools

Summary
� Porting from any UNIX-to-Linux is a project that can be staged in a way that

will not impact any aspect of your existing business. The complexity of porting
varies from application to application and is determined by what programming
language is used.

� The only skills required are common skills for application developers, so you
should have all the skills you need to get started. In addition, IBM provides
technical support teams and porting centers around the world, which can help
you to get your applications ported.

� The detailed porting roadmaps provided in the referenced document cover
valuable hints and tips for helping to judge the complexity of porting your
284 Linux on zSeries: Application Development

application. This is the base for a consistent porting plan, leading your project
to a successful completion.

Solaris-to-Linux porting guide
Reference:

http://www-106.ibm.com/developerworks/linux/library/l-solar/

This guide is the technical version of the information presented in “Porting UNIX
applications to Linux: Hints and tips” on page 282.

This discussion concerns porting from Solaris, but it may also be used for other
mainstream UNIX systems. Recommended steps:

1. Download the necessary development tools and the Linux distribution.

2. Build your C/C++ application for Linux on Solaris.

– Convert makefiles: Build your application using the GNU gmake utility
instead of the Solaris make utility. There might be incompatibilities that you
should resolve.

– Compile and debug: Change the name of the C compiler from cc to gcc,
and the name of the C++ compiler from CC to g++. Then recompile the
code. Check the error messages. Use the compiler documentation to
modify the makefiles to compensate for the differences in compiler
options.

3. Become familiar with Linux while still running on Sun hardware.

4. Move the application on the target Linux platform.

Java applications
Because the JVM accepts the same bytecodes regardless of the operating
system in which the JVM runs, you have the option of compiling Java source files
on one operating system and running the resulting class files on another.

Fortran applications
If your Solaris Fortran application is f77-conformant, then you can use the GCC
Fortran 77 (g77) compiler to compile your application code. The GNU Compiler
Collection suite include the g77 compiler.

If your application is currently built with the Sun f90 or f95 compiler, then you will
have to purchase a commercial Fortran 90/95 for Linux. Check the URL in the
beginning of this section for details.
 Appendix B. Porting applications to Linux on zSeries 285

http://www-106.ibm.com/developerworks/linux/library/l-solar/

Run-time interfaces
Although the vast majority of run-time interfaces are common between Linux and
Solaris, there are some areas where differences exist. Any use your application
makes of an interface available on Solaris, but that is not available on Linux, will
need to be modified before your application will build correctly. The areas of
differences are listed here:

� System calls and C library
� C++ library
� Math library
� X libraries and window manager
� Desktop: CDE versus GNOME/KDE
� Thread/LWP (Light Weight Process) support
� Process management: /proc file system

Additional considerations
� System management
� Source-code management
� Other third-party tools, utilities, and libraries
� 64-bit computing
� Endian format
� Education

Technical guide for Solaris to Linux application porting
Reference:

http://www-1.ibm.com/servers/esdd/articles/porting_linux/

Of the porting guides in this appendix, this guide is by far the most
comprehensive and technical.

Porting overview
The porting strategy itself is reasonably simple:

1. Clean up the code and header files and remove architectural dependencies
and nonstandard practices.

2. Compile the code and fix problems found during compile time.

Important: Although Solaris and Linux belong to the UNIX family, the
differences between them pose a great many “gotchas”.
286 Linux on zSeries: Application Development

http://www-1.ibm.com/servers/esdd/articles/porting_linux

3. Fix segment faults and unaligned accesses, if necessary.
4. Recompile the code and repeat the above process, if necessary.

Use the grep command
After you identify your porting development platform, you need to search for the
following, which are likely to cause porting problems in the source code:

� Regular expressions
� Macros for printf, sprintf, scanf, and sscanf routines
� Structures and unions that may change the data alignment
� The #else ... #endif statements
� The system header files (such as limits.h, types.h, and so on)

Identify potential problems
After using the grep command, you also need to check for inefficient or
non-portable code. The following list helps to identify the porting issues:

� Identify source code and library incompatibilities.
� Enforce stricter type-checking rules than the compiler enforces.
� Identify potential problems with variables.
� Identify potential problems with functions.
� Identify problems with flow control.
� Identify legal constructions that may produce errors or inefficiencies.
� Identify unused variable and function declarations.
� Identify unused variable and function declarations.
� Identify possibly non-portable code.

Use a porting tool
The following tools are either available or under development:

� The Porting Manager is a Perl script that takes as input a source code tree. It
scans the C/C++ code for Solaris-only APIs and flags them. It also provides
documentation on how you might port a Solaris API to an equivalent API for
Linux. The scanning is table-driven (a table of APIs to check for and flags are
provided with the tool). It also checks for include files and flags them if they
are not found on your Linux system. Porting Manager has a GUI front end
and, because it is written in Perl, it runs on Solaris as well as Linux and
presumably anywhere that Perl runs.

� DeveloperWorks Solaris-to-Linux porting tool is a Web application that checks
the APIs used by a Solaris application for compatibility on Linux. The following
Web site provides access to the Web application tool:

http://www.ibm.com/developerworks/linux/tools/l-solar.html
 Appendix B. Porting applications to Linux on zSeries 287

http://www.ibm.com/developerworks/linux/tools/l-solar.html

� MigraTEC porting suite is from MigraTEC, a company that specializes in tools
for migrating applications from one platform to another. The porting suite
includes the Migration WorkBench, which provides a complete
Solaris-to-Linux API map:

http://www.migratec.com/MigraTEC/migration_suite.htm

This guide presents an exhaustive list of differences between Solaris and Linux
in the following areas:

� Directories
� SIGNAL handling
� Thread handling
� make
� C compiler options
� Linker options
� System-derived data types
288 Linux on zSeries: Application Development

http://www.migratec.com/MigraTEC/migration_suite.htm

Appendix C. Tools for Windows
workstations

This appendix describes the following:

� Accessing Linux on zSeries using a Windows Telnet and SSH client

� UNIX emulation and XFree86 XServer running on Windows

� WebSphere Application Server.

C

© Copyright IBM Corp. 2002. All rights reserved. 289

PuTTY - a Telnet/SSH client for Windows
PuTTY is a free implementation of Telnet and SSH for Win32 platforms, along
with an xterm terminal emulator. It is more efficient than the standard Telnet of
Windows.

PuTTY can be obtained from:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

On that page select the version that is most appropriate for your workstation.

One useful component in PuTTY is pscp, a tool for copying files securely
between computers using an SSH connection.

To send files to a remote server:

pscp [options] source [user@]host:target

To receive files from a remote server:

pscp [options] [user@]host:source target

Note that source and target are the files in the respective computers (they may
contain wildcard characters).
290 Linux on zSeries: Application Development

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Figure C-1 shows a screen shot of PuTTY. For more information, click Help on
this screen.

Figure C-1 PuTTY screen

Cygwin - a UNIX emulator for Windows
Cygwin is a UNIX/Linux environment for Windows. It consists of two parts:

1. A DLL (called cygwin1.dll), which acts as a UNIX emulation layer, providing
substantial UNIX API functionality,

2. A collection of tools, ported from UNIX, that provide the UNIX/Linux look and
feel.

Cygwin can be obtained from:

http://www.cygwin.com/
 Appendix C. Tools for Windows workstations 291

http://www.cygwin.com/

To install Cygwin:

1. Go to:

http://www.cygwin.com/

2. Click the Install Cygwin now button at the upper right corner to download a
program (setup.exe) to some temporary directory.

