

ibm.com/redbooks

Linux
Application Development
Using WebSphere Studio 5

Osamu Takagiwa
Bruno Hulbusch
Markus Mueller

Chetan Pattni
Wolfgang Sanyer

A comprehensive guide to Linux
support of WebSphere development

Develop, test, and deploy your
Web application on Linux

Setting up your Linux
enviroment

Front cover

Linux Application Development Using WebSphere
Studio 5

March 2003

International Technical Support Organization

SG24-6431-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (March 2003)

This edition applies to WebSphere Studio Application Developer for Linux Version 5 and
WebSphere Application Server for Linux Version 5.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Figures . vii

Tables . xi

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xv
Become a published author . xvii
Comments welcome. xvii

Chapter 1. What is Linux? . 1
1.1 Linux as an operating system . 2

1.1.1 Linux is reliable . 2
1.1.2 Linux is cheaper . 2
1.1.3 Linux is portable . 2
1.1.4 Linux is easy-to-use . 3
1.1.5 Linux is powerful . 3

1.2 IBM and Linux . 3
1.3 Web development on Linux. 4

Chapter 2. WebSphere application development for Linux. 5
2.1 The IBM Framework for e-business . 6
2.2 Models of the Framework . 7

2.2.1 The system model. 7
2.2.2 The programming model . 8

2.3 WebSphere Application Developer and Server . 9
2.3.1 WebSphere products . 11
2.3.2 WebSphere Studio Application Developer for Linux 12
2.3.3 WebSphere Application Server for Linux . 13

Chapter 3. Setting up the development environment 15
3.1 Workbench fundamentals . 16

3.1.1 Resource perspective . 16
3.1.2 Java perspective . 18
3.1.3 Web perspective . 19
3.1.4 J2EE perspective . 21
3.1.5 Server perspective . 21
© Copyright IBM Corp. 2003. All rights reserved. iii

3.1.6 XML perspective . 23
3.1.7 Data perspective . 23
3.1.8 Debug perspective . 24
3.1.9 Profiling perspective . 25
3.1.10 Team perspective . 26
3.1.11 Help perspective . 27
3.1.12 Workbench views . 28
3.1.13 Workbench projects . 28

3.2 Sample application . 29
3.2.1 Web application using HTML, JSP, servlets, and JavaBeans 30
3.2.2 Using Enterprise JavaBeans with your Web application. 31
3.2.3 Generating Web application using XML . 32
3.2.4 Testing and deploying Web application . 32
3.2.5 Database design for ITSO Bank application 33

Chapter 4. HTML, JSP, servlet, JavaBeans, and database 35
4.1 Preparing for development . 36

4.1.1 Creating a new project . 37
4.2 HTML. 41
4.3 JSP . 43
4.4 Servlet . 46
4.5 JavaBeans. 50
4.6 Database . 53

4.6.1 ITSO Bank database. 53
4.6.2 Connecting to a database from Application Developer 55
4.6.3 Using SQL Query Builder in Application Developer 56

Chapter 5. Enterprise JavaBeans 2.0 . 59
5.1 The types of Enterprise JavaBeans . 60

5.1.1 Java Message-driven Beans. 60
5.1.2 EJB 2.0 Bean Managed Persistence Entity Bean 78

5.2 ITSO Bank bean sample . 98

Chapter 6. The eXtensive Markup Language . 113
6.1 XML tools in WebSphere Application Developer. 114
6.2 Introducing ITSO Banking example using XML. 115
6.3 Using the wizards to create XML from SQL . 117

6.3.1 RDB to XML mapping . 117
6.3.2 Create a SQL query . 118
6.3.3 Generate XML from SQL query . 119
6.3.4 XML, DTD, and XSL editors . 121

6.4 Dynamically generating XML from SQL . 124
6.4.1 Setting up a Web project . 125
6.4.2 Walking through the Web application . 126
iv Linux Application Development Using WebSphere Studio 5

6.5 Using the XSL debugger and transformation tools 129
6.6 Motivation to use XML/XSL instead of JSP. 132

6.6.1 Struts with JavaServer Page drawbacks. 132

Chapter 7. Building a Web application with Ant . 135
7.1 Philosophy of Ant . 136

7.1.1 Build process approaches. 136
7.2 Setting up your environment to use Ant . 137

7.2.1 Basics of using Ant . 138
7.3 Building J2EE applications with Ant . 140

Chapter 8. Deploying the Web application . 151
8.1 Deploying an Enterprise Application manually . 152

8.1.1 EAR export from WebSphere Studio Application Developer 152
8.1.2 Starting the WebSphere administration console 153
8.1.3 Configuration WebSphere resources . 155
8.1.4 Installation of the ITSO Bank EAR file . 159
8.1.5 Testing the application . 162

8.2 Setting up a remote server . 162
8.2.1 IBM Agent Controller . 163
8.2.2 Creating a server for remote testing with Application Server 163

8.3 Automatic deployment by tools . 170
8.3.1 Installing application with the wsadmin tool 170
8.3.2 Control the Application Server . 172
8.3.3 Deployment with Ant . 172

Appendix A. Installation instructions . 177
How to install Linux . 178
How to install WebSphere Application Developer . 179
How to install WebSphere Application Server . 182
How to install IBM DB2. 183
How to configure CVS . 186
How to configure Telnet, FTP, and Samba . 187

Appendix B. Additional material . 189
Locating the Web material . 189
Using the Web material . 189

System requirements for downloading the Web material 190
How to use the Web material . 190

Abbreviations and acronyms . 191

Related publications . 193
IBM Redbooks . 193
 Contents v

Other resources . 193
Referenced Web sites . 194
How to get IBM Redbooks . 194

IBM Redbooks collections. 194

Index . 195
vi Linux Application Development Using WebSphere Studio 5

Figures

0-1 Markus, Bruno, Chetan, Wolfgang, and Osamu xvi
2-1 3-tier system model . 7
2-2 IBM e-business Framework . 8
2-3 WebSphere platform pyramid . 9
3-1 Select perspective . 17
3-2 Resource perspective . 18
3-3 Java perspective . 19
3-4 Web perspective . 20
3-5 J2EE perspective . 21
3-6 Server perspective . 22
3-7 XML perspective . 23
3-8 Data perspective . 24
3-9 Debug perspective . 25
3-10 Profiling perspective. 26
3-11 Team perspective . 27
3-12 ITSOBankSelectWeb project model . 30
3-13 ITSOBankSelectUpdate project model . 30
3-14 ITSOBankEJB project model . 31
3-15 ITSOBankXML project model . 32
3-16 Deployment using Ant . 33
3-17 ITSOBankDatabase project model . 34
4-1 ITSOBankSelectWeb model . 36
4-2 ITSOBankUpdateWeb model. 37
4-3 ITSOBankSelectEar directory . 38
4-4 ITSOBankSelectWeb directory . 39
4-5 ITSOBankWeb login page . 43
4-6 ITSOBankWeb account information page . 46
4-7 ITSOBankWeb account update page . 46
4-8 ITSOBankWeb confirmUpdate page . 53
4-9 ITSO Bank example database . 55
4-10 ITSOBankWebConnection directory . 56
4-11 SQL joins window . 57
5-1 JMS class hierarchy. 61
5-2 Enable the administration client . 63
5-3 Add a new listener port . 64
5-4 WebSphere JMS Provider options . 66
5-5 Add WASQueueConnectionFactory dialog . 67
5-6 Add WASQueue dialog . 68
© Copyright IBM Corp. 2003. All rights reserved. vii

5-7 Select 2.0 EJB types . 70
5-8 Define EJB details for a Message-driven Bean 71
5-9 A simple asynchronous messaging scenario . 77
5-10 The ITSO Bank sample configuration . 99
6-1 Flow of the RDB to XML mapping . 117
6-2 Input of specify variables . 118
6-3 Result of the SQL query in the SQL builder . 119
6-4 XML From An SQL Query Wizard . 120
6-5 Generated files for customerBalance example 121
6-6 customerBalance.html . 123
6-7 Servlet access to get XML document . 124
6-8 Setting up the environment . 125
6-9 Login form page . 128
6-10 Result page account balances (default). 128
6-11 Login form page . 129
6-12 Result page of account balances (ITSO Banking example style) 129
6-13 XSL and XML file for the transformation into HTML 130
6-14 XSL Debug perspective . 131
7-1 Flie system structure of the build directory . 141
8-1 Exporting the EAR file . 153
8-2 First Steps Tool Tips . 154
8-3 Administration Console login . 155
8-4 WebSphere Administration Console Version 5 155
8-5 JDBC Provider . 156
8-6 Additional Properties: data sources . 157
8-7 Custom Properties . 157
8-8 Change the database name value . 157
8-9 J2C Authentication Data Entries . 158
8-10 Create a new authentication alias calls itsops 158
8-11 Set the authentication aliases in the Data Source frame 158
8-12 Environment: WebSphere variables . 159
8-13 DB2 variable . 159
8-14 Install new application . 160
8-15 Preparing for application install . 160
8-16 Step 1: Deployment options. 161
8-17 Step 3: Provide JNDI names for beans . 161
8-18 Creating a remote server instance. 164
8-19 Setting the remote server host address . 165
8-20 Remote server instance settings . 166
8-21 Remote file transfer option . 167
8-22 Remote copy options . 168
8-23 FTP configuration options . 169
8-24 Ant invokes the Application Server tools . 173
viii Linux Application Development Using WebSphere Studio 5

A-1 DB2 Setup started window. 183
A-2 DB2 Installing window . 185
A-3 DB2 Setup finished window . 186
 Figures ix

x Linux Application Development Using WebSphere Studio 5

Tables

4-1 Customer table. 53
4-2 Address table . 54
4-3 Customer account table . 54
4-4 Account table . 54
4-5 Check_Reorder table . 54
5-1 Data access modules for DB2 . 89
7-1 Build-In tasks of ITSO Banking example . 139
7-2 Mapping J2EE project to CVS module. 140
7-3 Target names of build.xml . 141
© Copyright IBM Corp. 2003. All rights reserved. xi

xii Linux Application Development Using WebSphere Studio 5

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Balance®
CICS®
Database 2™
DB2®
Everyplace™
IBM®
IMS™
MQSeries®
MVS™
Perform™
Redbooks™
SP™

SP1®
Tivoli®
VisualAge®
WebConnection®
WebSphere®
zSeries™
Approach®
Domino™AIX®
CICS®
Database 2™
DB2®
Everyplace™
IBM eServer™

IBM®
IMS™
MQSeries®
MVS™
Redbooks (logo)™
Redbooks™
Tivoli®
VisualAge®
WebConnection®
WebSphere®
zSeries™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xiv Linux Application Development Using WebSphere Studio 5

Preface

Linux is the fastest-growing server operating system in the world because of its
powerful functionality, rock-solid stability, and open source foundation.
Applications developed on Linux are reliable, portable, and cost efficient. This
IBM Redbook helps you get familiar with IBM middleware and tools for Linux, and
develop your new Web application on Linux. The book is aimed to show IBM’s
ability to provide an advanced platform for WebSphere application development
using Linux as the operating system.

The approach we have taken is to build an ITSO Banking example that has a
backend database and a frontend e-business banking application. The Linux
distribution that we use is Red Hat Linux Version 7.3.

This book also shows you how to install the software to set up your development
environment.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Osamu Takagiwa is an Advisory IT Specialist at the International Technical
Support Organization, San Jose Center. He writes extensively and teaches IBM
classes worldwide on all areas of application development. Before joining the
ITSO two years ago, Osamu worked at IBM Japan as an I/T Specialist.

Bruno Hulbusch is a European DBA working in the Application Services Group
for Ford Motor Company in Germany. He has more than 14 years experience in
system programming for networking components in VSE, VM, and MVS. He has
5 years of experience in writing Web applications for marketing and sales. During
the last two years, he has concentrated on new technologies on the mainframe,
such as Web services, Linux, and J2EE application serving. Bruno holds a
bachelor's degree in Electronic Engineering.

Markus Mueller is a Senior IT Specialist with the IBM's subsidiary, SerCon
GmbH in Frankfurt, Germany. He has been with IBM for five years. His areas of
expertise include AIX, Java, e-business, and e-infrastructure solutions. He
specializes in software management, development, and deployment. Markus
holds a bachelor's degree in Electrical Engineering.
© Copyright IBM Corp. 2003. All rights reserved. xv

Chetan Pattni is an IT Specialist with IBM Global Services in Toronto, Canada.
He has been with IBM for three years. His areas of expertise include Web
application design and development. He specializes in installing and configuring
network solutions. Chetan holds a bachelor's degree in Computer Science from
McMaster University.

Wolfgang Sanyer is a certified Consulting IT Specialist at IBM North America.
He has over twelve years of experience in object-oriented technology in all
phases of software development. Wolfgang is currently part of the elite group
WebSpeed (East) providing his expertise in a sales environment to high profile
customers. Wolfgang’s previous experiences involve using VisualAge UML
Designer; a published redbook in1998; a speaker at the WebSphere Conference
2002; teaching at Wake Technical College, Raleigh. Wolfgang holds a Bachelor
of Science degree in Computer Science from Polytechnic University in New York.
His areas of expertise include client/server architecture development, artificial
intelligence, object-oriented development, and eXtreme Programming.

Figure 0-1 Markus, Bruno, Chetan, Wolfgang, and Osamu

Thanks to the following people for their contributions to this project:

Mark Endrei
International Technical Support Organization, Raleigh Center
xvi Linux Application Development Using WebSphere Studio 5

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xviii Linux Application Development Using WebSphere Studio 5

Chapter 1. What is Linux?

In this chapter, we discuss the following sections:

� Linux as an operating system: Provides background information on Linux, its
origins, performance, usability, and advantages of using Linux.

� IBM and Linux: Shows IBM’s commitment to Linux as one of its supported
operating systems.

� Web development on Linux: Provides background information on this redbook
and the project.

1

© Copyright IBM Corp. 2003. All rights reserved. 1

1.1 Linux as an operating system
UNIX is an ancestor of Linux. It is an operating system that was created by Linus
Trovals, a university student in Finland in 1991. He wrote the kernel based on the
minix to make it like a UNIX-like operating system for desktops.

Operating systems are simply software applications that control the computer.
Most people use Microsoft Windows as their operating system. However, unlike
the Windows operating system, Linux is much more reliable, cheaper, portable,
easy-to-use, and powerful.

1.1.1 Linux is reliable
Since Linux is written by many different programmers, it is known to have fewer
reported bugs, and it is much more stable than any other operating system.
Application failure on most operating systems requires a reboot of the system,
but for Linux the only time you would turn off the Linux system is to add new
hardware, or to boot from a different kernel. Also, Linux servers are famous for
their ability to run for hundreds of days, compared to the regular reboots required
with a Windows system. This tells the end-user that Linux is very reliable.

1.1.2 Linux is cheaper
Open source software, compared to the traditional commercial software, has a
huge impact on the computer industry. Once you purchase Microsoft Windows it
has guidelines that must be followed for use within a business or at home. Also, it
is impossible to get an upgrade without spending enormous amounts of time and
money. Linux on the other hand, can be found at no charge from the Internet.
Once you have become a part of the Free Software Foundation (FSF) you can
copy GNU software and give it to anyone you choose. Furthermore, you can
modify and distribute an improved version of the GNU software without any
restrictions. The open source promotes security by allowing anyone to review the
code and modify it as required. As the fixes are generated, they can be
distributed much faster than commercial software.

1.1.3 Linux is portable
Many users like to have platform, vendor, and application independence. For
example, the Microsoft Windows operating system cannot be loaded on just any
computer. It has to meet very specific installation requirements, and the platform
must be a variation of the Intel processor. Linux on the other hand, has a
minimum specification, however, it is platform independent. It can be installed on
a DEC Alpha, SUN Sparc, or 386/486-based computers. Just about any
computer can easily adapt to Linux.
2 Linux Application Development Using WebSphere Studio 5

1.1.4 Linux is easy-to-use
UNIX Command Line Interface (CLI) was not appealing to many users, so
Massachusetts Institute of Technology (MIT) released X to the public in 1988.
MIT passed the development of X to the X Consortium. Within the X Consortium,
the Xfree86 Project, Inc. now freely distributes the implementation of the
X-Windows system. X-Windows is a graphical user interface that can run on
Linux. X has two main advantages: it lets you configure the desktop to the n-th
degree, and it allows users to access local and remote applications while using
very little resources.

1.1.5 Linux is powerful
Since Linux is capable and effective as an operating system, many users have
come to think of Linux as being powerful. The cost of Linux compared to other
operating systems is minimal. The stability has proven to be acceptable by many
users in the computing environment. The constant headaches that are caused
when an operating system crashes is clearly not the case when using Linux.
Furthermore, to be able to move from one platform to another without many
difficulties is a major advantage in today’s changing environment. Also, Linux can
work on just about any computer system. GNOME and K Desktop Environment
(KDE) are free and easy-to-use desktop environments for all users, and they are
also powerful application frameworks for many developers. Therefore, the
combination of the cost, stability, portability, and ease-of-use makes Linux
powerful.

1.2 IBM and Linux
As stated in the IBM Web site, http://www.ibm.com/linux Linux is an open
source platform that is stable, secure, and powerful. Some of the major players in
the development of Linux are Red Hat, SuSE, Turbolinux, and Caldera Systems.
IBM joined in to lay down the groundwork for co-marketing, development,
training, and support initiatives, which encourage customers to use Linux for their
business. IBM is committed to offering full hardware and software support for
Linux to all IBM customers and business partners. Linux users can use IBM’s
experience, resources, and skills to satisfy their technical needs. The open
platform environment for running e-business applications enables IT
professionals to build Web solutions independent of specific vendor software and
hardware.

Although there are many IBM products that are available for Linux, we focus on
application development using WebSphere Version 5.0 on Red Hat Linux,
Version 7.3.
 Chapter 1. What is Linux? 3

http://www.ibm.com/linux

1.3 Web development on Linux
This book is produced from a residency at the International Technical Support
Organization (ITSO) in San Jose, California. The book is aimed to show IBM’s
ability to provide an advanced platform for WebSphere Application Development
using Linux as the operating system.

The approach we have taken is to build an ITSO Banking example that has a
backend database and a frontend e-business banking application. The Linux
distribution that we use is Red Hat Linux, Version 7.3. The IBM software we use
is:

� WebSphere Studio Application Developer, Version 5.0
� WebSphere Application Server, Version 5.0
� IBM HTTP Server, Version 1.3.19.3
� IBM Database 2, Version 7.2, FixPak 7
� IBMJava2, Version 1.3.1
� IBM Remote Agent

The ITSO Banking example is used to explain Web development using
WebSphere on Linux. The following topics are covered in this book:

� Dynamic Web page using servlet, JavaServer Pages (JSP), and JavaBeans

� Enterprise JavaBeans with Message Driven Beans, and Session and Entity
Beans

� Development using eXtensible Markup/Stylesheet Language (XML/XSL) with
JSP

� Building and deploying using Ant

In addition to the above, this book also shows you how to install the software to
set up your development environment.
4 Linux Application Development Using WebSphere Studio 5

Chapter 2. WebSphere application
development for Linux

In this chapter, we discuss the following sections:

� The IBM Framework for e-business provides background information for
e-business and its underlying principles.

� Models of Framework explain the basic principles of the system and
programming models.

� WebSphere Application Developer and Server provide background
information on WebSphere, its products, and what is new with WebSphere
Application Developer and Server for Linux.

2

© Copyright IBM Corp. 2003. All rights reserved. 5

2.1 The IBM Framework for e-business
Here we give an overview and explain what the Framework can do for you.

When building a successful e-business application, you require an e-business
Framework. A Framework environment consists of guidelines to help develop
e-business applications. The high-level architecture element of the Framework
includes the system and programming models. IBM has already established a
Framework for e-business, and has made it part of the core of IBM’s e-business
software strategy. The Framework consists of products and solutions to help
customers build, run, and manage successful e-business applications.

IBM’s Framework for e-business consists of the following:

� A commitment to accept and further industry standards, while providing a
multi-platform and multi-vendor solution.

� Offer a design, development, and deployment model that guides you through
the process of application development.

� State-of-the-art products that allow you to build and run e-business
applications.

As customers adopt to the Framework, they have access to many products and
solutions. Here are some of the advantages of using the IBM Framework for
e-business:

� Reduce development time of an e-business application by using existing
solutions and state-of-the-art products.

� Support for heterogeneous client environments and integration standards,
such as XML and Component Object Request Broker Architecture
(CORBA)/Internet Inter-ORB Protocol (IIOP) which allows exchange of data
between applications and systems.

� Support application protocols such as Simple Mail Transfer Protocol (SMTP)
and Post Office Protocol (POP)/ Internet Message Access Protocol (IMAP)
which are used for e-mail and management applications.

� Support communication standards such as Secure Socket Layer (SSL) and
Transmission Control Protocol, or Internet Protocol (TCP/IP).

And last but not least:

� IBM’s commitment to support and enhance open industry standards.

The IBM Framework for e-business helps you to deploy and develop new or
existing business applications, so that you can quickly operate a dynamic
e-business.
6 Linux Application Development Using WebSphere Studio 5

2.2 Models of the Framework
As mentioned earlier, The high-level architecture element of the Framework
includes the system and programming models. We will describe these models
since they are the core of any development environment.

2.2.1 The system model
The Framework is based on an n-tier environment where a number of tiers of
application logic and business services are separated into components that
communicate with each other across a network. The basic form is a logical
three-tier computing model.

Figure 2-1 show a high-level system model for running an e-business application.

Figure 2-1 3-tier system model

We will briefly describe the three tiers:

� The first tier: This consists of the clients. Their main function is to present
information and results produced by an application to the user. In this system
model, the clients are sometimes referred to as thin clients. This means that
little or no application logic is executed on the client, hence, relatively little
software is required to be installed on the client. The common element that
ties these clients to the Web application server is their implementation of a set
of widely supported, Internet-based technologies and protocols; along with
Java, which enables them to provide interaction between users and
applications.

� The second tier: This tier has a standards-based Web server that interacts
with the client tier and defines user interaction. The Web application server
 Chapter 2. WebSphere application development for Linux 7

executes business logic independently of the client type and user interface
style. It is implemented using various Internet and Java technologies,
including the Hypertext Transfer Protocol (HTTP) server, and the Enterprise
Java services, which enable rapid development and deployment of
applications in a distributed network environment. Java servlets, JavaServer
Pages, and Enterprise JavaBeans are examples of the components deployed
in the Web application server. These server-side components communicate
with their clients and other application components via HTTP or IIOP, and use
the directory and security services provided by the network infrastructure.
They can also leverage database, transaction, and groupware facilities.

� The third tier: This tier mainly consists of Customer Information Control
System (CICS) server, legacy applications developed on mainframes, legacy
systems, or relational databases such as DB2.

2.2.2 The programming model
The application programming model highlights the software tools and products
used to build, run, and manage e-business applications.The Framework is
constantly evolving to support more industry standards, expand the product
offerings, and make the methodologies stronger.

Figure 2-2 shows the Framework for e-business.

Figure 2-2 IBM e-business Framework
8 Linux Application Development Using WebSphere Studio 5

We will briefly describe the three parts of the Framework:

� Development Tools and Components: This component consists of the build
tools. For example, WebSphere Studio or Domino Designer.

� Application Server Software: The application servers include runtime
environments that are available on all major platforms. The application server
software should include collaboration, transaction, database, and integration.

� Secure Network and Management Software: The Framework includes a
complete portfolio of security and management products and services such
as Tivoli.

We have given you an introduction to the building blocks that are required when
developing an e-business application. In the next section, we will elaborate on
the WebSphere software platform, and the new additions to the WebSphere
family.

2.3 WebSphere Application Developer and Server
WebSphere is an infrastructure for building e-business applications. WebSphere
has evolved to meet the demands of the changing business environment by
increasing the developer’s ability to build very complex solutions, and allowing
tool integration to an open platform. Based on an Eclipse Framework,
WebSphere has come a long way to provide everything a customer needs to
build, deploy, and operate a dynamic e-business.

Figure 2-3 is the WebSphere platform pyramid.

Figure 2-3 WebSphere platform pyramid
 Chapter 2. WebSphere application development for Linux 9

The WebSphere pyramid consists of the Foundation and Tools, Reach and User
Experience, Business Integration, and Transaction Servers and Tools. Together
these components close the gap between business strategy and information
technology. We will discuss each component below:

Foundation and tools
If you want to make a presence on the Internet, you will require a solid foundation
and the latest tools. Having business processes and transactions on the Web
allows your customers, partners, and employees to buy, sell, and share
information anytime, anywhere. The WebSphere e-business infrastructure is
about Web-enabling your business as fast as possible. For example, as stated in
the IBM WebSphere Web site:

“...the WebSphere Application Server, Version 5 provides rich e-business
application deployment capabilities for transaction management in a
heterogeneous environment, comprehensive Web services support,
increased security...”

Reach and user experience
This can happen only after your e-business starts to grow. WebSphere
e-business infrastructure allows you to provide any user or device access to
customized content, therefore, allowing you to extend and personalize your
e-business.

Business integration
This is all about acquiring business agility by integrating and automating
business processes. Delivering a customer’s e-business needs requires your
business to have both the internal and external business processes integrated in
the e-business environment. Once the employees, customers, suppliers,
business partners, and e-marketplaces can connect with speed, efficiency, and
agility, they can now provide dynamic e-business solutions.

Transaction servers and tools
WebSphere infrastructure has the necessary features to integrate traditional
assets, so that companies are not left wondering what they will do as the new
technology revolutionizes the way people work and interact. As stated in the IBM
WebSphere Web site:

“Leveraging these core software assets allows you to capitalize on existing
investments, shorten deployment time for new e-business applications, and
create real competitive advantage.”
10 Linux Application Development Using WebSphere Studio 5

We have discussed briefly the WebSphere software platform. For more detailed
information visit the IBM WebSphere Web site:
http://www.ibm.com/software/websphere

2.3.1 WebSphere products
As shown above, the WebSphere platform is divided in four main components.
Each of these components consists of products that are used for development.

� The Reach and User Experience component consists of the following
products:

– IBM WebSphere Commerce helps you offer products and services over
the Internet, which promotes a global and mobile marketplace.

– IBM WebSphere Portal is a single point of interaction for dynamic
information, applications and processes.

– IBM Pervasive Products has products such as WebSphere Voice Server or
DB2 Everyplace, which allows you to deliver any information over various
network, using different devices.

� The Transaction Servers and Tools component consists of the following
products:

– IBM Enterprise Modernization solutions, which use the IBM WebSphere
software to help you develop the process, tooling, and infrastructure to
transform your business into the world of e-business.

– Transaction Processing Product has products such as IBM’s CICS
Transaction Server, and other similar products that can handle more than
thirty billion transactions per day.

– Traditional products contain enterprise application development and
operational tools, which improve user productivity and effectiveness.

� The Foundation and Tools component consists of the following products:

– IBM WebSphere Application Server is a world-class infrastructure for open
e-business applications, which provides a complete set of e-business
application deployment and integration services.

– IBM WebSphere Studio is an integrated application development
environment, which makes building the e-business application easier and
faster.

– IBM WebSphere Host Integration is a single offering, which provides a fast
and cost-effective way to access to publish host information to Web-based
clients and applications.

� The Business Integration component consists of the following products:
 Chapter 2. WebSphere application development for Linux 11

http://www.ibm.com/software/websphere

– Process integration products such as IBM WebSphere MQ Workflow,
which provides ability to design, document, execute, or optimize the
business processes.

– Application connectivity has products such as IBM WebSphere MQ, which
is a key product for dynamic integration. They provide flexible and reliable
connections between applications.

We urge you to visit the IBM WebSphere Web site for more detailed information,
and make use of these tools in your next e-business application:
http://www.ibm.com/software/websphere

2.3.2 WebSphere Studio Application Developer for Linux
IBM WebSphere Studio Application Developer for Linux, also known as
WebSphere Application Developer, is an integrated application development
environment. For IBM this “represents the next generation of IBM offerings that
make building e-business application easier and faster.”

What is new in Version 5
Some of the new features of this version are:

� Support for J2EE 1.3, EJB 2.0, Servlet 2.3 and JSP 1.2

� Support for both WebSphere Application Server Version 4 (J2EE 1.2) and
Version 5 (J2EE 1.3)

� Allow users for WebSphere Application Server Version 4 to adopt to Eclipse
Version 2 without any upgrades

� Uses the Eclipse Version 2 platform

Version 5 feature
We will briefly describe some of the version features:

� J2EE development environment: Some of the features include the
development environment, which includes support for J2EE 1.3 specifications
with EJB 2.0, servlet 2.3 and JSP1.2. Ability to generate code on both J2EE
1.2 and 1.3 specifications. EJB-to-RDB mapping tools for editing the mapping
between EJBs and relational database tables with top-down, bottom-up, and
meet-in-the-middle capability. Tools for creating, editing, and validating EAR
files.

� Web services development environment: Some of the features include
support for UDDI Version 2; browse the UDDI business registry to locate
existing Web services for integration; support for Web Services Inspection
Language (WSIL); and testing Web services as they run locally or remotely.
12 Linux Application Development Using WebSphere Studio 5

http://www.ibm.com/software/websphere

� XML development environment: Some of the features include debug and edit
XSL with code assistance. Define mappings between relational table and
DTD files. Create and execute XPath using XPath Wizard.

� Web development environment: Some of the features include support for
XHTML. JavaScript editing and validating. Cascading Style Sheet (CSS)
editing support. HTTP/FTP import and Web project creation using the J2EE
container structure.

� Team collaboration: Some of the features include managing project versions;
serving as a backup vehicle. New support for namespace versions so that
when files are moved, deleted, or renamed, Relation ClearCase LT will
perform the equivalent SCM operation.

2.3.3 WebSphere Application Server for Linux
As part of the foundation for the WebSphere software platform, the WebSphere
Application Server for Linux maintains its reputation as the premier Java-based
application platform for the dynamic e-business environment. It provides a very
rich e-business application deployment environment for transaction
management, Web services, security, performance, availability, connectivity, and
scalability.

What is new with Version 5
Some of the new features of this version are:

� A fast, scalable, and reliable server based on the Java 2 Platform, Enterprise
Edition (J2EE) technology

� Compatible to J2EE 1.3 technology

� Supports core Web services standards like XML, Simple Object Access
Protocol (SOAP), and Web Services Description Language (WSDL)

� Offers deployment of Web services using SOAP and HTTP, JMS or Remote
Method Invocation Internet Inter-ORB Protocol (RMI/IIOP) communication
mechanism

� Delivers dynamic caching, content-based routing, load balancing, and content
distribution for application optimization

2.3.4.2 Version 5 features
We will briefly describe some of the version features:

� Enable dynamic application integration - Dynamic application integration
through native, high-performance Java Messaging Services (JMS), J2EE 1.3
Message Beans and container managed messaging.
 Chapter 2. WebSphere application development for Linux 13

� Web services - Allows you to create new business opportunities by exposing
business and application services for integration by other divisions, business
organizations, or platforms. It has most comprehensive across platforms on
the market, including the IBM eServer, IBM iSeries, and IBM zSeries.

� Management - XML based administrator client that works over HTTP. This
allows the administrator to create and manage the cluster quickly and easily.

� Volume Maintenance - Support for Java Management Extensions (JMX),
which records and logs statistics on usage and resources. This is the
standard way to manage a J2EE environment and expose the WebSphere
administrative data to partners like Tivoli and others for management
integrations.

� Security - Security authentication options to include Kerberos tokens for
strong authentication security for client/server applications. Also, provides
open Security Programming Interfaces (SPIs) for integration into those
third-party solutions.
14 Linux Application Development Using WebSphere Studio 5

Chapter 3. Setting up the development
environment

In this chapter, we discuss the following sections:

� Workbench fundamentals show the different perspectives, views, editors, and
projects that are available with Workbench.

� This chapter introduces our sample application, which will be used throughout
the redbook.

3

© Copyright IBM Corp. 2003. All rights reserved. 15

3.1 Workbench fundamentals
In Chapter 1, “What is Linux?” on page 1, we described Linux and its
advantages. In Chapter 2, “WebSphere application development for Linux” on
page 5, we introduced the foundation of WebSphere software platform and listed
some of the new feature for WebSphere Studio Application Developer and
Server Version 5. In this chapter we will show you the Workbench features that
are available in the WebSphere software platform.

Workbench is an integrated development environment (IDE) that has flexible
perspectives. These perspectives contain views and editors that provide a
common way for members of the development team to create, manage, and
navigate resources. For example, a Java developer would work most often in the
Java perspective, while a Web designer would work in the Web perspective.

