Printing for Fun and Profit under AIX 5L

- Introduction of System V print subsystem
- Effective print management with many advanced topics
- Solving print problems with hints and tips

John Tesch
Kristin Moore
KyeongWon Jeong

ibm.com/redbooks
Printing for Fun and Profit under AIX 5L

March 2001
Take Note!

Before using this information and the product it supports, be sure to read the general information in Appendix G, “Special notices” on page 525.

First Edition (March 2001)

This edition applies to IBM RS/6000 systems for use with the AIX 5L Operating System Version 5.0 and is based on information available in November, 2000.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
Part 1. Introduction

Chapter 1. Overview of AIX 5L print subsystems

1.1 What is new in AIX 5L printing?

1.1.1 Who can administer printing?

1.1.2 System V print subsystem

1.1.3 Changes to the PowerPC print subsystem

1.2 Packaging

1.2.1 System V print subsystem filesets

1.2.2 PowerPC print subsystem filesets

1.3 Web-based System Manager versus SMIT printer management

1.4 Multiple approaches to printing

1.4.1 Printing by directly addressing the printer device driver

1.4.2 Printing directly to a network printer with a socket program

1.4.3 Printing by utilizing the System V print subsystem

1.4.4 Printing by utilizing the PowerPC print subsystem

1.4.5 Printing by utilizing an advanced print management system

1.5 Comparing System V, PowerPC, and Infoprint Manager printing

1.6 Design considerations

1.7 Choosing the correct print subsystem

1.7.1 System V print subsystem comparison

1.7.2 PowerPC print subsystem comparison

1.7.3 Infoprint Manager comparison

1.7.4 Comparison by feature

1.7.5 Comparison by data type

1.8 Switching between the two AIX 5L print subsystems

1.8.1 Three ways to switch between print subsystems

1.8.2 Actions when switching from PowerPC to System V printing

1.8.3 Actions when switching from System V to PowerPC printing

1.8.4 FAQ about switching print subsystems

1.9 To spool or not to spool

1.9.1 When will a print job be spooled?

1.9.2 Where will the file be spooled?
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.3</td>
<td>Checking status</td>
<td>95</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Cancelling a print request</td>
<td>97</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Prioritizing a print request</td>
<td>98</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Holding and releasing a print request</td>
<td>99</td>
</tr>
<tr>
<td>2.5.7</td>
<td>Moving a print request to another queue</td>
<td>100</td>
</tr>
<tr>
<td>2.5.8</td>
<td>Scheduling a print request</td>
<td>100</td>
</tr>
<tr>
<td>2.6</td>
<td>BSD commands</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3. System V network printing</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Printing to print servers or remote printers using LPD</td>
<td>103</td>
</tr>
<tr>
<td>3.1.1 Overview</td>
<td>103</td>
</tr>
<tr>
<td>3.1.2 Planning</td>
<td>104</td>
</tr>
<tr>
<td>3.1.3 Adding a remotely-attached printer</td>
<td>105</td>
</tr>
<tr>
<td>3.2 Adding a JetDirect-attached printer</td>
<td>115</td>
</tr>
<tr>
<td>3.2.1 Overview</td>
<td>115</td>
</tr>
<tr>
<td>3.2.2 Planning</td>
<td>115</td>
</tr>
<tr>
<td>3.2.3 Adding a JetDirect-attached printer</td>
<td>116</td>
</tr>
<tr>
<td>3.3 Configuring the System V print subsystem as a print server</td>
<td>128</td>
</tr>
<tr>
<td>3.3.1 Tasks at the server</td>
<td>128</td>
</tr>
<tr>
<td>3.3.2 Tasks at the client</td>
<td>132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4. System V advanced printing</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Overview</td>
<td>135</td>
</tr>
<tr>
<td>4.1.1 Understanding the different types in System V printing</td>
<td>135</td>
</tr>
<tr>
<td>4.1.2 Overview of customizations covered</td>
<td>137</td>
</tr>
<tr>
<td>4.2 Printer interface programs</td>
<td>138</td>
</tr>
<tr>
<td>4.2.1 How do the interface scripts work?</td>
<td>139</td>
</tr>
<tr>
<td>4.2.2 Creating and modifying a custom interface script</td>
<td>143</td>
</tr>
<tr>
<td>4.2.3 Assigning a custom interface script to a printer</td>
<td>144</td>
</tr>
<tr>
<td>4.2.4 Example: HP JetDirect interface programs</td>
<td>144</td>
</tr>
<tr>
<td>4.2.5 Example: Modifying the SCO IBM Network Printer 12 script</td>
<td>147</td>
</tr>
<tr>
<td>4.2.6 Example: Modifying the SCO Lexmark interface script</td>
<td>150</td>
</tr>
<tr>
<td>4.2.7 Example: Custom interface to pipe data to an output program</td>
<td>150</td>
</tr>
<tr>
<td>4.2.8 Adding special tab support</td>
<td>151</td>
</tr>
<tr>
<td>4.3 Using the terminfo database</td>
<td>151</td>
</tr>
<tr>
<td>4.3.1 Terminfo attributes used by the ‘standard’ ASCII interface</td>
<td>152</td>
</tr>
<tr>
<td>4.3.2 How to find if a printer is supported in terminfo</td>
<td>153</td>
</tr>
<tr>
<td>4.3.3 Understanding terminfo printer entries</td>
<td>153</td>
</tr>
<tr>
<td>4.3.4 Viewing terminfo attributes</td>
<td>154</td>
</tr>
<tr>
<td>4.3.5 Adding a new printer to terminfo</td>
<td>154</td>
</tr>
<tr>
<td>4.4 Using printer form support</td>
<td>156</td>
</tr>
<tr>
<td>4.4.1 Adding or modifying a form</td>
<td>156</td>
</tr>
<tr>
<td>4.4.2 Removing a form</td>
<td>158</td>
</tr>
</tbody>
</table>
4.4.3 Displaying a form description .. 158
4.4.4 Maintaining access lists for forms 159
4.4.5 Alerting the operator to mount a form 159
4.4.6 Mounting a form ... 160
4.4.7 Unmounting a form .. 160
4.4.8 Printing using a form .. 160
4.5 Customizing printer attributes 161
 4.5.1 Specifying character sets .. 161
 4.5.2 Specifying font cartridges to use with a printer 163
 4.5.3 Setting printer port characteristics 164
4.6 System V print filters .. 164
 4.6.1 Using print filters for file conversion 165
 4.6.2 Using print filters for special print modes 167
 4.6.3 Using print filters for printer fault handling 167
 4.6.4 What makes a program a good filter 167
 4.6.5 Defining print filters .. 169
 4.6.6 Adding and changing filters 173
 4.6.7 Removing filters .. 173
 4.6.8 Examining filters .. 174
4.7 I18N - Internationalization filters 174
4.8 ASCII text printers .. 175
4.9 PCL printers ... 175
 4.9.1 Using the pcl filter to add carriage returns 175
 4.9.2 Using the pr filter to add titles to each page 175
4.10 PostScript printers ... 176
 4.10.1 Using PostScript printers 177
 4.10.2 Support for non-PostScript print request 178
 4.10.3 PostScript capabilities provided by filters 179
 4.10.4 Installing, registering, and maintaining PostScript printer . 180
 4.10.5 Installing and maintaining PostScript filters 181
 4.10.6 Installing and maintaining PostScript fonts 182
4.11 Printing ASCII text to a PostScript printer 186
4.12 Restricting users access and priorities for printers 186
4.13 Customizing header pages .. 187
 4.13.1 Example: PCL header with large user name 187
 4.13.2 Example: Custom PostScript header page 189
4.14 Setting up a printer with multiple names 191

Part 3. PowerPC print subsystem ... 195

Chapter 5. PowerPC print subsystem basics 197
 5.1 Overview ... 197
 5.1.1 Printing via the PowerPC print subsystem 197
8.2.5 Printing directly to the device special file ... 395
8.2.6 Printing directly to network printers ... 396
8.2.7 Using iptrace to trace network printing ... 397
8.2.8 Capturing files .. 398
8.2.9 Capture the flag ... 399
8.2.10 Using the script shell to capture user input ... 402
8.2.11 Using fuser to find processes .. 403
8.2.12 Using the echo statement in shell scripts .. 403
8.2.13 Special considerations for some RS/232 adapters 403
8.3 Troubleshooting for System V printing .. 404
8.3.1 File permission problems .. 404
8.3.2 Is the print service active? ... 404
8.3.3 Does the printer have the right attributes? .. 405
8.3.4 Logs and status files ... 405
8.3.5 Is the LANG variable set right? ... 408
8.3.6 Cancelled remote jobs still queued ... 409
8.3.7 Printing to a file ... 409
8.3.8 Cleaning up and starting over ... 410
8.3.9 Stopping unwanted header pages ... 411
8.3.10 Troubleshooting System V interface scripts .. 412
8.3.11 Check timeouts in the Systems file for remote queues 414
8.3.12 Is /etc/lp/Systems file entry correct? .. 415
8.3.13 Example: solving a remote printing problem ... 415
8.3.14 Troubleshooting HP JetDirect printing .. 418
8.4 Troubleshooting for PowerPC printing ... 419
8.4.1 File permission problems .. 419
8.4.2 Is the print service active? ... 420
8.4.3 Does the printer have the right attributes? .. 421
8.4.4 Logs and status files ... 422
8.4.5 Printing to a file with PowerPC printing .. 425
8.4.6 Cleaning up and starting over ... 426
8.4.7 Checking the flags to enq ... 428
8.4.8 Stopping unwanted header pages ... 428
8.5 Common errors and solutions .. 430
8.5.1 Problem adding a second local printer on the same device 430
8.5.2 Cannot change attributes because device is busy 431
8.5.3 Remote job disappears after queue enabled ... 431
8.5.4 Bad mandatory environment variable .. 431
8.5.5 LOG: is read only ... 432
8.5.6 No formfeed after banner page ... 433
Chapter 9. Printing tips and utilities ... 435
9.1 Obtaining AIX-ready utilities .. 435
9.1.1 The AIX toolbox for Linux Applications packages 435
9.1.2 The CD-ROM from UNIX Power Tools 435
9.1.3 Bull download sites 436
9.1.4 UCLA SEAS public domain software for AIX 436
9.2 PostScript utilities 437
9.2.1 Using enscript to convert text to PostScript 438
9.2.2 Using psutils for custom PostScript printing 438
9.2.3 Using System V filters for PostScript printing 439
9.2.4 Ghostscript for PostScript viewing and file conversion 440
9.2.5 PostScript font utilities 441
9.2.6 Using xpreview to view PostScript 442
9.2.7 Using psroff for man pages 442
9.2.8 PostScript to ASCII 442
9.3 Utilities for capturing and printing X Windows 442
9.3.1 Using xpr and xwd to print X windows 443
9.3.2 Using xv to capture and print X windows 443
9.3.3 Using xgrabsc ... 444
9.4 Using the pr filter to format text 444
9.4.1 Using pr as a printer filter 445
9.4.2 Printing 2-up with pr 445
9.4.3 Adding line numbers with pr 446
9.4.4 Adding a title to the pages 446
9.4.5 Indenting lines with pr 446
9.5 Standard filters in AIX 446
9.5.1 The sed filter ... 446
9.5.2 The awk filter ... 447
9.5.3 The perl filter .. 447
9.5.4 The tr filter .. 447
9.5.5 The expand filter 448
9.6 Socket programs for network printing 448
9.6.1 Using socket program filters with System V 448
9.6.2 Using socket filter programs in PowerPC printing .. 448
9.6.3 Known print socket filter programs 449
9.6.4 Example: printing with netcat from System V 450
9.7 Utilities to print from Microsoft Windows to AIX 451
9.7.1 IBM LPR Remote Printing Client to print to AIX from Windows 451
9.7.2 Using Samba and FastConnect to print from Windows .. 452
9.7.3 Using PC/NFS to print from Windows 452
9.8 LAIX software tools for AIX printing 452

Chapter 10. Overview of Infoprint Manager for AIX 455
10.1 Features and benefits 455
10.1.1 Centralized management of distributed environment 455
Figures

1. Overview of print request processing .. 46
2. Initial panel in Web-based System Manager 58
3. Manually configuring a device ... 59
4. New device settings panel ... 60
5. Showing added device ... 60
6. Display for Directory Disabled Printers (System V) 66
7. Adding a locally-attached printer (step 1 of 4) 67
8. Adding a locally-attached printer (step 2 of 4) 68
9. Adding a locally-attached printer (step 3 of 4) 69
10. Adding a locally-attached printer (step 4 of 4) 72
11. Success! ... 73
12. Deleting printers and/or classes .. 84
13. Set the default destination .. 86
14. Adding an LPD printer (step 1 of 4) 107
15. Adding an LPD printer (step 2 of 4) 107
16. Adding an LPD printer (step 3 of 4) 108
17. Adding an LPD printer (step 4 of 4) 109
18. Adding a JetDirect-attached printer (step 1 of 4) 117
19. Adding a JetDirect-attached printer (step 2 of 4) 118
20. Adding a JetDirect-attached printer (step 4 of 4) 119
21. Multiple virtual printers ... 192
22. The first panel of Web-based System Manager 208
23. Printer menus ... 208
24. Entering the queue name .. 209
25. Selecting the type of the destination 209
26. Selecting the existing printer .. 210
27. Selecting the brand name of the printer 210
28. Selecting a model of the printer .. 211
29. Selecting an installation media .. 211
30. Selecting a type of port ... 212
31. Selecting an available port .. 212
32. Selecting a type of the queue .. 212
33. The final confirmation .. 213
34. A success notice .. 213
35. Checking the first created queue .. 213
36. Selecting a type of destination for the second queue 214
37. Selecting the existing printer for the second queue 215
38. A confirmation notice for the second queue 215
39. Checking two queues .. 216
40. All printer queues information ... 224
41. Local queue menus ... 224
42. Local queue properties panel 225
43. Properties panel for printer processor 225
44. Checking the status in overview and tasks 226
45. Printer queue cancel confirmation 229
46. Stopping queues .. 231
47. Properties panel for local parallel printer lp0 234
48. The qdaemon subsystem 239
49. Checking the print jobs in the queue 248
50. Cancel one print job ... 253
51. Cancel all print jobs in one queue 253
52. Cancel all print jobs in all queues 254
53. Before changing print job priority 257
54. Changing print job priority 257
55. After changing print job priority 258
56. Holding a print job ... 260
57. Moving a print job to another queue 263
58. After moving a print job 263
59. The basic flow of remote printing using LPR/LPD 271
60. Overview and tasks panel for printers 276
61. Name of printer to add 277
62. Type of attachment ... 277
63. Remote server information 278
64. Printer added successfully 279
65. Overview panel reflecting new printer 279
66. Remote client list .. 285
67. Remote computer access list 286
68. Removing access for a remote system 287
69. Status of the lpd subsystem 288
70. Starting or stopping the lpd subsystem 288
71. Remote print subsystem enabled 289
72. Overview and tasks for printers 296
73. Name of new JetDirect-attached printer 297
74. JetDirect attachment type 297
75. JetDirect-attached printer manufacturer 298
76. JetDirect-attached printer model 298
77. JetDirect-attached printer data stream 299
78. JetDirect-attached - BOOTP/TFTP selection 299
79. JetDirect-attached hostname 300
80. JetDirect-attached verification panel 300
81. Overview and tasks for printers 304
82. Queue name for IBM Network Printer 305
83. IBM Network Printer attachment type 306
84. IBM Network Printer manufacturer ... 306
85. IBM Network Printer model .. 307
86. IBM Network Printer data stream ... 307
87. IBM Network Printer - BOOTP/TFTP selection 308
88. IBM Network Printer hostname .. 308
89. IBM Network Printer verification .. 309
90. Infoprint Manager Advanced Administration GUI’s main panel 461
91. Infoprint Manager printer status display 462
92. Infoprint Manager SNMP printer status 463
93. Infoprint Manager administrative actions for printers 464
94. Infoprint Manager administrative actions for jobs 464
95. Job status details ... 465
96. Infoprint Manager retained job status display 466
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Comparison of print subsystem functions</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Printing systems comparison by print feature</td>
<td>23</td>
</tr>
<tr>
<td>3.</td>
<td>Printing systems comparison by data types supported</td>
<td>24</td>
</tr>
<tr>
<td>4.</td>
<td>Times for printing different sizes of files</td>
<td>39</td>
</tr>
<tr>
<td>5.</td>
<td>Time comparison when printing to two queues at the same time</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>Comparison of administrative interfaces</td>
<td>49</td>
</tr>
<tr>
<td>7.</td>
<td>Information required according to different printer attachments</td>
<td>53</td>
</tr>
<tr>
<td>8.</td>
<td>Cross-reference of configuration information</td>
<td>54</td>
</tr>
<tr>
<td>9.</td>
<td>Characteristics of a form</td>
<td>156</td>
</tr>
<tr>
<td>10.</td>
<td>Examples: Print filter programs</td>
<td>168</td>
</tr>
<tr>
<td>11.</td>
<td>Template keywords</td>
<td>170</td>
</tr>
<tr>
<td>12.</td>
<td>Filter arguments used by lpfilter.</td>
<td>172</td>
</tr>
<tr>
<td>13.</td>
<td>Filters to convert content types to PostScript.</td>
<td>178</td>
</tr>
<tr>
<td>14.</td>
<td>Attributes of queue status</td>
<td>251</td>
</tr>
<tr>
<td>15.</td>
<td>Print queue status</td>
<td>252</td>
</tr>
<tr>
<td>16.</td>
<td>PowerPC outbound network printer programs</td>
<td>268</td>
</tr>
<tr>
<td>17.</td>
<td>Print and terminal server protocols</td>
<td>318</td>
</tr>
<tr>
<td>18.</td>
<td>Commonly used qprt flags</td>
<td>330</td>
</tr>
<tr>
<td>19.</td>
<td>Key virtual printer attributes</td>
<td>334</td>
</tr>
<tr>
<td>20.</td>
<td>Paper size virtual printer attributes</td>
<td>340</td>
</tr>
<tr>
<td>21.</td>
<td>Percent codes used in virtual printer header pages</td>
<td>358</td>
</tr>
<tr>
<td>22.</td>
<td>Percent codes used for labels in header pages</td>
<td>359</td>
</tr>
<tr>
<td>23.</td>
<td>Printing utilities in UNIX Power Tools</td>
<td>435</td>
</tr>
<tr>
<td>24.</td>
<td>Printing utilities available from Group Bull download site</td>
<td>436</td>
</tr>
<tr>
<td>25.</td>
<td>Printer utilities available from UCLA SEAS</td>
<td>437</td>
</tr>
<tr>
<td>26.</td>
<td>PostScript utilities in the psutils package</td>
<td>438</td>
</tr>
<tr>
<td>27.</td>
<td>Print socket filter programs</td>
<td>449</td>
</tr>
<tr>
<td>28.</td>
<td>Printer utilities available from LAIX software</td>
<td>452</td>
</tr>
<tr>
<td>29.</td>
<td>AIX 5L print commands and print subsystem where valid</td>
<td>468</td>
</tr>
<tr>
<td>30.</td>
<td>Administrative tasks and associated commands (System V)</td>
<td>471</td>
</tr>
<tr>
<td>31.</td>
<td>Informational commands in the System V print subsystem</td>
<td>474</td>
</tr>
<tr>
<td>32.</td>
<td>User commands in the System V print subsystem</td>
<td>475</td>
</tr>
<tr>
<td>33.</td>
<td>Tasks and associated commands in PowerPC print subsystem</td>
<td>475</td>
</tr>
<tr>
<td>34.</td>
<td>Interposer crossover connections</td>
<td>480</td>
</tr>
<tr>
<td>35.</td>
<td>Serial printer signal definitions in AIX</td>
<td>480</td>
</tr>
<tr>
<td>36.</td>
<td>AIX printer cables</td>
<td>483</td>
</tr>
<tr>
<td>37.</td>
<td>Terminfo boolean attributes</td>
<td>491</td>
</tr>
<tr>
<td>38.</td>
<td>Terminfo numeric attributes</td>
<td>491</td>
</tr>
<tr>
<td>39.</td>
<td>Terminfo constant string attributes</td>
<td>492</td>
</tr>
<tr>
<td>40.</td>
<td>Terminfo attributes that require a parameter</td>
<td>493</td>
</tr>
</tbody>
</table>
41. Virtual printer boolean attributes ... 494
42. Virtual printer numeric attributes ... 494
43. Virtual printer attributes with a string constant 495
44. Virtual printer attributes calculated by stack language 496
45. Commonly used colon file escape sequences 498
46. Supported printer types - System V print subsystem in AIX 5L V5.0 . . 519
Preface

The introduction of AIX 5L demonstrates IBM's commitment to the open model of computing. The addition of the System V Release 4 print subsystem in this release of AIX is just one of the many ways that IBM demonstrates this commitment. Many new functions have been introduced in this latest release of AIX. System V Release 4 is often referred to as SVR4, and will be denoted as System V in this document.

In AIX 5L, IBM includes both the traditional AIX print subsystem, which we will call the PowerPC print subsystem, as well as the System V print subsystem, which has been a printing standard for many years in the UNIX environment. For more complex printing environments, IBM also offers a print management product called Infoprint Manager. The system administrator must decide which print subsystem fits his or her environment the best. One of the aims of this book is to help you make that decision.

This redbook provides information on the two print subsystems available with AIX 5L Version 5.0. New in Version 5.0 is the initial implementation of the System V print subsystem, and this redbook will compare and contrast it with the legacy AIX or PowerPC print subsystem, as well as with the Infoprint Manager for AIX licensed program product.

Topics that will be covered for both the System V and PowerPC print subsystems include:

- Basic configuration and administration tasks
- Advanced topics
- Troubleshooting

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization, Austin Center.

KyeongWon Jeong is a Senior Software Engineer at the International Technical Support Organization, Austin Center. He writes extensively on AIX and education materials. Before joining the ITSO, he worked in IBM Global Learning Services of IBM Korea as a Senior Education Specialist and was a class manager of all AIX classes for the customers and interns. He has many years of teaching and development experience.
John Tesch is a Senior IT Consultant in the United States Advanced Technical Support group. He has 19 years of experience in workstation computing in IBM. He holds a degree in Chemistry from Texas Lutheran College, and a Ph.D. in Analytical Chemistry from the University of Colorado. His areas of AIX expertise include printing, sendmail, serial communications, X windows, and IBM Network Stations. He has authored Internet Tips on AIX Printing and presented a multitude of classes and presentations on printing and other AIX topics at numerous IBM conferences.

Kristin Moore is a Consulting IT Specialist in the IBM Printing Systems Division’s Technical Sales Support organization in the United States. She has 15 years of experience in the field of printing and Advanced Function Presentation (AFP), and has worked at IBM since 1984. Her areas of expertise include the Infoprint Manager products on the AIX and Windows platforms, as well as AFP software products on the MVS, OS/390 and OS/2 platforms. She collaborated on Printing for Fun and Profit on AIX under AIX V4, GG24-3570, and was the editor and principal author of two editions of Print Services Facility/6000: Installation Experiences. Kristin has also co-developed and taught internal classes on Infoprint Manager and Print Services Facility (PSF) for AIX.

Thanks to the following people for their invaluable contributions to this project:

International Technical Support Organization, Austin Center
Wade Wallace

IBM Austin
Marvin Toungate, Carrie Mitsuyoshi, Kenneth Banning, Mark Brown

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your comments about this or other Redbooks in one of the following ways:

- Fax the evaluation form found in “IBM Redbooks review” on page 569 to the fax number shown on the form.
- Use the online evaluation form found at ibm.com/redbooks
- Send your comments in an Internet note to redbook@us.ibm.com
Chapter 1. Overview of AIX 5L print subsystems

For a system administrator, printers are a significant responsibility, yet they are taken for granted by users and management alike. To effectively manage the printing environment, a systems administrator must understand the following topics:

- The manner in which the chosen subsystem functions
- How to install printers
- How to configure printers and the print spooling subsystem
- How to print files and manage the progress of print requests from submission to printout
- Options for printing to network print servers and printers
- How to print from different clients
- The different types of data streams that printers support
- How to handle printing to printers with special forms
- How to solve printing related problems

This chapter reviews these topics for the System V and PowerPC print subsystems, with some information on Infoprint Manager. It also addresses some more advanced printing topics, such as special UNIX utilities to assist in printing selected pages of a file, printing files in an n-up style, and printing ASCII files to PostScript printers.

1.1 What is new in AIX 5L printing?

The print subsystem has made significant changes in going from AIX 4.3.3 to AIX 5L Version 5.0.

1.1.1 Who can administer printing?

A new user named `lp` with group name `lp` has been added to support System V printing. PowerPC print administrators must be assigned to the `printq` group, while System V print administrators need to be assigned to the `lp AIX` group. Users who are members of the `printq` administrative group can add print devices to the operating system, which can be used by either print subsystem.
1.1.2 System V print subsystem

The most obvious change to AIX 5L printing is the addition of the System V print subsystem. This new feature of AIX allows administrators that are new to AIX, but who have UNIX experience, to manage printing in a manner that they are already familiar with. It also adds the ability to easily handle preprinted forms to AIX printing.

1.1.3 Changes to the PowerPC print subsystem

The following sections describe the changes that have been made to the traditional AIX or PowerPC print subsystem in going from AIX 4.1 to AIX 5L.

1.1.3.1 Changes from AIX 4.3.3 to AIX 5L

To support the existence of two print subsystems at the same time, some of the AIX files and directories were changed.

Below is a list of the files, directories, user and administrative commands, and internal programs that will be created in order to support System V printing, along with the owner, group, and permissions of each, including any symbolic links.

- **bos.rte changes for PowerPC print subsystem**

<table>
<thead>
<tr>
<th>File Mode</th>
<th>Owner</th>
<th>Group</th>
<th>Pathname</th>
</tr>
</thead>
<tbody>
<tr>
<td>drwxr-xr-x</td>
<td>bin</td>
<td>bin</td>
<td>/usr/aix/bin (AIX)</td>
</tr>
<tr>
<td>-rwxr-xr-x</td>
<td>bin</td>
<td>bin</td>
<td>/usr/aix/bin/cancel (AIX)</td>
</tr>
<tr>
<td>-rwxr-xr-x</td>
<td>bin</td>
<td>bin</td>
<td>/usr/aix/bin/lp (AIX)</td>
</tr>
<tr>
<td>-rwxr-xr-x</td>
<td>bin</td>
<td>bin</td>
<td>/usr/aix/bin/lpq (AIX)</td>
</tr>
<tr>
<td>-rwxr-xr-x</td>
<td>bin</td>
<td>bin</td>
<td>/usr/aix/bin/lpr (AIX)</td>
</tr>
<tr>
<td>-rwxr-xr-x</td>
<td>bin</td>
<td>bin</td>
<td>/usr/aix/bin/lprm (AIX)</td>
</tr>
<tr>
<td>-rwxr-xr-x</td>
<td>bin</td>
<td>bin</td>
<td>/usr/aix/bin/lpstat (AIX)</td>
</tr>
<tr>
<td>-rxs-r-x---</td>
<td>root</td>
<td>system</td>
<td>/usr/sbin/switch.prt (AIX)</td>
</tr>
<tr>
<td>-rwx------</td>
<td>root</td>
<td>system</td>
<td>/usr/sbin/switch.prt.subsystem (AIX)</td>
</tr>
</tbody>
</table>

- **bos.rte.printer changes during post install**

<table>
<thead>
<tr>
<th>File Mode</th>
<th>Owner</th>
<th>Group</th>
<th>Pathname</th>
</tr>
</thead>
<tbody>
<tr>
<td>lrwxrwxrwx</td>
<td>root</td>
<td>system</td>
<td>/usr/bin/cancel -> /usr/aix/bin/cancel(AIX)</td>
</tr>
<tr>
<td>lrwxrwxrwx</td>
<td>root</td>
<td>system</td>
<td>/usr/bin/lp -> /usr/aix/bin/lp (AIX)</td>
</tr>
<tr>
<td>lrwxrwxrwx</td>
<td>root</td>
<td>system</td>
<td>/usr/ucb/lpq -> /usr/aix/bin/lpq (AIX)</td>
</tr>
<tr>
<td>lrwxrwxrwx</td>
<td>root</td>
<td>system</td>
<td>/usr/ucb/lpr -> /usr/aix/bin/lpr (AIX)</td>
</tr>
<tr>
<td>lrwxrwxrwx</td>
<td>root</td>
<td>system</td>
<td>/usr/ucb/lprm -> /usr/aix/bin/lprm (AIX)</td>
</tr>
<tr>
<td>lrwxrwxrwx</td>
<td>root</td>
<td>system</td>
<td>/usr/bin/lpstat -> /usr/aix/bin/lpstat (AIX)</td>
</tr>
<tr>
<td>-rwxrwx---</td>
<td>root</td>
<td>lp</td>
<td>/usr/sysv/_SYS5_print_subsystem (System V)</td>
</tr>
</tbody>
</table>

- **[Created on the fly when switching to System V]**

- rwxrwx--- | root | lp | /usr/sysv/_SYS5_print_subsystem (System V) |
• printers.rte changes

<table>
<thead>
<tr>
<th>File Mode</th>
<th>Owner</th>
<th>Group</th>
<th>Pathname</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r-xr-x---</td>
<td>root</td>
<td>printq</td>
<td>/usr/aix/bin/disable (AIX)</td>
</tr>
<tr>
<td>-r-xr-x---</td>
<td>root</td>
<td>printq</td>
<td>/usr/aix/bin/enable (AIX)</td>
</tr>
<tr>
<td>lrwxrwxrwx</td>
<td>root</td>
<td>system</td>
<td>/usr/bin/disable -> /usr/aix/bin/disable (AIX)</td>
</tr>
<tr>
<td>lrwxrwxrwx</td>
<td>root</td>
<td>system</td>
<td>/usr/bin/enable -> /usr/aix/bin/enable (AIX)</td>
</tr>
</tbody>
</table>

1.1.3.2 Changes from AIX 4.2 to AIX 4.3.3

Changes from AIX 4.2 to AIX 4.3.3 include enhancements to remote printing, support for a number of new printers, and enhancements to print job administration.

Remote printing made more robust

One of the major changes introduced in going from AIX 4.2 to AIX 4.3.3 was to increase the robustness of the remote printing system. This was done by adding the ability for both rembak and lpd to have new flags that enable them to build log files. Use the following commands to start error logging:

```
# stopsrc -s lpd
# startsrc -s lpd -a "-D /tmp/lpddebug"
```

For rembak, add a -D logfile flag for rembak as shown here:

```
backend = /usr/lib/lpd/rembak -D /tmp/remback.log
```

AIX Version 4.3.0 added the capability for an AIX server to queue more than 1000 jobs to a single queue from a remote client. This is an extension to the RFC 1179 specification for remote printing.

The extended curses capability was enhanced to support printer attributes. For details, see the AIX 4.3.3 /usr/lpp/bos/README.SPEC1170.

Support for new printers added

New printer support added in AIX 4.3.0 included Lexmark 2380 Model 3, Lexmark 2381 Model 3, Lexmark 2390 Model 3, Lexmark 2391 Model 3, and Lexmark Forms Printer Model 4227.

New printer support added in AIX 4.3.1 included HP LaserJet 4000 and IBM InfoPrint 20.

New printer support added in AIX 4.3.3 include HP 2500C Color Printer, HP LaserJet D640, HP LaserJet 8100, HP Color LaserJet 4500, IBM InfoPrint 40,

Print job administration support added at AIX 4.3.2
The print queue administration commands have been enhanced to support print queues with more than 1000 jobs. Previous editions of AIX would allow more than 1000 jobs in a print queue, but cancelling or altering a job when the queue size grew to more than 1000 jobs became difficult. This was because print job numbers would repeat, and specifying a specific job number did not guarantee that the job selected would be unique or the one desired.

The formatting of the output of the `qchk` command, when used with the `-w` flag, has been changed to show the six-figure print job number. The `lpstat` command has been changed to also accept the `-W` flag to show information in wide format. The use of the `-W` flag results in output where the lines are over 106 characters in length and can be confusing to read on 80 column screens. The default format for both commands remains unchanged.

The `enq`, `cancel`, `qprt`, `qcan`, and `lprm` commands have been altered to accept six-figure job numbers.

The enhancement applies only to jobs submitted to local print queues. Jobs submitted to remote queues still have three digit print job numbers because of the restrictions in the lpd standard.

The time taken to list or remove jobs on the queue is proportional to the number of jobs queued. It is suggested that for performance reasons that you maintain a queue size of less than 1000 jobs unless absolutely necessary.

1.1.3.3 Changes from AIX 4.1 to AIX 4.2
Changes introduced from AIX 4.1 to AIX 4.2 include the increase in job queue size and the addition of a number of printers.

The ability to queue more than 1000 active jobs to a single local queue was added, but management for these jobs did not allow unique access in AIX 4.2.

1.2 Packaging

The basic functions for both printer subsystems are installed by default when AIX is installed, but additional features and printers can be installed manually after this initial installation. All printer software for both System V and PowerPC print subsystems is contained on the AIX installation media.

1.2.1 System V print subsystem filesets

The System V print subsystem consists of 6 filesets. The names of the filesets are bos.svprint.rte, bos.svprint.fonts, bos.svprint.hpnp, bos.svprint.ps, bos.terminfo.svprint.data, and bos.msg.en_US.svprint.

1.2.2 PowerPC print subsystem filesets

By default, the base PowerPC print subsystem is installed and enabled, but only a couple of printers are available. The first time you add a PowerPC printer that is not in the basic install list, you will be prompted to install additional printer software from the AIX installation media. The name identifying the PowerPC print filesets begin with “printer.”. To list all the PowerPC print filesets that have been installed, type the following command:

`# lslpp -l printer.* > /tmp/installed.filesets`

1.3 Web-based System Manager versus SMIT printer management

Web-based System Manager is the primary tool for managing AIX 5L. While you can use SMIT to manage PowerPC printing, Web-based System Manager is the only GUI tool for managing System V printing. The only SMIT command for System V printing is the option to change back to the PowerPC print subsystem. Web-based System Manager for the System V print subsystem has minimal function in AIX 5L Version 5.0, but the function will be enhanced in subsequent releases.

Web-based System Manager always uses the context of the current print subsystem. The tasks to be performed by the Web-based System Manager application include:

- Add new printers or classes of printers (parallel, serial, remote, and network).
- Set the default printer.
- Remove printers or classes of printers.
- Switch between the PowerPC and System V print subsystems.
The status information to be displayed for System V will include the following:

- Show the default printer.
- Display the requests on the default printer.
- Display the printers defined on the system.
- Display the stopped printers on the system.
- Show the printers that currently have problems.

When the PowerPC print subsystem is enabled, all SMIT menus continue to work as they do in AIX 4.3.3, but when the System V print subsystem is enabled, attempts to access some of the panels will result in an error stating that the PowerPC print subsystem is not active, while other panels are no longer visible.

1.4 Multiple approaches to printing

Under AIX 5L, there are several methods of attaching printers and directing print output to them. They include:

- Printing by directly addressing the printer device driver
- Printing directly to a network printer with a socket program
- Printing by utilizing the System V print subsystem
- Printing by utilizing the PowerPC print subsystem
- Printing by utilizing an advanced print management system

1.4.1 Printing by directly addressing the printer device driver

In this environment, the printer must be directly attached to one of the AIX serial or parallel ports. The application or user directs the file to be printed to a special device file in the /dev directory (usually /dev/lp##, where ## is the device number starting with lp0) that represents the device driver. The device driver then takes the file and sends it to the printer.