3. Use Windows Explorer to find that file, then double-click it. The setup.exe
will guide you further in the installation. During the process it will prompt you
several times to make a choice among several options.These are the choices
that we made:

– Install from Internet.

– Root directory: \cygwin.

– Default Text File Type: DOS.

– A mirror FTP site that is “closest.”

– All packages (takes quite a while).

– Create an icon on the Desktop.

Using XFree86 as an X Server under Cygwin
Before installing XFree86 for Cygwin, you must first install Cygwin. If you have
included XFree86 in your selection while installing Cygwin, you already have
XFree86 for Cygwin on your workstation! Otherwise, follow the instructions here.
XFree86 under Cygwin can be obtained from:

http://xfree86.cygwin.com/

Installation of XFree86 is similar to that of Cygwin:

1. Go to:

http://xfree86.cygwin.com/

2. Click Install Cygwin/Xfree86 now at the upper right corner to download the
setup.exe file on some temporary directory. (In fact, this file is identical to the
one used to install Cygwin.)

3. Use Windows Explorer to find that file and double-click it. The setup.exe will
guide you further in the installation process. These are the choices that we
made:

– Install from Internet.

– Root directory: \cygwin.

– Default Text File Type: DOS.

– A mirror FTP site that is “closest”.
292 Linux on zSeries: Application Development

http://www.cygwin.com/
http://xfree86.cygwin.com/
http://xfree86.cygwin.com/

– XFree86 base package from the XFree86 category.

– Create an icon on the Desktop.

To start XFree86:
Click the XFree86 icon on the desktop or, if not available, enter this command
from a Windows command prompt:

C:\cygwin\usr\X11R6\bin\startxwin.bat

For more information on how to use a Windows workstation as X server, refer to
14.4.1, “Graphical interface in a UNIX environment” on page 212.

Using WebSphere Application Server on Windows
Using WebSphere Application Server, it is possible to develop Java code on a
Windows desktop and later deploy the application under Linux for zSeries. In this
section we list some hints and tricks.

Filenames
Remember that file names are case-sensitive on Linux (this is not the case on
Windows).

Carriage return/line feed
If your Java editor under Windows does not support the UNIX style of saving text
files, you see a carriage return (^M) at the end of every line under UNIX. To

Tip: Enable cut and paste between Windows and Linux

Cited from the Cygwin home page:

“Xwinclip is a clipboard manager for Cygwin/XFree86 that integrates the X
Window System clipboard with the Microsoft Windows clipboard. xwinclip
currently supports two-way text transfers.”

Download:

http://xfree86.cygwin.com/devel/xwinclip

You also need bunzip2 to extract the download. Select package Utils->bzip2
during Cygwin setup.
 Appendix C. Tools for Windows workstations 293

http://xfree86.cygwin.com/devel/xwinclip

convert text files into a UNIX text file, you can use Jakarta Ant. Example C-2
shows how an Ant target was used to automate the process.

Figure C-2 Converting DOS-style carriage return to UNIX-style using Ant

<target name="fixcrlf">
<fixcrlf srcdir="." includes="**/*.java, **/*.jsp, **/*.properties" />

</target>

For reference, see:

http://jakarta.apache.org/ant/manual/CoreTasks/fixcrlf.html

Property files under WebSphere Studio Application Developer
Do not store *.properties files under webapp/WEB-INF/classes in WebSphere
Studio Application Developer. (For example, the log4j manual tells you to put the
log4j.properties file in the /WEB-INF/classes directory. Do not do it!) We make
this recommendation for the following reasons:

� WebSphere Studio Application Developer deletes this directory and
regenerates the content.

� If you want to put a property file in the CLASSPATH, store it under the source
directory. WebSphere Studio Application Developer will copy it to the
webapp/WEB-INF/classes directory.

Command line completion under Windows
For command line completion under Windows (similar to the bash shell on Linux),
start regedit.exe and modify the following key:

hkey_current_user/Software/Microsoft/Command Processor: CompletionChar=9

Copying files from Windows to Linux
You can copy files between Windows and Linux in several ways.

WebDav
Using WebDav, Linux directories served by Tomcat can be mapped as a network
drive on Windows. To enable it:

1. Enable write access in the /var/tomcat4/webapps/webdav/WEB-INF/web.xml
configuration file (see the <init-param> stanza).

2. Use Windows Explorer to map the directory as a network drive:

a. Navigate to Tools -> Map Network Drive.
294 Linux on zSeries: Application Development

http://jakarta.apache.org/ant/manual/CoreTasks/fixcrlf.html

b. Create a shortcut to the directory:

location=http://server:8180/webdav

PuTTY
Use the secure copy that is available with PuTTY - the pscp command. Here is an
example usage:

pscp -r -pw "password" *.jar user@10.1.1.128:/tmp

FTP
After enabling ftp on the server, you can use any ftp client to upload and
download files (your Netscape browser, for example):

ftp://USERNAME:PASSWORD@10.1.1.128/tmp

Samba
You can map a directory on the Linux server as a network drive on your
workstation. Detailed instruction on installation and configuration are available at:

http://www.tldp.org/HOWTO/SMB-HOWTO.html

Java Virtual Machine environment
Make sure you have the same environment variable for the Java Locale on
Windows and Linux. For example:

export LC_ALL=en_US

Just in Time compiler (JIT)
If your code runs on Windows and you get strange messages when running
under Linux, try disabling the JIT compiler.

For JDK 1.1, issue:

java -nojit

For JDK 1.2, issue:

java -Djava.compiler=None
 Appendix C. Tools for Windows workstations 295

http://www.tldp.org/HOWTO/SMB-HOWTO.html
http://www.tldp.org/HOWTO/SMB-HOWTO.html

296 Linux on zSeries: Application Development

Appendix D. Linux for S/390 VM HONE
pilot

This appendix describes a pilot project conducted in the EMEA HONE/LINK
platform (EMEA stands for Europe, Middle East and Africa). The purpose of this
pilot project was to deliver a demonstration Linux for S/390 e-business solution
under the slogan “Doing business with Linux on the mainframe”.

The pilot encompassed:

� Installation of a Linux for S/390 server on the S/390 VM platform, where IBM’s
worldwide HONE/LINK service is running

� Installation of WebSphere, IHS, DB2 on this Linux server
� Development of JavaServer Pages and backend connection servlets in the

Linux WebSphere environment to enable three real HONE/LINK business
applications

The selected applications have all been successfully enabled in the new
environment. The development of this solution for production rollout of the
HONE/LINK Web application portfolio has been approved and is underway.

The pilot can be reached at:

http://lwebx01.linux.ehone.ibm.com

D

© Copyright IBM Corp. 2002. All rights reserved. 297

http://lwebx01.linux.ehone.ibm.com

Introduction

IBM is currently committed to making a large scale investment in Linux (ref [1]).
As part of this there s much interest in the progress of Linux on the mainframe
(zSeries, S/390). The prospect of virtualizing hundreds or even thousands of
Linux servers on a mainframe offers spectacular opportunities for cost reduction
and time saving in comparison to conventional Webserver farms which require a
physical server for each Linux image. There is a definite trend underway for the
mainframe to be in the IT spotlight once again.