A perspective defines an initial set and layout of views and editors for performing
a particular set of development activities. You can change the layout and the
preferences and save the perspective that you have customized. One or more
perspectives can be open in a single Workbench window. You can switch
between perspectives in the same window, or you can open a new Workbench
window.

We will briefly describe the different perspectives that are available in the
Application Developer.

3.1.1 Resource perspective
This is the default perspective. This perspective is always shown at the top of the
list when you select Window -> Open Perspective then Open from the menu.
For a list of perspectives, select Other from the menu. Figure 3-1 shows the
different perspectives that are available for your development.
16 Linux Application Development Using WebSphere Studio 5

Figure 3-1 Select perspective

The Resource perspective contains the following (Figure 3-2).
 Chapter 3. Setting up the development environment 17

Figure 3-2 Resource perspective

This perspective contains three panes:

� Top left - Shows Navigator views
� Top right - Reserved for editors of the selected resources
� Bottom left - Shows Outline view of the resource opened in the active editor
� Bottom right - Shows Tasks and Console view

3.1.2 Java perspective
Java perspective is used to edit and build Java code. The Java perspective
contains the following (Figure 3-3).
18 Linux Application Development Using WebSphere Studio 5

Figure 3-3 Java perspective

This perspective contains four panes:

� Left - Shows Packages and Hierarchy view

� Middle - Reserved for editors. Multiple files can be edited at one time.

� Right - Shows Outline view of the file currently in the active editor.

� Bottom - Shows the Task view for error messages and user tasks; the Search
view for result of search operations; and the Console view for program output

3.1.3 Web perspective
In this perspective you can build and edit Web resources such as servlets, JSPs,
HTML pages, deployment descriptor, web.xml, and images. The Web
perspective contains the following (Figure 3-4).
 Chapter 3. Setting up the development environment 19

Figure 3-4 Web perspective

This perspective contains four panes:

� Top left - Shows the Navigator view, which displays the folders and files of the
project

� Top right - Reserved for editors

� Bottom left - Shows the Outline view for the active editor or the Gallery for
HTML and JSP files.

� Bottom right - Shows Tasks, Properties, Links, Thumbnails, Styles, Color and
Palette views.

We will elaborate a little more on the deployment descriptor:

The Web application deployment descriptor is the web.xml file. This file contains
information about the servlets and JSPs in your Web application. This is used to
build a WAR file for a project, and contains the necessary information for
deploying a Web application module.
20 Linux Application Development Using WebSphere Studio 5

3.1.4 J2EE perspective
In this perspective you can develop the EJBs and manage J2EE deployment
descriptors (EARs). This view displays a logical view of the EJBs with their fields,
keys, and underlying Java files. The J2EE perspective contains the following
(Figure 3-5).

Figure 3-5 J2EE perspective

This perspective contains four panes:

� Top left - Shows the J2EE and Navigator views used to display the logical
structure and resources of the project

� Top right - Reserved for editors

� Bottom left - Shows the Outline view for the active editor

� Bottom right - Shows Tasks view or Properties view of a select resource

3.1.5 Server perspective
Application Developer provides support for the local and remote test
environments. In order to test a Web application, it has to be published to a
 Chapter 3. Setting up the development environment 21

server by importing the EAR file of the project into the server. The local server
runs inside the Application Developer. For the remote server, the IBM Agent
Controller is used to start the remote server on another machine. Server can also
be started in debug mode. In debug mode, breakpoints can be placed in your
project files to help you find problems. The Server perspective contains the
following (Figure 3-6).

Figure 3-6 Server perspective

This perspective contains four panes:

� Top left - Shows the Navigator views used to display the logical structure and
resources of the project

� Top right - Reserved for editors and browsers

� Bottom left - Shows the Server Configuration view with all defined server
instances and their configurations

� Bottom right - Shows Server Control Panel, where the server can by placed
on start, stop, debug and trace mode.XML
22 Linux Application Development Using WebSphere Studio 5

3.1.6 XML perspective
In this perspective the developer can build DTDs, XML schemas, XML, XSLT,
and mapping between XML and different backend databases. The XML
perspective contains the following (Figure 3-7).

Figure 3-7 XML perspective

This perspective contains four panes:

� Top left - Shows the Outline view for the active editor

� Top right - Reserved for editors

� Bottom left - Shows the Navigator view that displays the folders and files of
the project

� Bottom right - Shows the Tasks view that shows problems to be fixed and user
defined tasks

3.1.7 Data perspective
From this perspective you can access the relational database tools. You can
browse or import database schemas in the DB Explorer view. Editors and tools
 Chapter 3. Setting up the development environment 23

are provided to create and manipulate local descriptors, generate DDL from local
descriptors, and run existing DDL to create local descriptors. The Data
perspective provides views and tools for definition and maintenance; or
descriptor for database, schemas, and table definitions. The Data perspective
contains the following (Figure 3-8).

Figure 3-8 Data perspective

This perspective contains four panes:

� Top left - Shows DB Explorer, Data, and Navigator view
� Top middle - Reserved for editors
� Top right - Shows the Outline view
� Bottom - Show the Tasks view

3.1.8 Debug perspective
This perspective supports testing and debugging of your applications. The
Debug perspective contains the following (Figure 3-9).
24 Linux Application Development Using WebSphere Studio 5

Figure 3-9 Debug perspective

This perspective contains five panes:

� Top left - Shows Servers and Debug views
� Top right - Shows Breakpoints, Inspector, Variables, and Display views
� Middle right- Shows the Outline view of the currently displayed source
� Middle left - Shows the Source view
� Bottom - Shows the Console

3.1.9 Profiling perspective
This perspective lets you test your application’s performance early in the
application development cycle. The profiling tools collect data related to the Java
program’s run-time behavior and present this data in graphical and non-graphical
views. This is useful for performance analysis and understanding your Java
programs. You can use this to view object creation and garbage collection,
execution sequence, thread interaction, and object references. The Profiling
perspective contains the following (Figure 3-10).
 Chapter 3. Setting up the development environment 25

Figure 3-10 Profiling perspective

This perspective contains three panes:

� Top left - Shows the Monitors view, which contain the profiling resources

� Bottom left - Shows the Profiling Console view

� Right - Shows the profiling views such as heap, execution flow, object
references, method execution and invocation, and class and method statistics

3.1.10 Team perspective
In this perspective different developers manage shared projects. The Team
perspective contains the following (Figure 3-11).
26 Linux Application Development Using WebSphere Studio 5

Figure 3-11 Team perspective

This perspective contains four panes:

� Top left - Shows the CVS Repositories view
� Top right - Shows the Source view
� Bottom right - Shows CVS Resource History view

3.1.11 Help perspective
In this perspective the developer has access to the online help. It lets the user
access help documents.

To change the default perspective follow these steps:

1. Select Window -> Preferences from the menu bar.

2. Expand the Workbench item on the left and select the Perspectives
preference page.

3. From the list of perspectives, select the one you want to define as the default.

4. Click OK.
 Chapter 3. Setting up the development environment 27

Since you have a good understanding of these perspectives, we will now
describe the views that are in most perspectives.

3.1.12 Workbench views
Views are ways of navigating through the information in your Workbench. The
perspective usually determines the type of view that you will require. For
example, the Java perspective includes the Packages view and the Hierarchy
view to help you work with Java packages and hierarchies.

Here are the different views:

� Navigator - The most common view is the Navigator view. The Navigator
panel shows you how the different resources are structured in different
folders. These resources are files, folders, and projects.

� Outline - The Outline view gives you an overview of the key elements that
make up the resource that is being edited. It allows quick and easy navigation
through you resource. By selecting one of the elements in the Outline view,
the line in the editor view that contains the selected element gets highlighted.

� Properties - When you click a resource in the Navigator view and then click
the Properties tab at the bottom of the screen, you can view the different
properties of that resource. The Properties view contains general things such
as the full path on the file system, the date when it was last modified, and the
size.

� Tasks - The Tasks view contains two types of elements: problems and tasks.
Problems are tool determined issues that have to be resolved. For example,
Java compile errors, or broken links for HTML/JSP files. They are
automatically added to the Task view when working with the tool. When you
double-click on a problem, the editor for the file containing the problem
opens, and the cursor is pointed at the location of the problem. The tasks can
be manually added. For example, you can add a task that reminds you that
you have to implement a Java method. Place the cursor in the method’s
implementation, right-click, and select Add -> Task. When you double-click,
the file opens and the cursor is located in the method. You can also add
general tasks that do not refer to a specific file.

When you open a file, the software automatically opens the editor that is
associated with the file. For example, an HTML editor is for .html, .htm and .jsp
files.

3.1.13 Workbench projects
A project contains files and folders that are part of your application. In the
Workbench, all folders and files must be contained in projects. Projects are used
28 Linux Application Development Using WebSphere Studio 5

for building, version management, sharing, testing, and deployment. You can
create different types of projects in WebSphere Studio; for example, Web and
Java projects.

We will briefly describe the different projects the are available in the Application
Developer:

� Java - Java projects are associated with the Java builder that compiles Java
source files automatically. Java projects can be exported as JAR files or into
a directory structure.

� EAR - An Enterprise Application project is used to develop a J2EE enterprise
application. An EAR project consists EJB modules, Web applications, and an
application client.

� Web - Web projects contain the resources needed for Web applications,
including servlets, JSPs, Java files, static documents (for example HTML
pages or images), and any associated metadata. A Web project is deployed
as a Web module (WAR file).

� EJB - EJB projects contain the resources for EJB applications. An EJB project
is deployed as an EJB module (JAR file).

� Server - Server projects contain the necessary information to deploy
application to an application server for testing.

� Application Client - Application client projects are deployed as a JAR file.
They contain the resources needed for application client modules.

� Enterprise Application - Enterprise Application project contains the hierarchy
of resources that are required to deploy an enterprise (J2EE) application. It
contains a combination of Web modules, EJB modules, JAR files, and
application client modules. It includes a deployment descriptor and an IBM
extension document, as well as files that are common to all J2EE modules
that are defined in the deployment descriptor. An Enterprise Application
project is deployed in the form of an .ear file.

3.2 Sample application
In every chapter, the ITSO Bank example is used to show the various
technologies and functions of WebSphere Application Developer and/or
WebSphere Application Server, Version 5 for Linux.

The book is divided into four parts: the Introduction, Web application
development, building and deploying Web applications, and the Appendix. The
ITSO Bank example is used in the Web application development, testing, and the
deploying of Web application parts.
 Chapter 3. Setting up the development environment 29

The following is a list of topics that are covered in the Web Application
Development section.

3.2.1 Web application using HTML, JSP, servlets, and JavaBeans
This chapter consists of three projects. The ITSOBankSelectWeb project follows
the model in Figure 3-12.

Figure 3-12 ITSOBankSelectWeb project model

In this model, we show how to use JSP, servlets, and the database.The customer
will request account balance information from the database as they submit the
user ID and password for their account.

The ITSOBankUpdateWeb project follows this model (Figure 3-13).

Figure 3-13 ITSOBankSelectUpdate project model
30 Linux Application Development Using WebSphere Studio 5

In this model, we show how to use JSP, servlet, JavaBeans, and database. The
customer will be able to transfer the balance from one account to another. The
customer will submit their account ID for their account(s).

Both of the above models are then combined to produce the ITSOBankWeb
project. Through this example we show the various technologies that you can
use for your projects.

3.2.2 Using Enterprise JavaBeans with your Web application
The ITSO Bank example follows this model (Figure 3-14).

Figure 3-14 ITSOBankEJB project model

In the above model, the customer requests to re-order cheques. The customer
will enter the customer ID and quantity. The request is then sent to a JSP
program that consist of two main functions: sending and receiving. The sending
function sends the request to the first queue (Q1). The queue then passes the
necessary information to the Message Driven Bean (MDB). The Message Drive
Bean sends the information to the Entity Bean (EB), which performs the
 Chapter 3. Setting up the development environment 31

necessary SQL query to the backend database. Once the database is updated, a
confirmation is send back to the EB. The EB sends this information to the MDB,
which sends it to the second queue (Q2). The Q2 forwards the information to the
JSP’s receiving function. This function interacts with the servlet and produces an
HTML output with a sample cheque.

Since this is an example, the JSP contains the receiving function. Normally, you
would only send the data to the Q1 and not receive any confirmation.

3.2.3 Generating Web application using XML
The ITSO Bank example follows this model (Figure 3-15).

Figure 3-15 ITSOBankXML project model

In this model we show how you can dynamically generate XML from the SQL
query at runtime using the SQLtoXML class library within a servlet. The
customer submits a user ID and password to the servlet. The servlet calls the
SQLtoXML class library and the specific information is selected from the
database. The class library sends the XML document and combines it with the
XSL stylesheet. This is processed by the XSLT processor and the customer’s
account balances are shown in simple HTML.

3.2.4 Testing and deploying Web application
Here are a list of topics that are covered in the testing and deploying Web
application section:

Ant
We demonstrate the capabilities of Ant as a build tool using the ITSOBankEJB
project, which is provided in the Enterprise JavaBeans chapter.
32 Linux Application Development Using WebSphere Studio 5

Deployment of applications
We demonstrate how to install, configure, and deploy an Enterprise Application.
Also, we show you how to use the command line tools to administer your
Enterprise Application. Since Ant can be used for deployment, we show you how
to deploy the ITSOBankEJB project. Our Ant deployment process follows this
model (Figure 3-16).

Figure 3-16 Deployment using Ant

3.2.5 Database design for ITSO Bank application
Lastly, the following is an overview of our database design. The ITSO Bank
model consists of the following entities and relationships (Figure 3-17).
 Chapter 3. Setting up the development environment 33

Figure 3-17 ITSOBankDatabase project model

The above model shows the entities and relationships in our database. The
Customer entity has a one-to-many relationship with the OrderCheck entity. The
Customer entity also has a many-to-many relationship with the BankAccount
entity. The BankAccount entity has a one-to-many relationship with the
TransRecord entity, and inherits the CheckingAccount and SavingsAccount
entities. Using the various entities and relationships, we will implement various
ITSO Banking examples to show how you can use technologies such as
JavaBeans, JSP, EJB, Web Services, XML, and others.
34 Linux Application Development Using WebSphere Studio 5

Chapter 4. HTML, JSP, servlet,
JavaBeans, and database

In this chapter, we discuss the following sections:

� 4.1, “Preparing for development” on page 36 shows you how to start
application development using WebSphere Application Developer

� 4.2, “HTML” on page 41 describes the components and uses of HTML using
ITSOBankWeb project’s login page

� 4.3, “JSP” on page 43 introduces JSPs using the ITSOBankWeb project’s
account information Web page

� 4.4, “Servlet” on page 46 introduces servlets using the ITSOBankWeb
project’s controller servlet program, and gives an overview of all the
components that are part of the deployment descriptor

� 4.5, “JavaBeans” on page 50 introduces JavaBeans using the ITSOBankWeb
project’s update bean program and transaction confirmation Web page

� 4.6, “Database” on page 53 describes the ITSO Bank database in details, and
how to connect to the database and build a SQL query within WebSphere
Studio Application Developer

4

© Copyright IBM Corp. 2003. All rights reserved. 35

4.1 Preparing for development
In this chapter, we have used three Web applications: ITSOBankSelectWeb,
ITSOBankUpdatWeb, and ITSOBankWeb. We show you how to build Web
applications using HTML, JSP, servlets, and JavaBeans as they communicate
with the IBM DB2 Database.

Installing the database and the source code for each project can be found in the
Appendix.

The following is a brief description of each project:

� ITSOBankSelectWeb - Queries the database to retrieve the customer’s
information from the customer and address tables. The customer provides the
user ID and password to retrieve their records. This project is built using the
Database Web Pages wizard. The wizard creates an HTML login form, a JSP
result’s page, and a servlet. The project follows this model (Figure 4-1).

Figure 4-1 ITSOBankSelectWeb model

� ITSOBankUpdateWeb - Queries the database to update the customer’s bank
account table given the account ID and balance. This project is built using the
JavaBean Web Pages wizard. The wizard creates an HTML login form, a JSP
result’s page, a servlet, and a JavaBean. The project follows this model
(Figure 4-2).
36 Linux Application Development Using WebSphere Studio 5

Figure 4-2 ITSOBankUpdateWeb model

� ITSOBankWeb - This project combines both of the above models to build a
banking example that lets the customer login, check account balances, and
transfer money between accounts.

4.1.1 Creating a new project
In this section, we begin by showing you how to start application development
using WebSphere Application Developer. To describe each step we have used
the ITSOBankSelectWeb project:

1. Start the WebSphere Studio Application Developer.

2. Select File -> New -> Project to create a new project.

3. Select Web then select a Web project. The Web project contains resources
related to a Web application.

4. Specify a project name ITSOBankSelectWeb.

5. Select Use default as the default directory.

6. You can select to build a Static or Java2 Enterprise Edition (J2EE) Web
project. Static Web projects use HTML with JavaScript and graphics. J2EE
Web projects use technologies that are served with the J2EE Application
Server. Choose J2EE Web project.

7. The Web Project Features contain enhancements that you can add to your
Web project. This will be added to your WEB-INF directory. Select <Include
Tag Libraries for database access and accessing JSP object > in the Web
Project features list, then click Next.

8. Select New Enterprise application project.

9. Specify the project name as ITSOBankSelectEAR.

10.Select Use default as the default directory.

11.Do not modify the context root.
 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 37

12.Select J2EE level 1.3. This will use the servlet 2.3 and JSP 1.2 specifications
that are used in WebSphere Application Server Version 5.0, then click Finish.

After completing the above steps you can switch to the Resource perspective to
see your project directories. In the Navigator window you will see two new
directories: ITSOBankSelectEAR and ITSOBankSelectWeb (Figure 4-3). We will
describe the contents of these directories.

� ITSOBankSelectEAR (Figure 4-3).

Figure 4-3 ITSOBankSelectEar directory

In this directory the most important file is application.xml. This is the
Deployment descriptor for the enterprise applications that are responsible for
associating Web and EJB projects to a specific EAR file.

� ITSOBankSelectWeb:

This directory contains the following (Figure 4-4):

– Java Source directory: contains the servlets or your Java programs

– classes directory: contains compiled class files

– lib directory: contains JAR files used by Web applications

– Master.css file: a stylesheet for HTML and JSP

– web.xml file: the Deployment descriptor, which contains general
information about the Web application, servlet mappings, and security
information. The ibm-web-bnd.xmi file is used for WebSphere bindings.
The ibm-web-ext.xmi file is used for IBM-specific extensions.
38 Linux Application Development Using WebSphere Studio 5

Figure 4-4 ITSOBankSelectWeb directory

Now switch to the Data perspective to continue creating your Web project.

� Create a connection to the database and the select statement that will be
used for your project. This is shown in the database section of this chapter.
Turn to this section to complete the step.

Switch to the Resource perspective. You will notice that the database folder is
populated with the necessary database connection and your SQL statement:

1. Select the ITSOBankSelectWeb directory. Click File ->New -> Other.

2. Select Web then the Database Web Pages wizard. Click Next. This wizard
will build a framework to create Web pages from a SQL query.
 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 39

3. Your destination folder will be /ITSOBankSelectWeb/Web Content.

4. You can choose a Java package or use the default. We will use the default.

5. Select the Select Statement from the SQL Statement Type window.

6. Select the model as IBM Database Access Tag Library - Select Statement.
The other models include the master details pattern or JavaBeans. The
details page displays more details of the selected data. The JavaBeans model
is to include a JavaBean program in your Web project. To explore this model,
step through the ITSOBankUpdateWeb project. Click Next to continue.

7. In this window, we will select Use Existing SQL Statement, browse to the
/ITSOBankSelectWeb/Web Content/WEB-INF/database/WSAD5/Statements
directory, and select selectStatement. Click Next to continue.

8. In the Runtime Connection Page, the fields will already include the database
connection parameters. Click Next to continue.

9. In the Controller Page, ensure that Create a new Front Controller is
selected. This will build a servlet for your project. Click Next to continue.

10.For the next three database connection windows click Next and then finally
Finish to complete your Web project.

Assuming that the connection to the database and the select statement have
been created correctly, the wizard will create the necessary HTML, JSP, and
servlets. Click Run on Server to test the connections before making any
changes to your Web project.

The following is a summary of the steps that we used to complete the
ITSOBankSelectWeb project:

1. In the Resource perspective, create a Web project.

2. In the Data perspective, create a database connection, and an SQL
statement.

3. In the Resource perspective, use the Database Web Pages wizard to build a
framework, and connect the various components of your Web project.

The following is a summary of the steps that we have used to build the
ITSOBankUpdateWeb project:

1. In the Resource perspective, create a Web project.

2. In the Data perspective, create a database connection, an SQL statement,
and select to generate JavaBeans.

3. In the Resource perspective, use the JavaBeans Pages wizard to build a
framework, and connect the various components of the Web project.
40 Linux Application Development Using WebSphere Studio 5

The import function in WebSphere Studio Application Developer can help you
import our Enterprise Application projects to your workspace.

In the next sections we will go through the different components of the
ITSOBankWeb project. Using each component, we will explore the use of various
technologies.

4.2 HTML
In this section, we will be using parts of the ITSOBankWeb login page and the
login.html to explain the basics of HTML.

HTML stands for Hypertext Markup Language. HTML is used to provide a simple
markup language to create hypertext documents that are portable across
platforms. The main components of HTML are the meta information, and HTML
head and body. The following is a brief description of what they are:

� Meta information

Example 4-1 Meta tags in HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<META http-equiv="Content-Type" content="text/html”>
<META name="GENERATOR" content="IBM WebSphere Studio">

In this component, you can show the version of the document, type of
document, and the date the document was created or updated.

� HTML header

Example 4-2 Header tags in HTML

<HEAD>
<LINK href="theme/Master.css" rel="stylesheet" type="text/css">
<TITLE>ITSO Banking Example</TITLE>
</HEAD>

In this component, you will usually see the title or a link to the stylesheet. The
stylesheet helps towards the presentation of the Web site. In the example
above, the link element is an external link to style sheet. You can also import
a stylesheet using the @import and a style attribute on an element inside the
HTML body.
 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 41

� HTML body

Example 4-3 Body tags in HTML - ITSOBankSelectWeb login form

<BODY>
<H1></H1>
<!--Java Script-->
<SCRIPT LANGUAGE="JavaScript" TYPE="text/javascript">
<!--
function submitForm(nav){
 document.loginForm.elements["command"].value = nav
 document.loginForm.submit()
}
//-->
</SCRIPT>

<Form name="loginForm" method="post" action="controllerServlet">
User ID: <INPUT type="text" name="userid" maxlength="8">

Password: <INPUT type="password" name="password" maxlength="8">
<P>
<INPUT TYPE="hidden" NAME="command" VALUE="accountInfo">
<INPUT TYPE="hidden" NAME="new_input" VALUE="true">
Submit
</Form>
<P></P>
</Body></HTML>

In this component, the document consists of information and links to other
documents.

Combining various components allows you to create HTML documents. After you
have generated the HTML document, you can view it in a browser. The login.html
page found in under Appendix 4.6.1, “ITSO Bank database” on page 53 will look
as follows (Figure 4-5).
42 Linux Application Development Using WebSphere Studio 5

Figure 4-5 ITSOBankWeb login page

4.3 JSP
In this section, we will be using the ITSOBankWeb project and accountInfo.jsp to
explain the basics of JSP and the use of SQL tag library, which are utilized by the
Database Web Pages Web wizard. The accountUpdate.jsp uses similar library
functions, hence, we will not elaborate on this JSP. A simple example of the
wizard can be found in the ITSOBankSelectWeb project.

JSPs are JavaServer Pages. They are portable across any platform. These are
programs that run in the front and middle layer, acting as Web interface for
requests that are coming from a user or HTTP clients and database. In JSP you
can add dynamic content using expressions. The tag <% and %> and an = sign
at the start of the sequence makes a Java expression. This expression is
evaluated at runtime. This allows the JSP to generate dynamic HTML. JSPs also
allow you to write Java code. The syntax is the same as the expression, but
without the = sign. This Java code is know as a scriptlet. The accountInfo.jsp
uses expressions and scriptlets. We will briefly describe how the taglib tags,
session variables and connecting, query, and display database information is
used in accountInfo.jsp:

� The taglib tags

Example 4-4 taglib tag in JSPs

<%@ taglib uri="/WEB-INF/lib/jspsql.jar" prefix="dab_cust_account" %>

To extend the functionality of JSP, you can include directives within your JSPs.
There are page, taglib, and include directives. The page directive is explained
in the JavaBeans section. The include directive is used to include the content
of another file, and the taglib library tells the JSP compiler where to find
 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 43

specified library tags. The taglib contains two parameters, uri and prefix. The
uri specifies where to look for the tag library description and the prefix is a
reference name for the specified tag library. In the above example, we use the
jspsql.jar tag library to access the JSP SQL tags.

� Session variables

Example 4-5 Session variables in JSPs

<% if(request.getParameter("new_input") != null){
 if(request.getParameter("userid") != null){
 session.setAttribute("userid", request.getParameter("userid"));
 }
 if(request.getParameter("password") != null){
 session.setAttribute("password", request.getParameter("password"));
 } } %>

<% String inputUSERID = (String) session.getAttribute("userid");
String inputPASSWORD = (String) session.getAttribute("password");
%>

There are many defined variables, requests, responses, outs, and others.
Session is one of the defined variables that is used to simplify the JSP code.
This is part of the HttpSession object that is associated with the request. In
the above code, we have used the request.getParameter to acquire the
parameter that is usually the user’s responses. Using the session.set
Attribute, we have assigned it to a variable and later set it to a string variable
by using session.getAttribute. The string variable can be further manipulated
within the JSP. You can also define the session attribute to true or false in the
page directive. By default the session value is true.

� Database connection, query, and display tags

Example 4-6 database connection, query and display tags in JSPs

<%-- Connect to the database --%>
<%! com.ibm.db.beans.DBConnectionSpec dsSpec = null; %>
<%
if (dsSpec == null) {
%>
<dab_cust_info:driverManagerSpec id="databaseConnection" scope="page"
 userid='<%=config.getInitParameter("username")%>'
 password='<%=config.getInitParameter("password")%>'
 driver='<%=config.getInitParameter("driverName")%>'
 url='<%=config.getInitParameter("url")%>'/>
<%
 dsSpec = databaseConnection;
 }
%>
44 Linux Application Development Using WebSphere Studio 5

<%--Execute the query--%>
<dab_cust_info:select id="select_cust_info" scope="request"
connectionSpecRef="<%=dsSpec%>">
 <dab_cust_info:sql>
 SELECT
 ITSO.CUSTOMER.FIRSTNAME,
 ITSO.CUSTOMER.LASTNAME,
......
<TABLE border="0">

<TBODY>
<TR>
<dab_cust_info:repeat name="select_cust_info" index="rowNum" over="rows">

<TD>Name: <dab_cust_info:getColumn index="1"/>
<dab_cust_info:getColumn index="2"/></TD></TR><TR>

<TD>Address: <dab_cust_info:getColumn
index="3"/><dab_cust_info:getColumn index="4"/></TD>
</dab_cust_info:repeat>

</TR>

.....

Since we have used the Database Web Pages wizard, the connection to the
database and the SQL query is defined within the JSP. In the above lines of
code, the config.getInitParameter acquires the values for the various parameters
from the Web application configuration file, web.xml. The
<...:driverManagerSpec> tag creates a DBConnectionSpec object that has the
required information to make a connection to the database. The reference to this
object is stored in a static variable called dsSpec. To execute the query, the
information is collected, then a connection is established, and the specified SQL
statement is executed within the <..:sql> tag. The data is added to the DBSelect
cache. The next section uses a <...:repeat> tag to get the data and display as
HTML. We have used the IBM customer JSP SQL tags, which allow you to
access data in a database using JSP tags. They provide a function similar to the
TSX tags that are part of WebSphere.

Figure 4-6 is to show you what the output will look like once you have
successfully logged into your account, the accountInfo.jsp page.
 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 45

Figure 4-6 ITSOBankWeb account information page

Once you click Transfer balance, the accountUpdate.jsp page will look like
Figure 4-7.

Figure 4-7 ITSOBankWeb account update page

4.4 Servlet
In this section, we will be using the ITSOBankWeb servlet, the controller
Servlet.java to explain the basics of servlets, and also, web.xml, the Web
Deployment Descriptor.

Servlets are Java programs that are portable across platform. These are
programs that run in the middle layer acting as controller for requests that come
46 Linux Application Development Using WebSphere Studio 5

from a Web browser, or HTTP clients, and database. The main components of
servlets are the init, doGet, doPost, performTask, performServices, and dispatch
methods. The following is a brief description of what each one looks like.

The init method
This method is used to load the initial variables. In this case the values reside in
the Deployment Descriptor under the servlet tag. You can also specify other
variables that are required for the servlet to initialize.

Example 4-7 init method in servlets

public void init(ServletConfig config) throws ServletException {
super.init(config);

}

The doGet method
When the user submits an HTML form, it specifies if the method is going to be
HTTP get or post. If the form uses the get method, the doGet method should be
used. The doGet method takes two arguments, HttpServletRequest and
HttpServletResponse, where the first handles incoming data, and the later
handles outgoing data. In our example we override the method with the
performTask method.

Example 4-8 doGet method in servlets

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
performTask(req, resp);

}

The doPost method
If the form uses the post method, the doPost method should be used. The doPost
method takes two arguments, HttpServletRequest and HttpServletResponse,
where the first handles incoming data, and the later handles outgoing data. This
is exactly the same as its counter part doGet. In our example we override the
method with the performTask method.

Example 4-9 doPost method in servlets

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
performTask(req, resp);

}

 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 47

The performServices
The performServices method is used to perform user authentication. In our
example, we perform this using our JSP. The servlet is used as a gateway to
pass user requests and responses from the front to the backend, and then finally
back to the user.

Example 4-10 performServices method in servlets

public void performServices(HttpServletRequest request,
HttpServletResponse response) {

}

The performTask
In our example, the performTask method processes input variables, but before it
can do this, it ensures that performServices method does not have any services
to be completed for the user. The next step is to get the nextPage variable that
will determine what the servlet is going to launch next, or what it will do through
the dispatch method.

Example 4-11 performTask method in servlets

public void performTask(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException, IOException {
String nextPage;
try {

performServices(req, resp);
nextPage = getInitParameter(req.getParameter("command"));

} catch (Exception ex) {
nextPage = getInitParameter("error_page");

}
dispatch(req, resp, nextPage);

}

The dispatch method
The dispatch method passes the input variables using the dispatch.forward
function. Then using the nextPage variable launches the next page in response
to the user’s request.

Example 4-12 dispatch method in servlets

public void dispatch(
HttpServletRequest req, HttpServletResponse resp, String nextPage)
throws ServletException, IOException {
RequestDispatcher dispatch = req.getRequestDispatcher(nextPage);
dispatch.forward(req, resp);
48 Linux Application Development Using WebSphere Studio 5

}

Servlets main function is to read any data sent by users, generate, and format
the results; and send data back to the users. Servlets are efficient, portable, and
powerful over the traditional Common Gateway Interface and CGI-like
technologies. They are efficient because each request is a lightweight Java
thread instead of a operating system process. Since servlets are written in Java,
they are portable. Servlets are supported by every major Web server. They are
also part of the Java 2 Platform. Overall, servlets become powerful and
easy-to-use, since they are more reliable and reusable than any other
programming language.

The Web Deployment Descriptor contains general information about the Web
application, servlet mappings, and security information. The main components of
web.xml are the web-app, display-name, servlet, servlet-mapping and taglib
tags.

The web-app tag
In this tag, you define the name of your Web application.

Example 4-13 web-app tag in Web deployment descriptor

<web-app id=”WebApp”>....</web-app>

The display-name tag
In this tag, you define the name of your Web application as it appears in the
WebSphere Application Developer.

Example 4-14 Display-name tag in Web deployment descriptor

<display-name>ITSOBankSelectWeb</display-name>

The servlet tag
In this tag, the servlet’s actual name, display name, and its initial parameters are
defined. The initial parameter in our example contains the DB2 connection
information that is used by the servlet or JSP to connect to the database.

Example 4-15 Servlet tag in Web deployment descriptor

<servlet><servlet-name>accountInfo</servlet-name>accountInfo<display-name><
/display-name><jsp-file>/accountInfo.jsp</jsp-file><init-param><param-name>
username</param-name><param-value>db2inst1</param-value></servlet>
 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 49

The servlet-mapping tag
In this tag, the servlet path is defined for servlets that are used by your servlet or
JSP.