There are advantages and disadvantages to printing directly to the device driver. The major disadvantage is that you bypass the spool facility; therefore, you lose your ability to serialize print requests to a printer via the print spooling subsystem. This is because the application owns the printer device for the period that it is printing, and all other applications or users will get an error if they try to print. The major advantage is security, in that the printer can be set up so only that application or user can print to a particular printer.
Examples of situations where you may want to set up direct printing to a device driver include printer problem determination, printing checks, logging messages, and printing from applications that only print to files.

An example of a command to print to printer device lp02 is shown here:

```
# cat /etc/motd > /dev/lp02
```

1.4.2 Printing directly to a network printer with a socket program

This is similar to printing to a device driver, except that instead of redirecting the output to a file, it is piped to a program that makes a direct socket connection with a printer. Examples of programs that can send data to a printer are the `piohpnpf` program for sending to HP JetDirect printers, `pioibmpnf` for IBM Network Printers, and non-IBM programs such as `csportd`, `rprint`, or `dtsout`, which are used to send data to some terminal servers.

1.4.3 Printing by utilizing the System V print subsystem

In this environment, information that a user or application wishes to be printed is sent to the System V print spooler using the standard System V print command `lp`. Jobs are serialized using the System V print spooler. The spooling subsystem will itself communicate with the local printer device drivers or the network printing applications.

1.4.4 Printing by utilizing the PowerPC print subsystem

In this environment, information that a user or application wishes to be printed is sent to the `qdaemon` print spooler using any of the PowerPC print commands (for example, `enq`, `qprt`, `dtprint`, `lp`, or `lpr`). Jobs are serialized by the `qdaemon`, which calls backend programs that may format and filter the data, add computer setup information, and then send the data to the device driver or network printer program.

1.4.5 Printing by utilizing an advanced print management system

In this environment, printing is managed by a system like IBM Infoprint Manager. This gives users more control over jobs by ensuring that the print request is routed to a printer that is appropriate for the data being printed and is located where the user can get to the output easily. In general, this adds some cost to the solution, but also greatly enhances security and the control over the print output.

For an overview of Infoprint Manager for AIX and its capabilities, see Section 10.1, “Features and benefits” on page 455.
1.5 Comparing System V, PowerPC, and Infoprint Manager printing

These print subsystems have a lot in common in terms of architecture and yet are quite different in their approach to that architecture. All three subsystems pass the file to be printed through a series of filters that can make changes to the data, add setup information, and pass the data to the printer device. Table 1 shows some of the similarities and differences between these print subsystems:

Table 1. Comparison of print subsystem functions

<table>
<thead>
<tr>
<th>Action or function</th>
<th>System V</th>
<th>PowerPC</th>
<th>Infoprint Manager for AIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printing from the command line and flags passed</td>
<td>Primary command is lp with lpr also available. The lp command has -o options for print command line printer setup.</td>
<td>Primary commands are enq and qprt, but supports lp and lpr with slightly different commands. The lp and enq commands have -o options and qprt has direct options for printer setup.</td>
<td>Primary command is pdpr; the -x flag is used to pass attributes or options. eng, qprt, lp and lpr are also supported. Infoprint clients are also available on some platforms.</td>
</tr>
<tr>
<td>Administration</td>
<td>Web-based System Manager and command line with lpsadmin</td>
<td>Web-based System Manager, SMIT, and command line commands like lsvirprt</td>
<td>Java administrator and operator GUIs on AIX, Windows NT and Windows 2000, AIX VSM GUI, limited SMIT and command line</td>
</tr>
<tr>
<td>Scheduler</td>
<td>lpsched</td>
<td>qdaemon</td>
<td>pdservr</td>
</tr>
<tr>
<td>Printer or queue definition</td>
<td>Subdirectory of files in /etc/lp/printers directory</td>
<td>Stanzas in /etc/qconfig</td>
<td>Object-oriented: information stored in objects in the pdserver</td>
</tr>
<tr>
<td>Job Processing: Stage one</td>
<td>Interface shell scripts: Information passed by five parameters and three shell script arguments. Fifth parameter contains multiple print options passed by the lp -o options.</td>
<td>Backend programs: Information passed by libq subroutine calls and command line parameters. When piobe is the backend, a virtual printer is defined that fully supports printer setup.</td>
<td>Command line attributes are converted to Infoprint Manager attributes where appropriate; other attributes are passed to the backend.</td>
</tr>
<tr>
<td>Action or function</td>
<td>System V</td>
<td>PowerPC</td>
<td>Infoprint Manager for AIX</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Printer customization</td>
<td>Some is possible through the standard script and terminfo, but most often done through custom interface programs provided by printer manufacturers.</td>
<td>Uses virtual printer definitions built on predefined printer specific files and customized through SMIT for user requirements.</td>
<td>Customizable using administrative interfaces. IPDS printers are predefined by attachment type with specialized templates available for selected printers. AIX printers use internal printer definitions built on predefined printer specific files.</td>
</tr>
<tr>
<td>Print processing filters</td>
<td>Called by interface script based on filter setup with lpfilter, and by actually calling the filters in the shell script. Some filters are called by lpsched to convert files to PostScript automatically.</td>
<td>Formatting filters, such as pioformat, are called automatically based on the data type setup for the printer. Other filters are called by the piobe backend based on virtual printer attributes starting with f, and can be called by users from the command line. The enscript filter can be called automatically to convert text to PostScript.</td>
<td>Depends on type of incoming data and destination. Data stream transforms are called automatically based on the type of input data if the destination supports it. AIX formatting filters if the destination is supported by the PowerPC print subsystem.</td>
</tr>
<tr>
<td>Action or function</td>
<td>System V</td>
<td>PowerPC</td>
<td>Infoprint Manager for AIX</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Output filters</td>
<td>The shell script passes the setup and commands to output filters such as <code>lp.cat</code> and <code>postio</code>, which can talk directly with printers and handle errors.</td>
<td>The <code>piobe</code> backend passes data through <code>pioout</code>, which writes directly to the device. Errors are handled by communications through the qdaemon.</td>
<td>Secondary processes are provided to communicate with TCP/IP-attached printers using sockets, channel-attached printers, and PowerPC print filters. Errors are handled by communications through pdserver. Notification profiles can be set up on a job, device, and server level to handle delivery of error and informational messages.</td>
</tr>
</tbody>
</table>
1.6 Design considerations

The design of your printing environment will depend on a number of issues. This section describes some of the things that should be considered when setting up a print server, and how each of these items helps determine the overall design of your printing solution. Some key considerations are:

- The number of users, print jobs, and printers

 As the number of users increases, the load on printers and the print server increase. This usually results in more print jobs and more printers and a more complex management task for the administrator. When a printer runs out of paper or toner, or becomes jammed, the print queue may go down. Some of the things that you must consider are:
 - Who can fix the problem and reenable the queue?
 - How are messages sent to users and administrators?
 - What is the impact to other users?
 - Can the process of making printers available be automated?
• The experience of the system administrator

The choice of print subsystem will often be based on the background of the system administrator. If the administrator has extensive experience in AIX, then they will often lean toward the PowerPC print subsystem because of the SMIT configuration tools. On the other hand, if the administrator has more experience on a UNIX system, such as SCO or Solaris, then they will likely lean toward using the System V print subsystem. In the case when the administrator comes from an IBM mainframe background, Infoprint Manager may be required to give them the level of comfort and control that they are used to.

• Security considerations

Security of printers can be a very important issue for some companies. This is especially important when printing financial documents, such as checks, when printing on expensive printed forms, or when printing sensitive information, such as performance appraisals. In these cases, the ability to limit printing to a select number of users is an important consideration. The System V print subsystem and Infoprint Manager both have some built-in capabilities for restricting users to certain printers. System V uses the printer to allow and deny attributes, in order to control user access to local printers and from users on remote clients. Infoprint Manager can be implemented with or without DCE, depending on the level of security required. In the PowerPC print subsystem, customization of the backend must be done to restrict user access.

• The use of printed or electronic forms

When an application prints to a preprinted form that must first be loaded into a printer, it is important that other users do not print to the printer while these expensive forms are loaded. This is only a problem when multiple forms or forms and plain paper are used in the same printer. The System V print subsystem has a built-in capability to allow or deny users access to selecting a form and form properties when printing. Infoprint Manager can also provide this function by allowing the administrator to specify which forms a printer supports, and by restricting access to a printer to specific users. Infoprint Manager checks to see if any printers support a user-requested preprinted form before accepting a job, and will not actually schedule a job to a printer until the operator signals that the requested form is actually mounted and available. Infoprint Manager also supports use of electronic forms. PowerPC printing does not have this capability, and customization to add this capability means creating multiple queues and managing which queues are enabled while a form is loaded.
• The location of printers relative to the server and attachment method

The distance of the printers from the server, and the number of printers at a particular location, will determine how the printers can be attached.

- Parallel attached:

 One printer that is in the same room as the server can be attached using the parallel port. Other parallel printers must be attached using either serial to parallel converters or through network interface boxes.

- Serial attached:

 Printers at the same site can be attached using either serial communications methods, such as RS/232 or RS/422. By using the 128-port adapter combined with DSU/CSU modems and remote RANs, users at up to four remote locations per adapter can be supported as local devices. Also included in serial attached printers are printers attached to the back of a serial attached ASCII terminal. The attachment of serial printers seems to cause administrators the largest amount of problems of all attachment types associated with matching properties and getting wiring pinouts correctly.

- Network attached:

 Printers attached over the network can be directly connected to the network using internal cards and network interfaces, or through support devices, such as network print servers, thin clients, or terminal servers. Network attached printers can be attached over LANs and WANs and therefore can be located anywhere on the network, including different cities or countries. One advantage of network attached printers that is often overlooked is the ability to use standard network trace tools for debugging printing problems. Network printing often offers the most reliable wiring and the most flexible solution for placement of printers and servers.

• The location of printers relative to users

Users naturally prefer printers that are in close proximity to their desks. This means that the printer may be remote to the system administrator or the technician managing the print queues. It may be necessary to give some of these remote users access to commands for managing printers and queues.

In addition, users may only want to view the status and availability of printers that are close to them. One of the features that you want to look for in this environment is one where the print subsystem supports directory services for providing the appropriate information to different users. Infoprint Manager allow association of users with different printers.
With the PowerPC printer subsystem, this will mean writing separate scripts for different users.

- Print job load balancing

 System V print subsystem offers the concept of classes of printers, where a user can submit a job to a class of printers, and the subsystem will use this for simple load balancing. The PowerPC print subsystem has the concept of load balancing by allowing the administrator to build queues with multiple queue devices. When the user prints to the queue, the job will be printed on the first available queue device assigned to that queue. Infoprint Manager supports printer pooling and automatic workload balancing, including the ability to specify print deadlines and “print-after” times, to group jobs into batches, and to schedule jobs based on size.

1.7 Choosing the correct print subsystem

When considering which subsystem to use in your environment, it is important to understand some of the advantages of each of the available print subsystems.

1.7.1 System V print subsystem comparison

The System V Release 4 print subsystem, which is often referred to as SVR4, has been used on a number of UNIX operating systems for a long time, and was introduced into AIX as part of the Monterey project based on SCO’s Unixware 7 print subsystem.

System V remote printing was left out of the AIX implementation because this method of printing to remote machines is outdated and existed mainly for backward compatibility. However, BSD remote printing is implemented; this is the standard in UNIX and provides the print capability that UNIX users have come to expect.

1.7.1.1 Advantages of the System V print subsystem

- Compatibility with other UNIX print solutions

 This is one of the main reasons that IBM has moved to the System V print subsystem. System administrators from HP/UX, Sun Solaris, SCO and other UNIX variants will find the directory structure, commands and command flags more familiar.

- Availability of printer interface models

 Printer manufacturers write a single interface shell script for different UNIX systems that contains minor ‘definition’ modifications for individual UNIX
variations. With the support of System V printing in AIX, it will be easier for these manufacturers to add support for AIX printing.

- **Support for loading forms in printers**

 The ability to use System V based printer forms is available from the command line in AIX 5L Version 5.0, and will be enabled from the Web-based System Manager in a future release.

- **Inclusion of standard PostScript filters**

 The System V print code includes print filters for converting a number of file formats to PostScript with the inclusion of some formatting and page selection.

1.7.1.2 Disadvantages of the System V print subsystem

- **IBM Network Printer support**

 Currently IBM Network Printers are only supported as BSD remote printers in System V printing. However, by downloading and using the interface models created for SCO, full support should be achieved. A description of how to provide this support by modification of the SCO interface programs is provided in Section 4.2.5, “Example: Modifying the SCO IBM Network Printer 12 script” on page 147.

- **Lexmark Network Printer support**

 Lexmark Network Printers are only supported as BSD remote printers in System V printing in AIX 5L. Lexmark also includes SCO interface models for System V printing on their Web site, and it is likely that they will add AIX 5L support in the future. See Section 4.2.6, “Example: Modifying the SCO Lexmark interface script” on page 150 for more details.

- **Printer accounting is not tied into AIX `sar` in the same manner as the PowerPC print subsystem.**

- **You must first add a print device and then add a printer in the current release of Web-based System Manager. This is not as well integrated on AIX as it is in the PowerPC print subsystem.**

- **The System V print subsystem is less sophisticated on AIX than is the PowerPC print subsystem at the time of writing this document.**

- **Modifying a System V terminfo attribute or other printer attribute customization has fewer supported tools than changing a PowerPC virtual printer attribute.**

- **The output from status commands like `lpstat` have fewer formatting options, and are generally harder to read than PowerPC status when a large number of printers are involved.**
Native support for terminal and Xstation attached printers is not available.

National language support is not yet as fully integrated as it is in PowerPC based printing.

1.7.2 PowerPC print subsystem comparison

When the PowerPC print subsystem was created, it was designed to combine the features of System V and BSD printing, along with some unique features found only in AIX.

1.7.2.1 Advantages of the PowerPC print subsystem

- **Easy transition to AIX from either BSD or System V.**

 By offering many of the print commands, such as `lp`, `lpr`, `lpstat`, `enable`, `disable`, and `cancel`, the transition for users from other UNIX operating systems to PowerPC printing is quite easy.

- **Powerful and versatile print drivers.**

 The print drivers used to drive specific printers were designed in such a way that most printing options available on the printer could be requested by a user by specifying flags on the AIX-specific `qprt` command, and the defaults for the printer were easily changed by the system administrator using the AIX SMIT system administration tool.

- **Limits fields and option validation.**

 Limits fields give the user and administrator a valid range of choices for each option and would prohibit a user from using an invalid value when printing or an administrator from setting up an invalid parameter while setting the printer defaults.

- **Virtual printer customization is supported through menus and GUI interfaces.**

 SMIT, Web-based System Manager, and the command line tool `lsvirprt` all allow an administrator to customize individual printers through menu selection and other simple methods that do not require the knowledge of shell script programming, as would be required in System V printer customization.

- **Powerful spooling subsystem with customizable backends.**

 The print spooler in the PowerPC subsystem can call custom programs and pass information through a standard published API, which allows the `qdaemon` to pass important information about the queue and the job to the backend program. This allows the subsystem to serialize other types of
jobs in addition to printing, and it makes the PowerPC print subsystem totally customizable and extensible.

- Print devices and queues can be added in a single action from SMIT.
- Administrators can dial in and use text-based SMIT menus more effectively than Web-based System Manager (which is the only non-command line interface for System V printers).
- Print filters are easy to setup.
 Several print filters, such as `pr` and `asa`, are installed by default. Other filters are easy to install to a virtual printer, and can then be designated by the user when printing. This capability can be used for file conversion as well as downloading fonts and electronic forms
- Better documentation available.
 The *AIX V4 Printer Guide*, SC23-2783, provides more information on writing new virtual printers and backends than is available for System V on any UNIX platform.
- Built-in support for Xstation and terminal attached printers.
 Backends are supplied for printing to Xstations and terminal attached printers. With terminal-attached printers, the data stream is intermixed with the terminal and keyboard I/O in order to give more efficient printing while users are using the terminals.
- PowerPC printing is fully National Language Support (NLS) enabled.
 The virtual printer subsystem has NLS translation tables to support conversion of characters on the screen to the appropriate character that is supported by the printer code page, and automatic code page switching when characters on the screen are found to print from a secondary code set on the printer.

1.7.2.2 Disadvantages of the PowerPC print subsystem

Some of the features that give PowerPC printing an advantage over other UNIX print methods (such as System V) also create some of the disadvantages.

- Complexity
 Because the print drivers in PowerPC printing are very powerful, they are also inherently complex. This makes it very difficult for the average user to understand and make changes to a print driver or to create a driver for a new printer.
• Portability and availability of printer drivers

Since the PowerPC virtual printers are unique to AIX, an interface program filter written by an individual or printer manufacturer for another operating system can not be used in the PowerPC print subsystem on AIX. The virtual printer colon file must be completely re-written. This delays the introduction of new printer drivers for AIX. Only the IBM Printing System Division and Lexmark write drivers for their own printers, and IBM AIX development has traditionally only provided the most popular HP printers.

• No support for preprinted forms

There are no commands to indicate when a form is loaded into a printer or to specify a form when printing.

• Different flags for BSD and System V print commands

Many flags for BSD and System V print commands are different in the PowerPC print subsystem than they are in the standard print subsystems on other UNIX systems.

1.7.3 Infoprint Manager comparison

Infoprint Manager for AIX is the follow-up product to Print Services Facility (PSF) for AIX (also known as PSF/6000), Printing Systems Manager (PSM), and Print On Demand software, and it incorporates features of each while providing additional function. See Chapter 10, “Overview of Infoprint Manager for AIX” on page 455 for an overview of Infoprint Manager.

1.7.3.1 Advantages of Infoprint Manager for AIX

• Support for a wide range of printers and other destinations
 - Standard printing to all printers supported by the AIX 5L PowerPC print subsystem
 - Advanced function printing to printers that support the Intelligent Printer Datastream (IPDS), PCL (PCL 4, 5, and 5C), and PPDS
 This includes monochrome printers with speeds as fast as 1002 impressions per minute (including color and MICR post-processing support) and full-color printers up to 138 impressions per minute.
 - Support for e-mail and fax as output destinations

• Interoperability with many UNIX and non-UNIX platforms using standard networking protocols

• Strong printing and printer management
 - Ability to integrate with Tivoli Output Manager
- Integration with SNMP and Network Printer Manager (NPM) for improved error detection and status information

- Flexible event notification

Infoprint Manager provides notification that you can tailor depending on the needs of users, operators, and administrators. For example, users can receive information about their own jobs, operators can receive information on Infoprint objects requiring attention, and administrators can receive information on configuration changes.

• Scalability

Infoprint Manager for AIX can be installed on a single RS/6000, or it can be installed on multiple servers with shared information and resources. This allows you to manage printing through LANs and WANs with a single view of all printers and resources.

Infoprint Manager for AIX servers can interoperate not only with each other, but with Infoprint Manager for Windows NT and Windows 2000 servers as well, again using shared information.

• Option validation and intelligent job routing

- Print requests are initially validated to ensure that a printer actually exists which can support the job requirements. Jobs are not actually scheduled to the destination until all resources are ready at the printer.

- If the destination supports it, Infoprint Manager automatically detects the data type of incoming jobs and invokes a data stream transform to convert the incoming data type to the language of the target printer.

• Flexible job scheduling and workload management options

- Users can request jobs be printed before or after a certain time, or can group jobs into batches to be printed together.

- Administrators can restrict jobs to specific printers based on size.

- Infoprint Manager can retain printed jobs for specified period of time, either as configured by the administrator or as requested by the users. When the retention period expires, the jobs will automatically be deleted.

• Forms management capability

- Jobs requiring a specific form will not print until the operator indicates that form is mounted; if the form is already mounted, the job will be scheduled automatically if all other resources are available.

- Infoprint Manager also supports electronic forms.
• Security
 - Standard security based on user or group IDs and access control lists (ACLs) for both operations and objects (servers, queues, destinations)
 - Additional security available with DCE integration
• Optional integrated digital scanning and library option
• Automated migration for existing PSF for AIX and PSM customers

1.7.3.2 Disadvantages of Infoprint Manager for AIX
• Complexity
 Infoprint Manager is a very flexible and powerful product, but with that power comes complexity. Although it is possible to install Infoprint Manager and use defaults initially, to take full advantage of its capability will take time and experience.

 In order to maximize your chances for success, IBM recommends that you contract with IBM Printing's professional services organization to plan for, install, and initially configure your Infoprint Manager for AIX system.

 Infoprint Manager is not necessarily an appropriate solution for every customer or environment.

• Cost
 Infoprint Manager is a licensed program product with priced features, whereas the PowerPC and System V print subsystems are included in AIX 5L.

 The pricing in Infoprint Manager Version 3.2 is more modular than in earlier versions, so you only pay for the features you really need. (Infoprint Manager is competitively priced with other products in the marketplace.) Professional services for installation or customization will cost extra.

• Limited support in AIX 5L
 - Infoprint Manager will require a Program Temporary Fix (PTF) in order to install and work with AIX 5L. That PTF is not yet available; check with the IBM Support Center for the current status.
 - Infoprint Manager will require that the PowerPC print subsystem in AIX 5L be the active subsystem. There is no support yet for the System V print subsystem.
1.7.4 Comparison by feature

Table 2 compares the two base print subsystems and Infoprint Manager for AIX by features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>System V print subsystem</th>
<th>PowerPC print subsystem</th>
<th>Infoprint Manager for AIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robustness</td>
<td>+ at Version 5.0</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Text printing</td>
<td>+++</td>
<td>+++</td>
<td>+++ with external formatting capabilities.</td>
</tr>
<tr>
<td>PostScript printing</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Greater than 1000 jobs to queue</td>
<td>N/A</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>LPR/LPD printing</td>
<td>++ lpNet is used for both inbound and outbound lpr/lpd printing. All jobs are logged, but the output is less usable for solving problems.</td>
<td>+++ rembak is used as the lpr, and the lpd daemon as the lpd. Both offer better logging capabilities.</td>
<td>+++</td>
</tr>
<tr>
<td>JetDirect printing</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Status formatting</td>
<td>+</td>
<td>++</td>
<td>+++ (GUI)</td>
</tr>
<tr>
<td>Mounted forms support</td>
<td>+++ Using lpforms</td>
<td>--</td>
<td>+++</td>
</tr>
<tr>
<td>LDAP security</td>
<td>Planned for the future.</td>
<td>--</td>
<td>- (DCE support available).</td>
</tr>
<tr>
<td>Filters</td>
<td>+++ Automated through lpfilters or by calling directly from interface scripts.</td>
<td>+++ User specified when printing, add filters through SMIT menus.</td>
<td>+++ Automatic data stream "sniffing."</td>
</tr>
<tr>
<td>Available printers supported</td>
<td>+ Standard, but dependent on printer manufacturers.</td>
<td>+ Many available, but not standard and few are available from printer manufacturers.</td>
<td>++</td>
</tr>
<tr>
<td>Feature</td>
<td>System V print subsystem</td>
<td>PowerPC print subsystem</td>
<td>Infoprint Manager for AIX</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Download fonts</td>
<td>++ PostScript download, and mounted font cartridge support.</td>
<td>++ Support for any font download available through virtual printers.</td>
<td>+++ for AFP printers, including outline and raster, single and double-byte. ++ for AIX printers; same as PowerPC print subsystem.</td>
</tr>
<tr>
<td>Multiple copies</td>
<td>+++ Custom interface can use printer capability.</td>
<td>++ May send the print job multiple times to printer.</td>
<td>+++</td>
</tr>
<tr>
<td>Program support</td>
<td>- Not documented, but possibly can be done.</td>
<td>+++ Can serialize most AIX programs.</td>
<td>+ Can execute AIX programs through BSD device support system.</td>
</tr>
<tr>
<td>Command line control</td>
<td>++ Customizable by interface and filter.</td>
<td>+++ Extensive with qprt.</td>
<td>+++ Extensive with pdpr.</td>
</tr>
<tr>
<td>Terminal attached printers</td>
<td>- Not currently supported.</td>
<td>+++ Virtual printer support.</td>
<td>--</td>
</tr>
<tr>
<td>Xstation attached printers</td>
<td>- Not supported.</td>
<td>++ Backend supplied.</td>
<td>+</td>
</tr>
<tr>
<td>Problem determination logs</td>
<td>+ Easy to set up.</td>
<td>+++ More information and logging capabilities.</td>
<td>+++</td>
</tr>
</tbody>
</table>

1.7.5 Comparison by data type

Table 3 compares the two base print subsystems and Infoprint Manager by the type of information that needs to be printed:

Table 3. Printing systems comparison by data types supported

<table>
<thead>
<tr>
<th>Output</th>
<th>System V print subsystem</th>
<th>PowerPC print subsystem</th>
<th>Infoprint Manager for AIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple text</td>
<td>+++</td>
<td>+++</td>
<td>+++ External formatting supported.</td>
</tr>
<tr>
<td>PostScript</td>
<td>+++</td>
<td>+++</td>
<td>+++ PDF also supported.</td>
</tr>
</tbody>
</table>
Chapter 1. Overview of AIX 5L print subsystems

1.8 Switching between the two AIX 5L print subsystems

The default print subsystem in AIX 5L Version 5.0 is the current PowerPC print subsystem; the System V print subsystem is an alternate method of printing. At install time, the PowerPC print subsystem is always set as the active one, and System V is always inactive. They can not both be set to the active state at the same time using the normal procedures. However, there is nothing to prevent an administrator from overriding this manually for some print operations.

If you have problems with switching print subsystems, check to see if there are jobs still queued, or processes that are hung. When switching from the System V print subsystem, check for queued jobs with the command:

```bash
# lpstat -o
```

<table>
<thead>
<tr>
<th>Output</th>
<th>System V print subsystem</th>
<th>PowerPC print subsystem</th>
<th>Infoprint Manager for AIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other data formats</td>
<td>--</td>
<td>--</td>
<td>PCL, SAP R/3, TIFF, GIF, JPEG, DBCS, EUC, ditroff, EBCDIC & ASCII line data, AFP</td>
</tr>
<tr>
<td>From PC programs</td>
<td>+++</td>
<td>+++</td>
<td>+++ Windows clients provided.</td>
</tr>
<tr>
<td>To forms in printers</td>
<td>+++</td>
<td>- (manual setup only)</td>
<td>+++</td>
</tr>
<tr>
<td>Checks, employee evaluations, and so on</td>
<td>When LDAP available, extra security will be provided.</td>
<td>Security only available through custom backend.</td>
<td>+++ (non-DCE uses IDs and ACLs; DCE uses authentication and authorization).</td>
</tr>
<tr>
<td>Envelopes</td>
<td>No special support, but is supported by some manufacturers’ interface scripts.</td>
<td>Command line paper selection for envelopes as well as menu customization of envelope sizes.</td>
<td>- For AIX printers, same as PowerPC printing. - For AFP printers, default resources provided.</td>
</tr>
<tr>
<td>Electronic forms</td>
<td>++ Could setup as font.</td>
<td>++ Can add with filter.</td>
<td>+++</td>
</tr>
</tbody>
</table>
If there are jobs still queued, use the `cancel` command to cancel them. Also, if the attempt to switch simply hangs, look for processes that may be hung or orphaned by using the `ps` command. One culprit to watch out for is `lpNet`.

```bash
# ps -ef | grep lpNet
```

If there are `lpNet` processes that are owned by PID 1, then use `kill -9` to remove these processes.

1.8.1 Three ways to switch between print subsystems

There are three ways to switch between print subsystems: 1) from Web-based System Manager, 2) using SMIT, and 3) using the command line.

Option 1: Using Web-based System Manager

The main Web-based System Manager “Directory Disabled Printers (System V)” panel in either print subsystem has an option to change to the other print subsystem under the “TASKS” menu. You will get one of these menu options:

- Switch to PowerPC print subsystem
- Switch to System V print subsystem

To change print subsystems, simply click on this selection.

When choosing the option to switch print subsystems, you will get a warning that the current subsystem printers will no longer be available.

Option 2: Using SMIT

The option to Change / Show Current Print Subsystem has been added to the top level Print Spooling menu in SMIT, as shown in the following panel:
By Choosing Change / Show Current Print Subsystem, the next panel will display the line to select the print subsystem, as shown here:

Change / Show Current Print Subsystem [AIX]

The current subsystem will show up in the box on the right, and the field will toggle between two choices AIX and System V. Executing the panel will run the command /usr/aix/bin/switch.prt, which will in turn run the script /usr/aix/bin/switch.prt.subsystem, which will take the value displayed as input. Running the command with the current system as input will result in an error. Running the command with the alternate subsystem will switch the system from the current one to the alternate one. The more queues that are defined in the subsystem that you are exiting, the longer the command to switch will take.

Option 3: Using the command line
The switch.prt command can be used to switch between printer subsystems, or to display the currently active printer subsystem. The syntax of the command is:

switch.prt [-s print_subsystem] [-d]

The valid values for print_subsystem are AIX and SystemV. Running the command with the -d flag will display the current print subsystem.
Examples:

```
# switch prt -s SystemV
# switch prt -s AIX
```

For security reasons, this command is a front-end to the script
/usr/aix/bin/switch prt.subsystem which will do the real work. This command
is also called by the Web-based System Manager and SMIT interfaces.

1.8.2 Actions when switching from PowerPC to System V printing

The switch prt.subsystem command uses the following logic in switching from
PowerPC to System V printing:

1. Makes sure that you are not trying to switch to the current subsystem.
2. Checks to see if all print jobs are terminated. If there are any active jobs,
 the following error message will be printed:
   ```
   All print jobs must be terminated
   ```
3. Stops qdaemon, writesrv, and lpd daemons and modifies /etc/inittab, so
 they do not start automatically if the system is rebooted.
4. Disables the SMIT menus as much as possible.
5. Switches the Web-based System Manager plug-ins.
6. Changes the lock files from PowerPC to System V.
7. Removes AIX links and add System V links for the duplicate commands
 between them. This includes the following files: /usr/bin/cancel,
 /usr/bin/enable, /usr/bin/disable, /usr/bin/lp, /usr/bin/lpstat, /usr/ucb/lpq,
 /usr/ucb/lpr, and /usr/ucb/lprm. This includes changing the tcbck
database.
8. Launch /usr/lib/lp/lpsched to start the System V print subsystem.

1.8.3 Actions when switching from System V to PowerPC printing

The switch prt.subsystem command uses the following logic in switching from
System V to PowerPC printing:

1. Makes sure that you are not trying to switch to the current subsystem.
2. Checks to see if all print jobs are terminated. If there are any active jobs,
 the following error message will be printed:
   ```
   All print jobs must be terminated
   ```
4. Enables the SMIT menu items.
5. Changes the lock files from System V to PowerPC.

6. Removes System V links and add PowerPC links for the duplicate commands between them. This includes the following files:
 /usr/bin/cancel, /usr/bin/enable, /usr/bin/disable, /usr/bin/lp, /usr/bin/lpstat, /usr/ucb/lpq, /usr/ucb/lpr, and /usr/ucb/lprm. This includes changing the tcbck database.

7. Modifies /etc/inittab to change programs started on reboot and start the qdaemon, writesrv, and lpd daemons.

1.8.4 FAQ about switching print subsystems

Q: What happens if there are queues or printers defined when I switch to a different print subsystem?

A: The queues and printers will remain defined, but will be inactive while the other print subsystem is active. If the print subsystem is switched back, the queues and printers will become available again.

Q: What happens if there are active jobs when I try to switch print subsystems?

A: The `switch.prt` command will return an error message, and there will not be a switch of subsystems.

Q: What happens if there are disabled queues or printers with waiting print jobs?

A: The queues or printers will remain disabled, and will not be available while the other print subsystem is available. When the original print subsystem is reactivated, the printers will once again show a status of disabled or DOWN. Jobs that were originally queued to the printer, will print as soon as the queue or printer is enabled.

Q: What happens if a user submits a job with `enq` or `qprt` when the System V print subsystem is active?

A: You will receive the following error message:

```
Cannot awaken qdaemon (request accepted anyway)
```

However, `enq` still builds a job description file in /var/spool/lpd/qdir. When the PowerPC print subsystem is reenabled, the jobs will be queued and print to the PowerPC defined printer.
1.9 To spool or not to spool

The term *spooling* is defined in this context to mean making a copy of a print file before sending the file to the printer. When a print job is spooled, it is first copied to the spool directory for the print subsystem, and then the copy of the file is printed. This means that if you make a change to the file after it is queued, but before it is sent through the print subsystem, this will have no effect on what is printed. On the other hand, if you do not spool the print file, then the current contents of the file at the time it reaches the head of the queue will be sent to the printer.

1.9.1 When will a print job be spooled?

The following list gives the circumstances when a print job will be spooled:

- When the *lpr* command is used with no flags, the job will be spooled.

 # lpr -P laser4 /home/guest/readme.txt

- When the print job is piped to the print command:

 # cat /etc/qconfig | lp -d ljets5

- When the *lp*, *enq*, or *qprt* uses the -c flag:

 # lp -c -d myprt /etc/motd

 # enq -c -P floor3 /tmp/docuprt.ps

 # qprt -c -P simple /usr/lpp/bos/README.txt

- When the job is received from a remote system.

- When enabled as default System V print subsystem:

 # lpadmin -O copy

 The *lpadmin -O copy* flag sets the option in the /etc/default/lp file that says:

 copy-files: copy

 The default in System V is not to spool.

1.9.2 Where will the file be spooled?

There are three places that you can expect files to be spooled. These are:

- For files received by *lpd*, files are spooled in /var/spool/lpd.

- In the PowerPC print subsystem, files are spooled in /var/spool/qdaemon.

- In the System V print subsystem, files are spooled in /var/spool/lp/tmp under separate directories for each server. For the local printing, the spooling will go to /var/spool/lp/tmp/host-name, where host-name is the name returned by the *hostname* command. For remote printing, the files are
stored in /var/spool/lp/tmp/remote-host-id, where remote-host-id may be the remote host IP address, hostname, or fully qualified host name depending on how the remote queue is defined. The /var/spool/lp/tmp directory is actually a link to /spool/tmp. An example for host lpsrv1, the local files are stored in /var/spool/lp/tmp/lpsrv1. The files begin with the job number and end with a -0 for the print job description file and with -1 for the actual data file.

1.9.3 How much spool space will you need?

You will need enough space to hold all of the files that may be queued at one time. To find out how much space is currently available in /var, use the df command. The df -k flag will give the output in kilobytes, as shown here:

```
# df -k
Filesystem  1024-blocks  Free  %Used  Iused %Iused Mounted on
/dev/hd4     20480     8576  59%    1126   11%  /
/dev/hd2     524288    4928  100%   21681  17%  /usr
/dev/hd9var  8192  2804  66%    374  19%  /var
/dev/hd3     20480    19048   7%    77  3%  /tmp
/proc        -       -       -    -    -  /proc
/dev/hd10opt 4096  3332  19%    32  4%  /opt
/dev/lv00   12288   3608  71%    48  2%  /share
```

This shows that there are 2804 kilobytes of space left in /var. This is much less than you would normally need on a print server.

The simple way to expand space is to increase the size of /var. The disadvantage of this is that the /var file system is hard to reduce in size if you accidently make it too large. Also accounting files in /var/adm can fill up /var. To increase the size of /var, either use the fastpath smitty chjfs, or use the command line option:

```
# chfs -a size='+30000' /var
```

The value is in 512 byte blocks, so this will increase the size by about 15 MB. The df -k command confirms this with a new size of 18668 kilobytes. This may be adequate only for a small server with simple text files.