The expectation is that Linux will be the pre-eminent platform for the next
generation e-business applications. An estimated 80% of enterprise business
data resides on mainframes. In view of its mainframe market share IBM holds the
trump card with the combination of Linux and the mainframe.

In early 2001 the AMS Architecture & Technology Innovation and the
HONE/LINK Development teams jointly decided to conduct a Linux mainframe
pilot, combining mainframe experience, new Linux S/390 technology and
e-business in order to demonstrate the feasibility of Linux mainframe e-business
solution.This would make use of the S/390 VM platform known as HONE/LINK
that has traditionally supported a number of important business applications.

A virtual Linux server on this platform serves as a Web portal to three key
HONE/LINK legacy applications that run on the same platform.The Linux server
is equipped with standard WebSphere components, which support the
developed Java solution (servlets, JSPs) which, in turn, exploits an XML-based
“legacy connector” to access the legacy applications.

The architectural overview diagram Figure D-1 illustrates the key points of the
solution.

Note: This appendix is extracted, with permission, from a white paper titled
“Doing business with Linux on mainframe - Linux for S/390 VM HONE Pilot” by
Richard van Wel, IBM Netherlands.

Unlike the other chapters of the redbook, in this appendix the terms we and us
refer to the Architecture & Technology Innovation and the HONE/LINK
development groups in IBM Netherlands.
298 Linux on zSeries: Application Development

Figure D-1 HONE Pilot Architectural overview

The zSeries (S/390) mainframe is running under the z/VM operating system (1).
This is the platform on which the HONE/LINK legacy applications (2) are running.
HTTP access to these applications is enabled through a VM HTTP server (3).
The pilot project introduces a Linux server (4) running as a guest under VM with
IBM’s standard WebSphere middleware installed: the IBM HHTP Server (5)
serving the user’s Web browser requests, the WebSphere Application Server (6)
running JSPs and Java servlets and the DB2 Data Server (7) handling
WebSphere’s administration. One of the servlets connects the Linux Web serving
code via HTTP to the back end applications (8). The HONE/LINK applications
require their users to be authenticated against the legacy security repository
(RACF) which is done via an IHS plug-in (9).

Price

Inventory

Web
Browser

 H/L
 Data
Servers

HTTP
or
SSL

 URL

WebSphere
Application
Server

Linux FS

JDBC

CAE

HONE/LINK
Application
Servers

Order-
submission

Sxx

Front End
Web
Server
Apache
IHS

IIP/IR
(future)

Data
Server
DB2

Linux FS

HTTP
Linux

Guest 1 H/L
 HTTP
Server

TCP/IP TCP/IP

S/390

z/VM

Authentication

 IUCV
(future)

XML

HONE/LINK

1

234

5

6

7

8

9

 Appendix D. Linux for S/390 VM HONE pilot 299

Two future improvements to this setup are shown.

� The connection via HTTP to the back-end applications (8) is to be replaced by
a direct IUCV in-memory connection which allows to bypass the HONE/LINK
HTTP server (3) and is expected to boost performance.

� The authentication via the IHS plug-in (9) is to be taken over by IBM Intranet
Password (IIP) or IBM Registration (IR), with either IIP or IR userid being
mapped to the legacy userid for application authorization.

Background
In this chapter we

� briefly introduce the HONE/LINK service

� describe its evolution from legacy green screens to Web enablement

� discuss GWA compliance issues

� present the Linux for S/390 opportunity

� discuss the pilot and the production rollout project.

HONE/LINK
HONE/LINK is the name of a service which started in 1975 to support Marketing
and Services. Over time it has supported IBM hardware and software
configurators, product information, technical support and ordering. Today
ordering has remained as the most important set of applications. Order
submission, Inventory retrieval and Price query etc. are the key components of
IBM’s supply chain in EMEA.

After its start in the United Kingdom in 1975, the mission which is originally
named “Hands-On Networking Environment” (HONE) was moved to the
Netherlands in 1977. In 1982 it was decentralized to many countries (“country
HONE”).

In 1987 access was extended to external users (“IBMLink”), hence the name
change to HONE/LINK: HONE for IBM internals, LINK for externals.

In 1994 the service was centralized again in EMEA, followed by worldwide
consolidation in two sites: one in Germany for EMEA, the other in the US for the
US. The other geographies are evenly divided between the two sites. This is still
the situation today.

HONE/LINK is hosted on zSeries mainframes running under the z/VM operating
system. In 1988 the conventional green screens were extended with Web
300 Linux on zSeries: Application Development

interfaces for the most important applications (“HONEWeb” and “LINKWeb”). In
2001 the next step in this evolution was taken with the pilot of Linux front end
which is the subject of this Appendix.

Some figures are in order to give an idea of the importance of the HONE/LINK
platform. On average 100,000 sessions are executed monthly on
HONEWeb/LINKWeb (that is, via the Intranet/Internet Web interface), There are
still another 150,000 sessions each month executed in the old-fashioned green
screen mode. In 2001 a total of 190,000 orders were placed through this channel
by IBM Sales and Business Partners, worth over $5B of IBM’s revenue stream.

Green screens
For a good understanding of the evolution of a typical legacy mainframe system
like HONE/LINK to the e-business platform of today, let us have a look first at the
green screen situation that still in use today. Figure D-2 illustrates the setup.

Figure D-2 Legacy green screen setup

On the S/390 hardware platform of the VM/ESA (called z/VM in newer releases)
operating system is in control (1). This is an operating system which allows the
virtual partitioning of hardware between other operating systems (e.g. z/OS and
recently Linux) running on this same hardware, giving these operating system
the impression that they are in control of the hardware. However, the commands
of their supervisors to the hardware are intercepted by the VM operating system
which does the actual mapping. As it apparently resides above these

Price

Invento ry

H O NE
 Data
S ervers

 HO N E
Application
S ervers

O rder-
su bm issio n

E ndU ser
V ir tual
M achine

S/390

VM /ESA

 SN A

H O N E/LIN K

and to
o ther
IBM

in terna l
system s

green
screen

C M S C M S C M S

Logon

1

2

4

3

 Appendix D. Linux for S/390 VM HONE pilot 301

supervisors, it is sometimes called a “hypervisor”. In order to sustain a good level
of performance this mapping utilizes hardware assistance. Also, much gain is
obtained through clever “handshaking” with the operating systems - this has
improved z/OS (MVS) performance under VM considerably over the years.
Undoubtedly Linux under z/VM will go through a similar maturing process.

The Conversational Monitor System (CMS) is an operating system which has
been developed to run solely under VM - it cannot even run without VM. It can be
viewed as a “virtual PC” of which each user gets a personal copy. A user gets
access to his virtual machine (2) by logging on to VM. After authentication of
userid and password CMS is started and the user gets a piece of storage, a few
cylinders of hard disk and access to some of the processors’ capacity.

In this virtual machine he can develop and run his own programs but, more
importantly, he can also link his virtual machine to other virtual machines and run
their programs. Most interesting here are “server virtual machines” (3) which are
running continuously without a human user logged on and which provide
application functions of general interest.

Finally the green screens that the user gets presented have originally been
designed for display via SNA, IBM’s proprietary Systems Network Architecture
protocol on 3270 based display stations (4).

HONEWeb/LINKWeb
Web enabling of the HONE/LINK legacy applications is illustrated in Figure D-3
on page 303 which is a fair representation of today’s production environment.