Example 4-16 Servlet-mapping tag in Web deployment descriptor

<servlet-mapping><servlet-name>accountInfo</servlet-name><url-pattern>
/accountinfo.jsp</url-pattern></servlet-mapping>

The taglib tag
In this tag, the library path is defined for libraries that are used by your servlet or
JSP.

Example 4-17 taglib tag in Web deployment descriptor

<taglib><taglib-uri>jspsql</taglib-uri><taglib-location>
/WEB-INF/bin/jspsql.jar</taglib-location></taglib>

4.5 JavaBeans
In this section, we will be using the ITSOBankWeb, confirmUpdate.jsp, and
updateBean.java to explain the basics of JavaBeans, and the use of the SQL tag
library that is utilized by the JavaBean Web Pages wizard. A more simpler
example of the wizard can be found in the ITSOBankUpdate Web project.

The confirmUpdate.jsp has three main components: A class import, Jsp
useBean tag, and an execute function. The following is a brief description of what
each one looks like.

A class import statement
The page directive is used to import a list of packages. In our case we will import
the updateBean class.

Example 4-18 Class import statement in JSPs

<%@ page
import="updateBean" contentType="text/html; charset=WINDOWS-1252"
pageEncoding="WINDOWS-1252"
%>

The Jsp useBean tag
This defines <..:useBean> tag that has an id and the class. The id is used in
within the JSP to refer to the class file. This statement lets you load a bean in the
50 Linux Application Development Using WebSphere Studio 5

JSP page, and then instantiate an object of the class by binding it to the specified
variable.

Example 4-19 useBean tag in JSPs

<jsp:useBean id="updateDBBean" scope="request" class="UpdateDB"
type="UpdateDB"/>

An execute function
This function is used to pass the newBalance, formacctID, and toacctID
variables, which are passed to the JSP as hidden fields and the user’s response.

Example 4-20 Execute function in JSPs

<%
updateDBBean.execute(new java.lang.Float
(request.getParameter("newBalance")), new
java.lang.String(request.getParameter("fromacctID")), new
java.lang.String(request.getParameter("toacctID")));

%>

Since we have used the Java Bean Web Pages wizard, the connection to the
database and the SQL query is defined within the JavaBeans. The JavaBeans
program, updateBean.java, has two main methods: the initializer and execute.
The following is a brief description of what each one looks like.

The initializer
In this method the JavaBean is initialized. The database driver and the URL are
defined. Also, the SQL command is defined with the necessary variables that will
be replaced with actual values given by the execute method.

Example 4-21 initializer method in JavaBeans

protected void initializer() {
modify1 = new DBModify();
modify2 = new DBModify();
try {

modify1.setDriverName("COM.ibm.db2.jdbc.app.DB2Driver");
modify1.setUrl("jdbc:db2:WSAD5");

modify1.setCommand(
"UPDATE ITSO.ACCOUNT SET BALANCE = :newBalance WHERE

ITSO.ACCOUNT.ACCID = :fromacctID");
DBParameterMetaData parmMetaData = modify1.getParameterMetaData();
parmMetaData.setParameter(

1,
 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 51

"newBalance",
java.sql.DatabaseMetaData.procedureColumnIn,
java.sql.Types.CHAR,
String.class);

parmMetaData.setParameter(
2,
"fromacctID",
java.sql.DatabaseMetaData.procedureColumnIn,
java.sql.Types.CHAR,
String.class);

....

The execute
This method gets the necessary input from the JSP. It then perform basic
arithmetic on the account balance and calls the execute method to update the
database with the new information.

Example 4-22 Execute method in JavaBeans

public void execute(Float newBalance, String fromacctID, String toacctID)
throws SQLException {
try {

modify1.setUsername("db2inst1");
modify1.setPassword("osamurs1");

StringTokenizer st1 = new StringTokenizer(fromacctID);
String fromAcctid = st1.nextToken();
String prevfromBalance = st1.nextToken();

float fromBalance = (Float.valueOf(prevfromBalance).floatValue())
- newBalance.floatValue();

String frBal = Float.toString(fromBalance);

modify1.setParameter("newBalance", frBal);
modify1.setParameter("fromacctID", fromAcctid);
modify1.execute();

......

Combining both of these components allows you to create a complete JavaBean
program. The transaction will be processed by updateBean.java and the
confirmUpdate.jsp page found in the Appendix 4.6.1, “ITSO Bank database” on
page 53 and will look like Figure 4-8.
52 Linux Application Development Using WebSphere Studio 5

Figure 4-8 ITSOBankWeb confirmUpdate page

4.6 Database
In this section, we describe the ITSO Bank database in details, how to connect to
the database, and how to build an SQL query within WebSphere Studio
Application Developer. To complete the section you will need to have our
database in your DB2 environment. Refer to the readme file located under the
ITSO database directory of the sample code.

4.6.1 ITSO Bank database
As mentioned in the previous chapter, the WSAD5 database consists of entities
and relationships to build a model. We will describe the relational database. The
WSAD5 database consists of the following tables:

� Customer table - The customer table contains the following information.

Table 4-1 Customer table

Column name Type - length Key Nulls Description

CUSTOMERI INTEGER - N/A PK NO Customer ID

TITLE CHAR - 3 - NO Title

FIRSTNAME VARCHAR - 30 - NO First name

LASTNAME VARCHAR - 30 - NO Last name

USERID CHAR - 8 - YES User ID

PASSWORD CHAR - 8 - YES Password

PHONE VARCHAR - 20 - YES Phone Number
 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 53

� Address table - The address table contains following information.

Table 4-2 Address table

� Customer Account table - The customer account table contains following
information.

Table 4-3 Customer account table

� Account table - The account table contains following information.

Table 4-4 Account table

� Re-order Check table - The re-order checks table contains the following
information.

Table 4-5 Check_Reorder table

Column name Type - length Key Nulls Description

CUSTOMERID INTEGER - N/A PK,FK NO Customer ID

STREET CHAR - 20 - YES Street number,
name

CITY CHAR - 12 - YES City

STATE CHAR - 12 - YES State or country

ZIPCODE CHAR - 10 - YES Postal code

Column name Type - Length Key Nulls Description

CUSTOMERID INTEGER - N/A PK,FK NO Customer ID

ACCID CHAR - 8 PK,FK NO Account ID

Column name Type - length Key Nulls Description

ACCID CHAR -8 PK NO Account ID

BALANCE DEC - (8,2) - NO Balance

ACCTYPE VARCHAR - 8 - NO Account type

Column name Type - length Key Nulls Description

CK_RO_ID INTEGER - N/A PK YES Customer
ReOrder ID

FK_CUST INTEGER - N/A FK YES Customer ID

QUANTITY INTEGER - N/A - YES Quantity
54 Linux Application Development Using WebSphere Studio 5

We have not described the remaining tables since they are not part of any
examples in this redbook. They are part of the database model to give you an
incentive to expand on our example and utilize the database. Figure 4-9 is a
overview of the tables in the database.

Figure 4-9 ITSO Bank example database

4.6.2 Connecting to a database from Application Developer
In this section, we will show how to connect to the database and import the
connection to the project in the Data perspective:

STATUS VARCHAR - 15 - YES Status of order

DATE_ORDERED TIMESTAMP - N/A - YES Date, time ordered

Column name Type - length Key Nulls Description
 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 55

1. Switch to the Data perspective.

2. In the DB Servers window right-click and select New Connections.

3. As your connection name, use ITSOBankWeb Connection or WSAD5.

4. Database name is WSAD5.

5. Enter the user ID and password for your database.

6. Use the IBM DB2 App Driver for a local database connection. Make sure that
the class location is pointing to the db2java.zip in the
/home/db2inst1/sqllib/java directory.

7. Click Finish.

Figure 4-10 is the directory structure of the database connection.

Figure 4-10 ITSOBankWebConnection directory

Follow these steps to import this database to the ITSOBankSelectWeb project:

1. Right-click WSAD5(jdbc:db2:WSAD5).

2. Select Import To Folder. In the Import window browse to the Web Content
directory in ITSOBankSelectWeb project.

3. Click OK then Finish to import.

A connection to the database will now exist in the WEB-INF directory for your
project.

4.6.3 Using SQL Query Builder in Application Developer
In this section, we will show how to create a SQL statement for the
ITSOBankSelectWeb project:

1. In the Data perspective, select Create A New SQL Statement from the task
bar.

2. Select SELECT as the SQL statement.

3. Since you have imported the database to this project, click Browse to use
existing database model.
56 Linux Application Development Using WebSphere Studio 5

4. Specify the SQL statement name as selectStatement. Click Next.

5. In the Tables tab, expand the ITSO folder and select ITSO.CUSTOMER and
ITSO.ADDRESS.

6. Click the greater-then arrow button to transfer the selected table to the right
window.

7. In the Columns tab, expand the selected tables and choose TITLE,
FIRSTNAME, LASTNAME, STREET, CITY, STATE, and ZIPCODE.

8. Click the greater-then arrow button to transfer the selected columns to the
right window.

9. In the Joins tab, join the CUSTOMERID from the Customer table to the
CUSTOMERID in the Address table, as shown in Figure 4-11.

Figure 4-11 SQL joins window

10.In the Conditions tab, select ITSO.CUSTOMER.USERID in the Column cell.

11.Select the equals sign as the Operator cell and Build Expression for the
Value cell.

12.In the Expression Builder window, select Constant - numeric, string or host
variable. Click Next.

13.In the Expression Builder window, select Constant type as String constant.
Click Next.

14.Use userid as the userid variable. Select on Host variable name. Click
Finish.

15.In the And/Or cell select AND.

16.Follow the above steps for ITSO.CUSTOMER.PASSWORD. Click Next.

The SQL statement will look as follows.
 Chapter 4. HTML, JSP, servlet, JavaBeans, and database 57

Example 4-23 ITSOBankSelectWeb selectStatement

SELECT
ITSO.CUSTOMER.TITLE,
ITSO.CUSTOMER.FIRSTNAME,
ITSO.CUSTOMER.LASTNAME,
ITSO.ADDRESS.STREET,
ITSO.ADDRESS.CITY,
ITSO.ADDRESS.STATE,
ITSO.ADDRESS.ZIPCODE

FROM
ITSO.CUSTOMER,
ITSO.ADDRESS

WHERE
ITSO.CUSTOMER.CUSTOMERID = ITSO.ADDRESS.CUSTOMERID AND
ITSO.CUSTOMER.USERID = :userid AND
ITSO.CUSTOMER.PASSWORD = :password

17.Click Execute to test, and then click Finish. In the database folder in the Web
project WSAD5_selectStatement.sqx contains the SQL query.

You can similarly create other SELECT, UPDATE, or other SQL statements that
are required for your project.
58 Linux Application Development Using WebSphere Studio 5

Chapter 5. Enterprise JavaBeans 2.0

This chapter provides the reader with an opportunity to learn about Enterprise
JavaBeans application development, and deployment and testing with
WebSphere Studio Application Developer Version 5.0. We will provide the ITSO
Bank sample using EJBs, and we will walk through the operations necessary to
implement business logic very quickly on a Web application server running on a
Linux workstation or on a mainframe environment.

Before we start to develop an EJB, we propose to refresh your mind with a short
description of the major components found in the EJB Version 2.0 specification.

5

© Copyright IBM Corp. 2003. All rights reserved. 59

5.1 The types of Enterprise JavaBeans
With EJB Version 2.0 there are now three types of Enterprise JavaBeans:

� Message-driven Beans (MDBs). A MDB is a stateless Java component
activated by messages that are mostly processed in asynchronous mode.
According to the message paradigm, we distinguish between two messaging
domains:

– Point-To-Point Messaging (PTP). This messaging domain is analogous
to a mailbox, where the receiver decides when to open the message
queue.

– Publish/Subscriber Messaging (PUB/SUB). This messaging domain
allows publishing one message for a specific topic to many receivers.
Many clients, who subscribed to a message topic, can receive the
message.

� Session beans. A session bean is a Java server-sided component
representing business logic or managing a process or a control flow. Session
beans come in two modes:

– Stateless session beans
– Stateful session beans

� Entity Beans. An Entity Bean is a Java server-sided component that
represents a business object and its associated data. Entity Beans are
divided by their form of persistence:

– Bean-Managed Persistence (BMP). The bean itself is responsible for
implementing object persistence.

– Container-Managed Persistence (CMP). The container, which is the
runtime environment for all beans, performs the persistence on behalf of
the bean.

5.1.1 Java Message-driven Beans
A Message-driven Bean is a new type of enterprise bean defined in the EJB 2.0
specification as an asynchronous message consumer. The bean is invoked by
the container as the result of the arrival of a Java Message Service (JMS)
message. The listener manager passes the message via a listener port to the
bean. Message-driven Beans are stateless, server-sided, and not distributed
components. They do not have EJBObject and EJBHome references. They are
invoked by the container as soon as an asynchronous messages is delivered
from JMS. Once the message arrived on the queue, the EJB cannot wait to
receive a JMS message.
60 Linux Application Development Using WebSphere Studio 5

To a client, a Message-driven Bean is a JMS consumer that implements some
business logic running on the server. A client accesses a Message-driven Bean
by sending messages to the JMS destination for which the bean class is the
MessageListener (Figure 5-1). The destination is either a Queue or a Topic.

Figure 5-1 JMS class hierarchy

Message-driven Beans subscribe to specific message destination, which is a
ListenerPort mapped to a queue or topic name. The ability to concurrently
process messages makes Message-driven Beans extremely powerful enterprise
beans. An EJB container can process thousands of messages from various
applications concurrently by leveraging the number of bean instances. There is
no guarantee about the exact order delivered to the bean instances. The bean
should be prepared to handle messages that are out of sequence.

Configuring Embedded JMS Provider
It is assumed that you have a WebSphere Studio Application Developer V5.0 test
server up and running. Before we can test JMS and Message-driven Beans with
WebSphere Studio Application Developer Version 5.0, your test server requires
 Chapter 5. Enterprise JavaBeans 2.0 61

some configuration: JMS Provider activation, listener port name definitions, and
queue name definitions for your test server.

Activate MQJD Provider implementation
The JMS provider for WebSphere Studio Application Developer V5.0 running on
Linux is defined in the implfactory.properties file stored in the
/opt/IBM/WebSphereStudio/eclipse/runtimes/base_5/properties/ directory. We
recommend that you activate the MQJD JMS Provider entry.

Example 5-1 Activate MQJD JMS Provider in implfactory.properties

#Embedded JMS Provider
#com.ibm.ws.messaging.JMSProvider=com.ibm.ws.messaging.JMSEmbeddedProviderImpl

#MQJD JMS Provider
com.ibm.ws.messaging.JMSProvider=com.ibm.ws.messaging.JMSMQJDProviderImpl

If you have to change the file for activating the MQJD JMS Provider entry you
have to logon as root (su).

Enable the Admin client
The message listener service requires a listener port, so that a Message-driven
Bean can be associated with the listener port to retrieve messages from the JMS
queue or topic. The definition of the listener port can only done via the
WebSphere administrative console, which has to be enabled in the WebSphere
V5.0 server configuration:

1. Switch to the Server perspective and select the WebSphere v5.0 Test
Environment. (Servers ->WebSphere v5.0 Test Environment). Right-click
Open.

2. Select the Configuration notebook tab (Figure 5-2) and enable the check
box: Enable administration client. The Ports Notebook tab will show the
Admin host port: 9090.

3. Press Ctrl+S to save changes and close the editor using Ctrl+F4.

4. Start WebSphere Studio Application Developer:

a. If your V5.0 test server has already started, then restart the Web server.
To restart, select the WebSphere v5.0 Test Environment in the server’s
view, and right-click Restart.

b. If your server is not started, then right-click Start from the pop-up menu.

5. After the server starts, check the WebSphere console log in the server’s
Console view. You should find following messages: ApplicationMg A
WSVR0221I: Application started: adminconsole
62 Linux Application Development Using WebSphere Studio 5

Figure 5-2 Enable the administration client

Set up Listener Port, Queue Names, and JNDI Mapping
Admin client can be started from the Servers view. Go to the Servers view then
click the Servers tab if it is not selected. Right-click the WebSphere AStudio
Application Developer V5.0 server, which has been started, and select Run
administrative client from the popup menu. Your browser will start with the
URL: http://localhost:9090/admin/ If you use WebSphere Application Server,
start the Admin client. For login, type a user ID and click the OK button.

To add a new listener port complete the following steps:

1. In the Navigation pane, select Servers -> Application Servers. This displays
the properties of the application server in the content pane. Select
your-app-server from the Application Server’s list.

2. In the Additional Properties table, select Message Listener Service. This
displays the Message Listener Service properties in the content pane.

3. In the Content pane, select Listener Ports. This displays a list of the listener
ports.

4. In the Content pane, click New.
 Chapter 5. Enterprise JavaBeans 2.0 63

5. Specify appropriate properties for the listener port (Figure 5-3). Type in all
required fields:

a. Name (LP0)
b. Initial State (Started)
c. Connection factory JNDI name (jms/itso/QCF)
d. Destination JNDI name (jms/itso/Q0)

6. Click OK.

7. To save your configuration, click Save on the task bar of the administrative
console window. In the application pane you must click Save again.

Figure 5-3 Add a new listener port

8. We now have to set the JMS server properties. Start again with a select of
Server -> Application Server and select your-app-server. The following
steps 9 to 14 can also be done in the server configuration of your WebSphere
Studio Application Developer V5.0 test server. If you configure WebSphere
Application Server, we recommend to continue with the next configuration
steps.

9. In the Additional Properties table select Server Components. The Server
Component table appears. Select JMS Servers and you will see the general
properties for the Internal JMS Server.

10.In section General Properties for the Internal JMS Server, type the Queue
name (Q0) and select Initial State Started from the drop-down combo box.

11.Click the OK button and save your changes to the master configuration.

12.To map the connection factory name and queue name to their corresponding
JNDI names for the WebSphere JMS provider, select
Resources->WebSphere JMS Provider in the Navigation tree view.

13.You should find the WebSphereJMSProvider screen with an Additional
Properties table:
64 Linux Application Development Using WebSphere Studio 5

a. Click WebSphere Queue Connection Factories and click the New
button. Provide the Configuration menu with a Name (QCF), a JNDI Name
(jms/itso/Q0), and select Node localhost. Click the OK button and
reselect WebSphereJMSProvider.

b. Now select the WebSphere Queue Destinations, click the New button
and fill in Name (Q0), JNDI Name (jms/itso/Q0) and select Node localhost.
You may also define additional destination queue properties like Category
(if you have destination topic), Persistence, Priority, and Expiry. Finish the
configuration by clicking the OK button.

14.To save the master configuration, select Save from the application task bar
and conform the Save to Master Configuration dialog by clicking the Save
button.

15.To have the changed master configuration take effect, stop and start the
application server.

JMS Provider definitions
Until now we defined a listener port (LP0) and assigned the listener port to an
connection factory JNDI name (jms/itso/QCF) and a destination JNDI name
(jms/itso/Q0). Factory name and destination name must be defined for your V5.0
test server, if you want use the destination queue and Message-driven Beans on
that server. To provide JMS definition for your test server:

1. Select the Server Configuration view and click the JMS tab. The display
shows WebSphere JMS Provider Options (Figure 5-4).

2. Select Server Settings and add the destination queue names (Q0) to the
JMS Server Properties.
 Chapter 5. Enterprise JavaBeans 2.0 65

Figure 5-4 WebSphere JMS Provider options

� Click the Add button for the WASQueueConnectionFactory entries table. A
dialog appears (Figure 5-5), where you can type in the following:

– Name: the factory name (QCF)
– JNDI name: the Connection factory JNDI name (jms/itso/QCF)
– Server Name: Server name (server1)
– Node: Node name (localhost)
66 Linux Application Development Using WebSphere Studio 5

Figure 5-5 Add WASQueueConnectionFactory dialog

� Click the Add button for WASQueue entries table. A dialog appears
(Figure 5-6) where you can type in the following:

– Name: The queue name (Q0)
– JNDI Name: The destination JNDI name (jms/itso/Q0)
– Node: Node name (localhost)
 Chapter 5. Enterprise JavaBeans 2.0 67

Figure 5-6 Add WASQueue dialog

� Save the server configuration and restart your test server.

� Check the console log when the test server is restarted. You should find
following messages according to your definition names:

– MSGS0650I: MQJD JMS Provider open for business
– WSVR0049I: Binding Q0 as jms/itso/Q0
– WSVR0049I: Binding QCF as jms/itso/QCF

We now have successfully defined a listener port name, which was mapped to a
connection factory JNDI name and a destination JNDI name using the Admin
client. We also defined factory names and queue names, which were assigned to
their corresponding JNDI names using the V5.0 test server configuration.

Create a Message-driven Bean
In this chapter we describe the implementation of a Message-driven Bean, which
will listen to a listener port (LP0). The bean’s destination type is a queue (Q0)
belonging to a connection JNDI factory (QCF).
68 Linux Application Development Using WebSphere Studio 5

Prior to start writing a message driven bean you need to have an EJB project and
a package for the Message-driven Bean:

1. Create an EAR application project named ITSOBankEAR. Select File-New
Project. In the New Project Dialog select J2EE in the left panel, and
Enterprise Application Project in the right panel. Click Next button.

2. Specify Create J2EE 1.3 Enterprise Application project and click Next.

3. Type in the application project name ITSOBankEAR. Deselect all other options
and select only the creation of the EAR file.

4. Within WebSphere Studio Application Developer select the J2EE
perspective and create a new EJB project according to the EJB 2.0
specification: ITSOBankEJB.

5. Also create a package within the ejbModule folder of the EJB project called
jms.itso.bean.

6. With a right-click on the ejbModule folder select New -> Other... and a dialog
appears where you should select EJB in the left pane an enterprise bean in
the right pane.

7. The next dialog step will show you the ITSOBankEJB project name. Click the
Next button.

8. Next step after project selection shows the dialog headed with Create a 2.0
enterprise bean. Select the Message-driven Bean and type in the bean
name: RcvQ0 (Figure 5-7).

Listener port
name

Connection
factory name

Connection
JNDI factory
name

Queue name Queue JNDI
name

LP0 QCF jms/itso/QCF Q0 jms/itso/Q0
 Chapter 5. Enterprise JavaBeans 2.0 69

Figure 5-7 Select 2.0 EJB types

9. During the last step you have to define the property details of your
Message-driven Bean (Figure 5-8):

– Transaction type: Container or bean

– Acknowledge mode: AutoAcknowledge or DupsOkAcknowledge

– Destination Type: Queue or Topic. If Topic selected, you have also the
choice between durable and non-durable message live time.

– Message selector, which applies only if Destination Type Topic is selected.

– Listener Port Name (LP0)

As a first start we selected Bean with AutoAcknowledge as transaction type,
Queue as destination type, and the ListenerPort name: LP0. The bean name is
RcvQ0 and stored in package jms.itso.bean in the ejbModule folder of the
ITSOBankEJB project.
70 Linux Application Development Using WebSphere Studio 5

Figure 5-8 Define EJB details for a Message-driven Bean

After finishing the Create an Enterprise dialog, WebSphere Studio Application
Developer generates a Message-driven Bean skeleton named RcvQ0Bean.java
in package jms.itso.bean, which resides in the ejbModule folder of our
ITSOBankEJB enterprise project. The RcvQ0Bean.java class contains following
five methods:

� getMessageDrivenContext()
� setMessageDrivenContext(javax.ejb.MessageDrivenContext ctx)
� ejbCreate()
� onMessage(javax.jmsMessage msg)
� ejbRemove()

WebSphere Studio Application Developer also generates an entry in the EJB
Deployment Descriptor file ejb-jar.xml and in the IBM extension deployment
descriptor ibm-ejb-jar-bnd.xmi.
 Chapter 5. Enterprise JavaBeans 2.0 71

Example 5-2 EJB Deployment Descriptor entry for a Message-driven Bean

<enterprise-bean>
<message-driven Id="Messagedriven_1034392674661">

<ejb-name>RcvQ0Bean</ejb-name>
<ejb-class>itso.test.bean.RcvQ0Bean</ejb-class>
<transaction-type>Bean</transaction-type>
<acknowledge-mode>Auto-acknowledge</acknowledge-mode>
<message-driven-destination>

< Destination-type>javax.jms.queue</destination-type>
</message-driven-destination>

</message-driven>
</enterprise-bean>

You will find following binding information in the IBM extension deployment
descriptor ibm-ejb-jar-bnd.xmi.

Example 5-3 Binding Listener Port to a Message-driven Bean

<ejbBindings xmi:type="ejbbnd:MessageDrivenBeanBinding"
xmi:id="MessageDrivenBeanBinding_1034392526661"
listenerInputPortName="LP0">
<enterpriseBean xmi:type="ejb:MessageDriven"
href="META-INF/ejb-jar.xml#MessageDriven_1034392482387"/>

We now have to receive the message from queue Q0 and to implement some
business logic within the onMessage method of the RcvQ0Bean.java code. To do
so, you need knowledge about the architecture of messages in JMS.

A JMS message is composed of a header, optional properties, and an optional
body. The message header contains a set of fixed fields that are used to identify
the message and to help in routing. Message properties are application related
header fields the programmer can set only on the sending side. They are
read-only for the Message-driven Bean. The message body can take five
different forms:

� TextMessage. The message body is a Java string.

� BytesMessage. A bytes message supports a body with uninterpreted data.
The message supports the methods of the DataInputStream and
DataOutputStream interfaces from the Java I/O package.

� StreamMessage. A stream message adds a body that is a stream of objects.

� ObjectMessage. An object message provides a body that can contain any
Java object that supports the serializable interface.

� MapMessage. A map message supports the Message interface and provides
a body of name/value pairs.
72 Linux Application Development Using WebSphere Studio 5

The code snippet below uses the MapMessage interface. Expect receiving a
formatted message.

Example 5-4 Completing the onMessage method with sample code

/**
* onMessage
*/
public void onMessage(javax.jms.Message inMessage) {

javax.jms.MapMessage msg = null;

try {
if (inMessage instanceof javax.jms.MapMessage) {

msg = (javax.jms.MapMessage) inMessage;
int custid = msg.getInt(“Custid”);
int quantity = msg.getInt(“Qnantity”);
// Implement your business logic here
System.out.println("RcvQ0Bean: Custid: " + custid);
System.out.println("RcvQ0Bean: Quantity: " +

quantity);
}
else {

// Act on wrong message type accordingly
System.out.println("RcvQ0Bean: Wrong type.");

}
}
catch (javax.jms.JMSException e) {

e.printStackTrace();
fMessageDrivenCtx.setRollbackOnly();

}
catch (Throwable te) {

te.printStackTrace();
}
}

Note that the onMessage() method defined for a MD bean leaves the parsing of
the inbound message up to the application programmer. The messages have to
be in the right message format. If you expect many message types on the same
queue, this will lead to a chain of if-statements in the Message-driven Bean.

The sample Message-driven Bean is now ready to run. The bean consumes a
message from listener port LP0 which was mapped to destination queue Q0. The
message type is checked and a map message with two integers (Custid and
Quantity) is received and written to your WebSphere Studio Application
Developer V5.0 test server console.
 Chapter 5. Enterprise JavaBeans 2.0 73

To test the Message-driven Bean on the WebSphere Studio Application
Developer V5.0 test server, requires a message producer sending a message to
the queue Q0.

Writing a JMS client
To get a better idea how JMS is used to write to a message queue, we can
develop a simple JavaServer Page (JSP) whose sole purpose is to accept two
integer values named Custid and Quantity as parameters, and then to send them
to message queue Q0 (Figure 5-9). The command sample for sending the
message within a browser then will be:
http://localhost:9080/ITSOBankWeb/sndQ0.jsp?C=101&Q=25

1. Create a Web project named ITSOBankWeb that belongs to the EAR project
ITSOBankEAR.

2. Create a JSP file sndQ0.jsp in the Web Content folder of the ITSOBankWeb
project.

3. Insert the Java code to request Custid and Quantity parameters.

Example 5-5 Request parameter

<P>Send an Check Reorder Message.</P>
<%
String param;
int custid = 0;
int quantity = 0;
try {

param = request.getParameter("C");
if (param != null)

custid = Integer.parseInt(param);
param = request.getParameter("Q");
if (param != null)

quantity = Integer.parseInt(param);
} catch (NumberFormatException) {}

4. Insert JMS code to send one message to queue Q0. Before sending a
message we have to get a handle to the local JNDI environment, then look up
the queue connection factory JNDI name (jms/itso/QCF) and the destination
queue JNDI name (itso/jms/Q0). See this code snippet below.

Example 5-6 Send message to destination queue

// Send a message to Q0
javax.naming.Context ic = null;
javax.jms.QueueConnectionFactory qConnFactory = null;
javax.jms.QueueConnection qConn = null;
javax.jms.Queue queue = null;
javax.jms.QueueSession qSession = null;
74 Linux Application Development Using WebSphere Studio 5

http://localhost:9080/ITSOBankWeb/sndQ0.jsp?C=101&Q=25

javax.jms.QueueSender qSender = null;
javax.jms.MapMessage message = null;

String fName = "jms/itso/QCF";
String qName = "jms/itso/Q0";
try {

java.util.Properties env = System.getProperties();
env.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(javax.naming.Context.PROVIDER_URL,
"iiop://localhost");

ic = new javax.naming.InitialContext(env);
qConnFactory = (javax.jms.QueueConnectionFactory)
ic.lookup(fName);
queue = (javax.jms.Queue) ic.lookup(qName);

}
catch (Exception e) {

System.err.println("JNDI lookup failed " + e);
}
try {

qConn = qConnFactory.createQueueConnection();
qSession = qConn.createQueueSession(false,
javax.jms.Session.AUTO_ACKNOWLEDGE);
qSender = qSession.createSender(queue);
message = qSession.createMapMessage();

// Send the Check Reorder Message
message.setInt("Custid", custid);
message.setInt("Quantity", quantity);
qSender.send(message);
qConn.close();

%>
<P>Customer=<%= custid %>
Quantity=<%= quantity %>

Check Reorder sent to ITSO Bank.<P>
<%
}
catch (Exception e) {

System.err.println("Error on sending message " + e);
}
%>

5. Add the JSP sndQ0.jsp to the ITSOBankWeb Web Deployment Descriptor
and map the jsp-file name to /sndQ0. The web.xml then shows following entry.
 Chapter 5. Enterprise JavaBeans 2.0 75

Example 5-7 JSP/Servlet Web deployment entry in web.xml

<servlet>
<servlet-name>sndQ0</servlet-name>
<display-name>sndQ0</display-name>
<jsp-file>/sndQ0.jsp</jsp-file>

</servlet>
<servlet-mapping>

<servlet-name>sndQ0</servlet-name>
<url-pattern>/sndQ0</url-pattern>
</servlet-mapping>

6. Add the ITSOBankEAR file to your WebSphere Studio Application Developer
V5.0 test server and restart your test server. Check the console message
where you should find:

– Starting application: ITSOBankEAR
– Preparing to start EJB jar: ITSOBankEJB
– Starting EJB jar: ITSOBankEJB
– Application started: ITSOBankEAR

� Start the JSP sndQ0.jsp from a browser using the following URL:
http://localhost:9080/ITSOBankWeb/sndQ0?C=101&Q=25

7. If the WebSphere Studio Application Developer Console log shows the
messages according to the code in the onMessage() method of the
RcvQ0Bean.java source, you have successful written a Message-driven
Bean.
76 Linux Application Development Using WebSphere Studio 5

http://localhost:9080/ITSOBankWeb/sndQ0?C=101&Q=25

Figure 5-9 A simple asynchronous messaging scenario

Summary
Asynchronous messaging systems allow many applications, written in different
languages, to exchange business information in the form of a message.
Messages are transmitted from one application to another on a network using
message-oriented middle ware (MOM). JMS can be used with different MOMs.
For example, you can use the same JMS API to send messages with Progress’
SonicMQ as with IBM’s MQSeries; BEA’s WebLogic JMS service; and Sun
Microsystems’ iPlanet Message Queue just to name a few.

EJB 2.0 Message-driven Beans act as an integration point for an EJB
application. They allow to better integrate other systems into EJB applications,
because the systems are loosely-coupled via simple data exchange. The
Message-driven Beans are managed by the EJB container and in their
onMessage() method they receive formatted messages that can be processed
directly, or processing may be delegated to other Entity Beans, or passed to
other message driven beans using JMS. They are an excellent addition to the
EJB platform.
 Chapter 5. Enterprise JavaBeans 2.0 77

5.1.2 EJB 2.0 Bean Managed Persistence Entity Bean
This section describes creation of an Entity Bean with Bean-Managed
Persistence (BMP). An Entity Bean implements the object view of an entity in an
underlying database, or an entity implemented in an existing enterprise
application; for example, by a mainframe program using flat files such as VSAM.
The data access protocol for transferring the state of the entity between the bean
and the database is referred to as persistence. In a BMP Entity Bean it is the
developers task to write the persistence handling code into the bean class. As a
database, we use the Linux version of IBM DB2 Version 7.2 in some helper
classes.

