

ibm.com/redbooks

IBM WebSphere Everyplace Server
Service Provider and Enable Offerings:
Enterprise Wireless Applications

Adapt your enterprise applications for
access from wireless networks

Extend applications to support
new wireless technologies

Develop and deploy PDA
applications

Front cover

J. Rodriguez
J. Abercrombie

O. Anyaoku
K.S. Khong

E. McCarthy
M. Omarjee
J.-P. Paillet
L. Patterson

N. Poujardieu

G. Powell
E. Rongen

J. Shamroski

IBM WebSphere Everyplace Server
Service Provider and Enable Offerings:
Enterprise Wireless Applications
February 2002

International Technical Support Organization

SG24-6519-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (February 2002)

This edition applies to Version 2 Release 1 of IBM WebSphere Everyplace Server Service Provider
Offering and Version 1 Release 1 of IBM WebSphere Server Enable Offering for multiplatforms.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 795.

Contents

Preface . xiii
The team that wrote this redbook. xiii
Special notice . xvi
IBM trademarks . xvii
Comments welcome. xvii

Part 1. Introduction. 1

Chapter 1. Overview . 3
1.1 A functional approach to understanding IBM WebSphere Everyplace

Server . 4
1.1.1 Starting with TCP . 4
1.1.2 Hypertext: HTTP . 4
1.1.3 Adding applications . 5
1.1.4 Controlling access. 6
1.1.5 Enablement . 7
1.1.6 Managing users. 8
1.1.7 Clients beyond IP . 9
1.1.8 Managing devices . 10
1.1.9 Adapting content . 11
1.1.10 Catering to pervasive contexts . 13
1.1.11 Synthesis. 15

1.2 Mapping functions to products . 17
1.2.1 SecureWay Directory . 17
1.2.2 WebSEAL-Lite (WSL) on Web Traffic Express (WTE) 19
1.2.3 Active Session Table (AST) . 22
1.2.4 Everyplace Wireless Gateway . 23
1.2.5 Tivoli Personalized Services Manager (TPSM). 26
1.2.6 Policy Director . 29
1.2.7 IBM WebSphere Transcoding Publisher . 31
1.2.8 Voice Server . 35
1.2.9 Location-Based Services (LBS) Proxy . 36
1.2.10 i-Mode Cookie Proxy. 38
1.2.11 Intelligent Notification Services . 39
1.2.12 MQSeries Everyplace (MQE) . 41
1.2.13 Sametime Everyplace . 42
1.2.14 Everyplace Synchronization Manager (ESM) 44
1.2.15 IBM WebSphere Everyplace Server Setup Manager 45
© Copyright IBM Corp. 2002 iii

1.2.16 IBM WebSphere Everyplace Server Suite Manager 46
1.3 The IBM WebSphere Everyplace Server Offerings 47

1.3.1 Using the IBM WebSphere Everyplace Server Offerings 47
1.3.2 IBM WebSphere Everyplace Server Enable Offering 49
1.3.3 IBM WebSphere Everyplace Server Service Provider Offering 52

Chapter 2. Application architecture. 55
2.1 Planning techniques . 56

2.1.1 Modes of pervasive computing . 56
2.1.2 Patterns. 57
2.1.3 Design decision tree . 65

2.2 Centralized services offered by WebSphere Everyplace Server 67
2.2.1 Synchronous Mode Applications. 67
2.2.2 Asynchronous mode applications . 69
2.2.3 Push mode applications . 69
2.2.4 Voice mode applications . 70

2.3 Planning a new application in WebSphere Everyplace Server context 71
2.3.1 Deployment considerations. 71
2.3.2 Synchronous mode . 72
2.3.3 Asynchronous mode . 73

2.4 Adapting an existing application . 74
2.4.1 Transcoding challenges . 74
2.4.2 Adapting security in an existing application 75

Chapter 3. Enterprise sample applications. 77
3.1 Web Application models for business . 78
3.2 The sample B2E application: YourCo . 80

3.2.1 Installing and Running YourCo . 80
3.2.2 Map of YourCo . 80
3.2.3 Notes on implementation . 84

3.3 Adapting YourCo to the pervasive environment 85
3.3.1 Revised map for YourCo on WML . 85
3.3.2 Selecting functionality for mobile use . 90
3.3.3 Implementing the adaptations . 92

3.4 Adding pervasive functions to YourCo . 96
3.4.1 Meeting invitation: extending YourCo . 97
3.4.2 Locate an Expert: a location-based application 98
3.4.3 Meeting notification: using the Push facility 99
3.4.4 Meeting notification: using the Intelligent Notification Services. 99
3.4.5 Meeting notification: Intelligent Notification with triggers. 99
3.4.6 News: adding an XML feed . 100
3.4.7 News on the telephone: VXML . 101
3.4.8 Locate an Expert by telephone: VXML and Voice Server 102
iv Enterprise Wireless Applications using IBM WebSphere Everyplace Server

3.4.9 Accessing the Leave Bank through MQSeries Everyplace 102
3.4.10 Synchronizing remote applications . 102

3.5 YourCo directory . 102
3.6 Sample lab configuration . 109

Part 2. Adapting new and existing applications . 111

Chapter 4. Transcoding application content. 113
4.1 Overview . 114
4.2 What’s new in WebSphere Transcoding Publisher Version 4.0 118

4.2.1 Models. 120
4.2.2 Resources . 122
4.2.3 Installation . 125
4.2.4 Administration and configuration . 126
4.2.5 XML configuration . 128

4.3 Tools . 129
4.3.1 Profile Builder . 130
4.3.2 External Annotation Editor . 130
4.3.3 Stylesheet Editor . 132
4.3.4 Transform Tool . 133
4.3.5 Request Viewer. 135
4.3.6 Device simulators . 137

4.4 Problem determination . 138
4.5 VoiceXML. 139
4.6 Fragmentation . 140
4.7 Sample scenario . 140

4.7.1 The environment . 141
4.7.2 Transcoding results . 142

Chapter 5. Text clipping . 145
5.1 Overview . 146
5.2 Annotation overview . 147
5.3 External annotation . 150

5.3.1 The external annotation language. 151
5.3.2 Using the External Annotation Editor . 152
5.3.3 External annotation file administration . 157
5.3.4 Sample scenario: Locate Expert . 159
5.3.5 Testing an annotation file . 181
5.3.6 Hints and tips . 181

5.4 Internal annotation . 182
5.4.1 WebSphere Studio Page Designer . 182
5.4.2 Sample scenario: Locate Expert . 186

5.5 Text Clipping with Java . 193
5.5.1 Sample scenario - YourCo main page text clipper 194
 Contents v

5.6 Exporting and importing configuration data. 203
5.6.1 Sample scenario: export and import configuration 207

Chapter 6. Using stylesheets . 211
6.1 Overview . 212

6.1.1 WebSphere Transcoding Publisher Version 4.0 enhancements. . . 213
6.1.2 XSL stylesheet administration. 216
6.1.3 Implementing internationalization . 239
6.1.4 XSL Stylesheet Editor . 249

Chapter 7. WML fragmentation considerations . 259
7.1 Overview . 260

7.1.1 How does it work?. 260
7.1.2 Fragmentable elements . 263
7.1.3 Common problems . 264
7.1.4 Example . 264

7.2 WML fragmentation in WebSphere Everyplace Server environment . 266
7.2.1 Scenario 1: Running WebSphere Transcoding Publisher as a reverse

proxy . 267
7.2.2 Scenario 2: Running WebSphere Transcoding Publisher as a forward

proxy . 273

Chapter 8. Going wireless! . 281
8.1 Overview . 282

8.1.1 Connectivity. 285
8.1.2 Everyplace Wireless Gateway administration 287
8.1.3 Wireless Gateway logging. 291
8.1.4 Everyplace Wireless Gateway security . 293

8.2 WAP Gateway . 295
8.2.1 Configuration. 298
8.2.2 WAP device resolver . 303
8.2.3 Sample scenario: accessing the WAP Gateway 304

8.3 Messaging gateway . 307
8.3.1 Configuration. 311

8.4 Multiple Wireless Gateways cluster . 313
8.5 Wireless clients . 314

8.5.1 Wireless client configuration . 315
8.5.2 Hints and tips . 320

Part 3. Extending enterprise applications . 321

Chapter 9. Push messaging applications . 323
9.1 Overview . 324
9.2 Architecture . 325
vi Enterprise Wireless Applications using IBM WebSphere Everyplace Server

9.2.1 Messaging application. 326
9.2.2 Messaging Gateway . 327
9.2.3 Client devices . 333

9.3 Push API . 334
9.3.1 Obtaining the messaging toolkit . 334
9.3.2 Configuration. 335
9.3.3 IBM extensions . 339

9.4 Message components . 341
9.5 Secure push connections . 342
9.6 Scenario: WAP push . 343
9.7 Scenario: Pushing to an e-mail client . 345
9.8 Pushing from a servlet . 348
9.9 Extending the YourCo sample application . 351
9.10 Problem determination . 353

Chapter 10. Intelligent Notification Services (INS). 359
10.1 Overview . 360

10.1.1 INS in WebSphere Everyplace Server . 361
10.1.2 User preferences. 362
10.1.3 INS end to end flow. 364

10.2 Setting up the system . 366
10.2.1 Installation . 367
10.2.2 Post-installation configuration . 370
10.2.3 Starting and stopping the WebSphere Everyplace Server components

for INS. 374
10.2.4 Starting the INS servers . 376

10.3 Users and user preferences without TPSM. 380
10.3.1 Importing the LDIF file . 384

10.4 Simple Notification . 387
10.4.1 The Application Programming Interface (API). 388
10.4.2 Running the example . 401

10.5 Subscriptions . 406
10.5.1 Flow. 407
10.5.2 The Application Programming Interface . 408
10.5.3 Subscription examples . 416

10.6 Application development . 419
10.6.1 Archives and resources. 419
10.6.2 Server side classes . 420
10.6.3 INS development using IBM VisualAge for Java. 420

10.7 Extending the enterprise. 421
10.7.1 Deploying the notifications extensions to WebSphere 422
10.7.2 Simple notification . 423
10.7.3 Subscription . 428
 Contents vii

10.8 Problem Determination . 433

Chapter 11. Location-Based Services (LBS) . 435
11.1 Overview . 436

11.1.1 How the user location is calculated. 437
11.2 Location-Based Services . 439

11.2.1 Location request . 440
11.2.2 Location Server . 442

11.3 LBS example . 444
11.3.1 Installation . 445
11.3.2 Running the sample application . 446

11.4 Developing location-based applications . 448
11.4.1 Setting up a development environment for VisualAge for Java . . 454

11.5 Extending the enterprise. 456
11.5.1 Changing YourCo into a Location Based Application 456
11.5.2 Deploying Expertise Location to the application server 457
11.5.3 Expertise location source code . 461

11.6 Integrated testing . 469
11.6.1 Planning a Location Based Services installation. 469
11.6.2 Policy Director . 470
11.6.3 PD client installation and configuration on AIX for WebSphere

Everyplace Server . 471
11.6.4 Installation of Location-Based Services . 472
11.6.5 Using pd_populate.ksh to configure LBAs 472
11.6.6 The Policy Director Management Console 474
11.6.7 Muffin . 487
11.6.8 Simples . 491

11.7 Troubleshooting . 492

Chapter 12. Voice-enabled applications . 493
12.1 Introduction . 494

12.1.1 WebSphere Voice Server offerings. 495
12.2 VoiceXML language . 496

12.2.1 VoiceXML application development . 497
12.2.2 VoiceXML sample applications . 497
12.2.3 Grammars . 500

12.3 IBM WebSphere Voice Server SDK . 502
12.3.1 WebSphere Voice Server SDK architecture 502
12.3.2 Security Issues . 506

12.4 VoiceXML transcoding . 508
12.5 Sample scenario. 509

12.5.1 Voice access process . 510

Part 4. PDA applications . 515
viii Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 13. Data synchronization for enterprise applications 517
13.1 Overview of IBM Mobile Connect (IMC) . 518

13.1.1 Implementation scenario . 518
13.1.2 Enable Offering and Service Provider Offering 519

13.2 Installing IBM Mobile Connect . 521
13.3 IBM Mobile Connect client installation . 531
13.4 IBM Mobile Connect actions configuration 539

13.4.1 Backup and Restore action configuration 541
13.4.2 Installation of new applications . 546
13.4.3 Database action configuration. 547
13.4.4 Changing database action properties . 553
13.4.5 Creating database synchronization triggers 557
13.4.6 DB2 Everyplace client install . 557

13.5 Creating a mobile application with DB2 Everyplace 559
13.5.1 Generating DDL using DB2 Control Center 560
13.5.2 Generating the DDL from a command line 564
13.5.3 DDL preparation . 564
13.5.4 Creating the mobile application . 566

Chapter 14. Transaction messaging . 575
14.1 Overview . 576

14.1.1 Queue Manager comparison. 577
14.1.2 Creating an MQSeries Everyplace Queue Manager. 578
14.1.3 Types of queue managers . 578
14.1.4 Channel types . 580
14.1.5 Adapters . 581
14.1.6 Types of messaging . 582
14.1.7 Messages . 583
14.1.8 Message persistence . 584
14.1.9 MQSeries Everyplace Bridge . 584
14.1.10 Administration . 584
14.1.11 ES02 Support Pac. 585
14.1.12 Security . 585

14.2 Installation and samples . 586
14.2.1 Installation overview . 586
14.2.2 Supplied samples . 587
14.2.3 Integration with VisualAge for Java. 593

14.3 ChatRoom: an MQSeries Everyplace application 595
14.3.1 Overview . 595
14.3.2 The queue managers . 597
14.3.3 Connections . 599
14.3.4 Queue discovery . 599
14.3.5 MQSeries Everyplace Queue definitions 600
 Contents ix

14.3.6 The application Java packages. 603
14.3.7 Client side: class interaction . 604
14.3.8 Server side: class interaction . 605

14.4 Starting a queue manager . 605
14.4.1 Started by the application . 605
14.4.2 Started by the ES02 support pac . 608
14.4.3 Started by a servlet . 608

14.5 Starting applications . 611
14.5.1 Client side . 611
14.5.2 Server side application loading . 611
14.5.3 Applications in WebSphere Application Server 613

14.6 Listening for messages. 614
14.6.1 The MQeMessageListener interface . 614

14.7 Chat room application flows . 615
14.7.1 Chat - Client to Server -Direct . 615
14.7.2 Chat - Client to Server - Via WebSphere 617
14.7.3 Chat - Server to Client - Direct . 619
14.7.4 Chat - Server to Client - using WebSphere. 619

14.8 Setting up the ChatRoom queue managers 620
14.8.1 Preparing for setup . 621
14.8.2 Creating the ServerQm queue manager . 622
14.8.3 Creating the ClientQm queue manager . 626
14.8.4 Configuring the WASServerQm queue manager 628
14.8.5 Creating connections . 629
14.8.6 Defining ServerQm queues. 636
14.8.7 Define ClientQm queues . 640
14.8.8 Define WASServerQm queues . 645
14.8.9 Java Swing setup . 646
14.8.10 Chatroom application setup . 646
14.8.11 Setting up the startup list. 647
14.8.12 Configuring WebSphere . 647
14.8.13 Setting up property files . 649
14.8.14 Starting the chat room application. 650
14.8.15 Operating the chat window . 652
14.8.16 Asynchronous chatting . 653
14.8.17 The administration GUI . 655
14.8.18 Encryption and the stress test . 656
14.8.19 Coding administration messages . 660

14.9 Extending the YourCo application. 661
14.9.1 Overview . 661
14.9.2 YourCo extensions . 662
14.9.3 Customized authenticator adapter . 664
14.9.4 Queue definitions . 666
x Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.9.5 Property File . 668
14.9.6 Additional beans . 668
14.9.7 Running the YourCo example . 669

14.10 Integration with WebSphere Everyplace Suite 670
14.10.1 Using the Wireless Client and Gateway 672
14.10.2 Trying out the Wireless Gateway . 678
14.10.3 Tracing . 680

14.11 OS/390 . 680
14.11.1 Requirements . 681
14.11.2 Classpath . 682
14.11.3 Configuring ServerQm . 682
14.11.4 Modifying ClientQm. 685
14.11.5 Starting Chat Room on OS/390 . 685

Part 5. Appendixes . 687

Appendix A. INS sample source code . 689
Simple notification . 691
Subscription . 724

Appendix B. LBS sample code . 755
Sample source code . 757

Appendix C. Everyplace Wireless Gateway in WebSphere Everyplace
Server: installation tips . 785

Related publications . 791
IBM Redbooks . 791

Other resources . 791
Referenced Web sites . 792
How to get IBM Redbooks . 793

IBM Redbooks collections. 794

Special notices . 795

Glossary . 797

Abbreviations and acronyms . 805

Index . 807
 Contents xi

xii Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Preface

This redbook can help you to adapt and extend new and existing enterprise
applications so that they can be accessed from wireless devices, such as WAP
phones and PDAs, using the IBM WebSphere Everyplace Server (WES) Service
Provider Offering (SPO) and Enable Offering (EO). The information provided in
this redbook targets Business-to-Employee (B2E) enterprise applications, but
most of the scenarios presented apply to Business-to-Consumer (B2C)
applications as well.

In this redbook, you will find step-by-step examples and scenarios showing ways
to rapidly integrate your enterprise applications into an IBM WebSphere
Everyplace Server environment and therefore also make them available from
wireless devices by implementing new and enhanced capabilities incorporated in
the current releases of IBM WebSphere Everyplace Server offerings, such as
transcoding, annotators for text clipping, stylesheets and the wireless gateway.

Once your enterprise applications are available from wireless devices, you will be
ready to deploy new state-of-the-art technologies, such as Push messages,
Location-Based Services, Intelligent Notifications Services and Voice
applications. You will find numerous scenarios describing recommended ways to
develop applications using the APIs provided by the IBM WebSphere Everyplace
Server components to support these services.

Although IBM WebSphere Everyplace Server offerings do not provide a voice
server, we have also included guidelines to developing Voice XML applications
using transcoding capabilities provided by IBM WebSphere Everyplace Server.
This redbook includes scenarios using IBM Mobile Connect and Synchronization
Manager with a sample DB2 Everyplace application built with the Mobile
Application Builder. Transaction messaging applications are also described,
using MQSeries Everyplace, a component of IBM WebSphere Everyplace
Server, to provide a once-only assured delivery of messages.

A basic knowledge of Java technologies such as servlets, JavaBeans, EJBs,
JavaServer Pages (JSPs), as well as XML applications and the terminology used
in Web publishing, is assumed.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2002 xiii

J. Rodriguez is a Consulting IT professional and Project
Leader at the IBM ITSO Center, Raleigh. He received his M.S.
degree in Computer Science from Iowa State University. He
writes extensively and teaches IBM classes worldwide on such
topics as networking, Web technologies, and data security.
Before joining the IBM ITSO, he worked at the IBM laboratory in
the Research Triangle Park (North Carolina, USA) as a designer
and developer of networking products.

J. Abercrombie has 28 years of experience in the IT industry,
13 of which have been with IBM. Over this period of time, he has
specialized in RS/6000, Networking and Pervasive Computing
(Mobile e-Business). He is currently part of the Hursley
International Solution Centre (ISC) for Pervasive Computing
and is based in Edinburgh, Scotland.

O. Anyaoku is an Application Developer working with Enterprise
Java Technologies at Lekki Technologies, based in New York.
He has worked specifically for two years building and supporting
applications developed on the IBM WebSphere platform. He
holds a degree in Computer Systems Engineering from the
University of Massachusetts, Amherst.

K.S. Khong is an IT Specialist in IBM Emerging Technology
Centre, Singapore. He has five years of experience in banking
and financial application development. His areas of expertise
include C++, Java, J2EE, XML and object-oriented design
patterns. He holds a B.Eng degree in Electrical Engineering and
a Master of Technology degree in Software Engineering from the
National University of Singapore.

E. McCarthy is a Middleware Support Specialist with IBM GSA in
Australia. He has over ten years of experience in the Information
Technology field. He holds a B.S. degree from the University of
Queensland. His areas of expertise include CICS and MQSeries.

M. Omarjee is an IT specialist with IBM Business Innovation
Services in Johannesburg, South Africa. He started with IBM
as an applications software developer in e-business and
Web-oriented solutions. His current area of expertise is
centered around Web technologies such as Java, markup
languages, and related object-oriented technologies. He holds
a National Diploma in Information Technology from the
Technikon Witwatersrand of South Africa.
xiv Enterprise Wireless Applications using IBM WebSphere Everyplace Server

J.-P. Paillet is a Consulting IT Architect in the London Solutions
Practice, part of IBM UK Software Services. He has 30 years of
experience in various aspects of computing. His most recent
work has been consulting for projects using IBM WebSphere
products, particularly design and risk management. His areas of
expertise include methodology, object technology and linguistic
systems.

L. Patterson is an IT Consultant within the IBM iSeries Custom
Technology Center (CTC), IBM Rochester, Minnesota. She is
currently with the WebSphere Everyplace Server Solution
Enablement Team. Her expertise includes Java, Enterprise
JavaBeans, XML and related technologies, and development
education packages on Java, XML and the San Francisco
product.

N. Poujardieu is with the IBM EMEA Mobile e-Business
Advanced Technical Support team in France. He holds an M.S.
degree in Pure and Analytic Mathematics from the French
Scientific University of Paris. In his current job, he
demonstrates the performance of IBM WebSphere Everyplace
Server components. He has experience in projects involving
the Wireless Gateway running over GPRS.

G. Powell is an IBM Senior I/T Specialist for IBM Global
Services (USA),where he implements custom e-commerce
solutions for the e-Commerce Solutions practice. He holds a
degree in Computer Science; his areas of expertise include
object-oriented software development, Web design and
development, and solutions integration.

E. Rongen is an IBM Senior IT Specialist in Uithoorn
(Netherlands). He holds a PhD in Physics and gained his IT
experience working with 4GL languages such as VisualAge
Generator. He now works with Web development and
Pervasive Computing and is part of several teams in Java and
IBM WebSphere projects specializing in emerging technologies
and enabling legacy applications for e-business.

J. Shamroski is an IT Architect in the IBM Service Delivery
Center West practice. He has over nine years of experience in
various aspects of Enterprise Systems Management (ESM) as
an ESM Architect in Columbus, Ohio. His areas of expertise
include mobile data integration, development, implementation
methodology, Enterprise Management architecture and
application design using Tivoli products.
 Preface xv

Thanks to the following people for their contributions to this project:

Cecilia Bardy, Margaret Ticknor, Jeanne Tucker
International Technical Support Organization, Raleigh Center

Christophe Olivier
International Technical Support Organization, Austin Center

Ivan Heninger, Mohit Jain, Joan Boone, Alan Booth, George Hall
IBM Research Triangle Park, North Carolina, USA

Barry Aldred
IBM United Kingdom

Special notice
This publication is intended to help application developers design and implement
WAP and PDA wireless applications by adapting new and existing enterprise
applications and extending these applications to use new available wireless
technologies such as push messaging, intelligent notifications and
location-based services. The information in this publication is not intended as the
specification of any programming interfaces that are provided by IBM
WebSphere Everyplace Server Service Provider Offering Version 2.1 and IBM
WebSphere Everyplace Server Enable Offering Version 1.1. See the
PUBLICATIONS section of the IBM Programming Announcement for these
products for more information about what publications are considered to be
product documentation.
xvi Enterprise Wireless Applications using IBM WebSphere Everyplace Server

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.

e (logo)®
IBM ®
AIX®
AS/400®
AS/400e™
Balance®
CICS®
Database 2™
DB2®
DirectTalk®
Encina®
Everyplace™
IBM®
IMS™
iSeries™
Lotus®
Lotus Notes®
Notes®
Sametime®
Domino™

Redbooks™
Redbooks Logo
Lotus Sametime™
MQSeries®
OpenEdition®
OS/390®
PAL®
Perform™
Planet Tivoli®
RS/6000®
S/390®
SecureWay®
SP™
SP1®
SP2®
SupportPac™
ThinkPad®
ViaVoice®
VisualAge®
WebSphere®
 Preface xvii

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xviii Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Part 1 Introduction

In this part of the redbook, we provide an overview of the IBM WebSphere
Everyplace Server (WES) offerings, specifically, the IBM WebSphere Everyplace
Server Service Provider Offering (SPO) Version 2.1 and the IBM WebSphere
Everyplace Server Enable Offering Version 1.1.

We also include a description of application capabilities when running within an
IBM WebSphere Everyplace Server environment; available options are
discussed, ranging from an application specifically developed for pervasive use
to the more common case of existing applications adapted to pervasive usage
requirements. The information provided in this redbook mainly targets
Business-to-Employee (B2E) enterprise applications. However, most of the
topics presented can also be applied to Business-to-Consumer (B2C) application
development.

Part 1
© Copyright IBM Corp. 2002 1

2 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 1. Overview

This chapter presents an overview of IBM WebSphere Everyplace Server
offerings. Starting with a functional analysis of Web-based applications, we
examine how their functionality can be extended in several directions, to reach
the ideal mobile computing situation: “any time, anywhere, any device.”

We then review how this functional requirement is implemented in IBM
WebSphere Everyplace Server, detailing the role of each component product
and its relationships with the other components.

We compare the structure of two different offerings within the IBM WebSphere
Everyplace Server family: the full-featured Service Provider Offering (SPO) and
the more enterprise-oriented Enable Offering (EO). The entry level offering (IBM
WebSphere Everyplace Server Access) is not covered here.

We conclude by examining the implications of this survey on the development of
mobile applications using the IBM WebSphere Everyplace Server offerings.

1

© Copyright IBM Corp. 2002 3

1.1 A functional approach to understanding IBM
WebSphere Everyplace Server

IBM WebSphere Everyplace Server embodies a new step in the evolution of
Web-based computing. In order to understand its structure and operation, it is
useful to start with a functional review of Web-based computing in general. It
goes without saying that a review contained within a few paragraphs is not
historically complete or accurate. This is not intended to be a history of
Web-based computing. Rather, it should provide a “20/20 hindsight”
retrospective on the design of Web-oriented systems, ignoring the twists and
turns of technical development to concentrate on emerging technical trends.

1.1.1 Starting with TCP
The past two decades have seen a remarkable convergence of business
networks on the TCP/IP model, which was developed for academic, research
and military purposes. In the information that follows, we assume an IP network,
with TCP as the host-to-host (or connection) layer.

Figure 1-1 Client-server over TCP

In this context, a client-server application must manage all the functions above
the connection layer; in other words, it must manage session, presentation and
application issues. This implies a client component and a server component
sharing some form of (private or public) protocol.

1.1.2 Hypertext: HTTP
The introduction of the Hypertext Transmission Protocol, and the associated
Hypertext markup language, made possible the explosion of the World Wide
Web.
4 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

This was accomplished by commoditizing the Presentation and Application
layers on the client side, in the form of HTTP/HTML browsers, at least to the
extent of serving hypertext (forms, rich text documents, and limited types of GUI
widgets). As a consequence, the supply or certain types of services on the Web
(for example, the publishing of technical or scientific papers) no longer required
sophisticated programming skills, and could most often be undertaken by the
owners of the information themselves. In short order, HTML editors appeared to
make the task even easier.

Figure 1-2 Hypertext traffic

Client-side scripting expanded the presentation capabilities, and some add-on
solutions appeared for session maintenance. As the number of MIME types
expanded, the Browser client could invoke a variety of applications to process the
files sent by the server. The server side remained confined to serving such files.

1.1.3 Adding applications
The Common Gateway Interface (CGI) opened up server-side capabilities. Now,
properly designed programs could be invoked from the client using appropriate
URLs (usually coded into an HTML document).

Figure 1-3 Application services over HTTP
 Chapter 1. Overview 5

The operation of these programs implies another functional unit, the application
server, co-located with the Web Server or not.

Further, many server-side programs make use of information extracted from
databases and other existing systems. Some form of standard approach to
database interaction is desirable.

Among other efforts, we note the enormous contribution of the Java initiatives to
the standardization of Web services construction and delivery (both client-side,
with applets and the applet security model, and server-side, with servlets,
standard database access methods, and later models, including access to a
variety of legacy systems).

1.1.4 Controlling access
As the capability and flexibility of the Web computing model increases, serious
concerns arise regarding the control of access and protection against vandalism
and malicious intent.

Initially, each application designer had to provide protection as part of the
application layer. For a moderately complex Web site with diverse applications,
this obviously leads to a multiplication of identification, authentication and
authorization actions, and impacts the user-friendliness of the site. More
importantly, the absence of coordination may leave serious gaps in the security
of the site.

Figure 1-4 Access control in an HTTP context

This leads to the functional concept of control at the edge of the site. In
Figure 1-4, this functional role is represented by the Auth. Server (short for
authentication and authorization), a name given to a component of the previous
version of IBM WebSphere Everyplace Suite.
6 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Control at the edge means, among other things, that when a user is
authenticated by the server at the edge, that user should not have to present
credentials separately for any application or resource controlled by that server.
This single sign-on feature enhances the user experience, but also contributes to
improved security: if users need to remember only one user ID/password pair,
they are less likely to write it down in an all too accessible place, thus eliminating
the most important cause of security leaks.

1.1.5 Enablement
Edge management starts with perceived security needs, but this function can
extend to cover a lot of ground:

� The URLs seen by the browser on the client machine may contain much
information about the organization of the site. It has become common practice
to hide this information by means of a reverse proxy, which presents the user
with a uniform facade for the site. Such management of server resources can
be further extended with response caching and load balancing.

� Since HTTP is stateless, the support of sessions has to be provided by the
application (as for instance in the Servlet model). The sharing of session
information between applications is difficult and, if applications run on
different servers, it may be impossible. Maintaining session information at the
edge allows applications to share this information as needed.

� Information about users is limited to their identity, and possibly access
permission to an application. Each application has to maintain its own set of
detailed permissions (this information can also be maintained by the
application server). Maintaining this information in a central directory and
using it at the edge both limits the opportunities for unauthorized access to
the resources of the site and lightens the functional load of the applications or
the application servers.

� The management of security information at the level of individual users is
cumbersome, and prone to error. A policy server makes it possible to
administer this information at a higher level of granularity, which makes sense
in terms of business and otherwise.
 Chapter 1. Overview 7

Figure 1-5 Generic enablement

It becomes necessary to expand the structure of the previous diagrams and
place a new cluster between the client functions and the services. As a group,
these functions provide the following benefits:

� Contribute to facilitating the relationship between client and service.
� Transcend the characteristics of individual applications.
� Can very often be factored out of the applications.

To summarize these features, we label them Enablement functions.

In the following discussion, we will focus on these Enablement functions (with a
few Client or Service asides), and show how they represent the essential of the
IBM WebSphere Everyplace Server value proposition.

1.1.6 Managing users
The facilities offered by the central Directory and the Policy Support are quite
useful in steady-state operation. But some form of tool is needed to keep track of
background information and use it to produce the data for Directory and Policy.
For instance, in a commercial installation, various forms of packaged offerings
associate access privileges with billing rates and other data irrelevant to the
operation of the Web site as such.
8 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

This function would include means for customer care agents to manage the
status of their customers, and to handle higher-level entities such as deals and
commercial packages. It may also, to some extent, allow customers with the
appropriate authorization to perform their own management. In this respect, User
Manager assumes some features of an application, with a View and a Controller
interacting with the configuration model: hence the arrow connecting it with the
Reverse Proxy/Auth. Server function in Figure 1-6.

Figure 1-6 User management

1.1.7 Clients beyond IP
So far in our discussion, we have not made any assumptions beyond the
accepted boundaries of Web operation. Indeed, all the functions discussed are
available using standard Web service offerings.

On the other hand, the past few years have seen an explosive proliferation of
mobile devices which do not share the standards of traditional IP networks. The
demand for Web access from such devices is high, and some form of
communication adaptation is needed.
 Chapter 1. Overview 9

Figure 1-7 Extending the reach beyond IP networks

In the past, several solutions have been proposed to handle the case of devices
with no fixed address which nevertheless support the Internet protocol (or some
other well-established standard). Presumably, such solutions can be extended to
mobile devices, provided some means is found to make them appear as IP
devices to the rest of the network.

Figure 1-7 shows the functions needed to accomplish this objective. On the one
hand, some Network Access Service (NAS) must be able to present the non-IP
devices to the IP network. On the other hand, the higher-level protocols must be
adapted to the TCP world. If the given application uses HTTP, the traffic can then
be passed on to be handled by the Reverse Proxy/Auth. Server in the usual way.
Otherwise, it will behave like any TCP-based application.

1.1.8 Managing devices
The introduction of a variety of devices which do not share the usual (or
expected) features of standard computers raises the issue that the application
must be aware of the device capabilities. HTTP provides for user-agent
information to be carried in a header. However, many details can be subsumed
under the user-agent label. Either the application must maintain this information,
or it can be managed centrally by a Device Manager.
10 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 1-8 Device management

This function is similar to the User Manager in that it behaves in part like an
application, accessible by customer care agents or by the customers themselves.

1.1.9 Adapting content
The previous section noted that the application must be aware of the device
capabilities in order to supply its content adequately. It should come as no
surprise that such adaptation might profitably be factored out of the applications
and provided as an Enablement function. The needed adaptation comes in two
“flavors”:

� The device may require a new format, that is, the device may support a
presentation protocol other than HTML. Also, the application may be
designed to supply its content in device-neutral XML, which then must be
mapped to a particular rendering.

� The device may require a new medium, that is, the output device may support
some form other than written text and pictures. The example of choice at this
time is the standard telephone, which supports Voice.

We consider a single example of each adaptation below.

New format
With the exception of the decades-old adaptation of mainframe formats (screen
scraping), the most widespread example of format adaptation at this time is the
use of WML on WAP devices. With the exception of WAP simulators running on
computers, WAP devices also require protocol translation from IP to WAP, as
shown in Section 1.1.7, “Clients beyond IP” on page 9.
 Chapter 1. Overview 11

Figure 1-9 Adapting format from HTML to a new markup language: WML

In addition to translating from HTML (or XML) to WML, the Content Translator
must typically cope with the limited real estate available in most WAP/WML
devices. Accordingly, a clipping function accompanies the translation. There are
limits to this application-independent enablement, however. Quite often, the
application designer has relied on special features of HTML browsers (which are
far from fully standardized) and a special effort is needed to make the clipped
content usable by the mobile user. This may require redesigning some of the
application, and recoding some pages.

New medium
These factors become even more important when considering the use of another
medium, such as voice over a telephone. To begin with, two extra functions are
required:

� Mapping Voice over IP (VoIP) to Voice XML (VXML).

� Adapting the transport from the Public Switched Telephone Network (PSTN)
to the IP network. This function is similar to the NAS function presented
earlier, with the additional requirement to interface with PSTN.

Note: PSTN is a connection-oriented, circuit-switched network.

Voice over IP is transported over a connectionless network, where packets travel
independent routes: their sequence is not guaranteed and must be
re-established at the destination.

With these two functions in place, the content adapter can ensure the mapping
from HTML or XML to VXML.
12 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 1-10 Adapting to a new medium: Voice

The designer must take into account the limitations of speech as a medium of
communication: decoding spoken language into text is a difficult task, heavily
dependent on context. Such context must be available in the design of the
application.

For this reason, few existing applications can be directly adapted for Voice
service. A redesign effort is usually required.

1.1.10 Catering to pervasive contexts
Once access to the Web is provided for mobile devices, new computing contexts
are made available, in which computing equipment is integrated in every facet of
everyday life. The label pervasive computing has been applied to this situation.

From the standpoint of applications, there is a great variety of new needs to
satisfy, and the more obvious category covers the needs which depend on the
current (“real-time”) location of the device.

Note: Part of this objective can be achieved by structuring the voice forms to
limit the responses of the user. For details on this, please refer to Redpiece
SG24-6259, Designing and Developing Mobile Applications using WebSphere
Everyplace Access V1R1.
 Chapter 1. Overview 13

Within HTTP
Enabling standard HTTP applications to take location into account requires
several functional components.

There must be some service capable of mapping the device identifier to the
current location (this function is normally provided by the mobile communications
carrier, for reasons of confidentiality).

There must also be a component which intercepts the incoming request for
service and processes it, first checking various permissions and then requesting
the location information from the location service.

Figure 1-11 Applications specific to mobile usage

The application itself must be designed to make use of the location information if
it exists, and to take suitable action otherwise.

Finally, the User Manager must make it possible for potential users to manage
location-related permissions.
14 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Beyond HTTP
Web access for mobile devices need not be limited to HTTP applications.

Figure 1-12 Using new capabilities outside HTTP

In the case of non-HTTP services, the standard facilities discussed so far are not
available, and any application must consist of three components:

� The service itself, based on a public or private protocol.

� The client adapter, providing the client with any protocol handling needs.

� The enabler, which supports communication between the server and the
client. This function is often implemented as an add-on (plug-in) to the mobile
service (wireless) gateway.

1.1.11 Synthesis
Figure 1-13 summarizes the previous discussion: the numbers in circles map
each function to the products to be discussed in the next section.
 Chapter 1. Overview 15

Figure 1-13 Mapping functions to products
16 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

1.2 Mapping functions to products
In this section, we take up each of the components of IBM WebSphere
Everyplace Server (Service Provider Offering) and review it under five
headings.

� What is it? describes the product underlying the component.

� Role in IBM WebSphere Everyplace Server explains how it fulfills its functions,
and how it interacts with other components.

� Installation, configuration and administration gives an overview of setting up
the component, its status in IBM WebSphere Everyplace Server (whether it is
optional or not) and any issues or prerequisites involved.

� Quality of service reviews questions of scalability and reliability as they apply
to the component.

� Application considerations notes whether the component offers any
application APIs, or requires particular attention when dealing with certain
kinds of applications.

Note: Much of the information offered in this section is given in greater detail in
the WebSphere InfoCenter, which is available as part of the IBM WebSphere
Everyplace Server Service Provider Offering.

1.2.1 SecureWay Directory

What is it?
SecureWay Directory is also available as a stand-alone product. It is a
Lightweight Directory Access Protocol (LDAP) directory server that runs as a
daemon. It is based on a client/server model that provides client access to an
LDAP server. SecureWay Directory provides an easy way to maintain directory
information in a central location for storage, updating, retrieval, and exchange.

Role in IBM WebSphere Everyplace Server
IBM WebSphere Everyplace Server installation and configuration
The LDAP server holds all configuration information for IBM WebSphere
Everyplace Server, and supports the Setup Manager (see 1.2.15, “IBM
WebSphere Everyplace Server Setup Manager” on page 45) and the Suite
Manager (1.2.16, “IBM WebSphere Everyplace Server Suite Manager” on
page 46).

IBM WebSphere Everyplace Server operation
Most components of IBM WebSphere Everyplace Server depend on the LDAP
directory for their operation, as shown in Figure 1-14.
 Chapter 1. Overview 17

Figure 1-14 LDAP coordinates IBM WebSphere Everyplace Server components

Installation, configuration and administration
For installation and configuration, see the Setup Manager. As the LDAP directory
is essential in managing the configuration information, this is the first component
installed by the Setup Manager. When using the Setup Manager to install later
components, you are prompted to provide the location of the SecureWay
Directory. The SecureWay Directory uses a private DB2 database.

For administration, refer to the Everyplace Suite Manager. SecureWay Directory
also has two management tools of its own: the Directory Management Tool
(DMT) and the Web-based Web Administration console. Refer to the SecureWay
Directory documentation for further information on configuration and
administration.

Write Users

TPSM

Subscriber
DB

Enrolled Users

Enroll
Users

Everyplace
Wireless

Gateway (EWG)

WebSphere
Transcoding Publisher

(WTP)

IBM
SecureWay
Directory

3.2.1

Servlet
Update Users

Read Users
R/W EWG User

R/W Configuration

Read Profiles and
Preferences

R/W Configuration

SametimeSametimeRead Users

LDAP Server

Schema

UDB

Entries

Everyplace Setup
Manager (Setup Mgr)

WebSEAL-Lite (WSL)

ACL so only WES Admin
can write entries in WES
subtree

R/W Profiles
R/W Configuration

Migration

Read/Write User
Entries

WebSphere Portal
Server (WPS)

Read Profiles
Search for Users

R/W Configuration

Read Users

Policy Director (PD)
Read Users

R/W secUser

Everyplace
Synchronization Mgr

(ESM)

Read Users
R/W ESM Users

R/W Configuration

Intelligent Notification
Service (INS)

Read Users, Devices
R/W INS Users,
Groups, Devices

R/W Configuration

Update Users

Location Based
Service (LBS) R/W Configuration

WES - Customized
JSP's R/W Preferences

and Devices

Domino Everyplace Domino Everyplace
Access Server (DEAS)Access Server (DEAS) Read Users

R/W DEAS Users
.

18 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Quality of service
Scalability
The SecureWay Directory uses DB2 for storage. As a consequence, the scaling
facilities of DB2 can be used to increase directory size limits and performance.
The SecureWay Directory documentation covers this subject in detail, starting
with the IBM WebSphere Everyplace Server InfoCenter.

Design issues
IBM WebSphere Everyplace Server requires specific information (about users in
particular). When planning the reuse of LDAP-based information (for instance,
Enterprise user information), careful consideration must be given to migration or
harmonization. It is always possible to maintain an independent LDAP installation
for the sole use of IBM WebSphere Everyplace Server, provided some way is
found to synchronize the common information between the two directories.

Application considerations
The SecureWay Directory Client SDK APIs to locate LDAP servers that are
published in DNS, client-side caching for the Java-based JNDI interface, as well
as other JNDI enhancements.

1.2.2 WebSEAL-Lite (WSL) on Web Traffic Express (WTE)

What is it?
Beyond its role in IBM WebSphere Everyplace Server, Web Traffic Express is
also available as a component of IBM WebSphere Edge Server. The other
component (Load Balancer) is beyond the scope of this survey.

Web Traffic Express is a caching proxy. It also acts as a caching server and
content filter, reducing the time needed to retrieve information from the Internet
and filtering Internet data.

WebSEAL-Lite is an authentication and authorization plug-in for Web Traffic
Express, which provides a central authentication point for all users who wish to
access resources within a secured domain. It combines the caching Web proxy
of Web Traffic Express with the authorization engine of Tivoli SecureWay Policy
Director to deliver protected resources to authorized users.

Role in IBM WebSphere Everyplace Server
WebSEAL-Lite is the central point of user authentication for the IBM WebSphere
Everyplace Server domain. It authenticates users defined to the Everyplace
Server domain when they attempt to access Everyplace Server services.
 Chapter 1. Overview 19

When a user requests service, WebSEAL-Lite looks for the user in its own cache.
If not found there, the user is looked up in the Active Session Table (see next
section), where it may have been entered by the Wireless Gateway. If such an
entry exists, it is trusted by WebSEAL-Lite. If not, a challenge is issued.

At least one instance of WebSEAL-Lite is required in the Everyplace Server
domain to enable integration of most Everyplace Server components. It is the
point of entry to the Everyplace Server domain for devices that do not connect
through Everyplace Wireless Gateway, and is the next, non-firewall hop for
connections through Everyplace Wireless Gateway. WebSEAL-Lite also allows
you to use gateways other than Everyplace Wireless Gateway, if desired.

WebSEAL-Lite can be configured in one of two modes:

� Authentication proxy:

– User authentication based on HTTP Authenticate headers.

– No other origin server (content or application server) in the Everyplace
Server domain may do its own user authentication.

– Users authenticated through the authentication proxy may not access
content outside of the Everyplace Server domain.

� Transparent authentication proxy:

– User authentication based on HTTP Proxy-Authenticate headers.

– Origin servers (content or application servers) in the Everyplace Server
domain may do their own user authentication.

– The transparent authentication proxy allows users to access material
outside the Everyplace Server domain.

Exception: Components of IBM WebSphere Everyplace Server which do not
use HTTP transport must manage their own security.

Note: Users accessing the IBM WebSphere Everyplace Server domain
through the Wireless Gateway are normally authenticated by the Gateway.
However, any further management of security for these users is handled by
WebSEAL-Lite.
20 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

WebSEAL-Lite allows for single user sign-on (with a user ID and password) for all
services within the IBM WebSphere Everyplace Server domain. With this feature,
user authentication only needs to be performed once to access services
requiring a user ID and password. Authentication will still be needed for services
outside the IBM WebSphere Everyplace Server domain. Single sign-on is
implemented using the LTPA (Lightweight Third Party Authentication) protocol
supported by IBM WebSphere Application Server.

WebSEAL-Lite can use the same key file as was created for WebSEAL-Lite in
IBM WebSphere Application Server, with a simple editing change. Conversely,
IBM WebSphere Application Server can use a key file created for WebSEAL-Lite,
with the reverse editing change.

For details, refer to the IBM WebSphere Everyplace Server InfoCenter.

Policy Director implements finer levels of access control rights to Web
applications. This can be done by integrating Policy Director with WebSEAL-Lite
(see Tivoli SecureWay Policy Director). During installation, the Setup Manager
prompts to determine whether WebSEAL-Lite should be configured with or
without Policy Director. For the with option to succeed, Policy Director must have
been installed previously (Setup Manager does not check whether this is the
case). For the without option, Setup Manager installs a stub library to replace the
Policy Director client library.

Installation, configuration and administration
WebSEAL-Lite runs as a plug-in to Web Traffic Express (Caching Proxy). The
Caching Proxy is a prerequisite for WebSEAL-Lite and must be installed on the
same machine as WebSEAL-Lite.

WebSEAL-Lite is installed as a subcomponent of IBM WebSphere Edge Server
Caching Proxy in Setup Manager. For installation and configuration see Setup
Manager.

For administration details, please the see Everyplace Suite Manager.

Quality of service
Scalability
Being deployed as a plug-in to Web Traffic Express, WebSEAL-Lite offers the
same scalability as WTE.

Application considerations
There are no application-level interfaces.
 Chapter 1. Overview 21

1.2.3 Active Session Table (AST)

What is it?
Everyplace Active Session Table (AST) replaces the cache function formerly
provided by a component of Tivoli Internet Services Manager (TISM), which is
part of Tivoli Personalized Services Manager.

Role in IBM WebSphere Everyplace Server
Everyplace Active Session Table provides a high speed specialized cache for
information about users that are currently connected to the IBM WebSphere
Everyplace Server domain.

The AST servers are used by the Everyplace Wireless Gateways and
WebSEAL-Lite servers. These servers must be able to communicate with the
AST servers.

Installation, configuration and administration
Installation of Everyplace Active Session Table is handled through IBM
WebSphere Everyplace Setup Manager. Two AST servers should be installed on
two different machines in the IBM WebSphere Everyplace Server domain. The
first AST server is the primary server and the second is the backup.

Under normal circumstances, the Active Session Table server configuration is
performed by the Setup Manager at installation time using default values.

Subsequent updates can then be made to the configuration values from the
Everyplace Suite Manager. If, for some reason, LDAP is not running, it is possible
to configure the Active Session Table server outside of the Everyplace Suite
Manager environment. Consult the IBM WebSphere Everyplace Server
InfoCenter for details on this procedure.

Normally, the Active Session Table (AST) is managed from Everyplace Suite
Manager, but the IBM WebSphere Everyplace Server InfoCenter details other
management methods.

Everyplace Active Session Table properties
The AST properties file contains configuration parameters for the Active Session
Table server. Normally, the AST server gets its properties from the LDAP
directory and the AST.properties file is used only to specify how the LDAP
directory is to be accessed (the properties in the LDAP directory may be
changed through Everyplace Suite Manager). But if the LDAP directory is
unavailable, then the AST.properties file can be used to configure all aspects of
the AST server's operations.
22 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Quality of service
Design issues
Before installing and configuring AST V2.1, you will need to estimate disk storage
for the code, the cache data, and the log data. Minimum recommended values
are:

� Program files: 0.5 MB
� Cache data: 400 bytes per active user
� Log data: 10 MB

You must also provide sufficient real memory for the AST server's indices. Allow
130 bytes for each active user entry, plus five megabytes for other information.
Do not allow the real memory of the system on which the AST is installed to
become so constrained that the AST's indices are paged out of real memory. If
this occurs, performance will be impacted.

Note: The maximum number of active user entries is defined in the LDAP
directory and may be changed using Everyplace Suite Manager.

Application considerations
There are no application-level interfaces.

1.2.4 Everyplace Wireless Gateway

What is it?
IBM Everyplace Wireless Gateway provides a communications platform that
enables Internet Protocol and Wireless Access Protocol (WAP) applications to
run in a wireless and wired environment.

A number of modules provide very wide protocol coverage:

� ARDIS, Dataradio, DataTAC Support

� Mobitex, Modacom, Motorola PMR

� Dial (GSM, AMPS, PSTN, ISDN)

� IP LAN (CDPD, GPRS, etc., as well as wired environments)

� SMS (Short Message Service)

� PAP (Push Access Protocol)

� SMTP (Simple Mail Transfer Protocol)

� SNPP (Simple Network Paging Protocol)
 Chapter 1. Overview 23

Wireless Client
The Wireless Client is an optional interface which supports communication
through a Wireless Gateway. It wraps network-specific details inside the interface
layer and allows IP applications on a mobile computer to run over a wireless
network. For example, a radio network would not require any specialized
communication protocols for use by a mobile device.

Wireless Client is not installed on IBM WebSphere Everyplace Server machines,
but rather on the client device. Wireless Gateway provides mobile devices
containing the Wireless Client with access to host and network resources
through radio and dial-up networks. It can encrypt, compress, and minimize the
data that passes through the wireless link, thereby increasing the speed of
messaging.

New features
IBM Everyplace Wireless Gateway Version 2.1 offers some significant new
features and improvements:

Wireless Client:

– Supported PC 2000 and Pocket PC platforms with Windows CE
– Supported on Windows Me
– Supported on PalmOS
– Includes DNS caching

WAP:

– TCP application is a new WAP service resource to transport WAP
application data streams that do not use a browser

– Cookie support for unauthenticated WAP clients
– Elliptic curve cryptography for WAP clients

Integration:

– Integration with Tivoli SecureWay Policy Director
– Support for AIX Version 5
– Netscape Directory Server Version 4.1x for configuration storage
– Mobitex and DataTAC support for Messaging Service and Push APIs

Quality of service:

– Performance enhancements
– Messaging Gateway support for message cancellation and extended

quality of service (QoS) functions
24 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Management support:

– Migration Guide (Version 5.1/ Version 1.1.2+ to Version 2.1)
– Account and billing support for RADIUS-based accounting servers
– Per-seat license management to track the number of connected users

Role in IBM WebSphere Everyplace Server
IBM Everyplace Wireless Gateway provides a generalized entry point into an
Everyplace Server domain, both for wireless devices and for wired computers
(although it is not required in this case, as standard computers on an IP wired
network can reach the WebSEAL-Lite/Web Traffic Express server directly).

Devices reaching IBM WebSphere Everyplace Server through the Wireless
Gateway are identified and authenticated by the Wireless Gateway, and the
information is made available to WebSEAL-Lite through the Active Session Table.

The Everyplace Wireless Gateway offers the option of using RADIUS (Remote
Access Dial-In User Services) authentication. The RADIUS server is not part of
IBM WebSphere Everyplace Server.

Installation, configuration and administration
For installation and configuration details, please see the Setup Manager.

This component uses its own administration console, Wireless Gatekeeper, to
administer and configure Wireless Gateway.

Wireless Gatekeeper is a Java-based administration tool. It enables an
administrator to configure wired and wireless access protocol (WAP) gateways,
add users and mobile devices, define and group wireless resources, and assign
administrators to wireless resources.

Refer to the IBM Everyplace Wireless Gateway documentation for further
administration information.

Quality of service
Scalability
Everyplace Wireless Gateway uses clusters of gateways to balance load and
improve availability. Machines can be dynamically added to and removed from a
cluster.

Application considerations
The Messaging Gateway offers a Java API to support Push Access Protocol
(PAP) applications.
 Chapter 1. Overview 25

1.2.5 Tivoli Personalized Services Manager (TPSM)

What is it?
Tivoli Personalized Services Manager (TPSM) is also available as a stand-alone
product. It enables service providers to manage subscribers and devices
centrally. Management includes enrolling subscribers and devices, providing self
care and customer care, maintaining and billing subscriber accounts, and
submitting jobs such as software distribution to devices, among others. The
following subcomponents make up TPSM:

� System Management

– Setup of groups, domains, membership plans and deals.

– Access to subscriber profiles.

� Device Manager:

– Management of mobile devices (PDAs, subnotebooks, smart phones,
etc.).

– Identification, configuration, and distribution of software to any supported
device.

� Enrollment Server:

– Subscriber and device enrollment engine for ISPs, including a
customizable set of screens.

– Distributes TPSM features to every subscriber.

� Database Integration:

– Enables the creation of either a DB2 or an Oracle database.

– Required for any installation of TPSM.

� Customer Care:

– Enables representatives to open new or child accounts, and deactivate or
reactivate accounts.

– Enables representatives to view and update personal information, service
plans, payment methods, and e-mail settings.

� Self Care:

– Enables subscribers to modify the portal pages on their mobile devices.

– Subscribers can also modify some profile data (address, telephone, billing
plan, payment method, premium content).

� Portal Toolkit:

– Support for development of portal pages.

– Can delegate authentication to WebSEAL-Lite.
26 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Role in IBM WebSphere Everyplace Server

In the IBM WebSphere Everyplace Server context, TPSM has an additional
subcomponent:

� Everyplace Server Enabler (also known as the LDAP bridge):

This allows TPSM to manage its subscriber database in SecureWay
Directory. Whenever TPSM is used to modify any user or device
characteristics, the changes must be provisioned into the Directory in order to
be available to the rest of IBM WebSphere Everyplace Server.

Function Role in IBM WebSphere Everyplace Server

RADIUS server Used: optional, not installed by Setup Manager

Enrollment application Used

Manager consoles (ISM and DM) Used

Customer Care Application Used

Self Care Application Not used: replaced by IBM WebSphere Everyplace
Server User Preferences GUI

Web content hosting server Not used outside of IBM WebSphere Everyplace
Server scope

Integration Toolkit Not used outside of IBM WebSphere Everyplace
Server scope

Portal Toolkit Not used outside of IBM WebSphere Everyplace
Server scope

Device Manager server Used

Tivoli SecureWay Policy Director
Integration

Used: customized in IBM WebSphere Everyplace
Server

LDAP Gateway Used: customized in IBM WebSphere Everyplace
Server

Reporting Not used: not tested by IBM WebSphere Everyplace
Server test

Provisioning Toolkit Not Used: can be set up for specific projects

Service Delivery Platform servlet Used

Authentication Used: configured to respect IBM WebSphere
Everyplace Server Authentication
 Chapter 1. Overview 27

TPSM provides IBM WebSphere Everyplace Server with three kinds of
capabilities:

1. Commercial management, such as package deals, billing information, and
payment management.

2. Configuration management, such as portal resources, customer care and
self-care.

3. Directory provisioning, that is, translating the relevant consequences of the
first two items into the format of the Directory for use by the rest of IBM
WebSphere Everyplace Server.

Strictly speaking, only the third type of capability is required by the rest of IBM
WebSphere Everyplace Server. If a means were found of independently entering
such information in the proper form, TPSM would not need to be installed at all.

On the other hand, TPSM offers unique services to any installation which
requires commercial management and/or flexibility in dealing with users and
devices.

Installation, configuration and administration
For installation and configuration details, see the Setup Manager.

For administration details, see the Everyplace Suite Manager.

As a stand-alone product, TPSM also includes a number of administration tools.
Refer to the Tivoli Personalized Services Manager documentation for further
information.

Quality of service
Scalability
The Tivoli Personalized Services Manager engine (transaction processing and
event traffic) can be distributed and load-balanced across multiple systems to
meet desired performance criteria.

TPSM also includes a suite of applications based on Tomcat or the IBM
WebSphere Application Server. Using the latter, all IBM WebSphere Application
Server scaling and load balancing options are available.

Design issues
TPSM is delivered with a default set of user interfaces for its suite of applications.
In any specific installation, one important task will be to customize these user
interfaces.
28 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

In terms of deployment, TPSM requires large amounts of storage and processing
power. These must be taken into account when designing the physical model of
the proposed system.

Finally, the primary function of TPSM is the management of users and devices,
for which it offers flexibility and responsiveness. While this is indispensable for
service providers or large enterprise installations, it is not crucial for installations
where the user and device population is fixed or varies slowly. What is needed in
such cases is a reliable means of provisioning the LDAP directory in the relatively
rare cases where a change is needed.

Application considerations
The user interfaces are based on JSPs and fully customizable.

The Integration Toolkit, or iTk, is the development kit, provided with TISM, which
supports functional extensions and communication with other systems. It
communicates with the TPSM database via JDBC, and is composed of four
subunits:

– Core iTk
• Transaction management - multiple database accesses are managed

as a single business transaction.
• Database management - database connections and queries are

separated from application logic.
• Trace and debug - utility classes aid in problem determination.
• Validation - supports flexible rules for input fields.
• Exception handling - provides a standard way of handling errors.

– Subscriber Management iTk: information about customers and offerings
• Business and consumer subscribers
• Accounts Realms Deals
• Billing information
• Methods of payment

– Provisioning iTk: notification of database changes
– Billing iTk: interface to external billing systems

• Retrieval of deals, accounts, methods of payment, etc.
• Updates to subscriber data

1.2.6 Policy Director

What is it?
Tivoli SecureWay Policy Director is also available as a stand-alone product.

It is a policy management tool for e-business and distributed applications,
addressing the challenges of e-business security: growing complexity and
difficulty in implementing security policies across platforms.
 Chapter 1. Overview 29

Policy Director offers the following functions:

� Access control to Web objects

� Centralized and extensible security (authentication and authorization) for Web
and TCP/IP applications

� Support for replication and load balancing

� One-time authentication to access multiple Web resources

� Public Key Infrastructure (PKI) support

Role in IBM WebSphere Everyplace Server
It is clear from the list above that Policy Director shows a certain amount of
overlap with other components of IBM WebSphere Everyplace Server. Many of
its functions can be supplied, to some degree, by other components. Accordingly,
installation of Policy Director is not required for every IBM WebSphere
Everyplace Server domain.

On the other hand, Policy Director implements finer levels of access control
rights to Web applications. Some components, such as Location Based
Services, need access to the unique services of Policy Director (for example,
LBS needs to determine whether a given application is registered as
“location-based” and whether a given user has authorized access to his/her
location information).

In order to ensure cooperation between overlapping components, IBM
WebSphere Everyplace Server provides appropriate interfaces between Policy
Director and WebSEAL-Lite, TPSM, and SecureWay Directory.

� All resources in the IBM WebSphere Everyplace Server domain are
registered in the Policy Director Object space under the WebSEAL_Lite entry.
Resources accessible through the WTE server are entered directly, whereas
those accessible by proxy are recorded under the subentries forward and
reverse. The configuration also holds the login methods and login support
resources (forms).

� TPSM includes a TISM-PD bridge, which supports the following
administrative functions:

– Using Policy Director (PD) groups to protect access to URLs
– Creating groups in the Policy Director GUI
– Associating PD groups with realms
– Associating PD groups with deals
– Automatic creation of PD entry in appropriate PD groups for a subscriber

when he/she enrolls in a realm for a deal
30 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� Policy Director reads user records from the SecureWay Directory, where they
have been entered by the TPSM Everyplace Server Enabler (LDAP bridge) or
other methods.

Installation, configuration and administration
Tivoli SecureWay Policy Director installation and uninstallation are not integrated
with the IBM WebSphere Everyplace Server installation and uninstallation
programs in this release. Tivoli SecureWay Policy Director is not configurable
from IBM WebSphere Everyplace Suite Manager.

Refer to the documentation provided with Tivoli SecureWay Policy Director for
installation, configuration and administration information.

Quality of service
Scalability/reliability
Policy Director supports fault-tolerance and load balancing by deploying multiple
replicas in a given installation.

Application considerations
As part of IBM WebSphere Everyplace Server, Policy Director is not intended to
be the target of applications. However, the client APIs are available, as well as
authentication and authorization exits for extension and customization.

1.2.7 IBM WebSphere Transcoding Publisher

What is it?
The Transcoding Publisher is available also as a stand-alone product. It adapts
Web content based on destination device characteristics and network service
level.

As a stand-alone product, it can be deployed as a proxy or a reverse proxy, or as
a filter in IBM WebSphere Application Server, or used as a Java Bean library. You
can enhance the performance of the Transcoding Publisher by also installing
Web Traffic Express (Edge Server Caching Proxy) downstream from it. Web
Traffic Express stores transcoded material, removing the need to retranscode
Web pages each time they are retrieved.
 Chapter 1. Overview 31

Version 3.5 of Transcoding Publisher includes a number of new capabilities:

� Deployment:

– WebSphere Transcoding Publisher 3.5 runs as a filter in WebSphere
Application Server Version 3.5 (the previous version was not WebSphere
Application Server 3.x-compatible).

– WebSphere Transcoding Publisher 3.5 supports new device types
(i-mode), output types (HDML), and image types (WBMP).

– The Administrative Console can manage server models, that is, server
configuration data held in a central directory for use by several transcoding
servers.

– When using a central directory to store configuration data, an
Administration Console can perform centralized administration without a
server being installed.

– WebSphere Transcoding Publisher 3.5 can run as a reverse proxy on
behalf of one or several Web servers.

� Development:

– Annotators: external files or HTML document tags to mark up portions of
documents to include or exclude.

– Parameterized and internationalized stylesheets.

– A new data gathering tool for troubleshooting.

The recently released Version 4.0 includes the following new capabilities:

� New functionality:

– The VoiceXML transcoder converts HTML to VoiceXML for voice
applications.

– The Machine Translation transcoder works with WebSphere Translation
Server to translate content into different languages.

– The Palm transcoder converts HTML to PalmOS HTML for display on
Palm VII devices.

Note: Compatibility with WebSphere Application Server 4.0 will be available in
an upcoming service release.

� Deployment:

– The WebSphere Transcoding Publisher 4.0 server can be deployed as a
plug-in in WebSphere Edge Server Caching Proxy. This configuration
replaces the proxy with external cache configuration.

– WebSphere Transcoding Publisher 4.0 configuration information can be
imported/exported to XML files.
32 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

– Configuration information can be manipulated outside the Administration
Console.

– WebSphere Transcoding Publisher 4.0 can incorporate user preferences
when operating in an environment where that information is available (for
example, WebSphere Everyplace Server).

– Request Viewer can be used remotely to monitor a remote (proxy or
reverse proxy) WebSphere Transcoding Publisher 4.0 server.

– JavaHelp in The Administration Console and other interfaces.

– Improved performance.

� Development:

– External Annotation Editor: facilitates the creation/editing of external
annotators.

– Extended functionality of annotators.

– Stylesheet Editor: facilitates the creation/editing of XSL stylesheets.

– You can search within your stylesheet selectors to find the resources you
want to work with.

– You can specify, within an XML document, stylesheets to be applied.

– Improved user interfaces.

Role in IBM WebSphere Everyplace Server
Within the WebSphere Everyplace Server domain, WebSphere Transcoding
Publisher (WTP) is intended to be deployed as a proxy (forward or reverse). It is
not intended to be used as a servlet or a JavaBean.

The WebSphere Transcoding Publisher version delivered in this release of
WebSphere Everyplace Server Version 3.5. However, WebSphere Transcoding
Publisher Version 4.0 will be included in WebSphere Everyplace Server follow on
release.

In addition, starting with Version 4.0, WebSphere Transcoding Publisher can also
be installed as a plug-in to Web Traffic Express (WTE), thus further simplifying its
deployment, and automatically integrating the caching function with transcoding.

Note: The samples scenarios presented in this redbook have been developed
using the improved facilities of WebSphere Transcoding Publisher Version 4.0
 Chapter 1. Overview 33

The new features available with WebSphere Transcoding Publisher Version 4.0
greatly contribute to the integration of WebSphere Transcoding Publisher as a
major content enabler:

� Plug-in configuration improves efficiency and simplifies deployment.

� User management in LDAP supports greater integration of user preference
support.

� Portable configuration via XML facilitates scaling to multiple servers.

� VoiceXML capability further integrates Voice Server and voice applications
into IBM WebSphere Everyplace Server.

� WebSphere Transcoding Publisher can be used in conjunction with Web
Traffic Express (WTE) to support caching of transcoded pages.

Note: In addition, WTE can also be used with the WAP gateway in Everyplace
Wireless Gateway (EWG) to support caching of binary WML content, this
provides a marked improvement in performance for WAP delivery.

Installation, configuration and administration
For installation and configuration see Setup Manager.

For administration see Everyplace Suite Manager.

As a stand-alone product, WebSphere Transcoding Publisher is equipped with an
administration console. Any administrative can be carried out using the console,
including importing and exporting the configuration in XML form.

Quality of Service
Scalability
With WebSphere Transcoding Publisher 4.0 configured as a plug-in to Web
Traffic Express, incorporating several WebSphere Transcoding Publisher servers
in a WebSphere Everyplace Server installation amounts to configuring multiple
Web Traffic Express proxies. This is a well-understood WebSphere Edge Server
deployment task.

Configuration can be managed centrally from a single Administration Console.
The Request Viewer can be used remotely to monitor WebSphere Transcoding
Publisher traffic and for troubleshooting.

Design Issues
WebSphere Transcoding Publisher can be deployed in several configurations
(proxy, reverse proxy, plug-in). It is important to give close consideration to these
possibilities when designing the physical model of the installation. WebSphere
Transcoding Publisher’s small footprint also contributes to its versatility.
34 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Application Considerations
A number of development tools are available to support WebSphere Transcoding
Publisher development: they are explained in detail in Chapters 4-6.

WebSphere Transcoding Publisher can also be deployed as a servlet (filter) in
the WebSphere Application Server, or as a Java Bean Library in support of
independent applications. As these options are not supported in the WebSphere
Everyplace Server context, they will not be covered in this redbook.

1.2.8 Voice Server

What is it?
WebSphere Voice Server is a stand-alone product. Web developers can design
and develop applications that can be voice-enabled by utilizing a Voice over IP
(VoIP) network infrastructure. No new Web development skills are required to
create voice applications (although the design of Web Browser interactions
requires a thorough understanding of voice as a delivery medium).

WebSphere Voice Server is based on industry standards (VoiceXML to interact
with the Web content and H.323 for Voice over IP). It can interface with several
VoIP gateways (tested with Cisco Gateways:1750, 2600, 5300).

WebSphere Voice Server supports U.S. English, French, German, and U.K.
English; it is available on Windows NT.

Development is supported by the IBM WebSphere Voice Server SDK, available
on Windows NT (forthcoming version for Windows 2000). The SDK is described
in detail in Chapter 11, “Location-Based Services (LBS)” on page 435.

Role in IBM WebSphere Everyplace Server
WebSphere Voice Server is not part of the standard IBM WebSphere Everyplace
Server offerings. However, it can be smoothly integrated with WebSphere
Everyplace Server to support delivery of applications over telephone lines.

Authentication can be handled by WebSEAL-Lite, provided that the passwords
chosen are DTMF-compatible.

Installation, configuration and administration
The installation and configuration procedure of WebSphere Voice Server is
detailed in the IBM WebSphere Voice Server Version 1.5 Administrator’s Guide
which accompanies the product.
 Chapter 1. Overview 35

It consists of the following steps:

1. Configure the telephony environment:

to be executed by a VoIP gateway expert.

2. Install the Voice Server software.
3. Start VoiceXML browsers.
4. Verify the installation.
5. Run the applications.

Quality of Service
Scalability
WebSphere Voice Servers can be deployed simultaneously on several machines.
The load balancing is provided by the VoIP gateway(s).

Design Issues
The IBM WebSphere Voice Server Software Developers Kit (SDK) Programmer’s
Guide which accompanies the product gives detailed guidance for the design of a
Voice Browser interface.

Application Considerations
As an autonomous product, WebSphere Voice Server SDK supports the whole
development cycle for the voice handling part of an application. It includes tutorial
matter on best practice in VXML development. If the application consists solely of
a voice interface (in VXML) connecting to back-end functionality, nothing more is
needed. In the context of WebSphere Everyplace Server, it is to be expected that
the Voice Server will be used as part of an enabler for applications. In this case,
the VXML documents would be supplied by a WebSphere Transcoding Publisher,
rather than being directly generated by the back-end application.

1.2.9 Location-Based Services (LBS) Proxy

What is it?
Location-Based Services Proxy is shipped with WebSphere Everyplace Server: it
installs as a plug-in of Web Traffic Express (Edge Server Caching Proxy).

Location-Based Services Proxy provides user location information to
applications, which can use this information to deliver appropriate content. For
example, an application can provide a user with a list of hotels in the area where
he/she is currently traveling.
36 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Role in IBM WebSphere Everyplace Server
For location information to be used by an application, the administrator must
enable the application as a location-based application (in Policy Director) and the
user must allow the application to use their location information (for instance
using TPSM Self-care).

Location-Based Services uses a location server (currently Signal Soft Local.info
Server) to provide user location information (in a subset of GML, Geographical
Markup Language, defined by the OpenGIS Consortium). Location-Based
Services obtains the following information from SignalSoft:

� Latitude

� Longitude

� Uncertainty of the position estimate

� County

� City

� State/province

� ZIP/postal code

� Country

� Nearest Intersection

Location-based applications depend on the Location-based Proxy. It, in turn,
depends on the Location Server and the Policy Director. Both of these must be
installed separately and configured for Location-Based Services to work
correctly.

Installation, configuration and administration
For installation and configuration, see the Setup Manager.

For administration, see the Everyplace Suite Manager.

There are several considerations specific to installing and configuring
Location-Based Services. Policy Director is a prerequisite for the installation of
the Location Server. As WebSEAL-Lite must be configured at installation to work
with Policy Director, it is necessary to plan ahead if Location-Based application
deployment is intended.

The following must be installed and configured:

– The Signal Soft Local.info Server including the customized "WhereAmI"
service.

– WebSEAL-Lite
– WebSphere Everyplace Suite Wireless Gateway
 Chapter 1. Overview 37

– Policy Director Server 3.7.1
– Policy Director Client 3.7.1

After installation, the following configuration tasks are required:

– Setting up user preferences (in TPSM).
– Configuring location based applications in Policy Director.
– Optionally, preparing Location Based Services Application Registration

File.
– Optionally, configuring Location Based Services in Suite Manager.
– Preparing Location Based Services Application Registration File.

Quality of Service
Scalability
Being deployed as a plug-in to Web Traffic Express, WebSEAL-Lite offers the
same scalability as WTE.

Application Considerations
Development of the location-based application is based on a standard API which
extracts the GML information from the header supplied by the Location-Based
Proxy.

Several possibilities are available for development:

� Do not install the Proxy. In the absence of the header, the API will look up
information in a file.

� Do not install the Proxy, but equip the development environment to insert the
required GML headers in the request.

� Install the Proxy, but not the Location Server. The installation package
provides a SIgnalSoft emulator.

� Install both the Proxy and the Location Server.

1.2.10 i-Mode Cookie Proxy

What is it?
Everyplace Cookie Proxy serves to enable users to use i-Mode phones.

Role in IBM WebSphere Everyplace Server
Everyplace Cookie Proxy is only available when WebSphere Everyplace Server
is installed on Japanese locale machines. This proxy is provided on AIX only.
Messages and other information displayed in the interface are in Japanese only
(English is not supported).
38 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Installation, configuration and administration
See the Setup Manager. Installation is only available when installing on
machines with a Japanese locale.

1.2.11 Intelligent Notification Services

What is it?
Everyplace Intelligent Notification Services is shipped as part of WebSphere
Everyplace Server.

It delivers messages to users of pervasive devices based on the users'
preferences and subscriptions. For example, subscribers can tell Everyplace
Intelligent Notification Services to notify them when news articles with "pervasive
computing" in the headline are published by a content provider. Subscribers can
also specify which devices to send a notification to based on the urgency of the
message (for example, if the message is marked FYI, send it via e-mail. If the
message is marked urgent, send it via Sametime instant messaging).

Role in IBM WebSphere Everyplace Server
Intelligent Notification provides services for publishing content, subscribing to
content, and sending simple notifications to other Everyplace Server users.

It supports:

� Lotus Sametime

� Wireless Application Protocol (WAP)

� Short Message Service (SMS)

� SMTP e-mail

Installation, configuration and administration
Everyplace Intelligent Notification Services is installed by Everyplace Setup
Manager when selected from the Everyplace Setup Manager. Setup Manager
installs all of the prerequisite software for Everyplace Intelligent Notification
Services.

During the installation, Setup Manager prompts for configuration information.
Everyplace Intelligent Notification Services requires at least 7MB of disk space,
not counting the requirements for the private WebSphere Application Server and
DB2.

The following programs are installed (privately) by Setup Manager when
Intelligent Notification is installed. They are not licensed for deployment of other
applications.
 Chapter 1. Overview 39

� HTTP server

� WebSphere Application Server Advanced Edition

� SecureWay Directory

� DB2 UDB Enterprise Edition

Optionally, Everyplace Wireless Gateway is installed to supply WAP, SMS, and
e-mail gateways.

A content provider may also be needed to implement a subscription solution if it
is not supplied from local resources. The content provider provides a client
application that is connected to an Internet data feed. The content adapter
interfaces with this application to retrieve data to publish to the iQueue Server.

Everyplace Intelligent Notification Services requires at least 7 MB of permanent
disk space. Additional disk space may be needed to store XML content files from
the data feeds.

INS may be configured for several functions:

� Authentication for secured subscription management.

� e-mail notification.

� SMTP e-mail notification.

� Wireless Gateway Push e-mail notification.

Detailed instructions are available in the WebSphere Everyplace Server
InfoCenter.

Quality of Service
Scalability and Design Issues
� INS consists of three components (Gryphon, IQ Server and UND), each

running in its own JVM and communicating over sockets. If the traffic justifies
it, several installations of INS could be deployed in the same IBM WebSphere
Everyplace Server domain. However, the load distribution among them would
be a matter of application design (for example, assigning different data feeds
to different installations).

� Developing an INS-based application can be intricate. Such an application
has value if the intelligence feature of INS is required. For uses which require
simple notification, and do not require user subscription, using the Push API
in a direct application can be more efficient.
40 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Application considerations
Customization of the provided samples is required to tailor the services to your
installation's needs. For example:

� Content adapter samples illustrate how to publish content from various
sources.

� Subscription samples show how to subscribe to and process content.

� Gateway adapter samples are also available for modification to support new
gateway interfaces.

The samples for this product require JSP 1.1 support. Ensure that a browser with
support for JSP 1.1 is available for viewing the sample front-ends.

Customization is an important part of setting up the Everyplace Intelligent
Notification Services. Customers must customize several code components in
order to create a notification solution that works for their particular business
needs. Everyplace Intelligent Notification Services provides a default or sample
implementation of these components.

The following parts of Everyplace Intelligent Notification Services can be
customized:

– Subscription triggers: forms, servlets, and trigger handlers
– Content Adapters
– Gateway Adapters
– Transcoders
– Transcoder Style Sheets
– Content-serving servlet.

1.2.12 MQSeries Everyplace (MQE)

What is it?
MQSeries Everyplace is also available as a stand-alone product.

It provides assured messaging capability between devices and any MQSeries
family platform. It extends secure messaging to include dependable
communications with mobile workers. It connects laptops, servers, PDAs,
phones, and unattended devices, such as sensors, to MQSeries networks. This
enables users to perform business functions through their mobile devices.

MQSeries Everyplace consists of Java and C components enabling solution
developers to create an MQSeries Everyplace gateway and client on a variety of
devices and platforms.
 Chapter 1. Overview 41

Role in IBM WebSphere Everyplace Server
MQSeries Everyplace can function independently, using the facilities of the
Wireless Gateway only to support wireless communication. It has its own security
management and transport protocol.

MQSeries Everyplace can also use the facilities of IBM WebSphere Everyplace
Server to communicate with a servlet which incorporates the MQe class library.
In this HTTP mode, an application can overcome issues of firewall configuration
(for example, port selection), and authenticate itself through the WebSEAL-Lite
mechanism by placing the user ID and password in the HTTP header.

Installation, configuration and administration
For installation and configuration, see the Setup Manager documentation
provided with this component. The native C client version of MQSeries
Everyplace is not installed with Everyplace Suite. See the Web site for more
information on how to get it. Chapter 14, “Transaction messaging” on page 575
presents the details of configuration and administration.

Quality of Service
Scalability/Design Issues
A MQSeries Everyplace application on the server side runs in a JVM and listens
on a specific port. Only one Queue Manager can run in a given JVM. In order to
scale the application, several JVMs must be started, each listening on a different
port. The client-side application must be configured to address one of the ports.
In other words, load balancing must be managed by the user.

Application considerations
For further discussion of design and development, see Chapter 13, “Data
synchronization for enterprise applications” on page 517.

1.2.13 Sametime Everyplace

What is it?
Sametime Everyplace is also available as a stand-alone product.

It extends the capabilities of Sametime to WAP-enabled devices such as mobile
phones. It allows you to chat with other Sametime users from your mobile phone,
whether they are using mobile devices, or whether they are using Sametime
Connect from their desktop. Sametime Everyplace allows you to:

a. Create Contact lists and search for users.

b. View status information to see whether a person is a mobile user and to
see who is online.
42 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

c. Use the Chat function for live instant messaging over WAP.

d. Invite multiple Sametime users to join a group chat.

e. Notify, via Short Message Service (SMS), mobile users who are logged on
to Sametime, but not currently using Sametime.

f. Send e-mail to users who are not online.

Although some of these functions (for example, a., c. or f) may be awkward to
use on limited devices, they are available as needed.

Sametime Everyplace must be installed on a Domino server in your organization.
You access Sametime Everyplace with the WAP browser on your mobile device.
A bookmark points to the server where Sametime Everyplace resides. You then
log into Sametime using your user name and your Internet password.

You can chat with any person or group listed in your Contact list, if they are active
in Sametime. Anyone in your organization's address book can be included in
your Contact list. If a mobile user is logged on to Sametime but not currently
using Sametime, you can send the user a notification that you are trying to reach
him/her. If the user is not logged into Sametime or is not a Sametime user, a
mobile user can send an e-mail to that person's mail database.

A User Profile is created the first time you log into Sametime Everyplace from
your mobile device. You are prompted for your telephone number, the language
to be used on the mobile device and to add a person or group to your Contact
list. Once you have entered this information, you can chat with anyone listed on
your Contact list. You can accept the defaults set in your User Profile or you can
modify your User Profile from your mobile device or from a Web browser. It may
be easier to use a Web browser than to use the keys and micro display on the
mobile device. To access your User Profile from a Web browser, you provide a
URL pointing to the Domino server containing Sametime Everyplace.

Role in IBM WebSphere Everyplace Server
The Domino Server providing the Sametime Everyplace service uses information
from the Directory. The user’s identity is obtained and managed by the Sametime
server.

Installation, configuration and administration
Sametime Everyplace installation and uninstallation are not integrated with the
WebSphere Everyplace Server installation and uninstallation programs in this
release.

Sametime Everyplace is not configurable from WebSphere Everyplace Suite
Manager.
 Chapter 1. Overview 43

Refer to the documentation provided with Sametime Everyplace for installation,
configuration and administration information.

1.2.14 Everyplace Synchronization Manager (ESM)

What is it?
Everyplace Synchronization Manager enables handheld computing devices to
link remotely to desktop applications. Mobile users can easily synchronize data
with Microsoft Exchange, Lotus Notes, DB2 or any ODBC compliant database,
such as Oracle or Sybase. The mobile device can synchronize using modem,
wireless communications, Internet, intranet, LAN or WAN. Mobile users can be
authenticated through existing Microsoft Exchange or Lotus Notes user data or
through a list of users held internally in Everyplace Synchronization Manager.
Data can be encrypted for secure transmission. Mobile devices can be
automatically backed up or restored and applications can be remotely installed
on these devices.

Everyplace Synchronization Manager contains the following subcomponents:

� Everyplace Synchronization Manager Service

Handles the request from the mobile device, manages security, and performs
all the data transfers between the mobile and the enterprise data sources.
Runs on a Unix server.

� Exchange Connector

Enables Synchronization Manager to synchronize with Microsoft Exchange
Server. Runs on Windows NT 4.0 or 2000.

� Notes Connector

Enables Synchronization Manager to synchronize with Lotus Notes. Runs on
a UNIX server.

� Everyplace Synchronization Manager Admin

Enables the administrator to set up or modify the synchronization performed
by the Synchronization.

� Manager service

Uses wizards or intuitive forms. Runs on a UNIX server.

� Everyplace Synchronization Proxy

Mobile devices may synchronize either directly (through dial-up or packet
network) to the Synchronization Manager Service or indirectly with a serial
cable to a desktop PC which then connects to the Synchronization Manager
Service. Everyplace Synchronization Proxy must be installed and running on
the desktop PC to synchronize through cable. Runs on Windows.
44 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� Everyplace Synchronization Client

Enables the mobile device to synchronize with enterprise data sources
through the Synchronization Manager Service. Clients are packaged with the
Windows install library.

Role in IBM WebSphere Everyplace Server
Currently the Everyplace Synchronization Manager is not fully integrated with
IBM WebSphere Everyplace Server. While it uses some components of IBM
WebSphere Everyplace Server (for example, Everyplace Wireless Gateway), and
is installed by the Setup Manager, it continues to manage its own security. It is a
typical non-HTTP pervasive application.

Installation, configuration and administration
For installation and configuration, see the Setup Manager. This component has
its own administration console. Refer to the Everyplace Synchronization
Manager documentation for further configuration and administration information.

1.2.15 IBM WebSphere Everyplace Server Setup Manager
Everyplace Server contains many individual components and requires several
additional server products. Installing so many components individually is not
practical, let alone installing them into a distributed setting. Intuitively, the
Everyplace Server installation is designed to be a centralized installation of all
components.

Many of the components within Everyplace Server exist independently as
products with their own installation process. The centralized Everyplace Server
installation still utilizes the server software installation and upgrade mechanism
already in place for the server components. The server installation is a
coordinated effort. It determines what common configuration parameters can be
factored out and supplied only once, but used by multiple components.

In addition, as components are installed and configured on specific systems, the
Everyplace Server installation process captures configuration parameters and
stores the information in LDAP for subsequent use later in the installation
process. This way, the parameters entered during installation can be saved for
other Everyplace Server component installations.

Setup Manager installs and configures the WebSphere Everyplace Server
environment for you. When installing individual components, it is important that
you follow the WebSphere Everyplace Server installation and uninstallation
instructions provided in the WebSphere Everyplace Server InfoCenter, and not
the installation instructions provided with the component's documentation.
 Chapter 1. Overview 45

Setup Manager can perform the following tasks:

� Set up the Everyplace Server environment.

� Allow limited migration from previous releases to version 2.1.

� Help you save time on subsequent installations of Everyplace Server by
pre-defining component information.

� Provide a mechanism to validate that the installation and configuration
completed successfully.

1.2.16 IBM WebSphere Everyplace Server Suite Manager
Everyplace Suite Manager allows you to administer components. With it you can
start and stop servers, edit properties, and view logs.

Everyplace Suite Manager provides a centralized method for launching the
administration consoles of the installed WebSphere Everyplace Server
components. In addition, Suite Manager obtains information regarding the
installed components and the servers where they are installed. From the Suite
Manager console, you can make changes to configuration data that is stored in
SecureWay Directory (LDAP).

Before you can start Everyplace Suite Manager, SecureWay Directory must be
installed and running in the WebSphere Everyplace Server domain.

Installation, configuration and administration
� For installation on Unix (AIX or Solaris), see the Setup Manager.

After installation, you can start the console by clicking the console icon,
which was created during the installation process, or from a command line
with the Administration Console user ID (or the root user ID), by running the
script IBM WebSphere Everyplace Serverconsole.sh.

Everyplace Suite Manager ensures that all of the conditions for use, such as
user privilege and prerequisite software, are correct. If the conditions are met,
a list of the installed Everyplace Server components is displayed.

� For installation on Windows 2000:

a. Insert WebSphere Everyplace Server Disc 1 into your CD-ROM drive.

b. Run.... <cdrom drive>:\eps\win32\SuiteMgr.exe.

c. Click OK and follow the installation program.

After installation, you can start the console from the Start menu:

Start-> Programs -> WebSphere Everyplace Suite Manager ->
WebSphere Everyplace Suite Manager.
46 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

or from a command line:

installLocation\SuiteManager.cmd

Note: The default install location is C:\Program Files\SuiteManager.

1.3 The IBM WebSphere Everyplace Server Offerings
The WebSphere Everyplace Server Family includes three offerings:

1. WebSphere Everyplace Access Offering for Multiplatforms Version 1.1
(WebSphere Everyplace Access V1.1). This is an entry-level product, focused
on Voice enablement of Web applications.

2. WebSphere Everyplace Server Enable Offering for Multiplatforms Version 1.1
(Everyplace Server Enable V1.1, IBM WebSphere Everyplace Server EO).
This focuses on supporting enterprise enablement (B2E), leveraging existing
infrastructure (especially Directory services and Authentication).

3. WebSphere Everyplace Server, Service Provider Offering for Multiplatforms
Version 2.1 (Everyplace Server Service Provider V2.1, IBM WebSphere
Everyplace Server SPO). This offering replaces IBM WebSphere Everyplace
Suite Version 1.1. It is aimed at large enterprises and Service Providers. The
IBM WebSphere Everyplace Serverv.1.1 feature set has been expanded to
include additional advanced features.

1.3.1 Using the IBM WebSphere Everyplace Server Offerings
The new release of WebSphere Everyplace Server endeavors to present specific
offerings adapted to emerging enablement trends and needs. IBM WebSphere
Everyplace Server SPO continues the general make-up of the previous releases,
improving integration and administration tools, and adding new technologies.
IBM WebSphere Everyplace Server Enable Offering is a new, tailored
combination of components intended to give enterprises the means to enable
their information systems for a pervasive computing context.

Feature comparison
Figure 1-15 shows the composition of the two offerings side by side.
 Chapter 1. Overview 47

Figure 1-15 WebSphere Everyplace Server Enable Offering versus Service Provider Offering

Licensing
The licensing arrangements further extend the flexibility of the offerings. Several
licensing keys allow different configurations to be managed by the same Setup
Manager. For instance, the Everyplace Wireless Gateway is only available with
specific WebSphere Everyplace Server license keys.

See the InfoCenter for information on license keys. Several components of IBM
WebSphere Everyplace Server make use of DB2 and/or WebSphere Application
Server as part of their internal operation. Such supporting subcomponents need
not be licensed separately for their use as part of a IBM WebSphere Everyplace
Server component (denoted as private in product descriptions), but may not be
used for other purposes.

Figure 1-16 illustrates the available Service Provider and Enable base offerings,
including prerequisites and options.

JDK, Messaging Toolkit, Location Beans

Device
Management

Location Based
Services

Intelligent
Notification

Instant
Messaging

Subscriber
Management

Content
Transcoding

Load Balancing
& Caching

Authentication &
Security

Transaction
MessagingSynchronization

Gateway
Services
Gateway
Services

Collaborative
Applications

Synchronization

Gateway
Services

Voice XML
Server

Policy Director

Administrative Services

AIX 4.3.3 or higher
Solaris 2.7 or 2.8

Netscape Communicator Version 4.7
 or Netscape Navigator Version 4.08

Automatic
Translation

JDK

Administrative Services

AIX 4.3.3 or higher
Solaris 2.7

Windows 2000 Server or higher

Netscape Communicator Version 4.5 or higher
 or Netscape Navigator Version 4.08 or higher

Device
Management

Synchronization Content
Transcoding

Transaction
Messaging

Gateway
Services

Load Balancing
& Caching

Pluggable
Authentication

Automatic
Translation

Pluggable User
Registry
48 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 1-16 Everyplace Server Offerings components and options

1.3.2 IBM WebSphere Everyplace Server Enable Offering
WebSphere Everyplace Server Enable Offering (IBM WebSphere Everyplace
Server EO) is a new product which recognizes that many enterprises need a
more targeted package which will fit flexibly in their enterprise infrastructure and
provide enablement functions to their existing systems.

Tivoli Device Manager
Pluggable User Registry
WebSphere Transcoding Publisher
MQSeries Everyplace
Everyplace Cookie Proxy (for i-mode)
WebSphere Edge Server
Pluggable Authentication
Everyplace Suite Installer
Everyplace Administration Console
DB2 UDB Enterprise Edition (private)
WebSphere Application Server (private)
IBM HTTP Server (private)

Base Offering

AIX 4.3.3 or higher or Solaris 2.7 or
Windows 2000 Server or higher
Netscape Communicator V4.05 or higher
or Netscape Navigator V4.08 or higher

Prereqs

Order Separately

Subscriber Management Service
WebSphere Translation Server
IBM Mobile Connect
Everyplace Wireless Gateway
Authentication Service

Options
Everyplace Synchronization Manager
Everyplace Wireless Gateway

Tivoli Personalized Services Manager
Everyplace Location Services
Tivoli Policy Director
Everyplace Intelligent Notification
WebSphere Transcoding Publisher
MQSeries Everyplace
WebSphere Edge Server
Everyplace Authentication
Everyplace Setup/Suite Manager
SecureWay Directory
DB2 UDB Enterprise Edition (private)
WebSphere Application Server (private)
IBM HTTP Server (private)

Base Offering

AIX 4.3.3 or higher or Solaris 2.7 or 2.8
Netscape Communicator V4.7 or
Netscape Navigator V4.08

Prereqs

Order Separately

WebSphere Voice Server
Location Services Provider (SignalSoft)
Lotus Domino Everyplace
WebSphere Translation Server
Sametime Everyplace

Everyplace Server
Enable Offering

Everyplace Server
Service Provider Offering
 Chapter 1. Overview 49

What to do with IBM WebSphere Everyplace Server - EO
The primary purpose of IBM WebSphere Everyplace Server EO, therefore, is to
enable enterprises to extend the reach of their internal systems over mobile
communications.

Everyplace Server Enable V1.1 enables enterprises to introduce their business
into the wireless environment while preserving and extending existing e-business
investments, with:

– Secure communications (wireless and wireline)

– Synchronization between servers and pervasive devices

– Management of pervasive devices

– Content adaptation to devices, networks and users

– Transaction messaging for secure and guaranteed delivery

– Integration with the enterprise's current environment

– Support for established LDAP and Authentication servers

– Client support:

• Windows CE devices

• IBM ThinkPads and compatible laptops

• Palm OS devices

• IBM Workpads

• WAP phones

• i-mode phones
50 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 1-17 Going Mobile with IBM WebSphere Everyplace Server Enable Offering

Figure 1-18 shows a typical layout of an enterprise IBM WebSphere Everyplace
Server EO deployment. Most components are installed in the enterprise secure
zone (Trusted Network). Coordination with existing enterprise components is
supported by EJBs.

Existing
User Directory

Existing
Authentication

Platforms: Windows, Solaris, AIX

Websphere Everyplace Server
Enable Offering v1.1

Plug-in support for existing Customers
Environment
Content Adaptation
Secure Messaging
Device Management
Load balancing & Caching
Cookie Proxy for i-mode
Unified Administration Console and
Installer
Wireless Gateway for WAP and non-WAP
environments (optional)
Synchronization engine supporting PIM
and Relational Databases (optional)

Dominio
Applications

MQ/DB2
Applications

WebSphere
Applications

Existing Customer
 Environment

Pluggable DirectoryPluggable Authentication

Other
Applications

WebSphere
Portal Server

Existing User Management System
 Chapter 1. Overview 51

Figure 1-18 Enterprise deployment of Enable Offering

1.3.3 IBM WebSphere Everyplace Server Service Provider Offering
WebSphere Everyplace Server Service Provider Offering (IBM WebSphere
Everyplace Server SPO) continues the line of development started with
WebSphere Everyplace Suite Version 1.1.x. Figure 1-19 on page 53 summarizes
the composition of IBM WebSphere Everyplace Server SPO, its typical physical
layout and the relationships among its components, as reviewed in detail in
Section 1.2, “Mapping functions to products” on page 17.

When IBM WebSphere Everyplace Server - SPO is required
The Service Provider Offering is needed when deploying new kinds of services,
as distinct from, or in addition to, extending the reach of existing ones. New
functionality includes intelligent notification, location-based functions, messaging
and synchronizing.

SPO also offers the full range of subscriber management and personalization.
These capabilities are not normally required for enterprise installations, where
applications are primarily B2E, or collaborative.

 Wireless
Gateway

MQ
Transaction
Messaging

Untrusted Network Trusted
Network

DMZ

Transcoding
& Caching

WebSphere &
Domino

Applications

Portal

Device
Management

Cookie
Proxy

Netscape
Directory

SecureWay
Directory

WAS
+ TAI

3rd Party
A/A Proxy WAS

Other
Directory

DMS
DB

HTTP

3rd Party A/A
Credentials

TAI

Generalized
User

Directory
Access

(User Bean)

3rd Party
Gateway or
direct TCP
connection
52 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

IBM WebSphere Everyplace Server, Service Provider Offering addresses the
requirements of the following industry segments:

– Wireless Service Provider

– Large Financial enterprise

– Large Retail enterprises

– Large Travel and Transportation enterprises

The base offering provides all the components required to work with the
customer’s existing connectivity software. If such facilities are not already
deployed, the customer can add Everyplace Wireless Gateway or Everyplace
Synchronization Manager. Figure 1-19 illustrates a typical IBM WebSphere
Everyplace Server Service Provider Offering deployment.

Figure 1-19 Deploying the Service Provider Offering

Trusted NetworkDMZ

MQ

TPSM

Device

Mgmt

SecureWay Directory

WebSphere/

Domino

Applications

3rd Party
G.W. or
direct TCP
connection

WAP,
Wireless,
Modem,
Non-IP

TPSM

Enrollment

and Self Care

Non-HTTP
Applications

 Caching +

Transcoding

Voice

Server

 voice input

Policy

Director

Portal

Location

Proxy
RADIUS

MQe Gateway

Sync

Server
data

Intelligent

Notification

sync clients

MQe clients

DMS clients

Sametime

Everyplace
Sametime

WebSEAL

Lite

AST

Server

 Wireless

Gateway

Untrusted Network

Cookie

Proxy

I-Mode
Gateway

Wireless

Gateway

client
 Chapter 1. Overview 53

54 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 2. Application architecture

This chapter presents a description of the insertion of an application in the
WebSphere Everyplace Server environment. Available options are discussed,
ranging from an application specifically developed for pervasive use to the more
common case of existing applications being adapted to pervasive usage
requirements. In many cases, including that of the sample application described
in this redbook, a combination of approaches will be needed for best results.

In the case of adaptation, consideration must be given to several functions of
WebSphere Everyplace Server, including user and device information, security
and policy issues, content adaptation, protocol management and quality of
service.

2

© Copyright IBM Corp. 2002 55

2.1 Planning techniques
The previous chapter outlined a view of WebSphere Everyplace Server as an
implementation of enablement functions, that is, of all functions which can be
factored out of individual Web applications and separately implemented in a
robust and scalable way.

This perspective enables us to position WebSphere Everyplace Server with
respect to the process of planning, designing and implementing such
applications.

We will begin by reviewing the various computing modes encountered in
pervasive applications. We will then proceed to consider the use of patterns in
system planning, and finally introduce the decision tree as a way of documenting
available architectural and design choices.

2.1.1 Modes of pervasive computing
A computing mode is a schema of use of computing resources by actors (users
or other computing systems). It is characterized primarily by the topology of
communication (that is, the type and timing of communications used). In the
context of relevance to WebSphere Everyplace Server, we can distinguish four
main modes.

Synchronous mode
In the synchronous mode, the participants are available simultaneously, and their
interaction takes place within one communication session. One example is that of
a user accessing a standard Web site through a browser (assuming no
interruption of the traffic through failure; if such an interruption occurs, the
interaction has to start afresh).

Asynchronous mode
In the asynchronous mode, some mechanism is available to deliver the content,
submitted by one participant A at a given time, to another participant B at another
time. A common example is a mail system. Characteristically, participant B has to
initiate the retrieval of the content. A generalization of this action, called
synchronization, occurs when the asynchronous participants are separate
components of a common application, for example, when a user synchronizes
the PIM on his/her PDA with another instance running on his/her desktop.
56 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Push mode
Instant messaging systems, for instance, are instant because the originator of
the message can ensure that the receiving device (assuming it is in operation)
receives notification of a relevant event (in this case the need for a correspondent
to transmit information). Generally speaking, notification systems allow the
originator to push the event to the destination.

Voice mode
The use of voice as the communication channel constrains the topology in a
special way. In terms of timing, such systems can be synchronous, asynchronous
push, or any combination of these. What distinguishes them is the unique set of
capabilities and limitations of the voice channel. For this reason, they are
grouped together in their own mode.

The idiosyncratic qualities of voice applications have already been hinted at in
“Adapting content” on page 11. A detailed treatment can be found in Redpiece
SG24-6259, Designing and Developing Mobile Applications using WebSphere
Everyplace Access V1R1. See in particular Chapter 3 (on speech technology in
general) and Section 8.4 (on the issues of designing for voice).

2.1.2 Patterns
“Patterns are supposed to be sewn together to solve a problem.” (Alan Shalloway)

The word patterns was introduced into software engineering parlance by the
famous “Gang of Four” book in 1995 (Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides, Design Patterns,1995, Addison-Wesley). The authors
took inspiration from the work of an architect, and it only seemed fair that the idea
should be applied to software architecture. In fact, illustrating patterns in design
was much more straightforward, because informed readers could map the
patterns to their own implementations in code, and learn the technique of
abstraction in that manner.

A pattern is a pairing of a software engineering problem with a proposed schema
of solution. It is stated in a standard way, including the conflicting requirements
and constraints making up the problem, and the elements of the solution, with the
ways in which they answer these requirements and constraints.

A pattern is an abstraction of actual (best) practice. Like mathematical
abstractions, it offers the possibility of transferring solution approaches and ideas
from one domain to another once the common structures of problems have been
recognized. Good engineers have long practiced this conceptual discipline, but
the virtue of the “GoF” book is that the mental gymnastics involved was now
formulated explicitly, and thereby externalized.
 Chapter 2. Application architecture 57

Immediately after the publication of the GoF book, experts in various parts of
software engineering (Architecture, Analysis, Deployment,etc.) started
formulating their understanding using the pattern idiom. Pattern language is now
an established part of software engineering, together with the opposite
anti-patterns, in which the idiom is reversed to express warning about bad
practice.

Together, patterns and anti-patterns embody a way of exchanging ideas in a
concise way. They provide a standard set of references for application
development, promote precise understanding within Business Analysis,
Architecture, Design, Implementation and Deployment, help to decrease
development time, and simplify documentation and maintenance.

With the pattern movement firmly established, hindsight showed that many good
engineering practices were in fact patterns in all but description: Layered
Architecture models (for example, OSI-ISO), Pipe and Filter Architecture (Unix),
Model-View_Controller (Xerox Parc/Smalltalk), Blackboard (AI systems),
Publish-Subscribe, Message brokers, Proxys, etc.

This harvesting of previous data continues in the area of Business Analysis and
BPR: many business practitioners have an intuitive knowledge of what works and
this knowledge is being cast into the pattern idiom. The application types
identified for e-Business (B2E, B2C, B2B) are broad generalizations of such
patterns. On a smaller scale, J2EE practice identifies presentation, business, and
integration patterns.

In the same vein, we now proceed to identify an emerging pattern which is
implicit in the architecture and design of most pervasive applications.

Application patterns for mobile use
There are so far few, if any, mobile applications the structure of which cannot be
seen as an extension of a standard application (for example, one designed with
no mobile use in mind). We may be confident that such applications will appear,
and they will exhibit their own patterns.

Currently, patterns for mobile business applications can be described as
extensions of the well-known e-business applications (B2C, B2B, B2E, and so
on).
58 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Architecture pattern
The pattern statement runs as follows(a reworking of the sequence presented in
“A functional approach to understanding IBM WebSphere Everyplace Server” on
page 4):

� Problem statement:

– A standard Web application assumes HTTP transport, with standard
capabilities in the client (HTTP browser) and standard connection
characteristics.

– New categories of client devices are appearing, which do not share these
assumed facilities.

– It is imperative (for social or economic reasons) that business take into
account and serve these new devices, and the new needs arising from
their presence.

– Re-engineering the established base of applications is not feasible
(because of prohibitive cost and moving target of constantly evolving
technology).

� Solution:

– Reuse existing application base.

– Factor out (as much as possible) all functional discrepancies between the
standard model of Web applications and the variety of new functional
requirements.

– Implement the resolution of each of these discrepancies as individual
modules which can be combined to enable the old application for the new
contexts.

Design pattern
To implement this idea, we must find a way of inserting this enabler in the
application flow.

Described in the Model-View-Controller pattern, a Web application consists of a
controller/view cluster relating to a model. For instance, in a servlet-based
implementation, the servlets embody the Controller and the pages, static or
JSP-generated, embody the View. These are tightly coupled, while the model is
embodied in Data Access Beans or EJBs which tend to be quite separate, and
indeed serve more than one application.
 Chapter 2. Application architecture 59

Figure 2-1 A non-pervasive application

The most common extension to the pervasive context consists of adding one or
more new component(s) to modify the application’s Controller and View. The
model part of the application is, on the whole, independent of the mobile, or
pervasive conditions of use.

A simple example of this approach is implemented by WebSphere Transcoding
Publisher: as a proxy or servlet it intercepts the request, possibly modifying or
adding some headers. It then intercepts the response, edits or clips the content,
rewrites URLs as needed, and translates the markup notation. Incidentally, we
note that WebSphere Transcoding Publisher operates by implementing a
specialization, another pattern, Web Intermediaries, which can be described as
extending to the Web the well-established Pipe-and-Filter pattern introduced by
Unix.

Figure 2-2 Application for pervasive use

In Figure 2-2, the dotted line connecting Enabled Controller with Enabled View is
intended to suggest that these two elements of the design are rather more tightly
coupled than the Controller and the View. Typically the Controller drives the View
(for example, by selecting JSPs according to the current state). On the other
hand, the dependency between enabled elements is bidirectional. Examples will
appear in the scenarios covered in the following chapters, for instance, a servlet
may have to set HTTP headers to supply information needed by an annotator.
60 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

While the most obvious application of this idea is in enabling content for different
presentation formats or media, we find it also applies elsewhere. As discussed in
Section 1.1, “A functional approach to understanding IBM WebSphere
Everyplace Server” on page 4, the introduction of pervasive devices, which do
not follow the standard HTTP over IP paradigm, requires enabling transport for
different protocols, security services and content packaging (mostly rendering,
but also structure).

Patterns for e-business
The IBM methodology has been making use of the concept and techniques of
patterns (Business, Architecture, Design patterns) for the past several years. It
has introduced a variant of the concept of patterns discussed above, proposing
the flourishing planning technique known as Patterns for e-business: these have
emerged as a powerful tool for the very demanding tasks of fast e-business
development.

Patterns for e-business are not exactly patterns in the original sense. Original
patterns focus on the dialectic of problem-solving, whereas patterns for
e-business are more like static solution templates.

However, these patterns for e-business must not be considered in isolation. They
are intended to be part of an engineering process (the IBM method). A great deal
of the dialectic is contained in the process itself, with the templates serving as
sign-posts along the way.

This process is presented in a practical way on the following site:

http://www-106.ibm.com/developerworks/patterns/

which offers the dynamic (process) dimension not available in this book. We urge
you to experiment with it.

On the subject of mobile applications specifically, an excellent source of ideas
and detailed information is available as Redbook SG24-6259, Designing and
Developing Mobile Applications using WebSphere Everyplace Access V1R1.

Since the topic is thoroughly covered in that publication, we encourage you to
make full use of it, and shall be content here to summarize some salient points.
 Chapter 2. Application architecture 61

Figure 2-3 summarizes both the structure and the process.

Figure 2-3 Patterns for e-business

The Patterns for e-business approach consists in a sequence of choices (guided
by certain principles and constraints akin to the Gof patterns) over several layers
of relevance. Each choice constrains the subsequent ones, as indicated by the
arrows. The overall process is part of, and enacts, a specific project methodology.

The decision layers are as follows:

– Business patterns: identify the interactions between users, businesses
and data.

– Integration patterns: tie together multiple Business patterns when a single
Business pattern is insufficient to provide a solution.

Composite Patterns

Business PatternsBusiness Patterns

Application Patterns

Runtime Patterns

Runtime Product Mappings

IBM Framework

Open Standards

Integration Patterns

M
e
t
h
o
d
o
l
o
g
y

Customer Requirements
62 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

– Composite patterns: represent commonly occurring combinations of
Business patterns and Integration patterns.

– Application patterns: describe interactions of components and data within
a business solution.

– Runtime patterns: define the logical middleware structure supporting an
Application pattern.

Two sets of best practice recommendations complement these decision layers:

– Runtime product mappings: identify tested, optimal implementations for
each Runtime pattern.

– Best practice guidelines: for design, development, deployment and
management.

Patterns for e-business in pervasive computing
We have shown how WebSphere Everyplace Server can be seen as a toolkit for
the construction and deployment of Enabler modules implementing the Enabler
architecture pattern.

Patterns for e-business cover this type of functionality, and the decision process
associated with it, in the Access Integration pattern. Its use is described and
discussed in detail in SG24-6267, Access Integration Pattern Using WebSphere
Portal Server; you will find there a list of the following services making up the
Access Integration Patterns:

– Presentation
– Personalization
– Security and Administration
– Pervasive Device Support

Presentation covers what we called Content Enablers, Security and
Administration corresponds to Security Enablers, and Pervasive Device Support
matches Transport Enablers. Personalization makes use of both Security and
Content enablement.

Although primarily concerned with the Portal Server, the discussion is applicable
here as well, particularly for:

� Application Patterns (see Figure 2-4 on page 64):

– Pervasive Device Access (A)

– Single sign-on (B)

– Personalized delivery (C)

Pervasive Device Access and Single sign-on show the exact topology of the
Enabler pattern, with an intermediate tier assuming the required functions.
 Chapter 2. Application architecture 63

Figure 2-4 Application patterns for pervasive computing

Personalized delivery shows a different topology: here it has been thought
that personalization should be different for each distinct application, so the
personalization module is not placed as an intermediary between
application and presentation, but rather as an adjunct to the applications
themselves. This can be seen as similar to the approach described below
(see “Design decision tree” on page 65) as the Direct rendering choice.

Another approach is possible, however (D). If sign-on is placed at the edge
(becoming single sign-on), then the acquisition of user profiles can be
coupled with it, so that the information needed for personalization is
factored out of each application. In that case, Personalization becomes
another variant of the Enabler pattern.
64 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

– Runtime patterns

Runtime patterns are more numerous, as they must cover the diversity of
implementations for each of the enablements. They also must take into
account the topology of deployment of these components. This is
commonly represented by the well-known three-part diagram showing the
trusted network, the trusted network and the intermediate DMZ. “The IBM
WebSphere Everyplace Server Offerings” on page 47 shows two
instances of this diagram, one for the Enable offering and one for the
Service Provider offering.

2.1.3 Design decision tree
Adding separate enablers to an existing setup is only the most immediate
implementation of the Enabler idea. One may choose instead to rewrite the
application to incorporate new, pervasive-adapted parts.

The design decision tree embodies a variant of the classical “make or buy”
decision-making process. When planning an application or a whole system, the
first step is to examine available materials or ready components, and decide
whether to make use of existing resources or create new ones.
 Chapter 2. Application architecture 65

Figure 2-5 Content decision tree

A

B

C

D E
F

G

Can the
controller/view
be modified?

Adapt
rendering
(clipping,

annotations)

Code base
rendering (for

example,
HTML)

Code base
context (XML)

Code rendering
(XSL)

Code distinct
rendering for
each device

type

Tweak
response

Return
response

Is it an
existing

application?
No

Yes

Yes

Should
content be
rendered
directly?

Yes

No

Produce base
rendering?

Yes

No

No

Yes

Optimize for
each device?

Content Decision Tree

No
66 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The decision tree shown in Figure 2-5 on page 66 applies to the processing of
content within the application. We assume, as discussed in the previous section,
that the back-end is the subject of another decision, inasmuch as its design is not
affected by the decision to “go pervasive”.

If the application is a new one (A), or if we have access to the front-end code (B)
(that is, for instance, the servlets and JSPs making up the Controller and the
View), we have complete freedom of design. On the other hand, if we do not have
the possibility of modifying the code (C), we must proceed by adapting the
rendering produced by the existing application. This may also be the case if we
decide (D) to target a specific kind of device (for example, HTML browsers) and
to derive the other renderings from the basic rendering, using transcoding.

We may choose instead (E) to produce rendering-neutral content, using XML,
and then map the content using distinct XSL stylesheets for each device type.
There is also the option (F) of coding the renderings directly, separately for each
device type. Finally, for the devices within a single device class, we may want (G)
to take advantage of individual characteristics to optimize the rendering in each
(tweak response).

A decision tree could be constructed to document the design decisions on
Security discussed in “Adapting security in an existing application” on page 75.

2.2 Centralized services offered by WebSphere
Everyplace Server

Considered from the point of view of pervasive application design and
development, WebSphere Everyplace Server can be treated as a toolkit
supporting the implementation of various variants of Access Integration.

2.2.1 Synchronous Mode Applications

Transport Enabler
Everyplace Wireless Gateway
Delivery to mobile devices caters to the transport protocols specific to each
device type. The Everyplace Wireless Gateway provides this service
transparently, making the devices appear as IP devices to the rest of the system.
 Chapter 2. Application architecture 67

Security Enablers
Everyplace Wireless Gateway
The Everyplace Wireless Gateway offers:

� Authentication:

– Optional RADIUS authentication for WAP clients.

– WAP Gateway authentication for users registered in the LDAP directory.

� Encryption:

– Wireless Transport Layer Security (WTLS) between the Gateway and the
WAP client.

– Secure Sockets Layer (SSL) between the Gateway and Web servers.

WebSEAL-Lite
WebSEAL-Lite is the central security manager for WebSphere Everyplace
Server. For each request, the user identity is first looked up against the WSL
cache, then (if not found) against the Active Session Table to retrieve those users
identified by the Wireless Gateway. If the user is still unknown, a challenge is
issued.

When WebSEAL-Lite operates as authentication proxy, it holds a monopoly over
authentication in the WebSphere Everyplace Server domain. Any application or
application server must relinquish authentication to it. This may have implications
for the adaptation of existing applications.

WebSEAL-Lite with Policy Director
If the enterprise already uses Policy Director to manage its access policies, it
makes sense to consider interfacing WebSphere Everyplace Server to it.

Content Enablers
WebSphere Transcoding Publisher
Content adaptation in all its forms (Header manipulation, Clipping and Editing,
Annotation, Markup Language translation, and caching sensitive to content
adaptation) is the sole function of WebSphere Transcoding Publisher.

Location-Based Services Proxy
The Location-Based Services Proxy maps identity headers to geographic
information headers.
68 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

2.2.2 Asynchronous mode applications
Asynchronous mode application types supported by WebSphere Everyplace
Server include:

� MQSeries Everyplace

� Everyplace Synchronization Manager

Transport Enablers
Everyplace Wireless Gateway
MQSeries Everyplace and Everyplace Synchronization Manager use the
Wireless Client to connect to the WebSphere Everyplace Server environment.

Security Enablers
WebSEAL-Lite
MQSeries Everyplace, when operating over HTTP, can use the standard
WebSphere Everyplace Server security mechanisms.

Other
MQSeries Everyplace (over TCP) and Everyplace Synchronization Manager
have their own security provisions.

Content Enablers
MQSeries message formats and contents are managed by the applications.

Everyplace Synchronization Manager content is dependent on the applications
being synchronized.

2.2.3 Push mode applications
Push mode application types supported by WebSphere Everyplace Server
include:

� Sametime Everyplace (STEP): as a stand-alone product, STEP manages its
own push facility.

� Intelligent Notification Services: the last stage of the process involves the
Unified Notification Dispatcher, which wraps the Push API.

� Direct use of the Push API.

Note: Sametime Everyplace is offered in WebSphere Everyplace Server
version 2.1.x as a Technology Preview. No integration is currently available.
 Chapter 2. Application architecture 69

Transport Enablers
Everyplace Wireless Gateway
The Everyplace Wireless Gateway offers the following Push Notification support:

� SMS

� Network Operator interfaces (UCP, MPP, SMTP, SNPP)

� WAP 1.2 Push

– WAP Push Proxy Gateway on the initiator side

– WAP bearers and SMS bearers on the receiver side (Mobile clients)

The Everyplace Wireless Gateway supports mobile push initiators.

Security Enablers
The facilities described under Synchronous Mode are also available in Push
mode.

Content Enablers
There are no content Enablers for the Push mode in the current release. Push
initiators must format their messages and specify the protocol used to the Push
Proxy Gateway.

2.2.4 Voice mode applications
As observed earlier, Voice Mode is distinguished not by its topology
(symmetric/asymmetric, session/no session), but by the special character of its
channel. For this reason, it has special requirements for transport and for content
structuring.

Transport Enabler: Voice Server/VoIP Gateway
The Voice Server is responsible for the conversion between VXML/HTTP and
Voice over IP (VoIP).

The VoIP Gateway (for example, Direct Talk or Cisco) is responsible for the
conversion between the Switched Telephone Network and VoIP.

Security Enabler: WebSEAL-Lite
Security is supported by WebSEAL-Lite, with the constraint that the user ID and
password must be DTMF-compatible.
70 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Content Enabler: WebSphere Transcoding Publisher
WebSphere Transcoding Publisher ensures translation from HTML to VXML or
(using stylesheets) from XML to VXML.

2.3 Planning a new application in WebSphere
Everyplace Server context

2.3.1 Deployment considerations
WebSphere Everyplace Server is a complex product, or set of products, which
can be deployed in many different configurations. These are dealt with in a
companion redbook, Everyplace Server: Guide for Architects and Integrators,
SG24-6189.

Regardless of the specific configuration, two sets of issues arise:

Application versus enablement
Although the distinction between enablement and application is conceptually
clear, their implementations sometimes overlap, and their deployment almost
inevitably does.

This is because enabler components are architected around some of the same
products as applications, and themselves often include special-purpose
applications. For instance:

� TPSM uses WebSphere Application Server (WAS), which of course is at the
core of most Web applications, and itself uses DB2 and an LDAP Server.

� Most WebSphere Everyplace Server components depend on LDAP, both for
their administration and for their operation. Some applications, in turn, may
access some of the same data in LDAP.

� Intelligent Notification requires DB2 and WebSphere Application Server, and
it is not always clear where the boundary lies between enablement
infrastructure and application.

It will therefore be very important to take a detailed inventory of the functions to
be assumed by these essential components, and to design their physical
deployment with great care, as they may become determinant in the performance
of the overall system.
 Chapter 2. Application architecture 71

Plug-in deployment
WebSEAL-Lite (WSL), WebSphere Transcoding Publisher (WTP), and, to a
lesser degree, Location-Based Service (LBS), are core components of
enablement. It is likely that they will be required together in a given deployment.
As all three are deployed as plug-ins to Web Traffic Express (WTE), an option in
the case of WebSphere Transcoding Publisher, the question arises of their
relative positioning. It seems, though this has not been fully confirmed, that they
cannot be plug-ins to the same WTE process or machine. If they were, it is not
clear how their order of precedence could be established.

The simplest approach to deploying them is to sequence them as follows:
WebSEAL-Lite->WebSphere Transcoding PUblisher->Location-Based Services,
from the outside of the site inwards. This arrangement allows WSL to perform its
security functions. Requests identified as requiring transcoding can be routed to
WebSphere Transcoding Publisher. From either WSL or WebSphere Transcoding
Publisher, location-dependent requests can then go to LBS. Those requests
which do not need WebSphere Transcoding Publisher or LBS can bypass them.

How the routing and/or bypass is configured also depends on the forward
proxy/reverse proxy configuration of each component.

2.3.2 Synchronous mode
When planning a new synchronous application to be used with WebSphere
Everyplace Server, we have complete freedom regarding the handling of
presentation. The choice is much reduced for the other modes, in the current
state of the offerings. As integration progresses, the centralized services will free
asynchronous and push applications from many of the common concerns
(transport, security, content format).

Content/delivery options
In the content decision tree, we can choose paths D, E, or F.

� Separate content from rendering (E):

The most generic solution is to produce the content in the form of XML
documents, using one or several DTDs. Any number of XSL stylesheets
can then be designed, and applied by WebSphere Transcoding Publisher,
to suit variable conditions of delivery.

� Design a base rendering for the major delivery (D):

If the site is to be used primarily in one delivery mode (for example, if most
of the users access through an HTML browser), it makes sense to produce
well-formed HTML directly, to save on rendering costs. Other delivery
modes can be served using annotations, clipping, or both.
72 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� Generate multiple versions(F):

It is possible to combine the previous two options by having a generic
version for uncommon delivery modes, and dedicated versions for heavy
usage (possibly more than one mode). The extreme case would be for the
application to generate a distinct document for each delivery mode,
bypassing the benefits of WebSphere Everyplace Server adaptation
altogether.

Security considerations
Because WebSphere Everyplace Server offers a complete security solution, we
may want to delegate all security management to the WebSphere Everyplace
Server services.

The options available are:

� Use default security configuration (WebSEAL-Lite with SecureWay Directory).

� Use Policy Director for authorization.

This option must be chosen if the application includes Location-Based
Services, or if we wish to impose a fine-grained authorization control.

� Use RADIUS authentication.

This option is available from the Wireless Gateway.

2.3.3 Asynchronous mode
Planning an asynchronous application with Sametime Everyplace or Everyplace
Synchronization Manager does not currently require taking any special account
of the WebSphere Everyplace Server context.

In the case of MQSeries Everyplace, the HTTP mode integrates with the
standard path through WebSEAL-Lite. A dedicated redbook on MQSeries
Everyplace is in preparation.
 Chapter 2. Application architecture 73

2.4 Adapting an existing application
Existing Web applications to be adapted to pervasive operation are of the
synchronous type. Content Adaptation is handled by WebSphere Transcoding
Publisher.

2.4.1 Transcoding challenges
The major difficulties in adapting content in an existing application arise from the
artistic creativity of Web designers. Existing Web page design tools offer a rich
array of possibilities, which translate behind the scenes into technical complexity
in the page code.

� Frames

Frames are not supported in most pervasive devices. This means that the
navigation of the application must be altered to visit the relevant frames in
sequence as separate pages, and to ignore the purely decorative frames.

If you do not have read access to the page source, you may have an
additional difficulty. Browsers will typically display only the source for the
frameset, while the content to be processed is to be found in the daughter
frames. One way to solve this problem is to use the WebSphere
Transcoding Publisher trace in High mode, so that the input page is
recorded in full.

� Client-side scripting

JavaScript does not work in WML browsers. WMLScript does not have all
the capabilities of JavaScript, and, at any rate, translating one into the
other is a difficult task. When the behavior of a page is controlled by
client-side scripting, the solution may be to change the navigation by
inserting intermediate pages, which can often be coded statically in WML.

� Composition by tables

Tables are almost universally used to effect the layout of large HTML
displays. Unfortunately, this layout does not carry over to WML browsers,
even if the device implements table support. Most often, the best approach
is to linearize the layout, if necessary using multiple cards.

� Navigation by images

Images are generally difficult to handle, because of bandwidth in
transmission and real estate in display. WebSphere Transcoding Publisher
offers the option of skipping images, or replacing them with links. One
particular case is that of navigation links rendered as images: this is not
supported in WML, and must be replaced with plain links.
74 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� Decorations

Some illustrations are instrumental on a Web page, but most are purely
decorative. Common sense must be applied in dealing with those.