The user virtual machines (Figure D-2 on page 301 (2)) here have been replaced
by CMS server virtual machines (1) which listen to the VM TCP/IP HTTP ports
and interact with the legacy applications in the same way as the user virtual
machines did before. These Web server virtual machines run Common Gateway
Interface (CGI) programs that communicate with the user’s Web browser via
HTTP and HTML forms (2).

There is no more need to log on, the URL is all that is needed to connect to the
HONEWeb or LINKWeb home page. However, most applications need user
identification, in which the user will still be prompted for his legacy userid and
password that will be authenticated against the legacy security repository (3) as
before.The HONE/LINK Web servers support HTTP Basic authentication.
302 Linux on zSeries: Application Development

Figure D-3 HONE/LINK current implementation

So far this supports user browser-to-program communication. The next step is
where the user at the calling end is replaced by another Web site, e.g. the
PartnerCommerce portal site (4), which requires program-to-program
communication. The calling program does not want HTML responses, it just
wants the data back, so it can build is own style pages to return to the end users.
HONE/LINK also supports this communication mode and uses XML to tag the
returned data. Conceptually the HONE/LINK applications have been turned here
into “Web Services”. The use of the Simple Object Access Protocol (SOAP) will
be the logical next step.

Price

Inventory

HONE
 Data
Servers

 HONE
Application
Servers

Order-
submission

H/LWeb
HTTP
Servers

zSeries

HONE/LINK

and to
other
IBM

internal
systems

CMS CMS CMS

 Partner
Commerce
 Portal

 Web
browser

TCP/IP

AIX

HTTP/HTML

HTTP/XML

Authentication

z/VM

1

2

3
4

 Appendix D. Linux for S/390 VM HONE pilot 303

GWA
The use of Web servers under VM is not supported in IBM internal Global Web
Architecture (GWA). Several alternatives have been considered, see Figure D-4.

Figure D-4 HONE/LINK alternative implementation

All alternatives take a GWA compliant AIX system as starting point.

� Alternative (1) is the situation just described between the PartnerCommerce
portal and HONE/LINK (refer to Figure D-3 on page 303 (4) where the GWA
system connects to the legacy system via HTTP. This still requires the VM
HTTP servers which are only used here for basic communication, not for Web
page serving.

� Alternative (2) requires the use of HostPublisher product on the GWA system.
HostPublisher logs on via telnet in the same way as the old green screen
user, i.e. with userid and password, to the user virtual machine. Indeed, green
screens are actually returned to the HostPublisher, and the “screen scraping”
method is used to parse the data and reuse these, so that the GWA system
can build its pages from this input.

A few years ago IBM advocated the use of HostPublisher company-wide in a
massive attempt to migrate all VM legacy applications to GWA. This failed
due to the complexity of most legacy screens which makes screen scraping a
hazardous undertaking.

� Alternative (3) makes use of MQSeries between the GWA system and
HONE/LINK. Due to its asynchronous nature this is unsuitable for applications
that operate in real time with end users, as is the case with HONE/LINK. Also,
VM only supports MQ Client which implies that the queries must be hosted

Price

Inventory

HONE
 Data
Servers

 HONE
Application
Servers

Order-
submission

zSeries

HONE/LINK

and to
other
IBM

internal
systems

CMS CMS

 Web
browser

WebSphere
Application
Server

Front
End
Web
Server
Apache
IHS

Data
Server
DB2

AIX

EndUser
Virtual
Machine

CMS

H/LWeb
HTTP
Servers

CMS

MQ
Client

CMS

 MQ
Servers

1

3

2

GWA

z/VM
304 Linux on zSeries: Application Development

elsewhere and that remote queue management programs have to be
developed on the VM side.

Linux for S/390
The defined goal of the pilot was to Web-enable a few selected key legacy
business applications with Linux on the S/390 VM HONE platform. The standard
IBM WebSphere middleware should be used, coding should be entirely in Java
(servlets, JSPs) and VisualAge for Java should be used.

The pilot took place started on March 2001 and ended on October 2001 when
the three selected applications were fully functioning.

Production rollout
For the production rollout some additional applications will be ported to the new
environment. Furthermore, some more work in tuning and configuring are
needed to improve performance.

A significant performance improvement can be obtained by replacing the
interface between the Linux server and application backend server via the VM
HTTP servers (Figure Figure D-1 on page 299) by a direct in-memory IUCV
connection.

Work has started on enhancing the existing low-level Linux IUCV driver with an
API to make this happen. This code may be of enough general interest to be
submitted to the Open Source community.

System configuration
The configuration of the pilot system is shown in Table D-1.

Table D-1 HONE pilot system configuration

Hardware ELINK12 - IBM 9672-R76 7-way,
CMOS G5 technology 713 MIPS
2GB Main Storage 14GB Expanded Storage

Host Operating System IBM z/VM V3.1 SLU 0101

Guest Configuration V=V 2-way
512MB Main Storage

Guest Operating System SuSE Linux 7.0 for S/390 - Kernel 2.2.16
 Appendix D. Linux for S/390 VM HONE pilot 305

The production system will use SuSE SLES-7 (S390) - Kernel 2.4.7-SuSE-SMP
and WebSphere Application Server Advanced Edition V4.0 for zSeries.

Conclusion
The Linux for S/390 has proven to be an economical solution. With little cost we
have been able to set up a Linux server with WebSphere, IHS and DB2 and
migrate three legacy applications to this new environment. The low cost is mainly
because we make use of existing hardware and do not have to modify the legacy
applications

At the same time we have brought the next generation e-business platform in
place, upgraded our technical skills and delivered a showcase for IBM’s Linux
strategy.

WebSphere WebSphere Application Server Advanced Edition
V.3.5.3 for Linux for S/390

httpd (Web server) IBM HTTP Server V.1.3.12

Hardware ELINK12 - IBM 9672-R76 7-way,
CMOS G5 technology 713 MIPS
2GB Main Storage 14GB Expanded Storage
306 Linux on zSeries: Application Development

Appendix E. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246807

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246807.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sg246807.tar.gz Code Samples

E

© Copyright IBM Corp. 2002. All rights reserved. 307

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
ftp://www.redbooks.ibm.com/redbooks/SG246807

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 500 KB minimum
Operating System: Linux for IBM

How to use the Web material
Create a subdirectory (folder) on your server, and unzip the contents of the Web
material zip file into this folder.
308 Linux on zSeries: Application Development

acronyms
ANT Another Neat Tool

CDK C Development Kit

CDT C/C++ Development Kit

CVS Concurrent Versions System

EJB Enterprise Java Beans

FAQ Frequently Asked Questions

GUI Graphical User Interface

GWA Global Web Architecture

HONE Hands On Network
Environment

HTML HyperText Markup Language

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

IHS IBM HTTP Server

ITSO International Technical
Support Organization

J2SDK Java 2 Software Development
Kit

JAR Java Archive

JDK Java Development Kit

JDT Java Development Toolkit

JNDI Java Naming Directory
Interface

JRE Java Runtime Environment

JSDK Java Servlet Development Kit

JSP JavaServer Pages

MVC Model-View-Controller

PDE Plug-in Development Kit

Releng Release Engineering

RPM RedHat Package Manager

SDK Software Development Kit

Abbreviations and
© Copyright IBM Corp. 2002. All rights reserved.
SWT Standard Widget Toolkit

TLD Tag library descriptor

WAR Web Application Archive
 309

310 Linux on zSeries: Application Development

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 315.