The business logic in ITSO Bank sample
The ITSO Bank sample we use will realize a simple check reorder. We received
two properties in our Message-driven Bean: the customer identification and the
number of checks the customer wants to reorder. Customer ID and quantity will
be the input for the BMP bean called by the Message-driven Bean RcvQ0Bean.
The bean has to store the customer’s reorder request into a check_reorder
request table. The request records in the check_reorder table will enable the
check print shop to produce individual checks and mail it to the customer.

Example 5-8 Check-reorder request table definition

CREATE TABLE ITSO.CHECK_REORDER (
CK_RO_ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH 101, INCREMENT BY 1, NO CACHE),
FK_CUST INTEGER NOT NULL,
QUANTITY INTEGER NOT NULL,
STATUS VARCHAR(15) NOT NULL,
DATAE_ORDERED TIMESTAMP NOT NULL,
PRIMARY KEY (CK_RO_ID));

ALTER TABLE ITSO.CHECK_REORDER
 ADD CONSTRAINT "CheckReordering" FOREIGN KEY (FK_CUST)
 REFERENCES ITSO.CUSTOMER ON DELETE RESTRICT;
GRANT ALL ON ITSO.CHECK_REORDER TO PUBLIC;

The function for the BMP bean is to insert a customer check reorder into the
check_reorder request table of the WSAD5 database. A new request ID will be
generated by incrementing the maximum check_reorder primary key CK_RO_ID.
The CheckReordering constraint will guarantee that inserted records have an
existing customer ID. If we get an invalid customer ID delivered from the
Message-driven Bean, then the check_reorder insert into the request table will
fail.
78 Linux Application Development Using WebSphere Studio 5

The BMP bean will manage following value objects:

� ckroID - An integer that represents the request ID. We define valid request IDs
that are not zero.

� custID - An integer representing the customer ID. Valid customer IDs are not
zero.

� quantity - An integer representing the amount of checks reordered.

� status - A string describing the status of the check reorder. For example:
received, printed, or mailed.

� date_ordered - A timestamp marking the last status.

� customer - A string with title, surname, and last name of the customer. The
bean will retrieve the customer string from the customer table of the ITSO
Bank sample.

First we will write the business objects and the getter and setter methods for our
objects into a Java class named CheckVO, representing the check reorder
business, and managing value exchange with the bean.

Example 5-9 CheckVO.java: Value objects for Check-Reorder

package itso.bank.ejb;
import java.sql.Timestamp;
public class CheckVO implements java.io.Serializable {

private int ckroID;
private int custID;
private int quantity;
private String status;
private String acctype;
private Timestamp date_ordered;
private String customer;
/**
 * Gets the ckroID
 * @return Returns an Integer
 **/
public int getCkroID() {

return ckroID;
}
/**
* Sets the ckroID
* @param int ckroID The ckroID to set
*/
public void setCkroID(int ckroID) {

this.ckroID = ckroID;
}
/**
 * Gets the custID
 Chapter 5. Enterprise JavaBeans 2.0 79

 * @return Returns an Integer
 */
public int getCustID() {

return custID;
}
/**
 * Sets the custID
 * @param int custID The custID to set
*/
public void setCustID(int custID) {

this.custID = custID;
}
/**
 * Gets the quantity
 * @return Returns an Integer
 */
public int getQuantity() {

return quantity;
}
/**
 * Sets the quantity
 * @param int quantity The quantity to set
 */
public void setQuantity(int quantity) {

this.quantity = quantity;
}
/**
 * Gets the status
 * @return Returns a String
 */
public String getStatus() {

return status;
}
/**
 * Sets the status
 * @param String status The status to set
*/
public void setStatus(String status) {

this.status = status;
}
/**
 * Gets the date_ordered
 * @return Returns a java.sql.Timestamp
 */
public Timestamp getDate_ordered() {

return date_ordered;
}
/**
 * Sets the date_ordered
80 Linux Application Development Using WebSphere Studio 5

 * @param Timestamp date_ordered
 */
public void setDate_ordered(Timestamp date_ordered) {

this.date_ordered = date_ordered;
}
/**
 * Gets the customer
 * @return Returns a String
 */
public String getCustomer() {

return customer;
}
/**
 * Sets the customer
 * @param String customer The customer to set
 */
public void setCustomer(String customer) {

this.customer = customer;
}

}

Creating a BMP Entity Bean
To create the bean-managed persistence entity for check reorder follow the steps
below:

1. Select File->New--Enterprise Bean in the WebSphere Studio Application
Developer V5.0 task bar. The Enterprise Bean Creation dialog box will
appear. Select the ITSOBankEJB enterprise bean and click Next.

2. This step asks for the type of the 2.0 enterprise bean we want to create.
Select Entity bean with bean-managed persistence (BMP) and type in the
following:

– Bean name: Check
– Source Folder: ejbModule
– Default package: jms.itso.bean
– Then click Next.

3. Select Local client view and Remote client view. Then click Next and
Finish.

You will find four EJB interfaces and two EJB classes in the package
jms.itso.bean:

� Check.java: The remote interface that extends the javax.ejb.EJBObject. Here
is the place where we can define the business methods that can be accessed
from the outside world.
 Chapter 5. Enterprise JavaBeans 2.0 81

� EJB 2.0 CheckLocal.java: The local interface extending the EJBLocalObject.
Here we can define the business methods the bean presents to other beans
in the same address space and same EAR file. It allows the bean to interact
without the overhead of a distributed object protocol.

� CheckHome: The home interface that extends EJBHome.

� EJB 2.0 CheckLocalHome: The local home interface extending
EJBLocalHome.

� CheckBean: The bean class that implements the Entity Bean.

� CheckKey: The bean class for the primary key of the bean, which is a pointer
into the database.

We now can implement data exchange with the Check bean using the CheckVO
value objects:

1. First we will insert the set and get methods of our business properties defined
in CheckVO.java into the Entity Bean CheckBean. Insert following code
snippet into CheckBean.java.

Example 5-10 Defining ‘get’ and ‘set’ methods for value object CheckVO

public jms.itso.bean.CheckVO checkVO = null;
/**
 * getCheckVO
 */
public CheckVO getCheckVO() {

return checkVO;
}
/**
 * setCheckVO
 */
public void setCheckVO(CheckVO checkVO) {

this.checkVO = checkVO;
}

2. To interact with a client we have to pass the CheckVO value objects to the
ejbCreate() and ejbPostCreate() method as an argument. We copy the
incoming value objects into the bean using setCheckVO(checkVO);

In addition, we print out informational messages in the ejbCreate() method of
the CheckBean to the WebSphere Studio Application Developer V5.0 test
server console log as a simple check if whether processing and interaction
between the calling EJB and the Check bean works properly. Note that the
ejbCreate() method has to return the primary key, which is the check reorder
ID int ckroID in our sample.
82 Linux Application Development Using WebSphere Studio 5

Example 5-11 Defining arguments for ejbCreate and ejbPostCreate

/**
 * ejbCreate
 */
public jms.itso.ejb.CheckKey ejbCreate(CheckVO checkVO)

throws javax.ejb.CreateException {
setCheckVO(checkVO);
// Insert check reorder into table
// ...
// Write to the console log
System.out.println("CheckBean:ejbCreate:CkroID=" +

checkVO.getCkroID());
System.out.println("CheckBean:ejbCreate:CustID=" +

checkVO.getCustID());
System.out.println("CheckBean:ejbCreate:Quantity="

+ checkVO.getQuantity());
System.out.println("CheckBean:ejbCreate:Status=" +

checkVO.getStatus());
System.out.println("CheckBean:ejbCreate:Time=" +

checkVO.getDate_ordered());
System.out.println("CheckBean:ejbCreate:Customer=" +

checkVO.getCustomer());
return new CheckKey(ckroID);

}
/**
 * ejbPostCreate
 */
public void ejbPostCreate(CheckVO checkVO)

throws javax.ejb.CreateException {
}

...

3. The CheckVO value class needs to be declared as an argument in the create
interface of CheckHome and CheckLocalHome. In CheckHome.java add an
argument the create definition as follows:

– public jms.itso.bean. Check create(CheckVO checkVO) throws
javax.ejb.CreateException, java.rmi.RemoteException;

– In CheckLocalHome.java you have to do the same. Note that the local
home interface does not throw the java.rmi.RemoteException, because we
can interact with this interface only locally without RMI.

4. At last we have to promote the setCheckVO and getCheckVO methods in the
remote and local interfaces Check.java and CheckLocal.java. Insert the
definitions of Example 5-12 into both Java files. In the local interface
CheckLocal.java, we can remove throwing the RemoteException. The only
differences between the remote and local interface are that the local interface
 Chapter 5. Enterprise JavaBeans 2.0 83

does not throw a remote exception and it extends the parent interface
EJBLocalObject.

Example 5-12 Method definitions in the bean’s remote interface

package jms.itso.bean;
/**
 * Remote interface for Enterprise Bean: Check
 */
public interface Check extends javax.ejb.EJBObject {

/**
 * setCheckVO
 */
public void setCheckVO(CheckVO checkVO) throws java.rmi.RemoteException;
/**
 * getCheckVO
 */
public CheckVO getCheckVO() throws java.rmi.RemoteException;

}

The primary key of an Entity Bean is a pointer into the database that helps to
locate a unique data record very fast. Only Entity Beans do have a primary key,
for session bean and Message-driven Beans they do not make sense. The
primary key is used in the findByPrimaryKey() method of the home interface
CheckHome. We will implement the check reorder request number presented by
the integer ckroid as a primary key together with the getCkroID() and setCkroID()
methods in the CheckKey.java file.

Example 5-13 Defining a primary key

public class CheckKey implements java.io.Serializable {
//...

int ckroid;
/**
 * get CK_RO_ID
 */
public int getCkroID() {

return ckroid;
}
/**
 * set a new CK_RO_ID, same as CheckKey(int)
 */
public void setCkroID(int ckroid) {

this.ckroid = ckroid;
}
/**
 * Creates an CK_RO_ID key for Entity Bean: Check
 */
public CheckKey(int ckroid) {
84 Linux Application Development Using WebSphere Studio 5

this.ckroid = ckroid;
}

...
}

We now have defined the value objects of the check reorder business object in
CheckVO.java and we created the BMP Entity Bean Check. In CheckBean.java
we declared the value class CheckVO and we defined the setCheckVO and
getCheckVO methods. We implemented the CheckVO value class as an
argument for the ejbCreate() and ejbPostCreate() method in CheckBean.java
and some test code was applied in ejbCreate(). The ejbCreate() method returns
the primary key we created. The primary key will be later used in the ejbLoad()
method using getPrimaryKey().

We also defined CheckVO as an argument in the corresponding create
statement of the remote home and local home interfaces CheckHome.java and
CheckLocalHome.java, so that they have the same signature. The getCheckVO
and setCheckVO methods were defined in the remote and local interfaces
Check.java and CheckLocal.java in order to use these methods from the
outside world and to set actual values or retrieve resulting values from the bean.
The primary key check reorder request id was implemented as int ckroid in
CheckKey.java together with a setter and getter method for interchange
purposes with the CheckKey class.

We are now ready to interact with bean’s ejbCreate() method using the CheckVO
value objects. Since we intend to use the findByPrimaryKey() and ejbLoad()
methods, we have to implement the primary key into this methods for fast access
of data rows and for loading the data into our value objects. Within the ejbLoad()
method, the primary key is addressed with the help of the bean’s entity context.

Example 5-14 PrimaryKey in ejbFindByPrimaryKey() and ejbLoad() methods

/**
 * ejbFindByPrimaryKey
 */
public jms.itso.bean.CheckKey ejbFindByPrimaryKey(

jms.itso.bean.CheckKey primaryKey)
throws javax.ejb.FinderException {
System.out.println(
"CheckKey:ejbFindByPrimaryKey: START");
int ckroID = primaryKey.getCkroID();
// Select data with primary key ckroID
...
if (ckroID != 0) {

return primaryKey;
}
else {
 Chapter 5. Enterprise JavaBeans 2.0 85

throw new javax.ejb.FinderException();
}

}
/**
 * ejbLoad
 */
public void ejbLoad() {

System.out.println("CheckBean:ejbLoad: START");
CheckKey primaryKey =
(CheckKey) myEntityCtx.getPrimaryKey();
// Load data with primary key
...

}

If the ITSO Bank sample would require to delete check reorders, we would
implement the statement CheckKey primaryKey = (CheckKey)
myEntityCtx.getPrimaryKey(); also into the ejbRemove() method.

We now have a BMP bean only with value objects that exists in the Java runtime
storage. We have to persist the Entity Bean, which means we have to write the
check reorders into the check_reorder table using JDBC and SQL. Until now
there is no connection to our underlying database WSAD5, where we can make
our check reorders persistent. Since we are writing a bean-managed persistence
Entity Bean, we must write code to translate our object values into the
check_reorder table of the WSAD5 database using JDBC and SQL with DB2.
The next chapter describes how we persist the check bean.

Implement database access objects
In this chapter we demonstrate the implementation of access code to an
underlying database for an Entity Bean. We assume that the WSAD5 database
already exists and that the required tables (check_reorder and customer) are
defined and populated with some data. We will define SQL statements to select,
insert, update, and delete rows from the check_reorder table to achieve
persistence for the Check bean. To make our data access classes more
independent, we put all application related data into an interface named
Constants.java. In this interface we stored the following items:

� The data source JNDI name: jdbc/WSAD5

� The naming context host name: localhost

� The naming context host port: 2809

� The user ID and password to access the database

� The naming context factory class of the WebSphere Studio Application
Developer V5.0 test server:
com.ibm.websphere.naming.WsnInitialContextFactory
86 Linux Application Development Using WebSphere Studio 5

� SQL prepared statements to perform select, insert, update and delete rows
as required to make the bean persistent:

– INSERT INTO ITSO.CHECK_REORDER (FK_CUST, QUANTITY,
STATUS, DATE_ORDERED) VALUES(?, ?, ?, CURRENT TIMESTAMP)
for insert a new request reorder row.

– SELECT IDENTITY_VAL_LOCAL() FROM SYSIBM.SYSDUMMY1 is
required to get the last recent check reorder request id after a new row
was inserted into the check_reorder table.

– SELECT TITLE, FIRSTNAME, LASTNAME FROM ITSO.CUSTOMER
WHERE CUSTOMERID = ? for load of the customer value object.

– SELECT CK_RO_ID FROM ITSO.CHECK_REORDER WHERE
CK_RO_ID = ? to find a check_reorder row for a given primary key within
the bean.

– SELECT FK_CUST, QUANTITY, STATUS, DATE_ORDERED, TITLE,
FIRSTNAME, LASTNAME FROM ITSO.CHECK_REORDER,
ITSO.CUSTOMER WHERE WHERE CK_RO_ID = ? AND FK_CUST =
CUSTOMERID for load of the checkVO value objects with one select
statement.

– UPDATE ITSO.CHECK_REORDER SET QUANTITY = ?, STATUS = ?,
DATE_ORDERED = CURRENT TIMESTAMP WHERE CK_RO_ID = ? to
change quantity and status of a request reorder row.

– DELETE FROM ITSO.CHECK_REORDER WHERE CK_RO_ID = ? to
delete of a request reorder row.

– The JNDI names of the remote home and local home interface.

– The JNDI names of the queue connection factory and the queues we will
use to run the ITSO Bank sample BMP Entity Bean called from a
Message-driven Bean.

The methods we use for managing data access to the WSAD5 database are
defined in a data access object interface named CheckDAO.java and the
implementation of the data access methods for DB2 is coded in
DB2CheckDAO.java. The check reorder ID is the input value for following
methods:

� public int findCheck(int ckroID), which returns a valid check reorder id if it
exists or zero if no valid check reorder id is found in the check_reorder table

� public CheckVO getCheck(int ckroID) requests the check_reorder table
and customer table and returns all value objects in CheckVO

� public boolean deleteCheck(int ckroID) deletes a row in check_reorder
table and returns true if the record was successful deleted, otherwise false is
returned.
 Chapter 5. Enterprise JavaBeans 2.0 87

The CheckVO value objects are passed as an argument for the following data
access methods:

� public int insertCheck(CheckVO checkVO). This method selects the maximal
check reorder id from the check_reorder table and increments this value by
one. Then a new row is inserted into the table using customerid, quantity and
status from CheckVO. A new current timestamp is used for the date_ordered
field. The new check reorder id is returned to the calling routine.

� public boolean updateStatus(CheckVO checkVO) updates the quantity, the
status and the date_ordered timestamp. The method returns true, if the
update was successful, otherwise it returns false.

The connection to the WSAD5 database we are using in the ITSO Bank sample
is built in the ConnectionPoolHelper.java. This utility class looks up the data
source name and returns one instance of the connection to the WSAD5
database. It uses the singleton design pattern, so that we have never more than
one connection to the database. Connectivity to the data source is created in a
synchronized method during the first demand for connection to WSAD5.

We have implemented the abstract class DAOFactory, where we can define
more data access objects like the CheckDAO or other data access factories than
DB2. The DB2 factory is coded in the class DB2DAOFactory, where we can get
a connection to the WSAD5 database and the check_reorder data access object
DB2CheckDAO. A new instance of the CheckDAO for DB2 is called with
CheckDAO checkDAO =
DAOFactory.getDAOFactory(DAOFactory.DB2_DAO).getCheckDAO();. If the
data source is not found, an exception is thrown coded in
DataSourceNotFound.java. The table below gives an overview of all data
access modules the ITSO Bank sample uses for DB2 access to WSAD5
database.
88 Linux Application Development Using WebSphere Studio 5

Table 5-1 Data access modules for DB2

Each method in DB2CheckDAO closes the connection at the end of the method,
allowing the EJB container to pool JDBC connections. The implementation of the
data access objects makes use of connection pooling, which is a built-in function
in the JDBC 2.0 specification and happens automatically. The data access
objects performs the data manipulation with prepared statements. connection
pooling and prepared statements are important performance improver. Prepared
statements are cached by DB2 when executed on a connection. If a prepared
statement is executed, DB2 looks up the cache and if the statement has been
executed previously, it reuses the previous prepared version, which improves
processing time.

Persist the bean
In this chapter we will finish the coding of the BMP Entity Bean. All what remains
to do is to persist the bean. Because the bulk of JDBC code required for the
methods to perform CRUD (create, read, update, delete) operations is already
done in the DB2CheckDAO data access module, we only have to insert a few
lines of code into the CheckBean.java source.

First we have to define the data access object CheckDAO and to create an
instance of our data access object. This is done in the setEntityContext() method

Data access module Functional description

Constants.java Installation dependent variable like JNDI
names, queue factory names and queue
names, data source names, user ID and
password for DB2, etc.

ConnectionPoolHelper.java Delivers one connection to the data
source using JNDI naming service.

DataSourceNotFoundException.java Extends exception and indicates that the
database could not be found

CheckDAO.java The data access object interface

DB2CheckDAO.java The DB2 data access object contains the
java coding of the data manipulation
language

DB2DAOFactory The class extends the DAOFactory for
DB2. Returns a connection and new DB2
data access object

DAOFactory Abstract class to get a vendor specific
DAOFactories and data access objects
 Chapter 5. Enterprise JavaBeans 2.0 89

and the data access object is released in the unsetEntityContext within the
CheckBean.

Example 5-15 Implement data access object CheckDAO into the CheckBean

package jms.itso.bean;
/**
 * Bean implementation class for Enterprise Bean: Check
 */
public class CheckBean implements javax.ejb.EntityBean {

private javax.ejb.EntityContext myEntityCtx;
public jms.itso.bean.CheckDAO checkDAO = null;
public jms.itso.bean.CheckVO checkVO = null;
public javax.ejb.EntityContext getEntityContext() {

return myEntityCtx;
}
/**
 * setEntityContext
 */
public void setEntityContext(javax.ejb.EntityContext ctx) {

myEntityCtx = ctx;
System.out.println(

“CheckBean:setEntityContext(): START”);
// Get data access objects
checkDAO =
DAOFactory.getDAOFactory(1).getCheckDAO();

}
/**
 * unsetEntityContext
 */
public void unsetEntityContext() {

myEntityCtx = null;
// Release data access objects
checkDAO = null;

}
...

}

In ejbCreate(Check checkVO) we get custid and quantity from the argument
checkVO. The incoming values are copied into the bean. Then we have to insert
a record into the check_reorder table and to query the customer table for title,
first name, and last name of the incoming custid. The new requestid and the
customer info are copied to the beans value objects. The bean’s primary key is
returned.
90 Linux Application Development Using WebSphere Studio 5

Example 5-16 Persist new records in ejbCreate()

/**
 * ejbCreate
 */
public jms.itso.bean.CheckKey ejbCreate(CheckVO checkVO)

throws javax.ejb.CreateException {
setCheckVO(checkVO);
int ckroID = checkDAO.insertCheck(checkVO);
System.out.println(
"CheckBean:ejbCreate(): New Requestid: " + ckroID);
checkVO.setCkroID(ckroID);
String customer =

checkDAO.findCustomer(checkVO.getCustID());
checkVO.setCustomer(customer);
// Write to the console log
System.out.println("CheckBean:ejbCreate:CkroID=" +

checkVO.getCkroID());
System.out.println("CheckBean:ejbCreate:CustID=" +

checkVO.getCustID());
System.out.println("CheckBean:ejbCreate:Quantity=" +

checkVO.getQuantity());
System.out.println("CheckBean:ejbCreate:Status=" +

checkVO.getStatus());
System.out.println("CheckBean:ejbCreate:Time=" +

checkVO.getDate_ordered());
System.out.println("CheckBean:ejbCreate:Customer=" +

checkVO.getCustomer());
return new CheckKey(ckroID);
}

It would be also possible to complete the customer information in the
ejbPostCreate() method, called by the container after the ejbCreate() method.
We then would have to retrieve the customer field with
checkDAO.findCustomer(checkVO.getCustID)) method and to complete the
bean’s value object within ejbPostCreate().

The ejbFindByPrimaryKey() method in the CheckBean class has to find a
primaryKey. The primaryKey is given by the calling routine with the
CheckKey(int) method. The method returns the primaryKey. If no record is found
a FInderException is thrown.

Example 5-17 ejbFindByPrimaryKey() method in CheckBean

/**
 * ejbFindByPrimaryKey
 */
public jms.itso.bean.CheckKey ejbFindByPrimaryKey(
 Chapter 5. Enterprise JavaBeans 2.0 91

jms.itso.bean.CheckKey primaryKey)
throws javax.ejb.FinderException {
System.out.println(

"CheckKey:ejbFindByPrimaryKey: START");
int ckroID =

checkDAO.findCheck(primaryKey.getCkroID());
if (ckroID != 0) {

return primaryKey;
}
else {

throw new javax.ejb.FinderException();
}

}

The ejbLoad() method in the CheckBean class is responsible to load a row from
the database table. By using getPrimaryKey() in ejbLoad() it is known which row
to load from the table. There is no return code from this method.

Example 5-18 ejbLoad() method in CheckBean

/**
 * ejbLoad
 */
public void ejbLoad() {

System.out.println("CheckBean:ejbLoad: START");
CheckKey primaryKey =

(CheckKey) myEntityCtx.getPrimaryKey();
checkVO = checkDAO.getCheck(primaryKey.getCkroID());
// Write to the console log
System.out.println("CheckBean:ejbLoad:CkroID=" +

checkVO.getCkroID());
System.out.println("CheckBean:ejbLoad:CustID=" +

checkVO.getCustID());
System.out.println("CheckBean:ejbLoad:Quantity=" +

checkVO.getQuantity());
System.out.println("CheckBean:ejbLoad:Status=" +

checkVO.getStatus());
System.out.println("CheckBean:ejbLoad:Time=" +

checkVO.getDate_ordered());
System.out.println("CheckBean:ejbLoad:Customer=" +

checkVO.getCustomer());
}

ejbStore() saves the bean instance’s object values into the underlying database.
It is the complement of ejbLoad(). The container worries about the proper time to
call ejbLoad() or ejbSave(). The bean should be prepared to accept an ejbLoad()
and ejbStore() at almost any time. This is one advantage of an EJB, you do not
have to worry about synchronizing the bean’s objects with the underlying
92 Linux Application Development Using WebSphere Studio 5

database. In our ITSO Bank bean sample, there was no need to implement
ejbStore(). Because we only inserted rows and loaded rows into and from the
database table check-reorder, an update of the database rows was not
necessary. If we have to implement the ejbStore() method, then we should
introduce dirty markers to track change of the object value and indicating that an
update of the row is required.

To finish building the BMP Entity Bean Check, we have to deploy and generate
RMIC code: Select the J2EE Navigator perspective and click the ITSOBankEJB
project. Right-click Generate -> Deploy and RMIC Code... A dialog appears
where you have to click the checkbox for the Check Entity Bean. Click the Finish
button, and WebSphere Studio Application Developer V5.0 starts generating
RMIC code for the BMP Entity Bean Check.

Deployment descriptor
Now let us take a look at the deployment descriptor, shown below.

Example 5-19 The CheckBean’s deployment descriptor ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar id="ejb-jar_ID">

<display-name>ITSOBankEJB</display-name>
<enterprise-beans>

<entity id="Check">
<ejb-name>Check</ejb-name>
<home>jms.itso.bean.CheckHome</home>
<remote>jms.itso.bean.Check</remote>
<local-home>jms.itso.bean.CheckLocalHome
</local-home>
<local>jms.itso.bean.CheckLocal</local>
<ejb-class>jms.itso.bean.Checkean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>jms.itso.bean.CheckKey

</prim-key-class>
<reentrant>False</reentrant>

</entity>
...

</enterprise-beans>
</ejb-jar>

The persistence-type element indicates whether we are Bean-Managed
Persistent or Container-Managed Persistent. For Bean-Managed Persistent, set
it to Bean.
 Chapter 5. Enterprise JavaBeans 2.0 93

The prim-key-class element specifies our primary key class
jms.itso.beanCheckKey.

The reentrant element dictates whether our bean can call itself through another
bean. A bean is re-entrant if it calls another bean, which the calls back our bean.

Write client code calling the bean
In this chapter we will have a look from the client’s point of view, who wants to
use the BMP Entity Bean. The client is our Message-driven Bean RcvQ0, where
we received the custid and the quantity of check reorders the customer wants to
receive from the ITSO Bank. The Message-driven Bean will delegate the
database work to our bean. To call a bean typically looks like this:

� Look up the home object of the bean.
� Use the home object to create an EJB object.
� Call the business method.
� Remove the EJB object.

Whenever we have to lookup for a resource in a network, we use the Java
Naming and Directory Interface (JNDI). Before we can use JNDI, the initial
context is required as a first starting point for JNDI services. The JNDI service
delivers a reference to the home object of the bean, if the bean name is found.
Because a bean is a RMI-IIOP object we need to cast it as a remote object. The
static method PortableRemoteObject with the narrow() operation casts the JNDI
name to a RMI-IIOP interface object. If the calling EJB and the Entity Bean
resides in the same Java Virtual Machine and the same EAR-file, there is no
need for using a RMI-IIOP interface. Simply use a lookup for the home name of
the Entity Bean.

Example 5-20 Calling the BMP Entity Bean Check from the MDB RcvQ0Bean

package jms.itso.bean;

/**
 * Bean implementation class for Enterprise Bean: RcvQ0
 */
public class RcvQ0Bean

implements javax.ejb.MessageDrivenBean,
javax.jms.MessageListener {

private javax.ejb.MessageDrivenContext fMessageDrivenCtx;
private javax.naming.Context jndiContext;
private jms.itso.bean.CheckHome home;
private jms.itso.bean.CheckVO checkVO;
private jms.itso.bean.CheckVO newcheckVO;
private jms.itso.bean.Check bean;
/**
 * RcvQ0Bean
94 Linux Application Development Using WebSphere Studio 5

 */
public RcvQ0Bean() {

System.out.println("RcvQ0Bean: RcvQ0Bean()");
}
/**
 * getMessageDrivenContext
 */
public javax.ejb.MessageDrivenContext

getMessageDrivenContext() {
System.out.println(

"RcvQ0Bean: getMessageDrivenContext()");
return fMessageDrivenCtx;

}
/**
 * setMessageDrivenContext
 */
public void setMessageDrivenContext(

javax.ejb.MessageDrivenContext ctx) {
System.out.println(

"RcvQ0Bean: setMessageDrivenContext()");
fMessageDrivenCtx = ctx;
try {

jndiContext =
new javax.naming.InitialContext();

}
catch (javax.naming.NamingException e) {

System.out.println(
"RcvQ0Bean: Could not create JNDI context: " + e.toString());

}
try {

java.util.Properties env =
System.getProperties();

env.put(
javax.naming.Context.INITIAL_CONTEXT_FACTORY,
Constants.NAMING_CONTEXT_FACTORY_CLASS);
env.put(
javax.naming.Context.PROVIDER_URL,
"iiop://" + Constants.NAMING_CONTEXT_HOST_NAME
+ ":" + Constants.NAMING_CONTEXT_PORT_NUMBER
+ "/");
jndiContext =

new javax.naming.InitialContext(env);
home = (jms.itso.bean.CheckHome)

jndiContext.lookup(
Constants.CHECK_HOME_NAME);

}
catch (Exception ex) {

System.out.println(
"RcvQ0Bean: Runtime Error:");
 Chapter 5. Enterprise JavaBeans 2.0 95

ex.printStackTrace();
}

}
/**
 * ejbCreate
 */
public void ejbCreate() {

System.out.println("RcvQ0Bean: ejbCreate()");
}
/**
 * onMessage
 */
public void onMessage(javax.jms.Message msg) {

// Receive queue messages and pass to next queue
javax.jms.MapMessage inMessage = null;
try {

if (msg instanceof javax.jms.MapMessage) {
inMessage = (javax.jms.MapMessage) msg;
// Get Customerid and Quantity
int custid =

inMessage.getInt("Custid");
int quantity =

inMessage.getInt("Quantity");
// Insert a new check reorder
System.out.println(

"RcvQ0Bean: ---> CheckBean");
checkVO = new jms.itso.bean.CheckVO();
checkVO.setCustID(custid);
checkVO.setQuantity(quantity);
checkVO.setStatus("received");

bean = home.create(checkVO);

newcheckVO =
new jms.itso.bean.CheckVO();

newcheckVO = bean.getCheckVO();
System.out.println(
"RcvQ0Bean:CheckBean: CkroID = "

+ newcheckVO.getCkroID());
System.out.println(

"RcvQ0Bean:CheckBean: CustID = "
+ newcheckVO.getCustID());

System.out.println(
"RcvQ0Bean:CheckBean:Quantity="
+ newcheckVO.getQuantity());

System.out.println("
RcvQ0Bean:CheckBean: Status = "
+ newcheckVO.getStatus());

System.out.println(
96 Linux Application Development Using WebSphere Studio 5

"RcvQ0Bean:CheckBean:Customer="
+ newcheckVO.getCustomer());

System.out.println(
"RcvQ0Bean:CheckBean: Time = "
+ newcheckVO.getDate_ordered());

}
else {

System.out.println("RcvQ0Bean: “ +
“Message of wrong type: " +
inMessage.getClass().getName());

}
}
catch (javax.jms.JMSException e) {

e.printStackTrace();
fMessageDrivenCtx.setRollbackOnly();

}
catch (Throwable te) {

te.printStackTrace();
}

}
/**
 * ejbRemove
 */
public void ejbRemove() {

System.out.println("RcvQ0Bean: ejbremove()");
}

}

Summary
BMP beans gives the application ultimate control over JDBC, and thus you have
unlimited flexibility for how you map your objects to the database. Most people
would love to go with CMP beans, but are afraid of the risk if it is not flexible
enough. With WebSphere Studio Application Developer V5.0, it is easy to
develop BMP beans, if we have data access routines available. Sending output to
the console log or other logging or tracing systems allows you to understand the
methods that are used by the container, and the methods that are causing
bottlenecks, such as repeated loads and stores. If you start your server in debug
mode, you may step through the BMP bean and see how it works.

In this chapter we walked through following steps to write a BMP Entity Bean:

� We defined of business logic the ITSO Bank bean sample for check reorder.

� We coded our value objects and their getters and setters in CheckVO.

� With WebSphere Studio Application Developer V 5.0, we generated a BMP
Entity Bean Check and implemented the CheckVO value object into the bean
 Chapter 5. Enterprise JavaBeans 2.0 97

methods as an argument and with a set and get method. This enables us to
interact with the bean.