1.9.4 Adding a separate file system for spooling?

The advantage of adding a separate file system for spooling is that it is relatively easy to increase or decrease the file system size based on spooling requirements. Create a new file system starting with the SMIT fastpath smitty jfs and choose Add a Journaled File system and follow the directions to add a standard journaled file system. This will give you the following SMIT panel.
that you can fill out the SIZE, MOUNT POINT, and set Mount AUTOMATICALLY at system restart to yes:

<table>
<thead>
<tr>
<th>Entry Fields</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume group name</td>
<td>rootvg</td>
</tr>
<tr>
<td>SIZE of file system (in 512-byte blocks)</td>
<td>[20]</td>
</tr>
<tr>
<td>MOUNT POINT</td>
<td>[/spool]</td>
</tr>
<tr>
<td>Mount AUTOMATICALLY at system restart?</td>
<td>yes</td>
</tr>
<tr>
<td>PERMISSIONS</td>
<td>read/write</td>
</tr>
<tr>
<td>Mount OPTIONS</td>
<td>[]</td>
</tr>
<tr>
<td>Start Disk Accounting?</td>
<td>no</td>
</tr>
<tr>
<td>Fragment Size (bytes)</td>
<td>4096</td>
</tr>
<tr>
<td>Number of bytes per inode</td>
<td>4096</td>
</tr>
<tr>
<td>Allocation Group Size (MBytes)</td>
<td>8</td>
</tr>
</tbody>
</table>

Next, follow the smitty storage menu to mount the file system.

Next, check the size with `df -k` command, as shown above. Increase the file system to the size you want with the following command:

```
# chfs -a size='+30000' /spool
```

and change the ownership of /spool to lp:lp for System V or root:printq for PowerPC:

```
# chown lp:lp /spool
# chown root:printq /spool
```
Chapter 1. Overview of AIX 5L print subsystems

The next step is to build the links. For the PowerPC print subsystem, use the following commands to create a spool directory for PowerPC printing:

```bash
# cd /var/spool
# mv qdaemon /spool
# chown bin:printq /spool/qdaemon
# ln -fs /spool/qdaemon qdaemon
# ls -l
```

```
total 10
-dwn-xr-x 4 bin cron 512 Sep 22 04:21 cron
-dwn-xr-x 7 lp lp 512 Oct 11 15:35 lp
-dwn-xr-x 5 bin printq 512 Oct 11 18:19 lpd
-dwn-xr-x 2 bin mail 512 Oct 06 16:55 mail
-dwn-xr-x-- 2 root system 512 Sep 20 16:39 mqueue
-lnw-xn-x 1 root system 14 Oct 20 14:25 qdaemon -> /spool/qdaemon
-dwn-xr-x 2 root system 512 Oct 06 15:55 rwho
-dwn-xn-x 2 bin staff 512 Oct 06 15:55 secretmail
-dwn-xr-x 10 uucp uucp 512 Oct 12 09:55 uucp
-dwn-xn-x 2 uucp uucp 512 Oct 12 09:55 uucppublic
-dwn-xn-x 2 root system 512 Sep 20 16:39 writecsv
```

If you disable the printer and spool a job to the printer and look at /spool/qdaemon, you will see the file that has been queued. In the output below, the spooled file is tcOsOEa.

```bash
# lptest 5 5 | enq -P testq
# ls -l /spool/qdaemon
```

```
total 16
-dwnxnw-x 2 bin printq 512 Oct 20 14:24 qdaemon
-rw-r----- 1 root printq 30 Oct 20 14:36 tcOsOEa
```

For System V print subsystem, a similar thing could be done with /var/spool/lp/tmp. First stop the scheduler with:

```
# lpshut
```

It is important that you move the tmp subdirectories. This should happen automatically with:

```
# cd /var/spool/lp
# mv tmp /spool
```

Link the directories, as shown here:

```
# ln -fs /spool/tmp tmp
```

Use `ls` to make sure all the files have been moved:

```
# ls -l /spool
```

```
total 24
-dwnnxn-x 2 root system 512 Oct 20 13:55 lost+found
```
At this point, you may have to restart the scheduler with:

```
/usr/lib/lpd/lpsched
```

1.10 Printer devices and device drivers

Local printing to serial and parallel attached printers for both the System V and PowerPC print subsystems is done through standard AIX device drivers. Before using either print subsystem, you should be aware of how these device drivers work and some of the commands that you can use to look at the devices.

1.10.1 Adding a printer device

Print devices can be added from the command line, from SMIT, and from Web-based System Manager. The device created in all three methods will be the same, and can be used by either of the base print subsystems. The printer type that you add when creating a device determines the buffer size and some timing parameters for the serial or parallel device driver that is ultimately used. It is not important that the device printer type and the print subsystem printer type match exactly, only that they are similar in type. If you are adding a laser printer, then you should choose any laser printer that is similar in speed to the actual print model you will be using.

1.10.2 Listing printer devices

When a print device is added, the device is represented by a special character device file in /dev with a name starting with lp, and a number of the printer that is given in sequential order as the devices are added. A list of all the printers currently on a system can be listed with `lsdev`, as shown here:

```
$ lsdev -Cc printer
lp0 Available 00-00-00-00 Lexmark Optra laser printer
lp1 Available 00-00-02-00 IBM Network Printer 12
lp2 Available 00-00-01-00 Hewlett-Packard Color LaserJet 4500
```

This not only gives you the models of all printers that have been added, but also tells you if they are available, and the adapter and port number where they have been installed.
To list all the available printer types, use:

```
# lsdev -Pc printer
```

Individual device files can be listed with the `ls -l` command:

```
# ls -l /dev/lp0
crw-rw-rw-   1 root     system    26,  0 Oct 19 13:52 /dev/lp0
```

Device files for local serial and parallel devices should always have a listing starting with `cr` for character devices that are readable.

1.10.3 Printer device attributes

The `lsattr` command can be used to list the attributes of a particular printer device. This gives the timeouts and formatting characteristics of a printer. The following example shows the `lsdev` for parallel printer lp0:

```
# lsattr -El lp0
ptop       300       Printer TIME OUT period                    True
line       64        Number of LINES per page                   True
col        80        Number of COLUMNS per page                 True
ind        0         Number of columns to INDENT                True
plot       no        Send all characters to printer UNMODIFIED  True
backspace  yes       Send BACKSPACES                            True
cr         yes       Send CARRIAGE RETURNS                      True
form       yes       Send FORM FEEDS                             True
lf         yes       Send LINE FEEDS                             True
addcr      yes       Add CARRIAGE RETURNS to LINE FEEDS         True
case       no        Convert lowercase to UPPERCASE             True
tabs       yes       EXPAND TABS on eight position boundaries   True
wrap       no        WRAP CHARACTERS beyond the specified width True
mode       no        Return on ERROR                            True
interface  standard  Type of PARALLEL INTERFACE                 True
autoconfig available STATE to be configured at boot time        True
busy_delay 0         Microseconds to delay between characters   True
```

Using the `-E` flag gives the currently configured attributes, while a `-D` flag will list the default settings for the assigned printer type.
The attributes listed with the `lsattr` command come from the ODM or object database. It is also possible to view and change some attributes temporarily with the `splp` command. These attributes will only remain in effect until the next system reboot. The following shows the `splp` attributes for the parallel printer `lp0`:

```
# splp lp0
device = /dev/lp0 (+ yes ! no)
CURRENT FORMATTING PARAMETERS (ignored by qprt, lpr, and lp commands)
Note: -p + causes the other formatting parameters to be ignored.
-p ! pass-through? -c + send carriage returns?
-l 64 page length (lines) -n + send line feeds?
-w 80 page width (columns) -r + carriage rtn after line feed?
-i 0 indentation (columns) -t ! suppress tab expansion?
-W ! wrap long lines? -b + send backspaces?
-C ! convert to upper case? -f + send form feeds?
CURRENT ERROR PROCESSING PARAMETERS
-T 300 timeout value (seconds) -e ! return on error?
```

1.10.4 Printer device character formatting

The ability to write directly to a printer device file was introduced in Section 1.4.1, “Printing by directly addressing the printer device driver” on page 8, and in fact, this is how both the System V and PowerPC print subsystems send their jobs to local printers. To send the file `/etc/motd` to printer `lp5`, simply redirect the output of the `cat` command, as shown here:

```
$ cat /etc/motd > /dev/lp5
```

One capability of the printer device driver that you should be aware of is its ability to do minor print formatting of the print file as it is being sent to the printer. From the `splp` output, you might be able to guess that some of these capabilities are adding carriage returns to line feeds and restricting the page width and length. These types of actions are usually only helpful for simple ASCII text files, and in fact can cause problems with formatted printer files by placing undesired control characters in the middle of the print file. When using the print subsystems, the device driver is placed in passthrough mode so this formatting does not occur. If you are printing directly to the device from an application, and find the file is not printing properly, you may want to try pass-through mode by using the `splp` command as follows:

```
# splp -p + lp0
```
Chapter 1. Overview of AIX 5L print subsystems

1.11 Print subsystem performance aspects

The performance of the printing for any print subsystem will be dependent on a large number of variables including:

- The number of print jobs active at once
- The number of printers or queues defined
- The number of jobs queued to a printer at any one time
- The number of users on the system
- The backend program or interface script efficiency and amount of processing required
- The size and type of files printed
- The amount of memory available
- The way that the disks are configured
- Whether jobs are spooled or queued
- How often people use status commands
- The administrative tools used to configure the printer

1.11.1 Performance based on the number of defined printers

The number of defined printers or queues affects performance of printer management, printer status reports, and printing files. Each time that a printer is defined, the length of the queue definition increases. This not only includes the list of printer directories and files in System V /etc/lp/printers directory or the number of stanzas in /etc/qconfig in PowerPC printing, but also the amount of memory allocated for the scheduler to manage the queues. When you make changes to printer definitions, the administrative tools must build larger lists, and it takes longer to bring up the definition panels. This is especially true when using Web-based System Manager.

The list generated by status commands like `lpstat` become increasingly long and take longer to display in a meaningful way. This is especially true when there are remote queues in the PowerPC print subsystem where unavailable queues will timeout before going to the next queue status listing.

When printing, the scheduler must check to first see if the printer exists and then, in some cases, if the print commands are valid for the specified printer or queue. This requires a search through the list of available printers until the requested printer is found, and then a check of the configuration for that printer.
1.11.2 Performance based on the number of active print jobs

When the scheduler (either lpsched or qdaemon) process a print job, the scheduler will fork processes to handle the job. This increases the number of processes running on the system, the amount of memory required to handle the processes, the amount of disk space required for temporary files, and the amount of context switching that will occur.

1.11.3 Performance based on the number of queued print jobs

When a large number of jobs are queued, each job has a process id assigned, and the scheduler must search through the list of jobs to find the one with the highest priority or the one that meets the requirements to be run next. For example, when several thousand jobs are queued to a single PowerPC queue, it can take several seconds to cancel a print job and the time that it takes to queue a new job is proportional to the number of jobs already in the queue. This means that system resources are being wasted, and the print subsystem becomes less efficient.

1.11.4 Performance based on the number of users

The number of users can have a significant impact on printing if the allow and deny functions are turned on for System V printers and forms.

1.11.5 Performance based on program efficiency

The efficiency of the scheduler, the interface or backend programs, and the filters that finally deliver the file to the printer all have an impact on the print subsystem efficiency. In general, compiled programs will be more efficient than shell scripts and thus use less resources. The actions performed by the filters will also determine the amount of CPU that is utilized. Each time that one filter pipes output to the next filter, additional memory and disk resources are consumed. A program that converts the file from one printer language to another will also consume more resource than one which simply adds a small amount of information to the front of the file and then passes the file through untouched.

1.11.6 Performance based on size and type of jobs printed

Files that are larger will require more memory and disk resources as they are piped from filter to filter. When a text job is processed, the length and width parameters, as well as some others, may require that the processing filter formatter will have to examine the file character by character. When printing a PostScript of formatted PCL file, the filter can pass the file directly without extensive formatting. In the PowerPC print subsystem, National Language Support requires that a translation filter be called when printing text files.
Both System V and PowerPC print subsystems have filters for converting text files to PostScript. These will put a load on the server that normally would be handled inside the printer.

Testing the difference between 8 KB and 80 KB files
The following tests were done on an RS/6000 model 260 with two CPUs with the following steps:

1. Create a queue that prints to a file in the /dev directory.
2. Create two test files using the `lptest` command shown here:
   ```
   # lptest 80 100 > /tmp/80x100.txt
   # lptest 80 1000 > /tmp/80x1000.txt
   ```
3. Create a script that prints each job 100 times.
4. Use the `timex` command to run the script for each fileset.
   ```
   # timex ./runjobs /tmp/80x100.txt
   ```
5. Use a stopwatch to time the total time until the last job clears the queue.
 Use the `lpstat -o | wc -l` command to determine how many jobs are still queued.

The results for each file are shown in Table 4.

<table>
<thead>
<tr>
<th>File size</th>
<th>System V print subsystem</th>
<th>PowerPC print subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time to queue</td>
<td>Time to print</td>
</tr>
<tr>
<td>8 KB (local)</td>
<td>80 seconds</td>
<td>10:45 minutes</td>
</tr>
<tr>
<td>80 KB (local)</td>
<td>80 seconds</td>
<td>10:35 minutes</td>
</tr>
<tr>
<td>8 KB (remote)</td>
<td>80 seconds</td>
<td>9:20 minutes</td>
</tr>
</tbody>
</table>

The time to queue the print job was the time returned by the `timex` command. The time to print is the time until the queue shows all jobs have been processed. The jobs were being printed as they were queued, so the times might be different if the jobs were allowed to queue first while the queue was disabled, and then the queue enabled once all jobs were queued, but the performance aspects would not really change.

The `vmstat` command showed a dip in the idle CPU time to about 80 percent idle for only about one second in every six seconds for the System V print subsystem, indicating that there are some bottlenecks that may not affect print jobs to multiple printers.
When the shell script that printed the jobs was changed to send 50 jobs to each queue, the results show some efficiency from multitasking. The results are shown in Table 5 on page 40:

Table 5. Time comparison when printing to two queues at the same time

<table>
<thead>
<tr>
<th>File Size</th>
<th>System V print subsystem</th>
<th>PowerPC print subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time to queue</td>
<td>Time to print</td>
</tr>
<tr>
<td>1 printer</td>
<td>80 seconds</td>
<td>10:30 to 10:45</td>
</tr>
<tr>
<td>2 printers</td>
<td>77 seconds</td>
<td>5:05 minutes</td>
</tr>
<tr>
<td>3 printers</td>
<td>79 seconds</td>
<td>3:30 minutes</td>
</tr>
</tbody>
</table>

This table shows that with the System V print subsystem, printing jobs through multiple queues increases the efficiency of the subsystem. The two printer scenario prints to one local and one remote queue, while the one printer scenario shows the results for either the local or the remote printer. The three printer test was run with three local printers.

1.11.7 Performance based on the amount of available memory

When sufficient memory is available, temporary files or spooled files may still be in memory when it is time for a filter to process them. This will reduce the number of disk reads that are required to process the job. The memory effect also helps the performance of the scheduler so that it does not have to continuously read the printer configurations. The amount of memory required is dependent on the size of jobs printed, the number of jobs printed as once, the number of queues or printers defined, and the number of jobs queued. The `vmstat` and `svmon` performance tools can be used to help determine the amount of memory being used.

1.11.8 Performance based on spool disk configuration

When jobs are spooled, often they will be written to the disk, but only read from memory. This type of disk activity often performs better if the spool space is striped across multiple physical disks. This rule applies to both remote as well as locally originating jobs. Use the `iostat` command to determine if you have some physical disks that show high utilization rates.

1.11.9 Performance for spooled jobs versus queued jobs

When jobs are spooled, this adds a disk write, often a disk read, and the removal of the spool file. Spooling jobs should be avoided when possible, especially on busy servers. For small jobs (8 KB) spooled on the System V
subsystem to a single printer, we did not see any measurable differences between queued and spooled.

1.11.10 Performance aspects of remote printing

Networking adds additional system requirements to printing. All incoming remote jobs are spooled, which adds a disk requirement that allows the remote jobs that are waiting printing at any one time to be stored. Because AIX is multitasking, the lpd daemon or the lpNet daemon can spawn multiple instances to handle multiple incoming jobs at the same time, which increases the number of processes in the system.

Status jobs for lpr/lpd printing require a network connect and request from the client to the server. On busy networks or servers, this can cause a delay in the return from the status command and utilization of system resources.

Microsoft Windows NT and 2000 lpr clients can generate a considerable amount of extra traffic if they are configured with the wrong queue name. Instead of the Windows printer going into a disabled state, the lpr continues to send request after request, wasting client, network, and server resources. AIX remote printing will soon recognize the error, return an error to the user printing the job, and disable the printer or queue so that the continuous requests do not continue.

1.11.11 Performance based on user behavior

One of the common printing problems is that when users do not find a print job, they will do excessive status requests, and often submit the job multiple times. Often the jobs are later found on a different printer than the user thought they were printing to. The excessive printing can increase the load on the system.

1.11.12 Performance of the administrative tools

The system resources required by an administrative tool vary greatly depending on the tool. Web-based System Manager uses the greatest amount of system resources and usually requires more time between steps than the other tools, but in return offers the administrator a more intuitive environment to manage the print server. The GUI based version of SMIT is next in system resource requirements, followed by text based SMIT and, finally, command line execution of administration commands. Usually, this does not have significant impact on the print server or the jobs being printed, and the only impact is to the system print administrators.
Part 2. System V print subsystem
Chapter 2. System V print subsystem basics

In this chapter, we will introduce the basics of the System V print subsystem as it exists in the initial release of AIX 5L Version 5.0, including:

- Overview
- Starting and stopping the print service
- Administering printers
 - Adding local printers
 - Modifying printers
 - Deleting printers
- Setting system defaults, including:
 - Destination
 - Print spooling
 - Printing priorities and limits
- Instructions for printing a file

We will also discuss the different interfaces that are available, including Web-based System Manager, SMIT, and the command line. Since not all functions can be performed with all interfaces, we will describe which interfaces can be used for which tasks.

Subsequent chapters include information on configuring remote and JetDirect-attached printers, as well as advanced topics, such as forms, filters, and interfaces.

2.1 Overview

The System V print subsystem being introduced in AIX 5L is based on work done in the Project Monterey initiative and the SCO Unixware 7 implementation of System V Release 4 printing.

Although use of the System V print subsystem is optional in the Version 5.0 release, the PowerPC print subsystem (the traditional AIX print subsystem) is the most robust and preferred print subsystem for AIX.

For administrators and users accustomed to System V Release 4 printing, the terminology will be familiar. However, for those used to working with earlier versions of AIX, there are some changes in terminology that we will point out as we describe how System V printing works.
2.1.1 Overview of the print service and print request processing

The System V print service is a collection of utilities that help you, as system or print administrator, to configure, monitor, and control the printers on your system. The print service:

- Receives files users want to print
- Filters the files (if needed, so they can print properly)
- Schedules the work of one or more printers
- Starts programs that interface with the printer(s)
- Keeps track of the status of jobs
- Alerts you to printer problems
- Keeps track of mounting forms and filters
- Issues error messages when problems arise

Figure 1. Overview of the processing of a print request.

1. When a user sends a file to be printed, the print service (which is sometimes referred to as the spooling daemon or `lpsched`) will check the printer’s configuration file (a) and the information from files in the terminfo
directory (b) to validate that the requested printer is accepting jobs and is capable of printing the type of job with the parameters specified by the user.

a. The configuration file, /etc/lp/printers/printernam/configuration, is created when you add a printer and modified when you customize a printer. This file contains information about the printer, including the content types or data formats the printer accepts, the printer type from the terminfo database, the device name and the source of the interface script (if local or JetDirect-attached), the remote hostname and queue (if remote), and banner page requirements.

b. The terminfo database contains data according to printer type. A printer type entry includes information about the printer’s capabilities and is used to validate print requests and print configurations.

 For example, when a user submits a job to a local printer specifying a particular page length, if the terminfo database does not show that printer is capable of setting that page length, the print service will reject the request. On the other hand, if terminfo does show it capable, then the interface program in Step 3 on page 48 will use the information from terminfo to initialize the local printer.

Note that the configuration files and terminfo database entries are only checked for jobs submitted to local or JetDirect-attached printers.

Customization hint

If the terminfo database does not include a printer type entry that can be used for your printer, you can add a new entry that describes the capabilities of the printer. For additional information on terminfo, see Section 4.3, "Using the terminfo database" on page 151.

2. If the printer is capable of printing the job, the print service assigns the print job a unique name known as the request ID\(^1\) and adds this request to the print queue. Each printer has its own queue, which consists of all print jobs to be sent to the same printer. You can hold jobs in the queue, move jobs up in a queue, or transfer jobs to another print queue.

\(^1\) The request ID consists of the name of the printer on which the file is to be printed and a unique number identifying the file. You use this request ID to find out the status of the print job or to cancel the print job.
The System V print subsystem allows you to group or pool printers that you have defined into classes. A user can then submit a print request to a class (rather than to a specific printer); the print service will assign the request to the first available printer in the class that is capable of printing the job.

3. The interface program is a shell script that is responsible for managing the printer: it initializes the printer port (if necessary) and the printer hardware (with information from the terminfo database), prints the banner page, and invokes a filter to send copies of the user's files to the printer.

The original interface shell scripts are located in the /usr/lib/lp/model directory. When you add a printer, an exact copy of the interface shell script that your printer uses is made in the /etc/lp/interfaces directory by the name of your printer.

For example, if you add a local printer named “myprint” that uses the PS interface, the file /usr/lib/lp/model/PS is copied without modification to /etc/lp/interfaces/myprint. (JetDirect-attached printers use some additional files in /usr/lib/hpnp which are modified while adding the printer.)

Customization hint

If you have a particularly complicated printer or if you want to use features not provided by the print service, you can customize the interface program. Interface programs are also sometimes available from the printer manufacturer. For additional information on interface programs, see Section 4.2, “Printer interface programs” on page 138.

4. Print filters can convert or transform a file into another format, for example, adding carriage returns to line feeds or mapping one set of escape sequences into another, and can provide a special setup by interpreting print modes requested by a user.

Filters are extremely useful in UNIX printing because, unlike PC-based printing with its APIs, UNIX applications must supply their own printer specific output, unless they write to a standard format and rely on print filters to convert to the specific printer format.

The default filter provided with the print service, /usr/lib/lp/bin/lp.cat, provides simple fault detection but no file conversion. It reads the file to be printed on its standard input and writes it to the device to be printed on.

There are two types of user-supplied filters: slow and fast.

a. Slow filters are usually used to provide formatting or file conversion and are run separately by the spooling daemon to avoid tying up a printer. An example of a slow filter is /usr/lib/lp/bin/slow.filter.
b. *Fast filters* are run so their output goes directly to the printer; thus, they can exert control over the printer and receive status back. An example of a fast filter is `/usr/lib/lp/bin/lp.cat`.

Customization hint

It is possible to add custom filters or filters from printer manufacturers to your system to provide a link between the applications used on your system and the printers so that the applications do not have to produce device-dependent output. For additional information on creating and using filters in the System V print subsystem, see Section 4.6, "System V print filters" on page 164.

5. The print service is responsible for keeping track of the status of the printers and slow filters; when a printer finishes printing a job, the print service has it start printing another job if one is queued. Once the job is scheduled to the printer, the print service adds an entry for the print request to the request log (`/var/lp/logs/requests`).

2.1.2 Administrative interfaces

There are three interfaces that can be used with the System V print subsystem: Web-based System Manager, SMIT, and the command line. However, you cannot perform all tasks using each of the interfaces.

Unlike the AIX V4 and AIX 5L for PowerPC print subsystems, when the System V print subsystem is active, you cannot use the System Management Interface Tool (SMIT) to configure printing (with a few exceptions). The primary interfaces you will use for configuring the System V print subsystem are Web-based System Manager or the command line.

Table 6 shows which interface(s) can be used in AIX 5L V5.0 for selected tasks when the System V print subsystem is active.

<table>
<thead>
<tr>
<th></th>
<th>Web-based SM</th>
<th>SMIT</th>
<th>Command line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display current print subsystem</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Switch between print subsystem</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Add/remove device</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
In AIX 5L V5.0, Web-based System Manager provides a Summary and Overview plug-in with only limited task support; in this release, most of the tasks can only be accomplished through the command line. Web-based System Manager will be enhanced in future releases to provide full access to System V printing capabilities.

<table>
<thead>
<tr>
<th>Task</th>
<th>Web-based SM</th>
<th>SMIT</th>
<th>Command line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add new System V destination</td>
<td>X (only basic configuration)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Display printer configuration</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Change printer configuration</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Delete destination</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Set and list default destination</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>View number of requests on default printer</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>View number of defined printers</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>View number of stopped printers</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start/stop the print service</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Display status of the print service</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Submit print jobs</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Manage print jobs</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
2.1.3 Planning

Before you configure a System V printer, it is helpful to consider and collect the various pieces of information you will need:

- What name will you give the printer?

 Printer names may be no longer than the maximum length filename allowed for the file system type you are using, and may consist of all printable characters except the space, slash, backslash, colon, semicolon, comma, asterisk, question mark, and tilde. The dash can be used in any position except the first position in a printer name.

- What specific printer type will you be adding (for example, HP LaserJet 4M or IBM Infoprint 12)?

 - Identify the terminfo entry you will use when adding your printer.

 You can check for printer types in the /usr/lib/terminfo/svprint.ti file or look in the /usr/lpp/sysmgt.websm/inst_root/var/websm/data/model.stz file. The following shows a stanza from the model.stz file, which is described in more detail in Section 4.1.1, “Understanding the different types in System V printing” on page 135:

    ```
    hp-laserjet-5Si-mopier:
    name="HP LaserJet 5Si Mopier (PCL)"
    terminfo=hplaserjet
    interface=standard
    contents=pcl
    ```

 It is not important that you find an exact match for your printer model, only that you choose a printer type for a similar kind of printer. Here is a rule of thumb:

 - If you are defining a PCL printer, use a value of hplaserjet, and make sure to set the content type to pcl.

Note

There are several commands that are valid in both the System V and PowerPC print subsystems. However, depending on which print subsystem is active, they may require different flags and may behave differently. When you check the man pages for commands, make sure that you read the correct section for the print subsystem in which you are working. For example, when reading the man page for `lp`, make sure you use the section entitled “System V Print Subsystem Ip on an PowerPC and IA-64 platforms.”
• If you are defining a PostScript printer, you should use one of the following printer types:
 - PS, PSR, or PS-r for serial-attached printers
 - PS-b or PS-br for parallel-attached printers

The PS printer types serve two functions. First, they cause the print service to activate the correct fast filter to communicate with the printer. Second, the PS interface creates a PostScript banner page for PS printers. The banner page is printed last if the printer type is PS-r or PS-br, and the pages of the document are printed in reverse order.

• For other printers, choose a similar printer type.

For more information, see Appendix F, “System V supported printer types” on page 519.

- Does the manufacturer of your printer provide a printer-specific interface script (sometimes called a *model script*) for the AIX 5L System V print subsystem or perhaps SCO Unixware 7 that can be modified as necessary? Or will you need to use one of the IBM-supplied interface scripts (that is, “standard”, “PS”, hnpn.model, or hnpnIS.model)?

• How will the printer be attached (for example, parallel or JetDirect)?

The System V print subsystem supports local printing (parallel or serial - RS232 or RS422), remote printing using BSD’s lpd protocol (RFC 1179), and printing to devices that support Hewlett-Packard’s JetDirect appliances.

- If you are attaching the printer locally (parallel or serial), does AIX have a specific device for your printer? You can list the supported device types using one of the following methods:
 • `lsdev -P -c printer -F "type subclass description" | sort -u`
 • `smitty pdp -> List All Supported Printers/Plotters`

If it does not, does your printer manufacturer supply one? Failing that, use a device that is most like the printer you will be defining.

- If you will be using a serial attachment, you will need printer-specific information in order to create the device, such as baud rate, parity, bits per character, stop bit, flow control, and so forth.

• Will your new printer be part of a class? If so, which one? If you are creating a new class at the same time you create the printer, what will the class name be? (The class name uses the same naming convention as does the printer name.)
What data streams will you be sending to your printer (for example, ASCII, PCL, or PostScript)? In System V terminology, this is called content type. For which one(s) will you be configuring your printer?

When there is a problem (an alert) with the printer, whom do you wish to be notified and how? When the problem is resolved, how do you want printing to resume?

Will banner pages (header pages) be mandatory, or will you allow users to suppress printing of the banner page?

Are there any special forms, and how will you control access to them?

What is your access policy for this printer? Can everyone print to it, or do you want to restrict access?

The information you will need varies by the type of printer attachment, as shown in Table 7.

<table>
<thead>
<tr>
<th></th>
<th>Locally-attached</th>
<th>Remote LPD</th>
<th>JetDirect-attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of printer</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Class of printer (optional)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Description of printer (optional)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Device name (/dev/lp*)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote hostname or IP address</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Remote printer name</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Action upon printer alert</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Recovery after alert</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print processing model (interface program)</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Printer type</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
You will use these pieces of information as you configure your printer using either Web-based System Manager or the `lpadmin` command, as shown in Table 8.

Table 8. Cross-reference of configuration information

<table>
<thead>
<tr>
<th></th>
<th>Locally-attached</th>
<th>Remote LPD</th>
<th>JetDirect-attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content type(s) supported</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>User access authorization</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Special forms authorization</td>
<td>X (defaults to deny access to all users on all systems)</td>
<td>X (defaults to deny access to all users on all systems)</td>
<td>X (defaults to allow access to all users on all systems)</td>
</tr>
<tr>
<td>Default printing options (length, width, cpi, lpi)</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Permit suppression of banner pages</td>
<td>X</td>
<td>N/A (No banners sent from local host)</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Web-based System Manager</th>
<th><code>lpadmin</code> command</th>
<th>Corresponding <code>lpadmin</code> flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of printer</td>
<td>X (required)</td>
<td>X (required)</td>
<td><code>-p</code></td>
</tr>
<tr>
<td>Class of printer</td>
<td>X (optional)</td>
<td>X (optional)</td>
<td><code>-c</code></td>
</tr>
<tr>
<td>Description of printer</td>
<td>X (optional)</td>
<td>X (optional)</td>
<td><code>-D</code></td>
</tr>
<tr>
<td>For local, device name</td>
<td>X (required)</td>
<td>X (required)</td>
<td><code>-v</code></td>
</tr>
<tr>
<td>For remote, server name and remote printer name</td>
<td>X (required)</td>
<td>X (required)</td>
<td><code>-s</code></td>
</tr>
<tr>
<td>Action upon printer alert</td>
<td>X (required)</td>
<td>X (optional with defaults)</td>
<td><code>-A [-W]</code></td>
</tr>
<tr>
<td>Recovery after alert</td>
<td>X (required)</td>
<td>X (optional with defaults)</td>
<td><code>-P</code></td>
</tr>
</tbody>
</table>
2.2 Managing the print service

When running the System V print subsystem, the print service is started automatically at system boot. Here is the entry from the `/etc/inittab` file:

```
lpached:2:wait:/usr/lib/lp/lpsched > /dev/console
```

We will discuss how to:

- Display the current status of the print service
- Stop the print service
- Start the print service

<table>
<thead>
<tr>
<th>Web-based System Manager</th>
<th><code>lpadmin</code> command</th>
<th>Corresponding <code>lpadmin</code> flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print processing model (interface program)</td>
<td>X (required)</td>
<td>X (required)</td>
</tr>
<tr>
<td>Printer type</td>
<td>X (required)</td>
<td>X (optional, but strongly recommended)</td>
</tr>
<tr>
<td>Content type(s) supported</td>
<td>X (required; single value) Note: GUI calls this “print interface”</td>
<td>X (optional with default; multiple values allowed)</td>
</tr>
<tr>
<td>User access authorization</td>
<td>X (optional with default)</td>
<td><code>-u</code></td>
</tr>
<tr>
<td>Special forms authorization</td>
<td>X (optional with default)</td>
<td><code>-f</code></td>
</tr>
<tr>
<td>Default printing options (length, width, cpi, lpi)</td>
<td>X (optional)</td>
<td><code>-o</code></td>
</tr>
<tr>
<td>Permit suppression of banner pages</td>
<td>-X (optional with default)</td>
<td><code>-o nobanner</code></td>
</tr>
</tbody>
</table>

There are a few less commonly used flags relating to print wheels or font cartridges that are discussed in Section 4.5, “Customizing printer attributes” on page 161.
Only the root or lp users or members of the lp group can manage the print service.

2.2.1 Displaying the current status of the print service
You can check the current status of the print service (or scheduler) from the AIX command prompt using the `lpstat` command with the `-r` flag, that is, `lpstat -r`. If the print service is up, the command will return `scheduler is running`; if the print service is down, it will return `scheduler is not running`.

The Web-based System Manager interface does not currently display the status of the print service.

2.2.2 Stopping the print service
The `lpshut` command shuts down the print service:

```bash
# lpshut
UX:lpshut: INFO: Print services stopped.
```

All printers that are printing at the time the `lpshut` command is invoked stop printing. When the print service is started again, requests that were printing at the time a printer was shut down are reprinted from the beginning. You may wish to use the `reject` command on each printer to prevent the queuing of any new jobs and allow currently printing jobs to finish before issuing the `lpshut` command.

2.2.3 Starting the print service
The `lpsched` command starts the print service. You must use the full path name, `/usr/lib/lp/lpsched`, or add the path to your environment:

```bash
# /usr/lib/lp/lpsched
UX:lpsched: INFO: Print services started.
```

If the print service fails to run, check the lpsched log file, which contains all failed attempts to load print requests, printer descriptions, forms, filters, classes, alerts, and systems. The log files are located in `/var/lp/logs` (linked to from `/etc/lp/logs`).

2.3 Printer management
In this section, we will describe the tasks involved in administering locally-attached printers, including:

- Adding a printer
• Modifying an existing printer
• Deleting a printer

2.3.1 Adding a locally-attached printer

In our testing, we added a parallel-attached Hewlett-Packard LaserJet 4M to the System V print subsystem. Two steps are required:

- Adding a printer device
- Adding a System V printer

We will show how to add this same printer as a JetDirect-attached device in Section 3.2, “Adding a JetDirect-attached printer” on page 115.

2.3.1.1 Adding a printer device

In order to add a parallel or serial printer to the System V print subsystem, you must first add an AIX device for the printer. If you try to configure a local printer before adding the device, you will receive an error.

The name of the device you add will then be used to configure the printer in a separate step. In AIX 5L Version 5.0, neither Web-based System Manager nor the `lpadmin` command will add this device automatically during the printer configuration process.

You must be root or a member of the system group to add a device. Note that this is a different set of permissions than is required for adding a printer; adding a printer in the System V print subsystem requires that you be either the root or lp user, or a member of the lp group.

You can use any of the following interfaces to add a printer device:

- Web-based System Manager (see “Option 1: Using Web-based System Manager” on page 57)
- SMIT (see “Option 2: Using SMIT” on page 61)
- Command line (see “Option 3: Using the command line” on page 64)

In our testing, we found that Web-based System Manager prompted us to install additional software from the AIX install media even though we already had all the printer filesets installed previously. However, if you do not have all the required filesets installed, this may not be a concern.