� WebSphere Version 4 Application Development Handbook, SG24-6134

� Linux for WebSphere and DB2 Servers, SG24-5850

� Linux on IBM ^ zSeries and S/390: ISP/ASP Solutions, SG24-6299

Other resources
These publications are also relevant as further information sources:

� z/Architecture Principles of Operation, SA22-7832

� Michael K. Johnson and Erik W. Troan, Linux Application Development,
Addison-WesIey Publishing, ISBN 0-20130-821-5

� IBM DB2 Universal Database Version 7 Application Development Guide,
SC09-2949

� Karl Fogel, Open Source Development with CVS, CoriolisOpen Press, 1999,
ISBN 1-57610-490-7

� Ian F. Darwin, Java Cookbook, O’Reilly & Associates Inc., 2001, ISBN
0-596-00170-3

� Linda Lam and Arnold Robbins, Learning the Vi Editor, O’Reilly & Associates
Inc., 1998, ISBN 1-56592-426-6

� Gamma et al., Design Patterns - Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1998, ISBN 0-201-63361-2

� Version Management with CVS by Per Cederqvist et al., found at:

http://www.cvshome.org/docs/manual/

� The Linux Programmer’s Guide by Sven Goldt, Sven van der Meer, Scott
Burkett, and Matt Welsh found at:

http://www.linuxhq.com/guides/LPG/
© Copyright IBM Corp. 2002. All rights reserved. 311

� A Look at the Signal API by Erik Troan, found at:

http://www.linux-mag.com/2000-01/compile_01.html

Referenced Web sites
These Web sites are also relevant as further information sources:

� Linux for IBM ^ zSeries home page

http://www.ibm.com/servers/eserver/zseries/os/linux/

� Linux for IBM ^ zSeries application tools page

http://www.ibm.com/servers/eserver/zseries/os/linux/ldt/slate_enablers.html

� SpeakEasy.Rpmfind.net server

http://www.rpmfind.net/

� Sun Microsystem Java home page

http://java.sun.com/

� IBM Developer Kit for Java home page

http://www.ibm.com/developerworks/java/jdk/

� IBM Developer Kit for Java for Linux (Version 1.3)

http://www.ibm.com/developerworks/java/jdk/linux130/

� The Jikes Java compiler home page

http://www.ibm.com/developerworks/oss/jikes/

� The Emacs reference page

http://www.stanford.edu/group/dcg/leland-docs/emacs.html

� The Hessling editor home page

http://hessling-editor.sourceforge.net/

� The Jakarta project home page

http://jakarta.apache.org/

� The Jakarta Tomcat server version 4 documentation page

http://jakarta.apache.com/tomcat/tomcat-4.0-doc/index.html

� The Jakarta Tomcat server version 4.0.3 RPM distribution page

http://jakarta.apache.com/builds/jakarta-tomcat-4.0/release/v4.0.3/rpms/

� The Jakarta Tomcat server version 4 configuration documentation page

http://jakarta.apache.com/tomcat/tomcat-4.0-doc/config/index.html
312 Linux on zSeries: Application Development312 Linux on zSeries: Application Development

� The Jakarta Tomcat server version 4 application manager documentation

http://jakarta.apache.com/tomcat/tomcat-4.0-doc/manager-howto.html

� The Jakarta Ant version 1.4.1 binary distribution

http://jakarta.apache.org/builds/jakarta-ant/release/v1.4.1/bin/

� The Jakarta Ant reference manual

http://jakarta.apache.org/ant/manual

� The Jakarta Log4j download page

http://jakarta.apache.org/log4j/docs/download.html

� The Jakarta Taglib home page

http://jakarta.apache.org/taglibs/index.html

� The Jakarta Struts documentation page

http://jakarta.apache.org/struts/doc-1.0.2/

� The Jakarta Struts API documentation page

http://jakarta.apache.org/struts/doc-1.0.2/api/

� The Jakarta Struts download page

http://jakarta.apache.org/builds/jakarta-struts/release/v1.0.2/

� Linux for S/390 - Notes and observations

http://linuxvm.org/penguinvm/notes.html

� IBM zVM Internet library

http://www.vm.ibm.com/library/

� The GNU profiler (gprof) manual

http://sources.redhat.com/binutils/docs-2.10/gprof_toc.html

� Using an porting the GNU compiler collection (gcc) page

http://gcc.gnu.org/onlinedocs/gcc-3.0.4/gcc.html

� The Eclipse project home page

http://www.eclipse.org/

� The Sun Java tutorial on Internationalization page

http://java.sun.com/docs/books/tutorial/i18n/index.html

� The Sun Java JDBC page

http://java.sun.com/products/jdbc/

� The Sun Java servlet specification page

http://java.sun.com/products/servlet/download.html
 Related publications 313

� The Electric Fence download page

ftp://ftp.perens.com/pub/ElectricFence/

� The Linux Documentation Project page

http://www.tldp.org/docs.html

� The Linux Documentation Project RPM HOWTO page

http://www.tldp.org/HOWTO/RPM-HOWTO/

� The Qt reference documentation page

http://doc.trolltech.com/3.0/index.html

� The POSIX specification

http://opengroup.org/onlinepubs/007904975/basedefs/contents.html

� The POSIX specification for pthread_barrier_wait

http://opengroup.org/onlinepubs/007904975/functions/pthread_barrier_wait.ht
ml

� The Sun Java servlet specification page

http://java.sun.com/products/servlet/download.html

� Database pooling with WebSphere Application Server

http://www-3.ibm.com/software/webservers/studio/appserver40pooling.html

� The Linux Documentation Project RPM HOWTO page

http://www.tldp.org/HOWTO/RPM-HOWTO/

� WebSphere Application Server V4.0 trial download page

http://www14.software.ibm.com/webapp/download/search.jsp?go=y&rs=wasael

� The DB2 UDB trial download page

http://www6.software.ibm.com/dl/db2udbdl/db2udbdl-p/

� The GNU assembler documentation page

http://www.gnu.org/manual/gas-2.9.1/as.html

� The Pure Java AWT (PJA) toolkit

http://www.eteks.com/pja/en/

� The virtual framebuffer X server (Xvfb) man page

http://www.linuxcentral.com/linux/man-pages/Xvfb.1x.html

� The Sun Java AWT enhancements for headless displays page

http://java.sun.com/j2se/1.4/docs/guide/awt/AWTChanges.html#headless

� Tools for application profiling on Linux for zSeries

http://www-1.ibm.com/servers/eserver/zseries/os/linux/ldt/profs.html
314 Linux on zSeries: Application Development314 Linux on zSeries: Application Development