� We defined the primary key of the bean and implemented the primary key in
the CheckKey class.

� We wrote data access methods and defined SQL statements to persist our
value object into an underlying database.

� We applied the data access methods in bean’s methods ejbCreate(),
ejbFindByPrimaryKey() and ejbLoad().

� We generated RMIC code for deployment.

� We implemented client code into the Message-driven Bean RcvQ0Bean to
make use of the BMP Entity Bean managing check reorders.

5.2 ITSO Bank bean sample
The ITSO Bank bean example builds a check reorder application (Figure 5-10).
The application is stored in the ITSOBankEAR.ear file and uses a HTML page,
JSPs, one servlet to build a jpeg, Message-driven Beans for information
exchange, and one BMP Entity Bean for the database related work of the
application.
98 Linux Application Development Using WebSphere Studio 5

Figure 5-10 The ITSO Bank sample configuration

The ITSO Bank bean examples consists of following resources:

� Prior starting the bean sample we need to configure two request queues
(LP1, LP2) and one reply queue (LP0). The listener ports LP0, LP1 and LP2
have to be assigned to the queue names Q0, Q1 and Q2 and the
corresponding JNDI queue names jms/itso/Q0, jms/itso/Q1 and jms/itso/Q1.
All queues adhere to the queue connection factory QCF with the JNDI name
jms/itso/QCF. To define all the queue definitions use administrative console
for WebSphere Application Server V5.0 or the Admin client and JMS Provider
Options as described in 5.1.1, “Java Message-driven Beans” on page 60.

� index.html in ITSOBankWeb. In index.html there are two formulas to enter
either customerid and quantity to reorder checks, or to enter a requestid to
retrieve a previous check reorder. The reorder formula calls sndQ1rcvQ2.jsp
with parameter ‘C=’ for the custid and ‘Q=’ for quantity and the requestid
formula calls the sndQ0rcvQ2.jsp with parameter ‘R=’ for the check reorder
requestid.
 Chapter 5. Enterprise JavaBeans 2.0 99

� itso.bank.check.Constants.java holds the required JNDI names, queue
factory name and queue names constants used by the ITSO Bank bean
sample.

� sndQ1rcvQ2.jsp in ITSOBankWeb. The JavaServer Page accepts the
parameters ‘C=’ and ‘Q=’ and sends their values as a mapped text message
to the request queue named listener port LP1 (JNDI name is jms/itso/Q1 and
queue name Q1). The message driven-bean RcvQ1SndQ2Bean.java will
receive this message and then call the BMP Entity Bean Check to insert one
check reorder into the check_reorder table. After sending the custid-quantity
mapped message to Q1, we try to receive a message from reply queue Q2 in
order to check wether all components of the samples are working properly.

Note that we limited the wait time to 1 minute (60000 m/sec) for receiving the
message. If we do not a time limited receive and there is no message coming
from Q2, our JSP thread would never end until there is a message on queue
Q2. The following code snippet performs the receive of a message from Q2
implemented in the JSP sndQ1rcvQ2.jsp:

Example 5-21 JSP code snippet to receive a queue message using JMS

<%
}
catch (Exception e) {

System.err.println("Error on sending message " + e);
}
// Receive reply message queue
String rName =
itso.bank.check.Constants.QUEUE_DESTINATION_JNDI_NAME_Q2;
try {

queue = (javax.jms.Queue) ic.lookup(rName);
}
catch (Exception e) {

System.err.println("JNDI lookup failed " + e);
}
try {

qConn = qConnFactory.createQueueConnection();
qSession = qConn.createQueueSession(false,

javax.jms.Session.AUTO_ACKNOWLEDGE);
qReceiver = qSession.createReceiver(queue);
qConn.start();
// Receive the Check Reorder Message
// during one minute
message = (javax.jms.MapMessage)

qReceiver.receive((long)60000);
if (message != null) {

ckroid = message.getInt("Requestid");
custid = message.getInt("Custid");
quantity = message.getInt("Quantity");
100 Linux Application Development Using WebSphere Studio 5

inserted = message.getInt("Inserted");
customer = message.getString("Customer");

%>
<P>Check Reorder received from ITSO Bank.<P>
<% out.println("Custid: " + custid); %>

<% out.println("Quantity: " + quantity); %>

<% out.println("Inserted: " + inserted); %>

<% out.println("Requestid: " + ckroid); %>

<% out.println("Customer: " + customer); %>

<%
System.out.println("sndQ1rcvQ2.jsp: " +

message);
}
else {

System.out.println("sndQ1rcvQ2.jsp: “ +
“No Message received during last minute.");
%><P>No Message could be received from ITSO Bank during last

minute.<P>
<%

}
qConn.close();

}
catch (Exception e) {

System.err.println("Error receiving message " + e);
}

%>

� Once sndQ1rcvQ2.jsp receives a message from Q2, it calls the servlet
Imgmap0.java in the itso.bank.check package of the ITSOBankWeb project
as a jpeg. The Imgmap0.java servlet accepts the customer info as a
parameter and produces a jpeg file with the customer info presenting the
produced check to the customer as a picture.

� sndQ0rcvQ2.jsp in ITSOBankWeb. Instead of sending the
customer-quantity message as done in sndQ1rcvQ2, this jsp sends a
requestid to queue Q0. The message-driven bean RcvQ0SndQ2Bean.java
will receive the message and calls the Entity Bean Check using the
findByPrimaryKey() method. The results from the bean are then passed to the
queue Q2 where sndQ0rcvQ2.jsp will receive the message to make the
requested check reorder visible using the jpeg producer servlet
Imgmap0.java.

� itso.bank.check.Imgmap0.java in ITSOBankWeb is a jpeg producing
servlet: the contentType is “image/jpeg”. It takes the customer info with title,
first name and last name, and draws it into the jpeg. The servlet imports the
com.sun.image.codec.jpeg package and applies the Graphic2D package. The
ITSO header.gif and the ok.jpg are also loaded into the servlet to build up the
 Chapter 5. Enterprise JavaBeans 2.0 101

check picture. Both pictures have to be in the same package as the servlet,
because it uses the statement this.getClass().getResource(name); to
create the URL that loads both pictures.

� jms.itso.bean.RcvQ0SndQ2Bean.java in ITSOBankEJB is the
Message-driven Bean that receives a requestid of a check reorder, previously
created by the Entity Bean Check. It is also a client program for the BMP
Entity Bean Check. It produces a primaryKey with the incoming requestid
ckroid. Then the MDB bean calls the findByPrimaryKey() method in the Entity
Bean Check and stores the bean’s returning values of the ejbLoad() method
into the value objects checkVO. To send the results back to the JSP
sndQ0rcvQ2 all values in checkVO are passed to the reply queue Q2. The
responsible method to send a mapped message into the reply queue Q2 is
passQ2(custid, quantity, inserted, requestid, customer), shown in the
coding sample below:

Example 5-22 Method passQ2 in MDB RcvQ0SndQ2Bean.java

public class RcvQ1SndQ2Bean implements
javax.ejb.MessageDrivenBean, javax.jms.MessageListener {
private javax.ejb.MessageDrivenContext fMessageDrivenCtx;
private javax.naming.Context jndiContext;
...

/**
 * Pass forward to Q2: passQ2
 * Method requires jndiContext
 */
private void passQ2(int custid, int quantity, int inserted,

int requestid, String customer) {
javax.jms.QueueConnectionFactory

qConnectionFactory = null;
javax.jms.QueueConnection qConnection = null;
javax.jms.QueueSession qSession = null;
javax.jms.Queue queue = null;
javax.jms.QueueSender qSender = null;
javax.jms.MapMessage message = null;
try {

qConnectionFactory =
(javax.jms.QueueConnectionFactory)
jndiContext.lookup(
Constants.QUEUE_CONN_FACTORY_JNDI_NAME);
queue = (javax.jms.Queue)
jndiContext.lookup(
Constants.QUEUE_DESTINATION_JNDI_NAME_Q2);

}
catch (javax.naming.NamingException e) {

System.out.println(
"RcvQ0SndQ2Bean: JNDI lookup failed: "
102 Linux Application Development Using WebSphere Studio 5

+ e.toString());
}
try {

qConnection =
qConnectionFactory.createQueueConnectition();
qSession =
qConnection.createQueueSession(false,

javax.jms.Session.AUTO_ACKNOWLEDGE);
qSender = qSession.createSender(queue);
message = qSession.createMapMessage();
message.setInt("Custid", custid);
message.setInt("Quantity", quantity);
message.setInt("Inserted", inserted);
message.setInt("Requestid", requestid);
message.setString("Customer", customer);
qSender.send(message);
System.out.println(

"RcvQ0SndQ2Bean: Custid: " + custid);
System.out.println(

"RcvQ0SndQ2Bean: Quantity: "
+ quantity);

System.out.println(
"RcvQ0SndQ2Bean: Inserted: "
+ inserted);

System.out.println(
"RcvQ0SndQ2Bean: Requestid: "
+ requestid);

System.out.println(
"RcvQ0SndQ2Bean: Customer: "
+ customer);

}
catch (javax.jms.JMSException e) {

System.out.println(
"RcvQ0SndQ2Bean: Exception occurred: "
+ e.toString());

}
finally {

if (qConnection != null) {
try { qConnection.close(); }
catch (javax.jms.JMSException e) {}

}
 }

}

}

� jms.itso.bean.RcvQ1SndQ2Bean.java in ITSOBankEJB is nearly the same
as RcvQ1SndQ0Bean.java, but instead of a
 Chapter 5. Enterprise JavaBeans 2.0 103

home.findByPrimaryKey(primaryKey) call to the Entity Bean Check, the custid
and quantity are stored as value objects of checkVO and then the
home.create(checkVO) method is performed. The inserted values are
returned into a new value object newcheckVO with the command
bean.getCheckVO();. The value objects in newcheckVO are the passed to
queue Q2 with the passQ2(int,int,intint,String) method.

� The BMP Entity Bean Check with their data access objects are applied as
described in 5.1.2, “EJB 2.0 Bean Managed Persistence Entity Bean” on
page 78.

� The ITSO Bank bean sample also requires the check_reorder and customer
table of the ITSO Bank sample database named WSAD5.

The ITSO Bank bean sample was designed to demonstrate the development of
EJB 2.0 Message-driven Beans and Bean Managed Persistence Entity Beans in
WebSphere Studio Application Developer V5.0, and for the deployment in
WebSphere Application Server V5.0 under Red Hat Linux Version 8.0. If there
are thousands of check reorders, then we have to ensure that the messages
received by the JSPs from queue Q2 are belonging to the same session ID and
were initiated by the same JSP.

Otherwise, it is possible that one JSP receives a message on the queue Q2, that
was born by another JSP via messages to queue Q0 or queue Q1. The sending
messages do not necessarily belong to the receiving message. This problem is
due to the fact, that the message producing JSPs and the message consuming
EJB 2.0 Message-driven Beans have no common information; that means
asynchronous messages.

The Message-driven Beans in EJB 2.0 are responsible for coordinating tasks
involving other Entity Beans or session beans, The Message-driven Bean
subscribes to or listens for specific asynchronous messages, to which it
responds by processing the message and managing the actions of other beans.
The message consumer part in the JSPs was implemented for a functional
checking purpose only during development.

This approach was possible because the developer in most cases is a single
user of a JSP running in the WebSphere Studio Application Developer V5.0 test
server using the try-and-error method. For this situation only the approach was
useful. If a reader intends to adapt the sample into a production system, we
strongly recommend to eliminate the message consumer part in the JSPs and to
eliminate the message forwarding part in the Message-driven Beans. The JSP
then will send the check reorder requests and then forget about it. Since the
messages are asynchronous, no one should expect or wait for a reply.
104 Linux Application Development Using WebSphere Studio 5

Running the ITSO Bank bean sample
The ITSO Bank bean sample was tested on WebSphere Studio Application
Developer V5.0 and on WebSphere Application Server V5.0 on Red Hat Linux
V8.0. The DB2 for Linux version we used was 7.2 with FixPak 7. If the user has
created the required database tables, defined the database in his test server, and
imports the ITSOBankEAR file into his V5.0 test server to run the index.html for
check reorder, the following messages should appear in the console log.

Example 5-23 The ITSO Bank bean sample console log

[10/30/02 10:57:21:626 PST] a1c8af4 WebGroup I SRVE0180I: [ITSOBankWeb]
[/ITSOBankWeb] [Servlet.LOG]: /sndQ1rcvQ2.jsp: init
[10/30/02 10:57:22:728 PST] 2088cafd SystemOut O RcvQ1SndQ2Bean:
RcvQ1SndQ2Bean()
[10/30/02 10:57:22:728 PST] 2088cafd SystemOut O RcvQ1SndQ2Bean:
setMessageDrivenContext()
[10/30/02 10:57:22:728 PST] 2088cafd SystemOut O RcvQ1SndQ2Bean:
ejbCreate()
[10/30/02 10:57:22:738 PST] 2088cafd SystemOut O RcvQ1SndQ2Bean: --->
CheckBean
[10/30/02 10:57:22:838 PST] 2088cafd SystemOut O
CheckBean:setEntityContext: START
[10/30/02 10:57:22:878 PST] 2088cafd SystemOut O DB2CheckDAO#insertCheck:
CALLED.
[10/30/02 10:57:22:878 PST] 2088cafd SystemOut O ConnectionPoolHelper: Look
for Datasource
[10/30/02 10:57:22:888 PST] 2088cafd ConnectionFac W J2CA0122I: Resource
reference jdbc/WSAD5 could not be located, so default values of the following
are used: [Resource-ref settings]

res-auth: 1 (APPLICATION)
res-isolation-level: 0 (TRANSACTION_NONE)
res-sharing-scope: false (UNSHAREABLE)
res-resolution-control: 999 (undefined)

[10/30/02 10:57:23:108 PST] 2088cafd SystemOut O ConnectionPoolHelper: Data
Source available
[10/30/02 10:57:24:350 PST] 2088cafd SystemOut O DB2CheckDAO#insertCheck:
111
[10/30/02 10:57:24:350 PST] 2088cafd SystemOut O CheckBean:ejbCreate(): New
Requestid: 111
[10/30/02 10:57:24:360 PST] 2088cafd SystemOut O DB2CheckDAO#findCustomer:
106
[10/30/02 10:57:25:362 PST] 2088cafd SystemOut O
CheckBean:ejbCreate:CkroID=111
[10/30/02 10:57:25:362 PST] 2088cafd SystemOut O
CheckBean:ejbCreate:CustID=106
 Chapter 5. Enterprise JavaBeans 2.0 105

[10/30/02 10:57:25:362 PST] 2088cafd SystemOut O
CheckBean:ejbCreate:Quantity=6
[10/30/02 10:57:25:362 PST] 2088cafd SystemOut O
CheckBean:ejbCreate:Status=received
[10/30/02 10:57:25:362 PST] 2088cafd SystemOut O
CheckBean:ejbCreate:Time=null
[10/30/02 10:57:25:362 PST] 2088cafd SystemOut O
CheckBean:ejbCreate:Customer=Mr Akis Laftsidis
[10/30/02 10:57:25:402 PST] 2088cafd SystemOut O CheckBean:ejbPostCreate():
START
[10/30/02 10:57:25:402 PST] 2088cafd SystemOut O CheckBean:ejbStore: START
[10/30/02 10:57:25:402 PST] 2088cafd SystemOut O
CheckBean:ejbStore:CkroID=111
[10/30/02 10:57:25:402 PST] 2088cafd SystemOut O
CheckBean:ejbStore:Quantity=6
[10/30/02 10:57:25:402 PST] 2088cafd SystemOut O
CheckBean:ejbStore:Status=received
[10/30/02 10:57:25:432 PST] 2088cafd SystemOut O CheckBean:ejbLoad: START
[10/30/02 10:57:25:432 PST] 2088cafd SystemOut O DB2CheckDAO#getCheck: 111
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O DB2CheckDAO#getCheck:
CkroID located.
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O
CheckBean:ejbLoad:CkroID=111
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O
CheckBean:ejbLoad:CustID=106
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O
CheckBean:ejbLoad:Quantity=6
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O
CheckBean:ejbLoad:Status=received
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O
CheckBean:ejbLoad:Time=2002-10-30 10:57:24.34
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O
CheckBean:ejbLoad:Customer=Mr Akis Laftsidis
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O CheckBean:ejbStore: START
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O
CheckBean:ejbStore:CkroID=111
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O
CheckBean:ejbStore:Quantity=6
[10/30/02 10:57:25:452 PST] 2088cafd SystemOut O
CheckBean:ejbStore:Status=received
[10/30/02 10:57:25:462 PST] 2088cafd SystemOut O RcvQ1SndQ2Bean: New
CK_RO_ID: 111
[10/30/02 10:57:25:472 PST] 2088cafd SystemOut O RcvQ1SndQ2Bean: Custid:
106
[10/30/02 10:57:25:472 PST] 2088cafd SystemOut O RcvQ1SndQ2Bean: Quantity:
6
[10/30/02 10:57:25:472 PST] 2088cafd SystemOut O RcvQ1SndQ2Bean: Inserted:
1

106 Linux Application Development Using WebSphere Studio 5

[10/30/02 10:57:25:472 PST] 2088cafd SystemOut O RcvQ1SndQ2Bean: Requestid:
111
[10/30/02 10:57:25:472 PST] 2088cafd SystemOut O RcvQ1SndQ2Bean: Customer:
Mr Akis Laftsidis
[10/30/02 10:57:25:482 PST] a1c8af4 SystemOut O sndQ1rcvQ2.jsp:
JMS Message class: jms_map
 JMSType: null
 JMSDeliveryMode: 2
 JMSExpiration: 0
 JMSPriority: 4
 JMSMessageID: ID:414d51205741535f6c6f63616c686f73000000000000000a
 JMSTimestamp: 1036004245472
 JMSCorrelationID:null
 JMSDestination: queue:///WQ_Q2?expiry=0
 JMSReplyTo: null
 JMSRedelivered: false
 JMS_IBM_PutDate:20021030
 JMSXAppID:Application Developer
 JMS_IBM_Format:MQSTR
 JMS_IBM_PutApplType:28
 JMS_IBM_MsgType:8
 JMSXUserID:bruno
 JMS_IBM_PutTime:18572547
 JMSXDeliveryCount:1
{Custid=106, Inserted=1, Requestid=111, Quantity=6, Customer=Mr Akis Laftsidis}
[10/30/02 10:57:25:722 PST] a1c8af4 WebGroup I SRVE0180I: [ITSOBankWeb]
[/ITSOBankWeb] [Servlet.LOG]: Imgmap0: init
[10/30/02 10:58:06:371 PST] 3c92caf7 SystemOut O RcvQ1SndQ2Bean: --->
CheckBean
[10/30/02 10:58:06:371 PST] 3c92caf7 SystemOut O DB2CheckDAO#insertCheck:
CALLED.
[10/30/02 10:58:06:391 PST] 3c92caf7 SystemOut O DB2CheckDAO#insertCheck:
112
[10/30/02 10:58:06:391 PST] 3c92caf7 SystemOut O CheckBean:ejbCreate(): New
Requestid: 112
[10/30/02 10:58:06:391 PST] 3c92caf7 SystemOut O DB2CheckDAO#findCustomer:
102
[10/30/02 10:58:06:641 PST] 3c92caf7 SystemOut O
CheckBean:ejbCreate:CkroID=112
[10/30/02 10:58:06:641 PST] 3c92caf7 SystemOut O
CheckBean:ejbCreate:CustID=102
[10/30/02 10:58:06:641 PST] 3c92caf7 SystemOut O
CheckBean:ejbCreate:Quantity=2
[10/30/02 10:58:06:641 PST] 3c92caf7 SystemOut O
CheckBean:ejbCreate:Status=received
[10/30/02 10:58:06:641 PST] 3c92caf7 SystemOut O
CheckBean:ejbCreate:Time=null
[10/30/02 10:58:06:641 PST] 3c92caf7 SystemOut O
CheckBean:ejbCreate:Customer=Mr Bruno Huelbuesch
 Chapter 5. Enterprise JavaBeans 2.0 107

[10/30/02 10:58:06:641 PST] 3c92caf7 SystemOut O CheckBean:ejbPostCreate():
START
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O CheckBean:ejbStore: START
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbStore:CkroID=112
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbStore:Quantity=2
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbStore:Status=received
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O CheckBean:ejbLoad: START
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O DB2CheckDAO#getCheck: 112
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O DB2CheckDAO#getCheck:
CkroID located.
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbLoad:CkroID=112
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbLoad:CustID=102
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbLoad:Quantity=2
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbLoad:Status=received
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbLoad:Time=2002-10-30 10:58:06.38
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbLoad:Customer=Mr Bruno Huelbuesch
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O CheckBean:ejbStore: START
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbStore:CkroID=112
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbStore:Quantity=2
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O
CheckBean:ejbStore:Status=received
[10/30/02 10:58:06:651 PST] 3c92caf7 SystemOut O RcvQ1SndQ2Bean: New
CK_RO_ID: 112
[10/30/02 10:58:06:661 PST] 3c92caf7 SystemOut O RcvQ1SndQ2Bean: Custid:
102
[10/30/02 10:58:06:661 PST] 3c92caf7 SystemOut O RcvQ1SndQ2Bean: Quantity:
2
[10/30/02 10:58:06:661 PST] 3c92caf7 SystemOut O RcvQ1SndQ2Bean: Inserted:
1
[10/30/02 10:58:06:661 PST] 3c92caf7 SystemOut O RcvQ1SndQ2Bean: Requestid:
112
[10/30/02 10:58:06:661 PST] 3c92caf7 SystemOut O RcvQ1SndQ2Bean: Customer:
Mr Bruno Huelbuesch
[10/30/02 10:58:06:671 PST] 3c91caf7 SystemOut O sndQ1rcvQ2.jsp:
JMS Message class: jms_map
 JMSType: null
 JMSDeliveryMode: 2
 JMSExpiration: 0
108 Linux Application Development Using WebSphere Studio 5

 JMSPriority: 4
 JMSMessageID: ID:414d51205741535f6c6f63616c686f73000000000000000c
 JMSTimestamp: 1036004286661
 JMSCorrelationID:null
 JMSDestination: queue:///WQ_Q2?expiry=0
 JMSReplyTo: null
 JMSRedelivered: false
 JMS_IBM_PutDate:20021030
 JMSXAppID:Application Developer
 JMS_IBM_Format:MQSTR
 JMS_IBM_PutApplType:28
 JMS_IBM_MsgType:8
 JMSXUserID:bruno
 JMS_IBM_PutTime:18580666
 JMSXDeliveryCount:1
{Custid=102, Inserted=1, Requestid=112, Quantity=2, Customer=Mr Bruno
Huelbuesch}
[10/30/02 10:58:40:279 PST] 3c97caf7 WebGroup I SRVE0180I: [ITSOBankWeb]
[/ITSOBankWeb] [Servlet.LOG]: /sndQ0rcvQ2.jsp: init
[10/30/02 10:58:40:370 PST] 3ca48af7 SystemOut O RcvQ0SndQ2Bean:
RcvQ0SndQ2Bean()
[10/30/02 10:58:40:370 PST] 3ca48af7 SystemOut O RcvQ0SndQ2Bean:
setMessageDrivenContext()
[10/30/02 10:58:40:370 PST] 3ca48af7 SystemOut O RcvQ0SndQ2Bean:
ejbCreate()
[10/30/02 10:58:40:370 PST] 3ca48af7 SystemOut O RcvQ0SndQ2Bean: --->
CheckBean
[10/30/02 10:58:40:380 PST] 3ca48af7 SystemOut O
CheckKey:ejbFindByPrimaryKey: START
[10/30/02 10:58:40:380 PST] 3ca48af7 SystemOut O DB2CheckDAO#findCheck: 111
[10/30/02 10:58:40:390 PST] 3ca48af7 SystemOut O DB2CheckDAO#findCheck:
CkroID located.
[10/30/02 10:58:40:390 PST] 3ca48af7 SystemOut O
CheckBean:setEntityContext: START
[10/30/02 10:58:40:390 PST] 3ca48af7 SystemOut O CheckBean:ejbLoad: START
[10/30/02 10:58:40:390 PST] 3ca48af7 SystemOut O DB2CheckDAO#getCheck: 111
[10/30/02 10:58:40:890 PST] 3ca48af7 SystemOut O DB2CheckDAO#getCheck:
CkroID located.
[10/30/02 10:58:40:890 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:CkroID=111
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:CustID=106
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:Quantity=6
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:Status=received
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:Time=2002-10-30 10:57:24.34
 Chapter 5. Enterprise JavaBeans 2.0 109

[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:Customer=Mr Akis Laftsidis
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O CheckBean:ejbLoad: START
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O DB2CheckDAO#getCheck: 111
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O DB2CheckDAO#getCheck:
CkroID located.
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:CkroID=111
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:CustID=106
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:Quantity=6
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:Status=received
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:Time=2002-10-30 10:57:24.34
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbLoad:Customer=Mr Akis Laftsidis
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O CheckBean:ejbStore: START
[10/30/02 10:58:40:900 PST] 3ca48af7 SystemOut O
CheckBean:ejbStore:CkroID=111
[10/30/02 10:58:40:990 PST] 3ca48af7 SystemOut O
CheckBean:ejbStore:Quantity=6
[10/30/02 10:58:40:990 PST] 3ca48af7 SystemOut O
CheckBean:ejbStore:Status=received
[10/30/02 10:58:41:000 PST] 3ca48af7 SystemOut O RcvQ0SndQ2Bean: Custid:
106
[10/30/02 10:58:41:000 PST] 3ca48af7 SystemOut O RcvQ0SndQ2Bean: Quantity:
6
[10/30/02 10:58:41:000 PST] 3ca48af7 SystemOut O RcvQ0SndQ2Bean: Inserted:
0
[10/30/02 10:58:41:000 PST] 3ca48af7 SystemOut O RcvQ0SndQ2Bean: Requestid:
111
[10/30/02 10:58:41:000 PST] 3ca48af7 SystemOut O RcvQ0SndQ2Bean: Customer:
Mr Akis Laftsidis
[10/30/02 10:58:41:010 PST] 3c97caf7 SystemOut O sndQ0rcvQ2.jsp:
JMS Message class: jms_map
 JMSType: null
 JMSDeliveryMode: 2
 JMSExpiration: 0
 JMSPriority: 4
 JMSMessageID: ID:414d51205741535f6c6f63616c686f73000000000000000e
 JMSTimestamp: 1036004321000
 JMSCorrelationID:null
 JMSDestination: queue:///WQ_Q2?expiry=0
 JMSReplyTo: null
 JMSRedelivered: false
 JMS_IBM_PutDate:20021030
 JMSXAppID:Application Developer
110 Linux Application Development Using WebSphere Studio 5

 JMS_IBM_Format:MQSTR
 JMS_IBM_PutApplType:28
 JMS_IBM_MsgType:8
 JMSXUserID:bruno
 JMS_IBM_PutTime:18584100
 JMSXDeliveryCount:1
{Custid=106, Inserted=0, Requestid=111, Quantity=6, Customer=Mr Akis Laftsidis}
[10/30/02 10:58:49:052 PST] 3caa8af7 SystemOut O DB2CheckDAO#getCheck:
CkroID located.
[10/30/02 10:58:49:052 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:CkroID=112
[10/30/02 10:58:49:052 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:CustID=102
[10/30/02 10:58:49:052 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:Quantity=2
[10/30/02 10:58:49:052 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:Status=received
[10/30/02 10:58:49:052 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:Time=2002-10-30 10:58:06.38
[10/30/02 10:58:49:052 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:Customer=Mr Bruno Huelbuesch
[10/30/02 10:58:49:062 PST] 3caa8af7 SystemOut O CheckBean:ejbLoad: START
[10/30/02 10:58:49:062 PST] 3caa8af7 SystemOut O DB2CheckDAO#getCheck: 112
[10/30/02 10:58:49:062 PST] 3caa8af7 SystemOut O DB2CheckDAO#getCheck:
CkroID located.
[10/30/02 10:58:49:062 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:CkroID=112
[10/30/02 10:58:49:062 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:CustID=102
[10/30/02 10:58:49:062 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:Quantity=2
[10/30/02 10:58:49:062 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:Status=received
[10/30/02 10:58:49:062 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:Time=2002-10-30 10:58:06.38
[10/30/02 10:58:49:062 PST] 3caa8af7 SystemOut O
CheckBean:ejbLoad:Customer=Mr Bruno Huelbuesch
[10/30/02 10:58:49:072 PST] 3caa8af7 SystemOut O CheckBean:ejbStore: START
[10/30/02 10:58:49:072 PST] 3caa8af7 SystemOut O
CheckBean:ejbStore:CkroID=112
[10/30/02 10:58:49:082 PST] 3caa8af7 SystemOut O
CheckBean:ejbStore:Quantity=2
[10/30/02 10:58:49:082 PST] 3caa8af7 SystemOut O
CheckBean:ejbStore:Status=received
[10/30/02 10:58:49:082 PST] 3caa8af7 SystemOut O RcvQ0SndQ2Bean: Custid:
102
[10/30/02 10:58:49:082 PST] 3caa8af7 SystemOut O RcvQ0SndQ2Bean: Quantity:
2

 Chapter 5. Enterprise JavaBeans 2.0 111

[10/30/02 10:58:49:082 PST] 3caa8af7 SystemOut O RcvQ0SndQ2Bean: Inserted:
0
[10/30/02 10:58:49:082 PST] 3caa8af7 SystemOut O RcvQ0SndQ2Bean: Requestid:
112
[10/30/02 10:58:49:092 PST] 3caa8af7 SystemOut O RcvQ0SndQ2Bean: Customer:
Mr Bruno Huelbuesch
[10/30/02 10:58:49:092 PST] 3ca98af7 SystemOut O sndQ0rcvQ2.jsp:
JMS Message class: jms_map
 JMSType: null
 JMSDeliveryMode: 2
 JMSExpiration: 0
 JMSPriority: 4
 JMSMessageID: ID:414d51205741535f6c6f63616c686f730000000000000010
 JMSTimestamp: 1036004329092
 JMSCorrelationID:null
 JMSDestination: queue:///WQ_Q2?expiry=0
 JMSReplyTo: null
 JMSRedelivered: false
 JMS_IBM_PutDate:20021030
 JMSXAppID:Application Developer
 JMS_IBM_Format:MQSTR
 JMS_IBM_PutApplType:28
 JMS_IBM_MsgType:8
 JMSXUserID:bruno
 JMS_IBM_PutTime:18584909
 JMSXDeliveryCount:1
{Custid=102, Inserted=0, Requestid=112, Quantity=2, Customer=Mr Bruno
Huelbuesch}
112 Linux Application Development Using WebSphere Studio 5

Chapter 6. The eXtensive Markup
Language

In this chapter, we discuss the following sections:

� XML tools in WebSphere Application Developer gives an introduction to the
XML tools that are available in WebSphere Application Developer for Linux
Version 5.

� Introducing ITSO Banking example using XML gives an introduction to the
ITSO Banking example as used in this chapter.

� Using the wizards to create XML from SQL shows how to create and generate
XML from an SQL query. Also, describes how to use the various editors to
update XML files.

� Dynamically generating the XML from SQL describes the use of “SQLtoXML”
class library with the example servlet.

� Using the XSL debugger and transformation tools shows how the XSL
debugger and transformation tool helps you debug or transform XSL
stylesheets.

� Motivation to use XML/XSL instead of JSP gives a short opportunity to use
XML/XSL with the XSLT technology instead of JavaServer Pages in a Web
application using Struts.

6

© Copyright IBM Corp. 2003. All rights reserved. 113

6.1 XML tools in WebSphere Application Developer
Following is a list of the visual XML development environments in WebSphere
Studio Application Developer V5 for Linux:

� Debug and edit XSL files with code assist

� Create, view and validate DTDs, XML schemas, XML documents and XSL
style sheets

� Generate JavaBeans from XML

� XML security contains a new digital signature wizard

� Java XML/XSL wizard client that help you convert JavaBean data into a DOM
tree

� Generate XSL script that transform document that are defined mappings
between XML documents

� Generate an HTML or XML documents by applying an XSL stylesheet to an
XML document using the Xalan processor

� Produce XML from an SQL query

� Build mappings between DTD files and relational tables

� Generate a document access definition (DAD) script, used by IBM DB2 XML
Extender, to compose XML documents from existing DB2 data, or
decompose XML documents into DB2 data

� Create and execute XPath using the wizard

The following list are the new functions in WebSphere Studio Application
Developer Version 5:

� New XSL Debug Perspective to step visually through an XSL transformation
script, highlighting the transformation. Debugging XSLs in now easy!

