IBM Certification Study Guide
AIX Installation and System Recovery

Developed specifically for the purpose of preparing for AIX certification
Makes an excellent companion to classroom education
For experienced AIX professionals

Thomas C. Cederlöf
André de Klerk
Thomas Herlin
Tomasz Ostaszewski

ibm.com/redbooks
First Edition (December 2000)

This edition applies to AIX Version 4.3 (5765-C34) and subsequent releases running on an RS/6000 or pSeries server.

This document was updated on June 19, 2001.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
Contents

Figures ... ix

Tables ... xi

Preface ... xiii

The team that wrote this redbook .. xiv

Comments welcome .. xv

Chapter 1. Certification overview 1

1.1 IBM Certified Advanced Technical Expert - RS/6000 AIX 1

1.1.1 Required prerequisite ... 1

1.1.2 Recommended prerequisite ... 1

1.1.3 Registration for the certification exam 1

1.1.4 Core requirement (select three of the following tests) 2

1.2 Certification education courses 16

1.3 Education on CD: IBM AIX Essentials 17

Chapter 2. System installation and installation options 19

2.1 Installations methods .. 19

2.1.1 Installation startup .. 19

2.1.2 New and Complete Overwrite Installation 21

2.1.3 Migration Installation ... 22

2.1.4 Preservation Installation ... 24

2.2 Configuration Assistant Taskguide 25

2.3 Determining maintenance levels 27

2.4 Alternate disk installation ... 28

2.4.1 Cloning a running rootvg .. 29

2.5 Installing additional hardware 30

2.5.1 Post installation problems 32

2.6 Installing online documentation 33

2.7 Command summary .. 34

2.7.1 The blvset command ... 34

2.7.2 The cfgmgr command .. 34

2.7.3 The alt_disk_install command 35

2.8 Quiz .. 35

2.8.1 Answers ... 37

2.9 Exercises ... 37

Chapter 3. Additional software installation 39

3.1 What can be installed .. 39

3.1.1 Installation options .. 40
Chapter 3. Installation and System Recovery

- **3.1.2** Installation methods ... 41
- **3.1.3** Installation reports .. 44
- **3.2** How to install - Different scenarios 45
 - **3.2.1** Bundle ... 45
 - **3.2.2** Filesets ... 47
- **3.3** Uninstall software .. 55
- **3.4** Summary ... 56
- **3.5** Command summary .. 56
 - **3.5.1** `installp` ... 56
 - **3.5.2** `instfix` .. 58
- **3.6** Quiz .. 59
 - **3.6.1** Answers ... 60
- **3.7** Exercises ... 60

Chapter 4. System boot

- **4.1** General overview of the boot process 61
- **4.2** BIST - POST .. 64
 - **4.2.1** MCA systems ... 64
 - **4.2.2** PCI systems .. 68
- **4.3** Boot phase 1 .. 70
- **4.4** Boot phase 2 .. 72
 - **4.4.1** LED 551, 555, or 557 .. 74
 - **4.4.2** LED 552, 554, 556 ... 74
 - **4.4.3** LED 518 .. 76
 - **4.4.4** The `alog` command .. 76
- **4.5** Boot phase 3 .. 77
 - **4.5.1** `/etc/inittab` .. 78
 - **4.5.2** LED 553 .. 79
 - **4.5.3** LED c31 .. 80
- **4.6** Summary ... 80
 - **4.6.1** Boot phases ... 80
 - **4.6.2** LED codes ... 80
- **4.7** Quiz .. 82
 - **4.7.1** Answers ... 83
- **4.8** Exercises ... 83

Chapter 5. Disks and file systems

- **5.1** Volume groups ... 86
 - **5.1.1** Creating a volume group ... 86
 - **5.1.2** Migrating data to another disk in the same volume group 91
 - **5.1.3** Importing a volume group from another system 92
 - **5.1.4** Replacing a disk with another 95
 - **5.1.5** Reducing a volume group ... 96
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.3 Back up non-rootvg volume group</td>
<td>157</td>
</tr>
<tr>
<td>6.1.4 Back up file systems</td>
<td>157</td>
</tr>
<tr>
<td>6.2 Recovery</td>
<td>158</td>
</tr>
<tr>
<td>6.2.1 Recovery of rootvg</td>
<td>158</td>
</tr>
<tr>
<td>6.2.2 Restore a non-rootvg volume group</td>
<td>159</td>
</tr>
<tr>
<td>6.2.3 Restore a file system</td>
<td>159</td>
</tr>
<tr>
<td>6.2.4 Extracting data from mksysb tape</td>
<td>159</td>
</tr>
<tr>
<td>6.2.5 A customized mksysb restore</td>
<td>160</td>
</tr>
<tr>
<td>6.3 Other UNIX backup commands</td>
<td>161</td>
</tr>
<tr>
<td>6.4 Sysback</td>
<td>161</td>
</tr>
<tr>
<td>6.4.1 Sysback installation</td>
<td>162</td>
</tr>
<tr>
<td>6.4.2 Virtual devices</td>
<td>162</td>
</tr>
<tr>
<td>6.4.3 Other features</td>
<td>163</td>
</tr>
<tr>
<td>6.4.4 Optional features</td>
<td>163</td>
</tr>
<tr>
<td>6.5 Troubleshooting</td>
<td>163</td>
</tr>
<tr>
<td>6.5.1 Remote backup</td>
<td>163</td>
</tr>
<tr>
<td>6.5.2 Block size determination</td>
<td>164</td>
</tr>
<tr>
<td>6.5.3 Tape block size determination scenario</td>
<td>165</td>
</tr>
<tr>
<td>6.6 Command summary</td>
<td>165</td>
</tr>
<tr>
<td>6.6.1 The mksysb command</td>
<td>165</td>
</tr>
<tr>
<td>6.6.2 The savevg command</td>
<td>166</td>
</tr>
<tr>
<td>6.6.3 The restvg command</td>
<td>166</td>
</tr>
<tr>
<td>6.6.4 The backup command</td>
<td>167</td>
</tr>
<tr>
<td>6.6.5 The restore command</td>
<td>167</td>
</tr>
<tr>
<td>6.6.6 The tar command</td>
<td>168</td>
</tr>
<tr>
<td>6.7 Quiz</td>
<td>169</td>
</tr>
<tr>
<td>6.7.1 Answers</td>
<td>169</td>
</tr>
<tr>
<td>6.8 Exercises</td>
<td>169</td>
</tr>
</tbody>
</table>

Chapter 7. Network Installation Management 171

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Debugging NIM boot images</td>
<td>171</td>
</tr>
<tr>
<td>7.1.1 Establishing network communication</td>
<td>171</td>
</tr>
<tr>
<td>7.1.2 Obtaining the boot image from the server</td>
<td>172</td>
</tr>
<tr>
<td>7.1.3 Running the boot image on the client</td>
<td>174</td>
</tr>
<tr>
<td>7.2 Error 611 - network error</td>
<td>174</td>
</tr>
<tr>
<td>7.3 The nim command</td>
<td>175</td>
</tr>
<tr>
<td>7.4 The showmount command</td>
<td>182</td>
</tr>
<tr>
<td>7.5 Producing debug output for NIM BOS installations</td>
<td>184</td>
</tr>
<tr>
<td>7.5.1 Producing debug output from a network boot image</td>
<td>185</td>
</tr>
<tr>
<td>7.5.2 Producing debug output from the BOS install program</td>
<td>186</td>
</tr>
<tr>
<td>7.6 Quiz</td>
<td>187</td>
</tr>
<tr>
<td>7.6.1 Answers</td>
<td>188</td>
</tr>
<tr>
<td>7.7 Exercises</td>
<td>188</td>
</tr>
</tbody>
</table>
Figures

1. AIX and UNIX education roadmap ... 16
2. Certification roadmaps .. 17
3. Installations and Settings screen .. 20
4. Configuration Assistant Taskguide ... 26
5. List Software on Media and Related Information menu 39
6. SMIT installation menus ... 42
7. Installing user defined bundle ... 47
8. Preview option in SMIT ... 49
9. Saving previous version when updating fileset 51
10. Software maintenance and utilities 52
11. SMIT menu for rejecting an applied fileset 52
12. SMIT option for overwrite of fileset at same or newer version 54
13. Removing software through SMIT ... 56
14. General boot order .. 62
15. Function selection menu in diag ... 65
16. Task selection menu in diag ... 66
17. Display/alter bootlist menu in diag 66
18. SMS main menu ... 69
19. Boot phase 1 ... 71
20. Boot phase 2, part one ... 72
21. Boot phase 2, part two .. 73
22. Boot phase 3 ... 77
23. Example of rc.boot 3 in /etc/inittab 79
24. The Volume Groups screen .. 88
25. The Add a Volume Group selection screen 88
26. The Add a Volume Group warning screen 89
27. The Add a Volume Group Command status screen 90
28. The SMIT Logical Volumes screen 101
29. The Add a Logical Volume screen 102
30. The Add a Logical Volume menu 1 of 2 103
31. Five regions of a disk ... 104
32. The Add a Logical Volume menu 2 of 2 105
33. The Command Status Screen for the logical volume 105
34. The SMIT rest vg screen .. 120
35. The SMIT Add Another Paging Space dialog 125
36. The SMIT Change / Show Characteristics of a Paging Space dialog . 126
37. Contents of mksysb image .. 156
Tables

1. Commonly used flags of the blvset command ... 34
2. Commonly used flags of the cfgmgr command ... 34
3. Commonly used flags of the alt_disk_install command 35
4. Flags used at installation with the installp command 42
5. Flags for installp used by SMIT .. 47
6. Commit or apply? ... 50
7. Choice of options when reinstalling software ... 53
8. General installp summary .. 58
9. General instfix summary .. 59
10. Common MCA LED codes ... 67
11. MCA POST LED ... 80
12. Boot phase 2 LED codes ... 81
13. Boot phase 3 LED codes ... 81
14. Commonly used flags of the cfgmgr command ... 134
15. Commonly used flags of the bosboot command 135
16. Commonly used flags of the bootlist command 135
17. Commonly used flags of the chps command .. 136
18. Commonly used flags of the cplv command ... 137
19. Commonly used flags of the fsck command .. 138
20. Commonly used flags of the fuser command .. 141
21. Commonly used flags of the migratepv command 141
22. Commonly used flags of the mkboot command 142
23. Commonly used flags of the mkiv command .. 143
24. Commonly used flags of the mkps command .. 147
25. Commonly used flags of the replacepv command 148
26. Commonly used flags of the restvg command .. 149
27. Commonly used flags of the sysdumpdev command 150
28. Commonly used flags of the mksysb command 166
29. Commonly used flags of the savevg command 166
30. Commonly used flags of the restvg command .. 167
31. Commonly used flags of the backup command 167
32. Commonly used flags of the restore command 168
33. Commonly used flags of the tar command ... 168
34. Commonly used flags of the nim command .. 176
35. Commonly used flags of the showmount command 182
Preface

The AIX and RS/6000 certifications offered through the Professional Certification Program from IBM are designed to validate the skills required of technical professionals who work in the powerful, and often complex, environments of AIX and RS/6000. A complete set of professional certifications are available. They include:

- IBM Certified AIX User
- IBM Certified Specialist - AIX System Administration
- IBM Certified Specialist - AIX System Support
- IBM Certified Specialist - AIX HACMP
- IBM Certified Specialist - Business Intelligence for RS/6000
- IBM Certified Specialist - Domino for RS/6000
- IBM Certified Specialist - RS/6000 Solution Sales
- IBM Certified Specialist - RS/6000 SP and PSSP V3
- IBM Certified Specialist - RS/6000 SP
- RS/6000 SP - Sales Qualification
- IBM Certified Specialist - Web Server for RS/6000
- IBM Certified Advanced Technical Expert - RS/6000 AIX

Each certification is developed by following a thorough and rigorous process to ensure the exam is applicable to the job role and is a meaningful and appropriate assessment of skill. Subject matter experts who successfully perform the job participate throughout the entire development process. They bring a wealth of experience into the development process, making the exams much more meaningful than the typical test that only captures classroom knowledge and ensuring the exams are relevant to the real world. Thanks to their effort, the test content is both useful and valid. The result of this certification is the value of appropriate measurements of the skills required to perform the job role.

This IBM Redbook is designed as a study guide for professionals wishing to prepare for the AIX Installation and System Recovery certification exam as a selected course of study in order to achieve the IBM Certified Advanced Technical Expert - RS/6000 AIX certification.

This IBM Redbook is designed to provide a combination of theory and practical experience needed for a general understanding of the subject matter. It also provides sample questions that will help in the evaluation of personal progress and provide familiarity with the types of questions that will be encountered in the exam.
This publication does not replace practical experience, nor is it designed to be a stand alone guide for any subject. Instead, it is an effective tool that, when combined with education activities and experience, can be a very useful preparation guide for the exam.

For additional information about certification and instructions on How to Register for an exam, call IBM at 1-800-426-8322 or visit the Web site at:
http://www.ibm.com/certify

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization, Austin Center.

Thomas C. Cederlöf is an Education Specialist at IBM Learning Services in Sweden. After working various professions, he was hired as a System Support Specialist in April 1997 at the Nordic AIX Competence Center. After earning his Advanced Technical Expert Certification in 1998, he worked with level 2 support in Scandinavia and the Baltic States and also participated in the itrans program in 1999. Since January 2000, he has been the main instructor for the AIX curriculum in Sweden.

André de Klerk is a Senior IT Specialist at IBM Global Services in South Africa. He has been working for IBM since May 1996. He started his career as a field technician in 1991 and has performed various support roles, including application support and customer consulting. Currently, he is team leader for the Midrange UNIX team at IGS SA.

Thomas Herlin is an Advisory IT Specialist at IBM Global Services in Denmark. He has been working for IBM since May 1998. Before joining IBM, he worked as a Software Engineer designing and developing programs on UNIX platforms. His areas of expertise include system architecture and system integration of AIX based solutions. He is also a certified SAP technical consultant.

Tomasz Ostaszewski is a computer network architect. He works for Prokom Software SA in Poland - IBM Business Partner. Prokom is the largest IT solution provider in Poland. They offer total solutions, which include application development or third party vendor support. He has three years of experience in RS/6000 and AIX. Currently, he is working on a network project for an insurance company.
The project that produced this publication was managed by:

Scott Vetter IBM Austin

Special thanks to:

Darin Hartman Program Manager, AIX Certification

Thanks to the following people for their invaluable contributions to this project:

Jesse Alcantar IBM Austin
Greg Althaus IBM Austin
Erwin Behnen IBM Austin
Karl Borman ILS Austin
Larry Brenner IBM Austin
Malin Cederberg ILS Sweden
Greg Flaig IBM Austin
Adnan Ikram IBM Pakistan
MATSUBARA, Keigo IBM Japan
Yun-Wai Kong IBM Australia
Peter Mayes IBM U.K.
Shawn Mullen IBM Austin
Brian Nicholls IBM Austin
Robert Olsson ILS Sweden
Michelle Page-Rivera IBM Atlanta
Christopher Snell IBM Raleigh
Lindsey Thomson IBM Austin
Ronald Van der Knaap IBM Netherlands
Darrin Woodard IBM Toronto

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your comments about this or other Redbooks in one of the following ways:
- Fax the evaluation form found in “IBM Redbooks review” on page 215 to the fax number shown on the form.
- Use the online evaluation form found at ibm.com/redbooks
- Send your comments in an Internet note to redbook@us.ibm.com
Chapter 1. Certification overview

This chapter provides an overview of the skill requirements needed to obtain an IBM AIX Specialist certification. The following chapters are designed to provide a comprehensive review of specific topics that are essential for obtaining the certification.

1.1 IBM Certified Advanced Technical Expert - RS/6000 AIX

This level certifies an advanced level of AIX knowledge and understanding, both in breadth and depth. It verifies the ability to perform in-depth analysis, apply complex AIX concepts, and provide resolution to critical problems, all in a variety of areas within RS/6000 AIX.

To attain the IBM Certified Advanced Technical Expert - RS/6000 AIX certification, you must pass four tests.

One test is the prerequisite in either AIX System Administration or AIX System Support. The other three tests are selected from a variety of AIX and RS/6000 topics. These requirements are explained in greater detail in the sections that follow.

1.1.1 Required prerequisite

Prior to attaining the IBM Certified Advanced Technical Expert - RS/6000 AIX certification, you must be certified as either an:

- IBM Certified Specialist - AIX System Administration
- IBM Certified Specialist - AIX System Support

1.1.2 Recommended prerequisite

A minimum of six to twelve months experience in performing in-depth analysis and applying complex AIX concepts in a variety of areas within RS/6000 AIX is a recommended prerequisite.

1.1.3 Registration for the certification exam

For information about How to Register for the certification exam, visit the following Web site:

http://www.ibm.com/certify
1.1.4 Core requirement (select three of the following tests)

You will receive a Certificate of Proficiency for tests when passed.

1.1.4.1 AIX Installation and System Recovery

The following objectives were used as a basis when the certification test 183 was developed. Some of these topics have been regrouped to provide better organization when discussed in this publication.

Preparation for this exam is the topic of this publication.

Section 1 - Installation and software maintenance

- Install or migrate the operating system
- Install a licensed program product
- Remove an LPP from the system
- Update a system
- Apply a selective fix
- Identify and resolve network install problems

Section 2 - System backup and restore

- Perform a complete backup of the system
- Implement backup using relative and absolute path
- Create a mksysb
- Understand advanced mksysb concepts
- Restore files

Section 3 - System initialization (boot) failures

- Understand concepts of system initialization
- Diagnose the cause of a system initialization failure
- Resolve a system initialization failure

Section 4 - File systems and LVM recovery

- Perform problem determination on a file system
- Determine a suitable procedure for replacing a disk
- Resolve problems caused by incorrect actions taken to change a disk drive
- Create a new volume group
- Create a logical volume
• Understand LVM concepts
• Resolve a complex LVM problem

1.1.4.2 AIX Performance and System Tuning
The following objectives were used as a basis when the certification test 184 was developed.

Preparation for this exam is the topic of IBM Certification Study Guide - AIX Performance and System Tuning, SG24-6184.

Section 1 - Performance tools and techniques
• Use the iostat command
• Use the filemon command
• Use the tprof command
• Use the netpmon command
• Interpret iostat output
• Interpret lsps output
• Interpret netstat output
• Interpret vmstat output
• Know about perfpmr
• Know about performance diagnostic tool
• Look at run queue
• Look at system calls

Section 2 - Correcting performance problems
• Correct disk bottlenecks
• Correct NFS bottlenecks
• Correct network bottlenecks
• Correct communications adapter bottlenecks
• Understand random write-behind concepts
• Understand async I/O performance concepts
• Understand VMM I/O pacing
• Understand file I/O pacing
• Understand logical volume fragmentation
Section 3 - VMM
- Identify and correct VMM performance problems
- Correct paging problems
- Know about tuning file memory usage
- Know about memory load control
- Understand page space allocation issues

Section 4 - Multiprocessor and process scheduling
- Know SMP commands
- Use the `bindprocessor` command
- Enable, disable, and show status of processors
- List CPU utilization per processor
- Know about `ps` command and threads
- Understand locking issues in SMP
- Know about process scheduling
- Understand priority calculations
- Understand the effect of `schedtune` on priorities

Section 5 - Tuning and customization
- Tune a system for optimum performance
- Use the `no` command
- Customize a LV for optimum performance
- Configure system parameters
- Tune network parameters
- Determine when application tuning is needed
- Understand real-time tuning
- Understand disk striping
- Tune I/O performance with `vmtune`
- Understand RAID performance issues
- Perform capacity planning
- Understand memory usage
1.1.4.3 AIX Problem Determination Tools and Techniques

The following objectives were used as a basis when the certification test was developed.

Preparation for this exam is the topic of IBM Certification Study Guide - AIX Problem Determination Tools and Techniques, SG24-6185.

Section 1 - System dumps
- Create a system dump
- Understand valid system dump devices
- Determine the location of system dump data
- Identify the status of a system dump by the LED codes
- Identify appropriate action to take after a system dump
- Determine if a system dump is successful
- Use the snap command

Section 2 - Crash
- Understand the use and purpose of the crash command
- Verify the state of a system dump
- Show the stack trace using crash
- Use the stat subcommand in crash
- Manipulate data in the process table
- Interpret crash stack trace output
- Interpret crash process output
- Interpret crash TTY output

Section 3 - Trace
- Start and stop trace
- Run trace
- Report trace information
- Interpret trace output
- Use trace to debug process problems

Section 4 - File system and performance PD tools
- Use tools to identify and correct corrupted file systems
- Understand file system characteristics
• Resolve file system mounting problems
• Repair corrupted file systems
• Use vmstat command
• Use iostat command
• Use filemon command

Section 5 - Network problem determination
• Use PD tools to identify network problems
• Resolve a network performance problem
• Correct problem with host name resolution
• Diagnose the cause of a problem with NFS mounts
• Diagnose the cause of a routing problem
• Resolve a router problem

Section 6 - Error logs and diagnostics
• Use error logging
• Interpret error reports
• Invoke and use diagnostic programs

Section 7 - Other problem determination tools
• Set breakpoints using dbx
• Step through a program using dbx
• Run a program with arguments using dbx
• Read core files and locate traceback
• Debug problem using core files
• Read shell scripts
• Debug shell script problems

1.1.4.4 AIX Communications
The following objectives were used as a basis when the certification test 186 was developed.

Preparation for this exam is the topic of IBM Certification Study Guide - AIX Communications, SG24-6186.

Section 1 - TCP/IP implementation
• Know TCP/IP concepts
• Understand TCP/IP broadcast packets
• Use and implement name resolution
• Understand TCP/IP protocols
• Know IP address classes
• Use interfaces available in LAN communications
• Understand the relationship between an IP address and the network interface
• Log into remote hosts using telnet and rlogin
• Construct /etc/hosts.equiv and ~/.rhosts for trusted users
• Transfer files between systems using ftp or tftp
• Run commands on remote machines

Section 2 - TCP/IP: DNS implementation
• Set up a primary name server
• Set up a secondary name server
• Set up a client in a domain network

Section 3 - Routing: implementation
• Apply knowledge of the IP routing algorithm
• Setup and use the routing table and routes
• Implement and use subnet masking

Section 4 - NFS: implementation
• Manipulate local and remote mounts using the automounter
• Understand NFS daemons and their roles
• Configure and tune an NFS server
• Configure and tune an NFS client
• Setup a file system for mounting
• Understand the /etc/exports file
• Invoke a predefined mount.

Section 5 - NIS: implementation
• Understand the various NIS daemons
• Implement NIS escapes
• Create NIS map files
• Transfer NIS maps

Section 6 - Network problem determination
• Diagnose and resolve TCP/IP problems
• Diagnose and resolve NFS problems
• Diagnose and resolve NIS problems

Section 7 - Hardware related PD (modems)
• Determine appropriate diagnostic approach to resolve a modem connection problem
• Resolve communication configuration problems

1.1.4.5 HACMP for AIX V4.2
The following objectives were used as a basis when the certification test 167 was developed.

Preparation for this exam is the topic of IBM Certification Study Guide - AIX HACMP, SG24-5131.

Section 1 - Pre-installation
• Conduct a planning session
 • Set customer expectations at the beginning of the planning session
 • Gather customer’s availability requirements
 • Articulate tradeoffs of different HA configurations
 • Assist customer in identifying HA applications
• Evaluate customer environment and tailorable components
 • Evaluate configuration and identify Single Points of Failure (SPOF)
 • Define and analyze NFS requirements
 • Identify components affecting HACMP
 • Identify HACMP event logic customizations
• Plan for installation
 • Develop disk management modification plan
 • Understand issues regarding single adapter solutions
 • Produce a test plan

Section 2 - HACMP implementation
• Configure HACMP solutions
• Install HACMP code
• Configure IP Address Takeover (IPAT)
• Configure non IP heartbeat paths
• Configure network adapter
• Customize and tailor AIX
• Set up shared disk (SSA)
• Set up shared disk (SCSI)
• Verify a cluster configuration
• Create an application server

• Set up event notification
 • Set up event notification and pre/post event scripts
 • Set up error notification

• Post configuration activities
 • Configure client notification and ARP update
 • Implement test plan
 • Create a snapshot
 • Create a customization document

• Testing and Troubleshooting
 • Troubleshoot failed IPAT failover
 • Troubleshoot failed shared volume groups
 • Troubleshoot failed network configuration
 • Troubleshoot failed shared disk tests
 • Troubleshoot failed application
 • Troubleshoot failed pre/post event scripts
 • Troubleshoot failed error notifications
 • Troubleshoot errors reported by cluster verification

Section 3 - System management
• Communicate with customer
 • Conduct turnover session
 • Provide hands-on customer education
 • Set customer expectations of their HACMP solution’s capabilities
• Perform systems maintenance
 • Perform HACMP maintenance tasks (PTFs, adding products, replacing disks, adapters)
 • Perform AIX maintenance tasks
 • Dynamically update cluster configuration
 • Perform testing and troubleshooting as a result of changes

1.1.4.6 RS/6000 SP and PSSP V2.4
The following objectives were used as a basis when the certification test was developed.

Preparation for this exam is the topic of IBM Certification Study Guide - RS/6000 SP, SG24-5348.

Section 1 - Implementation and planning
• Validate software/hardware capability and configuration
 • Determine required software levels (for example, version, release, and modification level)
 • Determine the size, model, and location of the control workstation
 • Define disk, memory, and I/O including disk placement
 • Determine disk space requirements
 • Understand multi-frame requirements and switch partitioning
 • Determine the number and type of nodes needed (including features)
 • Determine the number of types of I/O devices (for example, SCSI, RAID, SSA, and so on) needed
 • Configure external I/O connections
 • Determine additional network connections required
 • Create the logical plan for connecting into networks outside the SP
 • Identify the purpose and bandwidth of connections

• Plan implementation of key aspects of TCP/IP networking in the SP environment
 • Create specific host names (both fully qualified and aliases) and TCP/IP address, netmask value, and default routes
 • Determine the mechanism (for example, /etc/hosts, NIS, DNS) by which name resolution will be made across the system
 • Choose the IP name/address resolver
Chapter 1. Certification overview

- Determine the appropriate common, distributed, and local files/file systems
 - Determine the physical locations of the file system and home directories
 - Determine the number of types of I/O devices (for example, SCSI, RAID, SSA, on so on) needed
 - Configure internal I/O
 - Determine the mechanism (for example, NFS, AFS, DFS, local) by which file systems will be made across the system
- Configure and administer the Kerberos Authentication subsystem and manage user IDs on the SP system
 - Define administrative functions
 - Determine the Kerberos administration ID
 - Define administrative functions
 - Understand the options of end-user management
 - Understand how to administer authenticated users and instances
- Define a backup/recovery strategy for the SP which supports node images, control workstation images, applications, and data
 - Determine backup strategy and understand the implications of multiple unique mksysb images

Section 2 - Installation and configuration
- Configure an RS/6000 as an SP control workstation
 - Verify the control workstation system configuration
 - Configure TCP/IP network on the control workstation
 - Install PSSP
 - Load the SDR with SP configuration information
 - Configure the SP System Data Repository
 - Verify control workstation software
 - Configure TCP/IP name resolution (for example, /etc/hosts, DNS, NIS)
- Perform network installation of images on nodes, using any combination of boot/install servers
 - Install the images on the nodes
 - Create boot/install servers
• Exercise the SP system resources to verify the correct operation of all required subsystems
 • Verify all network connections
 • Verify internal and external I/O connections
 • Verify switch operations

Section 3 - Application enablement
• Determine whether LoadLeveler would be beneficial to a given SP system configuration
 • Understand the function of LoadLeveler.
• Define and implement application specific FS, VG, and VSDs for a parallel application
 • Define application-specific file systems, logical volumes, volume groups, or VSDs
 • Implement application-specific file systems, logical volumes, volume groups, or VSDs
• Install and configure problem management tools (for example, event manager, problem manager, perspectives)
 • Install and configure user-management tools

Section 4 - Support
• Utilize Problem Determination methodologies (for example, HOSTRESPONDS, SWITCHRESPONDS, error report, log files, DAEMONS, GUIs)
 • Handle resolution of critical problems
 • Conduct SP-specific problem diagnosis
 • Interpret error logs that are unique to SP
• Isolate cause of degraded SP performance, and tune the system accordingly
 • Understand performance analysis and tuning requirements

1.1.4.7 RS/6000 SP and PSSP V3
The following objectives were used as a basis when the certification test was developed.

Preparation for this exam is the topic of IBM Certification Study Guide - RS/6000 SP, SG24-5348.
Section 1 - Implementation planning

- Validate software/hardware capability and configuration
 - Determine required software levels (for example, version, release, and modification level)
 - Determine the size, model, and location of the control workstation
 - Define disk, memory, and I/O including disk replacement
 - Define disk space requirements
 - Understand multi-frame requirements and switch partitioning
 - Determine the number and types of nodes needed (including features)
 - Determine the number and types of I/O devices (for example, SCSI, RAID, SSA, and so on) needed.
- Configure external I/O connections
- Determine additional network connections required
- Create the logical plan for connecting into networks outside the SP
- Identify the purpose and bandwidth of connections
- Determine if boot/install servers are needed and, if needed, where they are located
- Implement key aspects of TCP/IP networking in the SP environment
 - Create specific host names (both fully qualified and aliases), TCP/IP address, netmask value, and default routes
 - Determine the mechanism (for example, /etc/hosts, NIS, DNS) by which name resolution will be made across the system
 - Determine SP Ethernet topology (segmentation, routing)
 - Determine TCP/IP addressing for switch network
- Determine the appropriate common, distributed, or local files and file systems
 - Determine the physical locations of the file system and home directories
 - Determine the mechanism (for example, NFS, AFS, DFS, local) by which file systems will be made across the system
- Define a backup/recovery strategy for the SP which supports node image(s), control workstation images, applications, and data
 - Determine backup strategy including node and CWS images
 - Determine backup strategy and tools for application data
Section 2 - Installation and configuration
- Configure an RS/6000 as an SP control workstation
 - Verify the control workstation system configuration
 - Configure TCP/IP network on the control workstation
 - Install PSSP
 - Configure the SDR with SP configuration information
 - Verify control workstation software
- Perform network installation of images on nodes, using any combination of boot/install servers
 - Install the images on the nodes
 - Define and configure boot/install servers
 - Check SDR information
 - Check RSCT daemons (hats, hags, haem)
- Thoroughly exercise the SP system resources to verify correct information of all required subsystems
 - Verify all network connections
 - Verify switch operations
- Configure and administer the Kerberos Authentication subsystem and manage user IDs
 - Plan and configure Kerberos functions and procedures
 - Configure the Kerberos administration ID
 - Understand and use the options of end-user management
- Define and configure system partition and perform switch installation

Section 3 - Application enablement
- Determine whether additional SP-related products (for example, Loadleveler, PTPE, HACWS, NetTAPE, CLIOS) would be beneficial
- Understand the function of additional SP-related products
- Define and implement application-specific file systems, logical volumes, VGs and VSDs
- Install and configure problem management tools (for example, event manager, problem manager, perspectives)
 - Define and manage monitors
Section 4 - Ongoing support

- Perform software maintenance
 - Perform system software recovery
 - Upgrade and migrate system software (applying PTFs, migration)
- Perform SP reconfiguration
 - Add frames
 - Add nodes
 - Migrate nodes
 - Add/replace switch
- Utilize Problem Determination methodologies (for example, HOSTRESPONDS, SWITCHRESPONDS, error report, log files, DAEMONS, GUIs)
 - Interpret error logs that are unique to the SP
 - Diagnose networking problems
 - Diagnose host response problems
 - Diagnose switch-specific problems
- Isolate cause of degraded SP performance and tune the system accordingly
 - Understand performance analysis and tuning requirements
1.2 Certification education courses

Courses are offered to help you prepare for the certification tests. Figure 1 and Figure 2 on page 17 provide a roadmap of useful courses. These courses are recommended, but not required, before taking a certification test. At the publication of this guide, the following courses are available. For a current list, visit the following Web site: http://www.ibm.com/certify

Figure 1. AIX and UNIX education roadmap
1.3 Education on CD: IBM AIX Essentials

The new IBM AIX Essentials series offers a dynamic training experience for those who need convenient and cost-effective AIX education. The series consists of five new, content rich, computer-based multimedia training courses based on highly acclaimed, instructor-led AIX classes that have been successfully taught by IBM Education and Training for years.

To order, and for more information and answers to your questions, refer to the following:

- In the U.S., call 800-IBM-TEACH (426-8322) or use the online form at the following URL: http://www.ibm.com/services/learning/aix/#order
- Outside the U.S., contact your IBM Sales Representative or
- Contact an IBM Business Partner
Chapter 2. System installation and installation options

This chapter covers the following topics:

- An overview of the AIX installation methods
- Installation of additional hardware
- Highlight the typical post installation problems
- Installation of online documentation

System installation is an important part of system administration of new RS/6000 systems as well as older systems, which need to be upgraded.

2.1 Installations methods

AIX provides three types of installation methods:

- New and Complete Overwrite Install
 Use this installation method a new machine or if you want to completely overwrite an existing version of the base operating system (BOS) that is installed on your system.

- Migration Install
 Use this installation method to upgrade AIX between versions and releases while preserving the existing root volume group.

- Preservation Install
 Use this installation method when a version of BOS is installed on your system and you want to preserve the user data in the root volume group.

The following sections describe the installation methods in more detail.

2.1.1 Installation startup

Note

Before you start installing AIX Version 4.3, make sure that your system has enough disk space. Check the AIX Version 4.3 Installation Guide, SC23-4112, for the space requirements. If not enough disk space is available, then the installation will fail.

To start the installation of AIX, your system needs to first start up on the CD-ROM or tape. In order to force a boot from these media, you have to...
perform the following sequence. If you have an older RS/6000 system (non-PCI) with a system key present, turn the key to the **Service** position:

1. Insert the media CD-ROM or tape into the corresponding devices.
2. Power the system on.
3. When the keyboard indicator is shown on the screen (the word keyboard on an ASCII terminal or the keyboard icon on a graphical display), press **F5** on the directly attached keyboard or **5** on the ASCII terminal. This will temporarily alter the bootlist. You can ignore this step if you have an older system (non-PCI) with a system key.
4. At this stage, the system boots up using the media (CD-ROM or tape). If the system does not boot up but enters SMS (Figure 18 on page 69), there is a problem with the media. Check if it is correctly inserted or undamaged. Reinsert media or replace media and restart at step 1.
5. Select the system console by pressing **F1** and **Enter** on the attached keyboard or **1** and **Enter** on the ASCII terminal.
6. Select installation language. The default is English.
7. On the Welcome to Base Operating System Installation and Maintenance screen press **2** to select **Change/Show Installation Settings and Install** to change the installation method. A screen similar to the one shown in Figure 3 will present the different installation options.

![Figure 3. Installations and Settings screen](image)

Figure 3. Installations and Settings screen
8. At this point, you can select the method of your installation, the disk for rootvg, set up language environments, and the installation of Trusted Computing Base (TCB). Depending on the current system, the default installation method varies. In the following sections, the different installation methods are individually described.

The primary language environment can be set up for: Cultural Convention, Language, and Keyboard, by choosing a language that fits the actual requirements. Different set of languages are supported (see *AIX Version 4.3 Installation Guide*, SC23-4112, for additional information).

TCB provides an additional level of security by installing trusted path, the trusted shell, and system integrity checking. Note that you cannot enable the TCB at a later time; it must be at the installation time. Further information on TCB can be found in the *AIX Version 4.3 Installation Guide*, SC23-4112.

9. Select 0 once you are satisfied with the settings, and the installation will start.

10. On older non-PCI models with a system key, you must, at this point, switch the key back to Normal position.

2.1.2 New and Complete Overwrite Installation

The New and Complete Overwrite Installation method installs the BOS by overwriting all data on the selected destination disk.

In following scenarios, a New and Complete Overwrite Installation should be used:

- A new machine without AIX installed.
- An existing system must be reinstalled with the BOS because:
 - rootvg has become corrupted, and a backup does not exist.
 - rootvg is spread over several hard disks, and you want to reassign it to fewer hard disks to make your rootvg smaller.
- The pre-installed system is not TCB enabled. If you need the features provided by TCB, you must re-install the system using this method.

After the installation is complete, the system will reboot and start the Installation Assistant for post installation tasks. See the Section 2.2, “Configuration Assistant Taskguide” on page 25.
2.1.3 Migration Installation

The Migration Installation method is used to upgrade AIX to a different version or release while preserving the existing root volume group. This is the default setting for a machine installed with AIX Version 4.1 or AIX Version 4.2.

Migration Installation preserves all logical volumes and file systems on rootvg except /tmp. Other volume groups are not effected.

During a Migration Installation, the installation process determines which optional software products must be installed on AIX Version 4.3. Components from AIX Version 3.2, AIX Version 4.1, or AIX Version 4.2 software that exists on the system and has been replaced by new AIX Version 4.3 level software are installed at the AIX Version 4.3 level.

Previously installed software products remain on the system.

When migrating from AIX Version 3.2, all files in /usr/lib/drivers, /usr/lib/microcode, /usr/lib/methods, and /dev are removed from the system; so software support for non-IBM device drivers must be reinstalled. Furthermore, a set of software products are removed. See complete list in AIX Version 4.3 Installation Guide, SC23-4112.

Note

Before performing any Migration Installation, make sure that you have a complete backup of your system as well as your data.

2.1.3.1 Steps when performing a Migration Installation

At the beginning of a Migration Installation, the system verifies that there will be enough space to attempt the migration. If there is not, a message is printed explaining how much extra space is needed.

At this point, you must reboot the machine from the disk AIX Version 3.2, 4.1, or 4.2 installed, and make some space available in the rootvg volume group to do the migration. This can be done by either adding another disk to the rootvg or moving user data from rootvg to another volume group. Consult the AIX Version 4.3 Installation Guide, SC23-4112, for more information on this issue.

If the additional space could not be found to match the requirement, you might consider performing a Preservation Installation, (see Section 2.1.4, “Preservation Installation” on page 24).
When enough free space is found, reboot from your installation media and try the Migration Installation again. To complete the Migration Installation, you must have at least 8 MB of free disk space.