Option 1: Using Web-based System Manager

1. You must first start Web-based System Manager. You can do this by entering the `wsm` command (`/usr/bin/wsm`) at an AIX command prompt or
through the CDE Application Manager, System_Admin folder by selecting Management Console. The panel shown in Figure 2 will appear:

2. Select the Devices object with your mouse and double-click. A panel will open displaying different device objects.
3. Select and double-click the Printers object.
4. From the Device task-bar pull-down, select New -> Manually Configure, as shown in Figure 3 on page 59. (You cannot use Automatically Configure for printer devices since they are not software-detectable.)
5. Choose from the pop-up list of device types that can be added:
 - Parallel Printer
 - RS232 Printer
 - RS422 Printer
 - TTY

 We selected Parallel Printer and clicked on the Install... button.

6. At this point, Web-based System Manager may pop up a panel requiring you to provide the AIX install media so that it can install additional print software. Select the appropriate software source and specify whether you want all or selected printer filesets installed. (Note that Web-based System Manager may require you to perform this step, even if you have previously installed all the printer filesets.)

7. When the first Devices - New Device panel appears, as shown in Figure 4 on page 60, select the value from the list that most closely matches your printer device. In this case, we selected type hplj4 and clicked Next.

8. From the pop-up panel that asks you to Select a parent to which the device will be connected..., we selected ppa0, the only value and pressed Next.

9. On the next and final panel, we took the defaults and clicked Finish.
10. The device was added successfully and the panel in Figure 5 was displayed:

You can optionally modify the other fields, but these fields will be ignored when defining a System V printer. They would only be used if you were to `cat` print jobs directly to the device (/dev/lp##), bypassing the spooler.
Note that if we were adding a serial device, we would need the appropriate information for our printer type for baud rate, parity, data bits, stop bit, flow control, and so on.

Option 2: Using SMIT

You can also use SMIT to add the printer device. You can work down from the initial SMIT menu by selecting the following sequence:

Devices -> Printer/Plotter Devices -> Add a Printer/Plotter

Alternatively, you can use the `smitty makprt` fastpath to go directly to the following screen:

If your printer type is not listed, you may need to install additional filesets from the AIX install media (using `smitty install_package` fastpath).

1. From the Printer/Plotter Type list, select the item that most closely resembles the printer you will be defining and press Enter. This is the AIX device type from the ODM database, and it need not match the value you will select later from the terminfo database (which supports fewer specific models of printers).

 We scrolled down and selected `hplj-4` which corresponded to the lab’s Hewlett-Packard HP LaserJet 4M. The following panel was displayed:
2. Select the appropriate interface from the pop-up list and press Enter. In this example, we selected `parallel`.

3. We selected the `ppa0` entry and pressed Enter.
4. The only required field on this panel is PORT number; you can use the F4 key to display the possible values. In this case, the only possible value is p.

You can optionally modify the other fields, but these fields will be ignored when defining a System V printer. They would only be used if you were to cat print jobs directly to the device (/dev/lp##), bypassing the spooler.

Once we made our selections, we pressed Enter. The printer device was added.

Note that if we were adding a serial device, we would need the appropriate information for our printer type for baud rate, parity, data bits, stop bit, flow control, and so on.
Option 3: Using the command line

As a third option, you can use the following command from an AIX command prompt to add a Hewlett-Packard LaserJet 4 on the parallel port.

```bash
# mkdev -c printer -t 'hplj-4' -s 'parallel' -p 'ppa0' -w 'p'
```

Refer to the man pages for the `mkdev` command for additional information on the flags.

Note that the value for the `-t` flag must match a value in the Predefined Devices object class. To display possible values, enter:

```bash
# lsdev -P -c printer -F "type subclass description" | sort -u
```

You may wish to search for a specific device type, and you can do so by piping the output of the `lsdev` command to `grep`. For example:

```bash
# lsdev -P -c printer -F "type subclass description" | grep -i hp | pg
```

If your printer type is not listed, you may need to install additional filesets from the AIX install media (using `smitty install_package` fastpath).

To list all printer devices that are defined on your system and their status (Available or Defined), use this command:

```bash
# lsdev -Cc printer
```

Testing your device

Before proceeding, it is a good idea to verify that your device type works. You can print a file directly through the device driver using the following command:

```bash
# lptest 10 10 > /dev/lp0
```

where `/dev/lp0` is the name of your device. If you are unable to print directly to the physical printer in this manner, you must fix this problem before proceeding.

2.3.1.2 Verifying the active print subsystem

Before proceeding, confirm that the System V print service is the enabled print subsystem. You can use Web-based System Manager, SMIT or the command line.

- Web-based System Manager provides a visual indicator. As you can see in Figure 6 on page 66, if the System V print subsystem is active, you can see in the navigation areas as well as in the Overview and Tasks panel that the System V print subsystem is named explicitly.

- The root user can use the SMIT fastpath, `smitty chprtsubsystem`, to display the current print subsystem.
The root user can issue the `switch prt -d` command from the command prompt to display the active print subsystem.

Alternatively, any user can deduce which print subsystem is active by issuing the `lpstat -o` command. If a list of jobs is returned, or if you are returned to the cursor, the System V print subsystem is active; if you see output similar to the following, the PowerPC print subsystem is active.

```
Queue   Dev   Status    Job Files              User         PP %   Blks  Cp Rnk
------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---
test    lp0    READY
```

2.3.1.3 Adding a local printer

In order to add a System V printer, you must be either the root or lp user, or you must be a member of the lp group. You can use either of the following interfaces:

- Web-based System Manager (see “Option 1: Using Web-based System Manager” on page 65)
- Command line (see “Option 2: Using the lpadmin command” on page 73)

We found it helpful to equate the fields in Web-based System Manager with the various flags for the `lpadmin` command, and we will include that information as we describe the Web-based System Manager process. Additional information on the flags will be included in Section 2.3.2, “Modifying an existing printer” on page 78.

Option 1: Using Web-based System Manager

In Web-based System Manager, select the Printers (System V) plug-in from the left frame of the console (Figure 2 on page 58). AIX 5L V5.0 currently only supports Directory Disabled printers, so open that container. This will display the panel in Figure 6 on page 66.
To add a new printer, you can either select the **New printer** task in the **Overview** panel, the **Printers** pull-down from the task bar, or the **New Printer...** toolbar icon. Any of these selections will start the New Printer wizard, which includes these steps:

1. **Step 1 of 4: Specify New Printer and Attachment Method**

 a. Select a name for your System V printer. See Figure 7 on page 67 for more details.

 Printer names may be no longer than the maximum length filename allowed for the file system type you are using, and may consist of all printable characters except the space, slash, backslash, colon, semicolon, comma, asterisk, question mark, and tilde. The dash can be used in any position except the first position in a printer name.

 This is equivalent to the `-p` flag on the `lpadmin` command.
b. You can optionally specify a print class for printer pooling. If you have previously specified a print class, that class will appear in the pull-down list. If no classes exist, the list will be empty. You can type in a new class name here.

Class names may be no longer than the maximum length filename allowed for the file system type you are using, and may consist of all printable characters except the space, slash, backslash, colon, semicolon, comma, asterisk, question mark, and tilde. The dash can be used in any position except the first position in a printer name.

This is equivalent to the -c flag on the `lpadmin` command.

c. You can optionally provide a description of the printer. This description will be displayed when a user asks for the status of the printer using either `lpstat -p [printer] -D` or `lpstat -p [printer] -l`.

This is equivalent to the -D flag on the `lpadmin` command.

d. Select an attachment method:

- Local connection to this system (parallel or serial)
- Remote connection to local printer on another system (that is, to a remote LPD server or an LPD-capable printer)
- Remote connection to a network printer (only JetDirect-attachment is supported)

In this chapter, we are defining a parallel-attached HP LaserJet 4M, so we selected the first option, **Local connection to this system**.
After selecting the appropriate options, we clicked on **Next**. The panel shown in Figure 8 was displayed.

![Figure 8. Adding a locally-attached printer (step 2 of 4)](image)

2. **Step 2 of 4: Specify Local Attachment Options**

 The local device name is a required field. The pull-down list will contain the names of all the print devices that have been previously configured (for example, lp0). If this field is blank on your screen, you have forgotten to define the device, as described in Section 2.3.1.1, “Adding a printer device” on page 57.

 This is equivalent to the `-v` flag on the `lpadmin` command.

 Note that multiple printers may point to the same device file.

 We selected **lp0** and clicked **Next**. The panel in Figure 9 on page 69 was displayed.

3. **Step 3 of 4: Specify Printer Options**

 In this step, you provide the information for the kind of alerts you want to receive and the method of recovery in case of a printer problem, the model or interface script that will be used, the printer type (from terminfo), and the content types that the printer can accept. A content type of simple gives a passsthrough mode and does not add carriage returns to line feeds.
a. What action is to happen on a printer alert? This setting defines an alert to inform the administrator or other designated user when a printer fault is detected, and periodically thereafter, until the printer fault is cleared. (The administrator is the privileged user who originally created the printer or who last issued the command to change the printer alert value.) If an alert is not defined for a particular printer, no messages are sent when a printer fault occurs.

Your choices are:

- Nothing
- E-mail once to the administrator
- Message to the administrator’s console
- Run a user-provided script

Note: In our tests with early code, if we chose Nothing then we received an error following Step 4. Our workaround was to select E-mail, knowing that we could always adjust it later through the `lpadmin` command. This will be fixed in a future release.

The print service’s fault detection and error recovery are only as good as the interface program and fast filter that the printer uses can provide.

This is equivalent to the -A flag on the `lpadmin` command.
There are additional useful options available on the `lpadmin` command, including the ability to send e-mail or message alerts to a specified user:

```
# lpadmin -p hp-par2 -A 'mail johnboy'
```

Using Web-based System Manager panels, e-mail or message alerts can only be directed to the person who defined the printer, that is, the person who started `wsm`.

Another advantage to the `lpadmin` command is that you can specify that you want to receive repeated alerts at a given interval (in minutes). When you use Web-based System Manager, an alert is only issued once.

Finally, you can use the `lpadmin` command to define alerts for all printers with a single command.

b. How do you want to continue on restart? Your options are:

- Top of page (default)
- Beginning
- Wait

This setting specifies how (or if) printing should proceed for any print request that is stopped because of a printer fault.

In Web-based System Manager, the default value for this setting is **Top of page**, which means to start printing the request again from the top of the page where printing stopped. If a capable filter is not being used, you will be notified in an alert if recovery can not proceed as you want.

The other two options are to resume printing automatically from the beginning of the job (**Beginning**) or to disable printing on the destination until the administrator or a user enables printing again (**Wait**).

If **Wait** is used, then during the wait the administrator or the user who originally submitted the stopped print request can issue a change request to resume printing on a different destination. You must use the command line to do this; see the `-i` option of the `lp` command.

This is equivalent to the `-F` flag of the `lpadmin` command.

c. What is the print processing model?

- Standard (default)
- PostScript

This setting specifies the model interface program provided by the print service for the printer. There are two possible values, **Standard**
Chapter 2. System V print subsystem basics

(generic printer interface) and **PostScript** (interface for PostScript printers only); **Standard** is the default.

This is equivalent to the `-m` flag on the `lpadmin` command.

d. What is the printer type? This is the list of supported printers as defined in the terminfo database. Refer to the information in Section 2.1.3, “Planning” on page 51 for information on how to determine the appropriate value to select here.

For our test Hewlett-Packard LaserJet 4M, we selected one of the hplaserjet entries in the list.

For additional information on the terminfo database, see Section 4.3, “Using the terminfo database” on page 151.

This is equivalent to the `-T` flag on the `lpadmin` command.

e. What is the printer interface? This is really asking what content types you want your printer to accept. The choices in the pull-down list are:

- Simple (default)
- PostScript
- PCL

The content type is used by the print service to determine if the printer can handle the print job or to determine if there are filters registered to convert the file to a format that can be printed. The user can specify that a file is a particular content type by using the `lp -T` flag.

The default type is **simple**, which consists of printable ASCII characters and selected control characters (backspace, tab, line feed or new line, form feed, and carriage return). The **simple** content type is a passthrough mode interface, and will not add carriage returns to line feeds. With standard UNIX text files, this can cause a stair-step effect, because these files only have line feeds to separate lines. This mode is good for printing files that have been formatted by an application in either UNIX or Windows.

When adding a laser printer, it is important to specify a content type of either PostScript or PCL. If you do not specify PCL for a PCL printer, the printer output will be in a stair-step format or may not show at all. When using the PCL content type, you must also make sure that you register the pcl filter from the command line as follows:

```
# lpfilter -f pcl -F /etc/lp/fd/pcl.fd
```

If you plan to print ASCII text files to a PostScript printer, you will also need to register the PostScript filters, as described in the advanced printing section on printer filters. See Section 4.10.4, “Installing,
registering, and maintaining PostScript printer” on page 180 for more details.

Although you can only choose one value through Web-based System Manager panel, you can specify additional values through the `lpadmin` command. See Section 2.3.2, “Modifying an existing printer” on page 78 or the man page for the `lpadmin` command for additional information.

Other values may be specified through the `lpadmin` command. Except for `simple`, each content-type name is freely determined by the administrator. For additional information, see Section 4.1.1.3, “Content type” on page 136.

This is equivalent to the `-I` flag on the `lpadmin` command.

4. Step 4 of 4: Verify Settings and Add New Printer

The panel shown in Figure 10 is a read-only panel for verification purposes. You have the chance to go back and change any settings before you select **Finish**, which commits the underlying `lpadmin` command that you have built over the previous panels through your selections.

![Figure 10. Adding a locally-attached printer (step 4 of 4)](image)

5. If successful, you receive the message shown in Figure 11 on page 73.
On the Web-based System Manager Overview panel, you should now see in the Status area that you have a printer defined. You can also use the `lpstat` command with the -p flag to display the printer status.

Note

To customize or make any modifications to an existing printer in AIX 5L V5.0, you cannot use Web-based System Manager; you must use the `lpadmin` command from the AIX command prompt. Additional information can be found in Section 2.3.2, “Modifying an existing printer” on page 78.

Option 2: Using the lpadmin command

When you add a new printer using the command line, you must complete three separate tasks:

1. Create the printer with the `lpadmin` command.
2. Allow the printer to accept (or queue) jobs with the `accept` command.
3. Allow the printer to print jobs with the `enable` command.

Note that, in contrast, creating a printer with Web-based System Manager takes care of all of these steps for you. However, you cannot specify all of the possible options through Web-based System Manager panels in AIX 5L V5.0.

In this section, we describe how to create a very basic printer, taking all of the defaults. You can later customize your printer further through the use of additional options. Although we are documenting them in separate sections, you can also use these option flags at the time you create your printer. See Section 2.3.2, “Modifying an existing printer” on page 78.
Creating a basic printer using defaults
The syntax of the `lpadmin` command to add a new locally-attached printer is as follows:

```
# lpadmin -p printer -v device -T printer-type -I pcl [options]
```

- The `-p` flag is used to configure a new printer or to change the configuration of an existing printer.

 Printer (and class) names may be no longer than the maximum length filename allowed for the file system type you are using, and may consist of all printable characters except the space, slash, backslash, colon, semicolon, comma, asterisk, question mark, and tilde. The dash can be used in any position except the first position in a printer name.

- The `-v` flag specifies the AIX printer device name, such as `/dev/lp0`.

- The `-T` flag specifies the AIX printer device name, such as `/dev/lp0`.

 Although the `-T` flag is optional, you should specify it when adding a printer because this is the connection to the information in the terminfo database. If this flag is not used, the default printer type is unknown; no information will be extracted from the terminfo database, so each user request will be printed without first initializing the printer.

 Refer to the information in Section 2.1.3, “Planning” on page 51 for information on how to determine the appropriate value to select for the `-T` flag.

- The `-l` flag indicates the content type.

 It is important to add PCL printers with type pcl so that the pcl filter will add carriage returns to line feeds. You will also need to register the pcl filter with the command:

  ```
  # lpfilter -f pcl -F /etc/lp/fd/pcl.fd
  ```

 When using printer type PS, use a content type of PS and ensure that the PS filter is registered. (See Section 4.10.5, “Installing and maintaining PostScript filters” on page 181 for more details.)

To create a very basic configuration for our parallel-attached HP LaserJet 4M PCL printer, we issued the `lpadmin` command with the `-p`, `-v`, `-l` pcl and `-T` flags:
The message that was received in response to this `lpadmin` command was to alert us that the printer had been added, and all users would be able to access this device and printer. You can use the `-u` flag of the `lpadmin` command to allow or deny access to the printer by user. See Section 3.3.1.2, “Granting access to printers” on page 130 for more information. To restrict access to the device, follow the instructions in the message.

Here are additional considerations:

- When defining a PostScript printer, you must explicitly specify several flags so that the correct printer type (-T), interface script (-m), and content type (-I) are specified; the defaults for these flags will not work for PostScript printers.

 A sample command to add a parallel-attached PostScript printer would be:

  ```
  # lpadmin -p prtps -v /dev/lp0 -T PS-b -m PS -I PS
  ```

 We will explain the -m and -I flags in greater detail in Section 2.3.2, “Modifying an existing printer” on page 78. For information on the values for the -T flag, see Section 2.1.3, “Planning” on page 51.

- When defining a PCL printer, you must explicitly specify the printer type (-T hplaserjet) and the content type (-I pcl) for the correct alignment of the banner page and for the pcl filter to add carriage returns to line feeds. You must also register the pcl filter.

 A sample command to add a parallel-attached PCL printer would be:

  ```
  # lpadmin -p prtpcl -v /dev/lp0 -T hplaserjet -I pcl
  ```

 If we were adding a serial-attached printer for which we had defined the /dev/lp1 device, we would have issued essentially the same command:

  ```
  # lpadmin -p hp-ser1 -v /dev/lp1 -T hplaserjet -I pcl
  ```

 We mention this about serial-attached printers because administrators who are familiar with other UNIX systems may be accustomed to specifying the `-o stty` flag with the serial device options. In AIX 5L, those options are defined in the serial device itself (see Section 2.3.1.1, “Adding a printer device” on page 57 for more information).
• Note that you can define multiple printers that point to the same device file.

To display the printer configuration that resulted from taking all the defaults, we used the long version of the `lpstat` command:

```
# lpstat -p hp-par2 -l
printer hp-par2 disabled since Tue Oct 17 15:24:01 2000. available.
   new printer
     Form mounted:  
      Content types: simple
      Printer types: hplaserjet
      Description:  
      Connection: direct
      Interface: /usr/lib/lp/model/standard
      On fault: mail to root once
      After fault: continue
      Users allowed:  
       all
     Forms denied:  
      all!all
     Banner required
     Character sets:  
      (none)
     Default pitch: 10 CPI 6 LPI
     Default page size: 80 wide 60 long
     Default port settings:
```

Testing the locally-attached printer

We attempted to verify that we had installed the printer correctly by printing a simple job, but received an error because we had forgotten to make the printer available.

```
# lp -d hp-par2 /etc/motd
UX:lp: ERROR: 0920-067 Requests for destination "hp-par2" aren't
       being accepted.
       TO FIX: Use the "lpstat -a" command to see why
       this destination is not accepting requests.
# lpstat -a
hp_parallel accepting requests since Mon Oct 16 14:41:31 2000
hp-par2 not accepting requests since Tue Oct 17 13:34:08 2000 -
   new destination
```

We first issued the `accept` command and displayed the printer's status, then enabled the printer and displayed the status again.
Notice that we used two different instances of the `lpstat` command with different flags to get information on accept/reject status (`lpstat -a`) and on enable/disable status (`lpstat -p`). We could have also used the `lpstat -t` command to get both statuses in a single command. (Refer to the man pages for the `lpstat` command for additional information.)

When we resubmitted the job, we received the following error:

```
UX:lp: ERROR: 0920-056 The following options can't be handled:
        -L locale (or default locale)
TO FIX: The printer(s) that otherwise qualify for printing your request can't handle one or more of these options. Try another printer, or change the options.
```

The value of `$LANG` on our test system was en_US. If we added the `-L C` flag on the `lp` command to change the locale to C, the job printed successfully with a header page that displayed our system hostname and userid, the date and time at which the job printed, and the job number or request-ID, for example, `hp-par2-753`. We could have also changed the `$LANG` environment variable to C.

2.3.1.4 Files created as result of adding the printer

After we added the hp-par2 printer, the following files were added:

- `/etc/lp/interfaces/hp-par2`: This is an exact copy of the `/usr/lib/lp/model/standard` shell script and is a result of specifying `lpadmin -i standard`.

- In `/etc/lp/printers/hp-par2`, the following files:
 - `alert.sh`: This is a shell script that issues the command we specified with the `lpadmin -A` command.
- alert.vars: This is a file with two lines. Although we do not have information on the exact layout of this file, the second line corresponds to the value we specified on the -W flag on the \texttt{lpadmin} command.

- configuration: This file contained the following information:

<table>
<thead>
<tr>
<th>Banner: on:Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content types: simple</td>
</tr>
<tr>
<td>Device: /dev/lp0</td>
</tr>
<tr>
<td>Interface: /usr/lib/lp/model/standard</td>
</tr>
<tr>
<td>Printer type: hplaserjet</td>
</tr>
<tr>
<td>Modules: default</td>
</tr>
<tr>
<td>Form feed: on</td>
</tr>
</tbody>
</table>

- forms.deny: This currently contains an entry, all!all, which is the default. See Section 4.4.4, “Maintaining access lists for forms” on page 159 for more information.

- users.allow: This file contains the list of users allowed to print to this printer, currently all, which is the default. See Section 3.3.1.2, “Granting access to printers” on page 130 for more information.

2.3.2 Modifying an existing printer

To modify an existing printer in AIX 5L Version 5.0, you must use the command line; there is no way in the current release to use Web-based System Manager to do this.

\begin{center}\textbf{Note}\end{center}

After you change the attributes of a printer, you need to disable and enable the printer so the changes are recognized.

You use the \texttt{lpadmin} command with the various option flags. These options can appear on the command line in any order. We will not cover all of the possible options for the \texttt{lpadmin} command here, but rather will concentrate on the ones useful when first configuring a printer. You should refer to the man pages for complete information.

- \texttt{-A AlertType [-W minutes]}

 The \texttt{-A} flag defines an alert to inform the administrator when a printer fault is first detected, and periodically thereafter, until the printer fault is cleared.

 If an alert is not defined for a particular printer, a single mail message is sent to the administrator by default (equivalent to \texttt{-A mail -W once}).
The other possible values are to write a message to the administrator's terminal (write), to not send any messages (none), or to run a named shell script or command every time the alert needs to be sent.

The administrator is the privileged user who originally created the printer or who last issued the command to change the printer alert value. You can specify that the alerts go to someone besides the administrator by specifying another userid. Example:

```bash
# lpadmin -p hp-par2 -A 'mail johnboy' -W 5
```

If you do not specify the -W flag, you will receive the alert only once. You can request to receive ongoing alerts by specifying the -W minutes flag, where the value of minutes is a positive integer. For example:

```bash
# lpadmin -p hp-par2 -A write -W 5
```

If you wish to stop the alerts from being issued before the fault is resolved, you use the following command:

```bash
# lpadmin -p printername -A quiet
```

Note: Use `quiet` only to terminate an active alert; do not specify `quiet` as the alert type for a new printer.

Note: The print service can detect printer faults only through an adequate fast filter and only when the standard interface program or a suitable customized interface program is used. Furthermore, the level of recovery after a fault (see the -F flag) depends on the capabilities of the filter your printer is using.

- `-c class`

The class option allows you to assign a printer to a group or pool of printers. If you submit a print job to a class instead of to a specific printer, then the first available printer in the class will accept and print your job.

You do not need to predefine the class; if it does not exist when this command is issued, it will be created automatically. Class names may be no longer than the maximum length filename allowed for the file system type you are using, and may consist of all printable characters except the space, slash, backslash, colon, semicolon, comma, asterisk, question mark, and tilde. The dash can be used in any position except the first position in a printer name.

To list existing classes, use the `lpstat` command with the `-c` flag: `lpstat -c all`. This command will also list the printers that belong to each class.

To remove a printer from a class, use `lpadmin -p printer -r class`. If the printer is the last member of the class, then the class is deleted. For example:
When setting a default destination (see Section 2.4.1, “Setting the default destination” on page 85), the administrator can specify either a class or a specific printer.

- **-D description**

This description will be displayed when a user asks for a full description of the printer using either `lpstat -p [printer] -D` or `lpstat -p [printer] -l`. For example:

```
# lpadmin -p hp-par2 -D "redbook test printer"
```

- **-F FaultRecoveryMethod**

The -F flag specifies how or if printing should proceed for any print request that is stopped because of a printer fault. The default value for this flag is beginning, which means to start printing the request again from the beginning of the job.

The other two options are to disable printing on the destination until the administrator or a user enables printing again (wait) or to continue printing on the top of the page where printing stopped (continue); the latter requires a filter to wait for the fault to clear before automatically continuing.

If wait is used, then during the wait the administrator or user who submitted the stopped print request can issue a change request to resume printing on a different destination. See the -i option of the `lp` command. For example:

```
# lpadmin -p hp-par2 -F wait
```

- **-I Content-Type-List**

The -I flag indicates the content type(s) that the destination can print. If the list includes more than one name, the names must be separated by commas or blank spaces; if they are separated by blank spaces, the entire list must be enclosed in double quotes.

This information is used by the print service to determine if the printer can handle a print request or to determine if there are filters registered to convert the file to a format that can be printed. The user can specify that a file is a particular content type by using the `lp` command with the -T flag.

The default type is simple, which consists of printable ASCII characters and selected control characters (backspace, tab, line feed or new line, form feed, and carriage return). The simple content type acts as a passthrough mode type, and no control characters will be added.

If you do not want the print service to consider simple a valid type for the printer, specify either an explicit value (such as the printer type from the -T
flag) or an empty list. If you do want simple included along with other
types, you must explicitly include simple in the list. For example:

 # lpadmin -p hp-par2 -I "pcl PS simple myname"

Other values may be specified. Except for simple, pcl and PS, each
content type name is freely determined by the administrator. As discussed
earlier for PCL printers, it is important to use the content type of pcl and
register the pcl filter with lpfilter. When the content type of PS is used,
ASCII text files can be automatically converted to PostScript by registering
the download, postio, and postprint filters as shown here:

 # lpfilter -f download -F /etc/lp/fd/download.fd
 # lpfilter -f postio -F /etc/lp/fd/postio.fd
 # lpfilter -f postprint -F /etc/lp/fd/postprint.fd

For more information on using filters, see Section 4.6, “System V print
filters” on page 164.

- -m model

The -m flag specifies the interface program (also known as a model
program or model script) provided with the print service for the printer. AIX
5L Version 5.0 supplies two possible values, standard (generic printer
interface) and PS (interface for PostScript printers only); standard is the
default.

The -m flag cannot be used with either the -e or -i flags; they are mutually
exclusive. The -e and -i flags will not be discussed in this chapter. For
additional information on interface programs, see Section 4.2, “Printer
interface programs” on page 138. For example:

 # lpadmin -p hp-par2 -m standard

- -o options

Certain defaults (font pitch, line spacing, page size and port settings) are
automatically configured for you based on the values in the terminfo
database when you specify a printer type in Web-based System Manager
or with the lpadmin -T command. These defaults will be passed to an
interface program if the values are not supplied by a form (see Section 4.4,
“Using printer form support” on page 156) or are not explicitly specified by
the user at job submission.

You can display the current values of size and spacing using the lpstat -p
printer -l command.

To change those values, you use the lpadmin command with the -o flag and
various keywords. Four -o options that can have defaults defined are:
- -o length=number
- -o width=number
- -o cpi=number
- -o lpi=number

The number refers to a non-negative number used to indicate a unit of size. The type of unit is shown by a trailing letter attached to the number:

- Centimeters, marked with a trailing c
- Inches, marked with a trailing i
- Numbers that show sizes in units appropriate to use, without a trailing letter, that is, lines, characters, lines per inch, or characters per inch

The first four default option values must agree with the capabilities of the type of physical printer, as defined in the terminfo database for the printer type. If they do not, the command is rejected.

You can reset any of the -o flags to the default values (which vary for different types of printers), by typing them without assigned values, as follows:

- -o length=
- -o width=
- -o cpi=
- -o lpi=

Note: These values should be able to be modified using the -o flag on the \texttt{lpadmin} command. However, our testing indicated some problems in the early versions of the AIX 5L V5.0 code; these problems have been reported to development and will be fixed in a future release.

- -T printer-type

The -T flag indicates the printer type from the terminfo table.

As we stated earlier, although the -T flag is optional, you should specify it when adding a printer because this is the connection to the information in the terminfo database. If this flag is not used, the default printer type is unknown; no information will be extracted from the terminfo database, so each user request will be printed without first initializing the printer.

Refer to the information in Section 2.1.3, “Planning” on page 51 for information on how to determine the appropriate value to select for the -T flag.

\textit{Printer status following customization}

Here is the output of the \texttt{lpstat -p hp-par2 -l} command after issuing all the commands in the previous examples. Compare it to the output of the same command we issued in “Option 2: Using the \texttt{lpadmin} command” on page 73.
2.3.3 Deleting a printer or class

Before deleting an existing destination (printer or class), you should first stop it from accepting any more print requests by issuing the `reject` command. Then, once all pending jobs have printed, you can delete the destination. In our tests, the print service had to be running in order to delete a destination.

You can use either of the following interfaces to delete a destination:

- Web-based System Manager (see “Option 1: Using Web-based System Manager” on page 84)
- Command line (see “Option 2: Using the command line” on page 84)

Option 1: Using Web-based System Manager

On the Directory Disabled Overview and Tasks panel, select the **Remove printers** task, as shown in Figure 12 on page 84. A panel will be displayed asking which printers or classes you wish to remove. Highlight the item(s) you wish to delete and select **Finish**.

```
# lpstat -p hp-par2 -l
printer hp-par2 is idle. enabled since Tue Oct 17 15:27:11 2000. available.
  Form mounted:
  Content types: PCL, PostScript, simple, myname
  Printer types: hplaserjet
  Description: redbook test printer
  Connection: direct
  Interface: /usr/lib/lp/model/standard
  On fault: write to root every 5 minutes
  After fault: wait
  Users allowed:
    all
  Forms denied:
    all!all
  Banner not required
  Character sets:
    (none)
  Default pitch: 10 CPI 6 LPI
  Default page size: 80 wide 60 long
  Default port settings:
```
You can select multiple sequential items in the list by pressing the left mouse button and dragging the cursor to highlight them or by holding down the Shift key while using the mouse to highlight the range of items to delete. If you want to delete multiple items in the list that are not sequentially listed, you can hold down the Ctrl key and use the mouse button to highlight specific printers or classes to delete.

Option 2: Using the command line

The `lpadmin` command with the `-x dest` flag removes the specified destination (printer or class) from the print service. The syntax is:

```
# lpadmin -x dest
```

- If `dest` is a printer and is the only member of a class, then the class is also deleted.
- If `dest` is a non-empty class, you can delete the class without deleting the printers that were members of this class.
- If `dest` is all, all printers and classes are removed. Be very careful with this command!

2.4 Setting up defaults

The administrator should consider the system-wide defaults that he or she can configure. These include:
2.4.1 Setting the default destination

The System V print administrator can define a printer or class to be used as the default destination in the case where a user does not specify a destination on the print command and has not set either the LPDEST or the PRINTER environment variable. There is no system default destination unless the administrator explicitly sets one.

Without a default destination, a user must specify a destination (dest) in each print request, or the print service will issue an error. By default, dest is taken from the environment variable LPDEST. If LPDEST is not set\(^2\), then dest is taken from the environment variable PRINTER. If PRINTER is not set, a default destination (if one exists) for the system is used. If no system default is set and the -T flag on the \texttt{lp} command is used, dest will be selected on the basis of content-type specified with the -T flag (for example, \texttt{lp -d any -T simple}).

You can use either of the following interfaces to set the default system destination:

- Web-based System Manager (see “Option 1: Using Web-based System Manager” on page 85)
- Command line (see “Option 2: Using the command line” on page 86)

\textbf{Option 1: Using Web-based System Manager}

You can use Web-based System Manager to set or to change the system-wide default destination, but you can not use it to unset the default destination; that is, you can not use Web-based System Manager to return to a state where there is no system-wide default destination.

You can start the \texttt{Set default printer} task either from the Directory Disabled Overview and Tasks panel or from the Web-based System Manager pull-down (select \texttt{Printers -> Set Default Printer...}), as shown in Figure 13 on page 86.

\(^2\) If you use the \texttt{export} command to set an environment variable and later need to set it to a null value, use the \texttt{unset} command.
You can select a single item from this list. Press Finish when you have made your selection.

Option 2: Using the command line
You use the lpadmin command with the -d flag to specify a system-wide default destination. That destination can be either a printer or a class of printers. For example:

```
# lpadmin -d hp-par2
```

To unset the system default printer, you can enter a null value (lpadmin -d) or the keyword none (lpadmin -d none).

2.4.1.1 Displaying the current default destination
You can use either of the following interfaces to display the current default system destination:

- Web-based System Manager (see “Option 1: Using Web-based System Manager” on page 86)
- Command line (see “Option 2: Using the command line” on page 87)

Option 1: Using Web-based System Manager
The default destination is displayed on the “Overview and Tasks” panel of Web-based System Manager, as shown in Figure 6 on page 66.
Option 2: Using the command line
To display the name of the current default destination (if any), use the `lpstat` command with the `-d` flag:

```
# lpstat -d
```

2.4.2 Setting the default for print spooling
As discussed in Section 1.9, “To spool or not to spool” on page 30, the print service administrator can control whether or not the print service queues a copy of the user’s file(s) or the original file itself when a print job is submitted.

You use the `lpadmin` command with the `-O copy-option` flag, where the value for `copy-option` can be either `copy` or `nocopy`. The default behavior is that of `nocopy`.

- If `-O copy` is specified, the system always copies the user’s source files to the spool area (`/var/spool/lp/tmp`) when a print job is submitted.
- If `-O nocopy` is specified, the files are copied only if the user specifies the `-c` flag of the `lp` command when submitting the job.

This value is stored in the `/etc/default/lp` file and is checked every time a job is submitted. Note that until you issue the `lpadmin -O` command, the `/etc/default` directory is not created. For example:

```
# lpadmin -O nocopy
```

2.4.3 Setting default printing priorities and limits
The print administrator can use the `lpusers` command to set default priority levels system-wide and by specific user, and can also set limits to the priority level that can be requested by users. Both the priority-level and the priority-limit use a range of 0 to 39, with 0 being the highest priority.

- To list the current priority-level and priority-limits:

  ```
  # lpusers -l
  ```

- You can set a system-wide priority-level that will be used if a user does not specify a priority level with a print request (`lp -q`).

  ```
  # lpusers -d priority-level
  ```

 The initial default priority-level is 20.

- You can set a default priority-limit that users can request when submitting a print request.

  ```
  # lpusers -q priority-limit [login-ID-list]
  ```
Users that have been given a limit can not submit a print request with a higher priority level than the one assigned, nor can they change a request already submitted to have a higher priority.

You can set priority limits for a specific user on the local system, all users on the local system, a specific user on a remote system, all users on a remote system, or a specific user on all systems.

To remove a priority limit for a login-ID-list, use the -u flag on the \texttt{lpusers} command. See the man page for the \texttt{lpusers} command for additional details.

2.5 Printing files

This section will discuss how to print a job and how to manage a print request once it has been submitted.

2.5.1 Submitting a print request

When the System V print subsystem is active, the only interface you can use to submit print requests is the command line. \texttt{lp} is the preferred print command in System V, though you may also use the \texttt{lpr} command (see “The \texttt{lpr} command” on page 94).

The \texttt{lp} command

Because you must use the command line to submit print requests to the System V print subsystem (that is, there is no SMIT interface for submitting jobs), we have chosen to include details on the \texttt{lp} command here. We have not included all flags or options, just the most common ones.