� The powerful XSL wizards make creation of XSL stylesheets easy!

� New XSL Editor - XPath wizard creates visually and tests XPath expressions
before adding to an XSL document.

� Java Bean XML/XSL Client Wizard - Converts the data in a Java Bean
(including EJBs) into a DOM tree

� XML Security - Uses the advanced encryption technology for securing XML
documents

� XML Editor enhancements to associate XSL/DTD/XSD with an XML
document. Simplifies document validation and transformation.
114 Linux Application Development Using WebSphere Studio 5

6.2 Introducing ITSO Banking example using XML
In this chapter, we will describe some of the features that we use for our example,
and give you an overview of the various parts of the ITSO Banking example.
Walking through our example will give you an opportunity to get started with the
new XML features that are available for WebSphere Studio Application
Developer on Linux.

The following list includes some of the features that we cover:

� How to build an XML from an SQL query - The SQL to XML wizard creates an
XML source code from a query. You can create an XML schema or a DTD
that will build the structure of your XML source code. There are two Java class
libraries, SQLtoXML and XMLtoSQL, which are required for your applications
to execute successfully. For example, in our example we use the SQLtoXML
Java class library to perform the database queries.

� Creating HTML or XML documents by applying an XSL stylesheet against an
XML document using the Xalan processor. Our example uses the Xalan
processor to build the HTML and XML documents.

� XSL debugging and transformation tools - This allows you apply XSL
documents to XML documents that transform them into new HTML
documents. You may use the XSL debugger to visually step through an XSL
transformation script.

� Show the use of the various XML editors - The XML editor can be used to
inspect, modify, and validate XML documents. The DTD editor can be used to
view DTD documents and also convert them into XSD (XML schema)
documents. The editors are described in details later in the chapter.

� Use of user DTDs, XML schemas, XML documents, and XSL stylesheets

The ITSO Banking example for this chapter will perform the following functions:

� Acquires the user ID and password

� Authenticating the user

� Performs the necessary calculations to obtain the account balance for the
user; uses an SQL query to access the example WSAD5 database

� Displays the results in an HTML page

Once you have completed this chapter, the SQL statement will be as follows
(Example 6-1).
 Chapter 6. The eXtensive Markup Language 115

Example 6-1 Select statement for customer account balance

SELECT
 ITSO.CUSTOMER.FIRSTNAME,
 ITSO.CUSTOMER.LASTNAME,
 ITSO.ACCOUNT.BALANCE,
 ITSO.ACCOUNT.ACCTYPE
FROM
 ITSO.CUSTOMER, ITSO.CUSTACCT, ITSO.ACCOUNT
WHERE
 ITSO.CUSTOMER.CUSTOMERID = ITSO.CUSTACCT.CUSTOMERID
 AND ITSO.CUSTACCT.ACCID = ITSO.ACCOUNT.ACCID
 AND ITSO.CUSTOMER.USERID = :userid
 AND ITSO.CUSTOMER.PASSWORD = :passwd

The ITSO Banking example functions are built using XML not Enterprise
JavaBeans as shown in Chapter 5, “Enterprise JavaBeans 2.0” on page 59. As
stated earlier, there are two Java class libraries, SQLtoXML and XMLtoSQL,
which are required for your applications to execute successfully. Since our SQL
query uses select, we will mainly be using the SQLtoXML library. The XMLtoSQL
library is used for inserts or deletes. The functions for the example are created in
two stages:

� Using the wizards to create XML from SQL queries. We use the RDB to XML
mapping (SQL to XML wizard) editor to execute a database query and
convert the results into an XML format. During all this steps, the mapping
editor generates the DTD or the XML schema describing a list of customers
and their balances.

� Dynamically generating the XML from SQL queries. We go to implement the
dynamic way from SQL to XML to use the SQLtoXML library to get the
dynamical results. The SQLtoXML is a library. This library provides useful
classes/methods that can be used by servlets and other development tools
(SQL to XML wizard) to perform database queries. The query result is to
obtain in an XML format corresponding DTD, XML schema, and a default XSL
to transform the generated XML data into HTML.

We have also added some information to help you use the XSL debugger and
transformation tools. At the end of the XML chapter, you may find that the
XML/XSL development is similar to JavaServer Pages (JSP) and it shows an
opportunity to develop a Web application without JSP technology (using the
StrutsCX Framework).
116 Linux Application Development Using WebSphere Studio 5

6.3 Using the wizards to create XML from SQL
In the following section, we will show the database to XML mapping, how to
create an SQL query, generating XML from the SQL query, and how to use the
XML, DTD, and XSL editors.

6.3.1 RDB to XML mapping
In data perspective of your Workbench, you will find the SQL to XML wizard that
helps you produce a SQL statement. The SQL to XML wizard gives the
developers the capability of generating XSL and XML files from a SQL statement.

The Figure 6-1 shows the flow of the RDB to XML mapping as generated by the
wizard.

Figure 6-1 Flow of the RDB to XML mapping

The above figure clearly shows that the wizard will create the necessary
documents as well as a frontend HTML. The select statement is shown in
Example 6-1 on page 116.

Here are the steps that you have to follow to create an RDB to XML mapping:

1. Create a database connection.
2. Import the connection to your project.
3. Use the SQL builder to build the query.
4. Use the RDB to XML mapping to convert the results into XML.
 Chapter 6. The eXtensive Markup Language 117

6.3.2 Create a SQL query
In this section we will describe steps 1, 2, and 3 for creating RDB to XML
mapping:

1. Create an XML workspace by issuing the following command from your home
directory:

wsappdev50 -data workspace_XML

2. Change to the Data perspective.

3. In the DB Servers window, right-click WSAD5 and select Reconnect. If you
need to re-connect to the database use the following variables:

Connection name: WSAD5
Database name: WSAD5
UserID: db2inst1
Password: ********
JDBC driver class is: db2java.zip

4. Expand the WSAD5 connection and select WSAD(jdbc:db2:WSAD5)
database.

5. Right-click and from the pop-up menu select Import to Folder.

6. Click Browse and select the ITSOBankData. This folder does not exist,
therefore, it will be automatically created by the tool.

7. In the Data Definition view expand ITSOBankData project and navigate to
the statement folder located under /Web Content/WEB-INF/databases.
Create a new select statement called customerBalance. Enter the select
query form, replace the default SELECT * query and save the editor contents.

8. To execute the query click this button:

9. Enter the variable as shown in Figure 6-2.

Figure 6-2 Input of specify variables

You should get the following results (Figure 6-3).
118 Linux Application Development Using WebSphere Studio 5

Figure 6-3 Result of the SQL query in the SQL builder

You are now ready to move to the next step.

6.3.3 Generate XML from SQL query
In this section we will describe steps 4 for creating RDB to XML mapping:

1. It is very simple to create the transformation files from SQL to XML, however,
before we begin we have to create a Web application that contains an
Enterprise Application. Use the Enterprise Application wizard to create a
Enterprise Application Project called ITSOBankEAR and associate this with a
new Web project called ITSOBankWeb. You will now have two new projects.

2. Expand the ITSOBankWeb project under libraries in the Navigator view.
Ensure that the sqltoxml.jar library is available. You can acquire this from the
following location in the file system:

/opt/IBM/WebSphereStudio/eclipse/plugins/com.ibm.etools.sqltoxml/jar

3. If required, import this to the ITSOBankWeb project.

4. Open the Data Definition perspective, select the customerBalance
statement, right-click, and from the pop-up menu select Generate new XML.

5. In the XML from An SQL Query window verify that the information you have
supplied in this wizard is exactly as shown in Figure 6-4.
 Chapter 6. The eXtensive Markup Language 119

Figure 6-4 XML From An SQL Query Wizard

6. You may need to specify the user ID and password. To indicate them, use
single quotes around the values to indicate values for the user ID and
password (see Figure 6-2 on page 118).

7. Open the Web Perspective and select the Navigator view. Expand the Web
Content directory as follows (Figure 6-5).
120 Linux Application Development Using WebSphere Studio 5

Figure 6-5 Generated files for customerBalance example

You will notice that five different files have been created for customerBalance.
Each of these files have different extensions. You have successfully generated an
RDB to XML mapping.

In the next section, we will show that the editors can be used to view or update
these files, as well as the contents of each file:

6.3.4 XML, DTD, and XSL editors
The following subsections describes with generated output files the opportunities
when using the editors in WebSphere Studio Application Developer.

XML editor
Switch to the XML Perspective, in the Navigator view, double-click
customerBalance.xml file to open with the XML editor. Expand the document
structure in the Design view. Click the Source tab. The Source view of the XML
editor shows the results of the query. The following are the results of the query in
XML format. The XML file was generated by the SQLToXML class, which
acquires input, userid=cust101 and passwd=ws, from the customerBalance.xst
file.

Example 6-2 SQL results are stored in the customerBalance.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE SQLResult SYSTEM "customerBalance.dtd">
<SQLResult>
 <CUSTOMER_CUSTACCT_ACCOUNT>
 Chapter 6. The eXtensive Markup Language 121

 <FIRSTNAME>Wolfgang</FIRSTNAME>
 <LASTNAME>Sanyer</LASTNAME>
 <BALANCE>10000.00</BALANCE>
 <ACCTYPE>CHECKING</ACCTYPE>
 </CUSTOMER_CUSTACCT_ACCOUNT>
 <CUSTOMER_CUSTACCT_ACCOUNT>
 <FIRSTNAME>Wolfgang</FIRSTNAME>
 <LASTNAME>Sanyer</LASTNAME>
 <BALANCE>98726.26</BALANCE>
 <ACCTYPE>SAVINGS</ACCTYPE>
 </CUSTOMER_CUSTACCT_ACCOUNT>
 <CUSTOMER_CUSTACCT_ACCOUNT>
 <FIRSTNAME>Wolfgang</FIRSTNAME>
 <LASTNAME>Sanyer</LASTNAME>
 <BALANCE>5726.26</BALANCE>
 <ACCTYPE>SAVINGS</ACCTYPE>
 </CUSTOMER_CUSTACCT_ACCOUNT>
</SQLResult>

DTD editor
In the XML Perspective double-click the customerBalance.dtd file in the
Navigator view. This file contains the Document Type Definition (DTD) used by
the query result file customerBalance.xml. It contains the declarations that define
elements for a particular XML file and establishes constraints for how each
element may be used within that particular XML file.

You can use the Outline view to add or remove components of your DTD. When
you select an object in this view, the Design view will display the properties that
are associated with the DTD component object. Also, you can switch to the
Source view to browse and edit the DTD source directly. The Task view is also
active from the Workbench for reporting errors in the DTD file.

XSL editor
This is a text editor to view the source code of an XSL file. It has several text
editing features like content assistant and syntax highlighting. Another useful
feature of this editor is the incremental validation. At any point during your
development of an XSL file, you can start the validation process to validate the
file. Just right-click on the file name in the Navigator view, and select Validate
XSL File. The validation is now running and any error will be reported in red in
the Task view. The validation process also runs when you save a document. To
view the file in the XML Perspective under the Navigator view, double-click
customerBalance.xsl. This has an XML stylesheet that describes XML to HTML
conversion. The XSL file defines the layout of your Web page.
122 Linux Application Development Using WebSphere Studio 5

The customerBalance.html file is a sample HTML file created when the
customerBalance.xsl transformation was applied to customerBalance.xml. The
wizard calls the SQLtoXML library with the required parameters. You can open
the file to see the formatted results from the XML perspective. The HTML output
is as follows (Figure 6-6).

Figure 6-6 customerBalance.html

Example 6-3 is the content of customerBalance.xst that contains information
about the database and the query.

Example 6-3 File customerBalance.xst with database information

<?xml version="1.0" encoding="UTF-8"?>
<SQLGENERATEINFORMATION>
 <DATABASEINFORMATION>
 <LOGINID>db2admin</LOGINID>
 <PASSWORD><![CDATA[db2admin]]></PASSWORD>
 <JDBCDRIVER>COM.ibm.db2.jdbc.app.DB2Driver</JDBCDRIVER>
 <JDBCSERVER>jdbc:db2:WSAD5</JDBCSERVER>
 </DATABASEINFORMATION>
 <STATEMENT>
 <![CDATA[SELECT ITSO.CUSTOMER.FIRSTNAME, ITSO.CUSTOMER.LASTNAME,
ITSO.ACCOUNT.BALANCE, ITSO.ACCOUNT.ACCTYPE FROM ITSO.CUSTOMER, ITSO.CUSTACCT,
ITSO.ACCOUNT WHERE ITSO.CUSTOMER.CUSTOMERID = ITSO.CUSTACCT.CUSTOMERID AND
ITSO.CUSTACCT.ACCID = ITSO.ACCOUNT.ACCID AND ITSO.CUSTOMER.USERID = :userid AND
ITSO.CUSTOMER.PASSWORD = :passwd]]>
 </STATEMENT>
 <OPTIONS>
 <FORMATOPTION>GENERATE_AS_ELEMENTS</FORMATOPTION>
 <RECURSE>FALSE</RECURSE>
 </OPTIONS>
</SQLGENERATEINFORMATION>

In the next section we will use dynamically way using XML from SQL now that
the XML results file will not be stored on the disk. It will be generated in the
memory.
 Chapter 6. The eXtensive Markup Language 123

6.4 Dynamically generating XML from SQL
In this section we want to dynamically generate XML from the SQL query at
runtime using the SQLtoXML class library within a servlet. The library works with
all JDBC databases, such as DB2, Oracle, or Sybase.

The Figure 6-7 shows that the servlet calls to the SQLtoXML class library and
transforms it into XML document (DOM Object), then by using the XSLT
processor to transform to simple HTML.

Figure 6-7 Servlet access to get XML document

The following steps describe more detail:

1. The HMTL page sends a form with user ID and password to the servlet via
HTTP request, invoking the servlet doPost() method.

2. The servlet filters the user ID and password from the HTTP request and
invokes the SQLToXML class library with two parameters.

3. The SQLToXML class library starts the access to the database and retrieves
the data from the database like an XML document.

4. The servlet gets an XML document from the SQLToXML library and
instantiates the XSLT Processor

5. The XSL stylesheet is applied and the HTML result page has been generated
and transferred to the browser. The user can see his actual account balances.

Note: The result of the SQLToXML library in WebSphere Studio
Application Developer Version 5 returns a XML document back. Earlier
versions of WebSphere Studio return the result as stream data. Now no
parsing is necessary.
124 Linux Application Development Using WebSphere Studio 5

6.4.1 Setting up a Web project
To set up the working environment, import files from the samples\ch09 folder into
your Web project (ITSOBankWeb). Figure 6-8 is a Navigator view of the Web
project and its contents.

Figure 6-8 Setting up the environment

You will also need to modify the Deployment Descriptor of the Web project. In the
web.xml file, the servlet tags should contain the following information
(Example 6-4).

Example 6-4 Coding to add in the Deployment Descriptor web.xml

<servlet>
<servlet-name>CustomerBalanceReportsServlet</servlet-name>
<display-name>CustomerBalanceReportsServlet</display-name>
<servlet-class>com.ibm.itso.bank.CustomerBalanceReportsServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>CustomerBalanceReportsServlet</servlet-name>
<url-pattern>/CustomerBalanceReportsServlet</url-pattern>
 Chapter 6. The eXtensive Markup Language 125

</servlet-mapping>

After these additional changes, you have to rebuild the Web project.

6.4.2 Walking through the Web application
Before we execute the Web project, we will explain some of the key files that are
used in the project:

� LoginForm.html - This is a form where you enter the user ID and password
of the customer to view the account balances. The Submit button calls a
servlet and the HTTP request sends parameters.

<FORM METHOD="post"ACTION="CustomerBalanceReportsServlet">

� Following is the init()-method of the servlet, it will create one instance of the
servlet to read the database information from the CustomerBalance.xst file to
set the database information in a QueryProperty. We also instantiate
SQLToXML in this method (see Example 6-5).

Example 6-5 Init - method of the CustomerBalanceReportsServlet

public void init(ServletConfig config) throws ServletException
{

super.init(config);
qprops = new QueryProperties();
try {
URL url = getServletContext().getResource("customerBalance.xst");
DataInputStream dis = new DataInputStream(url.openStream());
qprops.load(dis);
sql2xml = new SQLToXML(qprops);
}catch (Exception e) {}

}

� The doPost()-method filters the user ID and password with the
getparameter()- method as input parameter values into the instance of the
SQLToXML class. After this, the SQLToXML class will be executed to get XML
document as a result. The getXSL()- method helps to read the
CustomerBalance.xsl file. To generate HTML, the DOM object and the xsl
variable will be used as input parameter values of the genHTML()- method to
send HTML via the HTTP response back to the browser (see Example 6-6).

Example 6-6 doPost()- method of CustomerBalanceReportsServlet

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws IOException {
res.setContentType("text/html");
resp = res.getWriter();
String userid = getParameter(req, "userid");
126 Linux Application Development Using WebSphere Studio 5

String passwd = getParameter(req, "passw");
try {

sql2xml.setParameters("'" + userid + "','" + passwd + "'");
sql2xml.execute();
String xsl = getXSL(req);
genHTML(xsl,res,sql2xml.getCurrentDocument());

} catch (Exception e) {
error(resp, e);

}
}

The genHTML()- method represented the transformation as follows:

1. Get an instance of the TransformerFactory by calling its newInstance()-
method.

2. Get a transformer from the TransformerFactory by calling the XSL source’s
newTransformer()- method.

3. Call the transform()- method by referencing a new DOMSource instance as
source and a StreamResult instance as result to write HTML back.

Example 6-7 XSLT transformation

private void genHTML(String xsl, HttpServletResponse res, Document doc) throws
Exception {

res.setContentType("text/html");
PrintWriter writer = res.getWriter();
TransformerFactory tFactory = TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer(new StreamSource(new

StringReader(xsl)));
transformer.transform(new DOMSource(doc),new StreamResult(writer));

}

We will run the Web application using the default XSL file as follows:

1. Right-click LoginForm.html and from pop-up menu select Run on Server.

2. Run the LoginForm.html file with the following values (Figure 6-9).

Note: In the Server selection dialog, make sure that you select
WebSphere Version 5.0 Test Environment
 Chapter 6. The eXtensive Markup Language 127

Figure 6-9 Login form page

3. The HTML output (Figure 6-10) was created by translating XML data and
returning the customerBalance.xsl file while using SQLtoXML class. This is
the default HTML page with the integrating the ITSO Banking example
components.

Figure 6-10 Result page account balances (default)

We will show you how to run the Web application using the ITSO Banking
example XSL:

1. Modify the customerBalanceNew.xsl in the Web project. This represents the
HTML output. It is a good idea to compare with the older customerBalance.xsl
file.

2. Change the servlet name in the XSL file.

3. Open the CustomerBalanceReportsServlet and rename the string
customerBalance.xsl to customerBalanceNew.xsl in the getXSL() method:

URL url = getURL(req, "customerBalanceNew.xsl");

4. Save the servlet and restart the server test environment.

Note: Changes will not be activated until the project is restarted. It is
preferable to stop the server test environment, then start it again.
128 Linux Application Development Using WebSphere Studio 5

5. Once the server is running, run the LoginForm.html file with the following
values (Figure 6-11).

Figure 6-11 Login form page

Figure 6-12 is the HTML output.

Figure 6-12 Result page of account balances (ITSO Banking example style)

6.5 Using the XSL debugger and transformation tools
The XSL debugging and transformation tool helps you debug or transform XSL
stylesheets. Before you can use the debugger or transformation tools, you have
to apply the XSL stylesheet to a source XML file, and generate some HTML
output. You can open the HTML file in a Web browser from the Session view in
the XSL Debug perspective.

The XSL debugging transformation tool records the transformation generated by
the Xalan processor. This processor transforms XML files into HTML, text, or
 Chapter 6. The eXtensive Markup Language 129

other XML file types. It implements the W3C Recommendations for XSL
Transformations (XSLT) and the XML Path Language (XPath).

To use the debugger follow these steps:

1. Select the customerBalanceNew.xsl and customerBalance.xml files from
the Web project (Figure 6-13).

Figure 6-13 XSL and XML file for the transformation into HTML

2. Right-click on the selected files; from the pop-up menu select Apply XSL as
HTML. This action will open the XSL Debug perspective (Figure 6-14). A new
output HTML file is generated and located in the Web content directory under
the name customerBalance_customerBalanceNew_transform.html.
130 Linux Application Development Using WebSphere Studio 5

Figure 6-14 XSL Debug perspective

– The Session view contains a list of XSL debug sessions. The functions of
the navigator buttons are:

• Step forward

• Step backward

• Restart trace

• Run to breakpoint

• Open Web browser

– Current XSL Element view

• This view is your monitor of the transformation. All the informations
about the XSL elements are shown here, line numbers of both XML
and XSL, also attribute values at the current line number.
 Chapter 6. The eXtensive Markup Language 131

– Source view of XSL/XML

• This view shows a currently transformed executed XSL element and
XML element. In the XSL file source you can set several breakpoints to
walk through the transformation.

– Outline view

• This view is a upper navigation view of the XSL file, it allows easy
navigation over the XSL source.

3. You can set known breakpoints in the XSL Source view and step over the XSL
code elements to show the association with the XML file.

4. Finally, click Open the Web browser in the Session view to see the HTML file
resulting from this XSL transformation.

6.6 Motivation to use XML/XSL instead of JSP
This section will show you the advantages of using XSLT technology instead of
JavaServer Page technology in the Web development with Struts. Struts is an
innovative server-side Java Framework designed to build Web applications, and
is hosted by the Apache Software Foundation’s Jakarta Project. This section
shows the drawback of JavaServer Pages in Struts, and gives advice to use an
open source Framework called StrutsCX for replacing JSP (JavaServer Pages)
with XML and XSLT to better separate logic and presentation.

6.6.1 Struts with JavaServer Page drawbacks
The following drawbacks are represented to use Struts with the JavaServer Page
technology:

� The developer can be embedding application logic into the JSPs.

� The JSP syntax is not XML compliant to guarantee that the resulting XML or
HTML output will be well formed.

� Developers have to learn new APIs (Struts tag libraries) and it takes time.

� Recompile time after every change, which can be time consuming with JSPs.

The solutions for these problems can be:

� Separate logic and presentation.
� Enforce well-formed XML and HTML.
� Ease the separation of different view aspects, like layout and style.
� Allow for a faster development cycle.
132 Linux Application Development Using WebSphere Studio 5

These solutions can be realized when using Struts with the XSLT technology
called StrutsCX. This is Struts with Castor XML and XSLT without any
JavaServer Pages. It represents a Framework of classes to replace the JSP
technology. StrutsCX is also open source and can be downloaded from the
following Web site:

http://it.cappuccinonet.com/strutscx/index.html
 Chapter 6. The eXtensive Markup Language 133

http://it.cappuccinonet.com/strutscx/index.html

134 Linux Application Development Using WebSphere Studio 5

Chapter 7. Building a Web application
with Ant

This chapter provides an overview of a powerful tool called Ant. Ant is used to
build and deploy any Java application with or without an integrated development
environment for Linux. This covers the following sections:

� Philosophy of Ant, which describes the philosophy and advantages of using
Ant in a homogenous environments

� Setting up your environment to use Ant shows how to install and set up Ant on
Linux. We will also show how to use Ant.

� Building a J2EE application with Ant shows how to build the ITSO Banking
example using Ant in a stand-alone environment. We will be using the Web
and EJB project from Chapter 5, “Enterprise JavaBeans 2.0” on page 59.

7

© Copyright IBM Corp. 2003. All rights reserved. 135

7.1 Philosophy of Ant
Ant is a build tool that enables you to automate the build process. In this case,
Ant is similar to the make tool make. Ant was designed specifically for Java
development and to support the deployment process. It is an open source,
platform, independent, and it is a Java build tool. It uses XML for data
manipulation and Java as the execution language. Since it uses Java, Ant is
inherently extensible. It can be used in small to large projects, or any software
project that requires integrating many components.

The following lists the reasons why we think Ant is a great build tool.

� It has a very simple syntax that is easy to learn. For XML users, Ant is easy to
use.

� It is cross-platform because it can be used in any environment

� It has build support for J2EE development, for example, EJB compilation and
packaging.

� It supports the deployment process outside the development environment.
Ant gives the ability to automate the deployment process to other application
servers via FTP and Telnet.

� Open source Java project such as Apache, Tomcat, or Cactus use Ant as
their standard build environment.

� Ant supports Java-IDEs like NetBeans, Eclipse, jEdit, and WebSphere Studio
Application Developer.

Ant was developed by the Apache Software Foundation as part of the Jakarta
Project. Ant Version 1.5.1 is now released and can be downloaded from the
following Web site:

http://jakarta.apache.org/ant

7.1.1 Build process approaches
In an ideal world, the environment in which you develop would be homogenous.
For example, same operating system, methodology, and tools. Unfortunately, this
is not the case in most projects. Therefore, we have different ways that we can
approach a build process to develop an application.

Note: Ant Version 1.4.1 comes with WebSphere Studio Application Developer
5.0. You can update Ant in WebSphere Studio Application Developer.
136 Linux Application Development Using WebSphere Studio 5

http://jakarta.apache.org/ant

Stand-alone
In a stand-alone procedure, developers deliver source code, along with the
respective build files for their components. This code would most likely be
delivered to a versioning system like CVS or ClearCase. A systems administrator
would check out all the code and build it using a master build file. Many
development teams use Ant under Linux to develop their components without a
Integrated Development Environment (IDEs). This is a useful approach to have a
build/deployment process to support the whole development.

Integrated in WebSphere Studio
WebSphere Studio Application Developer integrates all the necessary tools to
effectively develop software at every stage in the software development cycle.
The tool provides the Ant support as a built-in feature. Some functions are not
supported (ejbDeploy, earExport, warExport) as Ant tasks generally are in
WebSphere Studio. It is possible to install an ANT extra plug-in to have those
functionalities.

Headless
In some situations, it might be necessary to run the build process outside
WebSphere Studio, but still keep its dependencies. In these situations, a Java
wrapper can be built around Ant to understand these dependencies. One is
provided at:

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0203_searle/searle.html

7.2 Setting up your environment to use Ant
The latest stable version of Ant is available at the Ant Web page:

http://jakarta.apache.org/ant

Ant can be used successfully on several operating systems like Linux, Solaris,
Windows, MacOS X etc. To work with Ant you also need a JDK installed on your
system, at least Version 1.1 or higher. In our installation we used the JDK of IBM
Version 1.3.1.

Here are the steps:

1. Get the newest version from the Apache Ant homepage. We used the actual
version number 1.5.1. Download the binary GNU zip file in your download
directory. (It is also possible to download and install the rpm image file.)

2. Uncompress the GNU zip file and untar the tar file to the /usr/local directory:

gzip -d jakarta-ant-1.5.1.tar.gz
 Chapter 7. Building a Web application with Ant 137

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0203_searle/searle.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0203_searle/searle.html
http://jakarta.apache.org/ant

tar -xvf jakarta-ant-1.5.1.tar

The build tool Ant is now installed on the /usr/local directory. To work with Ant you
have to set up your environment variable on Linux. Each user has his own file to
set the environment. This file calls .bashrc_profile and is executed for every
instance of the bash shell. Set up your .bashrc_profile file with the following
parameters. (See Example 7-1.)

Example 7-1 Set up the bash_profile file

ANT_HOME=/usr/local/jakarta-ant-1.5.1
JAVA_HOME=/opt/IBMJava2-131
PATH=$PATH:$JAVA_HOME/bin:$ANT_HOME/bin
CLASSPATH=$CLASSPATH:$ANT_HOME/lib/ant.jar:$ANT_HOME/lib/optional.jar:$ANT_HOME
/lib/xml-apis.jar:$ANT_HOME/lib/xercesImpl.jar
export ANT_HOME, JAVA_HOME, PATH. CLASSPATH

Call your user profile to setting up your environment, after run the Ant command
to get the help messages back:

$. .bashrc_profile
$ ant -help

7.2.1 Basics of using Ant
The Ant build scripts are build files and are written in XML. Every build file
(build.xml) contains one project element. A project element contains target
elements, and each target consists a set of task elements.

The task elements performs functions such as moving a file; compiling a project;
creating a JAR package; or creating an EAR package.

A property has a name and a value. It is referenced by ${<property.name>} and
can be used in the whole build file. Property values can be set inside a build file
or can be obtained externally from a property file. The advantage of property files
is that you have different properties for only one build file. You only change the
property file for changing your environment. You do not need to modify the build
file. All operating system paths should be inside this file. This is useful for
different test and development environments.

A path is a set of directories or files. The Java compilation task uses a path
reference to determine the class path to use.

In our ITSO Banking example, we want to use the following build-in tasks
(Table 7-1).
138 Linux Application Development Using WebSphere Studio 5

Table 7-1 Build-In tasks of ITSO Banking example

Run Ant
After the Ant installation, we can execute a build file (build.xml) by simply typing
ant at the command line prompt:

$ ant [options] [target1] [target2] [target3] ...

If a build file is not named build.xml, you will need to specify the build file name by
using the -buildfile option:

$ ant -buildfile [xml file] [target]

Build-in task Description

ant Runs Ant on a supplied build file

move Moves a file/directory to a new file/directory. The
destination file if overwritten if it already exists by
default adjustment

echo Output a message to the current System.out

delete Deletes files or directories or a set of files specified by
one or more file sets

javac Compiles a Java source tree, the source and
destination directory will be recursively scanned for
Java source file to compile

mkdir Creates a directory

tstamp Sets properties containing date and time information.

cvs Handles packages/modules retrieved form a CVS
repository

jar Jars a set of files in a Java archive file

war Creates a Web application archive including files that
should end up in the WEB-INF/lib, WEB-INF/classes
or WEB-INF directories

ear Creates an enterprise application archive file similar to
the JAR task. This file includes the whole enterprise
application.

exec Executes a system command with Ant under the
specified operation system
 Chapter 7. Building a Web application with Ant 139

Otherwise, you can run it only with:

$ ant

Ant invokes the help function to see additional command line options:

$ ant -help

7.3 Building J2EE applications with Ant
This section gives a general overview on how to build a J2EE application with the
build tool Ant shown in the ITSO Bank example. These will mainly meet the
requirements of developers and deployers who are building large scale J2EE
applications with source code delivered by different teams or modules. For this
community, it is interesting to have a powerful and simple build tool to reproduce
the whole application. Ant is created to support the development aspect, but it
also can be used in bigger projects as a build and deployment tool.

The ITSO Bank example is a J2EE Enterprise Application. This application
includes a Web project and a EJB project, and is stored in CVS (Concurrent
Versions System) as module names (Table 7-2). We use the CVS system to get
all source code and configurations files out to start the ITSO Banking build file on
a Linux environment.

Table 7-2 Mapping J2EE project to CVS module

The structure of the CVS module name also describes the directory structure on
the Linux environment like the J2EE naming conventions. On the Linux file
system, we will be creating the following structure for the build process
(Figure 7-1).

Project name CVS module name

Enterprise Application Project ITSOBankEAR

Web Project ITSOBankWeb

EJB Project ITSOBankEJB
140 Linux Application Development Using WebSphere Studio 5

Figure 7-1 Flie system structure of the build directory

The build file is named build.xml and uses the file osamurs1.properties to provide
environment information in Linux. The property file contains all important class
paths to build the J2EE application. In order to modify or add the class paths to
the build process, it must be done in this property file. The build file build.xml has
the following targets inside as shown in the Table 7-3.

Table 7-3 Target names of build.xml

The next subsections describes more detail of the targets in the build file.

Target names Description

init Only the message to start the build with the actual timestamp

clean Remove all generated files - used to force a full build

getcvs Export of all needed project with the tag version itso_3 from
the cvs repository, the modules are ITSOBankEAR,
ITSOBankWeb and ITSOBankEJB

web-compile Compiles Java sources form the ITSOBankWeb project into
.class files

ejb-compile Compiles Java sources form the ITSOBankEJB project into
.class file without deployed Java code

ejb-jar Creates the deliverables JAR file of the EJB project, it
depends on the ejb-compile

ejb-deploy Generates deployed code for the WebSphere Application
Server, it calls the deploy tool “ejbdeploy”

war Creates the deliverable war file of the Web project

ear Creates the ear of the whole project within all other
deliverable archive files
 Chapter 7. Building a Web application with Ant 141

Setting properties and path elements
The most important concept to understand working with Ant is the meaning of
the properties. Properties are loosely analogous to variables in that they are
mapped between names and values, and are very similar conceptually to
java.util.Properties. Ant properties depend on the context of their use, denoted by
${property.name} within the build file.