If there is insufficient space to complete the Migration Installation during the BOS installation process, a message similar to the following is displayed at the end of the installation:

An error occurred while migrating packages.
Some packages have not been installed.
Please see /var/adm/ras/devinst.log for details or perform an overwrite or preservation install.

When you are migrating to AIX Version 4.2 or later, a confirmation screen will appear and enable you to do the following:

- List the software on your system that is incompatible with AIX Version 4.3 and that will be installed at the new level.
- List the saved base system configuration files that will not be merged into the system. These files are saved in /tmp/bos.
- List the filesets that will be removed and not replaced.
- Reboot the system without completing the migration. This selection cancels the installation.
- Continue with the installation.

If you, at this point, press 0 and Enter, the Migration Installation will begin.

If you are migrating AIX Version 3.2 programs, a BOS Migration Installation only migrates those optional software products that can run on AIX Version 4.3. If you are migrating AIX Version 4.1 or AIX Version 4.2 programs, and there is a newer level of a previously installed fileset on the installation media, a BOS Migration Installation will try to install the newer level. Any previously installed products that can run on BOS Version 4.3 will not be altered during the Migration Installation.

After the Migration Installation is finished, check the migration by listing the filesets in your system and compare them with the previous. As an example, look for committed filesets of the previous version. If you where migrating from AIX Version 4.2 to AIX Version 4.3 use:

```
# lslpp -1 | grep 4.2
```

Any AIX filesets that are listed in the committed state should be removed. An exception to this might be third party software products.
You might also check previous configuration files saved by the Migration Installation with the new ones created and resolve the possible differences.

2.1.3.2 Missing Migration Installation option

If the Migration Installation option is not selectable as you would expect when migrating from one AIX version to another (for example 4.2 to 4.3), there is an incorrect pad string in the boot logical volume (BLV). This wrong system information can happen, for example, if a migration attempt was canceled or did not succeed.

A way to overcome this is to use the `blvset` command, which resets the pad string. Use the `-g` flag to get the pad string and the `-p` flag to put the pad string.

For 4.X systems, use `blvset` in the following way:

```bash
# /usr/lpp/bosinst/blvset -d /dev/hdisk0 -p level
```

The `blvset` program is expecting a version string from the standard input. Enter the version number, for example **4.2**, and press **Enter**.

This example illustrates a pad string reset from a broken 4.2 to 4.3 migration, where the rootvg is located on hdisk0.

After you have updated the pad strings, you can retry the Migration Installation.

2.1.3.3 When Migration Installation fails

There are times when your Migration Installation fails and you need to recover the system. You should have a system backup available and if you do, restore your system from it. If your system backup does not exist, or is corrupted, the best way recover is to perform a Preservation Installation. This will disrupt some information, such as network configuration, but it is much better than overwriting your entire system including user data.

2.1.4 Preservation Installation

The Preservation Installation method is chosen when a version of BOS is installed on a system where you want to preserve the user data in the root volume group. It is the default installation setting for a machine already installed with AIX Version 4.3.
Chapter 2. System installation and installation options

2.2 Configuration Assistant Taskguide

After the installation is completed, the system reboots, and the Configuration Assistant Taskguide program, /usr/sbin/install_assist, is automatically started. In previous versions of AIX, the Configuration Assistant Taskguide was referred to as the Installation Assistant.

The Configuration Assistant Taskguide program allows you to set up basic configuration, such as the following:

A preservation installation will only save all the non-system logical volumes and file systems on rootvg, for example, /home, or any user created logical volumes.

In order to preserve, data the Preservation Installation uses the /etc/preserve.list file to list the system files to be copied and saved during the installation. The /etc/filesystems file is listed by default. Add the full path names of any additional files that you want to save during the Preservation Installation to the preserve.list file. This file does not exist on systems prior to AIX Version 4.1; so, in this case, you must explicitly create it.

You can modify the preserve.list file and copy it to a diskette to be used during BOS installation. Information on how to create this diskette is found in the AIX Version 4.3 Installation Guide, SC23-4112. If a preserve.list file exists on diskette, the installation program uses this information instead of the default /etc/preserve.list file.

Ensure that you have sufficient disk space in the /tmp file system to store all the files listed in the /etc/preserve.list file.

A system configuration must be re-done after performing a Preservation Installation. Additionally, you must reinstall any applications that were installed in your rootvg after the preservation install has completed.

After a Preservation Installation, you must also reconfigure devices as well as re-create users and groups.

Note

Preservation Installation overwrites the /usr, /tmp, /var, and / (root) file systems by default; so any user data in these directories is lost. These file systems are removed and re-created; so any other LPPs or filesets that you installed on the system will also be lost.

A preservation installation will only save all the non-system logical volumes and file systems on rootvg, for example, /home, or any user created logical volumes.

In order to preserve, data the Preservation Installation uses the /etc/preserve.list file to list the system files to be copied and saved during the installation. The /etc/filesystems file is listed by default. Add the full path names of any additional files that you want to save during the Preservation Installation to the preserve.list file. This file does not exist on systems prior to AIX Version 4.1; so, in this case, you must explicitly create it.

You can modify the preserve.list file and copy it to a diskette to be used during BOS installation. Information on how to create this diskette is found in the AIX Version 4.3 Installation Guide, SC23-4112. If a preserve.list file exists on diskette, the installation program uses this information instead of the default /etc/preserve.list file.

Ensure that you have sufficient disk space in the /tmp file system to store all the files listed in the /etc/preserve.list file.

A system configuration must be re-done after performing a Preservation Installation. Additionally, you must reinstall any applications that were installed in your rootvg after the preservation install has completed.

After a Preservation Installation, you must also reconfigure devices as well as re-create users and groups.
- Setting date, time, and timezone
- Setting the root password
- Adjusting system storage and paging space
- Configuring TCP/IP
- Updating installed software after Migration Installation
- Configuring Web-based System Management (websm)
- Configuring online documentation and search

On a Version 4.3.1 system with a graphical display attached, the Installation Assistant will be similar as the screen shown in Figure 4.

![Configuration Assistant Taskguide](image)

Figure 4. Configuration Assistant Taskguide

On a system installed from a ASCII terminal, a similar task list will appear, just alphanumeric.

After you completed these tasks using the Configuration Assistance Taskguide, then you should disable the automatic restart of the Configuration Assistance Taskguide. Otherwise it might appear on the system console invoked by the init process on every reboot. To disable the automatic restart, you can select from the following menu item.
• Exit the Configuration Assistant.
• Finish now, and do not start Configuration Assistant when restarting AIX.

2.3 Determining maintenance levels

The `oslevel` command reports the level of the operating system using a subset of all filesets installed on your system. The `oslevel` command also prints information about maintenance levels, including which filesets are not at a specified maintenance level.

If your system, after an update, is not showing the new maintenance level, but the previous use of the `-l` flag to determine what filesets need to be updated to match the new BOS level.

AIX operating system software component is divided into four levels, the first three of these levels are referred as V.R.M (each are correspond to version and revision and modification level number). For example, AIX Version 4.3.3 means, Version 4 Release 3 modification level 3. These component levels are examined by `oslevel` command.

The fourth component level is the preventive maintenance level delivered as a pack of the filesets update (PTF) from the IBM software support. The AIX preventive maintenance levels are usually distributed on the internet (using the fixdist client on AIX), or by the AIX Update CD CD-ROM media.

To confirm the AIX preventive maintenance level on your system, you can use the `instfix` command as in the following example.

```
# instfix -i | grep ML
All filesets for AIX43ML were found.
All filesets for 4.3.0.0_AIX_ML were found.
All filesets for 4.3.1.0_AIX_ML were found.
All filesets for 4.3.2.0_AIX_ML were found.
All filesets for 4320-01_AIX_ML were found.
All filesets for 4320-02_AIX_ML were found.
```

Note

Never use the newly installed AIX system for production use, without proper filesets update installed from the AIX Update CD. Every AIX media shipments are accompanied with AIX Update CDs, which provides necessary filesets update for the target hardware system support. To install or update of the AIX filesets, please refer to Chapter 3, “Additional software installation” on page 39.
All filesets for 4.3.3.0_AIX_ML were found.
All filesets for 4330-01_AIX_ML were found.
All filesets for 4330-02_AIX_ML were found.
All filesets for 4330-03_AIX_ML were found.
All filesets for 4330-04_AIX_ML were found.
All filesets for 4330-05_AIX_ML were found.
Not all filesets for 4330-06_AIX_ML were found.

In this case, the last AIX preventive maintenance level 4330-06_AIX_ML is not fully installed on this system. To find what filesets update are missing to fulfill the requirements of the specified AIX preventive maintenance level, you can use the following method.

```
# instfix -ivk 4330-06_AIX_ML | grep not | grep ':'
```

Fileset bos.mp:4.3.3.26 is not applied on the system.
Fileset bos.net.tcp.client:4.3.3.26 is not applied on the system.
Fileset bos.rte.serv_aid:4.3.3.26 is not applied on the system.
Fileset bos.up:4.3.3.26 is not applied on the system.
Fileset devices.isa_sio.chrp.ecp.diag:4.3.1.25 is not applied on the system.

You can apply these filesets update from the Update CD or AIX BOS, Bonus Pack CDs. If you can not find necessary filesets in there, you should ask it for IBM software service or download it from the fixdist service.

2.4 Alternate disk installation

On systems where the downtime is critical, AIX Version 4.3 offers an additional way to install a system. The alternate disk installation available in AIX Version 4.3 allows installing a system while it is still up and running, thus decreasing the installation or upgrade down time considerably.

Alternate Disk Installation is used for:

- Installation of a mksysb image on another disk. For example, a mksysb from a machine with similar hardware that already has been upgraded.
- Cloning an existing rootvg on another disk. Optionally, the cloning offers the possibility of installing updates and new filesets to the cloned rootvg.

Using the Alternate Disk Installation method allows larger installations to prepare all the machines that need to be upgraded and perform the switch to the new version at the same time.

The command used for Alternate Disk Installation is: `alt_disk_install`
The command creates an altinst_rootvg volume group on the destination disk and prepares the same logical volume groups as in the rootvg, except the names are prepended with alt_, for example alt_hd1. Similar are the file systems renamed to /alt_inst/<filesystemname>, and the original data (mksysb or rootvg) is copied.

After this first phase, a second phase begins where an optional configuration action can be performed, either a custom script or update of software, when cloning rootvg.

The third phase unmounts the /alt_inst/ file systems and renames the file systems and logical volumes by removing the alt names. When this is done, the altinst_rootvg is varied off, and the bootlist is altered to boot from the new disk.

After the system is rebooted, the original rootvg is renamed to old_rootvg.

Note

The Alternate Disk Installation requires the filesets bos.alt_disk_install.boot_images and bos.alt_disk_install.rte to be installed.

Instead of using the `alt_disk_install` command directly, the SMIT menu’s `smitty alt_mksysb` and `smitty alt_clone` are provided for mksysb installation and cloning, respectively.

2.4.1 Cloning a running rootvg

The following example shows the use of the `alt_disk_install` command performing a cloning of a running rootvg on hdisk0 to the unused hdisk1:

```
# lspv
hdisk0  000fa17debb9c93a  rootvg
hdisk1  000fa17dc3bf937f  None

# alt_disk_install -C hdisk1
Calling mkszfile to create new /image.data file.
Checking disk sizes.
Creating cloned rootvg volume group and associated logical volumes.
Creating logical volume alt_hd5
Creating logical volume alt_hd6
Creating logical volume alt_hd8
Creating logical volume alt_hd4
Creating logical volume alt_hd2
Creating logical volume alt_hd9var
Creating logical volume alt_hd3
Creating logical volume alt_hd1
Creating /alt_inst/ file system.
Creating /alt_inst/home file system.
```
Creating /alt_inst/tmp file system.
Creating /alt_inst/usr file system.
Creating /alt_inst/var file system.
Generating a list of files
for backup and restore into the alternate file system...
Backing-up the rootvg files and restoring them to the
alternate file system...
Modifying ODM on cloned disk.
Building boot image on cloned disk.
forced unmount of /alt_inst/var
forced unmount of /alt_inst/usr
forced unmount of /alt_inst/tmp
forced unmount of /alt_inst/home
forced unmount of /alt_inst
forced unmount of /alt_inst
Changing logical volume names in volume group descriptor area.
Fixing LV control blocks...
Fixing file system superblocks...
Bootlist is set to the boot disk: hdisk1

lsvg
hdisk0 000fa17debb9c93a rootvg
hdisk1 000fa17dc9bf376f altinst_rootvg
#

Notice the difference in the lsvg command before and after performing the
alt_disk_install. The cloning example shown previously does not perform any
update or customizing.

Additional to creation of the Alternate Disk Installation, the alt_disk_install
program can also be used for operations on the altinst_rootvg.

To access the altinst_rootvg, use the -W flag of alt_disk_install to wake-up the
alternate volume group. This is useful if you have to synchronize data on both
rootvg and altinst_rootvg. Respectively, the altinst_rootvg can be put to sleep
using the -S flag of alt_disk_install.

For further information on Alternate Disk Installation, refer to the *AIX Version
4.3 Installation Guide*, SC23-4112 as well as the man pages for
alt_disk_install.

2.5 Installing additional hardware

When the system is installed, only the drivers and software related to the
current hardware and adapters are installed. When you add additional
hardware, for example, new adapter to your system, additional software, such
as drivers and software related to the adapter, might be needed.

When the system boots after you have installed the new hardware, **cfgmgr** is
automatically running trying to configure the new hardware. This will typically
succeed if similar hardware is already present. For example, you added an additional SCSI device, such as a tape drive.

If the new hardware is not listed using the `lsdev` command, for example:
```
lsdev -Cc adapter
```
...you can determine the missing software by running `cfgmgr` from a command window. The `cfgmgr` command will display a warning and indicate the missing driver filesets.

For example:
```
# cfgmgr
```
```
cfgmgr: 0514-621 WARNING: The following device packages are required for device support but are not currently installed.
```

Install the missing fileset from the AIX CDs using standard fileset installation procedures. Re-run the `cfgmgr` command, and if no warnings are displayed, then the new hardware is installed. Alternatively, you can use the `-i` flag of `cfgmgr` to install the missing driver software directly.

Depending on the type of hardware, continue with the setup of the hardware following the provided instructions. For third party hardware, the necessary drivers are normally provided with the product.

Some hardware might require additional software in order to be used. For example, when adding a graphics card on a server that originally has been installed without an graphic adapter, graphic software, such as the X11/CDE software, is not installed (at least not by default). Install this software by using the Graphics-Startup installation bundle. A bundle is a collection of packages, products, or individual filessets.

To install this, use the SMIT command:
```
# smitty install_bundle
```

and select the Graphics-Startup bundle. The list of system bundles in AIX Version 4.3 are located in `/usr/sys/inst.images/sys_bundles`.

When finished installing the new hardware, remember to reconnect all parts (keyboard, mouse, and so on) you detached from the system. Some RS/6000 systems are critical about missing components and will stop in the SMS menu when you boot the system.
2.5.1 Post installation problems

After installation, the Installation Assistant allows you to configure the basic system settings; however, a common set of problems can occur.

2.5.1.1 TCP/IP Problems
Communication problems with TCP/IP are, in itself, a large topic, and detailed coverage is beyond the scope of this publication. However, following set of problems are quite common with systems that have just been installed.

- If either the DNS is missing or not configured correctly, you will not be able to ping other computers by hostname, provided that you do not want to use the /etc/hosts file. Check the DNS setting by either looking in /etc/resolv.conf or check the DNS setting using the SMIT mktcpip fastpath.

- A similar problem occurs when the system hangs if you log in using the CDE. As the hostname is used in the DISPLAY environment a connection cannot be established to the X-Server. This is especially critical for logins over the network from X-Terminals.

2.5.1.2 Common problems with CDE
Typical for new installations is that user accounts are established and customized with environment settings in the .profile read by the korn shell. When a user logs into the system using the common desktop environment (CDE), these environment settings are not performed; however, if the user performs a telnet login it works. This is due to the fact that, per default, the CDE session does not source the .profile. In the .dtprofile, you have to uncomment the setting of the DTSOURCEPROFILE flag. The following is extracted from the .dtprofile file:

```bash
# If $HOME/.profile (.login) has been edited as described above, uncomment
# the following line.
#
DTSOURCEPROFILE=true
```

The CDE is known for weakness of the name resolution disturbance, since it use the INET domain socket instead of the UNIX domain socket to setup the necessary connection. For example, if you configure the DNS client configuration on the system, and pull off the ethernet cable to move the system physically, you have to wait so long to get login panel on the CDE.
If you using the DNS for name resolution mechanism, you should consider to apply the following method, to avoid this well known situation.

1. Create the local host file (/etc/hosts), at least contains your hostname, local host as FQDN.

 # /etc/hosts -- local host table
 127.0.0.1 localhost.yourdomain.com localhost loopback.yourdomain.com loopback
 XX.YY.ZZ.AA yourhost.yourdomain.com yourhost

2. Create the /etc/netsvc.conf file, which alter the system default name resolution order.

 hosts = local4,bind4

3. Confirm the file owner and permission (should be set to permission 0644, and owned by user root, group system).

 # ls -l /etc/hosts
 -rw-r--r-- 1 root system 807 Jun 20 18:13 /etc/hosts
 # ls -l /etc/netsvc.conf
 -rw-r--r-- 1 root system 21 Jun 20 18:13 /etc/netsvc.conf

For further reading on post installation problem determination, use the redbook *Problem Solving and Troubleshooting in AIX Version 4.3*, SG24-5496-00.

2.6 Installing online documentation

The AIX documentation is *not* automatically installed when you install the BOS. The documentation is contained on two CD-ROMs, *AIX Version 4.3 Base Documentation CD* and *AIX Version 4.3 Extended Documentation CD*.

For information about installing the AIX online documentation and setting up the Documentation Search Service, see the IBM Certification Study Guide, *AIX V4.3 System Administration*, SG24-5129 and *AIX Version 4.3 Installation Guide*, SC23-4112.

Note

Note that the traditional man pages presented with the man command in AIX Version 4.3 are pages converted from the HTML pages (filessets bos.html.en_US.cmds.*). These are part of the commands reference on the Base Documentation CD.
2.7 Command summary

The following section provides a list of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

2.7.1 The blvset command

Reset the pad string in the boot logical volume (BLV). The command has the following syntax:

```
/usr/lpp/bosinst/blvset -d Device -p [level | menu]
/usr/lpp/bosinst/blvset -d Device -g [level | menu]
```

The commonly used flags of the `blvset` command are provided in Table 1.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d device</td>
<td>Device location of the rootvg, for example /dev/hdisk0.</td>
</tr>
<tr>
<td>-p</td>
<td>Put pad string to the BLV. Use <code>level</code> option for AIX Version 4.x. Use <code>menu</code> option for AIX Version 3.2</td>
</tr>
<tr>
<td>-g</td>
<td>Get pad string from the BLV. Use <code>level</code> option for AIX Version 4.x. Use <code>menu</code> option for AIX Version 3.2</td>
</tr>
</tbody>
</table>

2.7.2 The cfgmgr command

The `cfgmgr` command configures devices and optionally installs device software. The command has the following syntax:

```
cfgmgr [-f | -s | -p Phase] [-i Device] [-l Name] [-v]
```

The commonly used flags of the `cfgmgr` command are provided in Table 2.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-i device</td>
<td>This flag enables the installation of additional software needed by the hardware identified by <code>cfgmgr</code>.</td>
</tr>
</tbody>
</table>
2.7.3 The alt_disk_install command

The `alt_disk_install` command installs an alternate disk with a mksysb install image or clones the currently running system to an alternate disk. The command has the following syntax:

Creation of Alternate Disk Installation:

```
alt_disk_install { -d device | -C } [ -i image.data ] [ -s script ] [ -R resolv_conf ] [ -D ] [ -B ] [ -V ] [ -r ] [ -p platform ] [ -L mksysb_level ] [ -b bundle_name ] [ -I installp_flags ] [ -l images_location ] [ -f fix_bundle ] [ -F fixes ] [ -e exclude_list ] [ -w filesets ] [ -n ] [ -P phase_option ] target_disks
```

Operation on existing Alternate Disk Installation:

```
alt_disk_install { -X [ volume group ] | -q disk | -S | -W disk | -v new_volume_group_name disk }
```

The commonly used flags of the `alt_disk_install` command are provided in Table 3.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-C</td>
<td>Clone the rootvg.</td>
</tr>
<tr>
<td>-d device</td>
<td>Install mksysb from device, for example /dev/rmt0.</td>
</tr>
<tr>
<td>-W disk</td>
<td>Wake-up a volume group for data access.</td>
</tr>
<tr>
<td>-S</td>
<td>Put the alternate volume group to sleep.</td>
</tr>
<tr>
<td>-X</td>
<td>Removes the altinst_rootvg volume group.</td>
</tr>
</tbody>
</table>

2.8 Quiz

The following assessment questions will help verify your understanding of the topics discussed in this chapter.

1. By default, which of the following AIX Version 4 installation methods will retain existing user data in the root volume group (excluding user data in /usr, /tmp, /var, and / (root) file systems)?

 A. Migration Installation
 B. Preservation Installation
 C. User data is not retained by default
 D. Both Migration Installation and Preservation Installation
2. A graphics card has been added to a system and the system is rebooted. When running the `lsdev -Cc adapter` command the graphics card is not listed in the output. Which of the following actions should be performed?
 A. Reboot system using `run mkdev -l`
 B. Install device support using the `cfgmgr` command
 C. Use `smit console` to redirect the console
 D. Use `smit devices` and choose the correct adapter

3. A graphics card has been added to a system. After rebooting, the system hangs on login with a blue screen indicating “Please wait...” and “Opening the AIXWindows Desktop”. Which of the following procedures should be performed next?
 A. Reinstall CDE software.
 B. Check name resolution.
 C. Uncomment the last line in the `.dtprofile` file.
 D. Boot in maintenance mode and perform file system checks.

4. The AIX level was Version 4.2.1. After upgrading the operating system to Version 4.3.2, the `man` pages are missing. Which of the following procedures should be performed to access the `man` pages?
 A. Re-install Info Explorer.
 B. Re-link `/usr/lpp/info/data/ispaths` to `ispaths.full`.
 C. Re-install the `man` fileset from the third AIX Version 4.3.2 CD-ROM.
 D. Re-install the commands reference from the Base Documentation CD-ROM.

5. Following and AIX upgrade from AIX Version 4.2.1 to Version 4.3.2, and booting from the CD-ROM, the Migration option is not offered as an option for the installation type. Which of the following procedures should be performed to activate the migration as an option?
 A. Continue using the Preservation Installation option.
 B. Run `installp` to clean up after a failed installation.
 C. Run `synclovm` to synchronize the ODM information.
 D. Run `/usr/lpp/bosinst/blvset` to reset the pad string in the boot logical volume.
2.8.1 Answers

The following are the preferred answers to the questions provided in this section.

1. D
2. B
3. B
4. D
5. D

2.9 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Perform a New and Complete Overwrite BOS installation on a dedicated test system. If no available systems exists, try to add an new hard disk and perform the BOS installation on this new disk. If you do, remember to change the bootlist to point to the new disk.

2. If an old AIX Version 3.1, AIX Version 4.1, or AIX Version 4.2 spare system is available, try an Migration Installation.

 After the migration, check the system and have a look at the LPPs installed.

3. Install the filesets `bos.html.en_US.cmds.cmds1` to `bos.html.en_US.cmds.cmds6` and afterwards try the man command.

4. Advanced Exercise: On a 4.3.3 test system, install to a new unallocated (additional) disk using the Alternate Disk Installation method and the corresponding `alt_disk_install` command.
Chapter 3. Additional software installation

The following topics are discussed in this chapter:

- What can be installed
- How software can be installed
- How you can remove or fix filesets after a failed installation

After installing the base operating system, you will normally install some additional software. Such additional software can include anything between a database or a single freeware command. This chapter will explain the differences in the installation methods.

3.1 What can be installed

AIX provides a variety of software installation options. The challenge is to select the right option for the right purpose.

A preview of the software is always a good place to start. SMIT provides a panel to do this, as shown in Figure 5.

![List Software on Media and Related Information menu](image)

An overview of the installation options is provided in the following sections.
3.1.1 Installation options

Understanding what you are to install, and what is meant by the word install, will help you to choose the right command. In order to better understand this, a brief description of the available installation packaging options is provided in the following sections.

3.1.1.1 Files

When working with files, remember that an ordinary file cannot be installed through the smitty installp dialog, which uses the installp or the instfix command. The most common scenario when you want to install a single file is probably restoring a file from a backup tape. For example, if the RS/6000 LED code indicates a syntax error in /etc/inittab (LED code 553) you could choose to fix the problem by reinstalling /etc/inittab from a mksysb tape or any other available backup media that has the file. The way to do this depends on the backup procedure used. If SMIT was used for generating the tape, the backup command has been used. In this case, the corresponding command to restore a file is restore.

3.1.1.2 Fileset

Fileset installation is probably the most common installation once a system installation is completed. A fileset is the smallest installable base unit for the AIX operating system. A fileset includes all files which constitute either a complete product, such as bos.net.uucp, or a separately installable part of a product, such as bos.net.nfs.client. More information on how to work with filesets can be found in 3.2.2, “Filesets” on page 47.

3.1.1.3 Bundle

A bundle is a list of filesets that are suited for a particular use. The bundle is only used as a template; you still have to define the media where the install image files are placed. The templates are placed in /usr/sys/inst.data/sys_bundles and in /usr/sys/inst.data/user_bundles. The templates are command text files; so, this gives you an opportunity to manipulate the content of the system defined bundles as well as create your own bundles as shown in 3.2.1, “Bundle” on page 45. The system defined bundles are:

- App-Dev
- Client
- Server
- Media-Defined
- Pers-Prod
- Graphics-Startup
3.1.1.4 Licensed Program Package
Licensed Program Packages (LPPs) are complete software products, including all packages associated with the licensed programs. A good example of an LPP is the base operating system (BOS).

3.1.1.5 PTFs and emergency fixes (e-fix)
PTF is the acronym for program temporary fix. A PTF is an updated, or fixed, fileset. The e-fix, or emergency fix, is a temporary solution to a unique problem. Each fix has an Authorized Program Analysis Report (APAR) number. The \texttt{instfix} command and the \texttt{smitty update_by_fix} allows you to install a fix or set of fixes without knowing any information other than the APAR number or other unique keywords that identify the fix. Emergency fixes will eventually, after testing and verification, become PTFs. The \texttt{installp} command can also be used because PTFs are just regular filesets. More on how to work with APARs in discussed in Section 3.1.2.3, “instfix” on page 43.

3.1.2 Installation methods
As discussed earlier in this chapter, you need to have an understanding of what you are to install. This will decide what command to use. The two commands mentioned so far are the \texttt{installp} command, which is to be used for fileset, LPP, and bundle installation, and the \texttt{instfix} command, which is to be used when AIX Support asks you to install a fix.

When either the \texttt{installp} or \texttt{instfix} commands are used, AIX usually expands the necessary file system (for example /usr) space automatically, if you instruct it do not so by command line option. This ability is based upon the information provided by the installable package. In a rare case, you will receive an error message such as "insufficient disk space", then you can increase the target file system explicitly to avoid failure of the installation.

3.1.2.1 SMIT installation menus
SMIT installation menus provide all the tools you need to install software. Under the fastpath, \texttt{smitty installp}, you will find menus that either use the \texttt{installp} command or the \texttt{instfix} command. All menus, except the highlighted one shown in Figure 6, use the \texttt{installp} command. The highlighted one uses the \texttt{instfix} command.
installp

The `installp` command is used for various installation tasks. One of the most useful features is the possibility to choose the state of the installed fileset, applied or committed. This is defined by the `-a` flag for apply and `-ac` for commit. After you have installed a fileset in applied state, you can choose to commit the fileset by using the `-c` flag.

Another useful function the `installp` command provides is the possibility to look at the media for installable fileset. This is done with the `-l` flag.

Table 4 on page 42 lists some commonly used `installp` flags and their descriptions.

Table 4. Flags used at installation with the `installp` command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>installp -ad /dev/cd0 <fileset></td>
<td>Installation of fileset in applied state</td>
</tr>
<tr>
<td>installp -acd /dev/cd0 <fileset></td>
<td>Installation of fileset in committed state</td>
</tr>
<tr>
<td>installp -c <fileset></td>
<td>Committing an applied fileset</td>
</tr>
<tr>
<td>installp -ld /dev/cd0</td>
<td>Listing of installable filesets on media</td>
</tr>
</tbody>
</table>
Finally, the `installp` command can also be used to clean up or reject an applied fileset and to uninstall a product as discussed in Section 3.2.2.3, "How to reject applied software" on page 51 through Section 3.2.2.6, "How to clean up after a failed or interrupted installation" on page 54.

To examine the current fileset level, or installed fileset status, use the `lslpp` command.

To display the installation and update history information for the bos.sysmgt.trace fileset, use:

```
# lslpp -h bos.sysmgt.trace
```

<table>
<thead>
<tr>
<th>Fileset</th>
<th>Level</th>
<th>Action</th>
<th>Status</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>bos.sysmgt.trace</td>
<td>4.3.3.0</td>
<td>COMMIT</td>
<td>COMPLETE</td>
<td>06/15/00 09:57:28</td>
<td></td>
</tr>
<tr>
<td>bos.sysmgt.trace</td>
<td>4.3.3.11</td>
<td>COMMIT</td>
<td>COMPLETE</td>
<td>06/16/00 11:19:13</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fileset</th>
<th>Level</th>
<th>Action</th>
<th>Status</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>bos.sysmgt.trace</td>
<td>4.3.3.0</td>
<td>COMMIT</td>
<td>COMPLETE</td>
<td>06/15/00 09:57:33</td>
<td></td>
</tr>
<tr>
<td>bos.sysmgt.trace</td>
<td>4.3.3.11</td>
<td>COMMIT</td>
<td>COMPLETE</td>
<td>06/16/00 11:19:14</td>
<td></td>
</tr>
</tbody>
</table>

As shown, the fileset bos.sysmgt.trace was once updated. It is now in the committed state at the fix level 4.3.3.11.

3.1.2.3 instfix

As mentioned in Section 3.1.1.5, “PTFs and emergency fixes (e-fix)” on page 41, the `instfix` command provides the function discussed in this section.

- Specified APARs are already installed or not
- Viewing the abstraction text on the specified APAR on installation media or installed system
- List the included fileset updates in APARs

To examine specified APARs are already installed on the system or not, you can use the following command (multiple APAR keywords can be specified, if you quote them in double quote).

For example:

```
# instfix -ik "IX71385 IX71988"
```

There was no data for IX71385 in the fix database.
All filesets for IX71988 were found.
In this case, the APAR IX71988 is already applied in this system, though the APAR IX71385 is not applied in this system.

The `instfix` command can be also used to extract information about fixes (called APAR description) already installed and fixes on a media (if you specified the install source media or directory using the -d flag).

For example:

```bash
# instfix -aik IY01781
IY01781 Abstract: Behavior of ptf_discard has changed
```

```bash
IY01781 Symptom Text:
ptf_discard() behavior has changed from 43D to 43K and causes problem with unmount file systems.
```

All filesets for IY01781 were found.

To confirm the contents of the specified APARs, you can use the `instfix` command like this.

For example:

```bash
# instfix -ivk IY01781
IY01781 Abstract: Behavior of pft_discard has changed
```

```bash
Fileset bos.mp:4.3.2.10 is applied on the system.
Fileset bos.up:4.3.2.10 is applied on the system.
All filesets for IY01781 were found.
```

In this case, the APAR IY01781 include the fileset updates for bos.mp with both 4.3.2.10 level.

--- Note ---

The e-fix (emergency fix) is not installable via `instfix` command, since they are not provided installable bff format yet. To install the e-fixes, certainly you will receive the appropriate installation instruction from IBM software service personnel. This instruction usually states, how to examine the integrity of the e-fix package, how to stop your application instance, how to replace modules, how to confirm the installation results.

3.1.3 Installation reports

Previously, the use of `smitty installp` menus, the `installp` command, and the `instfix` command were discussed. Depending on what you choose, the installation reports have to be handled in different ways.
3.1.3.1 SMIT
Most SMIT tasks create or add to the smit.log and smit.script files in your home directory. (These are the same files appended when you run a SMIT session.) The time, name of the task, and the command (flags and parameters included) are added to the end of the smit.script file in a format that can easily be used to create executable shell scripts.

The installp or the instfix command used by SMIT, will be logged in $HOME/smit.log.

3.1.3.2 installp
If you choose to use the installp command from the command line, you have the possibility to use redirection as in the example with instfix, or you can use the -e flag to specify a log file. For example:

```
# installp -ae /tmp/thomasc/installp.log -d /dev/cd0 "bos.dosutil 4.3.3.0"
```

This command would install bos.dosutil in an applied state and send all the familiar installation messages to the log file specified as well as report the command syntax used and the time the installation started and finished. Another option is to export the INST_DEBUG environment variable and set it to YES.

The target all when used in the installp command line means all available filesets on the media.

3.1.3.3 instfix
If you choose to use the instfix command from the command line, remember that instfix uses stdout and stderr by default. So, you have to manipulate these if you want an installation report. For example:

```
# instfix -k IY07536 -d /tmp/thomasc > /tmp/thomasc/inst.log 2>&1
```

3.2 How to install - Different scenarios
As pointed out in the previous text, software is divided into smaller and more manageable parts. The following discusses the different methods used.

3.2.1 Bundle
As mentioned before, there are several system-defined bundles that are used to make the installation process easier. The system-defined bundles are Server, Client, App-Dev, Media-Defined, Graphics-Startup, Pers-Prod. Each of the App-Dev, Client, and Server bundles has two files each in the
/usr/sys/inst.data/sys_bundles directory. The first one defines the default definition of the bundle, which has the name extension of .def. The second file is the actual bundle file that is recognized by smitty easy_install menus. This file has the file extension of .bnd. If cfgmgr -f finds a graphical adapter at IPL, the Graphics-Startup bundle will be used for installation of filesets required for use of the graphical console.

By editing the .bnd file for the respective bundle, you can include or exclude filesets in the bundle installation. If, after an installation, you want to remove only a single product that was installed with the bundle, you can do this by using smitty remove, or:

```bash
# installp -u bos.dosutil 4.3.3.0
```

Since the bundle is defined as the collection of the installable filesets, there is no easy way to un-install complete filesets included in bundle.

3.2.1.1 Media defined bundle

Another bundle is the Media-defined bundle. This bundle is used when a bundle definition is available on the installation media. This feature can be used by application developers to prepare for an easy_install.

3.2.1.2 How to manipulate bundles

You have the option to create your own bundles. It is as simple as creating a file with an editor, for example vi, and list the filesets to be installed. The file must have .bnd as the extension. When using the smitty easy_install menu (Figure 7), you will find your bundle in the list. In this example, it is named myOwn_bundle.
3.2.2 Filesets

To install the fileset `bos.dosutil`, the following command can be used:

```
# installp -acd /dev/cd0 -X bos.dosutil
```

In this case, the installation will be in *committed* mode, defined by the `-ac` flags. The installation media is `/dev/cd0`, as defined by the `-d` flag, and finally, the `-X` flag attempts to expand any file systems where there is insufficient space to do the installation. If you use SMIT installation menus for your installation with default settings in the menu, then the syntax used will appear as follows:

```
# installp -acgNqwXd /dev/cd0 bos.dosutil
```

The options and flags, as shown in Table 5, are good to recognize and to use when needed.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ac</td>
<td>Commit</td>
</tr>
<tr>
<td>-B</td>
<td>Consider updates only (does not install base fileset)</td>
</tr>
</tbody>
</table>
The commit state should only be used at a base level installation. The reason to use the apply state when updating software will be covered in Section 3.2.2.2, “How to update a fileset” on page 49.

SMIT and the `installp` command only handles filesets in the bff format. All filesets on the AIX installation media are, by default, in the bff format. If you want to copy installation image files from a installation media to disk for future use, you need to use the `bffcreate` command to make the files usable for the `installp` command. The `bffcreate` command calls the `inutoc` command, which creates a table of content file (.toc) in the specified directory.

For example:

```
# bffcreate -d /dev/cd0 -t /tmp/thomasc -w tmp/thomasc bos.dosutil
```

In this example, the `bffcreate` command takes the install image file, `bos.dosutil` from /dev/cd0 and places it in the /tmp/thomasc directory, defined by the -t flag. While doing this, `bffcreate` creates temporary files, and the -w flag indicates that the /tmp/thomasc directory can be used for this. Finally, the `inutoc` command will be automatically called to generate a table of content file. The contents of the directory will appear as follows:

```
# ls -la
total 136
drwxr-xr-x 2 root system 512 Jun 14 09:56 .
drwxrwxrwt 11 bin bin 1024 Jun 14 10:17 ..
-rw-r--r-- 1 root system 202 Jun 14 09:56 .toc
-rw-r--r-- 1 root system 57344 Jun 14 09:56 bos.dosutil.4.3.3.0.I
```

There are several other useful flags for the `bffcreate` command, which can be found in `Commands Reference, Volume 1, SC23-4115`, as well as a SMIT menu, `smitty bffcreate`. | Flag | Description |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-g</td>
<td>Includes requisites</td>
</tr>
<tr>
<td>-N</td>
<td>Overrides saving of existing files</td>
</tr>
<tr>
<td>-q</td>
<td>Quiet mode</td>
</tr>
<tr>
<td>-w</td>
<td>Does not place a wildcard at end of fileset name</td>
</tr>
<tr>
<td>-X</td>
<td>Attempts to expand file system size if needed</td>
</tr>
<tr>
<td>-d</td>
<td>Input device</td>
</tr>
</tbody>
</table>
3.2.2.1 The preview function

One of the most valuable features of the installp command, and the SMIT menus using the installp command, is the possibility to perform a preview of an action by running all pre-installation checks for the specified action. This -p flag is only valid with apply, commit, reject, and remove (-a, -c, -r, and -u) flags. The pre-installation check includes verifying prerequisites and checking if the amount of needed space in the target file system is sufficient. To preview an apply of bos.dosutil, the command would look as follows:

```
# installp -ape /tmp/thomasc/installp.log -d /dev/cd0 "bos.dosutil 4.3.3.0"
```

In SMIT, the choice is done by changing the PREVIEW only to yes (Figure 8 on page 49).