Note

To print in the System V print subsystem, you \textit{must} use either the \texttt{lp} or \texttt{lpr} command. You cannot use the \texttt{enq} or \texttt{qprt} commands, because those commands will continue to send jobs to the PowerPC print subsystem’s queues even when it is not the active print subsystem.

If you check the man pages for either \texttt{lp} or \texttt{lpr}, make sure that you read the correct section for the print subsystem in which you are working. For example, when reading the man page for \texttt{lp}, use the section that is entitled “System V Print Subsystem \texttt{lp} on an PowerPC and IA-64 platforms.”

The basic syntax of the \texttt{lp} command is:

\[
\texttt{lp -d dest [print-options] file-name(s)}
\]
The `lp` command is used to send a print request either to a particular destination (printer or class) or, using `-d any`, to any printer capable of meeting all requirements of the print request.

Printers that are not accepting requests will not be considered when the destination is any. (Use the `lpstat -a` command to see which printers are accepting requests.) However, if a request is destined for a class of printers, and the class itself is accepting requests, then all printers in the class will be considered, regardless of their acceptance status.

If filenames are not specified on the command line, standard input is assumed. The standard input may be specified along with named files on the command line by listing the filenames and specifying for the standard input. The files will be printed in the order in which they appear on the command line.

The print service associates a unique request-ID with each request and displays it on the standard output. This request-ID can be used later when canceling or changing a request, or when determining its status. See the man pages for the `cancel` command for details about canceling a request, and for `lpstat` for information about checking the status of a print request.

Flags must always precede filenames, but may be specified in any order.

Flags

- **-c**
 Make copies of the files to be printed immediately when `lp` is invoked. Normally files will not be copied, but will be linked whenever possible; the exception to this is if the administrator has configured the system to make copies of (spool) all print requests.

 If the `-c` flag is not specified, the user should be careful not to remove any of the files before the request has been printed in its entirety. It should also be noted that if the `-c` flag is not specified, any changes made to the named files after the request is made but before it is printed will be reflected in the printed output.

- **-d dest**
 Choose dest as the printer or class of printers that is to do the printing. If dest is a printer, then the request will be printed only on that specific printer. If dest is a class of printers, then the request will be printed on the first available printer that is a member of the class. If dest is any, then the request will be
printed on any printer that can handle it. If no system default is set and -T is used, dest will be selected on the basis of content-type specified with the -T flag. See the description of -T.

For a discussion of default destinations, see Section 2.4.1, “Setting the default destination” on page 85.

- **f form-name [-d any]**
 Print the request on the form form-name. The print service ensures that the form is mounted on the printer. If form-name is requested with a printer destination that cannot support the form, the request is rejected. If form-name has not been defined for the system, or if the user is not allowed to use the form, the request is rejected.

 When the -d any flag is given, the request is printed on any printer that has the requested form mounted and can handle all other needs of the print request.

- **H special-handling**
 Print the request according to the value of special-handling. Acceptable values for special-handling are defined below:

 hold
 Do not print the request until notified. If printing has already begun, stop it. Other print requests will go ahead of a held request until it is resumed.

 resume
 Resume a held request. If it had been printing when held, it will be the next request printed, unless subsequently bumped by an immediate request. The -i flag (followed by a request-ID) must be used whenever this argument is specified.

 immediate
 Print the request next. If more than one request is assigned immediate, the most recent request will be printed first. If another request is currently printing, it must be put on hold to allow this immediate request to print. (Available only to print service administrators)

- **L locale-name**
 Specify locale-name as the locale to use with this print request. By default, locale-name is set to the
value of LC_CTYPE. If LC_CTYPE is not set, locale-name defaults to the C locale.

-m
Send mail after the files have been printed. By default, mail is not sent upon normal completion of the print request.

-n number
Print number copies of the output. The default is one copy.

-o options
Specify printer-dependent options. Several such options may be collected by specifying the -o flag more than once (that is, -o option1 -o option2), or by specifying a list of options with one -o flag enclosed in double quotes and separated by spaces (that is, -o "option1 option2").

nobanner
Do not print a banner page with this request. The administrator can disallow this option at any time.

nofilebreak
Do not insert a form feed between the files given, if submitting more than one file. This option is not supported by printers configured to use the PS (PostScript) interface.

length=number
Print this request with pages number long. A number is an optionally scaled decimal number that gives a size in lines, characters, inches, or centimeters, as appropriate. The scale is indicated by appending the letter i for inches, or the letter c for centimeters. For length or width settings, an unscaled number indicates lines or characters; for line pitch or character pitch settings, an unscaled number indicates lines per inch or characters per inch (the same as a number scaled with i).

For example, length=66 indicates a page length of 66 lines,
length=11i indicates a page length of 11 inches, and length=27.94c indicates a page length of 27.94 centimeters. This option may not be used with the -f option and is not supported by the PS (PostScript) interface.

width=number

Print this request with pages number wide. (See the explanation of numbers in the discussion of length above.) This option may not be used with the -f option and is not supported by the PS (PostScript).

lpi=number

Print this request with the line pitch set to number. (See the explanation of numbers in the discussion of length above.) This option may not be used with the -f flag and is not supported by the PS (PostScript).

cpi=pica | elite | compressed

Print this request with the character pitch set to pica (representing 10 characters per inch), elite (representing 12 characters per inch), or compressed (representing as many characters per inch as a printer can handle).

There is not a standard number of characters per inch for all printers; see the terminfo database for the default character pitch for your printer. This option may not be used with the -f flag and is not supported by the PS (PostScript) interface.

-P page-list

Print the pages specified in page-list. This flag can be used only if there is a filter available to handle it; otherwise, the print request will be rejected. The
page-list may consist of ranges of numbers, single page numbers, or a combination of both. The pages will be printed in ascending order.

- **q priority-level**
 Assign this request priority-level in the printing queue. The values of priority-level range from 0 (highest priority) to 39 (lowest priority). If a priority is not specified, the default for the print service is used, as assigned by the system administrator. A priority limit may be assigned to individual users by the system administrator. (See the `lpusers` command for additional information.)

- **-R**
 Remove file(s) after submitting the print request. Use this flag with caution.

- **-r**
 See `-T content-type [-r]` flag.

- **-t title**
 Print title on the banner page of the output. The default is no title. Enclose title in quotes if it contains blanks.

- **-T content-type [-r]**
 Print the request on a printer that can support the specified content-type. If no printer accepts this type directly, a filter will be used to convert the content into an acceptable type. If the `-r` flag is specified, a filter will not be used. If `-r` is specified but no printer accepts the content-type directly, the request is rejected. If the content-type is not acceptable to any printer, either directly or with a filter, the request is rejected. The default content-type is simple.

- **-w**
 Write a message on the user’s terminal after the files have been printed. If the user is not logged in, or if the printer resides on a remote system, then mail will be sent instead. Be aware that messages may be sent to a panel other than the one in which the command was originally entered.

- **-y mode-list**
 Print this request according to the printing modes listed in mode-list. The allowed values for mode-list are locally defined. This option may be used only if there is a filter available to handle it; otherwise, the print request will be rejected. In most cases, the following options are defined for PostScript print filters:
-y landscape Change the orientation of a physical page from portrait to landscape.

-\texttt{y x=number, y=number} Change the default position of a logical page on a physical page by moving the origin.

-\texttt{y group=number} Group multiple logical pages on a single physical page.

-\texttt{y magnify=number} Change the logical size of each page in a document.

-\texttt{o length=number} Select the number of lines in each page of the document.

-\texttt{P number} Select, by page numbers, a subset of a document to be printed.

-\texttt{n number} Print multiple copies of a document.

There are some other flags that can be specified on the \texttt{lp} command. Refer to the man page, the \textit{AIX 5L Commands Reference}, the \textit{AIX 5L Guide to Printers and Printing}, and Chapter 4, “System V advanced printing” on page 135 for additional information.

\textbf{The \texttt{lpr} command}

We will not go into a great amount of detail here on the \texttt{lpr} command because \texttt{lp} is the preferred command. However, we did want to show the format of the command. Refer to the System V section of the man page or \textit{AIX 5L Commands Reference} for \texttt{lpr} for additional information.

The syntax of the \texttt{lpr} command is as follows:

Note that with \texttt{lpr}, command line options can not be combined into a single argument as with some other commands. For example, the command \texttt{lpr -fs} is not equivalent to \texttt{lpr -f -s}.
Also, the meaning of the -C class flag is different for lpr than for lp. In lpr, the class value is printed on the banner page; it does not mean that a job is submitted to a System V destination that is a class.

2.5.2 Modifying a print request

You can use a slightly different form of the lp command to change the options for a request submitted previously. A user can change only his or her own jobs.

Syntax:

$ lp -i request-ID print-options

The print request identified by the request-ID is changed according to the print-options specified with this command. The print-options available are the same as those with the first form of the lp command. If the request has finished printing, the change is rejected. If the request is already printing, it will be stopped and restarted from the beginning (unless the -P flag has been given).

2.5.3 Checking status

The lpstat command displays current status or general configuration information on different objects that have been defined in the print subsystem.

The basic syntax of the command is:

$ lpstat [flags] [object-list]

You specify a particular flag to list the status of different kinds of objects. For example, to check the status of the print service itself, use:

$ lpstat -r

If you have defined more than one kind of an object, you can display the status of all the objects of that kind, or you can limit the display to specific objects. For example, if you have defined more than one print class, you can display the status of all the objects:

$ lpstat -c all

or you can limit your display to a single object:

$ lpstat -c Room_3C3
or even a list of objects:

$ lpstat -c "Room_3C3 remote"

For some objects, you can get a basic or an expanded status by using the -l flag. For example, to display the short status of queued jobs:

$ lpstat -o

would return the following:

<table>
<thead>
<tr>
<th>Any-267</th>
<th>dumbuser</th>
<th>880</th>
<th>Wed Nov 8 12:34:09 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home-269</td>
<td>dumbuser</td>
<td>880</td>
<td>Wed Nov 8 12:35:59 2000</td>
</tr>
</tbody>
</table>

In contrast, you could request a long status display by adding the -l flag:

$ lpstat -o -l

<table>
<thead>
<tr>
<th>Any-267</th>
<th>dumbuser</th>
<th>880</th>
<th>Wed Nov 8 12:34:09 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigned Newprt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queued for Newprt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home-269</td>
<td>dumbuser</td>
<td>880</td>
<td>Wed Nov 8 12:35:59 2000</td>
</tr>
<tr>
<td>Queued for Home</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queued for Np12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queued for Reallylongprintername</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can display information on overall system status (-r, -s, -t) printer classes (-c), printers (-p, -a, -d), jobs (-o, -R, -u), forms (-f) and print wheels or character sets (-S).

For complete syntax, refer to the man pages for the System V version of the lpstat command or to AIX 5L Commands Reference. See also Table 31 on page 474 for a task-oriented list of status commands.

Note: The System V print subsystem also supports the BSD UNIX check print queue command (lpq). See the man page or AIX 5L Commands Reference for the exact syntax.
2.5.4 Cancelling a print request

The `cancel` command cancels print requests submitted with the `lp` command.

A user can cancel a print request using its request-ID, which you can discover by using the `lpstat` command with the `-o` flag. Once you know the request-ID, you use the `cancel` command:

```
$ cancel [request-ID-list] [printers]
```

Alternatively, the user can specify one or more printers, on which only the currently printing request will be cancelled if it is the user's job.

A second form of the `cancel` command cancels all print requests for users specified in `login-ID-list`.

```
$ cancel -u login-ID-list [printers]
```

This command cancels all print requests (including those jobs currently being printed) associated with the login ID of the user making the request, either on all printers (by default) or on the printer specified.

- A user without special privileges can cancel only requests that are associated with his or her own login ID.
- Administrative users with the appropriate privileges can cancel jobs submitted by any user.

Double quotes must be used around `login-ID-list` if the list contains blanks. The argument `login-ID-list` may include any or all of the following constructs:

- `login-ID` A user on the local system
- `system-name!login-ID` A user on system `system-name`
- `system-name!all` All users on system `system-name`
- `all!login-ID` A user on all systems
- `all` All users on the local system
- `all!all` All users on all systems

A remote job can be canceled only if it originated on the client system; that is, a server system can cancel jobs that came from a client, and a client system can cancel jobs it sent to a server.

The cancellation of a request that is currently printing frees the printer to print the next request.
2.5.5 Prioritizing a print request

When the System V print subsystem is active, by default each print request is assigned a priority of 20, where the range of priorities can be between 0 and 39 (with 0 as the highest). A user can request a specific priority at job submission time by specifying the -q flag on the lp command. For example:

```
$ lp -d Home -q 39 /etc/motd
```

Reprioritizing by priority-level and rank

You can use the -R flag on the lpstat command to show the current order or rank in which requests will be printed, though you will not see the actual priority number. For example, we submitted one print request without specifying any priority, then two more requests, one with priority of 39 and one with priority of 5. We would expect to see the job with priority 5 print first, followed by the job with default priority 20, then finally the job with priority 39. Here are our results, as expected:

```
$ lp -d Home /etc/motd
request id is Home-269 (1 file)
$ lpstat -o Home-269 -R
  1 Home-269  dumbuser  880 Wed Nov  8 12:35:59 2000
$ lp -d Home -q 39 /etc/motd
request id is Home-280 (1 file)
$ lp -d Home -q 5 /etc/hosts
request id is Home-281 (1 file)
$ lpstat -o "Home-269 Home-280 Home-281" -R
  2 Home-269  dumbuser  880 Wed Nov  8 12:35:59 2000
  1 Home-281  dumbuser  1419 Wed Nov  8 19:25:26 2000
```

Or to show the rank of all jobs assigned to printer Home:

```
$ lpstat -R | grep Home
  1 Home-281  dumbuser  1419 Wed Nov  8 19:25:26 2000
  2 Home-269  dumbuser  880 Wed Nov  8 12:35:59 2000
  3 Home-270  dumbuser  880 Wed Nov  8 12:37:29 2000
  4 Home-275  dumbuser  880 Wed Nov  8 12:53:05 2000
```

You can see that the job we submitted with a priority of 5 is the first in Home’s queue to be printed.

If desired, the administrator can assign a system-wide priority limit and/or a priority limit for individual users using the lpusers command. A user can not submit a print request with a priority higher than that limit.
Print requests that are queued and not yet printing can be assigned a new priority. This overrides any existing priorities and will reposition the request in the queue to put it ahead of lower priority requests or behind any others at the same or higher priority. For example:

$ lp -i request-ID -q NewPriorityLevel

Users can change the priority of only their own jobs, and the print administrator can reprioritize any job.

Promoting a request to the head of the queue

There will be times when you need to promote a pending print request so that it prints immediately after the currently printing job.

Rather than changing that job's priority, you can use the following command to move a print request to the head of the queue:

lp -i request-ID -H immediate

You must be a privileged user (root or lp, or a member of the lp group) in order to issue this command. Other users cannot use the -H immediate option.

If it must start printing immediately, but another request is currently printing, you can hold the other request, as described in Section 2.5.6, “Holding and releasing a print request” on page 99.

2.5.6 Holding and releasing a print request

A print request that has not yet finished printing can be put into held status. If a job is currently printing, you can stop it and later resume printing it.

A user can put his or her own request on hold and then release it, but cannot release a print request that an administrator has put on hold.

To hold a print request:

$ lp -i request-ID -H hold

To release or resume a held print request:

$ lp -i request-ID -H resume

By default, a released job will start printing again from the beginning, but you can specify that printing restart at a specific page by adding the -P flag to the \texttt{lp} command when you resume it.
2.5.7 Moving a print request to another queue

There may be occasions when you need to move a print request from one printer to another. To do this, you use the \texttt{lpmove} command.

You can move one or more specific print requests to a different destination using this syntax:

\texttt{$ lpmove request-ID-list dest$

You can move all currently queued print requests from one destination to another using this form of the command:

\texttt{$ lpmove dest1 dest2$

This latter form of the \texttt{lpmove} command causes the print service to reject any new requests for \texttt{dest1}.

Notes:

- When moving requests, \texttt{lpmove} does not verify that the new destination is accepting requests. You should verify the accept status of the new target using \texttt{lpstat -a dest}.
- The \texttt{lpmove} command does not move requests that have options (such as content type and form required) that can not be handled by the new destination.

2.5.8 Scheduling a print request

You can use the AIX cron facilities to schedule a print request. Use the \texttt{smit at fastpath} or \texttt{smit -> Performance & Resource Scheduling -> Schedule Jobs} to access the SMIT menus to schedule, list and remove jobs.

2.6 BSD commands

The print commands we have discussed in this chapter are primarily the System V commands. AIX 5L also includes several BSD commands that can be used with the System V print subsystem. They include:

\textbf{\texttt{lpc}} \quad The \texttt{lpc} command controls the operation of the printer or of multiple printers. The \texttt{lpc} command can be used to start or stop a printer, disable or enable a printer's spooling queue, rearrange the order of jobs in a queue, or display the status of each printer, along with its spooling queue and printer daemon. With no parameters, the \texttt{lpc} command runs interactively, prompting with \texttt{lpc>}.

100 Printing for Fun and Profit under AIX 5L
lpq The `lpq` command displays the contents of a printer queue. It reports the status of jobs specified by job#, or all jobs owned by the user specified by username. `lpq` reports on all jobs in the default printer queue when invoked with no arguments.

lpr The `lpr` command submits a print request to the scheduler with options specified on flags. (See “The lpr command” on page 94.)

lprm The `lprm` command removes a job or jobs from a printer's spooling queue. Without any arguments, `lprm` deletes the job that is currently active, provided that the user who invoked `lprm` owns that job. When a privileged user specifies a username, `lprm` removes all jobs belonging to that user.

For additional information, refer to the *AIX 5L Commands Reference*, or the man pages for each command.
Chapter 3. System V network printing

In this chapter, we will cover print environments that involve networking or communications. This will include both the configuration and administration of remote printers (or “outbound” printing) as well as print serving (or “inbound” printing).

- On the “outbound” side, the implementation of remote printing follows the BSD model rather than the traditional System V model because the BSD implementation (lpd) remote printing is now generally considered the remote printing standard in UNIX. This means that as long as your target system or printer supports LPD, as defined in Request for Comments (RFC) 1179, you can configure the System V print subsystem in AIX 5L to print to it. For example:
 - LPD printing; by this, we mean printing to remote servers or printers that support the LPD protocol. See Section 3.1, “Printing to print servers or remote printers using LPD” on page 103 for more details.
 - JetDirect-attached printers, which System V somewhat misleadingly refers to as “network attached”. See Section 3.2, “Adding a JetDirect-attached printer” on page 115.

Historically, System V printing has also supported dialing to a printer using the dial-up printer option. However, because the need for dialing to a printer is outdated and very seldom used by customers, the dial-up printer option (-U of the lpdadmin command) is not supported in AIX 5L.

- We will also discuss using the System V print subsystem as a print server, that is, receiving print requests from remote clients or “inbound”. See Section 3.3, “Configuring the System V print subsystem as a print server” on page 128 for more information.

3.1 Printing to print servers or remote printers using LPD

This section applies to printers that are directly IP-addressable and which support LPD, as well as to printers that are attached to and managed by remote print servers. If you need to define a JetDirect-attached printer, see Section 3.2, “Adding a JetDirect-attached printer” on page 115.

3.1.1 Overview

Because the remote server or printer is running LPD, the process is designed so that no formatting or filtering takes place on the local server; any formatting is taken care of at the destination.
Whenever the print service is started, lpsched starts the lpNet daemon. When you submit a job to a remote LPD destination, the \texttt{lp} command contacts lpsched, which connects to lpNet. lpNet forks a child process and passes the data to that process which sends it to the remote LPD without any local processing.

To enable printing to remote LPD servers or printers, there must be an entry for each remote target created in the /etc/lp/Systems file.

- If you are using Web-based System Manager, the host entry (with default values) will be made for you automatically using the information you provide in the instructions on page 117.

- If you are creating your printer from the command line, you must first register the remote system with the System V print service. See “Step 1: Adding the remote system name to the local print service” on page 110 for details.

3.1.2 Planning

Because the printing process for remote LPD destinations is different than for locally-attached or JetDirect-attached printers, the information required to configure a remotely-attached LPD printer is also different.

You can not specify any alert or restart information, since the print service does not own this kind of printer. Nor can you specify a print processing model, since there is no interface script that is executed locally for printers attached in this manner.

When you configure a remotely-attached printer, in addition to the standard information (such as printer name, optional class and description), you specify the following information:

- Remote hostname or IP address
- Name of the printer or queue on the remote system
 - For a remote server, this would be the name of the print queue on that system.
 - For a network-attached LPD printer, this would be the name of the print queue within the printer. For example, the IBM Infoprint 12 has two internal queue names: TEXT for ASCII or simple text, and PASS for formatted PCL or PostScript data. You should refer to your printer’s documentation to find this printer-specific information.
• Printer type (from terminfo)

Although this is a required entry in Web-based System Manager (optional on the command line), the information in terminfo is not used for remote printers, even for validation. In our tests, we obtained the same print results whether we specified a printer type or used a value of ‘unknown’.

• Content type(s) supported

Likewise, although Web-based System Manager requires that you enter a value, it will not be checked.

3.1.3 Adding a remotely-attached printer

You can use either of the following interfaces to add a remotely-attached System V printer:

• Web-based System Manager (see “Option 1: Using Web-based System Manager” on page 105)
• Command line (see “Option 2: Using the lpadmin command” on page 110)

See Table 8 on page 54 for the Web-based System Manager fields and lpadmin flags that you use to enter this information.

Important

It is important that any remote printer is registered on both the print server and also on any printer client wishing to send output to the remote destination. The line commands for this are outlined in “Option 2: Using the lpadmin command” on page 110.

Option 1: Using Web-based System Manager

The Web-based System Manager panels are very similar to those used to add a locally-attached printer.

First, you start Web-based System Manager (as described in “Option 1: Using Web-based System Manager” on page 57) and open the Overview and Tasks panel for Directory Disabled printers (see Figure 6 on page 66). To add a printer, you can either select the New printer task in the Overview panel, the Printers pull-down from the task bar, or the New Printer... toolbar icon. Any of these selections will start the New Printer wizard, which includes these steps:

1. Step 1 of 4: Specify New Printer and Attachment Method (see Figure 14 on page 107)
 a. Select a name for your System V printer.
Printer names may be no longer than the maximum length filename allowed for the file system type you are using, and may consist of all printable characters except the space, slash, backslash, colon, semicolon, comma, asterisk, question mark, and tilde. The dash can be used in any position except the first position in a printer name.

This is equivalent to the -p flag on the `lpadmin` command.

b. You can optionally specify a print class for printer pooling. If you have previously specified a print class, that class will appear in the pull-down list. If no classes exist, the list will be empty. You can type in a new class name here.

Class names may be no longer than the maximum length filename allowed for the file system type you are using, and may consist of all printable characters except the space, slash, backslash, colon, semicolon, comma, asterisk, question mark, and tilde. The dash can be used in any position except the first position in a printer name.

This is equivalent to the -c flag on the `lpadmin` command.

c. You can optionally provide a description of the printer. This description will be displayed when a user asks for the status of the printer using either `lpstat -p [printer] -D` or `lpstat -p [printer] -l`.

This is equivalent to the -D flag on the `lpadmin` command.

d. Select an attachment method:

- Local connection to this system (parallel or serial)
- Remote connection to local printer on another system (that is, to a remote LPD server or an LPD-capable printer)
- Remote connection to a network printer (only JetDirect-attachment supported)

For LPD servers or devices, you must use the attachment method of “Remote connection to local printer on another system.” (The third option of “Remote connection to a network printer” is only to be used for JetDirect-attached printers.)

In our testing, we were configuring an IBM Network Printer 12 that was attached to the lab’s Token-Ring network.
After entering our information, we pressed **Next**.

2. **Step 2 of 4: Specify Remote Attachment Options**

 In this step, you provide the information about the hostname or IP address of the remote host or printer, and the name of the remote print queue.

 a. In the panel shown in Figure 15, we typed in the fully-qualified hostname of the Network Printer 12 (though it also worked with the alias that was configured in the DNS server, as well as with the dotted-decimal IP address).
b. We entered the name of one of the Network Printer 12’s internal queues; because we were configuring for ASCII files, we used the value of TEXT that we found in the printer’s documentation, and clicked Next.

These values would be specified on the -a flag on the `lpadmin` command.

3. Step 3 of 4: Specify Printer Options

In the panel shown in Figure 16, you must enter values for printer type and for print interface (which in this case really means the content type you intend the printer to process).

![Figure 16. Adding an LPD printer (step 3 of 4)](image)

a. What is the printer type? At first, we were confused about what to enter here because there is no entry in the terminfo database for IBM Network Printers. Then we recalled that the terminfo entry (though a required entry in Web-based System Manager) is really not used for remote LPD printing, so we could have picked any value, including unknown. (See Section 3.1.2, “Planning” on page 104 for more details.) This is equivalent to the -T flag on the `lpadmin` command.

b. What is the printer interface? This question is really asking what content type you want your printer to accept. However, the value for content type is not used for remote LPD printing, so we let this default to Simple and pressed Next.

This is equivalent to the -I flag on the `lpadmin` command.
4. Step 4 of 4: Verify Settings and Add New Printer

We confirmed that these were the entries we intended and pressed **Finish**. See Figure 17 for details.

![Figure 17. Adding an LPD printer (step 4 of 4)](image)

The printer was created successfully.

Files that were added

We found it interesting to examine the files that were created after we added our new printer.

- Because this was our first LPD device, the `/etc/lp/Systems` file was created with the following entry:

 9.3.240.51:x:-:bsd:-:n:10:-:-:

 If this had not been our first remote printer, that file would have previously existed, and the new remote host information would have been appended to it.

- In the `/etc/lp/printers/` directory:
 - comment: This file consisted of one line with the text from the description we entered in Step 1.
 - configuration: This file contained the following information:
- forms.deny: This file contains information on which users are allowed to use which forms. The default value is all!all.
- users.allow: This file contains the list of users allowed to print to this printer, by default all.

For additional information on the latter two files, see Section 4.12, “Restricting users access and priorities for printers” on page 186 and Section 3.3.1.2, “Granting access to printers” on page 130.

This list of files is slightly different than the list that was created when we defined a parallel-attached printer in Section 2.3.1.4, “Files created as result of adding the printer” on page 77. For example, neither of the alert.* files were created. Nor was there a file added to /etc/lp/interfaces. This is because the print service passes data as-is to the remote LPD, and no local interface script is used. The remote destination is responsible for any formatting of data and for problem management.

Option 2: Using the lpadmin command
When you use the command line to add a remote printer, you must perform two tasks:

1. Specify the remote hosts (servers or printers) with which the local print service can communicate (see “Step 1: Adding the remote system name to the local print service” on page 110 for more information).
2. Add the remote printer to the print service (see “Step 2: Defining the LPD destination” on page 112).

Step 1: Adding the remote system name to the local print service
In the System V print subsystem, you first have to register the hostname (or IP address) of the printer (if LPD-capable) or of the system on which the printer resides with the local print service using the lpsystem command.

To register a new remote host/printer, the syntax is:

```
# lpsystem [-T timeout] [-R retry] [-y "comment"] system-name
```

The following information is adapted from the man pages for the lpsystem command:

- -T timeout
 The -T flag specifies the length of time (in minutes) that the print service should allow a network connection to be idle. If the connection to the remote system is idle (that is, there is no network traffic) for N minutes, then the connection is dropped. When there is more work, the connection will be re-established.
Valid values are n, 0, and N, where N is an integer greater than 0. The value n means "never time out"; 0 means "as soon as the connection is idle, drop it." The default is n.

Note: In the initial release of AIX 5L Version 5.0, there is a known problem with the default timeout value of n (never-time-out) that is used when remote systems are registered with the print service. The symptom is that jobs sent to a remote printer will stay in the local queue and not be transmitted. This problem has been fixed at the time of editing this redbook. But in the interim, you can specify a non-zero integer to set the timeout value on the lpsystem -T flag as a workaround; the unit is minutes. For example:

lpsystem -T 60 remote-hostname

- **-R retry**

 The -R parameter specifies the length of time (in minutes) to wait before trying to re-establish a connection to the remote system when the connection was dropped abnormally (that is, a network error).

 Legal values are n, 0, and N, where N is an integer greater than 0 and it means "wait N minutes before trying to reconnect." The value n means "do not retry dropped connections until there is more work;" 0 means "try to reconnect immediately. The default is 10 minutes.

- **-y "comment"**

 The -y flag allows you to enter a description for the system entry. This description is visible when lpsystem -l is used.

system-name

system-name is the name of the remote system to which you want to be able to send jobs. To allow connection to any BSD system, use the asterisk (*) as the system-name.

The result of the lpsystem command and its flags are defined in /etc/lp/Systems. You can edit this file with a text editor (such as vi), but editing is not recommended. By using lpsystem, you can ensure that the print service is notified of any changes to the Systems file.

Example

We wanted to permit printing to the IBM Network Printer 12 on the Token-Ring network in the lab. Its hostname was rs1290a.itsc.austin.ibm.com. We issued two lpsystem commands as root, one to add the name of the IBM Network Printer 12 (with the workaround for the timeout value) and the other to display the resulting information:
You will note that the value for the Type attribute is bsd. Although other implementations of System V printing support other protocols (such as Novell or System V), the only protocol type supported in AIX 5L is bsd, which is the RFC 1179 LPR/LPD protocol.

Once this was accomplished, we could define our remote printer.

Step 2: Defining the LPD destination

You use the `lpadmin` command to define a remote printer. The invocation is similar to that used when defining a locally-attached printer, but instead of using the `-v` flag, you use the `-s` option. For example:

```
# lpadmin -p local-name -s server-name[!server-printer-name]
```

This option makes a server-attached or LPD-capable printer accessible to users on your system. The server-name is the name of the system on which the printer is located or is the hostname of the printer itself. (You can also use IP addresses instead of hostnames.)

Note

Remember, the remote hostname or IP address must already be listed in the systems table by using the `lpsystem` command, as we did in “Step 1: Adding the remote system name to the local print service” on page 110.

The server-printer-name is the name defined on the remote server system for that printer or queue.

Example for a remote printer

In our planning for this printer, we had determined the following:

- We wanted to be able to send it PostScript print jobs.
- We decided to name the queue on our system `remps`.
- We knew that the internal queue on the IBM Network Printer 12 for formatted PCL or PostScript data is hardcoded in the printer to a value of `PASS`.

```bash
# lpsystem -T 90 -y "IBM4312 TR" rs1290a.itsc.austin.ibm.com
UX:lpsystem: INFO: "rs1290a.itsc.austin.ibm.com" has been added.
# lpsystem -l
System: rs1290a.itsc.austin.ibm.com
Type: bsd
Connection timeout: 90 minutes
Retry failed connections: after 10 minutes
Comment: IBM4312 TR
```
• We determined that the printer's IP address and its hostname.

• We decided not to make it a member of a class or pool.

• Although we knew that the terminfo entry is not used for LPD destinations, we set this value to PS, so that someone looking at the detailed printer information with the `lpstat` command would recognize that this printer is intended for PostScript printing.

• Likewise, even though we also knew that the value for content-type is not used for LPD destinations, we set the value to postscript, so that a long status display would provide a true description of the purpose of this printer.

We issued the following command:

```
# lpadmin -p remps -s rs1290a.itsc.austin.ibm.com!PASS -T PS -I postscript
```

We then used different variations of the `lpstat` command to display the status of our new printer:

```
# lpstat -t
scheduler is running
system for remps: rs1290a.itsc.austin.ibm.com (as printer PASS)
remps not accepting requests since Wed Oct 25 13:19:29 2000 -
new destination
new printer

# lpstat -p remps -l
new printer
  Content types: postscript
  Printer types: PS
  Description:
  Users allowed:
    all
  Forms denied:
    all!all
  Banner required
  Character sets:
    (none)
  Default pitch:
  Default page size: 80 wide 66 long
```

We had to issue the `accept` and `enable` commands to make the printer ready to print:

• `# accept remps` (so remps could begin to queue print requests)

• `# enable remps` (so remps could begin to print any waiting requests)
We printed a sample PostScript file (since the PASS queue in an IBM Network Printer is designed for printing PostScript or PCL data); it printed successfully, but without any banner page because the job is submitted directly to the printer's LPD without going through any interface scripts on the local print service.

Example for a remote print server

We also tested printing to a printer owned by another host, whose hostname was rs9220b.itsc.austin.ibm.com. We took the following steps:

1. We used the `lpsystem` command to register the name of the remote server in our Systems table:

   ```
   # lpsystem -T 90 -y "rs9220b" rs9220b.itsc.austin.ibm.com
   (In contrast, in the previous example, because it was the printer itself that was IP addressable, we registered the name of the printer.)
   ```

2. Next, we defined that system's 3130pcl printer to our system using the same name, then issued the accept and enable commands:

   ```
   # lpadmin -p 3130pcl -s rs9220b.itsc.austin.ibm.com
   # lpstat -p 3130pcl -l
   new printer
   Content types: simple
   Printer types: unknown
   Description:
   Users allowed: all
   Forms denied: allall
   Banner required
   Character sets:
   (none)
   Default pitch:
   Default page size:
   # accept 3130pcl
   UX:accept: INFO: destination "3130pcl" now accepting requests
   # enable 3130pcl
   UX:enable: INFO: printer "3130pcl" now enabled
   ```

3. We printed a test job to it to validate our configuration:

   ```
   # lptest 10 10 | lp -d 3130pcl
   request id is 3130pcl-800 (standard input)
   # lpstat -o -l
   queued remotely for 3130pcl
   ```

The job printed successfully.
3.2 Adding a JetDirect-attached printer

This section applies only to printers that attach to the network using a Hewlett-Packard JetDirect interface. If you have printers that attach to the network using other interfaces or that are attached to a remote server, you can not use the instructions in this section; see Section 3.1, “Printing to print servers or remote printers using LPD” on page 103.

3.2.1 Overview

The printing process for JetDirect-attached printers differs from the processes for the other two attachment types we have described in this book, and the configuration procedure is different as well. JetDirect printing is similar to local printing in several ways (local filtering, alerts, print options, no entry in the Systems file), but quite different in others.

When you submit a print job to a JetDirect-attached printer, the \texttt{lp} command contacts lpsched, which calls a first JetDirect-specific interface program. That first interface program in turn calls the standard interface script and pipes the resulting output to the hpnpf program, which communicates with the JetDirect-attached printer.

The configuration process:

1. Creates a JetDirect-specific script by copying the /usr/lib/hpnp/hpnp.model file into /etc/lp/interfaces/printername, then modifying that copy to pipe its output to the standard interface script.

2. Copies the standard interface as /etc/lp/interfaces/model.orig/printername, not as /etc/lp/interfaces/printername as it does for a locally-attached printer. (In contrast, no interface script is used at all when you configure remote LPD printers or servers.)

3.2.2 Planning

When you configure a JetDirect-attached printer, in addition to the standard information (printer name, optional class and description), you specify the following information:

- Remote hostname or IP address for the printer
- Action upon printer alert
- Recovery after alert
- Print processing model (interface program)
- Printer type (from terminfo)
3.2.3 Adding a JetDirect-attached printer

You can use one of the following interfaces to add a JetDirect-attached System V printer:

- Web-based System Manager (see “Option 1: Using Web-based System Manager” on page 116 for more information)
- A simple menu-driven utility called hpnpcfg, which may be familiar to experienced UNIX print administrators (see “Option 2: Using the hpnpcfg utility” on page 121 for more information)
- A few commands from the command line (see “Option 3: Using the command line” on page 127 for more information)

Option 1: Using Web-based System Manager

First, you start Web-based System Manager (as described in “Option 1: Using Web-based System Manager” on page 57) and open the Overview and Tasks panel for Directory Disabled printers (Figure 6 on page 66). To add a printer, you can either select the New printer task in the Overview panel, the Printers pull-down from the task bar, or the New Printer... toolbar icon. Any of these selections will start the New Printer wizard, which includes these steps:
1. Step 1 of 4: Specify New Printer and Attachment Method

![Figure 18. Adding a JetDirect-attached printer (step 1 of 4)](image)

- a. Select a name for your JetDirect-attached printer.