The property task allows a build file to define their own sets of properties. The
variants that we use are the name/value attribute, and loading a set of properties
from a properties file.

We used a property tag in our build file to load the configuration and setting data
into our build process. The property file osamurs1.properties contains all needed
settings of the build environment to build the J2EE application without any written
paths in the build file. To load the property file, we use the property task. (See
Example 7-2.)

Example 7-2 Loading the property file osamurs1.properties

<project name="ITSOBankingExample" default="ear">
<property file="osamurs1.properties" />
...

The values in the properties file may also contain property references. We
consider some lines in our property file osamurs1.properties. (See Example 7-3.)

Example 7-3 Some code lines of the properties file

...
Properties of the ITSOBankWeb project
web=ITSOBankWeb
web.project=${home.build}/ITSOBankWeb
web.sources=${web.project}/Java Source
web.content=${web.project}/Web Content
web.classes=${web.content}/WEB-INF/classes
...

If the file is loaded in the build file, you can refer to all properties in this file to
make the build file independent to any environment or operating system. This is
also helpful for the development in different teams. The teams can create their
own build file.

Note: In the example we used all environment variables from the properties
file as an input for the build file. The build file is independent and can be used
in other applications.
142 Linux Application Development Using WebSphere Studio 5

To set external libraries we need to have the directory called lib. In this directory
there are all the external libraries that we need in our application. These libraries
have to be available at the build time (runtime). We need to use one library
(j2ee.jar) to compile the source code of our project.

The classpath can be simplified in the build file for the project. We use the path
element tag, which contains the pathement tags to set the location of the
common libraries to compile on runtime the Java source code. In our example we
stored the common libraries in the lib directory if they are not set in the class path
of the user (Example 7-4).

Example 7-4 Common library path

...
<path id="common.classpath">

<pathelement location="${lib.j2ee}" />
</path>
...

Target init
The first target to execute is the init target (Example 7-5). All other targets in our
build file depend upon on this. It contains the <tstamp> task to set up properties,
which include the timestamp information like date and time. The properties are
available for the whole build file. To write timestamp information as a message on
the screen, we used the <echo> tag to show the time and the starting date of our
build file.

Example 7-5 Init target in the build file

<target name="init">
<tstamp/>
<echo message="Build of the J2EE Project Banking example started at ${TSTAMP}
on ${TODAY}" />
</target>

To start only the target init on the command line type:

$ ant init

The result of the command will be the current time and date. (See Example 7-6.)

Example 7-6 Output after running the init target on command line

Buildfile: build.xml

init:
 Chapter 7. Building a Web application with Ant 143

 [echo] Build of the J2EE Project Banking example started at 1155 on
October
 19 2002

BUILD SUCCESSFUL

Target clean
The next target after the initialization is the clean target. In our example we clean
up our directory structure. This is very important to start a new build without any
older dependencies from another build cycle before. The <delete> task deletes
the modules and the dest directory. These directories contain all needed
packages and modules from a build cycle before. After this cleaning, we are
ready to start a new build.

Example 7-7 Clean up environment for the next build cycle

<target name="clean" depends="init">
<echo message="Clean all" />
<delete dir="${ear.project}" />
<delete dir="${web.project}" />
<delete dir="${ejb.project}" />
<delete dir="${dest}" />

</target>

Target getcvs
During the development of this book, we used a CVS server as our repository for
coding the samples in WebSphere Studio. The J2EE project structure is the
same as the module structure in CVS. We have to update our build structure
under Linux with a new code level to build the J2EE application. Before we can
do this, you have to create a code base line in CVS called tag version. This
version is now our driver to build the ITSO Bank example. In our example we set
the properties in the property file to configure the connection to the CVS server.

Example 7-8 CVS properties

CVS Properties
cvs.home=:pserver:osamurs1:osamurs1@dhcp39039.almaden.ibm.com:/home/cvs/cvsrep
cvs.command=export -r itso_1
ear=ITSOBankEAR
war=ITSOBankWeb
ejb=ITSOBankEJB
144 Linux Application Development Using WebSphere Studio 5

Ant supports the <cvs> task for working with the CVS server, and all operations
to get out the source code from the repository:

� cvsRoot:Root directory of the remote CVS server
� package: Name of the CVS module to extract (also checkout)
� dest: Directory other than the project’s root directory, where files are

extracted locally

Example 7-9 getcvs target in the build file

<target name="getcvs" depends="clean">
<echo message="Get file from CVS Repository: ${cvs.home}" />
<cvs cvsroot="${cvs.home}" package="${ear}" dest="${home.build}"

command="${cvs.command}" />
<cvs cvsroot="${cvs.home}" package="${web}" dest="${home.build}"

command="${cvs.command}" />
<cvs cvsroot="${cvs.home}" package="${ejb}" dest="${home.build}"

command="${cvs.command}" />
<mkdir dir="${dest}" />

</target>

Target Web-compile of ITSOBankWeb
Before we compile the code of the Web application, we first ensure that the
destination directory exists. We achieve this using the <mkdir> task to create the
classes directory of the Web application. The <copy> task copies all need files
excluding Java sources from the Java source directory into the classes directory.
This function is needed if some configuration files are used in the Java source
directory. After we start with the <javac> task the compile of the Java code in the
Web application directory, specifying with following attributes:

� srcdir: The location of the Java source files
� destdir: The directory where to writer generated .class files
� classpathref: A reference to the class path to use during compilation
� optimize: Use a compiler optimization
� debug: Generate debug information in all class files
� deprecation: Output source locations where deprecated APIs are used

The compile of the Web-compile task is shown in Example 7-10.

Note: The J2EE directory structure below the module directories correspond
to the WebSphere Studio.
 Chapter 7. Building a Web application with Ant 145

Example 7-10 Target web-compile

<target name="web-compile" depends="getcvs">
<mkdir dir="${web.classes}" />
<copy todir="${web.classes}">

<fileset dir="${web.sources}" excludes="**/*.java"/>
</copy>
<javac srcdir="${web.sources}"

destdir="${web.classes}"
classpathref="common.classpath"
optimze="${javac.optimize}"
debug="${javac.debug}"
deprecation="${javac.deprecation}"

</target>

Target ejb-compile of ITSOBankEJB
This compile target for the EJB is nearly identical to that for the Web application
code. The difference is the destination directory for the compiled .class files. All
Java source files and compiled Java classes are located in the same directory
called ejbModule.

Example 7-11 Target ejb-compile

<target name="ejb-jar" depends="ejb-compile">
<echo message="Create JAR file for EJB" />
<jar destfile="${ejb.jar}" manifest="${ejb.meta}/MANIFEST.MF">
 <fileset dir="${ejb.module}">
 </fileset>
</jar>

</target>

Target ejb-jar of ITSOBankEJB
To create a JAR file of the EJB project, we use the Ant <jar> task to package the
EJB JAR file. The <fileset> task specified the directory to package. We stored
this jar file in the ITSOBankEJB directory to generate later deployed Java code.
Now we have only undeployed Java code in the JAR file.

Example 7-12 Target ejb-jar

<target name="ejb-jar" depends="ejb-compile">
<echo message="Create JAR file for EJB" />
<jar destfile="${ejb.jar}">

Note: An Ant itself is not a Java compiler; it simply contains a facade over
compilers such as IBM’s Javac.
146 Linux Application Development Using WebSphere Studio 5

<fileset dir="${ejb.module}">
</fileset>

< /jar>
</target>

Target ejb-deploy of ITSOBankEJB
The previous section described how to generate an undeployed EJB JAR file.
Before we can install the EJBs on an application server like WebSphere, we have
to generate the deployed code of the EJB JAR file. The deployment process
involves examining the EJB code and deployment information, and generating
and compiling WebSphere-specific code that links the EJBs with the WebSphere
EJB container implementation. This target runs the WebSphere tool ejbdeploy
with the undeployed EJB JAR file as input, and generates a new JAR file
containing the deployed code. To start the command line tool ejbdeploy, we have
to be a root user or a special user with root permission in the Linux environment.
The Ant <exec> task helps to call the ejbdeploy tool with the following arguments:

� Name of the input JAR file (undeployed code)
� Name of the working directory
� Name of the output JAR file (deployed code)
� Option -quiet used only to display errors

Example 7-13 Target ejb-deploy

<target name="ejb-deploy" depends="ejb-jar">
<echo message="Create EJB deployed code for WebSphere using the ejbdeploy

tool" />
<exec executable="${was.ejbdeploy}">

<arg value="${ejb.jar}"/>
<arg value="${ejb.project}"/>
<arg value="${ejb.project}/ITSOBankEJB_deployed.jar"/>
<arg value="-quiet"/>

</exec>
<move file="${ejb.project}/ITSOBankEJB_deployed.jar"

tofile="${ear.project}/ITSOBankEJB.jar" />
</target>

The Ant <move> task moves the deployed JAR file to the ITSOBankEAR
directory. Later this directory will be package to the ITSOBankEAR .ear file.
There is only one way to use Ant as a build tool to generate deployed code. It is
also possible to run the command line for ejbdeploy, or to start the Application
Assembly Tool within WebSphere Application Server.
 Chapter 7. Building a Web application with Ant 147

The deployed code includes the RMI (Remote Method Invocation) stub code
generated by the rmic compiler.

Target WAR of ITSOBankWeb
The Web application has to be package in a WAR file. A WAR file is a JAR file
with an extended format; a WEB-INF folder contains classes and a lib folder
containing libraries. The web.xml file in the WEB-INF directory describes the
Web application on the application server; if this file is missing or invalid, the
WAR file does not contain a Web application.

To generate the WAR file in Ant we use the <war> task; this task is a subclass of
the <jar> task, and it also supports all of the parent tasks’s attributes and
elements. The parameters of the <war> task in our example are:

� warfile: The name and location of the created WAR file
� webxml: The web.xml file to be used as a deployment descriptor for WAR file
� manifest: Specify the manifest file to use

The <fileset> task specifies a collections of files to be package. All files and
directories under the Web content directory will be inside. The WAR file will be
created in the ITSOBankEAR directory.

Example 7-14 Generate war file ITSOBankWeb.war

<target name="war" depends="ejb-deploy">
<war warfile="${web.war}" webxml="${webxml}"

 manifest="${web.meta}/MANIFEST.MF">
<fileset dir="${web.content}" />

</war>

</target>

Target EAR of ITSO Bank example
Finally, we have to create the whole Enterprise Application as an EAR file. The
WAR file of the Web application, and the JAR file of the EJB project are available
in the ITSOBankEAR directory. We created an EAR archive of this directory with
the Ant <ear> task. This tasks includes the following parameters:

destfile: The name and location of the EAR file (destination)

Note: The ejbdeploy tool does not actually deploy EJBs into the application
server, it means it does not install them into an instance of the Application
Server.
148 Linux Application Development Using WebSphere Studio 5

appxml: File to incorporate as application.xml

Example 7-15 Target EAR

<target name="ear" depends="war">
<ear destfile="${dest.ear}" appxml="${appxml}">

<fileset dir="${ear.project}"/>
</ear>

</target>

The EAR archive file is now available in the dest directory and ready to install into
the application server as Enterprise Application.

Note: The whole build and property file of the ITSO Bank example with build
log is available in the sample directory in the sample code under the
BuildWithAnt directory.
 Chapter 7. Building a Web application with Ant 149

150 Linux Application Development Using WebSphere Studio 5

Chapter 8. Deploying the Web
application

This chapter describes the deployment of the J2EE application in the following
sections:

� Deploying an Enterprise Application describes step-by-step the manual
deployment and installation of the ITSO Bank example on the Application
Server Version 5 with the administration console.

� Setting up a remote server describes the important steps to create a remote
server instance to publish a Web application to the remote server.

� Automatic deployment by tools shows the way to use the wsadmin command
tool and the Ant build tool to install the ITSO Bank example on the Application
Server Version 5.

8

© Copyright IBM Corp. 2003. All rights reserved. 151

8.1 Deploying an Enterprise Application manually
This section describes the deployment of the J2EE application ITSO Bank
example in the WebSphere Application Server Version 5 on Linux. It contains the
following subsections:

� EAR export from WebSphere Studio Application Developer
� Starting the WebSphere administration console
� Configuration of the WebSphere resources
� Installation of the ITSO Bank EAR file
� Testing the application

8.1.1 EAR export from WebSphere Studio Application Developer
You have to export the file from WebSphere Studio as an EAR file to install it on
the Application Server. Complete the following steps:

1. File menu in WebSphere Studio Application Developer, select Export ...

2. From the Export wizard select the EAR file (Figure 8-1).
152 Linux Application Development Using WebSphere Studio 5

Figure 8-1 Exporting the EAR file

3. Select the EAR Project to export and define the location to export this file to
the Linux directory (/opt/WebSphere/AppServer/installableApps). Choose no
additional options.

4. Click Finish to export.

8.1.2 Starting the WebSphere administration console
To start the administration console on Linux, you have to be in root. Try to use the
First Steps Tool tips to get easy access to the WebSphere Application Server.
You have the opportunity to start or stop the application server, verify the
installation, access to the InfoCenter, run the Application Assembly Tool, access
the administrative console, access the Sample Gallery, or launch the product
registration. In Linux you have to call the shell script firststeps.sh with:

#/opt/WebSphere/AppServer/bin/firststeps.sh &
 Chapter 8. Deploying the Web application 153

The following window appears with the tool tips (Figure 8-2).

Figure 8-2 First Steps Tool Tips

Start the Application Server by selecting Start the Server; you have also the
opportunity to start the server with the shell script startServer.sh and the
argument <servername>. Instead of the tool, run the shell script on the command
line. More detailed information is shown in 8.3 “Automatic deployment by tools”
on page 170.

Once you have started the Application Server, start the administration console.
Click Tool Tip Administrative Console; you also have the opportunity to access
the console with the browser by typing:
http://dhcp39065.almaden.ibm.com:9090/admin in our example. Generally, take
your own hostname. Figure 8-3 should appear.
154 Linux Application Development Using WebSphere Studio 5

Figure 8-3 Administration Console login

The User ID does not required a password. This User ID is stored in a local user
registry to track only the user-specific changes. Type one User ID (root) and click
OK.

Now the Administration Console will be come up (Figure 8-4).

Figure 8-4 WebSphere Administration Console Version 5

8.1.3 Configuration WebSphere resources
To access the database you must first create a JDBC Provider. Use the
administrative console to do this. You need to know where the database software
is already installed, and where the JDBC drivers are located (Figure 8-5).
 Chapter 8. Deploying the Web application 155

Figure 8-5 JDBC Provider

JDBC Provider: Perform the following steps:

1. Click Resources -> JDBC Providers link.

2. From the JDBC Providers frame, make sure the scope is set to Node.

3. Click the New button to create a new JDBC provider.

4. From the New JDBC Provider frame, use the drop-down list box to choose a
JDBC Provider of DB2 JDBC Provider (XA).

5. Click the Apply button to view the settings page of your JDBC Provider. Enter
the following properties:

Name: JDBC Provider (XA)

Native Library Path: <db2_installation_directory>/lib i.e.
/home/db2inst1/sqllib/lib

6. Click the Apply button to update the changes.

Data source: The application uses a data source to access the data from the
database. The data source is associated with the JDBC Provider that supplies
the specific JDBC driver implementation class.

Do the next steps to create the jdbc/WSAD5 data source:

1. Form the JDBC Provider frame, scroll down and click the Data Sources link
(Figure 8-6).

Note: Make sure that you want to use a Version 5 Data Source. If you are
using the EJB specification 1.0 and servlet specification 2.2, you must use a
Version 4.0 Data Source.
156 Linux Application Development Using WebSphere Studio 5

Figure 8-6 Additional Properties: data sources

2. From the Data Source frame click the New button.

3. From the Data Source Configuration frame enter the following properties:

Name: WSAD5

JNDI Name: jdbc/WSAD5

Click Use the Data Source in container managed persistence (CMP).

4. Scroll down and click the Apply button.

5. Scroll down and click the Custom Properties link (Figure 8-7).

Figure 8-7 Custom Properties

6. From the Custom Properties frame click databaseName.

7. From the databaseName frame, change the Value field from SAMPLE to WSAD5
for our databaseName (Figure 8-8).

Figure 8-8 Change the database name value
 Chapter 8. Deploying the Web application 157

8. Click OK button.

9. Next you have to specify a list of userids and passwords for use by Java 2
Connector security. You have to create a J2C Authentication Date Entries.
Click J2C Authentication Data Entries in the Data Source frame
(Figure 8-9).

Figure 8-9 J2C Authentication Data Entries

10.Click New in the J2C Authentication Data Entries page.

11.Fill in the fields on the resulting page like the Figure 8-10: The user ID and
password form your database access.

Figure 8-10 Create a new authentication alias calls itsops

12.Click Apply, return now to the Date Source frame.

13.Set the new alias from the drop-down menu for Component or
Container-managed Authentication Alias field (Figure 8-11), and click Apply.
These aliases are used for the database authentication during runtime.

Figure 8-11 Set the authentication aliases in the Data Source frame

14.Click OK.
158 Linux Application Development Using WebSphere Studio 5

To modify DB2 Websphere variable do the following:

1. From the left-hand pane of the Administration Console, expand Environment
and click Manage WebSphere Variables (Figure 8-12).

Figure 8-12 Environment: WebSphere variables

2. Form the WebSphere Variables frame, scroll down and click
db2_jdbc_driver_path to set the value of your own environment.

3. Make sure that the DB2_JDBC_DRIVER_PATH variable has a value which
points to your DB2 Java installation directory
<db2_installation_directory>/java. This variable needs the JDBC Provider to
find the actual JDBC driver in the configuration (Figure 8-13).

Figure 8-13 DB2 variable

4. Click OK.

All needed JMS configurations are described in Chapter 5. “Enterprise
JavaBeans 2.0” on page 59, under the section “Set up Listener Port, Queue
Names, and JNDI Mapping” on page 63.

At the end, you have to save the configurations of what you have done.
Otherwise, all settings will be not active in the WebSphere configurations.

8.1.4 Installation of the ITSO Bank EAR file
This section discusses how to install the ITSO Bank EAR file in the Application
Server using the administration console. During this task, you will install the
whole J2EE application (like the .ear, .war, and JAR files)

To install the application take the following steps:

1. Start the WebSphere Administration Console Version 5.

2. From the left-hand frame, expand Applications. Click the Install New
Application link (Figure 8-14).
 Chapter 8. Deploying the Web application 159

Figure 8-14 Install new application

3. The Preparing for application install frame comes up (Figure 8-15). Use
the Browse ... button to specify the directory where you stored the EAR file
before (in our example: /opt/WebSphere/AppServer/installableApps). Choose
the Local path.

Figure 8-15 Preparing for application install

4. Click the Next button.

5. From the Default bindings frame, take the defaults setting and click Next.

6. Now walk through seven steps. From the Step 1 in the Preparing for
application frame, specify a directory to install the application. (In our
example: /opt/WebSphere/AppServer/installedApps/dhcp39065. The
dhcp39065 directory is generally the nodename where the Application Server
is installed. Type ITSOBankEAR in the field Application Name (Figure 8-16).

Note: The quantity of the steps depends on the contents of the EAR file. In
our example we have seven steps. If you have only a Web application to
deploy, you might be have less than seven steps.
160 Linux Application Development Using WebSphere Studio 5

Figure 8-16 Step 1: Deployment options

7. Click Next to come to the Step 2 Provide Listener Ports for
Messaging Beans frame make sure the Listener Port is set to LP1.

8. Click Next to come to the Step 3 Provide JNDI Names for Beans frame,
accept the JNDI name settings like the setting below (Figure 8-17).

Figure 8-17 Step 3: Provide JNDI names for beans

9. Click Next to come to the Step 4 Map virtual hosts for Web modules frame,
accept the default setting.

10.Click Next to come to the Step 5 Map modules to application servers
frame; here you specify for each module a target server or a cluster. Accept
the default setting.

11.Click Next to come to the Step 6 Ensure all unprotected 2.0 methods
have the correct level of protection frame; the application contains EJB
2.0 CMP beans that do not have method permissions defined in the

Note: Remember that one port is mapped to one Message-driven Bean
(defined in 5.1.1, “Java Message-driven Beans” on page 60.)
 Chapter 8. Deploying the Web application 161

deployment descriptor for some of the EJB methods. For methods marked
unchecked, no authorization check is performed prior to their invocation.
Accept the default setting.

12.Click Next to come to the Step 7 Summary frame; click Finish to install the
application.

13.You have to receive the message: Application ITSOBankEAR installed
successfully.

14.Click Save on the administrative console taskbar to save the changes to your
configuration.

15.Click Logout on the taskbar of the console. Change to the First Steps frame
to Stop the Server, or use on the command line the shell script
stopServer.sh in the bin directory of the WebSphere Application Server.

8.1.5 Testing the application
You can now test your application on the WebSphere Application Server:

1. Start the Application Server again with the First Steps frame.
2. Open the Web browser with the specific URL:

http://localhost:9080/ITSOBankWeb/index.html

8.2 Setting up a remote server
In this section we want to publish a Enterprise Application inside the WebStudio
Application Developer to a remote server like WebSphere Application Server
Version 5. With Application Developer you can deploy the application to a remote

Note: After clicking Finish, if you receive an Out Of Memory exception and
the source application file does not install, your system might not have
enough memory, or your application might have too many modules in it to
install successfully onto the server.

Note: If you do any changes in the administrative console, you must save
the configuration, otherwise the changes will be lost.

Note: You do not need to restart the application server after each
application installation. This step is only done when there are configuration
changes.
162 Linux Application Development Using WebSphere Studio 5

http://localhost:9080/ITSOBankWeb/index.html

server using a remote server instance and configuration. Before you start, you
have to make sure that the remote server has the following software already
installed:

� IBM WebSphere Application Server Advanced Edition 5.0 for multiplatforms
� IBM Agent Controller
� FTP server (optional)

8.2.1 IBM Agent Controller
This section describes the installation and configuration of the IBM Agent
Controller on the remote server on Linux. We use the rpm-image to install this
software on Linux to run the following command:

rpm -ivh ibmrac-5.0.0.0-0.i386.rpm

The IBM Agent Controller is successfully installed under Linux in the directory:
/opt/IBMRAC

Configure and running the IBM Agent Controller
Run the shell SetConfig.sh in the bin directory of the installation directory of the
Agent Controller. Make sure you are a root user to start the process:

/opt/IBMRAC/bin/SetConfig.sh

Set up the following locations to your environment:

� Installation directory of the Agent Controller
� JDK installation directory (JAVA_HOME)
� Installation directory of the WebSphere Application Server Version 5

After this configuration, you have to start the Agent Controller:

/opt/IBMRAC/bin/RAStart.sh

The logging about the service is stored in the servicelog.log file in the config
directory. If the RAServer processes are running, the Agent Controller is installed
succesfully. You can check the process with the following command:

ps -ef | grep RAServer

8.2.2 Creating a server for remote testing with Application Server
When you creating a server in the Server view of WebSphere Studio Application
Developer, you can specify a remote server as server type if you want to wish to
 Chapter 8. Deploying the Web application 163

test on a remote installation of WebSphere Application Server. In this case you
have to do the following steps:

1. In the Server view of the Server perspective, create the server configuration
for the new remote Application Server: New —> Server Instance and
Configuration. Fill in and select in the fields like below (Figure 8-18):

a. Server Name: Enter a display name for the new server.
b. Folder: Enter a folder name for the server.
c. Select WebSphere Remote Server as server type.

Figure 8-18 Creating a remote server instance
164 Linux Application Development Using WebSphere Studio 5

2. Click Next. The next window appears to specify the Host address of the
remote server (Figure 8-19). Type the fully qualified DNS name, or the IP
address of the remote server machine where WebSphere Application Server
is running.

Figure 8-19 Setting the remote server host address

3. Click Next. In the next window (Figure 8-20), type in the WebSphere
installation directory field in the path where you installed WebSphere
Application Server on the remote machine. This path is the same like the
$WAS_ROOT variable:

a. WebSphere Installation directory is the directory where the Application
Server is installed: i.e. /opt/WebSphere/AppServer

b. Use default WebSphere deployment directory check box when you
creating a remote server to publish to this server. If do not want to use the
WebSphere deployment directory, clear the check box and enter the
WebSphere deployment directory field a new path directory name where
the Web application and server configuration has to be published to the
remote directory in the directories called config and installedApps.

c. Optional: In the DB2 driver location field enter the DB2 location where the
DB2 classes reside in the remote directory.

d. Choose in the check box below the platform of the remote machine. It
depends on which kind of platform your remote machine is running (for
Linux choose Other).
 Chapter 8. Deploying the Web application 165

Figure 8-20 Remote server instance settings

4. Click Next. The following page allows you to create a remote file transfer
instance (Figure 8-21).It contains information for transferring Web
applications and server configurations to the remote server during publishing.
Select one of the following radio buttons:

a. Create a new remote file transfer instance, it defines a new set of
parameters and environment settings needed to transfer files remotely.

i. Copy file transfer mechanism to copy resources directly from one to
another in the file system.

ii. FTP file transfer mechanism copy resources from one machine to
another using File Transfer Protocol (FTP)

b. Use an existing remote file transfer instance lists the already defined
remote file transfer instances that you use for transferring files remotely.
166 Linux Application Development Using WebSphere Studio 5

Figure 8-21 Remote file transfer option

c. If Copy file transfer mechanism is selected the next window appears
with the following fields (Figure 8-22):

i. Project Folder: Type the name of the project where the remote file
transfer will be reside.

ii. Remote file transfer name: Given from the wizard as remote file
transfer name (possible to change).

iii. Remote target directory: Type the remote target directory where you
want to your applications and server configurations published. This
remote target directory is the one seen by the local machine. If
WebSphere Application Server installed on a different machine, then
the remote target directory is the network drive that maps to the
WebSphere deployment directory. If WebSphere Application Server
installed on the same machine as the Workbench, then the remote
target directory should be the same as the contents in the WebSphere
deployment directory: i.e. /opt/WebSphere/AppServer
 Chapter 8. Deploying the Web application 167

Figure 8-22 Remote copy options

iv. Click ext if you want to change the HTTP port number in the next
window of the wizard.

v. Click Finish to create a remote server file instance and a remote
server instance. The server instances appear in the Server view. The
remote file transfer instance appears in the Navigator view of
WebSphere Studio Application Developer.

d. If FTP file transfer mechanism is selected, the next window appears with
the following fields (Figure 8-23):

i. Project Folder: Type the name of the project folder where the remote
server will reside.

ii. Remote file transfer name: Given from the wizard as a remote file
transfer name (Possible to change).

iii. Remote file transfer directory: Type the remote target directory
where you want your application and server configuration published.
This remote target directory points to the WebSphere deployment
directory that is seen form the Workbench using the FTP client
program.

iv. FTP URL: Type the URL that is used to access the FTP server.

v. User login: Type the FTP user ID used to access the FTP server.

vi. User password: Type the FTP password used to access the FTP
server.
168 Linux Application Development Using WebSphere Studio 5

vii. Connection timeout: Type the time (in milliseconds) that the
Workbench will wait attempting to contact the FTP server before timing
out.

viii.Use PASV Mode (Passive Mode) in go through the firewall: Select
this check box if you want pass through a firewall provided that one is
installed between your FTP server and the Workbench.

ix. Use Firewall: Select the check box if you want to use the firewall
options. To change the firewall options, click Firewall Settings to
specify and settings.

Figure 8-23 FTP configuration options
 Chapter 8. Deploying the Web application 169

e. Click Next if you want to change the HTTP port number in the next window
of the wizard.

f. Click Finish to create a remote server file instance and a remote server
instance. The server instances appear in the Server view. The remote file
transfer instance appears in the Navigator view of WebSphere Studio
Application Developer.

8.3 Automatic deployment by tools
This section describes the deployment (installation EAR file) with the
non-graphical WebSphere administrative (wsadmin) scripting program; the uses
of the available command line tools for WebSphere Application Server; and
shows the way to integrate the deployment process in the Ant script in Chapter 7,
“Building a Web application with Ant” on page 135.

8.3.1 Installing application with the wsadmin tool
Scripting is a non-graphical alternative that you can use the configure and
manage the WebSphere Application Server. One manual way is to use only the
administrative console (Web GUI) to configure and install your Enterprise
Application.

The Java application used for the WebSphere Application Server Advanced
Edition Administrative Console in Version 4 has been replaced by a Web
application, which editions use. The Version 5 Web-based console is much
expanded and improved over the Web-based console used for the older version.

The WebSphere Control Program (WSCP) available in Version 4, has also been
replaced by a more flexible and coherent facility (known as wsadmin) which is
available in all Version 5 editions. You can use wsadmin in interactive or batch
modes and perform any operations that you can do with the administrative
console. The wsadmin utility is based on IBM’s Bean Scripting Framework (BSF)
and supports a variety of scripting languages, including JavaScript, JPython, and
Jacl (a Tcl derivative).

The wsadmin tool provides an ability to execute scripts. It supports a full range of
product administrative activities. This tool is located in the
WebSphere/AppServer/bin directory. To invoke a scripting or using the
commands object, you have to call the shell script wsadmin.sh. We want to install
the Enterprise Application ITSO Bank with the command object $AdminApp. We
do not need to create a script to run this command.
170 Linux Application Development Using WebSphere Studio 5

Run the script commands as individual commands; invoke the AdminApp object
command interactively to use the wsadmin -c command from an operating
system command prompt.

The following command uses the EAR file and the command option information
to install the ITSO Bank application:

wsadmin.sh -c “\$AdminApp install <EAR file> {options}”

etc.

wsadmin.sh -c “\$AdminApp install /build/dest/ITSOBankEAR.ear”

$AdminApp Object to allow application object to be managed
install AdminApp command install
<location EAR> Name and the location of the EAR file to install
{options} Additonal options for the EAR file installation

The Example 8-1 shows the output of the installation.

Example 8-1 Command line output application install

Installing of the J2EE Enterprise Application ITSOBankEAR
WASX7209I: Connected to process "server1" on node dhcp39065 using SOAP
connector; The type of process is: UnManagedProcess
ADMA5016I: Installation of ITSOBankEAR started.ADMA5005I: Application
ITSOBankEAR configured in WebSphere repository
ADMA5001I: Application binaries saved
ADMA5011I: Cleanup of temp dir for app ITSOBankEAR done.
ADMA5013I: Application ITSOBankEAR installed successfully.

The application is now successfully installed in the installedApps/<nodename>-
directory. If the configuration of the Application Server has changed, you have to
save the changes with the $AdminConfig object command:

wsadmin.sh -c “\$AdminConfig save”

$AdminConfig Object manipulates configuration data for a WebSphere
installation

save AdminConfig command to save the configuration

Example 8-2 Command line output configuration save

Save configuration
WASX7209I: Connected to process "server1" on node dhcp39065 using SOAP
connector; The type of process is: UnManagedProcess
 Chapter 8. Deploying the Web application 171

8.3.2 Control the Application Server
The WebSphere Application Server contains several command line tools that can
be used to start, stop, and monitor WebSphere Application Server processes and
nodes. These tools work on local server and nodes. They cannot operate on a
remote server or node. In the section before you used the wsadmin tools as
command line tool to install the application. Now we want to show how to start
and to stop the Application Server without the Administrator Console.

Start the Application Server
Make sure, you have the access to run the shell scripts under the bin directory of
the WebSphere Application Server. To start the Server run the startServer.sh
script:

/opt/WebSphere/AppServer/bin/startServer.sh <servername>

The server is started when the following message appears:

Server <servername> open for e-business; process id is <PID>

Stop the Application Server
Similar to the start of the Application Server run the Shell script stopServer.sh to
stop the server.

/opt/WebSphere/AppServer/bin/stopServer.sh <servername>

The server is started when the following message appears:

Server <servername> stop completed.

8.3.3 Deployment with Ant
This section describes the combination of the command line tools wsadmin and
the build tool Ant. This build file creates the ITSO Bank EAR file to deploy it on an
Application Server. You know how to handle the wsadmin tool to install a new
Enterprise Application and to stop and start the Application Server via the
command line. This will be realized only with the <exec> task in Ant. See
Figure 8-24. The build script is complete for the build and deployment process.
172 Linux Application Development Using WebSphere Studio 5

Figure 8-24 Ant invokes the Application Server tools

Update the properties file
The properties file is the important configuration file of the build process. It
includes all needed properties that are used in the build process of the operating
system. To set the properties for the <exec> task, you have to add to your build
properties the following variables:

Properties of the WebSphere Application Server
was.bin= /opt/WebSphere/AppServer/bin
was.admin= wsadmin.sh
was.stop= stopServer.sh
was.start= startServer.sh
appsrv.name= server1
ear.install = \$AdminApp install ${dest.ear}
ear.uninstall = \$AdminApp uninstall ${ear}
save.config = \$AdminConfig save

In the next steps we want to add and explain the additional targets to the build file
build.xml.