![Figure 8. Preview option in SMIT](image)

3.2.2.2 How to update a fileset

During and after installation, there are four major actions that can be taken with optional software products and service updates. Optional software and service updates can be applied, committed, rejected, and removed. Whether a particular action can be taken depends on whether actions have previously been taken.

You can use the lslpp command to check the actual status value of a fileset, for example, the -h flag which will provide us with the installation history of the specified fileset.
The use of Commit or Apply has been mentioned so far. As mentioned before, you cannot install a base level of a fileset in any other mode than Commit. The installation will not take any notice of the use of -a flag with the `installp` command. It will automatically use the -ac flags, see Section 3.1.2.2, “installp” on page 42 for further example usage of `installp -a` and `installp -ac`. Table 6 provides assistance in the Commit or Apply decision.

<table>
<thead>
<tr>
<th>Fileset level</th>
<th>Install options</th>
<th>Removal</th>
<th>Status after removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base level fileset</td>
<td>commit</td>
<td>remove / reinstall</td>
<td>removed</td>
</tr>
<tr>
<td>update of fileset</td>
<td>commit</td>
<td>remove / reinstall</td>
<td>removed</td>
</tr>
<tr>
<td></td>
<td>apply</td>
<td>reject</td>
<td>rejected</td>
</tr>
</tbody>
</table>

By using the Apply option when upgrading a fileset, you keep the former version of that software product in the `/usr/lpp/PackageName` directory so that if you want to return to the former version, you can do so without having to reinstall it. When doing this through SMIT, you need to remember the mutual dependencies in the SMIT menu. When applying a fileset, you should change the SAVE replaced files to `yes` as shown in Figure 9.

To enable the SAVE replaced fileset to `yes` is safer option in production use. But, it also consumes additional disk space to store the older level fileset modules. Keep in mind, if you use these option frequently, after some weeks or months normal operations, these saved older level fileset modules should be removed by committing the applied status filesets update, before applying newer filesets updates.
3.2.2.3 How to reject applied software

If you find out that a fileset was not compatible with some of your applications, or if the fileset introduced some other problems, you want to be able to remove the fileset. If you have applied the fileset, it is a simple procedure of executing the following command:

```
# installp -r bos.sysmgt.trace 4.3.3.11
```

When rejecting an applied fileset, you need to give the level of the fileset as a parameter to the `installp` command. When using SMIT, you can do this under the software maintenance menus as shown in Figure 10.
Move cursor to desired item and press Enter.

Software Maintenance and Utilities

Under this submenu you can among other things, choose either to commit an applied fileset or reject an applied fileset as shown in Figure 11 on page 52.

Figure 11. SMIT menu for rejecting an applied fileset
3.2.2.4 Broken or inconsistent software

Filesets in the broken state have encountered a problem while installing an update to the fileset. To correct the problem, the update should be reinstalled, making sure that these options in the menu are set as indicated as shown in Table 7.

Table 7. Choice of options when reinstalling software

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commit software updates</td>
<td>yes</td>
</tr>
<tr>
<td>Save replaced files</td>
<td>no</td>
</tr>
<tr>
<td>Automatically install requisite software</td>
<td>yes</td>
</tr>
</tbody>
</table>

Filesets or fixes in the inconsistent state have / (root) and /usr parts that are out of synchronization, usually because installation was interrupted or failed. To recover, try to reinstall the software. Alternately, remove the fileset or reject the update.

3.2.2.5 Install same or older version

If you end up with a fileset in the committed state that you do not want to use, the only way to remove it is to do a reinstallation of the base level of the fileset. This can be done through SMIT under all of the installation menus as shown in Figure 12.
This can also be done by use of the -F flag in combination with the normal -a for apply or -ac for commit. For example:

```
# installp -acFd /dev/cd0 bos.dosutil
```

3.2.2.6 How to clean up after a failed or interrupted installation

If the installation, for some reason, has been interrupted, you can have status reports on the fileset indicating a problem. For example, the following output was generated after sending a SIGKILL signal to an installation process:

```
# lslpp -h bos.dosutil
Fileset   Level   Action  Status  Date    Time
---------- ---------- --------- -------- --------
Path: /usr/lib/objrepos
bos.dosutil  4.3.3.0  APPLY    PENDING  06/15/00  14:16:49
```

```
# lslpp -l bos.dosutil
Fileset   Level  State   Description
---------- ------ ------- ----------------
Path: /usr/lib/objrepos
bos.dosutil  4.3.3.0  APPLYING  DOS Utilities
```

When you see this kind of output you should use the `lppchk` command to check what exactly is the consistency problem with the fileset. For example:
lppchk -v
lppchk: The following filesets need to be installed or corrected to bring the system to a consistent state:

bos.dosutil 4.3.3.0 (APPLYING)

The `lppchk` command verifies that files for an installable software product (fileset) match the software vital product data (SWVPD) database information for file sizes, checksum values, or symbolic links. As shown, the `-v` flag is used to verify that the `/ (root), /usr, and /usr/share` parts of the system are valid with each other. In other words, this flag verifies that all software products installed on the `/ (root)` file system are also installed on the `/usr` file system.

When you run into this kind of problem, you need to clean up after the installation. This is done in the Clean Up After Failed or Interrupted Installation submenu as shown in Figure 11 on page 52, or by issuing the `installp` command with the `-C` flag. This will automatically search for filesets in other states than applied or committed and remove them. For example:

```
# installp -C
```

3.3 Uninstall software

To remove a software product, use the `installp` command as in the following example:

```
# installp -u bos.dosutil 4.3.3.0
```

Or you can use the `smitty remove`, a preferred method, as shown in Figure 13 on page 56.
3.4 Summary

As a general summary of this chapter, there is but one single advise:

Understand your task

Find out what you are to install, choose the right installation option, and finally, if you have to repair a failed installation, choose the right flag to reject, uninstall, or clean up.

3.5 Command summary

The following section provides a list of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

3.5.1 installp

As seen below, the installp command is a very useful and powerful tool. More on the installp command can be found in Commands Reference, Volume 3, SC23-4117, and in the Installation Guide, SC23-4112.

To install with apply only or with apply and commit:
installp [-a | -ac [-N]] [-eLogFile] [-V Number] [-dDevice] [-b] [-s] [-B] [-D] [-I] [-p] [-Q] [-q] [-v] [-X] [-F | -g] [-O { [r] [s] [u] }] [-tSaveDirectory] [-w] [-zBlockSize] { FilesetName [Level]... | -f ListFile | all }

To commit applied updates:
installp -c [-eLogFile] [-VNumber] [-b] [-g] [-p] [-v] [-X] [-O { [r] [s] [u] }] [-w] { FilesetName [Level]... | -f ListFile | all }

To reject applied updates:
installp -r [-eLogFile] [-VNumber] [-b] [-g] [-p] [-v] [-X] [-O { [r] [s] [u] }] [-w] { FilesetName [Level]... | -f ListFile }

To uninstall (remove) installed software:
installp -u [-eLogFile] [-VNumber] [-b] [-g] [-p] [-v] [-X] [-O { [r] [s] [u] }] [-w] { FilesetName [Level]... | -f ListFile }

To clean up a failed installation:
installp -C [-b] [-eLogFile]

To list all installable software on media:
installp { -l | -L } [-eLogFile] [-d Device] [-B] [-I] [-q] [-zBlockSize] [-O { [s] [u] }]

To list all customer-reported problems fixed with software or display all supplemental information:
installp { -A|-i } [-eLogFile] [-dDevice] [-B] [-I] [-q] [-z BlockSize] [-O { [s] [u] }] { FilesetName [Level]... | -f ListFile | all }

To list installed updates that are applied but not committed:
installp -s [-eLogFile] [-O { [r] [s] [u] }] [-w] { FilesetName [Level]... | -f ListFile | all }

Chapter 3. Additional software installation 57
Table 8 gives a general summary of some useful `installp` flags.

Table 8. General installp summary

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ac</td>
<td>Commit</td>
</tr>
<tr>
<td>-g</td>
<td>Includes requisites</td>
</tr>
<tr>
<td>-N</td>
<td>Overrides saving of existing files</td>
</tr>
<tr>
<td>-q</td>
<td>Quiet mode</td>
</tr>
<tr>
<td>-w</td>
<td>Does not place a wildcard at end of fileset name</td>
</tr>
<tr>
<td>-X</td>
<td>Attempts to expand file system size if needed</td>
</tr>
<tr>
<td>-d</td>
<td>Input device</td>
</tr>
<tr>
<td>-l</td>
<td>List of installable filesets</td>
</tr>
<tr>
<td>-c</td>
<td>Commit an applied fileset</td>
</tr>
<tr>
<td>-C</td>
<td>Clean up after an failed installation</td>
</tr>
<tr>
<td>-u</td>
<td>Uninstall</td>
</tr>
<tr>
<td>-r</td>
<td>Reject an applied fileset</td>
</tr>
<tr>
<td>-p</td>
<td>Preview of installation</td>
</tr>
<tr>
<td>-e</td>
<td>Define an installation log</td>
</tr>
<tr>
<td>-F</td>
<td>Forced overwrite of same or newer version</td>
</tr>
</tbody>
</table>

3.5.2 instfix

The `instfix` command is used to install fixes and to check for installed fixes. More on the `instfix` command can be found in *Commands Reference, Volume 3, SC23-4117* and in the *Installation Guide, SC23-4112*.

The syntax of `instfix` is as follows:

```
instfix [ -T ] [ -s String ] [ -S ] [ -k Keyword | -f File ] [ -p ] [ -d Device ] [ -i [ -c ] [ -q ] [ -t Type ] [ -v ] [ -F ] ] [ -a ]
```
Table 9 gives a general summary of some useful instfix flags.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-T</td>
<td>Displays the entire list of fixes present on the media.</td>
</tr>
<tr>
<td>-i</td>
<td>Shows if the fix is installed, should be used with -k or -f</td>
</tr>
<tr>
<td>-k</td>
<td>Keyword, the APAR number is a keyword</td>
</tr>
<tr>
<td>-f</td>
<td>Specifies the input file containing keywords or fixes</td>
</tr>
<tr>
<td>-p</td>
<td>Displays filesets associated with keywords</td>
</tr>
</tbody>
</table>

3.6 Quiz

The following assessment questions will help verify your understanding of the topics discussed in this chapter.

1. Before installation occurs, which of the following should be used to view the contents of the media-defined bundle shipped as a part of AIX Version 4?
 - A. The `inutoc` command
 - B. The `lsinstall` command
 - C. The SMIT’s List Software on the Installation Media menu
 - D. View contents of files located in `/usr/sys/inst.data/sys_bundles`

2. A system administrator needs to install the Personal Productivity Bundle, without the DOS utilities fileset (bos.dosutil). Which of the following procedures is the best way for a system administrator to successfully perform the installation?
 - A. Install the bundle and then remove the DOS utilities fileset
 - B. Use the `chgcsm` command with the `-d` option for bos.dosutil
 - C. Use the ODM edit (`odme`) utility to remove the product definition from the system’s ODM database
 - D. Remove the bos.dosutil name from `/usr/sys/inst.data/sys_bundles/Pers-Prod.bnd` for the Personal Productivity Bundle
3. Which of the following procedures should be used to remove a committed optional program product from an AIX Version 4 system?

A. Use the Remove Installed Software menu in SMIT
B. Use the `odmedit` command to change the status of the product to “uninstalled”
C. Use the reject option for `installp` to remove each unwanted program product installed on a system
D. There is no systematic way to remove optional program products

3.6.1 Answers

The following are the preferred answers to the questions provided in this section.

1. C
2. D
3. A

3.7 Exercises

In this exercise, the system has been installed using AIX Version 4.3.3 maintenance level 2. Start with choosing a fileset well suited for this exercise (not system critical and with some fix levels available, or example, `bos.sysmgt.trace`). Verify that the previous version of your chosen fileset is in committed state before doing this exercise. Do not test this in a production system:

1. Download an updated fileset, for example, `bos.sysmgt.trace 4.3.3.11`, from the Web. This can be done from:

 http://www.ibm.com/servers/aix/download/

 Install the fileset in applied state. Verify the state of the fileset. Reject the fileset.

2. Install the fileset in applied state once more, during the installation, and send `SIGKILL` to the `installp` PID. Check for installation problems. Clean up after the failed installation.
Chapter 4. System boot

The following topics are discussed in this chapter:

- A general boot process
- Differences between MCA and PCI systems
- Boot phase 1
- Boot phase 2
- Boot phase 3
- Common boot problem scenarios and how to fix them

Boot problems are among the most common problems. When looking at the subject of installation and system recovery, it is important that you have good knowledge on the boot process. This chapter begins with a general overview of the boot process, then expands on the details and discusses the process with their LED codes in further detail. A summary of the LED codes can been found in 4.6.2, “LED codes” on page 80.

4.1 General overview of the boot process

Both hardware and software problems can cause the system to halt in the boot process. The boot process is also dependent on what hardware platform is used. In the initial startup phase, there are some important differences between MCA and PCI systems, and these differences will determine the way to handle a hardware related boot problem. These differences will be covered in Section 4.2, “BIST - POST” on page 64.

A general representation of the boot process is shown in Figure 14 on page 62.
Check of and initialization of hardware

Load BLV and pass control

Configure base devices

Init processes /etc/inittab

Figure 14. General boot order

The initial hardware check is to verify that the primary hardware is OK. This phase is divided into two separate phases on an MCA system, first a built-in self test (BIST), and the second, a power-on self test (POST). On PCI systems, it is handled by a single POST. After this, the system attempts to load the boot logical volume (BLV) into a RAM file system (RAMFS) and passes control to the BLV. Since there is no LVM device driver loaded into memory, the system has to find the correct BLV location without using LVM. The correct address information (offset and length) is written in the first physical disk sector (512 byte block) on the boot disk. This sector is called boot record.
Because the rootvg is not available at this point, all the information needed for boot is included in the BLV used for creation of the RAMFS in the memory. After this, the init process is loaded and starts to configure the base devices.

This is called boot phase 1 (init executes the rc.boot script with an argument of 1).

The next step, called phase 2, aims at activating rootvg, and this is probably the phase where the most common boot problems occur, for example, a file system or the jfslog is corrupt. Next, the control is passed to the rootvg init command and the RAMFS is released.

Finally, the init process, now loaded from disk (not the BLV init), executes the rc.boot script with an argument of 3 to configure the remaining devices. This final stage is done from /etc/inittab.
4.2 BIST - POST

As mentioned before, there are differences between the classic RS/6000 system with MCA architecture and the PCI systems that are delivered today. The MCA system will be discussed first.

4.2.1 MCA systems

At a system startup of an MCA system, the first thing that happens is a BIST. These tests reside in EPROM chips, and the hardware tested by BIST are mainly components on the motherboard. LED codes shown during this phase of the startup will be in the range of 100 - 195, depending on the status of the hardware. After this, the POST will be initialized.

The task of the POST is to find a successful hardware path to a BLV. All hardware that is required to load a boot image is tested. The LED codes at this stage are in the range of 200 - 2E7, and both hardware and software problems can cause a halt in the startup process at this stage.

On an MCA system, the load of the BLV starts with checking the bootlist. The bootlist is defined by the key position. When the key is in normal position applications will be started as well as network services. This is done when the init process reads /etc/inittab and executes the configuration scripts referenced in the file. A normal boot is represented by the runlevel 2. The /etc/inittab file is discussed in further detail in Sections 4.1, "General overview of the boot process" on page 61 and 4.5.1, "/etc/inittab" on page 78. To manipulate the boot list for normal mode, use the following command:

```
# bootlist -m normal hdisk0 hdisk1 rmt0 cd0
```

This will cause the system to first search hdisk0 for a usable BLV. If there is no BLV at hdisk0, then hdisk1 will be searched, and so on.

The service boot list is used when booting the system for maintenance tasks. No applications or network services will be started. To check what the service bootlist looks like, use the -o option which was introduced with AIX Version 4.2.1 as follows:

```
# bootlist -m service -o
fd0
cd0
rmt:0
hdisk2
ent0
```
Another feature introduced with AIX Version 4.2 is the use of generic device names. Instead of pointing out the specified disk, with hdisk0 or hdisk1, you can use the generic definition of SCSI disks. For example:

```
# bootlist -m service cd rmt scdisk
```

This will cause the system to probe any CD, then probe any tape drive, and finally, probe any SCSI disk for a BLV. The actual probing of the disk is a check of sector 0 for a boot record, which, in turn, will point out the boot image.

Changes to the boot list can also be done through the diag menus. At the Function Selection menu, select **Task Selections** as shown in Figure 15.

\[FUNCTION \ SELECTION\]

Move cursor to selection, then press Enter.

- Diagnostic Routines
 This selection will test the machine hardware. Wrap plugs and other advanced functions will not be used.
- Advanced Diagnostics Routines
 This selection will test the machine hardware. Wrap plugs and other advanced functions will be used.
- **Task Selection(Diagnostics, Advanced Diagnostics, Service aids, etc.)**
 This selection will list the tasks supported by these procedures. Once a task is selected, a resource menu may be presented showing all resources supported by the task.
- Resource Selection
 This selection will list the resources in the system that are supported by these procedures. Once a resource is selected, a task menu will be presented showing all tasks that can be run on the resource(s).

F1=Help F10=Exit F3=Previous Menu

Figure 15. Function selection menu in diag

In the list of tasks, choose **Display or Change Bootlist** as shown in Figure 16 on page 66.
Finally, you have to choose whether to change the **Normal mode bootlist** or the **Service mode bootlist** as shown in Figure 17.
At this point, a lot of things can cause a boot problem. The boot list could point to a device that does not have a BLV, or the devices pointed to are not accessible because of hardware errors.

The following sections cover some problems that can cause a halt. All problems at this stage of the startup process have an error code defined, which is shown in the LED display on the front panel.

4.2.1.1 LED 200
The LED code 200 is connected to the secure key position. When the key is in the secure position, the boot will stop until the key is turned either to the normal position or the service position. The boot will then continue.

4.2.1.2 LED 299
An LED code of 299 shows that the BLV will be loaded. If this LED code is passed, then the load has been successful. If, after passing 299, you get a stable 201, then you have to re-create the BLV as discussed in Section 4.2.1.4, “How to re-create the BLV” on page 67.

4.2.1.3 MCA LED codes
Table 10 provides a list of the most common LED codes on MCA systems. More of these can be found in the Message Guide and References which is part of the AIX Version 4 Base Documentation.

Table 10. Common MCA LED codes

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 - 195</td>
<td>Hardware problem during BIST</td>
</tr>
<tr>
<td>200</td>
<td>Key mode switch in secure position</td>
</tr>
</tbody>
</table>
| 201 | 1. If LED 299 passed re-create BLV
2. If LED 299 has not passed, POST encountered a hardware error |
| 221, 721, 221 - 229, 223 - 229, 225 - 229, 233 - 235 | The bootlist in NVRAM is incorrect (boot from media and change the bootlist), or the bootlist device has no bootimage (boot from media and recreate the BLV), or the bootlist device is unavailable (check for hardware errors). |

4.2.1.4 How to re-create the BLV
When the LED code indicates that the BLV cannot be loaded, you should start by checking for hardware problems, for example, cable connections. The next step is to start the system in maintenance mode from an external media, for
example, an AIX installation CD. Use the **Access this Volume Group** action and start a shell menu for re-creation of the BLV (this menu is also used if the boot problem was due to an incorrect bootlist). Execute the following command if you want to re-create the BLV on hdisk0:

```
# bosboot -ad /dev/hdisk0
```

Another scenario where you might want to create a BLV with the `bosboot` command is with a mirrored rootvg. Just mirroring this volume group does not make the disks containing the secondary copy bootable, since the boot record is not a logical volume (AIX mirroring works only on logical volumes). You still have to define the disks in the bootlist and execute the `bosboot` command on the secondary copy. The `bosboot` command creates both the BLV and the boot record.

Accessing rootvg

The following is a short summary on how to access the maintenance menus. For more detailed information, see *Installation Guide, Chapter 10 - Accessing a system that will not boot*, SC23-4112.

1. Boot the system from media
2. At the installation menu, choose **Start Maintenance for System Recovery**.
3. On the next menu, choose **Access a Root Volume Group**.
4. A list of accessible disks are shown, choose the rootvg disk.
5. Finally, choose the **Access this Volume Group and start a shell** when you want to re-create the BLV. Change the bootlist or forgotten root password.

Choose the **Access this Volume Group and start a shell before mounting file systems** if file systems or the jfslog in rootvg are corrupt.

4.2.2 PCI systems

When booting PCI systems, there are important differences from the MCA systems. It has already been mentioned that there is an absence of BIST. Another difference is the absence of the key switch. Modern PCI systems use a logical keymode switch, which is handled by the use of function key. Also, the diag function is missing on some older PCI systems. The following section discusses how to change the bootlist and discusses the support of the normal and service boot options on PCI systems.
4.2.2.1 Changing the bootlist on PCI systems
All PCI systems have System Management Services (SMS) menus. On most systems, these menus can be accessed by pressing F1 or 1 when the console is initiated (the use of F1 or 1 depends on the use of graphical display or ASCII terminal). At this time, a double beep is heard. Depending on the PCI model, there are three or four choices in the SMS main menu. One of these is named boot. Under this menu, you can define the bootlist. The SMS main menu from a 43P-140 is shown in Figure 18. Newer PCI systems also have an additional selection called multiboot.

![System Management Services Menu](image)

Figure 18. SMS main menu

Changing the boot order can also be done with the `bootlist` command.

4.2.2.2 Normal boot and Service boot on PCI systems
Some PCI systems do not support service mode, for example, the 7248-43P. The only way to boot in another mode, such as maintenance mode, is to change the normal bootlist. This can be done with the `bootlist -m normal` command if the system is accessible. If the system is not accessible, this can be done by booting from media and changing the bootlist through the SMS menus.
All PCI systems have a default bootlist. On modern PCI systems, this default bootlist can be accessed by using the **F5** function key. On older PCI systems, this cannot be done. Instead, a single bootlist is provided that can be reset to the default values by removing the battery for about 30 seconds. This is because the bootlist is stored in NVRAM, and the NVRAM is only non-volatile as long as the battery is maintaining the memory.

Newer PCI architecture machines, for example, the 43P-150, supports a service bootlist. The simplest way to find out if a particular system supports the service boot option is to execute:

```
# bootlist -m service -o
0514-220 bootlist: Invalid mode (service) for this model
```

The error message above indicates that the system does not support the service boot option.

All new PCI systems support the following key allocation standard:

- **F1** or **1** on ASCII terminal: Starts System Management Services
- **F5** or **5** on ASCII terminal: Boot diag, use default boot list of fd, cd, scdisk, network adapter
- **F6** or **6** on ASCII terminal: Boot diag, use of custom service boot list

4.2.2.3 POST LED codes on PCI systems

On old PCI systems, such as the 7020-40P or the 7248-43P, the LED display is missing; so, there will be no LED codes to help solve boot problems. Fortunately, this has been changed on modern PCI systems, but the error codes generated during this phase of the system startup differs from model to model. The only way to figure out the exact meaning of an error code is to refer to the *Service Guide* delivered with the system. IBM provides a Web page where *Service Guides* for most PCI systems are available in HTML and PDF format. The URL is:

http://www.rs6000.ibm.com/resource/hardware_docs/

4.3 Boot phase 1

So far, the system has tested the hardware, found a BLV, created the RAMFS, and started the init process from BLV. The rootvg has not yet been activated. From now on, the boot sequence is the same on both MCA systems and PCI systems.

The workflow for boot phase 1 is shown in Figure 19.
During this phase, the following steps are taken.

- The init process started from RAMFS executes the boot script `rc.boot 1`. At this stage, the `restbase` command is called to copy the reduced ODM from the BLV into the RAMFS. If this operation fails, you will see a LED code of 548.

- After this, `cfgmgr -f` reads the Config_Rules class from the reduced ODM. In this class, devices with the attribute `phase=1` will be considered base devices. Base devices are all devices that are necessary to access `rootvg`. The process invoked with `rc.boot 1` attempts to configure devices so that `rootvg` can be activated in the next `rc.boot` phase.

- At the end of boot phase 1, the `bootinfo -b` command is called to determine the last boot device. At this stage, the LED shows 511.
4.4 Boot phase 2

In boot phase 2 the rc.boot script is passed the parameter 2. The first part of this phase is shown in Figure 20.

![Diagram showing boot phase 2 steps]

During this phase, the following steps are taken.

- Rootvg will be varied on with the special ilp_varyon utility. If this command is not successful, one of the following LED codes will appear - 552, 554, 556.

- After the successful execution of ilp_varyon, the root file system (/dev/hd4) will be mounted on a temporary mount point (/mnt) in RAMFS. If this fails, 555 or 557 will appear in the LED display.

- Next, the /usr and /var file system is mounted. If this fails, the LED 518 appears. The mounting of /var at this point enables the system to copy an
eventual dump from default dump devices, /dev/hd6, to default copy directory, /var/adm/ras. This is done with the `copycore` command.

- After this, rootvg’s primary paging space, /dev/hd6, will be activated.

The second part of this phase is shown in Figure 21.

- Next, the copy of rootvg’s RAMFS ODM, and /dev directories will occur (`mergedev`). This is possible because of the temporary mount point, /mnt, is used for the mounted root file system.

- Next, the /usr and /var from the RAMFS is unmounted.

- Finally, the root file system from rootvg (disk) is mounted over the root file system from the RAMFS. The mount points for the rootvg file systems become available. Now, the /var and /usr file systems from the rootvg can be mounted again on their ordinary mount points.

- There is no console available at this stage; so all boot messages will be copied to the error log.
As mentioned, there are a lot of different problem possibilities in this phase of the boot. The following section discusses how to correct some of them.

4.4.1 LED 551, 555, or 557

There can be several reasons for a system to halt with LED codes - 551, 555, or 557. For example:

- A damaged file system
- A damaged Journaled File System (JFS) log device
- A failing disk in the machine that is a member of the rootvg

To diagnose and fix these problems, you will need to boot from a bootable media, access the maintenance menus, choose **Access a Volume Group and start a shell before mounting file systems**, and then do one or all of the following actions.

To ensure file system integrity, run the `fsck` command to fix any file systems that may be corrupted:

```bash
# fsck -y /dev/hd1
# fsck -y /dev/hd2
# fsck -y /dev/hd3
# fsck -y /dev/hd4
# fsck -y /dev/hd9var
```

To correct the function of the log device, run `logform` on `/dev/hd8` to re-create the logdevice:

```bash
# /usr/sbin/logform /dev/hd8
```

Or, if the BLV is corrupted, re-create the BLV and update the bootlist:

```bash
# bosboot -a -d /dev/hdisk0
# bootlist -m normal hdisk0
```

4.4.2 LED 552, 554, 556

An LED code of 552, 554, or 556 during a standard disk based boot indicates a failure occurred during the varyon of the rootvg volume group. This can be the cause of:

- A damaged file system
- A damaged Journaled File System log device
- A damaged IPL-device record or a damaged IPL-device magic number (the magic number indicates the device type)
• A damaged copy of the Object Data Manager (ODM) database on the boot logical volume
• A hard disk in the inactive state in the root volume group
• A damaged superblock

To diagnose and fix the problem, you will need to boot from the installation media and navigate the menus to access the volume group and start a shell before mounting the file systems.

If fsck indicates that block 8 could not be read when used, as shown in Section 4.4.1, “LED 551, 555, or 557” on page 74, the file system is probably unrecoverable. The easiest way to fix an unrecoverable file system is to re-create it. This involves deleting it from the system and restoring it from a backup. Note that /dev/hd4 (root file system) cannot be re-created. If /dev/hd4 is unrecoverable, you must reinstall AIX.

A corrupted ODM in the BLV is also a possible cause for these LED codes. To create a correct one, run the following commands that remove the system’s configuration and save it to a backup directory:

```
# /usr/sbin/mount /dev/hd4 /mnt
# /usr/sbin/mount /dev/hd2 /usr
# /usr/bin/mkdir /mnt/etc/objrepos/bak
# /usr/bin/cp /mnt/etc/objrepos/Cu* /mnt/etc/objrepos/bak
# /usr/bin/cp /etc/objrepos/Cu* /mnt/etc/objrepos
# /usr/sbin/umount all
# exit
```

After this, you must copy this new version of the ODM in the RAMFS to the BLV. This is done with the `savebase` command. Before that, make sure you place it on the disk used for normal boot by executing:

```
# lslv -m hd5
```

Save the clean ODM database to the boot logical volume. For example:

```
# savebase -d /dev/hdisk0
```

Finally, re-create the BLV and reboot the system. For example:

```
# bosboot -ad /dev/hdisk0
# shutdown -Fr
```

Another possible reason for these error codes is a corrupted superblock. If you boot in maintenance mode and get error messages, such as not an AIX
file system, or not a recognized file system type, it is probably due to a
corrupted superblock in the file system.

Each file system has two super blocks, one in logical block 1 and a copy in
logical block 31. To copy the superblock from block 31 to block 1 for the root
file system, issue the following command:

```
# dd count=1 bs=4k skip=31 seek=1 if=/dev/hd4 of=/dev/hd4
```

4.4.3 LED 518

The 518 LED code has an unclear definition in the *Messages Guide and
Reference*, which says:

Display Value 518

Remote mount of the / (root) and /usr file systems during network boot did not
complete successfully.

This is not the entire problem. If the system runs into problems while
mounting the /usr from disk (locally, not network mount) you will get the same
error. Fix this problem the same way as any other rootvg file system
corruption is fixed.

4.4.4 The alog command

Up until this stage, the system has not yet configured the console; so, there is
no stdout defined for the boot processes. At this stage, the `alog` command
comes to good use.

The `alog` command can maintain and manage logs. All boot information is
sent through the `alog`. To look at the boot messages, use the following
command:

```
# alog -ot boot
*************** no stderr **************
 ----------------
Time: 12  LEDS: 0x538
invoking top level program -- "/usr/lib/methods/definet > /dev/null
2>&1;opt="/u
sr/sbin/lsattr -E -l inet0 -a bootup_option -F value"
if [ $opt = "no" ];then nf="/etc/rc.net
else nf="/etc/rc.bsdnet
fi;$nf -2;x=$?;test $x -ne 0&echo $nf failed. Check for invalid
command
s >&2;exit $x"
Time: 21  LEDS: 0x539
return code = 0
*************** no stdout **************
```
At this point, the bootup_option is checked to determine if a BSD-style configuration of TCP/IP services is to be used, or if the default of ODM supported configuration should be used. During this stage, the LED codes 538 and 539 are shown as shown in the preceding example.

4.5 Boot phase 3

So far, the following boot tasks has been accomplished:

- Hardware configuration performed during BIST and / or POST
- The load of BLV
- Phase 1 where base devices are configured to prepare the system for activating the rootvg
- Phase 2 where rootvg is activated

Finally, phase 3, initiated by the init process loaded from rootvg, is shown in Figure 22.

```
/etc/inittab: /sbin/rc.boot 3

mount /tmp

syncvg rootvg &

Normal boot: cfgmgr -p2
Service boot: cfgmgr -p3

cfgcon
rc.dt boot

savebase
```

Figure 22. Boot phase 3
• Phase 3 is started in /etc/inittab.
• First it will mount /tmp.
• After this, the rootvg will be synchronized. This can take some time. That is why the syncvg rootvg is executed as a background process. At this stage, the LED code 553 is shown.
• At this stage, the cfgmgr -p2 for normal boot and the cfgmgr -p3 for service mode also is executed. cfgmgr reads the Config_rules file from ODM and checks for devices with phase=2 or phase=3.
• Next, the console will be configured. LED codes shown when configuring the console is shown in “cfgcon LED codes” on page 78.
• And finally, the synchronization of the ODM in the BLV with the ODM from the / (root) file system is done by the savebase command.

When cfgcons is called, different LED codes are shown depending on which device is configured.

<table>
<thead>
<tr>
<th>cfgcon LED codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. c31: Console not yet configured. Provides instructions to select console.</td>
</tr>
<tr>
<td>2. c32: Console is a lft terminal.</td>
</tr>
<tr>
<td>3. c33: Console is a tty.</td>
</tr>
<tr>
<td>4. c34: Console is a file on the disk.</td>
</tr>
</tbody>
</table>

4.5.1 /etc/inittab

The /etc/inittab file supplies configuration scripts to the init process. In Figure 23 on page 79, the highlighted line is the rc.boot with parameter 3 executed.
Chapter 4. System boot

Figure 23. Example of rc.boot 3 in /etc/inittab

The /etc/inittab file is composed of entries that are position dependent and have the following format:

Identifier:RunLevel:Action:Command

The first line in /etc/inittab (initdefault) defines what runlevel is to be considered as a default runlevel. In this example, the runlevel is 2, which means a normal multi-user boot. If this line is missing, you are prompted at boot to define the runlevel. You can also use the telinit command to direct a particular run level.

The rc.boot line is to be executed on all run levels (this equals runlevel 0123456789). The action defined, sysinit, has to finish before continuing with the next line in /etc/inittab. From rc.boot 3, among a lot of other things, the rootvg is synchronized, the mirrord is started, and the /tmp directory mounted. A detailed description of /etc/inittab is provided in IBM Certification Study Guide AIX V4.3 System Support, SG24-5129.

4.5.2 LED 553

An LED code of 553 is caused when the /etc/inittab cannot be read. To recover from an LED 553, check /dev/hd3 and /dev/hd4 for space problems and erase files if necessary. Check the /etc/inittab file for corruption and fix it if necessary. Typical examples of syntax errors found in /etc/inittab that are
seen at the support centers are incorrectly defined entries in the file. When editing `/etc/inittab`, the inittab commands should be issued. For example:

- `mkitab`
- `chitab`

It is helpful to remember that `/etc/inittab` is very sensitive to even the smallest syntax error. A misplaced dot can halt the system boot.

4.5.3 LED c31

LED c31 is not really an error code, but the system is waiting for input from you on the keyboard. This is usually encountered when booting from CD-ROM or mksysb tape. This is normally the dialog to select the system console.

4.6 Summary

The next sections provide short summaries of the boot phases and some common LED codes.

4.6.1 Boot phases

BIST and POST are used to test hardware and to find a successful hardware path to a BLV.

Boot phase 1 (`init rc.boot 1`) is used to configure base devices.

Boot phase 2 (`init rc.boot 2`) is used to activate the rootvg.

Boot phase 3 (`init /sbin/rc.boot 3`) is used to configure the rest of devices.

4.6.2 LED codes

LED codes shown during POST on a MCA system are listed in Table 11.

<table>
<thead>
<tr>
<th>LED</th>
<th>Reason / Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 - 195</td>
<td>Hardware problem during BIST</td>
</tr>
<tr>
<td>200</td>
<td>Key mode switch in secure position</td>
</tr>
</tbody>
</table>
| 201 | 1. If LED 299 passed re-create the BLV
2. If LED 299 has not passed, POST encountered a hardware error |
LED codes shown during boot phase 2 are shown in Table 12.

Table 12. Boot phase 2 LED codes

<table>
<thead>
<tr>
<th>LED</th>
<th>Reason / Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>221</td>
<td>The bootlist in NVRAM is incorrect (boot from media and change the bootlist), or the bootlist device has no bootimage (boot from media and recreate the BLV), or the bootlist device is unavailable (check for hardware errors).</td>
</tr>
</tbody>
</table>

Table 13. Boot phase 3 LED codes

<table>
<thead>
<tr>
<th>LED</th>
<th>Reason / Action</th>
</tr>
</thead>
</table>
| 551 | 1. Corrupted file system
 | (fsck -y <device>) |
| 555 | 2. Corrupted jfslog
 | (/usr/sbin/logform /dev/hd8) |
| 557 | 3. Corrupted BLV
 | (bosboot -ad <device>) |
| 552 | The ipl_varyon failed. Except for the reason mentioned above (551, 555, or 557): |
| 554 | 1. Corrupted ODM
 | (backup ODM, recreate with savebase) |
| 556 | 2. Superblock dirty
 | (Copy in superblock from block 31) |
| 518 | /usr cannot be mounted
 | 1. If /usr should be mounted over the network
 | (check for network problem)
 | 2. If /usr is to be mounted locally
 | (fix the file system) |

LED codes shown during boot phase 3 are shown in Table 13.

Table 13. Boot phase 3 LED codes

<table>
<thead>
<tr>
<th>LED</th>
<th>Reason / Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>553</td>
<td>Syntax error in /etc/inittab</td>
</tr>
<tr>
<td>c31</td>
<td>Define the console</td>
</tr>
</tbody>
</table>
4.7 Quiz

The following assessment questions will help verify your understanding of the topics discussed in this chapter.

1. In order to log important events during a system boot process and view boot information, which of the following AIX Version 4 commands must be performed?
 A. alog
 B. errpt
 C. logger
 D. bootlist

2. The rootvg volume group has just been mirrored. In order to make hdisk1 bootable, which of the following procedures should be performed?
 A. Update bootlist and reboot.
 B. Add hdisk1 to bootlist and reboot.
 C. Add hdisk1 to bosboot and reboot.
 D. Run `bosboot` and update the bootlist.

3. After an RS/6000 fails to boot in normal mode with an LED 551 displayed, the system administrator begins to debug the problem. LED 551 indicates the root volume group is being varied on. The system administrator boots the system in service mode, using bootable media, and selects the maintenance shell. The system administrator then runs the `fsck` command to clean up the root volume group:
   ```
   fsck -y /dev/hd1  
   fsck -y /dev/hd2  
   fsck -y /dev/hd3  
   fsck -y /dev/hd4  
   fsck -y /dev/hd9var  
   ```

 The system administrator types 'exit' to continue the process of accessing the 'rootvg' and mounting the filesystems. The system administrator determines the boot disk by issuing the command:
   ```
   lslv -m hd5  
   ```

 Which of the following procedures should be performed prior to rebooting the system in normal mode?
 A. Edit `/etc/inittab` and correct any erroneous entries
 B. Delete unnecessary files in the `/dev/hd3 (/tmp)` filesystem
C. Clear the log device with the command: /usr/sbin/logform /dev/hd8
D. Create a new boot image with the command: bosboot -a -d /dev/hdisk

4. After an RS/6000 fails to boot in normal mode with an LED 552 displayed, the system administrator begins to debug the problem. LED 552 indicates the 'varyon' of the root volume group failed. The system administrator boots the system in service mode using bootable media and selects the maintenance shell. The system administrator then runs the `fsck` command to clean up the root volume group:

```bash
fsck -y /dev/hd1
fsck -y /dev/hd2
fsck -y /dev/hd3
fsck -y /dev/hd4
fsck -y /dev/hd9var
```

The system administrator receives a message that 'block 8' cannot be read. `fsck` reports that the file system is not an AIX V4 filesystem or a recognized type. The system administrator receives a message that the file system has an 'unknown log record type'. The system administrator then attempts to recover the superblock by typing:

```bash
dd if=/dev/hdn of=/dev/hdn count=1 bs=4k skip=31 seek=1
```

Which of the following procedures should be performed next?