 Printer names may be no longer than the maximum length filename allowed for the file system type you are using, and may consist of all printable characters except the space, slash, backslash, colon, semicolon, comma, asterisk, question mark, and tilde. The dash can be used in any position except the first position in a printer name.

- b. You can optionally specify a print class for printer pooling. If you have previously specified a print class, that class will appear in the pull-down list. If no classes exist, the list will be empty. You can type in a new class name here.

 Class names may be no longer than the maximum length filename allowed for the file system type you are using, and may consist of all printable characters except the space, slash, backslash, colon, semicolon, comma, asterisk, question mark, and tilde. The dash can be used in any position except the first position in a printer name.

- c. You can optionally provide a description of the printer. This description will be displayed when a user asks for the status of the printer using either `lpstat -p [printer] -D` or `lpstat -p [printer] -l`.

- d. Select an attachment method:

 - Local connection to this system (parallel or serial)
• Remote connection to local printer on another system (that is, to a remote LPD server or an LPD-capable printer)
• Remote connection to a network printer

For JetDirect-attached devices, you must use the third option. Although the wording in Web-based System Manager says Remote connection to a network printer, this selection of attachment type can not be used for any type of network attachment other than JetDirect.

We used a Hewlett-Packard LaserJet 4M with an internal JetDirect adapter for our testing. After entering our information into the panel shown in Figure 18 on page 117, we clicked on Next.

2. Step 2 of 4: Specify Remote Network Printer Attachment Options

In this step, we provided the IP address of the JetDirect device (as shown in Figure 19), though we could have used a hostname that could be resolved through DNS, NIS, or /etc/hosts. Then we clicked on Next.

![Figure 19. Adding a JetDirect-attached printer (step 2 of 4)](image)

3. Step 3 of 4: Specify Printer Options

The next panel, shown in Figure 20 on page 119, is the same one that is displayed when you define a local printer, and you need to provide the same information: the kind of alerts you want to receive and the method of recovery in case of a printer problem, the model or interface script that will be used, the printer type (from terminfo), and the content types that the printer can accept.

For a view of the panel and details on the information you need to enter here, see Figure 9 on page 69 and the accompanying text.
We selected e-mail notification for alerts, restarts from top of page (when possible), the standard processing model, the hplaserjet printer type, and content type (which Web-based System Manager calls print interface on this panel) of pcl. The printer type and content type are important, because if they are not set right, you will get the print job on the same page as the banner page and stair-step output. As with local printer, when you use the content type of pcl, you will also need to register the pcl filter using the command:

```
# lpfilter -f pcl -F /etc/lp/fd/pcl.fd
```

With the pcl filter registered, the scheduler will call the pcl filter to add carriage returns to line feeds. After entering the information, we clicked Next.

4. Step 4 of 4: Verify Settings and Add New Printer

![Add New Printer](image)

Figure 20. Adding a JetDirect-attached printer (step 4 of 4)

We verified the settings, clicked Finish, and the printer was added successfully.

We used the `lpstat` command to list the printer configuration:
Note: In the early release code that we tested, Web-based System Manager caused the interface script for JetDirect-attached printers to be created with incorrect permissions. Before testing the printer, change the permissions for the interface script to executable owned by user lp and group lp. For example, if the printer name is jet02, use these commands:

```bash
# chmod +x /etc/lp/interfaces/jet02
# chown lp:lp /etc/lp/interfaces/jet02
```

We attempted to verify the configuration by printing an ASCII file:

```bash
# lp -d hplj4m-net /etc/motd
```

This printed correctly as long as the printer type was set to hplaserjet, the content type was set to pcl, and the pcl filter was registered.

Files that were added

After defining the network-attached printer we called hplj4m-net, the following files were created:

- In the `/etc/lp/printers/hplj4m.net` directory:
 - alert.sh
 - alert.vars
 - comment
 - configuration
 - forms.deny
 - users.allow
These files are like those created for a locally-attached printer (see Section 2.3.1.4, “Files created as result of adding the printer” on page 77 for details), with the interesting point that the device that is used with a JetDirect printer is /dev/null.

- `/etc/lp/interfaces/hplj4m.net` - This is a copy of the `/usr/lib/hpnp/hpnp.model` file with modifications made for the address of the remote servers and is the file that was copied with the incorrect permissions (as mentioned earlier). This script invokes the original model or interface script from the subdirectory model.orig and pipes its output to `/usr/lib/hpnp/hpnpf`.

- `/etc/lp/interfaces/model.orig/hplj4m-net` - This is the copy of the standard interface file copied from the `/usr/lib/lp/model` directory.

In contrast to defining a remote printer (Section 3.1, “Printing to print servers or remote printers using LPD” on page 103), adding a network-attached printer did not cause any entries to be made to the `/etc/lp/Systems` file.

Option 2: Using the hpnpcfg utility

AIX 5L includes an installation script, `/usr/lib/hpnp/hpnpcfg`, that can be used to configure JetDirect-attached printers.

Note

In the early release code that we tested, the hpnpcfg script shuts down the scheduler and restarts it with some environment variables set to values that cause any JetDirect queues to no longer work. Before running the script, edit the file `/usr/lib/hpnp/cfg/option6`, and comment out these lines:

```
# echo /usr/sbin/lpshut | tee -a -- $LOG
# /usr/sbin/lpshut
# if [ $? -eq 0 ]
# then
#   STARTLP=1
# fi
```

If you do not make these changes to the script, make sure to recycle the scheduler by running `lpshut` and `lpsched` after running the script.

To start the hpnpcfg utility, we issued the following command as root:

```
# /usr/lib/hpnp/hpnpcfg
```

This displayed the following menus, where we entered a question mark (?) in order to view the online help for this utility:
In our test environment, the HP LaserJet 4M had an internal JetDirect token-ring adapter that was directly IP addressable and did not require the use of BOOTP. Therefore, we bypassed options 1-3 and selected the fourth option to verify network printer connectivity:
We could communicate with the printer's address, so we selected the fifth option to send a test file directly to the printer to verify printer operation:

```
Please enter selection: 4
Enter the network peripheral name or IP address: 9.3.240.52

Testing network connectivity to 9.3.240.52 ....
ping 9.3.240.52
PING 9.3.240.52: (9.3.240.52): 56 data bytes
64 bytes from 9.3.240.52: icmp_seq=0 ttl=60 time=4 ms
64 bytes from 9.3.240.52: icmp_seq=1 ttl=60 time=3 ms
64 bytes from 9.3.240.52: icmp_seq=2 ttl=60 time=3 ms
^C
--- 9.3.240.52 PING Statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 3/3/4 ms
9.3.240.52 passed the network connectivity test

The printer network connectivity test is complete.
```

```
Press the return key to continue ...
```

```
Please enter selection: 5
Enter the network peripheral name or IP address: 9.3.240.52

The following types of test files can be sent to the printer:

1) text file
2) PostScript file

Which type of file should be sent? (1/2 default=1)

Checking that rs9220a is on the printer's access list ...
/usr/lib/hpnp/cfg/canaccess 9.3.240.52
Usage: canaccess [-c community] [-p port] [-v] peripheral

The access list test was inconclusive ... continuing

Sending a test file to 9.3.240.52 ...
/usr/lib/hpnp/hpnpf -n -v -R -x 9.3.240.52 /usr/lib/hpnp/testfiles/text
Connecting to 9.3.240.52 ... connected
Sending file /usr/lib/hpnp/testfiles/text

The file was successfully sent to 9.3.240.52.

The network printer operation test is complete.
```
We do not recommend sending the test PostScript file because it is prefixed with non-PostScript commands, which in our test environment caused the printer to print out the PostScript source.

We next selected the sixth option to add the printer to the spooler:

```
Please enter selection: 6
Enter the lp spooler destination name: ?
   Enter the name to be used as the destination in an "lp" command.
   The name should match the peripheral's network name, but it does
   not have to. For example, the lp destination name can be "p1"
   and the name known on the network (and stored in /etc/hosts)
   can be "koala".

   The name is limited to 14 characters and must consist entirely
   of the characters A-Z, a-z, 0-9, and _ (underscore).
   Enter "q" to return to the main menu
   Enter the lp spooler destination name: jet4m
```

The online help states that the name is limited to 14 alphanumeric characters plus the underscore, and indeed this program enforces those rules; when you use this hpnpcfg tool to add a JetDirect-attached printer, you will not be allowed to enter a name that does not meet these criteria. (In contrast, when you use Web-based System Manager or lpadmin to add local or remote printers, you need only follow the general file naming rules of the operating system when naming printers or classes.)

Continuing with the hpnpcfg script, it next asked us for the host name or IP address of the JetDirect-attached printer. The name you specify here must be known either through DNS, NIS, or by an entry in the /etc/hosts file; if not, you will receive an error message.

```
Enter the network peripheral name (default=jet4m): ?
   The lp spooler destination name can be different from the network
   peripheral name. The lp spooler destination name is the name used
   with the -d option of the "lp" command. The network peripheral
   name is the name entered in /etc/hosts, NIS (Network Information
   Service), or DNS (Domain Name System.)
   Enter "q" to return to the main menu
   Enter the network peripheral name (default=jet4m): rs1290b
```

Next, the script asked for printer type and the content type.
For printer type, we entered hplaserjet.

Note: For context type (which is the same as the content type), in the early code that we tested, simply press Enter at the context-type prompt; there is an error in the option6 shell script that will occur if you try to enter a value. Once the printer is added, the content type can be changed with the \texttt{lpadmin} -I flag.

If you enter a value for the context type, you will get this error message:

\begin{verbatim}
Enter context-type for printer (default=simple) \texttt{simple}
\end{verbatim}

To fix the script, edit the file \texttt{/usr/lib/hpnp/cfg/option6}, and change the string comparison lines to read:

\begin{verbatim}
if ["\$UPPERCASE" = "PCL"]
...
if ["\$UPPERCASE" = "PS"]
...
if ["\$UPPERCASE" = "SIMPLE"]
\end{verbatim}

Next, the script prompted us for an optional class name and to specify if this new printer should be used as the default. Then it asked if we were ready for the script to shut down the print service in order to add the new printer, warning us that any currently printing jobs would be stopped and reprinted from the beginning when the print services was restarted.
We replied yes (y), and the hnpccfg script performed the following actions and wrote these messages to the console and the /tmp/hnpccfg.log file:

```
-------- Fri Nov 17 15:18:09 CST 2000 BEGIN HNPCCFG ON aix4prt
-------- Fri Nov 17 15:18:30 CST 2000 BEGIN HNPCCFG ON aix4prt
-------- BEGIN MENU CHOICE 6
Adding jet06 to spooler

/usr/sbin/lpadmin -p jet06 -v /dev/null -f allow:all -u allow:all
   -I simple -T hplaserjet
mv /usr/spool/lp/admins/lp/interfaces/jet06
   /usr/spool/lp/admins/lp/interfaces/model.orig/jet06
sed -e "s/^PERIPH=/PERIPH=9.3.240.53/ /usr/lib/hpnp/hpnp.model >
   /usr/spool/lp/admins/lp/interfaces/jet06
scheduler was not restarted
/usr/sbin/accept jet06
/usr/bin/enable jet06
```

We displayed the current configuration of the printer:
Now change the content type of the printer with `lpadmin`:

```
# lpadmin -p jet06 -I pcl
```

One major difference in this configuration, when compared to the other configurations we had tested, was the value for forms. On all previous printer definitions where we took the default, the value for a new printer was `Forms denied: all!all`, which means that no special forms could be mounted on this printer (unless overridden by an administrator). However, using `hpnpcfg`, the value for the printer defined with this utility was `Forms allowed: all`. This may not be the desired behavior, particularly in an environment where the special forms could be preprinted payroll checks, that is, negotiable documents!

Another problem that occurs is that the adding a printer with this script will fail if forms are defined.

We tested from the command line by printing the `/etc/motd` file, and it printed fine with a banner in front.

Option 3: Using the command line

The most failsafe method to add JetDirect-attached printers is to use the command line option. The commands needed can be obtained from the log of `hpnpcfg` and are shown here (for adding a printer named `jet5` to printer with the hostname `debsprt`).
Use `-v /dev/null` as the device, `pcl` as the context type, and `hplaserjet` as the printer type. The `lpadmin` command creates the printer; the original interface script is then copied to the `model.orig` subdirectory and the `hnp.model` script is modified with `sed` to contain the new hostname. The backslash (`\`) is the AIX continuation character.

See Section 4.2.4, “Example: HP JetDirect interface programs” on page 144 for more information.

3.3 Configuring the System V print subsystem as a print server

With the System V print subsystem, you can control which users and which remote hosts you will allow to submit print requests on a printer-by-printer basis. You can also explicitly deny access by user or system. By default, all users on the local system can send print requests to a new printer, but you must explicitly grant access to remote systems and or users. The System V print subsystem provides a greater level of control in this regard than does the PowerPC print subsystem.

For example, you can grant all remote hosts access to your print server, but you can then grant (or deny) access to a specific printer by user or by remote host or by a combination.

In the PowerPC subsystem, you can only set limits on a global basis; you can allow or deny access by hostname (all users) to the PowerPC print subsystem (any printers), but you can not limit access to a particular printer or from a particular user.

3.3.1 Tasks at the server

In order for the System V print subsystem to accept print requests from remote hosts and users, the print administrator must:

- Determine the remote systems from which you will accept print requests. These systems must be registered with the System V print service using the `lpsystem` command.
Explicitly grant access to each printer to remote users and remote hosts using the `lpadmin` command with the `-u` flag:
- Decide if you will accept print requests from all remote hosts or just specific ones.
- Decide if you will accept print requests from all users or just specific ones.

If granting universal access, decide if you want to restrict that by denying print requests on a host and/or user basis.

You do not have to take any explicit action to start a daemon to receive remote print jobs.

3.3.1.1 Registering remote systems

The first step in setting up the System V print subsystem as a print server is to register those remote host systems that will be allowed to submit print requests to your printers.

- If you wish to allow connections from any system, you can do so using the asterisk as wildcard on the `lpsystem` command:

  ```
  # lpsystem -T 10 -R 10 -y "Allow all BSD connections" "*"
  ```

 This adds the following entry to the `/etc/lp/Systems` file:

  ```
  *:x:-:bsd:-:10:10:-:0:Allow all BSD connections
  ```

 The presence of this entry allows a print server to accept connections from systems that are not explicitly configured as known systems. This does not necessarily mean that all users from any system can send print requests to any of your printers; you can control that on an individual printer, user and remote host basis.

- If you do not want to separately control access to each printer on your system, but you want the `/etc/lp/Systems` file to specify which remote systems have access to your printers, you need to remove the wildcard entry from the file and add entries for the remote systems. To do this, perform the following:

 - To remove the wildcard entry for BSD systems, use the following command:

    ```
    # lpsystem -r "*"
    ```

 - To add the entry for a specific remote system, use the following command:
If you, as print service administrator, have not registered the remote system(s), when a user on that system tries to submit a job, he or she will receive errors.

3.3.1.2 Granting access to printers
When you first add a System V printer, the default is to permit all local users to print to that printer. Once you have registered the remote server (either with the wildcard or by specific name), you must take explicit action to allow remote users to send print requests to a printer.

Access to a printer can be controlled from the printer’s users.allow and users.deny files in the /etc/lp/printers/printer-name directory.

Although you can manually edit these files, we found it easier to use the lpadmin command. When we manually edited the files, any changes did not take effect until the print service was stopped and restarted. When we used lpadmin, the changes appeared to take effect without the restart.

The -u flag on the lpadmin command allows or denies specified users in access to the printer. (Note that this command does not only apply to remote users, but can also be used to restrict access to local users as well.)

Syntax:

```
# lpadmin -p printer-name -u allow:Login-ID-List | -u deny:Login-ID-List
```

The Login-ID-List parameter may include any or all of the following:

- `login-ID` A user on the local system
- `system-name!login-ID` A user on system system-name
- `system-name!all` All users on system system-name
- `all!login-ID` A user on all systems
- `all` All users on the local system
- `all!all` All users on all systems

So you can see that there is quite a bit of granularity of control for printer access.

You should manually browse the contents of the users.allow and users.deny files in /etc/lp/printers/printer-name to verify that you have made the entries as you intended.
3.3.1.3 Scenarios for user access
There is more than one way to accomplish the same objective. You need to
decide which works best for your environment.

Scenario 1:
You want to configure your system so that it will accept print requests from
any remote host. You have decided that only user doug on remote system
deneb should be able to print to the printer myprint on local system redbird.

You could use the lpsystem command with the wildcard to allow all remote
hosts (including deneb) to submit print requests to the print service on
redbird. Then you grant access to myprint only for remote user doug using the
lpadmin command with the -u allow flag:

```
# lpsystem -T 10 -R 10 -y "Allow all BSD connections" "**"
# lpadmin -p myprint -u allow:deneb:doug
# cat /etc/lp/printers/myprint/users.allow
all
deneb:doug
```

Note that all local users and doug on deneb can print to myprint.

Scenario 2:
You have decided that all users on the remote host paris can print to myprint
on redbird, but no other users on any remote hosts. Use the command:

```
# lpadmin -p myprint -u allow:paris!all
```

This assumes that the /etc/lp/Systems file contains a wildcard entry for all
BSD hosts and/or that it contains a specific entry for paris.

Scenario 3:
Perhaps you have used the wildcard to enable all remote systems to submit
print requests to your server, but you decide that there is one user badguy on
remote system vader that you do not want to be able to print to myprint. Use
the command:

```
# lpadmin -p kwmpar -u deny:vader!badguy
# cat /etc/lp/printers/myprint/users.deny
vader!badguy
# cat /etc/lp/printers/myprint/users.allow
all
deneb:doug
```

Note that the users.deny file was created with this new entry.
3.3.2 Tasks at the client

The primary task at the client system is to create a remote printer. Given our deadlines, we were only able to test remote printing to an AIX 5L system running the System V print subsystem from an AIX V4.3.2 system.

On our AIX 4.3.2 client system called oasis.ibm.com, we configured a remote printer (bsdstd) with standard processing using the BSD status filters, as described in Section 6.2.1.2, “Adding a remote host-attached printer” on page 275.

On the AIX 5L server running the System V print subsystem:

- The server’s hostname was rs9220b.itsc.austin.ibm.com.
- The printer name was kwmpar.
 - The printer was defined with a content type of PCL.
 - We had previously registered the PCL filter. (See the lpfilter example on page 119.)
- We had previously granted print access to all BSD remote systems using the lpsystem command with the wildcard.
- We had granted access to the kwmpar printer to all users on oasis.ibm.com with the lpadmin command.

From oasis.ibm.com, we submitted a print request:

```
$ enq -P bsdstd /etc/motd
```

Initially the job did not print and, in fact, just disappeared. As suggested in the troubleshooting tips in Section 8.1.9, “Network print jobs fail to print” on page 390, we checked our mail on oasis and there was a message from rs9220b:

```
Subject: printer job

Your printer job could not be printed.

Reason for failure:

UX:lpd: ERROR: 0920-056 The following options can't be handled:
-h

TO FIX: The printer(s) that otherwise qualify for printing your request can't handle one or more of these options. Try another printer, or change the options.
```
The -h flag is a flag for the `lpr` command that says to suppress the banner page. However, the kwmpar printer on rs9220b was configured with the default setting of banners required. We logged into rs9220b as the print administrator and modified kwmpar so that banners were no longer required (`lpadmin -p kwmpar -o nobanner`), resubmitted the print request from oasis, and the job printed.
Chapter 4. System V advanced printing

In previous chapters, you have learned how to add and remove printers, print to printers, and make minor changes. This chapter contains more advanced topics, such as how interface scripts work, how to use the terminfo database, techniques for using forms, security considerations, and some specific hints and tips to make System V printing more efficient.

4.1 Overview

Although the introductory and networking chapters will help you setup printers and print to them, the ability to fully customize printers so that they will deliver the desired output on paper from the right paper tray with the right font requires a more thorough understanding of how the print subsystem works and what you as the administrator can do to customize the printer attributes to meet your user’s needs.

4.1.1 Understanding the different types in System V printing

In System V printing, many different things are referred to as types. When starting with the System V print subsystem, this is one of the more confusing aspects. Most of these are described in Chapter 2, “System V print subsystem basics” on page 45, and the following section is meant to only be a quick reference. When you create a new printer with Web-based System Manager, the supported printer list from /usr/lpp/sysmgt.websm/inst_root/var/websm/data/model.stz is used to determine the printer type, the interface type, and the content type. The following shows a sample stanza from this file:

```
hp-laserjet-ps-4L:
name="HP LaserJet 4L/4ML (Postscript)"
terminfo=PS-b
interface=PS
contents=PS
```

This stanza shows a Printer device type of HP LaserJet 4L/4ML (Postscript), a printer type of PS-b, a content type of PS, and an interface model type of PS. The following sections help clarify the meaning and use of each of these print subsystem types.

4.1.1.1 Printer device type

This is the printer model added when you add a printer device. The printer model is used to customize the serial or parallel device driver to make the devices more specific to a particular printer. In traditional AIX printing, there
was a one to one correspondence between the printer device types and the virtual printer types. This is not necessary, because a group of similar printers really use the same device attributes, such as the buffer size and any special timing requirements. There is really only a need for differences when going from slow dot matrix printers and plotters to faster dot matrix printers and then on to laser printers. So if you pick any printer that has similar speed to the one you are using, you will have a working and supported solution from an operating system device driver standpoint.

4.1.1.2 Printer type
The printer type associates a printer with an entry in the terminfo database that is used to extract setup and formatting commands. Since most of the command sequences defined in terminfo definitions are common to a family of printers, such as PostScript, PCL, Proprinter, Epson and Printronix, there are really very few printer types needed. Multiple printer definitions can use the same printer type. The printer type is defined by the \texttt{lpadmin -T} flag. The printer type must be used if the following are to work: -o cpi, -o lpi, -o width, and -o length flags of the \texttt{lpadmin} and \texttt{lp} commands, and the -S and -f flags of the \texttt{lpadmin} command. The exception to this are scripts that are printer specific and generate the command sequences inside the interface script instead of accessing them from terminfo. The printer type is designed to be used by the \texttt{lp.set} filter to generate printer setup sequences for horizontal spacing (cpi), vertical spacing (lpi), page width, page length, and character set. If the print type is not set right, it is possible that even simple control characters such as a formfeed will not be used right. One example of this is that if the content type for a PCL printer is set to unknown, there may not be a formfeed after the banner page.

4.1.1.3 Content type
The content type is defined by the \texttt{lpadmin -I} flag and determines which types of print files can be sent to the printer. The content type list can contain a list of files that the printer can handle. This is appropriate for laser printers that can handle both PostScript and PCL. The type simple is recognized as the default content type. A simple type of file is a data stream containing only printable ASCII characters and does no formatting. This is basically a passthrough content type. The content type is used by \texttt{lpsched} to determine if the printer can handle the print job or to determine if there are filters registered to convert the file to a format that can be printed. The user can specify that a file is a particular content type by using the \texttt{lp -I} flag.

When using a PCL printer, the content type should be set to pcl and the pcl print filter should be registered. This will allow the pcl print filter to add carriage returns and line feeds. If you do not do this, it is likely that the output
will appear in stair-steps, or may not appear at all. To add these functions to an existing printer, use the `lpfilter` and `lpadmin` commands to register the pcl filter and change the content type to pcl.

```
# lpfilter -f pcl -F /etc/lp/fd/pcl.fd
# lpadmin -p printer-name -I pcl
```

After making these changes, normal text files will be properly formatted when sending them to the printer.

The PS content type is reserved for PostScript printers. When the content type is PS, the postprint, postio, and download filters combine to allow users to send text files to the printer. The postprint filter will convert the file from text to PostScript. For this to work properly, you must first register the filters and set the interface type to PS. Use `lpfilter` and `lpadmin` to make these changes, as shown here:

```
# lpfilter -f postio -F /etc/lp/fd/postio.fd
# lpfilter -f download -F /etc/lp/fd/download.fd
# lpfilter -f postprint -F /etc/lp/fd/postprint.fd
# lpadmin -p printer-name -I PS
```

See Section 4.10, “PostScript printers” on page 176 for more details.

4.1.1.4 Interface model type

Though not technically a type for System V printing, there are multiple models of interfaces supplied as the starting point for processing the print job and sending the processed file to the printer.

4.1.2 Overview of customizations covered

In the System V print subsystem, you can customize printers by performing one of the following actions:

- Using a custom interface script
- Adding a new printer to the terminfo database
- Adding form support to a printer definition
- Setting the printer attributes
- Specifying specific character sets
- Specifying a printer font cartridge
- Setting up PostScript print filters
- Printing text files to PostScript printers
- Restricting user access to printers
4.2 Printer interface programs

A printer interface program is a shell script called by lpsched for local print requests. Often referred to as print drivers, which they are not, these scripts control what happens to your print job before it goes to the printer. By default, printers will use either the standard interface programs for most ASCII text or the PS interface program for PostScript. The printer interface programs are built from model scripts located in /usr/lib/lp/model. Also, the /etc/lp/model directory is linked to the /usr/lib/lp/model directory. When a printer is created, a copy of the interface script is copied to the /var/spool/lp/admins/lp/interfaces directory. In AIX, this is actually a link to /etc/lp/interfaces. You will find that each local printer listed by lpstat will have a script located in this directory, and the names will be the same as the name of the printer.

To make changes permanent, so they will be added to new printers, make the changes to the model scripts. To make the changes specific to a particular printer, make the changes in the interfaces subdirectory. The original model of the interface script will be in a different directory. Check the printer configuration file in /etc/lp/printers/printer-name/configuration file which will always point to the model of the interface file that is being used.

Note

If you are using HP JetDirect printers, the script will be in /etc/lp/interfaces, but this script will call the script that will actually be used, which is in the /etc/lp/interfaces/model.orig subdirectory.

Printer manufacturers package printer support for System V printers by providing custom interface scripts, and even though these scripts currently do not include AIX customization, it is believed that the manufacturers will soon support AIX as IBM moves to this standard print subsystem.

A printer interface program should:

- Initialize the printer port, if necessary. The standard interface program uses the stty command to initialize the printer port.
- Initialize the printer hardware for cpi, lpi, page length, page width, printer font, paper tray, simplex or duplex and similar parameters based on print flags.
- Print a banner page, if requested.
- Print the number of copies specified by the print request.
• Return an error code.

The System V print service, not a printer interface program, is responsible for opening the printer port. The printer port is given to the printer interface program as standard output, and the printer is identified as the controlling terminal for the printer interface program, so that a hang-up of the port will cause a SIGHUP signal to be sent to the printer interface program to interrupt or cancel a print job.

4.2.1 How do the interface scripts work?

The starting or standard model interfaces are stored in /usr/lib/lp/model and include:

• standard
• PS
• B2.job

Also included for JetDirect printing are two additional model interface scripts that are located in /usr/lib/lp/hpnp and are named:

• hpn.p.model
• hpnplS.model

These are shell scripts, and if you understand shell programming methods, you can read the source and understand what they do and do not do. Except for the JetDirect scripts, these are only called for local print jobs.

The interface script receives information from lpsched about the user and the print job through two methods:

• Environmental variables
• Command line parameters.

The next section describes the three standard environment variables and the five standard command line parameters that are passed in addition to the file names.

4.2.1.1 Environment variables and arguments

The scheduler passes a user environment that can be obtained with the `set` or `env` commands, and will always set the TERM environment variable to use for obtaining information from the terminfo database. The FILTER will only be passed if the scheduler has determined that file conversion needs to be done.
Environment variables
The following environment variables are set by the scheduler and passed as environment variables:

TERM
The TERM variable is used to access the cpi, lpi, length, width, character set and other information from the terminfo database.

FILTER
The FILTER variable can be set by the scheduler to tell the script to run a different formatting filter instead of lp.set. The filter type is set when the scheduler finds that the requested content type does not match the requested printers content type, and there are filters registered to convert the content type from the input content type to the output content type. For example, to add carriage returns for a pcl printer, the pcl filter will be set.

CHARSET
The CHARSET variable can contain the character set to use.

Command line parameters
When writing or modifying an interface script, you should be able to handle the five standard parameters that are passed as $1 through $5. The fifth parameter, the options_list, can actually contain multiple flags that can either be the standard lp flags or custom flags defined for your particular interface and supplied by the lp -o options. After the options_list is the list of files to be printed.

The following variables are received in the script as command line variables:

printer
The printer name is set by the zeroth parameter (for example, the basename of the shell script) and works because the interface script file name is the same name as the printer name.

request_id
The request_id is the first parameter passed and is the job name consisting of the queue name, a dash, and the job number.

user_name
The user_name is the second parameter passed. This is the system name and userid of the person who submitted the print job. This information is printed on the title page.

title
The title is the third parameter passed and is null unless it is included as a command line argument. When it is available, it is printed on the banner.

copies
The number of copies is the fourth parameter passed.

options_list
The fifth parameter is the options list, which is parsed by the interface. The options are always included without the -o flag.
This can be the standard options such as -o nobanner, or user defined options such as -o landscape. One of the options always included is the file list or flist= option, which includes the filename, a colon, and a number. If the input is standard list, then only the colon and number are included.

file_names The rest of the parameters include the actual filenames to print. Jobs that are queued will list the full path of the original file name, while spooled jobs will contain the path to the file in the spool directory.

The following sections give an overview of the operations performed by each of the default interface scripts.

4.2.1.2 The standard script

The interface script model named *standard* is a fairly simple script that allows the printer to be initialized by setting simple printer attributes, such as character, line pitch and page orientation. It does this by adding control sequences appropriate for the printer based on the terminfo attributes. It also adds a banner page and handles printer errors gracefully by disabling the printer and mailing an error message the user who printed the file.

This simple script does not provide capabilities such as tray selection, page orientation, or simplex/duplex selection. For sophisticated printer setup, an interface script should be obtained from the manufacturer. Because the terminfo database is used for printer attributes, a single script can handle a large number of printers.

When the interface that you choose is based on the standard script, this script is copied to /etc/lp/interfaces/printer-name. For debugging or customization for a particular printer, you may want to add debug echo statements or customization commands. Add them to the working script in this new directory. The basic steps performed by this standard script are shown here in the order in which they occur:

1. Set traps for script termination.
2. Set some globally used variables and functions.
3. Check the arguments passed by lpadmin to make sure there are at least five arguments.
4. Convert the arguments into variable names.
5. Parse the option_list parameters; this sets variables to pass to the filters later, including things like cpi, lpi, length, and width options.
6. Check for the TERM, CHARSET, and FILTER environment variables.
7. If FILTER is null, then set FILTER to lp.cat to output to the device.
8. Initializes the printer device with stty.
9. Initializes the printer with commands from the terminfo database. The attributes used here can be init or iprog, is1, is2, is3, if, tabs, and so on.
10. Initializes the printer for cpi, lpi, width, and length, but not the character set by calling lp.set. This will set the values used by the banner page.
11. Prints the banner page.
12. Initializes the printer for cpi, lpi, width, length, and the character set by calling lp.set. This will set the values used by the print job.
13. Outputs to the printer through the FILTER (usually lp.cat) and then to lp.tell to handle any error processing.
14. Sends a carriage return and a form feed.
15. Exits with a return code (zero if successful).

Printer initialization

Printer initialization in the standard script is done through two processes, as shown in steps 9, 10, and 12 above. The initialization in step 9 is done through the use of the *tput* (terminfo output) command. If the init terminfo attribute exists for the printer, then it is used for all the initialization in this step. If it does not exist, then the commands are determined by the terminfo attributes iprog, is1, is2, it, ht, and is3.

Note: In the early version of the code that we tested, the command *tput init* was redirected to /dev/null and never initialized the printer, but this will be fixed in future releases. If it is not, change the line:

```
if ${TPUT} init 2>/dev/null > /dev/null
```

to

```
if ${TPUT} init 2>/dev/null
```

Print job formatting

The standard interface program supplied in this version of AIX 5L does not do any formatting. This is done by filters that will be called when the printer content is set to pcl or wrapped. When this is done, the pcl filter is called by the standard interface to add carriage returns to line feeds and the like. The pr filter can also be used to do formatting. The actual filter that is used will be determined by the difference between the content type of the print job and the printer. The filter is passed by lpsched to the interface program through the FILTER environment variable. To register the pcl filter, use the following command:
lpfilter -f pcl -F /etc/lp/fd/pcl.fd

The pcl filter will be used when the input type is simple, and the printer type is pcl. This will add carriage returns to lines just ending in line feeds when using the standard script. See Section 4.9, “PCL printers” on page 175 for more details.

4.2.1.3 The PS script

The PS (PostScript) interface program works very similar to the standard interface. It uses the download, postio, and postio_b filters instead of lp.set, lp.cat, and lp.tell for the banner pages, and lp.set is not used at all. The terminfo database is not used by this filter for initialization. The PS-r, PS-br, and PSR TERM types only affect the position of the banner page, determining if it is printed before or after the main print job. The banner page is created in text mode and passed through postprint to create the postscript.

4.2.2 Creating and modifying a custom interface script

It is possible to create your own custom interface script to include the printer characteristics for a printer with or without using the terminfo database. The easiest way to create your own interface program is to make a copy of the standard interface program and then make modifications to the new script. This can be done in three steps:

1. Change to the model directory:

   ```bash
   # cd /usr/lib/lp/model
   ```

2. Make a copy of the standard interface program:

   ```bash
   # cp standard custom-name
   ```

 For laser printers, make a copy of the `/usr/hpnp/hpnpIS.model` script and customize it:

   ```bash
   # cp /usr/hpnp/hpnpIS.model custom-name
   ```

3. Edit the custom-name program. This is a shell script and is fairly well documented.

 The types of things you may want to modify include:

 - Any port setup commands
 - The printer setup commands and escape sequences
 - The default print filter program
 - Add or delete arguments for the print commands
 - Handle any errors
• Call special filters

If you use the hpnpIS.model, you will get complete printer setup (for example,
tray selection, page orientation selection, simplex/duplex selection and other
printer attributes) for HP laserjet printers. This script should also work for PCL
and PostScript laser printers from other manufacturers. You will have to make
one additional change to the script so that it will not pipe the output to the
remote socket program.

Change the line:
CHANGEME

to
CHANGETOTHIS

4.2.3 Assigning a custom interface script to a printer

Set up the custom printer interface program for a specific printer with the
lpadmin command with the -i flag. The syntax is:

lpadmin -p printer-name -i custom-name

where printer-name and custom-name apply to the name of the printer you
plan to use and the full path name of the customer printer interface program.
For example, to set a custom interface program named smalltype to a printer
named laser1 use:

lpadmin -p laser1 -i /usr/lib/lp/model/smalltype

or

lpadmin -p laser2 -i /usr/hpnpIS.model -T unknown -v /dev/lp12

4.2.4 Example: HP JetDirect interface programs

The models for the HP JetDirect printers are located in the /usr/lib/hpnp
directory. The default script to be used is named hpnp.model, as described in
Chapter 3, “System V network printing” on page 103. This script will be used
when you add a JetDirect attached printer with either Web-based system
manager or with the config script /usr/lib/hpnp/hpnpcfg. When creating a
JetDirect printer, the standard interface script is used to create the printer and
is copied to /etc/lp/interfaces/printer-name by lpadmin. The hp specific script,
then copies the script to the
/etc/lp/interfaces/printer-name/model.orig/printer-name. The hpnp.model
script is copied to /etc/lp/interfaces/printer-name and modified to pipe its
output to the copy of the standard script now in model.orig, while setting the
output of that script to be piped to the hnpnf filter, which sends the output to
the network attached printer. When added this way, the formatting is
supposed to be done by the script in model.orig. To add formatting to PCL
printers, the pcl content type must be set and the pcl filter must be registered,
as described in Section 4.9, “PCL printers” on page 175.