� Building cprof on Linux/390

http://www.sinenomine.net/downloads/cprof-build.php

� Porting UNIX applications to Linux - hints and tips

http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130115.html

� Solaris-to-Linux porting guide

http://www-106.ibm.com/developerworks/linux/library/l-solar/

� Technical guide for porting applications from Solaris to Linux

http://www-1.ibm.com/servers/esdd/articles/porting_linux/

� MigraTEC porting suite

http://www.migratec.com/MigraTEC/migration_suite.htm

� The PuTTY telnet/ssh client home page

http://www.chiark.greenend.org.uk/~sgtatham/putty/

� The Cygwin project home page

http://www.cygwin.com/

� The XFree86 for Cygwin home page

http://xfree86.cygwin.com/

� Linux in IBM HONE/LINK

http://lwebx01.linux.ehone.ibm.com/

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 315

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

316 Linux on zSeries: Application Development316 Linux on zSeries: Application Development

Index

A
Ant 80

build.xml 80
checking library dependencies 260
exec rule 192
installing 80
optional package 80
projecthelp 81
reference manual 81

application profilers 281
cprof 282
gprof 281
vprof 281

apropos 5
ar 198

B
byte ordering 90

big-endian 90

C
CDT 147

adding extensions 156
compiling 150
debugging 151
first plug-in 153
navigating code 149
packaging and managing projects 152
running code 150
sample project 147

cross-compiler 9
compiling binutils 10
compiling the compiler 12
installing 13
installing libraries 10
prerequisites 9
using 13

CVS 33
adding files and directories 45
administration 38
administrative files 39
arguments 37
© Copyright IBM Corp. 2002. All rights reserved.
check out 34
command options 37
command syntax 35
commands 36
commit 34
committing changes 46
date formats 38
editing the working copy 44
environment variables 40
file locking 35
file permissions 39
global options 36
import 41
log 51
log messages 38
manual 33
module 34
obtaining a working copy 42
remote access 39
repository 34
resolving conflicts 51
revision number 34
revision numbering 35
root directory 39
special files 43
ssh access 40
update 34
updating the working copy 48
working copy 34

Cygwin 291
XFree86 292

D
data types 90

alignment 90
sizes 90
unions 91

DB2 267
accessing remote databases 272
configuring 272
db2samp 272
db2setup 269
installing 268
 317

prerequisites 268
debugging under zVM 102

cp trace 102
diff 19

recursive comparison 22
diff3 19
dynamically linked libraries 203

checking for errors 205
include files 205
opening 204
releasing 205
symbol lookup 205

E
Eclipse 109

concepts 132
CVS 125
editors 128
getting started 114
installing 115
Java Development Toolkit 113
Perspective 132
Plug-in Development Environment 113
prerequisite software 116
rebuilding 117
Resources 132
Standard Widget Toolkit 112
starting 124
Update 112
User Interface 112
Version Control Mechanism 112
View 132
WebDav 112
Workbench 132

emacs 55
basic commands 57
buffers 58
cancel function 58
compiling applications 63
copy and paste 60
editing mulitple files 58
editing program files 62
emerge-files 19
fundamental mode 61
GNU Emacs Reference Card 57
help 61
incremental search backward 61
incremental search forward 61

indentation 62
invoking Lisp functions 57
kill line 60
modes 61
moving text 59
multiple windows 59
regions 60
search and replace 61
selecting text 59
starting 56
syntax highlighting 62
the mark 60
yank 60

F
function calling convention 93

prolog and epilog 95
register usage 93
stack layout 94

G
gcc 6

architecture dependent options 103
cross-compiler 9
debugging 8
dependences 17
directory search 7
documentation 104
inline functions 103
macros 8
optimization 9
optimization reference 104
performance options 102
source files 6
stages 7
starting 6
string operations 104
unrolled loops 103
warnings 8

gdb 96
attach 99
break 99
breakpoints 99
core file 98
detach 99
dir 100
display 101
examining variables 99
318 Linux on zSeries: Application Development

ignore 100
including debugging information 96
info break 100
info stack 99
info threads 99
kill 99
list 100
print 100
run 99
scope operator 99
show directories 100
thread 99
thread apply 99
watch 100

gprof 102
Graphical User Interface 211
graphics support 280

Pure Java AWT 280
Xvfb 280

I
info 5

J
Jakarta 75

Ant 80
Log4J 81
Struts 84
Taglibs 82
Tomcat 76

Java
IBM Java Developer Kit for Linux 28
Jikes 29
JIT compiler 295

Java 2 Platform
Software Development Kit 28

JDBC 180
connection pooling 184
drivers 187
implementation 182

JDT 134
debugging 140
initialization 135
integrating with Ant 142
integrating with CVS 144
menu bar and tool bar 134
projects 135
running an application 139

jikes 29
JNI 188

implementing in C 189
shared library 191
using JNI in Java code 188

L
ldconfig 201
ldd 202
Libraries 18, 196

dynamically linked 196
finding 19
inspecting 197
preparing 196
shared 196
standard C and C++ libraries 18
static 196

Linking 13
Loader 201
locking using files 230

fcntl 230
flock 230
lockf 230

Log4J
installing 81

M
maintaining portability 92
make 14

Makefile 14
target conventions 16

makedepend 17
Makefile 14

comments 15
rules 15
variables 15

man 4
Man pages 4
memory debuggers 281

Electric Fence 281
memwatch 281
YAMD 281

memory mapped files 207
logging 211
synchronizing memory and disk 210
 Index 319

N
nm 197

O
objdump 197

P
patch 21

context patch 22
distributing patches 24

PDE 153
setting up the environment 153

porting applications 275
architecture dependent code 277
assembler code 277
costs 282
Fortran applications 285
from Linux to Linux on zSeries 284
hi-order bit 279
Java applications 285
little endian to big endian 278
porting tools 287
proc file system 279
ptrace & return structure 278
run-time interfaces 286
shared objects 279
sigcontext structure 278
Solaris to Linux porting guide 285
stack frame layout and linkage 278
supported languages 279
va_args 276

ptrace 101
PuTTY 290

pscp 290

R
Redbooks Web site 315

Contact us xvii
revision numbering 35
RPM 255

building 257
installing 258
preparing source archive 256

S
Samba 295
sample 252

connection type 263
customizing 255
database 254
JDBC configuration 262
JNI configuration 262
prerequisite libraries 254
source structure 252

semaphores 230
ipcrm 231
ipcs 230

setrlimit 93
shared libraries 199

building 202
environmental variables 202
loading 201
names 201
shared object dependencies 202
using 200

shmat 93
signals 104

zSeries exceptions 105
source 252
spinlocks 231

creating 232
operations 232
using 233
zSeries specific features 231

SQL 238
assigning and freeing contexts 246
bind file 240
binding 238
client server considerations 249
connection context 242
context operations 242
creating a package 238
db2dclgn 240
incorporating prep/bind into make 240
multiple connections 241
package 238
sqleAttachToCtx 247
sqleBeginCtx 245
sqleDetachFromCtx 248
sqleEndCtx 249
sqleSetTypeCtx 245
static SQL files in libraries 241

static libraries 198
creating 198
preparing object files 198
using 199
320 Linux on zSeries: Application Development

strace 101
Struts 84

Action 84
ActionForm 85
ActionForward 84
ActionMapping 84
ActionServlet 84
configuration 178
configuring ActionServlet 179
installing 87
registering ActionForm 178
registering ActionMapping and ActionForward
179
struts-html 86
stuts-bean 86
stuts-logic 86
stuts-template 86
taglibs 86

svc 92

T
Taglibs 82

configuring 82
installing Java classes 82
JSP pages 83
Tag Library Descriptors 82
web application descriptor 83

threads 219
a problem 234
barrier 233
cancellation points 222
cleanup stack 223
conditional variables 228
creating threads 221
mutexes 227
signalling conditions 229
synchronizing threads 226
thread attributes 224
thread cancellation 222
thread stack size 224
thread termination 222
using 220
waiting for conditions 229