A. Run `fsck -y dev/hd8`
B. Rebuild the bootlist with the command: `bootlist -m normal hdisk`
C. Clear the log device with the command: `/usr/sbin/logform /dev/hd8`
D. Create a new boot image with the command: `bosboot -a -d /dev/hdisk`

4.7.1 Answers

The following are the preferred answers to the questions provided in this section.

1. A
2. D
3. D
4. C

4.8 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.
Do not perform these exercises on an existing file system or on a production system:

1. Create a file system for this exercise and copy in some files to the file system. Then, destroy the first super block. This can be done by copying 4 KB from /dev/zero to block one on your logical volume, for example:

   ```
   dd count=1 bs=4k seek=1 if=/dev/zero of=/dev/thomasclv
   ```

 Try to mount the file system and run `fsck` on the file system to determine the problem. Finally, fix the problem as described in this chapter.

2. While still on your test system, with verified mksysb at hand, make a backup of `/etc/inittab`. Remove the first line (first uncommented line, that is the sysinit stanza) and try to reboot. You are, at reboot, prompted for what?

 After the boot has finished, edit the `/etc/inittab` and change a dot to a comma or a colon to semicolon on a line with `action=wait`. What happens? What is the LED code displayed? What do you have to do to fix this?
Chapter 5. Disks and file systems

In AIX, the logical volume manager (LVM) provides a hierarchy of structures is to manage fixed disk storage. Each individual fixed-disk drive is called a physical volume (PV) and has a logical name, such as hdisk0, and a corresponding device special file name, such as /dev/hdisk0. A RAID is named /dev/hdiskX, but is a special case of a collection of disks. Every physical volume in use belongs to a volume group (VG). All of the physical volumes in a volume group are divided into physical partitions (PPs) of the same size.

Within each volume group, one or more logical volumes (LVs) are defined. Logical volumes are groups of information located on physical volumes. Data on logical volumes appears to be contiguous to the user but can be discontiguous on the physical volume. This allows file systems, paging space, and other logical volumes to be resized or relocated, span multiple physical volumes, and have their contents mirrored for greater flexibility and availability in the storage of data.

Each logical volume consists of one or more logical partitions (LPs). Each logical partition corresponds to at least one physical partition. If mirroring is specified for the logical volume, additional physical partitions are allocated to store the additional copies of each logical partition. Although the logical partitions are numbered consecutively, the underlying physical partitions are not necessarily consecutive or contiguous.

Logical volumes can serve a number of system purposes, such as paging, but each logical volume that holds ordinary system or user data or programs contains a single journaled file system (JFS). Each JFS consists of a pool of page-size (4 KB) blocks. When data is to be written to a file, one or more additional blocks are allocated to that file. These blocks may or may not be contiguous with one another or with other blocks previously allocated to the file.

After installation, a system has one volume group (the rootvg volume group) consisting of a base set of logical volumes required to start the system and any others you specify to the installation script. Any other physical volumes you have connected to the system can be added to a volume group (using the extendvg command). You can add the physical volume either to the rootvg volume group or to another volume group (defined by using the mkvg command). Logical volumes can be tailored using commands or the SMIT interface.
5.1 Volume groups

If the physical hardware is the foundation for a system, then the volume groups are the cornerstones. Volume group management is one of the most important considerations in managing your system. It is from here that the administrator or support professional creates the future path of the system. Not planning how to manage or create volume groups in the beginning could lead to complications in the future.

5.1.1 Creating a volume group

Creating a volume group is the first step in setting up a system. The command used to create a volume group is `mkvg`. However, it is easier to create a volume group using SMIT.

Some considerations when creating a new volume group are as follows:

- The physical volume is checked to verify that it is not already in another volume group. If the system believes the physical volume belongs to a volume group that is varied on, it exits. But, if the system detects a description area from a volume group that is not varied on, it prompts you for confirmation in continuing with the command. The previous contents of the physical volume are lost; so, you must be cautious when using the override function.

- Before you attempt to add a new volume group, check the root file system (with the `df` command) to ensure that 1 to 2 MB of free space exists. If you run the `mkvg` command on a full rootvg file system, the `mkvg` command fails when it tries to vary on the newly created volume group. If this occurs, add or free 2 MB of space in the `/etc` directory for file updates.

- To use the `mkvg` command, you must either have root user authority or be a member of the system group.

- For disks greater than 4 GB, make sure that the Physical Partition Size (-s) is set to a large enough value so that 1016 physical partitions per PV limit is not violated. With the default value, 4 MB, along with the default maximum number of physical partitions (1016), a disk up to 4 GB can only be accommodated. Or, with AIX Version 4.3.2, use a large enough factor value (-t) such that factor x 1016 is greater than the number of partitions that would need to be created with given partition size and disk size. For example, a partition size of at least 16 MB would be needed to create a volume group with a 10 GB disk. Or, with at factor size of 2, a smaller partition size of 8 MB can be used. However, this limits the total number of disks that can be added to the volume group. If a factor value is used, a maximum of 32/factor disks can be included in the volume group.
Whenever a volume group is created, the operating system automatically does a vary on. However, if you create a volume group with the -c flag (for use in HACMP clusters), the system will not auto vary on the volume group at the end of the Concurrent Capable volume group creation. Instead, the `mkvg` command notifies you to manually `varyonvg` the volume group in either non-concurrent or concurrent mode. Note that, to vary on the volume group with concurrent more, you have to configure HACMP.

The following examples show how these steps are performed.

Check for existing volume groups using the `lsvg` command:

```
# lsvg
rootvg
volg01
volg02
```

Check for available physical volumes using the `lspv` command

```
# lspv
hdisk0 000bc6fd3d07a7 rootvg
hdisk1 000bc6fdbff75ee2 volg01
hdisk2 000bc6fdef92812 volg02
hdisk3 000bc6fdef972f4 None
```

The PV `hdisk3` is available for a new user VG. The volume group, `volg03`, will be created on the physical volume `hdisk3`.

The `chdev -l hdisk3 -a pv=yes` command can be used to assign a PVID to a disk that does have one. It has no effect if the disk is already a physical volume as shown in the example.

Check the attributes of the disk as follows:

```
# lsattr -E -l hdisk3
pvid 000bc6fdef972f400000000000000000 Physical volume identifier False
queue_depth 3 Queue DEPTH False
size_in_mb 9100 Size in Megabytes False
```

Notice the size of `hdisk3` in megabytes. It is has a capacity of 9100 MB.

SMIT can also be used (Figure 24 on page 88) as follows:

```
# smitty vg
```
Select the **Add a Volume Group** option as shown in Figure 25.

Figure 25. The Add a Volume Group selection screen
Enter the volume group name (volg03) and hdisk number (hdisk3). Select the physical partition size, in this case 16 (Figure 26), because you do not want to exceed the default maximum of 1016 PPs per disk. The disk is bigger than 4 GB, and the limitation of PPs is not allowed to be violated, 16 x 1016 = 16256, which is larger than the disk size but using a PP size of 8 will be 8 x 1016 = 8128, which will not utilize the full disk capacity.

Figure 26. The Add a Volume Group warning screen

The system prompts for confirmation on the creation of the volume disk. Press Enter to continue, and a screen similar to Figure 27 on page 90 will appear.
Figure 27. The Add a Volume Group Command status screen

The command status screen indicates successful completion of the volume group creation. Press \texttt{F10=Exit} to exit to the system prompt to check the volume group with the commands shown in the following examples.

Note

The volume group could also have been created using the following command:

```
# mkvg -f -y volg03 -s16 hdisk3
```

Check the physical volume and notice that \texttt{hdisk3} has been assigned to the volume group \texttt{volg03}.

```
# lspv
hdisk0  000bc6fdec3dc07a7  rootvg
hdisk1  000bc6fdef78ee2    volg01
hdisk2  000bc6fdef92812    volg02
hdisk3  000bc6fdef972f4    volg03
```
5.1.2 Migrating data to another disk in the same volume group

When migrating data from one physical volume to another in the same volume group, use the `migratepv` command. There are a few considerations before doing this:

- The `migratepv` command cannot migrate a striped logical volume. To do this, use the `cplv` and `rmlv` commands.
- The new physical volume must be part of the same volume group.
- Ensure that all file systems on the logical volume are unmounted.
- Only the root user has authority to use the `migratepv` command.

The following commands show examples of migrating data to other disks in the same volume group.

Check which physical volumes are in the system and to which volume groups they are assigned by using the `lspv` command:

```
# lspv
hdisk0  000bc6fd3dc07a7  rootvg
hdisk1  000bc6fdff75ee2  volg01
hdisk2  000bc6fdff92812  volg01
hdisk3  000bc6fdff972f4  volg02
```

Check the `hdisk1` and `hdisk2` that belong to `volg01` volume group:

```
# lspv hdisk1
PHYSICAL VOLUME: hdisk1 VOLUME GROUP: volg01
PV IDENTIFIER: 000bc6fdff75ee2 VG IDENTIFIER 000bc6fd3dc07a7
PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 16 megabyte(s) LOGICAL VOLUMES: 2
TOTAL PPs: 542 (8672 megabytes) VG DESCRIPTORS: 2
FREE PPs: 482 (7712 megabytes)
USED PPs: 60 (960 megabytes)
FREE DISTRIBUTION: 109..48..108..108..109
USED DISTRIBUTION: 00..60..00..00..00
```

```
# lspv hdisk2
PHYSICAL VOLUME: hdisk2 VOLUME GROUP: volg01
PV IDENTIFIER: 000bc6fdff92812 VG IDENTIFIER 000bc6fd3dc07a7
PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 16 megabyte(s) LOGICAL VOLUMES: 1
```
The information on `hdisk1` in `volg01` will be moved to `hdisk2` in the same `volg01` volume group. Use the `migratepv` command as follows:

```
# migratepv hdisk1 hdisk2
```

After migrating the physical volume, check the physical volumes:

```
# lspv hdisk1

PHYSICAL VOLUME:    hdisk1  VOLUME GROUP:    volg01
PV IDENTIFIER:    000bc6fddff75ee2  VG IDENTIFIER
000bc6fddcc3316
PV STATE:        active
STALE PARTITIONS:  0  ALLOCATABLE:        yes
PP SIZE:         16 megabyte(s)  LOGICAL VOLUMES:  0
TOTAL PPs:       542 (8672 megabytes)  VG DESCRIPTORS:  2
FREE PPs:        542 (8672 megabytes)  USED PPs:  0 (0 megabytes)
FREE DISTRIBUTION: 109..108..108..108..109  USED DISTRIBUTION: 00..00..00..00..00

# lspv hdisk2

PHYSICAL VOLUME:    hdisk2  VOLUME GROUP:    volg01
PV IDENTIFIER:    000bc6fddff92812  VG IDENTIFIER
000bc6fddcc3316
PV STATE:        active
STALE PARTITIONS:  0  ALLOCATABLE:        yes
PP SIZE:         16 megabyte(s)  LOGICAL VOLUMES:  3
TOTAL PPs:       542 (8672 megabytes)  VG DESCRIPTORS:  1
FREE PPs:        481 (7696 megabytes)  USED PPs:  61 (976 megabytes)
FREE DISTRIBUTION: 109..47..108..108..109  USED DISTRIBUTION: 00..61..00..00..00
```

The migration has successfully completed. The `hdisk1` can now be removed from the volume group. The highlighted portions of the preceding examples show the PPs as they are migrated to different disks.

5.1.3 Importing a volume group from another system

When a disk or set of disks containing data that must be moved to another system, it is important to take the right steps. Generally once all the users of
the data have been identified and any applications using the disks have been stopped, and the file systems unmounted, the follow steps should be taken:

- Run the `varyoffvg` command to make the volume group offline.
- Run the `exportvg` command to remove the volume group from the system.
- Run the `rmdev -l hdiskn -d` command to delete the physical volume definition (this command does not remove any data from the physical fixed disk storage).

If a new disk is added into an existing environment, and this disk has data on it that needs to be accessed, the new disk will need to be imported. However, this is not the only requirement. The new disk needs to be configured to the system first using the `cfgmgr` command. The `cfgmgr` command configures devices and optionally installs device software into the system.

Note

Before importing the volume group, you should verify that your file systems are named uniquely. The AIX LVM will change the logical volume names to uniquely assigned name to import this volume group successfully. However you may have difficulty mounting non-uniquely named file systems without editing the `/etc/filesystems` file to correct conflicts.

Once the disk has been set up in the new environment, the data needs to be imported using the `importvg` command. The `importvg` command imports a new volume group definition from a set of physical volumes.

Once the volume group has been imported, the `varyonvg` command may need to be run depending on the AIX version (AIX Version 4.3 or later automatically does the `varyonvg` option). The `varyonvg` command activates the volume group specified by the `VolumeGroup` parameter and all associated logical volumes.

Before mounting the file system, it will need to be checked using the `fsck` command. This may or may not give errors, but it should be run to ensure file system integrity. The `fsck` command checks file system consistency and interactively repairs the file system.

The following is an example of this scenario.

A disk has been added to the environment, and the user wants to have the data on that disk available for use. These are the steps to follow:

```
# lspv
hdisk0  000bc6f6dc3dc07a7  rootvg
```
hdisk1 000bc6fd8b4f76ee2 volg01
hdisk2 000bc6fd8b4f92812 volg01
hdisk3 000bc6fd8b4f972f4 volg02

Run the configuration manager and detect the new disk:

cfgmgr
lsv
hdisk0 000bc6fd343d07a7 rootvg
hdisk1 000bc6fd8b4f76ee2 volg01
hdisk2 000bc6fd8b4f92812 volg01
hdisk3 000bc6fd8b4f972f4 volg02
hdisk4 000bc6ddc0c0973a None

Notice that hdisk4 is not assigned to a volume group:

lsv hdisk4
0516-320 : Physical volume 000bc6ddc0c0973a is not assigned to a volume group.

Import the hdisk into the volume group volg03:

importvg -y volg03 hdisk4
0516-530 synclvodm: Logical volume name loglv00 changed to loglv02. volg03

The volume group on hdisk4 has been imported into the volume group volg03, and it has also renamed the jfslog. Vary the volume group on:

varyonvg volg03

List the volume group to check what the logical volume is:

lsv -l volg03
volg03:
<table>
<thead>
<tr>
<th>LV NAME</th>
<th>TYPE</th>
<th>LPs</th>
<th>PP</th>
<th>PV</th>
<th>LV STATE</th>
<th>MOUNT POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>loglv02</td>
<td>jfslog</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>closed/syncd</td>
<td>N/A</td>
</tr>
<tr>
<td>lv02</td>
<td>jfs</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>closed/syncd</td>
<td>/test</td>
</tr>
</tbody>
</table>

Run the fsck to check the file system on the logical volume lv02:

fsck /test
** Checking /dev/lv02 (/test)
** Phase 0 - Check Log
log redo processing for /dev/lv02
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Inode Map
** Phase 6 - Check Block Map
559 files 8944 blocks 23824 free

Mount the file system /test (providing there is no /test file system already defined):

```
# mount /test
```

Check that the file system is mounted:

```
# mount
```

```
+----+------------+------------+-------+----------+----------+----------+----------+----------+
|    | node       | mounted    | mounted over | vfs | date     | options  |
+----+------------+------------+------------+-----+----------+----------+----------+----------+
    | /dev/hd3   | /tmp       | jfs         | Jun 11 16:41 | rw,log=/dev/hd8 | |
    | /dev/hd1   | /home      | jfs         | Jun 11 16:42 | rw,log=/dev/hd8 |
    | /dev/lvol01| /filsys01   | jfs         | Jun 15 13:44 | rw,log=/dev/loglv00 |
    | /dev/lvol02| /filsys02   | jfs         | Jun 15 13:44 | rw,log=/dev/loglv00 |
    | /dev/lvol03| /filsys03   | jfs         | Jun 15 14:18 | rw,log=/dev/loglv01 |
    | /dev/lvol02| /test       | jfs         | Jun 15 18:03 | rw,log=/dev/loglv02 |
    | ...        |            |             |      |          |          |
```

The system is now available for the user. If the volume group, volg03, is to be integrated into the volume group, volg02, use the cplv command as described in 5.2.3.2, “Using the cplv and rmlv commands” on page 110.

5.1.4 Replacing a disk with another

If a disk in a volume group must be replaced with another disk, the replacepv command can be used. The replacepv command replaces allocated physical partitions and the data they contain from the SourcePhysicalVolume to DestinationPhysicalVolume. The specified source physical volume cannot be the same as DestinationPhysicalVolume.

The allocation of the new physical partitions follows the policies defined for the logical volumes that contain the physical partitions being replaced.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The DestinationPhysicalVolume size must be at least the size of the SourcePhysicalVolume.</td>
</tr>
<tr>
<td>The replacepv command cannot replace a SourcePhysicalVolume with stale logical volume unless this logical volume has a non-stale mirror.</td>
</tr>
</tbody>
</table>

An example of this is shown as follows:

Check the system to see if any disks are available as follows:

```
Check the system to see if any disks are available as follows:
```
Replace `hdisk1` with `hdisk2` as follows:

```bash
# replacepv hdisk1 hdisk2
0516-1232 replacepv:
   NOTE: If this program is terminated before the completion due to
   a system crash or ctrl-C, and you want to continue afterwards
   execute the following command
   replacepv -R /tmp/replacepv26606
```

Check the system as follows:

```bash
# lspv
hdisk0  000bc6fd3dc07a7  rootvg
hdisk1  000bc6fdff75ee2  uservg
hdisk2  000bc6fdff92812  None
hdisk3  000bc6fdff972f4  None
hdisk4  000bc6fd672864b9  None
```

During the `replacepv` operation, `hdisk1` was removed from the volume group and replaced with `hdisk2`.

5.1.5 Reducing a volume group

If a disk needs to be removed from a system due to volume group reduction or due to incorrect removal, `reducevg` command needs to be used. The `reducevg` command removes physical volumes from a volume group.

Note

If there are allocated physical partitions of logical volumes on this physical volumes, you can not remove the physical volume from the volume group. First, you have to move the allocated physical partitions of logical volumes on this physical volumes to another physical volumes.

The following commands provide an example of this task.

In this example, `hdisk2` has been removed.
Display a list of physical volumes in a system using the `lspv` command. Below is the listing before `hdisk2` was removed:

```
# lspv
hdisk0 000bc6fd3dc07a7 rootvg
hdisk1 000bc6fdff75ee2 volg01
hdisk2 000bc6fdff92812 volg01
hdisk3 000bc6fdff972f4 volg02
hdisk4 000bc6ddc0c0973a volg03
```

After a system reboot, the new configuration shows that `hdisk2` is missing:

```
# lspv
hdisk0 000bc6fd3dc07a7 rootvg
hdisk1 000bc6fdff75ee2 volg01
hdisk3 000bc6fdff972f4 volg02
hdisk4 000bc6ddc0c0973a volg03
```

Running the `lsdev` command shows that the disk has a status of Defined:

```
# lsdev -Ccdisk
hdisk0 Available 30-58-00-8,0 16 Bit SCSI Disk Drive
hdisk1 Available 30-58-00-9,0 16 Bit SCSI Disk Drive
hdisk2 Defined 10-60-00-8,0 16 Bit SCSI Disk Drive
hdisk3 Available 10-60-00-9,0 16 Bit SCSI Disk Drive
hdisk4 Available 30-58-00-10,0 16 Bit SCSI Disk Drive
```

Checking the volume group `volg01`, it shows that the TOTAL PPs should be 17344 MB:

```
# lsvg volg01
VOLUME GROUP: volg01 VG IDENTIFIER: 000bc6fd3dc07cc316
VG STATE: active PP SIZE: 16 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 1084 (17344 megabytes)
MAX LVs: 256 FREE PPs: 1023 (16368 megabytes)
LVs: 3 USED PPs: 61 (976 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 2 VG DESCRIPTORS: 3
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016
```
Running the `lsattr` command on the only disk assigned to volg01 shows a size of 9100 MB. The volume group is reduced using the `reducevg` command:

```
# lsattr -E -l hdisk1
pvid  000bc6fd875ee20000000000000000000 Physical volume identifier
False
queue_depth 3  Queue DEPTH  False
size_in_mb 9100  Size in Megabytes  False
```

Remove the physical volume hdisk2 from the volume group volg02 using the `reducevg` command:

```
# reducevg volg01 hdisk2
```

Check the volume group to ensure that it has been set correctly:

```
# lsvg volg01
VOLUME GROUP: volg01  VG IDENTIFIER: 000bc6fc07c316
VG STATE: active
VG PERMISSION: read/write
TOTAL PPs: 542 (8672 megabytes)
MAX LVs: 256
LVs: 3
OPEN LVs: 0
TOTAL PVs: 1
ACTIVE PVs: 1
MAX LVs per PV: 1016
MAX PPs per PV: 1016
```

5.1.6 Reorganizing a volume group

To reorganize a volume group, the `reorgvg` command is used. The `reorgvg` command reorganizes the placement of allocated physical partitions within the volume group according to the inter- and intra-physical partition allocation policy of each logical volume. Use the LogicalVolume parameter to reorganize specific logical volumes. Highest priority is given to the first logical volume name in the logical volume parameter list, and lowest priority is given to the last logical volume in the parameter list. The volume group must be varied on and must have free partitions before you can use the `reorgvg` command.

The following are a few considerations for using the `reorgvg` command:

- The `reorgvg` command does not reorganize the placement of allocated physical partitions for any striped logical volumes.
- At least one free physical partition must exist on the specified volume group for the `reorgvg` command to run successfully.

98 IBM Certification Study Guide AIX Installation and System Recovery
To use this command, you must either have root user authority or be a member of the system group.

If you enter the `reorgvg` command with the volume group name and no other arguments, it will only reorganize the first logical volume in the volume group. The first logical volume is the one listed by the `lsvg -l VolumeName` command.

The following commands provide an example of this task.

List the system to check what volume groups are available:

```bash
# lsvg
rootvg
volg01
volg02
```

Select the volume group to be reorganized, in this case, volg02, and then list the logical volumes in the volg02 volume group:

```bash
# lsvg -l volg02
volg02:
LV NAME  TYPE  LPs  PP  PVs  LV STATE  MOUNT POINT
lvol03  jfs   40  40  1  open/syncd  /filsys03
loglv01 jfslog 1  1  1  open/syncd  N/A
```

Run the `reorgvg` command on the volg02 volume group:

```bash
# reorgvg volg02
0516-962 reorgvg: Logical volume lvol03 migrated.
0516-962 reorgvg: Logical volume loglv01 migrated.
```

If the logical volume, lvol03, was to be reorganized, the command would have been as follows:

```bash
# reorgvg volg02 lvol03
```

5.2 Logical volumes

The logical volume is created within a volume group. Although there may be more than one logical volume per volume group, there can be only one file system per logical volume. The file system is super-imposed on the logical volume. The size of a logical volume can, for example, be increased without the file system size having to be increased. However, if you increase the file system size, the logical volume size may need to be increased. This is done automatically until the maximum number of logical partitions setting is exceeded.
5.2.1 Creating a logical volume and setting the attributes

As just described, a logical volume is created in a volume group. The volume group is limited up to 256 logical volumes per volume group by default. When you use the -B flag of the mkvg command during creation of the volume group, you create a BigVG capable volume group. The maximum will be 512 per volume group. In this section, a logical volume, logvol01, will be created on the volume group volg01. Although you can use the mklv command to create a logical volume, using a SMIT dialog is much easier.

The following commands provide an example of this task.

Check the system to see what logical volumes are assigned to the system:

```
# lsvg -o | lsvg -i -1
```

<table>
<thead>
<tr>
<th>LV NAME</th>
<th>TYPE</th>
<th>LPs</th>
<th>PPs</th>
<th>PVs</th>
<th>LV STATE</th>
<th>MOUNT POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>rootvg:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lv00</td>
<td>jfs</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>open/syncd</td>
<td>/usr/welcome_arcade</td>
</tr>
<tr>
<td>lv01</td>
<td>jfs</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>open/syncd</td>
<td>/usr/welcome</td>
</tr>
</tbody>
</table>

Check the volume group, volg01, for availability and size:

```
# lsvg volg01
```

<table>
<thead>
<tr>
<th>VOLUME GROUP:</th>
<th>volg01</th>
<th>VG IDENTIFIER:</th>
<th>000bc6fdca261bbf</th>
</tr>
</thead>
<tbody>
<tr>
<td>VG STATE:</td>
<td>active</td>
<td>PP SIZE:</td>
<td>16 megabyte(s)</td>
</tr>
<tr>
<td>VG PERMISSION:</td>
<td>read/write</td>
<td>TOTAL PPs:</td>
<td>1084 (17344 megabytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FREE PPs:</td>
<td>1084 (17344 megabytes)</td>
</tr>
<tr>
<td>MAX LVs:</td>
<td>256</td>
<td>USED PPs:</td>
<td>0 (0 megabytes)</td>
</tr>
<tr>
<td>OPEN LVs:</td>
<td>0</td>
<td>QUORUM:</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL PVs:</td>
<td>2</td>
<td>VG DESCRIPTORS:</td>
<td>3</td>
</tr>
<tr>
<td>STALE PVs:</td>
<td>0</td>
<td>STALE PPs:</td>
<td>0</td>
</tr>
<tr>
<td>ACTIVE PVs:</td>
<td>2</td>
<td>AUTO ON:</td>
<td>yes</td>
</tr>
<tr>
<td>MAX PPs per PV:</td>
<td>1016</td>
<td>MAX PVs:</td>
<td>32</td>
</tr>
</tbody>
</table>
Run `smitty lv` to enter SMIT Logical Volumes menu as shown in Figure 28 on page 101.

```bash
# smitty lv
```

Logical Volumes

Move cursor to desired item and press Enter.

- List All Logical Volumes by Volume Group
- Add a Logical Volume
- Set Characteristic of a Logical Volume
- Show Characteristics of a Logical Volume
- Remove a Logical Volume
- Copy a Logical Volume

Figure 28. The SMIT Logical Volumes screen.

Select the **Add a Logical Volume Option** and press **Enter** as shown in Figure 29.
Figure 29. The Add a Logical Volume screen

Type in the volume group name or use the **F4=List** option to select the volume group name. In Figure 30, the Add a logical volume menu can be seen.
Chapter 5. Disks and file systems

The name of the logical volume has been entered as well as the physical volumes it will utilize for the logical volume. You do not have to specify the physical volume names, except to make the LVM choose the physical partition allocation policy other than the default.

As shown in this case, the logical volume has been set up to use the center position for the allocation of the logical volume on the physical volume. The default for this setting is center.

The intra-disk allocation policy choices are based on the five regions of a disk where physical partitions can be located. The five regions are: Outer edge, inner edge, outer middle, inner middle, and center. The edge partitions have the slowest average seek times, which generally result in longer response times for any application that uses them. The center partitions have the fastest average seek times, which generally result in the best response time for any application that uses them. There are, however, fewer partitions on a physical volume at the center than at the other regions (unless when mirrored with mirror write consistency check).

Figure 31 on page 104 illustrates the regions that can be used for allocating physical partitions in a physical volume.
Figure 31. Five regions of a disk

Note

To ensure a JFS is allocated on the center region, you have to create a logical volume on the center region first, then create the JFS on it, or, if the space is available, to change the attributes and reorg.

Figure 32 on page 105 is the second half of the screen as described in Figure 30 on page 103, and the significant portion here is Stripe Size, which is not being set up for this example. Since this attribute is only used in the striped logical volumes.
Chapter 5. Disks and file systems

Add a Logical Volume

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

<table>
<thead>
<tr>
<th>[MORE...111]</th>
<th>[Entry Fields]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror Write Consistency?</td>
<td>yes +</td>
</tr>
<tr>
<td>Allocate each logical partition copy</td>
<td>yes +</td>
</tr>
<tr>
<td>on a SEPARATE physical volume?</td>
<td>yes +</td>
</tr>
<tr>
<td>RELOCATE the logical volume during reorganization?</td>
<td>Logical volume LABEL []</td>
</tr>
<tr>
<td>MAXIMUM NUMBER of LOGICAL PARTITIONS [512] $</td>
<td></td>
</tr>
<tr>
<td>Enable BAD BLOCK relocation?</td>
<td>yes +</td>
</tr>
<tr>
<td>SCHEDULING POLICY for reading/writing logical partition copies</td>
<td>parallel +</td>
</tr>
<tr>
<td>Enable WRITE VERIFY?</td>
<td>no +</td>
</tr>
<tr>
<td>File containing ALLOCATION MAP []</td>
<td></td>
</tr>
<tr>
<td>Stripe Size?</td>
<td>[Not Striped] +</td>
</tr>
</tbody>
</table>

Command: OK
stdout: yes stderr: no

Before command completion, additional instructions may appear below.

logvol01

<table>
<thead>
<tr>
<th>F1=Help</th>
<th>F2=Refresh</th>
<th>F3=Cancel</th>
<th>F4=List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esc+O=Reset</td>
<td>Esc+O=Command</td>
<td>Esc+/=Edit</td>
<td>Esc+O=Image</td>
</tr>
<tr>
<td>Esc+O=Shell</td>
<td>Esc+O=Exit</td>
<td>Enter=Do</td>
<td></td>
</tr>
</tbody>
</table>

Figure 32. The Add a Logical Volume menu 2 of 2

After the command is run a screen similar to Figure 33 is shown.

Figure 33. The Command Status Screen for the logical volume

Chapter 5. Disks and file systems 105
The logical volume has been created. Press **F10=Exit** to exit to the command prompt and check the logical volume. The following example shows the results of this action:

```
# lslv logvol01
LOGICAL VOLUME: logvol01 VOLUME GROUP: volg01
LV IDENTIFIER: 000bc6fdca261bbf.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: closed/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 2 PPs: 2
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: center UPPER BOUND: 2
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes
```

The logical volume is now created and ready for the creation of file systems.

The INTER-POLICY setting controls the behavior of allocation between physical volumes in a VG. You can use this attribute to command the LVM to precisely adhere to the physical partition allocation policy for the logical volume.

5.2.2 Different LVs associated with a JFS

In every volume group that has logical volumes created, there are various logical volumes that are associated with the system as shown in the following example:

```
# lsvg -o | lsvg -i -l
volg01:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
logvol01 jfs 2 2 1 closed/syncd N/A
rootvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
hd5 boot 2 2 1 closed/syncd N/A
hd6 paging 40 40 1 open/syncd N/A
hd8 jfsl0g 1 1 1 open/syncd N/A
hd4 jfs 2 2 1 open/syncd /
hd2 jfs 118 118 1 open/syncd /usr
hd9var jfs 1 1 1 open/syncd /var
hd3 jfs 3 3 1 open/syncd /tmp
hd1 jfs 11 11 1 open/syncd /home
```
The following logical volumes are all journaled file systems belonging to the rootvg volume group hd4, hd2, hd9var, hd3, and hd1.

The logical volume, hd8, is the JFS log. The function of the JFS log is record modifications in the JFS file system.

The logical volume, hd5, is the boot logical volume. Re-create it and rewrite boot image if it is accidentally corrupted or missing.

The hd6 is the paging space for the rootvg volume group by default. Paging space, sometimes called swap space, is a regular logical volume of the type paging. It is fixed disk storage that allows a system to operate with virtual memory larger than the installed physical memory.

The logvol01 logical volume is the user defined logical volume belonging to the user defined volume group, volg01.

5.2.3 Moving a logical volume from one physical volume to another

There may be instances where the volume group needs to be migrated from one disk to another. This must not be confused with migrating a physical volume in the same volume group as described in 5.1.2, “Migrating data to another disk in the same volume group” on page 91. This method is used for moving the specified logical volumes on the physical volume, not the every physical partition on the physical volume.

5.2.3.1 Using the migratepv command

When migrating a logical volume from one physical volume to another using the migratepv command, there are a few considerations before doing this:

- The migratepv command cannot migrate a striped logical volume. To do this, use the cplv and rmlv commands.
- The new physical volume must be part of the same volume group.
- Ensure that all file systems on the logical volume are unmounted.
- Only the root user has authority to use the migratepv command.

The following commands provide an example of this task.

In the following example, the logical volume, lvol1, on the volume group, volg1, situated on hdisk1 will be migrated to hdisk2:

```bash
# lslv lvol1
LOGICAL VOLUME: lvol1 VOLUME GROUP: volg1
LV IDENTIFIER: 000bc6dbff8e05a.1 PERMISSION: read/write
```
VG STATE: active/complete LV STATE: opened/synced
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 10 PPs: 10
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /fs1 LABEL: /fs1
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes

lspv hdisk1
PHYSICAL VOLUME: hdisk1 VOLUME GROUP: volg1
PV IDENTIFIER: 000bc6fdbff75ee2 VG IDENTIFIER
000bc6fdbff8e05a PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 16 megabyte(s) LOGICAL VOLUMES: 2
TOTAL PPs: 542 (8672 megabytes) VG DESCRIPTORS: 2
FREE PPs: 531 (8496 megabytes)
USED PPs: 11 (176 megabytes)
FREE DISTRIBUTION: 109..108..108..109 USED DISTRIBUTION: 00..11..00..00..00

lspv hdisk2
PHYSICAL VOLUME: hdisk2 VOLUME GROUP: volg1
PV IDENTIFIER: 000bc6fdbff92812 VG IDENTIFIER
000bc6fdbff8e05a PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 16 megabyte(s) LOGICAL VOLUMES: 0
TOTAL PPs: 542 (8672 megabytes) VG DESCRIPTORS: 1
FREE PPs: 542 (8672 megabytes)
USED PPs: 0 (0 megabytes)
FREE DISTRIBUTION: 109..108..108..108..109 USED DISTRIBUTION: 00..00..00..00..00

Migrate the logical volume from one disk to another:

migratepv -l lvol1 hdisk1 hdisk2

Check that the logical volume has migrated:

lslv lvol1
LOGICAL VOLUME: lvol1 VOLUME GROUP: volg1
LV IDENTIFIER: 000bc6fdbff8e05a.1 PERMISSION: read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 512 PP SIZE: 16 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 10 PPs: 10
STALE PPs: 0 BB POLICY: relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 32
MOUNT POINT: /fs1 LABEL: /fs1
MIRROR WRITE CONSISTENCY: on
EACH LP COPY ON A SEPARATE PV ?: yes

lspv hdisk1
PHYSICAL VOLUME: hdisk1 VOLUME GROUP: volg1
PV IDENTIFIER: 000bc6fbbff75ee2 VG IDENTIFIER
000bc6fbbff8e05a
PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 16 megabyte(s) LOGICAL VOLUMES: 1
TOTAL PPs: 542 (8672 megabytes) VG DESCRIPTORS: 2
FREE PPs: 541 (8656 megabytes)
USED PPs: 1 (16 megabytes)
FREE DISTRIBUTION: 109..107..108..108..109
USED DISTRIBUTION: 00..01..00..00..00

lspv hdisk2
PHYSICAL VOLUME: hdisk2 VOLUME GROUP: volg1
PV IDENTIFIER: 000bc6fbbff92812 VG IDENTIFIER
000bc6fbbff8e05a
PV STATE: active
STALE PARTITIONS: 0 ALLOCATABLE: yes
PP SIZE: 16 megabyte(s) LOGICAL VOLUMES: 1
TOTAL PPs: 542 (8672 megabytes) VG DESCRIPTORS: 1
FREE PPs: 532 (8512 megabytes)
USED PPs: 10 (160 megabytes)
FREE DISTRIBUTION: 109..98..108..108..109
USED DISTRIBUTION: 00..10..00..00..00

The logical volume has now been migrated from hdisk1 to hdisk2.
5.2.3.2 Using the cplv and rmlv commands

The cplv command is used to copy a logical volume to either a new or existing logical volume. You can use the cplv command to copy a non-striped or striped logical volume. Considerations when using the cplv command are:

- The cplv command will fail if a new logical volume is created and the volume group is varied on in concurrent mode.
- If you are copying a striped logical volume, and the destination logical volume does not exist, an identical copy, including the striped block size and striping width of the source logical volume, is created, and then the data is copied.
- If you are copying a striped logical volume and you have created the destination logical volume with the mklv command using a different stripe block size and striping width, or the destination is not a striped logical volume, the new characteristics are maintained, and the data is copied from the source logical volume.
- To use the cplv command, you must either have root user authority or be a member of the system group.

The rmlv command is used to remove a logical volume from a volume group. Considerations when using the rmlv command are:

- This command removes information about the specified logical volumes.

Note

The following step is used only if you are migrating the BLV in a rootvg volume group:

```sh
migratepv -l hd5 SourceDiskNumber DestinationDiskNumber
```

Next, you will get a message warning you to perform the bosboot command on the destination disk. You must also perform a mkboot -c command to clear the boot record on the source. Do the following:

```sh
bosboot -a -d /dev/DestinationDiskNumber
```

then:

```sh
bootlist -m normal DestinationDiskNumber
```

then:

```sh
mkboot -c -d /dev/SourceDiskNumber
```
To use the `rmlv` command, you must either have root user authority or be a member of the system group.

5.3 Journaled file systems

A file system is a general representation of a storage space on UNIX. Although there are several file system implementation on AIX (JFS, NFS, AFS, and so on), only the journaled file system (JFS) is a native local file system implementation on AIX (the newest release of AIX, AIX 5L also supports an enhanced native local file system, called JFS2). A JFS is created on top of a logical volume. There are some considerations when you are creating a JFS:

- If performance is a key consideration, then the logical volume must be created in the center of a disk (unless you are using mirrored disks with MWCC, then the outer edge is best). A file system cannot reside in the center of the physical volume if the physical partitions are placed on the middle or edges of the physical volume.
- When increasing the size of the file system it will automatically increase the size of the logical volume if required. However, increasing the size of a logical volume will not automatically increase the size of the file system.