� Large content items

WebSphere Transcoding Publisher has a fragmentation engine which can
divide content into manageable chunks for delivery to a device (maximum
chunk size is a property of the device). The fragmentation engine can be
defeated by oversized paragraphs. Furthermore, users of mobile devices
tend to want access to essential information. For these reasons, it is often
useful to reduce the text of some items to a simple summary.

� Conditional response pages

Annotators are applied to pages under conditions specified at registration.
However, conditions are formulated in terms of URL and headers only: it is
not possible to specify a condition based on the content of the page. When
accessing a servlet which responds with different JSPs or static pages in
different conditions, the request URL is the same, and cannot be used to
distinguish among the responses. If you are in a position to modify the
servlet code, you can make it set a header for this purpose. Otherwise,
you cannot use an annotator, and must write a clipper which can make a
distinction based on the content.

2.4.2 Adapting security in an existing application
In an integrated environment, there are major advantages to a centralized
approach to security (better control, single sign-on, deployment of more
sophisticated security solutions, etc.).

When incorporating existing applications into such an environment, there may be
conflicts between security implementations. Below are outlined three possible
approaches. For a detailed coverage of security issues in WebSphere
Everyplace Server deployment, consult the IBM redbook WebSphere Everyplace
Server A Guide for Architects and Systems Integrators, SG24-6189.

Keeping security in the application
If the application has a good security implementation, you may want to keep it, at
least for a first phase. WebSEAL-Lite can be deployed in Transparent
Authentication Proxy mode, which allows your application server to maintain its
own authentication.
 Chapter 2. Application architecture 75

Migrating security to centralized service
Alternately, you may have a sophisticated authorization service deployed in
WebSphere Everyplace Server (for example, using Policy Director).
WebSEAL-Lite can work with it. In this case, you will want to provision all
authentication and authorization centrally, and strip it out of your existing
application.

Sharing security
Finally, WebSphere Everyplace Server and the application can share security
responsibilities. This would happen if your authorization decisions are complex
and require application-level logic. For this situation, WebSEAL-Lite supports
LTPA. The Application server will retain its authorization function, based on
central authentication using LTPA.
76 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 3. Enterprise sample
applications

This chapter presents the sample applications chosen to illustrate the various
capabilities of WebSphere Everyplace Server, as well as the techniques and
tools available for WebSphere Everyplace Server-oriented development.

We start with an existing sample B2E application, and extend it in two directions:

� Making the application available to diverse clients in several contexts.

� Adding functionality not readily supported outside of a pervasive computing
environment.

3

© Copyright IBM Corp. 2002 77

3.1 Web Application models for business
Web-based business applications fall into several categories according to the
nature of the interactions they support, and of the participants in those
interactions.

The first distinction separates applications supporting the interactions of two or
more businesses (B2B) from those involving individuals.

The B2B application model is based on the Extended enterprise pattern. In the
past, it used EDI, founded on two party agreements. With the spreading of XML,
data exchanges between businesses may become standardized to a greater
extent. At present, there does not seem to be much incentive for adopting a
pervasive approach in this type of application.

Among the applications involving individuals, we distinguish between
applications addressing individuals with a specific tie to the business (B2E) and
those addressing the general public (B2C).

Figure 3-1 Business application models

The label B2C illustrates the consideration that persons not specifically related to
a business will most likely address the business’s Web-face as consumers of the
business’s goods or services. Typically, such applications will be based on the
Self-service business pattern. Also, since the application is generally
unrestricted, it must cater to a wide variety of client devices and personal

Intranet

Customer
Service

Professional
Productivity -
Mobile Office

Professional
Productivity -

Customer Care

Supply Chain
Execution

Information and
Commerce

Operational
Productivity

Enterprise B2CB2BB2E
Intranet Extranet Internet

Professional
Productivity -
Sales Force
Automation
78 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

preferences. As long as the delivery is restricted to the IP network, and the
content to HTTP and basic MIME types, thoughtful programming of the
presentation (well-formed HTML, avoidance of browser idiosyncrasies) can deal
with the variety. However, migrating such applications to the pervasive context
may present very real difficulties. Usually, only small subsets are made available
to mobile devices, and only on WAP devices. Standardization efforts now under
way will probably bring mobile browsers to a level of compatibility sufficient for a
widening of the B2C audience. Another channel which holds promise for B2C
applications is Voice, with carefully designed user interfaces.

When dealing with the B2E situation, on the other hand, the task of “going
pervasive” is much facilitated. The main characteristic of this class of application
is that the body of users has a well-defined relationship to the business (for
example, its employees, hence the acronym, but also others, such as privileged
customers).

Consequently, it is possible to circumscribe the variability of client devices, user
preferences and conditions of use. This can be achieved:

� Either statistically, for example, by stating

“A market survey has established that target customers use a certain type
of PDA.”

� Or by administrative decision: for example, by stating

“All our sales force shall be equipped with subnotebook XYZ.”

or

“We will offer a free WAP phone with our new Premier Banking contract.”

It is also possible to control the constituency of users, by requiring a specific
enrollment procedure and establishing detailed classes of users. Therefore,
better security can be achieved. This is fortunate, since such applications
typically require access to more sensitive business data.

Because of the above considerations, it is expected that pervasive services will
spread much more rapidly in the B2E market, at least for a while. This redbook is
focused on a B2E application, not least because it allows us to demonstrate a
wider variety of WebSphere Everyplace Server capabilities.
 Chapter 3. Enterprise sample applications 79

3.2 The sample B2E application: YourCo
The YourCo application is found in the samples packaged with WebSphere
Application Server. There are some slight variations in the code of the samples
delivered with each upgrade of WebSphere Application Server 3.5, which makes
some components incompatible between upgrades. The explanations and
examples in this Redbook are based on the sample packaged with WebSphere
Application Server 3.5.4. However, the code itself can run on WebSphere
Application Server 3.5.2 and above.

3.2.1 Installing and Running YourCo
If you have not installed WebSphere Application Server
Version 3.5.4 and wish to try out the examples given in
this redbook, you probably would like to install the
WebSphere Application Server sample programs at this
time. The YourCo application contains both the code of
the application itself and the support material under
<WAS_HOME>/WSsamples (where <WAS_HOME> is
the installation path for WebSphere Application Server).

The configuration procedure is explained in detail at the
sample site <WAS_HOME>/WSsamples/index.html, as
shown in the figure to the left. Read the directions
carefully. The top arrow points to the two configuration
items: Database and EJBs. The Timeout part of YourCo
is the only one which uses EJBs. If you do not plan to
exercise Timeout, you can skip the Enterprise Beans
Configuration tasks.

The bottom arrow shows how to start YourCo. The link
points to a useful introduction page. The application itself
starts from the URL:

http://<hostname>/WebSphereSamples/YourCo/index.html,

where /WebSphereSamples/ is defined as an alias in httpd.conf.

3.2.2 Map of YourCo
YourCo is a typical (although somewhat simple) B2E application. It includes
some unrestricted areas (such as News and Employee Directory) and an area
restricted to registered employees, who can personalize their entry page and
access several tools.
80 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 3-2 YourCo - entry level

The News area is time-dependent (in a simplistic way, which could be improved
using a sophisticated newsfeed). The Employee Directory offers several kinds of
searches: by Employee name, by Job type and by Department, it also provides
you with a general browser.

Figure 3-3 YourCo - the directory

The Employee Center requires authentication, for two reasons. First, some data
available to employees may be confidential. Second, the services are
personalized in some ways, and therefore depend on the identity of the user (in a
WebSphere Everyplace Server context, this information could have been
acquired at the edge by WebSEAL-Lite or the Wireless Gateway).
 Chapter 3. Enterprise sample applications 81

Figure 3-4 YourCo - the Employee Center (with Login)

The Employee Center offers:

� Company-wide items:

– Poll

– Survey

� Self-care items:

– Customization of the front page

– Management of leave (timeout)

� Work utilities:

– Intra-company job advertisement and search

– Scheduling of meeting rooms
82 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 3-5 YourCo - Job search

In Job search, individuals can look up vacancies within the company, either by
browsing the whole list of vacancies or by specifying a job profile. Managers have
the extra option of adding a vacancy to the register.

Figure 3-6 YourCo - Reserving a meeting room
 Chapter 3. Enterprise sample applications 83

The Leave management facility displays leave days available to an employee in
three categories (Vacation, Personal leave and Sick leave), and allows the
employee to transfer day credits from one category to another. It also displays
the history of such transfers.

Figure 3-7 YourCo - Managing Leave time

3.2.3 Notes on implementation
The simple map of the navigation between YourCo application pages is not very
informative, for the following reasons:

� The directory and the employee center make use of a frameset:

– The directory shows:

• Search criteria in the top frame, together with a set of general
navigation links (outer level).

• Search results in the bottom frame.

– The Employee Center shows:

• Content in the top frame, together with a set of general navigation links
(outer level).

• Inner level navigation (within the restricted area) in the bottom frame.

� The search criteria frame in the directory uses JavaScript to manage the state
of the frame, and each state leads to a different state transition.

In order to understand and design a mobile adaptation of the site, we must
re-map the content and navigation to make these inner workings explicit.
84 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

3.3 Adapting YourCo to the pervasive environment
The first approach to adapting YourCo is to plan a WML presentation of the same
capabilities and content. Although it would not be practical to implement such an
application entirely, planning it helps to review the challenges and the value
proposition of each application area.

3.3.1 Revised map for YourCo on WML
The HTML site navigation shows redundancy. Links to various areas are
repeated in some pages (for example in the text of the Employee Center page
and in the inner navigation bar at the bottom). When designing the navigation for
the WML site, we aim at reducing alternatives, and providing simple and
unambiguous paths.

For details on WML structure and capabilities, see the WAP Forum document
WAP-191-WML, Wireless Application Protocol, Wireless Markup Language
Specification Version 1.3, available on the WAP Forum Web site
(http://www.wapforum.org/what/technical_1_2_1.htm).

The basic unit of WML management is the card. A WML browser displays one
card at a time, and links determine transitions between cards.

Default links next and prev are available. Other links are defined by card ID.

On most cards, we provide a Home link to go back to Card 0.

Figure 3-8 YourCo WML - Top level

Card 0 offers a choice among the three areas of the YourCo site.
 Chapter 3. Enterprise sample applications 85

Card 2 (News) has no navigation, except inasmuch as the content may have to
be split into several cards, linked by next and prev links (when using WebSphere
Transcoding Publisher, this is performed automatically by the Fragmentation
engine).

Figure 3-9 YourCo WML - The directory

Card 1 opens the Employee Directory (White Pages). In the HTML version, the
various search methods appear in the top frame, and the choice among them
(with consequent changes in the state of the frame) is handled by JavaScript.

In WML, we have to replace this arrangement with a sequence of cards:

� Card 1 handles the choice of methods.

� Cards 1.3 and 1.4 handle the selection of position and/or department.

(All of the above was handled in one HTML frame)

� Cards 1.2, 1.3.1 and 1.4.1 show lists of selected names according to the
search criteria.

� Finally, the user can see the details for one name in Card 1.2.1.

Because going back is always an option (using the default link prev), we only
need to provide shortcuts to either the start of the White Pages or the Home
page.
86 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Because of these changes in navigation control, it would be easier to code Card
1 as a static WML page, with links to the several servlets. The responses of the
servlets could then be transcoded.

Figure 3-10 YourCo WML - The Employee Center (with Login)

The Employee Center navigation is, at the beginning, similar to the HTML
version: the Login challenge is issued (Card 3.0), the credentials are either
rejected (Card 3.0.1) or accepted (Card 3). However, Card 3 shows only the
customized elements of the HTML, plus a list of links to several functions, some
of which appeared on the same page in HTML. THe Poll function is split into a
question card and a results card, and the Survey results are not shown at all (we
could show them, but the detail is so cumbersome that few would ever access it
on a WML browser).
 Chapter 3. Enterprise sample applications 87

The Customize Card (3.5) is very large, and would most likely be fragmented, but
we do not need to design this: it is provided automatically by WebSphere
Transcoding Publisher.

The White Pages option leads back to Card 1.

Figure 3-11 YourCo WML - Job search

The entry card for the Job search (Card 3.3) only offers a choice between three
activities. Card 3.3.1 collects the search criteria. Cards 3.3.1.1 and 3.3.2 display
results.

Card 3.3.3 is accessible only to managers: it collects information about a new job
to be advertised; Card 3.3.3.1 confirms the new posting.

This section of the WML application differs little in structure from the HTML
version, except for the splitting of the first page into two cards (3.3 and 3.3.1).
88 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The same situation occurs in the Meetings section: the HTML version has all the
search criteria in one page. The WML version first offers a choice of look-up
types (Card 3.2). Then each look-up type is processed as in the HTML version.

This approach may require the coding of the static elements (By Day and By
Room) as static WML (Cards 3.2, 3.2.1 and 3.2.2).

Figure 3-12 YourCo WML - Reserving a meeting room

The Leave management section is straightforward. The history portion has been
separated out, since few mobile users would wish to cope with a long and
possibly fragmented sequence of records. It is still available on a link (Card
3.4.1). The main card (3.4) shows the current balance, and collects the data for a
transfer.

Once submitted, the transfer is processed and returns the same card, with the
balance adjusted.
 Chapter 3. Enterprise sample applications 89

Figure 3-13 YourCo WML - Managing leave time

3.3.2 Selecting functionality for mobile use
When selecting which functions to adapt or introduce for pervasive usage, we
take into account:

1. The specific needs of mobile users:

a. Immediate value versus deferred access (for example, news versus
statistics).

b. Speed of access (for example, short navigation paths.)

c. Topicality versus background (for example, if we want just the phone
number).

2. The characteristics of mobile devices:

a. Reduced message capacity (a few KB for WAP, a maximum of 160 bytes
for SMS).

b. Reduced display capacity.

c. Constraints on input (pronounced for phones, less difficult for PDAs).
90 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

d. Constraints on MIME processing.

e. Linearity (one window, scrolling display, sequence of cards, or speech
sequence only in the case of voice).

These considerations apply to the sections of YourCo as follows:

Table 3-1 Functionality for mobile use

Notes:

� (+/-) A minus (-) sign indicates a con, a plus (+) sign a pro, an empty cell is
neutral.

� (*) In Customize, it makes little sense to offer the function to mobile users on
their mobile devices. On the other hand, the function, used on HTML
browsers, enables mobile users to improve the overall score of the
application, particularly on 1b. and 1c.

Application section 1a 1b 1c 2a 2b 2c 2d 2e Adaptation

� Directory If transcoded, will require modification to bypass
client-side state changes.[X]

– Entire directory: - - - - + - Not in mobile use

– Search by Job/Dept - - - - Add special function (Locate Expert) [A]

– Search by Name + + + - Modify to allow wildcards (e.g., AN*) [Y]

� News + + + - - + Use annotators [B]
Use Voice [C]
Add notification [D]

� Employee Center Issues of migrating security to the edge.

– Customize - -* -* - - - Not in mobile use

– Poll - - - Not in mobile use

– Survey - - - - - - Not in mobile use

– Meetings +# + +# Add notification [E]
Could be adapted to mobile (2nd priority)

– Jobs

• Lookup - - - - Not in Mobile use

• Add + + - Could be added for PDAs

– Leave

• Transfer + + Could be adapted to mobile (2nd priority)

• History - - - Not in mobile use
 Chapter 3. Enterprise sample applications 91

� (#) in Meetings, there may be some value to granting mobile access to room
reservations, but only if the participants to the meeting could also be notified
on their mobile devices.

� (A) A general search for a given job may not be very useful. But finding a
nearby expert with a given specialty would be (see “Meeting invitation:
extending YourCo” on page 97 and “Locate an Expert by telephone: VXML
and Voice Server” on page 102).

� (B) Annotators can serve to reduce the volume of decorations and text, and
serve only the news.

� (C) Voice is particularly adapted to delivering a news story (as in News
bulletins on the radio).

� (D) Intelligent Notification can announce selected news items according to the
users’ selections. The news item can be delivered directly or stored for later
retrieval.

� (E) As noted above (*), the meeting function would be more useful if the
participants could be notified on their mobile device. This requires extending
the current function to select employees and passing the result to the
Intelligent Notification Service or to an application based on the Push API.

� (X) Because of the current variety of devices, client-side state management is
impractical. The opening page of the White Pages section must be replaced
by a set of pages (one to offer the choice of search method, three to support
the three methods offered).

� (Y) Using wildcards would reduce the amount of input required from users of
small devices such as WAP phones. This would imply some redesign (input
field to replace a drop-down menu).

In this redbook, we do not implement second priority items.

3.3.3 Implementing the adaptations

Restructuring
Restructuring is required to avoid client-side state management. Clearly, this is
possible only if the developer has access to the code of the original application.
We show how this can be done for the particular case of the White Pages
section.

Figure 3-14 on page 93 shows the possible state transitions within the existing
Search page. We wish to replace this single page with a set of single-state
pages.
92 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 3-14 Search: multiple-state page

These single-state pages (SearchChoice, SearchByName, SearchByJob,
SearchByDept) will offer equivalent state transitions, except that these transitions
will be mediated by SearchChoice.

)

Figure 3-15 Search: single-state pages

Figure 3-16 on page 94 shows the four elements of functionality contributed by
the script:

1. Declare three data beans (for name, job and department lists).

2. Collect data provided by the beans into three arrays accessible to the client
side.
 Chapter 3. Enterprise sample applications 93

3. Define three functions to be invoked when the two select structures change
state.

4. Initialize the two select structures and the hidden parameters which hold the
final state.

The particular case of the search.jsp page does not exhaust the possibilities of
client-side state manipulation. It is, however, typical of the most common
situations. A state transition analysis usually shows a feasible approach to
mapping the states on the server side and restructuring the application.

Once this is done, there remains the task of implementing this new structure.
Rather than starting from nothing, it is usually possible to rework the existing
page(s).

SearchChoice must be constructed separately, as a static page. The other three
can be adapted from the existing search.jsp, by distributing to each a part of the
functionality provided by the script in search.jsp.

Figure 3-16 Search: what the script does
94 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 3-17 shows how to distribute this functionality:

1. Each SearchByX page uses only one bean, and does not need to fill an array,
since the work is done on the server side.

2. Static editing provides the particulars of each page (title, caption for the
drop-down menu, action for the form).

3. The hidden parameters (one for each state) are no longer needed, but their
name must now be given to the select construct, in order to ensure continuity
with the rest of the processing.

4. The code collecting the data into arrays can now be inserted - with
appropriate modifications - to prepare the option list for each select construct
on the server side.

Figure 3-17 Search: splitting off the states
 Chapter 3. Enterprise sample applications 95

Extending
Akin to restructuring in its need to access the original application code is the
extension of functionality. We show examples of this in “Meeting invitation:
extending YourCo” on page 97, “Locate an Expert: a location-based application”
on page 98 and “News: adding an XML feed” on page 100.

Content adaptation
Content Adaptation is the function of the WebSphere Transcoding Publisher. This
task can be accomplished using three kinds of tools, depending on the objective.
Chapters 4 to 6 provide worked examples, as follows:

Annotators:
Annotators consist of special markup elements which direct WebSphere
Transcoding Publisher in keeping, removing or replacing structure or text
in an HTML document. They are used in processing the entry page, the
first page of News, and the Locate an Expert extension (described in
“Locate an Expert: a location-based application” on page 98, below).They
could also be applied to several of the second priority or unused items.

Transcoders:
Transcoders must be used when the task exceeds the capabilities of
annotators. They consist of Java classes registered as plug-ins.
WebSphere Transcoding Publisher will invoke them as directed by the
preferences specified at registration.

XSL stylesheets:
WebSphere Transcoding Publisher can apply an XSL stylesheet to an
input XML document. The stylesheet is selected on the basis of
preferences specified at registration. Preferences can apply to the DTD of
the document, the request header, and the preference profile of the target
device. In this redbook, they are applied to news items (described in
Section 3.4.5, “Meeting notification: Intelligent Notification with triggers” on
page 99, and Section 3.4.6, “News: adding an XML feed” on page 100).

3.4 Adding pervasive functions to YourCo
WebSphere Everyplace Server supports a variety of application resources. In
order to exercise those, we extend the functionality of YourCo in several
directions. For a general map of the original YourCo, modifications and additions,
see 3.5, “YourCo directory” on page 102.
96 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

3.4.1 Meeting invitation: extending YourCo
The Meeting function in YourCo is incomplete, in that it only reserves a
conference room for a meeting. Other items are required for meeting
management. We add a simple extension, which allows for selection of the
participants from the list of all employees. The resulting selection can be directed
to various services for scheduling, notification, document distribution, etc.

This extension requires two changes to ScheduleResults.jsp, and one to
Schedule.java.

Figure 3-18 Inserting link to invitations

1. The scope of the ScheduleDBBean must now be Session, so that the
reservation will be available to notify the invitees. This affects both the servlet
and the JSP.

2. An extra link must be inserted, to invoke the Invitees.java servlet.
 Chapter 3. Enterprise sample applications 97

The Invitees.java servlet uses the InviteesDBBean.java to collect information
about employees, and Invitees.jsp presents a list so the user can select whom to
invite. The resulting form invokes the downstream functionality (for example,
notifying the invitees).

3.4.2 Locate an Expert: a location-based application
As mentioned earlier (seeTable 3-1 on page 91), the Directory search by job or
department is somewhat unwieldy when used on a mobile device. In order to
meet criteria 1a to 1c, we choose to offer a more restricted, but more immediately
useful function. Locate an Expert queries the user for a type of expertise (we use
the Job data as an approximation), and uses location information to find the
nearest expert in that category. This combines the static data from the YourCo
database with dynamic information at the user’s current location.

This extension is available on static machines as well. For such cases, the
location information can be derived from the company’s network configuration
information (based on the machine initiating the request) or from the employee
record in the YourCo database (this requires Login to acquire the employee’s
identity).

In order to make this extension available, we add a link to the Welcome page of
YourCo. This link points to a frameset containing the LocateInput.html static
page. If we wished, we could instead use a servlet to acquire the list of expert
specialties from the database. In turn, LocateInput.html invokes the
Location-based servlet FindExpert.java.

Details of this application are given in Chapter 11, “Location-Based Services
(LBS)” on page 435.
98 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 3-19 Inserting a link to Locate

3.4.3 Meeting notification: using the Push facility
A simple notification service can be implemented by using the Push API directly.
Details are given in Chapter 9, “Push messaging applications” on page 323.

3.4.4 Meeting notification: using the Intelligent Notification Services
A more sophisticated notification function can be implemented using the INS.
This application can use different delivery channels according to the priority
status of the message. Details are given in Chapter 10, “Intelligent Notification
Services (INS)” on page 359.

3.4.5 Meeting notification: Intelligent Notification with triggers
The Intelligent Notification Services can filter incoming data according to users’
registered preferences and notify the users for each event. Users have the choice
of displaying the whole item directly, or seeing only a reference (URL and item
ID) for asynchronous access. We use the Meeting Schedules to demonstrate
these capabilities. Details are given in Chapter 10, “Intelligent Notification
Services (INS)” on page 359.
 Chapter 3. Enterprise sample applications 99

3.4.6 News: adding an XML feed
The YourCo News provides company news based on date and time of day. It
could also provide access to external newsfeeds for YourCo employees. We add
a demonstration of this as a button on the YourCo News page, which leads to
news about IBM Everyplace. The external news feed is provided in XML, which
must be processed by WebSphere Transcoding Publisher for use by various
devices.

The relevant pages are the two JSPs found in the following directory:

<WAS_HOME>\hosts\default_host\WSsamples_app\web\YourCo\ExpHTMLServlet.

As they are almost identical, we show the modification once (see Figure 3-20 on
page 101).

The ServeXML_news.java servlet serves XML documents. Unless the user has
an XML-aware browser, it will be necessary to process the document, typically by
applying an XSL stylesheet to it in the WebSphere Transcoding Publisher.

Note: Chapter 6, “Using stylesheets” on page 211 deals with the use of XSL
stylesheets in detail.
100 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 3-20 Inserting WebSphere Everyplace Server News

3.4.7 News on the telephone: VXML
News delivered from an XML newsfeed lend themselves particularly well to voice
delivery. WebSphere Transcoding Publisher applies its default Voice Transcoder
to convert the input XML news item to VXML. This process is demonstrated in
Chapter 6, “Using stylesheets” on page 211.

The VXML document is then routed through the Voice Server, from which it
travels over IP either to a telephone network adapter or directly to a computer
(VoIP client required).
 Chapter 3. Enterprise sample applications 101

The voice application presented here uses the Voice Server SDK on Windows
NT. There is no need to deploy a Voice Server or a VoIP router. Details are
presented in Chapter 11, “Location-Based Services (LBS)” on page 435.

3.4.8 Locate an Expert by telephone: VXML and Voice Server
The location-based application can also be reached using an ordinary telephone.
The location service provides a mapping of telephone numbers to location, and
the Voice Browser prompts the user for the desired expertise. Details are
presented in Chapter 11, “Location-Based Services (LBS)” on page 435.

3.4.9 Accessing the Leave Bank through MQSeries Everyplace
MQSeries Everyplace, though not restricted to mobile or restricted capacity
devices, nevertheless proves particularly useful with those.

We imagine a manager needing remote access to company information from a
PDA, and illustrate this function with a simple access to the Employee Leave
database. Details appear in Chapter 13, “Data synchronization for enterprise
applications” on page 517.

3.4.10 Synchronizing remote applications
Chapter 12, “Voice-enabled applications” on page 493 demonstrates the use of
WebSphere Everyplace Server to support remote synchronization of Office tools
(MS Outlook, MS Exchange, Lotus Notes).

3.5 YourCo directory
To assist you in finding your way through the diversity of materials, the following
pages present a map, or directory, of the augmented YourCo application. Each
folder on the left hand side is linked to three boxes listing its files, whether
unchanged from the original YourCo, modified for the purposes of this redbook,
or altogether new.
102 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 3-21 YourCo servlets - 1
 Chapter 3. Enterprise sample applications 103

Figure 3-22 YourCo servlets-2
104 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 3-23 YourCo servlets-3
 Chapter 3. Enterprise sample applications 105

Figure 3-24 YourC0_web-1
106 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 3-25 YourC0_web-2
 Chapter 3. Enterprise sample applications 107

Figure 3-26 YourC0_web-3
108 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

3.6 Sample lab configuration
Most of the scenarios described in this redbook have been integrated in a
WebSphere Application Server environment shown in Figure 3-27. For specific
information about a particular function or service provided by WebSphere
Everyplace Server, refer to the proper chapter in this redbook.

Figure 3-27 Lab configuration

Wireless Gateway V2.1

Messaging
 Gateway

WebSeal Lite
(WSL)

Web Traffic Express

Wireless Client

WAP/IP

WLP

HTTP

WAP Simulator

WAP
Gateway

HTTP

WAP Simulator

HTTP WebSphere
Transcoding

Pubisher

Your Co
Push Initiator
INS servlets

LBS
MQe Gateway

etc, etc

WebSphere
Application Server

 V3.5.4

LDAP Server

WES
Administration

Console

TPSM
enrollment

or tool

DMT

"Dummy"
Location Based

Server

AST
Server

Policy
Director

GML

Websphere Everyplace Server Version 2.1- lab configuration

Push messages

Palm Emulator

Push messages

Web Traffic Express

Location
Based

Services

Intelligent
Notification

Services
Wireless
Gateway
 Chapter 3. Enterprise sample applications 109

110 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Part 2 Adapting new
and existing
applications

In this part of the redbook, we describe ways to rapidly integrate your enterprise
applications into a WebSphere Everyplace Server (WES) environment and
therefore make them also available from wireless devices such as WAP phones,
by implementing new and enhanced capabilities incorporated in the current
releases of WebSphere Everyplace Server offerings, such as transcoding,
annotators for text clipping, stylesheets and the Wireless Gateway. You will find
step-by-step examples and scenarios to deploy and adapt your enterprise
applications in a WebSphere Everyplace Server environment.

Part 2
© Copyright IBM Corp. 2002 111

112 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 4. Transcoding application
content

Transcoding is a technology that enables you to extend your Web-based
applications to wireless and pervasive devices, while at the same time minimizing
the conversion effort. IBM brings the transcoding technology to the market with
the IBM WebSphere Transcoding Publisher product . This chapter describes
some of the new features included in IBM WebSphere Transcoding Publisher
Version 4.0 which will help you to adapt your applications so they can be
accessed from wireless devices such as WAP phones.

In this chapter, you will find the following information:

� Overview of the fundamentals of WebSphere Transcoding Publisher.
� Discussion of the new features within WebSphere Transcoding Publisher

Version 4.0.
� Discussion of the various features and capabilities of WebSphere

Transcoding Publisher.
� A sample scenario showing the use of WebSphere Transcoding Publisher to

display Web information on a WAP simulator (without any customization).

Note: IBM WebSphere Transcoding Publisher is a component of IBM
WebSphere Everyplace Server Service Provider Offering (for AIX and Solaris). It
is also a component of IBM WebSphere Everyplace Server Enable Offering
(Windows 2000, AIX and Solaris).

4

© Copyright IBM Corp. 2002 113

4.1 Overview
This chapter introduces you to the IBM WebSphere Transcoding Publisher
Version 4.0 (referred to as WTP). WebSphere Transcoding Publisher helps you to
easily extend your existing Web content to the wireless and pervasive computing
environment (these devices are known as PvC devices). WebSphere
Transcoding Publisher helps you accomplish this without requiring you to
redesign or reformat your existing Web site content. WebSphere Transcoding
Publisher makes it easy to extend your existing Web content to pervasive
computing devices because it handles the following issues:

� Different PvC devices have different size screens, therefore the content needs
to be scaled for that device.

� Different PvC devices require that the content be represented in different
formats. For example, the formats include:

– Wireless Markup Language (WML).

– Handheld Device Markup Language (HDML).

– VoiceXML.

– Compact HTML or cHTML (used by i-mode devices).

� Web content sometimes needs to be simplified, for instance by removing
objects or features not supported on the PvC device; Web content may also
be customized, for example by converting tables to lists.

� Networks have different bandwidth constraints, requiring the content to be
fragmented before transmission to the device.

� Users may have different preferences (new function in WebSphere
Transcoding Publisher Version 4.0) which includes restrictions of the types of
content sent their devices.

� XML content needs to be formatted for desktop browsers and PvC devices.

� There may need to be image manipulation for particular screen sizes or file
sizes; WebSphere Transcoding Publisher can also deal with color choice
constraints, image elimination or converting the image to a link.

� There may need to be text translation from one language into another.

By dealing with these issues, WebSphere Transcoding Publisher makes the
transformation of existing Web content to a PvC device content a fast and easy
process. WebSphere Transcoding Publisher also provides a single point for
transforming content for rendering on various devices. Using WebSphere
Transcoding Publisher minimizes the expense of redesigning content, moving or
modifying existing data representations and modifying applications in order to
extend your existing Web content to support the mobile user.
114 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

WebSphere Transcoding Publisher accomplishes these content transformations
by using the transcoding technology, which has the ability to make Web content
available to a variety of devices, including wireless, wired and PvC devices.
Transcoding provides the target device with content tailored to its capabilities and
condensed to meet the network bandwidth constraints. Each WebSphere
Transcoding Publisher transcoder has specific abilities for transforming or
manipulating a given input type to a modified or a different output type.

WebSphere Transcoding Publisher consists of a set of integrated components
which provide a flexible, extendable foundation to support all your content
transformation needs. Figure 4-1 on page 116 depicts the general WebSphere
Transcoding Publisher componentry, which includes (starting from the bottom of
the figure):

� Administration - services provided by the Administration Console for
configuring and managing transcoding server models, administering profiles,
resources and settings, and working with log and trace facilities.

� Transcoding framework - provides common rules and services for a wide
variety of transcoders and also provides capabilities so you can create
custom transcoders to fit your particular needs and plug them into
WebSphere Transcoding Publisher.

� Developer Toolkit - various tools which enable the developer to work with and
extend WebSphere Transcoding Publisher facilities.

� Profiles - contains information about various types of transformation
preferences.

� Transformation plug-ins - WebSphere Transcoding Publisher provides various
transcoders to transform content. These transcoders provide various image
and markup transformations.

� Third party transcoders - transcoders provided by you can be plugged into the
transcoding framework.
 Chapter 4. Transcoding application content 115

Figure 4-1 WebSphere Transcoding Publisher structure

From Figure 4-1, you can see that WebSphere Transcoding Publisher consists of
a set of services, tools and capabilities that are accessible to the developer, the
administrator, and the various transcoders. For example, transcoders can access
profile information in order to generate the appropriate response for a particular
device. WebSphere Transcoding Publisher also provides documentation,
including a Developer’s Guide, an Administration Guide, JavaDoc for the APIs
and samples which show how to use various aspects of WebSphere Transcoding
Publisher.

You may be wondering how WebSphere Transcoding Publisher accomplishes the
transformation of content to fit the needs of the target device. Figure 4-2 on
page 117 depicts a simplified flow of an HTTP request through WebSphere
Transcoding Publisher into the Web application and the HTTP response flow
from the Web application through WebSphere Transcoding Publisher and back to
the device. In this case, WebSphere Transcoding Publisher is acting as a proxy
between the network and the Web service.

Profiles
Developer

Toolkit

Third
Party

Transcoders

Transformation plug-ins
Text Engines for (HTMLor XML)

Image Engine
Other Transcoders

Administration

Transcoding Framework
116 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 4-2 WebSphere Transcoding Publisher flow

On the left of Figure 4-2 on page 117 is a subset of the possible devices that can
interact with the application environment. WebSphere Transcoding Publisher (in
the middle) intercepts the HTTP requests, passing those requests through
Request Editors (RE) and a particular Generator (G) before forwarding the
request to the application environment (on the far right).

The HTTP header, which is input to WebSphere Transcoding Publisher, contains
the requesting device, user ID, and network information. With this information,
WebSphere Transcoding Publisher transforms the content for the device
characteristics, the network capacity, and the user preferences (if a user
preference exists for this user).

Once the application environment has formulated an HTTP response, that
response is passed to WebSphere Transcoding Publisher. WebSphere
Transcoding Publisher uses information in the HTTP header (information such as
the requesting device, the user ID and the network) to determine how to
transform the content for the target. WebSphere Transcoding Publisher
accomplishes this by executing the appropriate Text Editors (TE) and Image
Editors (IE). The appropriate Text Editors and Image Editors are determined
based on the HTTP header information, Profiles, Rules and the Content type(s).
The Text Editor(s) transform the content into the form needed by the target. The
Image Editors manipulate the images as needed for the target.

H T TP S erver
&

A p p lica tion
S erver

&
A p p lica tion s

U ser D evices

H TT P H TT P

R eq ues t

R esp on se

R eq u es t

R espo n se

W ebS phere Transcod ing P ublish er

T E T EG

RE GM

IE

P refe ren ce P ro files

Ru les
Eng ine

P refe rence
A ggrega te r

U ser

D ev ice
N e tw ork

F ram ew ork
 Chapter 4. Transcoding application content 117

Each of the transformation components within WebSphere Transcoding
Publisher provides a unique service:

� Monitors - collect information about the HTTP request.

� Request Editors - can modify the HTTP request fields and possibly redirect
the request by changing the URL.

� Generators - (a single generator will execute per request) can convert a
request into a response.

� Text Editors - can customize the HTTP responses content. Multiple Text
Editors may execute to transform the content.

� Image Editors - manipulate the images to fit the needs of the device.

The framework provides the common services used by each request and
response. The rules engine and the preference aggregator are two of those
services. The rules are processed by the rules engine based on information from
the request and response. The preference aggregator resolves contradictory
values in the associated preference profiles (device, network and user). For more
details on the WebSphere Transcoding Publisher Architecture, read IBM
Transcoding Publisher Architecture at http://www.ibm.com/software/web
servers/transcoding/library.html.

4.2 What’s new in WebSphere Transcoding Publisher
Version 4.0

WebSphere Transcoding Publisher 4.0 provides many new features. The new
features have been grouped into categories and are listed below:

� New transcoders/customizations:

– The VoiceXML transcoder converts HTML to VoiceXML for voice
applications.

– The Machine Translation transcoder works with WebSphere Translation
Server to translate content into different languages.

– The Palm transcoder converts HTML to PalmOS HTML for display on
Palm VII devices.

– There is support for Cocoon specifications within the XML documents.
That is the media tag which refers to the source device type making the
request.

– WebSphere Transcoding Publisher 4.0 provides support of user
preference profiles for determining transformation processing. The
118 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

WebSphere Personalization interface is supported as a means to obtain
user preference information.

� New deployment models:

– The WebSphere Transcoding Publisher server can be deployed as a
plug-in WebSphere Edge Server Caching Proxy, IBM's high-performance
caching proxy. This configuration replaces the proxy with an external
cache. This replaces the Network proxy.

� New and enhanced tools:

– The External Annotation Editor makes it easier to create external
annotation files to customize the information returned to small devices.
Several other improvements extend the functions you can perform with
annotations.

– The Steeliest Editor makes it easier to create your own stylesheets to
convert XML documents. You can specify, within an XML document, the
names of one or more stylesheets to be applied to that document.

– The Request Viewer now executes as an independent tool to monitor a
remote WebSphere Transcoding Publisher server that is deployed as a
proxy or reverse proxy.

� Enhanced administration:

– The Administration Console and the server are installed as separate
components.

– You can import and export WebSphere Transcoding Publisher
configuration information to XML (configuration file) to copy configurations
from one machine to another. This allows you to perform mass distribution
of the configuration to multiple servers. Also, you can modify the XML
configuration file as needed.

– You can search within your stylesheet selectors to find the resources you
want to work with.

– WebSphere Transcoding Publisher can incorporate user preferences
when it is operating in an environment where users are identified and user
preference information is available, such as the WebSphere
Everyplace(TM) Suite.

– The Administration Console and other interfaces use JavaHelp, which
enables you to search for the information you need.
 Chapter 4. Transcoding application content 119

� General enhancements:

– WebSphere Transcoding Publisher adds a variety of improvements to the
usability and accessibility of the user interfaces and to the performance of
the WebSphere Transcoding Publisher server.

– JavaBeans have been enhanced to share a common preference bundle by
passing in the HTTPPreferenceAggregatorBean.

4.2.1 Models
The transcoding server can be deployed in your network structure in a variety of
ways. The server models are:

� Stand-lone proxy

� Reverse proxy

� IBM WebSphere Edge Server Caching Proxy

� WebSphere Application Server (WAS) filter

� JavaBean component(s) within your application

Let us take a moment to look at these deployment models.

Stand-alone proxy - this runs WebSphere Transcoding Publisher as a single
service (outside the firewall) that tailors content coming from many different Web
servers. The stand-alone proxy intercepts HTTP requests and responses and
performs the appropriate content changes and transformation as they flow
between the user and the Web server. The model is suitable for users who have
the ability to configure a proxy device in their browsers (some wireless devices
do not provide this capability). This is a good choice when caching; HTTP 1.1 or
SSL endpoint support are not needed.

Reverse proxy - WebSphere Transcoding Publisher behaves like a Web server, in
that it forwards user requests for content to the servers it can access.
WebSphere Transcoding Publisher transforms the response formulated by the
server before forwarding the (transformed) response to the client. To ensure that
subsequent requests pass through WebSphere Transcoding Publisher,
WebSphere Transcoding Publisher performs URL rewriting. When WebSphere
Transcoding Publisher runs as a reverse proxy, no special configuration is
required by the user.

IBM WebSphere Edge Server caching proxy - here, WebSphere Transcoding
Publisher 4.0 is integrated into the Edge Server (ES) where WebSphere
Transcoding Publisher runs as a WebSphere Edge Server plug-in. WebSphere
Edge Server provides the caching support for WebSphere Transcoding
Publisher, thereby allowing transcoded results to be cached for fast access.
120 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

WebSphere Transcoding Publisher takes advantage to WebSphere Edge Server
caching to minimize redundant transcoding of frequently accessed content. This
approach provides the benefits of combining the HTTP 1.1 protocol, caching
support in the Edge Server (enhanced performance for cacheable content) and
WebSphere Transcoding Publisher's transcoding capabilities.

WebSphere Application Server (WAS) filter - running WebSphere Transcoding
Publisher as a WebSphere Application Server filter allows for transcoding the
content at the source (the WebSphere Application Server application). In this
model, WebSphere Transcoding Publisher is configured as a servlet, so that it
can be incorporated into WebSphere Application Server. When the servlet is
invoked, the content transformation occurs. WebSphere Transcoding Publisher
servlets operate within the security context of the application server, allowing
transcoded information to later be encrypted before being sent to the client.

JavaBean components - using the WebSphere Transcoding Publisher
transcoders as JavaBeans allows close integration of specific transcoders with
applications. Specific transcoders can be separated from the framework and run
independently as JavaBeans. This means that other server programs, such as
servlets, independent content-providing programs or JavaServer Pages (JSP)
can invoke single transcoders (represented as JavaBeans) directly. The following
WebSphere Transcoding Publisher transcoders can be provided as JavaBeans:

� ImageTranscoderBean - converts images

� HtmlReducerBean - simplifies HTML documents

� ImodeBean - converts HTML to c-HTML

� HdmlBean - converts HTML to HDML

� WmlBean - converts HTML to WML

� XmlHandlerBean - converts HTML to XML

� HtmlDomBean - creates a DOM from HTML

When using the WebSphere Transcoding Publisher JavaBeans, you must provide
a way to detect the user device type and invoke the appropriate WebSphere
Transcoding Publisher JavaBean(s).

More details on the stand-alone proxy, reverse proxy, WebSphere Application
Server filter and JavaBean component deployment models are found in the
redbook New Capabilities in IBM WebSphere Transcoding Publisher Version 3.5,
SG24-6233.

Using WebSphere Transcoding Publisher as an Edge Server plug-in is discussed
in the WebSphere Transcoding Publisher Developer Guide found at
www.ibm.com/software/web servers/transcoding/library.html.
 Chapter 4. Transcoding application content 121

4.2.2 Resources
WebSphere Transcoding Publisher has four kinds of resources; each one plays a
unique role in content transformation. The Administration console allows you to
work with these resources. The four WebSphere Transcoding Publisher
resources are:

� Preference profiles

� Annotators

� Transcoders

� XML stylesheets

All these resources can be included in the XML configuration data and are
viewable using the Administration Console.

Preference profiles
IBM WebSphere Transcoding Publisher makes use of various profiles which
enable customized transformation of content to meet the needs of the device, the
network and user preferences. There are three types of preference profiles
available for use with WebSphere Transcoding Publisher 4.0, which are:

� Device profiles - these contain specific characteristics for each device,
including Windows CE devices, Palm devices, Wireless Application Protocol
(WAP) phones, i-mode phones, HDML phones, traditional browsers
(Netscape and Internet Explorer), XML-capable desktop browsers, and a
default device.

� Network profiles - these contain specific characteristics for each network; this
includes wireless networks, dial networks, and a default network.

� User profile (new with WebSphere Transcoding Publisher 4.0) - this includes
group or user preferences (utilizing the WebSphere Personalization
capabilities, which are part of WebSphere Everyplace Server). A user
preference could specify that images not be displayed on their device even
though the device is capable of displaying them.

WebSphere Transcoding Publisher uses these profiles as input for the content
transformation process. When processing an HTTP response, WebSphere
Transcoding Publisher matches the device, use ID and realm name in the HTTP
header against the WebSphere Transcoding Publisher preference profile
information. With the selected (match) information, WebSphere Transcoding
Publisher performs the appropriate transformation(s) to generate the formatted
content. If no specific profiles match the information in the HTTP header, default
profiles are used.
122 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The profile matching occurs in this order:

1. Specific user profile

2. Specific network profile

3. Specific device profile

4. Default user

5. Default network

6. Default device

If more than one profile matches (user, network, and/or device), various
transcoders will be applied to the content based on the combined profiles.
WebSphere Transcoding Publisher provides profiles for several common PvC
devices and for several network types. Default profiles are also provided by
WebSphere Transcoding Publisher. The profiles are listed in the Resource
window of the Administration Console. By expanding the resource tree, you can
view the details of a particular profile. The user profiles are not available in the
Administration Console.

Annotators
Annotators provide conditions (represented in the annotation language) for
preprocessing a document within WebSphere Transcoding Publisher to better
suit that document for transcoding. For example, only a subset of a particular
document may be desired for a user device. Annotation instructions specify that
the content within a particular document must be kept, removed or replaced with
other content. Each annotator is associated with a specific document and
contains detailed knowledge of the structure and content of that document.

Annotators are selected to process a particular document based on the URL
contained in HTTP or the location of the document. Other HTTP field values,
including device, user ID and network information, along with the preference
profiles, can be used in annotator selection.

Annotators are used when the automatic transcoding does not produce the
desired results. For example, transcoders may leave too much content for the
user device because of excess content being processed by the transcoder. By
selecting the desired content, an annotator simplifies the processing of the
transcoder and ensures that the desired results are produced.

WebSphere Transcoding Publisher supports two types of annotators:

� Internal annotators - these are imbedded XML documents (annotations)
within the HTML document. The annotations are represented as HTML
comments. WebSphere Studio Version 4 can create internal annotations.
 Chapter 4. Transcoding application content 123

� External annotators - these are separate (annotator) files containing
annotation conditions. These files are registered within WebSphere
Transcoding Publisher using the Administration Console. The external
annotators are created using the new WebSphere Transcoding Publisher 4.0
External Annotator tool.

Annotators are discussed in more detail in Chapter 5, “Text clipping” on
page 145.

Transcoders
A transcoder is a program which transforms (modifies) the format and content of
a document. WebSphere Transcoding Publisher provides various transcoders. A
transcoder is selected to process a document based on criteria specified for that
transcoder when it was created. The transcoders provided by WebSphere
Transcoding Publisher include:

� Text editors - can translate an HTML or XML document to another markup
language (for example WML or HDML) or can reformat content (for example,
a table may be reformatted into a list).

� Image editors - change the image type (for example a JPEG image can be
converted into a GIF or WBMP image) or change the image characteristics
(for example the image size, coloring, scaling and quality).

� Fragmentation editor - breaks transformed documents into small units which
are acceptable to the network and the target device.

� Special purpose transcoders - include the machine translation transcoder
used with WebSphere Translation Server to translate content from one
language to another.

� Reverse Proxy Cookie transcoder - solves the problem created by Web sites
using the Set-Cookie HTTP objects, specifying a domain for one or more
responses.

� HTML DOM Generator transcoder - creates a Document Object Model (DOM)
from HTML documents. This enables you to create and apply text clippers to
the DOM to create new documents containing a subset of the original
document.

When a document goes through the transformation process, more than one
transcoder may be executed to produce the desired results. Details on the
WebSphere Transcoding Publisher transcoders are provided in the WebSphere
Transcoding Publisher Developer’s Guide found at www.ibm.com/software/web
servers/transcoding/library.html.
124 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Stylesheets
eXtensible Markup Language (XML) has become the de facto standard for
representing business data outside the convention data store. Business data
does not lose its meaning when encoded in XML, because each tag is specific to
a data element. Unlike HTML, XML does not contain any presentation tagging
needed to display content within many browsers. eXtensible Stylesheet
Language (XSL) provides the means to transform an XML document to other
markup languages, including presentation markup languages like HTML, WML,
and so on.

XSL is rules-based language, consisting of template rules which specify patterns
for selecting specific content in an XML document. Each template rule defined
within a stylesheet contains a rule body with the actions to be performed on the
matching content. For example, the rule body can contain statements to retag or
reformat the associated content.

WebSphere Transcoding Publisher not only provides the fundamental means to
apply stylesheets to XML documents, but also supports stylesheet
parameterization, internationalization, stylesheet encoding and caching.

Refer to Chapter 6, “Using stylesheets” on page 211 for details on stylesheet
handling within WebSphere Transcoding Publisher.

4.2.3 Installation
WebSphere Transcoding Publisher Version 4.0 installation and configuration is
very similar to the WebSphere Transcoding Publisher Version 3.5 installation and
configuration; for details, see the redbook New Capabilities in IBM WebSphere
Transcoding Publisher Version 3.5, SG24-6233.

During installation, WebSphere Transcoding Publisher Version 4.0 checks for
previous releases of WebSphere Transcoding Publisher on the target system. If a
previous release exist, a new window will appear in the dialog, identifying this
condition. You can select a button to either go back, proceed or cancel this
installation. If you proceed, a migration option is offered. The migration options
are:

� Yes, please save my configuration data and use it with the new
version.

� Yes, please save my configuration data but do not use it with the new
version.

� No, I do not want to save my configuration data.
 Chapter 4. Transcoding application content 125

If you proceed, you will be asked for the file name of the migration file and the
directory it is to be located in. You are given the choice to either save or cancel
the operation.

In WebSphere Transcoding Publisher 3.5, a response file was created by
invoking instwin.bat with the -r option. The response file can be used later to
install on other machines using the same settings. WebSphere Transcoding
Publisher 4.0 advises creating a response file using the Summary window in the
install process by clicking the Create response file button. The subsequent
window asks for the name and location of the response file. After installation is
complete, the response file can be replayed using instwin.bat with the -p
option.

The XSL Stylesheet Editor is installed as part of the WebSphere Transcoding
Publisher 4.0 install process.

4.2.4 Administration and configuration
The Administration Console is the primary tool for administering your
WebSphere Transcoding Publisher environment. The Administration Console
adapts to your particular server configuration and the location of the
configuration data. The Administration Console allows:

� Working with transcoder server models - WebSphere Transcoding Publisher
supports various server models discussed in 4.1.2.

� Working with resources - WebSphere Transcoding Publisher resources are
preference profiles, annotators, stylesheets and transcoders. You can:

– Enable and disable resources

– Add resources

– Organize resources into folders

– Modify preference profiles, annotators and stylesheets selectors

� Working with settings - modifying settings for central directory, firewall,
notification, reverse proxy, Web application, and network port, as well as
modifying request viewer hosts.

� Working with logging and tracing.

� Importing and exporting configurations.

� Refreshing the transcoding server.

� Starting and stopping WebSphere Transcoding Publisher.
126 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The transcoding Server Setup wizard is part of the Administration Console. As
stated earlier, the transcoding server can be configured to run as a reverse proxy
and as a WebSphere Edge Server plug-in. The transcoding Server Setup wizard
was changed to add these new server models. Other changes to the Server
Setup wizard include:

� The caching configuration was removed (when WebSphere Transcoding
Publisher is running as an Edge Server plug-in); caching is now handled by
the Edge Server.

� Firewall and reverse proxy information is no longer required (when
WebSphere Transcoding Publisher is running as an Edge Server plug-in or a
WebSphere Application Server filter).

The Administration Console has a graphical interface. The main window has a
toolbar with pull-down menus, two panes and a status area at the bottom. The
two panes within the window are side by side with:

� The left pane containing a tree view of your resources, allowing those
resource to be edited.

� The right pane containing specifics about the selected resource (from the tree
view).

The status area (at the bottom of the window) is divided into four quadrants:

1. Upper left quadrant - displays the status messages

2. Upper right quadrant - displays the current server model.

3. Lower left quadrant - displays the approximate number of pending changes.

4. Lower right quadrant - (used when WebSphere Transcoding Publisher is
using LDAP for persistent storage and there is a local server) displays the
name of the server model for the local server.

The Administration Console is detailed in the redbook New Capabilities in IBM
WebSphere Transcoding Publisher Version 3.5, SG24-6233, and in the
WebSphere Transcoding Publisher Administration Guide.
 Chapter 4. Transcoding application content 127

Figure 4-3 Administration Console

4.2.5 XML configuration
WebSphere Transcoding Publisher now provides support for an XML-based
configuration file containing your server configuration. Using a single XML
configuration file to represent the WebSphere Transcoding Publisher
configuration information simplifies configuration administration by:

� Allowing for automated and batch updates to the WebSphere Transcoding
Publisher configuration.

� Allowing remote deployment of WebSphere Transcoding Publisher server
configuration.

� Simplifying service with a single configuration file.

� Using a single simple mechanism for migrating configurations across releases
and across installs of a release.

� Providing an easy way to backup/restore WebSphere Transcoding Publisher
configurations.

� Providing a report for registered resource.

Both the Administration Console and the install process support the XML
configuration file.
128 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The Administration Console's menu bar file option now contains Import, Export,
and Export All options pertaining to the XML configuration file. The XML
configuration file includes all resources but does not support secondary
resources, such as stylesheets (.xsl files), annotators (.ann files) and Java
plug-ins (.jar files). The secondary files must be handled manually.

The configuration file can be modified outside of WebSphere Transcoding
Publisher, which allows adjustments to the configuration as needed. Figure 4-4
shows the XML configuration flow consisting of the following steps:

1. Use the ExportResources command to read the existing WebSphere
Transcoding Publisher configuration.

2. A WebSphere Transcoding Publisher XML configuration file is created in the
specified directory.

3. The WebSphere Transcoding Publisher XML configuration file can be
modified as needed.

4. Use the ImportResources command to write the modified WebSphere
Transcoding Publisher XML configuration into WebSphere Transcoding
Publisher.

Figure 4-4 XML configuration flow

4.3 Tools
A suite of tools is provided with WebSphere Transcoding Publisher; these are
classified into two categories: development and run-time tools. The development
tools support the creation of annotators, stylesheets and profiles. The run-time
tools support debugging and problem determination.

WTP

XMLConfig
Command

ImportResource

XMLConfig
Command

Export Resource

WTP XML
Configuration

File

WTP XML
Configuration

File
(modified)

2.Create

3. Modify

4. Write

1. Read

(as input)
 Chapter 4. Transcoding application content 129

The tools are:

� Profile Builder

� External Annotation Editor

� Stylesheet Editor

� Transform Tool

� Request Viewer

� Administration Console

4.3.1 Profile Builder
The Profile Builder helps you create new preference profiles or modify existing
profiles. WebSphere Transcoding Publisher comes with an number of preference
profiles for the commonly used devices and networks. In the case these
WebSphere Transcoding Publisher profiles do not meet your needs, you can
create new profiles with this tool.

Profile Builder is like a wizard in that it steps you through the process of either:

� Creating a completely new profile,

� Creating a new profile from an existing profile, or

� Editing an existing profile.

You can create a profile for either a device or a network. As the Profile Builder
steps you through the profile create/edit process, it provides descriptive text
about that step. It is important to understand the details of a particular profile
entry in order to create it correctly.

For details on the profile builder, see the redbook New Capabilities in IBM
WebSphere Transcoding Publisher Version 3.5, SG24-6233, and the WebSphere
Transcoding Publisher Developer Guide found at www.ibm.com/software/web
servers/transcoding/library.html.

4.3.2 External Annotation Editor
The External Annotation Editor (EAE) enables you to create annotation files
which can be used at run-time to simplify or modify an HTML document.
Annotation files can be used to remove, replace, keep or modify the contents of
an HTML document. Creating annotations files removes the need to write Java
code to refine the document content being transformed. Using annotations can
also make the overall transcoding process easier, because unnecessary content
can be eliminated before transcoding occurs.
130 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The EAE is a graphical tool; the main window is composed of six major areas:

1. Menu bar - provides access to application options (Files, Edits, Views,
Annotation and Help); menu options can be disabled when the action is not
available.

2. Standard toolbar - provides access to the common application actions and
specific annotation tasks like Remove, Keep and Replace.

3. XPath toolbar - enables you to specify an XPath expression that is applied to
the active HTML document (this toolbar is available when the active HTML
document is in outline mode only).

4. HTML viewer - displays the active HTML document (the document currently
loaded into the viewer); the document can be displayed in either Outline or
Source mode. A document is loaded when the HTML document is opened.

5. Annotator viewer - displays the annotations you created for the HTML
document displayed in the HTML viewer. These can be newly created
annotations (created in this session) or an existing annotation file.

6. Attribute panel - displays attributes associated with the currently selected
HTML document or annotation file. Attributes displayed in this area can be
edited.

Figure 4-5 External Annotation Editor
 Chapter 4. Transcoding application content 131

Annotations are created by selecting specific elements within the HTML
document and designating how that element is to be processed by applying a
Keep, Remove, Replace or Add content action. Once the action has been
selected, a wizard walks you through the details of completing the annotation
statement, by asking where the annotation is to occur: either before or after the
selected element. Once the annotation statements have been created, they can
be saved in an annotation file. Each annotation file is registered with the
transcoding server using the Administration tool. We will look at this tool in more
detail in Chapter 5, “Text clipping” on page 145.

4.3.3 Stylesheet Editor
The XSL Stylesheet Editor enables you to create XSL stylesheets to transform
an XML document into a document using other markup languages. Currently, the
stylesheets created by the Stylesheet Editor transform XML to XHTML; other
markup languages are forthcoming. The editor provides a WYSIWYG experience
and is targeted at the novice XSL stylesheet creator. The tool does provide
shortcuts for the experience user. The editor is a graphical tool and its main
window is composed of six major areas:

1. Menu bar - provides access to the application options for Files, Edits, Views,
Annotation and Help; menu options can be disabled when the action is not
available.

2. Toolbar - provides access to the common application actions and specific
stylesheet tasks.

3. Stylesheet display - provides views of the stylesheet in either Tree, Rule or
Text format.

4. Output display - provides views of the input XML document transformed into
XHTML with the stylesheet template rules applied. The XHTML can be
viewed in Tree, Design or Text format.

5. Input XML document - provide views of the input XML document. The XML
document may be viewed in either Tree or Text format.

6. Projects - provide a tree view of the projects defined.

The XSL Stylesheet editor is shown below.
132 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 4-6 XSL Stylesheet Editor

The Stylesheet Editor is discussed in Chapter 6, “Using stylesheets” on
page 211.

4.3.4 Transform Tool
The Transform Tool is a developer tool that allows you to preview the effect of
applying various transcoding operations to a given document. The incoming
document and the results are viewable side by side to see what changes have
occurred. For example, you can see the original image in the left pane and the
resulting reduced image in the right pane.The Transform Tool uses the
preference profiles as the basis for performing the transformation operations.

With WebSphere Transcoding Publisher 4.0, the Transform Tool takes the user
preferences as well as the other profiles into consideration.
 Chapter 4. Transcoding application content 133

The Transform Tool is graphical and the window consists of five main parts, which
are:

1. Menu bar - provides access to the application option for file selection You can
open either a image, HTML or XML document. The results can be saved as
well.

2. Toolbar - provides access to the common file selection options graphically, as
well as to the transcode action.

3. Pull-down menus - three pull-down menus allow you to specify the target
device, target network and user preferences.

4. Input document - provides a view of the input document.

5. Output Document - provides views of the resulting output document.

Figure 4-7 Transform Tool
134 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

For more details on the Transform Tool, see the redbook New Capabilities in IBM
WebSphere Transcoding Publisher Version 3.5, SG24-6233 and the WebSphere
Transcoding Publisher Developer Guide, found at
www.ibm.com/software/webservers/transcoding/library.html.

4.3.5 Request Viewer
Request Viewer is a visual tool for monitoring the operation of the transcoding
server when running in stand-alone mode. Request Viewer is particularly useful
as a debugging tool, because it enables you to monitor the flow of requests
through the server and to observe which transcoders are triggered and when.
The request viewer displays the HTTP header and the content of each request
as it is manipulated by the transcoders.

The main display for Request Viewer consists of these parts:

1. Menu bar - provides access to the application options for Files, Actions,
Requests and Help; menu options can be disabled when the action is not
available.

2. View options - two tabs specify view selections which are either Server
Configuration or Request Processing views. When either of these views is
selected, the associated content in the left main panel and the right main
panel changes accordingly. The Server configuration view provides the
transcoding server information, including the transcoders registered,
preference profiles, and so on. The Request Processing view shows the flow
of the request through the transcoding server.

3. The Server Configuration view subsets the window into three parts:

a. Server Configuration - a list view of the contents of this configuration
(including sublayers and plug-ins) in the top left pane.

b. Server Configuration Details - displays the details of an item within the
configuration. Content is displayed in this pane when an item is selected in
the Server Configuration tree view. This is found in the top right pane,
across from the Server Configuration.

c. Output Messages - displays messages generated at execution time; this is
found across the bottom of the window, below the Server Config and
Server Config details panes.

4. The Request Processing view subsets the window into three parts:

a. Request Processing - a tree view of the flow of a request through
WebSphere Transcoding Publisher (in the top left pane).

b. Transaction Header - displays the contents of the HTTP header. The
content is displayed in this pane when an item is selected in the Request
 Chapter 4. Transcoding application content 135

Processing tree view. This is found in the right top pane, across from
Request processing.

c. Transaction Content - displays a particular transcoder’s input or output
(below the Trx Header and in the left pane).

Remember also that when running the Request Viewer, you should not run the
WebSphere Transcoding Publisher service, since both use the same ports. A
sample Request Viewer request processing view is shown in Figure 4-8.

Start the Request Viewer tool by entering the following command from the
IBMTrans directory:

RunTranscoding -g

Note: It is highly recommended that you use the Request Viewer tool to
develop applications using transcoding. However, you should be aware that
this tool is only available when running as a stand-alone reverse or forward
proxy.
136 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 4-8 Request Viewer Request Processing view

For more details on the Request Viewer, see the redbook New Capabilities in
IBM WebSphere Transcoding Publisher Version 3.5, SG24-6233, and the
WebSphere Transcoding Publisher Developer Guide found at
www.ibm.com/software/webservers/transcoding/library.html.

4.3.6 Device simulators
Many of the leading PvC devices manufacturers have created device simulators
to allow developers to test their applications. These simulators provide a means
to ensure that the application is generating device-usable content. However,
testing with a real device should be part of the final testing process to ensure that
the implementation works properly.
 Chapter 4. Transcoding application content 137

Wireless Application Protocol (WAP) is a specification for receiving content on
phones. The Nokia Toolkit WAP simulator (Nokia Toolkit 2.1) has a built-in WAP
browser. The toolkit is available at
http:www.nokia.com/corporate/wap/sdk.html; you must register before
downloading the toolkit. This is one of the simulators we will be using.

Openwave has implemented its own version of the WAP specification in the
UP-browser. The simulator is available at http://developer.openwave.com.

compact HTML(cHTML) is used on i-mode devices. Wapprofit.com has created
an i-mode simulator, which is available at the Wapprofit site at
http://www.wapprofit.com.

Palm OS is used for handheld devices like PDAs. Palm OS provides many
advanced features and functions beyond the capabilities of a browser. The Palm
OS simulator is available at http://www.palm.com/devzone/prose/seed.html.

EPOC: while EPOC OS is relatively new, it runs on a variety of devices like the
Nokia communicator and the PSION handhelds. The Ericsson R380 simulator
looks like other WAP phone simulators, but it is running the EPOC OS.

Microsoft Windows CE is Microsoft’s entry into the handheld device market. The
Windows CE simulator runs on Windows NT and brings the Windows CE OS to
the desktop.

4.4 Problem determination
WebSphere Transcoding Publisher provides two tools to help in problem
determination; these are the tracing and logging facilities. Tracing levels are set in
the Administration Console under the Menu bar's Logs entry.

The tracing facility allows you to see three message levels: low, medium, and
high. Tracing provides detailed information for troubleshooting problems. Tracing
is normally run at the low level. Tracing at higher levels is usually requested by
service personnel.

The logging facility provides you with various messages. The messages types
record different information:

• Informational - normal events.
• Warning - indicates possible problems.
• Error - indicates a definite problem requiring administrator attention.
138 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Normally, tracing will be turned on at the low level and message login will be
turned on. This enables you to monitor the behavior of WebSphere Transcoding
Publisher without affecting its performance.

The trace files can be found in the*/IBMTrans/log directory; they are:

� LocalRegistryTrace.log - contains information about problems with the
LocalRegistry, for example, problems with dynamic updates.

� TranscoderTrace#.log - helps identify all general product problems.

� The cmdmagictrace#.log - contains all information on the import/export
configuration.

Note: For problems with WebSphere Transcoding Publisher as a WTE plug-in,
check the WTE directory logs.

The Administration console can be launched using the AdminConsole command
with a -d option that logs debug messages to the */IBMTrans/log/acDebug.log
file. The types of problems that can be traced for the Administration Console are
values not being saved as AdminConsole exits. Another source for
Administration Console errors is the ConsoleTrace.log.

These tools are very useful when trying to perform WebSphere Transcoding
Publisher-related application debugging.

� TracecoderTrace#.log - contains detailed information about the HTTP request
and response processing.

� Using the Request Viewer - with this, you can look at all the transcoders
inputs and output, plus the HTTP header content. Also, if you started the
Request Viewer using the runtranscoder -g command, the DOS prompt
provides stack trace information.

� Transform Tool - allows you to view the results of transformations to verify that
you are getting what you expected before you use the transcoding server.

The RASCollect tool can be used to pull together all the information about the
product state, trace, log, etc., into one file that can easily be sent to IBM service
when necessary.

4.5 VoiceXML
WebSphere Transcoding Publisher 4.0 provides a new transcoder to transform
HTML into VoiceXML. VoiceXML is an XML dialect which is used by voice
browsers to transform the VoiceXML document into speech. WebSphere
Transcoding Publisher supports the VoiceXML 1.0 Standards used by a variety of
voice servers. VoiceXMl provides consumers the ability to access Web content
 Chapter 4. Transcoding application content 139

through Interactive Voice Response (IVR) systems. Existing VoiceXML
applications can call for HTML pages, which WebSphere Transcoding Publisher
can change to usable VXML code, and provide a path back to the requesting
application. Also, Using VoiceXML allows the users to have an interactive voice
experience with the Web. In essence, you can hear textual content, choose from
a list of links for the voice browser to follow, and prompt for or respond to voice
input.

For more information about Voice XML in IBM WebSphere Transcoding
Publisher, see Chapter 12, “Voice-enabled applications” on page 493.

4.6 Fragmentation
Sometimes the content being sent to various handheld devices is not in small
enough units for the device to handle. WebSphere Transcoding Publisher
provides a transcoder (Fragmentation Transcoder) to break these oversized units
into acceptable sizes for the target device. These smaller units are dynamically
linked together so that as they are viewed on the device, the subsequent units
can be retrieved from WebSphere Transcoding Publisher. Fragmentation is the
term used to describe this activity, which is performed by the Fragmentation
Transcoder.

For information about WML Fragmentation, see Chapter 7, “WML fragmentation
considerations” on page 259.

4.7 Sample scenario
In Chapter 3, “Enterprise sample applications” on page 77, you were given a
complete overview of the Your Company (YourCo) sample application that we are
using within this book as the base application. In this scenario, we are going to
see how WebSphere Transcoding Publisher transcodes the YourCo application’s
main page. The YourCo application’s main page is shown in Figure 4-9 on
page 141.
140 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 4-9 YourCo main page

As you can see, this is not a exceptionally busy main page, but it is still much
more than most pervasive devices want to handle.

4.7.1 The environment
The system environment consists of two machines. One is a Windows machine
which contains the IBM HTTP Server, WebSphere Application Server Version
3.5.4, the B2E YourCompany application, and DB2 7.1 with the YourCompany
data base installed. The other machine contains WebSphere Transcoding
Publisher Version 4.0, all the WebSphere Transcoding Publisher tools and the
WAP simulator.

For convenience, the transcoding server has been configured as a reverse proxy.
The development environment is shown below in Figure 4-10.
 Chapter 4. Transcoding application content 141

Figure 4-10 The development environment

We added two extensions to the YourCo application for our scenario:

� The WebSphere Everyplace News application, to provide us with an XML
document source

� The Locate Expert application, which is a Location based application.

4.7.2 Transcoding results
With the environment in place and using the Request Viewer to start the
WebSphere Transcoding Publisher environment, from the WAP simulator we
access the YourCo application through WebSphere Transcoding Publisher
configured as a reverse proxy. WebSphere Transcoding Publisher (without
customization) generates the content shown in Figure 4-11 below. As you can
see, WebSphere Transcoding Publisher transformed the page, but there is
excess content, making it hard to use the application. Using WebSphere
Transcoding Publisher customization tools and techniques (discussed in the
following chapters), you will learn how to customize the content for the target
device.

IBM
HTTP
Server

WebSphere
Application
Server V3.5.4

YourCo
Application
plus Extensions

WebSphere
Transcoding
Publisher V4.0
(Reverse Proxy)

HTTP

HTTP

* Annotation files
* XSL Style sheets

Internet Explorer
Netscape

WAP Emulator
142 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 4-11 A portion of the menu bar

Figure 4-12 illustrates a portion of the Welcome window as provided by
WebSphere Transcoding Publisher without any text clipping done for HTML
content and without applying any stylesheets for XML content.

Figure 4-12 A portion of the Welcome window

In a similar way, a portion of the application detail options are shown in
Figure 4-13.

Figure 4-13 A portion of the detail options

As illustrated in Figure 4-14, similar results are obtained for WML text provided
by WebSphere Transcoding Publisher; it is obvious that the actual content needs
to be customized for the WAP phone’s small screen, using text clipping
techniques. This process will be explained in Chapter 5, “Text clipping” on
page 145.
 Chapter 4. Transcoding application content 143

Figure 4-14 The page footer
144 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 5. Text clipping

In this chapter, we discuss document clipping on IBM WebSphere Transcoding
Publisher Version 4.0. Document clipping is used to simplify browser-based
HTML pages which are intended for display on wireless and pervasive computing
devices. The capability to perform document clipping was introduced in the
Transcoding Publisher Version 3.5 with the annotation function. Prior versions of
WebSphere Transcoding Publisher provided the ability to perform text clipping by
creating custom transcoders using the Java language and Transcoder APIs.
WebSphere Transcoding Publisher Version 4.0 extends the annotation capability
by adding a new tool: the External Annotation Editor.

This chapter includes the following:

– An overview of document clipping

– Discussion of annotation

– Details on the new External Annotation Editor

– Examples of using WebSphere Studio Version 4.0 to create internal
annotations

– An example of text clipping with Java

– An example of using the new Import and Export functions

5

© Copyright IBM Corp. 2002 145

5.1 Overview
In the previous chapter, we discussed why transcoding is needed to extend
browser-based HTML content to Pervasive Computing (PvC) devices. However,
as demonstrated in that chapter’s sample application, using transcoding without
any further instructions does not produce the customized content often needed
for PvC devices. Text clipping and annotation allow you to refine the HTML
content and strip that content of any extraneous information which is not vital to
the user of the PvC device.

Document clipping is necessary because of the pervasive computing
environment characteristics, which include:

– Limited screen real estate - PvC devices have very small screens which
limit the amount of information displayed at any one time.

– Limited storage capacity - this prevents the devices from being able to
store large pages.

– Network bandwidth limitations - the amount of information that can be sent
to a PvC device is much less than is available to connected devices.

Document clipping is more than just a matter of removing content from an HTML
page; it requires you to take into consideration the existing Web content, the
content needs of the user and the interaction flow, which includes moving both
forward and backward. Along with these issues, the following items must be
considered:

– Review and understand the existing content.

– Understand what the PvC user needs most; what information is necessary
for them to accomplish the task or activity they are trying to perform?

– What are the characteristics and considerations of the device?

– What are the limitations of the network?

– What is a meaningful way to organize the application content?

– What is the skill level of the user using the application and the device?

WebSphere Transcoding Publisher transcoding and document clipping
techniques enable you to provide the types of customized content the users of
PvC devices need and deserve.
146 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

There are two types of document clipping available within WebSphere
Transcoding Publisher:

1. Annotations - additional instructions to pre-process an HTML page, making
the page better suited for transcoding.

2. Text clippers - custom transcoders (written in Java code) that manipulate an
HTML page either in its text form or as a Document Object Model (DOM).

The annotations and text clippers are customized to work with a particular HTML
page and are usually intended to render specific content on specific devices.
They do not support generalized transformation techniques like the WebSphere
Transcoding Publisher text editors.

5.2 Annotation overview
Annotators provide a means to perform document clipping without understanding
or creating text clippers, which is custom Java code. Text clipping was the
primary clipping technique before annotations were defined. An annotation file
consists of specific instructions used by an annotation engine to clip and
customize an associated HTML document. The annotation instructions are a
specific XML dialect defined for annotating (clipping) documents. The annotation
instructions are in two forms:

1. External annotations - the annotation instructions are contained in an .ann file.
Instructions provide both location information (the XPath to the associated
HTML tag or content) and the action to be performed on that HTML tag or
content. The annotation file applies to a specific URL or set of URLs for the
associated HTML file.

2. Internal annotations - the annotation instructions embedded as comments
within the HTML document. The annotation instructions provide the actions to
be performed on the associated HTML tag or content.

External and internal annotations are processed by the WebSphere Transcoding
Publisher annotation engine. The annotation engine outputs a clipped version of
the HTML document. This clipped HTML document is then processed by the text
editor(s). The annotation engine executes only once prior to the WebSphere
Transcoding Publisher text editors, as shown in Figure 5-1.
 Chapter 5. Text clipping 147

Figure 5-1 HTML document with Annotation processing flow

Annotation provides a quick and easy means of performing:

– Content selection and attribute setting

– Image and form replacement

– Form or table reduction and reformatting

These activities are accomplished by taking advantage of a concept known as
clipping state. Clipping state allows you to instruct the annotation engine (using
the annotation instructions) on how the associated detail content is to be
handled, that is, whether to keep or remove the content. Figure 5-2 on page 149
shows an example HTML file, clipping actions (keep or remove) and the results
of these actions.

HTML
document
received

DOM
generation

HTML

Annotation
Engine

modifies
HTML DOM

DOM
transcoded
into target

dialect

Results
sent to

requesting
device

External
Annotation

file

preference
profiles

.

.

148 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 5-2 Sample annotation activity

Let us look at a list of the new annotation instructions in WebSphere Transcoding
Publisher 4.0:

– Insert markup - inserts rendered markup into a page by using a CDATA
section inside the element.

– Conditional annotation - annotation(s) are applied based on device or
network preferences.

– Fragmentation split points - tells the fragmentation engine where to break
a deck or a card. Note that the fragmentation engine has the final say on
where fragmentation occurs.

– Set preferences - allows dynamic setting of the preferences for this
particular HTML document.

– Machine translation enhancements - overrides the default values for
translation to achieve better translation results.

 Input HTML file
<HTML>
 <H1>Document Clipping</H1>................................</remove>
 <H2>External Annotation</H2>.............................</keep>
 <P>Wow we have this new
 Clipping technique.</P>
 <H2>Internal Annotation</H2>
 <P>Lets look adding internal annotations.........</remove>
 using NotePad as the editor.
 <P>WebSphere Studio makes.........................</keep>
 internal clipping easy</P>
</HTML>

 Resulting HTML file
<HTML>
 <H2>External Annotation</H2>
 <P>Wow we have this new
 Clipping technique.</P>
 <H2>Internal Annotation</H2>
 <P>WebSphere Studio makes
 internal clipping easy</P>
</HTML>

Annotations
 Chapter 5. Text clipping 149

5.3 External annotation
External annotation allows you to create a separate file (.ann file) which contains
the annotation instructions to perform document clipping on a particular HTML
document. This approach is useful when the annotation author does not own the
HTML document. The external annotation file consists of both the annotation
markup action and the exact location (the XPath) of the associated HTML
document tag or content to which the annotation instruction applies. Because the
annotations are in a separate file, the XPath expression is needed to indicate to
the annotation engine against which HTML element or content the annotation
instruction is directed.

Let us take a moment to understand the basics of XPath before looking more
closely at external annotations. XPath (a W3C specification) provides a syntax
for defining the specific parts of an HTML or XML document. An HTML or XML
document is hierarchica, with a root that contains all other elements; each
element can contain other elements. There is no limit to the levels of nesting that
can occur. Each element within this hierarchy (tree) has a unique path which
defines it. Ultimately, XPath is an expression language for these hierarchical
paths. Below, we show an HTML document and the associated XPath
expressions (with the syntax as shown in an external annotation file).
150 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 5-3 XPath example

An external annotation file can be created either with an editor such as Notepad,
or by using the External Annotation Editor. Our examples of external annotations
are created using the External Annotation Editor.

5.3.1 The external annotation language
Before we look at the External Annotation Editor, let us look at the external
annotation language. An annotation file is an XML documen, so it starts with the
XML version statement and is followed by the root of the document, the element
<annot version= 2.0>.

Note: The HTML[1]/BODY[1] XPath expression is part of all elements within
the BODY element. We did not include it because it appears on all sub
elements of BODY.

 Input HTML file
<HTML>../HTML[1]
 <BODY>.../HTML[1]/BODY[1]
 <H1>Document Clipping </H1>../H1[1]
 <H2>External Annotation</H2>....................................../H2[1]
 <P>Wow we have this new Clipping.............................../P[1]
 technique. We can:
 .../UL[1]
 Make the world a better place by................./UL[1]/LI[1]
 .../UL[1]/LI[1]/OL[1]
 Making web content viewable on..................../UL[1]/LI[1]/OL[1]/LI[1]
 handheld devices
 Opening the world to mobile workers............./UL[1]/LI[1]/OL[1]/LI[2]

 Solve world hunger..................................../UL[1]/LI[2]

 </P>
 <P>External annotations are fun to create.</P>......../P[2]
 </BODY>
</HTML>

XPath expression

Note: all XPath expressions within <BODY> have the same starting path of /HTML[1]/BODY[1]
 Chapter 5. Text clipping 151

Each annotation instruction is defined in a <description> element. A
<description> element consists of:

– condition=text - defines a condition that must be true for the annotation to
be applied. This attribute is optional.

– take-effect=before or after - indicates whether the annotation is to occur
before or after the target node.

– target=XPath expression - the target node as defined by the XPath
expression.

– action element - the action to be performed.

There are various annotation action elements including <comment>,
<contentlanguage>, <insertattribute>, <insertcomment>, <inserthtml>,
<insertmarkup>,<keep>, <remove>, <replace>, <replacewithhtml>,
<setpreference>, <splitpoint>, <table>, <wtsubject>.

Following is an example <description> element (annotation instruction) which
removes the first Heading level 1 <h1> within an HTML document. Any HTML
tags or content following this statement will be removed until either a Table tag is
encountered or another annotation instruction is processed.

Example 5-1 External annotation description element

<description take-effect="before" target="/HTML[1]/BODY[1]/H1[1]"><remove/>
 </description>

In the above example, the take-effect=”before” means that this annotation will
take effect before the <H1> tag is processed.

5.3.2 Using the External Annotation Editor
The External Annotation Editor is new within WebSphere Transcoding Publisher
4.0 and minimizes the education needed to create annotation files. Prior to using
the tool, you would need to understand a variety of techniques (including XML
syntax, XPath and the annotation language) before you could create an
annotation file. With this tool, you can easily create annotations by selecting the
HTML content you want to work with, selecting the action you want taken and
stepping through the associated wizard to complete the creation of that
annotation instruction. By using this process, the appropriate annotation
instructions, including the XPath expression, are created. The Annotation Editor
displays the HTML document and the corresponding annotation file side by side.
Both the HTML document and the annotation file can be viewed in outline and
source mode.
152 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The other features of the annotation editor include:

– One step drag and drop - allows you to indicate individual nodes or
regions of the HTML document that should be kept or removed.

– Wizards (smart guides) - once an action is selected, the associated wizard
leads you through building the particular annotation instruction details.

– Synchronized DOM and source view - both the HTML and annotation
document are provided in a DOM view or source view. This allows flipping
between the outline (DOM view) and the source view and retaining the
selections you have made between views.

– Full support for the annotation language version 1.0 constructs- this
includes keep, remove, replace, insert comment, insert attribute, and
distribute table headers.

– Support for most of the annotation language version 2.0 constructs - this
includes insert HTML, replace HTML, insert rendered markup and
splitpoints.
 Chapter 5. Text clipping 153

Getting Started with the Annotation Editor
Start the annotation editor from the Windows task bar, by selecting Start ->
Programs -> IBM Transcoding Publisher -> Toolkit -> Annotation Editor. The
annotation editor is shown in Figure 5-4 on page 154.

Figure 5-4 External Annotation Editor

The Annotation Editor window is composed of six major areas, which are:

1. Menu bar - provides access to general actions like file handling, edit
commands, view options, annotation constructs, and help.

2. Standard tool bar - provides icons which represent commonly used edit
commands and annotation constructs.

3. XPath display - an entry field allowing you to specify the XPath expression
which is applied to the document to locate specific elements within the
document. This is enabled when the HTML outline view is visible.

4. HTML Viewer - provides either a Outline or Source view of the HTML
document being worked on.

Menu Bar Standard Toolbar XPath Display

HTML Viewer Annotation Viewer Attribute Panel
154 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

5. Annotation Viewer - provides either a Outline or Source view of the annotation
file being created.

6. Attribute Panel - is an optional display area which contains any attributes
associated with a selected HTML element and allows you to modify the
attribute values by clicking the value and typing in the new value.

Opening files in the Annotation Editor
You can open an HTML file using the menu’s File -> Open HTML option or using
the Open HTML icon from the toolbar. The Open HTML option allows you to
either specify a URL for the HTML document or the location of the local
document. Only one HTML document may be open at a time.

You can open an existing annotation file using the menu’s File -> Open
Annotator option or using the Open Annotator icon from the toolbar. To create
a new annotation file, select the New menu option or use the New Annotator
icon from the toolbar. You can either browse to get the directory location for the
existing annotation file or specify the name of the new file.

Navigating Documents
As stated earlier, you can see the documents in either Outline or Source view.
You must use the Outline view to edit the HTML file, but the Source view allows
you to see the detail HTML structure and content. You can select (highlight)
elements in the Source view and switch to the Outline view to edit that same
element.

In order to expand or collapse the Outline views of the HTML document or the
annotation file, you can use either the menu bar View options or select tool bar
icons. The outline expand or collapse options are:

– Expand all elements

– Collapse all elements

– Expand a single element

– Collapse a single element

Searching within documents
The annotator editor has a search mechanism, which allows you to search for
text in the current HTML document. From the menu select Edit -> Find or select
the Find icon from the toolbar, then

1. Enter the search string.

2. Select the find options and the search direction (either forward or backward).

3. Click the Find button to start the search.

4. The first occurrence of the search string is highlighted in the HTML document
 Chapter 5. Text clipping 155

Creating annotations
Document clipping is the process of identifying the specific element(s) within an
HTML document that need to be either kept, extracted or tailored to meet the
needs of the client device. There are two key concepts to understand:

1. Clipping region - the area within the HTML document which has an
associated annotation instruction. The area may consist of one or more
elements of the HTML document.

2. Clipping state - the action to be taken by the annotation engine in that area of
the HTML document. The two key clipping states are Keep and Remove.

Annotation instructions are created using the following steps:

1. select the HTML element(s) that are the target of the annotation instruction.

– To select an element. either use the arrow keys or use mouse highlighting.

– To select multiple elements, either hold down the Control or Shift key or
click and drag the mouse to create a selection net.

2. Determine the clipping state.

– Select the Annotate option from the menu bar, then select the desired
clipping state, or

– Select the clipping state from the toolbar.

3. A wizard (smart guide) will lead you through the process of filling in the
annotation instruction. As an example, let us assume that you selected the
Keep clip state.

a. Specify where the Keep is to start, either before the specified HTML
element or after the specified HTML element.

b. Specify the Keep state, either all or selected; let us assume that you
selected the all option.

c. Click the Finish button.

4. Now the annotation instruction is created. Similar actions are taken for all
clipping activity. Now you can either return to step 1 to continue the clipping
process or move to step 5 to complete the activity.

5. To save your annotation file, from the menu bar select File ->Save.

In addition to the two clipping states (Keep and Remove), there are other
annotation instructions. The general instruction types are:

– Replace content - replaces any element with either plain text or HTML.

– Insert comments - inserts comments in the output HTML document.

– Insert attribute(s)- inserts additional attributes in an existing HTML
element.
156 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

– Insert HTML fragments - inserts HTML fragments into the HTML
document.

– Insert rendered markup fragments - inserts rendered markup into the
HTML document.

– Define splitpoints (fragmentation directives) - identifies where
fragmentation should occur.

– Distribute table headers - identifies tables with headers which, if converted
to lists, should have the table headers distributed over each row.

To create these instructions, use basically the same process as defined above;
however, the wizards may have questions or options specific to that instruction.

The current version of the External Annotation Editor does not support these
annotation instructions:

– Set preferences - modifies or extends the preference profile properties.

– Column - for clipping table columns.

– Row - for clipping table rows.

– Content language and wts subject - provides information for machine
translation.

– Condition - sets conditions to control annotation.

These instructions will be supported in a follow on release or an update.

5.3.3 External annotation file administration
The WebSphere Transcoding Publisher administration console is the tool used to
access all the resources with WebSphere Transcoding Publisher. For more
details on the administration console, look at the redbook New Capabilities in
IBM WebSphere Transcoding Publisher Version 3.5, SG24-6233.

Among other functions, the administration console is used to register your
annotation files and to identify the conditions which determine when the
annotation file is applied to the HTML page. A registered annotation file is shown
in Figure 5-5 on page 158.
 Chapter 5. Text clipping 157

Figure 5-5 Administration console with a registered annotation file

When you select an annotator in the Annotator subtree, the console displays all
the basic settings relevant to it in the right pane. The information displayed
includes:

– Name/ Description - the name and description of the annotator used within
WebSphere Transcoding Publisher. Note that this is the annotator
registration name (not to be confused with the actual annotation file
name).

– Annotator location - the path (file path or URL) to the location of the
annotation file.

– URL to annotate - the URL for the HTML file to be annotated.

One of the buttons at the bottom of this screen is the Advanced button, which
invokes the Advanced Annotator Selection Properties window, shown below. This
display allows you more selection criteria, by specifying Criteria within the HTTP
header and/or Criteria within the preference profiles.
158 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 5-6 Advanced Annotator selection criteria

The selection criteria matching the HTTP header can be a complex formula using
the AND or OR conjunctions as well as parentheses. It can read all the header
attributes of the HTTP request. The criteria matching preferences requires
key/value pairs (see Figure 5-6) that will match the key/value pair in one of the
profiles (device, network, user).

5.3.4 Sample scenario: Locate Expert
We are using the Locate Expert application from the Your Company (YourCo)
Web site. The Locate Expert application is a link off the YourCo home page. The
objective of the Locate Expert application is to allow the user to locate the person
with the selected expertise in the closest proximity to the requester. Starting at
the home page, we will now walk through the Locate Expert application, as it
appears on the Web.
 Chapter 5. Text clipping 159

On the home page, you can select the Locate An Expert link , as shown in
Figure 5-7.

Figure 5-7 YourCo main page

Next, you select the expertise from the list (see Figure 5-8) and click the Submit
button. If an expert exists close to you, the expert’s details, including name,
phone number and other information appear in a table at the bottom of the
screen.
160 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 5-8 Locate Expert Select

Figure 5-9 Locate Expert - Expert Found
 Chapter 5. Text clipping 161

If an expert does not exist, the lower portion of thewindow displays a message,
as shown in Figure 5-10.

Figure 5-10 Locate Expert - None found

The environment
We are using the same environment identified in Chapter 4, “Transcoding
application content” on page 113, which consists of two machines; both
machines use the Windows 2000 operating system. The development system
has the IBM WebSphere Transcoding Publisher Version 4.0 and the Nokia Toolkit
2.1 (as the target PvC device) loaded. WebSphere Transcoding Publisher is
configured as a reverse proxy. Because WebSphere Transcoding Publisher is
running as a reverse proxy, no configuration of the Nokia toolkit is needed.

The other machine has IBM WebSphere Application Server Version 3.5.4, IBM
HTTP Server Version 1.0 and DB2 Version 7.1 running. The YourCo application
has been loaded, which creates tables in the database and includes application
components within the application server.
162 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

First step: simplify
The first step in extending our Locate Expert application to the WAP device is to
simplify it. This allows us to think through the target user’s content needs and to
test the application flow before creating annotations.

Our intended user is an experienced user of the YourCo Web site. Therefore, the
wireless application will contain minimal instructions on how to use the
application. Dealing with an experienced user greatly simplified the screen
content but we still wanted to make the application as intuitive as possible.

Let us look at the Locate Expert application with the simplified windows. We start
with the YourCo home page, as shown in Figure 5-11.

Figure 5-11 Stripped YourCo home page

After selecting the Locate Expert Link, you will see the Locate Expert selection
page, as shown in Figure 5-12.

Figure 5-12 Stripped Locate Expert - selection

For the Expert Found display, we removed any unnecessary content to shrink the
display as much as possible. Note we are showing in the display only the results
portion of the screen.
 Chapter 5. Text clipping 163

Figure 5-13 Stripped Locate Expert - Expert Found

If an expert does not exist, the message displayed is shown as in the figure
below. Note that only the response portion of the screen is shown.

Figure 5-14 Stripped Locate Expert - No expert found
164 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

First annotation - YourCo home page
Our first annotation activity was to simplify the YourCo home page. As seen from
the simplification process, we want a simple YourCompany banner with a list of
the various applications.

The YourCo home page index.html file consists primarily of three tables:

– Table 1 - contains two rows: a row with the YourCo banner and a row with
another table containing the application menu bar. Our changes are:

• Replace the banner with the text Welcome to YourCo

• Remove the images from the application links

– Table 2 - contains the application index links with a description for each of
the applications. We are going to remove the entire table.

– Table 3 - contains the site copyright and contact information. We are going
to remove the entire table.

The HTML document for the YourCo home page is shown in the example below.
We are not showing the contents of document head tables 2 and 3 because we
will be removing them.

Example 5-2 YourCo home page HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<html>
<head>
</head>
<body background="/theme/bg.gif">
<CENTER>
<TABLE width="620">
 <TBODY>
 <TR>
 <TD colspan="10"><IMG src="/theme/topBanner.gif" border="0" alt="YourCo
banner" align="bottom" width="607" height="46"></TD>
 </TR>
 <TR>
 <TD colspan="10">
 <TABLE>
 <TBODY>
 <TR>
 <TD valign="middle" align="left" width="25"><IMG
src="/theme/buttonDWN.gif" width="20" height="20" border="0"></TD>
 <TD valign="middle" align="left" width="50">
Home</TD>
 <TD width="5"></TD>
 <TD><IMG src="/theme/button.gif" width="20" height="20"
border="0"></TD>
 Chapter 5. Text clipping 165

 <TD valign="middle" align="left" width="100"><FONT
size="-1">White Pages</TD>
 <TD width="5"></TD>
 <TD><IMG src="/theme/button.gif" width="20" height="20"
border="0"></TD>
 <TD valign="middle" align="left" width="100"><A
href="/WebSphereSamples/servlet/WebSphereSamples.YourCo.ExpHTMLServlet.Expiring
HTMLServlet/TheExpiringHTMLServlet" target="_top">YourCo
News</TD>
 <TD width="5"></TD>
 <TD><IMG src="/theme/button.gif" width="20" height="20"
border="0"></TD>
 <TD width="120" valign="middle" align="left"><FONT
size="-1">Employee Center</TD>
 </TR>
 </TBODY>
 </TABLE>
 </TD>
 </TR>
 </TBODY>
</TABLE>
</CENTER>
<CENTER>
<TABLE width="620" height="310"></TABLE>
</CENTER>
<CENTER>
<TABLE width="620" height="50">
</TABLE>
 <p> </p>
</CENTER>
</BODY>
</HTML>

Using the Annotation Editor, we created the annotation instructions to modify the
HTML document. Let us look at the annotation instruction created. First, within
table 1 we replace table row 1 with a new site welcome message.

Example 5-3 Annotation - replacing table row 1

<description target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[1]">
 <replacewithhtml>
<![CDATA[<P>Welcome to YourCo<P></BR>]]></replacewithhtml>
 </description>
166 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Still within table 1, we keep table row two, which contains a table with the
application navigation bar, but eliminate the image. Because this is a new table,
the annotation engine assumes it will be kept. This is shown in Example 5-4 on
page 167.

Example 5-4 Removeing the image

<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[2]/TD[1]/TABLE[1]">
 <remove tag="IMG"/>
 </description>

We also removed the home entry (image and text) in the navigation bar.

Example 5-5 Annotation - removing entries

<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[2]/TD[1]/TABLE[1]/TBODY
[1]/TR[1]/TD[1]">
 <remove/>
 </description>
<description take-effect="after"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[2]/TD[1]/TABLE[1]/TBODY
[1]/TR[1]/TD[2]">
 <remove/>
 </description>

After removing these rows, we keep the rest of the this table.

Example 5-6 Annotation - keep the rest of the entries in the navigation bar

<description take-effect="after"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[2]/TD[1]/TABLE[1]/TBODY
[1]/TR[1]/TD[4]">
 <keep/>
 </description>

Next, we remove the center tags in table two and table three with these
instructions:

Example 5-7 Annotation - removing center tags

<description take-effect="before" target="/HTML[1]/BODY[1]/CENTER[2]">
<remove/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[2]/TABLE[1]"><remove/>
 </description>
<description take-effect="before" target="/HTML[1]/BODY[1]/CENTER[3]"><remove/>
 </description>
 Chapter 5. Text clipping 167

<description take-effect="before" target="/HTML[1]/BODY[1]/CENTER[3]/TABLE[1]">
<remove/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[2]/TD[1]/TABLE[1]/TBODY
[1]/TR[1]/TD[4]">
<keep/>
 </description>

Before we look at the results in the Nokia Emulator, let us look at the External
Annotation Editor to see both the HTML file and the Annotation file. We removed
the display of the XPath and Attributes by using the menu bar View->Show
options. We did not expand the tables or all of the annotation instructions
completely, but this gives you an idea of what the screen looks like.

Figure 5-15 External Annotation Editor with files

The results of annotating and transcoding the YourCo main page as viewed on a
WAP simulator, look like those shown in Figure 5-16 on page 169.
168 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 5-16 YourCo Welcome, annotated

Between the YourCo main page and the selected application is frameset.html,
which contains two links: one to the Locate an Expert application and the other to
a blank.html file. We did not annotate this file, so when executing the application
you must select link 1 and click the link to get to the Locate an Expert
application.

Creating annotations - Locate Expert select
The HTML document used to display the Locate Expert select contains the
following:

– Navigation table - contains the links to home and other applications within
YourCo. This will be removed.

– Heading Level 2 - contains the text Locate an expert: , which will remain
unchanged.

– Paragraph - contains directions to selecting an expert; this is replaced with
the text Select expert.

– Form- contains a select element with options and an input element. The
form is kept but the input element is removed.

The specific HTML we are working on looks like that shown in Example 5-8.

Example 5-8 Locate an Expert select HTML

<p>Select the type of expertise you require:<p>
<form name="locate" method="post"
action="http://9.24.105.152:80/httppvc_clnss9.24.104.13/WebSphereSamples/servle
t/itso.wes.lbs.samples.FindExpert" target="results">
 <select name="expertise">
<OPTION>ANALYST
<OPTION>CLERK
<OPTION>DESIGNER
<OPTION>FIELDREP
<OPTION>MANAGER
<OPTION>OPERATOR
<OPTION>PRES
 Chapter 5. Text clipping 169

<OPTION>SALESREP
 </select>
 <INPUT TYPE="submit" NAME="Submit" ID="Submit" VALUE="Submit">
</form>

The annotation file we created is shown below.

Example 5-9 Annotation - Locate Expert Select

<?xml version='1.0' ?>
<annot version="2.0">
<description take-effect="before" target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]">
<remove/>
 </description>
<description target="/HTML[1]/BODY[1]/CENTER[1]/P[1]">
<replacewithhtml><![CDATA[<P>Select expert type:]]></replacewithhtml>
 </description>
<description take-effect="before" target="/HTML[1]/BODY[1]/CENTER[1]/FORM[1]">
 <keep/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/FORM[1]/SELECT[1]"><keep/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/FORM[1]/INPUT[1]"><remove/>
 </description>
</annot>

Because the annotation file is an XML file, the first statement is the XML version
statement. The next statement is the <annot> element, which is the root of the
document. The description instructions shown in the above example perform the
following activities:

1. Remove the navigation table and heading level 2 (these are not shown in the
HTML but are part of the HTML for each display in the Locate Expert
application).

2. Replace the instruction Select the type of expertise you require: with
the text Select expert type:

3. Keep the form, which during the transformation process is turned into a WML
<do> with a <go> that includes the URL.

4. Keep the forms select statement.

5. Remove the input statement.
170 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The Locate Expert selection viewed from an Nokia WAP emulator looks like this:

Figure 5-17 Locate Expert select on Nokia

Creating annotations - Locate Expert: No Expert Found
On the occasion when no expert is found, the application returns a message to
the requester as an HTML file indicating this condition. The No Expert Found
HTML file is shown below:

Example 5-10 Locate Expert - No Expert Found HTML

<BODY background="/WebSphereSamples/theme/bg.gif">
 <CENTER>
 <h4>Your Location is:</h4>
 <table width="50%" border="0" cellspacing="2" cellpadding="2">
 <tr align="left" bgcolor="#99CCFF">
 <td>Address</td><td>11000 Regency Parkway, Cary, NC,
27513.</td>
 </tr>
 <tr align="left" bgcolor="#99CCFF">
 <td>Country</td><td>USA</td>
 </tr>
 </table>

 <h4>There is no employee with the requested expertise in the office
nearest to you.

 Please contact Headquarters.</h4>
 </CENTER>
 </BODY>

The example has the following:

– Heading level 4 - with the text Your Location is:, which is kept.

– Table - contains the requester’s location. The first column of the table is
removed.

– Heading level 4 - contains the Not Found message. This is replaced by a
short message: No expert is near you. For assistance call
919-333-7878.
 Chapter 5. Text clipping 171

As you can see, the annotation instructions created for this HTML document
consist mostly of Keep and Remove instructions, so we will not discuss them.
The new type of instruction created is for the last Heading Level 4 (the Not Found
message). Here we used a replacewithhtml instruction (the instruction is
highlighted).

Example 5-11 Annotation - Locate Expert Not Found

<?xml version='1.0' ?>
<annot version="2.0" >
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]"><remove/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[1]/TD[2]"><keep/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[2]/TD[1]"><remove/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[2]/TD[2]"><keep/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/BR[1]"><remove/>
 </description>
<description target="/HTML[1]/BODY[1]/CENTER[1]/H4[2]">
<replacewithhtml><![CDATA[<P>No expert is near you.
For assistance
call
919-333-7878</P>]]></replacewithhtml>
 </description>
</annot>

The replacewithhtml wizard allows you to put both HTML tags and text in the text
entry window. The description instruction wraps the text and HTML within a
CDATA statement.

The WebSphere Transcoding Publisher Developer’s Guide discusses the
<table>, <column> and <row> annotation instructions to clip rows and columns
from tables. The annotation editor creates Keep and Remove statements (as
shown above) instead. These instructions (table, column and row) were created
as shorthand for developers creating annotation files manually. Since the
annotation editor generates the XPath as part of the <description> element,
these statements (table, column and row) are not part of the annotation editor.
172 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Creating annotations - Locate Expert: Expert Found
The challenge to working with the Expert Found information table in the Locate
Expert application was to make the table format nicely on the Nokia emulator. To
see the full table, refer to Figure 5-9 on page 161 for the desktop browser view of
the HTML document. The various device browsers and emulators decide how
they will display tables. So regardless of what we do in the annotation
instructions, we cannot make the table look nice, as you can see in Figure 5-18.

Figure 5-18 Locat Expert - Expert Found using tables

We decided that it was best to replace the table with a list. This is accomplished
by changing the device preferences for the Wireless Phone WAP device. The
Administration console is used to complete this activity, using the following steps:

1. Open the preference profile folder.

2. Open the device profile folder.

3. Select the Wireless Phone WAP profile. The Wireless Phone WAP profile is
displayed (as shown in Figure 5-19).

4. Select Convert Tables to Lists within the Lists checkbox.

5. Click the Save button.

6. Refresh the server.

First Try - phone number looks bad Later Try - name and phone
number look bad
 Chapter 5. Text clipping 173

Figure 5-19 Administration Console - Converting tables for a WAP device

You must be aware that making this change to the device profile is a universal
change. This change is now in effect for all HTML files targeted to this device.
Figure 5-20 shows the results of making this profile change.
174 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 5-20 Locate Expert -Expert Found: Nokia with Device preference change

The annotation file for the Expert Found is in the following example

Example 5-12 Locate Expert Found annotation file

<?xml version='1.0' ?>
<annot version="2.0">
<description target="/HTML[1]/BODY[1]/CENTER[1]/H4[1]">
<replacewithhtml><![CDATA[<p>Your Address:</p>]]></replacewithhtml>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[1]/TD[1]"><remove/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[1]/TD[2]"><keep/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[2]/TD[1]"><remove/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[1]/TBODY[1]/TR[2]/TD[2]"><keep/>
 </description>
<description target="/HTML[1]/BODY[1]/CENTER[1]/H4[2]"><replacewithhtml>
<![CDATA[-----------
The Expert
is:

]]></replacewithhtml>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[2]/TBODY[1]/TR[1]"><keep/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[2]/TBODY[1]/TR[2]"><keep/>
 Chapter 5. Text clipping 175

 </description>
<description target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[2]/TBODY[1]/TR[2]/TD[1]">
 <replacewithhtml><![CDATA[Phone#:</br>]]></replacewithhtml>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[2]/TBODY[1]/TR[3]"><remove/>
 </description><description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[2]/TBODY[1]/TR[4]"><remove/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[2]/TBODY[1]/TR[5]"><keep/>
 </description>
<description take-effect="before"
target="/HTML[1]/BODY[1]/CENTER[1]/TABLE[2]/TBODY[1]/TR[6]"><remove/>
 </description>
</annot>

Putting the application together
When we tested the individual annotation files, we enabled only the annotation
files needed for that particular path. To test the complete dialog, we enabled both
the Expert Found and Expert Not Found annotation files. Both of these
annotation files use the same URL which is
*/itso.wes.lbs.samples.FindExpert. So, regardless of the actual content
(Found or Not Found), the same annotation file was being used by the annotation
engine, causing erroneous displays for one of the paths.

The annotation engine needed further direction on which annotation file to use
for either the Found or Not Found HTML file. Annotation file selection can depend
on fields in the HTTP header or on preferences that are in effect for the HTML
document being processed by the annotation engine. In both instances, we were
using the same device, and our solution was to modify the HTTP header. Our
JSP developer added a unique field to the HTTP header. The field name was zzz
and the field value settings were:

– true - an expert was found

– false - an expert was not found

– error - there was an error

To verify the HTTP header change, we executed the Locate Expert on the
emulator and viewed the HTTP header in the Request Viewer’s Transaction
Header panel, shown in Figure 5-21.
176 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 5-21 Request Viewer - Transaction Header panel

Next, we registered this change for both annotation files using the Administration
Console. The annotation file registration panel (within the Administration
Console) has an Advanced Annotation Selection Properties window which allows
you to add special constraints for the annotation file. The Administration Console
with the Annotation Registration panel is shown in Figure 5-22.
 Chapter 5. Text clipping 177

Figure 5-22 Administration Console Register LocateFoundExpert.ann

By clicking the Advanced button on the registration screen, the Advanced
Annotation Selection Properties screen is displayed. The Compare condition is
entered in the condition entry field of the Criteria matching HTTP header box, as
shown below.

Figure 5-23 Administration Console Advanced Selection Properties Panel
178 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The condition was set for the following annotation files:

– LocateFoundExpert.ann - zzz= true

– LocateNoOneCondition.ann - zzz=false

With this change implemented, the annotation engine is able to determine the
correct annotation file to use with the HTML document. The emulator is receiving
the correctly annotated content.

One final challenge
As a final test, we selected the Locate Expert application in Internet Explorer
and, much to our surprise, the annotations were still in effect there also. We
needed to constrain the annotations further. We performed the following steps to
determine the User_Agent field set by the emulator;

1. Set the Trace level to High in the Administration Console; select Logs ->
Trace -> Properties to get the Transcoding Publisher Trace Properties
window and select the Trace Categories Level High radio button. Click the
OK button.

2. Run the Locate Expert application on the emulator; this will update the log file.

3. Make a copy of the trace file, which is found at */IBMTrans/Log.

4. Look in the trace file (copy) for the HTTP with the User_Agent value; the
HTTP header found in the log is shown in Example 5-13.

Example 5-13 HTTP header information from log file

2001.09.13 11:26:49.523 com.ibm.wbi.protocol.http.sublayer.HttpBackend
sendRequest Megs worker #5
 Final request header:
GET /WebSphereSamples/YourCo/Locate/frameset.html HTTP/1.0
Accept-Language: en
Cookie: sesessionid=SP5BTC4GOHZV2MGQYHV535Y
Accept-Charset: UTF-8, ISO-8859-1, ISO-10646-UCS-2
Connection: Keep-Alive
User-Agent: Nokia-WAP-Toolkit/2.1null
Date: Thu, 13 Sep 2001 15:26:49 GMT
Accept: */*
Host: 9.24.104.13

5. We found the User_Agent =Nokia-WAP-Toolkit/2.1 in the log file.

With the User_Agent information, we could determine the device profile that
applied, which was the WML Device, and selected the deviceType=WML Device
as our condition. We changed the Annotation file registration information to
reflect the deviceType as the constraint. This information was entered for each
annotation file in the Advanced Annotation Selection Properties window(s), as
shown next.
 Chapter 5. Text clipping 179

Figure 5-24 Advanced Annotator Selection Properties - deviceType

With the server refreshed, we tested our change, which worked effectively to
allow:

– The Internet Explorer browser to display the complete HTML content for
the application.

– The Emulator to display the annotated content for the application.
180 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

5.3.5 Testing an annotation file
Once the annotation file has been created, it must be tested to ensure that you
get the expected results. Various WebSphere Transcoding Publisher tools were
used in the test process:

– Request Viewer - used to watch the flow of the requests and responses
through the transcoding server. The Request Viewer is a helpful
debugging tool. When we encountered problems with edited (using
Notepad) annotation files, the DOS prompt helped us identify the error.

– Administration Console - used to register the annotation files, modify
preference profiles, and refresh the server, so that the server recognized
any changes we made.

– Internet Explorer - used to view the original Web application.

– Nokia Toolkit 2.1 - used to view our annotation results.

– External Annotation Editor - used to create and adjust the annotation files.

5.3.6 Hints and tips
Along the way, we learned various things that may be of use to you in your
development:

– When determining the URL to use when registering (with the
Administration Console), an annotation file may not be obvious because
the HTML is generated by JSPs or servlets. We found that the Nokia
Toolkit workbench displays the HTML URL for the content being displayed
on the Blueprint emulator.

– When using JSPs, capturing the HTML to be used by the Annotation
Editor is not always an obvious process. We found that you can get the
HTML for the IE browser by clicking the content with the right mouse
button and selecting Display Source from the pop-up menu. This source

Note: To start Request Viewer, we used a DOS prompt, set the class path
to the request view location */IBMTrans and entered the runtranscoding -g
command. This allowed us to use the prior version of the Request Viewer,
which does not expect RMI. This matched our local development
environment.

Note: Each time an annotation file is registered, the annotation registration
is altered, any other modifications occur via the Administration Console.
The server must be refreshed to have these changes take effect.
 Chapter 5. Text clipping 181

can then be saved to a file. Another approach is to change the trace level
to error (in the Administration Console); the response stream (going back
to the browser) is included in the log file. We copied the HTML from the log
file to an HTML file.

– The device preference settings are stored (in our case) in Program
Files/IBMTrans/etc/preferences/device/*.prop. The name-value pairs
contained in the properties can be used to set conditions.

– If you save changes to an annotation file using an editor such as Notepad
and that file is registered, you do not need to refresh the server. The next
time the annotation engine runs against that file, the changes are
processed.

– When trying to refine the output to the device, use the Nokia Toolkit
workbench to edit, save and run the changes. This way, you have a better
idea of the type of annotations that must be created to produce this output.

5.4 Internal annotation
Internal annotation allows you to include the annotation instructions as
comments within the HTML document to which they apply. Creating internal
annotations is useful when the annotation author has access to or owns the
HTML document. The HTML document can be changed either by editing the
HTML document directly or by using the WebSphere Studio Version 3.5.3 or
higher. The Page Designer within Studio is used to create the annotations.

5.4.1 WebSphere Studio Page Designer
Page Designer offers annotation support to give you greater control over how
pervasive computing devices will display your HTML. You can use Page Designer
to insert annotation tags directly into the HTML file. These annotation instructions
indicate what and how the HTML elements should be displayed when your pages
are served to the PvC devices. When the annotated HTML pages are requested
from the client device, WebSphere Transcoding Publisher tailors the content
based upon your annotation instructions and the characteristics of that particular
client device.
182 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Page Designer has many of the capabilities found in the External Annotation
Editor and includes the basic annotation instruction currently defined. Page
Designer supports the following annotation options:

– Remove or keep elements - for either individual elements or regions of the
HTML document

– Replace elements with text - to replace elements with straight text (without
any HTML included). If you include HTML tags in the text, they will be part
of the text displayed.

– Remove table columns or rows - to select which table rows and/or columns
to remove. You can remove multiple rows and columns in any combination.

– Propagate table labels - to allow column headings to be propagated as
labels with the row content when rendering tables as lists.

WebSphere Studio allows adding annotation instructions to the HTML or JSP
files, but it does not have a run-time environment for executing the annotation
instructions. WebSphere Transcoding Publisher is required to execute the
annotation instruction embedded in your HTML or JSP files.

Loading HTML and JSP
The YourCo Locate Expert was not created in WebSphere Studio. In order to get
the Locate Expert HTML and JSPs into Studio, we first created a project called
WTPforITSO within Studio. Within the WTPforITSO project is a Resource file
containing a WTPforITSO folder. We created blank .jsp and .html files with the
names of the HTML and JSPs in Locate Expert and copied the code into these
files. Here are the steps we followed:

1. Right-click the folder.

2. Select Insert -> File.

3. In the Insert File window, select either Blank.htm or Blank.jsp (whichever is
appropriate for the file type you want to copy).

4. In the File Name entry field, change the File name from Blank to the
appropriate name.

5. Click the OK button.

6. From NotePad, copy the original source and paste it into the file just created.

7. Save the new file.

We repeated these steps for all the HTML and JSP files.
 Chapter 5. Text clipping 183

Using Page Designer to annotate
Page Designer allows you to set the default clipping state for the pages within the
project. The default clipping state determines whether you plan to keep or
remove most of the elements with the document(s). So if the majority of your
activity on the files will be to keep content, set the default clipping state to Keep,
otherwise set it to Remove. To set the default clipping state, follow these steps:

1. Double-click an HTML or JSP file; this causes Page Designer to be invoked.

2. Click the Normal tab in the Page Designer window.

3. From the Menu bar select Page -> Page Properties.

4. In the Page Properties window, select the Annotation tab.

5. Select either the Keep or Remove radio button and click OK.

Remove or keep elements
To remove or keep elements in the HTML file or JSP:

1. Open that file within Page Designer and select the Normal tab, which allows
you to see the page representation.

2. Select a particular element or portion of the document that you want to
annotate.

3. From the main menu select Edit -> Annotate or right-click and from the
pop-up menu select Annotate.

4. Select the action you want to apply (Remove or Keep).

If the action you select is Remove, that element(s) appears with diagonal hash
marks to visually indicate that the element(s) will be clipped during transcoding.
This visual clue is optional and can be disabled from the main menu by selecting
Tools -> Page Designer Options and clicking the Annotation tab. Within the
Annotation tab, deselect the Show removed regions with shaded overlay box
and click the OK button.

Replace elements with text
You can replace any HTML element in your page with a text string.To replace an
element with text:

1. Select the text element.

2. From the menu select Edit->Annotate->Set Text Replacement.

3. A Text Replace Window appears; type your replacement text.

4. Click OK.
184 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Remove table columns or rows
You can use Page Designer to remove any table column or table row that is not
essential to the page content. Rows and columns may be clipped in any
combination. To remove a row or column from a table:

1. Select a cell in the row or column you want to remove.

2. From the main menu, select Edit->Attributes.

3. Select the table from the tab pull-down (if not already selected) that adds
various tabs to the window.

4. From the Attributes window, select the Annotation tab.

5. Within the Annotation tab, select the Remove this row and/or the Remove
this column checkbox.

6. Click OK.

Propagate table labels
WebSphere Transcoding Publisher can convert tables to lists for better viewing
on a PvC device. When tables are converted to lists, each row is converted to a
list and then appended to the previous row. In order to keep it clear as to which
list entry goes with which heading, you can specify that the headings be
propagated with the cells when they are displayed. To make this happen:

1. Select a cell within the table.

2. From the main menu, select Edit-> Attribute.

3. Select the table from the tab pull-down (if not already selected) that adds
various tabs to the window.

4. In the Attributes window, select the Annotation tab.

5. In the Propagate labels pull-down menu, select Row.

6. Click OK.

To understand visually what this means, Figure 5-25 on page 186 shows the
“before” table and the resulting list with the heading propagated to the rows.
 Chapter 5. Text clipping 185

Figure 5-25 Table propagation example

5.4.2 Sample scenario: Locate Expert
In our environment, we used WebSphere Studio Version 4.0. We are using the
YourCo Locate Expert application, which was also used as the External
Annotation sample scenario. In this example, we show the different types of
annotations that can be performed with Studio and the resulting annotation
instructions. Propagating table labels will not be shown in our sample scenario
because the tables in this application do not have headings.

Remove or keep elements
In Page Designer, the Remove Elements annotation is visually interesting
because the element(s) designated with Remove appear with diagonal slashes
through them. This indicates that WebSphere Transcoding Publisher will delete
this content. The steps to remove or keep elements are explained in “Remove or
keep elements” on page 184. In Page Designer, we have the LocateInput.html
file, shown in Figure 5-26 on page 187.

N a m e A g e

Te d 2 5
B o b 3 5
E r ik 3 5

A f te rB e fo r e
N a m e Te d
A g e 2 5
N a m e B o b
A g e 3 5
N a m e E r ik
A g e 3 5
186 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 5-26 LocateInput.HTML in Page Designer

We removed the YourCo banner by selecting it (the frame around it becomes
pink) and right-clicking Select Annotation->Set Remove Region. The HTML for
the YourCo banner now has diagonal lines through it.

Figure 5-27 LocateInput.HTML in page designer with YourCo banner removed
 Chapter 5. Text clipping 187

The annotation instruction is placed in the HTML as a comment prior to the
HTML tag; the instruction is shown below. The original statement starts with
<IMG.

Example 5-14 Remove Annotation Instruction

<!--METADATA type="Annotation" startspan
<?xml version="1.0"?><annot version="1.0"><remove /></annot>--> <IMG
src="/WebSphereSamples/theme/topBanner.gif" border="0" alt="YourCo banner"
align="bottom" width="607" height="46">
<!--METADATA type="Annotation" endspan
<?xml version="1.0"?><annot version="1.0"><keep /></annot>
-->

The second annotation (keep) was placed in the code because the default
annotation state is Keep.

Replace elements with text
We used the ResultsNotFound.jsp to show text replacement. This replaces the
specified text within the JSP, along with any associated HTML tags. This
instruction should be used carefully because the new content may not appear on
the device as you want it to. Let us start with the Page Designer display of
ResultsNotFound.jsp, where the text area has been selected.

Figure 5-28 ResultsNotFound.jsp in Page Designer

Next, right-click and select Annotate->Select text replacement. The Text entry
window appears; we typed in the replacement text.
188 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 5-29 Replacement text

The annotation that is created is as follows; the original text is in bold and starts
with <h4>.

Example 5-15 Replacement text

<!--METADATA type="Annotation" startspan
<?xml version="1.0"?><annot version="1.0">
<replace><text>No expert was found. For assistance contact
Headquarters.</text></replace></annot>
-->
<h4>There is no employee with the requested expertise in the office nearestto
you.

Please contact Headquarters.</h4>
<!--METADATA type="Annotation" endspan-->

Remove table columns and rows
We used the ResultsFound.jsp to show the process of removing rows and
columns from tables. Here we start with the Page Designer display of
ResultsFound.jsp’s two tables, where Table 1 first column and first row are
selected (containing the word Address).
 Chapter 5. Text clipping 189

Figure 5-30 ResultsFound.jsp before Annotation

With the table entry selected:

1. Right-click, select Attributes from the Attributes window .

2. Select Annotation.

3. Select the Remove this column checkbox.

This will remove the first column of this table. In the second table, we removed
specific rows including Job, Department, and Country. Once a specified row was
selected, the same steps as stated above were executed, except that the final
step was to select the Remove this row checkbox. After these action were
performed, the Page Designer view showed the two tables with the appropriate
rows and columns marked.
190 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 5-31 ResultsFound.jsp After Annotating Tables

The annotation instructions created for the first table are shown in the following
example.

Example 5-16 ResultsFound.jsp Table Annotations

<TABLE width="50%" border="0" cellspacing="2" cellpadding="2">
<tr align="left" bgcolor="#99CCFF">
<!--METADATA type="Annotation" startspan
<?xml version="1.0"?><annot version="1.0"><remove /></annot>-->
 <td>Address</td>
<!--METADATA type="Annotation" endspan
<?xml version="1.0"?><annot version="1.0"><keep /></annot>-->
<td><%= _u0_6 + ", " + _u0_7 + ", " + _u0_8 + ", " + _u0_9 + "." %></td> </tr>
<tr align="left" bgcolor="#99CCFF">
<!--METADATA type="Annotation" startspan
<?xml version="1.0"?><annot version="1.0"><remove /></annot>-->
<td>Country</td>
<!--METADATA type="Annotation" endspan
<?xml version="1.0"?><annot version="1.0"><keep /></annot>-->
<td><%= _u0_10 %></td> </tr>
</TABLE>
 Chapter 5. Text clipping 191

Final results
We performed many of the same annotations with internal annotations as we
performed with the external annotations, with the exception of some of the text
content changes. The Locate Expert application with all the annotations applied
looks as shown in Figure 5-32 on page 192.

Figure 5-32 WAP device - Results of internal annotation

Notice how the text wraps on the very first screen (Locate an Expert). This is
because we used the Replace text annotation to shorten the instruction to the
user and lost the associated HTML tags.

Found Designer Expert

No Analyst Found

Did not show the
multiple select submit
screens.
192 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

5.5 Text Clipping with Java
Another way to perform document clipping is to create your own custom
transcoders, known as text clippers. Text clipper are written in Java, allowing you
to manipulate the target document (the target document can be HTML or any
other presentation markup language). You can write a text clipper to work with
the target document in either of these forms:

– A Document Object Model (DOM) representation of the target document

– The target document in text form

Operating on the text document is challenging because you must write code to
handle the content and to handle and manage the element nodes as well.
Working with the text document increases the complexity of your code.

To simplify development, WebSphere Transcoding Publisher has added
capabilities enabling you to work with the target document. These WebSphere
Transcoding Publisher capabilities are found in the following classes:

– TextClipper - a (Response) editor provides functions for clipping text from
either the DOM or the text document.

– DomUtilities - this provides various utilities for working with the DOM, for
example, finding specific nodes within the DOM and manipulating them.

Developing text clippers using the DOM allows you to take advantage of these
classes, their capabilities and other XML Parser functions. However, you must
evaluate the approach that best meets your needs and develop the appropriate
text clipper.

You can implement the text clipper to either of these APIs:

– Web Intermediaries (WBI) APIs - allowing you to create a WebSphere
Transcoding Publisher plug-in (known as a MEG).

– Java Servlet Version 2.1 API - allowing you to create an independent
transcoder (known as a MEGlet).