Tomcat 76
application manager 79
configuration file 77
configuring 78
deploying applications 79

installing 76
port 78
starting and stopping 77
userid and group 76
verifying installation 78
WebDav 294

U
ulimit 93

V
va_args 276
vi 65

commands 68
customizing 68
insertion point 69
modes 66
moving the cursor 68

virtual address space 92

W
WAR 258

deploying 262
using Ant 259

Windows workstations 293
command line completion 294
copying files 294
filenames 293
Java Virtual Machine 295

X
X windows 212

DISPLAY 212
QT library 213
X-client 212
X-server 212
 Index 321

322 Linux on zSeries: Application Development

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

Linux on IBM
 ̂

 zSeries and S/390: Application Developm
ent

®

SG24-6807-00 ISBN 0738425702

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Linux on IBM
zSeries and S/390:
Application Development

Tools and techniques
for Linux application
development

Using the Eclipse IDE
and Jakarta Project
tools

Sample code to
illustrate
programming
techniques

This IBM Redbook describes application development for Linux on the
IBM ̂zSeries platform. The target audience is application developers
writing primarily in C/C++ and Java.
The Linux development environment for zSeries is quite similar to the
development environment on other platforms running Linux since the operating
system services and development tools share a common code base. We note
differences and optimizations specific to the zSeries platform where applicable.
The zSeries platform offers unique advantages to Linux application developers.
Running Linux images as guests under zVM allows consolidation of
development servers onto a centrally managed machine, thus simplifying
system administration of the development environment. The hardware
virtualization provided by zVM allows physical resources to be shared among
multiple Linux guests.
In part one, we discuss standard development tools available for Linux on the
zSeries platform. We provide complete details for using the IBM Java Software
Development Toolkit, CVS, Emacs, the vi editor, and applications that make up
the Jakarta Project.
In part two, the open source Eclipse IDE is introduced. We describe the basic
concepts it incorporates, and provide step-by-step instructions for installing,
configuring, and working with Eclipse.
In part three, we demonstrate programming techniques using an example J2EE
application as an illustration. All the code necessary to implement the sample
project in your own environment is included.
An appendix provides details about installing DB2 for Linux on zSeries, presents
topics related to porting applications, and describes a pilot project that
produced an e-business solution on Linux for S/390.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Programming tools
	Chapter 1. The basic tools you need
	1.1 Where you can look for information
	1.1.1 Man pages
	1.1.2 Info - the help system

	1.2 Compiling C/C++ source code
	1.2.1 Starting gcc
	1.2.2 Source files
	1.2.3 Directory search
	1.2.4 Compilation stages
	1.2.5 Macros
	1.2.6 Warnings
	1.2.7 Extra information for debuggers
	1.2.8 Code optimization
	1.2.9 Configuring gcc as a cross-compiler

	1.3 Linking object code
	1.4 Automating the build process
	1.4.1 GNU make
	1.4.2 Writing your Makefile
	1.4.3 Building with make
	1.4.4 Makedepend
	1.4.5 File dependencies from gcc

	1.5 Libraries
	1.6 Tracking changes
	1.6.1 Using diff to find differences
	1.6.2 Applying changes
	1.6.3 Running diff against source tree
	1.6.4 Distributing patches
	1.6.5 Before you distribute your patch

	Chapter 2. The IBM Java Software Development Kit
	2.1 Java 2 Platform, Software Development Kit
	2.1.1 References

	2.2 IBM Java Developer Kit for Linux running on zSeries
	2.2.1 Obtaining the IBM Java Developer Kit
	2.2.2 Installing the IBM Java Developer Kit

	2.3 Jikes
	2.3.1 Installing Jikes
	2.3.2 Using Jikes

	Chapter 3. Source code control using CVS
	3.1 Introduction to CVS
	3.1.1 Definitions
	3.1.2 Revision numbering
	3.1.3 File locking

	3.2 CVS command syntax
	3.2.1 Global options
	3.2.2 CVS commands
	3.2.3 Command options
	3.2.4 Command arguments
	3.2.5 Log messages
	3.2.6 Date formats

	3.3 Administering CVS
	3.3.1 Creating a repository

	3.4 Root directory
	3.5 ssh access
	3.6 Environment variables and the ~/.cvsrc file
	3.7 Creating a project
	3.7.1 Importing the files

	3.8 Obtaining a working copy
	3.8.1 Special files

	3.9 Making changes in the working copy
	3.10 Adding files and directories
	3.11 Committing changes to the repository
	3.12 Updating the working copy
	3.13 Resolving conflicts
	3.14 Viewing log messages
	3.15 Recovering versions

	Chapter 4. The Emacs editor
	4.1 Editing files using Emacs
	4.1.1 Starting Emacs
	4.1.2 Basic commands
	4.1.3 Invoking Lisp functions
	4.1.4 Editing multiple files
	4.1.5 Moving text
	4.1.6 Search and replace
	4.1.7 Modes

	4.2 Building applications using emacs
	4.2.1 Editing program files
	4.2.2 Compiling your application

	Chapter 5. The vi editor
	5.1 First encounter with vi
	5.2 Modes of operation
	5.3 Customizing vi
	5.4 Commands categorized by functionality
	5.4.1 Moving the cursor
	5.4.2 Insertion point
	5.4.3 Locating a string pattern
	5.4.4 Replacing
	5.4.5 Deleting
	5.4.6 Moving and copying
	5.4.7 Miscellaneous
	5.4.8 Saving and closing file

	5.5 To probe further
	5.6 An editor for the CMS aficionados

	Chapter 6. The Jakarta project
	6.1 The Tomcat application server
	6.1.1 Obtaining Tomcat
	6.1.2 Installing Tomcat
	6.1.3 Configuring the Tomcat server
	6.1.4 Deploying an application under Tomcat
	6.1.5 Tomcat application manager

	6.2 Ant
	6.2.1 Installing Ant
	6.2.2 Using Ant

	6.3 Log4J
	6.3.1 Installing Log4j

	6.4 Taglibs
	6.4.1 Installing taglibs
	6.4.2 Configuring taglibs

	6.5 Struts
	6.5.1 Struts components
	6.5.2 Installing Struts

	Chapter 7. Running Linux applications in a zSeries environment
	7.1 Architecture consideration
	7.1.1 Bits and bytes
	7.1.2 Virtual address space
	7.1.3 Function calling convention

	7.2 When things go wrong
	7.2.1 Debugging with gdb
	7.2.2 Tracing system calls
	7.2.3 Debugging under zVM
	7.2.4 Performance profiling

	7.3 Optimizing for performance
	7.3.1 General options
	7.3.2 Inline functions and unrolled loops
	7.3.3 Architecture-dependent options
	7.3.4 String operations
	7.3.5 Sources of information

	7.4 Signals
	7.4.1 Linux signals and zSeries exceptions

	Part 2 Eclipse
	Chapter 8. Eclipse overview
	8.1 Eclipse Software Developer Kit
	8.2 The Eclipse platform
	8.2.1 Ant
	8.2.2 Compare
	8.2.3 Core
	8.2.4 Debug
	8.2.5 Help
	8.2.6 Release Engineering
	8.2.7 Scripting
	8.2.8 Search
	8.2.9 Standard Widget Toolkit
	8.2.10 User Interface
	8.2.11 Update
	8.2.12 Version Control Mechanism
	8.2.13 WebDav