There is a lot of information about file systems. The following discussion starts at an intermediate technical level. If you do not already know how to create or mount a file system, or what some of the related control files are, such as `/etc/filesystems`, you may wish to review this in the AIX product documentation.

5.3.1 Metadata

Data and metadata must not be confused. Data is the actual user data within a file system. Metadata is the structural data associated with the file system, such as the organization of directories, inode tables, and links. Metadata is not data supplied by a user; it is information about the structure of user data.

5.3.2 Mounting and unmounting a file system

To mount a newly created JFS, the `mount` command is used. To unmount a file system, the `umount` or `unmount` commands are used. Either of these commands can be used, as they are identical in function.

5.3.2.1 Unmounting a file system

To unmount the file system, use the `umount` or `unmount` commands. If however, a file system cannot be unmounted, use the `fuser` command to determine
who has a file open on the device. You cannot use the `umount` command on a
device in use. A device is in use if any file is open for any reason or if a user's
current directory is on that device.

In the following example, the file system, `test01`, needs to be unmounted:

```
# umount /test01
umount: 0506-349 Cannot unmount /dev/lv02: The requested resource is busy.
```

The file system cannot be unmounted, as it is busy. Check which resource is
locking the device:

```
# fuser -u /dev/lv02
/dev/lv02: 13984c(user01)
```

The resource has been identified as `user01`. The user can either log out of the
system, or, if needed, the running resource can be terminated using the `kill`
-1 or `fuser -k` commands.

5.3.2.2 Mounting a file system over an existing file system

If a file system is mounted over a directory (called a `mount point`) held in
another file system, beneath the mount point hierarchy in the mounted over
file system, is hidden by the newly mounted file system. The originally
mounted file system's data will be unavailable for use.

An example of where you would overmount is in a development environment
where you are working with different levels of the same code and do not wish
to change your make files. In the next example, there are two logical
volumes, `lvol01` and `lvol02`. The file system on `lvol01` is mounted on
`/filesys01`, and the file system on `lvol02` is not yet mounted:

```
# mount
```

```
node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ------------
/dev/hd4 / jfs Jun 11 16:41 rw,log=/dev/hd8
/dev/hd2 /usr jfs Jun 11 16:41 rw,log=/dev/hd8
/dev/hd9var /var jfs Jun 11 16:41 rw,log=/dev/hd8
/dev/hd3 /tmp jfs Jun 11 16:41 rw,log=/dev/hd8
/dev/hd1 /home jfs Jun 11 16:42 rw,log=/dev/hd8
/dev/lv00 /usr/welcome_arcade jfs Jun 11 16:42
rw,log=/dev/hd8
/dev/lv01 /usr/welcome jfs Jun 11 16:42
rw,log=/dev/hd8
/dev/lvol01 /filesys01 jfs Jun 14 13:31
rw,log=/dev/loglv00
```
If a listing of the mounted file system `filsys01` is done, the directory containing data `fs1dir` is displayed:

```
# ls -l filsys01
total 16
drwxr-sr-x 20 root sys 2560 Jun 14 13:32 fs1dir
drwxrwx--- 2 root system 512 Jun 14 13:28 lost+found
```

If the file system on logical volume `lvol02` is now mounted over the same mount point as that of `lvol01`:

```
# mount /dev/lvol02 /filsys01
```

and then checked it can be noted that both file systems are still shown as being mounted:

```
# mount
```

<table>
<thead>
<tr>
<th>node</th>
<th>mounted</th>
<th>mounted over</th>
<th>vfs</th>
<th>date</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>/</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>/usr</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>/var</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>/tmp</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>/home</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/lv00</td>
<td>/usr/welcome_arcade</td>
<td>jfs</td>
<td>Jun 11 16:42</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/lv01</td>
<td>/usr/welcome</td>
<td>jfs</td>
<td>Jun 11 16:42</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
</tbody>
</table>

If a listing of the mounted file system, `filsys01`, is done, the directory containing data `fs2dir` is displayed:

```
# ls -l /filsys01
total 32
drwxr-sr-x 5 root sys 9728 Jun 14 13:37 fs2dir
drwxrwx--- 2 root system 512 Jun 14 13:28 lost+found
```

The way to fix this is to unmount the logical volume, `lvol02`, and then mount it on a new mount point:

```
# umount /dev/lvol02
```
Once unmounted, the data on lvol01 will be available again, as it was not overwritten:

```
# mount

<table>
<thead>
<tr>
<th>node</th>
<th>mounted</th>
<th>mounted over</th>
<th>vfs</th>
<th>date</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>/</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>/usr</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>/var</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>/tmp</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>/home</td>
<td>jfs</td>
<td>Jun 11 16:42</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/lv00</td>
<td>/usr/welcome_arcade</td>
<td>jfs</td>
<td>Jun 11 16:42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/dev/lv01</td>
<td>/usr/welcome</td>
<td>jfs</td>
<td>Jun 11 16:42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/dev/lvol01</td>
<td>/filsys01</td>
<td>jfs</td>
<td>Jun 14 13:31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/dev/loglv00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

# ls -l /filsys01

```

| total 16 | drwxr-xr-x 20 root sys 2560 Jun 14 13:32 fs1dir |
| | drwxrwx--- 2 root system 512 Jun 14 13:28 lost+found |

5.3.3 Reducing the size of a file system

There may be occasion to shrink a file system, although this may not be common. Before shrinking a file system, the following needs to be checked:

- **For a file system in rootvg, the file image.data must exist.** If this file does not exist, then it needs to be restored using the mksysb command because the existing image.data is out of date.

- **For a file system that may exist on a user volume group the file /tmp/vgdata/vgname/vgname.data must exist.** If this file does not exist, then the mkvgdata VGName command must be run, which will create this file.

Below is an example of the information for the /usr file system from the image.data file showing volume group, logical volume, and file system information:

```
##Command used for vg_data; /usr/sbin/lsvg

vg_data:
    VGNAME= rootvg
    PPSIZE= 16
...
##Command used for lv_data; /usr/sbin/lslv
```

114 IBM Certification Study Guide AIX Installation and System Recovery
... lv_data:
 VOLUME_GROUP= rootvg
 LV_SOURCE_DISK_LIST= hdisk0
...
 LOGICAL_VOLUME= hd2
...
 MAX_LPS= 32512
...
 LPs= 430
...
 MOUNT_POINT= /usr
...
 PP_SIZE= 16
...
 PP= 430
...
 LV_MIN_LPS= 54
...
##Commands used for fs_data; /usr/bin/df and /usr/sbin/lsjfs
...
fs_data:
 FS_NAME= /usr
 FS_SIZE= 14090240
 FS_MIN_SIZE= 1748712
 FS_LV= /dev/hd2
 FS_FS= 4096
 FS_NBPI= 4096
 FS_COMPRESS= no
 FS_BF= false
...

The following is an example of /tmp/vgdata/vgname/vgname.data:

##Command used for vg_data; /usr/sbin/lsvg

vg_data:
 VGNAME= volg01
 PPSIZE= 16
 VARYON= yes
 VG_SOURCE_DISK_LIST= hdisk1
...

lv_data:
 VOLUME_GROUP= volg01
 LV_SOURCE_DISK_LIST= hdisk1
 LV_IDENTIFIER= 000fa17d2d4bda99.3
 LOGICAL_VOLUME= lv00
VG_STAT= active/complete
TYPE= jfs
MAX_LPS= 512
COPIES= 1
LPs= 40
STALE_PPs= 0
INTER_POLICY= minimum
INTRA_POLICY= middle
MOUNT_POINT= /u
MIRROR_WRITE_CONSISTENCY= on

...
PP_SIZE= 16
SCHED_POLICY= parallel
PP= 40
...

LV_MIN_LPS= 37
...

##Commands used for fs_data; /usr/bin/df and /usr/sbin/lsjfs

fs_data:
 FS_NAME= /u
 FS_SIZE= 1310720
 FS_MIN_SIZE= 1188384
 FS_LV= /dev/lv00
 FS_FS= 4096
 FS_NBPI= 4096
...

For example:

On the above system the following is the current disk usage as per the df command:

```bash
# df -k
Filesystem  1024-blocks Free %Used Iused %Iused Mounted on
/dev/hd4  16384  8656  48%  1281  16% / 
/dev/hd2  7045120  6170764  13%  31736  2% /usr 
/dev/hd9var  16384  14416  13%   399  10% /var 
/dev/hd3  16384  15792  4%   28  1% /tmp 
/dev/hd1  16384  15764  4%   41  2% /home 
/dev/lv00  655360  61168  91%  4528  3% /u
```

On investigation into the reason for the high utilization of the /u file system, the following is found:

```bash
# ls -l /u
```
The file, /u/tempfile1, is no longer needed and can be removed, and then the file system will be shrunk.

Remove the file using the `rm` command and then check the new disk usage as per the `df` command:

```
# df -k
```

```
Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 16384 6288 62% 1283 16% /
/dev/hd2 7045120 6170764 13% 31736 2% /usr
/dev/hd9var 16384 14412 13% 400 10% /var
/dev/hd3 16384 15800 4% 28 1% /tmp
/dev/hd1 16384 15764 4% 41 2% /home
/dev/lv00 655360 463820 30% 4527 3% /u
```

Run the `mkvgdata` command to create a new `/tmp/vgdata/vgname/vgname.data` file. In this case, the file name is `/tmp/vgdata/volg01/volg01.data`. For the root volume group, the `mkszfile` command needs to be run:

```
# mkvgdata volg01
```

If the `/tmp/vgdata/volg01/volg01.data` is checked, the following can be seen:

```
lv_data:
    VOLUME_GROUP= volg01
    LV_SOURCE_DISK_LIST= hdisk1
    LV_IDENTIFIER= 000fa17d2d4bda99.3
    ...
    LABEL= /u
    MAPFILE=
    LV_MIN_LPS= 12
    ...
```

```
fs_data:
    FS_NAME= /u
    FS_SIZE= 1310720
    FS_MIN_SIZE= 383080
    ...
```

Notice that `LV_MIN_LPS= has reduced from 37 to 12` and that `FS_MIN_SIZE= has reduced from 1188384 to 383080`. These numbers must be large enough to hold the current data otherwise the process will fail.
Calculate any requirement for a new PP_SIZE. Typically a smaller disk will be more efficiently used with a smaller PP_SIZE. Disks under 300 MB use a 2 MB PP_SIZE by default, all others use a 4 MB size by default. You have to conform to the general rule for making a volume group on a physical volume, 1016 x PP_SIZE greater than the real capacity of the physical volume.

Save the volume group using the `savevg` command. During a `savevg`, the `/tmp/vgdata/vgname/vgname.data` file can be created using the `-i` flag, which has the same effect as running the `mkvgdata` command:

```
# savevg -f /dev/rmt0 -v volg01
...
```

The total size is 161611492 bytes.
Backup finished on Thu Jul 6 10:00:25 CDT 2000; there are 218300 blocks on 1 volumes.

0512-038 `savevg`: Backup Completed Successfully

Note

The `savevg` command uses the `backup` command to save the contents data of the journaled file systems held in the target volume group. It never saves the contents of the raw device type logical volume (logical volumes not used for journaled file system).

Check the volume groups and the disks associated with the volume groups:

```
# lsvg
rootvg
volg01
# lspv
hdisk0 000fa17debb9c93a rootvg
hdisk1 000fa17dc9bf376f volg01
```

Unmount the file system:

```
# umount /u
```

To restore the contents of the backup tape of the volume group `volg01` taken by `savevg` command, you have to remove the physical volume and volume group, since the `restvg` command does not allow restoring to the existing volume group and the physical volumes. The `-f` option flag of the `reducevg` command deletes the physical volume forcibly, if there are any logical volumes the exist on the physical volume:

```
# reducevg -d -f volg01 hdisk1
rm lv: Logical volume logvol01 is removed.
```
Now, the system needs to be restored using the `restvg` command with the `-s` flag. The `-s` flag (meaning shrink) specifies that the logical volumes be created at the minimum size possible to accommodate the file systems. This size is specified by the value of the `LV_MIN_LPS` field of the `lv_data` stanza of the `vgname.data` file where the `vgname` is `/tmp/vgdata/volg01/volg01.data`:

```bash
# restvg -s -q -f /dev/rmt0
```

Will create the Volume Group: `volg01`

Target Disks: `hdisk1`

Allocation Policy:
- Shrink Filesystems: yes
- Preserve Physical Partitions for each Logical Volume: no

The total size is 161611492 bytes.
The number of restored files is 4516.

After the restore, the file system may need to be mounted by using the `mount` command.

The file system can now be checked for disk usage:

```bash
# df -k
```

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>1024-blocks</th>
<th>Free</th>
<th>%Used</th>
<th>Iused</th>
<th>%Iused</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>16384</td>
<td>6080</td>
<td>63%</td>
<td>1283</td>
<td>16%</td>
<td>/</td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>7045120</td>
<td>6170764</td>
<td>13%</td>
<td>31736</td>
<td>2%</td>
<td>/usr</td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>16384</td>
<td>14408</td>
<td>13%</td>
<td>400</td>
<td>10%</td>
<td>/var</td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>16384</td>
<td>15796</td>
<td>4%</td>
<td>29</td>
<td>1%</td>
<td>/tmp</td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>16384</td>
<td>15764</td>
<td>4%</td>
<td>41</td>
<td>2%</td>
<td>/home</td>
</tr>
<tr>
<td>/dev/lv00</td>
<td>196608</td>
<td>23452</td>
<td>89%</td>
<td>4527</td>
<td>10%</td>
<td>/u</td>
</tr>
</tbody>
</table>

Note the file system has been shrunk from a size of 655360 to 196608. The file system can now grow as required.

The system can also be restored using the `smitty restvg` command as shown in Figure 34 on page 120. Note the SHRINK the file systems? option is set to yes.
When shrinking a root volume group file system the process is similar with a few exceptions:

- Use the mksysb backup to back up the rootvg volume group.
- User volume groups will have to be exported using the exportvg command.
- The system would have to be restored as described in *AIX Version 4.3 Installation Guide, Chapter 5; Installing BOS from a System Backup*. A panel will be available to allow you to shrink the file systems.
- Once the system has been restored, check to see if your user volume groups need to be imported by using the importvg command.

Note

If needed, a full description of reducing a root volume group can be found in *AIX Version 4.3 System Management Guide: Operating System and Devices, Reducing the File System Size in the rootvg Volume Group.*

5.3.4 Removing a file system

To remove a file system from the system, the `rmfs` command is used as follows:
To remove the file system, \texttt{filsys02}, which resides on the logical volume, \texttt{lvol02}, the following steps are followed:

```
# mount

<table>
<thead>
<tr>
<th>node</th>
<th>mounted</th>
<th>mounted over</th>
<th>vfs</th>
<th>date</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>/</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>/usr</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>/var</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>/tmp</td>
<td>jfs</td>
<td>Jun 11 16:41</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>/home</td>
<td>jfs</td>
<td>Jun 11 16:42</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/lv00</td>
<td>/usr/welcome_arcade</td>
<td>jfs</td>
<td>Jun 11 16:42</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/lv01</td>
<td>/usr/welcome</td>
<td>jfs</td>
<td>Jun 11 16:42</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/lvol01</td>
<td>/filsys01</td>
<td>jfs</td>
<td>Jun 14 13:31</td>
<td>rw,log=/dev/loglv00</td>
<td></td>
</tr>
<tr>
<td>/dev/lvol02</td>
<td>/filsys02</td>
<td>jfs</td>
<td>Jun 14 17:17</td>
<td>rw,log=/dev/loglv01</td>
<td></td>
</tr>
</tbody>
</table>
```

Unmount the file system that will be removed:

```
# umount /filsys02
```

Remove the file system (the \texttt{-r} flag of the \texttt{rmfs} command specifies that the mount point is also removed):

```
# rmfs -r /filsys02
```

```
rmlv: Logical volume lvol02 is removed.
```

```
# lslv -L lvol02

0516-306 lslv: Unable to find lvol02 in the Device Configuration Database.
```

As can be seen when the file system is removed, the underlying logical volume will also be removed, and it also removes the corresponding entry in the /etc/filesystems file.

5.3.5 Creating a new JFS log

If a journal file system is used, then a jfslog is necessary. The jfslog is a logical volume used for maintaining the file system integrity of file systems which associated with this jfslog. To create, mount, and use journal file systems, you have to have at least one jfslog per volume group. More than one journal file system residing in a volume group can share same jfslog. To format the jfslog on the existing logical volume explicitly, you can use the \texttt{logform} command. This step is also done automatically when creating a new journal file system.

To configure the jfslog on the system, you can use the following method. The jfslogs shown in the examples as a jfslog logical volume type.

```
The logical volume, loglv00, is the JFS log for the volume group volg01:
```

Chapter 5. Disks and file systems 121
lsvg -o | lsvg -i -l

```

<table>
<thead>
<tr>
<th>LV NAME</th>
<th>TYPE</th>
<th>LPs</th>
<th>PPs</th>
<th>LV STATE</th>
<th>MOUNT POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>loglv01</td>
<td>jfslog</td>
<td>1</td>
<td>1</td>
<td>open/syncd</td>
<td>N/A</td>
</tr>
<tr>
<td>lv02</td>
<td>jfs</td>
<td>10</td>
<td>10</td>
<td>open/syncd</td>
<td>/test01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LV NAME</th>
<th>TYPE</th>
<th>LPs</th>
<th>PPs</th>
<th>LV STATE</th>
<th>MOUNT POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>logvo101</td>
<td>jfs</td>
<td>10</td>
<td>10</td>
<td>open/syncd</td>
<td>/userfs01</td>
</tr>
<tr>
<td>loglv00</td>
<td>jfslog</td>
<td>1</td>
<td>1</td>
<td>open/syncd</td>
<td>N/A</td>
</tr>
</tbody>
</table>

rootvg:

<table>
<thead>
<tr>
<th>LV NAME</th>
<th>TYPE</th>
<th>LPs</th>
<th>PPs</th>
<th>LV STATE</th>
<th>MOUNT POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>lv01</td>
<td>jfs</td>
<td>2</td>
<td>2</td>
<td>open/syncd</td>
<td>/usr/welcome</td>
</tr>
</tbody>
</table>

```

If while mounting a file system, the following or similar error should occur:

```
# mount /userfs01
mount: 0506-323 Cannot get information about log device /dev/loglv00.
```

remove the corrupt logical volume loglv00 from the system:

```
# rmlv loglv00
Warning, all data contained on logical volume loglv00 will be destroyed.
rmlv: Do you wish to continue? y(es) n(o)? y
rmlv: Logical volume loglv00 is removed.
```

Use the mklv command to create a jfslog file system loglv00 for the volume group volg01:

```
# mklv -t jfslog -y loglv00 volg01 1
loglv00
```

Run the logform command to initialize the logical volume, loglv00, for use as a JFS log:

```
# logform /dev/loglv00
logform: destroy /dev/loglv00 (y)?y
```

Check the integrity of the file system using the fsck command. Fix the superblock error if needed:

```
# fsck /userfs01

** Checking /dev/rlogvol01 (/userf)
** Phase 0 - Check Log
log redo processing for /dev/rlogvol01
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
```
** Phase 5 - Check Inode Map
** Phase 6 - Check Block Map
Superblock is marked dirty; FIX? y
1809 files 159704 blocks 167976 free
***** Filesystem was modified *****

Mount the file system and check that it is mounted:

```
# mount /userfs01
# mount
```

```
--------- --------------- --------------- ------ ------------ ------------
/node/   /
/dev/hd4 / jfs  Jun 19 14:50 rw,log=/dev/hd8
/dev/hd2 /usr  jfs  Jun 19 14:50 rw,log=/dev/hd8
/dev/hd9var /var  jfs  Jun 19 14:50 rw,log=/dev/hd8
/dev/hd3 /tmp  jfs  Jun 19 14:50 rw,log=/dev/hd8
/dev/hd1 /home jfs  Jun 19 14:51 rw,log=/dev/hd8
/dev/lv00 /usr/welcome_arcade jfs  Jun 19 14:51 rw,log=/dev/hd8
/dev/lv01 /usr/welcome jfs  Jun 19 14:51 rw,log=/dev/hd8
/dev/lv02 /test01  jfs  Jun 19 14:51 rw,log=/dev/loglv01
/dev/logvol01 /userfs01  jfs  Jun 19 16:00 rw,log=/dev/loglv00
```

5.4 Managing a paging space

A paging space is fixed disk storage working as a backing store to hold not currently accessed data in virtual memory. If some processes or kernel require this data, then they are read from the corresponding paging space disk blocks into memory (called a paged in). On AIX, a paging space is a logical volume with LV TYPE set to paging. The default paging space hd6 is created upon initial installation of AIX in the rootvg volume group, and activated automatically every booting up the system.

This section describes the following topics.

- How to create a new paging space
- How to expand a existing paging space
- How to remove a paging space
- How to shrink a existing paging space size

5.4.1 How to create a new paging space

On AIX, creating a new paging space is easy task, since a newly creating paging space is activated at the moment of the creation, if you want to do so. But before creating it actually, you have to examine the following points.

- How much paging space is needed for your system?
It depends on the virtual memory usage of your application. Some applications require three or four times of physical memory to work smoothly.

- Is there enough free disk space to create new paging space on your system?

 If your rootvg volume group has only 100 MB or less free space, it is not recommended adding a new paging space in the rootvg. These space are usually required for system maintenance task (for example, applying PTFs).

- Is there any possibility to affect user application performance?

 Creating a new paging space on physical volume consumes certain disk I/O bandwidth on your system, if the paging space is used heavily. If your application is I/O intensive and sensitive, it is not recommended creating a new paging space on the same physical volume that holds your application data. In this case, you might consider additional disk I/O path to create a new paging space by adding new adapter and disks.

To add a new paging space, you can use the following method. This task is also achieved by using `mkps` command.

Use the `smit lvm` command, then select **Paging Space** followed by **Add Another Paging Space**. When you are prompted, select the volume group you would like to add a paging space to, from the list. The results of these actions are shown in Figure 35.
There is no field to specify the logical volume name of this newly creating paging space. By default, AIX will assign sequentially the name paging00, paging01, to pagingnn for paging space. The following points are for your consideration.

- The size of the paging space is specified as a multiplication of the PP_SIZE of the volume group. In this example, it is 16 MB.
- If you want to use this paging space now, alter the Start using this paging space NOW? field to yes, as shown.
- If you want to activate this paging space across boot, alter the Use this paging space each time the system is RESTARTED? to yes, as shown.

To confirm the result of this task, please type the `lsps -a` command like this:

```
# lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd6   hdisk0  rootvg  1024MB 0  yes  yes  lv
paging00 hdisk0  rootvg  256MB 0  yes  yes  lv
```

Figure 35. The SMIT Add Another Paging Space dialog

Then press `Enter` to generate the paging space.
5.4.2 How to expand an existing paging space

To expand a existing paging space, you can use the following method. This task is also achieved by using `chps` command. It remains activated after expansion.

Use the `smit lvm` command and select **Paging Space** then **Change / Show Characteristics of a Paging Space**. You will be prompted to select the paging space from the list. The results of these actions are shown in Figure 36.

![Figure 36. The SMIT Change / Show Characteristics of a Paging Space dialog](image)

Press **Enter** to execute the dialog.

Note that the size is specified as a difference. So, if you have a existing paging space with 16 PPs (assume it corresponds 256 MB), then you should specify 32 PPs (it is equal to 512 MB), since you want to have the 512 MB size paging space. The result is 768 MB (256 MB + 512 MB).
To confirm the result of this task, type the `lsps -a` command as shown in the following example.

```
# lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd6   hdisk0   rootvg    1024MB 0   yes  yes  lv
paging00 hdisk0 rootvg  512MB 0   yes  yes  lv
```

5.4.3 How to remove an existing paging space

Before removing the existing paging space, all the references to this paging space should be removed. This requires the paging space to be deactivated first, and a subsequent reboot of the system.

To deactivate a existing paging space, you can use the following method. This task is also achieved by using `chps` command.

Using the same SMIT dialog as shown in Figure 36, modify the Use this paging space each time the system is RESTARTED? field to no. Press Enter to run the dialog and reboot your system.

```
# shutdown -Fr now
```

To confirm the result of this task, type the `lsps -a` command as shown in the following example.

```
# lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd6   hdisk0   rootvg    1024MB 0   yes  yes  lv
paging00 hdisk0 rootvg  512MB 0   no   no   lv
```

Remove this paging space using SMIT or by using `rmps` command. This step is not shown in this example, but was completed successfully.

To confirm the result of this task, enter the `lsps -a` command as shown in the following example.

```
# lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd6   hdisk0   rootvg    1024MB 0   yes  yes  lv
```

5.4.4 How to shrink an existing paging space size

Basically, there is no way shrinking an existing paging space size directly with AIX Version 4.3. You have to remove it, then re-create it with a smaller size which requires a system reboot. AIX 5L has enhancements that allow you to avoid the system reboot.
If you want to shrink the default paging space (/dev/hd6) size, then the following procedures should be followed.

1. Create a new paging space (typically, /dev/paging00) that has enough size to continue the system operating.

2. Change the default paging space /dev/hd6 to deactivate after the system reboot.

3. Modify the /sbin/rc.boot file, since activating (swapon) the default paging space is hard-coded in this startup procedure script. It must activate the newly created paging space from the previous step. You should create a backup of this script first.

4. Change the default paging space using the `sysdumpdev` command.

5. Re-create the BLV to reflect the above modification.

6. Reboot the system.

7. Remove the default paging space /dev/hd6.

8. Re-create the default paging space /dev/hd6 with your specified size. You cannot use the `mkps` command in here, since it always assigns the name pagingnn.

9. Change the additional paging space you created in the previous step to deactivate after the system reboot (assume it is /dev/paging00).

10. Restore the original /sbin/rc.boot.

11. Change the default paging space using the `sysdumpdev` command.

12. Re-create the BLV to reflect the above modification.

13. Reboot the system.

14. Remove the additional paging space (assume it is /dev/paging00).

These previous steps are shown in the following example.

```
# mkps -a -n -s 64 rootvg
    paging00
# lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd6       hdisk0   rootvg     2048MB  0    yes   yes  lv
paging00  hdisk0   rootvg     1024MB  1    yes   yes  lv
# chps -a n hd6
# cp /sbin/rc.boot /sbin/rc.boot.orig
# vi /sbin/rc.boot

    Change the paging space entry in the /sbin/rc.boot file from `swapon` /dev/hd6 to `swapon` /dev/paging00.
```
sysdumpdev -P -p /dev/paging00
primary /dev/paging00
secondary /dev/sysdumpnull
copy directory /var/adm/ras
forced copy flag TRUE
always allow dump FALSE
dump compression OFF
bosboot -d /dev/hdisk0 -a
bosboot: Boot image is 6748 512 byte blocks.
shutdown -Fr now
lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
d6 hdisk0 rootvg 2048MB 0 no no lv
paging00 hdisk0 rootvg 1024MB 1 yes yes lv
rmps hd6
rmlv: Logical volume hd6 is removed.
mk lv -b n -t paging -y hd6 rootvg 64
swap on /dev/hd6
chps -a n paging00
cp -p /sbin/rc.boot.orig /sbin/rc.boot
sysdumpdev -P -p /dev/hd6
primary /dev/hd6
secondary /dev/sysdumpnull
copy directory /var/adm/ras
forced copy flag TRUE
always allow dump FALSE
dump compression OFF
bosboot -d /dev/hdisk0 -a
shutdown -Fr now
rmps paging00
lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
d6 hdisk0 rootvg 1024MB 0 yes yes lv

5.5 Working with physical volumes

In AIX, fixed disk storage device is represented as a logical instance, called a physical volume. Usually it has a name hdiskN, where N is a sequence of numbers starting from zero. The physical volume is not used directly by any applications, even if your application does raw I/O. To use fixed disk storage in AIX, you must configure a volume group, which is composed of one or more physical volumes.
5.5.1 Removing a physical disk drive from a system

When removing the disk from the system, it is done at a volume group and physical volume level.

In the following system, there are two volume groups, rootvg and volg01. The volg01 volume group has three disks assigned to it, and the disk, hdisk3, needs to be removed from the volume group. There is only one logical volume (logvol01) on the volg01 volume group, and the file system is /userfs01. If there are logical volume residing on the disk to be removed, use the `migratepv` command as described in 5.2.3, “Moving a logical volume from one physical volume to another” on page 107:

```
# lsvg
rootvg
volg01

# lspv
hdisk0 000bc6fdcd3c07a7 rootvg
hdisk1 000bc6dfbb75ee2 volg01
hdisk2 000bc6dfbbf92812 volg01
hdisk3 000bc6dfbb972f4 volg01

# lsvg -l volg01
volg01:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
logvol01 jfs 10 10 1 open/syncd /userfs01
loglv00 jfslog 1 1 1 open/syncd N/A

# mount
node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ------------
/dev/hd4 / jfs Jun 19 18:08 rw,log=/dev/hd8
/dev/hd2 /usr jfs Jun 19 18:08 rw,log=/dev/hd8
/dev/hd9var /var jfs Jun 19 18:08 rw,log=/dev/hd8
/dev/hd3 /tmp jfs Jun 19 18:08 rw,log=/dev/hd8
/dev/hd1 /home jfs Jun 19 18:09 rw,log=/dev/hd8
/dev/lv01 /usr/welcome jfs Jun 19 18:09 rw,log=/dev/hd8
rw,log=/dev/hd8
/dev/logvol01 /userfs01 jfs Jun 19 18:09
rw,log=/dev/loglv00

The first step in the process is to unmount the file system:

# umount /userfs01
Remove the physical volume from the volume group:

```bash
reducevg -df volg01 hdisk3
```

Ensure the physical volume is no longer associated with a volume group:

```bash
lspv
```

<table>
<thead>
<tr>
<th>Disk Name</th>
<th>Size</th>
<th>Volume Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdisk0</td>
<td></td>
<td>rootvg</td>
</tr>
<tr>
<td>hdisk1</td>
<td></td>
<td>volg01</td>
</tr>
<tr>
<td>hdisk2</td>
<td></td>
<td>volg01</td>
</tr>
<tr>
<td>hdisk3</td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

Remove the disk from the system:

```bash
rmdev -d -l hdisk3
hdisk3 deleted
```

Ensure that the disk has been removed:

```bash
lsdev -Ccdisk
```

<table>
<thead>
<tr>
<th>Disk Name</th>
<th>Status</th>
<th>Size</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdisk0</td>
<td>Available</td>
<td>30-58-00-8,0</td>
<td>16 Bit SCSI Disk Drive</td>
</tr>
<tr>
<td>hdisk1</td>
<td>Available</td>
<td>30-58-00-9,0</td>
<td>16 Bit SCSI Disk Drive</td>
</tr>
<tr>
<td>hdisk2</td>
<td>Available</td>
<td>10-60-00-8,0</td>
<td>16 Bit SCSI Disk Drive</td>
</tr>
</tbody>
</table>

Mount the file system to make the system available for use:

```bash
mount /userfs01
```

<table>
<thead>
<tr>
<th>Node</th>
<th>Mounted</th>
<th>Mounted Over</th>
<th>VFS</th>
<th>Date</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>/</td>
<td></td>
<td>jfs</td>
<td>Jun 19 18:08</td>
<td>rw,log=/dev/hd8</td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>/usr</td>
<td></td>
<td>jfs</td>
<td>Jun 19 18:08</td>
<td>rw,log=/dev/hd8</td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>/var</td>
<td></td>
<td>jfs</td>
<td>Jun 19 18:08</td>
<td>rw,log=/dev/hd8</td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>/tmp</td>
<td></td>
<td>jfs</td>
<td>Jun 19 18:08</td>
<td>rw,log=/dev/hd8</td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>/home</td>
<td></td>
<td>jfs</td>
<td>Jun 19 18:09</td>
<td>rw,log=/dev/hd8</td>
</tr>
<tr>
<td>/dev/logvol01</td>
<td>/userfs01</td>
<td>jfs</td>
<td>Jun 20 09:33</td>
<td>rw,log=/dev/loglv00</td>
<td></td>
</tr>
</tbody>
</table>

### 5.5.2 Recovering an incorrectly removed disk

If a disk needs to be recovered that was incorrectly removed from the system, and the system was rebooted, the `synclvmdm` command will need to be run.

This is an advanced topic condensed to demonstrate the requirement to use several commands to recover from incorrectly removed disks. It is possible that customer situations will require several more steps than what is shown in this sample.

In the following example, a disk has been incorrectly removed from the system, and the logical volume control block needs to be rebuilt.
The disks in the system before the physical volume was removed were:

```
lsdev -Cc disk
hdisk0 Available 30-58-00-8,0 16 Bit SCSI Disk Drive
hdisk1 Available 30-58-00-9,0 16 Bit SCSI Disk Drive
hdisk2 Available 10-60-00-8,0 16 Bit SCSI Disk Drive
hdisk3 Available 10-60-00-9,0 16 Bit SCSI Disk Drive
```

The allocation of the physical volumes before the disk was removed was:

```
lspv
hdisk0 000bc6fc3dc07a7 rootvg
hdisk1 000bc6fdff75ee2 volg01
hdisk2 000bc6fdff92812 volg01
hdisk3 000bc6fdff972f4 volg01
```

The logical volumes on the volume group are:

```
lsvg -l volg01
volg01:
 LV NAME TYPE LPs PPs Pvs LV STATE MOUNT POINT
logvol01 jfs 1000 1000 2 open/syncd /userfs01
loglv00 jfslog 1 1 1 open/syncd N/A
```

The logical volume distribution on the physical volumes is:

```
lslv -l logvol01
logvol01:/userfs01
PV COPIES IN BAND DISTRIBUTION
```

After a reboot, the system disk configuration appears as follows:

```
lspv
hdisk0 000bc6fc3dc07a7 rootvg
hdisk1 000bc6fdff75ee2 volg01
hdisk3 000bc6fdff972f4 volg01
```

When trying to mount the file system on the logical volume, the error may appear as follows:

```
mount /userfs01
mount: 0506-324 Cannot mount /dev/logvol01 on /userfs01: There is an input or output error.
```
To get the logical volume synchronized correctly, the following needs to be done:

```
synclvodm -v volg01
synclvodm: Physical volume data updated.
synclvodm: Logical volume logvol01 updated.
synclvodm: Warning, lv control block of loglv00 has been over written.
0516-622 synclvodm: Warning, cannot write lv control block data.
synclvodm: Logical volume loglv00 updated.
```

The system can now be repaired. If the file system data was spread across all the disks, including the failed disk, it may need to be restored from the last backup.

### 5.5.3 General tips on boot problems

If, for some inexplicable reason, the system will not boot and all the errors have been checked, ensure the following have been checked:

- Check that any changes made in the `/etc/inittab` file are not causing the boot problem.
- Check that any changes made in `/etc/environment` file is not causing the boot problem.
- Check that the root file system or one of the other file system in the rootvg volume group have sufficient space.
- Check that a log file is not full or corrupt, thus not allowing a system to boot.
- Check the `/etc/filesystems` file to ensure that the changes made are causing the system not to boot.
- Make sure any mirrored disks have a boot image and are contained in the bootlist. Use the `bosboot` and `bootlist` commands.

### 5.6 Command summary

The following section provides a list of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

#### 5.6.1 The `cfgmgr` command

The `cfgmgr` command configures devices and optionally installs device software into the system.
The `cfgmgr` command syntax is as follows:

```
cfgmgr [-f | -s | -p Phase] [-i Device] [-l Name] [-v]
```

The commonly used flags are provided in Table 14.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f</td>
<td>Specifies that the <code>cfgmgr</code> command executes the phase 1 configuration rules. This flag is not valid at run time (after system start).</td>
</tr>
<tr>
<td>-i Device</td>
<td>Specifies the location of the installation medium.</td>
</tr>
<tr>
<td>-l Name</td>
<td>Specifies the named device to configure along with its children.</td>
</tr>
<tr>
<td>-p Phase</td>
<td>Specifies that the <code>cfgmgr</code> command executes the specified phase.</td>
</tr>
<tr>
<td>-s</td>
<td>Specifies that the <code>cfgmgr</code> command executes the phase 2 configuration rules.</td>
</tr>
<tr>
<td>-v</td>
<td>Specifies verbose output. The <code>cfgmgr</code> command writes information about what it is doing to standard output.</td>
</tr>
</tbody>
</table>

### 5.6.2 The `bosboot` command

The `bosboot` command creates the boot image that interfaces with the machine boot ROS (Read-Only Storage) EPROM (Erasable Programmable Read-Only Memory).

The `bosboot` command syntax is as follows:

For general use:

```
bosboot -Action [-d Device] [-Options ...]
```

To create a device boot image:

```
bosboot -a [-d Device] [-p Proto] [-k Kernel] [-U] [-I | -D] [-l LVdev] [-L] [-M { Norm | Serv | Both }] [-O Number] [-T Type] [-b FileName] [-q]
```

To copy a device boot image:

```
bosboot -w FileName [-d Device] [-q]
```
To create a ROS emulation boot image:

```
bosboot -r FileName [-d Device] [-l LVdev] [-M { Norm | Serv | Both }] [-q]
```

The commonly used flags are provided in Table 15.

**Table 15. Commonly used flags of the bosboot command**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-a</code></td>
<td>Creates complete boot image and device.</td>
</tr>
<tr>
<td><code>-d Device</code></td>
<td>Specifies the boot device. This flag is optional for hard disk</td>
</tr>
</tbody>
</table>

### 5.6.3 The bootlist command

The `bootlist` command allows the user to display and alter the list of possible boot devices from which the system may be booted. When the system is booted, it will scan the devices in the list and attempt to boot from the first device it finds containing a boot image.

The `bootlist` command syntax is as follows:

```
bootlist [{ -m Mode } [-r] [-o] [[-i] [[-f File] [Device [Attr=Value ...] ...]]]]
```

The commonly used flags are provided in Table 16.

**Table 16. Commonly used flags of the bootlist command**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Device</code></td>
<td>Provides the names of the specific or generic devices to include in the boot list.</td>
</tr>
<tr>
<td><code>-f File</code></td>
<td>Indicates that the device information is to be read from the specified file name.</td>
</tr>
<tr>
<td><code>-i</code></td>
<td>Indicates that the device list specified by the <code>-m</code> flag should be invalidated.</td>
</tr>
<tr>
<td><code>-m Mode</code></td>
<td>Specifies which boot list to display or alter. Possible values for the mode variable are normal, service, both, or prevboot.</td>
</tr>
</tbody>
</table>
5.6.4 The chps command

The chps command changes attributes of a specific paging space. The PagingSpace parameter specifies the name of the paging space to be changed.

The chps command syntax is as follows:

```
chps [-s LogicalPartitions] [-a { y | n }] PagingSpace
```

The commonly used flags are provided in Table 17.

Table 17. Commonly used flags of the chps command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-s</td>
<td>Specifies the number of logical partitions to add.</td>
</tr>
<tr>
<td>-a</td>
<td>Specifies to use a paging space at the next system restart.</td>
</tr>
<tr>
<td>y</td>
<td>Specifies that the paging space is active at subsequent system restarts.</td>
</tr>
<tr>
<td>n</td>
<td>Specifies that the paging space is inactive at subsequent system restarts.</td>
</tr>
<tr>
<td>-o</td>
<td>Indicates that the specified boot list is to be displayed after any specified alteration is performed. The output is a list of device names. This flag applies only to AIX Version 4.2.1 or later.</td>
</tr>
<tr>
<td>-r</td>
<td>Indicates that the specified boot list is to be displayed after any specified alteration is performed. The output is hardware-platform dependent. It may be a hexadecimal dump of the boot list or a list of device names. (This is normally used for problem determination.)</td>
</tr>
</tbody>
</table>
5.6.5 The cplv command

Copies the contents of a logical volume to a new logical volume.

The `cplv` command syntax is as follows:

**To Copy to a New Logical Volume**

```
cplv [-v VolumeGroup] [-y NewLogicalVolume | -Y Prefix] SourceLogicalVolume
```

**To Copy to an Existing Logical Volume**

```
cplv -e DestinationLogicalVolume [-f] SourceLogicalVolume
```

The commonly used flags are provided in Table 18.

**Table 18. Commonly used flags of the cplv command**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-e</td>
<td>Specifies that the DestinationLogicalVolume exists and that a new logical volume should not be created. If the DestinationLogicalVolume is smaller than the SourceLogicalVolume, the extra logical partitions are not copied. When you use this flag, any data already in the DestinationLogicalVolume is destroyed. For this reason, user confirmation is required unless the -f flag is added. The Type characteristic of the DestinationLogicalVolume must be copy to prevent inadvertently overwriting data. To change the Type characteristic, use the <code>chlv</code> command.</td>
</tr>
<tr>
<td>-f</td>
<td>Copies to an existing logical volume without requesting user confirmation.</td>
</tr>
<tr>
<td>-v VolumeGroup</td>
<td>Specifies the volume group where the new logical volume resides. If this is not specified, the new logical volume resides in the same volume group as the SourceLogicalVolume.</td>
</tr>
<tr>
<td>-y NewLogicalVolume</td>
<td>Specifies the name to use, in place of a system-generated name, for the new logical volume. Logical volume names must be unique system wide names and can range from 1 to 15 characters.</td>
</tr>
<tr>
<td>-Y Prefix</td>
<td>Specifies a prefix to use in building a system-generated name for the new logical volume. The prefix must be less than or equal to 13 characters. A name cannot begin with a prefix already defined in the PdDv class in the Device Configuration Database for other devices or a name already used by another device.</td>
</tr>
</tbody>
</table>
5.6.6 The fsck command

The fsck command checks and interactively repairs inconsistent file systems. You should run this command before mounting any file system. You must be able to read the device file on which the file system resides. Normally, the file system is consistent, and the fsck command merely reports on the number of files, used blocks, and free blocks in the file system. If the file system is inconsistent, the fsck command displays information about the inconsistencies found and prompts you for permission to repair them when the -y flag is not used.

Note

If you run the fsck command on a mounted file system, it might report the following messages.

Bad Inode Map (NOT SALVAGED)
Bad Block Map (NOT SALVAGED)

This is a normal situation (you can not determine if this file system is corrupted or not from this evidence only), especially, on the frequently written file system such as /var. You can see the fsck command warning about this in the following.

Checking a mounted filesystem does not produce dependable results.

To determine this file system is corrupted or not, you have to unmount the file system, then run the fsck command on it.

The fsck command syntax is as follows:

```
fsck [-n] [-p] [-y] [-dBlocKNumber] [-f] [-ii-NodeNumber] [-o Options] [-tFile] [-V VfsName] [FileSystem1 - FileSystem2 ...]
```

The commonly used flags are provided in Table 19.

Table 19. Commonly used flags of the fsck command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-dBlocKNumber</td>
<td>Searches for references to a specified disk block. Whenever the fsck command encounters a file that contains a specified block, it displays the i-node number and all path names that refer to it.</td>
</tr>
</tbody>
</table>
### Chapter 5. Disks and file systems

- **-f**
  Performs a fast check. Under normal circumstances, the only file systems likely to be affected by halting the system without shutting down properly are those that are mounted when the system stops. The `-f` flag prompts the `fsck` command not to check file systems that were unmounted successfully. The `fsck` command determines this by inspecting the `s_fmod` flag in the file system superblock.

  This flag is set whenever a file system is mounted and cleared when it is unmounted successfully. If a file system is unmounted successfully, it is unlikely to have any problems. Because most file systems are unmounted successfully, not checking those file systems can reduce the checking time.

- **-ii-NodeNumber**
  Searches for references to a specified i-node. Whenever the `fsck` command encounters a directory reference to a specified i-node, it displays the full path name of the reference.

- **-n**
  Assumes a no response to all questions asked by the `fsck` command. It does not open the specified file system for writing.

- **-o Options**
  Passes comma-separated options to the `fsck` command. These options are assumed to be file system implementation-specific, except that the following are currently supported for all file systems:

  - **mountable**
    Causes the `fsck` command to exit with success, returning a value of 0, if the file system in question is mountable (clean). If the file system is not mountable, the `fsck` command exits returning with a value of 8.

  - **mytype**
    Causes the `fsck` command to exit with success (0) if the file system in question is of the same type as either specified in the `/etc/filesystems` file or by the `-V` flag on the command line. Otherwise, 8 is returned. For example, `fsck -o mytype -V jfs /` exits with a value of 0 if `/` (the root file system) is a journaled file system.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f</td>
<td>Performs a fast check. Under normal circumstances, the only file systems</td>
</tr>
<tr>
<td></td>
<td>likely to be affected by halting the system without shutting down properly</td>
</tr>
<tr>
<td></td>
<td>are those that are mounted when the system stops. The <code>-f</code> flag prompts the</td>
</tr>
<tr>
<td></td>
<td><code>fsck</code> command not to check file systems that were unmounted successfully.</td>
</tr>
<tr>
<td></td>
<td>The <code>fsck</code> command determines this by inspecting the <code>s_fmod</code> flag in the</td>
</tr>
<tr>
<td></td>
<td>file system superblock.</td>
</tr>
<tr>
<td></td>
<td>This flag is set whenever a file system is mounted and cleared when it is</td>
</tr>
<tr>
<td></td>
<td>unmounted successfully. If a file system is unmounted successfully, it is</td>
</tr>
<tr>
<td></td>
<td>unlikely to have any problems. Because most file systems are unmounted</td>
</tr>
<tr>
<td></td>
<td>successfully, not checking those file systems can reduce the checking time.</td>
</tr>
<tr>
<td>-ii-NodeNumber</td>
<td>Searches for references to a specified i-node. Whenever the <code>fsck</code> command</td>
</tr>
<tr>
<td></td>
<td>encounters a directory reference to a specified i-node, it displays the</td>
</tr>
<tr>
<td></td>
<td>full path name of the reference.</td>
</tr>
<tr>
<td>-n</td>
<td>Assumes a no response to all questions asked by the <code>fsck</code> command. It does</td>
</tr>
<tr>
<td></td>
<td>not open the specified file system for writing.</td>
</tr>
<tr>
<td>-o Options</td>
<td>Passes comma-separated options to the <code>fsck</code> command. These options are</td>
</tr>
<tr>
<td></td>
<td>assumed to be file system implementation-specific, except that the following</td>
</tr>
<tr>
<td></td>
<td>are currently supported for all file systems:</td>
</tr>
<tr>
<td></td>
<td>- <strong>mountable</strong></td>
</tr>
<tr>
<td></td>
<td>Causes the <code>fsck</code> command to exit with success, returning a value of 0, if</td>
</tr>
<tr>
<td></td>
<td>the file system in question is mountable (clean). If the file system is not</td>
</tr>
<tr>
<td></td>
<td>mountable, the <code>fsck</code> command exits returning with a value of 8.</td>
</tr>
<tr>
<td></td>
<td>- <strong>mytype</strong></td>
</tr>
<tr>
<td></td>
<td>Causes the <code>fsck</code> command to exit with success (0) if the file system in</td>
</tr>
<tr>
<td></td>
<td>question is of the same type as either specified in the <code>/etc/filesystems</code></td>
</tr>
<tr>
<td></td>
<td>file or by the <code>-V</code> flag on the command line. Otherwise, 8 is returned. For</td>
</tr>
<tr>
<td></td>
<td>example, <code>fsck -o mytype -V jfs /</code> exits with a value of 0 if <code>/</code> (the root</td>
</tr>
<tr>
<td></td>
<td>file system) is a journaled file system.</td>
</tr>
</tbody>
</table>
The `fuser` command lists the process numbers of local processes that use the local or remote files specified by the File parameter. For block special devices, the command lists the processes that use any file on that device. The `fuser` command syntax is as follows:

```
fuser [-c] [-f] [-k] [-u] File ...
```

### Flag Description

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-p</td>
<td>Does not display messages about minor problems but fixes them automatically. This flag does not grant the wholesale license that the -y flag does and is useful for performing automatic checks when the system is started normally. You should use this flag as part of the system startup procedures, whenever the system is being run automatically. Also allows parallel checks by group. If the primary superblock is corrupt, the secondary superblock is verified and copied to the primary superblock.</td>
</tr>
<tr>
<td>-tFile</td>
<td>Specifies a File parameter as a scratch file on a file system other than the one being checked, if the <code>fsck</code> command cannot obtain enough memory to keep its tables. If you do not specify the -t flag and the <code>fsck</code> command needs a scratch file, it prompts you for the name of the scratch file. However, if you have specified the -p flag, the <code>fsck</code> command is unsuccessful. If the scratch file is not a special file, it is removed when the <code>fsck</code> command ends.</td>
</tr>
<tr>
<td>-V VfsName</td>
<td>Uses the description of the virtual file system specified by the VFSName variable for the file system instead of using the <code>/etc/filesystems</code> file to determine the description. If the -V VfsName flag is not specified on the command line, the <code>/etc/filesystems</code> file is checked and the vfs=Attribute of the matching stanza is assumed to be the correct file system type.</td>
</tr>
<tr>
<td>-y</td>
<td>Assumes a yes response to all questions asked by the <code>fsck</code> command. This flag lets the <code>fsck</code> command take any action it considers necessary. Use this flag only on severely damaged file systems.</td>
</tr>
<tr>
<td>-C</td>
<td>Specifies that all future dumps will be compressed before they are written to the dump device. The -C flag applies to only AIX Version 4.3.2 and later versions.</td>
</tr>
<tr>
<td>-c</td>
<td>Specifies that dumps will not be compressed. The -c flag applies to only AIX Version 4.3.2 and later versions.</td>
</tr>
</tbody>
</table>

### 5.6.7 The `fuser` command

The `fuser` command lists the process numbers of local processes that use the local or remote files specified by the File parameter. For block special devices, the command lists the processes that use any file on that device.

The `fuser` command syntax is as follows:

```
fuser [-c] [-f] [-k] [-u] File ...
```
Each process number is followed by a letter indicating how the process uses the file:

- **c** Uses the file as the current directory.
- **p** Uses the file as the parent of the current directory (only when in use by the system).
- **r** Uses the file as the root directory.

The commonly used flags are provided in Table 20.

### Table 20. Commonly used flags of the fuser command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-k</td>
<td>Sends the SIGKILL signal to each local process. Only the root user can kill a process of another user.</td>
</tr>
<tr>
<td>-u</td>
<td>Provides the login name for local processes in parentheses after the process number.</td>
</tr>
<tr>
<td>-c</td>
<td>Reports on any open files in the file system containing File.</td>
</tr>
<tr>
<td>-f</td>
<td>Reports on open instances of File only.</td>
</tr>
</tbody>
</table>

**Note**

The -c and -f flags apply to AIX Version 4.3 and later releases.

### 5.6.8 The migratepv command

The `migratepv` command moves allocated physical partitions from one physical volume to one or more other physical volumes.

The `migratepv` command syntax is as follows:

```
migratepv [-i] [-l LogicalVolume] SourcePhysicalVolume DestinationPhysicalVolume ...
```

The commonly used flags are provided in Table 21.

### Table 21. Commonly used flags of the migratepv command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-i</td>
<td>Reads the DestinationPhysicalVolume parameter from standard input.</td>
</tr>
</tbody>
</table>
5.6.9 The mkboot command

The mkboot command creates the boot image, the boot record, and the service record. This command is NOT a user-level command and is NOT supported in AIX Version 4.2 or later.

The mkboot command syntax is as follows:

```
```

The commonly used flags are provided in Table 22.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Zeros out the boot record on the device. This flag is optional.</td>
</tr>
<tr>
<td>-d Device</td>
<td>Specifies the device required for the IPL record. This flag is required.</td>
</tr>
</tbody>
</table>

5.6.10 The mklv command

The mklv command creates a new logical volume within a volume group.

The mklv command syntax is as follows:

```
```

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Zeros out the boot record on the device. This flag is optional.</td>
</tr>
<tr>
<td>-d Device</td>
<td>Specifies the device required for the IPL record. This flag is required.</td>
</tr>
</tbody>
</table>
The commonly used flags are provided in Table 23.

**Table 23. Commonly used flags of the mklv command**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a Position</td>
<td>Sets the intra-physical volume allocation policy (the position of the logical partitions on the physical volume). The Position variable can be one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>m</strong> Allocates logical partitions in the outer middle section of each physical volume. This is the default position.</td>
</tr>
<tr>
<td></td>
<td><strong>c</strong> Allocates logical partitions in the center section of each physical volume.</td>
</tr>
<tr>
<td></td>
<td><strong>e</strong> Allocates logical partitions in the outer edge section of each physical volume.</td>
</tr>
<tr>
<td></td>
<td><strong>ie</strong> Allocates logical partitions in the inner edge section of each physical volume.</td>
</tr>
<tr>
<td></td>
<td><strong>im</strong> Allocates logical partitions in the inner middle section of each physical volume.</td>
</tr>
<tr>
<td>-b BadBlocks</td>
<td>Sets the bad-block relocation policy. The Relocation variable can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><strong>y</strong> Causes bad-block relocation to occur. This is the default.</td>
</tr>
<tr>
<td></td>
<td><strong>n</strong> Prevents bad-block relocation from occurring.</td>
</tr>
<tr>
<td>-c Copies</td>
<td>Sets the number of physical partitions allocated for each logical partition. The Copies variable can be set to a value from 1 to 3; the default is 1.</td>
</tr>
<tr>
<td>-d Schedule</td>
<td>Sets the scheduling policy when more than one logical partition is written. The Schedule variable can be one of the following:</td>
</tr>
<tr>
<td></td>
<td><strong>p</strong> Establishes a parallel scheduling policy. This is the default for scheduling policy.</td>
</tr>
<tr>
<td></td>
<td><strong>s</strong> Establishes a sequential scheduling policy.</td>
</tr>
<tr>
<td>Flag</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>-e Range</td>
<td>Sets the inter-physical volume allocation policy (the number of physical volumes to extend across using the volumes that provide the best allocation). The Range value is limited by the UpperBound variable, (set with the -u flag) and can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>x Allocates across the maximum number of physical volumes.</td>
</tr>
<tr>
<td></td>
<td>m Allocates logical partitions across the minimum number of physical volumes. This is the default range.</td>
</tr>
<tr>
<td>-i</td>
<td>Reads the PhysicalVolume parameter from standard input. Use the -i flag only when PhysicalVolume is entered through standard input.</td>
</tr>
<tr>
<td>-L</td>
<td>Sets the logical volume label. The default label is None. The maximum size of the label file is 127 characters. Note: If the logical volume is going to be used as a journaled file system (JFS), then the JFS will use this field to store the mount point of the file system on that logical volume for future reference.</td>
</tr>
<tr>
<td>-m MapFile</td>
<td>Specifies the exact physical partitions to allocate. Partitions are used in the order given in the MapFile parameter. Used partitions in the MapFile parameter are not legal since the new logical volume cannot occupy the same physical space as a previously allocated logical volume. All physical partitions belonging to a copy are allocated before allocating for the next copy of the logical volume. The MapFile parameter format is: PVname:PPnum1[-PPnum2]. In this example, PVname is a physical volume name (for example, hdisk0) as specified by the system. It is one record per physical partition or a range of consecutive physical partitions. PPnum is the physical partition number. PVname Name of the physical volume as specified by the system. PPnum Physical partition number.</td>
</tr>
</tbody>
</table>
Chapter 5. Disks and file systems

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
</table>
| -r Relocate | Sets the reorganization relocation flag. For striped logical volumes, the Relocate parameter must be set to n (the default for striped logical volumes). The Relocate parameter can be one of the following:  
  y Allows the logical volume to be relocated during reorganization. This is the default for relocation  
  n Prevents the logical volume from being relocated during reorganization. |
| -s Strict  | Determines the strict allocation policy. Copies of a logical partition can be allocated to share or not to share the same physical volume. The Strict parameter is represented by one of the following:  
  y Sets a strict allocation policy; so, copies for a logical partition cannot share the same physical volume. This is the default for allocation policy.  
  n Does not set a strict allocation policy; so, copies for a logical partition can share the same physical volume. |
| -S StripeSize | Specifies the number of bytes per striped. Must be a power of two, between 4 KB and 128 KB, for example 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, or 128 KB. |
| -t Type    | Sets the logical volume type. The standard types are jfs (file systems), jfslog (journal file system logs), and paging (paging spaces), but a user can define other logical volume types with this flag. You cannot create a striped logical volume of type boot. The default is jfs. If a log is manually created for a file system, the user must run the logform command to clean out the new jfslog before the log can be used. For example, to format the logical volume logdev, enter:  
  logform /dev/logdev  
  where /dev/logdev is the absolute path to the logical volume. |
<p>| -u UpperBound | Sets the maximum number of physical volumes for new allocation. The value must be between one and the total number of physical volumes. The default is the total number of physical volumes in the volume group. When used to create a striped logical volume, using the -S flag, the -u flag sets the number of physical volumes being striped across. |</p>
<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-v Verify</td>
<td>Sets the write-verify state for the logical volume. Causes (y) all writes to the logical volume to either be verified with a follow-up read or prevents (n) the verification of all writes to the logical volume. The Verify parameter is represented by one of the following:</td>
</tr>
<tr>
<td></td>
<td>n Prevents the verification of all write operations to the logical volume. This is the default for the -v flag.</td>
</tr>
<tr>
<td></td>
<td>y Causes the verification of all write operations to the logical volume.</td>
</tr>
<tr>
<td>-w MirrorWriteConsistency</td>
<td>y Turns on mirror write consistency, which insures data consistency among mirrored copies of a logical volume during normal I/O processing.</td>
</tr>
<tr>
<td></td>
<td>n No mirror write consistency (see the -f flag of the syncvg command).</td>
</tr>
<tr>
<td>-x Maximum</td>
<td>Sets the maximum number of logical partitions that can be allocated to the logical volume. The default value is 512. The number represented by the Number parameter must be equal to or less than the number represented by the Maximum variable. The maximum number of logical partitions per logical volume is 32,512.</td>
</tr>
<tr>
<td>-y NewLogicalVolume</td>
<td>Specifies the logical volume name to use instead of using a system-generated name. Logical volume names must be unique system wide name and can range from 1 to 15 characters. If the volume group is varied on in concurrent mode, the new name should be unique across all the concurrent nodes the volume group is varied on. The name cannot begin with a prefix already defined in the PdDv class in the Device Configuration Database for other devices.</td>
</tr>
<tr>
<td>-Y Prefix</td>
<td>Specifies the Prefix to use instead of the prefix in a system-generated name for the new logical volume. The prefix must be less than or equal to 13 characters. The name cannot begin with a prefix already defined in the PdDv class in the Device Configuration Database for other devices, nor be a name already used by another device.</td>
</tr>
</tbody>
</table>

**Note**

The -c, -d, -e, -m, -s, and -w flags are not valid when creating a striped logical volume using the -S flag.
5.6.11 The mkps command

The mkps command adds additional paging space to the system.

The mkps command syntax is as follows:

To add a logical volume for additional paging space

```
mkps [-a] [-n] [-t lv] -s LogicalPartitions VolumeGroup [PhysicalVolume]
```

To add additional paging space on an nfs server

```
mkps [-a] [-n] -t nfs ServerHostName ServerFileName
```

The commonly used flags are provided in Table 24.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Specifies that the paging space is configured at subsequent restarts.</td>
</tr>
<tr>
<td>-n</td>
<td>Activates the paging space immediately.</td>
</tr>
<tr>
<td>-s LogicalPartitions</td>
<td>Specifies the size of the paging space and the logical volume to be made in logical partitions</td>
</tr>
<tr>
<td>-t</td>
<td>Specifies the type of paging space to be created. One of the following variables is required:</td>
</tr>
<tr>
<td></td>
<td>lv</td>
</tr>
<tr>
<td></td>
<td>Specifies that a paging space of type logical volume should be created on the system.</td>
</tr>
<tr>
<td></td>
<td>nfs</td>
</tr>
<tr>
<td></td>
<td>Specifies that a paging space of type NFS should be created on the system.</td>
</tr>
</tbody>
</table>

5.6.12 The replacepv command

The replacepv command replaces a physical volume in a volume group with another physical volume.

The replacepv command syntax is as follows:

```
replacepv [-f] {SourcePhysicalVolume | SourcePhysicalVolumeID }
DestinationPhysicalVolume
replacepv [-R] dir_name [DestinationPhysicalVolume]
```
The commonly used flags are provided in Table 25.

Table 25. Commonly used flags of the replacepv command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f</td>
<td>Forces to replace a SourcePhysicalVolume with the specified DestinationPhysicalVolume unless the DestinationPhysicalVolume is part of another volume group in the Device Configuration Database or a volume group that is active.</td>
</tr>
<tr>
<td>-R dir_name</td>
<td>Recovers replacepv if it is interrupted by &lt;ctrl-c&gt;, a system crash, or a loss of quorum. When using the -R flag, you must specify the directory name given during the initial run of replacepv. This flag also allows you to change the DestinationPhysicalVolume.</td>
</tr>
</tbody>
</table>

### 5.6.13 The restvg command

The restvg command restores the user volume group and all its containers and files as specified in the /tmp/vgdata/vgname/vgname.data file (where vgname is the name of the volume group) contained within the backup image created by the savevg command.

The restvg command restores a user volume group. The bosinstall routine reinstalls the root volume group (rootvg). If the restvg command encounters a rootvg volume group in the backup image, the restvg command exits with an error.

If a yes value has been specified in the EXACT_FIT field of the logical_volume_policy stanza of the /tmp/vgdata/vgname/vgname.data file, the restvg command uses the map files to preserve the placement of the physical partitions for each logical volume. The target disks must be of the same size or larger than the source disks specified in the source_disk_data stanzas of the vgname.data file.

The restvg command syntax is as follows:

```
restvg [-b Blocks] [-f Device] [-q] [-s] [-n] [-p PPsize] [DiskName]
```
The commonly used flags are provided in Table 26.

Table 26. Commonly used flags of the restvg command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-b Blocks</td>
<td>Specifies the number of 512-byte blocks to read in a single input operation. If this parameter is not specified the default of 100 is used by the restore command. Larger values result in larger physical transfers to tape devices.</td>
</tr>
<tr>
<td>-f Device</td>
<td>Specifies the device name of the backup media. The default is /dev/rmt0.</td>
</tr>
<tr>
<td>-q</td>
<td>Specifies that the usual prompt not be displayed before the restoration of the volume group image. If this flag is not specified, the prompt displays the volume group name and the target disk-device names.</td>
</tr>
<tr>
<td>-s</td>
<td>Specifies that the logical volumes be created at the minimum size possible to accommodate the file systems. This size is specified by the value of LV_MIN_LPS field of the lv_data stanza of the vgroupname.data file (where vgroupname is the name of the volume group). The -s flag overrides the values of SHRINK and EXACT_FIT fields in the logical_volume_policy stanza of the vgroupname.data file. The -s flag causes the same effect as values of SHRINK=yes and EXACT_FIT=no would cause.</td>
</tr>
<tr>
<td>-n</td>
<td>Specifies that the existing MAP files are ignored. The -n flag overrides the value of the EXACT_FIT field in the logical_volume_policy stanza of the vgroupname.data file.</td>
</tr>
<tr>
<td>-p PPsize</td>
<td>Specifies the number of megabytes in each physical partition. If not specified, restvg uses the best value for the PPsize, dependent upon the largest disk being restored to. If this is not the same as the size specified in the vgroupname.data file, the number of partitions in each logical volume will be appropriately altered with respect to the new PPsize. If a PPsize is specified that is smaller than appropriate for the disk sizes, the larger PPsize will be used. If a PPsize is specified that is larger than appropriate for the disk sizes, the specified larger PPsize will be used.</td>
</tr>
</tbody>
</table>
5.6.14 The sysdumpdev command

The `sysdumpdev` command changes the primary or secondary dump device designation in a system that is running.

The `sysdumpdev` command syntax is as follows:

```
sysdumpdev -P { -p Device | -s Device } [-q]
sysdumpdev [-p Device | -s Device] [-q]
```

The commonly used flags are provided in Table 27.

Table 27. Commonly used flags of the sysdumpdev command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DiskName</code></td>
<td>Specifies the names of disk devices to be used instead of the disk devices listed in the vgname.data file. Target disk devices must be defined as empty physical volumes; that is, they must contain a physical volume identifier and must not belong to a volume group. If the target disk devices are new, they must be added to the system using the <code>mckdev</code> command. If the target disk devices belong to a volume group, they must be removed from the volume group using the <code>reducevg</code> command.</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-d Directory</code></td>
<td>Specifies the Directory the dump is copied to at system boot. If the copy fails at boot time, the -d flag ignores the system dump.</td>
</tr>
</tbody>
</table>
| `-D Directory` | Specifies the Directory the dump is copied to at system boot. If the copy fails at boot time, using the -D flag allows you to copy the dump to an external media.  
  Note: When using the -d Directory or -D Directory flags, the following error conditions are detected:  
  Directory does not exist.  
  Directory is not in the local journaled file system.  
  Directory is not in the rootvg volume group.  |
| `-e` | Estimates the size of the dump (in bytes) for the current running system. |
Chapter 5. Disks and file systems

- **k**
  Requires the key mode switch to be in the service position before a dump can be forced with the reset button or the dump key sequences. This is the default setting.

- **K**
  The reset button or the dump key sequences will force a dump with the key in the normal position or on a machine without a key mode switch.

  Note: On a machine without a key mode switch, a dump cannot be forced with the reset button nor the key switch without this value set.

- **l**
  Lists the current value of the primary and secondary dump devices, copy directory, and forcecopy attribute.

- **L**
  Displays statistical information about the most recent system dump. This includes date and time of last dump, number of bytes written, and completion status.

- **P**
  Makes permanent the dump device specified by -p or -s flags. The -P flag can only be used with the -p or -s flags.

- **p Device**
  Temporarily changes the primary dump device to the specified device. The device can be a logical volume or a tape device. For a network dump, the device can be a host name and a path name.

- **q**
  Suppresses all messages to standard output. If this flag is used with the -l, -r, -z or -L flag, the -q command will be ignored.

- **r Host:Path**
  Frees space used by the remote dump file on server Host. The location of the dump file is specified by the Path.

- **s Device**
  Temporarily changes the secondary dump device to the specified device. The device can be a logical volume or a tape device.

  For a network dump, the device can be a host name and a path name.

- **z**
  Determines if a new system dump is present. If one is present, a string containing the size of the dump in bytes and the name of the dump device will be written to standard output. If a new system dump does not exist, nothing is returned. After the sysdumpdev -z command is run on an existing system dump, the dump will no longer be considered recent.
The following assessment questions will help verify your understanding of the topics discussed in this chapter.

1. There are two disks, hdisk0 and hdisk1, in the same volume group. In order to move one of the logical volumes, hd9var, from hdisk0 to hdisk1, which of the following commands should be used?
   - A. `cp hd9var hdisk1`
   - B. `chlv hd9var hdisk0 hdisk1`
   - C. `chpv hd9var hdisk0 hdisk1`
   - D. `migratepv -l hd9var hdisk0 hdisk1`

2. Which of the following statements best describes AIX journaled file systems (JFS) prior to AIX Version 4.3.0?
   - A. Data access time is improved by JFS logging.
   - B. A JFS log records file system metadata.
   - C. JFS logging is optional for file systems.
   - D. JFS logging provides database transaction logging.

3. Two disks, hdisk0 and hdisk1, are both included in the root volume group. The following information shows the current contents of hdisk1:
   ```
 # lspv -l disk1
 hdisk1:
 LV NAME LPs PPs DISTRIBUTION MOUNT POINT
 hd1 1 1 01..00..00..00..00 N/A
 hd3 8 8 00..00..00..00..08 /tmp
   ```
   Which of the following commands should be used to move all data from hdisk1 to hdisk0?
   - A. `migratepv hdisk1 hdisk0`
   - B. `cplv for each logical volume`
   - C. `migratepv -l hd3 hdisk1 hdisk0`
   - D. `mklvcopy for each logical volume contained on hdisk1`
4. A user has accidentally removed the boot logical volume from the system. In order to re-create the boot logical volume, which of the following procedures should be performed?

A. Create hd5 on a physical partition in the rootvg volume group.
B. Create a logical volume called hd5 within the rootvg, and reboot the system.
C. Create a file system mounted on /blv and copy /unix file into the /blv directory.
D. Reconfigure a logical volume called hd5 on hdisk0, with the same size as the root (/) file system.

5. A system administrator has a system where the file systems are much larger than they need to be. In order to allow the file systems to be created with the smallest size when the backup is restored, which of the following procedures should occur before or after performing the mksysb system backup?

A. Before performing the mksysb backup, edit the image.data file and set EXACT_FIT=yes.
B. Before performing the mksysb backup, edit the bosinst.data file and set INSTALL_METHOD=reduce.
C. Before performing the mksysb backup, edit the bosinst.data file and set EXISTING_SYSTEM_OVERWRITE=yes.
D. After booting from the mksysb, choose the menu option to shrink file systems.

6. A volume group, appvg, on hdisk4 contains all of the application data. The disk that contains this volume group must be moved to another system. Which of the following groups of commands, in the order specified, will remove the disk and volume group definitions from the current system?

A. exportvg appvg / varyoffvg appvg / rmdev -l hdisk4
B. reducevg appvg / varyoffvg appvg / exportvg appvg
C. reducevg appvg / exportvg appvg / varyoffvg appvg
D. varyoffvg appvg / exportvg appvg / rmdev -l hdisk4 -d
7. The disk, hdisk4, contains the volume group named appvg. The disk is physically attached to the system. Now the disk and volume group must be configured so they are available to the system. Which of the following group of commands, in the order given, should be run to successfully complete the configuration?

A. `mkdev / mkvg / varyonvg`
B. `cfgmgr / importvg / varyonvg` (on pre-AIX Version 4.3 systems)
C. `cfgmgr / varyonvg / importvg`
D. `extendvg / importvg / varyonvg`

5.7.1 Answers

The following are the preferred answers to the questions provided in this section.

1. D
2. B
3. A
4. A
5. D
6. D
7. B

5.8 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. On a test system, migrate a logical volume from one disk to another.
2. On a test system, create a boot image.
3. On a test system, reduce a volume group.
4. Create a new JFS log on a new hdisk.
5. Import an old disk from another system into the current system.
Chapter 6. System backup and recovery

The following topics are discussed in this chapter:

- Backup procedures
- Restore procedures
- Troubleshooting backup and restore procedures

At most sites, information stored on computers is worth more than the computers themselves. Protecting this information is one of the system administrator’s most important tasks.

6.1 Backup

This section will cover backup and restore procedures of your data. When do you need backups? When your worst fear happens, and you lost all your data, backups will help you to survive. Keep it in your mind and take frequent backups.

6.1.1 Backup of the rootvg volume group

In AIX, the files and directories are divided into two categories, for system and user. For the system, most AIX components (BOS, LPPs, miscellaneous configuration files, and so on) are held in the rootvg volume group. This category is not changed frequently except for the /var file system contents (usually holds the system and application logs). For the user data, it could be held in the either the rootvg volume group or user defined volume groups. This category is changed frequently, since the user applications frequently change the data each day or each hour.

Due to the differences of the characteristics of these two categories, It is strongly recommended that you place user category data in the volume group other than the rootvg volume group. It will provide you easy backup operation policy, creating the backup of the rootvg volume group when some software maintenance are made, and take frequent backup of the other volume groups to protect user category data.

To backup the contents of the rootvg volume group, you can use the `mksysb` command, commonly used for creating a bootable tape.

Features of mksysb backup are:

- Backup of the rootvg group only.
• Back up only mounted file systems.
• The image backup is performed using the `backup` command.
• Provides facilities for non-interactive install.
• Saves system paging space definitions.
• Saves logical volumes polices.

AIX Version 3 uses the `tar` command during a `mksysb` for `rootvg`.

### 6.1.2 The data layout of a mksysb tape

The mksysb tape has special layout designed for easy BOS installation and recovery. The layout of mksysb tape is shown in the Figure 37 on page 156.

![Figure 37. Contents of mksysb image](image)

The BOS boot image contains a copy of the system's kernel and device drivers needed to boot from mksysb tape. It is created by `bosboot` command.

There are two important files in mkinstimage (the second image of the mksysb tape): `/image.data` and `/bosinst.data`. The image.data file contains information describing the image installed during the BOS installation process. This information includes the sizes, names, maps, and mount points of logical volumes and file systems in the rootvg. The `mkszfile` command generates the image.data file. The image.data file is arranged in stanza format. Each stanza contains one or more fields. The most important fields for you are:

- **SHRINK**
  - When set to YES, causes the system to create the smallest file systems required to contain all the data in the file system.
BOSINST_FILE  Provides the full path name of a file or command to execute after BOS install completes.

EXACT_FIT    When set to YES, causes the system to place logical volumes on the disk according to the physical partition maps that were generated with -m flag of the mksysb command.

You can customize this file before using the mksysb command.

The ./bosinst.data file allows you to specify the requirements at the target system and how the user interact with the target system. This file contains the customized BOS install procedures and dictates how the BOS install program will behave. You can customize this file before using the mksysb command or use a procedure to customize this after the image backup is done.

Take note that the mksysb command uses the backup command to save the contents of JFS data held in the rootvg volume group. It does not save raw data.

6.1.3 Back up non-rootvg volume group

If you need to make a backup of the non-rootvg volume group, use the savevg command. It works the same as the mksysb command expect that it does not create a bootable tape. The first three images on the tape are dummy replacements for the images normally found on a bootable tape (refer to Figure 37 on page 156). The savevg command uses the data file /tmp/vgdata/uservg/uservg.data, created by the mkvgdata command. This file contains information about a user volume group, and it is similar to image.data file. After making changes in uservg.data, you can remake the user volume group using the restvg command.

To back up the uservg volume group to the tape drive, enter the following:

```
savevg -if /dev/rmt0 uservg
```

To back up the uservg volume group to the tape drive excluding the files listed in the /etc/exclude.uservg file, enter the following:

```
savevg -ief /dev/rmt0 uservg
```

6.1.4 Back up file systems

The backup command is the preferred command for making backups of an AIX system. There are two backup techniques available:

1. Backup by file name:
a. To back up all the files and subdirectories in the /home directory using full path names, use:
   
   ```
 # find /home -print | backup -if /dev/rmt0
   ```

b. To back up all the files and subdirectories in current directory using relative path names, use:

   ```
 # cd /home
 # find . -print | backup -if /dev/rmt0
   ```

2. Backup of the file system by inode has the advantage of making incremental backups.

To backup file system /home at the 0 level, enter the following:

```
backup -0 -uf /dev/rmt0 /home
```

To generate a system backup on the tape and to create /image.data, use command:

```
mksysb -i /dev/rmt0
```

To generate a system backup and exclude the /home directory, use:

```
echo /home > /etc/exclude.rootvg
mksysb -e /dev/rmt0
```

---

**Note**

Before running the `mksysb` command, ensure that enough space is available in the /tmp file to store a boot image. It typically needs 8 to 12 MB of free space in /tmp. Use -X flag with `mksysb` to dynamically increase the /tmp file system.

---

6.2 Recovery

This section discusses the recovery procedures of volume groups and file systems.

6.2.1 Recovery of rootvg

You can use the mksysb tape in two situations, as described in the following:

1. Reinstalling or clone system:
   a. Check if your system will boot from tape:

      ```
 # bootinfo -e
      ```

---

158 IBM Certification Study Guide AIX Installation and System Recovery
If a 1 is returned, a boot from tape is supported. If a 0 is returned, a boot from tape is not supported.

b. Put the mksysb tape in tape drive.

c. Check booting order for service mode:

   # bootlist -m service -o

   If it is necessary, change it to rmt0:

   # bootlist -m sevice rmt0

d. Reboot system.

2. Extracting data from mksysb tape (see 6.2.4, “Extracting data from mksysb tape” on page 159).

6.2.2 Restore a non-rootvg volume group

To restore a backup of the user volume group use the restvg command from a savevg image. This utility can be used to shrink the size of file systems within the uservg volume group. All you have to do is to modify the /tmp/vgdata/uservg/uservg.data file.

To restore the volume group uservg image from the tape onto the disks specified in the /tmp/vgdata/uservg/uservg.data file, enter the following:

   # restvg -f /dev/rmt0

6.2.3 Restore a file system

The restore command is used to restore data backed up with the backup command.

   restore -Tv/f /dev/rmt0 will show the table of contents for the tape and list the files on it.

   restore -xvf /dev/rmt0 /home/ostach restores individual files from backup made by backup -i command.

   restore -rvf /dev/rmt0 restores an entire file system archive.

6.2.4 Extracting data from mksysb tape

If you need to verify the mksysb tape or extract some data from it follow procedures:

1. Issue the restore command:

   a. Rewind tape using the command:
b. Move the tape forward to the third tape marker (beginning of fourth image):
   # tctl -f /dev/rmt0.1 fsf 3

c. Restore date:
   # restore -xqvf /dev/rmt0.1 /tmp/my_file

2. SMIT fast path:
   # smitty lsmksysb

### 6.2.5 A customized mksysb restore

The /image.data file is usually automatically generated upon creation of the mksysb tape, using the -i flag of the mksysb command.

This file is used during a restore, to enable customized actions.

You can tailor these actions through the following procedure.

1. Create a file named signature consisting of one word: data
2. Back up the edited bosinst.data file and the new signature file to diskette:
   
      # ls ./bosinst.data signature | backup -qiv /dev/fd0

3. Put the diskette in the diskette drive of the target machine you are installing.

4. Boot the target machine from the install tape and install AIX. The BOS installation program will use the diskette file rather than the default bosinst.data file shipped with the installation media.

You can customize the /image.data file using a text editor. Commonly modified fields are described in the following.

- **CONSOLE**: Specifies the full path name of the device you want to use as the console. For example, /dev/lft0
- **INSTALL_METHOD**: Specifies a method of installation: Migrate, preserve, or overwrite. The default value is initially blank. The installation program assigns a value, depending on which version of AIX was previously installed.
- **PROMPT**: Specifies whether the installation program uses menus from which you make choices.
CUSTOMIZATION_FILE Specifies the path name of a customization file you create. The customization file is a script that starts immediately after the installation program concludes.

HDISKNAME Specifies the path name of the target disk.

If you would like to exclude some files or directories from the backup put these filenames into the /etc/exclude.rootvg file and use -e flag with the mksysb command.

6.3 Other UNIX backup commands

If you familiar with other UNIX backup commands, you can use them in AIX as well.

1. `tar` is a traditional UNIX archive command. It can generate a tar file as well as tapes or diskettes, `tar` backups files, directories, and subdirectories. It does not support AIX ACLs.

   To create `tar` backup of home directory, enter:
   
   ```bash
 # tar -cvf /dev/rmt0 /home/ostach
   ```

   To create a `tar` backup of a relative path name, enter:
   
   ```bash
 # tar -cvf /dev/rmt0 file1 file2
   ```

   To list contents of `tar` archive file, enter:
   
   ```bash
 # tar -tvf /tmp/mybackup.tar
   ```

   To restore from backup `tar`:
   
   ```bash
 # tar -xvf /dev/rmt0
   ```

2. The `cpio` command reads or writes from `stdin` and `stdout`. It is a common UNIX command; so, it is very useful for moving information between systems. To back up data in the current directory to the /tmp/file.cpio file using `cpio`, enter:

   ```bash
 # find . -print | cpio -ov >/tmp/file.cpio
   ```

   To restore data from `cpio` archive file, /tmp/file.cpio use:

   ```bash
 # cpio -idv < /tmp/file.cpio
   ```

6.4 Sysback

IBM Operational Support Services for RS/6000 system backup and recovery - Sysback provides easy backup and recovery of either individual files or your
entire system. Sysback is available on a limited basis from IBM and as a services offering. It provides the following functions.

- Replicates your AIX operating system
- Improves performance and capacity of your backups
- Utilizes the AIX interface, System Management Interface Tool (SMIT)
- Provides backup and recovery from local and remote devices

With the IBM Operational Support Services for RS/6000 system backup and recovery software, Sysback, you get a flexible backup method that handles the recovery and replication of your Advanced Interactive Executive (AIX) systems. Sysback is a single product for backing up and restoring user data, applications, and your operating system.

Sysback performs backup, listing, verification, and restoration from various backup types including:

- A full system backup (including multiple volume groups)
- Select volume groups
- Select file systems
- Select files or directories
- Raw logical volumes

### 6.4.1 Sysback installation

You can install Sysback using your current hardware configurations or you can change the configuration. Some of the installation features include the abilities to:

- Install locally from a tape drive or remotely from a tape drive or files
- Boot over the network which removes your local media from the process
- Preserve previous volume groups and logical volume placements
- Create logical volumes types
- Change logical volume and file system sizes and placement
- Create, import, or exclude individual volume groups

### 6.4.2 Virtual devices

Sysback increases your backup performance and volume by allowing each user to group multiple tape drives into a single virtual device. Each user can select from the following backup types:
Sequential performs an automatic backup on the next device, when a prior
tape reaches the end of its volume
Parallel strips data across multiple devices in parallel, thus completing
backups in as little as one-third the time
Multi-copy creates multiple, identical backups in the same time it takes to
create a single backup without the AIX Sysback software

6.4.3 Other features
Using the AIX user-friendly interface, System Management Interface Tool
(SMIT), Sysback also provides:
• Sequential auto-loader support
• Software data compression
• User and host security features
• Selective file restoration
• Re-creation of volume groups, logical volumes, and file systems from
  backup media
• Incremental backups
• Multiple tape volume support
• An on-screen progress indicator
• Exclusion of files or directories
• The ability to append multiple backups to the same tape

6.4.4 Optional features
The Sysback Offline Mirror Backup feature allows you to perform backups on
offline mirrors of data. The backup can include a single file system or logical
volume to a complete system. When complete, the offline copies are returned
to their original file system or logical volume. The files are also compared,
and only the changed files are updated from the active copies.

6.5 Troubleshooting
This section will cover problems that can occur during backup procedures.

6.5.1 Remote backup
It is possible to create tar backup images on remote tape drives. To make
server3 files backed up on a server1 tape drive, perform the following steps.
# hostname
server3
# cd /test
# tar cBf - | rsh server1 "dd ibs=512 obs=512 of=/dev/rmt0"
5080+0 records in.
5080+0 records out.

The -B flag for tar tells it to create 512-byte blocks, which is necessary on pipes. The -f - combination makes tar send output to stdout. The rsh takes stdin and writes it to /dev/rmt0 using 512-byte blocks.

Note

Remember to set up the /etc/hosts.equiv and $HOME/.rhosts files to create relationships between systems to work with rsh.

6.5.2 Block size determination

The block size problem is usually encountered while moving a tape from one system to another.

The following are two methods to find out the block size:

- **Method 1**
  
  Use the `dd` command to read a single block from the device and find out what block size is used for the archive:

  `dd if=/dev/rmt0 bs=128k count=1 | wc -c`

  This will return to you the size in bytes of the block being read. Assuming that your backup was made with the same physical block size, you can change your device to use this block size.

- **Method 2**
  
  Use the `tcopy` command as follows to find out the block size:

  `# tcopy /dev/rmt0`

  tcopy : Tape File: 1; Records: 1 to 7179; **size:512**
  tcopy : Tape File: 1; End of file after 7179 records; 3675648 bytes
  tcopy : Tape File: 2; Records: 1 to 2900; **size:512**
  tcopy : Tape File: 2; End of file after 2900 records, 76890 bytes
  ...

  This will give you a list of all the files found on the media with their byte count and the block size (shown in bold) used.
6.5.3 Tape block size determination scenario

The following procedure describes problems with the tape block size. First, the /etc/hosts file is backed up to the tape using `tar` command with a fixed tape block size 512 bytes. After this, the block size is changed to 2048, and tape is attempted to be read (note the error shown in bold).

```
chdev -l rmt0 -a block_size=512
rmt0 changed
lsattr -El rmt0 -a block_size
block_size 512 BLOCK size (0=variable length) True
tar cvf /dev/rmt0 /etc/hosts
a /etc/hosts 4 blocks.
chdev -l rmt0 -a block_size=2048
rmt0 changed
tar tvf /dev/rmt0
tar: 0511-193 An error occurred while reading from the media.
There is an input or output error.
```

To determine tape block size use, the procedure described in 6.5.2, “Block size determination” on page 164 or use of `block_size=0`.

```
chdev -l rmt0 -a block_size=512
rmt0 changed
tar tvf /dev/rmt0
-rw-rw-r-- 0 0 1817 Jun 09 16:24:17 2000 /etc/hosts
chdev -l rmt0 -a block_size=0
rmt0 changed
tar tvf /dev/rmt0
tar: The block size is 1 bytes.
-rw-rw-r-- 0 0 1817 Jun 09 16:24:17 2000 /etc/hosts
```

6.6 Command summary

The following section provides a list of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

6.6.1 The mksysb command

The `mksysb` command creates an installable image of the root volume group either in a file or onto a bootable tape. The command has the following syntax:

```
mksysb [-e] [-p] [-X] [-i | -m] Device | File
```
The commonly used flags are provided in Table 28.

**Table 28. Commonly used flags of the mksysb command**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-e</td>
<td>Excludes files listed in the /etc/exclude.rootvg file from being backed up.</td>
</tr>
<tr>
<td>-i</td>
<td>Calls the mkszfile command, which generates the /image.data file.</td>
</tr>
<tr>
<td>-m</td>
<td>Generates map files.</td>
</tr>
<tr>
<td>-p</td>
<td>Disables software packing of the files as they are backed up.</td>
</tr>
<tr>
<td>-X</td>
<td>Specifies to automatically expand the /tmp file system if necessary.</td>
</tr>
</tbody>
</table>

### 6.6.2 The savevg command

The `savevg` command finds and backs up all files belonging to a specified volume group. The command has the following syntax:

```
savevg [-e] [-f Device] [-i | -m] [-p] [-v] [-X] VGName
```

The commonly used flags are provided in Table 29.

**Table 29. Commonly used flags of the savevg command**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-e</td>
<td>Excludes files specified in the /etc/exclude.vgname file from being backed up by this command.</td>
</tr>
<tr>
<td>-f Device</td>
<td>Specifies the device or file name on which the image is to be stored. The default is the /dev/rmt0 device.</td>
</tr>
<tr>
<td>-i</td>
<td>Creates the data file by calling the mkvgdata command.</td>
</tr>
<tr>
<td>-m</td>
<td>Creates the data file with map files.</td>
</tr>
<tr>
<td>-p</td>
<td>Disables software packing of the files as they are backed up.</td>
</tr>
<tr>
<td>-X</td>
<td>Specifies to automatically expand the /tmp file system if necessary.</td>
</tr>
</tbody>
</table>

### 6.6.3 The restvg command

The `restvg` command restores the user volume group and all its containers and files. The command has the following syntax:

```
restvg [-f Device] [-s] [-n] DiskName ...
```
The commonly used flags are provided in Table 30.

**Table 30. Commonly used flags of the restvg command**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>Specifies that the existing MAP files are ignored.</td>
</tr>
<tr>
<td>-f Device</td>
<td>Specifies the device or file name on which the image is to be stored. The default is the /dev/rmt0 device.</td>
</tr>
<tr>
<td>-s</td>
<td>Specifies that the logical volumes be created at the minimum size possible to accommodate the file systems.</td>
</tr>
</tbody>
</table>

6.6.4 The backup command

The `backup` command backs up files and file systems. The command has the following syntax:

```
backup -i [-p [-e RegularExpression]] [-f Device] [-l Number] [-o] [-q] [-v]
```

The commonly used flags are provided in Table 31.

**Table 31. Commonly used flags of the backup command**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f Device</td>
<td>Specifies the output device.</td>
</tr>
<tr>
<td>-i</td>
<td>Specifies that files be read from standard input and archived by file name.</td>
</tr>
<tr>
<td>-m</td>
<td>Creates the data file with map files.</td>
</tr>
<tr>
<td>-q</td>
<td>Indicates that the removable medium is ready to use.</td>
</tr>
<tr>
<td>-v</td>
<td>Causes the <code>backup</code> command to display additional information about the backup.</td>
</tr>
</tbody>
</table>

6.6.5 The restore command

The `restore` command extracts files from archives created with the `backup` command. The command has the following syntax:

```
restore -x -T [v q] [-f Device] [File ...]
```
The commonly used flags are provided in Table 32.

Table 32. Commonly used flags of the restore command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f Device</td>
<td>Specifies the device or file name on which the image is to be stored. The default is the /dev/rmt0 device.</td>
</tr>
<tr>
<td>-T</td>
<td>Displays information about the backup archive.</td>
</tr>
<tr>
<td>-q</td>
<td>Indicates that the removable medium is ready to use.</td>
</tr>
<tr>
<td>-v</td>
<td>Causes the backup command to display additional information about the backup.</td>
</tr>
<tr>
<td>-x</td>
<td>Restores individually named files specified by the File parameter.</td>
</tr>
</tbody>
</table>

6.6.6 The `tar` command

The `tar` command manipulates archives by writing files to, or retrieving files from, an archive storage medium. The command has the following syntax:

```
tar { -c | -t | -x } [-B] [-v] [-f Archive] [File | Directory ...]
```

The commonly used flags are provided in Table 33.

Table 33. Commonly used flags of the `tar` command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Creates a new archive and writes the files specified by one or more File parameters to the beginning of the archive.</td>
</tr>
<tr>
<td>-t</td>
<td>Lists the files in the order in which they appear in the archive.</td>
</tr>
<tr>
<td>-B</td>
<td>Forces input and output blocking to 20 blocks per record.</td>
</tr>
<tr>
<td>-f Archive</td>
<td>Uses the Archive variable as the archive to be read or written.</td>
</tr>
<tr>
<td>-v</td>
<td>Lists the name of each file as it is processed.</td>
</tr>
<tr>
<td>-x</td>
<td>Restores individually named files specified by the File parameter.</td>
</tr>
</tbody>
</table>
6.7 Quiz

The following assessment questions will help verify your understanding of the topics discussed in this chapter.

1. Which of the following is an example of a backup by relative path name?
   A. `tar -cvf /dev/rfd0 /file1`
   B. `tar -cvf /dev/rfd0 file1 file2`
   C. `tar -cvf /dev/rfd0 /home/file1`
   D. `tar -cvf /dev/rfd0 /home/file1/file2`

2. Which of the following commands should be used to view the contents of a tape in /dev/rmt0 that was created using the `backup` command?
   A. `restore -T`
   B. `restore -Tf/dev/rmt0`
   C. `restore -xf/dev/rmt0`
   D. `backup -tvf/dev/rmt0`

6.7.1 Answers

The following are the preferred answers to the questions provided in this section.

1. B
2. B

6.8 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Create a bootable tape by using the `mksysb` command.
2. Restore files from the second image of mksysb tape by using the `tctl` and `restore` commands.
3. On a test system that does not affect any user, save a user volume group.
4. Try to restore a user volume group by shrinking the file systems.
5. Make a file system backup, by using the `backup` command.
Chapter 7. Network Installation Management

Network Installation Management (NIM) is used to manage remote sites on a network. The types of machines you can manage are stand-alone, diskless, and dataless. A stand-alone machine is one that can boot (start up) by itself. Diskless and dataless systems cannot boot by themselves; they must use remote resources to boot. Diskless systems have no disk drive. Dataless systems have a local disk drive but they cannot boot from it.

Using NIM, you can install a group of machines with a common configuration or customize an installation for the specific needs of a given machine. The number of machines you can install simultaneously depends on the throughput of your network, the disk access throughput of the installation servers, and the platform type of your servers.

The NIM environment comprises client and server machines. A server provides resources (for example, files and programs required for installation) to another machine. A machine that is dependent on a server to provide resources is known as a client. In this guide and reference, any machine that receives NIM resources is a client, although the same machine can also be a server in the overall network environment.

For more information on NIM, refer to NIM from A to Z in AIX 4.3, SG24-5524.

7.1 Debugging NIM boot images

If a client machine is unable to network boot from its boot server, there may be a problem in one or more of the following stages of the network boot:

- Establishing network communication between the client and server
- Obtaining the boot image from the server
- Running the boot image on the client

7.1.1 Establishing network communication

The following steps may be used to establish network communication:

1. Before initiating the network boot on the client, perform a ping test from the client bootp menus.
2. If the ping test fails, verify that the client, server, and gateway addresses are specified correctly.
3. If the addresses are correct, try to ping the server from a different machine in the client's subnet.
4. If the server can be pinged from another machine, the network adapter on the boot client may be faulty.

5. If the server cannot be pinged from another machine in the client's subnet, there may be routing problems between the client and the server, or else network communications on the server may be faulty. Perform network debugging procedures to determine the source of the problem.

7.1.2 Obtaining the boot image from the server

The following steps may be used to obtain a boot image from the server.

1. If the ping test is successful, perform a network boot of the client. When a network boot is initiated on a client, a bootp request packet is sent from the client to the server.

   The server then replies with a packet to the client. The client machine displays the number of packets sent and received for the bootp request. If a packet is sent from the client, but none is received, another packet will be sent.

2. If bootp packets continue to be sent but not received, the boot server may not be responding to the request.

3. From the bootp server, view the /etc/bootptab file on the server. It should contain an entry for the client machine with the following information:

   <hostname of client>
   bf=<boot file>
   ip=<client ip address>
   ht=<network type>
   sa=<boot server address>
   sm=<client subnet mask>
   ha=<network adapter hardware address> (required only if bootp requests are sent by broadcasting)

   If an entry does not exist, either the NIM command used to set up the current operation failed, or the machine was reset before the boot operation could occur.

   Re-run the NIM bos_inst, diag, or maint_boot operation to prepare the server for the client boot request.

   If the entry exists in /etc/bootptab, verify that the specified data is correct. If a field contains incorrect data, the information that was used to define the machine or network in the NIM database was probably wrong. Correct this problem by resetting the client machine, correcting the incorrect data in the client or network definition, retrying the NIM operation, and rebooting the client.
4. If the /etc/bootptab file is correct, verify that the inetd daemon is running. If it is not running, start it and retry the network boot from the client. If the inetd daemon is running, it should automatically start the bootpd daemon when the bootp request is received at the server.

5. If the bootpd daemon is not started, verify that the bootpd entry in the /etc/inetd.conf file is not commented out. If it is commented out, uncomment it and restart inetd with the `refresh -s inetd` command. Retry the network boot from the client.

6. If a bootp reply is still not received at the client, manually start the bootpd daemon in debug mode:
   - Comment out the bootpd entry from the /etc/bootptab file on the server.
   - Stop all running bootpd processes.
   - Restart inetd using the `refresh -s inetd` command.
   - Start bootpd from the command line using the `/usr/sbin/bootpd -s -d` command.

7. Retry to network boot from the client. If no output is displayed from the running `bootpd` command, the client bootp request is not reaching the server. Verify that the addresses specified in the bootp menus are correct. If they are correct, perform network debugging procedures to determine why the packet is not reaching the server.

8. If the server receives the client bootp request, then running the `bootpd` command displays output matching the client data in the /etc/bootptab file. Verify that the specified addresses are correct. This information is sent back to the client in the bootp reply.

9. If the client is still not receiving the bootp reply, perform network debugging procedures to determine why the reply packet is not reaching the client.

10. After the client receives the bootp reply, it will use tftp to transfer the boot image from the server.

11. The number of tftp packets transferred to the client will be displayed at the client machine.

12. The boot image has been successfully retrieved at the client machine when the LED shows 299 on rs6k-platform machines or when the bottom third of the screen turns gray on other platforms.

13. If the tftp transfer of the boot image does not complete successfully, the client may be trying to get the wrong boot image. Verify that the client definition in the NIM database shows the correct platform and kernel type.
If the data is incorrect, correct it, reset the client machine, re-run the NIM operation, and reboot the client over the network.

14. Verify that the /tftpboot directory on the boot server contains a link with the client name to the correct boot image. If the link does not exist, reset the client machine, re-run the NIM operation, and reboot the client over the network.

15. If the link with the client name is pointing to the correct boot image and the tftp transfer of the boot image does not complete successfully, the boot image may be corrupted.

Re-create the boot image by performing a NIM check operation with the force flag on the SPOT. If the client is not an rs6k-platform machine, also make sure the client has the latest version of the firmware installed.

7.1.3 Running the boot image on the client

After the client machine has successfully received the boot image from the server, the most common errors encountered are hangs with the LED showing 608, 611, or 613. Some machines may not have LED displays. Debugging such problems on these machines will require using debug-enabled boot images.

7.1.3.1 Error 608

Attempting to retrieve the client.info file with tftp. Note that a flashing 608 indicates multiple attempt(s) to retrieve the client_info file are occurring.

7.1.3.2 Error 611

The /etc/exports file either does not have the correct permissions for the client to mount /usr or does not have any entry for /usr.

7.1.3.3 Error 613

The system is unable to set up the routing tables.

7.2 Error 611 - network error

If you get an error 611 during boot, the problem is that the /etc/exports file either does not have the correct permissions for the client to mount /usr or does not have any entry for /usr.

To rectify this problem type the following command:

```
exportfs
```

Using the `exportfs` command, verify that each entry is filled in correctly.
If you receive the following error message when adding the network boot client:

```
Configuring network boot for client thumper.aix.dfw.ibm.com
/usr/ro,root=thumper.aix.dfw.ibm.com
Starting NFS and BOOTP services..
exports: /usr: sub-directory (/usr/lpp) already exported
/usr not found in etc/exports
```

the client has been configured, but you must correct the problem with the export before booting the client.

**Execute the `exportfs` command.**

If you continue to have problems trying to export a `/usr` parent directory, check the `/etc/exports` file, and look for an existing `/usr` subdirectory that is not a file system. If you have a `/usr` subdirectory that is not a file system you will not be allowed to export `/usr` until you remove it from the `/etc/exports` file.

An example would be:

```
/usr/sys/inst.images -rw
/usr/lpp -root=mars,access=mars
```

In the above example the `/usr/sys/inst.images` is its own file system, but `/usr/lpp` is still part of the `/usr` file system.

**Execute the following command to remove `/usr/lpp` from the `/etc/exports` file.**

```
/usr/sbin/rmnfsexp -d /usr/lpp -B
```

Re-add the network boot client by running the `smitty sysback` command. **Verify by executing the `exportfs` command.**

### 7.3 The `nim` command

The `nim` command performs an operation on a NIM object. The type of operation performed is dependent on the type of object specified by the `ObjectName` parameter. Possible operations include initializing environments and managing resources. You can use the `lnim` command to display the list of supported operations.

The `nim` command syntax is as follows.

```
nim {-o Operation} [-F] [-t Type] [-a Attribute=Value . . .] {ObjectName}
```
Table 34 provides a list of the flags and their descriptions, the most important functions are the flag sub functions.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Flag Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-a Attribute = Value . . .</code></td>
<td>Assigns the specified value to the specified attribute. Use the <code>lsnim -q Operation -t Type</code> command to get a list of valid attributes for a specific operation.</td>
</tr>
<tr>
<td><code>-F</code></td>
<td>Overrides some safety checks, performs a force.</td>
</tr>
</tbody>
</table>
Chapter 7. Network Installation Management

-o Operation

Specifies an operation to perform on a NIM object. The possible operations are:

- **allocate**: Allocates a resource for use.
- **bos_inst**: Performs a BOS installation.
- **change**: Changes an object's attributes.
- **check**: Checks the status of a NIM object.
- **cust**: Performs software customization.
- **deallocate**: Deallocates a resource.
- **define**: Defines an object.
- **diag**: Allows a machine to boot a diag image.
- **dkls_init**: Initializes a diskless machine's env.
- **dtls_init**: Initializes a dataless machine's env.
- **fix_query**: Lists the fix info. for a given APAR or keyword.
- **lppchk**: Verifies installed filesets on NIM machines and SPOTs.
- **lslpp**: Lists licensed program information about an object.
- **maint**: Performs software maintenance.
- **remove**: Removes an object.
- **reset**: Resets an object's NIM state.
- **sync_roots**: Synchronizes root directories for diskless and dataless clients for a specific SPOT.
- **unconfig**: Unconfigures the NIM master fileset.
- **maint_boot**: Lets machine boot in maintenance mode.
- **showlog**: Displays a client's install, boot or custom log, or a SPOT's install log from the NIM master.
- **showres**: Displays the contents of a resource.
- **alt_disk_install**: Performs an alternate disk installation.
<table>
<thead>
<tr>
<th>Flag</th>
<th>Flag Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-t Type</td>
<td>Specifies the type of the NIM object for define operations.</td>
</tr>
<tr>
<td></td>
<td>The possible types are:</td>
</tr>
<tr>
<td></td>
<td><strong>resource types:</strong></td>
</tr>
<tr>
<td></td>
<td><em>bosinst_data</em> Config file used during base system installation.</td>
</tr>
<tr>
<td></td>
<td><em>dump</em> Parent directory for client dump files.</td>
</tr>
<tr>
<td></td>
<td><em>fix_bundle</em> Fix (keyword) input file for the cust or fix_query operation.</td>
</tr>
<tr>
<td></td>
<td><em>home</em> Parent directory for client /home directories.</td>
</tr>
<tr>
<td></td>
<td><em>image_data</em> Config file used during base system installation.</td>
</tr>
<tr>
<td></td>
<td><em>installp_bundle</em> Installp bundle file.</td>
</tr>
<tr>
<td></td>
<td><em>lpp_source</em> Source device for optional product images.</td>
</tr>
<tr>
<td></td>
<td><em>mksysb</em> AIX mksysb image.</td>
</tr>
<tr>
<td></td>
<td><em>paging</em> Parent directory for client paging files.</td>
</tr>
<tr>
<td></td>
<td><em>root</em> Parent directory for client /directories.</td>
</tr>
<tr>
<td></td>
<td><em>script</em> Executable file that is run on a client.</td>
</tr>
<tr>
<td></td>
<td><em>shared_home</em> /home directory shared by clients.</td>
</tr>
<tr>
<td></td>
<td><em>spot</em> Shared Product Object Tree - equivalent to /usr file system.</td>
</tr>
<tr>
<td></td>
<td><em>tmp</em> Parent directory for client /tmp directory.</td>
</tr>
<tr>
<td></td>
<td><em>exclude_files</em> Files excluded from a mksysb image.</td>
</tr>
<tr>
<td></td>
<td><em>resolv_conf</em> Name-server configuration file.</td>
</tr>
<tr>
<td></td>
<td><strong>machine types:</strong></td>
</tr>
<tr>
<td></td>
<td><em>diskless</em> All file systems and resources remote.</td>
</tr>
<tr>
<td></td>
<td><em>dataless</em> Local paging, dump; remote /usr; others remote or local.</td>
</tr>
<tr>
<td></td>
<td><em>standalone</em> Local file systems and resources.</td>
</tr>
<tr>
<td></td>
<td><em>master</em> Machine that controls the NIM environment.</td>
</tr>
<tr>
<td></td>
<td><strong>network types:</strong></td>
</tr>
<tr>
<td></td>
<td><em>tok</em> Token-Ring network.</td>
</tr>
<tr>
<td></td>
<td><em>ent</em> Ethernet network.</td>
</tr>
<tr>
<td></td>
<td><em>fddi</em> FDDI network.</td>
</tr>
<tr>
<td></td>
<td><em>generic</em> Other TCP/IP networks.</td>
</tr>
<tr>
<td></td>
<td><strong>group types:</strong></td>
</tr>
<tr>
<td></td>
<td><em>mac_group</em> Group of machines.</td>
</tr>
<tr>
<td></td>
<td><em>res_group</em> Group of resources.</td>
</tr>
</tbody>
</table>
The following are examples of using the `nim` command:

To define a resource that is a directory containing installable images that is located on server altoid and has a path name of `/usr/sys/inst.images`, and name that resource images, enter:

```
nim -o define -t lpp_source -a server=altoid
 -a location=/usr/sys/inst.images images
```

To remove a resource named `dump_files`, enter:

```
nim -o remove dump_files
```

Machines on the BLDG905 network use the `gateway905` gateway to reach the OZ network. Machines on the OZ network use the `gatewayOZ` gateway to reach the BLDG905 network. To add a route between two networks named BLDG905 and OZ, enter:

```
nim -o change -a routing1="OZ gateway905 gatewayOZ" BLDG905
```

To have NIM check on the usability of a SPOT named `myspot`, enter:

```
nim -o check myspot
```

To have NIM check on the usability of a SPOT named `myspot` and force results from busy clients, add the `-F` flag. This is not normally needed with check, however use it to get the best results.

```
nim -F -o check myspot
```

To allocate resources to a diskless workstation with the name of `syzygy` and SPOT attribute value of `spot1`, enter:

```
nim -o allocate -a spot=spot1 syzygy
```

To deallocate an `lpp_source` named `images` from the standalone machine `client1`, enter:

```
nim -o deallocate -a lpp_source=images client1
```

To install the machine `bluefish`, using the resources `spot1`, `images1`, `bosinst_data1`, and `rconf1`, first allocate the resources by entering:

```
nim -o allocate -a spot=spot1 -a lpp_source=images1
 -a bosinst_data=bosinst_data1 -a resolv_conf=rconf1 bluefish
```

Then, perform the BOS installation by entering:

```
nim -o bos_inst bluefish
```
To install a software product into a spot, spot1, such that the image for the installable option, adt, resides in the lpp_source, images, enter:

```
nim -o cust -a lpp_source=images -a filesets=adt spot1
```

To uninstall the software products bos.INed and adt from a spot, spot1, enter:

```
nim -o maint -a installp_flags="-u" -a filesets="bos.INed adt" spot1
```

To initialize the environment for a diskless workstation with the name of syzygy, using the resources spot1, root1, dump1, and paging1, first allocate the resources by entering:

```
nim -o allocate -a spot=spot1 -a root=root1 -a dump=dump1 -a paging=paging1 syzygy
```

Then initialize the resources for the client machine by entering:

```
nim -o dkls_init syzygy
```

To initialize the environment for a dataless workstation with the name of syzygy, using the resources spot1, root1, and dump1, first allocate the resources by entering:

```
nim -o allocate -a spot=spot1 -a root=root1 -a dump=dump1 syzygy
```

Then initialize the resources for the client machine by entering:

```
nim -o dtls_init syzygy
```

To list information about fixes installed on client Standalone1 for 20 APAR numbers, create the file /tmp/apar.list with one APAR number per line, as shown:

```
IX123435
IX54321
IX99999
...
```

then enter:

```
nim -o define -t fix_bundle -a location=/tmp/apar.list -a server=master fix_bun
nim -o allocate -a fix_bundle=fix_bun Standalone1
nim -o fix_query Standalone1
```

To allocate all resources applicable to standalone machines from the NIM resource group res_grp1, to the machine mac1, enter:

```
nim -o allocate -a group=res_grp1 mac1
```
To install the machine bluefish while allocating the resources spot1, images1, bosinst_data1, and rconf1 automatically when the bos_inst operation starts, enter:

```bash
nim -o bos_inst -a spot=spot1 -a lpp_source=images1 \
-a bosinst_data=bosinst_data1 -a resolv_conf=rconf1 bluefish
```

To define default routes for the networks net1 and net2 that use default gateways gw1 and gw2 respectively, enter the following two commands:

```bash
nim -o change -a routing1="default gw1" net1
nim -o change -a routing1="default gw2" net2
```

To install the machine catfish with the contents of the installp_bundle bundle1, while allocating this resource and the lpp_source images1 when the customer operation runs, enter:

```bash
nim -o cust -a installp_bundle=bundle1 -a lpp_source=images1 catfish
```

To define a machine group named DisklsMacs1 with members that are NIM diskless machines named diskls1, diskls2, and diskls3, enter:

```bash
nim -o define -t mac_group -a add_member=diskls1 \
-a add_member=diskls2 -a add_member=diskls3 DisklsMacs1
```

To initialize the group of diskless machines defined by the machine group dtgrp1, while allocating the required and optional resources defined by the resource group dk_resgrp1, when the dkls_init operation runs, enter:

```bash
nim -o dkls_init -a group=dtgrp1 dk_resgrp1
```

To exclude the member named dataless1 from operations on the machine group DatalsMacs1, and then initialize the remaining members while allocating the dataless resources defined by the resource group named DatalsRes1, enter the following two commands:

```bash
nim -o select -a exclude=dataless2 DatalsMacs1
nim -o dtls_init -a group=DatalsMacs1 DatalsRes1
```

To verify the file checksums for all packages beginning with the name bos on NIM targets in the group of standalone machines macgrp1, and displaying detailed error information and updating the software database to match the actual file checksum when inconsistencies are found, enter:

```bash
nim -o lppchk -a lppchk_flags='\-c -m3 -u' -a filesets='bos*' macgrp1
```

Since the lppchk operation runs in the background on group members by default, to view the output from the lppchk operation enter:

```bash
nim -o showlog -a log_type=lppchk macgrp1
```
From the master, to uninstall the software products bos.ined and adt from a standalone machine, stand1, such that installp_bundle, bundle2, contains the names of the installable options, enter:

```
nim -o maint -a installp_flags=-u -a installp_bundle=bundle2 stand1
```

To enable the NIM standalone client, stand1, to boot in maintenance mode, enter:

```
nim -o maint_boot stand1
```

To view the boot logs of the machines defined by the group DisklsMacs1, enter:

```
nim -o showlog -a log_type=boot DisklsMacs1
```

To list all problems fixed by software on the lpp_source lpp_source1, use:

```
nim -o showres -a instfix_flags="T" lpp_source1
```

To clone a rootvg on client austin to hdisk2, but only run phase1 and phase2 (leaving the /alt_inst file systems mounted), enter:

```
nim -o alt_disk_install -a source=rootvg -a disk='hdisk2'\n-a phase=12 austin
```

### 7.4 The showmount command

The `showmount` command displays a list of all clients that have remotely mounted a file system from a specified machine in the `Host` parameter. This information is maintained by the mountd daemon on the `Host` parameter. This information is saved in the /etc/rmtab file in case the server abnormally terminates. The default value for the `Host` parameter is the value returned by the hostname command.

The `showmount` command syntax:

```
showmount [-a] [-d] [-e] [Host]
```

The Flags for the `showmount` command are described in Table 35.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Prints all remote mounts in the format <code>HostName:Directory</code>, in which <code>HostName</code> is the name of the client and <code>Directory</code> is a directory pathname that has been remotely mounted.</td>
</tr>
</tbody>
</table>
To check which file systems are allowed to be exported type:

```
lsfs
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Nodename</th>
<th>Mount Pt</th>
<th>VFS</th>
<th>Size</th>
<th>Options</th>
<th>Auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>no</td>
<td>/</td>
<td>jfs</td>
<td>24576</td>
<td>--</td>
<td>yes</td>
</tr>
<tr>
<td>/dev/hd4</td>
<td>--</td>
<td>/home</td>
<td>jfs</td>
<td>360448</td>
<td>--</td>
<td>yes</td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>--</td>
<td>/usr</td>
<td>jfs</td>
<td>663552</td>
<td>--</td>
<td>yes</td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>--</td>
<td>/var</td>
<td>jfs</td>
<td>401408</td>
<td>--</td>
<td>yes</td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>--</td>
<td>/tmp</td>
<td>jfs</td>
<td>65536</td>
<td>--</td>
<td>yes</td>
</tr>
<tr>
<td>/dev/lv00</td>
<td>--</td>
<td>/export/lpp_source</td>
<td>jfs</td>
<td>884736</td>
<td>rw</td>
<td>yes</td>
</tr>
<tr>
<td>/dev/lv01</td>
<td>--</td>
<td>/export/spot</td>
<td>jfs</td>
<td>442368</td>
<td>rw</td>
<td>yes</td>
</tr>
</tbody>
</table>

Run the `showmount` command to display a list of all clients that have remotely mounted a file system.

```
showmount
raven.itsc.austin.ibm.com
```

Run `showmount -a` to see which directories have been remotely mounted with the host details.

```
showmount -a
raven.itsc.austin.ibm.com:/export/spot/aix432spot/usr
```

The `showmount -d` command is similar to the `showmount -a` command except it does not show the host details.

```
showmount -d
/export/spot/aix432spot/usr
```

The `showmount -e` command displays a list of exported directories:

```
showmount -e
export list for aix4xdev:
/richfs raven.itsc.austin.ibm.com
/export/redbooks (everyone)
```

The `showmount -e raven` command displays a list of exported directories on the remote host.
# showmount -e raven

export list for raven:
/elaine (everyone)

## 7.5 Producing debug output for NIM BOS installations

Due to problems in the network or in the NIM configuration, clients may fail to boot properly or install. When this happens, it may be necessary to produce debug information in order to determine the cause of the problem. If a client machine fails to configure properly from the network boot image, debug output from the boot image can be obtained by building the debug-enabled image and attaching a tty to the client system. This will display the commands and output that are run as the client is configured before further processing is done by AIX.

If the system has been booted from the network boot image, but failures are still occurring during a BOS installation, it may be necessary to collect debug information from the BOS install program. The commands and output from the BOS install program will automatically be displayed on the tty if the boot image was built debug-enabled. If the boot image was not built for debugging, output can be obtained by either setting a value in a bosinst.data file or by entering special codes at the installation menus.

When problems arise during a NIM BOS installation, you will most likely see system “hangs”. Viewing the debug output can be extremely useful, because you will be able to see the commands that failed. The problem may be a misconfiguration of the network adapter or an inability to perform an operation from the client to the server. By examining the debug output, you can see what failed and make corrections to avoid the error in the future.

You will see the `showled` command running in the debug output. This command displays status values on the LEDs on the front of the machine. Frequently, known problems and solutions are referenced by the LED value that is displayed when a problem occurs. Some machines do not have LEDs for displaying such information. Therefore, when debugging problems on such machines, special attention should be given to observing the values that the `showled` commands are displaying.

Obtaining debug information from a network installation can save you time in determining the root cause of a problem. Usually, the problem will be an incorrect definition in the NIM environment that can be found without the debug information. However, with the debug information, you can significantly reduce the scope of the investigation.
7.5.1 Producing debug output from a network boot image

1. Create debug versions of the network boot images using the check operation from the Web-based System Manager or SMIT interfaces or by using the following command:

   ```bash
 nim -Fo check -a debug=yes SPOTName
   ```

   where SPOTName is the name of your SPOT.