Creating a MEGlet provides you with portability across platforms and
environments and takes advantage of the Web server. However, creating a MEG
allows you to take advantage of other transcoders, which aids in manipulating the
document and helps provide greater control over the processing. You must
determine how and where you want your text clipper to run and how it should
function in your environment. For more details on these approaches and other
considerations, look at the WebSphere Transcoding Publisher Developers Guide,
which can be found at
www.ibm.com/software/webservers/transcoding/library.html.
 Chapter 5. Text clipping 193

5.5.1 Sample scenario - YourCo main page text clipper
We created a text clipper to clip the YourCo main page. Our text clipper works on
the HTML page once it has been converted into WML. Our clipper uses the WML
DOM as input; we also know that all the images have been removed. Our text
clipper is a WBI plug-in and performs the following processes against the WML
DOM:

– Find the menu bar Home entry and change the text Home into the text
YourCo! Welcome!

– Keep the anchors in the menu bar (White Page, YourCo News, Employee
Center, and Locate an Expert)

– Remove almost everything else in the document (everything between the
text Welcome! and the <do> element at the end)

To make it easier, we copied an existing WebSphere Transcoding Publisher text
clipping example (IBMStockClipperDom.java), named it MainClipDom.java and
made the necessary modifications.

Creating MainClipDom
Our directory structure for the clipper consists of:

– The root - aYourCoTextClip which contains the .java file, the .make file, and
our .bat file.

– The subdirectory YourCo, which contains the property file.

Each of these components will be discussed, but first let us look at the source
code. Our imports areas shown in Example 5-17:

Example 5-17 Import statements

import java.util.Enumeration;
import java.io.IOException;
import java.lang.String;

import org.w3c.dom.Node;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;

import com.ibm.wbi.Plugin;
import com.ibm.wbi.PluginError;
import com.ibm.wbi.RequestEvent;
import com.ibm.wbi.SystemContext;
import com.ibm.wbi.MegContext;
import com.ibm.wbi.MegInputStream;
import com.ibm.wbi.MegWriter;
194 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

import com.ibm.wbi.RequestRejectedException;

import com.ibm.transform.TranscoderConstants;
import com.ibm.transform.textengine.DomMegObject;
import com.ibm.transform.textengine.mutator.DOMUtilities;
import com.ibm.transform.textengine.mutator.DOMMutator;
import com.ibm.transform.textengine.mutator.MutatorContext;
import com.ibm.transform.textengine.mutator.TextClipper;
import com.ibm.transform.textengine.mutator.wml.WMLPrinter;

The MainClipDom.java file contains two classes:

– MainClipDom - which extends Plug-in and creates an instance of the
second class (MainClipDomEdit).

– MainClipDomEdit - which extends TextClipper and accesses and
manipulates the DOM.

The code for MainClipDom.java is as follows:

Example 5-18 MainClipDom.java

public class MainClipDom extends Plug-in
{
 public void enable()
 {
 MainClipDomEditor meg = new MainClipDomEditor();
 try {
 addMeg(meg);
 }
 catch (PluginError pe) {
 pe.printStackTrace();
 }
 }
}

Let us take a look at the MainClipDomEdit.java class construct and its instance
variables. As you can see, there are various variables which are used for
matching against the DOM content, and a method getPropertiesName() which
returns the associated property file.

Example 5-19 MainClipDomEdit construct

class MainClipDomEditor extends TextClipper
{
 /** * The content type used for our input is WML*/
 private static final String WML_CONTENT_TYPE = "text/vnd.wap.wml";
private static final String SETUP_PROPERTIES = "plugins/YourCo/MainClipDom";
 /*** Key WML tags used for matching within the DOM */

 Chapter 5. Text clipping 195

private static final String PARAGRAPH_ELEMENT_TAG_NAME = "P"; //* PARAGRAPH
private static final String DO_ELEMENT_TAG_NAME = "DO"; //*DO element
private static final String ANCHOR_ELEMENT_TAG_NAME = "A"; //* anchor
private static final String BOLD_ELEMENT_TAG_NAME = "B"; //* bold
private static final String BREAK_ELEMENT_TAG_NAME = "BR"; //* break
private static final String IMAGE_ELEMENT_TAG_NAME = "IMG"; //*image
/*****
* getPropertiesName()
******/
public String getPropertiesName()
 {
 return SETUP_PROPERTIES;
 }

The DOM processing occurs in the handleRequest(), which is called by WBI
when the request being processed matches the conditions associated with this
clipper. The conditions must be defined in the properties file. This first part of the
method performs setup and verification activities.

Example 5-20 handleRequest() part 1

public void handleRequest (RequestEvent reRequest)
 throws RequestRejectedException, IOException
 {
System.out.println("MainClipDomEditor handling request");
//--
 // Get the MegContext
 //--
 MegContext megContext = reRequest.getMegContext();
//---
 // The MIME-type that we should generate.
 // This is required in order to do any processing.
 //---
 Enumeration contentTypes = getPreferredContentTypes(reRequest);
 if (!contentTypes.hasMoreElements())
 {
 //--
 // Must have an output type so we know what to generate
 //--
 System.err.println("No output content-type specified. " +
 "Check the preferences files.");
forwardErrorPage(reRequest, 417, "TC_MISSING_TARGET_CONTENT_TYPE",
 WML_CONTENT_TYPE);
196 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 return;
 }

 DomMegObject domMegObject = null;

 String sOutputPage = ""; //default to empty page

 String contentType="";

The next portion of handleRequest() method:

– Determines the contentType,

– Obtains the paragraph within the card element of the DOM, and

– Finds the text Home within the DOM.

Example 5-21 handleRequest() part 2

if(contentTypes.hasMoreElements())
 {
contentType = contentTypes.nextElement().toString();
 if(contentType.equalsIgnoreCase("text/vnd.wap.wml"))
 {
 Document doc = (Document) getTranscodedDOM(reRequest);
 if(doc == null)
 {
 throw new RequestRejectedException();
 }
 Node pNode = DOMUtilities.findNodeOfType(doc,
PARAGRAPH_ELEMENT_TAG_NAME);
 if(pNode != null)
 {
 Node startNode =
DOMUtilities.findChildWithNodeMatchingPattern(pNode,

"*Home*", true);
 if(startNode == null)
 {
 System.out.println("** could not find Home **");
 }

Next, the code looks for the text Welcome! because the text and everything
associated with it up to the <do> tag is removed, as shown in Example 5-22.

Example 5-22 handleRequest() part 3

if(startNode != null) {
 System.out.println("*** startNode *** " +
startNode.getNodeName());

 Chapter 5. Text clipping 197

 //--
 // Find parent node
 //--
 Node parent = startNode.getParentNode();
 System.out.println("*** parent of startNode *** " +
parent.getNodeName());
 //--
 // We need to skip over everything until the Welcome!
 //--
 boolean found = false;
 Node ignoreNode =
DOMUtilities.findChildWithNodeMatchingPattern(pNode,

"*Welcome!*", true);
 //---
 // Now just remove everything up to the
 // DO element node at the end.
 //---
 while(
 (ignoreNode != null) &&

!ignoreNode.getNodeName().equalsIgnoreCase(DO_ELEMENT_TAG_NAME)
)
 {
 Node nextSibling = ignoreNode.getNextSibling();
 parent.removeChild(ignoreNode);
 ignoreNode = nextSibling;
 }
 //--
 // Now remove any remaining image nodes. These
 // may exist because disposeImages=false ** this is just in
case
 //--
 Node imageNode = DOMUtilities.findNodeOfType(pNode,
IMAGE_ELEMENT_TAG_NAME);
 while(imageNode != null)
 {
 imageNode.getParentNode().removeChild(imageNode);
 imageNode = DOMUtilities.findNodeOfType(pNode,
IMAGE_ELEMENT_TAG_NAME);
 }

Now, the handleRequest() method searches through the remaining tree for the
text node contains Home and, once that is found, replaces it with the text YourCo!
Welcome! This is a recursive routine that looks at the nodes and their children,
trying to find the text node containing Home.

Example 5-23 handleRequest() part 4
198 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

if (startNode.hasChildNodes()){
NodeList children = startNode.getChildNodes();
 NodeList babes;
 System.out.println("*** # of Children *** " +
children.getLength());
 int k = 0; int i = 0;
 for(i=0; k<children.getLength(); i++){
 if (children.item(i).hasChildNodes()) {
 babes = children.item(i).getChildNodes();
 for(k=0; k<babes.getLength(); k++){
 System.out.println("babes / type " +
babes.item(k).getNodeName() + "/" +
 babes.item(k).getNodeType());
 if (babes.item(k).getNodeType() ==
org.w3c.dom.Node.TEXT_NODE){
 System.out.println("*** OLD text node value *** " +
babes.item(k).getNodeValue());
 if (babes.item(k).getNodeValue().equals("Home")){
 babes.item(k).setNodeValue("YourCo! Welcome!");
 }
 System.out.println("*** New home value *** " +
babes.item(k).getNodeValue());
 }//* end if
 } //* end for k
 } //* end if
 } //* end for i
 } //* end if has childNodes

The final portion of the handleRequest() method performs the following:

– Generates the DomMegObject from the modified DOM,

– If no DomMegObject can be created, uses the input RequestEvent, and

– If neither of these include any content (null), generates an error, otherwise
the appropriate object is written out.

Example 5-24 handleRequest() final part

WMLPrinter printer = new WMLPrinter();
 domMegObject = new DomMegObject(doc, contentType, printer);
 }
 else
 {
 System.err.println("Did not find node matching \"HOME \"");
 }
 }
 }
 }
 //--
 Chapter 5. Text clipping 199

 // If we don't have a DOM object generated, let's just get the
 // input page and use that as the output
 //--
 if(domMegObject == null)
 {
 //---
 // Grab the input page since using the DOM had a problem.
 //---
 sOutputPage = getInputPage(reRequest);
 }
if ((domMegObject == null) && (sOutputPage.length() == 0))
{
 //--
 // Forward an error page since we got no output. The created
 // page should have a translated page indicating the
 // generated page was empty
 //--
 forwardErrorPage(reRequest, 417, "TC_EMPTY_PAGE", WML_CONTENT_TYPE);
} else {
reduceHeader(reRequest);
if(domMegObject != null) {
 writeOutput(reRequest, domMegObject);
 } else {
 writeOutput(reRequest, sOutputPage);
 }
}
System.out.println("MainClipDomEditor done handling request");
 }
}//* end class

Compiling MainClipDom
In order to compile MainClipDom.java, we had to modify our .bat file to include
JDK 1.3 and the following .jar files:

– xerces.jar

– xalan.jar

– log.jar

– htmltemplate.jar

– servlet.jar

– bsf.jar

– wtpcommon.jar

– wtpserver.jar

– wtpadmin.jar
200 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Creating our property file
A text clipper will have one or more property files associated with it. We created a
single property file containing both the plug-in registration information and the
execution conditions. Our conditions indicate that MainClipDom will run when the
URL contains */YourCo/index.html (regardless of case) and when the content
type is text/vnd.wap.wml. Our property file is as shown in Example 5-25.
 Chapter 5. Text clipping 201

Example 5-25 Property file

#Properties of MainClipDom
Class=MainClipDom
Description=Performs text clipping on YourCo Main page transcoded to WML
DescriptiveName=YourCo Main DOM-Based WML Text Clipper
Major=1
Minor=0
Name=YourCo Main DOM-Based WML Text Clipper
Condition=(url~*/YourCo/index.html) & (content-type=text/vnd.wap.wml)
Priority=3

Creating a .jar file
The Administration Console registers a new transcoder from a .jar file containing
the class(es) and the property file. We used a makefile to create our. jar file; the
makefile is shown below.

Example 5-26 Makefile

@REM Make the Plugin Jar file for the DOM-Based Text Clipper
jar -cf MainClipDom.jar MainClipDom.class MainClipDomEditor.class
YourCo\MainClipDom.prop

Registering the transcoder
We used the Administration Console to register our transcoder. The
Register->Transcoder option started the wizard to register the transcoder. The
wizard asked the location of the .jar file, and with this information was able to
preload the other wizard panels. The MainClipDom registration is shown in
Figure 5-33.

Figure 5-33 Registration of the MainClipDom .jar file
202 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

After the transcoder was registered and the server was refreshed, we used the
Nokia emulator to view our clipper; the final results are shown in Figure 5-34.

Figure 5-34 Text clipping results

5.6 Exporting and importing configuration data
WebSphere Transcoding Publisher version 4.0 has added Import and Export
functions which use a WebSphere Transcoding Publisher-independent XML
configuration file. This capability helps you manage your WebSphere
Transcoding Publisher server environment very efficiently and effectively.
WebSphere Transcoding Publisher has commands that enable you to:

– Capture and preserve key aspects of your existing configuration when you
migrate to a new version of WebSphere Transcoding Publisher.

– Use the exported configuration file as a base for a new configuration for
situations like these.

– Change the existing configuration because of directory path changes
without going through the Administration Console.

– Add various style sheets and/or annotators to your configuration without
registering them individually using the Administration Console.

– Replicate your configuration across other instances of WebSphere
Transcoding Publisher.

– Import a Cocoon properties file, so you can use WebSphere Transcoding
Publisher with a Cocoon-based application.

– Define your networks RMI registry server, which is used to notify
WebSphere Transcoding Publisher servers of changes to server models.
 Chapter 5. Text clipping 203

The new XML configuration is an XML dialect, which contains the WebSphere
Transcoding Publisher configuration information. The XML configuration file has
information about the Setup resources; including local settings information and
the WebSphere Transcoding Publisher resources. The information about the
resources can be modified, deleted or added to fit your configuration needs and
to make your configuration changes easier. The XML configuration contains the
following types of setting and resources:

– Settings (basic WebSphere Transcoding Publisher settings; Firewall,
Proxy Port, Reverse Proxy and Server setup)

– Annotators

– Preference profiles (Device, Network and User)

– Plug-ins (transcoders)

– Stylesheets

It is important to understand that the XML configuration does not contain the
resources themselves, but rather the registration information. The stylesheets
(.xsl files), annotators (.ann files) and custom transcoders (.jar files) must be
copied to the target machine and into the appropriate directories. The preference
profiles are copied with the XML configuration, so you do not need to deal with
them separately.

Copying the resource files should be done before you import the configuration,
otherwise you will get warning errors for each item in the XML configuration file
that does not already exist in the specified locations.

There are two ways in which the configuration information can be captured:

– Back up the resources in WebSphere Transcoding Publisher-dependent
XML format, which is created directly from WebSphere Transcoding
Publisher definitions without changes to the structure or names.

– Export the resources in WebSphere Transcoding Publisher-independent
XML format, a very readable XML format that contains the same
information as the WebSphere Transcoding Publisher-dependent format,
but has more expressive element names.

You can use the Administration Console to import and export configuration
information (using the XML configuration file). The XML configuration file allows
you to copy information from one server to another. You can add or modify
resources specifics contained within the XML configuration file without
registering those resources using the Administration Console beforehand.

Note: The WebSphere Transcoding Publisher settings do not include any
WebSphere Application Server settings.
204 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The Import and Export functions available through the Administration Console,
within the File menu option, are:

– Export - creates a file containing an XML representation of the selected
WebSphere Transcoding Publisher resources. You can select which
resource types or specific resources to include.

– Export All - creates a file containing an XML representation of all the
WebSphere Transcoding Publisher resources defined for this server or
server model, plus the local settings defined for the server.

– Import - imports a file containing an XML representation of a set of
WebSphere Transcoding Publisher resources. The XML configuration file
will be validated as the file is read.

The backup and restore functions available through the Administration Console
within the Settings menu option are:

– Backup - creates a WebSphere Transcoding Publishe- dependent format
file with all the configuration information for the local server or the open
server model. This information includes all WebSphere Transcoding
Publisher resources and settings. You could use this for regularly
scheduled server backups.

– Restore - restores a server or server model configuration that was created
using the Backup function.

You can also issue the following commands outside the Administration Console:

– ExportResource - exports WebSphere Transcoding Publisher resources to
the WebSphere Transcoding Publisher (independent format) XML
configuration file or, if the -Node argument is included in the command, to
a WebSphere Transcoding Publisher (dependent format) XML
configuration.

– ImportResource - imports WebSphere Transcoding Publisher resources
from the WebSphere Transcoding Publisher (independent format) XML
configuration file or, if the -Node argument is included in the command,
from a WebSphere Transcoding Publisher (dependent format) XML file.

– BackupResources - exports WebSphere Transcoding Publisher resources
to the WebSphere Transcoding Publisher (dependent format) XML file.

– BackupConfig - exports WebSphere Transcoding Publisher configuration
information to a WebSphere Transcoding Publisher (dependent format)
XML file.

– RestoreResources - imports WebSphere Transcoding Publisher resources
from the XML file created by a BackupResources Command.
 Chapter 5. Text clipping 205

– RestoreConfig - imports WebSphere Transcoding Publisher resources
from the XML file created by a BackupConfig command.

– ImportCocoon - imports a Cocoon properties file to support Cocoon
functionality.

These commands have various arguments, which are:

– The -File (filename) - specifies the name of the file to export to; the default
is WebSphere Transcoding PublisherResouces.xml.

– The -Append - (for export commands only) appends new resources to the
specified file; the default is No.

– The -ResourceType - (for export and import commands only) identifies the
resources by the specified resource type (style sheet, annotator, plug-in,
preference profile). The default is All Types.

– The -Node - (for export and import commands only) the definitions of the
specified resources by node name. This requires the path of the resource.

– The -Comment - (for export and backup commands only) adds the
specified text to the file as a comment.

– The -Encoding - encoding for the XML configuration file. The default is
UTF-8.

– The -Help - displays help for the command. The default is False.

– The -Debug - writes messages to the console as records are written to the
configuration file. The default is False.

It is possible to use the XML configuration file as a migration tool, but we will not
be discussing this here. That topic is covered in the WebSphere Transcoding
Publisher Developer Guide under the heading Using XML configuration as a
migration tool, found at www.ibm.com/software/web
servers/transcoding/library.html.

The XML configuration file allows you to manage your WebSphere Transcoding
Publisher configuration very effectively. To modify the XML configuration file, you
must edit it using the Export function. Then, import the modified configuration to
the target WebSphere Transcoding Publisher servers. To minimize the copying or
movement of the resources themselves, place them on a Web server instead of
on the machine with the WebSphere Transcoding Publisher instance. When
using a Web server, the resources can be accessed by a WebSphere
Transcoding Publisher server using HTTP.
206 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

5.6.1 Sample scenario: export and import configuration
In this scenario, we are setting up another machine with our WebSphere
Transcoding Publisher development environment configuration and we want to
change the directory location of the annotators. We are using:

– The Administration Console (on the development machine) to export the
XML configuration,

– Notepad to modify the configuration, and

– The Administration Console (on the target machine) to import the
configuration.

Prior to exporting the configuration, we saved the annotation files (.ann), created
a new directory on the target machine and copied the annotation files into the
specified directory. Next, we performed the following steps:

1. Using the Administration Console (on the development machine), we selected
the Export All option from the File entry in the menu bar. We specified the
directory in which to store the configuration file and its name, as shown in
Figure 5-35.

Figure 5-35 Exporting the configuration

2. By using the Export All option, the XML configuration file included the
preference profile settings, so our changes to the Wireless Phone - WAP
device profile (Remove images and Convert tables to rows) were included in
 Chapter 5. Text clipping 207

the configuration. The portion of the XML configuration file containing our
annotators information is shown in Example 5-27.

Example 5-27 XML Configuration - an annotation

<Annotator><Folder>ibm/itsotest</Folder>
<SelectorName>Welcome</SelectorName>
<Name>Welcome</Name>
<Description>Stream line YourCo Welcome</Description>
<URL>*/YourCo/index.html</URL>
<Location>C:/aYourCoWork/Annotations/Welcome.ann</Location>
<Enable>true</Enable>
</Annotator>
<Annotator><Folder>ibm/itsotest</Folder>
<SelectorName>LocateInput</SelectorName>
<Name>LocateInput</Name>
<Description>This ann file is for the Locate Input html within YourCo</Description>
<URL>*/LocateInput.html</URL>
<Location>C:/aYourCoWork/Annotations/LocateInput.ann</Location>
<Keys><Key Name="User_Agent">Nokia-WAP-Toolkit/2.1</Key>
</Keys>
<Enable>true</Enable>
</Annotator>
<Annotator><Folder>ibm/itsotest</Folder>
<SelectorName>LocateNoOneCondition.ann</SelectorName>
<Name>LocateNoOneCondition.ann</Name>
<Description>Fix No expert clash with Found expert .ann file</Description>
<URL>*/itso.wes.lbs.samples.FindExpert</URL>
<Location>C:/aYourCoWork/Annotations/LocateNoOneCondition.ann</Location>
<Keys><Key Name="condition">zzz=false</Key>
</Keys>
<Enable>true</Enable>
</Annotator>
<Annotator><Folder>ibm/itsotest</Folder>
<SelectorName>LocateFoundExpert.ann</SelectorName>
<Name>LocateFoundExpert.ann</Name>
<Description>Locate the Found Expert Annotation</Description>
<URL>*/itso.wes.lbs.samples.FindExpert</URL>
<Location>C:/aYourCoWork/Annotations/LocateFoundExpert.ann</Location>
<Keys><Key Name="User_Agent">Nokia-WAP-Toolkit/2.1</Key>
<Key Name="condition">zzz=true</Key>
</Keys>
<Enable>true</Enable>
</Annotator>

3. Next, we editted information about our annotators; our edits included:

a. Changing some of our annotator names and descriptions

b. Changing our annotators’ directory name from aYourCoWork to YourCo
208 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The same portion of the modified XML configuration file is shown in
Example 5-28.

Example 5-28 Modified XML configuration

<Annotator><Folder>ibm/itsotest</Folder>
<SelectorName>Welcome</SelectorName>
<Name>Welcome</Name>
<Description>YourCo Welcome Page</Description>
<URL>*/YourCo/index.html</URL>
<Location>C:/YourCo/Annotations/Welcome.ann</Location>
<Enable>true</Enable>
</Annotator>
<Annotator><Folder>ibm/itsotest</Folder>
<SelectorName>LocateInput</SelectorName>
<Name>LocateInput</Name>
<Description>Annotate Locate Input portion of Locate Expert</Description>
<URL>*/LocateInput.html</URL>
<Location>C:/YourCo/Annotations/LocateInput.ann</Location>
<Keys><Key Name="User_Agent">Nokia-WAP-Toolkit/2.1</Key>
</Keys>
<Enable>true</Enable>
</Annotator>
<Annotator><Folder>ibm/itsotest</Folder>
<SelectorName>LocateNoOne</SelectorName>
<Name>LocateNoOne</Name>
<Description>Annotate No expert found</Description>
<URL>*/itso.wes.lbs.samples.FindExpert</URL>
<Location>C:/YourCo/Annotations/LocateNoOneCondition.ann</Location>
<Keys><Key Name="User_Agent">Nokia-WAP-Toolkit/2.1</Key>
<Key Name="condition">zzz=false</Key>
</Keys>
<Enable>true</Enable>
</Annotator>
<Annotator><Folder>ibm/itsotest</Folder>
<SelectorName>LocateFoundExpert</SelectorName>
<Name>LocateFoundExpert</Name>
<Description>Annotate found Expert</Description>
<URL>*/itso.wes.lbs.samples.FindExpert</URL>
<Location>C:/YourCo/Annotations/LocateFoundExpert.ann</Location>
<Keys><Key Name="User_Agent">Nokia-WAP-Toolkit/2.1</Key>
<Key Name="condition">zzz=true</Key>
</Keys>
<Enable>true</Enable>
</Annotator>

4. On the target machine, we used the Administration Console to import the
modified configuration. Figure 5-36 on page 210 shows the modified
annotator for LocateNoOne. Notice that the name changed from
 Chapter 5. Text clipping 209

LocateNoOneCondition.ann to LocateNoOne, the description has changed,
and the annotator location (directory) has changed.

Figure 5-36 Annotator in target WebSphere Transcoding Publisher server

5. Our final activity was to start the Request Viewer and the Nokia Emulator to
view the YourCo Locate Expert Application. Needless to say, everything ran
smoothly.
210 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 6. Using stylesheets

In this chapter on WebSphere Transcoding Publisher Version 4.0., we discuss
using eXtensible Stylesheet Language (XSL) to convert XML document content
to HTML and WML. Many Web applications generate HTML for their static
content and use XML documents to represent their dynamic content. WebSphere
Transcoding Publisher uses XSL stylesheets to transform a XML documents
content to the desired output format. This chapter shows:

� The enhancements to WebSphere Transcoding Publisher Version 4.0 for
stylesheet processing

� How to register XSL stylesheets

� How to use parameters in XSL stylesheets

� How to use XSL stylesheets to internationalize the XML document content

� How to use the new XSL editor to create XSL stylesheets to generate XHTML

6

© Copyright IBM Corp. 2002 211

6.1 Overview
The eXtensible Markup Language (XML) has become the de facto standard for
representing business data when that data is outside of a convention data store
(like DB2). These XML documents are being used in many business to business
(B2B) exchanges, often as an extension to or a replacement for EDI (Electronic
Data Interchange). It is only natural that this same dynamic data, represented as
XML, would be used to extend Web site information. Many applications now use
XML as a means to represent the dynamic data that is available in Web
applications today.

XML, by its very nature, is a data representation mechanism. Its tagging defines
the associated data; this makes it useful in a B2B environment. But when XML
data is sent to a browser, it just displays the data tags. XML documents are not
browser friendly because a browser looks for presentation tags (that is, tags that
tell the browser how to present the information) that HTML and other
presentation markup languages provide. eXtensible stylesheet Language (XSL)
is used to convert an XML document into other XML dialects and HTML. XSL
stylesheets are used by WebSphere Transcoding Publisher to convert XML
documents into HTML and other display XML dialects, such as WML.

WebSphere Transcoding Publisher uses two standards-based technologies, the
Xerces-Java XML parser and the Xalan-Java stylesheet processor, as the
foundation for its XML transcoding function. WebSphere Transcoding Publisher
uses the Xerces-Java XML parser primarily to create DOM (Document Object
Model) tree representations of the XML document and the stylesheet, so that
they are easy to access and handle. These DOM trees are input to the
Xalan-Java processor, which formats and transforms the XML document based
on the associated stylesheet specifications. Both of these technologies are
open-source software packages available from the Apache Software Foundation.

There are three major benefits when using WebSphere Transcoding Publisher to
support XML documents and XSL stylesheets:

� WebSphere Transcoding Publisher helps you organize your stylesheets
locally in a file system or remotely in a Web server.

� WebSphere Transcoding Publisher allows you to configure the selection
criteria, such that a specific stylesheet is applied to an XML document, based
on the current environment.

� Based on various dynamic conditions (HTTP header information, preference
profiles, and configured selection criteria), WebSphere Transcoding Publisher
selects the stylesheet to be applied on the fly.
212 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

For more details on WebSphere Transcoding Publisher and stylesheet
processing, look at the redbook New Capabilities in IBM WebSphere Transcoding
Publisher Version 3.5, SG24-6233.

6.1.1 WebSphere Transcoding Publisher Version 4.0 enhancements
WebSphere Transcoding Publisher Version 4.0 includes various improvements
and additions to its existing XSL stylesheet support. These enhancements are:

� Enhance condition support for stylesheet selection.

� Support for Cocoon-style (Apache style) specification of embedded
stylesheet links within an XML document.

� Support for WebSphere Transcoding Publisher condition-based specification
of embedded stylesheet links within an XML document. This aids in selection
of the best or right stylesheet from multiple stylesheets.

Stylesheets provide WebSphere Transcoding Publisher with instructions on how
an XML document should be transformed. Stylesheets can be associated with an
XML document in two ways:

� External to the XML document - these stylesheets are provided to
WebSphere Transcoding Publisher by registering them using the
Administration Console.

� Internal to the XML document - these stylesheets are embedded in the XML
document. It is the responsibility of the XML document to identify which
stylesheet(s) WebSphere Transcoding Publisher should use for XML
transcoding.

WebSphere Transcoding Publisher, by default, looks for internal stylesheets only
if no appropriate external (registered) stylesheets are found. You can change this
default method of processing by changing the value of
checkForDocumentStylesheetsFirst to true, in the
etc/plugins/ibm/TextEngine/XMLHandler.prop file. When this variable is set to
true, WebSphere Transcoding Publisher examines each XML document looking
for the wtp-condition or xml-stylesheet processing (relates to Cocoon addition)
statement, to help determine which stylesheet to use.

Now, let us look at these enhancements a little more closely.
 Chapter 6. Using stylesheets 213

Enhanced condition support
WebSphere Transcoding Publisher has added three new field names for use in
both internal and external stylesheet conditioning; they are:

� device - the device profile name

� network - the network profile name

� user - the user profile name

For example, instead of having to know how to match the user-agent information
in the HTTP header to create a stylesheet condition, you can specify the related
device profile name. These field names, when used in stylesheet conditions, map
to the preference profile file names, notto the translated description names. For
example,

� device: WML-Device
� network: wireless

You can find the device profile names under /etc/preference/device and the
network profile names under /etc/preference/network. These three field names
(device, network, user) are in addition to the HTTP header fields (like user-agent)
which are already supported on stylesheet condition statements.

Cocoon-style embedded stylesheet link support
The other method for internal stylesheet selection is based on a function within
Cocoon which is an open source technology. This function maps stylesheets to
XML documents based on the target device. The mechanism to identify the
target device is the media tag within an XML document’s xml-stylesheet
processing instruction(s). The xml-stylesheet processing instruction gives a link
to a stylesheet, for example:

Example 6-1 Cocoon media link

<?xml-stylesheet href=”LocateExpertWML.xsl” type=”text/xsl” media=”lynx” ?>

 WebSphere Transcoding Publisher uses the etc/Cocoon.prop file to get ordered
definitions to associate with the media tag. During initialization, WebSphere
Transcoding Publisher takes these entries and makes internal structured
condition rules for them.

Condition-based specification of embedded stylesheet links
Prior to WebSphere Transcoding Publisher 4.0, the XML transcoder used the
xml-stylesheet element for stylesheet directives within an XML document. Now
WebSphere Transcoding Publisher introduces the wtp-condition processing
instruction. Several wtp-condition processing instructions can be in the prologue
of an XML document, specifying the different stylesheets to use for different
214 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

conditions. These instructions can use the values of any HTTP header field and
any preference profile in effect. As stated in the enhancements, WebSphere
Transcoding Publisher 4.0 has added three new field names (device, network,
user) which can be used as wtp-conditions. Let us look at an example
wtp-condition instruction:

Example 6-2 wtp-condition example

<?wtp-condition stylesheet=”file://theexample.xsl:
condition=”(url=*/LocateExpert)” ?>

With the wtp-condition processing instruction, you can:

� Match on more than just the user-agent field.

� Check on profiles, for instance, which device profile was chosen using a new
device condition.

� Have AND conditions together using & between the conditions.

� Have OR conditions using the|(vertical bar).

When an XML document is being processed, WebSphere Transcoding Publisher
looks at the xml-stylesheet processing instruction and examines the media tag.
WebSphere Transcoding Publisher examines all structured conditions stored in
its table under that media tag and tries to find a match. If there is a match, the
associated stylesheet is applied.

Specifying output content-type in the stylesheet
Previous versions of WebSphere Transcoding Publisher looked at the value of
the content-type stylesheet variable to determine the output content type. Instead
of using this approach, WebSphere Transcoding Publisher now uses the XSL
support for specifying the output content type with the media-type attribute on the
xsl:output element. Setting the output content type is only necessary if:

� The registered stylesheet indicates that it could generate more than one
content type.

� The stylesheet is determined using an embedded stylesheet link within the
XML document.

If the media type is not present, WebSphere Transcoding Publisher determines
the media types.
 Chapter 6. Using stylesheets 215

6.1.2 XSL stylesheet administration
The WebSphere Transcoding Publisher Administration Console is the tool used
to access all the resources with WebSphere Transcoding Publisher. For more
details on the Administration Console, look at the redbook New Capabilities in
IBM WebSphere Transcoding Publisher Version 3.5, SG24-6233.

Among other functions, the Administration Console is used to register your
stylesheets and identify the conditions which determine when the stylesheet is
applied to the XML document. A registered stylesheet is shown below.

Figure 6-1 Administration Console with a registered stylesheet

When you select a stylesheet in the Stylesheet selector subtree, the console
displays all the basic settings (in the right pane) relevant to it. The information
displayed includes:

� Name/ Description - the name and description of the stylesheet used within
WebSphere Transcoding Publisher. Note that this is the stylesheet registration
name (not to be confused with the actual stylesheet file name).

� Stylesheet name or location - path (file path or URL) to where the stylesheet
is located.
216 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� Required Stylesheet selection criteria - output content type for the request. By
default, it can be either HTML, XML or WML, but the administrator has the
ability to add new output types by entering the corresponding MIME type.

� Optional input DTD - the selection criteria can be restricted by using this field,
where the administrator enters the file path or URL of the DTD for which the
stylesheet will be applied. The input DTD can be the DOCTYPE of the XML
document or the PUBLIC name of the DTD.

One of the buttons at the bottom of this screen is the Advanced button, which
invokes the Advanced Stylesheet Selection Properties display, shown below.
This display allows you to provide more stylesheet selection criteria, by
specifying an output DTD, conditions on the HTTP request header, and/or
conditions on the preference profile.

Figure 6-2 Advanced stylesheet selection criteria

The selection criteria matching for the HTTP header can be a complex formula
using the AND or OR conjunctions as well as parentheses. WebSphere
Transcoding Publisher can read all the header attributes of the HTTP request if
needed for matching.

The criteria matching preferences requires key/value pairs that will match the
key/value pair in one of the profiles (device, network or user profiles). For
example, as shown in Figure 6-2, a key of deviceType and a value of WML Device
matches to that key value pair in the WML Device profile.
 Chapter 6. Using stylesheets 217

Using parameters
A business may have a very large number of XSL stylesheets to meet the XML
document customization requirements. Often these stylesheets are very similar
in the transformations they perform. For example, a business may have a
stylesheet for each output type it needs to generate from an XML document. A
business usually has a wide variety of different XML documents that are
transformed by an associated group of stylesheets. As the variety and variations
of stylesheets increase, the business has difficulty in managing the proliferation
of stylesheets.

There is a variety of methods for dealing with this proliferation of stylesheets. For
example, the Administration Console helps you organize your stylesheets into
folders within the XML Stylesheet Selector tree. These folders can be named
according to your own meaningful scheme. Another option is to transform the
XML document into a common intermediate format, HTML, and let WebSphere
Transcoding Publisher transcode the document to the appropriate device format;
for details, review the article on IBM developerWorks, Spinning your XML for
screens of all sizes Using HTML as an intermediate markup language, found at
www.ibm.com/software/webserver/transcoding/library.html. Another option,
the one we are discussing here, is to use parameters within stylesheets to
determine which actions within template rules apply.

Using parameters within a stylesheet can help you deal with the proliferation of
stylesheets. The parameters can be defined outside the stylesheet and then
passed to the stylesheet for processing. For example, you might choose to use a
single stylesheet for all output types and use parameters in the stylesheet to
select the type of output to be generated. Example 6-3 shows two stylesheet
parameters.

Example 6-3 XSL Stylesheet parameter

<xsl:param name=”parm1”>
<xsl:param name=”parm2” select=”default”>

WebSphere Transcoding Publishers Text Engine attempts to find the value of
each stylesheet parameter in preparation for processing in the following places:

� Configured into stylesheets - the stylesheet registration can define key/value
pairs which are used as parameters.

� HTTP header - parameter values in the HTTP request and response header.

� Preference profiles - the preference aggregator is checked for any parameter
values defined in the preference profiles.
218 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Where the particular parameter is defined determines the availability of that
parameter. For example, if you want to limit the parameter’s availability to a
specific stylesheet, define the parameter within the stylesheet registration.
Defining the parameter in the stylesheet registration ensures the parameter is
available for each execution of the stylesheet. However, to associate a parameter
with a particular target device, define the parameter in the device profile.

The parameters associated with profiles and stylesheets are defined using the
Administration Console. For stylesheets, the parameters are defined as
key/value pairs in the stylesheet registrations Stylesheet Parameters window,
found by selecting the Parameter button on the Administration Console. For
device profiles, the parameters are defined as key/value pairs in the Advanced
Preference Profile Properties window. For more details on setting parameters,
look at the IBM redbook New Capabilities in IBM WebSphere Transcoding
Publisher Version 3.5, SG24-6233.

Parameters can be used in sophisticated ways to effect the processing of
stylesheets. Parameters can be used to:

� Control inclusion of other stylesheets by adjusting the file name or URL of a
stylesheet you want. By using the xsl:choose statement in your stylesheet,
you can control which of several includes is executed, based on parameters
you provide.

� Setting the output type, to group stylesheets by group name.

� Reduce the number of stylesheets needed for different devices; use the
deviceType parameter to drive which template rules are executed, which
stylesheets are included, based on specific differences.

Parameters can go a long way in reducing the number of stylesheets required to
support your environment. However, overuse of parameters produces complexity
as well. For example, trying to use a single stylesheet to support a variety of
unrelated devices (using different markup languages) could be cumbersome.
However, tuning the output generated to a specific set of similar devices would be
a natural use of parameters.

Sample scenario for parameterization
For this sample scenario, the WebSphere Everyplace News application within the
sample YourCo Web application (used in this redbook) will be used. WebSphere
Everyplace News is an extension to the YourCo New application.
 Chapter 6. Using stylesheets 219

The application flow (using a desktop browser and starting from the YourCo main
page) is as follows:

1) Select YourCo News from the YourCo main menu.

Figure 6-3 Selecting YourCo News

2) Click the WebSphere Everyplace News icon.
220 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 6-4 Selecting IBM WebSphere Everyplace News

3) Select an article (listed by title) from within one of the three categories
(Business Partner, Research, Redbook).
 Chapter 6. Using stylesheets 221

Figure 6-5 Display topics and select a topic

4) The details of the article are displayed as in Figure 6-6.

Figure 6-6 Displaying an article
222 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The WebSphere Everyplace News presents its data in XML documents. There
are two XML document which contain the following:

� News topics - a single document containing the titles of the news article, by
category.

� News article - a document of a news article containing the title and the story
details.

The news topics XML document including its Document Type Definition (DTD) is
shown in the following example.

Example 6-4 News feed topic XML document

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE newsfeed [
<!ELEMENT newsfeed(news+)>
<!ATTLIST news category CDATA #REQUIRED>
<!ELEMENT news(item+)>
<!ELEMENT item(title)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST item reference CDATA #REQUIRED>
]>
<newsfeed>
<news category="Business_Partners">
<item reference="PortalMarket_story">
<title>IBM Extends Lead in Emerging $14 Billion Portal Market</title>
 </item>
 <item reference="SupportLinux_story">
 <title>IBM Expands Support for Linux</title>
 </item>
 <item reference="Vignette_story" >
 <title>IBM and Vignette Develop Global Strategic E-business Alliance
</title>
 </item>
 </news>
 <news category="Research">
 <item reference="Magnetic_story">
 <title>IBM Researchers Create New "Self-assembling" Magnetic Materials
</title>
 </item>
 <item reference="Memory_story" >
 <title>IBM Research Breakthrough Doubles Computer Memory Capacity</title>
 </item>
 <item reference="Dominorecords_story">
 <title>IBM AS/400e Server Sets Domino Scalability and Performance Records
</title>
 </item>
 </news>
 <news category="Redbooks">
 Chapter 6. Using stylesheets 223

 <item reference="ITSOPresentations_story" >
 <title>Videos on CD-ROM of IBM ITSO presentations at the 1999 AS400
Technical Forum for V4R4</title>

 </item>
 <item reference="as400_story" >
 <title>AS/400 Internet-Based Education/Presentation Offerings</title>
 </item>
 </news>
</newsfeed>

For each news title, there is an associated news article XML document file. We
included one of the news article XML document files, including its DTD (in this
case PortalMarket_story.xml) in the following example.

Example 6-5 News Article XML document

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE newsitem [
<!ELEMENT newsitem (subject, story)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT story (#PCDATA)>
]>
<newsitem>
<subject>"IBM Extends Lead in Emerging $14 Billion Portal Market"</subject>
<story>
 SAN JOSE, Calif., June 21, 2000 -- IBM today extended its lead in redefining
the management market and introduced the IBM Enterprise Information Portal
(EIP) Version 7, the most advanced portal solution in the industry. Now
customers can access and organize relevant business information whatever the
format, wherever it resides and slash development time nearly in half.
</story>
</newsitem>

Phase 1 - Simple Conversions
We created two sets of XSL stylesheets used to transform and format the XML
documents into HTML and WML, respectively. The stylesheets to transform the
XML documents into HTML are:

� A stylesheet to transform the news feed XML document into HTML

� A stylesheet to transform a news article XML document into HTML

The news feed stylesheet (NewsTopictoHTML1.xsl) is shown in Example 6-6.

Example 6-6 News feed XML Document to HTML

<?xml version='1.0'?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
224 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 xmlns="http://www.w3.org/1999/xhtml" version="1.0">
<xsl:output method="html"/>
<!-------------- match on the Document Root ---------->
<xsl:template match="newsfeed">
 <html>
 <head>
 <title>IBM WebSphere Everyplace News - By Subject and Headline</title>
 </head>
 <body bgcolor="#FFFFFF">
 <!-- header -->
 <center><h3>IBM WebSphere Everyplace News </h3>
 <table border="0">
 <xsl:apply-templates/>
 </table>
 <!-- footer -->

 <table border="0">
 <tr align="center"><td>IBM International Technical Support
Organization</td></tr>
 <tr align="center"><td>http://www.redbooks.ibm.com</td></tr>
 </table>
 </center>
 </body>
 </html>
</xsl:template>
<!-------------- match on the news element ---------->
<xsl:template match="news">
 <tr>
 <td colspan="2">
 <xsl:value-of select="@category"/>
 </td>
 </tr>
 <xsl:apply-templates/>
</xsl:template>
<!-------------- match on the item element ---------->
<xsl:template match="item">
<tr>
 <td></td>
 <td>
 <xsl:text disable-output-escaping="yes"><a
href="ServeXML_news?xml_file=</xsl:text>
<xsl:value-of select="@reference"/>
 <xsl:text disable-output-escaping="yes">.xml"></xsl:text>
 <xsl:apply-templates/>
 <xsl:text disable-output-escaping="yes"><a></xsl:text>
 </td>
 </tr>
</xsl:template>
 Chapter 6. Using stylesheets 225

<!-------------- match on the title element ---------->
<xsl:template match="title">
 <xsl:value-of select="."/>
</xsl:template>
</xsl:stylesheet>

The results of applying the above stylesheet to the news feed XML document are
shown below. First, you see the generated HTML displayed in a browser, and
then a subset of the source HTML.

Figure 6-7 Browser view of topics (simple conversion)

Example 6-7 Generated HTML for Topics (simple conversion)

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>IBM WebSphere Everyplace News - By Subject and Headline</title>
</head>
<body bgcolor="#FFFFFF">
<center>
<h3>IBM WebSphere Everyplace News </h3>
<table border="0">
 <tr>
<td colspan="2">
Business_Partners
226 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

</td>
</tr>
 <tr>
<td/>
<td><a
href="http://9.24.105.152:80/httppvc_clnss9.24.104.13/WebSphereSamples/servlet/
ServeXML_newspvc_qxml_file=PortalMarket_story.xml">
 IBM Extends Lead in Emerging $14 Billion Portal Market
 <a></td>
</tr>
 <tr>
<td/>
<td>
 IBM Expands Support for Linux
 <a></td>
</tr>
 <tr>
<td/>
<td>
 IBM and Vignette Develop Global Strategic E-business Alliance
 <a></td>
</tr>
<!-------*** other categories and their entries are here *** ---------->
</table>
</center>
</body>
</html>

Next, we show the stylesheet used to convert the news article to HTML.

Example 6-8 News Article XML to HTML stylesheet

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns="http://www.w3.org/1999/xhtml" version="1.0">
<!-- --------------- Match on the ROOT ----------->
<xsl:template match="newsitem">
 <html>
 <head>
 <title>IBM WebSphere Everyplace News - By Headline</title>
 </head>
 <body bgcolor="#FFFFFF">
 <center>
 <h3>IBM WebSphere Everyplace News</h3>
 </center>
<!-- ---------build tableiwith the article (subject and story) ----->
 <table border="0">
 <xsl:apply-templates/>
 </table>
 Chapter 6. Using stylesheets 227

 <!-- footer -->

 <center>
 <table border="0">
 <tr align="center"><td>IBM International Technical Support
Organization</td></tr>
 <tr align="center"><td>http://www.redbooks.ibm.com</td></tr>
 </table>
 </center>
 </body>
 </html>
</xsl:template>
<!-- ----------- match on the subject -------- -->
<xsl:template match="subject">
 <tr>
 <td>

 <xsl:value-of select="."/>

 </td>
 </tr>
</xsl:template>
<!-- ---------- match on the story ----- -->
<xsl:template match="story">
 <tr>
 <td>
 <xsl:value-of select="."/>
 </td>
 </tr>
</xsl:template>

</xsl:stylesheet>

Shown next is the browser view of a selected article (news subject) followed by
the associated HTML document.
228 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 6-8 Browser view of a Article (simple conversion)

Example 6-9 HTML for News Article (simple conversion)

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>IBM WebSphere Everyplace News - By Headline</title>
</head><body bgcolor="#FFFFFF">
<center>
<h3>IBM WebSphere Everyplace News</h3>
</center>
<table border="0">
 <tr>
 <td>
 "IBM Extends Lead in Emerging $14 Billion Portal Market"
 </td>
</tr>
<tr>
 <td>
 SAN JOSE, Calif., June 21, 2000 -- IBM today extended its lead in
redefining the management market and introduced the IBM Enterprise Information
Portal (EIP) Version 7, the most advanced portal solution in the industry. Now
customers can access and organize relevant business information whatever the
format, wherever it resides and slash development time nearly in half.
 </td>
 Chapter 6. Using stylesheets 229

</tr>
</table>

<center>
<table border="0">
<tr align="center">
 <td>
 IBM International Technical Support Organization
 </td>
</tr>
<tr align="center">
 <td>
 <a
href="http://9.24.105.152:80/httppvc_clnss9.24.104.13/WebSphereSamples/servlet/
www.redbooks.ibm.com">http://www.redbooks.ibm.com
 </td>
</tr>
</table>
</center>
</body>
</html>

We used the same approach to create stylesheets to convert the XML
documents to WML:

� A stylesheet to convert the news topic to WML.

� A stylesheet to convert a news article to WML.

Let us look at the XML to WML stylesheet, starting with the news topic
stylesheet.

Example 6-10 XML to WML news topic stylesheet

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:template match="newsfeed">
 <wml>
 <card id="card1">
 <p>
 <xsl:for-each select="news">

<xsl:text disable-output-escaping="yes"><a href="#</xsl:text>
<xsl:value-of select="@category"/>
 <xsl:text disable-output-escaping="yes">"></xsl:text>
 <xsl:value-of select="@category"/>
<xsl:text disable-output-escaping="yes"></xsl:text>

 </xsl:for-each>

230 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 <do type="prev" label="Back"><prev/></do>
 </p>
 </card>
 <xsl:apply-templates select="news"/>
 </wml>
</xsl:template>
<!---- create cards for each category with its topics ---->
<xsl:template match="news">
 <xsl:text disable-output-escaping="yes"><card id="</xsl:text>
 <xsl:value-of select="@category"/>
 <xsl:text disable-output-escaping="yes">"></xsl:text>
 <xsl:for-each select="item">
 <p>
<xsl:text disable-output-escaping="yes"><a
href="ServeXML_news?xml_file=</xsl:text>
<xsl:value-of select="@reference"/>
 <xsl:text disable-output-escaping="yes">.xml"></xsl:text>
 <xsl:value-of select="title"/>
 <xsl:text disable-output-escaping="yes"></xsl:text>
 </p>
 </xsl:for-each>
 <do type="prev" label="Back"><prev/></do>
 <xsl:text disable-output-escaping="yes"></card></xsl:text>
</xsl:template>
</xsl:stylesheet>

The resulting WML displayed with the WAP simulator is shown in Figure 6-9.

Figure 6-9 WAP display of News Topics

After selecting Topic Business Partner you see the
Titles for the Articles.
 Chapter 6. Using stylesheets 231

A portion (card1 and one category card with its titles) of the WML generated by
the stylesheet is shown below.

Example 6-11 WML for the News feed

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="card1">
 <p>
 <a
href="http://9.24.105.152:80/httppvc_clnssifragp-2147I43/9.24.104.13.webspheres
amples.servlet.webspheresamples.yourco.news.servexml_news-xml_file=mainnewsfeed
_new.xml#Business_Partners">Business_Partners

 <a
href="http://9.24.105.152:80/httppvc_clnssifragp-2147I43/9.24.104.13.webspheres
amples.servlet.webspheresamples.yourco.news.servexml_news-xml_file=mainnewsfeed
_new.xml#Research">Research

 <a
href="http://9.24.105.152:80/httppvc_clnssifragp-2147I43/9.24.104.13.webspheres
amples.servlet.webspheresamples.yourco.news.servexml_news-xml_file=mainnewsfeed
_new.xml#Redbooks">Redbooks

 <do label="Back" type="prev"><prev/></do>
 </p>
 </card>

 <card id="Business_Partners">
 <p>
 <a
href="http://9.24.105.152:80/httppvc_clnss9.24.104.13/WebSphereSamples/servlet/
ServeXML_newspvc_qxml_file=PortalMarket_story.xml">IBM Extends Lead in Emerging
$$14 Billion Portal Market
 </p>
 <p>
 <a
href="http://9.24.105.152:80/httppvc_clnss9.24.104.13/WebSphereSamples/servlet/
ServeXML_newspvc_qxml_file=SupportLinux_story.xml">IBM Expands Support for
Linux
 </p>
 <p>
 <a
href="http://9.24.105.152:80/httppvc_clnss9.24.104.13/WebSphereSamples/servlet/
ServeXML_newspvc_qxml_file=Vignette_story.xml">IBM and Vignette Develop Global
Strategic E-business Alliance
 </p>
 <do label="Back" type="prev">
232 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 <prev/>
 </do>
 </card>
</wml>

Next, let us look at the stylesheet to convert a news article to WML.

Example 6-12 XML to WML news article stylesheet

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<!---------- template for each newsitem -->
<xsl:template match="newsitem">
 <wml>
 <card>
 <p>
 <xsl:apply-templates/>
 <do type="prev" label="Back"><prev/></do>
 </p>
 </card>
 </wml>
</xsl:template>
<!---------- template for each subject -->
<xsl:template match="subject">

 <xsl:value-of select="."/>

</xsl:template>
<!--------- template for story -->
<xsl:template match="story">
 <xsl:value-of select="."/>
</xsl:template>
</xsl:stylesheet>

Once a selection has been made, the article is displayed .
 Chapter 6. Using stylesheets 233

Figure 6-10 WAP display of the selected News Subject

The WML for the news article is shown below.

Example 6-13 WML for a news article

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
 <card id="cmgcfp0">
 <p>
 "IBM Extends Lead in Emerging $$14 Billion Portal
Market"

 SAN JOSE, Calif., June 21, 2000 -- IBM today extended its lead in
redefining the management market and introduced the IBM Enterprise Information
Portal (EIP) Version 7, the most advanced portal solution in the industry. Now
customers can access and organize relevant business information whatever the
format, wherever it resides and slash development time nearly in half.
 <do label="Back" type="prev"><prev/></do>
 </p>
 </card>
</wml>

Phase 2 - using parameters
Now we will take the simple HTML and WML stylesheets and add a parameter.
We thought it would be interesting to converge the HTML and WML stylesheets
for the news article into a single stylesheet and use a parameter (deviceType) to
select the appropriate output type (HTML or WML).

First, we had to map the two stylesheets to converge them. Various elements
mapped directly; for example, the <WML> tag mapped to the <HTML> tag. The
HTML document had various additional content items which do not map to
anything in the WML stylesheet and the reverse is true also. We created a

...

(start of article)

(end of article)
234 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

generalized template containing the mapping instructions. Within this generalized
stylesheet, we used two XSL mechanisms:

� The <xsl:variable> element - this allows you to create named constants. The
element defines named strings. These named strings can be used by other
stylesheets to fill in content dynamically.

� The <xsl:template> element with a name attribute - the name attribute’s value
allows the template to be called into action when needed. The body of the
template contains the content to be added to the calling stylesheet.

Let us look at an example <xsl:variable> element.

Example 6-14 <xsl:variable> element

<xsl:variable name="startDoc">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'">wml</xsl:when>
 <xsl:otherwise>html</xsl:otherwise>
 </xsl:choose>
</xsl:variable>

The <xsl:variable name= “startDoc”> element (where the name identifies this
element) consists of <xsl:choose> which, in this example, outputs a wml tag if
deviceType=‘WML Device’ is true; otherwise, an HTML tag is output.

An example <xsl:template> is shown below:

Example 6-15 <xsl:template> element

<xsl:template name="header">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'"></xsl:when>
 <xsl:otherwise>
 <center>
 <h3>IBM WebSphere Everyplace News</h3>
 </center>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

The <xsl:template name=”header”> element (where the name identifies this
element) consists of <xsl:choose> which, in this example, outputs nothing if
deviceType=‘WML Device’ is true; otherwise, the HTML heading is output.
 Chapter 6. Using stylesheets 235

Now let us look at the stylesheet which contains the generalizations, as shown
below.

Example 6-16 Generalized stylesheet

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:variable name="table">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'"></xsl:when>
 <xsl:otherwise>table</xsl:otherwise>
 </xsl:choose>
</xsl:variable>

<xsl:variable name="tRow">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'">p</xsl:when>
 <xsl:otherwise>tr</xsl:otherwise>
 </xsl:choose>
</xsl:variable>

<xsl:variable name="tDef">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'"></xsl:when>
 <xsl:otherwise>td</xsl:otherwise>
 </xsl:choose>
</xsl:variable>

<xsl:variable name="break">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'">br</xsl:when>
 </xsl:choose>
</xsl:variable>

<xsl:variable name="startDoc">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'">wml</xsl:when>
 <xsl:otherwise>html</xsl:otherwise>
 </xsl:choose>
</xsl:variable>

<xsl:variable name="body">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'">card</xsl:when>
 <xsl:otherwise>body</xsl:otherwise>
 </xsl:choose>
</xsl:variable>

<xsl:template name="title">
236 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'"></xsl:when>
 <xsl:otherwise>
 <head>
 <title>IBM WebSphere Everyplace News - By Headline</title>
 </head>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

<xsl:template name="header">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'"></xsl:when>
 <xsl:otherwise>
 <center>
 <h3>IBM WebSphere Everyplace News</h3>
 </center>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>
<xsl:template name="footer">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'"></xsl:when>
 <xsl:otherwise>

 <center>
 <table border="0">
 <tr align="center"><td>IBM International Technical Support
Organization</td></tr>
 <tr align="center"><td>http://www.redbooks.ibm.com</td></tr>
 </table>
 </center>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

<xsl:template name="do">
 <xsl:choose>
 <xsl:when test="$deviceType='WML Device'">
 <do type="prev" label="BACK"><prev/></do>
 </xsl:when>

 </xsl:choose>
</xsl:template>
</xsl:stylesheet>
 Chapter 6. Using stylesheets 237

To invoke an <xsl:variable> found in the generalized stylesheet, we are using
the <xsl:element name=”{$startDoc}”> element, where the name contains the
name of the <xsl:variable> element. An </xsl:element> creates the
associated end element. To invoke an <xsl:template> in the generalized
stylesheet, we are using the <xsl:call-template name=”header”/> element,
where the name contains the name of the template. The converged news article
stylesheet is shown below. The parameter is defined in this stylesheet and
shared with the generalized stylesheet. The parameter element is highlighted in
the example.

Example 6-17 Converged stylesheet

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:param name="deviceType" select="defaultValue" />
<xsl:include href="general.xsl"/>

<!-- template for each newsitem -->
<xsl:template match="newsitem">

 <xsl:element name="{$startDoc}">
 <xsl:call-template name="title"/>
 <xsl:element name="{$body}">
 <xsl:call-template name="header"/>

 <xsl:element name="{$table}">
 <xsl:apply-templates/>
 </xsl:element>
 <xsl:call-template name="do"/>
 </xsl:element>
 </xsl:element>
</xsl:template>
<!-- template for each subject -->
<xsl:template match="subject">
 <xsl:element name="{$tRow}">
 <xsl:element name="{$tDef}">

 <xsl:value-of select="."/>

 </xsl:element>
 </xsl:element>
</xsl:template>
<!-- template for story -->
238 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

<xsl:template match="story">
 <xsl:element name="{$tRow}">
 <xsl:element name="{$tDef}">
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:element>
</xsl:template>
</xsl:stylesheet>

The news article displayed on the browser is the same as that shown in Figure
6-7. The results on the emulator are shown below.

Figure 6-11 Emulator results

For more details on creating generalized stylesheets, look at the article Reusable
stylesheet components found at:
www.ibm.com/software/webserver/transcoding/library.html.

6.1.3 Implementing internationalization
Stylesheets can be used for more than just transforming XML documents from
one XML markup language to another. They can be used to generate content
specific to a locale. This capability allows a single XML document’s content to be
internationalized. You can translate an XML document content to varying
degrees:

� Target-specific content for translation, for example, content in table headers or
forms.

� Extensive content translation, that is, translating all or most of the content
within the document.

Note:The generalized stylesheet does not need to be registered. Either
explicitly specify the directory path in the include, or place it in the same
directory as the using stylesheet.
 Chapter 6. Using stylesheets 239

The translations are contained in XML files which consist of the terms (as
identifiers) and their target language counter part. These XML files are used with
stylesheets to perform the conversion. WebSphere Transcoding Publisher allows
you to implement internationalization by either using a separate file for each
language or by using a single file for all the languages you plan to support.

WebSphere Transcoding Publisher provides several sample translation files,
which are located in the */IBMTrans/etc/stylesheet directory path. This directory
contains translation files for specific languages, called translations_xx.xml, where
xx identifies the language (for instance en = english, fr=french, etc.), and a file
containing multiple languages named translations.xml. Also included in this same
directory (*/IBMTrans/etc/stylesheet) are two stylesheets which retrieve the new
value from the XML translation files:

� The translate.xsl file is used to access translation content when each
language is in a separate file.

� The translate_sf.xsl file is used to access translation content when all
languages are in a single file.

To reference the translate.xsl file, you would include this XSL statement:

Example 6-18 Including the translate.xsl file

<xsl:include href="translate.xsl"/>

To invoke the translation of a term (word), you would include the following
template call:

Example 6-19 Invoking translate.xsl from your stylesheet

<xsl:call-template name=”translate”>
<xsl:with-param name=”word” select=”’button’“
</xsl:call-template>

The above XSL statement requests the return of the translation value for the
<word> element with an identifier of button. The translate stylesheet (referenced
in the above instruction) does the following:

� Determines the value of the language parameter (lang).

� Builds the file name of the XML file containing the translation for the specific
language, which in this case would be the translations_en.xml (english).

� Retrieves and returns the translation for the word.
240 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Let us look at the translations_en.xml translation file.

Example 6-20 Sample translations_en.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<translations>
 <word id="address">address</word>
 <word id="button">button</word>
 <word id="check">check</word>
 <word id="enter">enter</word>
 <word id="find">find</word>
 <word id="language">language</word>
 <word id="location">location</word>
 <word id="name">name</word>
 <word id="press">press</word>
 <word id="search">search</word>
 <word id="submit">submit</word>
 <word id="telephone">telephone</word>
</translations>

For the above example, your stylesheet would output the string button for the
English language. If the target language was French, using the translate_fr.xml
file with an entry <word id=button”>bouton</word>, the output string would be
bouton.

Extension elements
An extension element is an instruction that is not defined by the XSLT
Transformation standard, but looks and behaves like an XSLT instruction.
Extension elements enable you to add new functions to the XSLT language.

WebSphere Transcoding Publisher includes two extension elements designed to
simplify the XML coding required to access a translated string from a stylesheet:

� The <nls:trans> element is used when the translated strings for each
language are in a separate file.

� The <nls:trans_sf> element is used when the translated strings for all
languages are in a single file.

Note: You are free to add your own <word> elements to the XML translation
files that come with WebSphere Transcoding Publisher. Be aware that future
releases of WebSphere Transcoding Publisher might add elements to these
files. You must be prepared to migrate your additions to the newer versions of
the files. You can also create your own separate XML files using a similar
scheme to be used in a similar fashion.
 Chapter 6. Using stylesheets 241

For more details on the WebSphere Transcoding Publisher extension elements,
look at the redbook New Capabilities in IBM WebSphere Transcoding Publisher
Version 3.5, SG24-6233.

Sample scenario for internationalization
We are extending the WebSphere Everyplace News application to translate from
English into French. The WebSphere Everyplace News application is explained
above. In this scenario, we will be adding translation to the news topics, which is
shown below in English. Note that we added a title (The News) to the stylesheet
to make it more interesting.

Figure 6-12 The News categories in English

The files used to perform internationalization in our sample are:

� The XML document (MainNewsfeed_new.xml) which was shown in
Example 6-4.

� The registered stylesheet (NewsTopicWAPLang.xsl). We modified the
stylesheet from its original form to add more words to translate.

� The translation stylesheet (translate.xsl) which is included in our stylesheet
(NewsTopicWAPLang.xsl).

� Our translation files: ITSOtranslation_en.xml (English) and
ITSOtranslation_fr.xml (French).

� The device and network preference profiles.

� The properties (.prop) file created by the Administration Console when we
registered the stylesheet.

The steps to perform the translation are as follows:

1. WebSphere Transcoding Publisher receives the XML document to be
transcoded.

2. WebSphere Transcoding Publisher reads the target device preference
profiles.
242 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

3. WebSphere Transcoding Publisher determines the registered stylesheet to
use for this situation. It takes into account the selection criteria, parameters
and device characteristics. The NewTopicWAPLang.xsl stylesheet is selected.

4. The <xsl:include> element identifies the translate.xsl stylesheet used for
translation.

5. The stylesheet registration specifies the translation files to use when this
stylesheet is invoked. They are ITSOtranslation_en.xml (English) and
ITSOtranslation_fr.xml (French). The translation file for the target language is
selected and the translations are performed.

6. The XML document is transformed into the target mark up language, in this
case WML.

Created stylesheet
The stylesheet created for translation is shown below. The translation-related
instructions are highlighted.

Example 6-21 Translation stylesheet

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:lxslt="http://xml.apache.org/xslt"
 xmlns:nls="com.ibm.transform.textengine.mutator.stylesheet.ext.NLS"
 extension-element-prefixes="nls"
 version="1.0">

<xsl:include href="translate.xsl"/>
<xsl:output doctype-system="http://www.wapforum.org/DTD/wml_1.1.xml"/>

<xsl:template match="newsfeed">
 <wml>
 <card id="card1">
 <p><big>
 <nls:trans id="WENewHead"/>
 </big></p>
 <p>
 <xsl:for-each select="news">

<xsl:text disable-output-escaping="yes"><a href="#</xsl:text>
<xsl:value-of select="@category"/>
 <xsl:text disable-output-escaping="yes">"></xsl:text>
 <xsl:variable name="varname">
 <xsl:value-of select="@category"/>
 </xsl:variable>
 <xsl:call-template name="translate">
 <xsl:with-param name="word" select="$varname"/>
 </xsl:call-template>
 Chapter 6. Using stylesheets 243

<xsl:text disable-output-escaping="yes"></xsl:text>

 </xsl:for-each>

 <xsl:text disable-output-escaping="yes"> <do type="prev"
label="</xsl:text>
 <nls:trans id="back"/>
 <xsl:text
disable-output-escaping="yes">"><prev/></do></xsl:text>
 </p>
 </card>
 <xsl:apply-templates select="news"/>
 </wml>
</xsl:template>

<xsl:template match="news">
 <xsl:text disable-output-escaping="yes"><card id="</xsl:text>
 <xsl:value-of select="@category"/>
 <xsl:text disable-output-escaping="yes">"></xsl:text>
 <xsl:for-each select="item">
 <p>
 <xsl:text disable-output-escaping="yes"><a
href="ServeXML_news?xml_file=</xsl:text>

<xsl:value-of select="@reference"/>
 <xsl:text disable-output-escaping="yes">.xml"></xsl:text>
 <xsl:value-of select="title"/>
 <xsl:text disable-output-escaping="yes"></xsl:text>
 </p>
 </xsl:for-each>

 <xsl:text disable-output-escaping="yes"> <do type="prev"
label="</xsl:text>
 <nls:trans id="back"/>
 <xsl:text
disable-output-escaping="yes">"><prev/></do></xsl:text>

 <xsl:text disable-output-escaping="yes"></card></xsl:text>
</xsl:template>
</xsl:stylesheet>
244 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

We used two different ways to handle the translations:

� For dynamic content coming from the XML document, as in the case of the
(@category) attribute, the attribute value is captured as a variable and the
variable in input to the <xsl:call-template> element (see Example 6-22).

Example 6-22 Using the variable for translation

<xsl:variable name="varname">
 <xsl:value-of select="@category"/>
</xsl:variable>

<xsl:call-template name="translate">
 <xsl:with-param name="word" select="$varname"/>
</xsl:call-template>

� For static stylesheet content, we used the <nls:trans id=”xxx”/> statement,
causing the specified word id to be translated.

Stylesheet registration
This stylesheet is registered like all other stylesheets, except that we must
specify the translation files to use, since they are different from the default
translation files. The first step to registration is filling in the general registration
information, as shown below.

Figure 6-13 Stylesheet registration for NewsTopicWAPLang.xsl
 Chapter 6. Using stylesheets 245

To specify our translation files, click the Parameters button and set the
parameter, as shown below.

Figure 6-14 Setting the translation file parameter

Translation files
The two translation files we are using are in our stylesheet directory. This is
where WebSphere Transcoding Publisher looks for the translation files. If it does
not find them there, it looks in its own directory, */IBMTrans/etc/stylesheets. The
translation files are shown below. The english translation file is shown first.

Example 6-23 English translation file ITSOtranslation_en.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<translations>
 <word id="Business_Partners">Business Partners</word>
 <word id="Research">Research</word>
 <word id="Redbooks">Redbooks</word>
 <word id="WENewTitle">The News</word>
 <word id="WENewHead">The News</word>
 <word id="ITSO">IBM International Technical Support Organization</word>
</translations>

Note: Make sure that the stylesheet is enabled and that you refresh the
server. You do not need to register the included stylesheets.
246 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The French translation file is shown in Example 6-24.

Example 6-24 French translation file ITSOtanslation_fr.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<translations>
 <word id="Business_Partners">Partenaires Commerciaux</word>
 <word id="Research">Recherche</word>
 <word id="Redbooks">Documents ('Redbooks')</word>
 <word id="WENewHead">Manchettes</word>
 <word id="ITSO">Organisme de Support Technique International IBM</word>
 <word id="back">Precedent</word>
</translations>

The stylesheet can be tested in different ways:

� Run WebSphere Transcoding Publisher and request the application from a
WAP phone emulator or a WAP phone.

� Run the Request Viewer (this also allows you to monitor the execution) from a
WAP phone emulator.

� Use the Transform tool to perform the transformation. This tool is part of the
WebSphere Transcoding Publisher development tools. For details, see the
redbook New Capabilities in IBM WebSphere Transcoding Publisher Version
3.5, SG24-6233.

For example, to see the various languages on the Nokia Toolkit WAP phone
simulator, perform the following steps:

1. Select the Toolkit menu option; from the pull-down menu, select Device
Settings.

2. In the BluePrint Device Settings window, select the Header tab.

3. Using the Language Preference pull-down menu, select a language.

4. Click the OK button.

The resulting transcoded WML is included below. First, let us look at the English
version and the results on the emulator.

Example 6-25 WML for translation (English)

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card id="card1">
 <p>

<big>The News</big>
 </p>
 Chapter 6. Using stylesheets 247

 <p>
 <a
href="http://9.24.105.152:80/httppvc_clnssifragp-2114I66/9.24.104.13.webspheres
amples.servlet.webspheresamples.yourco.news.servexml_news-xml_file=mainnewsfeed
_new.xml#Business_Partners">Business Partners

 <a
href="http://9.24.105.152:80/httppvc_clnssifragp-2114I66/9.24.104.13.webspheres
amples.servlet.webspheresamples.yourco.news.servexml_news-xml_file=mainnewsfeed
_new.xml#Research">Research

 <a
href="http://9.24.105.152:80/httppvc_clnssifragp-2114I66/9.24.104.13.webspheres
amples.servlet.webspheresamples.yourco.news.servexml_news-xml_file=mainnewsfeed
_new.xml#Redbooks">Redbooks

 <do label="" type="prev"><prev/></do>
 </p>
 </card>
<!--- Article Title cards --->
</wml>

The WML displayed on the WAP emulator is illustrated in Figure 6-15.

Figure 6-15 WML on the emulator (English)

The WML generated from the translation to French (with the translations
highlighted) is shown in Example 6-26.

Example 6-26 WML for translation (French)

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>
 <card id="card1">
 <p>
 <big>Manchettes</big>
 </p>
248 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 <p>
 <a
href="http://9.24.105.152:80/httppvc_clnssifragp-1925I68/9.24.104.13.webspheres
amples.servlet.webspheresamples.yourco.news.servexml_news-xml_file=mainnewsfeed
_new.xml#Business_Partners">Partenaires Commerciaux

 <a
href="http://9.24.105.152:80/httppvc_clnssifrag-6934I68/9.24.104.13.webspheresa
mples.servlet.webspheresamples.yourco.news.servexml_news-xml_file=mainnewsfeed_
new.xml#Research">Recherche

 <a
href="http://9.24.105.152:80/httppvc_clnssifragp-1925I68/9.24.104.13.webspheres
amples.servlet.webspheresamples.yourco.news.servexml_news-xml_file=mainnewsfeed
_new.xml#Redbooks">Documents ('Redbooks')

 <do label="Precedent" type="prev"><prev/></do>
 </p>
 </card>
<!--- Article Title cards --->
</wml>

The WML displayed on the WAP emulator is shown in Figure 6-16.

Figure 6-16 WAP Translation (French)

6.1.4 XSL Stylesheet Editor
WebSphere Transcoding Publisher 4.0 introduces the XSL Stylesheet Editor. The
XSL Stylesheet Editor is a graphical tool that provides a WYSIWYG environment
intended for the novice stylesheet creator. However, the editor provides escapes
for the advanced user, so that the stylesheet template rules can be extended as
needed.
 Chapter 6. Using stylesheets 249

The XSL Stylesheet Editor is included in the WebSphere Transcoding Publisher
4.0 Win32 installation process. There is no separate installation process and no
option to not install it. It is installed as part of the Toolkit under the Toolkit
directory in folder xslide. It can be uninstalled without uninstalling WebSphere
Transcoding Publisher, but requires Java on the system for the uninstallation
process to be implemented.

The editor is started using Start -> Programs -> IBM Transcoding Publisher ->
Toolkit -> Stylesheet Editor or by issuing the runxslide command from a DOS
prompt pointing at the directory path. The editor is a graphical tool and its main
frame is composed of these major areas:

1. Menu bar - provides access to the application options, for example Files,
Edits, Views, Annotation and Help. Menu options are disabled when the
action is not available.

2. Toolbar - provides access to the common application actions and specific
stylesheet tasks. When content is selected in the Output display, the
Condition pull-down menu displays possible stylesheet template rules from
which to choose.

3. Stylesheet window - provides views of the stylesheet in either Tree, Rule or
Text format.

4. Output window - provides views of the input XML document transformed into
XHTML with the stylesheet template rules applied. The XHTML can be
viewed in Tree, Design or Text format.

5. XML sample window - provide views of the input XML document. The XML
document may be viewed in either Tree or Text format.

6. Projects - provide a tree view of the projects defined in the editor. All projects
are shown, and there is no concept of open or closed projects.

7. Message window - (not displayed unless the user turns it on) displays
messages produced by the editor, Xerces (parser) or Xalan (processor). Help
is available on some messages by clicking the Help icon when a message is
highlighted.

The editor’s main window is shown below using the XML document
NewsEdit.xml displayed and the stylesheet NewsSS.xsl.
250 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 6-17 XSL StyleSheet Editor - main window

Creating a project
The editor uses the project to organize work using XML document samples and
XSL stylesheets. A project contains one or more XML samples and one or more
XSL stylesheets. Creating a project is the first step in working with the editor.
When you start the editor, it will ask if you want to create a new project or work
with an existing project. If you want to create a new project, just follow the wizard
directions to get started. Another way to create a project (once the editor is
running) is to Select File -> New Project or click the New Project toolbar entry;
the wizard (the same wizard as used at start-up) steps you through the process
by:

� Asking for the project name

� Asking you to choose the XML sample file(s) to add to the project
 Chapter 6. Using stylesheets 251

� Asking you to either:

– Choose to create a new XSL stylesheet

– Choose an existing XSL stylesheet

When you have the editor running, use the following actions to create new XML
samples or to add new stylesheets:

� To add XML samples to the project, either select File -> Add Samples or click
Add Samples from the toolbar. A window appears to help you locate the XML
document.

� To add XSL stylesheets to the project, either select File -> New Stylesheet or
click New Stylesheet from the toolbar. Enter a name and a location for the
stylesheet.

XML sample window
The sample XML documents are used as the basis for creating the template
rules within the stylesheet. The template rules determine the way the XML
document content is structured and represented in the output document. You
should select XML sample documents representative of the XML data that the
associated stylesheets are intended to handle. The XML sample window
provides two views:

� A tree view - a hierarchical tree view of the XML document. Both selection
and highlighting are available in the view.

� A text view - a simple text view of the document. This is a read-only view and
selection and highlighting are not supported in this view.

Stylesheet window
The stylesheet window displays the XSL stylesheet. The stylesheet is used to
process the sample XML document, producing an output document. The
stylesheet window has three views:

� A rules view - provides a Windows Explorer-like view of the stylesheet, based
on rules (xsl template rules) found in the stylesheet. The left-hand pane
contains the match conditions (that is, what elements in the XML data match
these rules). The right-hand pane contains output generators (that is, what
happens when the rule is matched). Both selection and highlighting are
available in this view.

� A tree view - provides a hierarchical view of the XSL stylesheet. Both
selection and highlighting are available in this view.

� A text view - a simple text view of the stylesheet. This is a read-only view, but
editing in this view disables all other views until you rebuild the stylesheet.
Neither selection nor highlighting are available in this view.
252 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Output window
The output window displays the results of applying the XSL stylesheet to the
XML sample. The window provides three views:

� A design view - provides a WYSIWYG environment for modifying the output
document. This is a browser-like display of the output document. Changes
made to the output document (in this view) are actually changes being
applied to the stylesheet. Both selection and highlighting are available.

� A tree view - provides a hierarchical view of the output document. Both
selection and highlighting are available in this view, which is very useful when
the stylesheet is producing markup other than XHTML output.

� A text view - a simple view of the output document. This is a read-only view
within which you cannot edit the output. Neither selection nor highlighting are
available in this view.

You will only see a design view if the stylesheets produce XHTML. The XHTML
toolbar is only available with XHTML output. The XHTML stylesheets must be
part of the XHTML namespace. All other stylesheets are treated as generic XSLT
stylesheets with no output design view and no XHTML toolbar.

Creating a stylesheet rule
Within a project, select the XML sample document for which you want to create a
stylesheet. The content of the XML document is displayed in the output window.
Rule creation consists of three main steps:

1. Select the XML content that is the target of the template rule.

2. Determine the match condition for the template rule.

3. Define the output of the rule, that is, how the selected content is affected by
the execution of the rule.

There are two ways to create the template rule match condition: either use the
Current Condition field or the XPath Builder. Let us explore each method.

The Current Condition field is found on the toolbar. When a selection is made in
any of these views:

� The stylesheet window rule or tree view,
� The XML sample window tree view,
� The Output window design or tree view,

then the Current Condition field shows a match condition for the selection (the
XML document content selected). The Current Condition field provides a
drop-dow menu which contains the first 20 potential refinements of the current
match condition. You can select the condition that meets your needs for this
match condition.
 Chapter 6. Using stylesheets 253

The XPath Builder provides a more advanced condition builder. The current
condition is shown by default, but it can be edited. XPath Builder provides
categories of the possible match condition refinements (that is, match conditions
based on attributes, parent, etc.).

Sample scenario using XSL StyleSheet Editor
Prior to starting the XSL editor, we created a new sample XML document, named
NewsEdit.xml. This new XML document is shown in the example below.

Example 6-27 TITSO NewsEdit.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<news>
 <article>
 <createDate>06012001</createDate>
 <author>
 <authorName>LR Robins</authorName>
 <authorNumber>4709-331</authorNumber>
 </author>
 <details>
 <category>Technical</category>
 <title>IBM Wins Big</title>
 <subject>IBM wins with its new Super computer</subject>
 </details>
 </article>
</news>

When we started the editor, we were asked if we wanted to create a new project,
which we did. Our new project was named ITSOXSL. We added our new XML
document (NewsEdit.xml) to the project. We named the new XSL stylesheet
XSLEditor.xsl. At this point, we had a skeleton XSL document for our XML
document. The XML document sample was displayed in the output window.

Next, we created three template rules:

� The authorName rule, which utilizes the authorName contents.

� The createDate rule, where the createDate contents are in bold face.

� The title element rule, which makes the contents a Heading Level 2.
254 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

We selected each element and used the Current Condition to select the element
as the template rule match value. This caused the creation of a skeleton template
rule. From the tool bar, we selected the appropriate HTML tag, which became
part of the rule body.

Figure 6-18 XSL Editor with template rule

The resulting XSL stylesheet rules created by the XSL editor are shown below.

Example 6-28 XSL template rules

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns="http://www.w3.org/1999/xhtml"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output
 doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
 indent="yes" method="xml"/>

 <xsl:template match="/">
 <html>
 <head>
 <title>Untitled</title>
 </head>
 <body>

 <xsl:apply-templates/>
 Chapter 6. Using stylesheets 255

 </body>
 </html>
 </xsl:template>

<xsl:template match="*">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="title">
 <h2><xsl:apply-templates/></h2>
 </xsl:template>

 <xsl:template match="authorName">
 <i><xsl:apply-templates/></i>
 </xsl:template>

 <xsl:template match="createDate">
 <xsl:apply-templates/>
 </xsl:template>
</xsl:stylesheet>

We registered this stylesheet and used the associated XML document as input to
the TransformTool. Shown below is the results of the transformation by the
TransformTool.
256 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 6-19 XSL Editor stylesheet results in the Transform Tool

XSL Editor limitations
This is the initial release of the XSL Stylesheet Editor. The editor has the
following limitations and restrictions:

� It is only supported on Windows 2000 or Windows NT.

� It requires Java Version 1.3 JVM.

� The Output Design View only supports XHTML.

� Not all XHTML tags are supported.
 Chapter 6. Using stylesheets 257

258 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 7. WML fragmentation
considerations

IBM WebSphere Transcoding Publisher (WTP) provides services to transform
application content into a series of dynamically linked information (called decks),
suitable for handling by client devices using markup languages such as WML,
compact HTML (cHTML) and HDML phones. In this chapter, we describe the
fragmentation function provided by WebSphere Transcoding Publisher and how
this support must be integrated in a WebSphere Everyplace Server environment
for proper application deployment.

Two sample scenarios are included to show how you will need to configure Web
Traffic Express (WTE) and WebSphere Transcoding Publisher (running as a
reverse proxy and as a forward proxy) when deploying WAP applications using
Transcoding Publisher to generate WML application content.

7

© Copyright IBM Corp. 2002 259

7.1 Overview
Many phones have limited storage capacity (for example, 1440 bytes). However,
many Web pages exceed these limits. Therefore, converting an HTML page to
HDML, i-Mode (cHTML), or WML is very likely to result in a deck and/or page that
exceeds the maximum storage capacity of a phone. The same problem may be
encountered with native wireless content if the content generator is unaware of
the specific limits of the phone being used. Exceeding the storage capacity of the
phone means that the page cannot be viewed on that phone.

The IBM WebSphere Transcoding Publisher (WTP) fragmentation function
makes it possible to view these over-large pages on the limited storage phones.
Fragmentation solves this problem by splitting a single oversized deck and/or
page into multiple smaller decks/pages, each one smaller than the maximum size
limitation.

Fragmentation is performed by the transcoder (Fragmentation Transcoder) in the
Administration Console. This transcoder is registered and enabled by default.

Note: IBM WebSphere Transcoding Publisher supports fragmentation for WML,
i-Mode (cHTML), and HDML.

7.1.1 How does it work?
The Fragmentation Transcoder traverses the Document Object Model (DOM)
tree representing the over-large card/page. The DOM is generated internally and
automatically when HTML is transcoded to WML, i-Mode (cHTML) or HDML.
Therefore, you do not need to enable the HTML Document Object Model (DOM)
Generator transcoder.

If elements will fit on the new page, they are added to it and removed from the
original. If elements do not fit, there are two ways to handle them:

� They can be fragmented: recursively traverse the element's subtree.

� They cannot be fragmented: finish fragmenting the new page; the original
may still be too large.
260 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The maximum size for a fragment is a property of the device. The fragmentor
determines the size value from the information as follows:

� WML and HDML: there is a parameter which specifies the maximum size
value in the device preference profile. The parameter is shown in Figure 7-1 in
the Maximum number of bytes that the device accepts field. By default, you
cannot change this value (it appears in the View only tab). However, if you
create a new device profile by using the WebSphere Transcoding Publisher
profile builder, you can set the value and make it configurable.

Figure 7-1 The maximum size for a WML fragment

� i-Mode (cHTML): the maximum size value is 2048 bytes by default. There is
no parameter as with WML and HDML. i-Mode phones can also have different
cache sizes. The size is specified in the User-Agent field in the HTTP header.
For example, User-Agent DoCoMo/1.0/N502/c8 specifies an 8 KB cache. In
this case, the fragmentor adjusts fragmentation size based on this cache size.
If the cache size is c8 (8 KB), the fragmentor sets the maximum size to 3000
bytes. If the cache size is c10 (10 KB), the fragmentor sets the maximum size
to 4000 bytes.
 Chapter 7. WML fragmentation considerations 261

In addition to splitting up the deck/page into smaller chunks, the fragmentor adds
links to each of the generated pieces to allow navigation from one piece to the
next and previous one. The Continue...link allows you to move to the next
fragment and the Return link moves you to the previous one. The first fragment
has no Return link and the last no Continue... link.

Figure 7-2 shows an example of WML fragmentation. A single oversized WML
deck is fragmented into two smaller pieces. The Continue... and Return links are
inserted into the fragments to allow for navigation between the fragments. Also,
any intra-deck links in the original deck are fixed to point to the target in whatever
deck/card in which they are placed.

Figure 7-2 Fragmented WML deck

After fragmentation is performed, the first fragment is sent to the client as an
HTTP response. The fragmentation engine stores non-first fragments in a
general-purpose resource repository. The resource repository appears as a
transcoder in the Administration Console. Figure 7-3 on page 263 shows the
resource repository in the Administration Console. Making the resource
repository general purpose will allow for reuse by other components needing a
similar service in the future. But for now, only the fragmentation engine uses the
resource repository. Because the fragmentor needs the resource repository to
save fragments for later retrieval, the resource repository should not be disabled
if fragmentation is being used. The Administration Console does not enforce this
because it is unaware of the dependence. If the fragmentor is disabled, the
resource repository should also be disabled; this will improve performance.

Deck1

Link

Target

Link

FragCard1

FragDeck1

Continue

Target

FragCard2

FragDeck2

Return

Link

Card1
262 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 7-3 Resource repository as a transcoder

All fragments are named so that a request for any fragment will be routed back to
the transcoder.

� For the proxy model, this means prefixing the URL with a special string that
will trigger the resource repository generator to retrieve and return the
fragment.

� For the servlet model, this means including the Web server host name and
the name of the transcoding servlet so that the transcoder is invoked to
handle the request.

� For the reverse proxy model, this means including the local WebSphere
Transcoding Publisher server's host name so that the request will be routed
back to the transcoding server.

Fragments are kept until the original document expires. If a request for a
discarded fragment is received, a Fragment expired message is sent.

7.1.2 Fragmentable elements
Fragmentable elements are:

� Nodes (tags) with children

� Nodes (tags) that can be safely cloned with child nodes distributed among the
clones ("safely" means that the resulting markup is valid and the content's
meaning and/or presentation is essentially unchanged)
 Chapter 7. WML fragmentation considerations 263

Note that elements with no children (for example, break elements) are not listed
below as fragmentable, but a card/page may be split at one of these elements.

� WML fragmentable elements are:

<wml>, <card>, <p>, , , <i>, , <u>, <big>, <small>,
<table>

� i-Mode fragmentable elements are:

<html>, <body>, <p>, <blockquote>, <blink>, <center>, <dir>, <div>,
, <plaintext>, <pre>,

� HDML fragmentable elements are:

<hdml>, <display>, <choice>, <center>, <line>, <right>, <wrap>

7.1.3 Common problems
Invalid input (invalid content) will cause a request to be rejected
(FragmentRejectedException). Sometimes, content cannot be fragmented into
small enough pieces. This is likely to happen with the folowing elements:

� Fragmentable elements provided as a reference

� Long paragraphs with no breaks

� Large forms

7.1.4 Example
Figure 7-4 on page 265 is a simple example of WML deck fragmentation. The
fragmentor traverses the tree depth-first. At each node (tag), the fragmentor
calculates the size of the page represented by the nodes visited so far, plus any
descendants of the current node. If this amount exceeds the maximum size, then
either the tree is fragmented before the current node, or the subtree(s) of the
current node is recursively considered for fragmentation.

The double line in Figure 7-4 indicates where the fragmentor determines that this
tree must be fragmented.
264 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 7-4 Fragmentation example

Figure 7-5 illustrates the first fragment resulting from fragmenting the WML deck
as indicated in Figure 7-4.

Figure 7-5 First fragment

<wml><wml>

<card> <card>

<p> <p>

text
 text

......

<wml>

<card>

<p>

text
 Chapter 7. WML fragmentation considerations 265

Figure 7-6 is the second fragment. Notice that the <wml>, <card>, and <p>
elements from the original card were duplicated, with children distributed or
duplicated as necessary between the new and old elements. This remaining
fragment may still be too large for the target device, so the fragmentor begins
again at the top of this DOM to see if it needs to be fragmented.

Figure 7-6 Next fragment

7.2 WML fragmentation in WebSphere Everyplace
Server environment

WML fragmentation algorithms in WebSphere Transcoding Publisher (WTP)
include URLs that expect the device to be using WebSphere Transcoding
Publisher as a proxy server. That is, WebSphere Transcoding Publisher
assumes in this case that the device is connecting directly to the WebSphere
Transcoding Publisher proxy. However, when running WebSphere Transcoding
Publisher behind another proxy, such as WebSEAL-Lite (WTE/WSL) in
WebSphere Everyplace Server, WebSphere Transcoding Publisher
fragmentation will not work properly, since the first proxy (WTE) does not
understand the URLs that WebSphere Transcoding Publisher created.

Note: In a WebSphere Everyplace Server environment, WebSEAL-Lite (WSL)
running as a plug-in of WTE provides user authentication function.

<wml>

<card> <card>

<p> <p>

text

......
266 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

In this section, we include two sample scenarios to illustrate how you will
configure WTE running as a reverse proxy and connected to WebSphere
Transcoding Publisher running as a reverse proxy and as a forward proxy.

7.2.1 Scenario 1: Running WebSphere Transcoding Publisher as a
reverse proxy

In this section, we describe a sample scenario for WML fragmentation in a
WebSphere Everyplace Server environment where both WebSEAL-Lite (a
plug-in of WTE) and WebSphere Transcoding Publisher are configured as
reverse proxies. The WAP client device can be connected to a WebSphere
Everyplace Server domain in the following ways:

� Using HTTP to WebSEAL-Lite using a WAP simulator. This is commonly done
for application development.

� Using a WAP/IP connection to the Everyplace Wireless Gateway (EWG).

� Using other WAP connections such as using PPP protocol.

In the scenario, we show you how to configure WebSphere Transcoding
Publisher as a reverse proxy, WTE as a reverse proxy and WAP Gateway
connected to a reverse proxy (WTE/WSL). The scenario is illustrated in
Figure 7-7.

Figure 7-7 WML fragmentation with WebSphere Transcoding Publisher as a reverse
proxy

Note: WTE/WSL and WebSphere Transcoding Publisher must be properly
configured when running applications using WML fragmentation.
 Chapter 7. WML fragmentation considerations 267

In this scenario, there are basically two important issues you will need to
understand:

1. The WAP device in this common WebSphere Everyplace Server environment
is not directly connected to WebSphere Transcoding Publisher. Therefore,
WebSphere Transcoding Publisher reverse proxy must provide the return
address for the first proxy in the chain, that is, the WTE host name or IP
address (see Figure 7-8).

2. Transcoding Publisher (WTP) does not let you configure the port of the first
reverse proxy in the chain and will just default to its own port. Therefore, you
will need to use exactly the same port number you are using in WebSphere
Transcoding Publisher, for example, one of the default reverse proxy ports 80,
81 or 82.

The WebSphere Transcoding Publisher reverse proxy configuration is illustrated
in Figure 7-8. In this scenario, there is only one application server, so the Single
Web server option is selected and its host name or IP address is also configured.

Figure 7-8 WebSphere Transcoding Publisher reverse proxy configuration for WML
fragmentation

In this scenario, WebSphere Transcoding Publisher is configured to use ports 81,
82 and 8000 (see Figure 7-9), and the sample application will use port 82 to
illustrate the process.

Restriction: When WTE/WSL and WebSphere Transcoding Publisher are
both configured as reverse proxies, you must use the same port number. In
addition, because of this restriction, you cannot run both WTE and
WebSphere Transcoding Publisher on the same machine because of port
conflicts.

WebSphere Test Environment h

WAS hostname or IP addr
268 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 7-9 WebSphere Transcoding Publisher reverse proxy ports

Since WebSphere Transcoding Publisher running as a reverse proxy is
configured to listen on these ports and the application is using port 82, you will
need to configure port 82 as the listening port in WTE Port directive in the
ibmproxy.conf file as follows:

Port 82

In addition, you will need to specify the protocols that this proxy server will
forward. For example, to forward all HTTP requests to WebSphere Transcoding
Publisher reverse proxy server, you configure the Proxy directive as follows:

Proxy /* http://9.24.106.193:82/*

where 9.24.106.193 is the IP address (you can also use the host name) of
WebSphere Transcoding Publisher reverse proxy and 82 is its listening port.

The application can now point to the WTE/WSL reverse proxy when connecting
to the WebSphere Everyplace Server domain. For example:

Hello World
<a
href="http://9.24.105.164:82/WebSphereSamples/servlet/WebSphereSamples.Your
Co.News.ServeXML_news?xml_file=MainNewsfeed_new.XML">YourCo Application

where 9.24.105.164 is the IP address (or host name) of WTE/WSL reverse proxy
and 82 is its listening port.

In this scenario, WTE/WSL will forward HTTP requests to Transcoding Publisher
and, in turn, WebSphere Transcoding Publisher will forward the request to the
application server. In a similar way, the WTE reverse proxy will forward all
fragment requests to Transcoding Publisher.
 Chapter 7. WML fragmentation considerations 269

For WAP connections, the Everyplace Wireless Gateway must be configured to
connect to a reverse proxy (WTE/WSL). The WAP Gateway configuration is
shown in Figure 7-10 on page 271; this option is not available during installation
and you will need to use the Gatekeeper.

Hint: As you can see in this scenario, it is important to notice that the WTE/WSL
reverse proxy IP address and listening port number are specified in two different
places:

� In the application.

� In the WAP Gateway configuration.
270 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

When using the WAP Gateway connected to a reverse proxy, the values you
configured in the WAP Gateway are used. This means that any values can be
used in the application since they will be ignored. For example:

Hello World

where XXXX is any host name or IP address and YY is any port number.

Of course, this is not true if you are connected directly to the WTE/WSL reverse
proxy using the HTTP protocol. In this case, the application values will be used.

Figure 7-10 WAP Gateway configuration to connect to WTE/WSL reverse proxy

Finally, Figure 7-11 on page 272 shows a WML deck where you can see that, as
expected, all references in URLs point to the WTE/WSL reverse proxy port 82.
 Chapter 7. WML fragmentation considerations 271

Figure 7-11 WML deck in WAP simulator
272 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

7.2.2 Scenario 2: Running WebSphere Transcoding Publisher as a
forward proxy

In this section, we describe a sample scenario for WML fragmentation in a
WebSphere Everyplace Server environment where WebSEAL-Lite (a plug-in of
WTE) is configured as a reverse proxy and Transcoding Publisher (WTP) is
configured as a network proxy (forward proxy). The scenario is illustrated in
Figure 7-12.

Figure 7-12 WML fragmentation with WebSphere Transcoding Publisher as forward
proxy

Transcoding Publisher is configured as a forward proxy (see Figure 7-13).
 Chapter 7. WML fragmentation considerations 273

Figure 7-13 WebSphere Transcoding Publisher configured as a forward stand-alone
proxy

The default ports shown in Figure 7-14 will be used by WebSphere Transcoding
Publisher configured as a forward proxy.
274 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 7-14 WebSphere Transcoding Publisher forward proxy ports (default values)

In this scenario, Transcoding Publisher fragmentation implements algorithms
using URLs that expect the client device to be using WebSphere Transcoding
Publisher as a proxy server. This is done since WebSphere Transcoding
Publisher assumes that the device is connecting directly to the WebSphere
Transcoding Publisher. When running WebSphere Transcoding Publisher behind
another reverse proxy, this breaks down, since the first proxy (WTE/WSL) does
not understand the URLs that WebSphere Transcoding Publisher created.
Figure 7-15 shows the error message indicating that the host name starting with
the prefix ifrag could not be resolved.

Figure 7-15 WML fragmentation error

In order to eliminate this problem, you will need to change the WebSphere
Transcoding Publisher's fragment identifiers by editing the
FragmentationEngineConfiguration.prop file in the WebSphere Transcoding
Publisher directory:

IBMTrans->etc->plugins->ibm->FragmentationEngine
 Chapter 7. WML fragmentation considerations 275

Note: When using LDAP in a WebSphere Everyplace Server environment, this
needs to be done using the DMT tool (or another LDAP manipulation tool). When
using DMT, select the WebSphere Transcoding Publisher server model that you
want to update and navigate through the directory as follows:

WTP Server Model->etc->plugins->ibm->FragmentationEngine
->FragmentationEngineConfiguration

The updated properties file (FragmentationEngineConfiguration.prop) should be
updated as follows:

1. Replace the statement FragmentSpecifier=ifrag- with the following
statement:

FragmentSpecifier=1.1.1.1/ifrag-

2. Replace the statement PrimarySpecifier=ifragp- with the following
statement:

PrimarySpecifier=1.1.1.1/ifragp-

In this scenario 1.1.1.1 is any dummy IP address or host name, for example
a.b.c.d, mywte, mywsl or any other value. The point here is that this value will be
included in a fragment request and when the WAP Gateway in the Wireless
Gateway (EWG) is configured to connect to a reverse proxy (WTE/WSL), it will
replace this value with the configured WTE proxy address in the WAP Gateway.

Note: In this sample scenario, IP addresses 1.1.1.1 and 2.2.2.2 are any dummy
values that will be replaced in the WAP Gateway with the configured WTE
reverse proxy IP address. You can also use dummy host names for these values.

In this sample scenario, 1.1.1.1 will be replaced with 9.24.105.164 using port 80
as configured in the WAP Gateway (see Figure 7-16 on page 277). In this
scenario, 9.24.105.164 is the WTE/WSL reverse proxy address.

For example, the fragment request:

http://1.1.1.1/ifrag-1040I1/...

will be changed by the WAP Gateway to the following value:

http://9.24.105.164/ifrag-1040I1/...

where 9.24.105.164 is the WTE/WSL reverse proxy address. This scheme
guarantees that the fragment request will reach the WTE/WSL reverse proxy.
276 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 7-16 WAP Gateway with HTTP reverse proxy (WTE/WSL) configuration

In a similar way, as shown in Figure 7-17, other non-fragment requests can also
use the same scheme and provide a dummy address or host name that
eventually will be changed by the WAP Gateway for proper access of the
WTE/WSL reverse proxy.

For example, a dummy address of value 2.2.2.2 (see Figure 7-17) used in this
sample WML page will be changed by the WAP Gateway to the WTE/WSL
reverse proxy IP address.

Note: For this scenario, you must select the HTTP proxy is a reverse proxy box
(WTE/WSL).
 Chapter 7. WML fragmentation considerations 277

Figure 7-17 Sample WML page

Finally, the WTE reverse proxy is configured in the ibmproxy.conf file as follows:

1. Configure the http_proxy directive to point to WebSphere Transcoding
Publisher forward proxy using a valid port. For example:

http_proxy http://9.24.106.193:8088/

2. Configure any application required Proxy directives. For example, in this
scenario, the application needs the following directives:

Proxy /abcd/* http://9.24.104.13/*
Proxy /theme/* http://9.24.104.13/theme/*
Proxy /WebSphereSamples/* http://9.24.104.13/WebSphereSamples/*

Note: This scenario targets a single application server with IP address
9.24.104.13. When using multiple application servers, you will need to
configure additional Proxy directives.
278 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

3. Configure a Proxy directive for the fragmentation specifier so that it can be
recognized by WebSphere Transcoding Publisher. This is because the WAP
Gateway will replace the original value. For example, in this scenario:

Proxy /ifrag* http://1.1.1.1/ifrag*

Note: The IP address you use should match exactly what you have previously
configured in the FragmentationEngineConfiguration.prop file. In this sample
scenario it is 1.1.1.1, but any value can be used as long as it matches the
value in the Proxy directive.

A sample transcoded page is shown in Figure 7-18. Notice that IP addresses
1.1.1.1 and 9.24.104.13 used in this application will be replaced by the WAP
Gateway with the address of the configured WTE reverse proxy.

Figure 7-18 Sample WML transcoded page
 Chapter 7. WML fragmentation considerations 279

Important: The suggested way, shown in this section, to support WML
fragmentation in WebSphere Everyplace Server, when WTE/WSL is
configured as a reverse proxy and WebSphere Transcoding Publisher is
configured as a forward proxy, relies on the fact that for HTTP and fragment
requests the WAP Gateway in EWG replaces the host name or IP address
with the IP address of the configured reverse proxy. Therefore, this scheme
cannot be used when using a WAP simulator connected directly to WTE/WSL
reverse proxy using the HTTP protocol.
280 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 8. Going wireless!

In this chapter, we describe Everyplace Wireless Gateway (EWG) issues
involved in accessing the B2E sample application used in this redbook from WAP
phones and other wireless devices. You will also find information about the
Wireless Gateway components and the features of the EWG Version 2.1.1
release, including WAP over IP, WAP Push, wireless clients and so on.

Note: The Everyplace Wireless Gateway (EWG) is available for AIX and Sun
Solaris platforms and is a component of WebSphere Everyplace Server Service
Provider Offering (SPO) Version 2.1. It is also an optional component of the
WebSphere Everyplace Server Enable Offering (EO) Version 1.1. In addition,
EWG can also be used as a standalone product.

8

© Copyright IBM Corp. 2002 281

8.1 Overview
The Everyplace Wireless Gateway (EWG), a component of the IBM WebSphere
Everyplace Server (WES), is a distributed, scalable, multipurpose UNIX
communications platform. It supports optimized, secure data access by both
Wireless Application Protocol (WAP) clients and non-WAP clients over a wide
range of international wireless network technologies, as well as local area (LAN)
and wide area (WAN) wire line networks. The Wireless Gateway integrates the
WAP Version1.2.1 standard support as defined by the WAP Forum.

All the EWG features addressed in this chapter are included in Everyplace
Wireless Gateway Version 2.1.1. Figure 8-1 shows the Everyplace Wireless
Gateway (EWG) with supported packet networks, GPRS, cellular networks,
private RF networks, dial-up telephone (PSTN) and WAP support.

Note: Everyplace Wireless Gateway is available for AIX and Solaris platforms.

Figure 8-1 Everyplace Wireless Gateway overview

The main components of the Everyplace Wireless Gateway are:

� The Wireless Gateway, which runs on the IBM AIX and Sun Solaris operating
systems, provides a standard communications interface (TCP/IP) to a variety
of wireless, dial-up, and LAN networks with data optimization and security.

� The Wireless Gatekeeper, a Java-based administrator’s console, provides an
easy-to-use interface that enables you to configure Wireless Gateways,
282 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

define wireless resources, group the resources to control access, and assign
administrators to perform operations on the resources as needed. The
Wireless Gatekeeper enables one or more administrators to work with
Wireless Gateways remotely.

� The Wireless Client provides an optimized and secure IP tunnel for
communication with the Wireless Gateway using a variety of wireless and
wireline networks.

� Persistent data storage consists of independent databases containing
information about the resources comprising your wireless network. The
databases are directory services using LDAP and ODBC-compliant relational
databases.

� The access manager program is an AIX or Solaris daemon that manages
communications among Wireless Gatekeepers, the Wireless Gateway and
persistent data storage.

Figure 8-2 shows the Everyplace Wireless Gateway (EWG) supported networks.

Figure 8-2 Everyplace Wireless Gateway supported networks

WAP phones
WAP clients, such as WAP-compliant mobile phones, can connect to the
Wireless Gateway using a microbrowser. When the Wireless Gateway is
configured as a WAP Gateway, it uses Wireless Session Protocol (WSP) to link
the microbrowser with connection-oriented and connectionless WAP services.

WAP clients connect to the Wireless Gateway through a circuit-switched or dial
IP network (GSM, TDMA, CDMA) or through an SMS network (SMPP, UCP).

Your WAP phone needs some configuration to be used with the Wireless
Gateway. You have to provide your WAP phone with the EWG IP address and
the home page URL of your application.
 Chapter 8. Going wireless! 283

The following mobile devices have been proven to work with the WAP Wireless
Gateway:

� Ericsson R320s

� Ericsson R380s

� Ericsson R380 World

� Ericsson A1228c

� Ericsson R520

� Ericsson R278d

� Mitsubishi Trium Geo

� Siemens M35i

� Motorola Timeport P7389 Tri-Band

� Motorola TalkAbout T2288

� Nokia 7110

� Nokia 7190

� Nokia 7160

Windows CE Client
The Wireless Client can be installed on the following Windows CE platforms:

� Versions: H/PC Pro 2.11, HPC 2000, PocketPC

� Processors: StrongARM, MIPS, SH3

Palm OS
Supported devices are:

� Palm devices that come with Palm OS 4.0

� Palm devices that come with Palm OS 3.5 and are

upgradable to Palm OS 3.5.3

Supported networks are:

� Dial-up (for example, IBM or Palm modems)

� Direct Serial (for example, Minstrel wireless modem)
284 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 8-3 Wireless Client for Palm OS

The limitations of the Wireless Client for Palm OS are as follows:

� Palm Infrared port is not supported

� Callback is not supported

� Short hold is not supported

� Triple DES is not supported

8.1.1 Connectivity
The Wireless Gateway allows multiple simultaneous connections to multiple
networks; each physical connection is represented in EWG by a separate
interface called a Mobile Network Connection (MNC). In addition, EWG balances
the load of messages across similar MNCs and the Network Dispatcher may also
be used to scale messaging over multiple Wireless Gateways.

As a part of WebSphere Everyplace Server, EWG interacts with the other
WebSphere Everyplace Server components, as illustrated in Figure 8-4.
 Chapter 8. Going wireless! 285

Figure 8-4 EWG interaction with the WebSphere Everyplace Server components

Some of the key features and benefits provided by Everyplace Wireless Gateway
are:

� Scalability: EWG supports clustering of gateways for larger systems and
backup. Thus it is possible to add gateways to handle increases in traffic
without shutting the service down.

Note: EWG supports remote gateway functionality for corporate
environments.

� Messaging Gateway provides push messaging capabilities for clients such as
WAP phones, SMS messaging and others. Thus end users can get
information whenever and wherever they need it.

� Security: EWG provides two-way user authentication and data encryption for
wireless clients using the WLP protocol to connect to the Wireless Gateway.
In addition, the WAP Gateway provides support for WTLS secure
connections.
286 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� Optimization: EWG improves network response time and reduces the amount
of data transmitted with data compression and protocol optimization. As a
consequence, data exchange between application and user is faster and
more efficient.

� WAP support: EWG allows standards-based support for devices with WAP
browsers installed.

� Worldwide network technology support: EWG delivers applications to mobile
users over a wide variety of wireless and wired networks.

The main new features provided by the Everyplace Wireless Gateway in this
release are:

� Wireless Client support on the handheld PC 2000 and Pocket PC platforms
using the Windows CE operating system.

� Wireless Client support on Palm OS.

� Wireless Client support on Windows Millenium.

� TCP application, a new WAP service resource, which makes it possible for
WAP application data streams that do not use a browser to be transported to
and from WAP client devices.

� Improved storage of cookies on behalf of WAP clients. You can enable
session cookies for secure or connection-oriented browse services without
requiring authentication.

� Integration with Tivoli SecureWay Policy Director.

8.1.2 Everyplace Wireless Gateway administration
The Everyplace Wireless Gateway (EWG) can integrate all supported networks
within a single resource. There is only one Wireless Gateway installed per
system. Each Wireless Gateway has configuration information that designates
resources assigned to it.

The Gatekeeper is the EWG component that allows you to configure the Wireless
Gateway, register users and mobile devices, specify logging and tracing controls,
and perform many other administrative tasks. The Wireless Gatekeeper interface
is divided into two panes. The left pane of the interface contains two tabs, Tasks
and Resources, which give you access to the information and tasks you can
perform and to the resources you can manage.

The Tasks tab displays common tasks such as finding a resource, viewing logs,
adding a resource, and so on.
 Chapter 8. Going wireless! 287

The Gatekeeper is started by typing the following AIX command:

wgcfg

On the Resources tab, right-click the Wireless Gateway machine’s name, then
select Properties. The panel shown in Figure 8-5 appears; here you can
configure EWG options and resources.

Figure 8-5 Using the Wireless Gateway Gatekeeper

Note: The Gatekeeper can also be installed on Windows workstations.

Mobile Network Connection (MNC)
A mobile network connection is a resource that is assigned to a Wireless
Gateway and defines a specific type of network connection. The MNC consists of
a line driver, a network protocol interpreter, and one or more physical ports. You
configure one MNC for each network provider that you will use.
288 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

For example, to add a Mobile Network Connection, use the Wireless Gatekeeper
and right-click the Wireless Gateway machine’s name to select the option Add a
MNC, then follow the pane’s instructions. Figure 8-6 shows a sample
configuration to add an IP LAN-based network.

Figure 8-6 Adding an MNC using the Everyplace Wireless Gateway Gatekeeper

Mobile Network Interface (MNI)
A Mobile Network Interface defines an IP subnet through which the Wireless
Gateway routes IP traffic for wireless clients and for WAP clients that use a
native-PPP connection. The messaging clients and WAP clients that do not use
native-PPP to connect through a dial MNC do not use MNI resources.

A Wireless Gateway can have one MNI for all networks or multiple MNIs for
different ranges of addresses. MNIs can support static addressing and DHCP
(Dynamic Host Configuration Protocol) for a pool of dynamically assigned
addresses.
 Chapter 8. Going wireless! 289

When defining a MNI, you need to understand how to:

� Acquire a subnet using a host IP address and a subnet mask for that address.

� Make sure that reserved addresses in the subnet are not used as Wireless
Client or mobile devices IP addresses (typically, the MNI reserves the first
usable IP address in a subnet as its own and this address is the Wireless
Gateway’s point of presence on the subnet).

� Determine if you need an alternate subnet mask.

� Update your organization’s routing tables to include the Wireless Gateway’s
IP address.

� Update your organization’s routing tables to route the MNI address range to
the IP address of the Wireless Gateway.

� Verify that traffic is routed securely between a Wireless Client and a Wireless
Gateway.

� Optionally, set up filters, packet mappings or routing aliases for the MNI.

For example, to add a MNI, from the Wireless Gatekeeper, right-click the
Wireless Gateway machine’s name and select Add a MNI, then follow the pane’s
instructions.
290 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 8-7 Sample MNI configuration using Everyplace Wireless Gateway Gatekeeper

8.1.3 Wireless Gateway logging
Log files are very useful and allow you to check the status of wireless
connections, data packets transmitted through the Wireless Gateway, etc. The
wg.log file provides all this information and much more. You can view this file by
typing the following AIX commands:

#cd /var/adm
#pg wg.log

Warning: If the logs are turned on in the Wireless Gatekeeper, data is provided
every 15 seconds in the wg.log file. It will be necessary to remove the contents of
this file when needed, in order to keep enough disk space for future traces.
 Chapter 8. Going wireless! 291

In you want to remove the wg.log content, in the /var/adm directory, enter the
following command:

#rm wg.log

Sample Wireless Gateway log file

Date: Fri Sep 7 15:21:32 2001
Server: IBM Wireless Gateway V2.1.0
Content-Type: application/xml
Content-Language: en
Content-Length: 397
<?xml version="1.0"?>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 1.0//EN"

"http://www.wapforum.org/DTD/pap_1.0.dtd">
<pap product-name="IBM Wireless Gateway V2.1.0">
<push-response push-id="bAnE9GbCZj4bLTbzJBQkYg=="
sender-address="http://rs615001:13131" reply-time="2001-09-07T19:21:32Z">
<response-result code="1001" desc="Accepted for Processing"/>
</push-response>
</pap>
2954:17477 (Sep 07 01/15:21:32): ppg_handler: encoded WSP header:
2954:17477 (Sep 07 01/15:21:32):
038381ea456e636f64696e672d76657273696f6e00312e32008c99af828d8e
2954:17477 (Sep 07 01/15:21:32): push_one_msg: delivering
bAnE9GbCZj4bLTbzJBQkYg== to device addr = 9.24.106.131, remote port = 9200
2954:17477 (Sep 07 01/15:21:32): SendWAPPush: delivering packet to mnc ip-wdp0
2954:17477 (Sep 07 01/15:21:32): delivered bAnE9GbCZj4bLTbzJBQkYg== to
wappush=9.24.106.131/type=IPv4@pi.ibm.com
2954:17477 (Sep 07 01/15:21:32): update_status_info: code [1000] desc [Message
delivered] bAnE9GbCZj4bLTbzJBQkYg== wappush=9.24.106.131/type=IPv4@pi.ibm.com
2954: 1543 (Sep 07 01/15:21:32): [BROKER Debug] api (1)->wsp (2)
H=24(localhost:9200/9.24.106.131:9200) pr=2/2 len=61
2954: 1543 (Sep 07 01/15:21:32): [BROKER Debug] wsp (2)->wdp (6)
H=24(localhost:9200/9.24.106.131:9200) pr=5/0 len=60
2954: 1543 (Sep 07 01/15:21:32): BI-ip-wdp0: init, iostate = 12
2954: 1543 (Sep 07 01/15:21:32): BI-ip-wdp0::sendBuffer (entry)
2954: 1543 (Sep 07 01/15:21:32): ip-wdp0::deliver (entry)
2954: 1543 (Sep 07 01/15:21:32): IpWdpPort-9200::write (entry)
2954: 1543 (Sep 07 01/15:21:32): IpWdpPort-9200: delivery data to
'9.24.106.131:9200' (48)
0000: 00 06 1f 03 83 81 ea 45 6e 63 6f 64 69 6e 67 2d
0010: 76 65 72 73 69 6f 6e 00 31 2e 32 00 8c 99 af 82
0020: 8d 8e 53 61 79 20 48 69 20 74 6f 20 45 72 69 63
System Load: 0.0607 0.1373 0.1285
Active Sessions: 0 Activation Rate: 0.00
ip-wdp0:
292 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 MNC Ports In (pkt) Out (pkt) In (kb) Out (kb) In (p/s) Out (p/s)
b/sec Errs
 9200 5 20 0 0 0.00 0.00
0.00 0
 ip-lan0 11 11 1 0 0.00 0.00
0.00 0
 smtp0 2 0 0 0 0.00 0.00
0.00 0
WAP Server Statistics:
 Resource In (pkt) Out (pkt) In (kb) Out (kb) In (p/s) Out (p/s)
b/sec Errs
 browse-9200 2 2 0 0 0.00 0.00
0.00 0

Port number information :
The Wireless Gateway and access manager are installed on the same system and
require a port for communication with the Wireless Gatekeeper.
The main ports used in this chapter are :
8889 : IP-LAN receive, including CDPD connections
9200 : connectionless WAP service
9201 : connection-oriented WAP service
9202 : secure connectionless WAP service
9203 : secure connection-oriented WAP service
13131 : messaging gateway
13132 : secure messaging gateway

8.1.4 Everyplace Wireless Gateway security
The Wireless Gateway has several ways to enforce the security of your network,
your applications and their data. There are several types of security options, for
example:

� Access. The process of how users at each end of a communication link know
the identity of the end user is called authentication. The basic mechanism for
authentication is the mutual presentation of a secret key.

In addition to the two-party key distribution protocol used by the Wireless
Gateway for wireless clients, you can also connect third-party RADIUS
servers.

� Confidentiality. In most cases, the communication link may not be private, and
therefore data should be encrypted before it is sent.

Data encryption provided by the Wireless Gateway (see Figure 8-8) helps
prevent unauthorized access to data by presenting data in an unintelligible
form, so that the original data cannot be obtained using only a decrypting
process. The data is transformed into encrypted data using the session key
exchanged during the authentication process.
 Chapter 8. Going wireless! 293

An SSL (Secure Sockets Layer) or WTLS (Wireless Transport Layer Security)
connection with the Wireless Gateway ensures that the communication link is
securely accessed, confidential and authorized.

Figure 8-8 Wireless Gateway security options

Note: A managed set of public key certificates, usually issued by a Certificate
Authority (CA), is required to enable SSL and WTLS communications.

� Authentication between the Wireless Gateway and Wireless Clients.
Authentication is a prerequisite for the communication link between the
Wireless Gateway and the Wireless Client to be encrypted. EWG uses a
modified PPP (Point-to-Point Protocol) called WLP (Wireless Optimized Link
Protocol) to authenticate the connection between itself and Wireless Clients.
WLP uses two-party key distribution protocol in which the Wireless Gateway
and Wireless Clients authenticate one another without sending a password
over the air.

� Encryption between the Wireless Gateway and Wireless Clients. When you
install the Wireless Client, you can choose the type of encryption used for

WLP
294 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

data transmitted between the Wireless Client and the Wireless Gateway. For
example:

– DES (Digital Encryption Standard)

– RC5

– Triple-DES

� Third-party authentication to the Wireless Gateway. You can also configure a
Wireless Gateway to use RADIUS third-party authentication. Acting on behalf
of WAP or Wireless Clients connected to it, the Wireless Gateway routes
authentication requests to a RADIUS server. Because these authentication
requests are in addition to WLP (Wireless Optimized Link Protocol), request
and response times to authenticate clients increase when you configure the
Wireless Gateway to use RADIUS authentication.

� Authorization. Authorization is the assurance that the user is authenticated
and permitted access to the data. In addition, you can also configure the WAP
Gateway to use WebSEAL server, a component of Tivoli SecureWay Policy
Director which is now a part of WebSphere Everyplace Server, as its HTTP
proxy. Policy Director provides access control management to centralize
network and application security policies. WebSEAL manages access to all
your Web servers. In a WebSphere Everyplace Server environment, access
control management using Policy Director is handled by WebSEAL-Lite.

8.2 WAP Gateway
The Everyplace Wireless Gateway (EWG) can be configured to include a WAP
Gateway. EWG then performs a protocol conversion to provide communication
with WAP clients and HTTP Web servers. The WAP Gateway listens for data and
messages arriving from WAP clients and translates the Wireless Session
Protocol (WSP) requests into HTTP requests that are forwarded to an HTTP
proxy. The response headers are converted from HTTP into WSP response
headers; the content is encoded from WML and any WMLScript into binary XML
(wbxml) and forwarded to the WAP client.

Figure 8-9 shows mobile devices that are WAP-compliant and connecting
through bearer networks to the Wireless Gateway. The Wireless Gateway and
servers shown on the right side in this figure enable secure access to the Web
and enterprise applications.
 Chapter 8. Going wireless! 295

Figure 8-9 Wireless Gateway configured to include a WAP Gateway

The WAP Gateway provides the following functions:

� WAP Version 1.2.1 compliant protocol stack

� High scalability with distributed architecture:

– Uses clusters of gateways to balance load and improve availability

– Dynamically adds and removes machines from the cluster

– Able to support large carrier-grade installations and corporate enterprise
environments

� Administration of distributed gateways:

– Uses the Wireless Gatekeeper

– Enables centralized or distributed remote administration

� LDAP server support for administration and configuration data

� Functions as a WAP Push Proxy Gateway

� WAP Proxy for user cookies. WAP phones do not store HTTP cookies, so the
Wireless Gateway will store these cookies on behalf of the WAP client and
deliver them to the Web servers when they are requested.

WAP
Gateway

Wireless Gateway
Internet

Web Content
and Applications

HTTP
Proxy

RADIUS
Server

(Optional)
Database

Server
LDAP
Server

Internet
Enterprise and

e-business
Applications

SMS

Dial
(Circuit-Switched

Data)

IP

Other

MNC

MNC

MNC

MNC

WAP
Clients

Wireless
Networks
296 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� Accounting records are stored in an ODBC relational database (DB2 or
Oracle).

The WAP Gateway security support includes:

� Wireless Transport Layer Security (WTLS) that secures the connection from
the Gateway to the WAP client.

� Secure Sockets Layer (SSL) used to establish a secure connection from the
Gateway to back-end Web servers.

� WAP user authentication:

– Optional RADIUS protocol-based authentication of WAP clients.

– WAP Gateway authentication for users in LDAP directory.

The Wireless Gateway allows you to optimize WAP applications:

� Binary transmission is used to compress data and therefore increase the
effective data rate and lower transmission costs.

� Unnecessary protocol headers are eliminated to lower transmission costs.

� The number of messages sent between the device and server is optimized to
lower transmission costs.

� It can dynamically disconnect-reconnect to lower connection fees.

WAP request flow
Figure 8-10 illustrates a typical WAP request flow.

Figure 8-10 WAP request flow through EWG and WebSphere Everyplace Server components

WAP Client Wireless Gateway LDAP
HTTP Proxy/
WebSeal Lite Web Server

(1)

(2)

(3)

(4)

(5)

(6)

(7)
 Chapter 8. Going wireless! 297

1. The WAP Client makes a request for a Web page. EWG receives the request
and checks its configuration settings and internal device cache to see if this
user or device has been validated.

2. If WAP challenge authentication is enabled, the Gateway validates the user ID
and password with LDAP and, optionally, a RADIUS authentication server.

3. The validated request is converted from binary WAP language to standard
Web protocols. Additional HTTP request headers are added (such as
cookies, WebSphere Everyplace Server integration headers, etc.). The
request is forwarded to an HTTP proxy.

4. The HTTP proxy handles the request, typically forwarding it on to the content
server.

5. The response is returned from the content server.

6. The HTTP proxy returns the response to the Gateway. The Gateway
processes any cookies that are present and converts WML documents to
binary WML. HTTP headers are encoded to binary WSP headers.

7. The response is sent back to the WAP client.

8.2.1 Configuration
Using the Wireless Gateway as a WAP Gateway requires some configuration
tasks. The resources are shown on the Resources tab within the hierarchy of
organizational units.