Installing the custom script

To solve this problem, you can use the extra model script (that is supplied)
called hnpIS.model. This script contains the printer escape codes for HP
PCL and PostScript printers built into the file instead of using the values from
termino. The steps for changing to the new interface script are:

1. Change to the hnp directory:

   ```
   # cd /usr/lib/hpnp
   ```

2. Back up the original script:

   ```
   # cp hpnp.model hpnp.model.bak
   ```

3. Copy the new script to hpnp.model:

   ```
   # cp hnpIS.model hpnp.model
   ```

Creating the customized printer for network printing

At this point, the printer can be installed by using Web-based System
Manager and choosing an HP JetDirect network printer, or by running the
hnpinstall script, followed by the hnpconfig script.

The sequence of events for creating printer hpdj14 would go like this if issued
from the command line:

1. Shut down the scheduler (optional):

   ```
   # lpsend
   ```

2. Add the printer with lpadmin:

   ```
   # lpadmin -p hpdj14 -v /dev/null -I simple -T unknown
   ```

3. Change to the interfaces directory:

   ```
   # cd /etc/lp/interfaces
   ```

4. Move the hpdj14 file to model.orig:

   ```
   # mv hpdj14 model.orig/hpdj14
   ```

5. Set the IP address of the network printer while copying the file:

   ```
   # sed -e s/^PERIPH=/PERIPH=9.3.240.52/ /usr/lib/hpnp/hpnp.model hpdj14
   ```

6. Start the scheduler (optional; it is necessary if lpsend is run), accept jobs
 and enable the printer:
Creating the customized hpnpIS interface for local printing

By default, the script hpnpIS.model is designed to work with JetDirect attached printers, but because the script provides such good printer initialization for laser printers, the same script can be modified to use for local printers. The procedure above could be used, but a simpler procedure is shown here (This procedure assumes you have already created /dev/lp2):

1. Add the printer with lpadmin:

```
# lpadmin -p hplj14 -v /dev/lp2 -I simple -T unknown \
-1 /usr/lib/hpnp/hpnpIS.model
```

2. Change to the interfaces directory:

```
# cd /etc/lp/interfaces
```

3. Edit the file hplj14 that was just created in step 2.

 Add the LPCAT definition near the top of the page, as shown here:

   ```
   LOGFILE="/tmp/$PERIPH.$$"
   NETWORK="$HPNPF -x $PERIPH"
   LPCAT="/usr/lib/lp/bin/lp.cat"
   printer=$PERIPH
   ```

4. Comment out the pipe to the $NETWORK and replace this line with a $LPCAT command, as shown below:

   ```
   #) | $NETWORK >> $LOGFILE 2>&1
   ) | $LPCAT  2>/tmp/hplj14.log
   ```

5. Set the printer accept jobs and enable the printer:

```
# accept hpdj14
# enable hpdj14
```

The output for this queue will go to /dev/lp2.

Default page size

The default paper size for this script is set to A4. For the US, you will probably want to change this to letter. The paper size is set with an escape sequence specified in the part of the code that looks like this:

```
To change the default to letter, change the echo under the default, which is the * (asterisk) case, to echo \033&l2A\c.

**Pagesize selection**

This example also shows how the escape sequences are generated. If you use the `lp -o pagemode` flag, you will be able to select any of these page sizes. Other modifications can be made based on this example and your shell programming skills.

### 4.2.5 Example: Modifying the SCO IBM Network Printer 12 script

This section describes our experience getting IBM Network Printer 12 scripts to work with System V printing on AIX. The IBM printer scripts have extensive support for setting a large subset of the capabilities of each printer. The support is far superior to that provided by the standard or PS interface scripts supplied with System V printing.

#### 4.2.5.1 Downloading and installing the files

The IBM Printing System Company model scripts come in a single package for all printers and can be downloaded from:

http://www.printers.ibm.com/
Select drivers and then download the SCO drivers. This will download a file named scoa_ml.tar. Copy this file to a SCO system /home/ibm directory, untar the file, and unpack with the pkgadd command using the -s flag to place this in the /home/ibmnp subdirectory:

```bash
tar -xvf scoa_ml.tar
pkgadd -s /home/ibmnp -d /home/ibm/IBMnp
```

This will creates a subdirectory /home/ibmnp/opt with a number of other subdirectories. Change to the /home/ibmnp/opt directory and use the tar command to put the files in a format that can be unpacked on the AIX 5L system:

```bash
cd /home/ibmnp/opt
tar -cvf /home/ibm/ibmstuff.tar
```

On the AIX system, make sure there is an /opt file system that contains at least 5 MB of space, and FTP the file from the SCO system into this directory and unpack with:

```bash
tar -xvf ibmstuff.tar
```

This will create a /opt/ibmnp directory with four subdirectories:

- admin
- bin
- man
- models.

The man pages for each printer model provide a complete list of -o flags that can be used with the \( lp \) command when printing.

Some of the simple -o options include:

- Page orientation: portrait, landscape or rotate
- Tray selection: main, tray1 or tray2
- Paper size selection: letter, ledger, A4, A5, and so on
- Type size: 10, 12, 15, 17
- Type style: bold, italic, medium
- Resolution: dpi
4.2.5.2 Making minor modifications to the files for starters

The scripts are not set up to log the errors properly on AIX, so we added a quick stanza in the portion of the script that defines the log files, as shown below:

```bash
case "$OS" in
 SCO_SV | solaris | SOLARIS | SunOS)
 if [-w "/var/spool/lp/logs/lpsched"]
 then
 log="/var/spool/lp/logs/lpsched"
 else
 log=/dev/null
 fi
 ;;
 AIX)
 if [-w "/var/lp/logs/lpsched"]
 then
 log="/var/lp/logs/lpsched"
 else
 log=/dev/null
 fi
 ;;
 HP-UX)
 # JWT:IBM - Added AIX lpsched log 11/1/2000
```

This change now directed the script errors to /var/lp/logs/lpsched. When we ran the script, it logged the following error:

```
./ibmnp12[851]: syntax error at line 851 : '{' unmatched
```

We added a curly bracket (}) at the end of the file and the error disappeared.

4.2.5.3 Creating a printer that used the script

Because we wanted to check the output, we created a printer that printed to a file in the /dev directory using the following commands:

```
touch /dev/lpx; chmod 777 /dev/lpx; chown lp:lp /dev/lpx
lpadmin -i /opt/ibmnp/models/ibmnp12 -T unknown -I simple -p np12a -v /dev/lpx
```

This created the interface /etc/lp/interfaces/np12a. Then we tested the printer with these commands:

```
lp -o landscape -d np12a -L C /etc/motd
request id is np12a-233 (1 file)
ls -l /dev/lpx
-rw-rw-rw- 1 lp lp 1769 Nov 1 18:56 /dev/lpx
```

Chapter 4. System V advanced printing  149
We printed the /dev/lpx to a network attached printer and the landscape mode worked, but there were some PJL errors that may have come because we first printed to a file, and then separately printed the file to a network printer.

4.2.6 Example: Modifying the SCO Lexmark interface script

The Lexmark interface script for SCO can be downloaded from the Lexmark FTP download site starting from http://www.lexmark.com. The file that can be downloaded is in SCO pkgadd format, and so you will need a SCO system to unpack the files. The file will download as drivers-unixware7_pkg.Z. Once this is downloaded to the SCO system, unpack the file and use the SCO pkgadd command with -s to install to a directory:

```
uncompress drivers-unixware7_pkg
pkgadd -s /home/lexmark -d /home/lexmark/drivers-unixware7_pkg.
```

We chose to install only the printer software. This created a subdirectory with the code in /home/lexmark/MVprint. The model script is in the reloc subdirectory tree ./reloc/$INSTDIR/markvision/bin. Most of the files in this subdirectory are SCO executable files, but the shell script is called marknet_model. This script uses two of the executables for SCO, which are formatter and transport (directly). The script also indirectly calls executables like cat_serial.

To have any chance of this working, you have to first install the AIX version of the software, which uses AIX colon files, but also contains the transport code cat_npa and cat_lexbe executables, as well as an interesting program called sniff.

Because Lexmark is good at supporting a lot of servers, it is probably best to wait until the code is available for AIX 5L before using this backend.

4.2.7 Example: Custom interface to pipe data to an output program

Probably the easiest method to use to pipe data to a laser printer is to start with the /usr/lib/hpnpIS.model script and make changes to set the NETWORK environment variable equal to that required for the program you use. The steps to set this up and send data to a network socket filter name netprt could be done as follows:

1. Add the printer with lpadmin:

```
lpadmin -p hplj14 -v /dev/null -I simple -T unknown \n -i /usr/lib/hpnp/hpnpIS.model
```

2. Change to the interfaces directory:

```
cd /etc/lp/interfaces
```
3. Edit the file hplj14 that was just created in step 2.

   Change the NETWORK definition near the top of the page, as shown here:

   LOGFILE="/tmp/$PERIPH.$$"
   NETWORK="$HPNPF -x $PERIPH"
   NETWORK="/usr/local/bin/netprt 9001"
   printer=$PERIPH

4. Check the command at the bottom, and remove the LOGFILE if the program does not write error messages to standard out or error:

   ) | $NETWORK >> $LOGFILE 2>&1

5. Set the printer to accept jobs and enable the printer:

   # /usr/lib/lp/lpsched
   # accept hpdj14
   # enable hpdj14

4.2.8 Adding special tab support

   When the tabs in a file are not expanded by a printer, they can be expanded by filters. The expansion can be done with tr, sed, awk, or the expand filter. The expand filter is a special purpose filter for replacing tabs by a specified number of spaces. For example, to replace the tabs in a file by five spaces each, use the command:

   $ cat /tmp/testfile | expand -5

   To add this to an interface program, add it to the FILTER or NETWORK definition. For example, for the JetDirect filters, change the NETWORK definition to show:

   NETWORK="/usr/bin/expand -5 | $HPNPF -x $PERIPH"

4.3 Using the terminfo database

   System V printing historically depends heavily on extracting information from the terminfo database to configure and initialize printers. However, this has changed significantly, because printer vendors tend to hardcode the commands and escape sequences directly into the interface scripts. Still, the terminfo database entries, based on the printer type, are checked for validity by the scheduler for some flags, such as -o lpi or -o length.

   The file that contains the terminfo definitions for all of the printers supported by this subsystem is svprint.ti and is located in the /usr/lib/terminfo directory.
The file is terminfo compiled (tic) and stored in the respective terminfo directories at install time.

The System V interface program standard uses the terminfo database to initialize each printer and establish a page width, character pitch, line pitch, and character set. The command sequences, which are often escape sequences, are stored as TERM attributes in the terminfo database.

Each printer is identified in the terminfo database with a short name. The name required by the terminfo database is identical to the name used to set the printer type you specify with the -T flag when creating a printer with the \texttt{lpadmin} command. For example, the entries for different types of PostScript printers are in /usr/share/lib/terminfo/P. The default PostScript entries provided with the AIX 5L system are PS (for PostScript) and PSR (for PostScript Reverse).

Be sure that you do not confuse printer type with content type. The printer type is the generic name for a printer and is the reference name for accessing the information in the terminfo database. The content type tells the System V print subsystem what types of files can be printed directly on each printer. Most printers can print at least two types of files: The file formatted specifically for that printer and the simple ASCII text file that is the default content type for all printers.

If you cannot find a terminfo entry for your printer, you still may be able to find a simple printer emulation similar to your printer use the printer without any special characters. In this case, the printer will print with the System V print service without the automatic selection of page size, pitch, and character sets. In cases where you use printer manufacturer interface programs, the printer type may be set to \textit{unknown}, and all parameters will be set by the interface.

If there is no terminfo entry for your type of printer and you want to keep the printer set in the correct modes, you can either customize the interface program used with the printer or add an entry to the terminfo database. These can be added in separate files, and installed as described to create a new printer terminfo entry.

4.3.1 Terminfo attributes used by the ‘standard’ ASCII interface

The PostScript PS interface does not use terminfo attributes at all, but both \texttt{lpsched} and the standard ASCII interface use a few of the attributes to generate setup strings.
The /usr/lib/lp/model/standard script uses terminfo attributes for setup. If the init attribute is defined, then the commands in this attribute are sent to the printer. If init is not defined, then the iprog attribute is used to run a program, and the terminfo is1, is2, and is3 attributes are used for printer initialization.

4.3.2 How to find if a printer is supported in terminfo

Support for printers that are supported by default in AIX 5L are shipped in the file /usr/share/lib/terminfo/svprint.ti. Each printer that is supported will have a definition line beginning in column 1 that gives the different printer aliases or TERM values that are used to access the printer attributes. These type aliases are separated by vertical bars, and after the final vertical bar is a definition of the printer. The line ends in a comma. A sample printer name, alias and description line is shown here:

hplaserjet|hplaser|HP Laserjet I,

When defining this printer, you could use either hplaserjet or hplaser as the printer type. To see all printer types that start with h, you can do a directory listing of the /usr/share/lib/terminfo/h directory. This directory will also contain any terminal definitions that begin in h. The following listing shows the h directory at installation time:

# ls /usr/share/lib/terminfo/h
h19-pb hft-mht-oldhplaser+basichppaintjet-hi
hft hft-m-old hp2621-pb hplaser-high hppaintjetT
hft-c hft-name hp7550 hplaser-jet hppaintjetT-hi
hft-c-old hft-nam-old hplaser hppaintjet

4.3.3 Understanding terminfo printer entries.

Terminfo files are made up of stanzas of information for each printer. These stanzas or paragraphs consist of a name line followed by attribute lines. Each entry is separated from the next by a comma. Only the name entry and comments start in column one. All other lines start with a tab. The name of the printer specified in the terminfo file is referenced from by the printer type in Web-based System Manager or with lpadmin.

If a printer is based on another, then only the modified attributes are listed, followed by a use=original_printer_name entry, where original_printer_name is the name of the terminfo entry that you want to take advantage of.

4.3.3.1 Terminfo attribute types

The three types of terminfo attributes are boolean, numeric and string. Boolean attributes are true if they are defined or else they are false. Numeric
attributes have the format attribute#value. String attributes have the format attribute=string.

Examples of boolean, numeric and string attributes:

```
cpix,
cols#80,
cpi=%?%pl%{10}%=%=\&k0S\&k1S%=%=\&k2S%;
```

### 4.3.3.2 Terminfo character sequence

For non-printing control characters, terminfo uses character pairs to denote the control character. Some of the most common definitions are \E for the escape character and the use of the carat (^) to denote Ctrl modified codes, such as ^M for carriage return and ^L for form feed.

### 4.3.3.3 Terminfo stack language introduction

The terminfo stack language is the same one used in the AIX virtual printer files. It is called a stack language because values are placed on a stack, operated on, and then output to the data stream, which goes to initialize the printer. It is a powerful language, with operations such as if-then-else, which are used to implement command flag options. The attributes act as subroutines, and the calling program can pass parameters, such as a number for a font size, which can be used to produce an output sequence that sets the defaults on a print stream.

A more detailed list of terminfo attributes used in printing is shown in the tables in Table 38 on page 491, Table 39 on page 492, and Table 40 on page 493.

### 4.3.4 Viewing terminfo attributes

If you want to see the values that are output for a particular printer type, you can use the `tput` command with the -T flag to specify the TERM value for the printer followed by the attribute name (in this case lpi) and any parameters (in this case, 6):

```
tput -T hplaserjet lpi 6 | od -a
0000000 esc & 1 6 D
0000005
```

### 4.3.5 Adding a new printer to terminfo

The easiest way to create a net terminfo entry is to start with an existing entry, make changes, and then recompile the entry to create the new entry.
To convert the compiled terminfo definitions to text editable files you can use the `infocmp` command. For example, to retrieve the hplaserjet definitions, use:

```bash
infocmp hplaserjet > widelaser.ti
```

This will give a file named `widelaser.ti` that looks like:

```bash
infocmp hplaserjet

Reconstructed via infocmp from file: /usr/share/lib/terminfo/h/hplaserjet
hplaserjet|hplaser|HP Laserjet I,
 bitwin#1, bitype#2, cols#80, lines#60, npins#8,
 orc#12, orhi#120, orl#8, orvi#48, spinh#300,
 cpi=178\{127}\%t\x1b\[?60h, csi=178\{127}\%t\x1b\[?79h, cr=\r,
 cuf=178\{127}\%t\x1b\[?30h, cuv=178\{127}\%t\x1b\[?40h,
 cvr=178\{127}\%t\x1b\[?50h, defbi=178\{127}\%t\x1b\[?60h,
 chr=%?%p1%{0}%>%p1%{127}%<%t\x1b\&k%p1%dH%;,
 cpi=%?%p1%{10}%=%t\x1b\&l1D%e%p1%{17}%=%t\x1b\&l2D%e%p1%{19}%=
 %t\x1b\&l3D%e%p1%{21}%=%t\x1b\&l4D%e%p1%{23}%=
 %t\x1b\&l6D%e%p1%{25}%=%t\x1b\&l8D%e%p1%{27}%=
 %t\x1b\&l12D%e%p1%{31}%=%t\x1b\&l16D%e%p1%{33}%=
 %t\x1b\&l48D%e%p1%{48}%=%t\x1b\&l48D%e%p1%{48}%,
 mgc=%?%p1%{127}\%t\x1b\&l1D%e%p1%{17}%=%t\x1b\&l2D%e%p1%{19}%=
 %t\x1b\&l3D%e%p1%{21}%=%t\x1b\&l4D%e%p1%{23}%=
 %t\x1b\&l6D%e%p1%{25}%=%t\x1b\&l8D%e%p1%{27}%=
 %t\x1b\&l12D%e%p1%{31}%=%t\x1b\&l16D%e%p1%{33}%=
 %t\x1b\&l48D%e%p1%{48}%=%t\x1b\&l48D%e%p1%{48}%,
 u9=%?%p1%{127}%t\x1b\&l1D%e%p1%{17}%=%t\x1b\&l2D%e%p1%{19}%=
 %t\x1b\&l3D%e%p1%{21}%=%t\x1b\&l4D%e%p1%{23}%=
 %t\x1b\&l6D%e%p1%{25}%=%t\x1b\&l8D%e%p1%{27}%=
 %t\x1b\&l12D%e%p1%{31}%=%t\x1b\&l16D%e%p1%{33}%=
 %t\x1b\&l48D%e%p1%{48}%=%t\x1b\&l48D%e%p1%{48}%,
 vpa=%?%p1%{127}%t\x1b\&l1D%e%p1%{17}%=%t\x1b\&l2D%e%p1%{19}%;

This file can be edited with a UNIX text editor, such as vi or dtterm. Change the name of the printer and make changes to the attributes that are different from those of the original printer. For example, if you want to call the printer widelaser and the printer had the properties of 80 columns and 66 lines, you would only need to change the first two lines of the file and add a comment so that the beginning of the file looks like this:

```bash
widelaser|Laser Printer with 132 columns and 66 lines,
    bitwin#1, bitype#2, cols#132, lines#66, npins#8,
    orc#12, orhi#120, orl#8, orvi#48, spinh#300,
```

The final step to create the new printer definition is to use the terminfo compile command (tic) to add the widelaser entry to the terminfo database. The file will automatically be created in `/usr/share/lib/terminfo/w/widelaser`. The sample tic command is:

```bash
# tic widelaser
```

The new printer type will now be available using the `lpadmin -T` flag to modify an existing printer or to create a new one with the widelaser type. To change
the printer type of the printer named f3laser to widelaser, use the following command:

```
# lpadmin -p f3laser -T widelaser
```

If you specify multiple printer types in a comma separated list, the attributes from the different terminfo entries will be combined.

4.4 Using printer form support

A form is a preprinted sheet of paper with text and graphics that can be loaded into a local printer for use in place of plain paper. Common examples of forms include company letterhead, invoices, blank checks, vouchers, receipts, and labels.

Typically, a batch of forms will be loaded into a printer, either as a tray of single sheets or as a box of fan-fold paper. The System V Print Subsystem helps you manage the use of pre-printed forms, but it does not provide any help in positioning text on the form. This is responsibility of the application generating the output. The print service keeps track of which print requests require special forms and which forms are currently mounted in the printer. It can alert the operator when a request comes to print to a form that is not currently installed in the printer. In this case, the operator would notify the print manager that it was unloading the current form and loading a new one.

4.4.1 Adding or modifying a form

The `lpforms` command is used to administer the use of preprinted forms. The `-f formname -F pathname` option is used to add a new form, form-name, to the LP print service, or to change the attributes of an existing form. The form description is taken from pathname if the `-F` option is given, or from the standard input if the `- (minus)` option is used. One of these two options must be used to define or change a form. The parameter pathname is the pathname of a file that contains all or any subset of the information about the form, as shown in Table 9:

Table 9. Characteristics of a form

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page length</td>
<td>66 lines</td>
<td>The length of each page of the form. This can be expressed in lines, inches, or centimeters.</td>
</tr>
<tr>
<td>Page width</td>
<td>80 columns</td>
<td>The width of the form, expressed in characters, inches, or centimeters.</td>
</tr>
</tbody>
</table>

156 Printing for Fun and Profit under AIX 5L
When you have gathered the information that applies to your form, enter it in a file using the following format:

- **Page length**: scaled-number
- **Page width**: scaled-number
- **Number of pages**: integer
- **Line pitch**: scaled-number
- **Character pitch**: scaled-number
- **Character set choice**: character-set-name[,mandatory]
- **Ribbon color**: ribbon-color
- **Comment**: comment
- **Alignment pattern**: none
- **Alert command**: none
- **Users allowed**
- **Users denied**: No restrictions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pages</td>
<td>1</td>
<td>Number of pages in a multi-page form.</td>
</tr>
<tr>
<td>Line pitch</td>
<td>6 lines/inch</td>
<td>Line separation distance in either lines per inch or lines per centimeter.</td>
</tr>
<tr>
<td>Character pitch</td>
<td>10 char/inch</td>
<td>Character separation distance in either characters per inch or characters per centimeter.</td>
</tr>
<tr>
<td>Character set choice</td>
<td>any</td>
<td>The character set, print wheel, or font cartridge that should be used when this form is used.</td>
</tr>
<tr>
<td>Ribbon color</td>
<td>any</td>
<td>Used for printers where the ribbon needs to be changed to have a special color.</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td>Any remark that might help users understand what the form is, when it should be used, and so on.</td>
</tr>
<tr>
<td>Alignment pattern</td>
<td>none</td>
<td>A sample file that the print service can use to fill one blank form to test for alignment. An optional parameter of content type may also be specified for the alignment pattern.</td>
</tr>
<tr>
<td>Alert command</td>
<td>none</td>
<td>This allows the operator or administrator to be alerted when a specified number of requests are waiting for a form to be mounted. The message can be either mail or a message to your terminal.</td>
</tr>
<tr>
<td>Users allowed</td>
<td></td>
<td>A list of users who are specifically denied or allowed use of the form. If the allow list is not empty, the deny list is ignored. If the allow list is empty, the deny list is used.</td>
</tr>
</tbody>
</table>

When you have gathered the information that applies to your form, enter it in a file using the following format:

Page length: scaled-number
Page width: scaled-number
Number of pages: integer
Line pitch: scaled-number
Character pitch: scaled-number
Character set choice: character-set-name[,mandatory]
Ribbon color: ribbon-color
Comment: comment
Alignment pattern: [content-type]

The form name should have a maximum of 14 characters. You only need to change parameters that are different from the defaults. The following shows a sample form:

Page Width: 80
Page Length: 66
Line Pitch: 6
Character Pitch: 10
Character Set Choice: any

When you are done with the form, use the `lpforms` command to define the form to the print subsystem. If your filename is paycheck, then define the form with the command:

```
# lpforms -f paycheck -F /home/lpadmin/paycheck
```

This creates a form file named paycheck stored in /etc/lp/forms/paycheck. To change the form, simply edit the file, and reenter the command. To set the form to a specific printer, add the `-p printer-name` flag to `lpforms`, as shown here:

```
# lpforms -p checkprt -f allow:form-list
```

You can also add a printer to not allow the use of a form with:

```
# lpforms -p checkprt -f deny:form-list
```

4.4.2 Removing a form

There is no limited to the number of forms that you can define, but try to keep the number of forms that are defined to a minimum. This will allow users to more easily choose the appropriate form.

To remove a form, enter the following command:

```
# lpforms -f form-name -x
```

4.4.3 Displaying a form description

There are two commands to use to display the information about a form. The `lp` administrator (`lp`) and superuser (`root`) only can use the `lpforms` command, which will contain information about the alignment pattern. The syntax of this command is:

```
# lpforms -f form-name -l
```

All others users can use the `lpstat` command with the syntax:
lpstat -f form-name -l

The output of the `lpstat` command will tell the user if they have access to use the form. The format of the output is:

```
# lpstat -f paycheck -l
form paycheck is available to you
  Page length: 66
  Page width: 92
  Number of pages: 1
  Line pitch: 6
  Character pitch: 10
  Character set choice: any
  Ribbon color: any
```

4.4.4 Maintaining access lists for forms

You can specifically allow or deny users access to specific forms by defining them in the form definition or by using the following commands:

```
# lpforms -f form-name -u allow:user-list
# lpforms -f form-name -u deny:user-list
```

The user-list is a list of AIX users separated by a comma or space. If you use spaces to separate the list, enclose the entire list (including the allow: or deny:) in quotes. Using allow:all allows everybody; using deny:all denies everybody.

4.4.5 Alerting the operator to mount a form

The following commands can be used by the print administrator with userid lp or a member of the lp group to enable the alert function to be performed when a form is requested by a user or application sending a print job to a form that is not currently mounted in a printer:

```
# lpforms -f form-name -A mail -Q integer -W minutes
# lpforms -f form-name -A write -Q integer -W minutes
# lpforms -f form-name -A 'command' -Q integer -W minutes
# lpforms -f form-name -A none
```

The first command directs the print service to mail a message to the administrator. The second command directs the service to write a message to the login terminal from which the `lpforms` command was issued. The third command directs the service to run the specified command. In each of these cases, the alert is sent after the number of print request have occurred that are specified in the -Q option. The requests are repeated at the interval specified in the -W option. The fourth command means do not send an alert when the form needs mounting.

Chapter 4. System V advanced printing 159
Once you start receiving repeated alerts, you can stop the alerts with the following command:

```
# lpforms -f form-name -A quite
```

If the form-name is all any of the commands, the alert applies to all forms.

4.4.6 Mounting a form

Before the System V print subsystem can start printing forms to the pre-printed form, you must physically place the forms in the printer and notify the print service that you have mounted them. Print requests that require a particular form will be held in the queue until the form is mounted. You may also want to print an alignment job prior to releasing the jobs that have been queued to the printer using that form.

The proper procedure involves these steps:

1. Disable the printer, using the `disable` command.
2. Physically mount the form in the printer.
3. Tell the print subsystem that the form checkstock has been mounted on printer `matrix4` with the command:

```
# lpadmin -p matrix4 -M -f checkstock -a -o filebreak
```

4. Align the form if necessary
5. Re-enable the printer using the `enable` command.

If you are mounting a form with an alignment pattern defined for it, you will be asked to press the Enter key before each copy of the alignment pattern is printed. After the pattern prints, you can adjust the form if necessary and press the Enter key again. When you are done with the alignment, press Ctrl-C. You can drop the `-a` and `-o filebreak` options if you do not want to bother with the alignment pattern. If the alignment file contains a formfeed, you can leave out the `-o filebreak` command. This command tells the print manager to add the formfeed character from the terminfo database.

4.4.7 Unmounting a form

If you want to unmount a form or print wheel, use the following command:

```
# lpadmin -p printer-name -M -f none
```

4.4.8 Printing using a form

A user can specify that a particular form be used by adding the `-f form-name` to the `lp` command, as shown here:
$ lp -f form-name -d printer file-name

To print to the first available printer with the form invoice, use the following command:

$ lp -f invoice -d any

The print job will be queued, but not printed until the form is mounted by the print administrator.

4.5 Customizing printer attributes

Most printer attributes are set on creation or changed with the lpadmin command, as described in Chapter 2, “System V print subsystem basics” on page 45. As explained there, they can also be listed with the `lpstat` command syntax:

```
# lpstat -p printer-name -l
```

The types of things that you can change are the printer type, content type, pitch, page size, banner usage, character sets, and port settings.

In addition, the command sequences that are sent to the printer are stored in the terminfo database. These are matched to the printer type, and can be listed with:

```
# infocmp printer-type
```

Changing these parameters was described in the terminfo database customization section earlier in Section 4.3, “Using the terminfo database” on page 151.

The remainder of this section describes how you can specify the character set, font cartridge, and the printer port characteristics.

4.5.1 Specifying character sets

For printers that allow selectable character sets, determine the names of the character sets and then map each set to a name or number in the terminfo database.

To determine the names of the character sets listed for printer type ibmgraphics in the terminfo database, enter the following command:

```
# tput -T ibmgraphics csm 0
```

The command shown will display the 0th character set, and replacing 0 with other numbers will display the appropriate set.

For example, with the hppaintjet, the following shows the commands and the results:

```bash
# tput -T hppaintjet csnm 0
usascii
# tput -T hppaintjet csnm 1
norwegian
# tput -T hppaintjet csnm 2
ecma94
# tput -T hppaintjet csnm 3
united_kingdom
```

Without doing any customization, the user can use these names from the terminfo database to specify a character set using the `lp -S` flag, as shown here:

```bash
# lp -S usascii -d any
# lp -S ecma94 -d any
```

However, if you want to make this a bit easier, you might alias the commands so that usascii can also be called usa, and united_kingdom can be called uk and so on. To do this, use the `lpadmin` command with the -S flag and a list of character sets. When making the list, you can either use cs0, cs1, cs2, and so on, for the names of the fonts, or use the names from the terminfo database, as shown in the example below. Each comma separated entry in the list consists of:

```
terminfo-name=alias-name
```

The following shows how the above character sets might be mapped:

```bash
# lpadmin -p painjet2 -S "usascii=usa,norwegian=norway,ecma94=europe,..
```

Once this is done, the following three commands will use the same character set:

```bash
$ lp -S cs2 -d any ...
$ lp -S ecma94 -d any ...
$ lp -S europe -d any ...
```

To remove character set mappings, enter the following command:

```bash
# lpadmin -p printer_name -S none
```
4.5.2 Specifying font cartridges to use with a printer

The `lpadmin` command specifies both character sets and font cartridges with
the `lpadmin -S` flag. For cartridges, the list is simply a list of the names of the
mountable font cartridges on the printer. This function is less used with new
printers, but may be required to support some printers, such as the IBM 4019
laser printer.

To specify a list of available font cartridges for the printer, use the following
command:

```
# lpadmin -p printer_name -S font_cartridge_list
```

`font_cartridge_list` is a list of font cartridge names, separated by commas or
spaces. If spaces are used, then the entire list must be in quotes, but not the
-S.

To remove all the font cartridges, enter the following command:

```
# lpadmin -p printer_name -S none
```

Font cartridges are mounted to the printer server similar to the way that
printer forms are mounted.

To install or change a font cartridge:

1. Disable the printer.
2. Remove the current font cartridge from the printer.
3. Install the new font cartridge on the printer.
4. Mount the new font cartridge by entering.

   ```
   # lpadmin -p printer_name -M -S font_cartridge_name
   ```

5. Reenable the printer.

The following print command would now choose that printer:

```
# lp -d any -S font_cartridge_name
```

To arrange for alerts, use the command:

```
# lpadmin -S font_cartridge_name -A alert_method -Q number -W minutes
```

For example, to direct print service to write alerts to your terminal every two
minutes whenever the printer queue contains three or more requests for the
Helvetica cartridge and it is not already mounted, enter the following
command:

```
lpadmin -S helvetica -A write -Q 3 -W 2
```
4.5.3 Setting printer port characteristics

Printer port characteristics for serial attached printers are set with the `stty` command. These characteristics include things like the baud rate, number of data bits, flow control, stop bits, and delays after certain characters. To add or change printer port characteristics of a printer, use the `-o 'stty-option-list'` option of the `lpadmin` command. For example, to set the baud rate to 19200, use the following command:

```
# lpadmin -p michele1 -o "stty='19200 '"
```

These values are used by the interface program to set up the port.

4.6 System V print filters

A filter is a program that takes input from standard in and outputs to standard out. This is important, as it allows the output from one filter to become the input of another filter or to the printer interface program that sends the data to the printer.

Print filters are necessary in UNIX printing, because unlike PC based printing, where the printer device drivers support a standard API and any application can output to any printer type installed on the system, UNIX applications must supply their own printer specific output. This leads to the problem that a UNIX (AIX) application must keep current with the latest printers from all manufacturers, or they must write to a standard print format, and let print filters supplied by the manufacturer convert to the specific printer format.

Three functions distinguishes a print filter:

- Converting a user file from one data format into a data stream that will print properly on a given printer.
- Handling the special print modes that users may request with the `lp -y` option to the `lp` command. Examples of these print modes are two-sided (duplex) printing, landscape-mode printing, and draft output.
- Detecting printer faults and informing the print service about the fault so that the print service can send an alert to the submitter or print administrator.

Not every filter can perform all three tasks. Because filters can be piped together, individual filters can be linked together to provide separate functions.
A default filter is provided with the print subsystem to provide simple fault
detection without converting files or providing special mode support. This
filter will be adequate for a large portion of AIX printing.

4.6.1 Using print filters for file conversion

When you add a printer, you assign the content type to the printer, telling the
System V print service what type of files can be submitted for printing. When
the user submits a file to print on any printer and specifies its content type
with the `lp -T` flag, the print service finds a printer that can handle files of that
content type. For application generated output, this is often sufficient.

Chances are that some applications will generate output that is not
compatible with the available printers at your site. By creating and defining a
filter that can convert the application output to a data stream that the printer
can handle, you can support more applications with the print service.

The two most widely used filters for formatting ASCII text data are the pcl
filter, which adds carriage returns to line feeds, and the postprint filter, which
converts simple text files to PostScript. Without a filter, text files with lines that
only end in line feeds will print out with a stair-step format.

When filters are added to the System V print subsystem, the filter is assigned
both input and output file format types that it can support. If the print service
can not match a file type to a printer content type, it consults the table of
registered filters to find one that will do the conversion. If the print service can
not match the output of the filter to a printer content type, the process will be
repeated by calling another filter or until either a printer content type is
matched or the print service determines that the file can not be printed.

4.6.1.1 Example: No data conversion required

Files generated on Windows based PCs will usually be already formatted for
a specific printer. If the file coming to the AIX print server from the PC
matches a printer type that is available, then no data conversion is required.
The same is the case for many commercial AIX applications, such as
spreadsheets, word processors, computer aided design, and financial
packages.