2. Get the address for entering the debugger:

   From Web-based System Manager
   a. From the NIM Resources container, double-click the SPOT resource to open the properties notebook.
   b. Click the Boot Image Information tab in the properties notebook to obtain the address.

   Alternatively, you can use the following command to get the address:

   ```bash
 lsnim -a enter_dbg SPOTName
   ```

   where SPOTName is the name of your SPOT. The displayed output will be similar to the following:

   ```bash
 spot1:
 enter_dbg = "chrp.mp 0x001840d4"
 enter_dbg = "chrp.up 0x00160b7c"
 enter_dbg = "rs6k.mp 0x001840d4"
 enter_dbg = "rs6k.up 0x00160b7c"
 enter_dbg = "rspc.mp 0x001840d4"
 enter_dbg = "rspc.up 0x00160b7c"
   ```

   Write down the enter_dbg address for the client you are going to boot. For example, if your client is an rs6k-uniprocessor machine, you would write down the address 160b7c.

3. Attach a tty device to your client system (port 1).

4. Set up and perform the NIM operation that will require the client to boot over the network. Boot the client over the network.

5. After the client gets the boot image from the SPOT server, the debug screen will appear on the tty. At the > prompt, enter:

   ```bash
 st Enter_dbg_Value 2
   ```

   where Enter_dbg_Value is the number you wrote down in step 2 as your machine type's enter_dbg value. Specifying a 2 at the address of the enter_dbg value prints the output to your tty.

6. Type g for go and press Enter to start the boot process.
7. Use Ctrl-s to temporarily stop the process as you watch the output on the
tty. Use Ctrl-q to resume the process.
8. To rebuild your boot images in non-debug mode, use the following
command:

```
nim -Fo check SPOTName
```

where SPOTName is the name of your SPOT.

If the boot image is left in debug mode, every time a client is booted from
these boot images, the machine will stop and wait for a command at the
debugger “>” prompt. If you attempt to use these debug-enabled boot
images and there is not a tty attached to the client, the machine will
appear to be hanging for no reason.

### 7.5.2 Producing debug output from the BOS install program

There are two ways to obtain debug output from the BOS install program.
Method A involves entering a special value at one of the installation menus.
Method B uses a bosinst_data resource to tell the installation program to
display debug output.

**Method A: To Produce Debug Output When Not Using a bosinst_data Resource**

1. To enable debugging for the BOS install program, start by performing all
   the processing you would normally do to install a client.
2. Since you are not using a bosinst_data resource, you will be prompted to
   supply information about the installation to the BOS install program.
3. Select your console.
4. Select your language.
5. The Welcome to Base Operating System Installation and Maintenance
   menu is displayed. Instead of selecting one of the options, enter 911 at the
   prompt and press Enter.
6. Continue the normal procedure for selecting options and specifying data
   until the installation begins. Debug output will be sent to the client's display
   as the installation proceeds.

**Method B: To Produce Debug Output When Using a bosinst_data Resource**

1. To enable debugging for the BOS install program, set the value
   BOSINST_DEBUG = yes in the control_flow stanza of the bosinst.data file
   that you are using for your bosinst_data resource.
A minimum bosinst.data file for debugging purposes would contain the following lines:

```plaintext
control_flow: BOSINST_DEBUG = yes
```

2. In addition to the processing you would normally do to install a client, include the modified bosinst_data resource as a resource for the operation. After the client boots over the network, it will use the bosinst_data resource to obtain settings for the installation. If the only data specified in your bosinst.data file is BOSINST_DEBUG = yes, you will be prompted for the remaining required information before the installation will continue. Debug output will be sent to the client's display as the installation continues.

### 7.6 Quiz

The following assessment questions will help verify your understanding of the topics discussed in this chapter.

1. Company ABC recently ordered 30 new model F50 systems, which they are custom installing with AIX Version 4.3.1 as branch office servers. The system administrator decided to use NIM to install the new servers with the base operating system and all of the applications the systems will need. The install type is spot, using a non /usr spot named 431spot. The installation of the first system is hanging at 611 LED, but all the file systems appear to be properly exported from the NIM server. Which of the following commands will build debug boot images?

   A. `nim -o check -a debug=yes 431spot`
   B. `nimclient -o check -a debug=yes 431spot`
   C. `nim -o debug 431spot`
   D. `lsnim -a debug=yes 431spot`

2. Company ABC is migrating all of the plant servers from AIX Version 4.2.1 to AIX Version 4.3.1 using NIM. The 240 server in the customer services department is hanging during the install, and the LED is at 611, indicating a failure mounting a network file system from the NIM server. What can the system administrator do to determine which file system the NIM client is unable to mount.

   A. Unmount the NFS file systems exported from the server to the client.
   B. Put the tftp daemon on the server in debug mode.
   C. Restart the install using NIM debug boot images.
   D. Restart the NFS services on the NIM server.
7.6.1 Answers

The following are the preferred answers to the questions provided in this section.

1. A
2. C

7.7 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. How do you debug a NIM install? Which command would you use?
2. Debug NIM error code 611.
3. Determine if the NIM spot and lpp_source are exported. What command would you use?
Appendix A. Using the additional material

This redbook is also available as Web material. See the section below for instructions on using or downloading the material.

A.1 Locating the additional material on the Internet

The CD-ROM, diskette, or Web material associated with this redbook is also available in softcopy on the Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246183

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the redbook form number.

A.2 Using the Web material

The additional Web material that accompanies this redbook includes the following:

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG246183.zip</td>
<td>Zipped HTML source</td>
</tr>
</tbody>
</table>

A.2.1 System requirements for downloading the Web material

The following system configuration is recommended for downloading the additional Web material.

<table>
<thead>
<tr>
<th>Hard disk space:</th>
<th>40 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System:</td>
<td>Windows or AIX with Netscape browser</td>
</tr>
<tr>
<td>Processor:</td>
<td>Pentium 386 or PowerPC 604e</td>
</tr>
<tr>
<td>Memory:</td>
<td>128 MB</td>
</tr>
</tbody>
</table>

A.2.2 How to use the Web material

Create a subdirectory (folder) on your workstation and copy the contents of the Web material into this folder. Point your browser at the index.html file to launch the application. The Web content has been optimized for the Netscape browser.
Appendix B. Special notices

This publication is intended to help IBM Business Partners, technical professionals, and customers of IBM prepare for the AIX Installation and System Recovery exam as part of the IBM Certified Specialist program. The information in this publication is not intended as the specification of any programming interfaces that are provided by AIX Version 4.3. See the PUBLICATIONS section of the IBM Programming Announcement for AIX Version 4.3 for more information about what publications are considered to be product documentation. The use of this guide for certification is not a promise of passing the exam or obtaining the certification. It is intended to be used as a supplemental learning tool that, when used in combination with professional instructors, accelerates the learning process.

References in this publication to IBM products, programs or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM’s product, program, or service may be used. Any functionally equivalent program that does not infringe any of IBM’s intellectual property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test and is distributed AS IS. The information about non-IBM ("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience only and do not in any manner serve as an endorsement of these Web sites.

Any performance data contained in this document was determined in a controlled environment, and therefore, the results that may be obtained in other operating environments may vary significantly. Users of this document should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples contain the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal distribution process does not imply general availability. The purpose of including these reference numbers is to alert IBM customers to specific information relative to the implementation of the PTF when it becomes available to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines Corporation in the United States and/or other countries:

- AIX
- Current
- IBM
- Micro Channel
- Redbooks
- RS/6000
- CT
- DB2
- Lotus
- Netfinity
- Redbooks Logo
- SP

The IBM Certified Specialist mark is a trademark of the International Business Machines Corporation.

The following terms are trademarks of other companies:
C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
Appendix C.  Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

C.1 IBM Redbooks

For information on ordering these publications see “How to get IBM Redbooks” on page 199.

- *IBM Certification Study Guide AIX V4.3 System Administration*, SG24-5129
- *IBM Certification Study Guide AIX V4.3 System Support*, SG24-5139
- *IBM Certification Study Guide AIX Communications*, SG24-6186 (December 2000)
- *IBM Certification Study Guide AIX HACMP*, SG24-5131
- *IBM Certification Study Guide RS/6000 SP*, SG24-5348
- *NIM: From A to Z in AIX 4.3*, SG24-5524
- *RS/6000 Performance Tools in Focus*, SG24-4989
- *Problem Solving and Troubleshooting in AIX Version 4.3*, SG24-5496
- *AIX Logical Volume Manager, from A to Z: Introduction and Concepts*, SG24-5432

C.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs button at [ibm.com/redbooks](http://ibm.com/redbooks) for information about all the CD-ROMs offered, updates and formats.

<table>
<thead>
<tr>
<th>CD-ROM Title</th>
<th>Collection Kit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM System/390 Redbooks Collection</td>
<td>SK2T-2177</td>
</tr>
<tr>
<td>IBM Networking Redbooks Collection</td>
<td>SK2T-6022</td>
</tr>
</tbody>
</table>
C.3 Other resources

These publications are also relevant as further information sources:

- *PCI Adapter Placement Reference*, SA38-0538
- You can access all of the AIX documentation through the Internet at the following URL: [www.ibm.com/servers/aix/library](http://www.ibm.com/servers/aix/library)

The following types of documentation are located on the documentation CD that ships with the AIX operating system:

- User guides
- System management guides
- Application programmer guides
- All commands reference volumes
- Files reference
- Technical reference volumes used by application programmers

C.4 Referenced Web sites

These Web sites are also relevant as further information sources:

- [http://www.rs6000.ibm.com](http://www.rs6000.ibm.com)
- [ibm.com/redbooks](http://ibm.com/redbooks)
- [http://www.opengroup.org/onlinepubs/9629799/toc.htm](http://www.opengroup.org/onlinepubs/9629799/toc.htm)
• http://www.ibm.com/certify
• http://www.rs6000.ibm.com/resource/hardware_docs/
• http://www.hursley.ibm.com/~ssa/
• http://techsupport.services.ibm.com/support/rs6000.support/databases
How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

- **Redbooks Web Site** [ibm.com/redbooks]
  
  Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks site.
  
  Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will be published this way. The intent is to get the information out much quicker than the formal publishing process allows.

- **E-mail Orders**
  
  Send orders by e-mail including information from the IBM Redbooks fax order form to:

<table>
<thead>
<tr>
<th>In United States or Canada</th>
<th><a href="mailto:pubscan@us.ibm.com">pubscan@us.ibm.com</a></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside North America</td>
<td>Contact information is in the “How to Order” section at this site: <a href="http://www.elink.ibmlink.ibm.com/pbl/pbl">http://www.elink.ibmlink.ibm.com/pbl/pbl</a></td>
</tr>
</tbody>
</table>

- **Telephone Orders**
  
  Contact information is in the “How to Order” section at this site: http://www.elink.ibmlink.ibm.com/pbl/pbl

  United States (toll free) 1-800-879-2755
  Canada (toll free) 1-800-IBM-4YOU
  Outside North America Country coordinator phone number is in the “How to Order” section at this site:

<table>
<thead>
<tr>
<th>United States (toll free)</th>
<th>1-800-445-9269</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>1-403-267-4455</td>
</tr>
<tr>
<td>Outside North America</td>
<td>Fax phone number is in the “How to Order” section at this site: <a href="http://www.elink.ibmlink.ibm.com/pbl/pbl">http://www.elink.ibmlink.ibm.com/pbl/pbl</a></td>
</tr>
</tbody>
</table>

This information was current at the time of publication, but is continually subject to change. The latest information may be found at the Redbooks Web site.

---

**IBM Intranet for Employees**

# IBM Redbooks fax order form

Please send me the following:

<table>
<thead>
<tr>
<th>Title</th>
<th>Order Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First name  
Last name  
Company  
Address  
City  
Postal code  
Country  
Telephone number  
Telefax number  
VAT number  
☐ Invoice to customer number  
☐ Credit card number  
Credit card expiration date  
Card issued to  
Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not available in all countries. Signature mandatory for credit card payment.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>Application Binary Interface</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ADSM</td>
<td>ADSTAR Distributed Storage Manager</td>
</tr>
<tr>
<td>ADSTAR</td>
<td>Advanced Storage and Retrieval</td>
</tr>
<tr>
<td>AIX</td>
<td>Advanced Interactive Executive</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>APAR</td>
<td>Authorized Program Analysis Report</td>
</tr>
<tr>
<td>ASCI</td>
<td>Accelerated Strategic Computing Initiative</td>
</tr>
<tr>
<td>ASCII</td>
<td>American National Standards Code for Information Interchange</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>BFF</td>
<td>Backup File Format</td>
</tr>
<tr>
<td>BOS</td>
<td>Base Operating System</td>
</tr>
<tr>
<td>BI</td>
<td>Business Intelligence</td>
</tr>
<tr>
<td>BIST</td>
<td>Built-In Self-Test</td>
</tr>
<tr>
<td>BLAS</td>
<td>Basic Linear Algebra Subprograms</td>
</tr>
<tr>
<td>BOS</td>
<td>Base Operating System</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer-Aided Engineering</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer-Aided Manufacturing</td>
</tr>
<tr>
<td>CATIA</td>
<td>Computer-Graphics Aided CD-ROM</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>Compact Disk-Read Only Memory</td>
</tr>
<tr>
<td>CE</td>
<td>Customer Engineer</td>
</tr>
<tr>
<td>CEC</td>
<td>Central Electronics Complex</td>
</tr>
<tr>
<td>CHRP</td>
<td>Common Hardware Reference Platform</td>
</tr>
<tr>
<td>CLIO/S</td>
<td>Client Input/Output Sockets</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complimentary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>COLD</td>
<td>Computer Output to Laser Disk</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>CSR</td>
<td>Customer Service Representative</td>
</tr>
<tr>
<td>CSS</td>
<td>Communication Subsystems Support</td>
</tr>
<tr>
<td>CSU</td>
<td>Customer Set-Up</td>
</tr>
<tr>
<td>CSU</td>
<td>Channel Service Unit</td>
</tr>
<tr>
<td>CWS</td>
<td>Control Workstation</td>
</tr>
<tr>
<td>DAS</td>
<td>Dual Attach Station</td>
</tr>
<tr>
<td>DASD</td>
<td>Direct Access Storage Device (Disk)</td>
</tr>
<tr>
<td>DAT</td>
<td>Digital Audio Tape</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DDC</td>
<td>Display Data Channel</td>
</tr>
<tr>
<td>DDS</td>
<td>Digital Data Storage</td>
</tr>
<tr>
<td>DE</td>
<td>Dual-Ended</td>
</tr>
<tr>
<td>DFS</td>
<td>Distributed File System</td>
</tr>
<tr>
<td>DIMM</td>
<td>Dual In-Line Memory Module</td>
</tr>
<tr>
<td>DIP</td>
<td>Direct Insertion Probe</td>
</tr>
<tr>
<td><strong>DIVA</strong></td>
<td>Digital Inquiry Voice Answer</td>
</tr>
<tr>
<td><strong>FDDI</strong></td>
<td>Fiber Distributed Data Interface</td>
</tr>
<tr>
<td><strong>DLT</strong></td>
<td>Digital Linear Tape</td>
</tr>
<tr>
<td><strong>FDX</strong></td>
<td>Full Duplex</td>
</tr>
<tr>
<td><strong>DMA</strong></td>
<td>Direct Memory Access</td>
</tr>
<tr>
<td><strong>FRU</strong></td>
<td>Field Replaceable Unit</td>
</tr>
<tr>
<td><strong>DOS</strong></td>
<td>Disk Operating System</td>
</tr>
<tr>
<td><strong>FTP</strong></td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td><strong>DRAM</strong></td>
<td>Dynamic Random Access Memory</td>
</tr>
<tr>
<td><strong>F/W</strong></td>
<td>Fast and Wide</td>
</tr>
<tr>
<td><strong>DSU</strong></td>
<td>Data Service Unit</td>
</tr>
<tr>
<td><strong>GPFS</strong></td>
<td>General Parallel File System</td>
</tr>
<tr>
<td><strong>DW</strong></td>
<td>Data Warehouse</td>
</tr>
<tr>
<td><strong>GUI</strong></td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td><strong>EC</strong></td>
<td>Engineering Change</td>
</tr>
<tr>
<td><strong>HACMP</strong></td>
<td>High Availability Cluster Multi Processing</td>
</tr>
<tr>
<td><strong>ECC</strong></td>
<td>Error Checking and Correction</td>
</tr>
<tr>
<td><strong>HACWS</strong></td>
<td>High Availability Control Workstation</td>
</tr>
<tr>
<td><strong>EEPROM</strong></td>
<td>Electrically Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td><strong>HDX</strong></td>
<td>Half Duplex</td>
</tr>
<tr>
<td><strong>EIA</strong></td>
<td>Electronics Industry Association</td>
</tr>
<tr>
<td><strong>HIPPI</strong></td>
<td>High Performance Parallel Interface</td>
</tr>
<tr>
<td><strong>EISA</strong></td>
<td>Extended Industry Standard Architecture</td>
</tr>
<tr>
<td><strong>HiPS</strong></td>
<td>High Performance Switch</td>
</tr>
<tr>
<td><strong>ELA</strong></td>
<td>Error Log Analysis</td>
</tr>
<tr>
<td><strong>HiPS LC-8</strong></td>
<td>Low-Cost Eight-Port Switch</td>
</tr>
<tr>
<td><strong>EMIF</strong></td>
<td>ESCON Multiple Image Facility</td>
</tr>
<tr>
<td><strong>ESCON</strong></td>
<td>Enterprise Systems Connection (Architecture, IBM System/390)</td>
</tr>
<tr>
<td><strong>HP</strong></td>
<td>Hewlett-Packard</td>
</tr>
<tr>
<td><strong>HPF</strong></td>
<td>High Performance FORTRAN</td>
</tr>
<tr>
<td><strong>EPOW</strong></td>
<td>Environmental and Power Warning</td>
</tr>
<tr>
<td><strong>HPSSDL</strong></td>
<td>High Performance Supercomputer Systems Development Laboratory</td>
</tr>
<tr>
<td><strong>ESSSL</strong></td>
<td>Engineering and Scientific Subroutine Library</td>
</tr>
<tr>
<td><strong>HP-UX</strong></td>
<td>Hewlett-Packard UNIX</td>
</tr>
<tr>
<td><strong>ETML</strong></td>
<td>Extract, Transformation, Movement and Loading</td>
</tr>
<tr>
<td><strong>HTTP</strong></td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td><strong>Hz</strong></td>
<td>Hertz</td>
</tr>
<tr>
<td><strong>F/C</strong></td>
<td>Feature Code</td>
</tr>
<tr>
<td><strong>IA</strong></td>
<td>Intel Architecture</td>
</tr>
<tr>
<td><strong>FC-AL</strong></td>
<td>Fibre Channel Arbitrated Loop</td>
</tr>
<tr>
<td><strong>ID</strong></td>
<td>Identification</td>
</tr>
<tr>
<td><strong>IDE</strong></td>
<td>Integrated Device Electronics</td>
</tr>
<tr>
<td><strong>FCP</strong></td>
<td>Fibre Channel Protocol</td>
</tr>
<tr>
<td><strong>IDS</strong></td>
<td>Intelligent Decision Server</td>
</tr>
</tbody>
</table>

202 IBM Certification Study Guide AIX Installation and System Recovery
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>²C</td>
<td>Inter Integrated-Circuit Communications</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>IP</td>
<td>Internetwork Protocol (OSI)</td>
</tr>
<tr>
<td>IPL</td>
<td>Initial Program Load</td>
</tr>
<tr>
<td>IrDA</td>
<td>Infrared Data Association (which sets standards for infrared support including protocols for data interchange)</td>
</tr>
<tr>
<td>IRQ</td>
<td>Interrupt Request</td>
</tr>
<tr>
<td>ISA</td>
<td>Industry Standard Architecture</td>
</tr>
<tr>
<td>ISB</td>
<td>Intermediate Switch Board</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated-Services Digital Network</td>
</tr>
<tr>
<td>ISV</td>
<td>Independent Software Vendor</td>
</tr>
<tr>
<td>ITSO</td>
<td>International Technical Support Organization</td>
</tr>
<tr>
<td>JBOD</td>
<td>Just a Bunch of Disks</td>
</tr>
<tr>
<td>JFS</td>
<td>Journaled File System</td>
</tr>
<tr>
<td>JTAG</td>
<td>Joint Test Action Group</td>
</tr>
<tr>
<td>L1</td>
<td>Level 1</td>
</tr>
<tr>
<td>L2</td>
<td>Level 2</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LANE</td>
<td>Local Area Network Emulation</td>
</tr>
<tr>
<td>LAPI</td>
<td>Low-Level Application Programming Interface</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LFT</td>
<td>Low Function Terminal</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Programming</td>
</tr>
<tr>
<td>LPP</td>
<td>Licensed Program Product</td>
</tr>
<tr>
<td>LVM</td>
<td>Logical Volume Manager</td>
</tr>
<tr>
<td>MAP</td>
<td>Maintenance Analysis Procedure</td>
</tr>
<tr>
<td>MAU</td>
<td>Multiple Access Unit</td>
</tr>
<tr>
<td>Mbps</td>
<td>Megabits Per Second</td>
</tr>
<tr>
<td>MBps</td>
<td>Megabytes Per Second</td>
</tr>
<tr>
<td>MCA</td>
<td>Micro Channel Architecture</td>
</tr>
<tr>
<td>MCAD</td>
<td>Mechanical Computer-Aided Design</td>
</tr>
<tr>
<td>MES</td>
<td>Miscellaneous Equipment Specification</td>
</tr>
<tr>
<td>MIP</td>
<td>Mixed-Integer Programming</td>
</tr>
<tr>
<td>MLR1</td>
<td>Multi-Channel Linear Recording 1</td>
</tr>
<tr>
<td>MMF</td>
<td>Multi-Mode Fibre</td>
</tr>
<tr>
<td>MP</td>
<td>Multiprocessor</td>
</tr>
<tr>
<td>MP</td>
<td>Multi-Purpose</td>
</tr>
<tr>
<td>MPC-3</td>
<td>Multimedia PC-3</td>
</tr>
<tr>
<td>MPI</td>
<td>Message Passing Interface</td>
</tr>
<tr>
<td>MPP</td>
<td>Massively Parallel Processing</td>
</tr>
<tr>
<td>MPS</td>
<td>Mathematical Programming System</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum Transmission Unit</td>
</tr>
<tr>
<td>MVS</td>
<td>Multiple Virtual Storage (IBM System 370 and 390)</td>
</tr>
<tr>
<td>MX</td>
<td>Mezzanine Bus</td>
</tr>
<tr>
<td>NCP</td>
<td>Network Control Point</td>
</tr>
<tr>
<td>NFS</td>
<td>Network File System</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>NIM</td>
<td>Network Installation Manager</td>
</tr>
<tr>
<td>NT-1</td>
<td>Network Terminator-1</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>NUMA</td>
<td>Non-Uniform Memory Access</td>
</tr>
<tr>
<td>NVRAM</td>
<td>Non-Volatile Random Access Memory</td>
</tr>
<tr>
<td>ODM</td>
<td>Object Data Manager</td>
</tr>
<tr>
<td>OLAP</td>
<td>Online Analytical Processing</td>
</tr>
<tr>
<td>OS/390</td>
<td>Operating System/390</td>
</tr>
<tr>
<td>OSL</td>
<td>Optimization Subroutine Library</td>
</tr>
<tr>
<td>OSLp</td>
<td>Parallel Optimization Subroutine Library</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>PDU</td>
<td>Power Distribution Unit</td>
</tr>
<tr>
<td>PE</td>
<td>Parallel Environment</td>
</tr>
<tr>
<td>PID</td>
<td>Program Identification</td>
</tr>
<tr>
<td>RAS</td>
<td>Reliability, Availability, and Serviceability</td>
</tr>
<tr>
<td>RAID</td>
<td>Redundant Array of Disks</td>
</tr>
<tr>
<td>RDBMS</td>
<td>Relational Database Management System</td>
</tr>
<tr>
<td>POSIX</td>
<td>Portable Operating Interface for Computing Environments</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>RTC</td>
<td>Real-Time Clock</td>
</tr>
<tr>
<td>SAN</td>
<td>Storage Area Network</td>
</tr>
<tr>
<td>SAS</td>
<td>Single Attach Station</td>
</tr>
<tr>
<td>SAR</td>
<td>Solutions Assurance Review</td>
</tr>
<tr>
<td>ScaLAPACK</td>
<td>Scalable Linear Algebra Package</td>
</tr>
<tr>
<td>SCO</td>
<td>Santa Cruz Operations</td>
</tr>
<tr>
<td>SCSI</td>
<td>Small Computer System Interface</td>
</tr>
<tr>
<td>SDR</td>
<td>System Data Repository</td>
</tr>
<tr>
<td>SDRAM</td>
<td>Synchronous Dynamic Random Access Memory</td>
</tr>
<tr>
<td>SDLC</td>
<td>Synchronous Data Link Control</td>
</tr>
<tr>
<td>SE</td>
<td>Single-Ended</td>
</tr>
<tr>
<td>SEPBU</td>
<td>Scalable Electrical Power Base Unit</td>
</tr>
<tr>
<td>SGI</td>
<td>Silicon Graphics Incorporated</td>
</tr>
<tr>
<td>SLIP</td>
<td>Serial Line Internet Protocol</td>
</tr>
<tr>
<td>SLR1</td>
<td>Single-Channel Linear Recording 1</td>
</tr>
<tr>
<td>SMIT</td>
<td>System Management Interface Tool</td>
</tr>
<tr>
<td>SMS</td>
<td>System Management Services</td>
</tr>
<tr>
<td>SMP</td>
<td>Symmetric Multiprocessing</td>
</tr>
<tr>
<td>SOI</td>
<td>Silicon-on-Insulator</td>
</tr>
<tr>
<td>SP</td>
<td>Scalable POWERParallel</td>
</tr>
<tr>
<td>SP</td>
<td>Service Processor</td>
</tr>
<tr>
<td>SPEC</td>
<td>Standard Performance Evaluation Corp.</td>
</tr>
<tr>
<td>SPO T</td>
<td>Shared Product Object Tree</td>
</tr>
<tr>
<td>SPS</td>
<td>SP Switch</td>
</tr>
<tr>
<td>SPS-8</td>
<td>Eight-Port SP Switch</td>
</tr>
<tr>
<td>SRC</td>
<td>System Resource Controller</td>
</tr>
<tr>
<td>SSC</td>
<td>System Support Controller</td>
</tr>
<tr>
<td>SSA</td>
<td>Serial Storage Architecture</td>
</tr>
<tr>
<td>STP</td>
<td>Shielded Twisted Pair</td>
</tr>
<tr>
<td>SUP</td>
<td>Software Update Protocol</td>
</tr>
<tr>
<td>SVC</td>
<td>Switch Virtual Circuit</td>
</tr>
<tr>
<td>Tcl</td>
<td>Tool Command Language</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>TCQ</td>
<td>Tagged Command Queuing</td>
</tr>
<tr>
<td>TPC</td>
<td>Transaction Processing Council</td>
</tr>
<tr>
<td>UDB EEE</td>
<td>Universal Database and Enterprise Extended Edition</td>
</tr>
<tr>
<td>UP</td>
<td>Uniprocessor</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>UTP</td>
<td>Unshielded Twisted Pair</td>
</tr>
<tr>
<td>UUCP</td>
<td>UNIX-to-UNIX Communication Protocol</td>
</tr>
<tr>
<td>VESA</td>
<td>Video Electronics Standards Association</td>
</tr>
<tr>
<td>VG</td>
<td>Volume Group</td>
</tr>
<tr>
<td>VM</td>
<td>Virtual Machine (IBM System 370 and 390)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>VMM</td>
<td>Virtual Memory Manager</td>
</tr>
<tr>
<td>VPD</td>
<td>Vital Product Data</td>
</tr>
<tr>
<td>VSD</td>
<td>Virtual Shared Disk</td>
</tr>
<tr>
<td>VSM</td>
<td>Visual Systems Management</td>
</tr>
<tr>
<td>VSS</td>
<td>Versatile Storage Server</td>
</tr>
<tr>
<td>VT</td>
<td>Visualization Tool</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
<tr>
<td>WTE</td>
<td>Web Traffic Express</td>
</tr>
<tr>
<td>XTF</td>
<td>Extended Distance Feature</td>
</tr>
</tbody>
</table>
Index

Symbols
$HOME/.rhosts 164
.dprofile
   files
      .dtprofile 32
      .profile 32
      /bosinst.data 156
      /etc/exclude.rootvg 161
      /etc/hosts 32
      /etc/hosts.equiv 164
      /etc/resolv.conf 32
      /image.data 156

Numerics
911 186

A
alog 73, 76
alt_disk_install command 28, 35
alternate disk installation 28
   cloning rootvg 29
APAR 41
Authorized Program Analysis Report 41

B
backup 155
   commands
      backup 158
cpio 161
tar 161
   file system 157
volume group
   non-rootvg 157
   rootvg 155
BIST 62, 64
   LED codes
      100 - 195 64
      200 - 2E7 64
      BIST 64
      POST 64
mergedev 73
   normal 64
PCI normal boot 69
PCI service boot 69
phase1 63, 70, 80
   phase1 workflow figure 70
phase2 63, 72, 80
   phase2 figure 1 72
   phase2 figure 2 73
   phase3 77, 80
   phase3 figure 77
POST 62, 64
RAMFS 62
rc.boot 80
restbase 71
runlevel 64, 79
savebase 78
service 64
SMS 69
   SMS main menu figure 69
syncvg 78
   boot logical volume
      BLV 62
   content 63
accessing rootvg 68
alog 73, 76
BIST 62, 64
BLV 62
bootinfo 71
bootlist 64, 69, 74
bosboot 68, 74, 75
cfgmgr 71, 78
Config_Rules 71
   content of the BLV 63
copycore 73
diag menu figure 1 65
from CD-ROM 20
general workflow 61
general workflow figure 62
   identifier 79
   init 63
ipl_varyon 72
LED codes
   100 - 195 64
   200 - 2E7 64
   BIST 64
   POST 64
mergedev 73
   normal 64
PCI normal boot 69
PCI service boot 69
phase1 63, 70, 80
   phase1 workflow figure 70
phase2 63, 72, 80
   phase2 figure 1 72
   phase2 figure 2 73
   phase3 77, 80
   phase3 figure 77
POST 62, 64
RAMFS 62
rc.boot 80
restbase 71
runlevel 64, 79
savebase 78
service 64
SMS 69
   SMS main menu figure 69
syncvg 78
   boot logical volume
      BLV 62
   content 63
G

generic device names  65

I

image.data file  114
importvg command  94
init
    phase1  63
    phase2  63
    phase3  63
INST_DEBUG  45
install_assist see configuration assistant taskguide  25
installation
    additional hardware  30
    alternate disk installation  28
    boot up from CD-ROM  20
    bundle  31
    configuration assistant taskguide  25
    determining maintenance level  27
e-fix  41
failed  54
fileset  40
interrupted  54
licensed program package  41
methods  19, 41
    migration  19, 22
    new and complete overwrite  19, 21
    preservation  19, 24
missing device driver  31
online documentation  33
options  40
post installation problems  32
problems with
    CDE  32
    TCP/IP  32
PTF  41
reports  44
settings  20
startup  19
trusted computing base (TCB)  21
uninstall  55

J

journaled file system (JFS)  85

L

LED codes
    100 - 195  64
    200  67
    200 - 2E7  64
    299  67
    511  71
    518  72, 76
    548  71
    551  74
    552  72, 74
    553  79
    554  72, 74
    555  72, 74
    556  72, 74
    557  72, 74
    BIST  64
    c31  78, 80
c32  78
c33  78
c34  78
Common MCA LED code table  67, 80
common phase2 LED codes  81
common phase3 LED codes  81
POST  64
logform command  122
logical partitions (LPs)  85
logical volumes  99
    copying  110
    creating  100
    migrating  107
    paging space  123
    removing  110
logical volumes (LVs)  85
LPP  41
lsattr command  87, 98
lsdev command  97, 131, 132
lsfs  183
lsllp  43
llsv command  106, 107, 108, 121, 132
lspv command  123
lspv command  87, 90, 91, 94, 97, 108
lsvg command  87, 94, 97, 99, 100, 132

M

magic number  74
maintenance level  27
MCA
BIST 64
LED 64
200 67
299 67
LED code table 67, 80
POST 64
Metadata description 111
migratepv command 92, 108
  flags 141
  syntax 141
migration installation 22
  installation steps 22
  missing option 24
missing device driver 31
mkboot command
  flags 142
  syntax 142
mk lv command 122, 123
  flags 143
  syntax 142
mkps command 123
  flags 147
  syntax 147
mksysb 155, 158
mksysb command 120
mksysb tape
  extracting data 159
  layout 156
mkszfile 156
mkszfile command 117
mkvgdata 157
mkvgdata command 117
mount command 95, 112, 114

N
network boot
  problems 171
Network Interface Management
  see NIM 171
new and complete overwrite installation 21
NIM 171
NIM debug, 911 186
normal boot 64
  PCI 69

O
online documentation installation 33
oslevel command 27

P
PCI systems 68
  bootlist 69
  normal boot 69
  service boot 69
  service guide URL 70
SMS 69
  SMS main menu figure 69
phase1 63, 70, 80
  bootinfo 71
  cfgmgr 71
  Config_Rules 71
  init 63
  restbase 71
  workflow figure 70
phase2 63, 72, 80
  alog 73
  copycore 73
  figure 1 72
  figure 2 73
  init 63
  ipl_varyon 72
  mergedev 73
rootvg 63
phase3 77, 80
  /etc/inittab 63, 78
  /etc/inittab figure 79
  cfgcon 78
  cfgmgr 78
  init 63
  rc.boot 79
  savebase 78
  syncvg 78
  workflow figure 77
physical partition
  size calculation 89
physical partitions
  intra-disk policy 103
physical partitions (PPs) 85
physical volume (PV) 85
physical volumes
  incorrectly removed 131
  removing 130
POST 62, 64
  LED codes 64
preservation installation 24
program temporary fix 41
ptf 41

211
R
RAMFS 62
rc.boot 80
/etc/inittab 63
init 63
recovery 158
reducevg command 98, 118, 131
refresh 173
reject fileset 52
reorgvg command 99
replacepv command 96
resintallation 53
restore 160
file system 159
volume group
non-rootvg 159
rootvg 158
restvg 159
restvg command 119
flags 149
syntax 148
rmdev command 131
rmlv command 110, 122
rmps command 123
rootvg
accessing rootvg 68
phase2 63
runlevel 64, 79

S
savevg 157
savevg command 118
service boot 64
PCI 69
showmount 182
SMIT fast path
smit install_bundle 31
smit lv 101
smit vg 87
smitty
lsmksysb 160
smitty menus
bffc-create 48
easy_install 46
installp 41, 42
overwrite 54
preview only 49
reject fileset 52
remove 46
saving previous version of fileset 51
software maintenance 52
software removal 56
update_by_fix 41
superblock 75
swapon command 123
synclvodm command 133
sysdumpdev command 123
flags 150
syntax 150

T
tables
boot phase2 LED codes 81
boot phase3 LED codes 81
commit or apply 50
common MCA LED codes 67, 80
general installp summary 58
general instfix summary 59
installp flags 42, 47
reinstallation options 53
tape
block size 164
tcopy 164
TCP/IP installation problems 32
tctl 160
telinit command 79
trusted computing base 21

U
umount command 112, 113, 130

V
varyonvg command 94
volume group
non-rootvg
backup 157
restore 159
rootvg
backup 155
restore 158
volume group (VG) 85
volume groups 86
associated logical volumes 106
creating 86
data migration 91
moving disks 93
reducing 96
reorganize 98

W
wake-up alternate volume group 30
workflow 61
IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a Redbook "made the difference" in a task or problem you encountered. Using one of the following methods, please review the Redbook, addressing value, subject matter, structure, depth and quality as appropriate.

- Use the online Contact us review redbook form found at ibm.com/redbooks
- Fax this form to: USA International Access Code + 1 845 432 8264
- Send your comments in an Internet note to redbook@us.ibm.com

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Redbook Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG24-6183-00</td>
<td>IBM Certification Study Guide AIX Installation and System Recovery</td>
</tr>
</tbody>
</table>

Review

What other subjects would you like to see IBM Redbooks address?

Please rate your overall satisfaction: O Very Good  O Good  O Average  O Poor

Please identify yourself as belonging to one of the following groups: O Customer  O Business Partner  O Solution Developer  O IBM, Lotus or Tivoli Employee  O None of the above

Your email address: The data you provide here may be used to provide you with information from IBM or our business partners about our products, services or activities. O Please do not use the information collected here for future marketing or promotional contacts or other communications beyond the scope of this transaction.

Questions about IBM’s privacy policy? The following link explains how we protect your personal information. ibm.com/privacy/yourprivacy/

© Copyright IBM Corp. 2000
IBM Certification Study Guide
AIX Installation and System Recovery

Developed specifically for the purpose of preparing for AIX certification

Makes an excellent companion to classroom education

For experienced AIX professionals

The AIX and RS/6000 Certifications, offered through the Professional Certification Program from IBM, are designed to validate the skills required of technical professionals who work in the powerful, and often complex, environments of the AIX operating system and RS/6000 and pSeries servers. A complete set of professional certifications are available. They include:

IBM Certified AIX User
IBM Certified Specialist - AIX System Administration
IBM Certified Specialist - AIX System Support
IBM Certified Specialist - AIX HACMP
IBM Certified Specialist - Business Intelligence for RS/6000
IBM Certified Specialist - Domino for RS/6000
IBM Certified Specialist - RS/6000 Solution Sales
IBM Certified Specialist - RS/6000 SP and PSSP V3
IBM Certified Specialist - RS/6000 SP - Sales Qualification
IBM Certified Specialist - Web Server for RS/6000
IBM Certified Advanced Technical Expert - RS/6000 AIX

This IBM Redbook is designed as a study guide for professionals wishing to prepare for the AIX Installation and System Recovery certification exam as a selected course of study in order to achieve: IBM Certified Advanced Technical Expert - RS/6000 AIX.

For more information:
ibm.com/redbooks