This is how you add a WAP Gateway to the Wireless Gateway:

1. Open the Gatekeeper by typing the following AIX command:

wgcfg

2. On the Resources tab, right-click the Wireless Gateway machine’s name to
which you want to add a WAP Gateway. Then click Add and select WAP
Gateway.
298 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 8-11 Adding a WAP Gateway

3. As illustrated in Figure 8-12, choose your WAP browsing service. The WAP
browsing service allows WAP clients to access Web content. There are four
options: Connectionless, Connection-oriented, Secure connectionless and
Secure connection-oriented.

Figure 8-12 WAP browser service configuration
 Chapter 8. Going wireless! 299

4. Configure the IP address and port number of an HTTP proxy server (see
Figure 8-13). You must provide this address even if you plan to connect to a
reverse proxy. You will also need to configure the HTTP proxy port; the default
value is port 80.

Note: A reverse proxy is configured using the Gatekeeper.

Figure 8-13 HTTP proxy information.

5. You can configure the default home page URL for your WAP phone (see
Figure 8-14). Enter the URL, for example http://www.myportal.com, or you
can leave the field blank.
300 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 8-14 Home page URL information for the WAP phone

6. If required, configure the WAP Gateway with WAP device identification (see
Figure 8-15).

Figure 8-15 User identification information and cookie support
 Chapter 8. Going wireless! 301

WAP cookie proxy
As shown in Figure 8-15, the enable HTTP cookie support checkbox is selected
by default.

� The Wireless Gateway can proxy both session and persistent cookies for a
WAP user.

� Session cookies only exist for the time that the user is connected to the WAP
Gateway. Persistent cookies have an expiration date and can exist for a long
time if kept in permanent storage.

� Persistent cookies are only stored if the WAP user has been identified.

� Persistent cookies are stored in DB2 (or Oracle) database.

� In version EWG Version 2.1.1, session cookies can be cached for unidentified
users if they are using connection-oriented or secure devices.

RADIUS and device identifier
As shown in Figure 8-16, RADIUS messages can be used to identify WAP
devices. By default, the WAP Gateway adds a device identifier in the HTTP
headers from WAP requests.

Figure 8-16 RADIUS optional information
302 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Post-configuration options
Use the Gatekeeper to add or change WAP Gateway configuration options. This
is done by right-clicking WAP Gateway and selecting Properties. For example,
configure the option to indicate that the WAP Gateway will be connected to a
reverse proxy.

Figure 8-17 WAP Gateway properties

For more information about WAP Gateway configuration and WML fragmentation
issues, see Chapter 7, “WML fragmentation considerations” on page 259.

8.2.2 WAP device resolver
The WAP device resolver resource on the WAP Gateway works in conjunction
with a Network Access Server (NAS) to uniquely identify WAP devices whenever
the devices connect to the network. The unique identity of WAP devices is
required before the Wireless Gateway can pass the device identity in WAP
requests to other Web servers and proxies in the network. When you enable the
WAP device resolver on the WAP Gateway, this unique identifier is passed upon
request to the WAP Gateway in RADIUS authentication or RADIUS accounting
messages from the NAS.
 Chapter 8. Going wireless! 303

WAP device resolver request flow
A WAP client connects to a NAS which sends a RADIUS packet to the WAP
Gateway. The packet includes the IP address of the WAP client and a unique
identifier. The WAP client requests a Web page using WAP protocol. The WAP
Gateway converts the request to HTTP, appends the identifier, sends the request
to the destination and optionally sends the original request to a RADIUS server.

The type of RADIUS messages that are sent from the NAS (authentication or
accounting) depends on the NAS configuration and whether any other
authentication or accounting servers exist in the network. You can configure the
WAP Gateway to return RADIUS responses directly back to the NAS, or as a
proxy whereby the WAP Gateway forwards RADIUS messages to other servers
in the network, then returns the subsequent responses to the NAS.

When you define the WAP device resolver resource on the WAP Gateway, you
specify which RADIUS attribute type (this is the unique identifier sent by the
NAS) you want to use to uniquely identify the WAP device. The identifier must be
unique for each device and must be the same each time a particular device
connects to the network.

Users who are identified by the WAP device resolver do not display as active
users in the Wireless Gatekeeper.

8.2.3 Sample scenario: accessing the WAP Gateway
In a typical WAP application development environment, you will use a WAP
simulator using the HTTP protocol to connect to other servers. However, at some
point you will need to also run your new applications in a WebSphere Everyplace
Server environment for proper integration using other WebSphere Everyplace
Server components.

In this section, we show you how to access the B2E YourCo application (used
throughout this redbook) from a WAP simulator using WAP/IP protocols. In this
scenario, the WAP Gateway is configured to use a proxy using WTE and
WebSeal-Lite (WSL) for user authentication.

The sample scenario is illustrated in Figure 8-18.
304 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 8-18 Sample scenario - accessing the WAP Gateway

For example, as shown in Figure 8-19, configure the Nokia WAP simulator to use
a connectionless mode link to the WAP Gateway and using CL Port 9200. In this
scenario, the connection uses WAP over IP to the WAP Gateway.

For this scenario, we recommend the following:

� For initial WML application development you will probably want to connect
your WAP simulator directly to the WebSeal-Lite (WSL) machine using the
HTTP protocol. In other words, we recommend that you connect to the WAP
Gateway once your application has been thoroughly tested.

� Decide and understand how the WTE/WSL should run in the WebSphere
Everyplace Server environment. For enterprise applications, you will most
likely configure this machine as a reverse proxy.

� Since you will be using a proxy in this scenario (WTE/WSL), you will need to
configure real host names or IP addresses instead of using localhost or
127.0.0.1 addresses in your application URLs and anchors.

� Review Chapter 7, “WML fragmentation considerations” on page 259 for
issues regarding WAP Gateway, WTE/WSL and Transcoding to support WML
fragmentation.
 Chapter 8. Going wireless! 305

Figure 8-19 Nokia WAP simulator configuration for WAP/IP access

Figure 8-20 shows a sample WML initial page that can be used to access
enterprise applications using the WAP Gateway via WAP/IP.

If you configure the option indicating that WTE/WSL is a reverse proxy, once the
request reaches the WAP Gateway, the host name or IP address and port in the
URL will be replaced with the address and port you configure in the HTTP proxy
of the WAP Gateway.

Note: For more details about how you configure the WAP Gateway when WSL is
a forward proxy or a reverse proxy, see also Chapter 7, “WML fragmentation
considerations” on page 259.
306 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 8-20 WAP initial page

8.3 Messaging gateway
The messaging gateway is the Wireless Gateway component that provides
messaging support. By using the APIs provided with the Messaging Services
and Push Toolkit, you can create applications that use the messaging gateway to
send short messages to and receive short messages from a variety of mobile
devices. The following clients are supported:

� WAP phones

� GSM-SMS mobile phones

� SMTP e-mail clients

� SNPP (Simple Network Pager Protocol) supported pagers and phones

� Mobitex client devices
 Chapter 8. Going wireless! 307

The Messaging Gateway provides support for the following functions:

� Sending WAP push messages

� Sending non-WAP push messages

� Receiving mobile-originated messages

� Canceling push messages

� Querying the status of push messages

� Over-the-air provisioning

For more details about these functions, see also Chapter 9, “Push messaging
applications” on page 323.

Short message delivery operation
A short message delivery operation starts when a message processing
application or servlet uses the Wireless Gateway messaging services and Push
APIs to send a message to the messaging gateway. The messaging gateway
forwards the message to a short message service center (SMS-C), an SMTP
server, or other network server for subsequent delivery to a client.

Figure 8-21 illustrates mobile devices receiving messages from the messaging
gateway, which in turn received the information from a messaging processing
application.
308 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 8-21 Wireless Gateway configured as a messaging gateway

Wireless Gateway

Messaging
Gateway

Message-
Originating

Applications

UCP
SMPP
SNPP

SMS-C

Mobitex
DataTAC

SMTP
 Chapter 8. Going wireless! 309

WAP Push
A WAP push operation starts when a Push Initiator (PI) transmits content to the
Push Proxy Gateway (PPG) using the WAP Push Access Protocol (PAP) for
subsequent delivery to a client. PAP messages, which carry control information,
content, and optionally, client capabilities information, are exchanged between
the PI and the PPG. PAP messages are created using EWG messaging services
and Push APIs.

Note: Push Proxy Gateway services in Everyplace Wireless Gateway are
provided by the messaging gateway.

Figure 8-22 illustrates mobile devices receiving WAP push messages from the
PPG, which in turn received the information from a push initiator application.

Figure 8-22 Wireless Gateway configured as a WAP push proxy gateway

Mobile-originated message operation
A mobile-originated message operation starts when a client sends a message to
a network provider, for delivery to the messaging gateway. The messaging
gateway uses an HTTP post operation to forward the message to an application
or servlet which uses EWG and Push APIs.

Figure 8-23 illustrates mobile device sending messages to the messaging
gateway, which in turn forwards the information to a message processing
application or servlet.

Wireless Gateway

Push
Proxy

Gateway

Applications
and Push
Initiators

UCP
SMPP

SMS-C

Mobitex
DataTAC

IP

Push Access Protocol (PAP)
310 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 8-23 Messaging gateway accepting mobile-originated messages

8.3.1 Configuration
In order to add a messaging gateway to the Wireless Gateway, execute the
following steps:

� Open the Gatekeeper by typing the following AIX command:

wgcfg

� Under the Resources tab, right-click the Wireless Gateway machine’s name
to which you want to add a messaging gateway. Then click Add and select
Messaging Gateway.

� Specify the listening ports and choose a secure and/or non-secure port. The
Wireless Gateway provides the port number on which the gateway listens for
requests from applications using the messaging services and Push APIs. As
shown in Figure 8-24, the default ports are as follows:

– Nonsecure port: 13131

– Secure port: 13132

Wireless Gateway

Messaging
Gateway

UCP
SMPP

SMS-C

Mobitex
DataTAC

HTTP

Message
Processing
Applications

Messaging
Services
and Push

APIs
 Chapter 8. Going wireless! 311

Figure 8-24 Adding a messaging gateway

Post-configuration options
Use the Gatekeeper to add or change Messaging Gateway configuration options.
This is done by right-clicking Messaging Gateway and selecting Properties.
You can, for example, configure the option to direct the default port on WAP
clients to accept push messages.

When you select the option to use a secure port, it means that Secure Sockets
Layer (SSL) will be used between the application and the Messaging Gateway;
therefore, the application must use a certificate that will be received by the
Messaging Gateway in order to authenticate the sender (application). For
example, if the application is a servlet running in a WebSphere Application
Server environment, the Web server must be configured for SSL and must
provide an X.509 certificate. In this case, the servlet is the Push Initiator (PI).

Selecting a secure port for SSL requires that you also provide extra information
required, such as a secure port number (the default value is 13132), key
database name, database password location and SSL version.

A sample Messaging Gateway configuration using a nonsecure port is shown in
Figure 8-25.
312 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 8-25 Messaging Gateway settings

8.4 Multiple Wireless Gateways cluster
Everyplace Wireless Gateway supports clustering. Multiple Wireless Gateways
can be configured as a cluster to distribute the workload in a multi-node
configuration. A cluster manager is a resource that performs dynamic load
balancing and improves availability among Wireless Gateways.

Note: EWG clustering is beyond the scope of this redbook; if you need details
about this function, please refer to the EWG documentation provided with the
product.
 Chapter 8. Going wireless! 313

As illustrated in Figure 8-26, you can configure the Wireless Gateway to be a
principal node or a subordinate node with the Cluster manager provided by the
Wireless Gatekeeper.

Figure 8-26 Cluster manager

8.5 Wireless clients
The Wireless Client enables mobile computers to establish a secure connection
to a corporate network using numerous wired and wireless bearer networks, and
run TCP/IP applications over the connection, taking advantage of the data
optimizations provided by the Wireless Client. The Wireless Client is middleware
located below the TCP/IP stack.

Note: Wireless clients connect to the Everyplace Wireless Gateway using the
Wireless Link Protocol (WLP).

The supported networks are:

� CDPD and IP-based

� Dataradio

� DataTAC and Private Mobile Radio
314 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� Mobitex

� Norcom Satellite

� Dial

Before the Wireless Client’s installation and configuration can be performed, it is
necessary to:

� Get configuration information from the EWG administrator (user ID,
password, IP address, etc.)

� Set up and activate a user account on EWG

� Install modem drivers

The Wireless Client’s supported platforms are:

� Windows 95, 98 (SE recommended), 2000, ME, NT4.0 Service pack 4+

� Palm OS

� H/PC 2.00, H/PC Pro 2.11, HPC 2000

� Pocket PC

8.5.1 Wireless client configuration
In this redbook, wireless clients are used to run sample scenarios using the IBM
Mobile Connect (or Everyplace Synchronization Manager) and MQSeries
Everyplace components of the WebSphere Everyplace Server product offerings.

For example, you may want to perform the following steps to configure a wireless
client device:

1. Select Start->Programs->IBM Wireless Client->Connections. A Wireless
Connections window appears, as illustrated in Figure 8-27.

Figure 8-27 Wireless Connections window
 Chapter 8. Going wireless! 315

2. Double-click the Create Connection icon and name the connection (see
Figure 8-28).

Figure 8-28 Create a Connection window

3. As shown in Figure 8-29, select a backup connection if you have more than
one connection defined. In this sample scenario, a backup connection is not
defined.

Figure 8-29 Backup connection
316 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

4. Next, you will need to select a network type. For example, Figure 8-30 shows
an IP-based network selected, since the scenarios documented in this
redbook include an IP over LAN connection.

Figure 8-30 Selecting a network type

5. Next, you will enter the Wireless Gateway IP address and select Local Area
Network or Remote Networking for this connection. As shown in
Figure 8-31, the scenarios in this redbook use an IP over LAN connection.

Figure 8-31 Wireless Gateway address

6. As shown in Figure 8-32, after a proper configuration has been entered, a
validation window will indicate the creation of this connection.
 Chapter 8. Going wireless! 317

Figure 8-32 Connection validation

7. At this time, you will need to open the connection to the Wireless Gateway by
double-clicking the new icon that was created (see Figure 8-33).

Figure 8-33 Opening the wireless connection

8. As illustrated in Figure 8-34, the connection can be visually monitored; when
all three bars are green, it means that a successful connection to the Wireless
Gateway has been established.
318 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 8-34 Status of the wireless connection

9. As shown in Figure 8-35, you can also configure your wireless connection at
any time by right-clicking the wireless connection’s icon and selecting the
Properties option.

Figure 8-35 Wireless Client connection properties

10.Also when you get a successful connection, a new connection icon will
appear on the bottom-right of your screen. This enables you to monitor the
connection status and statistics, as illustrated in Figure 8-36.
 Chapter 8. Going wireless! 319

Figure 8-36 Status of the wireless connection

8.5.2 Hints and tips
The following lines contain recommended tips to optimize the performance of the
Wireless Gateway and client devices using the Wireless Link Protocol (WLP):

� Installing the Wireless Gateway and the Wireless Gatekeeper on different
machines can improve the performance of the Wireless Gateway.

� The log files and trace files of the Wireless Gateway grow continuously and
rapidly. You can check these files for tests, but for performance matters, it is
recommended that you turn off all the log files in the Wireless Gatekeeper and
Wireless Client.

� Data compression is provided by the Wireless Gateway and Wireless Client.
Just turn it on.

� MTU size determines the maximum packet size sent from the IP stack to the
Wireless Client interface. It may improve performance to modify the MTU,
depending on your application data and network type.
320 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Part 3 Extending
enterprise
applications

In this part of the redbook, we introduce new, state of the art technologies that
you can use to extend your enterprise applications and provide end-users with
better ways to access back-end enterprise data. You will find information about
how to develop applications using WebSphere Everyplace Server programming
interfaces (APIs) such as Push messages, Location-Based Services, Intelligent
Notifications Services and Voice applications. We have included numerous
scenarios describing recommended ways to develop applications using the APIs
provided by the WebSphere Everyplace Server components to support these
services.

Part 3
© Copyright IBM Corp. 2002 321

Although WebSphere Everyplace Server offerings do not provide a Voice Server,
we have also included guidelines to develop Voice XML applications using
transcoding capabilities provided by WebSphere Everyplace Server . This
redbook includes scenarios using IBM Mobile Connect and Synchronization
Manager using a sample DB2 Everyplace application built with the Mobile
Application Builder. Transaction messaging applications are also described using
MQSeries Everyplace, a component of WebSphere Everyplace Server, to
provide a once-only assured delivery of messages.

A basic knowledge of Java technologies such as servlets, JavaBeans, EJBs,
JavaServer Pages (JSPs), as well as of XML applications and the terminology
used in Web publishing, is assumed.
322 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 9. Push messaging
applications

This chapter describes how to develop and execute Push messaging
applications using the messaging capabilities provided by the IBM Everyplace
Wireless Gateway, a component of the WebSphere Everyplace Server (WES)
Service Provider Offering (SPO) and an optional component of the WebSphere
Everyplace Server Enable Offering (EO).

This chapter provides a description of the messaging framework (architecture
and protocols); it then explains how to implement a messaging application using
the IBM Messaging and Push Toolkit SDK. Sample programs are also included.

9

© Copyright IBM Corp. 2002 323

9.1 Overview
Messaging in the context of WebSphere Everyplace Server describes the
transmission of content between hosts at end points of networks through the
Everyplace Wireless Gateway. The messages could be initiated by applications
running either on client devices, on a middle tier or on a back-end server.

Applications built to send messages to client devices without a request are called
push messaging applications. This is different from the more established pull
applications, in which the client first sends a request to a server and then
receives a response to that message. Push messaging applications could be
used to provide asynchronous service, delivering to targeted devices the content
that is of interest to the user.

Some events which can be used to trigger a push message are, for example:

� The time of day.
� A change in the status of a reservation.
� Data reaching a preset threshold value, at which point the user would like to

take action.

To receive push messages, a user will only be required to register for the service.
Services that are good candidates for push applications include stock quotes,
weather reports, flight information and news, among others. Figure 9-1 illustrates
a simple comparison of push and pull technologies currently used with wireless
devices such as WAP phones.

Figure 9-1 Simplified view of push versus pull operation
324 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

9.2 Architecture
In a minimal configuration, a messaging solution is made up of three logical
components:

� The messaging application, also known as the Push Initiator (PI).

� The messaging gateway, also known as the Push Proxy Gateway (PPG).

� The target or client device.

The IBM Everyplace Wireless Gateway (EWG), after installation, can be
configured to provide messaging services. In this configuration, it is considered a
PPG as described in the WAP Forum specifications on Push.

It should be noted that to achieve scalability and improved performance, there
can be multiple messaging applications and gateways on a single network. Such
a messaging network could include several other components that do not
participate directly in the messaging function.

Figure 9-2 Messaging infrastructure

An IBM Network Dispatcher may be installed between the PIs and several
messaging gateways to load-balance the messaging traffic between them1.

Wireless Gateways are typically configured in clusters to distribute workload.
Consequently, any messaging gateway components configured on them operate
within the rules of the cluster. However, the performance of the messaging
gateway does not benefit from the clustered arrangement.

1 The IBM Network dispatcher is available as a component of the IBM WebSphere Edge Server.
 Chapter 9. Push messaging applications 325

The PPGs within a cluster should have the same configuration to ensure
consistent service to client PIs. However, a known issue with this topology is that
a network dispatcher may not maintain message affinity between a PI and a
PPG. This opens the possibility that a messaging application may send status
queries and cancel requests that are not delivered to the gateway which handled
the original message. The messaging gateway will have no record of the push ID
in the status queries and so will respond with a message status code indicating
an unrecognizable push ID.

As shown in Figure 9-2, the network agent to which the messaging gateway
delivers push messages is called the Message Transfer Agent (MTA). Each
supported network has a different MTA.

9.2.1 Messaging application
The messaging application is responsible for initiating the message transfer of
push messages. It runs on the origin server and can be triggered by preset
preferences of registered users of the application. To send a message, it builds a
message context, specifies the address of the messaging gateway and client
device(s) that will receive the message, the content type of the message and the
message itself. It is typically a component of a larger enterprise application.

A messaging application can add the push feature by calling classes in a Push
API. Several Push APIs are available for use in building applications. In this
redbook, we shall be using the Push API provided in the Messaging Toolkit from
IBM.

The IBM Push API allows you to communicate with the messaging gateway
installed in the Wireless Gateway. It enables a developer to implement the Push
Framework described in the WAP specification without having to know the
internal issues and details of this technology. This way, the development focus is
on message application rather than standards compliance.

Figure 9-3 illustrates a typical profile of a Push Initiator (PI) application program
where a push message is created and sent to a client device.

Figure 9-3 Push Initiators (PIs) lifecycle
326 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Beyond the message submission stage, a PI may also request the status of a
message or cancel a previously sent message.

9.2.2 Messaging Gateway
The Messaging Gateway is a component of the Everyplace Wireless Gateway
(EWG). The EWG Messaging Gateway can handle both WAP and non-WAP
push requests from the messaging application (PI) on a specified port. On
arriving at the gateway, the path of a request through the gateway depends on its
type. WAP messages are passed to the EWG WAP services while non-WAP
messages are sent to the proper Mobile Network Connection (MNC); for
example, a mail message will be sent to a mail server.

Mobile Network Connection (MNC)
A Mobile Network Connection, or MNC, is a resource of the Wireless Gateway
and provides the EWG with a connection to a network. For example, as
illustrated in Figure 9-4, for every type of WAP network (SMS, Dial, IP and
others) there is a different MNC.

Figure 9-4 Wireless Gateway configured as a WAP gateway
 Chapter 9. Push messaging applications 327

Short messages and WAP push content are delivered over a variety of networks
and protocols including:

� GSM SMS

� Mobitex (Cingular in the US)

� DataTAC (Motient in the US)

� Simple Network Paging Protocol or SNPP (Nextel and Skytel in the US)

� Simple Mail Transfer Protocol (SMTP)

� TCP/IP

When a messaging gateway is configured in the EWG, a port number is
provided, on which the gateway listens for requests from applications (PIs) using
the Messaging Services and Push APIs. The default port number is 13131.

WAP messages
Wireless Access Protocol (WAP) is a set of open protocols developed by the
WAP Forum, that are followed in developing applications and services that use
wireless networks. WAP messages follow the format laid out by the standard. For
more information on WAP specifications, see WAP-151, WAP-164, Push Access
Specification and WAP-165, Push Architectural Overview.

Within the EWG, support for WAP messaging is provided by a WAP services
module. It complies with the WAP Push Proxy Gateway 1.2 specification from the
WAP forum. When configured as a WAP gateway, as shown in Figure 9-5, WAP
push messages are routed through this component and leave the gateway
through a a WAP configured mobile network connection (MNC).

As a WAP gateway, the EWG performs a protocol conversion to provide
communication with WAP clients. The data and messages arriving from
applications with HTTP headers are given into WSP headers and their content
encoded into binary XML (wbxml).

Supported networks include:

� GSM SMS (UCP and SMPP protocols)

� Mobitex

� DataTAC

� IPv4
328 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

In this configuration, the components of the messaging infrastructure map to the
WAP Push specifications as follows:

� Messaging application -> Push Initiator (PI).

� EWG messaging gateway -> Push Proxy Gateway (PPG).

Messages travel between them over the Push Access Protocol (PAP).

The PAP protocol specifies the format of the messages exchanged by the PI and
the PPG. It uses HTTP to travel over the Internet and can be easily adapted to
use any other prevalent network protocol.

Figure 9-5 Sample WAP configuration in Wireless Gateway
 Chapter 9. Push messaging applications 329

Push message content
For the delivery of unsolicited WAP content using the Messaging Gateway, the
Everyplace Wireless Gateway supports the following document specifications in
WAP Push messages:

� Service Indication (SI): used to send an unsolicited message to the WAP
device. Optionally, a URI can be included to invoke an application.

� Service Loading (SL): used to send a URI to load (pull) an application.

Figure 9-6 illustrates the path of a WAP Push message starting from the
application (Push Initiator) to the Messaging Gateway or Push Proxy and to the
device agent for delivery.

Figure 9-6 Path of a WAP Push message

Non-WAP Push
This is by far the more prevalent type of messaging traffic at this time. IBM has,
by extending the WAP standards, added non-WAP capabilities to the messaging
gateway so that it can interface with the more established short messaging
networks. Supported networks in this release include:

� GSM SMS (UCP and SMPP Protocols)

� SNPP

� Mobitex

� DataTAC
330 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� SMTP

Figure 9-7 Messaging gateway configuration in Wireless Gateway

Non-WAP messages are routed through the messaging gateway and then
directly to the MNC corresponding to the delivery network specified in the
message or to the address type of the client device. They bypass the WAP
services module of the EWG.

SMTP MNC configuration
To ensure delivery of an e-mail message which is received by the messaging
gateway, an SMTP MNC must be configured. On the Wireless Gateway,
right-click the gateway name and select Add->Mobile Network Connection.
Select the SMTP e-mail MNC type as shown in Figure 9-8 on page 332.
 Chapter 9. Push messaging applications 331

Figure 9-8 SMTP Mobile Network Connection (MNC)

Complete the panel as shown below:

Figure 9-9 SMTP MNC configuration
332 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Enter the IP address of the SMTP server (for example, 9.24.105.118), the
sender’s mail domain (for example, itso.ral.ibm.com) and the originator’s address
(for example, root@rs615003.itso.ral.ibm.com). This address will appear in the
From: part of the SMTP message which is generated. Click Next and then
Finish.

Figure 9-10 Non-WAP Push configuration

For details on how to configure the Everyplace Wireless Gateway as a
messaging or a WAP gateway, see Chapter 8, “Going wireless!” on page 281.

9.2.3 Client devices
These are the portable communications devices that are the target of push
messages in the case of mobile-terminated messages. Client devices run
applications such as WAP browsers capable of handling message content
delivered to them. Possible client devices include a WAP phone, SMTP e-mail
client, a GSM-SMS mobile phone, a DataTAC end-user device, an SNPP paging
device or a Mobitex end-user device.

Client devices can also play the role of message initiator, composing and sending
short messages. The Wireless Gateway can receive these mobile-originated
messages.
 Chapter 9. Push messaging applications 333

9.3 Push API
IBM has made available a Messaging Services and Push Toolkit that can be
used to build applications to push short messages from an application running on
a wired network through the Everyplace Wireless Gateway to client devices. An
application developer using the toolkit is shielded from the details of the
protocols. APIs for Java and C are provided. However, sample scenarios
included in this redbook use the Java API only.

9.3.1 Obtaining the messaging toolkit
The Messaging Services and Push Toolkit can be dowloaded from:

http://www-3.ibm.com/pvc/tech/downloads.shtml

To install the Toolkit, perform the following steps:

� Download toolkit.zip into a directory of your choice.

� Unzip toolkit.zip.

Note: The Toolkit documentation files, programming library files, and sample
programs are installed in the a:/ directory and subdirectories relative to where
you unzip the toolkit.zip.

To compile the Java API, you must first add these file names to your CLASSPATH
or specify the paths on the command line using the -classpath option:

� help/en/messagingtoolkit/Java/push.jar (classes of the Java API).

� help/en/messagingtoolkit/Java/xerces.jar (class of the XML parser).

� help/en/messagingtoolkit/Java/log.jar (classes of the logging facility).

Once you have compiled the samples (using the javac command for example),
you will need to modify the push.properties file in the directory with the samples,
so that the push.proxy-url value points to your messaging gateway and port
(default port is 13131) where the push.properties file is located.

help\en\messagingtoolkit\java\doc\doc-files
334 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

9.3.2 Configuration
A developer using the toolkit has the option of setting the key parameters from
within the application code or setting default values in a properties file called
push.properties. The file can be made available to the application as a system
wide property called push.properties-file2 or it can be placed in the same
working directory as the application where a running program using the API
searches for it first by default.

The file follows the normal syntax for a Java properties file. Lines beginning with
a pound (#) symbol are comments for the reader and are ignored by the
interpreter. Blank lines do not matter. An actual property is defined and assigned
a value in a single line. For example:

push.proxy-language = en

The file push.properties contains a parameter that tells any push program where
to look for the DTD file called PAP_1.0.DTD. The parameter is:

push.pap-dtd-uri=./pap_1.0.dtd

For example, in the WebSphere environment, you are required to specify the
working directory and place the push.properties file into the specified directory.
The working directory of WebSphere Application Server is configured using the
Administrative Console, as shown in Figure 9-11.

2 The system property name is a macro for the fully qualified pathname of the file.
 Chapter 9. Push messaging applications 335

Figure 9-11 Configuring WebSphere Application Server working directory

The API documentation lists the properties of the Java APIs as well as their
configuration options. Also included is a sample properties file: push.properties.
336 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The Java API in the toolkit consists of three packages:

� com.ibm.wireless.push

� com.ibm.wireless.push.util

� com.ibm.wireless.push.samples

The core package which a developer using the Java API must import is the
com.ibm.wireless.push package. It contains the classes and interfaces for
sending and receiving push messages from the EWG configured as a messaging
gateway.

The Toolkit Java API contains four key classes:

� Pusher

� PushMessage

� PushAddress

� PPG Responses
 Chapter 9. Push messaging applications 337

Table -1 Key Classes in the Java API of the Messaging Toolkit.

Example 9-1 The PushAddress class hierarchy

com.ibm.wireless.push.PushAddress
|
+ ------ com.ibm.wireless.push.IPv4PushAddress
|

---+ ----- com.ibm.wireless.push.IPv6PushAddress
|
+ ------ com.ibm.wireless.push.MANPushAddress
|
+ ------ com.ibm.wireless.push.PLMNPushAddress
|
+ ------ com.ibm.wireless.push.DataTACPushAddress
|

---+----- com.ibm.wireless.push.USERPushAddress
|

Class Description

Pusher Used to instantiate an object that holds data relative
to the push environment. Its configuration data
can be obtained from a default properties file or
can be set within the program by passing the
URL for the messaging gateway, the port
number of the listening thread and the SSL
context to the constructor.

PushMessage The PI creates a message object of this type to
encapsulate a push message. The object
members include the control entity, the content
entity and optionally, the capabilities
information.

PushAddress A data type created to hold the address of the
various target devices (e-mail, pagers, mobile
phones). It is the base class in a hierarchy of
address classes used to specify the message
type.

PPG
Responses

Several classes that contain the responses to
status queries sent to the messaging gateway
from the PI. These classes include:
PushResponse, StatusResponse,
CancelReponse, CCQResponse and
ResultNotification.
338 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

+ ------ com.ibm.wireless.push.SMTPPushAddress
|
+ ------ com.ibm.wireless.push.SMPPPushAddress

|
+ ------ com.ibm.wireless.push.PLMNPPPushAddress

9.3.3 IBM extensions
To give the Push Framework broader application, IBM has extended its
messaging gateways support to:

� Other delivery channels

� Mobile-originated messages

� Security

Delivery channels
PAP was designed from the beginning to be adaptable to Internet protocols (as it
piggybacks on them). A few such adaptations were made to enable the
messaging gateway to support the following messaging technologies:

� WAP (including service over all defined WAP bearers)

� GSM-SMS over a GSM network

� SMTP

� SNPP

� Mobitex SMS

� DataTAC

The intended delivery channel of a message is specified by the address type
(/TYPE=<address-type>) and optionally , an added delivery
(/DELIVERY=<delivery-channel>) attribute. For example, a message address
with the following address:

wappush=+41-79-678-12345/DELIVERY=SMS/TYPE=PLMN@pi.ibm.com

tells the messaging gateway to deliver over a GSM-SMS channel, rather than
WAP the default channel for PLMN address types.

Only one delivery channel is recognized by the messaging gateway for each
message. This eliminates a possible conflict with the quality of service attribute,
which may not be applicable to all the indicated channels.
 Chapter 9. Push messaging applications 339

Mobile-originated messages
A client device capable of composing messages may send them over an SMS
network and through the messaging gateway to a processing application (see
Figure 9-12). Within the gateway, the message is posted to a designated URL
where it is interpreted by an application. Each MNC within the gateway has a
designated forwarding URL.

Figure 9-12 Receiving a mobile-originated Push

Security
In the WAP PAP 1.2 standard, there is no provision for security when messages
are sent between the PI and the PPG. The EWG can support secured
connections when communicating with the PI using the Secure Socket Layer
(SSL) protocol with the gateway acting as the server and the PI acting as a client.
The gateway can extend this secure link to any message entity arriving from or
destined for a host URL-address with an HTTPS protocol component.
340 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

9.4 Message components
Push messages are made up of:

� Control Entity

� Content Entity

� Capabilities Entity (optional)3

3 Capabilities queries are currently NOT supported by the IBM Wireless Gateway.

Entity Description

Control Entity Contains attributes that specify how the gateway is to handle
the message. By reading its contents, the gateway learns
the following about the message:
1. Content provider, set using

pushMessageObjecta.setContentProvider
(“providerName”);

2. Need for progress notes, set using
pushMessageObject.notifyPushProgress(true);
//false by default

3.Delivery time constraints ,set as follows:
pushMessageObject(DateObject.setTime() +
someDelay);

4.Quality of service, the components of which are:
i. Priority, set to either low, medium or high using

pushMessageObject.setDeliveryPriority(DeliveryQoS
.PRIORITY_HIGH);

ii .Need for confirmation of delivery, which could have
possible values confirmed, preferconfirmed,
unconfirmed and notspecified , for example

pushMessageObject.setDeliveryMethod(DeliveryQoS.D
ELIVERY_CONFIRMED);

iii. Delivery network type, for example
pushMessageObject.setNetworkType(DeliveryQoS.NETW
ORK_GSM);

iv. Bearer type, for example
pushMessageObject.setBearerType(DeliveryQoS.BEARE
R_SMS);
 Chapter 9. Push messaging applications 341

For more information on the message contents, see the Developer’s Guide
contained in the Messaging Toolkit download.

9.5 Secure push connections
You can also configure secure connections by using Secure Sockets Layer (SSL)
when sending messages between applications and the messaging gateway
using the Messaging Service and Push APIs. The SSL environment must be
configured at the Push Initiator and the messaging gateway. The default port on
which the messaging gateway listens for SSL requests is 13132. The messages
are HTTP formatted and can be secured.

SSLight
As part of the toolkit installation, the sslight.jar file is placed in the CLASSPATH of
the messaging application server.

When implementing security, the SSL context string has the syntax:

CLASS:class-file-name:password

For example:

CLASS:keyring.class;SecurePush

Content Entity Consists of a header and a body entity.
The header could be either:
1.Generic: Similar to the Internet message headers in
common use. Fields could be set through the JAVA API, for
example the cache-control field, date:

setCacheControl, setDate
2. WAP: Begin with the prefix X-WAP, for example
X-Wap-Application-Id
3. IBM proprietary headers.
Body: the actual message content to be delivered.The
content-type of the body is a function of the delivery
channel; for example: GSM-SMS channels carry text/plain

Capabilities
Entity

Used by the PI to inform the gateway about the assumed
capabilities of the client receiving this message.
The value can be set through call to the Java API; for
example:

setCapability(URL url)

a. Handle of a PushMessage object returned from the call new Push-
Message();

Entity Description
342 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

To enable the SSL, you may either use the Pusher class constructor, which
requires an SSL-context string, or configure the system properties push.proxy-url
and push.ssl-context. For example:

Pusher pusher = new
Pusher(“http://ppg.ibm.com:54321”,”CLASS:keyring.class;SecurePush”);

As an alternative, you can use this second option:

push.proxy-url=https://ppg.ibm.com:54321
push.ssl-context=”CLASS:keyring.class;SecurePush”

After this, you may simply use the no-arg constructor to instantiate a Pusher
object. For example:

Pusher pusher = new Pusher();

9.6 Scenario: WAP push
This example had the push initiator running on a PC workstation, pushing a WML
file as the message to a WAP emulator running on another PC, using a
messaging gateway.

Example 9-2 MySimplePush.java

import java.net.*;
import java.io.*;
import com.ibm.wireless.push.*;
public class MySimplePush {
 /** Main method.<p>
 *
 * @param arg0 the IP Address to send the message or the fully-qualified

WAPPUSH address.
 * @param arg1 the URL of the messaging gateway
 * @param arg2 the sender. */
 public static void main(String args[]) {

 String pushAddr = null; // receiver IP Addresss
 String message = null; // message text
 String ppgURL = null; // URL of messaging gateway

 /**
 * Process input arguments
 **/
 pushAddr = args[0];

 message =

"<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?> \n" +
"<!DOCTYPE si PUBLIC \"-//WAPFORUM//DTD SI 1.0//EN\"\n" +
 Chapter 9. Push messaging applications 343

"\"http://www.wapforum.org/DTD/si.dtd\">\n" +
"<si>\n" +
"<indication>\n" +
"This is my SIMPLE PUSH message\n" +
"</indication>\n" +
"</si>\n";

 ppgURL = "http://" + args[1] + ":13131" ;

 /**
 * Compose and submit message
 **/
 Pusher pusher = null;
 PushMessage msg = null;
 IPv4PushAddress addr = null;
 PushResponse rsp = null;
 try {
 /**
 * Create message
 **/
 msg = new PushMessage();
 msg.setContent(message, "text/vnd.wap.wml");
 msg.setFrom(args[2]);
 /* Ask for progress notes */
 msg.notifyPushProgress(true);

 System.out.println(msg);
 System.out.println

("---");
 System.out.println(message);

 /**
 * Create an address to send the message to
 **/
 addr = new IPv4PushAddress(pushAddr);
 addr.setAddress(pushAddr);

 System.out.println(addr);

 /**
 * Submit message
 **/
 /* Instantiate a pusher */

 pusher = new Pusher(ppgURL, null);

 /* Push the message */
 rsp = pusher.push(msg, addr);
344 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 } catch(PushException e) {
 System.err.println(e);
 System.exit(1);
 }

 /**
 * Check status reported
 **/
 System.out.println(rsp);
 if (rsp.getStatusClass() != StatusCodes.SUCCESS) {
 System.out.println("Push submission failed!");
 System.exit(1);
 } else {
 System.out.println("Push submission succeeded!");
 System.exit(0);
 }
 }
 private static void usage() {
 System.out.println
("Usage:\n\tjava com.ibm.wireless.push.samples.SimplePush <address> <message>
[<ppg-URL>]");
 System.out.println
("\twhere <address> is something like \"195.153.199.30\"");
 System.out.println("\t <message> text ");
 System.out.println
("\t <ppg-URL> is the URL of the PPG; if this argument is not\n\t
specified, the system property \"push.proxy-url\" must be set;\n\t e.g.,
\"push.proxy-url=http://ppg.ibm.com:12345/\"");
 System.exit(1);
 }
}

The sample PI program shown in Example 9-2 sends the hardcoded .wml file to
the PPG. At the PPG, the message is encoded and sent to the WAP emulator
running on the host machine whose IP Address is supplied in the PushAddress
field. The message is received by the listening thread of the emulator program in
binary XML format and decoded to obtain the original WML message.

9.7 Scenario: Pushing to an e-mail client
The Program Inititor (PI) module built to send an e-mail message is similar to the
WAP Push PI. The main difference is that it uses the API classes that handle
SMTP addresses and message formats.

A sample Program Initiator for e-mail push is illustrated in Example 9-3.
 Chapter 9. Push messaging applications 345

Example 9-3 MyMailPush.java

import java.net.*;
import java.io.*;

import com.ibm.wireless.push.*;
public class MyMailPush {
 /** Main method.<p>
 *
 * @param arg0 the IP Address to send the message - mail server
 * @param arg1 the IP Address of the messaging gateway
 * @param arg2 the sender.
 * @param arg3 text */

 public static void main(String args[]) {

 String pushAddr = null; // receiver IP Addresss
 String message = null; // message text
 String ppgURL = null; // URL of messaging gateway

 /**
 * Process input arguments
 **/
 pushAddr = args[0];
 message =args[3]; // text
 ppgURL = "http://" + args[1] + ":13131" ; // build Messaging GW URL

 /**
 * Compose and submit message
 **/
 Pusher pusher = null;
 PushMessage msg = null;
 SMTPPushAddress addr = null;
 PushResponse rsp = null;
 try {
 /**
 * Create message
 **/
 msg = new PushMessage();
 msg.setContent(message, "text/plain");
 msg.setFrom(args[2]);

 /* Ask for progress notes */
 msg.notifyPushProgress(true);

 System.out.println(msg);
 System.out.println

("---");
 System.out.println(message);
346 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 /**
 * Create an address to send the message to
 **/
 addr = new SMTPPushAddress(pushAddr);
 addr.addToRecipient(args[4]); // user e-mail address
 System.out.println(addr);

 /**
 * Submit message
 **/
 /* Instantiate a pusher */

 pusher = new Pusher(ppgURL, null);

 /* Push the message */
 rsp = pusher.push(msg, addr);
 } catch(PushException e) {
 System.err.println(e);
 System.exit(1);
 }

 /**
 * Check status reported
 **/
 System.out.println(rsp);
 if (rsp.getStatusClass() != StatusCodes.SUCCESS) {
 System.out.println("Push submission failed!");
 System.exit(1);
 } else {
 System.out.println("Push submission succeeded!");
 System.exit(0);
 }
 }
 private static void usage() {
 System.out.println("Usage:\n\tjava
com.ibm.wireless.push.samples.SimplePush <address> <message> [<ppg-URL>]");
 System.out.println

("\twhere <address> is something like \"195.153.199.30\"");
 System.out.println("\t <message> text ");
 System.out.println
("\t <ppg-URL> is the URL of the PPG; if this argument is not\n\t
specified, the system property \"push.proxy-url\" must be set;\n\t e.g.,
\"push.proxy-url=http://ppg.ibm.com:12345/\"");
 System.exit(1);
 }
}

 Chapter 9. Push messaging applications 347

9.8 Pushing from a servlet
Many enterprise applications are user-driven, the most common interface being
the Web browser. Servlets built with the Java messaging API could be used to
give pushing capabilities to an enterprise application.

Example 9-4 below illustrates a simple method for pushing messages from a
servlet. In this example, the information required to build a push context and send
a message is provided in the servlet request parameter.

Example 9-4 Push messages from a servlet

package itso.wes.push.samples;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.wireless.push.*;

public class PushServlet extends HttpServlet {

/**
 *
 * Creation date: (9/28/2001 9:40:58 AM)
 */
public void doGet(HttpServletRequest req, HttpServletResponse res) throws
IOException{

performTask(req,res);

}
/**
 * Initializes the servlet.
 */
public void init() {

// insert code to initialize the servlet here

}
/**
 *
 * Creation date: (9/28/2001 9:40:58 AM)
 */
public void performTask(HttpServletRequest req, HttpServletResponse res)
throws IOException{

res.setContentType("text/plain");
 PrintWriter out = res.getWriter();
348 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 String addresstype = null;
 String pushAddr = null; // client address
 String message = null; // message text
 String ppgURL = null; // Full URL of messaging gateway
 String gateway = null; // gateway address
 String port = null;
 String from = null;

 from = req.getParameter("from");
 addresstype = req.getParameter("addresstype");
 pushAddr = req.getParameter("to");
 message = req.getParameter("Body");
 gateway = req.getParameter("gateway");
 port = req.getParameter("port");

 ppgURL = "http://" + gateway + ":" + port;

 Pusher pusher = null;
 PushMessage msg = null;
 PushResponse rsp = null;

 try{

if(addresstype.equals("ipv4"))
{

msg = new PushMessage();
 msg.setContent(message, "text/vnd.wap.wml");
 msg.setFrom(from);
 pusher = new Pusher(ppgURL, null);

IPv4PushAddress addr = null;
addr = new IPv4PushAddress("pi.ibm.com");
addr.setAddress(pushAddr);
rsp = pusher.push(msg, addr); //Push the message

}
 }
 catch(PushException e)

{
String error = "Push Exception Error";
out.println(error);

}
out.println(rsp);

 if (rsp.getStatusClass() != StatusCodes.SUCCESS)
{

 Chapter 9. Push messaging applications 349

 out.println("Push submission failed!");

 } else {
 out.println("Push submission succeeded!");

 }

}
}

One way to pass push information to a push servlet is by using an HTML form
(see Figure 9-13 on page 350). This will have a POST action parameter set to
the URL of the push servlet.

Figure 9-13 Push submission HTML form

The results of the push submission are then displayed in the browser window.
350 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 9-14 Results of push response from messaging gateway

Information about developing servlets can be obtained from the redbook Servlet
and JSP Programming with IBM WebSphere Studio and VisualAge for Java,
SG24-5755.

9.9 Extending the YourCo sample application
Using the PushServlet, you can extend the YourCo sample application to provide
push messaging capabilities using the Messaging Gateway of the Everyplace
Wireless Gateway.

The source code is similar to the one shown in Example 9-4. A link was added on
the index page of the YourCo sample application that would provide the push
capabilities, as shown in Figure 9-15.

Note that in order for a servlet that uses Push Messaging APIs to be deployed in
the WebSphere Application Server environment, you must ensure that the file
push.properties is in the working directory, as described in “Configuration” on
page 335. Moreover, in the push.properties file the property push.pap-dtd-uri
must point to a valid pap_1.0.dtd file. For example, if
push.pap-dtd.uri=./pap_1.0.dtd, it means that the pap_1.0.dtd file is located in
the same directory as the file push.properties.
 Chapter 9. Push messaging applications 351

Figure 9-15 Providing a link to Push Message APIs

We also have a page that provides fields to help you build a push message, as
shown in Figure 9-16.
352 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 9-16 Building a message

9.10 Problem determination
Typically, there are problems with the development of a messaging solution. To
effectively troubleshoot these problems, each tier of the application should be
analyzed separately. As a developer, the PI and its client application, as well as
the client device, will be directly under your control. Accessing the gateway will
require the cooperation of your administrator.

Messaging application (PI)
Build and test the PI component of the messaging application separately. Then
ensure it runs correctly before integrating it with the larger messaging
application. In the development version of your PI, use of the ResultNotification
classes will provide you information about the status of a message submission to
the gateway, after processing. This is quite different from the initial push
response which tells the PI if the submission was accepted or not.
 Chapter 9. Push messaging applications 353

The status code will be one of the following:

� SUCCESS: message or response received and accepted

� CLIENT ERROR: syntax error in the request

� SERVER ERROR: valid request not fulfilled by the messaging gateway

� SERVICE FAILURE: service could not be performed

� MOBILE CLIENT ABORT: returns abort codes of mobile device to PI

Note that the results the EWG returns in response to the status queries do not
have to go to the PI sending the queries. A URL may be specified at the time the
notification response class is being constructed, where the gateway may send
the status reports.

The following code segment handles the status code returned by the messaging
gateway:

.....
System.out.println(resp);
if (resp.getStatusClass() != StatusCodes.SUCCESS) {
System.out.println(“Push submission failed!”);
System.exit(1);
} else {
System.out.println(“Push submission succeeded!”);
System.exit(0);
}
.....

The development environment should include all the required packages or your
program will not run. If you are using an integrated development environment
such as VisualAge for Java, the core API package com.ibm.wireless.push
contained in the push.jar file must be in the project. Also, the xerces.jar, log.jar
and (for security) ssl.jar files must be present.
354 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Messaging gateway
Use the log files from the Wireless Gateway here. Contact the administrator of
the Everyplace Wireless Gateway you are using as your PPG to obtain a copy of
the log file, named wg.log, generated within the period the test applications were
run. Scroll through the EWG log until you locate the entries corresponding to
your test session (the IP address of your test machine is a good search
parameter to use in searching the log file).They show the application developer
the packet arrivals at the gateway within the logging interval (set by the gateway
administrator). With this information, you can see if your push message:

– Reached the gateway

– Was accepted by the gateway

– Was transmitted by the gateway to the target address using the specified
bearer network.

The log file is a comprehensive record of the gateway’s behavior over a given
interval. Familiarization with the format of its entries provides valuable
troubleshooting information.

Example 9-5 A section of the wg.log file showing the log entry for a WAP Push message

 2954:18001 (Sep 07 01/15:21:32): Messaging GW rcvd post from client
9.24.106.131
 2954:18001 (Sep 07 01/15:21:32): received HTTP/PAP header: [192]
 post / http/1.1

date: Fri, 07 Sep 2001 19:33:15 UTC

content-type: multipart/related; boundary="bAnE9GbCZj4bLTbzJBQkYg==";
type="application/xml"

host: 9.24.105.117

content-length: 614

 2954:18001 (Sep 07 01/15:21:32): tag: pap 1 4

Note: When using VisualAge for Java for development, make sure you do not
have Web Traffic Express feature added to the current workspace. This avoids
the problem of certain packages contained in the xerces.jar clashing with
identical packages in Web Traffic Express when importing the .jar file.
Alternatively, you may proceed with the import with Web Traffic Express still in
the workspace, and delete the clashing packages from the .jar file flagged by
the import operation.
 Chapter 9. Push messaging applications 355

 2954:18001 (Sep 07 01/15:21:32): token: 1 pap
 2954:18001 (Sep 07 01/15:21:32): tag: product-name 126 17
 2954:18001 (Sep 07 01/15:21:32): token: 126 product-name
 2954:18001 (Sep 07 01/15:21:32): token: 3000 =
 2954:18001 (Sep 07 01/15:21:32): token: 2000 Java Push API, Copyright IBM,
2000, 2001
 2954:18001 (Sep 07 01/15:21:32): tag: push-message 2 75
 2954:18001 (Sep 07 01/15:21:32): token: 2 push-message
 2954:18001 (Sep 07 01/15:21:32): tag: push-id 100 83
 2954:18001 (Sep 07 01/15:21:32): token: 100 push-id
 2954:18001 (Sep 07 01/15:21:32): token: 3000 =
 2954:18001 (Sep 07 01/15:21:32): token: 2000 bAnE9GbCZj4bLTbzJBQkYg==
 2954:18001 (Sep 07 01/15:21:32): tag: progress-notes-requested 105 135
 2954:18001 (Sep 07 01/15:21:32): token: 105 progress-notes-requested
 2954:18001 (Sep 07 01/15:21:32): token: 3000 =
 2954:18001 (Sep 07 01/15:21:32): token: 2000 false
 2954:18001 (Sep 07 01/15:21:32): tag: address 13 153
 2954:18001 (Sep 07 01/15:21:32): token: 13 address
 2954:18001 (Sep 07 01/15:21:32): tag: address-value 106 167
 2954:18001 (Sep 07 01/15:21:32): token: 106 address-value
 2954:18001 (Sep 07 01/15:21:32): token: 3000 =
 2954:18001 (Sep 07 01/15:21:32): token: 2000
wappush=9.24.106.131/type=IPv4@pi.ibm.com
 2954:18001 (Sep 07 01/15:21:32): token: 3001 />
 2954:18001 (Sep 07 01/15:21:32): tag: push-message 1002 228
 2954:18001 (Sep 07 01/15:21:32): token: 1002 push-message
 2954:18001 (Sep 07 01/15:21:32): tag: pap 1001 235
 2954:18001 (Sep 07 01/15:21:32): token: 1001 pap
 2954:18001 (Sep 07 01/15:21:32): parsed PAP header ok...
 2954:18001 (Sep 07 01/15:21:32): ppg_db_enter_push_msg:
bAnE9GbCZj4bLTbzJBQkYg==: ok
 2954:18001 (Sep 07 01/15:21:32): push_response:
 HTTP/1.1 202 PPG reply

Date: Fri Sep 7 19:21:32 2001

Server: IBM Wireless Gateway V2.1.0

Content-Type: application/xml

Content-Language: en

Content-Length: 397

<?xml version="1.0"?>

 <!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 1.0//EN"

"http://www.wapforum.org/DTD/pap_1.0.dtd">
356 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

<pap product-name="IBM Wireless Gateway V2.1.0">

 <push-response push-id="bAnE9GbCZj4bLTbzJBQkYg=="
sender-address="http://rs615001:13131" reply-time="2001-09-07T19:21:32Z">

 <response-result code="1001" desc="Accepted for Processing"/>

 </push-response>

</pap>

 2954:18001 (Sep 07 01/15:21:32): freeing msg --no pid-- type: 0 @[31c0c108]
thread: 4651 state: 0
 2954:18001 (Sep 07 01/15:21:32): ppg_client_read: enqueue non-delayed
push-id: bAnE9GbCZj4bLTbzJBQkYg==
 2954:17477 (Sep 07 01/15:21:32): ppg_worker: dequeued push-id:
bAnE9GbCZj4bLTbzJBQkYg==
 2954:17477 (Sep 07 01/15:21:32): ppg_msg_lock: 31c0bbb8 4445
 2954:17477 (Sep 07 01/15:21:32): ppg_handle_push_msg:
bAnE9GbCZj4bLTbzJBQkYg==
 2954:17477 (Sep 07 01/15:21:32): ppg_handler: transformed HTTP hdr:
 content-type: text/plain ; charset=UTF-8
content-language: en
x-wap-application-id: 2

content-length: 14

Client devices
Troubleshooting methods at the client level depend on the intended message
targets. For this redbook, e-mail and WAP clients were used to receive push
messages; a few problems to look out for are:

� In the SMTP configuration of the messaging gateway, misdirected messages
do not reach the client.

Solution: ensure that the SMTP MNC of the Wireless Gateway has an
Originator Address configured (for example,
root@rs615003.itso.ral.ibm.com).

� There is a problem with the format of the WML file being sent to the emulator.

Solution: obtain an emulator that can decode the message type your
application will be using. The Nokia toolkit used for this redbook will handle
WAP messages only. It is a good idea to avoid making assumptions about the
capabilities of the client device.
 Chapter 9. Push messaging applications 357

358 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 10. Intelligent Notification
Services (INS)

This chapter provides an overview, description and sample scenarios of
Intelligent Notification Services (INS), provided in IBM WebSphere Everyplace
Server (WebSphere Everyplace Server) Service Provider Offering (SPO) Version
2.1.1.

In this chapter, you will find information about how to set up Intelligent Notification
Services in a WebSphere Everyplace Server environment, how to work with user
preferences, and how to develop applications using simple notifications and
subscription applications. You will also find extensions to a B2E sample
application (YourCo application) illustrating the use of simple notifications and
subscriptions.

Note: INS is not available in WebSphere Everyplace Server Enable Offering (EO)
Version 1.1.

10
© Copyright IBM Corp. 2002 359

10.1 Overview
Intelligent Notification Services (INS) is a new function provided in WebSphere
Everyplace Server Version 2.1.1. It is aimed at sending notifications to pervasive
users, depending on the users’ preferences, which define how they want the
notifications to be delivered. A user can register triggers, and INS will notify the
user when the event defined in the trigger occurs. The event will be a condition of
data that exists in content, scanned by INS from external content providers. INS
has different ways of delivering the notifications: SMS, e-mail, Instant Messaging
(SameTime) and WAP Push.

Examples of how INS can be used for notification are:

� Notify the user when IBM Stock hits 150 points.

� Notify the user when there is news on WebSphere Everyplace Server from
IBM, but do not send the entire document. Just save it and sendthe user a
reference so that he/she can browse it when it suits him/her.

� Send urgent messages as WAP Push to the user’s cell phone, and other
messages as e-mail.

INS can also be used to push messages to users directly, without triggers, to
their preferred device. Figure 10-1 shows a schematic overview of INS.

Figure 10-1 Schematic overview of the two modes of operation of INS

INS

SameTime
Email

SMS
WAP
Push

Directly pushing
application

INS

SameTime
Email

SMS
WAP
Push

Triggers

ContentUser Prefs
360 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

User preferences and triggers are maintained using a Web browser. An
application that wants to directly notify users may use the INS API, which will be
discussed later.

10.1.1 INS in WebSphere Everyplace Server
INS is tightly integrated in WebSphere Everyplace Server. It uses WebSphere
Everyplace Server components for security (WSL), user preferences (TPSM),
delivery of the notifications (Wireless Gateway) and the underlying LDAP (SWD)
for storage of its preferences and user information. In Figure 10-2, a schematic
overview of INS and related WebSphere Everyplace Server components is
shown.

Figure 10-2 Intelligent Notification Services in WebSphere Everyplace Server

WebSEAL-Lite
WebSea-Lite is the security component of WebSphere Everyplace Server. It
provides authentication and authorization facilities for access to the user
preferences pages of INS, the Web pages to register their devices, preferences
and the triggers.

WAP,
SMS

Intelligent Notification API

Universal
Notification
Dispatcher

iQueue Server

AlertsSubscriptions
Content
adapters

Message
retrieval

publish
data feeds

Content
sources

Content
sources

send
matched
content

subscriptions,
stored messages

 define
preferences

notification

subscribe,
publish,
retrieve
content

send
notification

send
 notifications

retrieve
 messages

subscribe
to content

e-mail,
Sametime

WebSEAL-Lite

Everyplace
Wireless
Gateway

SecureWay
Directory

DB2

Preferences

Suite
Mgr

Setup
Mgr

WES Interfaces
 Chapter 10. Intelligent Notification Services (INS) 361

IBM SecureWay Directory
IBM SecureWay Directory contains both the configuration information for INS
and for the user preferences. There is one centralized instance of IBM
Secureway Directory for the installation of WebSphere Everyplace Server.

Tivoli PSM
User preferences are managed using Tivoli Personalized Service Manager
(TPSM). TPSM will update the directory with the user information, from which the
INS services read that information. TPSM is presented to the end-users as a set
of Web pages where the users can register and manage their devices and
preferences.

EveryPlace Wireless Gateway
The EveryPlace Wireless Gateway is used to deliver notifications to the mobile
devices of the users. It is used for delivering SMS messages and WAP Push
messages. For Instant Messaging and e-mail, EWG is not used.

10.1.2 User preferences
User preferences define the settings and preferences for individual users. There
are three categories of preferences

User profile
The user profile contains information about a user and the associated user ID. It
also contains the device profiles and group profiles that are associated with the
user.

Device profile
The device profile provides information about a device the user wants to use for a
notification by a specific protocol. It has information on the type of device, the
protocol version, device address and information on the gateway that is used for
this device. Figure 10-3 on page 363 shows what the user interface looks like
when the device is registered through TPSM.
362 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 10-3 Creating a device profile for a user for INS

Group profile
The group defines how notifications, originating from members of the group, are
delivered to the user for the different priorities that are defined. These priorities
are Urgent, Normal, and FYI (for your information). For each of these, a delivery
mechanism can be set up, which allows delivery of notifications with different
priorities to different devices (for example, urgent notifications are delivered to
the mobile phone as WAP Push messages and normal notifications are delivered
as e-mail).

Figure 10-4 shows how to define a group in the example. All notifications, Urgent,
Normal and FYI, are sent to e-mail. There is always a group called Anonymous,
which is the default group. This group is used for all users that do not belong to
any other group. Note that the users are not really anonymous, since notifications
can only be sent by users who are registered in the directory.
 Chapter 10. Intelligent Notification Services (INS) 363

Figure 10-4 Creating a group for INS users

In Section 10.3, “Users and user preferences without TPSM” on page 380, you
will find how to set up users and user preferences without the use of TPSM.
Instead, you will work directly with the entries that are in the Secureway
Directory. This is more convenient in a development environment.

10.1.3 INS end to end flow
There are several steps involved in using INS in a production system. In this
section, you will find a detailed explanation of how requests, triggers and
notifications are handled by the INS system.

Figure 10-5 shows the different flows of requests, triggers and notifications in
INS. Next, you will find how the data for the different functions flows through the
system.
364 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 10-5 Request and notification flow in INS

Authentication
Every HTTP request (originating from a browser or a pervasive device or voice)
is proxied by WTE, WebSEAL-Lite, as a plug-in of WTE will ensure that every
request that flows on is authenticated. The Wireless Gateway will authenticate
requests that come in from a non-HTTP origin. For these protocols, WSL will
pass on the request.

Enrollment
The first step is enrollment of the user using TPSM. The user and device
information that is entered is passed on to the central LDAP server for INS
servers to access.

Wireless Gateway
WAP Gateway
Messaging Gateway

WAP/IP

WAP Phone
WAP Simulator

HTTP

Gryphon
message

broker

Intelligent Notification Services
(INS)

TPSM
(enrollment)

AST Server
(session table)

WTE/WSL
(authentication)

Browser

LDAP
(user info)

WTP proxy
(transcoding)

Intranet or
Internet

Content
Adapter

HTTP 3rd-party
content

application
data

e-mail
users

Sametime
users

Mobile Phone
(SMS)

IBM HTTP Server
WebSphere
Application Server
INS sample servlets

Universal Notification Dispatcher
 (UND)

IQueue
Server

add triggers/retrieve content

Push and SMS notifications to Messaging Gateway

Request flow
Notification flow
 Chapter 10. Intelligent Notification Services (INS) 365

Trigger registration
A user registers a trigger through a set of JSP and servlet Web page served from
the private IBM HTTP Server/WebSphere Application Server configuration that
comes with INS. These triggers are stored in the private DB2 database of INS. In
the examples that are shipped with INS, the servlets and JSPs are designed for
access from a browser, but they could very well be designed for access from
other devices.

Content provision
The content is fed in to INS by a content adapter, which uses the INS API to feed
content into the system. Typically the content adapter will retrieve information
from a third party content provider such as a news agency, or from a proprietary
database. The Content Adapter has full freedom on how to obtain the
information. It can be polling a server for information, or some triggering
mechanism from the content providing server to the content adapter may be in
effect. The content adapter processes the content, and feeds it into INS.

Sending a notification
When INS receives the content, it determines which users need to be notified.
Next, it checks the LDAP for the user preferences, and sends the notification
through the channel selected by the user. To this end, the notification is sent to
the appropriate gateway adapter. This will then construct the right kind of markup
and send the notification to the appropriate server. If the user has elected to save
the message, the document is saved in the database (the private instance of
DB2 that is installed with INS), and a link to it is sent to the user.

Retrieving the content
When the notification has arrived at the client device, the user can either read the
message or follow the link to the content in the INS database. The content is then
served through a servlet that resides on the INS installed WebSphere Application
Server.

10.2 Setting up the system
For development of applications that use INS applications, you must install INS.
There is no provision for emulating the INS servers, such that you could unit test
your application without installing the INS system. This section discusses the
installation and configuration of INS and the users needed for testing your
application.
366 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

10.2.1 Installation
Installation of INS is performed using Setup Manager. You must follow the
instructions in the WebSphere Everyplace Server InfoCenter for installation of
INS.

When you select INS to be installed on a system, Setup Manager checks the
prerequisites. When not available, SetupManager will also install:

� IBM Secureway Directory client

� IBM DB2

� IBM HTTP Server

� IBM WebSphere Application Server Advanced Edition

� IBM WebSphere Everyplace Server Intelligent Notification Services

Although TPSM and WebSEAL-Lite (WSL) are used in a production
environment, for development these services are not necessary, and they are not
discussed in this chapter. We will show later on how the functionality these
services provide can be simulated, or provided in a way that is suitable for testing
purposes.

IBM SecureWay Directory
IBM SecureWay Directory contains the configuration information for INS and for
the users. There is one centralized instance of IBM Secureway Directory for the
installation of WebSphere Everyplace Server, so mostly the Secureway Directory
will be on a different machine from INS. In that case, the LDAP client is installed.
The information in the directory can be accessed using the EveryPlace Suite
Manager (the configuration GUI for WebSphere Everyplace Server) as far as INS
configuration is concerned, or using DMT, the Directory Management Tool, that
ships with IBM SecureWay Directory.

IBM DB2
DB2 is used in this setup as a private installation for INS. It hosts the database
INS uses for the triggers and the content, and the database for WebSphere
Application Server. It may also host the databases for Secureway Directory if you
decide to install Secureway locally on the same system. You do not usually let it
host application data in a production environment.

IBM HTTP Server
IBM HTTP Server is used together with the Application server (WAS) to host the
Web pages for registration of the triggers, and for serving the saved content of
notifications.
 Chapter 10. Intelligent Notification Services (INS) 367

IBM WebSphere Application Server Advanced Edition
WebSphere Application Server is used to host the servlets and JSPs that are
used for trigger registration and serving of saved content of notifications.

Suite Manager installs a server called INSSampleServer in your WebSphere
Application Server and in that a Web Application called INSSample. The
configuration for this server is:

Table 10-1 Configuration of the samples in WebSphere Application Server

Important: Do not configure IBM HTTP Server to run under the root ID. For
security reasons, it cannot work under the root ID.

setting value

startup
parameters of
the Server

-classpath
/usr/IBMEPS/INS/lib/ins.jar:/usr/IBMEPS/INS/lib/jlog.jar:/usr/
IBMEPS/INS/lib/xalan.jar:/usr/IBMEPS/INS/lib/xerces.jar:/us
r/IBMEPS/INS

Log files /usr/IBMEPS/INS/samples/inssample/stdout.txt
/usr/IBMEPS/INS/samples/inssample/stderr.txt

Web appl.
classpath

/usr/IBMEPS/INS/samples/inssample/servlets

Web appl.
Doc Root

/usr/IBMEPS/INS/samples/inssample/web

Servlets News: NewsSubscriptionServlet
Stock: StockSubscriptionServlet
Weather: WeatherSubscriptionServlet
content: ContTransServlet

Standard Servlets
Invoker
JSP 1.1
file
ErrorReporter
368 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Log files
The following log files are used:

/usr/IBMEPS/INS/samples/inssample/stdout.txt
/usr/IBMEPS/INS/samples/inssample/stderr.txt

After installation, you can check if the application server is running correctly. This
can be done by running the snoop servlet:

1. Ensure that the default server and its servlet engine are running using the
WebSphere Application Server administration console.

2. Run the snoop servlet:

http://<hostname>/servlet/snoop

Where <hostname> is the name of the server that hosts INS.

The result should look like Figure 10-6:

Attention: In this chapter, we will assume that the INS services run on an AIX
machine.

On AIX, the base directory for INS is:

/usr/IBMEPS/INS

On Sun Solaris, the base directory for INS is:

/opt/IBMEPS/INS/
 Chapter 10. Intelligent Notification Services (INS) 369

Figure 10-6 Validation of the Application Server using the snoop servlet.

IBM WebSphere Everyplace Server Intelligent Notification
Services

INS contains the core services. They will be discussed in more detail below. For
more information on any of these products, you must refer to the WebSphere
Everyplace Server Infocenter.

10.2.2 Post-installation configuration
After installing INS, you need to configure it to work correctly in your
environment. Apart from setting up the users, which is discussed in 10.3, “Users
and user preferences without TPSM” on page 380, you will have to configure INS
for connections to the various delivery servers for the notifications. These
preferences are in the LDAP Directory, and you can browse and edit them using
DMT. DMT can be run from Unix or from Windows. On Unix you can start DMT
by entering the following command on the command line:

dmt &

You may get the next window when the server that DMT is configured for is not
running:
370 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 10-7 Error connecting to server

However, this is not a problem, and you can just continue by clicking the OK
button. Once the main panel of DMT is shown, you can add a server by clicking
the Add server button:

Figure 10-8 Adding a server to the DMT

You must use a user ID that has the required privileges to access the objects you
need to browse or alter. You must enter the DN of the administrator. Here we use
cn=root as the user ID. Often it is convenient to use the LDAP administration
user ID.

After the new server has been successfully added, you can browse the directory
tree by selecting Directory Tree > Browse Tree. Warnings like xyz contains no
data can be ignored. By clicking the + and - symbols, you can collapse and
expand a branch of the tree. Under sys=SDP you find the WebSphere
Everyplace Server configuration entries. The settings for INS can be found in
sys=SDP, sys=und, cn=und adaptors and sys=SDP, sys=und, cid=common.
 Chapter 10. Intelligent Notification Services (INS) 371

Figure 10-9 INS settings in LDAP, as viewed with DMT

The branches cid=wap, cid=mail, etc. are the system settings for each of the
delivery channels. The branches cid=common under sys=und and sys=ins are
the system settings for UND and IQ, respectively. You can edit an object by either
double-clicking it or by selecting the line and clicking the Edit button.

Configuring the SMTP Mail Server for INS
1. Using DMT, navigate to sys=SDP, sys=und. Expand cn=und adaptors and

then cid=mail.

2. Edit settingID=Email_Server_Hostname and specify the fully qualified host
name of your SMTP server in the cesProperty field. Click OK.

3. Edit settingID=Email_Server_Port_Number and verify that port number 25 is
specified. Click OK.

4. Edit settingID=Email_Transport_Protocol and specify smtp in the cisProperty
field. Click OK.

5. Stop and restart the UND server.
372 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Configuring the Sametime Server for INS
1. Using DMT, navigate to sys=SDP, sys=und. Expand cn=und adaptors and

then cid=sametime1.

2. Edit settingID=Sametime_server and specify the fully qualified host name of
your Sametime server in the cesProperty field. Click OK.

3. Edit settingID=Sametime_userid and specify the user ID for accessing your
Sametime server in the cesProperty field. Click OK.

4. Edit settingID=Sametime_password and specify the password for accessing
your Sametime server in the cesProperty field. Click OK.

5. Stop and restart the UND server.

Configuring the WAP Server for INS
1. Using DMT, navigate to sys=SDP, sys=und. Expand cn=und adaptors and

then cid=wap.

2. Edit settingID=Push_Proxy_Gateway_URL and specify the URL for the push
proxy of the Wireless Gateway in the cesProperty field. Click OK.

3. Edit settingID=Push_Update_Listening_Port and specify the port number that
the gateway is listening on in the cisProperty field. Click OK.

4. Stop and restart the UND server.

Configuring logging and tracing
Logging and tracing output can be directed to the console of the JVM and/or to a
file. The console is usually the terminal session in which the process was started.

Under sys=und, cid=common and sys=ins, cid=common, you find the
configuration parameters for the logging of INS.

Tip: For testing purposes, it is often useful to use the SMTP server that is
installed with AIX. The user address is <username>@<hostname>, where
<username> is an AIX user ID, and <hostname> the host name of the server.
The SMTP Server address is then the address of the AIX server.

Important: When INS delivers notifications to Sametime, it has to log on to
the Sametime server. If you use the same user ID here as the user ID you
want to deliver the notification to (for example for testing purposes), at the
moment the notification is sent, the Sametime client is disconnected from the
server, since you can only be logged on once. You must therefore have at least
two Sametime user IDs for testing Sametime delivery.
 Chapter 10. Intelligent Notification Services (INS) 373

IQ log and trace properties (sys=ins)
� ibm-insSystemLogger.console < true | false >

� ibm-insTracerLogger.console < true | false >

� ibm-insSystemLogger.file < file name >

� ibm-insTracerLogger.file < file name >

UND log/trace properties (sys=und)
� ibm-undConsoleLogOutput < true | false >

� ibm-undConsoleTraceOutput < true | false >

� ibm-undLogFileLocation < file name >

� ibm-undTraceFileLocation < file name >

Pref log/trace properties (sys=pref)
� ibm-prefMessagesLogToConsole < true | false >

� ibm-prefTracesLogToConsole < true | false >

� ibm-prefMessagesLogFile < file name >

� ibm-prefTracesLogFile < file name >

When you change any of the settings for the adapters or logging/tracing, the
servers must be restarted for these new settings to take effect.

10.2.3 Starting and stopping the WebSphere Everyplace Server
components for INS

The following instructions assume that INS and its prerequisite components have
already been installed using the WebSphere Everyplace Server Setup Manager.

DB2
To start DB2, logon to the INS DB2 instance ID (su - insdb2) and enter the
following command:

db2start

To stop DB2, log on to the INS DB2 instance ID (su - insdb2) and enter the
following command:

db2stop

DB2 JDBC listener
To start the DB2 JDBC listener, change the user to the INS instance ID (su -
insdb2) and enter the following command:
374 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

db2jstrt 6789

You can also check that the service has started by entering the following
command:

ps -ef | grep -i db2jd

The result should be similar to the following text:

root 16794 21960 0 16:10:29 pts/4 0:00 grep -i db2jd
insdb2 20236 1 0 Sep 12 pts/0 0:00 db2jd 6789

If you want to check that DB2 JDBC is listening on the right port, enter the
following command:

netstat -a | grep -i 6789

The result should be similar to the following text:

tcp4 0 0 *.6789 *.* LISTEN

Again, 6789 is the default port used in this scenario.

To stop
Enter the following command:

ps -ef | grep db2jd
Result: root 16794 21960 0 16:10:29 pts/4 0:00 grep -i db2jd

and kill the processes associated with the INS DB2 instance, in this case 16794:

kill -9 16794

HTTP server
To start on AIX, from directory /usr/HTTPServer/bin, enter:

./apachectl start

To stop on AIX, from directory /usr/HTTPServer/bin, enter:

./apachectl stop

To start on Solaris, from directory /opt/IBMHTTPD/bin, enter:

./apachectl start

To stop on Solaris, from directory /opt/IBMHTTPD/bin, enter:

./apachectl stop

Note: 6789 is the default port; the actual port can be found in
ibm-insJDBCDatabaseURL in the LDAP Directory.
 Chapter 10. Intelligent Notification Services (INS) 375

WebSphere Application Server
To start WebSphere Application Server on AIX, from directory
/usr/IBMWebAS/bin, enter:

./startupServer.sh &

To start on Solaris, from directory /opt/IBMWebAS/bin, enter:

./startupServer.sh &

To stop on Solaris and AIX, from the Admin Console, right-click the host node
and select stop.

WebSphere Application Server administrative console
To start on AIX, from directory /usr/IBMWebAS/bin, enter:

./adminclient.sh &

To start on Solaris, from directory /opt/IBMWebAS/bin, enter:

./adminclient.sh &

To start on Windows, from directory <appserver>\bin, enter:

adminclient.bat <hostname>

where <appserver> is the directory where WebSphere Application Server is
installed (for example, C:\WebSphere\AppServer) and <hostname> is the name of
the host of the WebSphere Application Server installation you want to administer.

To stop: from the Admin Console, click Console and select Exit.

10.2.4 Starting the INS servers
The following procedures will start the INS servers running in the foreground,
each in its own window. Unless you have modified the log settings for each
server in LDAP, the log output will be displayed in each server’s respective
window. You can also start the servers in the background. Before you do this, you
should modify the log settings so that any output will be written to a file. See
Section 10.8, “Problem Determination” on page 433 for instructions on how to
change the INS log and trace settings.
376 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Starting the INS Servers in the foreground
Open a new dtterm window, change to the INS bin directory and start the UND,
then enter:

./startUND <host name>

Where <hostname> is the name of the server that hosts INS (see note below).

Open a new dtterm window, change to the INS bin directory and start the
Gryphon Broker, then enter:

./startGB

Open a new dtterm window, change to the INS bin directory and start the IQ
Server, then enter:

./startIQ <host name>

The INS bin directory is /usr/IBMEPS/INS/bin on AIX and /opt/IBMEPS/INS/bin
on Solaris.
 Chapter 10. Intelligent Notification Services (INS) 377

Starting the INS Servers in the background
The INS services can be started in the background by appending & to the
commands shown above:

./startUND <host name> &

./startGB &

./startUND <host name> &

Stopping the INS servers
Stopping the INS servers when they are running in the background can be done
by closing the terminal session in which they run, or by clicking the escape
sequence (CTRL-C on AIX).

Note: When using the startUND or startIQ commands, the format of the
hostname argument depends on the ObjectType specified for the directory
suffix during SecureWay Directory installation. If the directory suffix is of
Domain type, then use a short host name, for example undserver. If the
directory suffix is other than Domain, for instance Organizational Unit, then
use a fully qualified host name, such as undserver.mysite.myco.com.

Note: When you have tracing enabled, you will see the following exception in
the log when UND is started. For example:

...

UND started and ready to receive requests

2001.09.14 08:13:58.381
com.ibm.pvc.we.ins.und.server.dispatcher.Connection run

java.io.StreamCorruptedException: Caught EOFException while reading
the stream header

at java.io.ObjectInputStream.readStreamHeader(ObjectInputStream.
java:851)

at java.io.ObjectInputStream.<init>(ObjectInputStream.java:174)

...

This is not a problem and can be ignored.
378 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Stopping the INS servers running in the background can be done from the
command line by searching the process that owns them and then killing that
process. For example, issue the following command:

ps -ef | grep UND

with the result similar to the following text:

root 26926 21960 0 16:45:42 pts/4 0:00 grep UND
root 28756 1 0 16:52:39 pts/0 0:00 ksh /usr/IBMEPS/INS/bin/startUND
rs615002

and then you will kill the process (in this case the process number is 28756) by
issuing the following command:

kill -9 28756

Suite Manager
INS applications can also be started and stopped from the Suite Manager.
Figure 10-10 shows the Suite Manager console and the INS functions. In the
view by system branch of the tree, you see the services installed on the server
that runs INS (DB2,HTTP Server, WebSphere Application Server, and the INS
Components UND and IQueue Server). Note that you can install Suite Manager
on a remote machine; it runs also on Windows. From this console, you can start
and stop the INS services, by clicking the Start or Stop buttons

Figure 10-10 Ins services status overview in Suite Manager
 Chapter 10. Intelligent Notification Services (INS) 379

10.3 Users and user preferences without TPSM
One important issue is how to set up users and their preferences without using
TPSM for user preference and device management, which will typically be the
case in a development environment. You can add users directly to the ldap
directory, either manually or by importing an LDIF file. Below, you will find an
example LDIF file for a user.

Importing user preferences using LDIF
With an LDIF file you can batch-import information into the directory.
Example 10-1 shows an ldif file for importing INS user preferences.

Example 10-1 Example .ldif file for INS user and preferences

001 dn: ou=IBM,dc=itso,dc=ral,dc=ibm,dc=com
002 objectclass: top
003 objectclass: organizationalUnit
004 ou: IBM
005
006 dn: cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,dc=com
007 objectclass: top
008 objectclass: container
009 cn: users
010
011 # User entries for User Three
012 dn: uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,dc=com
013 ibm-tismstatus: C
014 uid: insuser
015 objectclass: ibm-SdpUser
016 objectclass: inetOrgPerson
017 objectclass: ePerson
018 objectclass: cimManagedElement
019 objectclass: eUser
020 objectclass: organizationalPerson
021 objectclass: person
022 objectclass: top
023 sn: Ins User
024 cn: Ins User
025
026 dn:
cn=insuser/und,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,dc=com
027 ibm-deviceidlist: cn=mail1/und
028 ibm-deviceidlist: cn=sametime1/und
029 ibm-deviceidlist: cn=wap1/und
030 objectclass: ibm-undUser
031 objectclass: cimManagedElement
032 objectclass: eUser
033 objectclass: top
380 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

034 ibm-grouplist: cn=group0/und
035 ibm-grouplist: cn=anonymous/und
036 cn: insuser/und
037
038 dn: cn=anonymous,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,dc=com
039 objectclass: groupOfNames
040 objectclass: top
041 member: uid=user5@IBM
042 member: uid=user6@IBM
043 cn: anonymous
044
045 dn:
cn=anonymous/und,cn=anonymous,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm
,dc=com
046 ibm-undauthorizations: None available
047 objectclass: ibm-undGroup
048 objectclass: top
049 ibm-undurgentdevicesauthorizations: mail1,sametime1,wap1
050 ibm-undfyidevicesauthorizations: mail1,sametime1,wap1
051 cn: anonymous/und
052 ibm-undnormaldevicesauthorizations: mail1,sametime1,wap1
053
054 dn:
deviceID=mail1,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,dc=com
055 deviceid: mail1
056 objectclass: ibm-device
057 objectclass: cimLogicalElement
058 objectclass: cimManagedElement
059 objectclass: cimManagedSystemElement
060 objectclass: cimLogicalDevice
061 objectclass: top
062 ibm-isdeviceenabled: true
063 ibm-deviceidtype: 1
064 description: 0
065
066 dn: deviceID=wap1,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,dc=com
067 deviceid: wap1
068 objectclass: ibm-device
069 objectclass: cimLogicalElement
070 objectclass: cimManagedElement
071 objectclass: cimManagedSystemElement
072 objectclass: cimLogicalDevice
073 objectclass: top
074 ibm-isdeviceenabled: true
075 ibm-deviceidtype: 1
076 description: 0
077
078 dn:
deviceID=sametime1,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,dc=com
 Chapter 10. Intelligent Notification Services (INS) 381

079 deviceid: sametime1
080 objectclass: ibm-device
081 objectclass: cimLogicalElement
082 objectclass: cimManagedElement
083 objectclass: cimManagedSystemElement
084 objectclass: cimLogicalDevice
085 objectclass: top
086 ibm-isdeviceenabled: true
087 ibm-deviceidtype: 1
088 description: 0
089
090 dn: cn=group0,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,dc=com
091 objectclass: groupOfNames
092 objectclass: top
093 member: uid=usertwo@IBM
094 member: uid=erongen@IBM
095 cn: group0
096
097 dn:
cn=group0/und,cn=group0,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,dc=co
m
098 ibm-undnormaldevicesauthorizations: mail1
099 ibm-undauthorizations: None available
100 objectclass: ibm-undGroup
101 objectclass: top
102 ibm-undurgentdevicesauthorizations: mail1,sametime1
103 ibm-undfyidevicesauthorizations: mail1
104 cn: group0/und
105
106 dn:
cn=mail1/und,deviceID=mail1,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,d
c=com
107 ibm-appprotocolversion: none
108 ibm-appprotocol: none
109 objectclass: ibm-undDevice
110 objectclass: top
111 uid: 0
112 cn: mail1/und
113 description: 0
114 ipserviceport: 25
115 host: rs615002.itso.ral.ibm.com
116 ibm-appprotocoltype: mail
117 ibm-appdeviceaddress: nl69897@rs615002.itso.ral.ibm.com
118
119 dn:
cn=wap1/und,deviceID=wap1,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,dc=ibm,dc=
com
120 ibm-appprotocolversion: none
121 ibm-appprotocol: none
382 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

122 ibm-appdeviceaddress: 9.24.105.209
123 objectclass: ibm-undDevice
124 objectclass: top
125 uid: 0
126 cn: wap1/und
127 description: 0
128 ipserviceport: 0
129 host: pushproxy
130 ibm-appprotocoltype: wap
131
132 dn:
cn=sametime1/und,deviceID=sametime1,uid=insuser,cn=users,ou=IBM,dc=itso,dc=ral,
dc=ibm,dc=com
133 ibm-appprotocolversion: V15
134 ibm-appprotocol: sametime
135 ibm-appdeviceaddress: e_rongen@nl.ibm.com
136 objectclass: ibm-undDevice
137 objectclass: top
138 uid: 0
139 cn: sametime1/und
140 description: 0
141 ipserviceport: 1533
142 host: messaging.ibm.com
143 ibm-appprotocoltype: im

Explanation of Example 10-1
For an explanation on devices and groups, see Section 10.1.2, “User
preferences” on page 362.

� Lines 1-4 define the OU, and lines 6-9 the user’s group that will contain the
user defined in this file.

� For each user, there is exactly one instance of class ibm-SdpUser and one of
class ibm-undUser. These entries are defined in lines 12-24 and lines 26-36,
respectively. The ibm-undUser entry also contains references to the devices
cn=mail1/und, cn=sametime1/und and cn=wap1/und. These devices are
defined further down in the file. Also, ibm-undUser contains references to the
groups that are defined for this user. The Anonymous group must always be
present. This is used for notifications by users that are not in any other group.

� Lines 38-43 show the settings for the Anonymous group for this user. Notice
that this group has members. The system will not use these member
definitions.

� Lines 45-52 show the ibm-undGroup definition for Anonymous. They show the
possible delivery channels for Urgent, Normal and FYI notifications.

Note: The line numbers are not part of the LDIF file.
 Chapter 10. Intelligent Notification Services (INS) 383

� Lines 54-88 show the ibm-devices class entry for the delivery channels (WAP,
e-mail and Sametime). These entries define whether the device profile is
active or not, that is, whether INS can use these devices to deliver
notifications.

� Lines 90-104 show another group, as an example.

� Lines 106-117 show the ibm-undDevice class entry for e-mail. The name is
referenced in the ibm-device entry for email. The server name, port and the
e-mail address (ibm-appdeviceaddress) of the user are defined here.

� Lines 119-130 show the ibm-undDevice class entry for WAP Push
notifications. The name is referenced in the ibm-device entry for WAP. In this
example, the address is an IP address, referring to a WAP emulator running
on a PC. For a real phone, ibm-appdeviceaddress would contain the phone
number of the device. The value of the host name is not used. Instead, the
values under sys=SDP, sys=und, cn= und adapters, cid=wap are used
(see“Configuring the WAP Server for INS” on page 373).

� Lines 132-143 show the ibm-und-Device settings for Sametime. Just as for
WAP, the server name is not used. Instead, the values under sys=SDP,
sys=und, cn= und adapters, cid=wap are used (see “Configuring the
Sametime Server for INS” on page 373).

10.3.1 Importing the LDIF file
You can use the example to load your system with an INS user. To do so, you
must make some changes to the file.

Make the following changes to the file:
1. Replace the domain dc=itso,dc=ral,dc=ibm,dc=com with the suffix of your

LDAP directory

2. Change ou=IBM with the ou of your users.

3. Change addresses for the adapters.

4. Change the e-mail server address and e-mail address on lines 115 and 117,
respectively.

5. Change the WAP Push address on line 122.

6. Change the Sametime user ID on line 135.
384 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Importing the file into your LDAP directory
1. You must upload the LDIF file to the machine that runs IBM Secureway

Directory. For example:

a. Open a DOSbox, change to the directory that contains the file, and enter
the following command:

ftp <hostname>

b. Where <hostname> is the name of the server to which the file must be
uploaded. You must enter a user ID and password. The FTP prompt will
appear. Enter the following command:

cd <targetdir>

where <targetdir> is the directory to which you want the file uploaded,
then:

ascii
put <filename>

where <filename> is the name of the file, then

quit

2. Ensure that the IBM HTTP Server is running on the server that hosts IBM
SecureWay Directory (see Section 10.2.3, “Starting and stopping the
WebSphere Everyplace Server components for INS” on page 374).

3. Start the following URL in a browser:

http://<hostname>/ldap

and log on using the administrator user ID and password for the directory. For
the user ID, you must use the DN, for example cn=ldapadmin.

Select Database -> Import ldif from the menu on the left, which will open the
ldif import page.
 Chapter 10. Intelligent Notification Services (INS) 385

Figure 10-11 IBM SecureWay Director Import LDIF page

Note that in the above figure, the HTTP server is listening on port 8080.
Usually, the port is 80 and does not have to be entered.

4. You must then wait until the file has been imported. The panel will indicate if
importing was successful. Even if it indicates that the import was not
successful, this is not necessarily a problem. When you import it again, for
example when registering the next user, the problem might occur that a
duplicate entry is found, as shown in Figure 10-12. This will be reported as an
error, but this is no real problem.
386 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 10-12 The result of importing an LDIF file

5. You must restart the LDAP server to activate the changes. Click Clear results
and restart server. The panel will indicate whenthe task of restarting the
server is completed.

You can inspect the new configuration using the Directory Management Tool of
IBM Secureway Directory.

10.4 Simple Notification
This section discusses the Simple Notification facility of INS. With Simple
Notification, users do not register triggers that are fired upon matching content,
but notifications are sent directly to the users, using their preferences.
 Chapter 10. Intelligent Notification Services (INS) 387

10.4.1 The Application Programming Interface (API)
To send messages directly through UND, the API is very simple for most
applications. You will learn about the API by examining the source of
SimpleUNDSend, an example that ships with INS. Simpleundsend is a basic
example of a program that sends notifications to users directly through UND.

Example 10-2 SimpleUNDSend.java

/**
 * IBM WebSphere Everyplace Server Version 2.1 (PID 5724-B07) *
 * (c) Copyright IBM Corporation 2000, 2001. All Rights Reserved *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * US Government Users Restricted Rights - Use, duplication or disclosure *
 * restricted by GSA ADP Schedule Contract with IBM Corporation. *
 **
*/
// Intelligent Notification Service api
import com.ibm.pvc.we.ins.*;
import java.io.*;

/**
 * Basic sample demonstrating use of the WebSphere Everyplace Server
 * Intelligent Notification Service client API.
 */
public class SimpleUNDSend {

public static void main(String[] args){
// create a client service stub for the specified UND server and port
NotificationService ns =
 new NotificationService("rs615002.itso.ral.ibm.com",55005);

// specify delivery options
DeliveryOptions opts = new DeliveryOptions();

// select devices to which message is delivered
// opts.devices = opts.IM;

opts.devices = opts.EMAIL + opts.WAP;

// select message priority
opts.priority = opts.NORMAL;

// opts.ANY indicates that the server should send
// the message to any one device
// specified in opts.devices.
// The server will loop through the devices and try to
388 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

// send the message, and will stop once the message
// is successfully delivered.
//
// specify opts.ALL to send message to all specified devices.

// opts.multiDevices = opts.ALL;
opts.multiDevices = opts.ANY;

// create message in NotificationML format
String message = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"

 + "<message>"
 + "<to>erongen@IBM</to>"
 + "<from>erongen@IBM</from>"
 + "<subject>Testing INS UND</subject>"
 + "<text> This is a test message</text></message>";

try {
// send the message with the specified delivery options
int i = ns.sendMessage(message,opts);
System.out.println("sendMessage returned code: "+i);

}
// an IOException will be thrown if the NotificationService has
// trouble communicating with the server
catch (IOException e)
{

e.printStackTrace();
}

}

}

NotificationService
When the application creates a new instance of
com.ibm.pbc.we.ins.NotificationService, it is ready to communicate with the UND
settings.

NotificationService ns = new NotificationService(hostname,port)

Next, the delivery options are set. The DeliveryOptions class contains all
possible settings for delivery of the notification.

DeliveryOptions.devices
The value for the devices field is constructed as shown below:

opts.devices = DeliveryOptions.IM

or

opts.devices = DeliveryOptions.EMAIL + DeliveryOptions.WAP
 Chapter 10. Intelligent Notification Services (INS) 389

The devices field defines to which devices you want to send the notification.
You can send the notification to multiple devices by adding them. Depending
on the priority and multiDevices setting, the notification will be sent to no
device, one device or several devices of the user.

DeliveryOptions.priority
This field has three possible values:

1. opts.priority = DeliveryOptions.NORMAL

2. opts.priority=DeliveryOptions.URGENT,

3. opts.priority = DeliveryOptions.FYI

The priority field has one of the above values and this defines the priority of
the notification. If the receiving user has not listed the device set under
opt.devices for this priority in the group of which the sending user is a
member, no notification is sent.

DeliveryOptions.multiDevices
This field has two possible values:

1. DeliveryOptions.ANY:The notification is sent to one of the devices of the user,
depending on the opts.devices and opts.priority settings and the preferences
in the directory of the receiving user.

2. DeliveryOptions.ALL: The notification is sent to all devices of the user,
depending on the opts.devices and opts.priority settings and the preferences
in the directory of the receiving user.

Construction of the message
The notifications are defined in the Notification Markup Language (Notification
ML) Notification ML is the markup language used to format a notification
message. Notification ML is a form of XML.

Example 10-3 Notification ML example

<message>
<to>Joe_employee@realm1.company.com</to>
<from>CompanyX_EINS@realm1.company.com</from>
<subject>CompanyX Stock</subject>
<text>CX = 110</text>
<url>http://Svcs_persistant_storage/stock38521.jsp</url>

</message>
390 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The corresponding DTD (Document Type Definition) is shown below:

Table 10-2 DTD for Notification ML

Table 10-3 Description of tags

Gateway adapters
Gateway adapters connect the Universal Notification Dispatcher to the
Everyplace Wireless Gateway and any other gateway being used. Each recipient
device type requires a gateway adapter. Usually, you do not have to worry about
the gateway adapters. For the delivery mechanisms that are supported by INS
(WAP Push, Sametime, e-mail and SMS), the gateway adapters are already
defined and you do not have to customize them. You can find them in
/usr/INS/IBMEPS/samples/adaptors

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT message (to, from, subject, text, url*)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT text (#PCDATA)>
<!ELEMENT url (#PCDATA)>

Tag Description

<message>...</message> Notification message

<to>...</to> User ID of message recipient

<from>...</from> User ID of message sender

<subject>...</subject> Subject of message

<text>...</text> Text message body

<url>...</url> Link to a stored message
 Chapter 10. Intelligent Notification Services (INS) 391

The next figure gives a schematic overview of the gateway adapters in INS.

Figure 10-13 Gateway adapter s

As an example of how a gateway adapter works, the WAP Gateway Adapter will
be discussed.

For details, see the Gateway Adapter source code below, and the sources of the
class WAPTranscoder and the XSLT StyleSheet WAPTranscoder_SS.xsl.

Example 10-4 Gateway Adapter for WAP

//***
 * IBM WebSphere Everyplace Server Version 2.1 (PID 5724-B07) *
 * (c) Copyright IBM Corporation 2000, 2001. All Rights Reserved *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * US Government Users Restricted Rights - Use, duplication or disclosure *
 * restricted by GSA ADP Schedule Contract with IBM Corporation. *
 **
*/
package com.ibm.pvc.we.ins.und.server.adaptors;

import java.io.*;
392 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

import java.util.*;

import com.ibm.pvc.we.ins.und.server.adaptors.*;
import com.ibm.pvc.we.ins.und.server.adaptors.transcoder.*;

import com.ibm.pvc.we.ins.und.server.dispatcher.*;
import com.ibm.pvc.we.ins.GeneralConstants;
import com.ibm.wireless.push.*;

public class WAP extends PAPUser implements Gateway,
com.ibm.logging.IRecordType
{
 private final static String
insIBMCopyright=GeneralConstants.insIBMCopyright;

 private Transcoder currenttc;
 private DeviceAddress deviceAddr;
 public static Properties gwconfig;
 private String msgbody;
 public static long ADAPTORS = 1 << 37;

 public WAP(){
 super();
 init();
 }

 public int sendMessage(DeviceAddress addr,Msg msg) {

 if (Logging._isTracing) {

Logging._tracer.text(ADAPTORS,this,"sendMessage","Entry");
 }

 // initialize variable for this session
 deviceAddr = addr;
 currenttc = null;
 msgbody=null;

 formatMessage(addr,msg);

 if (msgbody != null)
 {
 int returnCode=send();
 return returnCode;
 }
 return SEND_ERROR;
 }

 /* * Insert the method's description here.
 Chapter 10. Intelligent Notification Services (INS) 393

 * load transcoder if it has not been loaded yet
 * Creation date: (1/10/2001 3:20:21 PM)
 * @param notificationMsg com.ibm.pcds.ns.server.src.Msg
 */
 public void formatMessage(DeviceAddress deviceAddr, Msg
notificationMsg)
 {
 if (Logging._isTracing) {

Logging._tracer.text(ADAPTORS,this,"formatMessage","Entry");
 }

 // get proper transcoder from tc_collection
 currenttc=TcFactory.createTc(deviceAddr,"WAP_TC");

 if (currenttc != null)
 msgbody=currenttc.format(deviceAddr,notificationMsg);

 }

 /** Insert the method's description here.
 * This method should load gateway configuration file.
 * Creation date: (1/15/2001 3:51:37 PM)
 */
 public void init()
 {
 if (gwconfig == null) {
 gwconfig= NS_Configuration.getProperties();
 }

 }

 public int send() {
 if (Logging._isTracing) {
 Logging._tracer.text(ADAPTORS,this,"send","Entry");
 }
 int returnCode=SEND_ERROR;

 String message; // message as strung together from the NS Msg.
 PushMessage p_message;
 PushAddress p_address;
 String _phoneNumber = deviceAddr.getAddress();

 try {
 p_message=new PushMessage();
 p_message.setContent(msgbody, "text/vnd.wap.wml");
 p_message.setDeliveryMethod(DeliveryQoS.DELIVERY_UNCONFIRMED);
 p_address= new PushAddress();
394 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 // "PLMN" replaced by IPv4 for testing: we have no WAP enabled
phones.
 // PLMN== public land mobile network
 p_address.setAddress(_phoneNumber, "IPv4", PAPUser.getHost());

 returnCode= sendMessage(p_message, p_address);
 } catch (PushException pe) {
 //pe.printStackTrace();
 // JLog
 if (Logging._isLogging) {
 Logging._logger.exception(TYPE_ERROR,this,"send",pe);
 }
 return SEND_ERROR;
 }

 return returnCode;

 }
}

When the UND needs to send a message to a WAP device, the Gateway Adapter
must do two things

1. Transform the NotificationML into WML.

2. Send the result to the wireless gateway with the right address, etc.

Therefore, a WAP Gateway object is instantiated. This will instantiate a
WAPTranscoder for transcoding the message. This will be discussed in more
detail.

The Constructor: WAP()
First of all, in the init() method that is called from the constructor, the properties of
the Adapter are read.

sendMessage()
When the UND has a message to dispatch, the method SendMessage() is
called. It will format the message by calling formatMessage(), and after that it will
send the message to the server by calling sendMessage().

formatMessage()
formatMessage() will create a transcoder that uses XSL Transformation to
convert the notification ML into the appropriate markup for the delivery protocol:

currenttc=TcFactory.createTc(deviceAddr,"WAP_TC");
 Chapter 10. Intelligent Notification Services (INS) 395

It creates the transcoder and calls its format() method, which will try to load the
stylesheet. If the stylesheet is found, the method formatMessage() of the
superclass is called, and does an XSL transformation based on the loaded
stylesheet. If the stylesheet is not found, the method formatUseSS(msg) is
called, which is implemented in the transcoder itself. After transcoding the
message, some extra formatting is performed, namely the setting of the WAP
version.

The transcoder and the stylesheets are located in the directory
/usr/IBMEPS/INS/samples/adaptors/

Transcoder: WAPTranscoder.java

Stylesheet: WAPTranscoder_SS.xsl

They are both printed below.

send()
Finally, the message is sent to the device by calling the send() message.

Example 10-5 Transcoder for WAP

/**
 * IBM WebSphere Everyplace Server Version 2.1 (PID 5724-B07) *
 * (c) Copyright IBM Corporation 2000, 2001. All Rights Reserved *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * US Government Users Restricted Rights - Use, duplication or disclosure *
 * restricted by GSA ADP Schedule Contract with IBM Corporation. *
 **
*/
package com.ibm.pvc.we.ins.und.server.adaptors.transcoder;

/**
 * Insert the type's description here.
 * Transcoder will format message specific to communication protocol and
adapter implementation
 * of gateway interface.
 */

import java.util.Properties;

import com.ibm.pvc.we.ins.und.server.adaptors.*;
import com.ibm.pvc.we.ins.und.server.adaptors.transcoder.*;

import javax.xml.transform.*;
import javax.xml.transform.stream.*;
import java.io.*;
396 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

import com.ibm.pvc.we.ins.und.server.dispatcher.*;
import com.ibm.pvc.we.ins.GeneralConstants;

public class WAPTranscoder extends GenericTranscoder implements Transcoder
{
 private final static String
insIBMCopyright=GeneralConstants.insIBMCopyright;

 String wapversion;

 /**
 * WAPTranscoder constructor comment.
 */
 public WAPTranscoder()
 {
 super();

 }

 /**
 * Insert the method's description here.
 * Set WAP version
 */
 public String addVersion(String message,String ver)
 {
 // if no version is provided or not a valid version, WAP1.1 is
assumed

 if (ver == null)
 ver = "1V1";
 else if (!ver.equals("1V2"))
 ver = "1V1";

 // insert version
 StringBuffer tempmsg= new StringBuffer(message);
 int offset = message.indexOf("<wml>");
 if (ver.equals("1V1"))
 {
 tempmsg.insert(offset,"<!DOCTYPE wml PUBLIC \"-//WAPFORUM//DTD WML
1.1//EN\"\n\"http://www.wapforum.org/DTD/wml_1.1.xml\">\n");
 }
 else if (ver.equals("1V2"))
 {
 tempmsg.insert(offset,"<!DOCTYPE wml PUBLIC \"-//WAPFORUM//DTD WML
1.2//EN\"\n\"http://www.wapforum.org/DTD/wml12.dtd\">\n");
 }
 Chapter 10. Intelligent Notification Services (INS) 397

 // Debug purpose
 return tempmsg.toString();

 }

 /**
 * Insert the method's description here.
 * Format message according to gateway interface
 * For now it just support text format, later rich format support may
be added
 * @return java.lang.String
 */
 public String format(DeviceAddress addr,Msg msg) {
 String message;

 if (Logging._isTracing) {
 Logging._tracer.text(TRANSCODERS,this,"format","Entry");
 }
 // check if user provides a style sheet
 setStylesheet();
 if (stylesheet.equals("NULL"))
 message=formatMessage(msg);
 else
 message=formatUseSS(msg);

 message = addVersion(message,addr.getVersion());
 if (Logging._isTracing) {

Logging._tracer.text(TRANSCODERS,this,"format","Transformed Message is \n {0}
",message);
 }
 return message;
 }

 /**
 * Insert the method's description here.
 * @return java.lang.String
 * @param msg com.ibm.pcds.ns.Msg
 */
 public String formatMessage(Msg msg) {

 if (Logging._isTracing) {

Logging._tracer.text(TRANSCODERS,this,"formatMessage","Entry");
 }
 String notificationML;

398 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 notificationML=msg.extractML();

 // WML deck has been tested with Nokia toolkit 2.0
 StringBuffer b=new StringBuffer();
 b.append("<?xml version=\"1.0\"?>\n");

 b.append("<wml>\n<card id=\"Notification\" title=\"Message\">\n");
 b.append("<p>\n");

 b.append("From: ").append(msg.fromUserid).append("
\n");
 b.append("Subject: ").append(msg.subject).append("
\n");

 String
msgbody=notificationML.substring(notificationML.indexOf("<text>")+6,notificatio
nML.indexOf("</text>"));
 b.append("Msg: ").append(msgbody).append("
\n");

 // allow multiple urls

 int index=notificationML.indexOf("<url>");
 while (index != -1)
 {
 String
url=notificationML.substring(index+5,notificationML.indexOf("</url>",index));
 b.append("\t").append(url).append("
\n");
 index=notificationML.indexOf("<url>",index+1);
 }

 b.append("</p>\n").append("</card>\n</wml>\n");
 return b.toString();
 }
}

Example 10-6 StyeSheet for the WAP Transcoder

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
<xsl:output encoding="utf-8" method="xml" indent="yes" />
<xsl:template match="message">
<wml>
 <card id="Notification" title="Message">
 <p>
 From:<xsl:value-of select="from"/>

 Sub: <xsl:value-of select="subject"/>

 Chapter 10. Intelligent Notification Services (INS) 399

 Msg: <xsl:value-of select="text"/>

 <xsl:for-each select="url">
 <xsl:text>
 </xsl:text><xsl:value-of select="."/>

 </xsl:for-each>
 </p>
 </card>
</wml>
</xsl:template>

The following gateway adapters are shipped with INS:

� PAPUser - superclass of sample gateway adapters

� WAP Gateway Adapter

� Sametime/IM Gateway Adapter

� Short Messaging Service (SMS) Gateway Adapter

� SMTP E-mail Gateway Adapter

� E-mail Push Gateway Adapter

Customizing gateway adapters
1. Modify or extend the class in the source code listed above or one of the others

to work with the alternate gateway. You may also create new gateway adapter
classes by implementing the Gateway interface.

2. Create a new .jar file with the new or modified classes, for example,
adapter.jar.

3. Place the new adapter.jar file in the lib directory where the ins.jar file is
located. For example:

/usr/IBMEPS/INS/lib/adapter.jar on AIX
/opt/IBMEPS/INS/lib/adapter.jar on Solaris

4. Modify the startup script for Universal Notification Dispatcher to include the
adapter.jar file in the CLASSPATH. For example:

/usr/IBMEPS/INS/bin/startUND on AIX
/opt/IBMEPS/INS/bin/startUND on Solaris
400 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

5. Modify the package name settings in SecureWay Directory to reflect the new
class or package names. These settings will tell the Universal Notification
Dispatcher (UND) to instantiate adapters using the new, customized classes.
Refer to the section on gateway adapter and transcoder configuration in
SecureWay Directory for more details on how to modify these settings in
SecureWay Directory (see “Gateway adapters” on page 391).

6. If you altered or created new transcoders or stylesheets, put them in the
appropriate place on the file system.

7. Restart the Universal Notification Dispatcher with the modified startup script.

You can find more information on the Gateway Adapters in the InfoCenter.

10.4.2 Running the example

SimpleUNDSend
To run the SimpleUNDSend to check your system, it is most convenient to have
logging and tracing to the console enabled (see “Configuring logging and tracing”
on page 373) and start the UND service in the foreground (see “Starting the INS
Servers in the foreground” on page 377), especially if you need to change the
UND settings, for which restarting of the service is required. Alternatively, you
can view the logs and trace real time while the service is running in the
background by entering the following command on in a terminal:

tail -f <filename>

Where <filename> is the path and name of the log file. You can use the settings
of the user and the DeliveryOptions to determine to what device the notification is
to be sent (see 10.4.1, “The Application Programming Interface (API)” on
page 388). The results are shown in Figure 10-14.

Note: Ensure that adapter.jar is before ins.jar in the CLASSPATH in order for
the classes in adapter.jar to override the corresponding original classes in
ins.jar. For example, set the CLASSPATH to:

CLASSPATH=/usr/IBMEPS/INS:/usr/IBMEPS/INS/bin:
/usr/IBMEPS/INS/lib/adapter.jar:/usr/IBMEPS/INS/lib/ins.jar
 Chapter 10. Intelligent Notification Services (INS) 401

Figure 10-14 Notifications sent to WAP, Sametime and e-mail.

Example 10-7 UND Server trace of a notification being dispatched

01
01 2001.09.13 16:16:43.054
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController send
03 client requests send over multiple devices: false
04
05 2001.09.13 16:16:43.055
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController send
06 devices client requests to send over: im
07
08 2001.09.13 16:16:43.055
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController
getUserCalendarContext
09 Searching for calendar context of erongen@IBM
10
402 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

11 2001.09.13 16:16:43.070 NotificationController getUserCalendarContext IBM
Intelligent Notification Service UND
12 Could not establish link to SCS
13
14 2001.09.13 16:16:43.071
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController getRecipDevices
15 calling preference engine with priority normal context None available
16
17 2001.09.13 16:16:43.871
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController getRecipDevices
18 otained 1 devices to send message to
19
20 2001.09.13 16:16:43.872
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController getAdaptors
21 Obtained device URL header, containing device information
22
23 2001.09.13 16:16:43.872
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationCon
24 troller getAdaptors
25 Device optained
26 owner = erongen@IBM
27 deviceid = sametime1
28 ibm-appprotocolversion = V15
29 ibm-isdeviceenabled = true
30 ibm-appdeviceaddress = e_rongen@nl.ibm.com
31 ibm-appprotocol = sametime
32 dn =
cn=sametime1/und,deviceID=sametime1,uid=erongen,cn=users,ou=IBM,DC=ITSO,DC=
33 RAL,DC=IBM,DC=COM
34 uid = 0
35 objectclass = ibm-undDevice
36 cn = sametime1/und
37 ibm-deviceidtype = 1
38 description = 0
39 ipserviceport = 1533
40 ibm-appprotocoltype = im
41 host = messaging.ibm.com
42
43 2001.09.13 16:16:43.873
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController getAdaptors
44 parsing device URL header im#sametime#V15
45
46 2001.09.13 16:16:43.874
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController send
47 sending over messaging adaptors
48
49 2001.09.13 16:16:43.874 com.ibm.pvc.we.ins.und.server.adaptors.SametimeIMGW
send
50 Message
 Chapter 10. Intelligent Notification Services (INS) 403

51 entered method sendMessage
52
52 2001.09.13 16:16:43.874 com.ibm.pvc.we.ins.und.server.adaptors.SametimeIMGW
form
54 atMessage
55 Entry
56
57 2001.09.13 16:16:43.875 TcFactory createTc(DeviceAddress,Key)
58 Entry
59
60 2001.09.13 16:16:43.875 TcFactory loadTc
61 Entry
62
63 2001.09.13 16:16:43.875 TcFactory loadTc
64 Entry
65
66 2001.09.13 16:16:43.875 TcFactory loadTc
67 Entry
68
69 2001.09.13 16:16:43.876 TcFactory loadTc
70 Entry
71
72 2001.09.13 16:16:43.876 TcFactory createTc(DeviceAddress,Key)
73 Default transcoder for this device type will be returned.
74 Key for default TC is : IMSAMETIME1V5_TC
75
76 2001.09.13 16:16:43.876
com.ibm.pvc.we.ins.und.server.adaptors.transcoder.IMSTTranscoder format
77 Entry
78
79 2001.09.13 16:16:43.954
com.ibm.pvc.we.ins.und.server.adaptors.transcoder.IMSTTranscoder formatUseSS
80 Entry
81
82 2001.09.13 16:16:43.967
com.ibm.pvc.we.ins.und.server.adaptors.transcoder.IMSTTranscoder format
83 Transformed Message is
84
85 From: erongen@IBM
86 Sub: Testing INS UND
87 Msg: This is a test message
88
89
90
91 2001.09.13 16:16:43.967 com.ibm.pvc.we.ins.und.server.adaptors.
92 SametimeIMGW send
93 Entry
94
404 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

95 2001.09.13 16:16:45.036
com.ibm.pvc.we.ins.und.server.adaptors.SametimeIMGW$CommSrvListenernamesResolve
d
96 successfully resolved names
97
98 2001.09.13 16:16:45.039
com.ibm.pvc.we.ins.und.server.adaptors.SametimeIMGW$2 execute
99 creating message channel to Sametime user
100
101 2001.09.13 16:16:46.037
com.ibm.pvc.we.ins.und.server.adaptors.SametimeIMGW$IMSrvListener
messageCreated
103 successfully created message channel to Sametime user
104
105 2001.09.13 16:16:46.042
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController send
106 successful send using adaptor im : 0
107
108 2001.09.13 16:16:46.043
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController send
109 finished sending message over adaptors
110
111 2001.09.13 16:16:46.043
com.ibm.pvc.we.ins.und.server.dispatcher.NotificationController send IBM
Intelligent Notification Service UND
112 1000412206043,erongen@IBMerongen@IBM,succ
113
114 2001.09.13 16:16:46.044 com.ibm.pvc.we.ins.und.server.dispatcher.Connection
run
115
116 finished dispatching request
117
118 2001.09.13 16:16:46.046
com.ibm.pvc.we.ins.und.server.adaptors.SametimeIMGW$IMSrvListener
messageDestroyed

� Lines 3 and 6 show the DeliveryOptions that were selected for the notification

� Lines 9-12 show an apparent problem related to the calendar context could
not establish link to CSS. This problem can be ignored. It relates to future
functionality of INS.

� Lines 15, 18 and 21-41 show how INS reads the LDAP for the user and device
information.

� Line 47 shows that the gateway adapter is called. Lines 49 and 76 show
which gateway adapter and transcoder are loaded. Line 79 shows that the
 Chapter 10. Intelligent Notification Services (INS) 405

stylesheet for transcoding was found (see “Gateway adapters” on page 391
for details).

� Line 106 shows the result of the communication with the remote server, the
Sametime server in this example.

� Line 112 shows the overall status of the notification.

� Line 116 does not neccessarily mean that the message has been
successfully delivered.

10.5 Subscriptions
In addition to sending notifications to users directly using UND, INS provides the
possibility of creating applications that allow users to subscribe and receive
notifications when the content meet criteria which the user can define. In one of
the examples of INS, the user can be notified when a stock of their choice
reaches, is above or is below a certain value. The flow and the API elements
involved will be discussed in the next section
406 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

10.5.1 Flow

Figure 10-15 Interactions between the individual components of the INS system for
complex notification

1. The user opens the page for subscription.

2. The JSP and the servlet gather information for the trigger.

3. In the sample, the user first adds a trigger to a list of triggers, and then
submits the list.

4. A TriggerHandler and a Filter are created with the trigger and filtering
information.

5. The TriggerHandler and the filter are submitted to the IQ Server.

6. A Content Adapter reads data from a content source.

7. From the raw data, a ContentBocy is constructed, which is a name-value pair
representation of the content.

8. The contentBody is submitted to IQ.

UND
Server

IQ
Server

JSP

Servlet

Trigger
Handler

Content
Adapter

Data

Content
Body
Name,
Value

Gateway

Data

1

2

4

5

3

6

7

10

8

11

12

9

13

Filter
SQL92
 Chapter 10. Intelligent Notification Services (INS) 407

9. All triggers for users who subscribed to this source are checked, and the
matching triggers are fired.

10.IQ sends notifications to UND (see Appendix 10.7.2, “Simple notification” on
page 423 details on how to send simple notifications).

Finally (11,12 and 13), notifications are delivered, based on the user’s
preferences.

More details will be given in the next section.

10.5.2 The Application Programming Interface
Being a set of services written in Java, INS provides a Java API for creating
customized applications. The classes and methods that are used by an
application using INS subscription facilities are discussed in more detail in this
section.

com.ibm.pvc.we.ins.util.SubscriptionUtility
This class facilitates application development by providing functions used by the
developer

� getUser(request)

This method is used to get the user ID from the request. If INS is run together
with WebSEAL-Lite, the user ID is found in the HTTP header, otherwise the
user ID is obtained from the user ID attribute in the queryString part of the
URL:

(http://<url>?userid=insuserid)

In this example <url> is the URL needed to get to the JSP or servlet, and
insuserid is the value of the user ID to be used by the user.

Here is an example ofusing getUser in a Java Server Page:

<%
 String Id;
 Id = SubscriptionUtility.getUser(request);
 %>

� isSecure()

This method is used to find out if the request is operated in a secure
environment. In the example Java Server Pages, this is used to add the user
ID as a hidden field in the form if security is off.

<% if (!SubscriptionUtility.isSecure())
 { %>
 <INPUT name=userid type="hidden" value="<%= Id %>">
 <% } %>
408 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

com.ibm.pvc.we.ins.TriggerManager and
com.ibm.pvc.we.ins.SocketClientStub
TriggerManager is an interface which oversees the creation and removal of
triggers, the firing of triggers, and the fetching of content persistently stored by
the firing of a trigger that returns a retention-specification (see below for details).

SocketClientStub is an implementation of the TriggerManager. It provides the
methods through which servlets install and remove triggers. It implements each
method of the TriggerManager interface by sending the invocation to
com.ibm.iqueue.server.SimpleSocketTriggerManagerImpl over a socket,
receiving the outcome of the invocation over a socket, and returning or throwing
an exception in accordance with that outcome. The protocol used is documented
in the interface com.ibm.iqueue.server.SimpleSocketTriggerManagerConstants.

Here is an example:

TriggerManager manager = new SocketClientStub(IQueuehost,IQueueport);

And, when all necessary classes have been created (see below for details):

TriggerID tid = manager.addTrigger(userid, sourceName, filter, triggerHandler);

Methods

� addTrigger(), removeTrigger() and RemoveAllTriggers() are used to
maintain the triggers for a user.

� FetchPersistentContent() is used to retrieve the content for a user when the
notification was saved, and not sent to the user.

com.ibm.pvc.we.ins.TriggerHandler
The TriggerHandler is created when the user subscribes, but is again used by the
IQServer when the trigger is fired, in which case TriggerManager.handleMatch()
is called.

An example of the handleMatch() method (for stock sample) is discussed below.

Example 10-8 TriggerHandler for Stock Example handleMatch() method

01 public TriggerResult handleMatch(ContentBody cb)
02 {
03 String contentString;
04 String notificationString;
05 String secondNotificationString;
06 String value,change,percentage;
07 StringBuffer message = new StringBuffer();
08 StringBuffer message2;
09 int tResult;
10
 Chapter 10. Intelligent Notification Services (INS) 409

11 //Set the Trigger Option based on user input
12 if (triggerOption.equals("once"))
13 tResult = TriggerResult.STOP;
14 else
15 if (triggerOption.equals("always"))
16 tResult = TriggerResult.CONTINUE;
17 else
18 tResult = TriggerResult.SAVE_AND_CONTINUE;
19
20 if (contentOption.equals("save"))
21 {
22 StringBuffer content = new StringBuffer();
23 try
24 {
25 value = String.valueOf(cb.getFloat(stocktype));
26 change = String.valueOf(cb.getFloat("change"));
27 percentage = String.valueOf(cb.getFloat("percentage_change"));
28 content.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
29 content.append("<quotes>\n");
30 content.append("<stockquote>\n");
31 content.append("<companyName>" + cb.getString("symbol") + "</companyName>\n");
32 content.append("<symbol>" + cb.getString("symbol") + "</symbol>\n");
33 content.append("<curValueUSD>" + value + "</curValueUSD>\n");
34 content.append("<curChangeUSD>" + change + "</curChangeUSD>\n");
35 content.append("<curChangePct>" + percentage + "</curChangePct>\n");
36 content.append("<timestamp>" + cb.getString("timestamp") + "</timestamp>\n");
37 content.append("</stockquote>\n");
38 content.append("</quotes>");
39 contentString = content.toString();
40 }
41 catch (IQueueException iqe)
42 {
43 iqe.printStackTrace(System.out);
44 contentString = iqe.toString();
45 }
46 message2 = new StringBuffer();
47 message.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
48 message.append("<message>\n");
49 message.append("<to>" + toUserid + "</to>\n");
50 message.append("<from>" + toUserid + "</from>\n");
51 message.append("<subject>STOCK</subject>\n");
52 message.append("<text> Follow this URL " + notificationURL +
"ContTransServlet?pageid=");
53 if (SubscriptionUtility.isSecure())//Are authorization services enabled?
54 message2.append(" for details </text>\n");//Yes, do not need to pass userid on
request
55 else
56 message2.append("&userid=" + toUserid + " for details </text>\n"); //No,
include userid on request
410 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

57 message2.append("</message>");
58 notificationString = message.toString();
59 secondNotificationString = message2.toString();
60
61 return TriggerResult.newRetentionSpecification(contentString, notificationString,
62 secondNotificationString,
"NOT_SAVED", 15, tResult);
63 }
64 else // Option was chosen to not save the message
65 {
66 try
67 {
68 value = String.valueOf(cb.getFloat(stocktype));
69 message.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
70 message.append("<message>\n");
71 message.append("<to>" + toUserid + "</to>\n");
72 message.append("<from>" + toUserid + "</from>\n");
73 message.append("<subject>STOCK</subject>\n");
74 message.append("<text>" + cb.getString("symbol") + " = " + value + "</text>\n");
75 message.append("</message>");
76 notificationString = message.toString();
77 }
78 catch (IQueueException iqe)
79 {
80 iqe.printStackTrace(System.out);
81 notificationString = iqe.toString();
82 }
83 return TriggerResult.newNotificationSpecification(notificationString,tResult);
84 }
85 }

Lines 12 and 15 show how the trigger options are handled by setting the
appropriate triggerResult options (see below).

Line 21 shows how the save options are handled.

If the message should be saved, the messages comprising the notification to the
user and containing the URL are created, and a trigger result of the Retention
Specifiation is created also.
 Chapter 10. Intelligent Notification Services (INS) 411

handleMatch() returns a TriggerResult object. This specifies the actions that
IQueue should perform on behalf of the TriggerHandler, and what the disposition
of the TriggerHandler should be at the conclusion of the call on handleMatch.

The actions that IQ should perform depend on the specification of the returned
TriggerResult:

� TriggerResult.newRetentionSpecification() (see line 61)

This means that the content of the notification must be saved by IQ, for later
retrieval by the user.

� TriggerResult.newNotificationSpecification(notificationString,tResult) (see line
83)

This means the content must not be saved by IQ.

The possible dispositions of the TriggerHandler, when finished, are:

� STOP

IQueue should remove the TriggerHandler whose handleMatch method is
returning this TriggerResult.

� CONTINUE

The TriggerHandler whose handleMatch method is returning this
TriggerResult should remain active; the state of the TriggerHandler upon
return from handleMatch should not be saved persistently.

� SAVE_AND_CONTINUE

The TriggerHandler whose handleMatch method is returning this
TriggerResult should remain active; the state of the TriggerHandler upon
return from handleMatch should be saved persistently.