	8.3 The Java Development Toolkit
	8.3.1 JDT Core
	8.3.2 JDT Debug
	8.3.3 JDT UI

	8.4 The Plug-in Development Environment
	8.4.1 PDE Core
	8.4.2 PDE UI

	8.5 Getting started with Eclipse

	Chapter 9. Installing Eclipse
	9.1 Prerequisite software for Eclipse
	9.2 Eclipse installation
	9.2.1 Rebuilding Eclipse
	9.2.2 Build the Standard Widget Toolkit

	9.3 Set up the environment
	9.3.1 Testing the installation

	9.4 Installing the C/C++ Development Tools plug-in
	9.4.1 Installing the CDT client
	9.4.2 Installing the CDT server code

	Chapter 10. Configuring Eclipse
	10.1 Starting Eclipse
	10.1.1 The -vm option
	10.1.2 The -data option
	10.1.3 The -vmargs
	10.1.4 Other start options
	10.1.5 Simplifying options

	10.2 Configuring Eclipse to use CVS
	10.3 Eclipse and editors
	10.4 Modifying Eclipse
	10.4.1 Workbench
	10.4.2 Perspectives and components

	Chapter 11. Eclipse as an integrated development environment
	11.1 Concepts
	11.1.1 Workbench
	11.1.2 Perspective
	11.1.3 View
	11.1.4 Editors
	11.1.5 External editors
	11.1.6 Resources
	11.1.7 Graphical concept view

	11.2 Using the Java Development Toolkit
	11.2.1 Menu bar and tool bar
	11.2.2 JDT initialization
	11.2.3 JDT Java project
	11.2.4 Running the application
	11.2.5 Debugging the application

	11.3 Using Eclipse with Ant
	11.4 Using Eclipse with CVS
	11.5 Using the C Development Toolkit
	11.5.1 Sample project
	11.5.2 Navigating code
	11.5.3 Compiling the project
	11.5.4 Running the code
	11.5.5 Debugging the application
	11.5.6 Packaging and managing projects

	11.6 Using the Plugin Development Environment
	11.6.1 Setting up the development environment
	11.6.2 First plug-in
	11.6.3 Making sense
	11.6.4 Adding extensions
	11.6.5 Running the plug-in
	11.6.6 Deploying a plug-in

	Part 3 Programming techniques
	Chapter 12. zSeries as a development platform
	12.1 Example applications
	12.1.1 Application overview
	12.1.2 The development environment

	Chapter 13. Using the Struts framework
	13.1 The Struts application components
	13.2 The model component
	13.2.1 User class
	13.2.2 ActionForm class
	13.2.3 Form validation and ActionErrors
	13.2.4 Internationalization and application resources

	13.3 The view component
	13.3.1 Struts-html taglib
	13.3.2 Mapping form input to ActionForm beans

	13.4 The controller component
	13.4.1 Action class

	13.5 Logging using Log4j
	13.5.1 Using Log4j
	13.5.2 Configuring Log4j

	13.6 Struts framework configuration
	13.6.1 Registering ActionForm beans
	13.6.2 Registering ActionMapping and ActionForward
	13.6.3 Configuring ActionServlet

	13.7 The persistence layer
	13.7.1 Data abstraction in the persistence layer

	13.8 The JDBC interface
	13.9 Connection pooling
	13.9.1 Connection configuration

	13.10 The Java Native Interface
	13.10.1 Using JNI in Java code
	13.10.2 Implementing the native code in C
	13.10.3 Building the JNI shared library

	Chapter 14. Shared libraries and more
	14.1 Example overview
	14.1.1 Components of the address book example
	14.1.2 Implemented functionality

	14.2 Creating and using libraries
	14.2.1 Preparing object files
	14.2.2 Inspecting object files
	14.2.3 Static libraries
	14.2.4 Shared libraries
	14.2.5 Using shared libraries
	14.2.6 Building shared libraries
	14.2.7 Investigating shared object dependencies
	14.2.8 Dynamically linked libraries
	14.2.9 Include files

	14.3 A poor man’s database
	14.3.1 Memory mapped files
	14.3.2 Synchronizing memory and disk storage

	14.4 Graphical user interface
	14.4.1 Graphical interface in a UNIX environment
	14.4.2 Qt library

	Chapter 15. Designing for concurrent access
	15.1 UNIX processes
	15.2 The pthreads library
	15.2.1 Using threads
	15.2.2 Creating threads
	15.2.3 Thread termination
	15.2.4 Thread attributes
	15.2.5 Setting thread stack size
	15.2.6 Synchronizing threads
	15.2.7 Mutexes
	15.2.8 Conditional variables

	15.3 Controlling concurrent access
	15.3.1 Locking using files
	15.3.2 IPC semaphores
	15.3.3 Pthread resources

	Chapter 16. Concurrency in embedded SQL
	16.1 Using embedded SQL in DB2 UDB applications
	16.1.1 Components of a DB2 UDB application
	16.1.2 Creating a package
	16.1.3 Incorporating prep/bind into make
	16.1.4 Embedded SQL files as libraries

	16.2 Multiple connections in embedded SQL programs
	16.2.1 Connection context
	16.2.2 Context operations
	16.2.3 Client-server considerations

	Chapter 17. Packaging applications for deployment
	17.1 Creating a project
	17.1.1 Example source structure
	17.1.2 Adding prerequisite libraries to the project
	17.1.3 Prepare the database
	17.1.4 Customize the application

	17.2 Creating RPM packages
	17.2.1 Before you begin
	17.2.2 Preparing the source archive
	17.2.3 Preparing package specification
	17.2.4 Building the package
	17.2.5 Installing packages

	17.3 Creating WAR packages
	17.3.1 Building a WAR package using Ant
	17.3.2 Deploying WAR packages
	17.3.3 Deployment on WebSphere Application Server 4.0

	Part 4 Appendixes
	Appendix A. DB2 for Linux on zSeries
	Installing DB2
	Before you begin
	Prerequisites
	Installation procedure

	Configuring DB2

	Appendix B. Porting applications to Linux on zSeries
	Linux for S/390 and zSeries porting - hints and tips
	Graphics support on the mainframe
	Memory debuggers
	Application profilers
	Porting UNIX applications to Linux: Hints and tips
	Key questions to consider before starting
	Will migration involve a huge initial investment
	How much will it cost, and how long will it take
	Will my application continue to work on the original UNIX platform
	Porting from Linux to Linux on zSeries
	Summary

	Solaris-to-Linux porting guide
	Java applications
	Fortran applications
	Run-time interfaces
	Additional considerations

	Technical guide for Solaris to Linux application porting
	Porting overview
	Use the grep command
	Identify potential problems
	Use a porting tool

	Appendix C. Tools for Windows workstations
	PuTTY - a Telnet/SSH client for Windows
	Cygwin - a UNIX emulator for Windows
	Using XFree86 as an X Server under Cygwin

	Using WebSphere Application Server on Windows
	Filenames
	Carriage return/line feed
	Property files under WebSphere Studio Application Developer
	Command line completion under Windows
	Copying files from Windows to Linux
	Java Virtual Machine environment
	Just in Time compiler (JIT)

	Appendix D. Linux for S/390 VM HONE pilot
	Introduction
	Background
	HONE/LINK
	Green screens

	HONEWeb/LINKWeb
	GWA
	Linux for S/390
	Production rollout

	System configuration
	Conclusion

	Appendix E. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