First, you have to change in top of the project name the default target attribute
from “ear” to “start-appsrv”. This target is our last target to install the application,
and it depends on all the others. See below:

<project name="ITSOBankingExample" default="start-appsrv">

Note: The Application Server should be up before you are running the Ant
script to install the Enterprise Application, otherwise, the service is not
available to install.
 Chapter 8. Deploying the Web application 173

Target “install-app”
The target “install-app” uses the <exec> task to start the installation with running
the wsadmin tool on the command line. This target depends on the target “ear” to
start the installation:

dir Installation bin-directory of the Application Server
executable Name of the Shell script wsadmin.sh
arg value Using the command task to run the wsadmin tool (-c)
arg value Object AdminApps, location and name of the EAR file to install

Example 8-3 Target “install-app”

<!-- Target install the J2EE Enterprise Application ITSOBankEAR -->
<target name="install-app" depends="ear">
 <echo message="Installing of the J2EE Enterprise Application ${ear}" />
 <exec dir="${was.bin}" executable="${was.admin}" >
 <arg value="-c" />
 <arg value="${ear.install}" />
 </exec>
</target>

Target “save-config”
The target “save-config” uses the <exec> task to save the configuration of the
Application Server with running the wsadmin tool on the command line. You have
to run this task by every changes of the Application Server. This target depends
in our case on the target “install” to save the configuration changes:

dir Installation bin-directory of the Application Server
executable Name of the Shell script wsadmin.sh
arg value Using the command task to run the wsadmin tool (-c)
arg value Object AdminConfig to save the configuration changes

Example 8-4 Target “save-config”

<!-- Target save-config saves the configuration changes of the Application
Server -->

<target name="save-config" depends="install-app">
<echo message="Save configuration" />
<exec dir="${was.bin}" executable="${was.admin}" >

<arg value="-c" />
<arg value="${save.config}" />

</exec>
</target>
174 Linux Application Development Using WebSphere Studio 5

Target “stop-appsrv”
The target “start-appsrv” uses the <exec> task to stop the Application Server on
the command line with Ant, which uses the existing shell script on the
WebSphere/AppServer/bin directory. It depends on the target “save-config”.

dir Installation bin-directory of the Application Server
executable Name of the Shell script stopServer.sh
arg value Name of the Application Server to stop

Example 8-5 Target “stop-appsrv”

<!-- Target stop Application Server -->
<target name="stop-appsrv" depends="save-config">

<echo message="Stop Application Server" />
<exec dir="${was.bin}" executable="${was.stop}" >

<arg value="${appsrv.name}" />
</exec>

</target>

Target “start-appsrv”
The target “start-appsrv” uses the <exec> task to start the Application Server on
the command line with Ant. This target depends on the target “stop” to start the
Application Server again.

dir Installation bin-directory of the Application Server
executable Name of the Shell script startServer.sh
arg value Name of the Application Server to start

Example 8-6 Target “start-appsrv”

<!-- Target start Application Server -->
<target name="start-appsrv" depends="stop-appsrv">

<echo message="Start Application Server" />
<exec dir="${was.bin}" executable="${was.start}" >

<arg value="${appsrv.name}" />
</exec>

</target>

Run Ant
The build file is now modified and can be run on the command line in the build
directory. The output of the StdOutput and StdError can be stored in log files:

ant 1>buildOut.log 2>buildErr.log

or use the Ant option -logfile <logfilename>

ant -logfile build.log
 Chapter 8. Deploying the Web application 175

without any logging, run Ant like:

ant

A sample output of the log file can be found under BuildwithAnt/Build directory.

The Enterprise Application is now successfully installed and can be accessed
with the URL address.

Note: The build and properties files are located in the BuildwithAnt directory in
the sample code.
176 Linux Application Development Using WebSphere Studio 5

Appendix A. Installation instructions

In this appendix, we discuss the following topics:

� How to install Linux shows you how to install Linux.
� How to install WebSphere Studio Application Developer.
� How to install WebSphere Application Server.
� How to install IBM DB2.
� How to configure CVS.
� How to configure Telnet, FTP, and Samba and other useful tools.

A

© Copyright IBM Corp. 2003. All rights reserved. 177

How to install Linux
Follow these steps to install Linux:

1. Boot the computer using the Red Hat Linux 8.0 CD-ROM.

2. At the boot prompt press Enter.

3. In the Welcome window, click Next.

4. In the Language Selection window choose English and click Next.

5. In the Keyboard Configuration window choose U.S. English and click Next.

6. In the Mouse Configuration window choose defaults and click Next.

7. In the Install Type window choose Custom and click Next.

8. In the Disk Partition Step window choose Automatically partition and click
Next.

9. In the Automatic Partitioning window choose to Remove all partition on this
system and click Next.

10.Confirm deletion of partitions and click Next.

11.In the Disk Setup window choose defaults and click Next.

12.In the Boot Loader Configuration window choose defaults and click Next.

13.In the Network Configuration window, select the required Network devices
and DHCP or Static addressing and click Next.

14.In the Firewall Configuration window choose Trusted Devices, select the
default network card, allow all incoming protocols, and click on Next.

15.In the Additional Language Support window choose the defaults and click
Next.

16.In the Time Zone Section window choose your time zone and click Next.

17.In the Account Configuration window enter your root password then click Add
to add a user account and click Next.

18.In the Authentication Configuration window choose the defaults and click
Next.

19.In the Package Group Selection window go to the Desktops section, under
the X Windows System section de-select GNOME. Ensure that KDE is
selected. In the Applications section choose the defaults. In the Development
section under Development Tools, ensure that CVS is selected by default and
select expect. In the System section choose the Administration Tools and
in System Tools select VNC. Click the Select Individual Packages check box
and then click Next.
178 Linux Application Development Using WebSphere Studio 5

20.In the Individual Package Selection window, the User Interface section under
the X section select VNC-server. In the System Environment section under
Shells section select pdksh and zsh. In the Daemons section select wu-ftpd
and ensure samba has already been selected. In Development section under
the Tools select cervisia. In the Languages section select expect. Click Next
to continue.

21.In the Unresolved Dependencies window select OK and click Next.

22.In the About to Install window click Next.

23.Choose to create a boot disk and click Next to continue.

24.In the Graphical Interface Configuration window choose the defaults and click
Next.

25.In the Monitor Configuration window choose the defaults and click Next.

26.In the Customized Graphics Configuration window choose the defaults and
click Next to reboot.

You can run Red Hat Update Agent to update the packages form the Linux Web
site.

How to install WebSphere Application Developer
Follow these steps to install WebSphere Application Developer 5.0:

1. As root, you can run Application Developer by typing the following command:
./install.sh

2. Select your language.

3. Select 1 for the License Agreement screen.

4. Select following runtime environments, press the Enter or y key to continue:

a. WebSphere Application Server, Version 4
b. WebSphere Application Server, Version 5
c. WebSphere Application Server Express, Version 5

5. Select to install the plug-in samples or not.

6. Select to install Rational ClearCaseLT or not.

7. Go though the product registration process.

8. Look for the installed successfully message.

9. Once completed, launch the application, and confirm connectivity.

Sample installation log:

[root@dhcp39035 IBMWSAppDev-5.0-0]# ./install.sh
 Appendix A. Installation instructions 179

--
WebSphere Studio Application Developer for Linux 5.0.0
--

Software Licensing Agreement
1. English
2. Danish
3. Dutch
4. Finnish
5. French
6. German
7. Italian
8. Norwegian
9. Polish
10. Portuguese
11. Russian
12. Spanish
13. Swedish

Please enter the number that corresponds to the language
you prefer.

1
Software Licensing Agreement
Press Enter to display the license agreement on your
screen. Please read the agreement carefully before
installing the Program. After reading the agreement, you
will be given the opportunity to accept it or decline it.
If you choose to decline the agreement, installation will
not be completed and you will not be able to use the
Program.

International Program License Agreement

Part 1 - General Terms

PLEASE READ THIS AGREEMENT CAREFULLY BEFORE USING THE
PROGRAM. IBM WILL LICENSE THE PROGRAM TO YOU ONLY IF YOU
FIRST ACCEPT THE TERMS OF THIS AGREEMENT. BY USING THE
PROGRAM YOU AGREE TO THESE TERMS. IF YOU DO NOT AGREE TO
THE TERMS OF THIS AGREEMENT, PROMPTLY RETURN THE UNUSED
PROGRAM TO THE PARTY (EITHER IBM OR ITS RESELLER) FROM WHOM
YOU ACQUIRED IT TO RECEIVE A REFUND OF THE AMOUNT YOU PAID.

The Program is owned by International Business Machines
Corporation or one of its subsidiaries (IBM) or an IBM
180 Linux Application Development Using WebSphere Studio 5

Press Enter to continue viewing the license agreement, or,
Enter "1" to accept the agreement, "2" to decline it or
"99" to go back to the previous screen.

1
Exited with: 9

--
Select the optional program features you want installed.

=> WebSphere Application Server v4.0 Run-Time Environment
(y/n) [ENTER for y]

=> WebSphere Application Server - Express v5.0 Run-Time Environment
(y/n) [ENTER for y]

=> Examples for Eclipse Plug-In Development
(y/n) [ENTER for y]

=> Rational ClearCase SCM Team Adapter
(y/n) [ENTER for y]
--

The following features will be installed:

WebSphere Studio Application Developer
WebSphere Application Server v4.0 Run-Time Environment
WebSphere Application Server v5.0 Run-Time Environment
WebSphere Application Server - Express v5.0 Run-Time Environment
Examples for Eclipse Plug-In Development
Rational ClearCase SCM Team Adapter

Press Enter to start the installation
--
Remove old product...
Installing WebSphere Studio Application Developer ...
- install rpm/IBMWSWB-5.0-0.i386.rpm
- install rpm/IBMWSTools-5.0-0.i386.rpm
- install rpm/IBMWSSiteDevExp-Core1-5.0-0.i386.rpm
- install rpm/IBMWSSiteDevExp-Core-5.0-0.i386.rpm
- install rpm/IBMWSSiteDev-Core-5.0-0.i386.rpm
- install rpm/IBMWSAppDev-Core-5.0-0.i386.rpm
- install rpm/IBMWSAppDev-Product-5.0-0.i386.rpm
- install rpm/IBMWSAppDev-5.0-0.i386.rpm
Installing WebSphere Application Server v4.0 Run-Time Environment ...
- install rpm/IBMWSTools-WAS-AES-V4-5.0-0.i386.rpm
Installing WebSphere Application Server v5.0 Run-Time Environment ...
- install rpm/IBMWSTools-WAS-BASE-V5-5.0-0.i386.rpm
 Appendix A. Installation instructions 181

Installing WebSphere Application Server - Express v5.0 Run-Time Environment ...
- install rpm/IBMWSTools-WASExpress-BASE-V5-5.0-0.i386.rpm
Installing Examples for Eclipse Plug-In Development ...
- install rpm/IBMWSWB-samples-5.0-0.i386.rpm
Installing Rational ClearCase SCM Team Adapter ...
- install rpm/RatlCCSCMAdapter-2.1-0.i386.rpm
Configure ...

--
IBM Product Registration

Do you want to register now - Netscape or Mozilla are required.
(y/n) [ENTER for y] n

WebSphere Studio Application Developer has been installed successfully

How to install WebSphere Application Server
Follow these steps to install WebSphere Application Server 5.0:

1. As root, you can run Application Server by typing the following command
./LaunchPad.sh from the install directory or use a silent install command,
./install.sh <response_file>. We have used the first installation method.

2. In the Install Wizard window, click Next.

3. In the Licence Agreement window choose to read and accept the agreement
and click Next.

4. Once checking is complete, click Next.

5. Choose custom install, click Next.

6. You have an option to remove or add components, we used the defaults.

7. Click Next to continue.

8. Use the default directory /opt/WebSphere/AppServer for WebSphere
Application Server and /opt/IBMHttpServer for the IBM Http Server, click
Next.

9. In the Node name window choose the defaults, click Next.

10.In the Installation window review the packages and click Next to continue.

11.Once completed, launch the application and confirm connectivity.
182 Linux Application Development Using WebSphere Studio 5

How to install IBM DB2
Follow these steps to install IBM DB2 Version 8.0:

Login into the Linux operating system using your account and run X Windows; to
un-compress a tar file use the tar -xvf filename.tar command.

1. As root, run DB2 by typing the following command ./db2setup from the install
directory.

2. In the IBM DB2 Setup Launchpad window, click Install Products.

3. In the Setup window ensure DB2 UDB Enterprise Server Edition is selected
and click Next.

4. Figure A-1 will appear.

Figure A-1 DB2 Setup started window

5. In the Welcome to DB2 Setup Wizard window, click Next.

6. In the Software Licence Agreement window read and accept the agreement
and click Next.

7. In the Setup window choose custom and click Next.

8. In the Select the installation action window select the defaults and click Next.
 Appendix A. Installation instructions 183

9. In the Select the Features to install window, select Client Support section
and check-off xml extender. In Administration Tools section, check-off db2
Web tools. In the Application Development tools section, check-off
development centre and ADT sample programs, then click Next.

10.In the Languages window select the defaults and click Next.

11.In the Set user info for DB2 admin server window, enter the username, group
name, and password for the admin user and click Next.

12.In the Setup up a DB2 instance window, select the defaults, and click Next.

13.in the Select how the installation will be used window, select the defaults, and
click Next.

14.In the Instance owner window, enter the username, group name, and
password for the instance user and click Next.

15.In the Fenced owner window, enter the username, group name, and
password for the fenced user, and click Next.

16.In the Configuring DB2 TCP/IP communication window, select the defaults,
and click Next.

17.In the Set instance properties window, select the defaults, and click Next.

18.In the Prepare the DB2 tools catalog window, select to use the local database,
and click Next.

19.In the Specify a local database window, select the defaults, and click Next.

20.In the Setup admin contact window, update the contact information, or select
the defaults, and click Next.

21.In the Start to copy files window, click Finish.
184 Linux Application Development Using WebSphere Studio 5

Figure A-2 will appear.

Figure A-2 DB2 Installing window

Once the setup is completed, Figure A-3 will appear.
 Appendix A. Installation instructions 185

Figure A-3 DB2 Setup finished window

22.Login in as the instance user and run First Steps. Create the sample
database to confirm the DB2 installation.

How to configure CVS
Follow these steps to configure a version control system:

1. As root, create accounts for CVS and other users.

2. Add the users to the CVS group.

3. As CVS, in the home directory make cvs_rep.

4. Add the following variables to the bash.profile file:

CVS=/home/cvs/crs_rep
export CVSROOT

5. Issue source .bash_profile command to use the updated profile.

6. Issue cvs init command to create a new repository.

7. If your system uses inetd then add the following variable to the /etc file:

cvspserver 2401/tcp

8. Also, change 2401 to cvspserver in the inetd.conf file.
186 Linux Application Development Using WebSphere Studio 5

9. If your system uses xinetd then create a file called cvspserver under the /etc
directory. The contents of the file are:

services cvspserver {
port = 2401
socket_tupe = stream
protocol = tcp
wait = no
user = root
passenv = PATH
server = /user/local/bin/cvs
server_args = -f --allow-root=/user/cvsroot pserver
}

10.Re-start to start these services.

How to configure Telnet, FTP, and Samba
Follow these steps to configure Telnet:

1. Open a terminal window.

2. As root, edit telnet file under /etc/xinetd.d. Change the disable parameter to
no.

Follow these steps to configure FTP:

1. Open a terminal window.

2. As root, edit wu-ftpd file under /etc/xinetd.d. Change the disable parameter to
no.

Follow these steps to configure Samba:

1. Open a terminal window.

2. Go to the /etc/samba/, at the prompt enter touch smbpasswd

3. Change the workgroup parameter to your workgroup in the smb.conf file.

4. Open up the tmp directory by un-commenting these variables in the smb.conf
file.

5. Go to the system setting in the services configuration, activate smb agent and
reboot the machine.
 Appendix A. Installation instructions 187

188 Linux Application Development Using WebSphere Studio 5

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246431/sg246431.tar

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
redbook form number SG246431.

Using the Web material
The additional Web material that accompanies this redbook includes the
following file:

File name Description
SG246431.tar Sample codes and database scripts

B

© Copyright IBM Corp. 2003. All rights reserved. 189

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB minimum
Operating System: Linux
Processor: Pentium III 600Mhz or above
Memory: 512MB

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

Directories:

� BuildwithAnt: samples for Ant
� DBScripts: database generation scripts
� Deploy: Samples for deploy
� ServletJSP: Sample Web application
� XML: Sample XML application
190 Linux Application Development Using WebSphere Studio 5

acronyms
AAT application assembly tool

ACL access control list

API application programming
interface

BLOB binary large object

BMP bean-managed persistence

CCF Common Connector
Framework

CICS Customer Information Control
System

CMP container-managed
persistence

CORBA Component Object Request
Broker Architecture

DBMS database management
system

DCOM Distributed Component
Object Model

DDL data definition language

DLL dynamic link library

DML data manipulation language

DOM document object model

DTD document type description

EAB Enterprise Access Builder

EAI Enterprise Application
Registration

EAR enterprise archive

EIS Enterprise Information
System

EJB Enterprise JavaBeans

EJS Enterprise Java Server

FTP File Transfer Protocol

GUI graphical user interface

HTML Hypertext Markup Language

Abbreviations and
© Copyright IBM Corp. 2003
HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IDE integrated development
environment

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

IMS Information Management
System

ITSO International Technical
Support Organization

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JAF Java Activation Framework

JAR Java archive

JDBC Java Database Connectivity

JDK Java Developer’s Kit

JFC Java Foundation Classes

JMS Java Messaging Service

JNDI Java Naming and Directory
Interface

JSDK Java Servlet Development Kit

JSP JavaServer Page

JTA Java Transaction API

JTS Java Transaction Service

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

MFS message format services

MVC model-view-controller

OLT object level trace

OMG Object Management Group

OO object oriented
 191

OTS object transaction service

RAD rapid application development

RDBMS relational database
management system

RMI Remote Method Invocation

SAX Simple API for XML

SCCI source control control
interface

SCM software configuration
management

SCMS source code management
systems

SDK Software Development Kit

SMR Service Mapping Registry

SOAP Simple Object Access
Protocol (a.k.a. Service
Oriented Architecture
Protocol)

SPB Stored Procedure Builder

SQL structured query language

SRP Service Registry Proxy

SSL secure socket layer

TCP/IP Transmission Control
Protocol/Internet Protocol

UCM Unified Change Management

UDB Universal Database

UDDI Universal Description,
Discovery, and Integration

UML Unified Modeling Language

UOW unit of work

URL uniform resource locator

VCE visual composition editor

VXML voice extensible markup
language

WAR Web application archive

WAS WebSphere Application
Server

WML Wireless Markup Language

WS Web Service

WSBCC WebSphere Business
Components Composer

WSDL Web Service Description
Language

WSTK Web Service Development Kit

WTE WebSphere Test Environment

WWW World Wide Web

XMI XML metadata interchange

XML eXtensible Markup Language

XSD XML schema definition
192 Linux Application Development Using WebSphere Studio 5

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 194.

� Linux for WebSphere and DB2 Servers, SG24-5850

� Linux Web Hosting with WebSphere, DB2 and Domino, SG24-6007

� WebSphere Application Server V4 for Linux - Implementation and
Deployment Guide

� IBM Framework for e-business - Technology, Solution and Design Overview,
SG24-6248

� Web Services Wizardry with WebSphere Studio Application Developer,
SG24-6292

� WebSphere Version 4 Application Development Handbook, SG24-6134

� IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176

� EJB Development with VisualAge for Java for WebSphere Application Server,
SG24-6144

� WebSphere Application Server Enterprise Edition 4.0 - A Programmer’s
Guide, SG24-6504

Other resources
These publications are also relevant as further information sources:

� Learning Red Hat Linux, 2nd Edition, O’Reilly & Associates
� Core servlets and JavaServer Pages, Sun Microsystems & Associates
© Copyright IBM Corp. 2003. All rights reserved. 193

Referenced Web sites
These Web sites are also relevant as further information sources:

� GNOME - Computing made easy

http://www.gnome.org

� K Desktop Environment

http://www.kde.org

� IBM and Linux

http://www.ibm.com/linuxDescription1

� IBM Framework for e-business

http://www.ibm.com/software/ebusiness

� IBM WebSphere Software platform

http://www.ibm.com/software/websphere

� Java servlet technology

http://java.sun.com/products/servlet

� WebSphere Developer Domain

http://www7b.software.ibm.com/wsdd

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
194 Linux Application Development Using WebSphere Studio 5194 Linux Application Development Using WebSphere Studio 5

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.gnome.org
http://www.kde.org
http://www.ibm.com/linuxDescription1
http://www.ibm.com/software/ebusiness
http://www.ibm.com/software/websphere
http://java.sun.com/products/servlet
http://www7b.software.ibm.com/wsdd

Index

A
Account table 54
Address table 54
Admin client 62
Administration Console 153, 159
Ant 4
Apache Ant 137
Application Client Project 29
Application Developer 22, 41
Application Server 172

B
BankAccount 34
Bean Managed Persistence Entity Bean 78
BMP 78, 97
Body 42
Business Integration 10

C
Cascading stylesheet 13
CheckingAccount 34
CICS 8
ClearCase 137
ClearCase LT 13
Component Object Request Broker 6
Connection factory JNDI name 64
Console 18
Controller Page 40
Create a new Front Controller 40
Create A New SQL Statement 56
Customer Account table 54
Customer table 53
CVS 27, 137

D
Data perspective 24
Database Access Objects 86
Database connection 44
DB Explorer 23
DB Servers 56, 118
DB2 36
DB2 connection 49
© Copyright IBM Corp. 2003. All rights reserved.
db2_jdbc_driver_path 159
DBConnectionSpec 45
DDL 24
Debug perspective 24
Default bindings 160
Deploy and RMIC Code 93
Deployment with Ant 172
destination folder 40
Destination JNDI name 64
dispatch 48
display-name tag 49
doGet 47
Domino Designer 9
doPost 47, 124, 126
DTD 13
DTD Editor 122

E
EAR 22, 38, 94, 152
EAR Project 29
Eclipse Framework 9
EJB 29, 34, 69
EJB container 61
EJB Project 29
ejbCreate 90
ejbFindByPrimaryKey 91
ejbLoad 92
ejbStore 92
EJB-to-RDB mapping tools 12
Embedded JMS Provider 61
Enable administration client 62
Enterprise Application Project 29
Enterprise Java services 8
Enterprise JavaBeans 4, 8
Enterprise Modernization 11
Entity Beans 60
execute 51
Export 152
Expression Builder 57

F
Firewall 169
Framework 6–7
 195

G
Gallery 20
garbage collection 25
Generate new XML 119
GNOME 3

H
Header 41
Hierarchy 19
HTML 20, 28, 36, 38, 41, 47, 115
Html 40
HTTP 43
HTTP port number 168
HttpServletRequest 47
HttpServletResponse 47
HttpSession 44
Hypertext Transfer Protocol 8

I
IBM Agent Controller 22, 163
IBM Database Access Tag Library 40
IBM DB2 App Driver 56
IBM extension deployment descriptor 71
init 126
initializer 51
Integrated Development Environment 16
Internal JMS Server 64
Internet Inter-ORB Protocol 6
Internet Message Access Protocol 6
Invocation Internet Inter-ORB Protocol 13
ITSO Bank database 53
ITSO bank model 33
ITSO banking example xv, 4
ITSOBankEJB 33
ITSOBankSelectEAR 38
ITSOBankSelectWeb 36–38, 40, 43
ITSOBankUpdateWeb 40
ITSOBankUpdatWeb 36
ITSOBankWeb 41, 43, 46, 50

J
J2C Authentication Data Entries 158
J2EE 37, 69, 136, 140
J2EE 1.3 12
J2EE deployment descriptors 21
J2EE perspective 21
JAR 29, 38

Java Bean Web Pages wizard 50
Java Management Extensions 14
Java Message Driven Beans 60
Java Messaging Services 13
Java perspective 18
Java project 29
JavaBean 51
JavaBeans 4, 36
JavaServer Pages 8
JDBC 2.0 89
JDBC Provider 155
JMS 72
JMS Client 74
JMS consumer 61
JMS Servers 64
JNDI 94
JSP 4, 20, 28–29, 34, 36, 38, 40, 43, 52
JSP SQL tags 44

K
KDE 3

L
listener port 65
Listener Ports 63

M
Message Beans 13
Message Driven Beans 4
Message Listener Service 63
Message-Driven Bean 68
Message-Driven Beans 60
Meta 41
MQJD Provider 62

N
Navigator 21–22, 28
Navigator views 18
nextPage 48

O
onMessage 73
onMessage() method 73
OrderCheck 34
Out Of Memory exception 162
Outline 21, 28
196 Linux Application Development Using WebSphere Studio 5

P
Packages 19
PASV Mode 169
performServices 48
performTask 47–48
Pervasive Products 11
Point-To-Point Messaging 60
Post Office Protocol 6
primary key 90
Profiling perspective 25
profiling tools 25
programming model 8
Properties 21, 28
Publish/Subscriber Messaging 60

R
RDB to XML mapping 116–117, 119
Red Hat 3
Redbooks Web site 194

Contact us xvii
Remote Server 162
Re-order Check table 54
Resource perspective 17
RMI-IIOP 94
Run administrative client 63
Run on Server 40
Runtime Connection Page 40

S
SavingsAccount 34
SCM 13
Secure Network 9
Secure Socket Layer 6
Security Programming Interfaces 14
SELECT 56
Select Statement from the SQL Statement Type 40
Server Components 64
Server Configuration 22
Server perspective 22, 62
Server Project 29
Servlet 4
servlet tag 49
servlet-mapping tag 50
servlets 8, 36
Session 44
Session Beans 60
Simple Mail Transfer Protocol 6
Simple Object Access Protocol 13

SQL 53, 58
SQL builder 117
SQL command 51
SQL query 39
SQL Query builder 56
SQL statement 39, 45, 115
SQL tag library 43
SQL to XML wizard 115
SQLtoXML 32, 115
Start the Server 154
Struts 132
SuSE 3

T
Tables 57
taglib 43
taglib tag 50
targets 141
Tasks 18, 21, 28
Team perspective 26
Thin client 7
Three-tier computing model 7
Transaction Servers 10
Transfer balance 46
Transmission Control Protocol or Internet Protocol
6
TransRecord 34
TSX 45
Turbolinux 3

U
UDDI Version 2 12
updateBean 50

W
WAR 29
WASQueue entries 67
Web application 21
Web application server 7
Web Deployment Descriptor 46, 49
Web perspective 19
Web Project 29
Web Project Features 37
Web Services Description Language 13
web-app tag 49
WEB-INF 56
WebSphere Commerce 11
 Index 197

WebSphere Host Integration 11
WebSphere JMS Provider 64
WebSphere JMS Provider Options 65
WebSphere Portal 11
WebSphere pyramid 10
WebSphere Queue Destinations 65
WebSphere Studio 11
Workbench 16
wsadmin tool 170

X
Xalan processor 129
XHTML 13
XML 4, 13
XML Editor 121
XML form SQL query 116
XML from An SQL Query 119
XML from an SQL query 115
XML perspective 23
XMLtoSQL 115
XPath 13
XSL debugger 129
XSL debugging 115
XSL Editor 122
XSLT Processor 124
XSLT processor 32
198 Linux Application Development Using WebSphere Studio 5

(0.2”spine)
0.17”<->0.473”

90<->249 pages

Linux Application Developm
ent Using W

ebSphere Studio 5

®

SG24-6431-00 ISBN 0738427918

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Linux
Application Development
Using WebSphere Studio

A comprehensive
guide to Linux
support of
WebSphere
development tools

Develop, test, and
deploy your Web
application on Linux

Setting up your Linux
enviroment

Linux is the fastest-growing server operating system in the
world because of its powerful functionality, rock-solid
stability, and open source foundation. Applications developed
on Linux are reliable, portable, and cost efficient. This IBM
Redbook helps you get familiar with IBM middleware and
tools for Linux, and develop your new Web application on
Linux.

This redbook is aimed to show IBM’s ability to provide an
advanced platform for WebSphere application development
using Linux as the operating system.

The approach we have taken is to build an ITSO Banking
example that has a backend database, and a frontend
e-business banking application. The Linux distribution that we
use is Red Hat Linux Version 7.3.

This book also shows you how to install the software to set up
your development environment.

Back cover

	Front cover
	Contents
	Figures
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. What is Linux?
	1.1 Linux as an operating system
	1.1.1 Linux is reliable
	1.1.2 Linux is cheaper
	1.1.3 Linux is portable
	1.1.4 Linux is easy-to-use
	1.1.5 Linux is powerful

	1.2 IBM and Linux
	1.3 Web development on Linux

	Chapter 2. WebSphere application development for Linux
	2.1 The IBM Framework for e-business
	2.2 Models of the Framework
	2.2.1 The system model
	2.2.2 The programming model

	2.3 WebSphere Application Developer and Server
	2.3.1 WebSphere products
	2.3.2 WebSphere Studio Application Developer for Linux
	2.3.3 WebSphere Application Server for Linux

	Chapter 3. Setting up the development environment
	3.1 Workbench fundamentals
	3.1.1 Resource perspective
	3.1.2 Java perspective
	3.1.3 Web perspective
	3.1.4 J2EE perspective
	3.1.5 Server perspective
	3.1.6 XML perspective
	3.1.7 Data perspective
	3.1.8 Debug perspective
	3.1.9 Profiling perspective
	3.1.10 Team perspective
	3.1.11 Help perspective
	3.1.12 Workbench views
	3.1.13 Workbench projects

	3.2 Sample application
	3.2.1 Web application using HTML, JSP, servlets, and JavaBeans
	3.2.2 Using Enterprise JavaBeans with your Web application
	3.2.3 Generating Web application using XML
	3.2.4 Testing and deploying Web application
	3.2.5 Database design for ITSO Bank application

	Chapter 4. HTML, JSP, servlet, JavaBeans, and database
	4.1 Preparing for development
	4.1.1 Creating a new project

	4.2 HTML
	4.3 JSP
	4.4 Servlet
	4.5 JavaBeans
	4.6 Database
	4.6.1 ITSO Bank database
	4.6.2 Connecting to a database from Application Developer
	4.6.3 Using SQL Query Builder in Application Developer

	Chapter 5. Enterprise JavaBeans 2.0
	5.1 The types of Enterprise JavaBeans
	5.1.1 Java Message-driven Beans
	5.1.2 EJB 2.0 Bean Managed Persistence Entity Bean

	5.2 ITSO Bank bean sample

	Chapter 6. The eXtensive Markup Language
	6.1 XML tools in WebSphere Application Developer
	6.2 Introducing ITSO Banking example using XML
	6.3 Using the wizards to create XML from SQL
	6.3.1 RDB to XML mapping
	6.3.2 Create a SQL query
	6.3.3 Generate XML from SQL query
	6.3.4 XML, DTD, and XSL editors

	6.4 Dynamically generating XML from SQL
	6.4.1 Setting up a Web project
	6.4.2 Walking through the Web application

	6.5 Using the XSL debugger and transformation tools
	6.6 Motivation to use XML/XSL instead of JSP
	6.6.1 Struts with JavaServer Page drawbacks

	Chapter 7. Building a Web application with Ant
	7.1 Philosophy of Ant
	7.1.1 Build process approaches

	7.2 Setting up your environment to use Ant
	7.2.1 Basics of using Ant

	7.3 Building J2EE applications with Ant

	Chapter 8. Deploying the Web application
	8.1 Deploying an Enterprise Application manually
	8.1.1 EAR export from WebSphere Studio Application Developer
	8.1.2 Starting the WebSphere administration console
	8.1.3 Configuration WebSphere resources
	8.1.4 Installation of the ITSO Bank EAR file
	8.1.5 Testing the application

	8.2 Setting up a remote server
	8.2.1 IBM Agent Controller
	8.2.2 Creating a server for remote testing with Application Server

	8.3 Automatic deployment by tools
	8.3.1 Installing application with the wsadmin tool
	8.3.2 Control the Application Server
	8.3.3 Deployment with Ant

	Appendix A. Installation instructions
	How to install Linux
	How to install WebSphere Application Developer
	How to install WebSphere Application Server
	How to install IBM DB2
	How to configure CVS
	How to configure Telnet, FTP, and Samba

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