Note: You could have other options with different trigger behavior from the
ones presented in the examples (trigger options and save options). This
should then be programmed in the handleMatch method; an example would
be a trigger with a defined lifetime.
412 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

com.ibm.pvc.we.ins.ContentSource and
com.ibm.pvc.we.ins.SimpleContentSource
The ContentSource is unique for every content that is fed into the system. This is
used to define to which feed a certain trigger applies. Only matching triggers for
the same contentType as that of the content submitted by the ContentAdapter
will be compared.

com.ibm.pvc.we.ins.ContentFilter and
com.ibm.pvc.we.ins.SQLSelector
The SQLSelector implements the ContentFilter interface. The SQLSelector
contains the filter that determines when the trigger is fired. The content is sent to
IQ as name-value pairs, which can be considered as columns in an SQL
database, where the name is the name of the column, and the value is, of
course, the value. The filter then describes the where clause of the SQL query as
it is executed against the ContentBody. The use of SQL92 is defined by the
underlying JMS (Java Messaging Services) framework, and as such, you must
refer to the JMS Specifications for details on how to set up the query in the SQL
Selector:

http://java.sun.com/products/jms/docs.html

com.ibm.pvc.we.ins.TriggerID
When a trigger is added, a triggerID is created, that can be stored and used later
to remove the trigger again.

com.ibm.pvc.we.ins.ContentBody
ContentBody is the class that holds a string representation of XML-formatted
content published to the iQueue Server by a ContentAdapter. A ContentBody is a
set of name-value pairs. Each name is a string. Each value is a Boolean, byte,
short, char, int, float, double, String, or byte[] value. ContentBody provides
distinct get... and set... methods for each type of value. A value with a given name
can only be fetched as a value of the type as which it was written, but a value of
any type may be fetched as a String value.

Important: The class of the Triggerhandler must be in the classpath of both
the application or servlet that creates it and the IQ server. When you change
the class on the server, the IQ server must be restarted.
 Chapter 10. Intelligent Notification Services (INS) 413

http://java.sun.com/products/jms/docs.html

For more details, please refer to the INS API Javadoc documentation in the
WebSphere Everyplace Server InfoCenter.

The Content Adapter
Unlike the other classes, the Content Adapter does not extend a class in the INS
API. A Content Adapter is a stand-alone Java application that retrieves feed from
a data source, creates the appropriate ContentBody and feeds it into the IQ
Server. The XMLContentAdapter class that is shipped with the INS Samples
transforms an XML file from the file system into a ContentBody object, and then
submits it to the IQ Server.

The XML ContentAdapter takes two input parameters.

� The first is the name of the source. This is used to create a corresponding
ContentSource object. This string must match that of the ContentSource
object used to create the trigger.

� The next parameter is a directory name. the XMLContentAdapter will read all
XML files from this directory and process them.

The basic work is done by the inner class XMLContentHandler, a content handler
in the SAX Parsing framework. For details, see the Xerces project of Apache at:

http://xml.apache.org

In SAX Parsing, events are triggered when a branch or a leaf of the tree structure
of the XML document is entered or exited. Upon occurrence of such an event, the
corresponding method of XMLContentHandler is called, which will then update
the contentBody class (cb in the example below).

Example 10-9 startElement()

public void startElement(String namespaceURI, String localName, String rawName,
Attributes atts) throws SAXException
 {
 String attribName;//elementName + local attribute name
 System.out.println("startElement: " + localName);
 elementName = localName;//Store name of element for possible use by
characters method
 elementData = "";//Clear out all data for previous element
 if (!namespaceURI.equals(""))
 {
 System.out.println(" in namespace " + namespaceURI + "(" + rawName +
")");

Restriction: The size of the ContentBody cannot exceed 65535 bytes. To
publish content greater then 64 KB in length requires breaking the content into
64 KB segments.
414 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

http://xml.apache.org

 }
 for (int i=0; i<atts.getLength(); i++)
 {
 System.out.println("Attribute: " + atts.getLocalName(i) + "=" +
atts.getValue(i));
 attribName = elementName + atts.getLocalName(i);
 cb.setString(attribName.trim(),atts.getValue(i).trim());
 }
 }

The method startElement() is called when a new XML element is encountered by
the SAX parser. At that point, a new name-value pair is added to the
ContentBody (cb) for each of the attributes of the element.

Example 10-10 endElement()

public void endElement(String namespaceURI, String localName, String rawName)
throws SAXException
 {
 System.out.println("endElement: " + localName + "\n");
 if (!(elementData.equals("")))
 {
 try
 {
 float fvalue = (Float.valueOf(elementData)).floatValue();
 cb.setFloat(elementName,fvalue);
 }
 catch(NumberFormatException nfe)
 {
 cb.setString(elementName,elementData.trim());
 }
 }

 }

The method endElement() is called when a new XML element is encountered by
the SAX parser. At that point, a new name-value pair is added to the
ContentBody (cb) for the elementData of the element.

Example 10-11 enddocument()

public void endDocument() throws SAXException
 {
 System.out.println("Parsing ends...");
 try
 {
 manager.fireMatchingTriggers(source,cb);//Fire matching triggers
 }
 catch (IQueueException iqe)
 Chapter 10. Intelligent Notification Services (INS) 415

 {
 System.out.println(iqe.getMessage());
 }
 cb = null; //Clean up content body
 }

When the document is finished, fireMatchingTriggers() is called for the
TriggerManager (in this case the SocketClientStub, as discussed above).

10.5.3 Subscription examples
There are three examples for notifications shipped with INS: Stocks, Weather
and News. These examples have basically the same structure, and therefore we
will discuss only the Stock example.

Before you start working with the example, you must be sure that the three
servers (UND, GB and IQ) are running (see 10.2.4, “Starting the INS servers” on
page 376 for details).

In the stock subscription example, a user can subscribe to be notified for
changes in stock values. For each trigger, the name of the stock (for example
IBM), the operator and the amount can be specified. Also, the trigger options and
save options for the trigger are set. Multiple triggers can be defined this way, and
when the user has finished, the triggers can be submitted to the IQ server. The
User Interface is shown below in Figure 10-16.

To access this panel, start a browser, and enter the following URL using security:

<hostname>:<port#>/inssample/StockSubscriptionForm.jsp

When not using security, enter:

<hostname>:<portnumber>/inssample/NewsSubscriptionForm.jsp?userid=<youruser
id@host.domain.com>

Where <hostname> and <portnumber> are the host name and port number of the
server running the WebSphere Application Server that contains the samples.
<youruserid@host.domain.com> is a user ID that is registered with INS
416 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 10-16 The subscription user Interface of the stock example

The source code for this example has been discussed above in section 10.5.2,
“The Application Programming Interface” on page 408, and can be found in the
WebSphere Everyplace Server InfoCenter.

Restriction: The examples that ship with INS store user information in the
user ID field of the servlet class.(for example in
StockSubscriptionServlet.java). This means that this servlet will only work for
one user at a time. However, this can easily be changed by adding this
information to the session of the servlet.
 Chapter 10. Intelligent Notification Services (INS) 417

When the triggers are registered in IQ, the content can be fed to the IQ server:

� Open a session on the AIX system that hosts INS, and change to the
directory containing the examples:

cd /usr/IBMEPS/INS/samples

� Examine the file contentfeeder.sh (for example with the VI editor by entering
vi contentfeeder.sh and typing :q when you are finished) and run it by
entering the following command:

./contentfeeder.sh stocks stock

This will run the XMLContentFeeder class and will submit stocks content with
source name stocks, using all files in the subdirectory stock. The content can be
found in /usr/IBMEPS/INS/samples/stock/stock1.xml and
/usr/IBMEPS/INS/samples/stock/stock1.xml (see above for details on the content
feeder).

Depending on the user preferences and trigger definitions, the notification will be
sent to the device the user has specified. The result for a notification through
Sametime is shown in Figure 10-17.

Figure 10-17 Saved notification through SameTime for the stock example
418 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

10.6 Application development

10.6.1 Archives and resources
INS ships with several .jar files and resource files. Depending on the situation,
you need the different classpath settings.

The following resource files must be in the classpath:

� IQ.properties

� ClientMsgs.properties and ClientMsgs_xx_YY.properties, where _xx_YY
represent the locale you want to use.

By default, these classes are installed in /usr/IBMEPS/INS.

Further, examine the following classpath settings which are set up by the system
upon installation. This shows you which.jar files are needed for each situation.

� For the WebSphere Application Server Server that runs the samples:

-classpath
/usr/IBMEPS/INS/lib/ins.jar:/usr/IBMEPS/INS/lib/jlog.jar:/usr/IBMEPS
/INS/lib/xalan.jar:/usr/IBMEPS/INS/lib/xerces.jar:/usr/IBMEPS/INS

� The webapp has the following added to the above:

/usr/IBMEPS/INS/samples/inssample/servlets

� For running the contentfeeder.sh shell script, that runs the
XMLContentAdapter, set the classpath in your shell script by adding the
following line:

export
CLASSPATH=<ins_home>:<ins_home>/lib/ins.jar:<ins_home>/lib/jlog.jar:
<ins_home>/lib/xalan.jar:<ins_home>/lib/xerces.jar:<ins_home>/lib/in
s.jar:<ins_home>/samples

Where <ins_home> is the home of the INS installation; the default is
/usr/IBMEPS/INS.

Xalan and Xerces are needed because this content adapter uses XML
processing. Other content adapters may need other classes.
 Chapter 10. Intelligent Notification Services (INS) 419

10.6.2 Server side classes
As discussed above, the GatewayAdapters and TriggerHandlers are used by IQ.
These classes must be installed on the server, and the IQ server must be
restarted for the new code to become active. For debugging, you can print
information to the console. Check the logging and tracing parameters in the
LDAP Directory to see how log and tracing statements are handled (see
“Configuring logging and tracing” on page 373 for details).

10.6.3 INS development using IBM VisualAge for Java
You can develop INS Applications using VisualAge for Java. Below, you will find
detailed instructions on how to set up VisualAge for Java 4.0 to develop INS
applications. If you need additional information on using IBM VisualAge for Java,
please refer to one of the following IBM Redbooks:

� Programming with VisualAge for Java Version 3.5, SG24-5264-01

� Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for
Java, SG24-5755-00

To develop INS applications using IBM VisualAge for JAva, you must load the .jar
files discussed above into your workspace. It is good practice to create one or
more separate projects for these classes. You can create a new project by
selecting the menu item Selected -> Add -> Project..., and creating a new
project. You can import the resources discussed above (IQ.properties,
ClientMsg.properties and its locale extensions ClientMsg_xx_YY.properties) into
this project.
420 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

10.7 Extending the enterprise
YourCo was extended to demonstrate what Intelligent Notification Services can
add to an existing enterprise. As an example, we have extended the reserve a
room function of YourCo:

� Users who reserve a room can also invite colleagues to the meeting.

� These users will be directly notified on their device of choice.

� Users can subscribe to the meeting system, and be notified when a meeting
is within an adjustable time. These notifications will be delivered to the device
of choice.

Important: When you want to use Web Traffic Express and INS
simultaneously in IBM VisualAge for Java, you will encounter the problem that
these two features use different versions of the XML classes. Web Traffic
Express uses the IBM XML Parser for Java that ships with IBM VisualAge for
Java, and INS uses the classes in the file xerces.jar. When you try to load the
Java archive xerces.jar, you encounter the error that classes cannot be loaded
into two separate projects.

Add failed: The package org.w3c.dom cannot be specified by both ITSO
Java Other and IBM XML Parser for JAVA.

If you do not load the IBM XML Parser for Java, Web Traffic Express will not
start.

To avoid this problem, you must create a new project and load that instead of
the IBM XML Parser for Java. This project must contain only the following
packages:

� com.ibm.xml.dom

� com.ibm.xml.framework

� com.ibm.xml.internal

� com.ibm.xml.internal.msg

� com.ibm.xml.parser

� com.ibm.xml.parser.util

� com.ibm.xml.parsers

� com.ibm.xml.xpointer
 Chapter 10. Intelligent Notification Services (INS) 421

The source code for this example can be found in Appendix A, “INS sample
source code” on page 689. Further information on the YourCo application can be
found in Chapter 3, “Enterprise sample applications” on page 77.

10.7.1 Deploying the notifications extensions to WebSphere
1. First, you must set up the database for the extension. A description of this

process can be found in “Deploying Expertise Location to the application
server” on page 457.

2. Ensure that the from user and to user you want to test with are registered in
the LDAP directory (by default, these are insuser@IBM). Also, ensure that the
user you are going to use for notifications (for example, Sean O’Connell) has
the correct user ID.

You can do this by opening the DB2 Command Line Processor and entering:

Connect to sample
Select * from WSDEMO.EMPLOYEE where FIRSTNME = ’SEAN’

And, if you want to change something, you can enter for example:

update WSDEMO.EMPLOYEE set USERID = ’insuser@IBM’ where FIRSTNME =
’SEAN’

3. Next, you must add the .jar files and resources described above to the
classpath of the WSsamples_app Web application. Edit the file IQ.properties
to contain the correct host name and port number (55001 is the default).

iqSocketClientStub.port=55001
iqSocketClientStub.host=<hostname>

where <hostname> is the name of the server running the INS services.

If you use the file that was created during setup of INS, these values are
automatically set correctly.

4. Unzip the file inssamples.zip to the root directory of the application server, for
example

C:\WebSphere\AppServer

5. Restart the Application Server and start the YourCo application as usual.

The following sections describe how to use the new functions.
422 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

10.7.2 Simple notification
To schedule a meeting, you must be logged in to YourCo. You must log in (see
Figure 10-18) using the user ID you have set up in the previous section under
step 2.

Figure 10-18 Logging in to the Employee Center of YourCo

After you have successfully logged in, you come to the enhanced Employee
Center (see Figure 10-19).
 Chapter 10. Intelligent Notification Services (INS) 423

Figure 10-19 The Employee Center

The new function to manage your notifications has been added. For now, we are
first going to schedule a meeting. Select Let’s Meet. This opens the reservation
panel. Select a day, and select the Submit button (see Figure 10-20).
424 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 10-20 Conference Room Scheduler

You are presented with a list of available rooms for that day. You can select one of
the Reserve buttons to make a reservation (see Figure 10-21).

Figure 10-21 Reserving a conference room

As illustrated in Figure 10-22, on the acknowledgement panel, you find the new
function to Select Invitees.
 Chapter 10. Intelligent Notification Services (INS) 425

Figure 10-22 Room reservation acknowledgement - Select Invitees

When you click Select Invitees, you will be presented with a list of employees of
YourCo (see Figure 10-23), and you can select the users whom you want to be
notified. Ensure that the user you have set up for INS is included in the list.

Figure 10-23 Selecting invitees for the meeting, and setting the priority
426 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

If you submit this list, you will see the result of the simple notifications (see
Figure 10-24). If you have selected users that are not set up properly in INS, you
will see that the notifications have not been delivered successfully.

Figure 10-24 Confirmation of the notification

In the example discussed here, the user ID was set up to have the notifications
delivered to a WAP device. Figure 10-25 shows the result of delivering the
notification to the WAP simulator.
 Chapter 10. Intelligent Notification Services (INS) 427

Figure 10-25 Notification delivered to a WAP Push simulator

10.7.3 Subscription

How it works
We have created a function that does not use news feeds as input, but live
application data, in this case information on meetings that have been scheduled.
The code of the example is based upon the Stock example shipped with INS.

Connecting to the new function:
From the revised Employee Center (Example A-14 on page 750), the
MeetingSubscriptionStartServlet is called (Example A-7 on page 724). This will
add the user ID to the queryString and call the MeetingSubScriptionServlet (see
Example A-8 on page 726).

Creating the content
As invitees are selected and notified, for each invitee in the meeting, an entry is
also entered in the table WSDEMO.TRIGGER. This is done in the method
addMeetingForTrigger() of class itso.WebSphere Everyplace
Server.ins.samples.Notify (see Example A-3 on page 703). This table is the
content that we are later going to feed into the IQ server using our own Content
Adapter (see below).

The trigger
The trigger is registered just as discussed in “The Application Programming
Interface” on page 408. This is done in servlet MeetingSubscriptionServlet (see
Example A-8 on page 726 for details).
428 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The SQL92 clause that is constructed is:

sqlsel = "(USERID = '" + userid + "') AND (TIME_TO_MEETING <= " +
meetingHours.elementAt(i) + ")";

where userid is the user ID of the user using the page, and meetingHours is the
vector containing, for each trigger, the number of hours until the meeting. Note
that the ContentAdapter must compute the number of hours remaining from the
time the content is fed into IQ until the time of the meeting (see below for more
information on the Content Adapter).

The MeetingHandler TriggerHandler
In Example A-11 on page 736, you can see that the matchHandle() method of
the MeetingHandler was changed with respect to the sample. In the samples
shipped with INS, it is assumed that the subscription servlets and the content
providing servlet for saved messages reside on one instance of WebSphere
Application Server. In our situation, we have changed this. Therefore, we must
manipulate the URL that is constructed to retrieve saved content. Be it in an
oversimplified way, this proves how the server configuration that is chosen in the
samples can be changed to suit your own situation.

Example 10-12 Part of handleMatch() where the URL for saved content is changed

//change the notificationURL to another server
 System.out.println("MH => Old NotificationURL: " + notificationURL);
 String oldWebApp = "http://wtp3.itso.ral.ibm.com:80/WebSphereSamples";
 String newWebApp = "http://" + SubscriptionUtility.getHost() +
"/inssample";
 String uri = notificationURL.substring(oldWebApp.length());
 notificationURL = newWebApp + uri;

We have also added some println statements for debugging. They appear in the
console. An example of this is shown below in Example 10-14 on page 432.

The ContentHandler
To see details, pleae see Example A-12 on page 740. This application runs
continuously with delays of one minute (delayTime= 60000). Each minute, the
database is scanned, and the content is adapted and sent to IQ.

One of the things that must be computed is the time left until the meeting. In the
Method timeLeftToMeeting(String day, String time), the time that is left until the
meeting is computed in hours. In this test version, it always returns 2, which
makes testing the triggers easy.
 Chapter 10. Intelligent Notification Services (INS) 429

The method processContent() processes the data in DB2 and creates the
ContentBody. It also calls the method sendContentToIQ(), which submits the
content. Note that for each line in the database, a ContentBody is created and
submitted.

Running the sample
Most of the flow for the subscription has already been performed. When
submitting the Invitees in Figure 10-23, for each user, notifications were added to
the triggers database.

You can check this by opening the DB2 command line processor and entering:

Connect to sample
Select * from WSDEMO.TRIGGERS

and examine the entries.

The user must subscribe to the notifications. This is done by entering the URL as
shown in Figure 10-26. The host name must be changed to your host name.

Figure 10-26 Subscription panel for meeting notifications
430 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Add a subscription for more than two hours. Remember that in our test scenario,
the ContentAdapter will, for each meeting, determine that the time left to the
meeting is two hours.

Example 10-13 IQ Server trace of trigger being added to IQ

2001.09.21 13:37:38.053 IBM Intelligent Notification Service iQueue rs615002
 1001093858053,addTrg,9,erongen@IBM,8000000000000009

Figure 10-27 The trigger has been successfully added to INS

Finally, you must run the ContentAdapter. For example:

� Add db2java.zip for jdbc2.0 to your classpath

� You may have to run C:\Program Files\SQLLIB\java12\usejdbc2.bat and
then use the file C:\Program Files\SQLLIB\java\db2java.zip. if you have not
yet set up DB2 to use JDBC2.

� Assuming the files ins.jar, jlog.jar, IQ.properties, ClientMsgs.properties and
the appropriate ClientMsgs_xx_YY.properties are in the current directory, and
the Java home directory is in the path of your system, you can run the
following command to run the MeetingContentAdapter:

java -cp ".;ins.jar;jlog.jar;C:\Program Files\SQLLIB\java\db2java.zip"
itso.WebSphere Everyplace Server.ins.triggersample.MeetingContentAdapter

You will see that the IQ trace and the UND trace show activity (see below for the
IQ trace), and a notification will be delivered to your device.
 Chapter 10. Intelligent Notification Services (INS) 431

Example 10-14 IQ server trace of trigger being fired

MH => MeetingHandler.handleMatch() called
MH => Old NotificationURL:
http://wtp3.itso.ral.ibm.com:80/WebSphereSamples/serv
let/
MH => New NotificationURL: http://rs615002.itso.ral.ibm.com/inssample/servlet/
MH => triggerOption = once
MH => contentOption = save
MH => Userid = erongen@IBM
MH => Day = friday
MH => Time = A.M.
MH => Room = A
MH => Convenor = friday
MH => Creating content for save
MH => contentString =
<?xml version="1.0" encoding="UTF-8"?>
<meeting>
 <convenor>Erik Rongen</convenor>
 <userid>erongen@IBM</userid>
 <day>friday</day>
 <time>A.M.</time>
 <room>A</room>
</meeting>
MH => Creating message for save
MH => message =
<?xml version="1.0" encoding="UTF-8"?>
<message>
<to>erongen@IBM</to>
<from>erongen@IBM</from>
<subject>Meeting</subject>
<text> Follow this URL
http://rs615002.itso.ral.ibm.com/inssample/servlet/ContTr
ansServlet?pageid=
MH => message2 =
&userid=erongen@IBM for details </text>
</message>
MH => triggerResult =
com.ibm.pvc.we.ins.iqueue.RetentionSpecification@4d194054
MH => triggerResult =
com.ibm.pvc.we.ins.iqueue.RetentionSpecification@4d194054
MH => MeetingHandler.handleMatch() ended successfully for SAVED
2001.09.21 13:37:38.270 IBM Intelligent Notification Service iQueue rs615002
 [5:9] 1001093858270erongen@IBM,8000000000000009
432 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

10.8 Problem Determination
Some common problems and possible causes are listed in this section.

The service cannot be started
If a service will not start, one possible cause could be that the port is already
busy, possibly because of a previous instance of the same service. You can test
this situation by entering the following command at the prompt of your Unix
system:

netstat -a

Example 10-15 shows the default ports that are assigned to the INS services.

Example 10-15 Ports assigned to INS

1506 - used by Gryphon Broker
6789 - used by DB2 JDBC listener
55001 - used by IQ clients and server
55002 - used by IQ Admin client and server
55003 - used by IQ system logger (if active)
55004 - used by IQ trace logger (if active)
55005 - used by UND for messaging
55006 - used by UND Admin client and server
55007 - reserved for Secure Context Server
55008 - used by UND logging (if active)
55009 - used by UND trace (if active)
55010 - used by Preference Engine logging (if active)
55011 - used by Preference Engine trace (if active)

If a process is occupying one of these ports, find the process ID by entering the
following command:

ps -ef | grep <proc>

where <proc> is a search string for the grep function and denotes the process
you want to terminate.

You will then stop the process by entering the command:

kill -9 <procID>

where procID is the ID of the process that you want to kill. Be careful when you
do this, especially when you are logged on using the root ID.
 Chapter 10. Intelligent Notification Services (INS) 433

IQ will not start
Ensure that UND and GB have been started and are running properly. Ensure
that the JDBC driver is running. see “Starting and stopping the WebSphere
Everyplace Server components for INS” on page 374 for details.

Notifications are accepted by IQ, but nothing is delivered
Check in the LDAP directory that for the given from user and priority, the user
has defined devices for delivery.

Check that the remote server which the notification has to be sent to is correctly
configured in LDAP and is up and running. Some remote servers may let INS
know that the message has been delivered, and others may not. Also, the
network may be so slow that the connection to the remote server is timed out
before successfully sending the notification.

Also check that the client device or emulator is up and running

The subscription pages do not show
Check that the WebSphere Application Server is up and running, and that the
inssampleserver is up an running. The latter can be checked using the Admin
Client for WebSphere Application Server

The YourCo Extension does not work
Ensure you have followed the steps laid out in “Deploying the notifications
extensions to WebSphere” on page 422.

Ensure you have installed the files to the right directories. If you have exported
the .zip file to the right place, the file ins.jar should be located in:

<webserver_root>hosts\default_host\WSsamples_app\servlets

Check the standard output and standard error files of the application server:

<webserver_root>\logs\default_server_stout.log
<webserver_root>\logs\default_server_sterr.log

If these files have been relocated, you can find their location in the administration
console of the WebSphere Application Server.

Ensure that the INS required resources (IQ.properties, ClientMsgs.properties
and ClientMsgs_xx_YY) are in the classpath of the server.
434 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 11. Location-Based Services
(LBS)

In this chapter, Location-Based Services (LBS) is presented. LBS is a new
component provided by WebSphere Everyplace Server (WES) Version 2.1.1
Service Provider Offering (SPO). Location-Based Services (LBS) allows you to
use end-user geographical location to provide relevant functionality or content to
your Web and enterprise applications.

Note: LBS is not available in WES Version 1.1 Enable Offering (EO).

This chapter discusses the following topics:

� An overview of Location-Based Services

� How to install and run the sample code provided with LBS

� How to develop Location-Based applications using VisualAge for Java

� A sample scenario that shows you how a B2E application can be extended to
support Location-Based Services (LBS)

� Integration with the LBS run-time services

11
© Copyright IBM Corp. 2002 435

11.1 Overview
Location Based Services (LBS) has been implemented in WebSphere
Everyplace Server Version 2.1.1 and provide the infrastructure needed to create
Location-Based Applications (LBA). When using LBS, Web and enterprise
applications use the geographical location of the request originator to provide the
user with location-specific information.

The implementation of Location-Based Services in WebSphere Everyplace
Server includes the following support:

� Provides applications with user location information.

� Provides a fine-grained authorization mechanism to control the access of
applications to the user location information. This way, LBS guarantees the
privacy of the users with respect to their location.

For example, if someone wants to find a nearby restaurant, even if the user does
not know his or her exact location (address), LBS provides this information to the
application, which can then look up a restaurant in the designated area.

Figure 11-1 Location-Based Services (LBS)
436 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

In addition, if for any reason the Service Provider has also implemented an
application that sends advertisements about shops in the user's area or vicinity,
the user can optionally make use of the integrated authorization system of LBS to
disallow the specific application queries about the user's information, and
therefore prevent it from sending unsolicited advertisements.

11.1.1 How the user location is calculated
The user location is calculated by defining the position of the device the user has
used to place the request. Figure 11-2 illustrates how this mechanism is
commonly used and how the location of the mobile device is determined.

For example, a cellular phone, when operational, is always connected to the
wireless network through an antenna tower, a so-called cell tower. The total area
that is covered is serviced by many cell towers and the coverage area of each
cell tower, the cell, is split into multiple cell sectors.

The Service Provider uniquely identifies each cell sector by a Subscriber CellID
which is made up of the following values:

� Market ID

� Switch ID

� Cell ID

� Sector ID

Figure 11-2 Defining the geographical location of the requesting device

Cell

Cell Sector

 Centre of the cell sector defindes the gegraphical location
of the device

Uncertainty

Cell tower
 Chapter 11. Location-Based Services (LBS) 437

Each cellular phone (when operational) is in a coverage area identified by a
unique Subscriber CellID. As users are roaming the different cells and sectors
with their mobile devices, the Service Provider maintains a dynamic table,
mapping the Mobile Identification Number (MIN) of each cellular phone to the
Subscriber CellID of the cell sector in which the device is located.

The Service Provider also maintains the latitude and longitude of all its cell
towers and therefore can compute the latitude and longitude of any cell sector,
which is taken as its geographical position. Since every cellular phone is covered
by a Subscriber CellID, the latitude and longitude of the corresponding cell sector
is the location of the subscriber.

This scheme introduces an uncertainty in position, which is based upon the size
of the cell sector, and which typically ranges from a few tens of meters up to a
few kilometers in some cases.

Note: The center of the cell sector defines the geographical location of the
device.
438 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

11.2 Location-Based Services
The Location-Based Services component is provided as an integrated part of the
WebSphere Everyplace Server environment, and therefore takes full advantage
of the scalability and security options provided by WebSphere Everyplace
Server.The LBS architecture is shown in Figure 11-3.

Figure 11-3 LBS architecture

The functionality provided by LBS in a WebSphere Everyplace Server
environment provides the following support:

� LBS is a service of WebSphere Everyplace Server that dynamically locates
mobile end-users and supplies their location to applications.

� It supports user-initiated location requests.

� It enables administrators to register which applications require location
information.

� It allows users to control which location applications may receive information
about their location.

For example, an application can provide the user, based on his or her current
location, with a list of the nearest teller machines, if so required.

Note: LBS has been implemented as a plug-in of Web Traffic Express (WTE),
and therefore acts as a proxy for HTTP requests. The required location
information is passed in the header of the HTTP request.
 Chapter 11. Location-Based Services (LBS) 439

Figure 11-4 illustrates how LBS integrates within WebSphere Everyplace Server.

Figure 11-4 Location-Based Services (LBS) in WebSphere Everyplace Server

11.2.1 Location request
The function of each component in a location request flow for a Location Based
Application can be summarized as follows:

� The Wireless Gateway maps the incoming request from the wireless device to
an HTTP request.

� WebSEAL-Lite is the component in WebSphere Everyplace Server that
ensures authentication. In the case of LBS, authentication is required.
WebSEAL-Lite checks that the user is authenticated (which has already been
done by the Wireless Gateway), and then passes the flow on to the LBS
server.

� LBS is a plug-in of Web Traffic Express, and acts as a forward proxy. It has
two main functions in the flow:

a. LBS communicates with Policy Director to see if the application may
receive the location information of the user.

b. It requests the location information from the Location Server.
440 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� The Location Server provides the location information. Based upon the
telephone number of the user, the Location Server will determine where the
user is located. The Location Server may also provide additional information
such as address, nearest intersection, and so on. Currently, LBS supports the
SignalSoft Server.

� The Location Services Bean and the GML Parser Bean are part of the LBS
API, and are discussed in Section 11.4, “Developing location-based
applications” on page 448 in some detail.

LBS request flow
Figure 11-5 illustrates how a request to a Location Based Application (LBA) flows
through WebSphere Everyplace Server.

Figure 11-5 Location request in LBS
 Chapter 11. Location-Based Services (LBS) 441

When a mobile device requests services of a Location-Based Application, the
request will result in the following flow:

1. The mobile device sends a WAP request to the application on the wireless
network. The request is routed through the Wireless Gateway that the device
has configured as its gateway for WAP requests.

2. The Wireless Gateway authenticates the client, creates an HTTP request and
adds the user ID and phone number (MIN) to the HTTP request header.

3. WebSEAL-Lite (WSL), configured as a reverse proxy, ensures that every
request that gets through is authenticated.

In WebSphere Everyplace Server, WebSEAL-Lite (WSL) is a plug-in of Web
Traffic Express (WTE). Therefore, for performance reasons, WTE can be
optionally configured to route to LBS only those requests that require LBS
services. When implementing this approach, other requests will flow directly
to the application servers. This type of request will have to be based on the
target URL of the request.

Note: In the sample scenarios described in this chapter, the request is always
passed on to the Location-Based Services.

4. The Location-Based Services acts as a proxy. Before the actual process of
the LBS request, it does the following:

a. First, it checks in Policy Director if the application is a Location-Based
Application (LBA).

b. Then it checks in Policy Director if the application is allowed to request the
location information for the user.

5. When these two previous items are checked, LBS sends the request for
location information to the Location Server. LBS adds the response
information in a request header, and passes the request on to the
Location-Based Application.

6. The application accesses the location information using the LBS API.

7. When the application is finished, the response is sent back to the client device
through LBS, WebSEAL-Lite and the Wireless Gateway.

11.2.2 Location Server
LBS supports the SignalSoft Local.info Server Version 3.2 from Solaris, including
the customized WhereAmIservice. It uses the MIN to provide the location
information. The SignalSoft Service usually resides in the Network Service
Provider infrastructure and interacts with the Service Provider information
servers to determine the location information, based upon the MIN. Apart from
442 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

the geographical information of the cell phone (latitude, longitude), SignalSoft
can also provide additional information such as an address using the mechanism
of reverse geo-coding. This means that additional information about the location
of the user is obtained using the longitude and latitude of the location.

LBS interfaces with SignalSoft Using the SignalSoft Service Interface (SSI), and
calls the WhereAmI function of the SignalSoft system. The interface uses XML to
exchange data with SignalSoft:

Example 11-1 Input to SignalSoft server

<?xml version="1.0" ?>
<!DOCTYPE LIContent (View Source for full doctype...)>
<LIContent>
 <LIVersion version="1.3" />
 <LIServiceRequest>
 <liTransactionID>1</liTransactionID>
 <LISubscriberID>
 <liSubscriberIDType type="MIN" />
 <liSubscriberIDValue>9195438817</liSubscriberIDValue>
 </LISubscriberID>
 <LISubLocation>
 <liCellID>6250|1|13|1</liCellID>
 </LISubLocation>
 <liServiceType>WHEREAMI</liServiceType>
 <liNumberBusiness>1</liNumberBusiness>
 <LIContentTypes>
 <liContentItem item="Address" />
 <liContentItem item="Postcode" />
 <liContentItem item="LatLong" />
 <liContentItem item="Phone" />
 <liContentItem item="OtherLocation" />
 <liContentItem item="LocDesc" />
 </LIContentTypes>
 </LIServiceRequest>
</LIContent>

Example 11-2 Output from SignalSoft Server

<?xml version="1.0" ?>
<!DOCTYPE LIContent (View Source for full doctype...)>
<LIContent>
 <LIVersion version="1.3" />
 <LIServiceResponse>
 <liTransactionID>1</liTransactionID>
 <liServiceType>WHEREAMI</liServiceType>
 <liNumberBusiness>1</liNumberBusiness>
 <liZone>80302</liZone>
 <liLocDesc>22ND ST and SPRUCE ST</liLocDesc>
 <LIContentInfo>
 Chapter 11. Location-Based Services (LBS) 443

 <LIContentService>
 <liAddress>2226 PEARL ST</liAddress>
 <liPostcode>803024630</liPostcode>
 <LILatLong>
 <liLatitude>40020712</liLatitude>
 <liLongitude>-105265400</liLongitude>
 <liUncertainty>0</liUncertainty>
 </LILatLong>
 <liPhone>3034404167</liPhone>
 <liOtherLocation>Boulder, Boulder, CO, USA</liOtherLocation>
 </LIContentService>
 </LIContentInfo>
 <LIReturnStatus>
 <liStatusCode code="0" />
 </LIReturnStatus>
 </LIServiceResponse>
</LIContent>

Location-Based Services obtains the following information from SignalSoft:

– Latitude

– Longitude

– Uncertainty of the position estimate

– County

– City

– State/province

– ZIP/postal code

– Country

– Nearest intersection

For more details on the SignalSoft Server, refer to the WebSphere Everyplace
Server Infocenter.

11.3 LBS example
Location-Based Services come with an example that demonstrates the LBS
functionality. This sample demonstrates Location-Based Services finding and
displaying location information.
444 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

11.3.1 Installation
The latest version of the example can be obtained by downloading the
WebSphere EveryPlace Suite SDK from

http://www-3.ibm.com/pvc/products/wes/dev_resources.shtml.

You will download a file named WebSphereEveryplaceSDK.exe, which will install
the WebSphere Everyplace Server SDK when executed. Install the SDK using
the default settings.

The SDK contains an infocenter that has details on the sample and on the
installation of the sample. If you have installed the SDK using the default settings,
the infocenter can be started by entering the following address in your browser:

C:\Program Files\WebSphere\Everyplace Suite SDK\infocenter\index.html

You can find information on how to install the LBS samples by selecting
EveryPlace Suite SDK-> Run Samples-> Location Based Services and
selecting Location Based Services application sample from the top of the
page, which brings you to the next page, where you will select Installing the
Location-Based Services sample.

Note: Make sure that WebSphere Application Server Advanced Edition version
3.5.4 or higher is used. The installation of the SDK will install a new server in
WebSphere Application Server. After the installation, you can verify this by
opening the WebSphere Application Server administration console and browsing
the settings of the server LBSSampleServer, as shown in Figure 11-6.
 Chapter 11. Location-Based Services (LBS) 445

http://www-3.ibm.com/pvc/products/wes/dev_resources.shtml

Figure 11-6 WebSphere Administration Console showing the LBS server and its contents

11.3.2 Running the sample application
You can run the example by entering the following URL in a browser:

http://<hostname>/lbssamples/LocationBasedServices/html/DumpLocationInfoHTM
LResults.jsp

or enter this URL in a WAP emulator:

http://<hostname>/lbssamples/LocationBasedServices/wml/DumpLocationInfoWMLR
esults.jsw

where <hostname> is the host name of the server on which you installed the
sample. The results are shown in Figure 11-7 and Figure 11-8, respectively.
446 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 11-7 Location Based Services Sample in a browser

Figure 11-8 The Location Based Services Sample in a WAP emulator
 Chapter 11. Location-Based Services (LBS) 447

If you use a real phone and the required WebSphere Everyplace Server
components are set up properly, the sample displays real geographic information
for the user's location. However, the LBS API has been designed such that you
do not need all of the WebSphere Everyplace Server run-time components
shown in Figure 11-5 to be installed in order to test your application. You only
need the Java API. If the supporting Everyplace software, such as the
Everyplace Wireless Gateway, the Location Based Services box, Tivoli
SecureWay Policy Director or SignalSoft, is not set up properly, or the URL of the
Location Based Application is not configured as a Location Based Application in
Policy Director, the sample displays location information that is hardcoded in a
file located in the classpath of the Web Application. In the case of the sample, it is
located at:

<WES SDK root>\lbssamples\weslbssamples\servlets\com\ibm\lbs\test.xml>

where <WES SDK root> is the install directory of the WebSphere EveryPlace Suite
SDK.

Note: In a production environment, this file should be removed.

11.4 Developing location-based applications
Location-Based Services provide an API that allows you to access the location
information that LBS has included in the HTTP header of the request.

The Java classes of the API are part of the WebSphere EveryPlace Suite SDK.
The SDK and the LBS example are installed as discussed in section 11.3, “LBS
example” on page 444. The API is contained in a .jar file, that can be found at:

<WES SDK Root>\lbssamples\weslbssamples\servlets\lbsbeans.jar

where <WES SDK Root> is the root directory where you installed the WebSphere
EveryPlace Suite SDK.

If you do not install the sample, the lbsbeans.jar can be found in the archive:

<WES SDK root>\lbssamples\weslbssamples.war

which is compressed using the .ZIP format and can be browsed with any regular
compression tool or with the jar command of the Java JDK. You must extract
lbsbeans.jar from this archive. It will be extracted to the archive:

<root-dir>\WEB-INF\lib\lbsbeans.jar

where <root-dir> is the directory where the .war file is extracted to.
448 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

A file with the hardcoded location information for testing purposes is in the same
.war file at:

<root-dir>\WEB-INF\classes\com\ibm\lbs\test.xml

There are four classes used, which we will discuss now.

LocationServices bean
This bean provides the API that is mostly used in programming for LBS. It
uses the other classes below to access the header information.
LocationServices provides access to the location information given by LBS,
as shown in Table 11-1.

Table 11-1 Location information

Property Description

City The city in which the mobile device is
located.

Coordinates The geographical coordinates of the
mobile device (longitude, latitude.).

Country The country in which the mobile device is
located.

CountryDistrict The district in which the mobile device is
located.

Description The description of the GML file.

Latitude The latitude of the location of the device.

Longitude The longitude of the location of the device.

Name A logical name of the location.

OtherLocation The other location information available.
This is an array of strings, and can be
accessed using the method
otherLocation(int index).

PostalCode The postal or zip code of the location. This
depends on the country.

SRSName Returns the geodetic datum name. This
information is used to interpret the
coordinates, or longitude and latitude in a
world system.

StateProvince The state or province in which the mobile
device is located.
 Chapter 11. Location-Based Services (LBS) 449

The next two classes are used by the LocationServices class, and mostly you do
not access them directly:

LocationDTDLocator
This class is used to locate the necessary DTDs for location services. It
serves as the entity resolver when parsing the GML.

LocationGMLParse
This class provides easy access to the data in the header.

In addition, the following exception is also used:

NoLocationInfoException
This exception is thrown when there is a problem obtaining the location
information. This means that the header -ibm-pvc-user-location is not
present, or the data in it is not of the correct format.

In Figure 11-9, you find a fragment of the sample JSP we have discussed in the
previous section. Next, this sample will be discussed in more detail to explain the
LBS Application Programming Interface.

Street The street in which the mobile device is
located.

StreetIntersection The intersection with this street that is
nearest to the mobile device.

Timestamp The timestamp of the request to the
Location Server (Signalsoft).

Uncertainty The uncertainty with which the location
was determined.

Note:
When the LBS system is not present, the API will use the text file
com\ibm\lbs\test.xml in the classpath to populate the header. A
NoLocationInfoException is only thrown when this file is also not found.

Property Description
450 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 11-9 Fragment of the sample JSP

... The beginning of the jsp file
1 <BODY>
2 <%@ page errorPage="" %>
3
4 <%@ page import="com.ibm.lbs.LocationServices" %>
5 <%@ page import="com.ibm.lbs.NoLocationInfoException" %>
6 <jsp:useBean id="locationServices" type="com.ibm.lbs.LocationServices"
class="com.ibm.lbs.LocationServices" scope="request"></jsp:useBean>
7
8 Location Information from Request

9
10 <%
11 try
12 {
13 locationServices.setLocation(request);
14 }
15 catch (com.ibm.lbs.NoLocationInfoException e)
16 {
17 %>
18 <P>No location was information present in the request.</P>
19 <%
20 }
21 try
22 {
23
24 %>
25 <TABLE border="1">
...
26 <TR>
27 <TD>street
28 </TD>
29 <TD>
30 <%= locationServices.getStreet() %>
31 </TD>
32 </TR>
33 <TR>
34 <TD>city
35 </TD>
36 <TD>
37 <%= locationServices.getCity() %>
38 </TD>
39 </TR>

... The rest of the JSP file
 Chapter 11. Location-Based Services (LBS) 451

Line 6 in Figure 11-9 shows the creation of the locationServices Bean. In line 13
the location of the bean is set, using the information in the header in the
httpRequest (or from the file, if the header is not present). At this point, the bean
is populated with the location information, and the appropriate getters can be
used to access the information. See for example lines 30 and 37 where the
Street and City are retrieved.

Note: For more information on JavaServer Pages, refer to the IBM redbook
Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for
Java, SG24-5755-00.

Location Based Services add location information into the HTTP header. The
name of the header is x-ibm-pvc-user-location, and you can use this in Java to
access the header directly.

The format of the information is Geography Markup Language (GML), an
XML-based standard, maintained by the Open GIS Consortium. More
information on GML can be found at:

http://opengis.net/gml/

The DTD (the Document Type Definition, defining the rules of an XML
document), used for the GML information in LBS, is shown in Figure 11-10.
452 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

http://opengis.net/gml/

Figure 11-10 DTD for the Geography Markup Language used by LBS

Mostly, it is sufficient to use the provided beans to parse the GML information.

<?xml version="1.0" encoding="UTF-8"?>
 <!ENTITY % GMLGEOMETRYDTD SYSTEM "gmlgeometry.dtd">
 %GMLGEOMETRYDTD;
 <!ELEMENT LBSLocation (description?, name?, boundedBy?, timestamp?,
address?, geoLocation?, property*) >
 <!ELEMENT address (street?, otherLocation?, zipcode-postalcode?,
intersectionStreet?) >
 <!ELEMENT geoLocation (locationShape?, locationPoint) >
 <!ELEMENT locationShape (omni|arc|ellipse|otherShape) >
 <!ATTLIST locationShape
 units (Miles|KM) "Miles">
 <!ELEMENT omni (radius) >
 <!ELEMENT arc (innerRadius, outerRadius, startAngle, stopAngle) >
 <!ELEMENT ellipse (majorRadius, minorRadius) >
 <!ELEMENT otherShape (property*) >
 <!ELEMENT locationPoint (Point,uncertainty?) >
 <!-- Simple properties hold the property value as parsed character data.
 The type of the value is specified by the type attribute, which defaults to
the 'string' type.
 The name of the property is specified by the typeName attribute. -->
 <!ELEMENT property (#PCDATA)>
 <!ATTLIST property
 typeName CDATA #REQUIRED
 type (boolean | integer | real | string) "string" >
 <!ELEMENT timestamp (#PCDATA)>
 <!ELEMENT street (#PCDATA)>
 <!ELEMENT otherLocation (#PCDATA)>
 <!ELEMENT zipcode-postalcode (#PCDATA)>
 <!ELEMENT intersectionStreet (#PCDATA)>
 <!ELEMENT radius (#PCDATA)>
 <!ELEMENT innerRadius (#PCDATA)>
 <!ELEMENT outerRadius (#PCDATA)>
 <!ELEMENT startAngle (#PCDATA)>
 <!ELEMENT stopAngle (#PCDATA)>
 <!ELEMENT majorRadius (#PCDATA)>
 <!ELEMENT minorRadius (#PCDATA)>
 <!ELEMENT uncertainty (#PCDATA)>

All properties are string with the following exceptions:

� uncertainty - integer

� radius, innerRadius, outerRadius, majorRadius, minorRadius - real
 Chapter 11. Location-Based Services (LBS) 453

11.4.1 Setting up a development environment for VisualAge for Java
In the WebSphere Everyplace Server Infocenter, and in the WebSphere
EveryPlace Suite SDK, you can find instructions on how to set up WebSphere
Studio and WebSphere Application Server to work with the sample. To create
Servlets for Location Based Application, you can use VisualAge for Java.

VisualAge for Java provides extensive functionality across the entire
development life-cycle and includes tools for Java code editing and debugging,
JavaServer Page debugging, and Web Traffic Express. It also includes a
repository that stores project source and compiled code, and an import/export
facility that enables interaction with the file system.

One of the most important features of VisualAge for Java is Web Traffic Express.
This feature provides application and Web server environments on a
development machine, enabling you to test and debug the resources of a Web
site locally. This environment provides much of the functionality of a full
application server, including access to services such as LDAP and enterprise
resources. You need the version of VisualAge for Java that corresponds best to
the version of WebSphere Application Server on which the application will be
deployed.

As an alternative to developing Location Based Applications using WebSphere
Studio, below you will find detailed instructions on how to set up VisualAge for
Java 4.0 to develop Location Based Applications. If you need additional
information on using IBM VisualAge for Java, please refer to one of the following
IBM Redbooks:

� Programming with VisualAge for Java Version 3.5, SG24-5264-01

� Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for
Java, SG24-5755-00

To set up VisualAge for Java to develop LBAs, perform the following steps:

1. Download and install the WebSphere Everyplace Server SDK as described in
11.4, “Developing location-based applications” on page 448.

2. Start VisualAge for Java.

3. Install the prerequisites for LBS in the workspace:

From File -> Quick Start, select Add Feature and add the IBM XML Parser
for Java.

For creation of servlets, you will also have to install Web Traffic Express and
the Servlet API the same way.

4. Create the project to contain the LBS java API, for example ITSO WES LBS
API.
454 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

5. Locate the file lbsbeans.jar that contains the Java API for LBS. See 11.4,
“Developing location-based applications” on page 448 for details on how to
obtain this file. Import this .jar file into the project you have just created using
File -> import. Enter the values on the screen as in Figure 11-11and click
Finish.

Figure 11-11 Entering values using the .jar file

You can add the LBS beans to the palette for visual programming if you want, but
we will not use that in this chapter.

6. Place the file test.xml, that contains hardcoded location information, in the
classpath of the servlet engine. It belongs to the LBS beans:

<project_resources>\com\ibm\lbs\test.xml

Where <project_resources> is the directory of the project the beans are in. If
you installed VisualAge for Java in the default directory and you used ITSO
WES LBS API for the name of the project, that <project_resources > is:

C:\Program Files\IBM\VisualAge for Java\ide\project_resources\ITSO WES
LBS API

This way, test.xml is in the classpath of the LBS API Classes in the IBM
VisualAge for Java workspace.
 Chapter 11. Location-Based Services (LBS) 455

7. Start Web Traffic Express (Workspace -> Tools -> Web Traffic Express...)
and ensure that the required projects are in the classpath: select Edit Class
Path..., on the next screen click Select All and click OK.

At this point, you can start Web Traffic Express. Note that by default, the
integrated Web server of Web Traffic Express listens on port 8080, so you
have to add this to the URL when testing a servlet:

http://localhost:8080/servlet/snoop

Now you are ready to develop servlets for Location Based Applications using
IBM VisualAge for Java (see 11.5.3, “Expertise location source code” on
page 461). We will use this to examine the LBS extension to the YourCo
application from within VisualAge for Java.

11.5 Extending the enterprise
As an example of how the Location-Based Services can extend existing
applications, below you will find a description and sample code of an extension to
the YourCo application that has been described in Chapter 1.

The sources of this example can be found in Appendix B, “LBS sample code” on
page 755.

11.5.1 Changing YourCo into a Location Based Application
In order to show how the Location Based Services can extend an enterprise
application, we have added Expertise Location to the Yourco application.

Expertise Location
YourCo contains a directory to look up information of Yourco employees: the
White Pages. A user can look up the phone number and other relevant
information of an employee of Yourco. However, this is not always sufficient.

Suppose a salesperson of YourCo needs to discuss a customer situation with an
expert on very short notice. He does not immediately know the person he wants
to talk to because YourCo has too many employees to know them all personally.
Therefore, he needs an application that shows who the experts are in a certain
area. He also needs to find out which of these experts is in the office nearest to
him, such that he can set up a meeting with this expert as soon as possible. This
is where LBS comes into the picture.
456 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

11.5.2 Deploying Expertise Location to the application server
This section shows you how to deploy Expertise Location to WebSphere
Application Server and integrate it in the existing sample application. Later on,
we will use the DB2 tables created in this section to run Expertise Location from
VisualAge for Java.

As a prerequisite, you must have WebSphere Application Server Advanced
Edition version 3.5.4 installed, and you must have installed and configured the
sample application as described in Chapter 3, “Enterprise sample applications”
on page 77.

To install the Expertise Location extension, you must perform the following steps:

1. Back up the directory <appserver_root>\hosts\default_host\WSSamples_app

where <appserver_root> is the install directory of WebSphere Application
Server, for example C:\WebSphere\AppServer.

2. Extract the file lbsaamples.zip from the CD to the root directory of the
application server, for example:

C:\WebSphere\AppServer

3. Set up the database:

a. You may have to run <SQLLIB>\java12\usejdbc2.bat and then use the file
<SQLLIB>\java\db2java.zip. if you have not yet set up DB2 to use JDBC2.
<SQLLIB> is the root directory of your DB2 installation

b. Ensure that WebSphere Application Server and the default server are
running,

c. Enter this URL in your browser:

http://<hostname>/WSSamples

where <hostname> is the name of the WebSphere Application Server
server.

d. Select Database Configuration.

e. Select Start DB2 Database Configuration.

f. Select Step 5.

g. Click the Submit button.

Note: In this chapter, Expertise Location is presented as a Web application. In
Chapter 5, “Text clipping” on page 145 it is shown how to enable this
application for WAP devices.
 Chapter 11. Location-Based Services (LBS) 457

To verify this part of the setup:

h. Open the DB2 command line processor (Start -> Programs -> IBM DB2
-> Command Line Processor).

i. Enter Connect to sample.

j. Enter Select * from wsdemo.address.

You should see 5 records.

k. Enter Select office from wsdemo.employee.

You should see a list of office identifiers (for example 00001).

We have changed the sample database in the following way:

Columns USERID; char (20) and OFFICE; char (5) were added to table
WSDEMO.EMPLOYEE.

Two new tables were added:

– WSSDEMO.ADDRESS

Columns: OFFICE char(5) not null, ADDRESS varchar(100), CITY
varchar(50), ZIPCODE varchar(20), STATE char(2), Country varchar(50).

– WSDEMO.TRIGGER

Columns: USERID char(20), ROOM_ID varchar(3), THEDAY varchar(10),
THETIME varchar(4), RESERVED_BY varchar(40).

(WSDEMO.TRIGGER is not used for LBS, but for INS; for details, see
Chapter 10, “Intelligent Notification Services (INS)” on page 359.)

See also Appendix B, “LBS sample code” on page 755 for details.

4. Ensure that lbsbeans.jar is in the classpath

5. Ensure the file test.xml is in the classpath:

<WASroot>\hosts\default_host\WSsamples_app\servlets\com\ibm\lbs\test.xml

where <WASroot> is the directory where the ApplicationServer is installed.

6. Restart the Web application WSsamples_app using the WebSphere
Administration Console.

You can now run the Yourco Sample by entering the following URL in your
browser:

http://<hostname>/WebSphereSamples/YourCo/index.html

Where <hostname> is the host name where WebSphere Application Server is
installed. You will find a new menu item in the upper right of the page named
Locate an Expert. Select this menu item, and you will be presented with an entry
form for Expertise Location, as shown in Figure 11-12.
458 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 11-12 The entry form for Expertise Location

The database was set up such that in the nearest office to the user location
(hardcoded in test.xml), there is a designer, but not an analyst. When you select
Designer, the result is as shown in Figure 11-13, and when you select, for
example, Analyst, which is not present in the nearest office, the result is as
shown in Figure 11-14.
 Chapter 11. Location-Based Services (LBS) 459

Figure 11-13 The result of the request when an expert was found in the nearest office

Figure 11-14 The result of the request when an expert was not found in the nearest office
460 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

11.5.3 Expertise location source code
The Expertise Location servlet consists of four classes:

FindExpert
This is the servlet. The source code is shown in Example 11-3.

OfficeFinder
This class determines the office that is closest to the user. The source code is
shown in Example 11-4. This is done in an oversimplified way, since we do not
want to elaborate on the algorithm to find the closest location, but want to focus
on the Location Based Services API.

UserLocation
A bean that contains the location information of the user making the request.
This bean is for use in the Java Server Page that displays the result.

ExpertInfo
A bean that contains the location information of the expert that was found. This
bean is for use in the Java Server Page that displays the result.

Example 11-3 FindExpert Servlet

package itso.wes.lbs.samples;
import javax.servlet.*;
import java.sql.*;
/**
 * Insert the type's description here.
 * @author: Erik Rongen
 */
public class FindExpert extends javax.servlet.http.HttpServlet {

//the OfficeFinder classs provides mapping from the user location
//to the nearest office (in an oversimplified, non-realistic way)
private OfficeFinder officeFinder;

// URL for the database
String dbUrl = "jdbc:db2:sample";

String results = "/YourCo/Locate/Results.jsp";
String resultsError = "/YourCo/Locate/ResultsError.jsp";
String resultsNotFound = "/YourCo/Locate/ResultsNotFound.jsp";

/**
 * Process incoming HTTP GET requests
 *
 * @param request Object that encapsulates the request to the servlet
 * @param response Object that encapsulates the response from the servlet
 */
 Chapter 11. Location-Based Services (LBS) 461

public void doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response) throws javax.servlet.ServletException,
java.io.IOException {

performTask(request, response);

}
/**
 * Process incoming HTTP POST requests
 *
 * @param request Object that encapsulates the request to the servlet
 * @param response Object that encapsulates the response from the servlet
 */
public void doPost(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response) throws javax.servlet.ServletException,
java.io.IOException {

performTask(request, response);

}
/**
 * Returns the servlet info string.
 */
public String getServletInfo() {

return super.getServletInfo();

}
/**
 * Initializes the servlet.
 */
public void init() {
 // insert code to initialize the servlet here

 officeFinder = new OfficeFinder();

 //prepare for DB2 access
 try {
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 } catch (Exception e) {
 System.out.println(e);
 }

}
/**
 * Process incoming requests for information
 *
 * @param request Object that encapsulates the request to the servlet
462 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 * @param response Object that encapsulates the response from the servlet
 */
public void performTask(
 javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response) {

 //The id of the office that is nearest to the user location
 String officeID = null;

 //The beans with location info for display
 UserLocation userLocation = null;
 ExpertInfo expertInfo = null;

 //The requested experise from the request
 String expertise = null;

 try {

 //Analyse the request
 if (request.getParameter("expertise") == null)
 System.out.println("No expertise attribute found in the request. returning");
 else {

 //get the requested expertise from the request, and convert to upppercase,
 //since all JOBS in the database are in UPPERCASE
 expertise = (String) request.getParameter("expertise").toUpperCase();

 //Create the locationServices object that reads the Location Info from the headers
of the request
 com.ibm.lbs.LocationServices locServices =
 new com.ibm.lbs.LocationServices(request);

 //locServices now contains all the location information of the user that we need
 //List the information to the console
 printDiagnostics(locServices);

 //we can populate the userLocation bean
 userLocation = new UserLocation();
 userLocation.setAddress(locServices.getStreet());
 userLocation.setCity(locServices.getCity());
 userLocation.setCountry(locServices.getCountry());
 userLocation.setState(locServices.getStateProvince());
 userLocation.setZipCode(locServices.getPostalCode());

 //Now find the id of the office closest to the user
 //The OfficeFinder encapsulates this algorithm.
 //In this example we use an oversimplified algorithm for finding
 //the nearest office
 officeID = officeFinder.find(locServices);
 Chapter 11. Location-Based Services (LBS) 463

 //now that we have the office id, we can search for
 //the requested expertise in that location in the database

 String url = "jdbc:db2:sample";
 Connection con = DriverManager.getConnection(url, "wsdemo", "wsdemo1");

 // retrieve data from the database
 System.out.println("Retrieve some data from the database...");
 Statement stmt = con.createStatement();
 String queryString =
 "SELECT * FROM WSDEMO.EMPLOYEE X , WSDEMO.ADDRESS Y"
 + " WHERE X.OFFICE = Y.OFFICE"
 + " AND X.OFFICE = '"
 + officeID
 + "'"
 + " AND X.JOB = '"
 + expertise
 + "'";

 ResultSet rs = stmt.executeQuery(queryString);

 System.out.println("Received results:");
 //rs.next is true when rows are found.
 //return the first found employee who meets the criteria
 if (rs.next()) {
 //Info of the employee
 expertInfo = new ExpertInfo();
 expertInfo.setFirstName(rs.getString("FIRSTNME"));
 expertInfo.setLastName(rs.getString("LASTNAME"));
 expertInfo.setMiddleInitial(rs.getString("MIDINIT"));
 expertInfo.setPhoneNumber(rs.getString("PHONENO"));
 expertInfo.setDepartment(rs.getString("WORKDEPT"));
 expertInfo.setEmployeeNumber(rs.getString("EMPNO"));
 expertInfo.setJob(rs.getString("JOB"));

 //info of the location
 expertInfo.setOfficeID(rs.getString("OFFICE"));
 expertInfo.setAddress(rs.getString("ADDRESS"));
 expertInfo.setCity(rs.getString("CITY"));
 expertInfo.setCountry(rs.getString("COUNTRY"));
 expertInfo.setState(rs.getString("STATE"));
 expertInfo.setZipCode(rs.getString("ZIPCODE"));
 } else {
 System.out.println("No expert found in the office nearest to the user");
 }
 //we¥re done with DB2
 rs.close();
 stmt.close();
464 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 //Now redirect to the output
 if (userLocation != null && expertInfo != null) {
 //Both beans have been populated. Show result
 request.setAttribute("userLocationBean", userLocation);
 request.setAttribute("expertInfoBean", expertInfo);
 RequestDispatcher rd = getServletContext().getRequestDispatcher(results);
 rd.forward(request, response);
 } else
 if (userLocation != null && expertInfo == null) {
 //Both beans have been populated. Show result
 request.setAttribute("userLocationBean", userLocation);
 RequestDispatcher rd =
 getServletContext().getRequestDispatcher(resultsNotFound);
 rd.forward(request, response);
 } else {
 RequestDispatcher rd =
getServletContext().getRequestDispatcher(resultsError);
 rd.forward(request, response);
 }

 }

 } catch (Throwable theException) {
 theException.printStackTrace();
 }
}
/**
 *
 * @param locServices com.ibm.lbs.LocationServices
 */
private void printDiagnostics(com.ibm.lbs.LocationServices locServices) {

System.out.println("Location information for the user:");
 System.out.println("City : " + locServices.getCity() + "\n");
 System.out.println(
 "Cooirdinates : " + locServices.getCoordinates() + "\n");
 System.out.println("Country : " + locServices.getCountry() + "\n");
 System.out.println(
 "CountryDistrict : " + locServices.getCountyDistrict() + "\n");
 System.out.println(
 "Description : " + locServices.getDescription() + "\n");
 System.out.println(
 "Latitude : " + locServices.getLatitude() + "\n");
 System.out.println(
 "Longitude : " + locServices.getLongitude() + "\n");
 System.out.println("Name : " + locServices.getName() + "\n");
 System.out.println(
 "PostalCode : " + locServices.getPostalCode() + "\n");
 Chapter 11. Location-Based Services (LBS) 465

 System.out.println("SRSName : " + locServices.getSRSName() + "\n");
 System.out.println(
 "StateProvince : " + locServices.getStateProvince() + "\n");
 System.out.println("Street : " + locServices.getStreet() + "\n");
 System.out.println(
 "StreetIntersection : " + locServices.getStreetIntersection() + "\n");
 System.out.println(
 "TimeStamp : " + locServices.getTimestamp() + "\n");
 System.out.println(
 "Uncertainty : " + locServices.getUncertainty() + "\n");

}
}

When the doGet or doPost methods of the servlet are called, the request is
passed on to the Perform Task method. This way, although the servlet will
respond to a post from an HTML page in the production environment, you can
test it without that page using a query string:

<the application URL>?expertise=DESIGNER

where <the application URL> is the URL of the servlet.

The method where the request is processed is the Perform Task method. In this
method, first we get the requested expertise from the request:

expertise = (String) request.getParameter("expertise").toUpperCase();

Next, the LocationServices object is created; it reads the location information
from the headers of the request:

com.ibm.lbs.LocationServices locServices = new
com.ibm.lbs.LocationServices(request);

Using the constructor that has the request as parameter, the object is
immediately initialized with the information from the hardcoded file. The
OfficeFinder class is then asked for the office nearest to the user who initiated
the request:

officeID = officeFinder.find(locServices);

The code for the office finder is shown in Example 11-4. As said, the algorithm for
finding the closest office is very simple. In fact, it matches the city of the expert’s
office location to the city in the GML location information in the header. The
database is queried to find out if there is an expert in the office in that city, and if
so, to get the information. The SQL query used is emphasized in the above
sample text.
466 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Finally, the beans are populated, and the request is forwarded to the proper Java
Server Page, depending on whether an expert was found or not.

Example 11-4 SOfficeFinder

package itso.wes.lbs.samples;

/**
 * The officeFinder will locate the office nearest to the user's location
 * This was done in a very simple way. A hashtable closestOfficeList
 * contains the link between the user location and the nearest office. Note
 * that in real life things are much more complicated.
 * @author: Erik Rongen
 */
public class OfficeFinder {

private java.util.Hashtable closestOfficeList;
/**
 * OfficeFinder constructor comment.
 */
public OfficeFinder() {

super();
closestOfficeList = new java.util.Hashtable();
closestOfficeList.put("Cary","00005");
closestOfficeList.put("San Diego","00001");
closestOfficeList.put("Boulder","00002");
closestOfficeList.put("Delft","00004");
closestOfficeList.put("Raleigh","00003");

}
/**
 *
 * @return java.lang.String
 * @param locationService com.ibm.lbs.LocationServices
 */
public String find(com.ibm.lbs.LocationServices locationService) {

String userCity = locationService.getCity();
String closestOfficeID = (String) closestOfficeList.get(userCity);
return closestOfficeID;

}
}

The HTML files and Java Server Pages can be found in:

<WASroot>\hosts\default_host\WSsamples_app\web\YourCo\index.html
and

<WASroot>\hosts\default_host\WSsamples_app\web\YourCo\Locate
 Chapter 11. Location-Based Services (LBS) 467

where you will find:

� frameset.html, the HTML containing the frames of the page.

� LocateInput.html, the HTML page for the input frame (top).

� Results.jsp, the JSP that is shown when an expert was found.

� ResultsNotFound.jsp, the JSP that is shown when no expert was found.

� ResultsError.jsp, the JSP that is shown when an error occurred.

� blank.html, the blank for the lower frame when the page is initially opened.

These are basic HTML JSP files, and will not be discussed in detail. There is no
LBS-specific content in these files.

You can run this example as follows:

1. To set up the database, the sample needs DB2. It is easiest to run the sample
against the database that has been configured for the sample, as explained in
11.5.2, “Deploying Expertise Location to the application server” on page 457.
If this database is not local, change the following:

a. Use another DB2 driver. For example, change:

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

to

Class.forName("COM.ibm.db2.jdbc.net.DB2Driver").newInstance();

b. Change the location of the database:

String url = "jdbc:db2:sample";

to

String url = "jdbc:db2:<hostname>/sample";

c. Ensure that the JDBC driver is running on the server. On Windows NT or
Windows 2000, this can be started from the Services panel.

2. Start VisualAge for Java and import the sample code into a new project (for
example ITSO WES Samples); the code can be found in yourcolbssample.ja
file on the CD.

3. Start Web Traffic Express.

4. Ensure that the project of the sample is in the classpath of the Servlet Engine
(see 11.4.1, “Setting up a development environment for VisualAge for Java”
on page 454 for details).

5. Start the Servlet Engine.
468 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

6. Run the sample by entering the following URL in your browser:

http://localhost:8080/servlet/itso.wes.lbs.samples.FindExpert?expertise=des
igner

11.6 Integrated testing
This section discusses how to test your LBS applications in the WebSphere
Everyplace Server environment. This WebSphere Everyplace Server
environment involves a minimal setup to test the LBS aspects of your application.
Some products needed in the production environment will not be used. Instead,
tools will be provided that can help you test without these tools.

Tools that can be used to emulate WebSphere Everyplace Server functions and
other infrastructure are:

� Simples: tools to emulate the SignalSoft server

� Muffin: a configurable proxy for Windows, with which you can view and
manipulate an HTTP request, including the headers.

� The WAP ToolKit.

11.6.1 Planning a Location Based Services installation
Suggested steps for LBS planning are included in this section.

1. First of all, you must decide how to distribute the different functions of the
available hosts. If you want to include WebSEAL-Lite for security, you will
need at least two hosts, because WSL and LBS, both plug-ins to WTE,
cannot be installed in one instance of WTE.

2. LBS requires that the PD client be installed/configured correctly before it is
installed on that system. See below for details.

3. LBS requires, among other things, that the ClientID in the request header
populate the request with location information. For LBS to work properly, it
requires the following WebSphere Everyplace Server components installed:

a. WebSphere Everyplace Server Wireless Gateway (configured for client ID
support)

b. WebSphere Everyplace Server WebSEAL-Lite

c. User Preferences-SelfCare (optional)

Below, we shall show you how you can do without these functions by
emulating the services that create the request headers, and by creating users
in another way.
 Chapter 11. Location-Based Services (LBS) 469

4. As to the host for the Location Server (for example, SignalSoft), you will need
to know the host name and port for the location server. If you do not have a
location server available in your test environment, LBS provides an emulator,
called simples. Simples can be installed on one of the servers you use for
WebSphere Everyplace Server. Simples listens on port 8567.

5. Location-Based Service is installed by WebSphere Everyplace Server Setup
Manager. To install LBS:

a. You will need location (that is, host, port) and WebSphere Everyplace
Server LDAP Server information.

b. You will need location (that is, host, port) and LDAP Server information for
Policy Directory Server.

c. You will need location (that is, host, port) for the SignalSoft server.

d. If you are planning to import some Location Based Applications (LBAs),
you will need a list of these URLs in an input file.

6. Choose Application Server to install LBS Application Assist functions and
samples.

The installation of the Location Based Services is part of the WebSphere
Everyplace Server installation, and is done using the WebSphere Everyplace
Server Setup Manager. As a prerequesite for LBS, Policy Director must be
installed. The installation of Policy Director cannot be performed using the
WebSphere Everyplace Server Setup Manager, and must be done separately.

For details on the installation and Configuration of LBS, see the WebSphere
Everyplace Server Information Center.

11.6.2 Policy Director
Policy Director is the component in WebSphere Everyplace Server that is
responsible for authorizations, and is an prerequisite for Location Based
Services. When a user is authenticated using WebSEAL-Lite, Policy Director is
used to define which applications are allowed to obtain the location information of
a user. Policy Director is a product that runs on top of IBM’s DCE, the Distributed
Computing Environment, a secure infrastructure for distributed computing
systems.
470 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

In the PD section of the WebSphere Everyplace Server information Center, you
can find details on the installation of Policy Director. Administration Guides for
installation on AIX and Solaris are located in the subirectory tpd, and have
names pd37_base_install_aix.pdf and pd37_base_install_solaris.pdf,
respectively. Refer to appendix A of the respective documents for a quick
installation procedure of IBM DCE (Distributed Computing Environment), the
underlying infrastructure component, and Policy Director (PD).

11.6.3 PD client installation and configuration on AIX for WebSphere
Everyplace Server

If you are going to run LBS on a different machine from the PD Server, you will
have to install the LDAP Client and PD Client on the LBS Host. The steps below
will show you how.

1. Install IBM LDAP client:

– Mount WebSphere Everyplace Server CD #4.

– Change to the install directory

cd /cdrom/swd/aix/ldap32_us/

(assuming that the mount point is /cdrom)

– Perform smit install and choose the current directory; select ldap client
and gskit to install.

2. Install the PD Client:

– mount the PD CD # 14.

cd /cdrom/Policy_Director

– Use smit to install PDRTE and PDAuthADK (PD authorization ADK) from
the current directory.

3. Get the PD server certificate:

a. Enter the following command:

cd /opt/PolicyDirector/keytabs

b. This brings you to the directory where you want to install the PD Server
Certificate. To obtain it from the server, perform the following sequence of
commands:

ftp PDServer (Enter the user name and password.)
cd /opt/PolicyDirector/ivmgrd/keytabs
get pdcacert.b64
bye

Note: Do not enter ftp; this is the prompt you will see.
 Chapter 11. Location-Based Services (LBS) 471

4. Run smit, select Communication Application->Policy Director->PD
Config

a. Enter n when asked if the PD Server is installed on the local machine.

b. Select 2 for using LDAP.

c. Type in the host name where the PD LDAP server is installed.

d. Accept the default port for the LDAP Server.

e. Type in the host name where the PD Server is installed.

f. Accept the default port for the PD Server.

g. Type in the full file name of the PD Server certificate, in our case
/opt/PolicyDirector/keytabs/pdcacert.b64

h. Wait a few seconds, and the PD client should be configured successfully.

11.6.4 Installation of Location-Based Services
Now you are ready to install Location Based Services. Installation of Location
Based Services is performed using the WebSphere Everyplace Server Setup
Manager. For details on the installation of Location Based Services, please refer
to the WebSphere Everyplace Server Infocenter

11.6.5 Using pd_populate.ksh to configure LBAs
The Policy Director (PD) client must be configured using AIX to work with the
Policy Director Server. You can perform the following to verify that the Policy
Director Client is communicating with the Policy Director Server:

1. Open a Terminal Window.

2. At the prompt, enter the following and click Enter.

/usr/IBMEPS/LBS/bin/pd_populate.ksh pdTest <password>

where <password> is the password for the Policy Director admin ID
sec_master.

3. If the connection is successful, the system returns a value return with rc=0.
If the connection is not successful, the system returns a non-zero code. To fix
the connection, contact your Policy Director System Administrator.

Adding an application to Policy Director
In this section, we show how to add an application using script pd_populate.ksh.
For an application to be available for administrators to enable the application as a
Location Based Application, it must be added to Policy Director using the script
pd_populate.ksh. When you add an application to Policy Director, it is
472 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

automatically enabled as a Location Based Application. If you do not want the
application to be a Location Based Application, you must disable it. You can use
script pd_populate to add and enable applications, but you must use the Policy
Director Console to view registered applications. The user must use User
Preferences in Tivoli Internet Services Manager to enable the application to gain
access to their information, or the administrator must enable the user through the
Policy Director Console:

1. Verify the Policy Director Client (refer to Verifying the Policy Director Client).

2. Open a Terminal Window.

3. Enter the URL for the application you want to add. Entering the characters
"http://" before the URL is optional. Script pd_populate.ksh only accepts the
special characters "/", ":", "~", and ".". If you use other special characters in
the URL name, Policy Director returns errors. At the prompt, enter the
following and press Enter:

/usr/IBMEPS/LBS/bin/pd_populate.ksh initAppl <password> <ldap suffixdn>
<application URL>

where:

– <password> is the password for the Policy Director administrator ID
sec_master.

– <ldapsuffixdn> is the LDAP distinguished name suffix (for example,
o=ibm,c=us).

– <application URL> is the URL for the application you are adding to Policy
Director. For example, www.yourco.com/index.html.

– The URL is the actual location base address in Policy Director without the
preceding LBS_. For example, if the URL in Policy Director is
LBS_www.ibm.com, the URL to add would be www.ibm.com.

4. To add another application, repeat step 3.

Deleting an application from Policy Director
In this section we show how to delete an application using script
pd_populate.ksh. When an application is deleted from Policy Director, it is no
longer available for administrators to enable as a location based application.
Applications must be deleted from Policy Director by using the script
pd_populate.ksh.
 Chapter 11. Location-Based Services (LBS) 473

You can use this script to delete applications, but you must use the Policy
Director Console to view registered applications. When an application is deleted
from Policy Director, it is automatically disabled as a location based application
for all users that have enabled this application to see their location information. If
you want to disable an application from being location based, you can disable the
application instead of deleting the application from Policy Director.

If a user wants to simply disable a specific application from receiving their
location information, they should use Tivoli Personalized Services Manager to
change their user preferences or have the administrator disable them in Policy
Director.

1. Verify the Policy Director Client.

2. Open a Terminal window.

3. Enter the URL for the application you want to delete. At the prompt, enter the
following and click Enter.

/usr/IBMEPS/LBS/bin/pd_populate.ksh delAppl <password> <application URL>

where

– <password> is the password for the Policy Director admin ID sec_master.

– <application URL> is the URL for the application you are deleting from
Policy Director, for example, www.yourco.com/index.html.

– The URL is the actual location base address in Policy Director without the
preceding LBS_. For example, if the URL in Policy Director is
LBS_www.ibm.com, the URL to delete would be www.ibm.com.

4. To delete another application, repeat step 3.

11.6.6 The Policy Director Management Console
If you want to view or manipulate the PD entries directly, without the use of
TPSM, you can use the PD Management Console. Installation of the PD
Management Console consists of several steps. Next, we will show you how to
install the PD Console on Windows.

NetSeat Client installation and configuration
Locate the CD containing the PD Console Software (WebSphere Everyplace
Server CD # 15), and locate the win32\client folder. Run setup.exe. This starts
the NetSeat client installation. Select the required language, and the option DCE
Runtime Only. Next, select a Typical Installation, and the files are copied to the
PC.
474 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The NetsSeat Configuration dialog is automatically started, or you can start the
NetSEAT Configuration manually(Start -> Programs -> Policy Director ->
NetSEAT -> NetSEAT Configuration). This will show the window displayed
below.

Figure 11-15 NetSEAT configuration

Select Add... to add a new secure domain. The result is shown in Figure 11-16.

Figure 11-16 NetSEAT cell configuration
 Chapter 11. Location-Based Services (LBS) 475

After entering the name of the cell, click OK; you are then presented with the
panel in which you can add the servers that are active in this domain. If you
select the Add button here, you are presented with a panel where you can enter
the properties of the DCE Server (the server running the PD Server). This is
shown below.

Figure 11-17 Supported services

Enter the host name of the server and the services that are active on the server,
and click OK. The result is shown in Figure 11-8.
476 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 11-18 Secure domain properties

Note: Restart the computer when requested.

Policy Director Management Console installation
The software you need can be found on CD #15 in the directory Win32\Console.
Run setup.exe to start the installation.

Select the preferred language, and finish the dialog. After installation is complete,
the PC must be restarted.

Next, PD must be configured to work with the PD Server of WebSphere
Everyplace Server. To this end, you must perform several configuration steps.
First of all, you must configure the PD Runtime Environment for this client. You
will need to download the server security certificate. This can be done using FTP.
The file you need to download is /opt/PolicyDirector/ivmgrd/keytabs/pdcacert.b64

Next, you must configure the PD runtime (PDRTE) by clicking Start -> Programs
-> Policy Director -> Configuration. The window shown in Figure 11-19 on
page 478 appears. Click the Configure... button to continue.
 Chapter 11. Location-Based Services (LBS) 477

Figure 11-19 Configuration of Policy Director Client

In the following window, you have to provide the information about the PD Server.
In this case, the PD Server is installed on another machine, and you have to point
to the key file that you have downloaded.

Figure 11-20 Management server host

In the next window, select the LDAP Directory, and then, in the panel after that,
enter the LDAP information, as shown below. The field LDAP DN for GSO
478 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Database defines the DN of the top level of the LDAP tree under which all
PD-related entries can be found.

Figure 11-21 LDAP Server information

Next, specify that you do not want to use SSL communication and then complete
the configuration. The PDRTE package is now configured.

Once PD and NetSeat are configured, you can log in to the system (Start ->
Programs -> Policy Director -> NetSEAT -> NetSEAT Login). Enter the user ID
and password for the cell, and select the appropriate secure domain.

Figure 11-22 NetSEAT Login window
 Chapter 11. Location-Based Services (LBS) 479

You may find problems when logging in if the system times of the two machines
differ too much. In this case, you will see the following error message.

Figure 11-23 Logon error

If this problem occurs, you can change the maximum allowed time difference in
the NetSeat Configuration window, as shown below. The maximum allowed
difference is 59 minutes. If the difference is more than that, you must change the
system time settings of one of the two systems.

Figure 11-24 NetSEAT configuration - Maximum Time Delta (minutes)
480 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Running the Policy Director Management Console
Now that the PD Management Console is configured correctly, you can use it to
view the resources that are maintained by Policy Director. After you have logged
in through NetSEAT (see above), you must log on to PD using sec_master, and
then you can view the users, groups and resources, as shown in Figure 11-25
and Figure 11-26.

Figure 11-25 Users in the PD console.

Querying and viewing Policy Director
You can review the current set of WebSphere Everyplace Server applications
protected by Policy Director by reviewing the WebSphere Everyplace Server
Location Based Services Object space tree structure in the Policy Director
Console.

Click the Object Space tab. The Login to a Secure Domain dialog box is
displayed.

1. Enter the Login_Name and Password if requested. You must enter a login
name with enough authority to view the applications, such as sec_master.
Click OK. The Policy Director Object Space is displayed.
 Chapter 11. Location-Based Services (LBS) 481

2. To expand the root of the tree, click the + sign for the root of the tree. The list
of objects underneath is expanded.

3. To expand WESLBS, click the + sign for WESLBS. A list of applications
registered for Location Based Services is displayed. The applications
LBS_ALL and LBS_NONE are installed when WebSphere Everyplace Server
is installed and are reserved for use by IBM. If you entered applications with a
slash in the URL, the program creates each piece of text separated by a slash
in a separate container.

Enabling an application in Policy Director Console
For an application to be available for users to allow their location-based
information to be used by an application, it must be enabled as a Location Based
Application. When you add an application to Policy Director by running the script
pd_populate.ksh, it is automatically enabled. You only need to enable an
application as location based if you have previously disabled it as a Location
Based Application.

1. From the Windows Start Menu, select Policy Director and then
Management Console. The Policy Director Management Console is
displayed.

2. Click the Account Manager tab. The Log in to a Secure Domain dialog box is
displayed.

3. Enter the Login_Name and Password. You must enter a login name with
enough authority to view the applications, such as sec_master. Click OK. The
Policy Director Object Space is displayed.

4. To expand the Groups directory, click the + sign for Groups. The Load Users
dialog box is displayed.

5. Click Load. The groups are loaded. Click Close. All available applications are
displayed. All applications are displayed with the prefix LBS_.

6. Highlight the application you want to enable.

7. Click the right mouse button. From the context menu, select Properties. The
Group Properties dialog box is displayed.

8. In the Name field, click the ... button. The Browse Users dialog box is
displayed.

9. In the User Name Pattern field, enter a search to limit the users. For example,
LBS*.

Important: User WES_LBS, groups LBS_PERMIT_ALL and
LBS_DENY_ALL, and applications LBS_ALL and LBS_NONE are reserved
for use by IBM. Do not update or delete these users, groups or applications.
482 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

10.In the Limit To field, enter the maximum number of users you want displayed.

11.Click Load. The users matching the search entered in the User Name Pattern
field are displayed in the Search Results field.

12.In the Search Results field, select the user WES_LBS.

13.Click OK. The Group Properties dialog is displayed. WES_LBS is displayed in
the Members List. Click OK.

Disabling an application in Policy Director Console
If you want an application to not be available for users to allow their location
based information to be used by application, you must disable it as a Location
Based Application. When an application is disabled as location based, all users
enabled for the application are automatically disabled and their location
information is no longer transmitted to the application.

1. From the Windows Start Menu, select Policy Director and then
Management Console. The Policy Director Management Console is
displayed.

2. Click the Account Manager tab. The Log in to a Secure Domain page is
displayed.

3. Enter the Login_Name and Password. You must enter a login name with
enough authority to view the applications, such as sec_master. Click OK. The
Policy Director Object Space is displayed.

4. To expand the Groups tree, click the + sign for Groups.

5. Highlight the application you want to disable. All applications are displayed
with the prefix LBS_.

6. Click the right mouse button. From the context menu, select Properties. The
User Properties dialog is displayed.

7. In the Members List, highlight the user WES_LBS. If WES_LBS is not
displayed in the Members List, the application is not enabled for Location
Based Services.

8. Click Remove. WES_LBS is removed from the Members List.

9. Click OK . The application is disabled from Policy Director.

Enabling a user in Policy Director Console
If a user wants their location information to be used by an application, you need
to enable the user for the application. Note that for a user to be enabled for an
application, the application must already have been enabled as a Location Based
Application.
 Chapter 11. Location-Based Services (LBS) 483

1. From the Windows Start Menu, select Policy Director and then
Management Console. The Policy Director Management Console is
displayed.

2. Click the Account Manager tab. The Login to a Secure Domain dialog box is
displayed.

3. Enter the Login_Name and Password. You must enter a login name with
enough authority to view the applications, such as sec_master. Click OK. The
Policy Director Object Space is displayed.

4. To expand the Groups directory, click the + sign for Groups. The Load Users
dialog box is displayed.

5. Click Load. The groups are loaded. Click Close. All available applications are
displayed. All applications are displayed with the prefix LBS_.

6. Highlight the application for which you want to enable a user.

7. Click the right mouse button. From the context menu, select Properties. The
Group Properties dialog box is displayed.

8. In the Name field, click the ... button. The Browse Users dialog box is
displayed.

9. In the User Name Pattern field, enter a search to limit the users. For example,
LBS*.

10.In the Limit To field, enter the maximum number of users you want displayed.

11.Click Load. The users matching the search entered in the User Name Pattern
field are displayed in the Search Results field.

12.In the Search Results field, select the user you want to enable.

13.Click OK. The Group Properties dialog is displayed. The user you enabled is
displayed in the Members List. Click OK.

Disabling a user in Policy Director Console
If a user no longer wants their location information to be used by an application,
you need to disable the user for the application.

1. From the Windows Start Menu, select Policy Director and then
Management Console. The Policy Director Management Console is
displayed.

2. Click the Account Manager tab. The Login to a Secure Domain page is
displayed.

3. Enter the Login_Name and Password. You must enter a login name with
enough authority to view the applications, such as sec_master. Click OK. The
Policy Director Object Space is displayed.

4. To expand the Groups tree, click the + sign for Groups.
484 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

5. Highlight the application for which you want to disable a user. All applications
are displayed with the prefix LBS_.

6. Click the right mouse button. From the context menu, select Properties. The
User Properties dialog is displayed.

7. In the Members List, highlight the user you want to disable. If the user is not
displayed in the Members List, the application is not enabled for Location
Based Services. Click Cancel.

8. Click Remove. The user is removed from the Members List.

9. Click OK. The application is disabled from Policy Director.

For example, Figure 11-26 illustrates the Groups directory.

Figure 11-26 Groups in the PD console

For example, Figure 11-27 on page 486 illustrates a user’s properties.
 Chapter 11. Location-Based Services (LBS) 485

Figure 11-27 User information

LBS interaction with Location Base Applications (LBA)
Three ways that the Location Base Server interacts with Location Base
Applications are described below.

Wild-card scheme
If you define an application to be an LBA www.ibm.com/services and then user1
allows this LBA access to their user location information, all URL requests to this
defined LBA --and also anything underneath this URL tree
(www.ibm.com/services/*)-- are permitted to get the user1 user location
information.

Specific scheme
Another option is to specifically define an LBA, for example
www.ibm.com/services/index.html. In this case, if user2 allows access to this
LBA, only the particular URL request is allowed user location information. If
user2 requests www.ibm.com/services/index1.html, the URL is not allowed user
486 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

location information as it is not defined as an LBA in Policy Director. In this
scenario, www.ibm.com/services/index1.html only gets user2 location
information if it is an LBA and the user has enabled this application to see their
information.

Mixing wild-card and specific schemes
The two schemes above can be combined, but this can be difficult. With the
LBAs defined above, a user must allow access to the LBA that is at the lowest
level of the hierarchy tree to allow this LBA access to their user location
information. For example, if you have www.ibm.com/services/index.html and
www.ibm.com/services defined as LBAs, a user must give access to the
www.ibm.com/services/index.html for that LBA to be permitted to see his user
location information. However, with the two LBS defined above, a user can
access, for example, www.ibm.com/services/index1.html and this is permitted
by the wild-carding scheme.

11.6.7 Muffin
In a full WebSphere Everyplace Server environment, LBS needs several other
WebSphere Everyplace Server components to give information about the user
and the mobile device in order to provide the location based information. The
interaction between the components is discussed in 11.2, “Location-Based
Services” on page 439. The information LBS needs is put in the HTTP header of
the request, and can be found in the following header fields:

� X-IBM-PVC-User contains the user ID of the user. This is used by the LBS
system to determine the applications authorization to request location
information.

� X-IBM-PVC-Client-id contains the ID of the client device that the Location
Server uses to define the location of the client (for instance, the Mobile
Identification Number (MIN) of the device).

If you do not want to use the full WebSphere Everyplace Server environment, but
only the LBS services, for example when you want to test with a WAP emulator,
you can use tools that can manipulate the HTTP request and pass it on to the
LBS system.

One such tool is Muffin. Muffin is a Java implementation of a filter for HTTP
requests that can manipulate the HTTP headers. It is freely available under the
GNU Public Licence. For more information on Muffin, go to:

http://muffin.doit.org.
 Chapter 11. Location-Based Services (LBS) 487

http://muffin.doit.org

Running muffin
Muffin is implemented as a proxy server. To run the Muffin proxy server, you will
need Java version 1.3.0_02.

To start Muffin, extract the zipped file into its own directory. You can run Muffin by
entering the following command:

<java path>jre.exe -cp <muffin home directory> Muffin

Where <java path> is the (optional) path of the Java run-time you want to use,
and <muffin home directory> is the home directory of Muffin (the file
Muffin.class resides in this directory).

You must configure your browser to use this server as the proxy server. By
default, Muffin listens on port 9001 for incoming requests.

After starting Muffin, under Edit -> Options, configure the destination proxy and
the Host/Admin Allow and Deny options.

For LBS testing and to include the client ID and the user name in the request
outgoing header, under Edit -> Filters, enable the LBSClientID and
LBSUserName filters. In the extract directory, you will find user.txt and client.txt,
where you should specify the user name and client ID to be included in the
outgoing requests, repectively.

Note: You can use the Snoop filter to inspect the HTTP header.

The next figures show the main screen of Muffin and the Options panel. Note
how the main window shows a list of connections that exist on behalf of the client
browser.

Figure 11-28 Muffin main window

Figure 11-29 shows the Options panel. The fields HostsAllow and HostsDeny
define which targets are allowed and disallowed for HTTP requests. The target
server must be specified in the HostsAllow field.
488 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 11-29 Muffin Options Window

Figure 11-30 shows the configuration window. You may select the default
configuration, or you can create your own.

Figure 11-30 Muffin configuration window
 Chapter 11. Location-Based Services (LBS) 489

The next figure shows the Filters window. You can select the filters that should be
active, and the order in which they are applied.

Figure 11-31 The Muffin Filters page

If you select Preferences... for the Snoop filter, a panel with log information from
the Snoop filter is displayed, as in Figure 11-32.
490 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 11-32 Preferences page for the Snoop filter, showing the HTTP header fields

11.6.8 Simples
Simples is an emulator for the SignalSoft Location Server. Simples is
automatically installed with LBS and is started from the command prompt, as
shown below. Simples listens on port 8567, and LBS must be configured to work
with a Location Server on this port at installation time.
 Chapter 11. Location-Based Services (LBS) 491

Figure 11-33 Running Simples on AIX

11.7 Troubleshooting
In this section, we include a list of possible problems you may encounter when
implementing Location Based Services.

Problems with the LBS API
The log files of the Application Server contain information about the LBS API. If
the location information cannot be found (the test file or the HTTP header field),
this is logged in the Application Server Log.

Problems with the LBS Run-time
The run-time of LBS creates logging files in the WTE directory structure. The log
files can be found at /opt/IBMWTE/usr/internet/server_root/logs. Here you can
find several logs about WTE and LBS. These files can be read using the
WebSphere Everyplace Server Suite Manager.

Problems with pd_populate.ksh
The pd_populate script has its own log file. This can be found at
/usr/IBMEPS/LBS/logs/pd_populate.log. This file can be useful to inspect when
enabling/disabling of LBAs does not work correctly, or when problems between
LBS and PD are suspected.

Problems with Installation of Policy Director components
For detailed information on the installation of Policy Director and its components,
refer to the WebSphere Everyplace Server Infocenter (the tpd directory), or the
following redbook: Tivoli SecureWay Policy Director Centrally Managing
e-business Security, SG24-6008.
492 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 12. Voice-enabled applications

In this chapter, you will find information describing ways to extend existing
applications to include voice access using the IBM WebSphere Voice Server
SDK in an Everyplace WebSphere Server environment. This chapter provides
information about the VoiceXML browser, the speech recognition engine and
text-to-speech engine included in the Voice Server SDK product. It also includes
information about transcoding HTML and XML application content into VoiceXML
using the IBM WebSphere Transcoding Publisher product.

A sample scenario using the YourCo B2E sample application is included to show
how you can easily voice-enable your existing application when running in a
WebSphere Everyplace Server environment.

Note: IBM WebSphere Everyplace Server Version 2.1 does not include the
WebSphere Voice Server. In addition, you have to make sure that the
WebSphere Transcoding Publisher (WTP) release you are using supports
VoiceXML. VoiceXML transcoding support was included in WebSphere
Transcoding Publisher Version 4.0.

12
© Copyright IBM Corp. 2002 493

12.1 Introduction
Voice applications are applications in which the input and output go through a
spoken, rather than a graphical, user interface. The application files can reside
on the local system, an intranet or the Internet. Users can access the deployed
applications any time, anywhere, from any telephony-capable device, and you
can design the applications to restrict access only to those who are authorized to
receive it. The Voice Server model is illustrated in Figure 12-1.

Figure 12-1 The Voice Server model

Voice applications provide an easy and novel way for users to browse the
Internet using voice. Users can interact with Web-based data (servlets, JSPs,
etc.) using speech rather than a keyboard and a mouse.

The typical voice applications are :

� Queries: a user calls a system to retrieve information from a Web-based
infrastructure.

� Transactions: a user calls a system to execute specific transactions with a
Web-based back-end.

Internet/intranet
HTML/HTTP

Web Browser

Data

Web Server

Voice

Server

VoiceXML/HTTP

Telephone

PSTN

Voice Browser
494 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

12.1.1 WebSphere Voice Server offerings
A Voice Server provides speech access to Web content and business data
through Speech Recognition, Text-to-Speech and the use of voice browsers. It
offers a quick and easy way to develop speech applications using existing Web
infrastructure.

IBM offers a number of products in the area. For example:

� The IBM WebSphere Voice Server Version 1.5 allows developers to create
voice-enabled applications that utilize a Voice over IP network infrastructure.
Voice access to Web applications provides customers with a more natural,
easier-to-use method for information access.

� The IBM WebSphere Voice Server for DirectTalk 1.5 makes it possible to
create integrated Web and telephone self-service access to business data
and processes.

� The IBM WebSphere Voice Server SDK Version 1.5 uses VoiceXML
technology to enable developers to create voice-enabled Web applications
and test them on a desktop workstation. With these tools and the IBM
WebSphere Voice Server, developers can make Internet applications
accessible from many wireline or wireless devices.

� IBM Reusable Dialog Components are the building blocks for developing new
VoiceXML applications. They allow developers with little VoiceXML
experience to speed up application development and write basic functions.

� Reusable Dialog Components include:

– Subdialogs – simple pieces of code that provide basic functions needed by
VoiceXML developers. They can be grouped together to provide a
function.

– Templates – VoiceXML code that uses subdialogs to provide a common
function.

– Grammars – Java Speech Grammar Format (JSGF) grammars for use
with the subdialogs.

� The Voice Toolkit, currently available as beta code, can help developers to
create voice applications in less time, using a VoiceXML application
development environment. The toolkit features grammar and VoiceXML
editors so that application developers do not need to know the internals of
voice technology. Web developers, telecommunications developers, and other
developers can build applications that take advantage of voice as a means of
accessing information.

This chapter presents the use of the IBM WebSphere Voice Server Software
Developers Kit (SDK) Version 1.5 to adapt and extend existing applications in a
WebSphere Everyplace Server environment using transcoding techniques.
 Chapter 12. Voice-enabled applications 495

For more detailed information about IBM WebSphere Voice Server offerings and
general voice topics, see for example:

� The voice systems Web site:

www.ibm.com/software/voice

� The voice systems intranet site:

w3.software.ibm.com/voicesystems

� The VoiceXML forum Web site:

www.voicexml.org

12.2 VoiceXML language
The Voice eXtensible Markup Language (VoiceXML) is an XML-based markup
language for creating distributed voice applications, much as HTML is a markup
language for creating distributed visual applications. VoiceXML is an emerging
industry standard that has been defined by the VoiceXML forum of which IBM is
a founding member. It has been accepted for submission by the World Wide Web
Consortium as a standard for voice markup language on the Web.

The VoiceXML language enables Web developers to use a familiar markup style
and Web server-side logic to deliver voice content to the Internet. For example, a
very simple Hello World document in VoiceXML looks like this:

<?xml version="1.0"?>
<vxml version="1.0">
 <form>
 <block>
 Hello World!
 </block>
 </form>
</vxml>

Using VoiceXML, you can create Web-based voice applications that users can
access by phone. VoiceXML supports dialogs that feature:

� Spoken input

� DTMF input (telephone key)

� Recording of spoken input

� Synthesized speech output (Text To Speech)

� Recorded audio output

� Dialog flow control

� Scoping of input
496 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

VoiceXML implements a client-server mode, where a Web server provides
VoiceXML documents containing dialogs to be interpreted and presented to the
user. The user’s responses are submitted to the Web server, which responds by
providing additional VoiceXML documents, as appropriate.

Unlike a proprietary Interactive Voice Response (IVR) system, VoiceXML
provides an open application development environment that generates portable
applications. This makes VoiceXML a cost-effective alternative for providing voice
access services. The main problem of VoiceXML applications is to recognize the
spoken input. Therefore, so-called grammar tags are used. All possible and
expected input from the user has to be defined and stored here.

It is also possible to include prerecorded audio files in a VoiceXML document.
This offers the user a kind of real human interface instead of the common robotic
touch of synthesized speech.

To develop VoiceXML applications, IBM WebSphere Studio Version 3.5 or later
can be used. The tool provides different wizards, a visual editor and code
assistance to create the documents. For testing the VoiceXML files within your
application, you can use the IBM WebSphere Voice Server SDK.

12.2.1 VoiceXML application development
To create a voice application written in VoiceXML, you can use the Voice Server
SDK and, optionally, a Web site development tool such as IBM WebSphere
Studio. The VoiceXML pages can be static or they can be dynamically generated
using server-side logic (CGI scripts, Java Beans, ASP, JSP, etc.).

IBM WebSphere Studio provides you with a graphical development environment
that helps you create and manage VoiceXML files. For example, WebSphere
Studio Version 3.5 has been enhanced to support VoiceXML files: it includes a
VoiceXML Editor with code assist features, wizards capable of generating Java
Server Pages for use with VoiceXML files, and the ability to preview VoiceXML
files using the Voice Server SDK’s VoiceXML browser.

12.2.2 VoiceXML sample applications
Before running a VoiceXML application, we recommend that you first install the
Voice Server SDK.

For example, WebSphere Voice Server SDK Version 1.5 requires the following:

� Windows NT Version 4.0 plus Service Pack 6a applied.

� Multimedia Adapter and appropriate driver.
 Chapter 12. Voice-enabled applications 497

� ViaVoice Text To Speech (TTS).

� Java Runtime Environment (JRE) Version 1.3.0, which is included in the Voice
Server SDK package but must be installed prior to the Voice Server SDK.

The Voice Server SDK includes some VoiceXML application samples which are
stored in the /”install directory”/samples directory. In the /samples/en_US
directory, you will find the following subdirectories:

� AudioSample. This contains AudioSample.au (sound format),
AudioSample.vxml and vxml.log.

� GrammarBuilderSample. This contains the GrammarBuilderTool.

� VoiceSnoopSample.

You can run the Audio Sample from the Windows Start menu by choosing
Start>Programs->IBM WebSphere Voice server SDK->Audio Sample.

This sample VoiceXML file will prompt you to say something; it will record this
until you say “Stop Now” or click a key on the DTMF keypad. It will then replay the
recorded text back to you. The AudioSample is listed here for your reference:

<?xml version="1.0" encoding="iso-8859-1"?>
<vxml version="1.0">
<!-- Copyright (c) 2000-2001 IBM Corp. All Rights Reserved. -->

<form id="audiosample">
 <property name="bargein" value="false"/>
 <block>
 <prompt>
 <audio src="AudioSample.au"/>
 Welcome to the IBM Voice Server recording and playback sample.
 With this sample, you can record a message and
 then play back your recording.
 </prompt>
 </block>

<field name="answer" type="boolean">
 <prompt>
 Would you like to continue?
 </prompt>
 <catch event="help nomatch noinput">
 Please say yes or no.
 </catch>
 <catch event="nomatch noinput" count="4">
 Couldn't recognize yes or no. Exitting.
 <exit/>
 </catch>
 <filled>
 <if cond="answer == false">
 Goodbye.
498 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 <exit/>
 </if>
 </filled>
 </field>

<record name="recording" beep="true">
 <catch event="noinput">
 Couldn't tell if recording finished.
 <clear namelist="answer"/>

<goto nextitem="answer"/>
 </catch>
 <prompt>
 Begin speaking after the tone. When finished recording, pause
briefly, then

say "Stop Now" or press a D T M F key.
 </prompt>
 <grammar>stop now</grammar>
 </record>
 <filled>
 <prompt>
 You recorded:<value expr="recording"/>
 Goodbye.
 </prompt>
 </filled>
 </form>
</vxml>

Example of VoiceXML log file
When the VoiceXML browser is running, it writes all trace messages to the
vxml.log file. A sample trace is shown here:

12:31:52.551 S: Starting V010412 at Thu Sep 13 12:31:52 EDT 2001
12:31:52.551 X: Java: Sun Microsystems Inc. 1.3.0
12:31:52.551 X: requested locale: en_US
12:32:01.554 A: not listening
12:32:01.594 K: creating new index (reason: java.io.FileNotFoundException:
cache/index (The system cannot find the file specified))
12:32:01.614 A: listening
12:32:03.707 S: initializing application
12:32:03.707 V:
file:d:/VoiceServerSDK/samples/en_US/AudioSample/AudioSample.vxml (fetch get)
12:32:03.797 F: file:d:/VoiceServerSDK/samples/en_US/AudioSample/AudioSample.au
(prefetch get)
12:32:04.137 K: put 000000 builtin:grammar/boolean
12:32:04.228 K: put 000001 builtin:dtmf/boolean
12:32:04.398 S: running
12:32:04.398 C: (audio clip)
12:32:04.418 C: Welcome to the IBM Voice Server recording and playback sample.
 With this sample, you can record a message and
 then play back your recording.
 Chapter 12. Voice-enabled applications 499

12:32:04.598 C: Would you like to continue?
12:32:18.108 ?: check (too short)
12:32:19.720 A: Too quiet (0.2)
12:32:19.940 A: Too loud (0.8)
12:32:21.703 H: yes
12:32:21.743 C: Begin speaking after the tone. When finished recording, pause
briefly, then
 say "Stop Now" or press a D T M F key.
12:32:21.803 C: (audio clip)
12:32:21.893 A: Audio level (0.6)
12:32:30.505 A: recording started
12:32:32.028 A: Audio level (0.5)
112:32:35.052 ?: stop now (too short)
12:32:35.402 A: Audio level (0.3)
12:32:36.224 A: Too quiet (0.1)
12:32:36.885 ?: stop now (too short)
12:32:46.238 A: Too quiet (0.2)
12:32:46.568 A: Too quiet (0.2)
12:32:51.025 T: 1
12:32:51.095 H: 1
12:32:51.105 A: recording stopped
12:32:51.145 C: You recorded:
12:32:51.185 C: (recorded audio clip)
12:32:51.185 C: Goodbye.
12:33:11.885 A: Audio level (0.4)
12:33:12.005 A: Too quiet (0.1)
12:33:13.087 ?: help please (still speaking)
12:33:15.740 K: clean cache 1
12:33:15.781 K: lock retries 0
12:33:15.781 S: exit (0)

12.2.3 Grammars
Speech recognition grammars are a key component of VoiceXML application
design. A grammar is an enumeration, in compact form, of the set of utterances
(words and phrases) that constitute the acceptable user response to a given
prompt. The VoiceXML browser requires all speech and DTMF grammars to be
specified using the Java Speech Grammar Format (JSGF).

When you write your application, you can use the built-in grammars and create
one or more of your own. In either case, you must decide when each grammar
should be active.
500 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Grammar syntax is also important. A JSGF grammar file consists of a grammar
header and a grammar body.

� The grammar header provides the version of JSGF and the grammar name.

� The grammar body consists of one or more rules that define the valid set of
utterances.

Following is an example of a grammar:

<grammar>
John | Nicolas | Isabel | Erik | Patrick
</grammar>

Following is an example of a DTMF grammar:

<dtmf type=”application/x-jsgf”>
1 | 2 | 3 | 4 | “#” | “*”
</dtmf>

This example defines an inline DTMF grammar that allows users to make a

selection by pressing the numbers 1 through 4, the pound sign or the asterisk on

the DTMF simulator.

Improving grammar performance
Grammar design can have a significant impact on response time. Here are some
tips :

� The longer the user utterance (words, phrases), the longer the response time.

� Increasing the rule depth (in using subrules) increases the response time.

� When testing your grammars, you should test words and phrases that are in
your grammars, as well as words and phrases that are not.

� If your application has more than one grammar active simultaneously, you
should test each grammar separately and then test them together.

For more information about grammars, you can explore the following link :

http://java.sun.com/products/java-media/speech/forDevelop-

ers/JSGF/index.html
 Chapter 12. Voice-enabled applications 501

12.3 IBM WebSphere Voice Server SDK
The IBM WebSphere Voice Server SDK brings support for VoiceXML to Web
application development activities.

With the Voice Server SDK, you can create and test Web-based voice
applications. The SDK uses the workstation’s speakers to play audio output. You
can input data using the workstation’s microphone, prerecorded audio files, or
the Voice Server SDK’s DTMF simulator.

The Voice Server SDK includes the following:

� A speech browser that interprets VoiceXML markup. This VoiceXML browser
includes a DTMF simulator to generate simulated telephone keypress input
during desktop testing.

� IBM Via Voice Speech Recognition and Text-To-Speech engines for accepting
voice input and generating synthesized speech output.

� Telephony acoustic models to approximate the speech recognition behavior of
applications deployed in a telephony environment.

� An audio setup program to configure your microphone and speakers for use
with this product.

� User documentation.

� Sample VoiceXML files.

12.3.1 WebSphere Voice Server SDK architecture
The WebSphere Voice Server SDK includes the following components : Speech
Recognition engine, Text-To-Speech engine and the VoiceXML browser.

Figure 12-2 on page 503 shows the interaction of Voice Server SDK with
information stored on Web application servers and in back-end enterprise
databases.
502 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 12-2 WebSphere Voice Server SDK architecture

Speech recognition engine
Speech recognition is the ability of a computer to decode human speech and
convert it to text.

To convert spoken input to text, the computer must first parse the input audio
stream and then convert that information to text output. In the Voice Server SDK,
this is done by the ViaVoice Speech Recognition engine.

First, the application developer creates a series of speech recognition grammars
defining the words and phrases that can be spoken by the user, and specifies
where each grammar should be active within the application.

When the application runs, the speech recognition engine processes the
incoming audio signal and compares the sound patterns to the patterns of basic
spoken sounds, trying to determine the most probable combination that
represents the audio input.

The speech recognition engine then compares the sounds of the list of words
and phrases in the active grammars. Speech recognition accuracy key
determinants are:

� Audio input quality : the quality of audio input depends on the choice of input
device (microphone, telephone), speaking environment (noisy or quiet place),
and quality of the user’s pronunciation.

� Interface design.

� Grammar design : the only possible speech recognition candidates are the
words, phrases and DTMF key sequences included in active grammars. So

Voice In

Connections
to enterprise
databases

Enterprise
JavaBeans,
etc.

Enterprise
Data

Enterprise server

VoiceXML
Application

VoiceXML
Application

VoiceXML
Application

Web Application
Server

Speech
Recognition

Engine

DTMF
Simulator

VoiceXML browser

Text-to-Speech
Engine VoiceXML

via HTTP
over LAN or
Internet

Audio or
Synthesized
Speech Out

Simulated
DTMF In

Developer's desktop system running
IBM WebSphere Voice Server SDK in a
Java Virtual Machine (JVM)
 Chapter 12. Voice-enabled applications 503

the content of these grammars will have a major impact on speech
recognition accuracy.

Text-To-Speech Engine
Text-To-Speech (TTS) is the ability of a computer to generate spoken output from
text input. In order to generate synthesized speech, the computer must first parse
the input text to determine its structure and then convert that text to spoken
output. In the Voice Server SDK, this is done by the ViaVoice Text-To-Speech
engine.

The main capabilities and limitations of Text-To-Speech are as follows:

� TTS prompts are easier to maintain and modify than recorded audio prompts.
For this reason, TTS is typically used during application development.

� TTS is also a powerful tool for use when the data to be spoken is not known in
advance and cannot therefore be prerecorded.

� The synthesized speech is a bit robotic.

The synthesized voice can be altered to add emphasis to some parts of the text.
Different genders and ages of voice can be added by inserting VXML tags in the
text. Different types of emphasis can also be introduced by adding question
marks and exclamation points where appropriate in the text.

VoiceXML browser
One of the primary functions of the VoiceXML browser is to fetch documents to
process. The request to fetch a document can be generated either by the
interpretation of a VoiceXML document or in response to an external event. The
VoiceXML browser is a Java application.

The VoiceXML browser manages the dialog between the application and the
user by playing audio prompts, accepting user inputs, and acting on those inputs.
The action might involve jumping to a new dialog, fetching a new document or
submitting user input to the Web server for processing.

Note: The VoiceXML browser included in WebSphere Voice Server supports a
subset of the VoiceXML 1.0 specification.

In addition to spoken input, you can allow users to use the DTMF (telephone
keypress) simulator. The DTMF simulator is a GUI tool that enables you to
simulate DTMF tones on your workstation.
504 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 12-3 DTMF GUI

The VoiceXML browser starts the DTMF simulator automatically. If you close the
DTMF simulator GUI window, the only way to restart it is to stop and restart the
VoiceXML browser.

During Voice applications’ development and testing, the DTMF simulator plus the
microphone and speakers take the place of a telephone, allowing you to debug
your VoiceXML applications without having to connect to telephony hardware
and the PSTN (Public Switched Telephone Network).

Interactions with Text-To-Speech and speech recognition engines
When you start the VoiceXML browser, TTS and speech recognition engines are
automatically started. As the VoiceXML browser processes a VoiceXML
document, it plays audio prompts using TTS or recorded audio. For TTS output,
the VoiceXML browser interacts with the TTS engine to convert the text into
audio.

As the VoiceXML browser makes transitions to new dialogs or new documents, it
enables and disables different speech recognition grammars, as specified by the
VoiceXML application. As a result, the list of valid user utterances changes.

Interactions with the Web server and enterprise data server
You can publish your VoiceXML applications to any Web server running on any
platform. However, it is recommended that you use WebSphere Application
Server 3.5 (or later version) which has been enhanced to receive VoiceXML
pages published from WebSphere Studio 3.5 (or later version).
 Chapter 12. Voice-enabled applications 505

WebSphere Studio Version 3.5 includes the following support for VoiceXML files:

� A VoiceXML editor with coding assistance and syntax checking features.

� Wizards capable of generating servlets, JavaBeans and JSPs for creating
dynamic VoiceXML documents.

� The ability to import VoiceXML applications, follow flow control links, and
natively understand VoiceXML tags.

� The ability to preview VoiceXML files using the Voice Server SDK’s VoiceXML
browser.

� The ability to publish VoiceXML applications into WebSphere Application
Server.

When you start the VoiceXML browser, it sends an HTTP request over the LAN
or Internet for an initial VoiceXML document from the Web server. The requested
VoiceXML document can contain static information, or it can be generated
dynamically from data stored in a database using the same type of server-side
logic (CGI, JSP, Java Beans, etc.) that you use to generate dynamic HTML
documents. The VoiceXML applications can access the same information from
enterprise servers that HTML applications do. The VoiceXML browser then
interprets and renders the document.

12.3.2 Security Issues
Voice Services is an implementation on WebSphere Everyplace Server which
utilizes Voice eXtended Markup Language (Voice XML or VXML) to provide
voice-based authentication to the WebSphere Everyplace Server environment.

During the WebSphere Everyplace Server installation, WebSEAL-Lite is installed
as a plug-in to the WebSphere Edge Server Caching Proxy component. Voice
Services is installed during the WebSEAL-Lite installation.

There are three sample files laid down with WebSEAL-Lite, in the Samples
directory under WebSEAL-Lite, which may be modified to enable personalized
voice services:

� wesloginform.vxml - controls the message the user hears when the page is
displayed showing that the user is either authenticated or the login denied.
Use this file to customize the attributes of Voice Services particular to your
company and the applications accessed by the user.

� wesloginfail.vxml - shows how the VXML Voice Server can authenticate a
user ID and password. Use this file to customize the page displayed when the
user's authentication fails.
506 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

� weshelloworld.vxml - shows how a VXML voice server can authenticate a
user ID and password. Use this file to customize the location of the login
page.

Figure 12-4 depicts voice-enabling Web sites at a high level.

Figure 12-4 Authentication through Voice Services

This basic scenario includes a caller dialing through a public switched telephone
network to reach the IBM Voice Server. There are two methods available for
accessing the voice server, Voice over IP (VoIP) and standard voice
communications.

When a call arrives at the Voice Server, it is processed, converted to
VXML/HTTP, and passed to the WebSphere Everyplace Server environment
where authentication (and authorization, if implemented) is performed. Voice
Services allows a user to set up an alternate alias for telephony access. The
alias typically consists of a numeric entry (telephone) number to substitute for the
user ID when connecting through this method.

Once the user successfully establishes a numeric alias, Voice Services prompts
the user to change his or her existing password to a numeric entry.
Authentication is based on this numeric alias and password combination as
entered through the telephone DTMF (touchtone) buttons.
 Chapter 12. Voice-enabled applications 507

12.4 VoiceXML transcoding
The IBM WebSphere Transcoding Publisher (WTP) 4.0 allows you to transform
an HTML or XML document into a VoiceXML document. In addition to
transcoding, you probably would like to add text clipping functions for HTML
application content and the use of stylesheets for XML application content as
required by your voice-enabled applications.

WebSphere Transcoding Publisher provides functions that can simplify an HTML
page and make it more usable as a voice application, such as the ability to split
the document into sections and add annotations. WebSphere Transcoding
Publisher can use annotations to remove unwanted data from an HTML page
before it is transcoded into VoiceXML. This transcoding process works on a page
by page basis.

Note: For details about using text clipping with annotations in WebSphere
Transcoding Publisher, see Chapter 5, “Text clipping” on page 145. For details
about using stylesheets, see Chapter 6, “Using stylesheets” on page 211.

Important: The HTML to VoiceXML transcoder is not enabled by default in
WebSphere Transcoding Publisher. It should be enabled through the WebSphere
Transcoding Publisher Administrator Console (see Figure 12-5).

Figure 12-5 Enabling HTML to VoiceXML transcoder
508 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

12.5 Sample scenario
In this section, we present a sample scenario that shows how you can access an
HTML application and enable it for voice access using HTML to WML
transcoding. This scenario uses the location-based application that was included
as an extension of the B2E YourCo application in Chapter 11, “Location-Based
Services (LBS)” on page 435.

The following diagram illustrates the components required to access the YourCo
application from the Voice Server SDK; they are:

� A Windows machine with a multimedia card for application development (see
Figure 12-6 for details).

Figure 12-6 Sample scenario using Voice SDK

� A headset with microphone and sound output connected to the Windows
development workstation multimedia card.

� WebSphere Voice Server SDK 1.5.

� IBM WebSphere Transcoding Publisher (WTP) installed as a reverse proxy
and listening on port 82. In this scenario, WebSphere Transcoding Publisher
is installed on the same machine. For details about using WebSphere
Transcoding Publisher as a reverse proxy, see Chapter 4, “Transcoding
application content” on page 113. The WebSphere Transcoding Publisher
reverse proxy should be configured to forward requests to the application
server where the HTML application is actually running.

� An Application Server running the YourCo sample application, specifically the
location-based extension implemented in Chapter 11, “Location-Based
Services (LBS)” on page 435.

Transcoding
Publisher 4.0

(Request Viewer)

Your Co
Location-Based

application
HTML sample

application

WebSphere
Application Server

 V3.5.4

IBM
HTTP
Server

Voice SDK and standalone reverse proxy

9.24.104.13:80

Voice SDK
1.5.x

port 82
port 80

Headset - Microphone
and sound output
 Chapter 12. Voice-enabled applications 509

12.5.1 Voice access process
The window in Figure 12-7 shows the look and feel of the Location-Based
Services (LBS) application’s result when accessed from a desktop browser. The
objective of this scenario is to access and run this Web application with voice and
be able to hear the results shown in this screen shot.

Figure 12-7 Sample HTML application accessed from the browser

Once the hardware and software have been properly installed, you may want to
execute the following steps:

1. Open a command window on the SDK machine and change the directory to
the \bin directory under the SDK’s installation location, for example:

cd \Program Files\VoiceServerSDK\bin

2. Run the VoiceXML browser using the URL for the Locate an Expert
application. Remember to use the correct port number for the Transcoder or
the browser will receive HTML instead of VoiceXML. Also, make sure the
510 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

HTML to VoiceXML transcoder has been enabled. In our example, the
command is:

vsaudio http://localhost:82/WebSphereSamples/YourCo/LocateInput.html

where localhost is used, since WebSphere Transcoding Publisher is running
on the same machine, but you can also use a host name or a real IP address.

3. When the application access is successful, listen through the earphones and
follow the instructions to query your location service. For example, you can
say in the microphone : “Locate an expert”.

Sample dialog
In general, a dialog will run like this:

SDK: Please choose one of the following sections to go to: Main Content, Links,
Exit.
Say: Main Content.

SDK: To exit the browser, say 'Exit,' otherwise, please choose one of the
following topics: Locate an Expert, Exit.
Say: Locate an Expert.

SDK: Locate an Expert...Select the type of expertise you require.
Say: Designer (if you delay to long in replying, the script will start again
from the top).

SDK: Do you want to complete this transaction?
Say: Yes.

Note: At this time, the actual submit is sent and you can monitor this second
request in WebSphere Transcoding Publisher Request Viewer.

SDK: Please choose one of the following sections to go to: Main Content, Exit.
Say: Main Content.

SDK: To exit the browser, say 'Exit,' otherwise, please choose from one of the
following topics: Your Location is, The Requested Expert.
Say: Your location is.

Note: At this time, you will listen to your location address and country. Notice that
the page has two parts called ‘Your location is’ and ‘The requested expert is’ (see
Figure 12-7 for details).

SDK: To exit the browser, say 'Exit,' otherwise, please choose from one of the
following topics: Your Location is, The Requested Expert.
Say: The Requested Expert.

Note: At this time, you will listen to the requested expert information as provided
by the HTML application.
 Chapter 12. Voice-enabled applications 511

Here is the content of the command window which appears during the voice
application access process:

16:08:01.157 S: Starting V010412 at Thu Sep 20 16:08:01 EDT 2001
16:08:01.157 X: Java: Sun Microsystems Inc. 1.3.0
16:08:01.157 X: requested locale: en_US
16:08:07.126 A: not listening
16:08:07.156 A: listening
16:08:09.109 S: initializing application
16:08:09.149 V:
http://localhost:82/WebSphereSamples/YourCo/Voice/LocateInput.html (re-fetch
get)
16:08:09.299 K: file not modified
16:08:09.920 S: running
16:08:09.930 C: Please choose one of the following sections to go to. <BREAK
SIZE="large"></BREAK> Main Content. Exit.
16:08:19.544 H: Main Content
16:08:19.564 C: To exit the browser, say exit. Otherwise, please choose one of
the following topics. <BREAK SIZE="large"></BREAK> Locate an expert:. Exit.
16:09:04.218 A: Too quiet (0.2)
16:09:05.159 H: Locate an expert
16:09:05.169 C: Locate an expert:
16:09:05.229 C: Select the type of expertise you require:
16:09:11.889 A: Audio level (0.4)
16:09:12.230 A: Too loud (1.0)
16:09:53.679 H: DESIGNER
16:09:53.689 C: Do you want to complete this transaction?
16:09:59.027 H: yes
16:09:59.077 V:
http://localhost:82/WebSphereSamples/servlet/itso.wes.lbs.samples.FindExpert
(fetch post)
16:10:03.543 F: recv cookie sesessionid=BYK2ZHUANYB0KXGIFY2RXEQ for localhost
16:10:03.633 C: Please choose one of the following sections to go to. <BREAK
SIZE="large"></BREAK> Main Content. Exit.
16:10:12.206 A: Too loud (0.8)
16:10:14.369 H: Main Content
16:10:14.379 C: To exit the browser, say exit. Otherwise, please choose one of
the following topics. <BREAK SIZE="large"></BREAK> Your Location is:. The
requested expert. Exit.
16:10:24.503 A: Too quiet (0.1)
16:10:29.431 H: The requested expert
16:10:29.441 C: The requested expert is Name YOSHIMURA MASATOSHI Phone Number
2890 Job DESIGNER Department D11 Address YetAnother Street 54, Cary, NC,
1234567. Country United States of America
16:10:29.601 V: #start
16:10:29.691 C: Please choose one of the following sections to go to. <BREAK
SIZE="large"></BREAK> Main Content. Exit.
16:10:30.071 A: Too quiet (0.1)
16:10:32.545 A: Audio level (0.3)
512 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Monitoring with the Request Viewer
The Request Viewer is the component of WebSphere Transcoding Publisher that
allows you to view and monitor the transactions performed through WebSphere
Transcoding Publisher. A sample view is shown in Figure 12-8; the first entry is
the initial request (form request) and the second entry is the actual submit (post)
operation.

Figure 12-8 Monitoring VoiceXML traffic with the Request Viewer tool

Figure 12-9 shows how the Request Viewer tool can also be used to display the
transcoded VoiceXML content.
 Chapter 12. Voice-enabled applications 513

Figure 12-9 Request Viewer showing transcoded content (VoiceXML)
514 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Part 4 PDA
applications

In this part of the rebook, we introduce and describe sample scenarios you can
use to develop PDA applications that can be used to run in a WebSphere
Everyplace Server (WES) environment using WebSphere Everyplace Server
components such as IBM Mobile Connect (a component of WebSphere
Everyplace Server Enable Offering) or Everyplace Synchronization Manager (a
component of WebSphere Everyplace Server Service Provider Offering) using a
sample DB2 Everyplace application built with the Mobile Application Builder.
Transaction messaging applications are also described using MQSeries
Everyplace, a component of WebSphere Everyplace Server, to provide a
once-only assured delivery of messages.

Part 4
© Copyright IBM Corp. 2002 515

516 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 13. Data synchronization for
enterprise applications

This chapter provides an overview and implementation scenarios of IBM Mobile
Connect software package and discusses the differences with the Enterprise
Synchronization Manager. We will focus primarily on the Enable Offering (EO)
version of WebSphere Everyplace that runs on the Windows NT/2000 platforms.
The other version of WebSphere Everyplace is the Service Provider Offering
(SPO) and runs on the AIX and Solaris platforms (not the Solaris x86
architecture).

In this chapter, we introduce IBM Mobile Connect Version 2.5.1, a sample DB2
Everyplace (DB2e) application built with the Mobile Application Builder, show
configuration examples and discuss issues which may aride when synchronizing
data from outside the enterprise (for example, wireless or dial-up). We will
discuss the tools used in development and how you may introduce them into
your own environment.

Note: IBM Mobile Connect (IMC) Version 2.5.1 is an optional component in IBM
WebSphere Everyplace Server Enable Offering Version 1.1.

Note: Everyplace Synchronization Manager (ESM) Version 1.1.3 is a component
in IBM WebSphere Everyplace Server Service Provider Offering Version 2.1. In
addition, ESM Version 2.1 can also be obtained using WES V2.1 APAR.

13
© Copyright IBM Corp. 2002 517

13.1 Overview of IBM Mobile Connect (IMC)
IBM Mobile Connect, or IMC, is a data synchronization tool with a server, proxy
and client code portions. The purpose of implementing IMC in an enterprise is to
allow your mobile users of Palm, Windows CE/Pocket PC and EPOC OS devices
access to their e-mail, calendars and enterprise data.

When we refer to enterprise data, we refer to the databases that house your
important corporate data: sales figures, Human Resources information or just
about anything else your company uses to survive. IMC enables you to connect
to your back-end database servers, retrieve specific data from specific rows in
the database and filter it based on criteria you determine, or by user ID.

How do you implement this into a usable format for your mobile users? IMC will
let us port our back-end to various formats depending on the platform to which
we are sending data. For example, we can take data from a DB2 database and
create a DB2 Everyplace Database on the fly. While we can use IMC for
database synchronization, we can also use to install files and backup/restore our
handheld devices.

We will demonstrate installation of IMC Server and clients, backup/restore
actions, installation actions and database synchronization. We will demonstrate
data exchange with an application built using the Mobile Application Builder. This
Palm OS application will consist of a list of employees names and their phone
extensions: a phone book.

13.1.1 Implementation scenario
Basically, we have our company phone book stored in a table that resides in DB2
Universal Database (UDB) and we want to send that data to our users in a
mobile format on their Palm OS and PocketPC devices. All of our users have the
ability to connect to the corporate network either by a modem connected to their
mobile device, by a cellular phone connected via cable to their mobile device or
by direct connection via serial/USB connection to a PC.

Knowledge of database connectivity and server OS familiarity is assumed; also,
several other products are referenced (DB2e, Mobile App. Builder). Installation
routines are not necessarily covered for those products.

Figure 13-1 illustrates that we can take connections from various sources,
integrated cellular devices, locally connected devices and devices that either
connect with a land-line modem or wireless modem, and exchange data with
them.
518 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-1 IBM Mobile Connect device connectivity

These devices connect to a corporate network using a VPN-type dialer that is
supplied by your company; if you connect directly to the Internet, you should
have a VPN package that will create the tunnel needed to get to your corporate
network.

13.1.2 Enable Offering and Service Provider Offering
The Enable Offering is a Windows NT- and Windows 2000-based set of
applications. The Enable Offering uses the IBM Mobile Connect Version 2.5.1
software package for synchronization of data.

The Service Provider Offering of WebSphere Everyplace runs under the AIX and
Solaris operating systems. The SPO uses a different version of the code. The
actual code is a direct port of the Windows version using a product called
MainWin, which preserves the native API calls. The SPO runs a back-level
version of the Synchronization Manager code that is patched to include many of
the EO version capabilities.

IBM Mobile
Connect Server

Data
Sources

Integrated Cellular

Serial Cable, Cradle, or Infrared to PC

Modem to POTS Line

Cable to Cellphone

Internet or
Other Network
 Chapter 13. Data synchronization for enterprise applications 519

There are differences between the functionality of EO and SPO; Table 13-1
illustrates this for us.

Table 13-1 ESM and IMC in WebSphere Everyplace Server offerings

In addition to the differences above, there is an additional step when connecting
through the Wireless Gateway. The Wireless Gateway has a separate client that
authenticates against the LDAP servers and, once that connection is
established, you can start the Connect Client which will require another user ID
and password. There can be at least three separate logins when connecting
through the Wireless Gateway: ISP sign-on, Wireless Gateway and the Connect
Client.

IBM Mobile Connect is also a stand-alone application and, because of this, you
do not have to go through the Wireless Gateway. However, unless you have a
VPN type dialer, you will have to place the IMC server in a DMZ area and then
open ports for database, file and mail/calendar replication.

The scenarios listed below were tested with a VPN-type dialer that connected to
our ISP and established the secure connection to our corporate network. Limited
testing was done by placing an IMC server behind a hardware firewall, opening
the required incoming port and then connecting with our normal ISP to the
Internet and using the Connect Client; this solution worked, but was vulnerable to
DoS and other attacks.

Function Service Provider
Offering - ESM 2.1 (WES
2.1 APAR)

Enablement Offering -
IMC 2.5

Lotus Notes Yes Yes

MS Exchange Yes Yes

ODBC Sync. Yes Yes

LDAP Yes - Authorization Only Yes - Authorization and
Sync.

IMAP4 No Yes

SMTP No Yes

WCAP/iCal No Yes
520 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

13.2 Installing IBM Mobile Connect
IBM Mobile Connect is a Windows NT and Windows 2000 application and must
be installed with a user ID that has Administrator equivalent roles on the server.
Proceed with the following steps to install IBM Mobile Connect:

1. Locate and insert your IMC CD in to the CD-ROM drive on your server.

2. Locate and double-click setup.exe in the IMC CD-ROM. The following
window (see Figure 13-2) will be displayed:

Figure 13-2 IBM Mobile Connect installation

3. Select Install IBM Mobile Connect by clicking the first item in the list. The
Install Shield setup will begin in about 30 seconds. You are presented with the
Welcome and IMC License Agreement windows. You are also presented with
a reminder that you must be logged on as an Administrator or equivalent; this
window (see Figure 13-3) is displayed no matter who you are currently logged
in as.
 Chapter 13. Data synchronization for enterprise applications 521

Figure 13-3 IMC installation: important information

4. Next, you will choose the installation path for IMC; the default is C:\Program
Files\IBM\IBM Mobile Connect, as illustrated in Figure 13-4.

Figure 13-4 IMC installation: target directory

5. You will then be shown the Application Program Group where IMC will reside
(the default is IBM Mobile Connect) and a confirmation of everything up to this
point. This is the last step before file copying begins.
522 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

6. Security and user IDs will be created on an individual basis for this example;
select A list of user will be... to create a user and assign the associated
rights and actions.

It is possible to use existing Lotus Notes or Microsoft Exchange
authentication; you will need to engage your Notes or Exchange
administrators to gain access to specific ID files and/or server accounts (see
Figure 13-5).

Figure 13-5 Authentication sources

7. Click Create to bring up the user properties window, then enter a user name
and ta password (see Figure 13-6).
 Chapter 13. Data synchronization for enterprise applications 523

Figure 13-6 Entering a user ID and password

8. At this point, you can create other users or proceed. You can always add
users later by opening IBM Mobile Connect and stepping through the wizards
as shown in Figure 13-7.

Figure 13-7 IBM Mobile Connect users
524 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

9. Now you are prompted for the type of devices you want to support. For
example, as illustrated in Figure 13-8, in this scenario Windows CE and Palm
devices will be used, but the EPOC32 platform will not.

Figure 13-8 Selecting devices

10.Without much configuration, you can automatically back up a user’s handheld
device and install applications. For example, in this scenario select the Install
Applications on mobile automatically feature. This option is not selected
by the default, so you will need to select it in order to perform this function.
Also by default, the backup/restore feature is enabled for all users on a
weekly basis. The restore feature will be demonstrated later in this chapter.

Note: The default directory for backing up data is C:\Connect\Data, but you
can easily change it if required (see Figure 13-9).
 Chapter 13. Data synchronization for enterprise applications 525

Figure 13-9 Application install and backup/restore options

11.All of the settings that you select for each platform you choose to support are
stored in configuration files. The default files are referenced in Figure 13-10.

Figure 13-10 Configuration files
526 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

12.Figure 13-11 shows the creation of the Public Key; the content of this window
can vary, depending on the level of encryption you are using. Currently, there
are three levels of encryption: Strong, Export and None. In the None version,
this window is not displayed.

Enter a password, confirm it and the key will be generated. This key will be
required during the setup of the client on your mobile devices, so be certain to
keep a reference copy in a safe place.

Figure 13-11 Generating a Public Key

13.Figure 13-12 shows a completed encryption key creation.You must click the
checkbox to state that you have made a reference and backup copy of the
key.
 Chapter 13. Data synchronization for enterprise applications 527

Figure 13-12 Generated Public Key

14.After the key creation, you are prompted with Congratulations! message
stating that you have completed the setup of IBM Mobile Connect. You may
choose Run the Administrator Program by clicking the checkbox. It is
recommended that you reboot the server as soon as possible after
installation.
528 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-13 IBM Connect Server installation completed

15.After rebooting the IMC server, locate the IBM Mobile Connect program group
in the Start menu and click the IBM Mobile Connect Administrator (see
Figure 13-14).

Figure 13-14 IBM Mobile Connect program

16.When IMC Administration starts up, click File and then Service Settings (see
Figure 13-15).
 Chapter 13. Data synchronization for enterprise applications 529

Figure 13-15 IMC Administration: selecting service settings

17.As illustrated in Figure 13-16, the IMC Service Settings dialog appears and
here you are prompted with the default configuration files for each handheld
operating system, the IP address of the IMC Server and the TCP/IP Port.
Enter the IP Address of the IMC server and change the port if needed in your
environment. This port must be open from the gateway that will let your
clients into your corporate network all the way to the IMC server, and in both
directions.

Click OK once you have made your changes; you will be notified that
changes will not take effect until you restart the IMC service.
530 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-16 Service settings window

18.With the basic configuration changes completed, save the configuration by
clicking File->Save and restart the service by clicking the Stoplight icon.

This completes the installation of IBM Mobile Connect, which included the
creation of one user ID and the encryption key. Our next section will begin the
configuration of IMC to exchange data between DB2 and the Palm OS.

Very detailed support documentation is included in IBM Mobile Connect,
describing further configuration details of the server. We are configuring the
server to support data synchronization with a specific application and thus are
not configuring every aspect of the product.

13.3 IBM Mobile Connect client installation
In order for your handheld device to be able to synchronize data with IMC, you
must install a client piece of code on the device and configure it. You will recall
that during setup, we specified that we will support Palm and Windows CE
devices.

1. Locate the CD-ROM or file set that you used during the IMC installation; the
client code resides here. You will want to make this code accessible from the
workstations with which your handheld devices currently synchronize. The
client installation is run from the user workstation, not the server.

2. Begin the setup process just as you did the first time. This time, you want to
click Install Clients (see Figure 13-15).
 Chapter 13. Data synchronization for enterprise applications 531

Figure 13-17 Installing clients

3. Since there are multiple types of Windows CE clients (Windows CE and
Pocket PC), select the appropriate versions you require and also select the
Palm OS client. You also have the option of installing a Japanese version, but
we will not select it in this scenario (see Figure 13-18).

Figure 13-18 IMC clients - installation
532 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

4. Clients will be placed in the Install directory for your specific platform. For
instance, for a typical Palm installation, the file is placed in the
C:\PALM\%USERNAME%\INSTALL directory and will be ready to be installed
on the handheld device on the next Hotsync.

For example, Figure 13-19 shows a typical installation for the Palm OS client.

Figure 13-19 Palm OS client install

5. After the synchronization is complete on your Palm OS device, you will see a
new icon simply labeled Connect. The Connect icon represents the entire
IBM Mobile Connect client for your Palm OS device (see Figure 13-20).
 Chapter 13. Data synchronization for enterprise applications 533

Figure 13-20 Palm OS Connect icon

6. Clicking the Connect icon brings you into the IBM Mobile Connect client. By
default, the client is set up to attempt to configure a proxy. Proxy
configurations are used when connecting from serial or USB cable directly
connected to the device. In this scenario, the configuration to use Network will
be changed in the next few steps. The network connection is the primary
interface for connecting from a wireless modem or dial-up connection (see
Figure 13-21).

Figure 13-21 Connect option
534 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

7. Click the Menu icon at the bottom left of your Palm OS device, or use the
Graffiti shortcut (see Figure 13-22).

Figure 13-22 Main menu

8. Click Server to bring up the Server settings. As shown in Figure 13-23, you
will need to provide the IP address of the IMC Server or the registered host
name and the TCP port that IMC is listening on (by default this port is 5001).

In this scenario, the specified IP address is that of the IMC server and the port
number is left at the default value. Click OK and you will be returned to the
IMC client opening window. Additional configuration information for the server
side can be found 13.5, “Creating a mobile application with DB2 Everyplace”
on page 559.
 Chapter 13. Data synchronization for enterprise applications 535

Figure 13-23 Server options

9. Once returned to the IMC client opening window, click the drop-down menu
Use Proxy (see Figure 13-24). This brings up the list of available connection
methods. In this scenario, the method Network/modem to connect to IMC is
used. For further details on the connection methods (Proxy, Hotsync, and so
on), refer to the IMC Help Documentation and supporting PDF files for each
platform.

Figure 13-24 Use Proxy option
536 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

10.At this point, both the server and the client are set up sufficiently to connect
with each other. On your Palm OS device, click Connect from within the IMC
client. You will be asked for your user identity. Enter the user ID and password
that were created during the initial IMC Server install (see Figure 13-25). In
this sample scenario, the Replace HotSync option will not be used.

Note: Passwords are in clear text on the handheld but are encrypted when
sent depending on the encryption level of IMC (Export/Strong/None).

Figure 13-25 Entering the user ID and password

11.After clicking OK, you will be prompted for the Public Key that was generated
during the server installation (see Figure 13-26). You will only be asked for
this information the first time you connect to an IMC server; if you connect to
another IMC server, you will need to enter the key for that server. If you do not
have the key, go to the IBM Mobile Connect Administration tool, click File ->
Service Security and locate the key. Click OK after entering the key and you
will receive a confirmation.

Note: If you attempt to connect to an IMC server of a different encryption
strength, various error messages may be returned and no connection will be
made. The error messages returned when connecting to a different
encryption strength server are not as intuitive as you may like, so be alert to
this fact when looking for potential connectivity problems.
 Chapter 13. Data synchronization for enterprise applications 537

Figure 13-26 Entering server Public Key

12.As illustrated in Figure 13-27, if you wish to reconnect to the server and begin
synchronization, click Yes. Otherwise, click No and you will be returned to the
IMC Client.

Figure 13-27 Server verification

13.Clicking Yes will begin the synchronization process; the default for IMC is to
back up a device on its initial connection. In this scenario, no other actions
have been defined at this point, so only a backup of the device will occur.
When the backup is complete, there will be a new entry on the IMC Client.

14.Should you need to restore data (see Figure 13-28), click the checkbox next
to the new item, and on the next synchronization the restore action will be
performed. This topic will be covered later in more detail.
538 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-28 Starting the synchronization process

13.4 IBM Mobile Connect actions configuration
Actions or action sets are the instructions that do the work you want performed.
After installation of IMC, there are three default action sets to consider:

– Install

– Backup

– Restore

Actions are very powerful and can be created in various ways. There are two
wizards (PIM and Replication) that will satisfy the needs of most users. The first
wizard is the PIM wizard that is used to set up data replication from MS
Exchange and Lotus Notes. The second wizard is the Replication wizard that is
used to establish ODBC database replication between handheld applications
and back-end databases.

In addition to actions, there are script options; these scripts are written in
VBScript and are associated with an IMC event or action set. These VBScript
possibilities increase the potential power of IMC exponentially. However, the
majority of tasks that you will want to complete are done more simply with the
wizards, actions and tags.

Tags are essentially variables that can be passed into events, scripts or actions.
An example of a tag is %USER%; this translates to the user ID with which the
IMC client is connected.
 Chapter 13. Data synchronization for enterprise applications 539

The default system-defined tags are shown in Table 13-2:

Table 13-2 System defined tags

Tags are always preceded and followed by a % sign. Other tags are definable at
the system level by double-clicking Connect Configuration and selecting the
Tags tab (see Figure 13-29).

Figure 13-29 System settings

Tag Name Definition

USER User ID with which the Connect client is
connected.

PASSWORD Password which the user entered on the
Connect client.

GROUP IMC Group that the user belongs to. IMC
Groups are handy in that each group can
be assigned to different actions.

CE_CPU CPU type for Windows CE/Pocket PC
handheld. There is no corresponding
value for EPOC and PALM devices. Since
these devices have different CPUs, they
all require different versions of
applications; using this tag allows for a
simpler way to point the device to the
correct location.
540 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Simply click Create to begin the creation of a new tag. The Name field simply
requires the name of the new tag and the Default Value field must show the value
you want assigned to the tag (see Figure 13-30).

Figure 13-30 Tag name and default value

13.4.1 Backup and Restore action configuration
As previously mentioned, the Backup and Restore scenario is enabled during
installation of the IMC Server. The frequency of the backup is essential to
ensuring that your users’ data is safe, but it can be very slow and draining on
battery life.

In a simple testing scenario, an 8 MB Palm VIIx was connected using a modem
and a connection was established into an IMC server sitting in a DMZ using an
AT&T VPN dialer. The Palm had 6 MB of data to be backed up, the results were
as follows:

– Connecting via a Palm 33.6 clip-on modem, a connection speed of 26.4
Kbps was obtained; backing up the 6 MB of data took approximately 40
minutes.

– A Wireless Modem/Cellular Modem can vary by phone manufacturer and
wireless carrier. For example, using a Motorola Talkabout connected via
cable to a Palm at a speed of 14.4 Kbps took over 60 minutes for the 6 MB
of data. This scenario also much affected the cellular battery life.

These results show that forcing full backups on a user is not always the most
appropriate thing to do, but there is always danger in trusting a user to do the
backup himself; however, there is a trade-off between forcing the backup when
the battery life on the device is low and letting the user do it when appropriate.
 Chapter 13. Data synchronization for enterprise applications 541

To alter the frequency of Backup, follow these steps:

1. Click Start -> Programs -> IBM Mobile Connect and locate the IBM Mobile
Connect Administration. Once opened, locate Connect Configuration at the
top of the tree on the left hand side, as shown in Figure 13-31.

Figure 13-31 Connect Configuration

2. Right-click Connect Configuration and select Properties. This brings up the
System Settings dialog shown in Figure 13-32.
542 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-32 Systems Settings

3. The order of the triggers listed can be important; for instance, you may not
want to restore before installing a new application. The order of the triggers
can be changed by highlighting the trigger and then clicking Move Up or
Move Down. The General tab lists the current triggers that are defined.
Locate the Backup trigger and double-click it; this brings up the current
settings illustrated in Figure 13-33.
 Chapter 13. Data synchronization for enterprise applications 543

Figure 13-33 Triggers

4. Now you can change this action to run the By User Request option by clicking
the drop-down menu called Run. When you select the option By User
Request, the text box at the bottom opens up so you can add text to be
displayed on the user’s handheld device.

Figure 13-34 Selecting the By User Request option
544 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Click OK to close the Triggers dialog and then OK again to close the System
Settings window. Click the Disk icon to save the configuration and then the
Stoplight icon to restart the IMC Server service.

Now we can connect with our handheld, using the same procedures used the
first time, except that now we do not need to enter an encryption key.

After your connect is finished, your IMC Client window should look as illustrated
in Figure 13-35.

Figure 13-35 Backing up your data

Now to back up the data, you must simply click the checkbox called Please
Backup your data!!! prior to connecting.

If you go back to the System Settings window and open up the Backup trigger
properties window, you can see that there are other options for scheduling the
Backup; for instance, you could have selected to run the Backup on every
connect (not a good scenario, but possible). This selection is shown in
Figure 13-36.
 Chapter 13. Data synchronization for enterprise applications 545

Figure 13-36 Using the On Every Connect option

There are other options as well, such as On Losing Ownership or On Taking
Ownership, which will perform the action when someone other the original user
signs on. The changing ownership options are useful when there is one device
that could be used by several people; this way, every user’s data is always
backed up.

Restoring data is as simple as having the client click the box called Restore data
from last backup and then click Connect. The Restore function does not imply a
selective restore, but is a complete restore from the last backup. There are no
checkpoint restores or incrementals.

13.4.2 Installation of new applications
The default Install action has an Install action listed under it that will install any
files in the specified directory to the handheld device. If you are using IMC with a
locally attached Palm OS device and you do not intend on using the HotSync
software, you may try changing the install path on the Install Action to

C:\Palm\%User%\Install

Changing this setting on the Install action will allow any new applications to
interact with the Palm Install Tool as normal, but the actual installation can take
place through IBM Mobile Connect. You must make certain that the IMC user ID
corresponds to the Palm Desktop user name.
546 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

This method is not always appropriate and will not work correctly with Windows
CE and Pocket PC platforms. However, it is another way to standardize
configurations when using the Palm OS platform.

13.4.3 Database action configuration
We have a DB2 UDB Version 7.1 database running on Windows 2000 SP2. Our
goal is to transfer phone book type data from the EMPLOYEE table in the
SAMPLE database set up during the DB2 installation to a DB2 Everyplace table
on the Palm OS.

Unfortunately, just getting the data there will not allow you to use it, so you will
have to build an application with the Mobile Applications Builder; this will be
explained in later sections of this chapter.

There are several scenarios in which you can transfer data to an existing Palm
OS application, such as the Memo Pad or the existing Address Book. However,
in some cases the contents of the existing Memo Pad or Address Book entries
will be overwritten.

The Replication Wizard steps you through the general setup of a database
replication action. You can utilize this method to set up a replication of DB2 data,
since it is the most likely to be used by users who do not write code and need to
get database data into a handheld device.

Replication wizard
To start the replication wizard, click Start->Programs->IBM Mobile Connect->
IBM Mobile Connect Administration. Once open, expand the trees on the
left-hand side, right-click Action Sets and select New Action Set (see
Figure 13-37).
 Chapter 13. Data synchronization for enterprise applications 547

Figure 13-37 Action sets

Give the new action a name and description (see Figure 13-38).

Figure 13-38 Action set properties

Click the new action to highlight it and then click the Replication Wizard icon.

The Replication Wizard dialog starts out with the System ODBC data sources
that are defined on the server. The ODBC entries are set up manually in the
Control Panel area of Windows NT and Windows 2000 servers.
548 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

You can see in Figure 13-39 that the ODBC Data Source dialog is a drop-down
menu which will list all ODBC entries listed in the System tab of the
ODBC/DataSources menu in the Control Panel.

The user ID and password are for database authentication, so this user ID and
password must have valid read/write access on the tables you are selecting. At
this point, tags will not be used, but you will need to come back later and
reconfigure the database action to use a tag in the password field.

When you click the Server Table Name field, all of the tables for the data source
that the user ID has access to will appear. You can only select one table; if you
need to synchronize more than one table, you must run the wizard again and a
second action will be created.

The Mobile Table Name will default to the Server Table Name, without the
hostname prefix. Note that you must use the same table name and case when
creating an application in Mobile Application Builder.

In the Mobile System dialog, you are given the choice of System Type; the only
option available is the DB2e Plug-in during the Wizard setup. Once the action is
set up, we can go in and change the System Type to other types, such as Memo
Pad or Address Book. There is also an option to Download Mobile System
Plug-in Automatically; this is selected by default and will create a File Install
event in the action set where you are currently working. This File Install event will
force the download of the DB2e Plug-in library to your handheld devices. The
Connect Install dialog must contain the path to the installation of IBM Mobile
Connect on your server.
 Chapter 13. Data synchronization for enterprise applications 549

Figure 13-39 ODBC data source

After clicking Next, you are presented with the Column Details from the table you
selected. By default, all of the columns are selected for replication. Since the aim
is to create a phone book, you do not need to include items such as salary or
commission, which might be considered confidential.

For example, you will select only a few of the columns and you must also set a
primary key; the primary key for the table is the Employee Number or the
EMPNO column. See Figure 13-40 for a list of columns used in this scenario.

Note: Be certain to highlight the EMPNO and click the Primary Key button.
550 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-40 Database column details

The next dialog shown in Figure 13-41 gives the Server Subset details; a subset
is essentially a filter that can be enacted to further restrict flow. For example, you
can filter on the WORKDEPT column for contents that only match D11. D11 is the
department number for Designers. Using this filter will only allow entries that
match WORKDEPT=D11 criteria to be sent to the handheld.

If you wish to implement a multi-column filter or mobile device to a server filter,
you must complete the replication wizard and go into the properties of the new
Database sync action; this will be covered in a later section. In this sample
scenario, the Server to Handheld Sync Type will be selected.
 Chapter 13. Data synchronization for enterprise applications 551

Figure 13-41 Server details

The next dialog shown in Figure 13-42 demonstrates the ability to allow Schema
changes on the mobile database. The first option listed is Create Mobile DB if
doesn’t exist; this means that if the destination database you have specified does
not exist, it will be created. If this option is not selected and the mobile DB does
not exist, the action will stop the current action and continue with any remaining
actions.

You also have the ability to remove columns and change data type and key
sequences. For example, if you want to remove a column of data from the
handheld device, you would select Delete Columns. Any columns that exist on
the Mobile DB that are no longer required for synchronization will be deleted.
552 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-42 Schema changes

Click Finish and you will be returned to the IMC Administration window. Look
under the Database Sync action set and you will see two new events. The
Download Mobile Plug-in and Database Actions have been created for you.

13.4.4 Changing database action properties
Now that the replication wizard is done, you can look at what was performed.
From the IMC administration window, locate the new database action and
right-click it, then select Properties. The window shown in Figure 13-43 will
appear; this represents the results of the wizard configuration that was
performed.
 Chapter 13. Data synchronization for enterprise applications 553

Figure 13-43 Database action properties

The General tab contains all of the basic settings for database access and type
of destination. The Action drop-down menu allows you to specify the type of sync
that will be done; this allows you to maintain some additional configuration
control over the mobile device. One of the options is Delete Database from
Mobile Device; using this option can act as configuration control for the device,
keeping databases clean.
554 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Other options include:

– Synchronize Server to Mobile

– Synchronize Mobile to Server

– Truncate Database

– Two-Way database Synchronization

The Server Type drop-down menu lists the possible data sources; these include
ODBC, Lotus Notes, MS Exchange and several others: SMTP, LDAP, IMAP and
WCAP. Depending on your Server Type choice, the DataSource drop-down
menu be different.

The user ID and password are for authentication against your data source; note
that you can use the Tag option, allowing for the data to be passed directly from
the IMC Connect client.

Note: As previously mentioned, during the replication wizard setup, the Table
Name is loaded from the data sources.

The Mobile section allows you to specify the plug-in type that you want to use;
this determines where the data will go when it gets to the Mobile Device. During
the replication wizard setup, you are only able to select the DB2e plug-in, but
now you can select several other plug-ins, as illustrated in Figure 13-44.

Figure 13-44 Plug-ins

In Figure 13-44 above, you can see the plug-ins available out of the box. The
Palm Memo, Address, To Do, Calendar and Mail plug-ins allow synchronization
of data directly into those Palm OS applications. The Palm Generic Plug-in
allows you to create specific database entries, generate source code and create
a Palm DataBase file or PDB file.
 Chapter 13. Data synchronization for enterprise applications 555

You can navigate through the tabs; the first tab, Columns, shows the columns
from the SAMPLE DB2 database that will be synchronized in this sample
scenario. You can add columns by clicking Create, and this will present a dialog
that will allow you to create table mappings from the DB2e database to the DB2
server database. This list of columns corresponds to the information on the DB2e
Info tab.

The Filters tab shown in Figure 13-45 displays the WORLKDEPT=D11 selection
criteria that you specified during setup. Note that there is now a custom area;
click the checkbox next to Custom; you can now type your own SQL selection
criteria, if required.

Figure 13-45 Filters

The Details tab allows you to specify a different ODBC connection type,
depending on the special requirements of your back-end database. By default,
Default is selected and works most of the time for most databases.
556 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

13.4.5 Creating database synchronization triggers
Before you can begin using the new action set, you need to create a trigger that
defines when to run it. In this scenario, a database synchronization action set will
run on user requests.

Right click Connect Configuration (see Figure 13-31) and select Properties,
then click the General tab and click Create (see Figure 13-32). This will bring up
the dialog to create a new trigger, as shown in Figure 13-46.

Figure 13-46 Creating a new trigger

Click OK and the trigger will be added to the Starter Group list of triggers.

Note: You must save the configuration and restart the IMC Service to ensure the
changes will be active at the next connection.

The next time a device connects, the new option will be added to the user’s
Connect client window. On the second connection attempt, the database will be
synchronized, provided DB2e is installed on the Mobile. See section 12.4.5 for a
brief overview of the installation of the DB2e client.

13.4.6 DB2 Everyplace client install
Briefly, if you have DB2e installed on a PC/Workstation, the installation of the
client is performed by clicking Start->Programs->IBM DB2 Everyplace->
Install on the mobile device.
 Chapter 13. Data synchronization for enterprise applications 557

You will be presented with the dialog asking you which clients to install (see
Figure 13-47); select the appropriate platform and click OK. Depending on the
platform, additional setup may be required on the mobile device.

Figure 13-47 Selecting the mobile device platform

For Palm Devices, click OK and you are presented with another dialog asking
which user gets the client on this PC(see Figure 13-48), whether the color
display option is wanted, and which components are to be selected.

Figure 13-48 Specifying a user for Palm devices
558 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Click OK and you will receive a confirmation stating that the next time you
perform a hotsync operation, the new files will be sent to your mobile device. The
message is illustrated in Figure 13-49.

Figure 13-49 Hotsync operation message

13.5 Creating a mobile application with DB2 Everyplace
In order to use back-end data once you receive it on your handheld device, you
must have an application designed to view it. In this section, the Mobile
Application Builder is introduced to create a simple application. Portions of DB2
UBD and DB2 Everyplace will be used in this section as well; these products are
well documented and information on their specific functions should be sought in
their respective manuals and documents.

IBM’s DB2 UDB database server comes with a sample database called
SAMPLE; this will be the basis for the data to be retrieved. In this scenario, DB2
Version 7.1 running on a Windows 2000 Service Pack 2 server will be used. Also,
default settings have been chosen during installation and after the installation the
included Create Sample Database from the First Steps window has been
executed.

The DDL information is equivalent to the schema of your database and tables;
refer to the Mobile Application Builder documentation and the examples in this
chapter for proper formatting information. We will begin with the creation of the
sample application by getting to the DDL in a DB2 Version 7.1 database.

In this section, two scenarios are provided for getting the DDL from a DB2
database. The first scenario will involve retrieving the DDL from the DB2 Control
Center and the second scenario will do the same using the command line
interface (CLI).
 Chapter 13. Data synchronization for enterprise applications 559

13.5.1 Generating DDL using DB2 Control Center
As an example, execute the following steps to generate a DDL using the DB2
Control Center:

1. First, locate your DB2 Command Center and sign on as the administrator for
the SAMPLE database, as shown in Figure 13-50.

Figure 13-50 Control Center sign-on

2. Locate the SAMPLE database by navigating through the directory trees, as
shown in Figure 13-51.

Figure 13-51 Sample database

3. Right-click the SAMPLE database and locate Generate DDL (see
Figure 13-52).
560 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-52 Locating Generate DDL
 Chapter 13. Data synchronization for enterprise applications 561

4. Click Generate DDL to begin the process. You will be prompted with a
window asking for several details; in this scenario, default values will be taken
(see Figure 13-53).

Figure 13-53 Generate DDL window

5. You will be prompted for the user ID and password for the job. The Generate
DDL function is actually running the DB2 commands using the internal DB2
job scheduler. The output will take about 15-30 seconds to be written. The
DDL is stored in a file, db2_0.out, in the C:\SQLLIB directory on an NT Server.
Open this file for viewing. Figure 12-12 shows portions of the generated DDL.
562 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-54 Generated DDL
 Chapter 13. Data synchronization for enterprise applications 563

Note: The contents of the file are the construct of the actual tables within the
database. This will serve as the basis for the application to view data and update
records.

13.5.2 Generating the DDL from a command line
All of the steps that were performed using the DB2 Control Center can be
accomplished through the command line as well. Sometimes the Command Line
Interface is more appropriate for a given situation and other times it is the only
interface available.

For example, on a Windows NT or Windows 2000 DB2 server, locate the DB2
Command Window and open it (see Figure 13-55).

Figure 13-55 Locating the DB2 command line

Once at the DB2 Command window, type in, for example, the following
command:

db2look -d SAMPLE -u DB2ADMIN -e -l -x -c -o db2_0.out

The above statement extracts the same DDL information as found by going
through the DB2 Command Center. The default directory for the DB2 Command
Window is C:\SQLLIB\bin; as such, the db2_0.out file will be located here instead
of on C:\SQLLIB.

Note: In some cases, you will have to clean up the DDL output to be used in the
Mobile Application Builder; some of the characters generated in the output are
not supported in DB2e.

13.5.3 DDL preparation
Now that you have extracted the DDL structure, you have to clean it up and pick
out only what you need. In this sample scenario, the focus is on the EMPLOYEE
table. Locate and extract the data shown in Figure 13-56.
564 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-56 Sample DDL statement

Now you will need to make the file look like the one shown in Figure 13-57;
unfortunately, we are not aware of any automated tool for converting the DDL for
use in DB2e, and therefore this is a manual effort in this scenario.

Figure 13-57 Updated DDL statement

This change brings the structure into proper formatting for DB2e. Note the subtle
differences such as double parentheses on the last line. Save the output into a
new file called employee.ddl and remember where you put it. We will come back
to it in the next section.
 Chapter 13. Data synchronization for enterprise applications 565

13.5.4 Creating the mobile application
In creating the mobile application, you will be using the IBM Mobile Application
Builder; our assumption is that you have the Mobile Application Builder installed
with all of its requisites.

Note: If the Mobile Application Builder is not installed, refer to
http://www-4.ibm.com/software/data/db2/everyplace/downloads.html for the Mobile
Application Builder download, which includes the detailed installation
information.

Following are the suggested steps to create the mobile application:

1. Start Mobile Application Builder by clicking Start->Programs->IBM DB2
Everyplace->Mobile Application Builder.

2. When presented with a dialog asking if this is a new project, existing project or
whether you wish to continue working on the last project, select New Project
and click OK (see Figure 13-58).

Figure 13-58 Starting a new project

3. The next dialog gives you the options of naming the project, the project
directory where you will save it, the application name, the target device type
and the application ID.
566 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Make certain with the Application ID that you reference Palm Inc.’s Web site,
register your application and get an assigned Application ID. Otherwise, you
risk having duplicate Application IDs on the same device. For testing and/or
development purposes only, fill out the dialog as demonstrated in
Figure 13-59 and click Finish.

Note: The URL for registering Palm Applications is:

http://dev.palmos.com/creatorid/

This URL may require further registration once reached.

Figure 13-59 Creating new project options

4. When the Mobile Application Builder opens, you will need to import the
employee.ddl file that you have generated in the previous section. As
illustrated in Figure 13-60, right-click Tables and select Import Table.
 Chapter 13. Data synchronization for enterprise applications 567

Figure 13-60 Tables

5. Locate the employee.ddl file, highlight it and select Open, as shown in
Figure 13-61.

Figure 13-61 Locate DDL

6. You are now back at the Mobile Application Builder, under Tables; you will
now see the EMPLOYEE table listed. Right-click the EMPLOYEE table and
select Launch form creation wizard, as shown in Figure 13-62.
568 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-62 Launching the Form Creation wizard

7. The Form Creation Wizard reads all the column entries from the imported
employee.ddl file. Since you cleaned up the employee.ddl file earlier, you can
leave all of the columns selected. Click Next to continue, as illustrated in
Figure 13-63.

Figure 13-63 Form Creation Wizard
 Chapter 13. Data synchronization for enterprise applications 569

8. The next window give you options as to what you want to be able to do with
the data once you get it, for example, Create, Update, Delete, and so on. The
data is controlled at a central source and, in this scenario, you will not be
giving the users the ability to Create, Update or Delete. Only viewing the data
will be possible. Deselect the Create, Update and Delete options as shown in
Figure 13-64 and click Finish when you are finished.

Figure 13-64 Database operations

9. You are now returned to the Mobile Application Builder desktop and are
presented with a new form. This new form is the application the wizard has
generated the appropriate SQL calls for a DB2e table named EMPLOYEE
and has also generated the fields on the form. This is illustrated in
Figure 13-65.
570 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-65 Generated fields

10.You will need to remove the default Form 1 that was created. As shown in
Figure 13-66, right-click Form1 in the tree on the left hand side and select the
Delete option.

Figure 13-66 Deleting the default form
 Chapter 13. Data synchronization for enterprise applications 571

11.Save the new application by clicking the disk icon on the toolbar. Next, you
will build the application. Building is the actual process of generating the PRC
file for use on the Palm OS devices. Click Build and then select Build as
shown in Figure 13-67.

Figure 13-67 Build option

12.Once the Application Build is complete, you will receive an acknowledgment
of a successful build, as illustrated in Figure 13-68.

Figure 13-68 Application build successful message

13.Now you will need to load the application onto the Palm OS device; make
certain that you have already used IMC to synchronize the data into DB2e.
See Section 13.4.3, “Database action configuration” on page 547 for details.

14.Once the application is installed, locate the Phone Book icon and click it.
Instantly, you are presented with the data stored in the EMPLOYEE table.
Click the buttons at the bottom to navigate through the records.
572 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 13-69 Running the application

Obviously, this is a very simple application, but it lets you view fairly easily the
data that IMC has synchronized to your mobile device.
 Chapter 13. Data synchronization for enterprise applications 573

574 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Chapter 14. Transaction messaging

This chapter describes the MQSeries Everyplace component of the IBM
WebSphere Everyplace Server; it contains:

� “Overview” on page 576

– Provides a description of MQSeries Everyplace and its features, and also
a comparison with standard MQSeries

� “Installation and samples” on page 586

– Describes the installation of MQSeries Everyplace, and explains how to
run one of the supplied examples

� “ChatRoom: an MQSeries Everyplace application” on page 595 to “Setting up
the ChatRoom queue managers” on page 620

– Describe a sample application called the Chat Room, the aim of which is to
demonstrate various features of MQSeries Everyplace such as:

• Running the queue manager in client and server mode

• Running the queue manager as a servlet in IBM WebSphere
Application Server

• Different queue types, such as local and Home Server

• Synchronous and asynchronous messaging

• Encryption of messages

14
© Copyright IBM Corp. 2002 575

� “Extending the YourCo application” on page 661

• Describe how MQSeries Everyplace can be used to extend access to
existing applications

• Demonstrates a simple customized authentication adapter

� “Integration with WebSphere Everyplace Suite” on page 670

• Describes how Wireless Gateway can be used to support MQSeries
Everyplace applications on wireless type devices

14.1 Overview
The purpose of MQSeries Everyplace is to provide a once-only assured delivery
of messages for applications running on devices with one or more of the following
characteristics:

– The device typically could not support a fully configured MQSeries queue
manager.

– The device will connect using a wireless protocol.

The type of devices that would use MQSeries Everyplace ar:

– Personal Digital Assistants (PDAs)

– Phones

– Sensors

– Laptops

As these sorts of devices are typically used outside of an organization’s intranet,
security is an important factor. MQSeries Everyplace provides comprehensive
security capabilities to address this potential problem.

A detailed introduction to MQSeries Everyplace can be found in the manual
MQSeries Everyplace Introduction, GC34-5843. The following sections provide a
brief overview of the MQSeries Everyplace functionality. The following diagram
provides a high-level overview of the MQSeries Everyplace components.
576 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 14-1 MQSeries Everyplace components

14.1.1 Queue Manager comparison
The concept of queue managers is quite different in MQSeries Everyplace and in
the standard MQSeries product.

With standard MQSeries, the typical process is for a MQSeries system
administrator to install the MQSeries product, then create a queue manager,
channels and queues. The queue manager is generally started and remains
active for an extended period of time, weeks or longer. Application developers
then use the MQSeries APIs to send and receive messages from the queue
manager.

In MQSeries Everyplace, however, a set of Java classes and C bindings are
provided, which are used by programs to create and control the operation of
queue managers. For example, in standard MQSeries, the CRTMQM command is
used to create a queue manager; however, there is no equivalent command
within MQSeries Everyplace, in fact there are no commands at all.

MQSeries Everyplace queue managers are object-oriented. Essentially,
MQSeries Everyplace queue managers function as part of the application code.
They are active only as long as the application program that activates them is
running.

Device(s)

Existing MQSeries
Customer-written
(New)

Customer-written
(Existing or New)

Application

MQ SPI

AIX
OS/2
HP-UX
AT&T GIS
Windows NT
Sun Solaris
SunOS
SINIX
DC/OSx
MVS/ESA
AS/400
OpenVMS
DYNIX/ptx
Digital UNIX
Tandem NSK
VSE/ESA ...

MQSeries
Everyplace

Gateway Server

Windows NT/2000
AIX

MQSeries
Everyplace
Gateway

Application

MQ SPI/MQI

MQSeries

MQSeries
Integrator

MQSeries
Workflow

Network

 Any MQSeries
MQSeries Integrator
MQSeries Workflow
Platform

Application

MQI

MQSeries
Everyplace
Device Code

Java
 - EPOC
 - WinCE
 - Win xx
C subset
 - Palm OS

MQSeries Everyplace Components
 Chapter 14. Transaction messaging 577

For example, in the case where the Java classes are used to create a queue
manager, the queue manager exists as an object in the Java Virtual Machine
(JVM).

14.1.2 Creating an MQSeries Everyplace Queue Manager
To simplify the discussion, we will describe the process of creating MQSeries
Everyplace queue managers using the supplied Java classes.

The process of creating a MQSeries Everyplace queue manager involves writing
a program. The program needs to do the following:

a. Create and activate an instance of MQeQueueManagerConfigure

b. Set the queue manager properties and queue manager definition

c. Create definitions for the default queues

d. Close the MQeQueueManagerConfigure instance

Typically, an .ini file is used to store start-up parameters associated with the
queue manager. It contains a number of parameters that describe the queue
manager, the two most important probably being:

– The name of the queue manager

– Details about the registry location used to store definitional information
that describes the queue manager

The registry location is a directory on the disk subsystem where MQSeries
Everyplace will store information about the queue manager, such as queue and
connection definitions.

Using the information from the .ini file, a program uses the appropriate Java
classes to first create the queue manager and then to subsequently start the
queue manager when required.

More details about this process can be found in the MQSeries Everyplace
Programming Guide, SC34-5845.

14.1.3 Types of queue managers
All MQSeries Everyplace queue managers are essentially the same, but the
functionality they use determines what sort of role they are being used for.
578 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The three roles or types of MQSeries Everyplace queue managers are:

– Client

– Server

– Gateway

The process of creating and starting the queue manager is still the same
regardless of what type of queue manager is being used. The diagram shown in
Figure 14-2 is an overview of the configuration for an MQSeries Everyplace
queue manager.

Figure 14-2 Queue manager configuration

Client queue manager
A client queue manager can connect to any number of other MQSeries
Everyplace queue managers using a client server type channel. A client queue
manager would typically be active for a short period of time.

For example, a salesperson, each time they make a sale, may start up an
application on their laptop. The application starts the client queue manager,
writes information to a queue, and then ends, stopping the queue manager as
well. At the end of the day, the salesman dials up the office from home, starts the
application again, which starts the client queue manager, which can now connect
to a server queue manager and transfer the messages.

Queue
Manager

Adapter

Registry

Configuration Data
- Queue Manager
- Queues
- Connections
- Security

Configuration
Store

Start-up
Parameters
- MQeFields
(.ini file)

Start-up parms

Adapters

Default Queues

Queue
Store
 Chapter 14. Transaction messaging 579

Server queue manager
A server queue manager is one that typically runs for a long period of time.
Additionally, it can connect to any number of other non-client type queue
managers. Typically, it would be located at some central location in the
organization, and the client queue managers would connect to it.

Gateway queue manager
A gateway queue manager is a server queue manager that has been configured
with the ability to use the MQSeries-bridge function. This functionality allows
messages to flow between MQSeries Everyplace queue managers and standard
MQSeries queue managers.

14.1.4 Channel types
In MQSeries Everyplace, your program would define a connection to one or more
queue managers. When the program tries to send a message, MQSeries
Everyplace will dynamically create a channel to the other queue manager.

MQSeries Everyplace has two types of channels:

– Peer to peer

– Client server

Peer to peer channel
A peer to peer channel has the following characteristics:

– It can be established by the queue manager at either end of the channel.

– The queue manager at each end can send or receive messages.

– A queue manager can have any number of active peer to peer channels to
other queue managers.

– A queue manager can only have one active peer to peer channel
connected to it.

Client server channel
A client server channel has the following characteristics:

– It can be established from the client end of the connection.

– Only the queue manager at the client end can send or retrieve messages.

– A client queue manager can connect using client server channels to any
number of server queue managers.
580 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.1.5 Adapters
In MQSeries Everyplace, adapters are used to map MQSeries Everyplace
components into device interfaces. Certain adapters are also used to control
storage of queues into appropriate storage mediums.

MQeDiskFieldsAdapter
This adapter provides support for reading and writing MQeFields object data and
message information to a local file system. Typically, this is the default adapter
for queues and the registry, since it offers the greatest assurance that data has
not been lost. It does not rely on the operating system to do lazy writes to disk.

MQeMemoryFields Adapter
This adapter provides a non-persistent, temporary store for messages in
memory. However, it cannot be used for the registry.

MQeReducedDiskFieldsAdapter
This adapter provides support for a high speed alternative to the
MQeDiskFieldsAdapter for writing MQeFields object data and message
information to disk. However, it does introduce a dependency on the operating
system staying up long enough to empty its buffers on the physical disk
subsystem.

MQeTcpipAdapter
This adapter provides support for reading data over TCP/IP streams. It is used as
the ancestor object for other adapters and cannot be used directly.

MQeTcpipHttpAdapter
This adapter extends the MQeTcpip adapter to provide basic support for the
HTTP 1.0 protocol.

MQeTcpipLengthAdapter
This adapter extends the MQeTcpipAdapter to provide a simple, byte-efficient
protocol.

MQeTcpipHistoryAdapter
This adapter extends the MQeTcpipAdapter to provide a more efficient protocol
that caches recently used data. This adapter takes options, such as
<PERSIST><HISTORY>.
 Chapter 14. Transaction messaging 581

MQeUdpipAdapter
This adapter provides support for assured data transfer over UDP/IP datagrams.

MQeWesAuthenticationAdapter
This adapter provides support for tunneling HTTP requests through IBM
WebSphere Everyplace Authentication and transparent proxies.

14.1.6 Types of messaging
In standard MQSeries, all messaging is asynchronous, in that a message must
be committed to a queue before another process can remove it. In MQSeries
Everyplace, there are two types of message delivery: asynchronous and
synchronous.

Asynchronous messaging
Asynchronous messaging is similar to standard MQSeries operation. An
application on one MQSeries Everyplace queue manager wants to put a
message in a queue located on some other MQSeries Everyplace queue
manager. The local queue manager requires a remote queue definition of the
target queue.

The application puts the message in the remote queue, but it is actually stored
locally in the local definition of the remote queue. Some time later, MQSeries
Everyplace will deliver that message to the remote queue through the remote
queue manager. Actual transmission of the message occusr when the
connection between the queue managers becomes available.

Where these messages for remote queues are stored is controlled by the local
definition of that queue on the local queue manager. Different adaptors are
available to control where these messages are stored. For example, there is an
adaptor to have the messages saved to disk, but there is also one to save the
messages to memory.

Synchronous messaging
Synchronous messaging is when an application attempts to put a message in a
remote queue at a remote queue manager. MQSeries Everyplace will transmit
the message only if both the local and target queue managers are online and a
connection can be established.

The advantage of synchronous messaging is performance, in that the message
is not saved locally, but rather transmitted immediately; another advantage is
actually knowing that a message has reached its destination.
582 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.1.7 Messages
In standard MQSeries, there are a number of different types of fixed format
messages. The main type is the standard message, which consists of an
MQSeries Message Descriptor and the application message. The message
descriptor contains a number of fields used by MQSeries.

In MQSeries Everyplace, messages are message objects. There is no concept of
a message header or body. In MQSeries Everyplace, a message consists of a
unique identifier which is generated automatically, plus one or more named field
objects.

Each field object consists of:

– A name

– A type indicator,for example numeric, character, etc.

– A value

The following diagram illustrates this concept:

Figure 14-3 MQSeries Everyplace message structure

Each field object is responsible for defining how it is stored and retrieved from a
queue. When an application builds a message, it will eventually put the message
in a queue; when it does, MQSeries Everyplace uses the dump specification on
each field object to determine how the value of the field is stored in the queue for
transmission. At the end, when an application retrieves the message, MQSeries
Everyplace will use the restore specification on each field object to determine
how to restore the transmitted data back to its original format.

Message Data Data Type Name

Field Object

Field

Message

Field Field
 Chapter 14. Transaction messaging 583

14.1.8 Message persistence
There is no concept of persistent and non-persistent messages in MQSeries
Everyplace, as essentially every message is treated as persistent. However, the
strength of this persistence depends on what method is being used to achieve it.

For example, you could define that messages are to be persisted to memory;
clearly, if the device is turned off, the messages are lost. Alternatively, you could
specify that the messages should be written to disk. This means that if the device
is powered off, the messages are still there on the disk drive for subsequent
retrieval and transmission.

MQSeries Everyplace supplies a number of adaptors to handle this persistence,
but application programmers can develop their own, for example to persist
message data to a database.

14.1.9 MQSeries Everyplace Bridge
The mechanism that allows standard MQSeries and MQSeries Everyplace to
exchange messages is referred to as the MQSeries Everyplace Bridge.

This bridging mechanism is in reality a standard MQSeries Java client
connection into a standard MQSeries queue manager. Since standard MQSeries
client channels are used, once-only assured delivery of messages is performed.
In this way, messages transmitted between MQSeries Everyplace and MQSeries
cannot be lost.

A default transformer is supplied with MQSeries Everyplace, which handles
conversion between the standard MQSeries format and the MQSeries
Everyplace message structure. However, it is possible to develop your own
customized transformer.

14.1.10 Administration
The standard MQSeries product provides administration tools, for example the
runmqsc command, which allows you to define queues, channels, etc.

MQSeries Everyplace administration is done using specialized administration
messages sent to the queue manager. Performing this type of administration
requires that the queue manager be defined with the following two queues:

– AdminQ

– AdminReplyQ
584 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Performing this administration requires writing an application program. The
program needs to build the administration request and send it to the AdminQ on
the target queue manager. When the message is received by the target queue
manager, it is processed. The resource at which the message is targeted uses
the administration information in the message to process the request.

14.1.11 ES02 Support Pac
As mentioned in the previous sections, the creation of the queue manager and
associated objects is achieved by writing appropriate programs. While not a
complex task, it does require some familiarity with MQSeries Everyplace.

To get going faster with MQSeries Everyplace, it is strongly recommended that
you use the ES02 Support Pac, available at no charge from IBM. This
SupportPac provides what it calls an Explorer. This is a Java-based GUI
administration tool. It is a set of classes that perform the tasks described above.
The GUI interface lets you define queue managers, queues and connections,
and perform many other functions related to MQSeries Everyplace.

It can be downloaded from the following Web site:

http://www-4.ibm.com/software/ts/mqseries/txppacs/txpsumm.html

14.1.12 Security
MQSeries Everyplace provides a comprehensive set of security features to
protect message data when held locally or transmitted between queue
managers. These features provide authentication, encryption and comclickion.

Full details about security are comprehensively covered in the manual MQSeries
Everyplace Introduction, GC34-5843. However, we will briefly describe the three
categories of security provided:

– Local security, which provides local protection of messages

– Queue-based security, which provides protection of messages between
queue managers

– Message level security, which provides message level protection between
initiator and recipient

The above security features are invoked when a message is stored or retrieved
by MQSeries Everyplace.

Local security
Local security can be used by an application to store a message locally in a
queue manager, for example to encrypt a message stored on a local queue.
 Chapter 14. Transaction messaging 585

http://www-4.ibm.com/software/ts/mqseries/txppacs/txpsumm.html

Queue-based security
Using queue-based security means that the application can leave the issue of
security to MQSeries Everyplace. The queues can be defined with attributes that
control the type of authentication and encryption used between queue managers.

The only exception is that authentication cannot be performed for asynchronous
messaging. If authentication is required, then message level security must be
used.

Message level security
Using message level security requires the application to set up the message level
attribute when putting the message in the queue. There are two supplied
attributes that can be used by applications:

– MQeMAttribute

– MQeMTrustAttribute

MQeMAttribute can be used between queue managers where there is a high
degree of trust, as it provides a high level of encryption without the use of Public
Key Infrastructure technology.

MQeMTrustAttribute provides a more advanced solution, involving the use of
Public Key Infrastructure (PKI). This approach involves the use of digital
certificates to authenticate the parties at both ends. As with all certificate-based
security mechanisms, it is not a trivial exercise to set up and manage. The
documentation in the MQSeries Everyplace covers this area in depth.

14.2 Installation and samples
This section provides a brief overview of the installation of MQSeries Everyplace
and the running of some of the supplied samples. A detailed description is
available in the MQSeries Everyplace Read Me First manual, GC34-5862.

14.2.1 Installation overview
On AIX platforms, the IBM WebSphere Everyplace Server installer can be used
to install MQSeries Everyplace.

On Windows platforms, MQSeries Everyplace installation is performed by
executing a supplied Java .jar file. When executed, a standard installation
process is driven, asking where you want to install the product, etc. For example,
after accepting all the defaults during installation on a Windows 2000 system,
you would see the product installed into the C:\Program Files\MQe directory.
586 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

After installation is complete, the directory where MQSeries Everyplace was
installed will contain the Java classes and C bindings that can be used by
applications.

Version 1.2.1 of MQSeries Everyplace is shipped with IBM WebSphere
Everyplace Server. However, version 1.2.4 of MQSeries Everyplace can be
downloaded from http://www-4.ibm.com/software/ts/mqseries/everyplace/.
This later version, version1.24, was used during the development of this chapter.

14.2.2 Supplied samples
A number of sample programs are supplied with the product; they can be used to
verify that the installed classes are working and to provide sample code showing
how to use the classes.

Chapter 2 of the MQSeries Everyplace Programming Guide, SC34-5845,
provides details on the supplied examples and the different functionality they
show.

The simplest example to try as a first step would involve creating and using an
MQSeries Everyplace queue manager.

Creating a sample queue manager
The first step is to create an example queue manager. The Windows platform is
used in this example, but the process is similar on a Unix platform.

First, open a command prompt window and change to the directory where
MQSeries Everyplace examples for Windows are installed, in this case to
C:\Program Files\MQe\Java\Demo\Windows.

To create a sample queue manager, type in:

CreateExampleQm.bat

This batch file uses as input an .ini file called ExamplesMQeServer.ini. The
output produced by running this command looks lke this:

Example 14-1 Output of CreateExampleQm.bat

C:\Program Files\MQe\Java\demo\Windows>createexampleqm

C:\Program Files\MQe\Java\demo\Windows>REM Create the example queue manager -
ExampleQM

C:\Program Files\MQe\Java\demo\Windows>REM
 Chapter 14. Transaction messaging 587

http://www-4.ibm.com/software/ts/mqseries/everyplace/

C:\Program Files\MQe\Java\demo\Windows>REM This batch file invokes the java
class that creates and populates a

C:\Program Files\MQe\Java\demo\Windows>REM registry for the example queue
manager. The registry must be populated

C:\Program Files\MQe\Java\demo\Windows>REM before a Queue Manager can run. The
queue manager created is determined

C:\Program Files\MQe\Java\demo\Windows>REM by entries in queue manager startup
parameters. The examples shipped

C:\Program Files\MQe\Java\demo\Windows>REM with MQSeries Everyplace use ini
files to hold the parameters. By default

C:\Program Files\MQe\Java\demo\Windows>REM .\ExamplesMQeServer.ini startup
parameters file is used.

C:\Program Files\MQe\Java\demo\Windows>REM

C:\Program Files\MQe\Java\demo\Windows>REM Parameters

C:\Program Files\MQe\Java\demo\Windows>REM java environment name (see
JavaEnv.bat file for details)

C:\Program Files\MQe\Java\demo\Windows>call JavaEnv

C:\Program Files\MQe\Java\demo\Windows>Set JDK=c:\IBM\jdk1.1.8

C:\Program Files\MQe\Java\demo\Windows>set JavaCmd=java

C:\Program Files\MQe\Java\demo\Windows>Set PATH=c:\IBM\jdk1.1.8\bin;C:\Program
Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\
System32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:
\Program Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin

C:\Program Files\MQe\Java\demo\Windows>set MQE_BASE_DIR=C:\Program Files\MQe

C:\Program Files\MQe\Java\demo\Windows>set CLASSPATH=C:\Program
Files\MQe\java;..\..

C:\Program Files\MQe\Java\demo\Windows>set CLASSPATH=C:\Program
Files\MQe\java;..\..;c:\IBM\jdk1.1.8\lib\classes.zip

C:\Program Files\MQe\Java\demo\Windows>set MQDIR=C:\Program Files\IBM\MQSeries
588 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program
Files\IBM\MQSeries\java\lib" set CLASSPATH=C:\Program
Files\MQe\java;..\..;c:\IBM\jdk1.1.8\lib\classes.zip;C:\Program
Files\IBM\MQSeries\java\lib;C:\Program
Files\IBM\MQSeries\java\lib\com.ibm.mq.jar;C:\Program
Files\IBM\MQSeries\java\lib\com.ibm.mqbind.jar;C:\Program
Files\IBM\MQSeries\java\lib\com.ibm.mq.iiop.jar

C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program
Files\IBM\MQSeries\java\lib" set PATH=c:\IBM\jdk1.1.8\bin;C:\Program
Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\
System32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin;C:\Program
Files\IBM\MQSeries\java\lib

C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program
Files\IBM\MQSeries\bin" set PATH=c:\IBM\jdk1.1.8\bin;C:\Program
Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\
System32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin;C:\Program Files\IBM\MQSeries\bin;

C:\Program Files\MQe\Java\demo\Windows>java examples.install.SimpleCreateQM.\Ex
amplesMQeServer.ini .\ExampleQM\Queues\

C:\Program Files\MQe\Java\demo\Windows>

After this sample completes, a new directory called ExampleQM will be present.
This is the location specified to store the registry information and queues used
for the sample queue manager. An expanded view of this directory is shown in
Figure 14-4 on page 590.
 Chapter 14. Transaction messaging 589

Figure 14-4 Expanded view of a queue manager

Using the example queue manager
The next step is to use this example queue manager. From the same command
prompt window, type in:

ExampleMQeClientTest

What the sample does is to write a simple message to the queue
SYSTEM.DEFAULT.LOCAL.QUEUE and then retrieve it.

The output produced is shown in Example 14-2.

Example 14-2 Output of ExampleQeClientTest

C:\Program Files\MQe\Java\demo\Windows>examplesmqeclienttest
C:\Program Files\MQe\Java\demo\Windows>call JavaEnv
C:\Program Files\MQe\Java\demo\Windows>Set JDK=c:\IBM\jdk1.1.8
C:\Program Files\MQe\Java\demo\Windows>set JavaCmd=java
590 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

C:\Program Files\MQe\Java\demo\Windows>Set PATH=c:\IBM\jdk1.1.8\bin;C:\Program
Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\
System32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin

C:\Program Files\MQe\Java\demo\Windows>set MQE_BASE_DIR=C:\Program Files\MQe
C:\Program Files\MQe\Java\demo\Windows>set CLASSPATH=C:\Program
Files\MQe\java;..\..
C:\Program Files\MQe\Java\demo\Windows>set CLASSPATH=C:\Program
Files\MQe\java;..\..;c:\IBM\jdk1.1.8\lib\classes.zip
C:\Program Files\MQe\Java\demo\Windows>set MQDIR=C:\Program Files\IBM\MQSeries
C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program
Files\IBM\MQSeries\java\lib" set CLASSPATH=C:\Program
Files\MQe\java;..\..;c:\IBM\jdk1.1.8\lib\classes.zip;C:\Program
Files\IBM\MQSeries\java\lib;C:\Program
Files\IBM\MQSeries\java\lib\com.ibm.mq.jar;C:\Program
Files\IBM\MQSeries\java\lib\com.ibm.mqbind.jar;C:\Program
Files\IBM\MQSeries\java\lib\com.ibm.mq.iiop.jar
C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program
Files\IBM\MQSeries\java\lib" set PATH=c:\IBM\jdk1.1.8\bin;C:\Program
Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\
System32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin;C:\Program
Files\IBM\MQSeries\java\lib
C:\Program Files\MQe\Java\demo\Windows>if Exist "C:\Program
Files\IBM\MQSeries\bin" set PATH=c:\IBM\jdk1.1.8\bin;C:\Program
Files\ibm\gsk5\lib;C:\IBM
Connectors\Encina\bin;C:\IBMCON~1\CICS\BIN;C:\WINNT\system32;C:\WINNT;C:\WINNT\
System32\Wbem;C:\IMNnq_NT;C:\Program Files\SQLLIB\BIN;C:\Program
Files\SQLLIB\FUNCTION;C:\Program Files\SQLLIB\SAMPLES\REPL;C:\Program
Files\SQLLIB\HELP;C:\WebSphere\AppServer\bin;C:\Program Files\IBM\MQSeries\bin;

C:\Program Files\MQe\Java\demo\Windows>java examples.application.Example1
ExampleQM .\ExamplesMQeClient.ini
Example1 Started
..Start a queue manager using ini file: .\ExamplesMQeClient.ini
... nested fields [Registry]
LocalRegType = FileRegistry

DirName = .\ExampleQM\Registry\

Adapter = RegistryAdapter

... nested fields [QueueManager]
Name = ExampleQM
 Chapter 14. Transaction messaging 591

... nested fields [Alias]
QueueManager = com.ibm.mqe.MQeQueueManager

DefaultTransporter = com.ibm.mqe.MQeTransporter

RegistryAdapter = com.ibm.mqe.adapters.MQeDiskFieldsAdapter

Trace = examples.trace.MQeTrace

MsgLog = com.ibm.mqe.adapters.MQeDiskFieldsAdapter

EventLog = examples.log.LogToDiskFile

PrivateRegistry = com.ibm.mqe.registry.MQePrivateSession

FastNetwork = com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

FileRegistry = com.ibm.mqe.registry.MQeFileSession

ChannelAttrRules = examples.rules.AttributeRule

AttributeKey_2 = com.ibm.mqe.attributes.MQeSharedKey

AttributeKey_1 = com.ibm.mqe.MQeKey

DefaultChannel = com.ibm.mqe.MQeChannel

Network = com.ibm.mqe.adapters.MQeTcpipHttpAdapter

..Started queue manager: ExampleQM

..Create a message and add data:Example1:Humpty dumpty sat on a wall ...

..Put the message to QM/queue: ExampleQM/SYSTEM.DEFAULT.LOCAL.QUEUE

..Get a message from QM/queue: ExampleQM/SYSTEM.DEFAULT.LOCAL.QUEUE

..Message retrieved contains data Example1:Humpty dumpty sat on a wall ...
Example1 Finished
C:\Program Files\MQe\Java\demo\Windows>

As mentioned in the overview section, the queue manager, though defined, only
becomes active when an application program activates it.
592 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.2.3 Integration with VisualAge for Java
After installing MQSeries Everyplace, notice that in the <install
directory>/java/jars directory are the following .jar files containing the Java classes
associated with the product:

– MQeExamples.jar

– MQEHighSecurity.jar

– MQeMQBridge.jar

– MQeMiniCertificateServer.jar

– MQeGateway.jar

– MQeDevice.jar

– MQeDiagnostics.jar

To develop programs which use MQSeries Everyplace using VisualAge for Java,
the above packages need to be imported. The following section outlines the
steps to do this:

1. Start VisualAge for Java

2. Create a project to contain the application you plan to develop, for example
ITSO WES MQe Example.

3. Import the MQSeries Everyplace Java .jar files into the project. From the
Workbench window, select File -> import. Select the radio button to indicate
that the source to be imported is a .jar file. Click Enter; you will then view the
display shown in Figure 14-5 on page 594.
 Chapter 14. Transaction messaging 593

.

Figure 14-5 Importing .jar files

4. Use the Browse button to locate the .jar file to import and then click Finish.

Additional information on using VisualAge for Java to develop applications can be
found in the IBM redbook, Programming with VisualAge for Java V3.5,
SG24-5264.
594 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.3 ChatRoom: an MQSeries Everyplace application
This section describes a sample application that uses MQSeries Everyplace.
The aim of this is to show how an application can use MQSeries Everyplace. The
application shows the use of:

– Server type queue manager

– Client type queue manager

– Queue manager running as a servlet in IBM WebSphere Application
Server

– Local queue

– Remote queue

– Store and forward queue

– Synchronous messaging

– Asynchronous messaging

– Use of queue manager and queue aliasing

– Controlling access to a queue using an authority adapter

– Encryption of messages

The Windows platform is used throughout this chapter to describe the
application; however, the AIX platform can be used if desired.

The application consists of three queue managers. They can all be run on one
Windows system, or spread out over three if desired.

14.3.1 Overview
This sample application is an implementation of a chat room, except that
MQSeries Everyplace is used to transfer the chat as messages between the two
participants. The example has been kept simple, and as such this particular chat
room only supports two participants, the server and one client.

The diagram in Figure 14-4 on page 590shows an overview of the application
and the queue managers used.

First, we will describe how the application works, then describe how to set up this
application and the programs that support it.
 Chapter 14. Transaction messaging 595

Figure 14-6 Overview of application

The chat room
This application implements a simple chat room. When run, two Java Swing
windows are displayed, the titles of the windows being:

– MQSeries Everyplace Server

– MQSeries Everyplace Client

Each window has an output text box to display chat messages that are sent and
received.

Each window has two input text boxes. Text entered into the box labelled Chat
Direct is sent directly between the ClientQm and ServerQm queue managers.

Text entered into the box labelled Chat Via WebSphere is also sent between the
ClientQm and ServerQm queue managers, but passes through the
WASServerQm queue manager running in a servlet in the IBM WebSphere
Application Server.

Chat Direct

Chat Room

Client

Chat Via WebSphere

Chat Direct

Chat Room

Chat Via WebSphere

Server

WASServerQm

WebSphere Application Server

ClientQm ServerQm

WebSphere Application Server
596 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Additionally, the client window has three extra buttons labelled:

– Trigger Transmission

– Display Admin GUI

– YourCo Secure Query

The Trigger Transmission button is described in “Asynchronous chatting” on
page 653.

The Display Admin GUI button is described in “The administration GUI” on
page 655.

The YourCoQuery button is described in “YourCo extensions” on page 662.

When first started, the Chat Direct input text box in the server window is disabled.
Only when the client sends a message does it become enabled.

All that is required to send a message to the other participant is to type in some
text in the input text boxes, and then click the Enter key.

14.3.2 The queue managers
Three MQSeries Everyplace queue managers are used for this application.

Client side
The application that operates the client side of the chat room uses a client type
queue manager. This is an example of how an application is started, and then
starts the queue manager to perform messaging.

In this example, the client queue manager is called ClientQm.

Server side
The application that operates the server side of the chat room uses a server type
MQseries Everyplace queue manager. This is an example of how the queue
manager is initially started, and an application loaded after startup is complete.

In this example, the server queue manager is called ServerQm.

IBM WebSphere Application Server
Within WebSphere, a servlet is used to run the queue manager. This queue
manager is used to act an a intermediary queue manager between the client and
server queue managers, but is also used to allow access to the YourCo sample
application that comes with the IBM WebSphere Application Server.
 Chapter 14. Transaction messaging 597

In this example, the queue manager running in WebSphere is called
WASServerQm.

Characteristics of the client side queue manager
The client side queue manager can establish a connection to any number of
queue managers, which in this case will be to ServerQM and WASServerQM.
However, no channel listener is configured for this client side queue manager,
thus no other queue manager can initiate a client/server channel connection to it.

This means that applications using this queue manager have two ways of
receiving messages:

– Using the GetMessage API to get a message from a remote queue on
some remote queue manager; this requires that a connection to a remote
queue manager exist.

– Relying on a home-server queue to pull messages from a store and
forward queue on a remote queue manager, which the client queue
manager will then place in a local queue, from where the application can
use the getMessage API to retrieve the message.

Characteristics of the server side queue manager
The server side queue manager has a channel listener configured, so it is able to
receive connections from client and server type queue managers. It can also
establish connections to other server type queue managers, in this case to
WASServerQm.

Applications using this queue manager cannot directly put a message into a
queue located at a remote client type queue manager.

Characteristics of the queue manager in WebSphere
The queue manager in WebSphere is started during the initialization phase of an
invoked servlet. This queue manager is a server type queue manager, but has no
listener configured. In essence, the HTTP server that receives HTTP requests is
the de facto listener for the queue manager. Connections can be established in
both directions between this queue manager and the server side queue
manager.
598 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.3.3 Connections
There are a number of connections between the various queue managers:

ClientQm to ServerQm
This is a direct channel connection using the default adapter, which is the TCP/IP
adapter. Messages are sent in IP packets back and forth over this connection
between the queue managers.

ClientQM to WASServerQm
This is a direct channel connection using the HTTP adapter. Messages are
wrapped in HTTP headers by the adapter code, and then sent to the machine
running IBM WebSphere Application Server. In the definition, the name of the
servlet in IBM WebSphere Application Server to be invoked is specified .

ClientQm to ServerQmViaWas
This is an indirect channel definition. When it is defined, it is configured to first
send the messages to the queue manager WASServerQm. Configuration
information in WASServerQm will then be used to determine how the message is
sent on to the queue manager named ServerQmViaWas.

ServerQm to WASServerQm
This is a direct channel connection using the HTTP adapter. Messages are sent
wrapped in HTTP headers.

WASServerQm to ServerQm
This is a direct channel connection using the TCP/IP adapter.

14.3.4 Queue discovery
One of the features of MQSeries Everyplace is the ability to perform queue
discovery. For example, let us say that there is an existing definition for a queue
called ABC on ServerQm. If an application running on another queue manager
called ClientQm tried to access that queue, the ClientQm would detect that is has
no local definition for this queue. MQSeries Everyplace requires that the queue
managers at each end have a local definition of the queue defined with the same
attributes. This comes into play when MQSeries Everyplace is establishing a
connection between the queue managers, as many connections can be
established, but with different attributes, depending on the queues involved.
 Chapter 14. Transaction messaging 599

When ClientQm detects that it does not have a local copy definition of a queue
being accessed on a remote queue server, it will query the attributes of the
queue defined there, and use those values to define a local definition of the
queue.

In this example application, however, we will define all queue definitions required.

14.3.5 MQSeries Everyplace Queue definitions
The following queue definitions are used in this application. Later sections of this
chapter explain how to actually define these queues using the ES02 Explorer
tool.

Server side queue definitions
Queue: ChatRoomQ
Type: Local
Mode: Not applicable
Alias: ChatRoomQAsync, ChatRoomQViaWas, ChatRoomQViaAsync

Purpose: this queue receives messages from the client side; the application
retrieves the messages from this queue and displays them in the output text area
in the window. Note that the client side application can send messages to this
queue synchronously or asynchronously.

Queue: ChatClientQViaWas
Type: Remote
Mode: Synchronous
Alias: None
Targets: WASServerQm

Purpose: This queue is used to demonstrate both indirect messaging and the
use of IBM WebSphere Application Server to run a queue manager. The aim is
that a message typed into the input text area of the window labelled Chat via
WebSphere will still end up in the ChatClientQ on ClientQm, but will travel via the
queue manager running in IBM WebSphere Application Server. Messages
entered into the Chat via WebSphere area will be placed into this queue.

Client side queue definitions
Queue: ChatClientQ
Type: Local
Mode: Not applicable
Alias: None

Purpose: this queue receives messages from the server side; the application
retrieves the messages from this queue and displays them in the output text area
in the window.
600 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Queue: ChatRoomQAsync
Type: Remote
Target Queue Manager: ServerQm
Mode: Asynchronous

Purpose: if the application is unable to synchronously put the message into the
ChatRoomQ local queue on ServerQm, it will put the message into this queue. It
is then the responsibility of MQSeries Everyplace to transfer the message to the
target queue manager when a connection becomes available.

Queue: ChatRoomQViaWas
Type: Remote
Target Queue Manager: ServerQmViaWas
Mode: Synchronous

Purpose: messages entered in the Chat via WebSphere box are to be sent to the
ServerQm via the queue manager in IBM WebSphere Application Server. The
application will put the message to this queue. This is used to demonstrate
indirect message routing.

Queue: ChatRoomQAsyncViaWas
Type: Remote
Target Queue Manager: ServerQmViaWas
Mode: Asynchronous

Purpose: if the application is unable to synchronously put the message into the
ChatRoomQ local queue on ServerQm, it will put the message into this queue.
MQSeries Everyplace will transfer the message to the target queue manager
when a connection becomes available.

Queue: ChatSFQ
Type: Home Server
Target Queue Manager: ServerQm

Purpose: MQSeries Everyplace polls the corresponding Store and Forward
queue of the same name on the specified target queue manager. When it detects
that a message is in that queue on the server, it pulls the message from the
server to the client. Once the message is received, MQSeries Everyplace will
place the message into the local queue specified by the application that originally
put the message in the queue. Note that applications cannot access this queue
in any way.
 Chapter 14. Transaction messaging 601

Queue: ChatSFQViaWas
Type: Home Server
Target Queue Manager: WASServerQm
Mode: Not applicable
Alias: None
Targets: ClientQm

Purpose: as for the ChatSFQ queue, MQSeries Everyplace will poll the
corresponding Store and Forward queue of the same name on the
WASServerQm and pull any messages found there for ClientQm.

WebSphere queue definitions
Queue: ChatClientQViaWas
Type: Local

Purpose: temporary store for messages entered into the Chat via WebSphere
area on the server side.

Queue: ChatSFQViaWas
Type: Store and Forward
Mode: Not applicable
Targets: ClientQm

Purpose: ClientQM will poll this queue, and pull any messages for ClientQm to
the corresponding Home Server queue.

All the queues
The diagram illustrated in Figure 14-7 shows all queues used in the Chat Room
sample application. Note that some queues in the diagram are described in later
sections of this chapter.
602 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 14-7 Chat Room application queues

14.3.6 The application Java packages
The application is written in Java and consists of the following packages.

itso.mqe.chatwindow
This package is used to display the chat room window. It has only one class
called RoomWindow. This package is used by the client and server side to
display the chat window.

ChatSFQ
(Home Server)

ChatClientQ
(Local)

ChatRoomQAsync
(Remote)
(Target: ServerQm)

ChatRoomQViaWas
(Remote)
(Target: ServerQmViaWas)

StressQ
(Local)

ChatRoomQ
(Local)
Alias:
ChatRoomQAsync
ChatRoomQViaWas
ChatRoomQAsyncViaWas

WasServerQm

YourCoQuery
(Local)

StressQ
(Local)

StressQ
(Remote)
(Target: ServerQm)

ChatSFQ
(Store and Forward)
(Target: ClientQm)

ChatSFQVia Was
(Home Server)

ChatRoomQ
(Remote)
(Target: ServerQm)

ChatRoomQAsyncViaWas
(Remote)
(Target: ServerQmViaWas)

StressQ
(Remote)
(Target: WasServerQm)

YourCoQuery
(Remote)
(Target: WasServerQm)

ChatSFQViaWas
(Store and Forward)
(Target: ClientQm)

ChatClientQViaWas
(Local)

ChatClientQViaWas
(Remote)
(Target: WasServerQm)

ClientQM
ServerQM
Alias: ServerQmViaWas
 Chapter 14. Transaction messaging 603

itso.mqe.chatclient
This package is the application used to control the client side of the chat room.

itso.mqe.chatserver
This package is the application used to control the server side of the chat room.

itso.mqe.was
This package contains the code to run the MQseries Everyplace queue manager
as a servlet in WebSphere Application Server.

itso.mqe.security
This package contains the code that implements a sample authentication
adapter, explained in “YourCo extensions” on page 662.

14.3.7 Client side: class interaction
The diagram in Figure 14-8 on page 604 shows a high-level view of the
interaction between the major classes involved on the client side.

Figure 14-8 Class object interaction - client side

ClientMgr ClientQm
MQeQueueManager

RoomWindow

startClientQm()

putMessage()

getMessage()

addMessageListener()

loader.loadObject()

activate()

showReceivedMsg()

sendMessage()

messageArrived()showReceivedMsg()

sendMessage()
604 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.3.8 Server side: class interaction
The diagram in Figure 14-9 on page 605 shows a high-level view of the
interaction between the major classes involved on the server side.

Figure 14-9 Class object interaction - server side

14.4 Starting a queue manager
In the chat room application, queue managers are used in three different ways;
this section explains how this occurs.

14.4.1 Started by the application
The client side of the chat room is an example showing how the application is
started and then activates the queue manager.

This is the normal approach for client side type applications, as they do not
typically require a queue manager running at all times. Rather, an end user will
typically want to start the application, have the queue manager started, perform
some messaging and then end the application. Such a user does not necessarily
require a queue manager running for extended periods of time.

For the chat room application, there are three objects involved on the client side,
as follows:

– ClientMgr - the main application

– ClientQm - the queue manager

– RoomWindow - controls display of the GUI chat window

ChatServerMQeQueueManager RoomWindow

activate()

putMessage()

getMessage()

addMessageListener()
showReceivedMsg()

sendMessage()
messageArrived()
 Chapter 14. Transaction messaging 605

When the application is started, the main method creates a new instance of
RoomMgr, which results in a RoomWindow object being created by the
constructor, and then calls the startChatRoom method.

The startChatRoom method of the RoomMgr class starts, creates a ClientQm
object, and then calls the startClientQm method of that class.

The startClientQm method contains the code to start the queue manager. The
code shown in Example 14-3 to Example 14-6 on page 607 is from this method.

First, the .ini file containing information relating to the queue manager is read, as
shown below:

Example 14-3 Reading the .ini file

// Access the file
 File diskFile = new File(clientIniFile);

// Create a byte array big enough to hold the file's contents.
 byte data[] = new byte[(int) diskFile.length()];

// Read the file into the byte array and close the file.
 FileInputStream inputFile = new FileInputStream(diskFile);
 inputFile.read(data);
 inputFile.close();

Once read, the data is parsed and stored in MQeField type objects, as shown in
the code below:

Example 14-4 Parsing the .ini file

MQeFields iniSections =
 MQeFields.restoreFromString("\r\n", // end of record string
 "[#0]", // section pattern
 "(#0)#1=#2", // keyword pattern
 configDataBuff.toString() + "\r\n");

Then a queue manager object is created and alias definitions from the .ini file are
processed. Alias definitions are a way of assigning a shorter logical name to
class names. These alias definitions can then be used in other sections of the .ini
file, if required. The code necessary to do this is shown in Example 14-5 on
page 607.

Note: The code above illustrates a standard way of performing file input.
An alternate approach would be to read an .ini file into a fields object, using
the MQeQueueManagerUtils.loadConfigFile() method.
606 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Example 14-5 Processing the alias entries

/* Create queue manager object */
qMgr = new MQeQueueManager();

 if (iniSections.contains(Section_Alias)) {

 // Get all the fields inside the alias section
 MQeFields section = iniSections.getFields(Section_Alias);
 Enumeration keys = section.fields();
 while (keys.hasMoreElements()) {

 // For each key, get the value and add the mapping to the MQe
 // internal alias table
 String key = (String) keys.nextElement();

 MQe.alias(key, section.getAscii(key).trim());

 System.out.println("Key: " + key + " Val: " +
section.getAscii(key).trim());
 }

 // sectionProcessed(Section_Alias);
 }

Finally, we now call the loader method of the MQe class to activate the queue
manager, as shown in the code below:

Example 14-6 Activating the queue manager

if (iniSections.contains(Section_QueueManager)) {
 qMgr = (MQeQueueManager)
MQe.loader.loadObject(Section_QueueManager);
 if (qMgr != null) {

 // Activate the queue manager.

 qMgr.activate(iniSections);

 // Processing was successful.
 }
 }

The queue manager is now active within the Java virtual machine and can be
used by the application.
 Chapter 14. Transaction messaging 607

14.4.2 Started by the ES02 support pac
On the server side, the Explorer tool of the ES02 support pac is used to start the
queue manager. A program to start the server side queue manager would be
similar to one developed for the client side, but it would need to start some other
queue manager functionality, such as the channel listener.

Typically, the requirement for a server side queue manager is to be active at all
times, so that client type queue managers can connect at any time. Any number
of applications may be loaded into the JVM to enable them to perform
messaging.

14.4.3 Started by a servlet
The chat room application demonstrates how a queue manager can be run as a
servlet in IBM WebSphere Application Server. The queue manager that runs in
WebSphere is a server type queue manager.

Normally, a server type queue manager has a listener, which listens on a port to
which clients can establish a connection. However, a queue manager running in
WebSphere cannot start a listener. The HTTP server is in effect the listener for
the queue manager. Other queue managers access the queue manager in
WebSphere by sending the message requests wrapped in HTTP headers.

For the chat room application, there are two classes involved in the WebSphere
part side, as follows:

– ITSOMQeServlet - starts the queue manager and handles messages
received.

– WasQMgr - in essence the application, it acts upon messages.

When another queue manager sends a message to the queue manager running
in WebSphere, the HTTP headers will specify the name of the servlet to be
invoked within WebSphere, in this case ITSOMQeServlet. The servlet will start
the queue manager the first time it is invoked; this occurs in its init method.

Note: The current release of MQeExplorer v1.25 will allow you to create
and start clients, peers and gateways.

Version 1.26, to be released in the future, will eliminate the need for .ini
files. Also, properties of the queue manager may be changed whether in
the registry or the .ini file. Queue managers can be freely changed
between clients, peers, servers and gateways. Necessary components can
be created, modified or deleted on an ad hoc basis.
608 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The name of the .ini file to use is found by reading a property file called
MQe.properties. The MQe.properties file should be in a directory in the
classpath. The code to obtain the .ini file name is as follows:

Example 14-7 Obtaining the .ini file when starting in WebSphere

String mqePropName = "MQe";

 try {

 PropertyResourceBundle resourceBundle =
 (PropertyResourceBundle)
PropertyResourceBundle.getBundle(mqePropName);
 iniFile = resourceBundle.getString("IniFile");

The same code, as shown in “Started by the application” on page 605, is used to
read the .ini file, parse it, load the alias and start the queue manager. The only
addition is code to activate a channel manager just prior to activating the queue
manager. A channel manager is an object used to handle the communication
processes involved between queue managers. The code to activate it is shown in
Example 14-8:

Example 14-8 Activating a channel manager

if (iniSections.contains(Section_ChannelManager)) {
 MQeFields section = iniSections.getFields(Section_ChannelManager
);
 channelManager = new MQeChannelManager();
 channelManager.numberOfChannels(section.getInt("MaxChannels"));
 // sectionProcessed(Section_ChannelManager);
 }

Once the init method completes, the queue manager is active within WebSphere
Server.

After the queue manager is started, a WasQMgr class object is created, and a
reference to the queue manager passed as a parameter. As in the RoomMgr
class, the activate method is called, which allows the WasQMgr class to save a
reference to the queue manager that has been started.

The doPost method
The doPost method of the ITSOMQeWas servlet is worth discussing here.
Queue managers sending message to a queue manager in WebSphere
Application Server will wrap the message in an HTTP header, specifying that the
HTTP request is a POST to a specified servlet.
 Chapter 14. Transaction messaging 609

In the chat room application, this will cause the doPost method of the
ITSOMQeWas servlet to be invoked.

The method is in effect performing the same role as the listener for a server type
queue manager. All it does is read the HTTP data received and pass it to the
channel manager associated with the queue manager.

The channel manager then takes this data, removes the HTTP headers, and
places the message in the queue.

The response from this method call to the channel manager is not a message as
such; rather, it is just a standard HTTP reply that is to be sent back to the sending
queue manager as part of the normal HTTP flow.

The code for this is show in Example 14-9:

Example 14-9 Passing HTTP input to the queue manager

ServletInputStream httpIn = request.getInputStream(); // input stream

 // get the request
 read(httpIn, httpInData, max_length_of_data);

 String mqeInput = new String(httpInData);
 System.out.println("MQeInput: " + "mqeInput");

 // process the request
 byte[] httpOutData = channelManager.process(null, httpInData);
 String mqeReply = new String(httpOutData);
 System.out.println("MQeReply: " + "mqeReply");

 // appears to be an error in that content-length is not being set
 // so we will set it here
 response.setContentLength(httpOutData.length);
 response.setIntHeader("content-length", httpOutData.length);

 // Pass back the response
 httpOut.write(httpOutData);
610 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.5 Starting applications
In the chat room application, applications that use queue managers are used in
three different ways; this section explains how this occurs.

14.5.1 Client side
Starting the application on the client side of the chat room is exactly the same as
starting any Java program. The Java command, in conjunction with the package
and class name, is used to start the application.

14.5.2 Server side application loading
The server side of the chat room is an example showing the application started
after the queue manager has started; in effect, it is loaded by the queue
manager.

This is the normal approach for server side applications. Typically, the
requirement is for the queue manager to be active at all times, so that client type
queue managers can connect at any time. Any number of applications may be
loaded into the JVM to enable them to perform messaging activities.

For the chat room application, there are two objects involved in the server side,
as follows:

– RoomMgr - interacts with the queue manager and the GUI window

– RoomWindow - controls the display of the GUI chat window

The section “Started by the ES02 support pac” on page 608 described how the
ES02 support pac was used to start the queue manager.

The application we want to have loaded when the queue manger is started is
specified in the .ini file for the queue manager; in this case, it is the chat room
application. The lines from the.ini file are as follows:

Example 14-10 Code from the .ini file

[AppRunList]
(ascii)App1=itso.mqe.chatserver.RoomMgr
 Chapter 14. Transaction messaging 611

Parameters can also be passed to the application from the .ini file, as shown
below:

Example 14-11 Parameters from the .ini file

[App1]
(ascii)ClientQueue=ChatClientQ
(ascii)ChatRoomQ=ChatRoomQ

A detailed explanation of how applications started this way need to be written
starts on page 51 of the MQSeries Everyplace Programming Guide,
SC34-5845-04.

Briefly, however, the RoomMgr class extends the base MQe class, and
implements these three interfaces:

– runnable - used to allow it to create a new thread on which to run

– MQeRunListInterface - used to allow queue manager to pass information

– MQeMessageListenerInterface - used to allow application to notify the
queue manager as to what queues it is interested in

The class that will be started must have a method called activate. This will be the
first method executed when the application is started. The first thing it does is to
save a reference to the queue manager passed as a parameter. This will allow
the application to interact with the queue manager. The following line saves the
queue manager ID:

Example 14-12 Saving the queue manager reference

qmgr = (MQeQueueManager) owner; /* Qmgr is owner of the application */

A new thread is then created and started, which will cause the run method of the
RoomMgr class to be executed. The run method consists of this code:

Example 14-13 RoomMgr run method

if (itsoChatRoom == null) {
 itsoChatRoom = new RoomWindow(this);
 itsoChatRoom.showChatWindow();
 itsoChatRoom.sendChatMsg();
 itsoChatRoom.setupWasInputListener();
 }
 try {

 qmgr.addMessageListener(this, chatRoomQ, null);
612 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The above code creates a RoomWindow object and then calls a method on that
object to create the GUI window and display it. Then, the code adds a message
listener on a specified queue. The purpose of the Message listener is explained
in “The MQeMessageListener interface” on page 614.

The queue manager and application are now both active.

Application data can be passed to the application that is started in this fashion. In
the .ini file, after the section identifying the applications to load, data can be
added to pass to the application. For example, we could add these lines to the .ini
file:

Example 14-14 Application-related startup data

[App1]
(ascii)ClientQueue=ChatClientQ
(ascii)ChatRoomQ=ChatRoomQ

Sample code to access this data in the activate method is shown below:

Example 14-15 Accessing application setup data

Enumeration enum = setupData.fields();
try {

while (enum.hasMoreElements())
{

String fieldName = (String) enum.nextElement();
String value = setupData.getAscii(fieldName);
System.out.println("Field name: " + fieldName +

" value: " + value);
}

}

14.5.3 Applications in WebSphere Application Server
Applications that are to run in and access a queue manager in WebSphere
Application Server function essentially in the same way as the applications
written for a server.

The chat room application demonstrates this. Text entered into the Chat Via
WebSphere box on the server side is put to the queue ChatClientQViaWas on
the WASServerQm.

When the init method of the ITSOMQeServlet was executed, it created a
WasQMgr object, passing it as a reference to the queue manager, and also
added a message listener for the ChatClientQViaWas queue. The WasQMgr
object is the application.
 Chapter 14. Transaction messaging 613

When a message arrives in this queue, the messageArrived method of the
WasQMgr object is invoked. This method then retrieves the message and puts it
to the ChatClientQ on the ClientQm queue manager, as shown in the code
shown in Example 14-16.

Example 14-16 Processing messages in WebSphere

msgObj = wasQMgr.getMessage(null, "ChatClientQViaWas", null, null, 0);
System.out.println("From: " + msgObj.getOriginQMgr() +

" : " + eventQueueName +
" msg: " + msgObj.getAscii("Message"));

System.out.println("Relay chat msg to ClientQm : " +
msgObj.getAscii("Message"));

replyMsg.putAscii("Message", msgObj.getAscii("Message"));
 wasQMgr.putMessage("ClientQm", "ChatClientQ", replyMsg, null, 0);

14.6 Listening for messages
This section describes how a queue manager notifies an application that a
message is available for processing.

14.6.1 The MQeMessageListener interface
In standard MQSeries, it is quite common for an application to wait for a message
to arrive in a queue. It does this by specifying a WAIT option on the GET
message API.

In MQSeries Everyplace, the corresponding approach is for an application to
implement the MQeMessageListener interface.

For example, the code shown next from the run method of the RoomMgr class
tells the queue manager that the application wants to be notified whenever a
message is put onto the queue specified in the variable chatRoomQ.

Example 14-17 Adding a message listener

qmgr.addMessageListener(this, chatRoomQ, null);

An application can add a listener for as many queues as it requires. The
application then needs to have a messageArrived method, as this will be the
method invoked by the queue manager when a message arrives on any of the
queues for which a listener has been added.

The messageArrived method is passed a MessageEvent object, which contains
information about the message that has arrived, such as the queue the message
is in and the queue manager from which it comes.
614 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

It is now up to the application to get the message and process it as required. For
example, in the case of the chat room application, when a message arrives in the
ChatRoomQ, the messageArrived method in class RoomMgr is called, the
message is retrieved from the queue and displayed on the GUI window, as
shown in the following code.

Example 14-18 Retrieving a message

try {
 MQeMsgObject msgObj = qmgr.getMessage(null, chatRoomQ, null, null, 0);
 /* get the message */

 if (originQMgr == null)
 originQMgr = msgObj.getOriginQMgr();

 System.out.println(
 "From: " + eventQMgr + " : " + eventQueueName
 + "Really: " + originQMgr + " msg: "
 + msgObj.getAscii("Message"));

 itsoChatRoom.showReceivedMsg("From: " + originQMgr + " : " +

 msgObj.getAscii("Message"));

The same approach is used on the client side and in WebSphere Application
Server. In the WebSphere case, the init method of the ITSOMQeWas servlet
adds the message listeners, and the messageArrived method is implemented in
the WasQMgr class.

Note that there is no comparable notion of triggering an application in MQSeries
Everyplace as there is in standard MQSeries.

14.7 Chat room application flows
The section describes what happens when a message is entered into the various
text input boxes in the chat windows.

14.7.1 Chat - Client to Server -Direct
The process that occurs when a message is typed into the Chat Direct input box
in the window of the client side of the chat room is as follows:

– The message is typed into input text area, the Enter button is clicked.

– The ChatMessage method is sent in the itso.mqe.chatwindow class.
RoomWindow is invoked, echoes the message to the output text area, and
calls the sendMessage method.
 Chapter 14. Transaction messaging 615

– The sendMessage method in the class itso.mqe.chatclient.ClientMgr
performs the task of first trying to send the message synchronously, and, if
that fails, it puts the message into the alternate queue, to have the
message sent asynchronously; the code from this method is shown in
Example 14-19.

Example 14-19 Using the Chat Direct input box

try {
 MQeMsgObject msgObj = new MQeMsgObject();
 //String venturing = e.getQueueManagerName();/*get id of Qmgr msg from
*/
 //String eventQueueName = e.getQueueName();/*get queue name */
 try {
 System.out.println("Msg to send: " + message);

 msgObj.putAscii("Message", message); /* set up the message */

 System.out.println(
 "Send to: " + targQMgr + " destQ: " + targQ + "doing PUT: " +
message);

 /* If the string 'Stress Test' do not appear in the text typed
 in, then put the message to the queue to have it sent
 synchronously.
 When the 'Stress Test' string is found, invoke a method
 to handle that case */

 if (message.indexOf("Stress Test") < 0)
 myClientQmgr.putMessage(targQMgr, targQ, msgObj, null, 0);
 else
 stressTest(viaWasFlag, message);

 System.out.println(
 "Sent to: " + destQMgr + " : " + " msg: " +
msgObj.getAscii("Message"));
 } catch (Exception ex) {

 /* If an exception occurs as a result of the put message
 attempt, put the message to the alternate queue to have
 the message sent asynchronously */

 System.out.println("Error sending msg" + ex);

 chatRoomClient.showReceivedMsg(
 "## Chat room server unavailable"
 + " will attempt to send message asynchronously ##");

 msgObj.resetMsgUIDFields();

616 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 try {
 System.out.println(
 "Async Send to: " + targQMgr + " destQ: "
 + targQAsync + "doing PUT: " + message);

 myClientQmgr.putMessage(targQMgr, targQAsync, msgObj, null, 0);

 chatRoomClient.showReceivedMsg(
 "## Message saved, will be sent Asynchonously ##");

 } catch (Exception ex2) {
 chatRoomClient.showReceivedMsg("## Catastrophic failure, async
PUT failed ##");
 System.out.println("Error doing Async PUT" + ex2);
 }
 }

– In this case, targQ is set to a value of ChatRoomQ, the method attempts
to put the message synchronously to this queue on the remote queue
manager called ServerQm.

– If the remote queue manager is unavailable, the process will fail and an
exception will be raised; this is caught by the Java code. The application
will then put the message to the queue targQAsync, which has been set to
a value of ChatRoomQAsync; this is now an asynchronous message
operation, and MQSeries Everyplace is now responsible for transferring
the message to the remote queue manager when a connection becomes
available.

When the connection to the remote queue manager becomes available,
the queue manager will send the message. However, the application put
the message to a queue called ChatRoomQAsync, and there is no queue
by that name on the remote queue manager, but the definition for the
ChatRoomQ queue specifies that it has an alias of ChatRoomQAsync.
This means that the message will placed in the ChatRoomQ on the remote
queue manager

14.7.2 Chat - Client to Server - Via WebSphere
The process that occurs when a message is typed into the Chat via WebSphere
input box in the window of the client side of the chat room is as follows:

– The message is typed into the input text area, the Enter button is clicked.

– The ChatMessage method is sent in the itso.mqe.chatwindow class.
RoomWindow is invoked, as it was when text was entered into the Chat
Direc’ box; the message is echoed to the output text area, the
sendMessage method is called.
 Chapter 14. Transaction messaging 617

– The sendMessage method is implemented in the itso.mqe.chatclient class.
ClientMgr performs the task of first trying to send the message
synchronously, and, if that fails, it puts the message into the alternate
queue, to have the message sent asynchronously.

– The code executed, as shown in Example 14-19 on page 616, is the same
as it was for the Chat Direc’ case. The difference is that the target queue
manager is set to ServerQmViaWas and targQ and targQAsync are set to
different values; this is done in the sendMessage method using the code
shown in Example 14-20.

Example 14-20 Setting value of target queue

/* The action listener that is invoked when the Enter key is
 clicked in a text box, sets the value of viaWasFlag when it calls
 this method.

 The value is null if called from the listener for the 'Chat Direct'
 box, and not null if called from the listener for the
 'Chat via WebSphere' box */

 if (viaWasFlag == null) {
 targQ = destQueue;
 targQMgr = destQMgr;
 targQAsync = destQueueAsync;
 } else {
 targQ = destQueueViaWas;
 targQMgr = destQMgrViaWas;
 targQAsync = destQueueAsyncViaWas;
 }

As in the direct case, the application will try to put the message synchronously
into the queue ChatRoomQViaWas on ServerQmViaWas. Recall, however, that
ChatRoomQViaWas has been defined as an alias for the ChatRoomQ, and that
ServerQmViaWas is an alias for the ServerQm queue manager. In effect, this will
be put to the ChatRoomQ on the ServerQm. This means the put message
request only succeeds if there is a connection right through to the ServerQm.

If the message cannot be put synchronously, it is put asynchronously, to the
ChatRooQAsyncViaWas queue, for transmission by the queue manager when a
connection via WASServerQm to ServerQm is available.
618 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.7.3 Chat - Server to Client - Direct
The process that occurs when a message is typed into the Chat Direct input box
in the window of the server side of the chat room is as follows:

– The message is typed into the input text area; the Enter button is clicked.

– The sendChatMessage method is implemented in the
itso.mqe.chatwindow class. RoomWindow is invoked, echoes the
message to the output text area, and calls the sendMessage method.

– The RoomMgr class has its own sendMessage method, but it is essentially
the same as the one in the ClientMgr class; the application will put the
message to the ChatClientQ on the ClientQm queue manager; the major
difference here is that the server only sends its messages asynchronously,

– When the put message is executed, the queue manager will store the
message on the ChatSFQ queue; this is because the server side queue
manager cannot send a message to the client side queue manager. The
queue manager will store any messages for ClientQm on this store and
forward queue.

– On the client side, the ClientQm has a corresponding Home server queue
called ChatSFQ; the queue is configured to poll the corresponding store
and forward queue on the ServerQm every five seconds; when it detects a
message on that queue, it will pull the message and place it in the Home
server queue, in this case ChatSFQ.

– The queue manager will then move the message to the target queue
specified by the application, in this case ChatClientQ.

– The messageArrived method in the ClientMgr object will be invoked by the
queue manager; it will retrieve the message and display it in the output
area of the GUI window.

14.7.4 Chat - Server to Client - using WebSphere
The process that occurs when a message is typed into the Chat via WebSphere
input box in the window of the server side of the chat room is as follows:

– The message is typed into the input text area, the Enter button is clicked.

– The sendChatMessage method is implemented in the
itso.mqe.chatwindow class. RoomWindow is invoked, echoes the

Note: the RoomWindow class is used at both the client and server ends
to display the chat window.
 Chapter 14. Transaction messaging 619

message to the output text area, calls the sendMessage method, but
passes a flag to indicate that the message is to be sent using WebSphere.

– The sendMessage method adds the message to a queue called
ChatClientQViaWas on the WASServerQm, a synchronous operation.

– The messageArrived method of the WasQMgr object is invoked by the
WASServerQm; the message is retrieved from the ChatClientQViaWas
and put to the ChatClientQ on the ClientQm queue manager, as shown in
Example 14-16 on page 614.

– When the message is executed, the queue manager will store it on the
ChatSFQViaWas queue, because the server side queue manager cannot
send a message to the client side queue manager; the queue manager
will store any messages for ClientQm on this store and forward queue.

– On the client side, the ClientQm has a corresponding Home server queue
called ChatSFQViaWas; the queue is configured to poll the corresponding
store and forward queue on the ServerQm every five seconds. When it
detects a message on that queue, it will pull the message and place it in
the Home server queue, in this case ChatSFQViaWas.

– The queue manager will then move the message to the target queue
specified by the application, in this case ChatClientQ.

– The messageArrived method in the ClientMgr object will be invoked by the
queue manager; it will retrieve the message and display it in the output
area of the GUI window.

Note that messages are travelling over two connections using two different
protocols. The messages between ClientQM and WASServerQM use HTTP, but
HTTP is used between ServerQM and WASServerQm.

14.8 Setting up the ChatRoom queue managers
This section describes how to set up the three queue managers used in the chat
room application.

Note that the queue managers can be set up on one system, two or three
systems.

Note: This message is sent as an HTTP request to WebSphere, where
the ITSOMQeWas servlet will be invoked to handle this POST request.
620 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.8.1 Preparing for setup
Creation and configuration of the queue managers is performed using the
Explorer tool of the ES02 support pac.

If the default install process is followed, then the product is installed into the
C:\program files\MQe directory.

To run the ES02 support pac, either add C:\Program Files\MQe\Java to the
environment variable classpath in the System property of the Control Panel
folder, or in a DOS window type in the following:

SET CLASSPATH=C:\Program Files\MQe\Java;%CLASSPATH%

Open a DOS window and change the directory to the one where the ES02
support pac was installed. Let us assume it has been installed to C:\ES02.

Then, to start the ES02 Everyplace Explorer, type in:

MQe_explorer.exe

The following window appears:

Figure 14-10 Initial MQe_Explorer window

Note: At the time this chapter was written, the ES02 support pac was
generally available as Version1.23. However, for defining connections to a
queue manager running in WebSphere Application Server, you need to be
able to specify port 80 in the connection definition. Version 1.23 does not
support this. We obtained a beta copy of the Version 1.24 release which did
allow this. This version should be available as of November 2001.
 Chapter 14. Transaction messaging 621

14.8.2 Creating the ServerQm queue manager
From the initial MQe_Explorer window, select File->New->QueueManager. A
window will appear in which you will define the attributes of the server queue
manager. There are several tabs; the initial one displayed is labelled General. We
will call this queue manager ServerQm and define it as being a server type
queue manager. To do this, follow these steps:

1. Type ServerQm into the field labelled QMgr.Name.

Make sure the box next to the label ‘Server/peer/client’ is ticked.

The window should look similar to the one shown in Figure 14-11.

Figure 14-11 Setting the name and type of ServerQm

2. Then select the IP details tab.

The IP address of the machine is displayed in the field called IP address, and
the port that this queue manager will listen on for incoming channel requests
is set to the default value used by MQSeries Everyplace, which is 8082.
622 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The window will look similar to the one shown in Figure 14-12:

Figure 14-12 IP details for ServerQm

3. Then select the Configuration tab. This tab defines two important attributes
of the queue manager:

– The type of adapter used to handle incoming channel connections.

– The type of adapter used to save registry information about the queue
manager.

Incoming channel adapter
The field labelled Adapter, in the box titled Incoming communications, specifies
the type of adapter to use. This indicates the type of protocol that the server
queue manager will expect on incoming connections. Later on, when you define
connections to this server queue manager, you will need to specify the type of
adapter used to connect. It must match the value you specify here.

In this case, use the default adapter called:

com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

Registry Adapter
MQSeries Everyplace saves information about the queue manager to a registry.
In this case, use the default adapter called:

com.ibm.mqe.adapters.MQeDiskFieldsAdapter

This is a supplied default adapter which saves registry information to disk.

The window should look similar to the one shown in Figure 14-13.
 Chapter 14. Transaction messaging 623

Figure 14-13 Configuration details for ServerQm

4. Click the Create button to now create the server side queue manager. Note
that there are many other tabs which are not explained here, as all the
defaults are used. A window confirming creation of the queue manager
appears, similar to the one shown in Figure 14-14:

Figure 14-14 ServerQm creation confirmation
624 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The queue manager has now been created, and is in fact running. The
MQe_Explorer window will now have an object called MQeRoot with a plus sign
beside it. Click the plus sign to expand the object tree under MQRoot, and you
will see an object for the ServerQM you have just created. Continue to expand
the objects under ServerQm and you will see the default queues that have been
set up. The display will be similar to that shown in Figure 14-15:

Figure 14-15 Expanded tree view of ServerQm

Also, in Figure 14-14 on page 624 the confirmation window shows the location
and name of the .ini file where initial configuration information used to start the
queue manager is stored. To start the queue manager if it is not running, you
must locate this .ini file. The process is to run MQe_Explorer.exe from a DOS
prompt, then select File->Open, locate the ServerQm.ini file and select it. The
queue manager will then be started.

Adding an alias to ServerQm
An alias of ServerQmViaWas for ServerQm is used in this application. An alias
can only be added once the queue manager is defined. However, it is possible for
aliases to be changed thereafter.

1. Right-click the ServerQm object in the tree, then select Properties. A window
appears; click the Aliases tab. Type in the alias name ServerQmViaWas, and
click the Add button. The window should now look similar to the one shown in
Figure 14-16.

Note: An alternate way to start the queue MQe Explorer may be through a
Windows environment. Simply double-click the Me_ExplorerN icon located on
the desktop or in the installation directory.
 Chapter 14. Transaction messaging 625

Figure 14-16 Defining a queue manager alias

2. Click the Apply button to implement the change.

14.8.3 Creating the ClientQm queue manager
The process for defining the client side queue manager is very similar to the
process for the server side queue manager.

1. Start another MQe_Explorer session from the DOS prompt, and from the
initial MQe_Explorer window, select File->New->QueueManager. Enter the
name of the client queue manager as ClientQm in the field labelled
QMgr.Name.

2. Click the box next to the label Peer/client. This will mean that no listener will
be set up for this queue manager, as it is to operate in client mode.

The window should look like the one shown in Figure 14-17.
626 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 14-17 Setting the name and type of ClientQm

3. Then select the IP details tab.

The IP address for this client queue manager will be the IP address of the
machine on which the queue manager is defined. The port is greyed out, as
no listener will be running.

In this example, we are not using peer type channels, so there will be no
connections established to this queue manager. Thus, the communications
adapter can just be left to the default setting.

4. Click the Create button to now create the client side queue manager. A
window confirming the creation of the queue manager appears (see
Figure 14-18).
 Chapter 14. Transaction messaging 627

Figure 14-18 ClientQm creation confirmation

The queue manager has now been created, and is in fact running. As for the
server queue manager, you can expand the tree in the MQe_Explorer window
to view the default objects.

14.8.4 Configuring the WASServerQm queue manager
The process to configure the WASServerQm queue manager is as follows.

1. Start another MQe_Explorer session from the DOS prompt, and from the
initial MQe_Explorer window, select File->New->QueueManager. Enter the
name of the queue manager as WASServerQm in the field labelled QMgr.Name.

2. Check that the box next to the text Server/peer/client is selected.

3. Then select the IP details tab. Enter the IP address of the machine. Enter a
port number. When the queue manager is running in WebSphere Application
Server, the queue manager will not have a listener running, so it will not be
using the port you specify here in any case. However, it is useful to specify a
valid port. Doing so means that you can run this queue manager outside of
WebSphere Application Server to verify connections between it and other
queue managers, and also to enable testing without WebSphere in the mix. If
running this queue manager on the same machine as ServerQm, be sure to
specify a different port, for example 8083.

4. Select the Configuration tab. As WASServerQM will be running in
WebSphere Application Server, it will be expecting HTTP type
communications. In the field labelled Adapter, select this adapter:

com.ibm.mqe.adapters.MQeTcpipHttpAdapter

5. In the Options field, select None. It is most important to select this option
here, otherwise connections to this queue manager will not work.

6. Click the Create button to now create the queue manager. A window
confirming creation of the queue manager will appear.
628 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.8.5 Creating connections
Prior to defining the queues, you must create the connections between the
queue managers. The creation of remote queue definitions is not possible with
the ES02 Explorer tool unless a connection of that name exists.

Connection definitions on ClientQm
Using MQe_Explorer, start the ClientQM queue manager.

ClientQm to ServerQm
1. Right-click the Connection object in the tree, and select New connection.

2. In the window that is displayed, enter ServerQM into the field labelled Name.

The window should look similar to this:

Figure 14-19 Defining the connection to remote queue manager

3. Then click the tab labelled Primary. This tab is used to specify the IP address
where the remote queue manager that you want to connect to is located.
 Chapter 14. Transaction messaging 629

There are three fields to change here.

a. Type in the IP address of the machine on which you have defined the
server queue manager. It could be that you have defined the client and
server queue manager on the same machine, in which case you could just
enter the IP address 127.0.0.1, which is the traditional loop back address.
However, it is recommended that you specify the IP address.

b. In the field labelled Port, type in the port that ServerQm is listening on. In
the description above for setting up the server queue manager, we used
the default value of 8082. Type 8082 into this field.

c. In the field labelled Adapter, select from the drop down menu the same
adapter you specified when setting up the server queue manager. In this
case, select the adapter called:

com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

This is a supplied adapter, which will result in the messages flowing between
the two queue managers using standard TCP/IP. The window should look
similar to the one shown in Figure 14-20 on page 631.
630 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 14-20 Defining the location of the remote queue manager

4. Then click the Create button to create the connection. No confirmation
window is displayed, but you can view the connection definition in the
MQe_Explorer window.

ClientQm to WASServerQm
1. Right-click the connection object in the tree, and select New connection.

2. In the window that is displayed, enter WASServerQM into the field labelled
Name.

3. Then click the tab labelled Primary. This tab is used to specify the IP address
where the remote queue manager that you want to connect to is located.

There are five fields to change here.

a. Type in the IP address of the machine where the WebSphere Application
Server is running.

b. In the field labelled Por’, type in 80 as the port value, as this is the default
port for HTTP traffic the HTTP Server will be listening on. Note that version
 Chapter 14. Transaction messaging 631

1.23 and earlier of the ES02 support pac do not allow a value of 80 to be
entered into this field.

c. In the field labelled Adapter, select from the drop-down menu the same
adapter you specified when setting up the queue manager to run in
WebSphere. In this case, select the adapter called:

com.ibm.mqe.adapters.MQeHTTPAdapter

This is a supplied adapter, which will result in the messages flowing
between the two queue managers using the HTTP protocol.

d. In the field labelled Options, select None from the drop-down menu.

e. In the field labelled Parameters, type in /ITSO/ITSOMQeWas, which is the
URL that will invoke the servlet in WebSphere.

The window should look like that shown in Figure 14-21:

Figure 14-21 Defining a connection using HTTP adapter

4. Then click the Create button to create the connection. No confirmation
window is displayed.
632 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

ClientQm to ServerQmViaWas
1. Right-click the connection object in the tree, and select New connection.

2. In the window that is displayed, enter ServerQmViaWas into the field labelled
Name.

3. Then click the tab labelled Primary.

The connection to ServerQmViaWas is in reality a connection to the queue
manager called ServerQm, and messages are to be sent via the queue
manager running in WebSphere, an indirect connection. This is referred to as
via Routing in MQSeries Everyplace.

To set this up, select the checkbox labelled Direct connection at the bottom
of the window. The window will now change, with most fields greyed out.
Enter WASServerQm into the field labelled Primary, to indicate that messages
destined for ServerQmViaWas go through the WASServerQm connection.

The window will look like this:

Figure 14-22 Defining an indirect connection
 Chapter 14. Transaction messaging 633

4. Then click the Create button to have the connection created. No confirmation
window is displayed.

Connection definitions on ServerQm
Using MQe_Explorer, start the ServerQm queue manager.

ServerQm to WASServerQm
1. Right-click the connection object in the tree, and select New connection.

2. In the window that is displayed, enter WASServerQM into the field labelled
Name.

3. Then click the tab labelled Primary. This tab is used to specify the IP address
where the remote queue manager that you want to connect to is located.

There are three fields to address here.

a. Type in the IP address of the machine where the WebSphere Application
Server is running.

b. In the field labelled Port, type in 80 as the port value, as this is the default
port for HTTP traffic the HTTP Server will be listening on. Note that version
1.23 and earlier of the ES02 support pac do not allow a value of 80 to be
entered into this field.

c. In the field labelled Adapter, select from the drop-down menu the same
adapter you specified when setting up the queue manager to run in
WebSphere. In this case, select the adapter called:

com.ibm.mqe.adapters.MQeTcpipHttpAdapter

d. In the field labelled Options, select None from the drop-down menu.

e. In the field labelled Parameters, type in /ITSO/ITSOMQeWas which is the
URL that will invoke the servlet in WebSphere.

4. Then click the Create button to create the connection. No confirmation
window is displayed.

Connection definitions on WASServerQm
Using MQe_Explorer, start the WASServerQm queue manager.

WASServerQm to ServerQm
1. Right-click the connection object in the tree, and select New connection.

2. In the window that is displayed, enter ServerQM into the field labelled Name.

3. Then click the tab labelled Primary. This tab is used to specify the IP address
where the remote queue manager that you want to connect to is located.
634 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

There are three fields to change here.

a. Type in the IP address of the machine where the ServerQM queue
manager is running.

b. In the field labelled Port, type in 8082 as the port value, the port that the
ServerQm is listening on.

c. In the field labelled Adapter, select from the drop-down menu the same
adapter you specified when setting up the ServerQm queue manager. In
this case, select the adapter called:

com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

4. The chat room application will be sending messages to WASServerQm that
are destined for ServerQmViaWas, which is an alias for ServerQm. To have
these messages forwarded, we use the alias capability of MQSeries
Everyplace. Click the Alias tab. Type in ServerQmViaWas and click the Add
button. The window should look like the one shown in Figure 14-23:

Figure 14-23 Defining an alias on a connection
 Chapter 14. Transaction messaging 635

5. Then click the Create button to create the connection. No confirmation
window is displayed.

14.8.6 Defining ServerQm queues
The following queues need to be defined.

Local queue: ChatRoomQ
1. From the expanded tree view, right-click the object labelled Local Queues,

then select New Queue. A window will appear, in which to enter the details of
the queue you wish to define.

2. In the tab labelled General, type ChatRoomQ into the field labelled Name. The
window should look similar to the one shown in Figure 14-24.

Figure 14-24 Naming the queue to be created

3. Then click the tab labelled Aliases. In the input text box of this tab, type in
ChatRoomQAsync, then click the Add button. Add two further entries:
636 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

ChatRoomQViaWas and ChatRoomQAsyncViaWas. These alias entries tell the
ServerQm that any messages it receives for these queues are to be placed on
the ChatRoomQ queue.

The window should look like that shown in Figure 14-25:

Figure 14-25 Setting up alias names for this queue

4. Then click the Create button. No confirmation window is displayed, but the
Create Queue window is redisplayed, allowing you to define another queue if
required.

Remote queue: ChatClientQViaWas
1. You can use the create queue window still displayed from the previous step,

or, if you closed that window, then as before from the expanded tree view,
right-click the object labelled Local Queues, then select New Queue and a
window will appear.

2. In the tab labelled General, type ChatClientQViaWas into the field labelled
Name. The window will look like that shown in Figure 14-26 on page 638.
 Chapter 14. Transaction messaging 637

There are two more fields to change here.

a. Change the queue type to Remote by selecting that value from the
drop-down menu in the field labelled Type.

b. In the field labeled Queue qMgr, type in the name WASServerQm.

c. Check that the field labelled Mode is set to Synchronous.

The window should look like this:

Figure 14-26 Define a remote queue

3. Then click the Create button. No confirmation window is displayed, but the
Create Queue window is redisplayed allowing you to define another queue if
required.

Store and Forward queue: ChatSFQ
1. You can use the create queue window still displayed from the previous step,

or, if you closed that window, then as before from the expanded tree view,
right-click the object labelled Local Queues, then select New Queue. A
638 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

window will appear, in which to enter the details of the queue you wish to
define.

2. Under the tab labelled General, type ChatSFQ into the field labelled Name.

3. Most importantly, change the queue type to Store and forward queue, by
selecting that value from the drop-down menu in the field labelled Type.

4. This queue is used to store messages that will be ‘pulled’ by remote client
type queue managers, in our case the client side queue manager. The server
side queue manager needs to know that it is to use this queue to store
messages destined for the client side queue manager. To do this, select the
Targets tab. In the window type in the value ClientQm and click the Add
button. This display will look similar to that shown in Figure 14-27.

Figure 14-27 Adding the client queue manager as a target to the store and forward queue

5. Then click the Create button and the queue will be defined. No confirmation
window is displayed.
 Chapter 14. Transaction messaging 639

14.8.7 Define ClientQm queues

Local queue: ChatClientQ
This is the same process as for setting up the local queue called ChatRoomQ on
the server queue manager.

1. From the expanded tree view,right-click the object labelled Local Queues’,
then select New Queue. A window will appear, in which to enter the details of
the queue you wish to define.

2. In the tab labelled General, type ChatClientQ into the field labelled Name.

3. Then click the Create button. No confirmation window is displayed, but the
Create Queue window is redisplayed, allowing you to define another queue if
required.

Remote Queue: ChatRoomQ
1. You can use the create queue window still displayed from the previous step,

or, if you closed that window, then as before from the expanded tree view,
right-click the object labelled Local Queues, then select New Queue. A
window will appear, in which to enter the details of the queue you wish to
define.

2. In the tab labelled General’, type ChatRoomQ into the field labelled Name’.

There are three fields to change here.

a. Change the queue type to Remote queue, by selecting that value from the
drop-down menu in the field labelled Type.

b. In the box labelled Queue qMgr, select from the drop-down menu the
name of the remote queue manager, in this case, ServerQm.

c. Change the mode to Synchronous, by selecting that value from the
drop-down menu in the field labelled Mode.

3. Then click the Create button. No confirmation window is displayed, but the
Create Queue window is redisplayed allowing you to define another queue if
required.

Remote Queue: ChatRoomQAsync
1. You can use the create queue window still displayed from the previous step, of

if you closed that window, then as before from the expanded tree
view,right-click the object labelled Local Queues, then select New Queue. A
window will appear, in which to enter the details of the queue you wish to
define.
640 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

2. In the tab labelled General, type ChatRoomQAsync into the field labelled Name.

There are three fields to change here.

a. Change the queue type to Remote queue, by selecting that value from the
drop-down menu in the field labelled Type.

b. In the box labelled Queue qMgr, select from the drop-down menu the
name of the remote queue manager, in this case, ServerQm.

c. Change the mode to Asynchronous, by selecting that value from the
drop-down menu in the field labelled Mode.

When the chat room application tries to send a message, it first tries to put the
message to the local queue called ChatRoomQ on the server queue
manager.

If there is no connection, the application will put the message to this queue.
Because the mode is set to Asynchronous, the queue manager will store the
message locally, and then send it to the server queue manager when the
connection becomes available.

If the mode was set to synchronous, and the connection was down, then the
put message would fail.
 Chapter 14. Transaction messaging 641

Figure 14-28 Define remote queue on the client

3. Then click the Create button and the queue will be defined. No confirmation
window is displayed.

Remote Queue: ChatRoomQViaWas
1. In the window for defining a new queue, under the tab labelled General, type

ChatRoomQViaWas into the field labelled Name.

There are three fields to change here.

a. Change the queue type to Remote queue, by selecting that value from the
drop-down menu in the field labelled Type.

b. In the box labelled Queue qMgr, select from the drop-down menu the
name of the remote queue manager, in this case, WASServerQm.

c. Change the mode to Synchronous, by selecting that value from the
drop-down menu in the field labelled Mode.
642 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

2. Then click the Create button. No confirmation window is displayed, but the
Create Queue window is redisplayed allowing you to define another queue if
required.

Remote Queue: ChatRoomQAsyncViaWas
1. In the window for defining a new queue, under the tab labelled General, type

ChatRoomQAsyncViaWas.

There are three fields to change here.

a. Change the queue type to Remote queue, by selecting that value from the
drop-down menu in the field labelled Type.

b. In the box labelled Queue qMgr, select from the drop-down menu the
name of the remote queue manager, in this case, WASServerQm.

c. Change the mode to Asynchronous, by selecting that value from the
drop-down menu in the field labelled Mode.

2. Then click the Create button. No confirmation window is displayed, but the
Create Queue window is redisplayed allowing you to define another queue if
required.

Home Server Queue: ChatSFQ
1. In the window for defining a new queue, under the tab labelled General, type

ChatSFQ into the field labelled Name.

There are two fields to change here.

a. Change the queue type to Home Server queue, by selecting that value
from the drop-down menu in the field labelled Type.

b. In the box labelled Queue qMgr, select from the drop-down menu the
name of the remote queue manager, in this case, ServerQm.

Notice that the mode is set to Asynchronous, as the client queue manager will
poll the remote corresponding store and forward queue on the remote queue
manager, and pull any messages it find there to this queue.

The window will look like that shown in Figure 14-29.
 Chapter 14. Transaction messaging 643

Figure 14-29 Defining the home server queue on the client

2. Then click the Properties tab. There is one field here to be changed, called
the Time interval.

Specify a value here in milliseconds. Specifying a value greater than zero tells
the client queue manager how often to automatically poll the server side
queue. Set this to some reasonable value, such as 5000, which will mean that
a check occurs every 5 seconds.

3. Then click the Create button and the queue will be defined. No confirmation
window is displayed.
644 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Home Server Queue: ChatSFQViaWas
1. In the window for defining a new queue, under the tab labelled General, type

ChatSFQViaWas into the field labelled Name.

There are two fields to change here.

a. Change the queue type to Home Server queue, by selecting that value
from the drop-down menu in the field labelled Type.

b. In the box labelled Queue qMgr, select from the drop-down menu the
name of the remote queue manager, in this case, WASServerQm.

2. Then click the Properties tab. There is one field here to be changed called
the Time interval.

Specify a value here in milliseconds. Specifying a value here greater than
zero tells the client queue manager how often to automatically poll the server
side queue. Set this to some reasonable value, such as 5000, which will mean
that a check occurs every 5 seconds.

3. Then click the Create button and the queue will be defined. No confirmation
window is displayed.

14.8.8 Define WASServerQm queues

Local: ChatClientQViaWas
1. In the window for defining a new queue, under the tab labelled General, type

ChatClientQViaWas into the field labelled Name.

The mode should default to synchronous, and the type to local.

2. Then click the Create button. No confirmation window is displayed, but the
Create Queue window is redisplayed, allowing you to define another queue if
required.

Store and Forward queue: ChatSFQViaWas
1. In the window for defining a new queue, under the tab labelled General, type

ChatSFQViaWas into the field labelled Name.

2. Most importantly, change the queue type to Store and forward queue, by
selecting that value from the drop-down menu in the field labelled Type.

3. Select the Targets tab. In the window, type in the value ClientQm and click the
Add button.

4. Then click the Create button to define the queue. No confirmation window is
displayed.
 Chapter 14. Transaction messaging 645

14.8.9 Java Swing setup
The chat room application uses the Java swing classes to display windows.
These classes are located in a .jar file called SwingAll.jar. Search your system for
one of these files, then add it to the classpath. For example:

set CLASSPATH=%CLASSPATH%;c:\Program Files\sqllib\java\swingall.jar

Be sure that the MQSeries Everyplace Java classes are also accessible through
the classpath, as mentioned in “Preparing for setup” on page 621.

14.8.10 Chatroom application setup
As mentioned, the chat room application consists of a number of packages. In
this setup example, we will place the application code in the ES02 directory.
Follow these steps:

1. Create a directory called itso under the ES02 directory.

2. Create a directory called mqe under the itso directory.

3. Create three directories under the mqe directory called:

– chatclient

– chatserver

– chatwindow

4. Copy the chat client classes to the chat client directory.

5. Copy the chat server classes to the chat server directory.

6. Copy the chat window classes to the chat window directory.

If you obtained the sample code in a zip file, extracting the files in the zip file will
create the appropriate directory structure and put the classes in the correct
place.

Modify the classpath so that these classes are found when the application is run,
by typing in:

set CLASSPATH=C:\ES02\;.;%CLASSPATH%

The ‘.’ tells the system to look in the current directory.
646 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.8.11 Setting up the startup list
The chat room application demonstrates two ways of running applications with
MQSeries Everyplace.

On the server side, the MQSeries Everyplace queue manager is started first,
then the chat room application is loaded.

On the client side, the chat room application is started first, and it starts the
MQSeries queue manager.

Startup list
The startup list approach demonstrates how to use the ES02 support pac so as
to have an application loaded when the queue manager starts.

This is done by editing the .ini file associated with the queue manager, in this
case ServerQm.ini.

Add the following to the bottom of the .ini file used for ServerQm:

[AppRunList]

(ascii)App1=itso.mqe.chatserver.RoomMgr

Note that more than one application can be specified, and initialization data can
also be passed if required.

14.8.12 Configuring WebSphere
WebSphere Application Server will require some configuration to allow the
servlet to be run. The servlet was tested in both V3.5 and V4 of WebSphere
Application Server, but we will only describe here deployment of the servlet in
V3.5.

Defining the servlet to WebSphere can be done in many ways; however, we
chose to define a separate Web application under the default application server.

Use the WebSphere Administrative console to create a new Web application,
then create a servlet definition. The window that defines the servlet should look
similar to the one shown in Figure 14-30 on page 648.
 Chapter 14. Transaction messaging 647

Figure 14-30 Defining the Chat Room servlet

Add the following directories to the classpath for the Web application that will run
the servlet:

– C:\Program Files\MQe\Java

– C:\ES02

– C:\WebSphere\AppServer\hosts\default_host\WSsamples_app\servlets

What is being added here is the location of the MQSeries Everyplace class files,
and the classes used by the chat room application. The last classpath is required
as the servlet that runs the queue manager and imports this package is part of
the YourCo example explained in “Extending the YourCo application” on
page 661. Note that you will need to copy the TotalLeaveBean class from the zip
file containing the chat room application to the above directory, as this class was
developed for this redbook, and is not part of the supplied WebSphere
Application Server YourCo sample.

Note also that messages written out by the chat room application are written to
standard output, which will appear in the default standard output file for the
application server. These messages adviseyou that the queue manager is
started successfully, for example.
648 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.8.13 Setting up property files
The following property files need to be defined.

clientChat.properties
This property file is used only on the client side, and can be used to pass the
names of queues and queue managers to the application to be used in place of
the defaults coded in the Java programs. A sample is shown below:

Example 14-21 Sample clientChat property file

iniFile=C:\\ES02\\ClientQm.ini
clientQueue=ChatClientQ
destQueue=ChatRoomQ
destQueueAsync=ChatRoomQAsync
destQMgr=ServerQm
clientQm=ClientQm
WASIpAddr=9.24.106.53

Note that the values shown above match the default values coded in the Java
code, so a property file does not need to be used if the defaults are used.

The file should be placed in the ES02 directory.

MQe.properties
This property file is used only by the servlet running in WebSphere Application
Server. This property file is used to pass in the location of the.ini file for the queue
manager to be started by the servlet, and a flag to do with the YourCo example
described in “Extending the YourCo application” on page 661.

The file contains just two lines:

IniFile=D:\\ES02\\WasServerQm.ini

YourCo=No

If you do plan to use the YourCo example, then set the value of the YourCo
property to anything other then Yes. If the value is set to Yes,you will need to
define the YourCoQuery queue in the WASServerQM, otherwise you will get an
exception in the servlet. The property file should also be placed in the ES02
directory.
 Chapter 14. Transaction messaging 649

ejbLocation.properties
A number of parameters are required so that the bean used in WebSphere can
locate the EJB of the YourCo application. These parameters are specified in this
property file. The contents of the file look like this:

Example 14-22 Properties to locate EJB

userID=WSDEMO
password=wsdemo1
URL=jdbc:db2:SAMPLE
driver=COM.ibm.db2.jdbc.app.DB2Driver
dataSourceName=jdbc/sample
factory=com.ibm.ejs.ns.jndi.CNInitialContextFactory
accessName=Access
providerURL=iiop://9.24.104.13:900

The IP address in the example above needs to be the address of the system that
is executing the EJBs.

This file should be placed into the ES02 directory. Note that if you do not plan to
try out the YourCo example, then you do not need to set up this property file.

14.8.14 Starting the chat room application
This section describes how to start and use the chat room application.

Starting the server side
To start the server side of the chat room application, follow these steps.

1. Open a DOS window.

2. Set up the classpath as described in “Preparing for setup” on page 621.

3. Change to the ES02 directory.

4. Type in MQe_explorere.exe.

a. This displays MQe Explorer window; select File->Open.

b. A file dialog box appears; locate the .ini file for the server queue manager
called ServerQm.ini and select it.

c. The queue manager will start, and its objects can be viewed in the tree.

d. It will start the chat room application; this is specified in the AppRunList
stanza of the .ini file.

e. A window will appear titled MQSeries Everyplace Server.

Note that you cannot send any messages until the client connects.
650 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Server side chat window
The server side chat window will initially look like this (see Figure 14-31):

Figure 14-31 Initial server side chat window

Starting the client side
To start the client side of the chat room application, follow these steps:

1. Open a DOS window where ClientQM is set up and set up the classpath.

2. Type in java itso.mqe.chatclient.ClientMgr. Note that this will first start
the chat room application, then the application will start the queue manager.

– If you have set up a property file for the client side, add -p to the line that
invokes the application; this causes the application to read the property
file.

3. A window will appear titled MQSeries Everyplace Client.
 Chapter 14. Transaction messaging 651

Client side chat window
The client side chat window will initially look like this (see Figure 14-32):

Figure 14-32 Initial client side chat window

14.8.15 Operating the chat window
Once the two windows are displayed, you are ready to begin chatting. Note that
the client side must initiate the chat.

In the client window, in the input box below the text Chat Direct, type in some
text and click Enter.

The text you have typed in should then appear in the server side window, in the
output text area below the text ITSO Chat Room.

The Chat Direct input text area on the server side chat room will now be enabled
for input. Type in a message and click Enter. There will be a slight delay before
the message appears in the output text area on the client window, because the
client is polling the server store and forward queue at a defined interval.

To test chatting using WebSphere, type messages into the Chat via WebSphere
input boxes.

Continue to chat between the two windows as required.
652 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.8.16 Asynchronous chatting
To demonstrate asynchronous message transfer, the client side of the application
can be run without the ServerQm or WASServerQm queue managers being
active.

Start just the chat room application on the client side. In the Chat Direct input text
box, type a message. The application first tries to put to the local queue on the
remote server, but is not able to, as the server side queue manager is down. The
application detects this, and puts the message to the remote queue called
ChatRoomQAsync. MQSeries Everyplace stores the message locally.

You can verify this by looking in the directory on the file subsystem that is being
used to store messages. For example, let us say that you typed in three
messages; you can see that there are three files in the corresponding directory,
as shown inFigure 14-33 on page 653

Figure 14-33 Messages waiting to be sent

The messages are in the ChatRoomQAsync directory.

These messages will be sent by MQSeries Everyplace when there is a
connection to the server side queue manager.
 Chapter 14. Transaction messaging 653

You can also try stopping the application server where the servlet is defined.
Then try to send a message using the Chat via WebSphere boxes. As no
connection can be established, the messages will be written to the
ChatRoomQAsyncViaWas queue on ClientQm.

Triggering transmission
For asynchronous message transfer to occur, the queue manager must be
triggered. When triggered, the queue manager will attempt to send the queued
messages. If a connection is available, the messages are sent; if the connection
is down, no messages are sent.

The queue manager will not try again until triggered once more. Thus, if you now
start the server side queue manager, the messages are not automatically sent.

With the chat room application, there are two ways to trigger this transfer once
the server queue manager is restarted.

One way is to stop the client queue manager and restart it. When restarted, the
trigger transmission method is invoked, which causes it to try to send any queued
messages.

The second way is to leave the client chat room application running, and click the
button labelled Trigger Transmission in the client chat window. This causes the
trigger transmission method to be invoked on the queue manager, and the
messages to be sent.

It is the responsibility of the application to provide some method to have a trigger
transmission method issued on the queue manager, if asynchronous messaging
is being used.
654 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.8.17 The administration GUI
In the client chat room window is a button labelled Display Admin GUI. When
clicked, the following window appears:

Figure 14-34 The administration GUI

This GUI is an example supplied with MQSeries Everyplace. Its use is described
in the MQSeries Everyplace Programming Guide. It can be used to inquire,
update and create definitions in the queue manager.

Trace facility
One of the most useful features is the trace option. If you click the Trace button,
the following window appears (see Figure 14-35).
 Chapter 14. Transaction messaging 655

Figure 14-35 MQSeries Everyplace Trace window

This can be used to trace activity in MQSeries Everyplace. If your Java program
writes messages to standard output, these will appear in this window.

14.8.18 Encryption and the stress test
As a simple example of using the encryption services supplied with MQSeries
Everyplace, and as a measure to compare the respective performances of
TCP/IP versus HTTP over TCP/IP for sending messages, a very simple stress
test is incorporated into the chat room application.

The following section describes how to set it up, the queues required, how to run
the test, and also how to set up and verify encryption.

ClientQm - Queues
1. Shut down the client side of the chat room application if it is running, and start

up the ClientQM queue manager using the ES02 package.

2. Open a Create queue window.

3. Under the tab labelled General, type StressQ into the field labelled Name.

There are three fields to change here.

a. Change the queue type to Remote queue by selecting that value from the
drop-down menu in the field labelled Type.

b. In the box labelled Queue qMgr, select from the drop-down menu the
name of the remote queue manager, in this case, ServerQm.
656 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

c. Check that the mode is Synchronous by selecting that value from the
drop-down menu in the field labelled Mode.

4. Then click the Security tab. In the field labelled Cryptor, select
com.ibm.mqe.attributes.MQeXorCryptor. The window should look
something like this (see Figure 14-36):

Figure 14-36 Selecting a cryptor adapter

5. Then click the Create button and the queue will be defined. No confirmation
window is displayed.

6. Repeat this process to create another remote queue, but with a value of
WASServerQm in the Queue qMgr field.
 Chapter 14. Transaction messaging 657

ServerQm - Queue
1. Using the ES02 package, start the ServerQm queue manager, and open the

Create queue window.

2. Under the tab labelled General, type StressQ into the field labelled Name.

The queue type should be local, the mode synchronous.

3. Then click the Security tab. In the field labelled Cryptor, select
com.ibm.mqe.attributes.MQeXorCryptor.

4. Then click the Create button and the queue will be defined. No confirmation
window is displayed.

WASServerQm Queue
1. Using the WebSphere Application Server console, stop the application server

that is running the ITSOMQeWas servlet. Then, using the ES02 package,
start the WASServerQm queue manager, and open the Create queue
window.

2. Under the tab labelled General, type StressQ into the field labelled Name.

The queue type should be local, the mode synchronous.

3. Then click the Security tab. In the field labelled Cryptor, select
com.ibm.mqe.attributes.MQeXorCryptor.

4. Then click the Create button and the queue will be defined. No confirmation
window is displayed.

5. Stop the Es02 package, and restart the application server in WebSphere
Application Server.

Running a stress test
Start the client side of the chat room application again. Then in the Chat Direct
window type in the string Stress Test and click Enter. The code in the
sendMessage method of ClientMgr checks for the above string in the message to
be sent. When it detects it, it will invoke the stressTest method. All this method
does is send ten messages of 150 bytes each to the ServerQm. It records the
time it takes for this to occur, and calculates the throughput rate. It then displays
a message with the results in the chat room window.

Typing the same string in the Chat via WebSphere box sends the same set of
messages to the StressQ on the WASServerQm.

If you set up the client queue manager on one workstation, and the
WASServerQm and ServerQm on some other workstation, then you can use this
simple stress test to compare sending messages via TCP/IP versus via HTTP.
658 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Encryption
Since the queues were defined using an encryption adapter, the messages have
been encrypted. The messages are encrypted as they are put into the queue,
and not decrypted until they are retrieved from the queue and passed to the
application.

Note that even though this is a synchronous put message to a local queue on a
remote queue manager, the encryption would still occur on the client side queue
manager before the messages were sent.

Using the ES02 package,right-click the StressQ object, and you will see that it
contains a number of messages. Double-click one of these messages, and you
will have a display similar to the one shown in Figure 14-37:

Figure 14-37 Displaying stress test messages

The text of the message is shown under the heading Value, on the line with a
value of Message under the heading Name. The message contents can be
viewed, because in this case the ES02 package has read the message, and the
queue manager has decrypted it.

To check that the message is indeed encrypted, use the Windows Explorer
program, and drill down to the StressQ folder in the directory where the queues
associated with the ServerQm are stored. In this directory, you will see a number
of files, each file representing a message. Double-click one of the messages, and
it will display in a default editor. The contents will look like those shown in
Figure 14-38.
 Chapter 14. Transaction messaging 659

Figure 14-38 Encrypted message contents

As the message is encrypted, the contents displayed are unintelligible.

MQSeries Everyplace comes with adapters that provide much stronger levels of
encryption than the one used in this example, though there are some additional
steps involved in using them, which are explained in Chapter 8 in the MQSeries
Everyplace Programming Guide, SC34-5845.

TCP/IP versus HTTP - a comparison
Using this simple stress test, we compared throughput rate of TCP/IP to that of
HTTP between queue managers.

We set up ClientQm on one machine, and WASServerQm and ServerQm on a
second machine, connected over a LAN. Then we ran the above stress test on
each, with these results:

– It took 250 ms to send 1500 bytes to ServerQm using TCP/IP.

Throughput rate: 6000 bytes/sec

– It took 1844 ms to send 10 messages of a total of 1500 bytes to
WASServerQm using HTTP, with WASServerQm running in WebSphere.

Throughput rate: 813 bytes/sec

14.8.19 Coding administration messages
Because in our example we have used the ES02 package to configure our queue
managers, it has not been necessary to develop any code to perform this task.
Without the ES02 package, it would have been necessary to develop programs
to perform the administrative task of creating and configuring queue managers.
660 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

This configuration process is performed by using MQSeries Everyplace
administrative type messages. When a queue manager is defined, two queues to
handle administration are defined. They are called:

– AdminQ

– AdminReplyQ

Administration of queue managers is performed by using administration
messages. The messages are written to the AdminQ, where the queue manager
actions the message and replies on the AdminReplyQ.

Building these administration messages requires writing a program. The ES02
package does this for you, by turning the actions (which you generate by clicking
various objects) into administration messages.

In the ClientMgr class there are two methods, which provide sample code to
show how to build administration type messages. The addConnection defines a
connection, while the addQueue method defines a queue.

14.9 Extending the YourCo application
This section describes how MQSeries Everyplace can be used to extend existing
applications.

14.9.1 Overview
The YourCo application is a sample application supplied with WebSphere
Application Server. It demonstrates various features of WebSphere, EJBs,
servlets, etc., with browser-based access.

As part of the chat room application, some extra code was developed to
demonstrate how MQSeries Everyplace can be used to access an existing
application running in WebSphere. This example demonstrates how to set up a
simple adapter to implement authenticated access to a queue.

The YourCo sample application consists in part of a database containing in one
database table a list of employees, and in another table a list of different types of
leave that the employees are owed.

The aim of the example is to show how a manager on a remote device could
access information securely from an applicatio which, to date, only had a
browser interface.
 Chapter 14. Transaction messaging 661

This example is implemented on typical Windows type desktops, with the client
application running on a Windows desktop. However, the client application could
be implemented on a palm type device, which perhaps does not support a
normal browser interface. Using MQSeries Everyplace, and the Wireless
Gateway support of the WebSphere Everyplace Suite, a person could gain
remote secure access to an application that previously had required a browser
for access.

14.9.2 YourCo extensions
The example set up here involves sending a predefined message to the queue
YourCoQuery in the WASServerQm queue manager running in WebSphere.
When the message arrives, a bean is invoked to determine the total amount of
different types of leave that all staff of YourCo have. A message with these totals
is returned to the chat room window.

The following describes the extra Java packages set up to handle the interaction
with theYourCo application.

Part of the supplied YourCo application is a package called
WebSphereamples.YourCo.Timeout. This package is used to display leave
information about individual staff members of YourCo on a browser. The code
was copied into VisualAge for Java, then the following new classes developed:

– totalLeaveBean - used to store leave values

– totalLeaveServlet - contains the method to retrieve leave information

When the init method of the ITSOMQeWas servlet is run, a message listener is
defined for the YourCoQuery queue. When a message arrives on that queue, the
messageArrived method of the WasQMgr object is called. Example 14-23 shows
the code executed from this method:

Example 14-23 Handling message on the YourCoQuery queue

if (eventQueueName.indexOf("YourCoQuery") >= 0) {
System.out.println("call ejb to get info");

 msgObj = wasQMgr.getMessage(null, "YourCoQuery", null, null, 0);
 System.out.println("From: " + msgObj.getOriginQMgr() +

" : " + eventQueueName +
" msg: " + msgObj.getAscii("Message"));

 findTotalLeave();
 String yourCoMsg = "YourCo leave Totals: Vactional: " + sumVactional +
 " Personal: " + sumPersonal +
 " Sick: " + sumSick;
 replyMsg.putAscii("Message", yourCoMsg);

 wasQMgr.putMessage("ClientQm", "ChatClientQ", replyMsg, null, 0);
662 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The result of the code is that the findTotalLeave method of the WasQMgr object
is called. This main part of this method is shown in Example 14-24:

Example 14-24 Calling bean to access YourCo information

TotalLeaveBean totalLeaveInfo = new TotalLeaveBean();

 totalLeaveInfo = totalLeaveServlet.calcTotalLeave(null);

 sumVactional = totalLeaveInfo.getTotalVactional();
 sumPersonal = totalLeaveInfo.getTotalPersonal();
 sumSick = totalLeaveInfo.getTotalSick();

The above code shows that a Java bean object of type TotalLeaveBean has been
created. This bean was written for this example. The totalLeaveServlet class was
written initially to run the TotalLeaveBean using a browser to test its functionality,
prior to using it in this example.

The above code shows that the calcTotalLeave method of the totalLeaveServlet
class is called, which will return a bean of type totalLeaveInfo.

The calcTotalLeave method of the totalLeaveServlet class uses another bean
developed for this redbook, called InviteesDBBean. This bean returns a list of all
employees from the YourCo database. Then, for each employee in the list, the
number of different types of leave they have is obtained, using an existing EJB,
and a running total for each type kept. The code is shown in Example 14-25:

Example 14-25 Calculating the total of the different leave types

try {
 while (true) {
 ii = ii + 1;

 employeeId =
Integer.valueOf(InviteesDBBean.getEMPNO(ii)).intValue();

 System.out.println(
 "Employee id: " + employeeId + " String: " +
InviteesDBBean.getEMPNO(ii));

 try {
 totalVactional = totalVactional +
access.getBalance(employeeId, 1);

 totalPersonal = totalPersonal +
access.getBalance(employeeId, 2);
 Chapter 14. Transaction messaging 663

 totalSick = totalSick + access.getBalance(employeeId,
3);

 System.out.println("tv:" +
access.getBalance(employeeId, 1));
 } catch (Exception e) {
 System.out.println("TL - Exception: " +
e.getMessage());
 e.printStackTrace();
 }

 } // End while
 } // End try

What we have demonstrated here is that a remote application using the
messaging technology of MQSeries Everyplace can easily be used to access an
existing Web-based application.

14.9.3 Customized authenticator adapter
MQSeries Everyplace comes with some sample authentication type adapters. In
this example, however, we show how a simple authentication adapter was
developed .

A detailed description of the MQSeries Everyplace authentication adapter can be
found in Chapter 2 of the MQSeries Everyplace Programming Reference
manual, SC34-5846.

The following diagram outlines the process that occurs when an authentication
adapter is used.
664 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 14-39 Authentication adapter flow

The process, with reference to the above diagram, is as follows:

1. The application issues a putMessage to the YourCoQuery queue.

2. The ClientQm queue manager detects that an authentication adapter is
specified in the queue definition, and invokes the activateMaster in the class
specified; in this case, the customized adapter is in the package
itso.mqe.security.QueueAuthenticator.

a. The activateMaster method then displays a small window to ask the end
user for a password.

b. The password entered by the user is returned to the queue manager to
pass to the corresponding activateSlave method on the server queue
manager; the code to do this is shown below:

Example 14-26 Returning password for validation

/* Password entered by user is passed back to queue manager, which
 will send it to the corresponding activateSlave method on the server
 queue manager */

 System.out.println("pwd: " + password);
 String replyTxt = "From Master: " + password;
 byte [] replyMsg = replyTxt.getBytes();
 return replyMsg;

Application

putMessage
to
YourCoQuery

(2) activateMaster

(4) slaveResponse

setAuthenticateID

ClientQm

setAuthenticateID

WASServerQm

(3) activateSlave

(1)
 Chapter 14. Transaction messaging 665

3. On the WASServerQm queue manager, the activateSlave method of the
QueueAuthenticator class is invoked.

a. The data passed to this method contains the password entered by the end
user; the code in the method validates the password and sends back a
positive response. The code that does this is shown below:

Example 14-27 Validating the password

if (recvMsg.indexOf("shazam") > 0){
 try
 {
 setAuthenticatedID(authID);

 replyMsg = "From Slave: Auth ok: ".getBytes();

 return replyMsg;

 } /*

If the password is incorrect, an exception is thrown, which will result in the
activateMaster method being reinvoked on the ClientQm queue manager,
which will redisplay the window asking for the password.

b. The setAuthenticatedID method call tells the queue manager that
authentication has been successfully established for the queue.

c. On the ClientQm queue manager, the slaveResponse method in the
QueueAuthenticator class is called; this method simply calls the
setAuthenticatedID method to notify the ClientQm that access to the
queue has been authenticated.

14.9.4 Queue definitions
To run the example, set up the following queue definitions. It is assumed that you
have set up the Chat Room Client example described in “ChatRoom: an
MQSeries Everyplace application” on page 595.

On ClientQM: remote queue-YourCoQuery
This is a similar process to the one you have been using to define queues in the
Chat Room application.

1. Stop the chat room application if running, and use ES02 to load up the
ClientQm queue manager.
666 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

2. From the expanded tree view,right-click the object labelled Local Queues. A
window will appear, in which to enter the details of the queue you wish to
define.

3. Under the tab labelled General, type YourCoQuery into the field labelled Name.

4. Change the queue type to Remote queue, by selecting that value from the
drop-down menu in the field labelled Type.

5. In the box labelled Queue qMgr, select from the drop-down menu the name of
the remote queue manager, in this case, WASServerQm.

6. Check that the mode is Synchronous, by selecting that value from the
drop-down menu in the field labelled Mode.

7. Then click the Security tab. In the field labelled Authenticator, type in this
value:

itso.mqe.security.QueueAuthenticator

The window will look like that shown in Figure 14-40:

Figure 14-40 Specifying a customized authentication adapter
 Chapter 14. Transaction messaging 667

8. Then click the Create button. No confirmation window is displayed.

On WASServerQM: Local queue-YourCoQuery
1. Stop the application server in WebSphere Application Server if the queue

manager is active in the servlet. Then use ES02 to load up the
WASServerQm queue manager.

2. From the expanded tree view,right-click the object labelled Local Queues. A
window will appear, in which to enter the details of the queue you wish to
define.

3. In the tab labelled General, type YourCoQuery into the field labelled Name.

The queue type should be local, the mode synchronous.

4. Then click the Security tab. In the field labelled Authenticator, type in this
value:

itso.mqe.security.QueueAuthenticator

5. Then click the Create button. No confirmation window is displayed.

14.9.5 Property File
Check that in the MQe.property file, the flag for the YourCo property is set to Yes.
The line in the property file should look like this:

YourCo=Yes

14.9.6 Additional beans
The YourCo application comes as a supplied example with WebSphere
Application Server. Additional beans and servlets were developed to
demonstrate the new functionality of WebSphere Everyplace Server. These
additional beans are supplied with the zip file for this redbook. They need to be
copied to the directory containing the rest of the YourCo example.

This directory also needs to be added to the classpath in the Web Application
definition in WebSphere Application Server:

C:\WebSphere\AppServer\hosts\default_host\WSsamples_app\servlets
668 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

These additional classes:

– WebSphereSamples.YourCo.Timeout.TotalLeaveBean

– WebSphereSamples.YourCo.Timeout.TotalLeaveServlet

need to be copied to this directory:

C:\WebSphere\AppServer\hosts\default_host\WSsamples_app\servlets\Web
SphereSamples\YourCo\Timeout

while this class:

WebSphereSamples.YourCo.Meeting.InviteesDBBean

need to be copied to this directory:

C:\WebSphere\AppServer\hosts\default_host\WSsamples_app\servlets\Web
SphereSamples\YourCo\Meeting

14.9.7 Running the YourCo example
To run this example, start the client side of the chat room application. Then click
the button labelled YourCo Secure Query. You will then be prompted to enter a
password before access to the YourCoQuery queue is allowed, as shown below:

Figure 14-41 YourCoQuery queue password prompt

Enter the password shazam into the password field and click the OK button.

After a few seconds, the reply message advising the total leave values by type
will appear in the chat room window. The message will be as shown in
Example 14-28.

Example 14-28 YourCo query reply message

From: WASServerQm : ChatClientQ msg: YourCo leave Totals: Vactional: 11
Personal: 14 Sick: 20
 Chapter 14. Transaction messaging 669

14.10 Integration with WebSphere Everyplace Suite
So far in this chapter, the examples of using MQSeries Everyplace with
applications have been done on standard desktops using Windows 2000, over a
standard LAN. However, one of the reasons that MQSeries Everyplace was
developed was to provide assured messaging capability over non traditional
networks, such as those now available for wireless connection.

The connectivity support provided by the Wireless Gateway component of
WebSphere Everyplace Server means that applications that use MQSeries
Everyplace can use this connection support to allow them to run on wireless
devices. While this chapter has only described using MQSeries Everyplace on
Windows systems, the product does provide support for other devices, such as
palm type devices.

The Wireless Gateway consists of a server component which would typically be
run within an organization’s data center, and a client component installed on the
wireless device. This client component handles the process of communicating
with the server side of the Wireless Gateway.

One of the advantages of using the Wireless Gateway is that it can be configured
to provide authentication and encryption services. Enabling authentication
means that when an end user establishes a wireless connection, they will be
prompted for their authentication details by the Wireless client. Enabling
encryption means that all data transferred between the client and the server is
encrypted, preventing unauthorized people from viewing the data.

These authentication and encryption services of the Wireless Gateway can be of
use in addition to any authentication and encryption that applications or other
products may use communicating through the Wireless Gateway.

Applications using MQSeries Everyplace, when run on a device using the
Wireless Gateway for handling communication, require no modifications.
Applications using MQSeries Everyplace do not handle any of the
communication process; rather, this is done by MQSeries Everyplace.
Additionally, MQSeries Everyplace does not require any special configuration to
use the Wireless Client support.

An advantage that MQSeries Everyplace provides is sending messages using
the HTTP protocol as well as TCP/IP. This means that a site that has the typical
firewall setup to allow in HTTP traffic through to back end Web servers does not
need to change this setup to allow applications on wireless devices access to the
system. Since the packets of data from the MQSeries Everyplace applications
will be standard HTTP packets, coming in on the standard HTTP port 80, the
firewall will not require modifications.
670 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

By using client type queue managers on the wireless device, MQSeries
Everyplace will only be establishing connections from the outside world into the
organization’s site. No connections are established from within the organization’s
site to devices outside.

Web Traffic Express
As the standard HTTP protocol can be used by MQSeries Everyplace, these
requests which will invoke a servlet in WebSphere Application Server can be
initially routed to the WebTraffic Express component of WebSphere Everyplace
Server. WebTraffic Express can then use the WebSEAL-Lite plug-in, to verify with
Policy Director if the request should be allowed to pass through to the back-end
server.

A sample authentication adapter is shipped with MQSeries Everyplace; it can be
used to add an authentication header to the HTTP request, containing the user
ID and password of the end user. The user ID and password are encoded using a
base 64 algorithm, just as is done in browsers, meaning that it is a trivial task to
decrypt it. However, enabling the encryption support of the Wireless Gateway
means that the HTTP requests sent by MQSeries Everyplace will be encrypted
using a much stronger algorithm, which protects the user ID and password in the
HTTP request.

Figure 14-42 shows how the Chat Room application would be implemented
across multiple devices with the Wireless Gateway handling the communication
between the client and other queue managers.

Figure 14-42 Integration with Wireless Gateway

Chat Direct

Chat Room

Client

Chat Via WebSphere

Chat Direct

Chat Room

Chat Via WebSphere

Server

WASServerQm

WebSphere Application Server

ClientQm

ServerQm

Wireless
Gateway

Web
Traffic
Express

TCP/IP

HTTP HTTP

HTTP

TCP/IP

TCP/IP
 Chapter 14. Transaction messaging 671

Location-based services
Chapter 11, “Location-Based Services (LBS)” on page 435 describes another
feature of WebSphere Everyplace Suite, called Location-Based Services.
Location-Based Services allows information about the location of the end user to
be added to the HTTP request when received on the server side. Since
MQSeries Everyplace could be configured to send messages as HTTP requests,
these requests could be routed through the system running the Location Based
Services component.

Location information would be added to the HTTP request, which would then flow
onto the servlet in WebSphere Application Server. The servlet, as well as
passing the message to MQSeries Everyplace, could extract the location
information and use this as required.

By using client type queue managers on the wireless device, MQSeries
Everyplace will only be establishing connections from the outside world into the
organization’s site. No connections are established from within the organization’s
site to devices outside.

14.10.1 Using the Wireless Client and Gateway
This section demonstrates how to use the Wireless Gateway in conjunction with
MQSeries Everyplace.

Figure 14-43 shows how we initially configured the chat room application to run
across two Windows 2000 machines.
672 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 14-43 Chat Room application over standard LAN

The above diagram shows the client side running on a PC at address
9.24.106.53, while the server queue manager and WebSphere Application
Server both run on the PC at address 9.24.104.13.

We now want to use the Wireless Gateway to handle communication between
these two devices.

The Wireless Gateway was set up on an AIX system, and the Wireless Client
was installed on the client side PC.

The Wireless Gatekeeper is the tool used to administer the Wireless Gateway. In
the lab, we had the Wireless Gateway running on an AIX system. A sample
screen shot is shown below.

Chat Direct

Chat Room

Client

Chat Via WebSphere

Chat Direct

Chat Room

Chat Via WebSphere

Server 9.24.104.13

WASServerQm

WebSphere Application Server

ClientQm ServerQm

TCP/IP

HTTP

TCP/IP

9.24.106.53 9.24.104.13
 Chapter 14. Transaction messaging 673

Figure 14-44 Wireless Gatekeeper GUI

On an AIX system, the gatekeeper is started by typing in wgcfg.

On the left hand side of the Gatekeeper window is a tree structure showing the
various objects being managed by the Gateway. In the tree, the object labelled
RS615001 represents the AIX system running the Wireless Gateway. Under this
object are two objects relating to the Wireless Gateway.

Mobile Network Connection
The first is an icon of a connection with a lightning bolt. This icon represents a
Mobile Network Connection (MNC). This represents the interface to a network
provider for the Wireless Gateway. Right-click this icon, and select Properties.
The right hand side of the window displays the associated properties. For this
example, we do not want to use the authorization facility of the Wireless gateway.
To set this level of authentication, click the tab labelled Security. Next, click the
radio button corresponding to No validation, then click the Apply button to effect
the change (see Figure 14-45).
674 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 14-45 Selecting no authentication

Mobile Network Interface
The next object of interest is the one that appears as a light blue icon with a
lightning bolt through it. This icon represents the Mobile Network Interface, or
MNI. This interface defines an IP subnet, through which the Wireless Gateway
routes traffic for Wireless Clients. When a device connects using the Wireless
client, it will be allocated an address from this subnet. Right-click this icon, and
select Properties. The right hand side of the Gatekeeper window will then
display the properties of the MNI. Click the tab labelled Interface. The field
labelled IP address is where you specify the IP subnet that will be used to
support the clients.

Configuring this IP subnet correctly is a key issue when setting up a wireless
gateway.

For our example, we set up a virtual IP subnet at address 10.0.0.1. Thus the
value entered in the IP Address field in our case was 10.0.0.1 (see
Figure 14-46).
 Chapter 14. Transaction messaging 675

Figure 14-46 Configuring the Wireless Gateway client

Our configuration with the Wireless Gateway incorporated now looks as shown in
Figure 14-47.
676 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 14-47 Incorporating the Wireless Gateway

Note that the client now has an IP address of 10.0.0.2. This is the IP address it
has been allocated by the Wireless Gateway when it connected using the
Wireless Client. If it reconnects at a later time, the address may change, for
example to 10.0.0.5.

In this case, we are running the wireless protocol over the LAN to demonstrate
the use of the Wireless Gateway and Client.

IP packets can now flow from the client through the gateway to the 9.24.104.13
machine. However, an entry needs to be added to the route table on the
9.24.104.13 machine so that it knows where to send reply packets destined for
the client address at 10.0.0.2. On the Windows 2000 machine at 9.24.104.13,
open a DOS window and enter this command:

route ADD 10.0.0.0 MASK 255.255.255.0 9.24.104.65

Chat Direct

Chat Room

Client

Chat Via WebSphere
Chat Direct

Chat Room

Chat Via WebSphere

Server

WASServerQm

WebSphere Application Server

ClientQm

ServerQm

TCP/IP

HTTP

TCP/IP

10.0.0.2

9.24.104.13

Wireless Client

Wireless
Gateway

9.24.104.65

HTTP

TCP/IP
 Chapter 14. Transaction messaging 677

This adds a temporary TCP/IP routing entry, that tells that system to route
packets destined for 10.0.0.* to 9.24.104.65, which is the Wireless Gateway.

Note that this setup is for example purposes only. A production implementation
would require a proper IP subnet and routing tables to be configured.

14.10.2 Trying out the Wireless Gateway
1. First, set up the chat room application on two machines, as depicted in

Figure 14-43 on page 673, and ensure the application is working normally.

2. Then stop the chat room application on the client side. This must be done
before starting the Wireless Client.

3. Install the Wireless Client software on the Windows 2000 machine on the
client side. This is a straightforward process.

4. Then, using the Start button, find the IBM Wireless Client, and select
Connections. In the window displayed, create a connection definition if one
has not already been defined. This creation process is straightforward. The
most important item to know is the IP address of the Wireless Gateway which
needs to be entered.

In the lab, we created a connection called France, as shown below:

Figure 14-48 Wireless Connections

5. To establish a wireless connection, just double-click the icon labelled Gateway
to France. A window similar to the one shown in Figure 14-49 appears.
678 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Figure 14-49 Connecting to the Wireless Gateway

When the three boxes all turn green, the connection is established, and the
window disappears. On the right hand side of the Windows 2000 task bar, a
small icon of a transmission tower appears.

6. To test your wireless connection, open a DOS window. Type in IPCONFIG, and
you will get a display similar to this (see Example 14-29):

Example 14-29 IP status

C:\>ipconfig

Windows 2000 IP Configuration

Ethernet adapter {21959871-44F7-46A7-BE57-6501A133852C}:

 Connection-specific DNS Suffix . :
 IP Address. : 10.0.0.3
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.0.0.1

Token Ring adapter Local Area Connection:

 Connection-specific DNS Suffix . : itso.ral.ibm.com
 IP Address. : 9.24.106.53
 Subnet Mask : 255.255.255.0
 Default Gateway :

This output shows that you still have the LAN connection, but now have also
been allocated a new IP address of 10.0.0.3, which is your Wireless
connection.
 Chapter 14. Transaction messaging 679

7. Then PING the address of the machine running your server side queue
managers. Watch the little transmission tower icon; you will see a lightning
bolt flash to indicate that IP traffic is being sent.

8. Restart the client side of the chat room application, and send some
messages; it should function as before.

This example demonstrates that MQSeries Everyplace applications can be
deployed to run on wireless devices, with the Wireless Gateway providing the
communication support.

14.10.3 Tracing

On the client
The Wireless Client provides a tracing capability to assist with resolving
communications problems. Right-click the small transmission tower icon, and
select Trace. A window allowing you to set trace options appears. You can set
the trace to various levels as required.

Trace information is written to a file called arttrace.txt, which is located in the
directory where the Wireless client was installed:

C:\Program Files\IBM\Wireless Client.

This trace file contains formatted trace output, showing IP traffic that has
occurred.

On the server
Various levels of logging and tracing can be enabled in the Wireless Gateway.
This is done by using the Wireless Gatekeeper. Right-click the icon representing
the AIX system you wish to set logging for, select Properties, then, in the panel
on the right, click the tab labelled Logging.

This tab shows the logging and trace file names, and the level of logging and
tracing that is active. These values can be adjusted as required.

14.11 OS/390
The OS/390 platform also provides excellent Java support, so we decided to try
out MQSeries Everyplace on OS/390. We had access to an OS/390 system
running Z/OS V1. We were able to successfully run the chat room application
using MQSeries Everyplace on the OS/390 system. This section describes how
this was done.
680 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Note that, at time of writing this redbook, IBM was still determining licensing
issues with MQSeries Everyplace on OS/390; its use on OS/390 is restricted at
this time.

We only had time to set up the environment on OS/390 to allow messages to be
sent from the client chat room to the server chat room. However, it would only
require the appropriate definitions to allow the server side to function fully.

14.11.1 Requirements
OS/390 Z/OS contains an Open/Edition environment which provides a UNIX
environment. A Windows server is required to allow the Open/Edition (Unix)
Services to display the GUI window of the chat room application when it is run.

We installed an X-Windows server onto a Windows 2000 desktop. Then we
opened a Telnet session to the OS/390 system, and issued this command to set
the address of the machine on which to display the GUI:

export DISPLAY=9.24.106.53:0.0

The MQSeries Everyplace product is shipped as a zip file. There is no supplied
facility in Open/Edition to unzip a zip file. However, the Infozip product has been
ported to run on OS/390 Open/Edition. It can be downloaded from the following
site:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html

We downloaded this file, ftp’d it to Open/Edition in OS/390, then installed it, which
simply involved untarring it.

This then provided us with a way to unzip any zip files we created on the
Windows platform.

We then used WinZip to zip up the directory containing the MQSeries Everyplace
product, ftp’d this file to the OpenEdition environment and unzipped it.

Then we zipped up the directory containing the chat room application packages,
ftp’d this to Open/Edition and unzipped it.

Note: No Java programs required any modification or recompiling.
 Chapter 14. Transaction messaging 681

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html

After this transfer process was complete, the MQSeries Everyplace product was
located at /u/.edward/mqe3/MQe, while the Chat Room application was located
at /u/edward/itso.

14.11.2 Classpath
To be able to define the queue manager and run the application, based on where
we had unzipped files, as mentioned above, we set the classpath using this
command:

export CLASSPATH=/u/edward/mqe3/MQe/Java:/u/edward:.

Also, the PATH environment variable should reference the location of the Java
executable, for example on our system we set the PATH as follows:

export PATH=/usr/lpp/java213/J1.3/bin

14.11.3 Configuring ServerQm
The MQe_Explorer tool from the ES02 support pac cannot be run from OS/390.
However, the MQSeries Everyplace product comes with many example Java
programs, which can be used from a command line to perform queue manager
administration tasks. We used these tools to set up the ServerQm on OS/390.

Note that we only set up the server side to allow the client chat window to send
messages to the server side.

Creating the .ini file
First, we need to create the .ini file defining the initialization parameters for the
ServerQm queue manager. Due to the way the supplied samples have been
written, the .ini file is expected to be in ASCII. While you can store the .ini file in
ASCII in Open/Edition, you cannot edit it there.

Use Notepad to code up the .ini file, then do a binary transfer of this file to the
OpenEdition environment. We placed the .ini file in a directory called
/u/edward/os390.

Note: Like all Unix environments, Open/Edition is case sensitive, thus it is very
important to ensure that cases of the directory names match the package
names coded in the Java programs.
682 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

The .ini file is shown below:

Example 14-30 ServerQm ini file for OS/390

[Registry]
(ascii)LocalRegType=FileRegistry

(ascii)DirName=/u/edward/os390/ServerQm/Registry/

(ascii)Adapter=RegistryAdapter

[ChannelManager]
(int)MaxChannels=0

[QueueManager]
(ascii)Name=ServerQm

[Listener]
(int)TimeInterval=300

(ascii)Listen=FastNetwork::8082

(ascii)Network=FastNetwork:

[Alias]
(ascii)QueueManager=com.ibm.mqe.MQeQueueManager

(ascii)DefaultTransporter=com.ibm.mqe.MQeTransporter

(ascii)RegistryAdapter=com.ibm.mqe.adapters.MQeDiskFieldsAdapter

(ascii)MsgLog=com.ibm.mqe.adapters.MQeDiskFieldsAdapter

(ascii)PrivateRegistry=com.ibm.mqe.registry.MQePrivateSession

(ascii)FastNetwork=com.ibm.mqe.adapters.MQeTcpipHistoryAdapter

(ascii)FileRegistry=com.ibm.mqe.registry.MQeFileSession

(ascii)Server=examples.queuemanager.MQeServer

(ascii)ChannelAttrRules=examples.rules.AttributeRule

(ascii)Admin=examples.administration.console.Admin

(ascii)AttributeKey_2=com.ibm.mqe.attributes.MQeSharedKey
 Chapter 14. Transaction messaging 683

(ascii)AttributeKey_1=com.ibm.mqe.MQeKey

(ascii)DefaultChannel=com.ibm.mqe.MQeChannel

(ascii)Network=com.ibm.mqe.adapters.MQeTcpipHttpAdapter

Creating the ServerQm queue manager
We then issued this command to create the ServerQM queue manager:

java examples.install.SimpleCreateQM /u/edward/os390/ServerQm.ini

Basic test of ServerQm
We then ran the supplied examples, just to test that the queue manager could be
run successfully, by issuing this command:

java examples.application.Example1 ServerQm
/u/edward/os390/ServerQm.ini

Adding the Chat Room application
We then added the Chat Room application to the .ini file, and ftp’d that to
Open/Edition. The lines added to the bottom of the.ini file are shown below:

Example 14-31 Adding the Chat Room application to ini file

[AppRunList]
(ascii)App1=itso.mqe.chatserver.RoomMgr

[App1]
(ascii)ClientQueue=ChatClientQ
(ascii)ChatRoomQ=ChatRoomQ

Defining ChatRoomQ
We issued this command to define the local queue, ChatRoomQ, to the
ServerQm queue manager:

java examples.administration.commandline.LocalQueueCreator ChatRoomQ
null null null nolimit nolimit ServerQm /u/edward/os390/ServerQm.ini
com.ibm.mqe.adapters.MQeDiskFieldsAdapter:/u/edward/os390/ServerQm
684 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

14.11.4 Modifying ClientQm
We then used the ES02 MQe_explorer tool to modify the connection definition to
ServerQm in ClientQm. We changed the IP Address to the IP address of the
OS/390 system. We then shut down MQe_explorer.

14.11.5 Starting Chat Room on OS/390
We then started the ServerQm queue manager on OS/390 by issuing this
command:

java examples.queuemanager.MQeServer /u/edward/os390/ServerQm.ini

Before doing this, be sure that you have set the DISPLAY environment variable in
your Open/Edition Telnet session, and that you have the X-Windows server
running on the system where you want the GUI window to appear.

Once the above command was issued, the server side GUI window of the chat
room application appeared on our Windows desktop.

Starting the client side of Chat Room
We then started the client side of the Chat Room application, as explained in
“Starting the chat room application” on page 650. The client side GUI window
appeared. We then typed a message on the client side, and it duly appeared in
the server chat room window.
 Chapter 14. Transaction messaging 685

686 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Part 5 Appendixes

Part 5
© Copyright IBM Corp. 2002 687

688 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Appendix A. INS sample source code

This appendix contains the source code for the YourCo INS Extensions as
discussed in Chapter 10, “Intelligent Notification Services (INS)” on page 359.

Simple notification:
� Servlets and Java classes:

– WebSphereSamples.YourCo.Meeting.Invitees.java

– WebSphereSamples.YourCo.Meeting.InviteesDBBeans.java

– itso.wes.ins.samples.Notify.java

– itso.wes.ins.samples.UserNotificationBean.java

� Java Server Pages and Web pages:

– /YourCo/invitees.jsp

� Changes made to the original YourCo example:

– /YourCo/Meeting/ScheduleResults.jsp

Subscriptions
� Servlets and Java classes:

– itso.wes.ins.triggersample.MeetingSubscriptionStartServlet.java

– itso.wes.ins.triggersample.MeetingSubscriptionServlet.java

– itso.wes.ins.triggersample.MeetingSubscriptionData.java

A

© Copyright IBM Corp. 2002 689

– itso.wes.ins.triggersample.MeetingSubscriptions.java

– itso.wes.ins.triggersample.MeetingHandler.java

– itso.wes.ins.triggersample.MeetingContentAdapter.java

� Java Server Pages and Web pages:

– /YourCo/Triggers/MeetingSubscriptionForm.jsp

� Changes made to the original YourCo example:

– /YourCo/Employee/CenterGeneric.jsp
690 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Simple notification

Example: A-1 WebSphereSamples.YourCo.Meeting.Invitees.java

// 5648-C84, 5648-C83, (C) Copyright IBM Corporation, 1997, 2000
// All rights reserved. Licensed Materials Property of IBM
// Note to US Government users: Documentation related to restricted rights
// Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule with IBM Corp.
// This page may contain other proprietary notices and copyright information,
the terms of which must be observed and followed.
//
// This program may be used, executed, copied, modified and distributed
// without royalty for the purpose of developing, using,
// marketing, or distributing.

/**
* This file was generated by IBM WebSphere Studio Version 3.5
*
D:\WebSphere\Studio35\BIN\GenerationStyleSheets\V3.5\JSP1.0\ServletModel\Databa
seServlet.xsl stylesheet was used to generate this file.
*
*
*
*/
package WebSphereSamples.YourCo.Meeting;
// Imports
import com.ibm.servlet.*;
import com.ibm.webtools.runtime.*;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

// Imports for beans used by this servlet

import WebSphereSamples.YourCo.Meeting.InviteesDBBean;

public class Invitees extends com.ibm.webtools.runtime.StudioPervasiveServlet
implements Serializable

{

 Appendix A. INS sample source code 691

/***
 * Process incoming requests for information
 *
 * @param request Object that encapsulates the request to the servlet
 * @param response Object that encapsulates the response from the servlet
 */
 public void performTask(HttpServletRequest request, HttpServletResponse
response)
 {

 // Uncomment the following line to aid in debugging DB servlets.
 // This can help isolate problems when the servlet appears to be unable to
make
 // a connection to the database. You must recompile, republish, and then
shutdown and
 // restart the server for this change to take effect.
 // java.sql.DriverManager.setLogStream(System.out);

 try
 {

 // instantiate the beans and store them so they can be accessed by the
called page
 WebSphereSamples.YourCo.Meeting.InviteesDBBean InviteesDBBean = new
WebSphereSamples.YourCo.Meeting.InviteesDBBean();
 setRequestAttribute("InviteesDBBean", InviteesDBBean, request);

 // Initialize the bean userID property from the parameters
 InviteesDBBean.setUserID(getParameter(request, "userID", true, true,
false, null));

 // Initialize the bean password optional property from the parameters
 InviteesDBBean.setPassword(getParameter(request, "password", true, true,
false, null));

 // Initialize the bean URL property from the parameters
 InviteesDBBean.setURL(getParameter(request, "URL", true, true, false,
null));

 // Initialize the bean driver property from the parameters
 InviteesDBBean.setDriver(getParameter(request, "driver", true, true,
false, null));

 // Initialize the bean dataSourceName optional property
 InviteesDBBean.setDataSourceName(getParameter(request, "dataSourceName",
true, true, false, null));

692 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 // Call the execute action on the bean.
 InviteesDBBean.execute();

 // Call the output page. If the output page is not passed
 // as part of the URL, the default page is called.
 callPage(getPageNameFromRequest(request), request, response);
 }

 catch (Throwable theException)
 {
 // uncomment the following line when unexpected exceptions are occuring
to aid in debugging the problem
 // theException.printStackTrace();

 handleError(request, response, theException);
 }

 }

}

Example: A-2 WebSphereSamples.YourCo.Meeting.InviteesDBBean.java

package WebSphereSamples.YourCo.Meeting;

// Imports

import com.ibm.db.*;
import com.ibm.webtools.runtime.*;
import java.io.*;
import java.math.*;

// Imports for App Server V3 connection pooling
import javax.sql.DataSource;
import com.ibm.ejs.dbm.jdbcext.*;
import javax.naming.*;
import com.ibm.ejs.ns.jndi.*;
import java.sql.*;
import java.util.*;

// Imports for App Server V3.5 connection pooling
import com.ibm.websphere.advanced.cm.factory.*;
 Appendix A. INS sample source code 693

/** */

public class InviteesDBBean extends java.lang.Object
{

 private static final int LASTNAME_COLUMN = 1;
 private static final int FIRSTNME_COLUMN = 2;
 private static final int EMPNO_COLUMN = 3;
 private static final int UID_COLUMN = 4;

 /**
 * Instance variable for driver property
 */
 protected java.lang.String driver= null;

 /**
 * Instance variable for password property
 */
 protected java.lang.String password= null;

 /**
 * Instance variable for SQL statement property
 */
 protected java.lang.String SQLString = "SELECT WSDEMO.EMPLOYEE.LASTNAME AS
LASTNAME, WSDEMO.EMPLOYEE.FIRSTNME AS FIRSTNME, WSDEMO.EMPLOYEE.EMPNO AS
EMPNOl, WSDEMO.EMPLOYEE.USERID AS USERID FROM WSDEMO.EMPLOYEE ORDER BY
LASTNAME, FIRSTNME";

 /**
 * Instance variable for URL property
 */
 protected java.lang.String URL= null;

 /**
 * Instance variable for userID property
 */
 protected java.lang.String userID= null;

 /**
 * Variable for the SelectStatement
694 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 */
 protected SelectStatement sqlStatement;

 /**
 * Variable for the SelectResult - the SQL result set
 */
 protected SelectResult result;

 /**
 * Variable to hold the database connection bean
 */
 protected DatabaseConnection connBean = null;

 /**
 * Variable to hold DataSource
 */
 protected DataSource ds = null;

 /**
 * Variable to hold connection
 */
 protected Connection connection = null;

 /**
 * Variable to hold the data source name from .servlet file
 */
 protected String dataSourceName = "";

/***
 * Close the result set and release resources
 */
 public void closeResultSet()
 {
 // Release the SQL statement resources
 try
 {
 if (result != null)
 {
 result.close();
 result = null;
 }
 }
 catch (Exception e)
 {
 Appendix A. INS sample source code 695

 System.out.println("Error occurred in com.ibm.db.SelectResult.close");
 e.printStackTrace();
 }
 try
 {
 // Close the App Server V3 connection
 if (connection != null)
 connection.close();
 }
 catch (Exception e)
 {
 System.out.println("Error occurred in java.sql.Connection.close");
 e.printStackTrace();
 }
 return ;
 }

/***
 * execute action method * @exception com.ibm.db.DataException
 * @exception java.io.IOException
 * @exception java.lang.Exception

 */
 public void execute()
 throws com.ibm.db.DataException, java.io.IOException, java.lang.Exception
 {

 initialize();

 // Initialize the parameters for the query

 // Execute the SQL statement
 sqlStatement.execute();
 result = sqlStatement.getResult();

 }

/***
 * Release resources we might be holding when garbage collection occurs.
 */
 protected void finalize() throws Throwable
 {
 closeResultSet();
 }

/***
 * Get method for the App Server V3 dataSourceName property
 */
696 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 public String getDataSourceName()
 {
 return dataSourceName;
 }

/***
 * Get method for the driver property
 * @return the value of the driver property

 */
 public java.lang.String getDriver(){
 return driver;
 }

/***
 * Get method for the indexed EMPNO property
 * @param index The 0 based index of the desired value
 * @return the value of the EMPNO property at the specified index
 */
 public java.lang.String getEMPNO(int index)

 throws java.lang.IndexOutOfBoundsException,
java.lang.ArrayIndexOutOfBoundsException
 {

 return (java.lang.String) valueAtColumnRow(EMPNO_COLUMN, index);

 }

/***
 * Get method for the indexed FIRSTNME property
 * @param index The 0 based index of the desired value
 * @return the value of the FIRSTNME property at the specified index
 */
 public java.lang.String getFIRSTNME(int index)

 throws java.lang.IndexOutOfBoundsException,
java.lang.ArrayIndexOutOfBoundsException
 {

 return (java.lang.String) valueAtColumnRow(FIRSTNME_COLUMN, index);

 }

/***
 * Get method for the indexed LASTNAME property
 * @param index The 0 based index of the desired value
 * @return the value of the LASTNAME property at the specified index
 */
 public java.lang.String getLASTNAME(int index)
 Appendix A. INS sample source code 697

 throws java.lang.IndexOutOfBoundsException,
java.lang.ArrayIndexOutOfBoundsException
 {

 return (java.lang.String) valueAtColumnRow(LASTNAME_COLUMN, index);

 }

/***
 * Attempts to get a connection from a App Server V3 connection pool.
 *
 * @param driver Contains the JDBC driver name to use for the connection
 * @param URL Contains the database url for the connection
 * @param userID Contains the userid to use for the database connection
 * @param password Contains the password to use for the connection
 * @return a pooled JDBC connection or null
 */
 protected Connection getPooledConnection(String driver, String URL, String
userID, String password)
 {
 Connection conn = null;

 try
 {
 // create parameter list to access naming system
 Hashtable parms = new Hashtable();
 parms.put(Context.INITIAL_CONTEXT_FACTORY,
CNInitialContextFactory.class.getName());
 // access naming system
 Context context = new InitialContext(parms);
 // get DataSource factory object from naming system
 ds = (DataSource)context.lookup(getDataSourceName());
 conn = ds.getConnection(userID, password);
 }
 catch (Throwable t)
 {
 // DataSource not found. Try to construct a new DataSource.
 try
 {
 t.printStackTrace();
 com.ibm.websphere.advanced.cm.factory.DataSourceFactory factory =
 new com.ibm.websphere.advanced.cm.factory.DataSourceFactory();
 Attributes attrs = new Attributes();
 attrs.name = getDataSourceName();
 if
(attrs.name.startsWith(com.ibm.websphere.advanced.cm.factory.DataSourceFactory.
DEFAULT_DATASOURCE_CONTEXT_NAME + "/"))
 {
698 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 attrs.name =
attrs.name.substring(com.ibm.websphere.advanced.cm.factory.DataSourceFactory.DE
FAULT_DATASOURCE_CONTEXT_NAME.length() + 1);
 }
 attrs.driver = getDriver();
 attrs.url = getURL();
 attrs.max = 30;
 ds = factory.createJDBCDataSource(attrs);
 try {
 factory.bindDataSource(ds);
 } catch (javax.naming.NamingException namingExc){
 }
 conn = ds.getConnection(userID, password);
 }
 catch (Throwable t1)
 {
 t1.printStackTrace();
 }
 }
 return conn;
 }

/***
 * Get method for the SQL statement property
 * @return the value of the SQL statement property

 */
 public java.lang.String getSQLString(){
 return SQLString;
 }

/***
 * Get method for the URL property
 * @return the value of the URL property

 */
 public java.lang.String getURL(){
 return URL;
 }

/***
 * Get method for the indexed EMPNO property
 * @param index The 0 based index of the desired value
 * @return the value of the EMPNO property at the specified index
 */
 public java.lang.String getUSER_ID(int index)

 throws java.lang.IndexOutOfBoundsException,
java.lang.ArrayIndexOutOfBoundsException
 {
 Appendix A. INS sample source code 699

 return (java.lang.String) valueAtColumnRow(UID_COLUMN, index);

 }

/***
 * Get method for the userID property
 * @return the value of the userID property

 */
 public java.lang.String getUserID(){
 return userID;
 }

/***
 * Initializes the App Server V3 data acess beans
 *
 * @exception com.ibm.db.DataException when a database access exception occurs
 * @exception java.io.IOException when an IO error occurs
 */
 protected void initialize() throws DataException, IOException

 {
 StatementMetaData metaData = null;

 // Instantiate the connection bean and initialize it
 connection = getPooledConnection(getDriver(), getURL(), getUserID(),
password);
 connBean = new DatabaseConnection(connection);

 if (connBean == null)
 {
 return ;
 }

 // The statement must reference the connection to be used
 sqlStatement = new SelectStatement();
 sqlStatement.setConnection(connBean);

 // Add the SQL string to the metaData
 metaData = sqlStatement.getMetaData();
 metaData.setSQL(getSQLString());

 // Each table the query uses is added to the metadata. Then each column
that
 // is returned from the select gets added to the metadata.
 metaData.addTable("WSDEMO.EMPLOYEE");
700 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 metaData.addColumn("LASTNAME", java.lang.String.class, 12);
metaData.addColumn("FIRSTNME", java.lang.String.class, 12);
metaData.addColumn("EMPNO", java.lang.String.class, 1);
metaData.addColumn("USERID", java.lang.String.class, 1);

 // Create placeholders for the parameters

 return;
 }

/***
 * Set method for the App Server V3 dataSourceName property
 */
 public void setDataSourceName(String value)
 {
 this.dataSourceName = value;
 }

/***
 * Set method for the driver property
 * @param value the new value for the driver property

 */
 public void setDriver(java.lang.String value){
 this.driver = value;
 }

/***
 * Set method for the password property
 * @param value the new value for the password property

 */
 public void setPassword(java.lang.String value){
 this.password = value;
 }

/***
 * Set method for the URL property
 * @param value the new value for the URL property

 */
 public void setURL(java.lang.String value){
 this.URL = value;
 }

/***
 * Set method for the userID property
 * @param value the new value for the userID property
 Appendix A. INS sample source code 701

 */
 public void setUserID(java.lang.String value){
 this.userID = value;
 }

/***
 * Utility method to get the value at a specific row and column index
 *
 * @param column the column containing the desired data
 * @param row the row containing the desired data
 * @return the value of the column at the specified row
 * @exception java.lang.ArrayIndexOutOfBoundsException thrown when there is no
data at the specified row
 */
 private Object valueAtColumnRow(int column, int row) throws
ArrayIndexOutOfBoundsException
 {
 // Index is 0 based but rows are 1 based, so increment the index
 int realRow = row + 1;

 // Handle an empty result set by throwing an exception
 if (result == null)
 {
 throw new ArrayIndexOutOfBoundsException ("Result set is empty.");
 }

 // Handle an out of bounds index by throwing an exception
 if (realRow > result.getNumRowsInCache())
 {
 throw new ArrayIndexOutOfBoundsException ("Row is out of bounds.");
 }

 // Adjust the current row to the desired row index
 try
 {
 result.setCurrentRow(realRow);
 }
 catch (Exception e)
 {
 System.out.println("Error occurred in
com.ibm.db.SelectResult.setCurrentRow");
 e.printStackTrace();
 }

 // Return the indexed property element
 try
 {
 return result.getColumnValue(column);
 }
702 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 catch (Exception e)
 {
 System.out.println("Error occurred in
com.ibm.db.SelectResult.getColumnValue");
 e.printStackTrace();
 }
 return null;
 }
}

Example: A-3 itso.wes.ins.samples.Notify.java

package itso.wes.ins.samples;

import WebSphereSamples.YourCo.Meeting.*;
import java.io.*;
import java.util.*;
import java.security.cert.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.pvc.we.ins.*;
import WebSphereSamples.YourCo.Meeting.ScheduleDBBean;
import WebSphereSamples.YourCo.Login.SessionBean;
import java.sql.*;

/**
 * Notify Servlet returns information about the request. This servlet is
 * useful for checking the request parameters from a particular client.
 * Notify also returns information of existing sessions, application
 * attributes, and request attributes.
 *
 * @version 1.0
 */
public class Notify extends HttpServlet
{

private java.lang.String fromUser = null;
private java.lang.String host = null;
private int port;
private com.ibm.pvc.we.ins.NotificationService ns;
private com.ibm.pvc.we.ins.DeliveryOptions opts;
private java.lang.String notificationResult =

"/YourCo/Meeting/Notifications.jsp";
 Appendix A. INS sample source code 703

//for triggered notifications
// URL for the database
String dbUrl = "jdbc:db2:sample";

/**
 *
 * Creation date: (9/19/2001 8:07:36 PM)
 * @param userID java.lang.String
 * @param roomId java.lang.String
 * @param day java.lang.String
 * @param time java.lang.String
 * @param convenor java.lang.String
 */
private void addMeetingForTrigger(
 String userID,
 String roomId,
 String day,
 String time,
 String convenor) {

 try {

 String url = "jdbc:db2:sample";
 Connection con = DriverManager.getConnection(url, "wsdemo", "wsdemo1");

 // retrieve data from the database
 System.out.println("Insert data into the database...");
 Statement stmt = con.createStatement();
 String queryString = "INSERT INTO WSDEMO.TRIGGER "
 + "VALUES("
 + "'" + userID.trim() + "', "
 + "'" + roomId.trim() + "', "
 + "'" + day.trim() + "', "
 + "'" + time.trim() + "', "
 + "'" + convenor.trim() + "'"
 + ")";

 System.out.println ("QueryString: " + queryString);
 int result = stmt.executeUpdate(queryString);
 System.out.println ("Result of update");

 System.out.println("resultCode: " + result);
 System.out.println("SQLCODE: " + stmt.getWarnings());
 } catch (Exception ex) {
 System.out.println("Problem saving input for meeting trigger");
 ex.printStackTrace();
 }
}

704 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

public void doGet(HttpServletRequest req, HttpServletResponse res) {

 try {
 performTask(req, res);
 } catch (Exception e) {
 e.printStackTrace();
 }
}
public void doPost(HttpServletRequest req, HttpServletResponse res) {

 try {
 performTask(req, res);
 } catch (Exception e) {
 e.printStackTrace();
 }
}
/**
 *
 * Creation date: (9/15/2001 9:17:32 PM)
 */
public void init() {

 try {

 //for simple notification
 fromUser = "insuser@IBM";
 host = com.ibm.pvc.we.ins.util.SubscriptionUtility.getHost();
 port = 55005;
 ns = new NotificationService(host, port);
 opts = new DeliveryOptions();

 //for subscribe/trigger notification
 //prepare for DB2 access
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 } catch (Exception e) {
 e.printStackTrace();
 }
}
public void performTask(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 System.out.println("\n\nStarting performATask()\n");

 Enumeration e = req.getParameterNames();
 Vector userIds = new Vector();

 UserNotificationBean userNotification = new UserNotificationBean();
 String priority = null;
 Appendix A. INS sample source code 705

 String name = null;
 String value = null;
 String userId = null;
 //get the variables from the input
 if (e.hasMoreElements()) {
 while (e.hasMoreElements()) {
 name = (String) e.nextElement();
 value = req.getParameter(name).toString();
 System.out.println("parameter: " + name + "*** value: " + value);
 if (name.equals("Priority") && req.getParameter("Priority") !=
null) {
 priority = req.getParameter("Priority");
 }
 if (name.startsWith("notify:") &&
req.getParameter(name).equals("on")) {
 //the name of the user is the value of the parameter
 name = name.substring("notify:".length());
 userIds.add(name);
 }
 }
 }

 //get variables from the session
 SessionBean sessionBean = null;
 ScheduleDBBean scheduleDBBean = null;
 InviteesDBBean inviteesDBBean = null;

 HttpSession session = req.getSession(false);

 if (session != null) {
 sessionBean = (SessionBean) session.getAttribute("sessionBean");
 scheduleDBBean = (ScheduleDBBean)
session.getAttribute("scheduleDBBean");
 inviteesDBBean = (InviteesDBBean)
session.getAttribute("InviteesDBBean");
 }
 if (scheduleDBBean == null || sessionBean == null) {
 //probably testing
 //setup the session for testing
 sessionBean = new SessionBean();
 scheduleDBBean = new ScheduleDBBean();
 scheduleDBBean.setDay("friday");
 scheduleDBBean.setRoom("A");
 scheduleDBBean.setTime("A.M.");

 sessionBean.setEmpno("069897");
 sessionBean.setFirstName("Erik");
 sessionBean.setLastName("Rongen");
 //end of test code
706 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 }
 try {

 String meetingDay = scheduleDBBean.getDay();
 String meetingRoom = scheduleDBBean.getRoom();
 String meetingTime = scheduleDBBean.getTime();

 String convenorFirstName = sessionBean.getFirstName();
 String convenorLastName = sessionBean.getLastName();

 //Ok. we've got everything. Now we notify the users
 userNotification.setPriority(priority);
 userNotification.setDay(meetingDay);
 userNotification.setTime(meetingTime);
 userNotification.setRoom(meetingRoom);

 // opts.devices = opts.EMAIL;
 // opts.devices = opts.IM;
 opts.devices = opts.WAP;
 opts.priority = opts.NORMAL;
 opts.multiDevices = opts.ANY;

 String toUser = null;
 int rc;
 Enumeration ids = userIds.elements();
 while (ids.hasMoreElements()) {

 toUser = (String) ids.nextElement();
 String undMsg =
 "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"
 + "<message>\n"
 + " <to>"
 + toUser
 + "</to>\n"
 + " <from>"
 + fromUser
 + "</from>\n"
 + " <subject>Meeting Schedule</subject>\n"
 + " <text>\n"
 + " You are requested to attend a meeting: \n"
 + " Day : "
 + meetingDay
 + "\n"
 + " Time: "
 + meetingTime
 + "\n"
 + " Room: "
 Appendix A. INS sample source code 707

 + meetingRoom
 + "\n"
 + " By : "
 + convenorFirstName
 + " "
 + convenorLastName
 + "\n"
 + " </text>\n"
 + "</message>";

 try {
 userNotification.addUserId(toUser);
 userNotification.putUserNotiFicationStatus(toUser, false);
 System.out.println(
 "Calling sendMessage, toUser = " + toUser + ", fromUser = "
+ fromUser);
 System.out.println(" host = " + host + ", port = " + port);
 rc = ns.sendMessage(undMsg, opts);
 System.out.println("Return from sendMessage, rc = " + rc);

 if (rc == 0) {
 //only if sending was successfull, set status to true
 userNotification.putUserNotiFicationStatus(toUser, true);
 System.out.println("Message successfully sent to " +
toUser);

 } else {
 System.out.println(
 "Failed to send message to " + toUser + ". Return code:
" + rc + ".");

 }
 //and add the info to the trigger table for the
 //subscribe/trigger notification

 } catch (Exception exception) {

 System.out.println("Problem notifying user " + toUser + ":");
 exception.printStackTrace();
 }
 addMeetingForTrigger(toUser,

 meetingRoom,
 meetingDay,
 meetingTime,
 convenorFirstName + " " + convenorLastName);

 }
708 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 //dispatch to the jsp
 if (userNotification != null && scheduleDBBean != null) {
 //Both beans have been populated. Show result
 req.setAttribute("userNotificationBean", userNotification);
 // req.setAttribute("scheduleDBBean", scheduleDBBean);

 RequestDispatcher rd =
 getServletContext().getRequestDispatcher(notificationResult);
 rd.forward(req, res);
 }
 } catch (Exception ex) {
 System.out.println("Exception in Notify: " + ex.toString());
 ex.printStackTrace();
 }

}
 private void print (PrintWriter out, String name, int value)
 {
 out.print("<tr><td>" + name + "</td><td>");
 if (value == -1)
 {
 out.print("<none>");
 }
 else
 {
 out.print(value);
 }
 out.println("</td></tr>");
 }
 private void print (PrintWriter out, String name, String value)
 {
 out.println("<tr><td>" + name + "</td><td>" + (value == null ?
"<none>" : value) + "</td></tr>");
 }
}

Example: A-4 itso.wes.ins.samples.UserNotificationBean.java

package itso.wes.ins.samples;

/**
 *
 * Creation date: (9/15/2001 9:35:24 PM)
 * @author: Erik Rongen
 */
 Appendix A. INS sample source code 709

public class UserNotificationBean {
private java.util.Hashtable userNotificationStatus = new

java.util.Hashtable();
private java.lang.String room;
private java.lang.String day;
private java.lang.String time;
private java.lang.String priority;
private java.util.Vector userIds = new java.util.Vector();
private java.util.Hashtable userNames = new java.util.Hashtable();

/**
 * UserNotificationBean constructor comment.
 */
public UserNotificationBean() {

super();
}
/**
 *
 * Creation date: (9/15/2001 9:36:36 PM)
 * @param userName java.lang.String
 */
public void addUserId(String userName) {

userIds.add(userName);}
/**
 *
 * Creation date: (9/15/2001 11:00:52 PM)
 * @return java.lang.String
 */
public java.lang.String getDay() {

return day;
}
/**
 *
 * Creation date: (9/15/2001 11:01:27 PM)
 * @return java.lang.String
 */
public java.lang.String getPriority() {

return priority;
}
/**
 *
 * Creation date: (9/15/2001 11:00:33 PM)
 * @return java.lang.String
 */
public java.lang.String getRoom() {

return room;
}
/**
 *
 * Creation date: (9/15/2001 11:01:15 PM)
710 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 * @return java.lang.String
 */
public java.lang.String getTime() {

return time;
}
/**
 *
 * Creation date: (9/15/2001 9:41:52 PM)
 * @return java.util.Enumeration
 */
public java.util.Enumeration getUserIds() {

return userIds.elements();
}
/**
 *
 * Creation date: (9/17/2001 11:34:06 AM)
 * @return java.lang.String
 * @param userId java.lang.String
 */
public String getUserName(String userId) {

return (String)userNames.get(userId);

}
/**
 *
 * Creation date: (9/15/2001 9:43:45 PM)
 * @return boolean
 * @param userName java.lang.String
 */
public boolean NotificationIsSuccessfull(String userId) {

return ((Boolean)userNotificationStatus.get(userId)).equals(Boolean.TRUE);

}
/**
 *
 * Creation date: (9/15/2001 9:40:08 PM)
 * @param userName java.lang.String
 * @param statu boolean
 */
public void putUserName(String userId, String userName) {

userNames.put(userId, userName);
}

/**
 *
 * Creation date: (9/15/2001 9:40:08 PM)
 * @param userName java.lang.String
 * @param statu boolean
 */
public void putUserNotiFicationStatus(String userId, boolean status) {
 Appendix A. INS sample source code 711

userNotificationStatus.put(userId, new Boolean(status));
}

/**
 *
 * Creation date: (9/15/2001 11:00:52 PM)
 * @param newDay java.lang.String
 */
public void setDay(java.lang.String newDay) {

day = newDay;
}
/**
 *
 * Creation date: (9/15/2001 11:01:27 PM)
 * @param newPriority java.lang.String
 */
public void setPriority(java.lang.String newPriority) {

priority = newPriority;
}
/**
 *
 * Creation date: (9/15/2001 11:00:33 PM)
 * @param newRoom java.lang.String
 */
public void setRoom(java.lang.String newRoom) {

room = newRoom;
}
/**
 *
 * Creation date: (9/15/2001 11:01:15 PM)
 * @param newTime java.lang.String
 */
public void setTime(java.lang.String newTime) {

time = newTime;
}
/**
 *
 * Creation date: (9/15/2001 9:41:52 PM)
 * @return java.util.Enumeration
 */
public java.util.Enumeration userIds() {

return userIds.elements();
}
}

712 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Example: A-5 /YourCo/Meeting/ScheduleResults.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<!-- 5648-C84, 5648-C83, (C) Copyright IBM Corporation, 1997, 2000 -->
<!-- All rights reserved. Licensed Materials Property of IBM -->
<!-- Note to US Government users: Documentation related to restricted rights
-->
<!-- Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule with IBM Corp. -->
<!--This page may contain other proprietary notices and copyright information,
the terms of which must be observed and followed. -->
<HTML>
<!-- This file was generated by IBM WebSphere Studio 3.5 using
g:\WebSphere\Studio\BIN\GenerationStyleSheets\V3.5\JSP1.0\ServletModel\HTMLPage
s.xsl -->
<HEAD>
<META HTTP-EQUIV="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.5 for Windows">
<LINK REL=STYLESHEET HREF="/WebSphereSamples/theme/YourCo.css" TYPE="text/css">
</HEAD>

<BODY background="/WebSphereSamples/theme/bg.gif">

 <jsp:useBean id="scheduleDBBean"
type="WebSphereSamples.YourCo.Meeting.ScheduleDBBean" scope="session" />
 <jsp:useBean id="sessionBean" type="WebSphereSamples.YourCo.Login.SessionBean"
scope="session" />

 <%

 try {

 java.lang.String _p0_1 = scheduleDBBean.getDay(); //throws an exception if
empty
 java.lang.String _p0_2 = scheduleDBBean.getRoom(); //throws an exception if
empty
 java.lang.String _p0_3 = scheduleDBBean.getTime(); //throws an exception if
empty

 java.lang.String firstName = sessionBean.getFirstName();
 java.lang.String lastName = sessionBean.getLastName();
 %>

<CENTER>

<P>The following conference room reservation has been successfully
submitted:</P>
 Appendix A. INS sample source code 713

 <TABLE border="0">
 <TR align="left" bgcolor="#006699">
 <TD>Day</TD>
 <TD>Room</TD>
 <TD>Time</TD>
 <TD>Employee</TD>
 </TR>
 <TR bgcolor="#99CCFF">
 <TD><%= _p0_1 %> </TD>
 <TD><%= _p0_2 %> </TD>
 <TD><%= _p0_3 %> </TD>
 <TD><%= firstName %> <%= lastName %></TD>
 </TR>
 </TABLE>
<p>Selec
t Invitees.</p>
<p>Return to the Yo
urCo Conference Room Scheduler page.</p>

 <%

 }
 catch (java.lang.ArrayIndexOutOfBoundsException _e0) {
 }%>

 <%scheduleDBBean.closeResultSet();%>

 </CENTER>
 </BODY>
</HTML>

Example: A-6 WebSphereSamples.YourCo.Meeting.InviteesDBBean.java

package WebSphereSamples.YourCo.Meeting;

// Imports

import com.ibm.db.*;
import com.ibm.webtools.runtime.*;
import java.io.*;
import java.math.*;
714 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

// Imports for App Server V3 connection pooling
import javax.sql.DataSource;
import com.ibm.ejs.dbm.jdbcext.*;
import javax.naming.*;
import com.ibm.ejs.ns.jndi.*;
import java.sql.*;
import java.util.*;

// Imports for App Server V3.5 connection pooling
import com.ibm.websphere.advanced.cm.factory.*;

/** */

public class InviteesDBBean extends java.lang.Object
{

 private static final int LASTNAME_COLUMN = 1;
 private static final int FIRSTNME_COLUMN = 2;
 private static final int EMPNO_COLUMN = 3;
 private static final int UID_COLUMN = 4;

 /**
 * Instance variable for driver property
 */
 protected java.lang.String driver= null;

 /**
 * Instance variable for password property
 */
 protected java.lang.String password= null;

 /**
 * Instance variable for SQL statement property
 */
 protected java.lang.String SQLString = "SELECT WSDEMO.EMPLOYEE.LASTNAME AS
LASTNAME, WSDEMO.EMPLOYEE.FIRSTNME AS FIRSTNME, WSDEMO.EMPLOYEE.EMPNO AS
EMPNOl, WSDEMO.EMPLOYEE.USERID AS USERID FROM WSDEMO.EMPLOYEE ORDER BY
LASTNAME, FIRSTNME";

 /**
 * Instance variable for URL property
 */
 Appendix A. INS sample source code 715

 protected java.lang.String URL= null;

 /**
 * Instance variable for userID property
 */
 protected java.lang.String userID= null;

 /**
 * Variable for the SelectStatement
 */
 protected SelectStatement sqlStatement;

 /**
 * Variable for the SelectResult - the SQL result set
 */
 protected SelectResult result;

 /**
 * Variable to hold the database connection bean
 */
 protected DatabaseConnection connBean = null;

 /**
 * Variable to hold DataSource
 */
 protected DataSource ds = null;

 /**
 * Variable to hold connection
 */
 protected Connection connection = null;

 /**
 * Variable to hold the data source name from .servlet file
 */
 protected String dataSourceName = "";

/***
 * Close the result set and release resources
 */
 public void closeResultSet()
716 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 {
 // Release the SQL statement resources
 try
 {
 if (result != null)
 {
 result.close();
 result = null;
 }
 }
 catch (Exception e)
 {
 System.out.println("Error occurred in com.ibm.db.SelectResult.close");
 e.printStackTrace();
 }
 try
 {
 // Close the App Server V3 connection
 if (connection != null)
 connection.close();
 }
 catch (Exception e)
 {
 System.out.println("Error occurred in java.sql.Connection.close");
 e.printStackTrace();
 }
 return ;
 }

/***
 * execute action method * @exception com.ibm.db.DataException
 * @exception java.io.IOException
 * @exception java.lang.Exception

 */
 public void execute()
 throws com.ibm.db.DataException, java.io.IOException, java.lang.Exception
 {

 initialize();

 // Initialize the parameters for the query

 // Execute the SQL statement
 sqlStatement.execute();
 result = sqlStatement.getResult();

 }
 Appendix A. INS sample source code 717

/***
 * Release resources we might be holding when garbage collection occurs.
 */
 protected void finalize() throws Throwable
 {
 closeResultSet();
 }

/***
 * Get method for the App Server V3 dataSourceName property
 */
 public String getDataSourceName()
 {
 return dataSourceName;
 }

/***
 * Get method for the driver property
 * @return the value of the driver property

 */
 public java.lang.String getDriver(){
 return driver;
 }

/***
 * Get method for the indexed EMPNO property
 * @param index The 0 based index of the desired value
 * @return the value of the EMPNO property at the specified index
 */
 public java.lang.String getEMPNO(int index)

 throws java.lang.IndexOutOfBoundsException,
java.lang.ArrayIndexOutOfBoundsException
 {

 return (java.lang.String) valueAtColumnRow(EMPNO_COLUMN, index);

 }

/***
 * Get method for the indexed FIRSTNME property
 * @param index The 0 based index of the desired value
 * @return the value of the FIRSTNME property at the specified index
 */
 public java.lang.String getFIRSTNME(int index)

 throws java.lang.IndexOutOfBoundsException,
java.lang.ArrayIndexOutOfBoundsException
 {
718 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 return (java.lang.String) valueAtColumnRow(FIRSTNME_COLUMN, index);

 }

/***
 * Get method for the indexed LASTNAME property
 * @param index The 0 based index of the desired value
 * @return the value of the LASTNAME property at the specified index
 */
 public java.lang.String getLASTNAME(int index)
 throws java.lang.IndexOutOfBoundsException,
java.lang.ArrayIndexOutOfBoundsException
 {

 return (java.lang.String) valueAtColumnRow(LASTNAME_COLUMN, index);

 }

/***
 * Attempts to get a connection from a App Server V3 connection pool.
 *
 * @param driver Contains the JDBC driver name to use for the connection
 * @param URL Contains the database url for the connection
 * @param userID Contains the userid to use for the database connection
 * @param password Contains the password to use for the connection
 * @return a pooled JDBC connection or null
 */
 protected Connection getPooledConnection(String driver, String URL, String
userID, String password)
 {
 Connection conn = null;

 try
 {
 // create parameter list to access naming system
 Hashtable parms = new Hashtable();
 parms.put(Context.INITIAL_CONTEXT_FACTORY,
CNInitialContextFactory.class.getName());
 // access naming system
 Context context = new InitialContext(parms);
 // get DataSource factory object from naming system
 ds = (DataSource)context.lookup(getDataSourceName());
 conn = ds.getConnection(userID, password);
 }
 catch (Throwable t)
 {
 // DataSource not found. Try to construct a new DataSource.
 try
 Appendix A. INS sample source code 719

 {
 t.printStackTrace();
 com.ibm.websphere.advanced.cm.factory.DataSourceFactory factory =
 new com.ibm.websphere.advanced.cm.factory.DataSourceFactory();
 Attributes attrs = new Attributes();
 attrs.name = getDataSourceName();
 if
(attrs.name.startsWith(com.ibm.websphere.advanced.cm.factory.DataSourceFactory.
DEFAULT_DATASOURCE_CONTEXT_NAME + "/"))
 {
 attrs.name =
attrs.name.substring(com.ibm.websphere.advanced.cm.factory.DataSourceFactory.DE
FAULT_DATASOURCE_CONTEXT_NAME.length() + 1);
 }
 attrs.driver = getDriver();
 attrs.url = getURL();
 attrs.max = 30;
 ds = factory.createJDBCDataSource(attrs);
 try {
 factory.bindDataSource(ds);
 } catch (javax.naming.NamingException namingExc){
 }
 conn = ds.getConnection(userID, password);
 }
 catch (Throwable t1)
 {
 t1.printStackTrace();
 }
 }
 return conn;
 }

/***
 * Get method for the SQL statement property
 * @return the value of the SQL statement property

 */
 public java.lang.String getSQLString(){
 return SQLString;
 }

/***
 * Get method for the URL property
 * @return the value of the URL property

 */
 public java.lang.String getURL(){
 return URL;
 }
720 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

/***
 * Get method for the indexed EMPNO property
 * @param index The 0 based index of the desired value
 * @return the value of the EMPNO property at the specified index
 */
 public java.lang.String getUSER_ID(int index)

 throws java.lang.IndexOutOfBoundsException,
java.lang.ArrayIndexOutOfBoundsException
 {

 return (java.lang.String) valueAtColumnRow(UID_COLUMN, index);

 }

/***
 * Get method for the userID property
 * @return the value of the userID property

 */
 public java.lang.String getUserID(){
 return userID;
 }

/***
 * Initializes the App Server V3 data acess beans
 *
 * @exception com.ibm.db.DataException when a database access exception occurs
 * @exception java.io.IOException when an IO error occurs
 */
 protected void initialize() throws DataException, IOException

 {
 StatementMetaData metaData = null;

 // Instantiate the connection bean and initialize it
 connection = getPooledConnection(getDriver(), getURL(), getUserID(),
password);
 connBean = new DatabaseConnection(connection);

 if (connBean == null)
 {
 return ;
 }

 // The statement must reference the connection to be used
 sqlStatement = new SelectStatement();
 sqlStatement.setConnection(connBean);
 Appendix A. INS sample source code 721

 // Add the SQL string to the metaData
 metaData = sqlStatement.getMetaData();
 metaData.setSQL(getSQLString());

 // Each table the query uses is added to the metadata. Then each column
that
 // is returned from the select gets added to the metadata.
 metaData.addTable("WSDEMO.EMPLOYEE");

 metaData.addColumn("LASTNAME", java.lang.String.class, 12);
metaData.addColumn("FIRSTNME", java.lang.String.class, 12);
metaData.addColumn("EMPNO", java.lang.String.class, 1);
metaData.addColumn("USERID", java.lang.String.class, 1);

 // Create placeholders for the parameters

 return;
 }

/***
 * Set method for the App Server V3 dataSourceName property
 */
 public void setDataSourceName(String value)
 {
 this.dataSourceName = value;
 }

/***
 * Set method for the driver property
 * @param value the new value for the driver property

 */
 public void setDriver(java.lang.String value){
 this.driver = value;
 }

/***
 * Set method for the password property
 * @param value the new value for the password property

 */
 public void setPassword(java.lang.String value){
 this.password = value;
 }

/***
 * Set method for the URL property
 * @param value the new value for the URL property
722 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 */
 public void setURL(java.lang.String value){
 this.URL = value;
 }

/***
 * Set method for the userID property
 * @param value the new value for the userID property

 */
 public void setUserID(java.lang.String value){
 this.userID = value;
 }

/***
 * Utility method to get the value at a specific row and column index
 *
 * @param column the column containing the desired data
 * @param row the row containing the desired data
 * @return the value of the column at the specified row
 * @exception java.lang.ArrayIndexOutOfBoundsException thrown when there is no
data at the specified row
 */
 private Object valueAtColumnRow(int column, int row) throws
ArrayIndexOutOfBoundsException
 {
 // Index is 0 based but rows are 1 based, so increment the index
 int realRow = row + 1;

 // Handle an empty result set by throwing an exception
 if (result == null)
 {
 throw new ArrayIndexOutOfBoundsException ("Result set is empty.");
 }

 // Handle an out of bounds index by throwing an exception
 if (realRow > result.getNumRowsInCache())
 {
 throw new ArrayIndexOutOfBoundsException ("Row is out of bounds.");
 }

 // Adjust the current row to the desired row index
 try
 {
 result.setCurrentRow(realRow);
 }
 catch (Exception e)
 {
 Appendix A. INS sample source code 723

 System.out.println("Error occurred in
com.ibm.db.SelectResult.setCurrentRow");
 e.printStackTrace();
 }

 // Return the indexed property element
 try
 {
 return result.getColumnValue(column);
 }

 catch (Exception e)
 {
 System.out.println("Error occurred in
com.ibm.db.SelectResult.getColumnValue");
 e.printStackTrace();
 }
 return null;
 }
}

Subscription

Example: A-7 itso.wes.ins.triggersample.MeetingSubscriptionStartServlet.java

package itso.wes.ins.triggersample;

/**
 * IBM WebSphere Everyplace Server Version 2.1 (PID 5724-B07) *
 * (c) Copyright IBM Corporation 2000, 2001. All Rights Reserved *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * US Government Users Restricted Rights - Use, duplication or disclosure *
 * restricted by GSA ADP Schedule Contract with IBM Corporation. *
 **
*/

import java.io.*;
import java.util.*;
724 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

import javax.servlet.*;
import javax.servlet.http.*;
import WebSphereSamples.YourCo.Login.SessionBean;
import java.sql.*;

/* This is a subscriber servlet which allows a WES user to subscribe
to meeting content. This servlet uses the INS API to
subscribe to a publish/subscribe system */

public class MeetingSubscriptionStartServlet extends HttpServlet
{

/*
 * Method Name: doPost
 */
public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 String userId = null;
 try {
 //get session info
 HttpSession session = request.getSession();
 SessionBean sessionBean = (SessionBean)
session.getValue("sessionBean");

 String empNo = sessionBean.getEmpno();

 String url = "jdbc:db2:sample";
 Connection con = DriverManager.getConnection(url, "wsdemo", "wsdemo1");

 // retrieve data from the database
 System.out.println("Retrieve some data from the database...");
 Statement stmt = con.createStatement();
 String queryString =
 "SELECT USERID FROM WSDEMO.EMPLOYEE " + " WHERE EMPNO = '" + empNo
+ "'";
 ResultSet rs = stmt.executeQuery(queryString);

 System.out.println("Received results:");
 //rs.next is true when rows are found.
 //return the first found employee who meets the criteria
 if (rs.next()) {
 //Info of the employee
 userId = rs.getString("USERID");
 }

 RequestDispatcher rd =
 Appendix A. INS sample source code 725

getServletContext().getRequestDispatcher("/YourCo/Trigger/MeetingSubscriptionFo
rm.jsp?userid=" + userId);
 rd.forward(request, response);

 } catch (Exception e) {
 e.printStackTrace();
 }

} // end of doPost method
/*
 * Method Name: init
 */
public void init() throws ServletException {

 // URL for the database
 String dbUrl = "jdbc:db2:sample";
 try {
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 } catch (Exception e) {

 }
}
} // end of MeetingSubscriptionServlet class

Example: A-8 itso.wes.ins.triggersample.MeetingSubscriptionServlet.java

package itso.wes.ins.triggersample;

/**
 * IBM WebSphere Everyplace Server Version 2.1 (PID 5724-B07) *
 * (c) Copyright IBM Corporation 2000, 2001. All Rights Reserved *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * US Government Users Restricted Rights - Use, duplication or disclosure *
 * restricted by GSA ADP Schedule Contract with IBM Corporation. *
 **
*/

import java.io.*;
import java.util.*;
726 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.pvc.we.ins.GeneralConstants;
import com.ibm.pvc.we.ins.*;
import MeetingSubscriptionData;
import MeetingSubscriptions;
import com.ibm.pvc.we.ins.util.SubscriptionUtility;

/* This is a subscriber servlet which allows a WES user to subscribe
to meeting content. This servlet uses the INS API to
subscribe to a publish/subscribe system */

public class MeetingSubscriptionServlet extends HttpServlet {
 private final static String insIBMCopyright =
GeneralConstants.insIBMCopyright;
 static final String topicMeetings = "meetings";
 private MeetingSubscriptions meetingDataList;
 private int identifier;
 private String userid = null;

 //IQ Server properties
 private String IQueuehost = null;
 private String IQueueport = null;

 /*
 * Method Name: doPost
 */
 public void doPost(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {
 userid = SubscriptionUtility.getUser(request);

 if (request.getParameter("add") != null) //Add button was pressed
 meetingAddData(request, response);
 else
 if (request.getParameter("refresh") != null) //Refresh button was
pressed
 meetingDeleteData(request, response);
 else //Submit button was pressed
 meetingSubscription(request, response);
 } // end of doPost method
/*
 * Method Name: init
 */
public void init() throws ServletException {
 meetingDataList = new MeetingSubscriptions();
 identifier = 1;
 Appendix A. INS sample source code 727

 try{
 //Get the IQueue server host and port from the properties file
 IQueuehost = SubscriptionUtility.getHost();
 IQueueport = SubscriptionUtility.getPort();

 //In this example we simply hard code these values
 //IQueuehost = "rs615002.itso.ral.ibm.com";
 //IQueueport = "55001";
 }
 catch (Exception e)
 {
 e.printStackTrace();

 }

}
 /*
 * Method Name: meetingAddData
 */
 public void meetingAddData(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 MeetingSubscriptionData meetingData = new MeetingSubscriptionData();
 Integer ident = new Integer(identifier);

 meetingData.setId(ident.toString());

 //get Data from the request
 meetingData.setHours(request.getParameter("meetingHours"));
 meetingData.setTriggerOption(request.getParameter("trigopt"));
 meetingData.setContentOption(request.getParameter("contopt"));
 meetingDataList.setSubscription(userid, meetingData);

 //add the data to the list of meetingData
 identifier++;
 request.setAttribute("meetingSubscriptions", meetingDataList);

 RequestDispatcher dispatcher =

request.getRequestDispatcher("/YourCo/Trigger/MeetingSubscriptionForm.jsp");
 dispatcher.forward(request, response);
 }
 /*
 * Method Name: meetingDeleteData
 */
 public void meetingDeleteData(
 HttpServletRequest request,
 HttpServletResponse response)
728 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 throws ServletException, IOException {
 String[] deletes = request.getParameterValues("delete");

 if (deletes != null) //Check for Refresh pressed, but no subscriptions
checked
 {
 try {
 for (int x = 0; x < deletes.length; x++) {
 MeetingSubscriptionData ssd =
meetingDataList.getSubscription(userid, 0);
 //Throws an exception if empty
 for (int i = 0;;) {
 if (ssd.getId().equals(deletes[x])) {
 meetingDataList.removeSubscription(userid, i);
 break;
 } else {
 i++;
 try {
 ssd = meetingDataList.getSubscription(userid,
i);
 } catch (java.lang.ArrayIndexOutOfBoundsException
e) {
 break;
 }
 }
 }
 }
 } catch (java.lang.ArrayIndexOutOfBoundsException e) {
 }
 }

 request.setAttribute("meetingSubscriptions", meetingDataList);

 RequestDispatcher dispatcher =

request.getRequestDispatcher("/YourCo/Trigger/MeetingSubscriptionForm.jsp");
 dispatcher.forward(request, response);
 }
 /*
 * Method Name: meetingSubscription
 */
 public void meetingSubscription(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 //Get the server name and port number on which this servlet is running.
This will be used
 Appendix A. INS sample source code 729

 //in the notification message to the user that has requested that the
message content be saved.
 //It will be used by the user to retrieve the message from the content
store.
 //This method assumes that all servlets are running on the same server.

 final String server = request.getServerName();
 final int port = request.getServerPort();
 String path = request.getRequestURI();

 //

 //Variable Declarations
 Vector meetingHours = new Vector();
 Vector contentOptions = new Vector(); //Save or Don't Save
 Vector triggerOptions = new Vector(); //Once or Always
 String sqlsel; //SQL selector
 String URL; //URL for retention notification message

 //Prepare for output
 response.setContentType("text/html");

 //Construct the first part of the URL for any retention notification
messages that will be sent.
 //This URL will be passed to the WeatherHandler.
 URL =
 "http://" + server + ":" + port + path.substring(0,
path.lastIndexOf("/") + 1);

 try {
 MeetingSubscriptionData ssd =
meetingDataList.getSubscription(userid, 0);
 //Throws an exception if empty
 for (int i = 0;;) {
 meetingHours.add(ssd.getHours());
 triggerOptions.add(ssd.getTriggerOption());
 contentOptions.add(ssd.getContentOption());
 i++;
 try {
 ssd = meetingDataList.getSubscription(userid, i);
 } catch (java.lang.ArrayIndexOutOfBoundsException e) {
 break;
 }
 }
 } catch (java.lang.ArrayIndexOutOfBoundsException e) {
 //No subscriptions were submitted. Display an error message to the
user.
 request.setAttribute("meetingSubscriptions", meetingDataList);
730 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 request.setAttribute("message1", "<h3>No subscriptions were
specified</h3>");

 RequestDispatcher dispatcher =

request.getRequestDispatcher("/YourCo/Trigger/MeetingSubscriptionForm.jsp");
 dispatcher.forward(request, response);
 return;
 }

 // Connect to INS by calling a TriggerManager
 try {
 //Set up to register a TriggerHandler
 TriggerManager manager = new SocketClientStub(IQueuehost,
IQueueport);
 ContentSource source =
 SimpleContentSource.newSimpleContentSource(topicMeetings);

 ContentFilter filter;
 MeetingHandler triggerHand;
 TriggerID tid;

 for (int i = 0; i < meetingHours.size(); i++) {
 //Retrieve the trigger handler
 triggerHand =
 new MeetingHandler(
 userid,
 (String) triggerOptions.elementAt(i),
 (String) contentOptions.elementAt(i),
 URL);
 sqlsel =
 "(USERID = '"
 + userid
 + "') AND (TIME_TO_MEETING <= "
 + meetingHours.elementAt(i)
 + ")";
 filter = SqlSelector.newSqlSelector(sqlsel);
 //Call the trigger manager and add the trigger with parameters
 tid = manager.addTrigger(userid, source, filter, triggerHand);
 } // end of loop for trigger conditions

 //If no exception occurred, send back a success message
 meetingDataList.removeAllSubscriptions(userid);
 //Successful send, remove all subscriptions from table
 request.setAttribute("meetingSubscriptions", meetingDataList);
 request.setAttribute(
 "message1",
 "<h3>Your subscription has been accepted</h3>");
 Appendix A. INS sample source code 731

 RequestDispatcher dispatcher =

request.getRequestDispatcher("/YourCo/Trigger/MeetingSubscriptionForm.jsp");
 dispatcher.forward(request, response);
 } // end of try clause
 catch (IQueueException iqe) {
 iqe.printStackTrace(System.out);
 request.setAttribute("meetingSubscriptions", meetingDataList);
 request.setAttribute("message1", "<h3>IQueueException
Detected</h3>");
 request.setAttribute("message2", "<h4>" + iqe.getMessage() +
"</h4>");

 RequestDispatcher dispatcher =
 request.getRequestDispatcher("/MeetingSubscriptionForm.jsp");
 dispatcher.forward(request, response);
 } catch (ConfigurationException e) {
 e.printStackTrace(System.out);
 request.setAttribute("meetingSubscriptions", meetingDataList);
 request.setAttribute("message1", "<h3>ConfigurationException
Detected</h3>");
 request.setAttribute("message2", "<h4>" + e.getMessage() +
"</h4>");

 RequestDispatcher dispatcher =
 request.getRequestDispatcher("/MeetingSubscriptionForm.jsp");
 dispatcher.forward(request, response);
 }
 return;
 } // end of meetingSubscription method
} // end of MeetingSubscriptionServlet class

Example: A-9 itso.wes.ins.triggersample.MeetingSubscriptionData.java

package itso.wes.ins.triggersample;

/**
 * IBM WebSphere Everyplace Server Version 2.1 (PID 5724-B07) *
 * (c) Copyright IBM Corporation 2000, 2001. All Rights Reserved *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * US Government Users Restricted Rights - Use, duplication or disclosure *
 * restricted by GSA ADP Schedule Contract with IBM Corporation. *
732 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 **
*/

public class MeetingSubscriptionData
{
 private String triggerOption;
 private String contentOption;
 private String id;

private java.lang.String hours = null;
 /*
 * Method Name: getContentOption
 */
 public String getContentOption()
 {
 return contentOption;
 }
/**
 *
 * Creation date: (9/20/2001 9:41:47 AM)
 * @return java.lang.String
 */
public java.lang.String getHours() {

return hours;
}
 /*
 * Method Name: getId
 */
 public String getId()
 {
 return id;
 }
 /*
 * Method Name: getTriggerOption
 */
 public String getTriggerOption()
 {
 return triggerOption;
 }
 /*
 * Method Name: setContentOption
 */
 public void setContentOption(String contentOption)
 {
 this.contentOption = contentOption;
 }
/**
 *
 * Creation date: (9/20/2001 9:41:47 AM)
 Appendix A. INS sample source code 733

 * @param newHours java.lang.String
 */
public void setHours(java.lang.String newHours) {

hours = newHours;
}
 /*
 * Method Name: setId
 */
 public void setId(String id)
 {
 this.id = id;
 }
 /*
 * Method Name: setTriggerOption
 */
 public void setTriggerOption(String triggerOption)
 {
 this.triggerOption = triggerOption;
 }
}

Example: A-10 itso.wes.ins.triggersample.MeetingSubscriptions.java

package itso.wes.ins.triggersample;

/**
 * IBM WebSphere Everyplace Server Version 2.1 (PID 5724-B07) *
 * (c) Copyright IBM Corporation 2000, 2001. All Rights Reserved *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * US Government Users Restricted Rights - Use, duplication or disclosure *
 * restricted by GSA ADP Schedule Contract with IBM Corporation. *
 **
*/

import java.util.*;

public class MeetingSubscriptions
{
 private Vector meetingSubscriptionList;
 private Hashtable subHT;
 private MeetingSubscriptionData subscription;
734 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 /*
 * Constructer: MeetingSubscriptions
 */
 public MeetingSubscriptions()
 {
 subHT = new Hashtable();
 }
 /*
 * Method Name: getSubscription
 */
 public MeetingSubscriptionData getSubscription(String userid, int i) throws
ArrayIndexOutOfBoundsException
 {
 if ((!subHT.isEmpty()) && (subHT.containsKey(userid)))
 {
 meetingSubscriptionList = (Vector)subHT.get(userid);
 return (MeetingSubscriptionData)meetingSubscriptionList.elementAt(i);
 }
 else
 throw new ArrayIndexOutOfBoundsException();
 }
 /*
 * Method Name: removeAllSubscriptions
 */
 public void removeAllSubscriptions(String userid)
 {
 if ((!subHT.isEmpty()) && (subHT.containsKey(userid)))
 {
 meetingSubscriptionList = (Vector)subHT.get(userid);
 meetingSubscriptionList = null;//Allow the subscription List to be
garbage collected
 subHT.remove(userid);//Remove the userid from the Subscriptions
Hashtable
 }
 }
 /*
 * Method Name: removeSubscription
 */
 public void removeSubscription(String userid, int i) throws
ArrayIndexOutOfBoundsException
 {
 if ((!subHT.isEmpty()) && (subHT.containsKey(userid)))
 {
 meetingSubscriptionList = (Vector)subHT.get(userid);
 meetingSubscriptionList.remove(i);
 }
 else
 throw new ArrayIndexOutOfBoundsException();
 }
 Appendix A. INS sample source code 735

 /*
 * Method Name: setSubscription
 */
 public void setSubscription(String userid, MeetingSubscriptionData
subscription)
 {
 if ((!subHT.isEmpty()) && (subHT.containsKey(userid)))
 {
 meetingSubscriptionList = (Vector)subHT.get(userid);
 meetingSubscriptionList.add(subscription);
 }
 else
 {
 meetingSubscriptionList = new Vector();
 meetingSubscriptionList.add(subscription);
 subHT.put(userid,meetingSubscriptionList);
 }
 }
}

Example: A-11 itso.wes.ins.triggersample.MeetingHandler.java

package itso.wes.ins.triggersample;

/**
 * IBM WebSphere Everyplace Server Version 2.1 (PID 5724-B07) *
 * (c) Copyright IBM Corporation 2000, 2001. All Rights Reserved *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * US Government Users Restricted Rights - Use, duplication or disclosure *
 * restricted by GSA ADP Schedule Contract with IBM Corporation. *
 **
*/

import java.io.*;
import java.util.*;
import com.ibm.pvc.we.ins.GeneralConstants;
import com.ibm.pvc.we.ins.*;
import com.ibm.pvc.we.ins.util.SubscriptionUtility;

/* This is a trigger handler for a meeting subscription */

public class MeetingHandler extends TriggerHandler
{

736 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 private final static String
insIBMCopyright=GeneralConstants.insIBMCopyright;
 private String triggerOption;
 private String contentOption;
 private String toUserid;
 private String meetingtype = "last";//Default to last
 private String notificationURL;

 public MeetingHandler(String userid, String trigopt, String contopt, String
url)
 {
 this.triggerOption = trigopt;
 this.contentOption = contopt;
 this.toUserid = userid;
 this.notificationURL = url;
 }
public TriggerResult handleMatch(ContentBody cb) {
 String contentString;
 String notificationString;
 String secondNotificationString;
 String value, change, percentage;
 StringBuffer message = new StringBuffer();
 StringBuffer message2;
 int tResult;

 String day = null;
 String time = null;
 String room = null;
 String convenor = null;
 String userid = null;

 //Set the Trigger Option based on user input
 System.out.println("MH => MeetingHandler.handleMatch() called");

 //change the notificationURL to another server
 System.out.println("MH => Old NotificationURL: " + notificationURL);
 String oldWebApp = "http://wtp3.itso.ral.ibm.com:80/WebSphereSamples";
 String newWebApp = "http://" + SubscriptionUtility.getHost() +
"/inssample";
 String uri = notificationURL.substring(oldWebApp.length());
 notificationURL = newWebApp + uri;
 System.out.println("MH => New NotificationURL: " + notificationURL);

 System.out.println("MH => triggerOption = " + triggerOption);
 System.out.println("MH => contentOption = " + contentOption);

 try {
 day = cb.getString("DAY");
 Appendix A. INS sample source code 737

 time = cb.getString("TIME");
 room = cb.getString("ROOM");
 convenor = cb.getString("CONVENOR");
 userid = cb.getString("USERID");
 //
 System.out.println("MH => Userid = " + userid);
 System.out.println("MH => Day = " + day);
 System.out.println("MH => Time = " + time);
 System.out.println("MH => Room = " + room);
 System.out.println("MH => Convenor = " + day);

 } catch (IQueueException iqe) {
 //
 System.out.println("MH => IQueueException for save message");

 iqe.printStackTrace(System.out);
 contentString = iqe.toString();
 }

 if (triggerOption.equals("once"))
 tResult = TriggerResult.STOP;
 else
 if (triggerOption.equals("always"))
 tResult = TriggerResult.CONTINUE;
 else
 tResult = TriggerResult.SAVE_AND_CONTINUE;

 if (contentOption.equals("save")) {
 //
 System.out.println("MH => Creating content for save");

 StringBuffer content = new StringBuffer();

 content.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
 content.append("<meeting>\n");
 content.append(" <convenor>" + convenor + "</convenor>\n");
 content.append(" <userid>" + userid + "</userid>\n");
 content.append(" <day>" + day + "</day>\n");
 content.append(" <time>" + time + "</time>\n");
 content.append(" <room>" + room + "</room>\n");
 content.append("</meeting>");
 contentString = content.toString();
 //
 System.out.println("MH => contentString = \n" + contentString);

 //
 System.out.println("MH => Creating message for save");

 message2 = new StringBuffer();
738 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 message.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
 message.append("<message>\n");
 message.append("<to>" + toUserid + "</to>\n");
 message.append("<from>" + toUserid + "</from>\n");
 message.append("<subject>Meeting</subject>\n");
 message.append(
 "<text> Follow this URL " + notificationURL +
"ContTransServlet?pageid=");
 if (SubscriptionUtility.isSecure()) //Are authorization services
enabled?
 message2.append(" for details </text>\n");
 //Yes, do not need to pass userid on request
 else
 message2.append("&userid=" + toUserid + " for details
</text>\n");
 //No, include userid on request
 message2.append("</message>");
 notificationString = message.toString();

 //
 System.out.println("MH => message = \n" + message);
 System.out.println("MH => message2 = \n" + message2);

 secondNotificationString = message2.toString();

 TriggerResult tr =
 TriggerResult.newRetentionSpecification(
 contentString,
 notificationString,
 secondNotificationString,
 "NOT_SAVED",
 15,
 tResult);

 //
 System.out.println("MH => triggerResult = \n" + tr.toString());
 System.out.println("MH => triggerResult = \n" + tr.toString());

 System.out.println(
 "MH => MeetingHandler.handleMatch() ended successfully for SAVED");
 return tr;
 } else // Option was chosen to not save the message
 {

 message.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
 message.append("<message>\n");
 message.append("<to>" + toUserid + "</to>\n");
 message.append("<from>" + toUserid + "</from>\n");
 message.append("<subject>Meeting</subject>\n");
 Appendix A. INS sample source code 739

 message.append(
 "<text> Meeting at " + day + " ," + time + " by " + convenor +
".</text>\n");
 message.append("</message>");
 notificationString = message.toString();
 System.out.println(
 "MH => MeetingHandler.handleMatch() ended successfully for NOT
SAVED");
 return TriggerResult.newNotificationSpecification(notificationString,
tResult);
 }
} //End of handleMatch method
} //End of MeetingHandler class

Example: A-12 itso.wes.ins.triggersample.MeetingContentAdapter.java

package itso.wes.ins.triggersample;

/**
 * IBM WebSphere Everyplace Server Version 2.1 (PID 5724-B07) *
 * (c) Copyright IBM Corporation 2000, 2001. All Rights Reserved *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * US Government Users Restricted Rights - Use, duplication or disclosure *
 * restricted by GSA ADP Schedule Contract with IBM Corporation. *
 **
*/
import java.io.*;
import java.util.*;

import com.ibm.pvc.we.ins.GeneralConstants;
import com.ibm.pvc.we.ins.*;
import java.sql.*;

public class MeetingContentAdapter implements java.lang.Runnable
{
 private final static String insIBMCopyright=GeneralConstants.insIBMCopyright;
 private ContentBody contentBody;
 private TriggerManager manager;
 private String IQproperties = "IQ";
740 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

private SimpleContentSource contentSource;
private long delayTime ;

public MeetingContentAdapter() {
 //Get the IQueue server host and port from the properties file
 try {
 PropertyResourceBundle pr =
 (PropertyResourceBundle)
PropertyResourceBundle.getBundle(IQproperties);
 String IQueuehost = pr.getString("iqSocketClientStub.host");
 String IQueueport = pr.getString("iqSocketClientStub.port");
 delayTime = 60000;

 //Set up to register a TriggerHandler
 manager = new SocketClientStub(IQueuehost, IQueueport);
 //Register the source of the content
 //This will change, perhaps to the names of the different sources such
as ap.business, etc.
 contentSource = SimpleContentSource.newSimpleContentSource("meetings");
 contentBody = new ContentBody();

 //prepare for DB2 access
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();
 //Register the source of the content
 } catch (Throwable ce) {
 System.out.println(ce.getMessage());
 return;
 }

} //End of constructer
/**
 *
 * Creation date: (9/20/2001 3:40:43 PM)
 * @return java.sql.ResultSet
 */
public ResultSet getDataFromDB() {

 try {
 String url = "jdbc:db2:sample";
 Connection con = DriverManager.getConnection(url, "wsdemo", "wsdemo1");

 // retrieve data from the database
 System.out.println("Retrieve trigger data from the database...");
 Statement stmt = con.createStatement();
 String queryString = "SELECT * FROM WSDEMO.TRIGGER";

 ResultSet rs = stmt.executeQuery(queryString);

 return rs;
 Appendix A. INS sample source code 741

 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
}
/**
 *
 * Creation date: (9/20/2001 1:15:10 PM)
 */
public void loop() {
 try {

 //first receive the data from DB2
 ResultSet rs = getDataFromDB();

 //create the XML
 processContent(rs);

 } catch (Exception e) {
 e.printStackTrace();
 }
}
public static void main(String[] args) {
 //Pass in the name of the directory containing the XML files
 try {
 MeetingContentAdapter ca = new MeetingContentAdapter();

 Thread t = new Thread(ca);
 t.start();

 }
 catch (Exception e) {
 e.printStackTrace();
 }
} //End of main method
/**
 *
 * Creation date: (9/20/2001 4:00:30 PM)
 * @return java.lang.String
 * @param rs java.sql.ResultSet
 */
public void processContent(ResultSet rs) {

 int hoursUntilMeeting;
 String day;
 String time;
 String userid;
 String room;
 String convenor;
742 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 try {
 while (rs.next()) {
 //Info of the employee
 //
 userid = rs.getString("USERID").trim();
 contentBody.setString("USERID", userid);

 day = rs.getString("THEDAY").trim();
 time = rs.getString("THETIME").trim();
 room = rs.getString("ROOM_ID").trim();
 convenor = rs.getString("RESERVED_BY").trim();

 contentBody.setString("DAY", day);
 contentBody.setString("TIME", time);
 contentBody.setString("ROOM", room);
 contentBody.setString("CONVENOR", convenor);

 //time left
 hoursUntilMeeting = timeLeftToMeeting(day, time);
 contentBody.setInt("TIME_TO_MEETING", hoursUntilMeeting);

 System.out.println("\nCreating content:");
System.out.println(" -> UserId: " + userid);
System.out.println(" -> Day : " + day);
System.out.println(" -> Time : " + time);
System.out.println(" -> Room : " + room);
System.out.println(" -> hours : " + hoursUntilMeeting);

 //and send the content to IQ
 sendContentToIQ();

 }
 } catch (Exception e) {
 e.printStackTrace();
 }

}
/**
 *
 * Creation date: (9/20/2001 1:15:10 PM)
 */
public void run() {
 try {
 while (true) {
 System.out.println("*** Starting one Loop ***");
 loop();
 Appendix A. INS sample source code 743

 Thread.currentThread().sleep(delayTime);

 }
 } catch (Exception e) {
 e.printStackTrace();
 }
}
/**
 *
 * Creation date: (9/20/2001 4:02:24 PM)
 * @return int
 */
public int sendContentToIQ() {

try{
System.out.println("Sending ContentBody");

 manager.fireMatchingTriggers(contentSource,contentBody);//Fire
matching triggers

return 0;
}
catch(Exception e)

{
e.printStackTrace();
return -10;
}

}
/**
 *
 * Creation date: (9/20/2001 4:16:28 PM)
 * @return int
 * @param day java.lang.String
 * @param time java.lang.String
 */
public int timeLeftToMeeting(String day, String time) {

return 2;
}
} //End of MeetingContentAdapter class

Example: A-13 /YourCo/Triggers/MeetingSubscriptionForm.jsp

<!--
 * IBM WebSphere Everyplace Server Version 2.1 (PID 5724-B07) *
744 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 * (c) Copyright IBM Corporation 2000, 2001. All Rights Reserved *
 * *
 * Licensed Materials - Property of IBM *
 * *
 * US Government Users Restricted Rights - Use, duplication or disclosure *
 * restricted by GSA ADP Schedule Contract with IBM Corporation. *
-->

<%@ page import="itso.wes.ins.triggersample.*, java.io.*, javax.servlet.*,
javax.servlet.http.*, javax.servlet.jsp.*" %>
<%@ page import="com.ibm.pvc.we.ins.util.SubscriptionUtility" %>
<%@ page info="The Meeting Subscription Form allows a user to subscribe to a
meeting and be notified when that meeting price hits a certain value." %>

<!-- This is an example of a subscription form for Meeting.
 * This jsp will call the MeetingSubscriptionServlet to process the final
request.
 -->

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<!-- This file was generated by IBM WebSphere Studio 3.5 using
g:\WebSphere\Studio\BIN\GenerationStyleSheets\V3.5\JSP1.0\ServletModel\HTMLPage
s.xsl -->
<HEAD>
<META HTTP-EQUIV="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.5 for Windows">
<LINK REL=STYLESHEET HREF="/WebSphereSamples/theme/YourCo.css" TYPE="text/css">
<title>Subscriptions</title>
 <script language=javascript>
 function validate()
 {
 <!-- Validate the input data -->
 if (document.form1.meetingHours.value == "")
 {
 alert(’Meeting Hours is a required field. Please try again.’);
 return false;
 }
 else
 {
 return true;
 }
 }

 </script>

<SCRIPT LANGUAGE="JavaScript1.2">
 Appendix A. INS sample source code 745

 positionArray = new Array(8);
</SCRIPT>
</HEAD>
<BODY background="/WebSphereSamples/theme/bg.gif">
<CENTER>

 <%
 try{

 String Id = null;
 Id = SubscriptionUtility.getUser(request);
 String message1 = null;
 message1 = (String)request.getAttribute("message1");
 String message2 = null;
 message2 = (String)request.getAttribute("message2");
 %>
 <% if (Id == null || message1 != null || message2 != null)
 { %>
 <table border=0 cellPadding=0 cellSpacing=0 width="620">
 <% if (Id == null)
 { %>
 <tr>
 User ID is null. Contact your
administrator.
 </tr>
 <% } %>
 <tr>
 <% if (message1 != null)
 { %>

 <%= message1 %>

 <% } %>
 </tr>
 <tr>
 <% if (message2 != null)
 { %>

 <%= message2 %>

 <% } %>
 </tr>
 </table>
 <% } %>

 <h2 align=center>Meeting Subscriptions</h2>
746 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 <form name=form1
action="/servlet/itso.wes.ins.triggersample.MeetingSubscriptionServlet"
method=post>
 <table border=0 cellPadding=0 cellSpacing=0 width="620" align="center">
 <tr>
 <td colspan="2">
 Notify me when there is a meeting in less
than
 *
 <input type="text" name="meetingHours" value=""
size="5"> Hours

 </td>
 </tr>
 <tr> </tr>
 <tr>
 <td colspan="2">
 Notification option: <i>once</i> - receive notification only
the first time a match occurs; <i>always</i> -
 receive notification every time a match occurs.

 </td>
 </tr>
 <tr>
 <td colspan="2">

 Content Storage Option: <i>save</i> - Save the message
content in storage and provide a link to the content;
 <i>don’t save</i> - Send the entire message content in the
notification.

 </td>
 </tr>
 <tr>
 <td>
 Notification option:
 *
 <SELECT name="trigopt">
 <OPTION value="once"> once </OPTION>
 <OPTION value="always"> always </OPTION>
 <!-- <OPTION> always and persist </OPTION> -->
 </SELECT>

 </td>
 <td>

 Content storage option:
 *
 <SELECT name="contopt">

 Appendix A. INS sample source code 747

 <OPTION value="save"> save </OPTION>
 <OPTION value="don’t save"> don’t save </OPTION>
 </SELECT>

 </td>
 </tr>
 <tr>
 <td>

Required fields are indicated by <FONT
color="#ff0000">*
 <td>
 </tr>
 <tr>
 <td colspan="2" align="right">
 <input type="submit" name="add" style="border-style: outset" value=" Add
" onClick="return validate()">
 </td>
 </tr>
 </table>

 <% MeetingSubscriptions meetingSubscriptions =
(MeetingSubscriptions)request.getAttribute("meetingSubscriptions"); %>
 <TABLE cellspacing="0" width="620" align="center">
 <TR>
 <TD>
 <TABLE border=2 align="center" cellPadding=5 cellSpacing=0>
 <THEAD>
 <tr>
 <th> Remove </th>
 <th> Notification within </th>
 <th> Notification </th>
 <th> Content Storage </th>
 </tr>
 </THEAD>
 <TBODY>
 <trcolspan="4">

 To remove a trigger, check the checkbox of the line, and press the
refresh button

 </tr>

 <!-- Description -->
 </TR>
 <TR>
</TR>
 <% try
 {
 //Get the subscriptions currently defined for this user
748 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 MeetingSubscriptionData ssd =
meetingSubscriptions.getSubscription(Id ,0); //Throws an exception if empty
 for (int i = 0; ;)
 {
 %>
 <!-- Unique ID is used for value of the checkbox to identify which
subscription is being deleted. -->
 <TR>
 <TD><INPUT TYPE="checkbox" NAME="delete"
value="<%= ssd.getId() %>"></TD>
 <TD><%= ssd.getHours() %></TD>
 <TD><%= ssd.getTriggerOption()
%></TD>
 <TD><%= ssd.getContentOption()
%></TD>
 </TR>
 <%
 i++;
 try
 {
 ssd = meetingSubscriptions.getSubscription(Id,i);
 }
 catch (java.lang.ArrayIndexOutOfBoundsException e)
 {break;}
 }
 }
 catch (java.lang.ArrayIndexOutOfBoundsException e) {}
 catch (java.lang.NullPointerException n) {}//This occurs the very
first time the page is accessed.
 %>
 </TBODY>
 </TABLE>
 </TD>
 <TD>
 <TABLE>
 <!-- Done for spacing to move the buttons further down on the page -->
 <TR>
 <TD>

</TD>
 </TR>
 <TR>
 <TD>
 <input type="submit" name="refresh" value="Refresh">
 </TD>
 </TR>
 <TR>
 <TD>
 <input type="submit" name="submit" value="Submit">
 </TD>
 </TR>
 Appendix A. INS sample source code 749

 </TABLE>
 </td>
 </TR>

 </TABLE>
 <% if (!SubscriptionUtility.isSecure())
 { %>
 <INPUT name=userid type="hidden" value="<%= Id %>">
 <% } %>
 </form>

 <%
 }
 catch (java.lang.Exception ex){
 %>
 <h2>An Exception Occurred</h2>

 <%=ex%>

 <%
 }
 %>
</body>
</html>

Example: A-14 CenterGeneric.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<!-- 5648-C84, 5648-C83, (C) Copyright IBM Corporation, 1997, 2000 -->
<!-- All rights reserved. Licensed Materials Property of IBM -->
<!-- Note to US Government users: Documentation related to restricted rights
-->
<!-- Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule with IBM Corp. -->
<!--This page may contain other proprietary notices and copyright information,
the terms of which must be observed and followed. -->
<HTML>
<HEAD>
<TITLE>YourCo Employee Center</TITLE>
<META http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.0 for Windows">
750 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

<LINK rel="STYLESHEET" href="/theme/YourCo.css" type="text/css">
</HEAD>
<BODY background="/theme/bg.gif">

<jsp:useBean id="quoteBean" type="WebSphereSamples.Quote.QuoteBean"
class="WebSphereSamples.Quote.QuoteBean" scope="session" />

<jsp:useBean id="stockBean" type="WebSphereSamples.YourCo.Stock.StockBean"
class="WebSphereSamples.YourCo.Stock.StockBean" scope="session" />

<jsp:useBean id="preferredLinksDBBean"
type="WebSphereSamples.YourCo.Employee.PreferredLinksDBBean" scope="request" />

<jsp:useBean id="getQuestionDBBean"
type="WebSphereSamples.YourCo.Poll.GetQuestionDBBean"
class="WebSphereSamples.YourCo.Poll.GetQuestionDBBean" scope="request" />
<jsp:setProperty name="getQuestionDBBean" property="userID" value="WSDEMO" />
<jsp:setProperty name="getQuestionDBBean" property="password" value="wsdemo1"
/>
<jsp:setProperty name="getQuestionDBBean" property="URL"
value="jdbc:db2:SAMPLE" />
<jsp:setProperty name="getQuestionDBBean" property="driver"
value="COM.ibm.db2.jdbc.app.DB2Driver" />
<jsp:setProperty name="getQuestionDBBean" property="pollId" value="1" />
<jsp:setProperty name="getQuestionDBBean" property="dataSourceName"
value="jdbc/sample" />

<CENTER>
<TABLE>
 <TBODY>
 <TR><%
 HttpSession mySession = request.getSession(true);
 WebSphereSamples.YourCo.Login.SessionBean sessionBean = null;

 if ((sessionBean =
(WebSphereSamples.YourCo.Login.SessionBean)mySession.getValue("sessionBean"))
!= null)
 {
 if (sessionBean.getStock() == 1)
 {
%>
 <TD bgcolor="#006699" width="160" align="CENTER"><FONT size="-1"
color="yellow">YCO: $<%=stockBean.getStockQuote()%>
^{<%=stockBean.getStockNumerator()%>}/<SUB><%=stockBean.getStockDenomin
ator()%></SUB> + <%=stockBean.getStockChange()%>
^{<%=stockBean.getStockChangeNumerator()%>}/<SUB><%=stockBean.getStockD
enominator()%></SUB></TD>
 <%
 }
 Appendix A. INS sample source code 751

 if (sessionBean.getQuote() == 1)
 {
%>
 <TD bgcolor="#006699" width="460" align="CENTER"><FONT size="-2"
color="#FFFFFF"><%=quoteBean.getQuote()%> <FONT size="-2"
color="#99CCFF">- <%=quoteBean.getAuthor()%> </TD>
 <%
 }
 }
%></TR>
 </TBODY>
</TABLE>

<TABLE width="620" height="310">
 <TBODY>
 <TR>
 <TD colspan="5" height="20"></TD>
 </TR>
 <TR>
 <TD colspan="2" valign="top" align="left"></TD>
 <TD rowspan="2" width="300" valign="top" align="left">Welcome,

<%=sessionBean.getFirstName()%>,

 to the

 YourCo Employee Center!

 <P>The Center has everything you need:</P>
 <P>White
Pages: Search for fellow employees

 Le
t’s Meet: Reserve a meeting room

 Help
Wanted: Find open job positions

 <A
href="/WebSphereSamples/servlet/WebSphereSamples.YourCo.Timeout.TimeoutServlet"
>Time Out: Manage your leave banks

 <A
href="/WebSphereSamples/servlet/WebSphereSamples.YourCo.Timeout.TotalLeaveServl
et">Total Leave: View Total Leave Situation

 Noti
fiactions: Manage your Subscriptions to Notifications</P>

 <P>Get the most out of the Center:</P>
 <P>C
ustomize this page:
752 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 Are you interested in the stock price?
 Do you want to be inspired by famous quotations?
 The choice is yours. Add your favorite
 links and make this page your own.</P>

 <P>Help us improve the Employee Center: Take
 our survey.</P>
 </TD>
 <TD rowspan="2" width="20"></TD>
 <TD rowspan="2" valign="top">

 <FORM method="post"
action="/WebSphereSamples/servlet/WebSphereSamples.YourCo.Poll.PollServlet">

 <TABLE border="0" cellspacing="4" cellpadding="4" width="200">
 <TBODY>
 <TR>
 <TD valign="top" colspan="2" bgcolor="#006699"><FONT
size="-1">
<%
 try
 {
 getQuestionDBBean.execute();
 out.print(getQuestionDBBean.getQUESTION(0));
 }
 catch(Exception e)
 {
 out.println("Error: " + e.getMessage());
 }
%>
 </TD>
 </TR>
 <TR align="center">
 <TD valign="top" colspan="2">Current results:
</TD>
 </TR>
 <TR>

 <TD align="right">
<INPUT type="hidden" name="pollId" value="1">

<INPUT type="radio" name="vote" value="yes" CHECKED>
Yes

 </TD>
 <TD align="left">
<INPUT type="radio" name="vote" value="no">
No
 Appendix A. INS sample source code 753

 </TD>
 </TR>
 <TR align="center">
 <TD valign="top" align="center" colspan="2">
<INPUT type="submit" name="submit" value="Submit">
 </TD>

 </TR>
 </TBODY>
 </TABLE>

 </FORM>

 </TD>
 </TR>
 <TR>
 <TD valign="top" colspan="2" width="242" align="left"></TD>
 </TR>
 <TR>
 <TD width="200" colspan="2"></TD>
 <TD width="200"></TD>
 <TD></TD>
 <TD align="center"></TD>
 </TR>
 <TR>
 <TD colspan="5"></TD>
 </TR>
 </TBODY>
</TABLE>
</CENTER>

<%preferredLinksDBBean.closeResultSet();%>
<%getQuestionDBBean.closeResultSet();%>

</BODY>
</HTML>
754 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Appendix B. LBS sample code

This appendix contains all the source code for YourCo LBSExtensions,
discussed in Chapter 11, “Location-Based Services (LBS)” on page 435.

� Servlets and Java classes:

– itso.wes.lbs.samples.FindExpert.java

– itso.wes.lbs.samples.ExpertInfo.java

– itso.wes.lbs.samples.OfficeFinder.java

– itso.wes.lbs.samples.UserLocation.java

� Java Server Pages and Web pages:

– /YourCo/Locate/Results.jsp

– /YourCo/Locate/ResultsNotFound.jsp

– /YourCo/Locate/ResultsError.jsp

– /YourCo/Locate/frameset.html

– /YourCo/Locate/LocateInput.html

– /YourCo/Locate/blank.html

B

© Copyright IBM Corp. 2002 755

� Changes made to the original YourCo example:

– /YourCo/index.html

� Changes made to the database:

– db2tables.txt

– ADDRESS.txt

– EMPLOYEE.txt
756 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Sample source code

Example: B-1 itso.wes.lbs.samples.FindExpert.java

package itso.wes.lbs.samples;

import javax.servlet.*;
import java.sql.*;
/**
 * Insert the type's description here.
 * @author: Erik Rongen
 */
public class FindExpert extends javax.servlet.http.HttpServlet {

//the OfficeFinder classs provides mapping from the user location
//to the nearest office (in an oversimplified, non-realistic way)
private OfficeFinder officeFinder;

// URL for the database
String dbUrl = "jdbc:db2:sample";

String results = "/YourCo/Locate/Results.jsp";
String resultsError = "/YourCo/Locate/ResultsError.jsp";
String resultsNotFound = "/YourCo/Locate/ResultsNotFound.jsp";

/**
 * Process incoming HTTP GET requests
 *
 * @param request Object that encapsulates the request to the servlet
 * @param response Object that encapsulates the response from the servlet
 */
public void doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response) throws
javax.servlet.ServletException, java.io.IOException {

performTask(request, response);

}
/**
 * Process incoming HTTP POST requests
 *
 * @param request Object that encapsulates the request to the servlet
 * @param response Object that encapsulates the response from the servlet
 */
public void doPost(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response) throws
javax.servlet.ServletException, java.io.IOException {
 Appendix B. LBS sample code 757

performTask(request, response);

}
/**
 * Returns the servlet info string.
 */
public String getServletInfo() {

return super.getServletInfo();

}
/**
 * Initializes the servlet.
 */
public void init() {
 // insert code to initialize the servlet here

 officeFinder = new OfficeFinder();

 //prepare for DB2 access
 try {
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

 } catch (Exception e) {
 System.out.println(e);
 }

}
/**
 * Process incoming requests for information
 *
 * @param request Object that encapsulates the request to the servlet
 * @param response Object that encapsulates the response from the servlet
 */
public void performTask(
 javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response) {

 //The id of the office that is nearest to the user location
 String officeID = null;

 //The beans with location info for display
 UserLocation userLocation = null;
 ExpertInfo expertInfo = null;

 //The requested experise from the request
 String expertise = null;
758 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 try {

 //Analyse the request
 if (request.getParameter("expertise") == null)
 System.out.println("No expertise attribute found in the request.
returning");
 else {

 //get the requested expertise from the request, and convert to
upppercase,
 //since all JOBS in the database are in UPPERCASE
 expertise = (String)
request.getParameter("expertise").toUpperCase();

 //Create the locationServices object that reads the Location Info
from the headers of the request
 com.ibm.lbs.LocationServices locServices =
 new com.ibm.lbs.LocationServices(request);

 //locServices now contains all the location information of the user
that we need
 //List the information to the console
 printDiagnostics(locServices);

 //we can populate the userLocation bean
 userLocation = new UserLocation();
 userLocation.setAddress(locServices.getStreet());
 userLocation.setCity(locServices.getCity());
 userLocation.setCountry(locServices.getCountry());
 userLocation.setState(locServices.getStateProvince());
 userLocation.setZipCode(locServices.getPostalCode());

 //Now find the id of the office closest to the user
 //The OfficeFinder encapsulates this algorithm.
 //In this example we use an oversimplified algorithm for finding
 //the nearest office
 officeID = officeFinder.find(locServices);

 //now that we have the office id, we can search for
 //the requested expertise in that location in the database

 String url = "jdbc:db2:sample";
 Connection con = DriverManager.getConnection(url, "wsdemo",
"wsdemo1");

 // retrieve data from the database
 System.out.println("Retrieve some data from the database...");
 Statement stmt = con.createStatement();
 String queryString =
 Appendix B. LBS sample code 759

 "SELECT * FROM WSDEMO.EMPLOYEE X , WSDEMO.ADDRESS Y"
 + " WHERE X.OFFICE = Y.OFFICE"
 + " AND X.OFFICE = '"
 + officeID
 + "'"
 + " AND X.JOB = '"
 + expertise
 + "'";

 ResultSet rs = stmt.executeQuery(queryString);

 System.out.println("Received results:");
 //rs.next is true when rows are found.
 //return the first found employee who meets the criteria
 if (rs.next()) {
 //Info of the employee
 expertInfo = new ExpertInfo();
 expertInfo.setFirstName(rs.getString("FIRSTNME"));
 expertInfo.setLastName(rs.getString("LASTNAME"));
 expertInfo.setMiddleInitial(rs.getString("MIDINIT"));
 expertInfo.setPhoneNumber(rs.getString("PHONENO"));
 expertInfo.setDepartment(rs.getString("WORKDEPT"));
 expertInfo.setEmployeeNumber(rs.getString("EMPNO"));
 expertInfo.setJob(rs.getString("JOB"));

 //info of the location
 expertInfo.setOfficeID(rs.getString("OFFICE"));
 expertInfo.setAddress(rs.getString("ADDRESS"));
 expertInfo.setCity(rs.getString("CITY"));
 expertInfo.setCountry(rs.getString("COUNTRY"));
 expertInfo.setState(rs.getString("STATE"));
 expertInfo.setZipCode(rs.getString("ZIPCODE"));
 } else {
 System.out.println("No expert found in the office nearest to
the user");
 }
 //we¥re done with DB2
 rs.close();
 stmt.close();

 //Now redirect to the output
 if (userLocation != null && expertInfo != null) {
 //Both beans have been populated. Show result
 response.addHeader("zzz","true");
 request.setAttribute("userLocationBean", userLocation);
 request.setAttribute("expertInfoBean", expertInfo);
 RequestDispatcher rd =
getServletContext().getRequestDispatcher(results);

760 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 rd.forward(request, response);
 } else
 if (userLocation != null && expertInfo == null) {
 //Both beans have been populated. Show result

 response.addHeader("zzz","false");
 request.setAttribute("userLocationBean", userLocation);
 RequestDispatcher rd =

getServletContext().getRequestDispatcher(resultsNotFound);
 rd.forward(request, response);
 } else {
 response.addHeader("zzz","error");
 RequestDispatcher rd =
getServletContext().getRequestDispatcher(resultsError);
 rd.forward(request, response);
 }

 }

 } catch (Throwable theException) {
 theException.printStackTrace();
 }
}
/**
 *
 * @param locServices com.ibm.lbs.LocationServices
 */
private void printDiagnostics(com.ibm.lbs.LocationServices locServices) {

System.out.println("Location information for the user:");
 System.out.println("City : " + locServices.getCity() +
"\n");
 System.out.println(
 "Cooirdinates : " + locServices.getCoordinates() + "\n");
 System.out.println("Country : " + locServices.getCountry() +
"\n");
 System.out.println(
 "CountryDistrict : " + locServices.getCountyDistrict() + "\n");
 System.out.println(
 "Description : " + locServices.getDescription() + "\n");
 System.out.println(
 "Latitude : " + locServices.getLatitude() + "\n");
 System.out.println(
 "Longitude : " + locServices.getLongitude() + "\n");
 System.out.println("Name : " + locServices.getName() +
"\n");
 System.out.println(
 "PostalCode : " + locServices.getPostalCode() + "\n");
 Appendix B. LBS sample code 761

 System.out.println("SRSName : " + locServices.getSRSName() +
"\n");
 System.out.println(
 "StateProvince : " + locServices.getStateProvince() + "\n");
 System.out.println("Street : " + locServices.getStreet() +
"\n");
 System.out.println(
 "StreetIntersection : " + locServices.getStreetIntersection() +
"\n");
 System.out.println(
 "TimeStamp : " + locServices.getTimestamp() + "\n");
 System.out.println(
 "Uncertainty : " + locServices.getUncertainty() + "\n");

}
}

Example: B-2 itso.wes.lbs.samples.ExpertInfo.java

package itso.wes.lbs.samples;

/**
 * @author: Erik Rongen
 */
public class ExpertInfo {

private java.lang.String City;
private java.lang.String Address;
private java.lang.String State;
private java.lang.String Country;
private java.lang.String officeID;
private java.lang.String employeeNumber;
private java.lang.String firstName;
private java.lang.String lastName;
private java.lang.String department;
private java.lang.String middleInitial;
private java.lang.String phoneNumber;
private java.lang.String job;
private java.lang.String zipCode;

/**
 * LocationBean constructor comment.
 */
public ExpertInfo() {

super();
}
/**
 * @return java.lang.String
762 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 */
public java.lang.String getAddress() {

return Address;
}
/**
 * @return java.lang.String
 */
public java.lang.String getCity() {

return City;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getCountry() {

return Country;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getDepartment() {

return department;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getEmployeeNumber() {

return employeeNumber;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getFirstName() {

return firstName;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getJob() {

return job;
}
/**
 *
 * @return java.lang.String
 */
 Appendix B. LBS sample code 763

public java.lang.String getLastName() {
return lastName;

}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getMiddleInitial() {

return middleInitial;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getOfficeID() {

return officeID;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getPhoneNumber() {

return phoneNumber;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getState() {

return State;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getZipCode() {

return zipCode;
}
/**
 *
 * @param newAddress java.lang.String
 */
public void setAddress(java.lang.String newAddress) {

Address = newAddress;
}
/**
 *
 * @param newCity java.lang.String
 */
764 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

public void setCity(java.lang.String newCity) {
City = newCity;

}
/**
 *
 * @param newCountry java.lang.String
 */
public void setCountry(java.lang.String newCountry) {

Country = newCountry;
}
/**
 *
 * @param newDepartment java.lang.String
 */
public void setDepartment(java.lang.String newDepartment) {

department = newDepartment;
}
/**
 *
 * @param newEmployeeNumber java.lang.String
 */
public void setEmployeeNumber(java.lang.String newEmployeeNumber) {

employeeNumber = newEmployeeNumber;
}
/**
 *
 * @param newFirstName java.lang.String
 */
public void setFirstName(java.lang.String newFirstName) {

firstName = newFirstName;
}
/**
 *
 * @param newJob java.lang.String
 */
public void setJob(java.lang.String newJob) {

job = newJob;
}
/**
 *
 * @param newLastName java.lang.String
 */
public void setLastName(java.lang.String newLastName) {

lastName = newLastName;
}
/**
 *
 * @param newMiddleInitial java.lang.String
 */
 Appendix B. LBS sample code 765

public void setMiddleInitial(java.lang.String newMiddleInitial) {
middleInitial = newMiddleInitial;

}
/**
 *
 * @param newOfficeID java.lang.String
 */
public void setOfficeID(java.lang.String newOfficeID) {

officeID = newOfficeID;
}
/**
 *
 * @param newPhoneNumber java.lang.String
 */
public void setPhoneNumber(java.lang.String newPhoneNumber) {

phoneNumber = newPhoneNumber;
}
/**
 *
 * @param newState java.lang.String
 */
public void setState(java.lang.String newState) {

State = newState;
}
/**
 *
 * @param newZipCode java.lang.String
 */
public void setZipCode(java.lang.String newZipCode) {

zipCode = newZipCode;
}
}

Example: B-3 itso.wes.lbs.samples.OfficeFinder.java

package itso.wes.lbs.samples;

/**
 * The officeFinder will locate the office nearest to the user's location
 * This was done in a very simple way. A hashtable closestOfficeList
 * contains the link between the user location and the nearest office. Note
 * that in real life things are much more complicated.
 * @author: Erik Rongen
 */
public class OfficeFinder {
766 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

private java.util.Hashtable closestOfficeList;
/**
 * OfficeFinder constructor comment.
 */
public OfficeFinder() {

super();
closestOfficeList = new java.util.Hashtable();
closestOfficeList.put("Cary","00005");
closestOfficeList.put("San Diego","00001");
closestOfficeList.put("Boulder","00002");
closestOfficeList.put("Delft","00004");
closestOfficeList.put("Raleigh","00003");

}
/**
 *
 * @return java.lang.String
 * @param locationService com.ibm.lbs.LocationServices
 */
public String find(com.ibm.lbs.LocationServices locationService) {

String userCity = locationService.getCity();
String closestOfficeID = (String) closestOfficeList.get(userCity);
return closestOfficeID;

}
}

Example: B-4 itso.wes.lbs.samples.UserLocation.java

package itso.wes.lbs.samples;

/**
 * Insert the type's description here.
 * @author: Erik Rongen
 */
public class UserLocation {

private java.lang.String City;
private java.lang.String Address;
private java.lang.String State;
private java.lang.String Country;
private java.lang.String zipCode;

/**
 * LocationBean constructor comment.
 */
public UserLocation() {
 Appendix B. LBS sample code 767

super();
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getAddress() {

return Address;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getCity() {

return City;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getCountry() {

return Country;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getState() {

return State;
}
/**
 *
 * @return java.lang.String
 */
public java.lang.String getZipCode() {

return zipCode;
}
/**
 *
 * @param newAddress java.lang.String
 */
public void setAddress(java.lang.String newAddress) {

Address = newAddress;
}
/**
 *
 * @param newCity java.lang.String
 */
public void setCity(java.lang.String newCity) {
768 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

City = newCity;
}
/**
 *
 * @param newCountry java.lang.String
 */
public void setCountry(java.lang.String newCountry) {

Country = newCountry;
}
/**
 *
 * @param newState java.lang.String
 */
public void setState(java.lang.String newState) {

State = newState;
}
/**
 *
 * @param newZipCode java.lang.String
 */
public void setZipCode(java.lang.String newZipCode) {

zipCode = newZipCode;
}
}

Example: B-5 /YourCo/Locate/Results.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<!-- This file was generated by IBM WebSphere Studio 3.5 using
g:\WebSphere\Studio\BIN\GenerationStyleSheets\V3.5\JSP1.0\ServletModel\HTMLPage
s.xsl -->
<HEAD>
<META HTTP-EQUIV="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.5 for Windows">
<LINK REL=STYLESHEET HREF="/WebSphereSamples/theme/YourCo.css" TYPE="text/css">
<title>Expert Locator</title>

<SCRIPT LANGUAGE="JavaScript1.2">
 positionArray = new Array(8);
</SCRIPT>
</HEAD>
<BODY background="/WebSphereSamples/theme/bg.gif">
<CENTER>
<TABLE width="620">
 Appendix B. LBS sample code 769

 <TBODY>
 <TR>
 <TD colspan="10"><IMG src="/WebSphereSamples/theme/topBanner.gif"
border="0" alt="YourCo banner" align="bottom" width="607" height="46"></TD>
 </TR>
 <TR>
 <TD colspan="10">
 <TABLE>
 <TBODY>
 <TR>
 <TD valign="middle" align="left" width="25"><IMG
src="/WebSphereSamples/theme/button.gif" width="20" height="20"
border="0"></TD>
 <TD valign="middle" align="left" width="50">Home</TD>
 <TD width="5"></TD>
 <TD><IMG src="/WebSphereSamples/theme/button.gif" width="20"
height="20" border="0"></TD>
 <TD valign="middle" align="left" width="100"><FONT
size="-1">White Pages</TD>
 <TD width="5"></TD>
 <TD><IMG src="/WebSphereSamples/theme/button.gif" width="20"
height="20" border="0"></TD>
 <TD valign="middle" align="left" width="100"><A
href="/WebSphereSamples/servlet/WebSphereSamples.YourCo.ExpHTMLServlet.Expiring
HTMLServlet" target="_top">YourCo News</TD>
 <TD width="5"></TD>
 <TD><IMG src="/WebSphereSamples/theme/button.gif" width="20"
height="20" border="0"></TD>
 <TD valign="middle" align="left" width="120"><FONT
size="-1">Employee Center</TD>
 <TD width="5"></TD>
 <TD><IMG src="/WebSphereSamples/theme/buttonDWN.gif" width="20"
height="20" border="0"></TD>
 <TD valign="middle" align="left" width="100"><FONT
size="-1">Locate an Expert</TD>
 </TR>
 </TBODY>
 </TABLE>
 </TD>
 </TR>
 </TBODY>
</TABLE>

<h2>Locate an expert:</h2>
<p>
Select the type of expertise you require:
770 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

<p>
 <form name="locate" method="post"
action="/WebSphereSamples/servlet/itso.wes.lbs.samples.FindExpert"
target="results">
 <select name="expertise">

<OPTION value="ANALYST">ANALYST</OPTION>

<OPTION value="CLERK">CLERK</OPTION>

<OPTION value="DESIGNER">DESIGNER</OPTION>

<OPTION value="FIELDREP">FIELDREP</OPTION>

<OPTION value="MANAGER">MANAGER</OPTION>

<OPTION value="OPERATOR">OPERATOR</OPTION>

<OPTION value="PRESS">PRESS</OPTION>

<OPTION value="SALESREP">SALESREP</OPTION>

 </select>
 <INPUT TYPE="submit" NAME="Submit" ID="Submit" VALUE="Submit">
</form>
</body>
</html>

Example: B-6 /YourCo/Locate/ResultsNotFound.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<HTML>
 <HEAD>
 <META HTTP-EQUIV="Content-Type" content="text/html; charset=ISO-8859-1">
 <META name="GENERATOR" content="IBM WebSphere Page Designer V3.5 for
Windows">
 <LINK REL=STYLESHEET HREF="/WebSphereSamples/theme/YourCo.css"
TYPE="text/css">
 </HEAD>

 <BODY background="/WebSphereSamples/theme/bg.gif">

 Appendix B. LBS sample code 771

 <jsp:useBean id="expertInfoBean" class="itso.wes.lbs.samples.ExpertInfo"
scope="request"/>
 <jsp:useBean id="userLocationBean"
class="itso.wes.lbs.samples.UserLocation" scope="request"/>

 <CENTER>
 <h4>Your Location is:</h4>

 <%

 try {
 java.lang.String _e0_1 = expertInfoBean.getLastName(); //throws
an exception if empty
 java.lang.String _e0_2 = expertInfoBean.getFirstName(); //throws
an exception if empty
 java.lang.String _e0_3 = expertInfoBean.getPhoneNumber();
//throws an exception if empty
 java.lang.String _e0_4 = expertInfoBean.getJob(); //throws an
exception if empty
 java.lang.String _e0_5 = expertInfoBean.getDepartment(); //throws
an exception if empty

 java.lang.String _e0_6 = expertInfoBean.getAddress(); //throws an
exception if empty
 java.lang.String _e0_7 = expertInfoBean.getCity(); //throws an
exception if empty
 java.lang.String _e0_8 = expertInfoBean.getState(); //throws an
exception if empty
 java.lang.String _e0_9 = expertInfoBean.getZipCode(); //throws an
exception if empty
 java.lang.String _e0_10 = expertInfoBean.getCountry(); //throws
an exception if empty

 java.lang.String _u0_6 = userLocationBean.getAddress(); //throws
an exception if empty
 java.lang.String _u0_7 = userLocationBean.getCity(); //throws an
exception if empty
 java.lang.String _u0_8 = userLocationBean.getState(); //throws an
exception if empty
 java.lang.String _u0_9 = userLocationBean.getZipCode(); //throws
an exception if empty
 java.lang.String _u0_10 = userLocationBean.getCountry(); //throws
an exception if empty

 %>

 <table width="50%" border="0" cellspacing="2" cellpadding="2">
772 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 <tr align="left" bgcolor="#99CCFF">
 <td>Address</td><td><%= _u0_6 + ", " + _u0_7 + ", " + _u0_8 +
", " + _u0_9 + "." %></td>
 </tr>
 <tr align="left" bgcolor="#99CCFF">
 <td>Country</td><td><%= _u0_10 %></td>
 </tr>
 </table>

 <h4>The requested expert is</h4>
 <table width="50%" border="0" cellspacing="2" cellpadding="2">
 <tr align="left" bgcolor="#99CCFF">
 <td>Name</td><td><%= _e0_1 %> <%=_e0_2 %></td>
 </tr>
 <tr align="left" bgcolor="#99CCFF">

 <td>Phone Number</td><td><%= _e0_3 %></td>
 </tr>
 <tr align="left" bgcolor="#99CCFF">

 <td>Job</td><td><%= _e0_4 %></td>
 </tr>
 <tr align="left" bgcolor="#99CCFF">

 <td>Department</td><td><%= _e0_5 %></td>
 </tr>
 <tr align="left" bgcolor="#99CCFF">

 <td>Address</td><td><%= _e0_6 + ", " + _e0_7 + ", " + _e0_8 + ",
" + _e0_9 + "." %></td>

 </tr>
 <tr align="left" bgcolor="#99CCFF">
 <td>Country</td><td><%= _e0_10 %></td></td>
 </tr>

 </TABLE>

 <%

 }
 catch (java.lang.Exception _e0)
 {
 %>
 An Error occurred
 <%
 _e0.printStackTrace();
 }
 %>

 </CENTER>
 </BODY>
</HTML>
 Appendix B. LBS sample code 773

Example: B-7 /YourCo/Locate/ResultsError.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<HTML>
 <HEAD>
 <META HTTP-EQUIV="Content-Type" content="text/html; charset=ISO-8859-1">
 <META name="GENERATOR" content="IBM WebSphere Page Designer V3.5 for
Windows">
 <LINK REL=STYLESHEET HREF="/WebSphereSamples/theme/YourCo.css"
TYPE="text/css">
 </HEAD>

 <BODY background="/WebSphereSamples/theme/bg.gif">

 <CENTER>

 <h4>An error Occurred. Please try again.</h4>

 </CENTER>
 </BODY>
</HTML>

Example: B-8 /YourCo/Locate/frameset.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<HTML>
<!-- This file was generated by IBM WebSphere Studio 3.5 using
g:\WebSphere\Studio\BIN\GenerationStyleSheets\V3.5\JSP1.0\ServletModel\HTMLPage
s.xsl -->
<HEAD>
<META HTTP-EQUIV="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.5 for Windows">
<TITLE>YourCo Employee Center</TITLE>
<LINK href="/WebSphereSamples/theme/YourCo.css" rel="stylesheet"
type="text/css">

</HEAD>

<BODY background="/WebSphereSamples/theme/bg.gif">
774 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

</body>
</html>

Example: B-9 /YourCo/Locate/LocateInput.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<!-- This file was generated by IBM WebSphere Studio 3.5 using
g:\WebSphere\Studio\BIN\GenerationStyleSheets\V3.5\JSP1.0\ServletModel\HTMLPage
s.xsl -->
<HEAD>
<META HTTP-EQUIV="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.5 for Windows">
<LINK REL=STYLESHEET HREF="/WebSphereSamples/theme/YourCo.css" TYPE="text/css">
<title>Expert Locator</title>

<SCRIPT LANGUAGE="JavaScript1.2">
 positionArray = new Array(8);
</SCRIPT>
</HEAD>
<BODY background="/WebSphereSamples/theme/bg.gif">
<CENTER>
<TABLE width="620">
 <TBODY>
 <TR>
 <TD colspan="10"><IMG src="/WebSphereSamples/theme/topBanner.gif"
border="0" alt="YourCo banner" align="bottom" width="607" height="46"></TD>
 </TR>
 <TR>
 <TD colspan="10">
 <TABLE>
 <TBODY>
 <TR>
 <TD valign="middle" align="left" width="25"><IMG
src="/WebSphereSamples/theme/button.gif" width="20" height="20"
border="0"></TD>
 <TD valign="middle" align="left" width="50">Home</TD>
 <TD width="5"></TD>
 <TD><IMG src="/WebSphereSamples/theme/button.gif" width="20"
height="20" border="0"></TD>
 <TD valign="middle" align="left" width="100"><FONT
size="-1">White Pages</TD>
 <TD width="5"></TD>
 Appendix B. LBS sample code 775

 <TD><IMG src="/WebSphereSamples/theme/button.gif" width="20"
height="20" border="0"></TD>
 <TD valign="middle" align="left" width="100"><A
href="/WebSphereSamples/servlet/WebSphereSamples.YourCo.ExpHTMLServlet.Expiring
HTMLServlet" target="_top">YourCo News</TD>
 <TD width="5"></TD>
 <TD><IMG src="/WebSphereSamples/theme/button.gif" width="20"
height="20" border="0"></TD>
 <TD valign="middle" align="left" width="120"><FONT
size="-1">Employee Center</TD>
 <TD width="5"></TD>
 <TD><IMG src="/WebSphereSamples/theme/buttonDWN.gif" width="20"
height="20" border="0"></TD>
 <TD valign="middle" align="left" width="100"><FONT
size="-1">Locate an Expert</TD>
 </TR>
 </TBODY>
 </TABLE>
 </TD>
 </TR>
 </TBODY>
</TABLE>

<h2>Locate an expert:</h2>
<p>
Select the type of expertise you require:
<p>
 <form name="locate" method="post"
action="/WebSphereSamples/servlet/itso.wes.lbs.samples.FindExpert"
target="results">
 <select name="expertise">

<OPTION value="ANALYST">ANALYST</OPTION>

<OPTION value="CLERK">CLERK</OPTION>

<OPTION value="DESIGNER">DESIGNER</OPTION>

<OPTION value="FIELDREP">FIELDREP</OPTION>

<OPTION value="MANAGER">MANAGER</OPTION>

<OPTION value="OPERATOR">OPERATOR</OPTION>

<OPTION value="PRESS">PRESS</OPTION>

<OPTION value="SALESREP">SALESREP</OPTION>
776 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

 </select>
 <INPUT TYPE="submit" NAME="Submit" ID="Submit" VALUE="Submit">
</form>
</body>
</html>

Example: B-10 /YourCo/Locate/blank.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<HTML>
<!-- This file was generated by IBM WebSphere Studio 3.5 using
g:\WebSphere\Studio\BIN\GenerationStyleSheets\V3.5\JSP1.0\ServletModel\HTMLPage
s.xsl -->
<HEAD>
<META HTTP-EQUIV="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.5 for Windows">
<TITLE>YourCo Employee Center</TITLE>
<LINK href="/WebSphereSamples/theme/YourCo.css" rel="stylesheet"
type="text/css">

</HEAD>

<BODY background="/WebSphereSamples/theme/bg.gif">

</body>
</html>

Example: B-11 /YourCo/index.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<html>
<head>
<title>YourCo Main Site</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.0 for Windows">
<LINK REL=STYLESHEET HREF="/theme/YourCo.css" TYPE="text/css">
</head>

<body background="/theme/bg.gif">
 Appendix B. LBS sample code 777

<CENTER>
<TABLE width="620">
 <TBODY>
 <TR>
 <TD colspan="10"><IMG src="/theme/topBanner.gif" border="0" alt="YourCo
banner" align="bottom" width="607" height="46"></TD>
 </TR>
 <TR>
 <TD colspan="10">
 <TABLE>
 <TBODY>
 <TR>
 <TD valign="middle" align="left" width="25"><IMG
src="/theme/buttonDWN.gif" width="20" height="20" border="0"></TD>
 <TD valign="middle" align="left" width="50"><FONT
size="-1">Home</TD>
 <TD width="5"></TD>
 <TD><IMG src="/theme/button.gif" width="20" height="20"
border="0"></TD>
 <TD valign="middle" align="left" width="100"><FONT
size="-1">White Pages</TD>
 <TD width="5"></TD>
 <TD><IMG src="/theme/button.gif" width="20" height="20"
border="0"></TD>
 <TD valign="middle" align="left" width="100"><A
href="/WebSphereSamples/servlet/WebSphereSamples.YourCo.ExpHTMLServlet.Expiring
HTMLServlet/TheExpiringHTMLServlet" target="_top">YourCo
News</TD>
 <TD width="5"></TD>
 <TD><IMG src="/theme/button.gif" width="20" height="20"
border="0"></TD>
 <TD width="120" valign="middle" align="left"><FONT
size="-1">Employee Center</TD>
 <TD width="5"></TD>
 <TD><IMG src="/WebSphereSamples/theme/button.gif" width="20"
height="20" border="0"></TD>
 <TD valign="middle" align="left" width="120"><FONT
size="-1">Locate an Expert</TD>
 </TR>
 </TBODY>
 </TABLE>
 </TD>
 </TR>
 </TBODY>
</TABLE>
778 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

</CENTER>

<CENTER>
<TABLE width="620" height="310">
 <TBODY>
 <TR>
 <TD colspan="5" height="20">
 </TD>
 </TR>
 <TR>
 <TD colspan="2" valign="top" align="left"></TD>
 <TD rowspan="2" width="257" valign="top" align="left">
 <p>Welcome!

 You are at the Home page for the YourCo sample Web
site.
 </p>
 <p>It is true - YourCo is a fictitious company. But, its
 Intanet Web site has many <i>real</i> features. Take a look
around.
 There is lots to see.

 White
Pages

 Browse or search the YourCo employee directory.

 <a
href="/WebSphereSamples/servlet/WebSphereSamples.YourCo.ExpHTMLServlet.Expiring
HTMLServlet">YourCoNews

 Get the latest edition of the company news.

 YourCo
 Employee Center

 YourCo employees have the most fun. Log in as a YourCo employee to
customize
 the Center, reserve a meeting room, investigate other job positions,
 take a poll, answer our survey, or manage your time off.

 </p>
 <p> </p>
 </TD>
 <TD rowspan="2" width="20"></TD>
 <TD rowspan="2">
 <table width="200">
 <tbody>
 <tr>
 <td valign="top" align="center"><img src="/theme/photo01.jpg"
border="0" align="top"></td>
 </tr>
 <tr>
 Appendix B. LBS sample code 779

 <td align="center"><i>Looking skyward from the
YourCo
 home office - Anywhere, USA.</i></td>
 </tr>
 </tbody>
 </table>
 </TD>
 </TR>
 <TR>
 <TD valign="top" colspan="2" width="242" align="left">
 </TD>
 </TR>
 <TR>
 <TD width="200" colspan="2"></TD>
 <TD width="200"></TD>
 <TD></TD>
 <TD align="center"></TD>
 </TR>
 <TR>
 <TD colspan="5"></TD>
 </TR>
 </TBODY>
</TABLE>
</CENTER>
<CENTER>
<TABLE width="620" height="50">
 <TBODY>
 <TR>
 <TD></TD>
 </TR>
 <TR>
 <TD></TD>
 </TR>
 <TR>
 <TD>© Copyright 1999 Your Company <I>All rights
reserved.</I>

 Questions? Comments? Email us.</TD>
 </TR>
 </TBODY>
</TABLE>

 <p> </p>

</CENTER>
</BODY>
</HTML>
780 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Example: B-12 db2table.txt

EMPLOYEE=create table EMPLOYEE (EMPNO char(6) not null, FIRSTNME varchar(12)
not null, MIDINIT char(1) not null, LASTNAME varchar(15) not null, WORKDEPT
char(3), PHONENO char(4), HIREDATE char(10), JOB char(8), EDLEVEL decimal(5,0)
not null, SEX char(1), BIRTHDATE char(10), SALARY decimal(9,2), BONUS
decimal(9,2), COMM decimal(9,2), USERID char(20), OFFICE char(5))

ADDRESS=create table ADDRESS (OFFICE char(5) not null, ADDRESS varchar(100),
CITY varchar(50), ZIPCODE varchar(20) , STATE char(2), Country varchar(50))

TRIGGER=create table TRIGGER (USERID char(20), ROOM_ID varchar(3), THEDAY
varchar(10), THETIME varchar(4), RESERVED_BY varchar(40))

Example: B-13 EMPLOYEE.TXT

'000010';'ERIK';'H';'R';'A00';'3978';'1965-01-01';'PRES';18;'F';'1933-08-24';00
52750.00;0001000.00;0004220.00;'erongen@ibm';'userid01@IBM';'00001'
'000020';'MICHAEL';'L';'THOMPSON';'B01';'3476';'1973-10-10';'MANAGER';18;'M';'1
948-02-02';0041250.00;0000800.00;0003300.00;'userid02@IBM';'00002'
'000030';'SALLY';'A';'KWAN';'C01';'4738';'1975-04-05';'MANAGER';20;'F';'1941-05
-11';0038250.00;0000800.00;0003060.00;'userid03@IBM';'00003'
'000050';'JOHN';'B';'GEYER';'E01';'6789';'1949-08-17';'MANAGER';16;'M';'1925-09
-15';0040175.00;0000800.00;0003214.00;'userid04@IBM';'00004'
'000060';'IRVING';'F';'STERN';'D11';'6423';'1973-09-14';'MANAGER';16;'M';'1945-
07-07';0032250.00;0000500.00;0002580.00;'userid05@IBM';'00005'
'000070';'EVA';'D';'PULASKI';'D21';'7831';'1980-09-30';'MANAGER';16;'F';'1953-0
5-26';0036170.00;0000700.00;0002893.00;'userid06@IBM';'00001'
'000090';'EILEEN';'W';'HENDERSON';'E11';'5498';'1970-08-15';'MANAGER';16;'F';'1
941-05-15';0029750.00;0000600.00;0002380.00;'userid07@IBM';'00002'
'000100';'THEODORE';'Q';'SPENSER';'E21';'0972';'1980-06-19';'MANAGER';14;'M';'1
956-12-18';0026150.00;0000500.00;0002092.00;'userid08@IBM';'00003'
'000110';'VINCENZO';'G';'LUCCHESSI';'A00';'3490';'1958-05-16';'SALESREP';19;'M'
;'1929-11-05';0046500.00;0000900.00;0003720.00;'userid09@IBM';'00004'
'000120';'SEAN';'';'O''CONNELL';'A00';'2167';'1963-12-05';'CLERK';14;'M';'1942-
10-18';0029250.00;0000600.00;0002340.00;'insuser@IBM';'00005'
'000130';'DOLORES';'M';'QUINTANA';'C01';'4578';'1971-07-28';'ANALYST';16;'F';'1
925-09-15';0023800.00;0000500.00;0001904.00;'userid11@IBM';'00001'
 Appendix B. LBS sample code 781

'000140';'HEATHER';'A';'NICHOLLS';'C01';'1793';'1976-12-15';'ANALYST';18;'F';'1
946-01-19';0028420.00;0000600.00;0002274.00;'userid12@IBM';'00002'
'000150';'ERIK';'';'RONGEN';'D11';'4510';'1972-02-12';'DESIGNER';16;'M';'1947-0
5-17';0025280.00;0000500.00;0002022.00;'erongen@IBM';'00003'
'000160';'ELIZABETH';'R';'PIANKA';'D11';'3782';'1977-10-11';'DESIGNER';17;'F';'
1955-04-12';0022250.00;0000400.00;0001780.00;'userid14@IBM';'00004'
'000170';'MASATOSHI';'J';'YOSHIMURA';'D11';'2890';'1978-09-15';'DESIGNER';16;'M
';'1951-01-05';0024680.00;0000500.00;0001974.00;'userid15@IBM';'00005'
'000180';'MARILYN';'S';'SCOUTTEN';'D11';'1682';'1973-07-07';'DESIGNER';17;'F';'
1949-02-21';0021340.00;0000500.00;0001707.00;'userid16@IBM';'00001'
'000190';'JAMES';'H';'WALKER';'D11';'2986';'1974-07-26';'DESIGNER';16;'M';'1952
-06-25';0020450.00;0000400.00;0001636.00;'userid17@IBM';'00002'
'000200';'DAVID';'';'BROWN';'D11';'4501';'1966-03-03';'DESIGNER';16;'M';'1941-0
5-29';0027740.00;0000600.00;0002217.00;'userid18@IBM';'00003'
'000210';'WILLIAM';'T';'JONES';'D11';'0942';'1979-04-11';'DESIGNER';17;'M';'195
3-02-23';0018270.00;0000400.00;0001462.00;'userid19@IBM';'00004'
'000220';'JENNIFER';'K';'LUTZ';'D11';'0672';'1968-08-29';'DESIGNER';18;'F';'194
8-03-19';0029840.00;0000600.00;0002387.00;'userid20@IBM';'00005'
'000230';'JAMES';'J';'JEFFERSON';'D21';'2094';'1966-11-21';'CLERK';14;'M';'1935
-05-30';0022180.00;0000400.00;0001774.00;'userid21@IBM';'00001'
'000240';'SALVATORE';'M';'MARINO';'D21';'3780';'1979-12-05';'CLERK';17;'M';'195
4-03-31';0028760.00;0000600.00;0002301.00;'userid22@IBM';'00002'
'000250';'DANIEL';'S';'SMITH';'D21';'0961';'1969-10-30';'CLERK';15;'M';'1939-11
-12';0019180.00;0000400.00;0001534.00;'userid23@IBM';'00003'
'000260';'SYBIL';'P';'JOHNSON';'D21';'8953';'1975-09-11';'CLERK';16;'F';'1936-1
0-05';0017250.00;0000300.00;0001380.00;'userid24@IBM';'00004'
'000270';'MARIA';'L';'PEREZ';'D21';'9001';'1980-09-30';'CLERK';15;'F';'1953-05-
26';0027380.00;0000500.00;0002190.00;'userid25@IBM';'00005'
'000280';'ETHEL';'R';'SCHNEIDER';'E11';'8997';'1967-03-24';'OPERATOR';17;'F';'1
936-03-28';0026250.00;0000500.00;0002100.00;'userid26@IBM';'00001'
'000290';'JOHN';'R';'PARKER';'E11';'4502';'1980-05-30';'OPERATOR';12;'M';'1946-
07-09';0015340.00;0000300.00;0001227.00;'userid27@IBM';'00002'
'000300';'PHILIP';'X';'SMITH';'E11';'2095';'1972-06-19';'OPERATOR';14;'M';'1936
-10-27';0017750.00;0000400.00;0001420.00;'userid28@IBM';'00003'
'000310';'MAUDE';'F';'SETRIGHT';'E11';'3332';'1964-09-12';'OPERATOR';12;'F';'19
31-04-21';0015900.00;0000300.00;0001272.00;'userid29@IBM';'00004'
'000320';'RAMLAL';'V';'MEHTA';'E21';'9990';'1965-07-07';'FIELDREP';16;'M';'1932
-08-11';0019950.00;0000400.00;0001596.00;'userid30@IBM';'00005'
'000330';'WING';'';'LEE';'E21';'2103';'1976-02-23';'FIELDREP';14;'M';'1941-07-1
8';0025370.00;0000500.00;0002030.00;'userid31@IBM';'00001'
'000340';'JASON';'R';'GOUNOT';'E21';'5698';'1947-05-05';'FIELDREP';16;'M';'1926
-05-17';0023840.00;0000500.00;0001907.00;'userid32@IBM';'00002'
782 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Example: B-14 ADDRESS.TXT

'00001';'JustAny Street 432B';'Los Angeles';'1234567';'CA';'United States of
America'
'00002';'Another Street 1';'Boulder';'1234567';'CO';'United States of America'
'00003';'Building 662 700 Park Office Drive';'Research Triangle
Park';'27709';'NC';'United States of America'
'00004';'Watsonweg 2';'Uithoorn';'1423 ND';'NH';'The Netherlands'
'00005';'YetAnother Street 54';'Cary';'1234567';'NC';'United States of America'
 Appendix B. LBS sample code 783

784 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Appendix C. Everyplace Wireless
Gateway in WebSphere
Everyplace Server:
installation tips

This appendix provides installation steps and tips to successfully set up the
Everyplace Wireless Gateway Version 2.1.1 on AIX in a WebSphere Everyplace
Server environment.

Note : The Wireless Gateway should be installed on a new AIX system.

Note : The difference between EWG 2.1.0 and EWG 2.1.1 is the multilingual
capability and addition of third party Directory Services Server (DSS) support for
existing directory definitions.

C

© Copyright IBM Corp. 2002 785

EWG 2.1.1 prerequisites
1. Base operating system:

– AIX : AIX 4.3.3 plus maintenance level 8 and APARs is required (level
4.3.3.51)

You can obtain this from :

http://techsupport.services.ibm.com/rs6k/fixdb.html

– Solaris :SunOS 5.7 or later

Patch-ID 108968-05 is required to read the CD-ROM on SunOS 5.8.

2. Disk space:

– The ODBC server needs at least 50 MB of table space to install EWG.
EWG writes records and requires DB administration to remove them. The
frequency of DB administration tasks is determined by the amount of disk
space available to the DB server.

– When enabled, EWG logging can easily use hundreds of megabytes. It is
recommended that the log and trace file directories reside in their own file
system.

3. Database:

– DB2 7.1 plus FixPack2a is required and fully included in the WebSphere
Everyplace Server 2.1.1 CDs.

– Oracle 8.1.5, 8.1.6, 8.1.7.

Oracle 8.1.5 and 8.1.6 require Merrant DataDirect ODBC v3.6.0.

Oracle 8.1.7 requires Merrant v3.7.0.

4. LDAP : IBM SecureWay Directory 3.2.1 is required and fully included in the
WebSphere Everyplace Server 2.1.1 CDs.

EWG 2.1.1 prerequisites installation
1. Install AIX 4.3.3.

2. Install AIX 4.3.3 maintenance level 8 plus APARs:

– Run Smitty.

– Install and update from the latest available software.

– Run Update_all: 128 files are installed or updated.

3. Check the disk space.

4. Set the debug level and type the following AIX command:

#export IBMEPS_DEBUG_LEVEL=5
786 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

5. Insert WebSphere Everyplace Server CD1 in the CD drive, then type the
following AIX command lines :

#cd /
#mkdir cdrom
#mount -rv cdrfs /dev/cd0 /cdrom
#cdrom/install.sh

6. You are asked for installing Java 1.3.0 (answer yes by entering y) and Java 2
(answer yes).

7. Setup Manager opens.

8. It is important to read the Readme file before continuing this installation.
Check the latest information.

9. In the Setup Manager interface, select An XML file does not exist.

10.Enter the Install Key provided with the CDs.

11.Install SecureWay Directory on this machine:

– Check the Directory suffix.

– The default port number is 389.

– Enter your user ID, cn=root for example, and your password.

12.WebSphere Everyplace Server components to install:

Do not select any of the WebSphere Everyplace Server components. The
Setup Manager will install IBM HTTP Server, LDAP and DB2 by itself.

For a secure installation, it is recommended that you install the
WebSphere Everyplace Server components in the second part of the
installation.

13.You can use the same user ID or different user IDs to access the WebSphere
Everyplace Server components.

– Enter your IBM HTTP Server user ID and password.

– Enter your DB2 user ID and password.

14.An Installation Summary window appears, including:

– Everyplace Server package files

– HTTP Server

– DB2 + fixpack

– LDAP

15.Click Install.
 Appendix C. Everyplace Wireless Gateway in WebSphere Everyplace Server: installation tips 787

16.During this installation, you can check the log files:

#cd /usr/IBMEPS/setup/logs
#tail -f everyplace_install.trace

17.When the installation is complete:

– Select Start LDAP.

– View the log file. You should see that all the components have been
installed successfully; the last log’s line should say that the configuration
for Everyplace Server post-configuration has succeeded.

– Click Finish.

18.The IBM SecureWay Directory Management Tool opens:

– Click Add Server (left pane, at the bottom).

– Enter the LDAP Server name.

– Select Simple for the Authentication type.

– Click OK.

19.For LDAP post-configuration checks, click Browse tree in the left pane of the
Directory Management Tool window and check, in the right pane, that the
following appears:

dc=yourmachine
db2
ihs
swd

20.For Smitty post-installation checks, you can check that the following software
have been successfully installed on your machine:

– Java 130 1.3.0.7

– Java_dev2 1.2.2.8

– DB2 7.1.0.28

– http_server 1.3.12.3

– LDAP 3.2.1.0

EWG 2.1.1 installation
1. You must restart WebSphere Everyplace Server to install the Wireless

Gateway. Type the following AIX commands:

#cd /
#cdrom/install.sh

2. In the Setup Manager interface, select An XML file does exist.
788 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

3. Select Use a retrieve LDAP (you will use the LDAP that has just been
installed on your machine).

4. Enter the LDAP information: Server name, user ID, password.

5. WebSphere Everyplace Server component to install: select EWG.

6. Follow the Setup Manager windows, then unmount CD1 when prompted and
mount CD7.

The following components will be installed:

– Gateway

– Gatekeeper

– Ardis Support

– DataTAC Support

7. When the installation is complete, you can view the log file.

Note: You should see that all the components have been installed
successfully; the last log line should indicate that the configuration for
Everyplace Server post-configuration was also successful.

Click Finish.

8. For post-installation checks, you can run Smitty and verify that the Wireless
Gateway has been successfully installed: wg 2.1.1.0 appears in the installed
software.

9. The Wireless Gatekeeper allows you to configure the Wireless Gateway.
Open the Gatekeeper by entering the following AIX command:

#wgcfg

10.You are prompted with the message Are all the Wireless Gateways that
you will be managing WAP-only gateways ?

Answer No.

11.Enter your login information.

12.Enter your Wireless Gatekeeper login information.

13.The following message appears: The LDAP schema needs to be updated.

Click OK. The login process can take more than five minutes.

14.When the Gatekeeper is ready, click Add Resource in the Tasks pane, then
double-click Wireless Gateway.

15.Enter your login (machine’s login) and password (machine’s password).

16.Add a New Gateway. Follow the panels and enter the necessary infornation.
 Appendix C. Everyplace Wireless Gateway in WebSphere Everyplace Server: installation tips 789

17.The following message appears : Would you like to add WAP support to
this Wireless Gateway ?

Answer Yes.

18.An HTTP proxy is necessary to run the Wireless Gateway. You can use a
proxy which is already running on one of your machines, or you can install
WebSphere Test Environment from the WebSphere Everyplace Server CDs
on the EWG’s machine.

19.The Gatekeeper allows you to add a WAP device resolver, messaging
gateway, MNI, MNC, and so on. All these functions are explored in this
redbook.

Nte : For more information about the Wireless Gateway, refer to the Wireless
Gateway Administrator’s Guide.
790 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 793.

� New Capabilities in IBM WebSphere Transcoding Publisher Version 3.5: Extending Web
Applications to the Pervasive World, SG24-6233

� IBM WebSphere Everyplace Server: A Guide for Architects and Integrators, SG24-6189

� Tivoli SecureWay Policy Director Centrally Managing e-business Security, SG24-6008

� IBM WebSphere Edge Server: Working with Web Traffic Express and Network Dispatcher,
SG24-6172

� WebSphere V3 Performance Tuning Guide, SG24-5657

� WebSphere Scalability: WLM and Clustering Using WebSphere Application Server Advanced
Edition, SG24-6153

� Connecting WebSphere to DB2 UDB Server, SG24-6219

� WebSphere Scalability: WLM and Clustering Using WebSphere Application Server Advanced
Edition, SG24-6153

Other resources
These publications are also relevant as further information sources:

� WebSphere Edge Server for Multiplatforms Administration Guide, GC09-4567

� WebSphere Edge Server for Multiplatforms Getting Started Guide Version 1.0, SC09-4566

� IBM Load Balancer User’s Guide Version 3.0 for Multiplatforms, GC31-8496

� Network Dispatcher Administration Guide, GC31-8496
© Copyright IBM Corp. 2002 791

Referenced Web sites
These Web sites are also relevant as further information sources:

� The WAP Forum

http://www.wapforum.org

� SignalSoft Corporation

http://www.signalsoftcorp.com

� IBM Research, Gryphon message broker

http://www.research.ibm.com/gryphon/Gryphon/gryphon.html

� IBM announcement for WebSphere Voice Server 1.5

http://www-4.ibm.com/software/speech/enterprise/ep_1.html.

� IBM announcement for WebSphere Studio, Advanced Edition, Version 3.5

http://www-4.ibm.com/software/webservers/studio/.

� IBM announcement for VisualAge for Java, Enterprise Edition

http://www-4.ibm.com/software/ad/vajava/.

� IBM announcement for WebSphere Translation Server

http://www-4.ibm.com/software/speech/enterprise/ep_8.html

� IBM WebSphere Everyplace Server Infocenter

http://www-3.ibm.com/pvc/products/wes_provider/infocenter/index.html

� Visual Age Micro Edition information and download

http://www.embedded.oti.com/learn/1_4.html

� IBM announcement for Database 2 Everyplace

http://www-4.ibm.com/software/data/db2/everyplace/library.html

� IBM WebSphere Portal Server home page

http://www-4.ibm.com/software/webservers/portal/

� DB2 Everyplace software download site

http://www6.software.ibm.com/dl/db2/everyplace-p

� IBM Message Center home page

http://www-4.ibm.com/software/speech/enterprise/ep_7.html

� WebSphere Commerce Suite MarketPlace Edition home page

http://www-4.ibm.com/software/webservers/commerce/wcs_me/index.html

� NTT Do Co Mo home page, for information on i-mode

http://www.nttdocomo.com
792 Enterprise Wireless Applications using IBM WebSphere Everyplace Server 792 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

http://www.wapforum.org
http://www.signalsoftcorp.com
http://www.research.ibm.com/gryphon/Gryphon/gryphon.html
http://www-4.ibm.com/software/speech/enterprise/ep_1.html.
http://www-4.ibm.com/software/webservers/studio/.
http://www-4.ibm.com/software/ad/vajava/.
http://www-4.ibm.com/software/speech/enterprise/ep_8.html
http://www-3.ibm.com/pvc/products/wes_provider/infocenter/index.html
http://www.embedded.oti.com/learn/1_4.html
http://www-4.ibm.com/software/data/db2/everyplace/library.html
http://www-4.ibm.com/software/webservers/portal/
http://www6.software.ibm.com/dl/db2/everyplace-p
http://www-4.ibm.com/software/speech/enterprise/ep_7.html
http://www-4.ibm.com/software/webservers/commerce/wcs_me/index.html
http://www.nttdocomo.com

� Web Intermediaries at IBM Research

http://www.almaden.ibm.com/cs/wbi

� IBM Distributed Computing home page

http://www.ibm.com/software/network/dce/

� Netegrit, Inc., home of SiteMinder

http://www.netegrity.com

� IBM WebSphere Edge Server library

http://www.ibm.com/software/webservers/edgeserver/library.html

� IBM Developerworks paper: A highly Available and Scalable LDAP Cluster in an IBM AIX
Environment

http://www-1.ibm.com/servers/esdd/articles/ldap/index.html

� IBM WebSphere Everyplace Server code fixes and Plug-In Support for OEM WAP/Wireless
Gateways

http://www-3.ibm.com/pvc/products/wes_enable/code_fixes.shtml

� IBM Directory Management Tool publications

http://www-4.ibm.com/software/network/directory/library/publications/31/dmt/dparent.htm

� Web Traffic Express Programming Guide

http://www.ibm.com/software/webservers/edgeserver/library.html

� VoiceML Forum

http://www.voicexml.org

How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order hardcopy from the
Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images) from this
Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and sometimes just a
few chapters will be published this way. The intent is to get the information out much quicker than
the formal publishing process allows.
 Related publications 793

http://www-3.ibm.com/pvc/products/wes_enable/code_fixes.shtml
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.almaden.ibm.com/cs/wbi
http://www.ibm.com/software/network/dce/
http://www.netegrity.com
http://www.ibm.com/software/webservers/edgeserver/library.html
http://www-1.ibm.com/servers/esdd/articles/ldap/index.html
http://www-4.ibm.com/software/network/directory/library/publications/31/dmt/dparent.htm
http://www.ibm.com/software/webservers/edgeserver/library.html
http://www.voicexml.org

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
site for information about all the CD-ROMs offered, as well as updates and formats.
794 Enterprise Wireless Applications using IBM WebSphere Everyplace Server 794 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2002 795

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In
Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others
796 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Glossary

ACL. Access control list. (1) In computer security,
a collection of all access rights for one object. (2) In
computer security, a list associated with an object
that identifies all the subjects that can access the
object and their access rights; for example, a list
associated with a file that identifies users who can
access the file and identifies their access rights to
that file.

Applet. A small application program, typically
written in Java, which can be embedded within a
Web page or downloaded by a user along with a
Web page.

Authentication. The process of verifying a user's
identity to determine what type of access, if any,
one may be granted to information or other online
resources and transaction capabilities. Users are
most frequently authenticated by a user name and
password, although more sophisticated methods
such as a digital certificate can also be used.

Browser. A program used to view, download, or
otherwise access content on the World Wide Web
or a corporate intranet. Browsers display coded
pages (such as HTML or ASP) that reside on
servers and are "rendered" as a Web page.
Netscape Navigator and Microsoft Internet Explorer
are the two most popular browsers.

Cache server. Some networks use a cache server
to store Web pages and other data, so that if the
same pages are requested frequently, they can be
served from the cache rather than repeatedly
retrieved from external Web servers. The external
cache is an HTTP proxy such as IBM Web Traffic
Express. IBM WebSphere Transcoding Publisher
can use it to store and retrieve transcoded Web
pages and intermediate results to avoid repeating
the transcoding of frequently accessed pages,
delivering better performance.
© Copyright IBM Corp. 2002
Cache. A cache stores cachable responses in
order to reduce the response time and network
bandwidth consumption on future, equivalent
requests. Any client or server may include a cache,
though a cache cannot be used by a server while it
is acting as a tunnel.

CDMA. (Code Division Multiple Access) A method
for transmitting simultaneous signals over a shared
portion of the spectrum. The foremost application of
CDMA is the digital cellular phone technology from
QUALCOMM that operates in the 800MHz band
and 1.9GHz PCS band. CDMA phones are noted
for their excellent call quality and long battery life.
CDMA is less costly to implement, requiring fewer
cell sites than the GSM and TDMA digital cell phone
systems and providing three to five times the calling
capacity. It provides more than 10 times the
capacity of the analog cell phone system (AMPS).
CDMA has become widely used in North America.
Unlike GSM and TDMA, which divides the spectrum
into different time slots, CDMA uses a spread
spectrum technique to assign a code to each
conversation. After the speech code converts voice
to digital, CDMA spreads the voice stream over the
full 1.25MHz bandwidth of the CDMA channel,
coding each stream separately so it can be
decoded at the receiving end. For more information,
contact the CDMA Development Group (CDG) at
www.cdg.org.

CDMA. Code Division Multiple Access. A second
generation digital cellular network standard.
 797

CDPD. (Cellular Digital Packet Data) A digital
wireless transmission system that is deployed as an
enhancement to the existing analog cellular
network. Based on IBM's CelluPlan II, it provides a
packet overlay onto the analog (AMPS) network
and moves data at 19.2 Kbps over ever-changing
unused intervals in the voice channels. If all the
channels are used, the data is stored and forwarded
when a channel becomes available. CDPD is used
for applications such as public safety, point of sale,
mobile positioning and other business services.
CDPD networks cover most of the major urban
areas in the U.S.

CDPD. Cellular Digital Packet Data. Designed to
work as an overlay on analog cellular networks.

Cell phone. CELLular telePHONE is the first
ubiquitous wireless telephone. Originally analog, all
new cellular systems are digital. This has enabled
the cell phone to turn into a smart phone that has
access to the Internet.

CGI. Common Gateway Interface. A standard way
of communicating between different processes.

cHTML. Compact HTML is a more efficient
variation of HTML specifically designed for use by
the i-mode wireless service.

Clustering. Clustering is a technique used to
provide scalability through the use of multiple
copies of an application on the same machine or on
separate machines. Careful management of the
different applications is necessary to ensure that
they work together effectively. WebSphere has
limited clustering support in Version 2.x and more
support in Version 3.0.

Common Gateway Interface (CGI). A standard
way to run programs on a server from a Web page;
enables the server to pass a user's request to an
application program and to receive data back to
forward on to the user.

cookie. Netscape's term for a small amount of
data permanently or temporarily stored by the Web
browser (the user) and associated with a particular
Web page or Web site. Cookies serve to give the
Web browser a memory, so that it can use data that
was input on one page in another page, or so it can
recall user preferences or other variables when the
user leaves a page and returns. (2) Cookies were
implemented as an extension to the HTTP protocol.
Cookies are transmitted to and from the server and
allow a Web page or Web site to "remember" things
about the client -- for example, that the user has
previously visited the site, has already registered
and obtained a password or has expressed a
preference about the color and layout of Web
pages.

daemon. A program, typically in UNIX, that
executes in the background It functions like an
extension to the operating system. I typically is an
unattended process that is initiated at startup.
Typical daemons are print spoolers and e-mail
handlers or a scheduler that starts up another
process at a designated time. The term comes from
Greek mythology meaning "guardian spirit.

DSB. Directory Services Broker is a proxy process
that allows NetSEAT clients to make Cell Directory
Service requests. This is necessary for the
Management Console on Windows NT to operate
correctly

DTD. A document type definition that is the
schema that defines the XML tags.

DTMF. (Dual-Tone MultiFrequency) The type of
audio signals that are generated when you press
the buttons on a touch-tone telephone.
798 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Enterprise Java Beans. Despite the name,
Enterprise Java Beans (EJBs) are not Java Beans.
Enterprise Java Beans are server-side Java
components that are designed for distributed
environments. They do not exist in isolation but
rather are deployed in containers that provide
services such as security, naming and directory
services, and persistent storage. WebSphere
Application Server is just such a container. See
http://java.sun.com/products/ejb/ for more
information.

EPOC. A 32-bit operating system for handheld
devices from Symbian Ltd. Used in Psion and other
handheld computers, it supports Java applications,
e-mail, fax, infrared exchange, data synchronization
with PCs and includes a suite of PIM and
productivity applications. See http://
(www.symbian.com for more information.

eXtensible Markup Language (XML). A markup
language, similar to HTML, used to create
documents containing structured information (e.g.,
words, pictures, transaction data, server APIs, etc.).
XML is in many ways superior to HTML since it
does not employ a limited set of predefined tags to
create and display documents, but instead employs
user-defined tags specified in either customized
stylesheets or by the programs used to create and
serve the documents. In short, this means that
XML used in Web documents will enhance the
user's ability to effectively and efficiently search for
information living on the Web. XML has the ability to
allow data providers to define new tags as needed
to better describe the data domain being
represented. For more information see http://
www.software.ibm.com/xml

Firewall. A computer installed between the
publicly-accessible and private areas of a network,
designed to secure the private network and prevent
unauthorized users from gaining access. A security
procedure that sets up a barrier between an internal
LAN (local area network) and the Internet

Gateway. A server which acts as an intermediary
for some other server. Unlike a proxy, a gateway
receives requests as if it were the origin server for
the requested resource; the requesting client may
not be aware that it is communicating with a
gateway. Gateways are often used as server-side
portals through network firewalls and as protocol
translators for access to resources stored on non-
HTTP systems.

GPRS. General Packet Radio Service or GPRS is
an enhancement to the GSM mobile
communications system that supports data packets.
GPRS enables continuous flow of IP data packets
over the system for such applications as Web
browsing and file transfer. GPRS differs from GSM's
short messaging service (GSM-SMS) which is
limited to messages of 160 bytes in length.

GSM. (Global System for Mobile
Communications) A digital cellular phone
technology based on TDMA that is the predominant
system in Europe, but also used around the world.
Operating in the 900MHz and 1.8GHz bands in
Europe and the 1.9GHz PCS band in the U.S., GSM
defines the entire cellular system, not just the air
interface (TDMA, CDMA, etc.). GSM phones use a
Subscriber Identity Module (SIM) smart card that
contains user account information. Any GSM phone
becomes immediately programmed after plugging
in the SIM card, thus allowing GSM phones to be
easily rented or borrowed. SIM cards can be
programmed to display custom menus for
personalized services. GSM provides a short
messaging service (SMS) that enables text
messages up to 160 characters in length to be sent
to and from a GSM phone. It also supports data
transfer at 9.6 Kbps to packet networks, ISDN and
POTS users. GSM is a circuit-switched system that
divides each 200 kHz channel into eight 25 kHz
time slots.
 Glossary 799

HDML. Handheld Device Markup Language is a
specialized version of HTML designed to enable
wireless pagers, cell phones, mobile phones and
other handheld devices to obtain information from
Web pages. HDML was developed by Phone.com
(formerly Unwired Planet) before the WAP
specification was standardized. It is a subset of
WAP with some features that were not included in
WAP. AT&T Wireless launched the first HDML-
based service in 1996.

HTML. Hyper Text Markup Language is a
document format used on the World Wide Web.
Web pages are built with HTML tags, or codes,
embedded in the text. HTML defines the page
layout, fonts and graphic elements as well as the
hypertext links to other documents on the Web.
Each link contains the URL, or address, of a Web
page residing on the same server or any server
worldwide, hence the term “World Wide” Web.

HTTP proxy. An HTTP proxy is a program that
acts as an intermediary between a client and a
server. It receives requests from clients, and
forwards those requests to the intended servers.
The responses pass back through it in the same
way. Thus, a proxy has functions of both a client and
a server. Proxies are commonly used in firewalls,
caching and transcoding machines.

HTTP. Hyper-text Transfer Protocol. The
communications protocol or "language" used by
servers and browsers to transfer Web pages across
the Internet or an intranet.

HTTPS. Secure Hypertext Transfer Protocol. A
Web protocol which employs Netscape
Communication's Secure Socket Layer (SSL) within
the regular HTTP communication and encrypts data
sent from a user to the Web server - a "secure
server" - and decrypts pages returned to the user.

IMAP. Internet Messaging Access Protocol. A
standard mail server expected to be widely used on
the Internet. It provides a message store that holds
incoming e-mail until users log on and download it.
IMAP4 is the latest version.

IMAP is more sophisticated than the Post Office
Protocol (POP3) mail server. Messages can be
archived in folders, mailboxes can be shared, and a
user can access multiple mail servers. There is also
better integration with MIME, which is used to
attach files.

i-Mode. A packet-based information service for
mobile phones from NTT DoCoMo (Japan). i-mode
provides Web browsing, e-mail, a calendar, chat
rooms, games, and customized news. It was the
first smart phone system for Web browsing and its
popularity grew very quickly after its introduction in
1999. i-mode is a proprietary system that uses a
subset of HTML, known as cHTML, in contrast to
the global WAP standard that uses a variation of
HTML, known as WML. The i-mode transfer rate is
9600 bps, but is expected to increase to 384 kbps in
2001, using W-CDMA.

IrDA. The Infrared Data Association develops
standards for wireless, infrared transmission
systems between computers. With IrDA ports, a
laptop or PDA can exchange data with a desktop
computer or use a printer without a cable
connection. IrDA requires line-of-sight transmission
like a TV remote control. IrDA products began to
appear in 1995. See http://www.irda.org for more
information.

Java. An object-oriented programming language
developed by Sun Microsystems which can be used
to create applications that will run independent of
the platform (e.g., Windows, UNIX, etc.). Small Java
programs (Applets) are frequently used in Web
pages to provide active elements such as
animations or scrolling headlines or interactive
features such as calculators. Sun has created a
complete Web site devoted to Java and its various
applications.
800 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

JavaBeans. JavaBeans are Java components
designed to be used on client systems. Java Beans
may or may not be visual components. See http://
www.javasoft.com/beans/docs for more information.

JavaServer Page (JSP). JSPs provide a
simplified, fast way to create dynamic Web content.
JSP technology enables rapid development of Web-
based applications that are server and platform
independent. JavaServer Pages are compiled into
servlets before deployment.

LTPA. Light weight third party authentication is a
protocol used with WebSphere to for authentication.

MNC. MNC is a mobile network connection. A
mobile network connection is a resource that is
assigned to a Everyplace Wireless Gateway and
defines a specific type of network connection. The
MNC consists of a line driver, a network protocol
interpreter, and one or more physical ports. You
configure one MNC for each network provider that
you will use.

Mobile device. A mobile device is a portable,
generally small, wireless device that can be used to
access the Internet via a browser. It includes a wide
range of capability and functionality. Mobile devices
include mobile phones, wireless PDAs, and wireless
laptops.

Mobile phone. A mobile phone is a wireless
smart phone that has a microbrowser to access
Internet content. Other names for a mobile phone
include cell phone and wireless phone.

MSISDN. Mobil Station ISDN. This is the
identification number of the specific telephone that
is making a call.

NAS. A server in a network dedicated to
authenticating users that log on. It may refer to a
dedicated server or to the software service within a
server. Typically the RADIUS protocol is used in the
authentication process.

ODBC. Open Database Connectivity. A database
programming interface from Microsoft that provides
a common language for Windows applications to
access databases on a network. ODBC consists of
the function calls programmers write into their
applications and the ODBC drivers themselves.

Openwave browser. Openwave Mobile Browser
is a microbrowser produced by Openwave Systems
Inc. that brings the full power and accessibility of
the Internet to mobile phones, PDAs and other
devices that use mobile communication networks
for information access.

PDA. (Personal digital assistant) A handheld
computer that serves as an organizer for personal
information. It generally includes at least a name
and address database, to-do list and note taker.
PDAs are typically pen based and use a stylus to
tap selections on menus and to enter printed
characters. The unit may also include a small on-
screen keyboard which is tapped with the pen. Data
is synchronized between the PDA and desktop
computer via cable or wireless transmission.

pervasive computing. The use of a computing
infrastructure that supports information appliances
from which users can access a broad range of
network-based services, including Internet-based e-
commerce services. Pervasive computing thus
provides users with the ability to access and take
action on information conveniently.

POP3. Post Office Protocol 3. A standard mail
server commonly used on the Internet that POP3
uses the SMTP messaging protocol. It provides a
message store that holds incoming e-mail until
users log on and download it. POP3 is a simple
system with little selectivity. All pending messages
and attachments are downloaded at the same time.
 Glossary 801

Proxy. A server that receives requests intended
for another server and that acts on the client's
behalf (as the client's proxy) to obtain the requested
service. A proxy server is often used when the client
and the server are incompatible for direct
connection (for example, when the client is unable
to meet the security authentication requirements of
the server but should be permitted some services).

Public-Key Infrastructure (PKI). A
comprehensive set of functions required to provide
public-key encryption and digital signature services,
including: key and certificate lifecycle management;
certification authority functions; directory for storing
and retrieving certificates; certificate revocation
system; a key backup and recovery system; and
time-stamping services.

PvC. Popular short form within IBM for pervasive
computing (see pervasive computing).

reverse proxy. A reverse proxy acts as a proxy on
behalf of the server(s) as opposed to acting on
behalf of the client.

RTSP. .Real Time Streaming Protocol - a protocol,
developed by Netscape and Progressive Networks,
for transmitting audio and video over the Internet.

Scalability. Scalability is an abstract attribute of
software that refers to its ability to handle increased
data throughput without modification. WebSphere
handles scalability by allowing execution on a
variety of hardware platforms that allow increased
performance and clustering.

Servlets. Servlets are Java classes that run on
Web servers to provide dynamic HTML content to
clients. The servlets take as input the HTTP request
from the client and output dynamically generated
HTML. For more information, see http://
www.software.ibm.com/ebusiness/
pm.html#Servlets.

SMS. Short Message Service or SMS is text
message service that enables short messages of
generally no more than 140-160 characters in
length to be sent and transmitted from a cell phone.
SMS is supported by GSM and other mobile
communications systems. Unlike paging, short
messages are stored and forwarded in SMS
centers.

SMTP. (Simple Mail Transfer Protocol) The
standard e-mail protocol on the Internet, is a TCP/
IP protocol that defines the message format and the
message transfer agent (MTA), which stores and
forwards the electronic mail. SMTP was originally
designed for only ASCII text, but MIME and other
encoding methods enable program and multimedia
files to be attached to e-mail messages. SMTP
servers route SMTP messages throughout the
Internet to a mail server, such as POP3 or IMAP4,
which provides a message store for incoming mail.

SOCKS. A SOCKS server is a proxy server that
uses a special protocol, sockets, to forward
requests. Transcoding Publisher connects through a
SOCKS server that is configured with a firewall to
manage network traffic and to protect your network
from outside intrusion (it supports Versions 4 and 5
SOCKS servers).

SSL. Secure Sockets Layer. A secure protocol
used for authentication and encryption. SSL can be
used over HTTP, RMI, Telnet and other protocols.

TAI. TAI is a WebSphere Application Server plug-
in that intercepts the incoming data from the
authentication tool, instructs WebSphere
Application Server not to authenticate again and to
trust the user-identity from the authentication tool.

TCP/IP.TCP/IP is a set of protocols developed to
allow cooperating computers to share resources
across a network.
802 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

TDMA. (Time Division Multiple Access) A satellite
and cellular phone technology that interleaves
multiple digital signals onto a single high-speed
channel, by dividing each channel into three
subchannels providing service to three users
instead of one.

TDMA. Time Division Multiple Access. A second-
generation digital cellular network standard.

TLS. Transport Layer Security. The standard
(IEFT) security protocol on the Internet. It is
expected to eventually supersede SSL.

TomCat. Tomcat is a free, open-source
implementation of Java Servlet and JavaServer
Pages technologies developed under the Jakarta
project at the Apache Software Foundation.

Transcoding. Transcoding is a new technology
that gives you the ability to make Web-based
information available on handheld and other new
type devices economically and efficiently, or on the
slow network connections like a dial up modem
connection. With transcoding, users receive
information (text and images) tailored to the
capabilities of the devices they are using and also
tailored to the capacity of the network being used.

Transcoding is also the process whereby the
MEGs modify the request and generate the
original resource and all of the document (or
resource) editing (or transcoding).

UNIX. A multi-user, multitasking operating system
developed by Bell Laboratories for multi-user
environments. UNIX is the most commonly-used
operating system for servers on the Internet. IBM's
version of UNIX is called AIX. The emergence of a
new version of UNIX called Linux is revitalizing
UNIX across all platforms.

URI. Universal Resource Indicator is the encoded
address for any resource -- HTML document,
image, video clip, program, etc. -- on the Web.

URL. Uniform Resource Locator. An "address"
used to locate Web pages and other resources on
the World Wide Web.

Voice XML. Voice XML is an extension of XML
that defines voice segments and enables access to
the Internet via telephones and other voice-
activated devices. AT&T, Lucent and Motorola
created the Voice XML Forum to support this
development. For more information, visit http://
www.vxml.org.

WAP. Wireless Application Protocol. An open,
global, wireless communication specification that is
defined and managed by the WAP Forum - a
consortium of more than 300 wireless network
operators, wireless manufacturers and affiliates.
The WAP protocols are network independent.

Web Application Server. A Web application
server is a software program designed to manage
applications at the second tier of three-tier
computing, that is, the business logic components.
A Web application server manages applications that
use data from back-end systems, such as
databases and transaction systems, and provides
output to a Web browser on a client. For more
information see http://www.software.ibm.com/
ebusiness/appsrvsw.html

Web browser. To access the World Wide Web,
you must use a Web browser. A browser is a
software program that allows users to access and
navigate the World Wide Web.

Wireless Gatekeeper. A Java-based
administrator's console that enables one or more
administrators to work with Wireless Gateways
remotely. It provides an easy-to-use interface that
enables an administrator to configure Wireless
Gateways, define wireless resources, group
resources to control access, and assign
administrators to perform operations on the
resources as needed.
 Glossary 803

Wireless LAN. A wireless LAN is a local area
network that transmits over the air, typically in an
unlicensed frequency such as the 2.4 GHz band. A
wireless LAN does not require lining up devices for
line of sight transmission, as IrDA does. Wireless
access points (base stations) are connected to an
Ethernet hub or server and transmit a radio
frequency over an area of several hundred to a
1000 feet, which can penetrate walls and other non-
metal barriers. Roaming users can be handed off
from one access point to another like a cellular
phone system. Laptops use wireless modems that
plug into an existing Ethernet port or that are self
contained on PC cards, while stand-alone desktops
and servers use plug-in cards (ISA, PCI, etc.).

Wireless network. Used to transmit data between
wireless devices such as a mobile phone, PDA, or
personal computer without the use of a physical
cable or wire.

Wireless service provider. An organization that
provides wireless services, including cellular
services, satellite services and ISPs.

WLP. Wireless link protocol. A modified version of
the Point-to-Point Protocol (PPP) used by the IBM
Wireless Gateway to support wireless (non-WAP)
client devices.

WML. Wireless Markup Language. XML-based,
WML tags are used to mark up content in decks for
WAP-enabled devices.

WTLS. Wireless Transport Layer Security. A
simplified version of TLS designed specifically for
WAP devices. It uses mini-certificates.

WWW. The World Wide Web (known as the Web)
is a system of Internet servers that supports
hypertext to access several Internet protocols on a
single interface.

XML. See Extensible Markup Language

XSL. Extensible Style Language. XSL stylesheets
are documents that describe a mapping between
XML documents and visual data that can be
presented to a client in a browser or mini-browser.
804 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

acronyms
ACL access control list

AO Access Offering

APAR authorized program analysis
report

ASP application service provider

AST Active Session Table

B2C business to consumer

B2E business to employee

CBR content-based routing

CDMA code division multiple access

CDPD cellular digital packet data

CHTML compact HTML

CSR Customer Service
Representative

DCE Distributed Computing
Environment

DIT directory information tree

DMS Device Management Server

DMZ demilitarized zone

DN distinguished name

DNS domain name system

DTD document type definition

DTMF dual tone multi-frequency

ECP Everyplace Cookie Proxy

EJB enterprise Java bean

EO Enable Offering

ESCP Edge Server - Caching Proxy

ESM Everyplace Synchronization
Manager

EWG EveryPlace Wireless Gateway

FTP File Transfer Protocol

GIF graphics interchange format

Abbreviations and
© Copyright IBM Corp. 2002
GSM Global System for Mobile
communication

GSO Global Sign-on

GUDA generalized user directory
access

HACMP high availability cluster
multiprocessing (AIX)

HDML handheld device markup
language

HTTP Hypertext Transport Protocol

HTTPS Secure Hypertext Transport
Protocol

IBM International Business
Machines Corporation

IMAP Internet Message Access
Protocol

IMC IBM Mobile Connect

INS Intelligent Notifications
Services

IP Internet Protocol

ISDN Integrated Services Digital
Network

ISP Independent service provider

ISV Independent Software Vendor

ITSO International Technical
Support Organization

JDK Java Development Kit

JPEG joint photographic experts
group

JSP Java Server Page

JVM Java Virtual Machine

LBS Location-Based Services

LDAP Lightweight Directory Access
Protocol

LOB lines of business
 805

LTPA lightweight third party
authentication

MNC mobile network connection

MQe MQSeries Everyplace

MSISDN mobile station ISDN

NAS network access server

NNTP Network News Transport
Protocol

ODBC open database connectivity

PC personal computer

PDA Personal Digital Assistant

PICS platform for Internet content
selection

PIM personal information manager

PKI Public Key Infrastructure

POP Post Office Protocol

PSTN Public Switched Telephone
Network

QBE query by example

RADIUS remote authentication dial-in
user service

RAID Redundant Array of
Independent Disks

RDBMS relational database
management system

RDN relative distinguished name

RPC remote procedure call

RPSS reverse proxy security servers

RTSP real-time streaming protocol

SDK Software Development Kit

SLA service level agreement

SMS Short message service

SMTP Simple Mail Transport
Protocol

SNA Systems Network
Architecture

SPO Service Provider Offering

SSl Secure Sockets Layer

STEP Sametime Everyplace

TAI trusted association interceptor

TCP Transmission Control Protocol

TDMA time division multiple access

TLS Transport Layer Security

TPSM Tivoli Personalized Services
Manager

TSHDM Tivoli Smart Handheld Device
Manager

UDB Universal Database

UDP User Datagram Protocol

UND universal notification
dispatcher

URI universal resource indicator

URL universal resource locator

USB universal serial bus

VoIP Voice over IP

VPN Virtual Private Network

WAN wide area network

WAP Wireless Access Protocol

WAS WebSphere Application
Server

WBMP wireless bitmap

WES WebSphere Everyplace
Server

WLP wireless link protocol

WML Wireless Markup Language

WSP Wireless Session Protocol

WTE Web Traffic Express

WTLS Wireless Transport Layer
Security

WTP WebSphere Transcoding
Publisher

XML Extensible Markup Language

XSL Extensible Style Language
806 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Index

A
accounting servers 25
Active Session Table 22, 68
adaptations 92
adapting

new and existing applications 111
security 75

adaptors 584
administration 18, 21, 63
AIX 46
AMPS 23
applet security model 6
Application patterns 63
applications 5, 7, 8, 58

considerations 19, 21
servers 7

Architecture 58
Architecture pattern 59
ARDIS 23
ASP 497
AST 22

server 22
asynchronous messaging 575
Asynchronous mode 56, 69, 73
asynchronous service 324
audio files 497
authentication 20

proxy 20

B
B2B 58, 78
B2C 1, 58, 78

audience 79
B2E 1, 52, 58, 78

application 77
base offerings 48, 53
beyond HTTP 15
beyond IP 9
Billing 29
billing support 25
binary XML 345
bridging mechanism 584
browsers 5, 12
© Copyright IBM Corp. 2002
Business Analysis 58
business applications 78
Business patterns 62
Business-to-Consumer (B2C) 1
Business-to-Employee (B2E) 1

C
C bindings 577
Catering 13
CGI 5

scripts 497
Cingular 328
Client 579
client 8

component 4
devices 59, 78
server 580

Clipping 68, 145
Commercial management 28
Common Gateway Interface 5
Company-wide items 82
composing messages 340
Composite patterns 63
computing contexts 13
computing modes 56
configuration 18, 21
Configuration management 28
connected users 25
content 11
Content adaptation 50, 55, 96
Content Enablers 63
customers 9
Customization 82

D
Data synchronization 517
database access methods 6
database interaction 6
Dataradio 23
DataTAC 328

Support 23
DB2 18, 71
decision tree 67
 807

delivery channels 339
Deployment 58
Design 58
design choices 56
Design issues 19, 28
Design pattern 59
designing 56
detailed permissions 7
development time 58
Device Access 63
device identifier 14
device information 55
Device Manager 10
Device Support 63
devices 10
Dial 23
Dialog Components 495
Direct Talk 70
Directory 8
Directory Management Tool 18
DirectTalk 495
DMT 18
document clipping 145
Document Object Model 260
documentation 58
DOM 260

E
Edge management 7
Edge Server 19, 34, 325

Caching Proxy 31, 36
Editing 68
Enable Offering 1, 3, 113
Enablement 7
Encryption 68

of messages 575
enterprise applications 1, 111, 348
ESM 517
Everyplace

Access 61
Server 3, 17, 19, 22, 47
Server Access 3
Server domain 20
Server environment 1
Suite 6
Synchronization Manager 69, 517
Wireless Gateway 23, 67, 281, 327

Exchange Connector 44

existing application 74
extending enterprise applications 321
external annotators 124

F
Filter Architecture 58
format adaptation 11
forward proxy 72, 259
Fragmentation

common problems 264
example 264
fragmentation transcoder 260
HDML 261
how it works 260
i-Mode (cHTML) 261
WML 261

fragmentation considerations 259
fragmentor 261

G
Gatekeeper 25
Gateway 579
Going Wireless 281
grammar tag 497
GSM 23

H
HDML phones 259
host-to-host 4
HTML 12

browsers 12
Document Object Model 260

HTTP 4, 10
applications 14
Authenticate 20
headers 60
mode 73
Proxy-Authenticate 20

Hypertext 4
Transmission Protocol 4

I
IBM Network dispatcher 325
IBM Workpads 50
IMC Client 545
i-mode 32
i-Mode Cookie Proxy 38
808 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

i-mode phones 50
Implementation 58
implementing 56
InfoCenter 21, 48
INS 359
INS in WES 361
Installation 18
installation 46
Integration 24
Integration patterns 62
Intelligent Notification Services 99

authentication 365
content provision 366
development environment 364
device profile 362
e-mail 360
end to end flow 364
enrollment 365
examples 360
group profile 363
installation 367
Instant Messaging 360
LDAP 361
log files 369
logging and tracing 373
overview 360
retrieving the content 366
SameTime 360
schematic overview 360
SecureWay Directory 362
sending a notification 366
Service Provider Offering 359
set up users 380
SMS 360
starting 374
stopping 374
TPSM 362
trigger registration 366
user preferences 362
user profile 362
WAP Push 360

messages 363
WebSEAL-Lite 361
WebSphere Everyplace Server environment
359
Wireless Gateway 362

Intelligent Notifications Services
content adapter 414
simple notification 387

subscription examples 416
subscriptions 406
using IBM VisualAge for Java 420

Interactive Voice Response 497
internationalization 240
Internet 339, 494
IP devices 67
IP LAN 23
IP networks 9
IPv4 328
ISDN 23
IVR 497

J
J2EE 58
Java Bean library 31
Java classes 577
Java Runtime Environment 498
Java-based administration 25
JRE 498
JSP 497
JSPs 29

L
Laptops 576
LBS 36
LDAP 17, 34, 50

bridge 27
directory 22, 29

legacy systems 6
license management 25
Load Balancer 19
load balancing 7
location information 14
Location-Based Services 36, 68, 435

applications 436, 448
beans 455
cellular phone 438
deploying 457
development environment 454
doGet 466
doPost 466
example 444
ExpertInfo 461
extend existing applications 456
FindExpert 461
Geography Markup Language 452
GML 452
 Index 809

installation 445
integrated testing 469
location information 448
location request 440
location server 442
LocationServices bean 449
Muffin 487
OfficeFinder 461
overview 436
planning 469
Policy Director 470, 472

configuration 471
installation 471
Management Console 474

Proxy 68
request flow 441
sample application 446
services 439
Simples 491
troubleshooting 492
user location 437
UserLocation 461
VisualAge for Java 454

Lotus Notes 44

M
Machine Translation transcoder 32
mainframe formats 11
maintenance 58
Management 82
Manager service 44
Managing devices 10
Message brokers 58
message entity 340
message level security 586
message persistence 584
messages 341, 584
messaging 50, 597

API 348
application 325, 353
framework 323
function 325
gateway 325, 331

Messaging Gateway 307, 355
Messaging Services 334
Microsoft Exchange 44
MIME types 5, 79
MNC 327

Mobile Application Builder 517, 566
Mobile Applications 13, 61
mobile applications 3
Mobile Connect

actions configuration 539
backup 525, 541
client installation 531
database action configuration 547
database action properties 553
DB2 Control Center 560
DB2 Everyplace client install 557
DDL preparation 564
Enable Offering 517, 519
generate DDL 564
install 546
installing 521
mobile application 559, 566
Mobile Application Builder 566
new applications 546
overview 518
Palm 531

OS client 532
OS device 533

Pocket PC 532
program group 529
Public Key 527
replication wizard 547
Restore 541
scenario 518
Service Provider Offering 519
setup 528
synchronization triggers 557
triggers 543
Windows CE 531, 532

mobile devices 13, 42
Mobile Network Connection 327
mobile service 15
mobile use 58
mobile-originated message operation 310
mobile-originated messages 339
Mobitex 23, 315
Modacom 23
models for business 78
Motient 328
Motorola PMR 23
MPP 70
MQSeries 69, 577
MQSeries client 584
MQSeries Everyplace 41, 69, 73, 575, 576
810 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Muffin 487

N
NAS 10
Network Access Service 10
Nextel 328
non-HTTP services 15
non-IP devices 10
Norcom Satellite 315
Notes Connector 44

O
offerings 3, 8
Origin servers 20

P
Palm OS 50, 315

HTML 32
Palm transcoder 32
PAP 23
Patterns 57

e-business 61
mobile use 58

patterns 57
PDA 56, 576
PDA applications 515
peer channel 580
Peer to peer 580
personal preferences 78
Personalization 63, 64
personalization 52
pervasive computing 13, 56, 63

asynchronous mode 56
patterns for e-business 63
push

mode 57
synchronous mode 56
voice mode 57

pervasive contexts 13
pervasive devices 50
Phones 576
PI 325
PIM 56
Pipe-and-Filter pattern 60
planning 56
planning techniques 56
plug-in 15

Pocket PC 24, 315
Policy Director 29, 73, 473

Access control 30
authentication 30
authorization 30
load balancing 30
Public Key Infrastructure 30
replication 30
security 30

Policy Director Client 473
Policy Director Console 473
policy issues 55
policy server 7
Policy Support 8
Poll 82
PPG 325
presentation capabilities 5
private protocol 15
protocol management 55
Provisioning 29
provisioning 28
proxy 33
Proxys 58
PSTN 12, 23
Public Switched Telephone Network 12
Push

Access 328
Access Protocol 23
API 69
facility 99
Initiator 325, 326
messaging applications 323
mode 57
Proxy Gateway 325
Toolkit 323, 334

push
applications 324
connections 342
messages 337

Push messaging
application 326, 353
architecture 325
client devices 333, 357
configuration 335
DataTAC 330
delivery channels 339
gateway 325
GSM SMS 330
IBM Extensions 339
 Index 811

log file 355
message components 341
Messaging Gateway 327
MNC 327
Mobile Network Connection 327
mobile-originated messages 340
Mobitex 330
Non-WAP Push 330
overview 324
PAP protocol 329
problem determination 353
Push Access Protocol (PAP) 329
Push API 334
push messages 324
push short messages 334
sample application 351
security 340
SMTP 331
SNPP 330
toolkit 334
WAP

Forum 325
messages 328
phones 324
push 343

Wireless Gateway (EWG) 325

Q
Quality of service 17, 19, 21, 24, 55
queue manager 575, 578, 580
queue-based security 586
queues 584

R
RADIUS 302

authentication 68, 73
Redbooks Web site 793

Contact us xvii
Request Viewer 34
response caching 7
Reverse Proxy 9, 10
reverse proxy 31, 72, 268, 269
Runtime patterns 63

S
Sametime 42

Everyplace 42, 69

Server 373
sample

applications 77
B2E application 80
programs 323
scenarios 334

scalability 19, 21, 325
Scheduling 82
screen scraping 11
Secure Sockets Layer 68
SecureWay Directory 17, 31
Security 63
Self-care items 82
Sensors 576
Server 579
server component 4
Server Enabler 27
server-side programs 6
Service

Indication 330
Loading 330
Provider 48

service 8
Service Provider Offering 1, 3, 52, 113
Servlet model 7
sessions 7
Setup Manager 18, 21, 28, 34
Short Message Service 23
SI 330
SignalSoft 491
Simple Mail Transfer Protocol 23
Simple Network Paging Protocol 23
simple notification 387
Simples 491
single sign-on 7, 64
Skytel 328
SL 330
SMS 23, 70
SMTP 23, 70, 328, 331

configuration 357
SNPP 23, 70
software engineering 57
Solaris 46
SPO 1, 52
SSL 68, 342
steady-state operation 8
stylesheets

Cocoon-style 214
conditioning 214
812 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

Editor 249
enhancements 213
internationalization 239
organize 212
parameters 211, 218
processing 213
register 211
registration 245
sample scenario 219, 242
simple conversions 224
translation files 246
using parameters 234
XML 212
XSL editor 211

subscriber management 29, 52
Suite Manager 22, 23, 28, 34
Survey 82
Synchronization

Manager 44
Proxy 44

synchronization 56
Synchronization Manager 44
Synchronous messaging 582
Synchronous Mode 67, 72
synchronous mode 56
synthesized speech 497

T
TCP/IP 328

model 4
telephony-capable device 494
text clipping

Annotation Editor 154
annotators 147
creating annotations 156, 169
documents 155
example 152
export functions 203
external annotation 150
External Annotation Editor 151, 152
external annotation language 151
external annotations 147
hints and tips 181
import Configuration 207
importing configuration data 203
internal annotations 147, 182
registering 202
sample scenario 159, 186, 194, 207

using Page Designer 184
WAP simulator 168
WebSphere Studio 183
WTP administration console 157

Text Clipping with Java 193
TISM-PD bridge 30
Tivoli Personalized Services Manager 26

Customer Care 26
Database Integration 26
Device Manager 26
Enrollment Server 26
Portal Toolkit 26
Self Care 26
System Management 26

Tivoli SecureWay Policy Director 24
TPSM 26, 71
Transaction Messaging

adapters 581
administration 584
asynchronous messaging 582
bridge 584
message persistence 584
messages 583
messaging 582
MQSeries Everyplace 575
Queue Manager 577, 578
queue manager

channel types 580
client queue 579
client server 580
creating 579
gateway 580
overview 579
peer to peer 580
server 580
starting 579

queue managers 577
synchronous messaging 582

transactions 494
Transcoding 113

Administration 115, 126
Administration Console 115, 119
annotators 123
application content 113
caching proxy 120
capabilities 113
Client-side scripting 74
composition by tables 74
conditional response pages 75
 Index 813

configuration 126
content transformations 115
decorations 75
Developer Toolkit 115
device profiles 122
device simulators 137
enhancements 120
exporting configurations 126
External Annotation Editor 119
external annotation editor 130
features 113
filter 120
fragmentation 140
Frames 74
framework 115
Generators 118
HTTP header 117
Image Editors 118
Installation 125
internal annotators 123
JavaBean 120
JavaBeans 120
large content items 75
Models 120
Monitors 118
navigation by images 74
network profiles 122
new deployment models 119
plug-in 120
preference profiles 122
problem determination 138
Profile Builder 130
Profiles 115
PvC devices 114
Request Editors 118
Request Viewer 119, 130, 136
resources 122
Reverse proxy 120
sample scenario 140
Stand-alone proxy 120
Stylesheet Editor 119, 130
StyleSheets 125
Text Editors 117, 118
tools 119, 129
transcoders 115, 116, 124
Transform Tool 130, 133
user profile 122
VoiceXML 114, 139
VoiceXML transcoder 118

XML content 114
Transcoding challenges 74
Transcoding Publisher 31, 32, 33, 34, 68, 113, 259
Transparent authentication proxy 20
Triggers 545
TTS 498

U
UCP 70
understanding WES 4
Unix 46, 60
UNIX server 44
User Manager 14
user-agent 10
users 8

V
ViaVoice Text To Speech 498
VisualAge for Java 351
Voice

mode 57, 70
over IP 12
XML 12

voice applications 57
voice markup language 496
Voice Server 35, 70

for DirectTalk 495
SDK 35, 498, 502

Voice-enabled applications
application development 497
dialog flow control 496
DTMF input 496
grammars 495
introduction 494
queries 494
recorded audio output 496
recording 496
Reusable Dialog Components 495
sample applications 497
sample dialog 511
sample scenario 493, 509
scoping of input 496
SDK architecture 502
speech recognition engine 503
spoken input 496
subdialogs 495
synthesized speech output 496
templates 495
814 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

text-to-speech engine 504
transactions 494
voice access process 510
Voice Server 494
Voice Server Offerings 495
Voice Server SDK 495, 502
voice toolkit 495
VoiceXML 496
VoiceXML browser 493, 504
VoiceXML log file 499

VoiceXML 35, 495, 496
browser 504
Editor 497
transcoder 32

VoIP 12, 70
Gateway 70
gateways 35

VoIP Gateway 70
VXML 12
VXML/HTTP 70

W
WAP 24

clients 24
devices 11, 79
Gateway 279, 304
phones 50, 111, 113, 283, 333
Push 281
push messages 308
Push Proxy 70
Server 373
simulator 11, 113

WAP Gateway 304
WAP/IP connection 267
WAP/WML 12
WAP-151 328
WAP-164 328
WAP-165 328
Web

access 9
Administration console 18
application 56, 59
computing 6
content 114
operation 9
service offerings 9
services 6
site 6, 8, 56

Web application 59
Web Traffic Express 19, 31
Web-based computing 4
Web-oriented systems 4
WebSEAL-Lite 19, 68, 72
WebSphere Everyplace Server 1

Access 3
WebSphere Everyplace Server Intelligent Notifica-
tion Services 370
WebSphere Studio 182, 351, 497
WebSphere Transcoding Publisher 68, 113
Windows CE 24, 50
Windows NT 497
Wireless Client 24
Wireless clients 314
wireless devices 111, 495
Wireless Gatekeeper 25
Wireless Gateway 20, 23, 25, 67, 73

access manager program 283
administration 287
CDPD 314
cellular networks 282
clustering 313
configuration 298, 311
connectivity 285
data compression 320
Dataradio 314
DataTAC 314
distributed gateways 296
Gatekeeper 282
GPRS 282
GSM-SMS mobile phones 307
hints and tips 320
IP-based 314
log file 292
logging 291
main components 282
messaging gateway 307, 308
MNC 288
MNI 289
Mobile Network Connection 288
Mobile Network Interface 289
mobile-originated message operation 310
Mobitex client devices 307
overview 282
packet networks 282
Palm OS 284
persistent data storage 283
Private Mobile Radio 314
 Index 815

Push Initiator (PI) 310
push messages 308
Push Proxy Gateway (PPG 310
RADIUS 302
sample scenario 304
Secure Sockets Layer 297
security 293
short message delivery 308
SMTP e-mail clients 307
SSL 297
supported networks 283
Third-party authentication 295
WAP

clients 283
cookie proxy 302
device resolver 303
Gateway 295
phone 283, 307
Push 310
Push Access Protocol (PAP) 310
request flow 297
services 283

Windows CE Client 284
Wireless Client 283
Wireless clients 314
Wireless Gatekeeper 320
Wireless Link Protocol (WLP 314

Wireless Gateways 22
Wireless Markup Language 114
wireless protocol 576
Wireless Transport Layer Security 68
wireline 495
WML 11, 12, 114
WML fragmentation

sample transcoded page 279
WebSeal Lite 273
WTP as a forward proxy 273
WTP as a reverse proxy 267

Work utilities 82
WSL 72
WSP headers 328
WTE 19, 33, 72
WTLS 68

X
XML 34
XSL stylesheets 67

Y
YourCo application 80
YourCo sample application 351
816 Enterprise Wireless Applications using IBM WebSphere Everyplace Server

(1.5” spine)
1.5”<->

 1.998”
789 <

->1051 pages

IBM
 W

ebSphere Everyplace Server
Service Provider and Enable Offerings:
Enterprise W

ireless Applications

®

SG24-6519-00 ISBN 0738424129

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

IBM WebSphere Everyplace Server
Service Provider and Enable Offerings:
Enterprise Wireless Applications

Adapt your
enterprise
applications for
access from wireless
networks

Extend applications
to support new
wireless
technologies

Develop and deploy
PDA applications

This redbook helps you to adapt and extend new and existing
enterprise applications for access from wireless devices, such as
WAP phones and PDAs, using the IBM WebSphere Everyplace
Server (WES) Service Provider Offering (SPO) and Enable Offering
(EO).

The information provided in this redbook targets
Business-to-Employee (B2E) enterprise applications, but most of the
scenarios presented apply to Business-to-Consumer (B2C)
applications as well. In this redbook, you will find step-by-step
examples and scenarios showing ways to rapidly integrate your
enterprise applications into a WebSphere Everyplace Server
environment, making them also available from wireless devices
through the implementation of new and enhanced capabilities
included in the current releases of WebSphere Everyplace Server
offerings, such as transcoding, annotators for text clipping,
stylesheets and the Wireless Gateway.

Once your enterprise applications are available from wireless
devices, you can deploy new state of the art technologies such as
Push messages, Location-Based Services, Intelligent Notifications
Services and Voice applications. You will find many scenarios
describing recommended ways to develop applications using the
APIs provided by the WebSphere Everyplace Server components.
Although WebSphere Everyplace Server offerings do not provide a
Voice Server, we have also included guidelines to develop Voice XML
applications using transcoding capabilities provided by WebSphere
Everyplace Server. This redbook includes scenarios using IBM
Mobile Connect and Synchronization Manager with a sample DB2
Everyplace application built by the Mobile Application Builder. We
also describe transaction messaging applications using the
WebSphere Everyplace Serve MQSeries Everyplace component to
provide a once-only assured delivery of messages.

A basic knowledge of Java servlets, JavaBeans, EJBs, JavaServer
Pages (JSPs), as well as XML applications and the terminology used
in Web publishing, is assumed.

Back cover

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Part 1 Introduction
	Chapter 1. Overview
	1.1 A functional approach to understanding IBM WebSphere Everyplace Server
	1.1.1 Starting with TCP
	1.1.2 Hypertext: HTTP
	1.1.3 Adding applications
	1.1.4 Controlling access
	1.1.5 Enablement
	1.1.6 Managing users
	1.1.7 Clients beyond IP
	1.1.8 Managing devices
	1.1.9 Adapting content
	1.1.10 Catering to pervasive contexts
	1.1.11 Synthesis

	1.2 Mapping functions to products
	1.2.1 SecureWay Directory
	1.2.2 WebSEAL-Lite (WSL) on Web Traffic Express (WTE)
	1.2.3 Active Session Table (AST)
	1.2.4 Everyplace Wireless Gateway
	1.2.5 Tivoli Personalized Services Manager (TPSM)
	1.2.6 Policy Director
	1.2.7 IBM WebSphere Transcoding Publisher
	1.2.8 Voice Server
	1.2.9 Location-Based Services (LBS) Proxy
	1.2.10 i-Mode Cookie Proxy
	1.2.11 Intelligent Notification Services
	1.2.12 MQSeries Everyplace (MQE)
	1.2.13 Sametime Everyplace
	1.2.14 Everyplace Synchronization Manager (ESM)
	1.2.15 IBM WebSphere Everyplace Server Setup Manager
	1.2.16 IBM WebSphere Everyplace Server Suite Manager

	1.3 The IBM WebSphere Everyplace Server Offerings
	1.3.1 Using the IBM WebSphere Everyplace Server Offerings
	1.3.2 IBM WebSphere Everyplace Server Enable Offering
	1.3.3 IBM WebSphere Everyplace Server Service Provider Offering

	Chapter 2. Application architecture
	2.1 Planning techniques
	2.1.1 Modes of pervasive computing
	2.1.2 Patterns
	2.1.3 Design decision tree

	2.2 Centralized services offered by WebSphere Everyplace Server
	2.2.1 Synchronous Mode Applications
	2.2.2 Asynchronous mode applications
	2.2.3 Push mode applications
	2.2.4 Voice mode applications

	2.3 Planning a new application in WebSphere Everyplace Server context
	2.3.1 Deployment considerations
	2.3.2 Synchronous mode
	2.3.3 Asynchronous mode

	2.4 Adapting an existing application
	2.4.1 Transcoding challenges
	2.4.2 Adapting security in an existing application

	Chapter 3. Enterprise sample applications
	3.1 Web Application models for business
	3.2 The sample B2E application: YourCo
	3.2.1 Installing and Running YourCo
	3.2.2 Map of YourCo
	3.2.3 Notes on implementation

	3.3 Adapting YourCo to the pervasive environment
	3.3.1 Revised map for YourCo on WML
	3.3.2 Selecting functionality for mobile use
	3.3.3 Implementing the adaptations

	3.4 Adding pervasive functions to YourCo
	3.4.1 Meeting invitation: extending YourCo
	3.4.2 Locate an Expert: a location-based application
	3.4.3 Meeting notification: using the Push facility
	3.4.4 Meeting notification: using the Intelligent Notification Services
	3.4.5 Meeting notification: Intelligent Notification with triggers
	3.4.6 News: adding an XML feed
	3.4.7 News on the telephone: VXML
	3.4.8 Locate an Expert by telephone: VXML and Voice Server
	3.4.9 Accessing the Leave Bank through MQSeries Everyplace
	3.4.10 Synchronizing remote applications

	3.5 YourCo directory
	3.6 Sample lab configuration

	Part 2 Adapting new and existing applications
	Chapter 4. Transcoding application content
	4.1 Overview
	4.2 What’s new in WebSphere Transcoding Publisher Version 4.0
	4.2.1 Models
	4.2.2 Resources
	4.2.3 Installation
	4.2.4 Administration and configuration
	4.2.5 XML configuration

	4.3 Tools
	4.3.1 Profile Builder
	4.3.2 External Annotation Editor
	4.3.3 Stylesheet Editor
	4.3.4 Transform Tool
	4.3.5 Request Viewer
	4.3.6 Device simulators

	4.4 Problem determination
	4.5 VoiceXML
	4.6 Fragmentation
	4.7 Sample scenario
	4.7.1 The environment
	4.7.2 Transcoding results

	Chapter 5. Text clipping
	5.1 Overview
	5.2 Annotation overview
	5.3 External annotation
	5.3.1 The external annotation language
	5.3.2 Using the External Annotation Editor
	5.3.3 External annotation file administration
	5.3.4 Sample scenario: Locate Expert
	5.3.5 Testing an annotation file
	5.3.6 Hints and tips

	5.4 Internal annotation
	5.4.1 WebSphere Studio Page Designer
	5.4.2 Sample scenario: Locate Expert

	5.5 Text Clipping with Java
	5.5.1 Sample scenario - YourCo main page text clipper

	5.6 Exporting and importing configuration data
	5.6.1 Sample scenario: export and import configuration

	Chapter 6. Using stylesheets
	6.1 Overview
	6.1.1 WebSphere Transcoding Publisher Version 4.0 enhancements
	6.1.2 XSL stylesheet administration
	6.1.3 Implementing internationalization
	6.1.4 XSL Stylesheet Editor

	Chapter 7. WML fragmentation considerations
	7.1 Overview
	7.1.1 How does it work?
	7.1.2 Fragmentable elements
	7.1.3 Common problems
	7.1.4 Example

	7.2 WML fragmentation in WebSphere Everyplace Server environment
	7.2.1 Scenario 1: Running WebSphere Transcoding Publisher as a reverse proxy
	7.2.2 Scenario 2: Running WebSphere Transcoding Publisher as a forward proxy

	Chapter 8. Going wireless!
	8.1 Overview
	8.1.1 Connectivity
	8.1.2 Everyplace Wireless Gateway administration
	8.1.3 Wireless Gateway logging
	8.1.4 Everyplace Wireless Gateway security

	8.2 WAP Gateway
	8.2.1 Configuration
	8.2.2 WAP device resolver
	8.2.3 Sample scenario: accessing the WAP Gateway

	8.3 Messaging gateway
	8.3.1 Configuration

	8.4 Multiple Wireless Gateways cluster
	8.5 Wireless clients
	8.5.1 Wireless client configuration
	8.5.2 Hints and tips

	Part 3 Extending enterprise applications
	Chapter 9. Push messaging applications
	9.1 Overview
	9.2 Architecture
	9.2.1 Messaging application
	9.2.2 Messaging Gateway
	9.2.3 Client devices

	9.3 Push API
	9.3.1 Obtaining the messaging toolkit
	9.3.2 Configuration
	9.3.3 IBM extensions

	9.4 Message components
	9.5 Secure push connections
	9.6 Scenario: WAP push
	9.7 Scenario: Pushing to an e-mail client
	9.8 Pushing from a servlet
	9.9 Extending the YourCo sample application
	9.10 Problem determination

	Chapter 10. Intelligent Notification Services (INS)
	10.1 Overview
	10.1.1 INS in WebSphere Everyplace Server
	10.1.2 User preferences
	10.1.3 INS end to end flow

	10.2 Setting up the system
	10.2.1 Installation
	10.2.2 Post-installation configuration
	10.2.3 Starting and stopping the WebSphere Everyplace Server components for INS
	10.2.4 Starting the INS servers

	10.3 Users and user preferences without TPSM
	10.3.1 Importing the LDIF file

	10.4 Simple Notification
	10.4.1 The Application Programming Interface (API)
	10.4.2 Running the example

	10.5 Subscriptions
	10.5.1 Flow
	10.5.2 The Application Programming Interface
	10.5.3 Subscription examples

	10.6 Application development
	10.6.1 Archives and resources
	10.6.2 Server side classes
	10.6.3 INS development using IBM VisualAge for Java

	10.7 Extending the enterprise
	10.7.1 Deploying the notifications extensions to WebSphere
	10.7.2 Simple notification
	10.7.3 Subscription

	10.8 Problem Determination

	Chapter 11. Location-Based Services (LBS)
	11.1 Overview
	11.1.1 How the user location is calculated

	11.2 Location-Based Services
	11.2.1 Location request
	11.2.2 Location Server

	11.3 LBS example
	11.3.1 Installation
	11.3.2 Running the sample application

	11.4 Developing location-based applications
	11.4.1 Setting up a development environment for VisualAge for Java

	11.5 Extending the enterprise
	11.5.1 Changing YourCo into a Location Based Application
	11.5.2 Deploying Expertise Location to the application server
	11.5.3 Expertise location source code

	11.6 Integrated testing
	11.6.1 Planning a Location Based Services installation
	11.6.2 Policy Director
	11.6.3 PD client installation and configuration on AIX for WebSphere Everyplace Server
	11.6.4 Installation of Location-Based Services
	11.6.5 Using pd_populate.ksh to configure LBAs
	11.6.6 The Policy Director Management Console
	11.6.7 Muffin
	11.6.8 Simples

	11.7 Troubleshooting

	Chapter 12. Voice-enabled applications
	12.1 Introduction
	12.1.1 WebSphere Voice Server offerings

	12.2 VoiceXML language
	12.2.1 VoiceXML application development
	12.2.2 VoiceXML sample applications
	12.2.3 Grammars

	12.3 IBM WebSphere Voice Server SDK
	12.3.1 WebSphere Voice Server SDK architecture
	12.3.2 Security Issues

	12.4 VoiceXML transcoding
	12.5 Sample scenario
	12.5.1 Voice access process

	Part 4 PDA applications
	Chapter 13. Data synchronization for enterprise applications
	13.1 Overview of IBM Mobile Connect (IMC)
	13.1.1 Implementation scenario
	13.1.2 Enable Offering and Service Provider Offering

	13.2 Installing IBM Mobile Connect
	13.3 IBM Mobile Connect client installation
	13.4 IBM Mobile Connect actions configuration
	13.4.1 Backup and Restore action configuration
	13.4.2 Installation of new applications
	13.4.3 Database action configuration
	13.4.4 Changing database action properties
	13.4.5 Creating database synchronization triggers
	13.4.6 DB2 Everyplace client install

	13.5 Creating a mobile application with DB2 Everyplace
	13.5.1 Generating DDL using DB2 Control Center
	13.5.2 Generating the DDL from a command line
	13.5.3 DDL preparation
	13.5.4 Creating the mobile application

	Chapter 14. Transaction messaging
	14.1 Overview
	14.1.1 Queue Manager comparison
	14.1.2 Creating an MQSeries Everyplace Queue Manager
	14.1.3 Types of queue managers
	14.1.4 Channel types
	14.1.5 Adapters
	14.1.6 Types of messaging
	14.1.7 Messages
	14.1.8 Message persistence
	14.1.9 MQSeries Everyplace Bridge
	14.1.10 Administration
	14.1.11 ES02 Support Pac
	14.1.12 Security

	14.2 Installation and samples
	14.2.1 Installation overview
	14.2.2 Supplied samples
	14.2.3 Integration with VisualAge for Java

	14.3 ChatRoom: an MQSeries Everyplace application
	14.3.1 Overview
	14.3.2 The queue managers
	14.3.3 Connections
	14.3.4 Queue discovery
	14.3.5 MQSeries Everyplace Queue definitions
	14.3.6 The application Java packages
	14.3.7 Client side: class interaction
	14.3.8 Server side: class interaction

	14.4 Starting a queue manager
	14.4.1 Started by the application
	14.4.2 Started by the ES02 support pac
	14.4.3 Started by a servlet

	14.5 Starting applications
	14.5.1 Client side
	14.5.2 Server side application loading
	14.5.3 Applications in WebSphere Application Server

	14.6 Listening for messages
	14.6.1 The MQeMessageListener interface

	14.7 Chat room application flows
	14.7.1 Chat - Client to Server -Direct
	14.7.2 Chat - Client to Server - Via WebSphere
	14.7.3 Chat - Server to Client - Direct
	14.7.4 Chat - Server to Client - using WebSphere

	14.8 Setting up the ChatRoom queue managers
	14.8.1 Preparing for setup
	14.8.2 Creating the ServerQm queue manager
	14.8.3 Creating the ClientQm queue manager
	14.8.4 Configuring the WASServerQm queue manager
	14.8.5 Creating connections
	14.8.6 Defining ServerQm queues
	14.8.7 Define ClientQm queues
	14.8.8 Define WASServerQm queues
	14.8.9 Java Swing setup
	14.8.10 Chatroom application setup
	14.8.11 Setting up the startup list
	14.8.12 Configuring WebSphere
	14.8.13 Setting up property files
	14.8.14 Starting the chat room application
	14.8.15 Operating the chat window
	14.8.16 Asynchronous chatting
	14.8.17 The administration GUI
	14.8.18 Encryption and the stress test
	14.8.19 Coding administration messages

	14.9 Extending the YourCo application
	14.9.1 Overview
	14.9.2 YourCo extensions
	14.9.3 Customized authenticator adapter
	14.9.4 Queue definitions
	14.9.5 Property File
	14.9.6 Additional beans
	14.9.7 Running the YourCo example

	14.10 Integration with WebSphere Everyplace Suite
	14.10.1 Using the Wireless Client and Gateway
	14.10.2 Trying out the Wireless Gateway
	14.10.3 Tracing

	14.11 OS/390
	14.11.1 Requirements
	14.11.2 Classpath
	14.11.3 Configuring ServerQm
	14.11.4 Modifying ClientQm
	14.11.5 Starting Chat Room on OS/390

	Part 5 Appendixes
	Appendix A. INS sample source code
	Simple notification
	Subscription

	Appendix B. LBS sample code
	Sample source code

	Appendix C. Everyplace Wireless Gateway in WebSphere Everyplace Server: installation tips
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Glossary
	Abbreviations and acronyms
	Index
	Back cover