4.6.1.2 Example: Filters accessed before submitting

The man pages are usually installed in a special troff file format. If you print
the man file directly, it will lose much of the pretty formatting that has been
applied to it. The print subsystem has a filter called dpost that can convert
troff files to PostScript, but this requires setup and testing. A very simple way
to print man pages is to simply use the `psroff` command, as follows:
Another filter than can easily be used before submitting the job is the pr formatter. The pr filter can be used to add special formatting to ASCII text files, such as adding a title, rotating the output, and providing 2-UP printing. For example, to print the /usr/lpp/bos/README file in 2-UP, use the following command:

```
$ pr -l 60 -w 172 -2 /usr/lpp/bos/README | lp -ylandscape -dprinter
```

The pr formatter can also be used as a filter in the System V print subsystem.

4.6.1.3 Example: Converting troff into PostScript

The troff format is a traditional UNIX format used for typesetting devices. In the past, this was a traditional format for application manuals. Today, manuals are more likely to be produced as PostScript of PDF files, but it is still important to be able to print troff formatted manuals if you receive them.

A number of filters included in the System V print subsystem convert different types of files into PostScript. These filters are located in /usr/lib/lp/postscript. The filter to convert troff to PostScript is called dpost.

4.6.1.4 Example: Converting PDF to PostScript

Although there are no filters supplied with AIX 5L that convert PDF to postscript, there are still a couple of options for printing these files. The first is to use the Acrobat program to convert the output to PostScript. The second is to use a public domain filter, such as pdf2ps or PDFprint, and install this as a System V print filter.

4.6.1.5 Example: Printing from Netscape to a PCL printer.

The UNIX version of Netscape is designed to only print to a PostScript printer. There are two choices when printing to a non-PostScript printer from Netscape. One is to create a simple PostScript to ASCII filter that will print only the text portion of the pages. The second is to use the GhostScript filter to create formatted PCL. The reports on this second method is that it works with somewhat limited success.

4.6.1.6 Example: Using filters to send output to remote servers

When using a socket program to send output from a System V defined printer to a remote printer, the socket program will often be implemented as a filter that can be called by simply replacing the FILTER shell variable in the interface program by the desired FILTER socket program.
4.6.2 Using print filters for special print modes

Each filter that you add to the print system can be registered to handle the following functions:

- Special modes
- Printer type
- Character pitch
- Line pitch
- Page length
- Page width
- Pages to print
- Character set
- Form name
- Number of copies

The print service provides a default handling for all of these properties except special modes. However, it may be more efficient to have a filter handle some of these and override the default handling. A printer that supports multiple copies might use a filter that sends a command to the printer to print multiple copies, rather than sending the print job to the printer multiple times, as the default handler would do.

4.6.3 Using print filters for printer fault handling

Just as converting a file and handling special printing modes are printer specific, so is the process of detecting printer faults, such as out of paper, paper jam, or out of toner. The print service attempts to detect faults in general, and for most printers does so properly. For local printing, the filter must interact with the printer serial or parallel device driver to retrieve information.

If you set the printer configuration so that printing should automatically resume after a fault is cleared, the interface program will keep the filter active so that it can pick right up where it left off. For this reason, the filter must understand both the data stream going to the printer, so that it can determine page separation, as well as understand the error messages coming back from the printer, in order to determine the last successfully printed page.

In some cases, filters for printer fault handling will be supplied by the printer manufacturer. It is highly unlikely that you will write your own filters for this purpose.

4.6.4 What makes a program a good filter

Here are a few guidelines for choosing an appropriate filter:
- Is the program capable of reading data from standard input and writing data to standard output?
- Does the program stand alone without the need for configuration files?
- Can the filter input file formats that are likely to be printed?
- Can the filter output file formats that are supported on your printers?

Some examples of programs that make good filters are shown in Table 10.

<table>
<thead>
<tr>
<th>Filter filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/bin/awk</td>
<td>The awk filter should be used from within a shell script that can include the awk program in a self contained file so that it does not have to include or reference other files. Awk is a powerful text processing and replacement filter.</td>
</tr>
<tr>
<td>/usr/bin/col</td>
<td>The col program is a nroff backend filter for files that contain reverse linefeeds to convert the files to print on printers that do not support this function. The file is included in the bos.txt.tfs fileset on AIX.</td>
</tr>
<tr>
<td>/usr/ucb/fpr</td>
<td>Also linked to by /usr/bin/asa. This filter inputs FORTRAN output that uses column 1 for the format character into standard text output. The file is included in the bos.adt.base fileset on AIX.</td>
</tr>
<tr>
<td>/usr/bin/perl</td>
<td>Perl is often used for writing scripts to do text formatting. Perl is include in AIX 5L in the perl.rte fileset.</td>
</tr>
<tr>
<td>/usr/bin/pr</td>
<td>The pr command can be used to format standard ASCII text files for page numbering, page titles, and special formatting, such as 2-up.</td>
</tr>
<tr>
<td>/usr/bin/sed</td>
<td>The sed filter can convert sequences of characters to other characters or add carriage returns to line feeds. When using a sed filter, be sure to use an expression rather than a file for the formatting rules.</td>
</tr>
<tr>
<td>/usr/bin/tr</td>
<td>Translates individual characters to different characters.</td>
</tr>
<tr>
<td>/usr/lib/lp/postscript/*</td>
<td>A series of filters for converting different input formats to PostScript output. These are described in more detail in the PostScript Printing section (Section 4.10, "PostScript printers" on page 176).</td>
</tr>
</tbody>
</table>

Some programs that would commonly be thought of as print filters, such as troff and psroff, do not meet the requirement of stand alone, as they usually use an include file that contains definitions for the format conversion. These
filters may work for local systems if the file permissions are set up properly, but it is unlikely that they would be appropriate for remote printers.

4.6.5 Defining print filters

Print filters used by lpsched are managed using the `lpfilter` command similar to the manner which `lpforms` manages forms. There are a set of filter definitions for the standard System V print subsystem located in `/etc/lp/fd`. These definitions can be used to add or register these filters to the print subsystem.

When you add a filter (sometimes called registering a filter), you can define the characteristics that describe the filter from a print service perspective. The properties that can be defined for a filter using `lpfilter` include:

- **Filter name**: The command line name of the filter.
- **Input types**: This is the list of file types (for example, content types) that the filter can process. The file type name can be up to 14 characters. The default type is `simple`. Most filters can take only one type of input, but the print service does not restrict a filter to this. If several filters can use the same file types, then be consistent when giving the input file type a name.
- **Output types**: This is a list of the file types (for example, content types) that the filter can produce as output. For a given instance, a filter will produce only a single output type, but the filter may accept an option that can vary the output on demand. The names of output types are also restricted to 14 letters, digits, and dashes.
 The output type names should either match the content types for your defined printers or the input type for additional filters.
- **Printers**: A filter should be able to work with all printers that accept the output type specified, but there are cases where you might want to restrict the output of the filter to a specific printer or to avoid using a slow filter to a particular printer that uses expect a fast turnaround on jobs. In this case, include all the desired printers in the list.
- **Filter Type**: The System V print service recognizes two types of filters: `fast` and `slow`. Fast filters are labeled fast either because the incur little system overhead, or because they have direct access to the printer when they run for detecting printer faults or doing other special control. A print filter that uses the PRINTER keyword as a filter option must be installed as a fast filter. All other filters should be labeled slow.
Options allow printing modes and options to be converted from the \texttt{lp} options to the filter options based on a template describing the transformation. The types of options that a filter might support are page length, a list of pages to print, the number of copies, and the page orientation. There are 13 sources of information, including the \textit{MODE} option, which can contain multiple attributes.

The filter template, which is described in the next subsection, defines a pattern and a replacement pattern for modifying \texttt{lp} flags into filter flags.

To define a filter, create a text file with one parameter on each line, as shown in Section 4.6.5.2, “Filter description files” on page 171.

\subsection*{4.6.5.1 Filter templates}
A template is a statement in the Options: section of a filter definition that defines how the flags from the \texttt{lp} command will be mapped to the command line flags of the filter. A filter may include one or more templates. Multiple templates may be entered on a single line and separated by commas, or they may be entered on separate lines, preceded by the Options: prefix.

The format of a template line for a single definition is shown here:

\begin{verbatim}
Options: keyword pattern = replacement
\end{verbatim}

The interpretation of this by the print system is that when an input flag to \texttt{lp} matches the pattern, then it is replaced by the replacement pattern and passed to the filter as a command line argument.

The available template keywords are shown in Table \ref{tab:template-keywords}.

\begin{table}[h]
\centering
\caption{Template keywords}
\begin{tabular}{|l|l|l|}
\hline
Keyword & Possible patterns & Example \\
\hline
INPUT & Available input content-type & Options: INPUT X = -Xb \\
\hline
OUTPUT & Available output content-type & Options: OUTPUT simple = -a, OUTPUT PS = -p \\
\hline
TERM & Available printer-type & Options: TERM * = \-T * \\
\hline
CPI & integer & Options: CPI * = \-pitch * \\
\hline
LPI & integer & Options: LPI * = \-vml* \\
\hline
LENGTH & integer & Options: LENGTH * = \-l* \\
\hline
\end{tabular}
\label{tab:template-keywords}
\end{table}
Example OUTPUT template:
Options: OUTPUT postscript=-P
This says that if the OUTPUT type for the printer is postscript that the -P flag is passed to the filter.

Example LENGTH template:
Options: LENGTH * = -l*
In this case, the -o length flag will match the wild card *, and the length will be passed as a -l flag to the filter. For example, if the filter name is /usr/local/bin/myfilt and the following was the lp command:
$ lp -d laser1 -o length=72
this would be passed to the filter as:
$ /usr/local/bin/myfilt -l 72

Example MODES template:
The following template converts the lp -y land option to the filter -landscape option:
Options: MODES land = -r

4.6.5.2 Filter description files
Print filter description files contain lines with the lpfILTER arguments listed in Table 12 on page 172.
Table 12. Filter arguments used by lpfilt

<table>
<thead>
<tr>
<th>Item</th>
<th>Default</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>(no default)</td>
<td>Command: /usr/bin/col</td>
</tr>
<tr>
<td>Input types:</td>
<td>any</td>
<td>Input types: simple</td>
</tr>
<tr>
<td>Output types:</td>
<td>any</td>
<td>Output types: PS</td>
</tr>
<tr>
<td>Printer types:</td>
<td>any</td>
<td>Printer types: hplaser</td>
</tr>
<tr>
<td>Printers:</td>
<td>any</td>
<td>Printers: laser1, laser4</td>
</tr>
<tr>
<td>Filter type:</td>
<td>slow</td>
<td>Filter type: fast</td>
</tr>
<tr>
<td>Options:</td>
<td>(no default)</td>
<td>Options: MODES landscape = -l</td>
</tr>
</tbody>
</table>

The description file should contain a line for each item that you want to set to a value other than the default.

4.6.5.3 Predefined filter templates
The System V print subsystem comes with a group of predefined filter templates located in /etc/lp/fd. Many of these deal with PostScript printers.

Example: dpost filter
The filter program /usr/lib/lp/postscript/dpost takes one input type, troff, and produces one output type called postscript, which works with any printer of type PS (for PostScript). In defining the printer, you want to give your users two page orientation options of port and land for portrait and landscape, but the filter uses command line flags of -op and -ol to designate these options. Users will have to use the -y port or -y land to designate these options, because neither is native to the \texttt{lp} command. For this reason, they will be included as \texttt{MODES} options. The filter definition file will look like this:

Input types: troff
Output types: postscript
Printer types: PS
Filter type: slow
Command: /usr/lib/lp/postscript/dpost
Options: LENGTH \ast = -l \ast
Options: MODES port = -op, MODES land = -ol

The user submitting a file of type troff for printing landscape on a PostScript printer of type PS with a page length of 45 lines would enter the following command:

\$ lp -T troff -o length=60 -y land -d any
The filter would be invoked by the print service to convert the file with the following options:

/usr/lib/lp/postscript/dpost -160 -ol

The output from the following command will show the attributes of any installed filter by the name of filter-name.

```
# lpfilter -f filter-name -l
```

4.6.6 Adding and changing filters

To add the filter to the system once you have created the definition file, use the following command:

```
# lpfilter -f filter-name -F filename
```

where filter-name is the desired name of the filter with a maximum of 14 alphanumeric characters and underscores and filename is the full path name of the definition file that you created following the instructions in the previous step.

To make changes to a filter, simply modify the printer definition file or create one with only the differences and rerun the same `lpfilter` command.

To restore a filter to the default filter values, simply use the command:

```
# lpfilter -f filter-name -i
```

Make sure to replace filter-name with the name of the desired filter.

Defined filters are stored in the file `/etc/lp/filter.table`. An entry looks like this:

```
```

The `/etc/lp/filter.table` file has read permissions for all users, so could be used to check for available filters.

4.6.7 Removing filters

Although there is no limit to the number of filters that you can define, it is recommended that you remove filters that are no longer in use to avoid extra processing by the print service when it is searching for an appropriate filter.

To remove a filter, execute the following command (replacing the filter-name with the name of the filter you want to remove):

```
# lpfilter -f filter-name -x
```
4.6.8 Examining filters

Any printer that has been added to the print service can be examined by running the `lpfilter` command with the `-l` flag. The output of this command is in the proper format to input as a filter definition file when adding a new filter and can be used as a template.

To display the definition of the filter, enter the command:

```
# lpfilter -f filter-name -l
```

To write the definition to a file for future reference, or to use as a sample for creating a new filter file, redirect the output to a file, as shown here:

```
# /usr/sbin/lpfilter -f filter-name -l > filename
```

4.7 I18N - Internationalization filters

i18n is short for internationalization (i, plus 18 other characters, plus n). There are two filters that are part of the System V print subsystem that deal with i18n:

- `/usr/lib/lp/bin/i18n_print` for text
- `/usr/lib/lp/bin/i18n_pp` for PostScript

The filter templates for these are in `/etc/lp/fd` and are `i18n_print` and `i18n_pp` respectively. The `i18n_pp` filter does internationalization and then calls `postprint` to convert an ASCII text file to PostScript.

These filters will normally be transparent to users. They use the terminfo database and local passed to them for adding control characters and providing national language support for error messages. The `i18n_print` program takes two parameters:

- `-T TERM` provides the terminfo entry to obtain the control characters.
- `-X locale` provides the locale entry for error messages and internationalized formatting.

The `i18n_pp` program takes parameters to set the orientation of the page, the number of copies, magnification of the page, and the locale. These values are used when calling `postprint` to convert from ASCII to PostScript.
4.8 ASCII text printers

When printing to an ASCII text printer, such as a PCL printer or most dot matrix printers, the output may appear in a stair-step format, or may be missing altogether. The cause of this is UNIX text files, which end lines only in line feeds. Many printers require the addition of a carriage return to print properly. This can be handled in two ways. The first is to send sequences to the printer so the printer can add the carriage returns. The second method is to use a print filter, such the pcl filter or the pr filter, to add the carriage returns. Both of these filters are fully supported by the System V print subsystem. The pcl filter is described in Section 4.9, “PCL printers” on page 175.

4.9 PCL printers

The default content type for printing is simple, but PCL printers should be setup with a content type of pcl. This will allow the pcl filter to be called automatically to add carriage returns to line feeds for simple files. When printing a formatted PCL file that already has all the formatting characters added, you will want to print with the lp -T pcl flag.

4.9.1 Using the pcl filter to add carriage returns

The /usr/lib/lp/bin/pcl filter can be used to convert files of simple or wrapped type to pcl by adding carriage returns and the like. When this filter is used, the printer content type will be set to pcl. If the default content type simple is used, lpsched will set the FILTER environment variable to use the pcl filter. Before you can use the pcl filter, you must register it with the scheduler by using the following command:

```
# lpfilter -f pcl -F /etc/lp/fd/pcl.fd
```

If you do not do this, you will get this error message:

UX:lp: ERROR: 0920-054 There is no filter to convert the file content.
TO FIX: Use the lpstat -p -l command to find a printer that can handle the file type directly, or consult with your system administrator.

4.9.2 Using the pr filter to add titles to each page

The pr filter definition file is /etc/lp/fd/prtitle.fd. This file shows that the input type is simple, the output type is wrapped, and the program is /usr/bin/pr. This
means that to use the filter, the printer must be defined with content type of wrapped by using the `lpadmin -I` flag, as shown here:

```
# lpadmin -p textprt -v /dev/lp12 -I wrapped -T lpr
```

The printer type of lpr makes sure the formfeed and carriage return characters are set for lpsched.

Next the pr filter must be registered. This is done using `lpfilter` and the filter definition file prtitle.fd. There is a bug with the early release code `lpfilter` command where Options are not properly parsed. Before using the prtitle.fd, make a backup copy and comment out the options lines as shown here:

```
# cd /etc/lp/fd
# cp prtitle.fd pr.fd
# vi pr.fd
```

Comment out the following lines in the pr.fd file by adding a # character at the beginning of the lines:

```
# Options: MODES prtitle\=\{.*\} = -h \1
# Options: MODES locale\=\{.*\} = -
```

Now register the new pr filter with:

```
# lpfilter -f pr -F /etc/lp/fd/pr.fd
```

List the pr filter definition:

```
# lpfilter -f pr -l
Input types: simple
Output types: wrapped
Printer types: any
Printers: any
Filter type: slow
Command: /usr/bin/pr
```

When we tested this by creating a file to a queue, we saw that the filter added a date time stamp, a page number, extra line feeds to fill the page, and a form feed, but no carriage returns. This means that you still have to set the printer to add the carriage returns or combine this with the pcl filter described in the next section.

4.10 PostScript printers

PostScript is a general purpose programming language, like C or Pascal. In addition to providing the usual features of a language, however, PostScript
allows a programmer to specify the appearance of both text and graphics on a page.

A PostScript printer is equipped with a computer that runs an interpreter for processing PostScript language files. When a PostScript printer receives a file, it runs that file through the interpreter and then prints it. Unless special provisions have been made by the manufacturer, files submitted to a PostScript printer must be written in the PostScript language.

PostScript provides excellent facilities for managing text and graphics and combining them. Also, most major applications that support printed output support PostScript. In the age of the Internet, this is especially true with browser output and Adobe PDF files, both easily printed in PostScript.

PostScript graphics operators facilitate the construction of geometric figures which can then be positioned and scaled with any orientation. The text capabilities allow the user to specify a number of different fonts that can be placed on a page in any position, size, or orientation. Because text is treated as graphics, text and graphics are readily combined. Moreover, the language is resolution and device-independent, so that draft copies can be proofed on a low-resolution device and the final version printed in higher resolution on a different device.

One of the disadvantages of PostScript printers is that unless they also support a text-based print stream, they can not directly print text and other file formats. The files will simply be flushed by the printer and may or may not give an error to let the user know what has happened to the file. The print service provides optional filters to convert many types of files to PostScript so that users may take advantage of PostScript and continue to use their standard applications, such as troff.

Another advantage of PostScript printers is that they support retail type 1 fonts that can be installed for use with applications running on the desktop. These fonts may be downloaded to PostScript printers if the application generates PostScript output that uses them. The \texttt{lp} command handles this automatically using the download filter.

\subsection{Using PostScript printers}

When the PostScript printers and filters have been installed, the print service manages PostScript files like any others. If \texttt{/tmp/kraker.ps} is a file containing a PostScript document and \texttt{psprinter} has been defined to the print service as a PostScript printer, the following command:

\begin{verbatim}
$ lp -d psprinter -T PS /tmp/kraker.ps
\end{verbatim}
will schedule the print request and manage the transmission of the request to the PostScript printer.

4.10.2 Support for non-PostScript print request

Because PostScript is a language and PostScript printers are expecting print requests written in that language, some applications may produce standard print requests that may not be intelligible to PostScript printers. Examples of print requests that may not be interpreted by some PostScript printers and filters that are available with AIX System V printing are shown in Table 13.

Table 13. Filters to convert content types to PostScript

<table>
<thead>
<tr>
<th>Content Type</th>
<th>Filter Type</th>
<th>Type of Print Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>postprint</td>
<td>Print an ASCII ('simple') text file to a PostScript printer.</td>
</tr>
<tr>
<td>daisy</td>
<td>postdaisy</td>
<td>Print files for a Diablo 630 ('daisy-wheel') printer.</td>
</tr>
<tr>
<td>dmd</td>
<td>postdmd</td>
<td>Print a bit-mapped display from a terminal.</td>
</tr>
<tr>
<td>tek4014</td>
<td>posttek</td>
<td>Print files formatted for a Tektronix 4014 device.</td>
</tr>
<tr>
<td>troff</td>
<td>dpost</td>
<td>Print output from the troff command.</td>
</tr>
<tr>
<td>plot</td>
<td>postplot</td>
<td>Print plot-formatted files.</td>
</tr>
<tr>
<td>gif, jpg, bmp</td>
<td>NA</td>
<td>Standard graphics files (undefined to System V).</td>
</tr>
<tr>
<td>pdf</td>
<td>NA</td>
<td>Adobe Acrobat PDF files (undefined to System V).</td>
</tr>
<tr>
<td>html</td>
<td>NA</td>
<td>Web files (undefined to System V).</td>
</tr>
</tbody>
</table>

Filters are provided with the print service to translate print requests with some of these formats to the PostScript language. For example, to convert a file containing ASCII text to PostScript code, the postprint filter takes that text and writes a program around it, specifying printing parameters such as fonts and the layout of the text on a page.

Once the PostScript filters are installed and registered, they will be invoked automatically by the print service when a user specifies a content type for a print request with the `lp -T` option. For example, if a user enters the following command:

```
$ lp -d psprinter -T simple report2
```

the simple ASCII text file report2 will be converted to PostScript automatically, as long as the destination printer (psprinter) has been defined to the system as a PostScript printer.
Another option for printing ASCII text files on AIX is to use the `enscript` command to format the data. This command supports a large range of fonts. See the `enscript` man page and the description in Chapter 9, “Printing tips and utilities” on page 435 for more details.

4.10.3 PostScript capabilities provided by filters

The filters (postprint, dpost, postdaisy, postdmd, posttek, and postplot) shown in Table 13 on page 178 also take advantage of PostScript capabilities to provide additional printing flexibility. Most of these features may be accessed through the mode option (invoked by the `-y` option) to the `lp` command. These filters allow you to use several unusual options for your print jobs. The following list describes these options and shows the option to include on the `lp` command line for each one.

- **-y reverse** Reverse the order in which pages are printed.
- **-y landscape** Change the orientation of a physical page from portrait to landscape.
- **-y x=number,y=number** Change the default position of a logical page on a physical page by moving the origin.
- **-y group=number** Group multiple logical pages on a single physical page.
- **-y magnify=number** Change the logical size of each page in a document.
- **-o length=number** Select the number of lines in each page of the document.
- **-P num_list** Select, by page numbers, a subset of a document to be printed, where `num_list` is page numbers or page ranges separated by commas (for example, `1,4,6-8,14-` prints pages 1, 4, 6, 7, 8, and 14 through the end).
- **-n number** Print multiple copies of a document.
4.10.3.1 Example: Printing only pages 6-9 of a text document

Let us assume that you have a file called report2 that has a content type simple (meaning that the content of this file is in ASCII text format). You want to print six pages of this file (pages four through nine) with two logical pages on each physical page. Because one of the printers on your system (psprinter) is a PostScript printer, you can do this by entering the following command:

```
$ lp -d psprinter -T simple -P 4-9 -y group=2 myfile
```

The filter that groups these logical pages will try to position the pages on the physical page to maximize space utilization. Thus, when you specify group=2, the pages will be printed side by side (2-up), so that the physical page will be landscape orientation. Landscape mode, which controls the orientation of the logical page rather than the physical page, would cause the logical pages to be positioned one on top of the other when combined with the group=2 option.

4.10.4 Installing, registering, and maintaining PostScript printer

PostScript printers, like other printers, are registered with the `lpadmin` command or Web-based System Manager, as described in Chapter 2, “System V print subsystem basics” on page 45. They must use the PS interface program, requested by specifying -m PS on the `lpadmin` command line or Web-based System Manager panel.
4.10.5 Installing and maintaining PostScript filters

The PostScript filters provided with the print subsystem cover many of the common print conversion situations. However in AIX 5L, these filters are not registered with the print service automatically. For example, if you try to print an ASCII plain text file to a printer created with the following command:

```
# lpadmin -p ps1 -T PS-b -I PS -m PS -v /dev/lpx
```

and the file is printed with the following command:

```
$ lp -d ps1 -T simple /etc/motd
```

then you will get this error unless you have installed the `postprint` filter:

```
UX:lp: ERROR: 0920-054 There is no filter to convert the file content.
    TO FIX: Use the lpstat -p -l command to find a printer that can handle the file type directly, or consult with your system administrator.
```

There are default description files for each of the postscript filters in `/etc/lp/fd`. By examining the fd files, you can see the input and output type that each filter uses. For example when you use the postprint filter to print an ASCII file, it outputs a type of postscript, which is the input of the `download` filter, which has an output of postdown, which is the input type for `postio`, which outputs to type PS used by printers. You should be able to register the filters with the following script:

```

```
Note: The problem that we found when testing this was that the options parameters in these .fd files were not working properly, and we had to make copies of the .fd files and then remove the options from the files before the lpfilter command would work without errors. This will be fixed in future releases.

4.10.5.1 Special purpose PostScript filters
The System V print subsystem installs five special purpose filters that are used in PostScript.

postio The postio filter is mandatory for PostScript printing to work. Combined with lp.cat, this filter communicates directly with the printer.

lp.cat The lp.cat filter is the default filter for all printers. It is required for support of PostScript printers. It is used with postio to communicate directly with the printer.

download The download filter is used to download PostScript fonts to the printer.

postreverse The postreverse filter can be used to reverse the output of PostScript files or to select specific pages to print.

postmd The postmd filter is used to convert PostScript color to gray scale.

4.10.6 Installing and maintaining PostScript fonts
One of the advantages of PostScript is its ability to manage fonts. Fonts are stored in outline form in the Type 1 format, either on the printer or on a computer that communicates with a printer. Fonts can also be embedded in

```bash
#!/usr/bin/sh
#Register the PostScript filters with lpfilter
cd /etc/lp/fd
lpfilter -f download -F download.fd
lpfilter -f dpost -F dpost.fd
lpfilter -f postdaisy -F postdaisy.fd
lpfilter -f postdmd -F postdmd.fd
lpfilter -f postio -F postio.fd
lpfilter -f postior -F postior.fd
lpfilter -f postmd -F postmd.fd
lpfilter -f postplot -F postplot.fd
lpfilter -f postprint -F postprint.fd
lpfilter -f postreverse -F postreverse.fd
lpfilter -f posttek -F posttek.fd
cd -
```
the PostScript file itself. When a document is printed, the PostScript interpreter generates each character as needed (in the appropriate size) from the outline description of it. If a font required for a document is not stored on the printer being used, it must be transmitted to that printer before the document can be printed. This transmission process is called downloading fonts. Special type 1 fonts are available from a number of font foundries.

Fonts are stored and accessed in several ways:

- Fonts may be stored permanently on a printer. These printer-resident fonts may be installed in ROM on the printer by the manufacturer. If the printer has a disk, fonts may be installed on that disk by you (that is, by the Print Service administrator). Older PostScript printers were shipped with 35 standard fonts, although less expensive models have only 13. The IBM Network Printer 12 with 65 fonts is more characteristic of today's PostScript printers.

- A font may be *permanently downloaded* by being transmitted to a printer that supports flash memory. This method is useful when there is continual use of a font by the majority of print requests serviced by that printer.

- Fonts may be prepended to a print request by the user and be transmitted as part of the user print request. When the document has been printed, the space allocated to the font is freed for other print requests. The font is stored in the user's directory. This method is preferable for fonts with limited usage.

- Fonts may be stored on a system shared by many users. These fonts may be described as host-resident. This system may be a server for the printer or may be a system connected to the printer by a network. Each user may request fonts in the document to be printed. This method is useful when there are a large number of available fonts or when there is not continual use of these fonts by all print requests. If the fonts will be used only on printers attached to a server, store them on the server. If the fonts are to be used by users on one system who may send jobs to multiple printers on a network, store them on the users' system.

The print service allows you to manage fonts in any of these ways. It provides a special download filter to manage fonts using the last method in the list.

4.10.6.1 Obtaining a list of printer-resident fonts

All PostScript printers today come with fonts resident in the printer ROM. Some older printers have a disk, cartridges, or cards that contained fonts. Today, some printers have fonts on hard disk or memory modules. For PostScript printers attached via a serial port, a list of these fonts can be generated using the `postio` command and a PostScript program, `romfonts.ps`.
A more common way of obtaining the font list is to use the printer menus to print out the PS fonts. For example, on the IBM Network Printer 12, choose **Menu -> Test Menu -> Print PS Fonts** and press Enter. This shows the 65 fonts installed in this printer. The method for using postio is given in *AIX Version 5, Guide to Printers and Printing*.

4.10.6.2 Adding printer-resident fonts to a printer’s font list

When a PostScript printer is added to the print service, the list of printer-resident fonts is not added automatically. You should add a font list file if you plan to ever download fonts to prevent downloading of fonts that are already resident on the printer. The font list consists of an ASCII file with the name of each font on a separate line. This file can be created by a text editor, such as vi. The font list should be contained in the following file:

`/etc/lp/printers/printer-name/residentfonts`

where *printer-name* is the name of the printer.

4.10.6.3 Installing and maintaining host-resident fonts

Some fonts can be resident on the host and transmitted to the printer as needed for particular print requests. As the administrator, it is your job to make PostScript fonts available to all the users on a system. To do so, you must know how and where to install these fonts. Because fonts are requested by name and stored in files, the print service keeps a map file that shows the correspondence between the names of fonts and the names of the files containing those fonts. Both of these must be updated when fonts are installed on the host. The full path for the map file is as follows:

`/usr/share/lib/hostfontdir/map`

This file is not created for you. You will have to create the file by hand.

Type 1 fonts are available on the Internet, from font foundries, and from the AIX X11 type 1 fonts stored in `/usr/lib/X11/fonts/Type1` directory. The X11 fonts will be used for this setup example.

To install host-resident fonts, follow these steps:

1. If the `/usr/share/lib/hostfontdir` does not exist, create it:
   ```
   # mkdir /usr/share/lib/hostfontdir
   ```
2. Change to the `/usr/share/lib/hostfontdir`:
   ```
   # cd /usr/share/lib/hostfontdir
   ```
3. Copy the font files from `/usr/lib/X11/fonts/Type1` directory:
   ```
   # cp /usr/lib/X11/fonts/Type1/*.*pfa
   ```
4. Get the filename from the font files:

```bash
# grep FontName *.pfa
cour_s.pfa:/FontName /CourierSymbols def
cour_sb.pfa:/FontName /CourierSymbols-Bold def
helv_s.pfa:/FontName /HelveticaSymbols def
ehelv_sb.pfa:/FontName /HelveticaSymbols-Bold def
tnr_s.pfa:/FontName /TimesNewRomanSymbols def
tnr_sb.pfa:/FontName /TimesNewRomanSymbols-Bold def
```

5. Add the font names and full pathnames of the files to the map file. Any comments in this file begin with a percent sign (%). A sample map file is shown here:

```bash
% Map file from the X11 Type 1 fonts
CourierSymbols /usr/share/lib/hostfontdir/cour_s.pfa
CourierSymbols-Bold /usr/share/lib/hostfontdir/cour_sb.pfa
HelveticaSymbols /usr/share/lib/hostfontdir/helv_s.pfa
HelveticaSymbols-Bold /usr/share/lib/hostfontdir/helv_sb.pfa
TimesNewRomanSymbols /usr/share/lib/hostfontdir/tnr_s.pfa
TimesNewRomanSymbols-Bold /usr/share/lib/hostfontdir/tnr_sb.pfa
```

If you are only able to download fonts with a .pfb suffix, there are public domain utilities, such as pfb2pfa, that are available on the Internet (such as http://bibliofile.mc.duke.edu/gww/fonts/postscript-utilities/index.html) to convert pfb fonts to pfa type fonts.

4.10.6.4 Downloading Host-Resident fonts

The PostScript language clearly defines the ability to prepend fonts to a PostScript document to be printed. The download filter takes advantage of this capability to send fonts to both local and remote printers.

The download filter does five things:

1. It searches the PostScript document to determine which fonts have been requested. These requests are documented with the following PostScript structuring comments:

   ```postscript
   %%DocumentFonts: font1 font2 . . .
   ```

 in the header comments.

2. It searches the list of fonts resident on that printer (in /etc/lp/printers/printer-name/residentfonts) to see if the requested font must be downloaded.

3. If the font is not resident on the printer, it searches the host-resident font directory to see if the requested font is available. The only candidates for downloading are fonts listed in the map table that point download to
readable files. A Type 1 font is downloaded once, at most, for a single document, even if it occurs multiple times in the \%%DocumentFonts: comment or PostScript file. The downloading of fonts occurs only for the duration of the PostScript job; however, permanent downloading of fonts to the printer's RAM can be done with special PostScript programming techniques using the exitserver operator.

Requests for unlisted fonts or inaccessible files are ignored; all requests are ignored if the map table can not be read.

4. If the font is available, the filter takes the file for that font and prefixes it to the file to be printed.

5. The filter sends the font definition file and the PostScript source file (the file to be printed) to the PostScript printer.

4.11 Printing ASCII text to a PostScript printer

If you send an ASCII simple text file to a printer that supports only PostScript, the printer will flush the print job and may or may not print an error page. There are at least two ways to print simple text files to a PostScript printer.

The first method is to install the postscript filters, including postprint, download and postio. With this method, the print service uses these filters to convert from input type simple to output type PS for the PostScript file. When this is done, you can print a simple text file to the PostScript queue with the following command:

```
$ lp -d ps2 -T simple /etc/motd
```

The second method is to use the `enscript` application that is a part of the bos.txt.ts fileset in AIX. To use this command, you can either pipe the file to the command, or use the filename as the final argument, as shown here:

```
$ enscript -d ps2 /etc/motd
```

For more details on making fancier output with `enscript`, see Section 9.2, “PostScript utilities” on page 437.

4.12 Restricting users access and priorities for printers

The `lpadmin -u allow:` and `-u deny:` flags can be used to restrict certain users from printing on a specific printer. In addition to this, the `lpforms` command and the `lpadmin -f allow` command also have allow and deny flags which can restrict user access to printers while forms are mounted.
For each printer the LP print service keeps two lists of users:

- An allow-list of people allowed to use the printer
- A deny-list of people denied access to the printer

With the `lpadmin -u allow` flag, the users listed are added to the allow-list and removed from the deny-list.

With the `lpadmin -u deny` flag, the users listed are added to the deny-list and removed from the allow-list.

If the allow-list is not empty, only the users in the list may use the printer, regardless of the contents of the deny-list. If the allow-list is empty, but the deny-list is not, the users in the deny-list may not use the printer. All users can be denied access to the printer by specifying `-u deny:all`. All users may use the printer by specifying `-u allow:all`.

The `lpusers` command is used to set limits to the queue priority level that can be assigned to jobs submitted by users of the LP print service.

4.13 Customizing header pages

The header pages for both PostScript and text pages are created in the interface scripts associated with the queue. The standard interface creates a simple text header page, while the PS interface starts by pre-pending the file `/usr/lib/lp/postscript/banner.ps`.

One of the things that you may want to add to the banner page is paper tray selection as this is not handled by the standard scripts. Find the printer commands to do this in your printer programming technical reference.

The steps to create a custom header page are to create a new interface script, as described earlier in the chapter, or to simply edit the file in the interfaces directory associated with your printer. Make changes to this file to create the desired header page.

4.13.1 Example: PCL header with large user name

The banner portion of the PCL is contained in a small part of the standard interface script. In this example you can create a printer using that model, and then change to the printer interfaces directory `/etc/lp/interfaces`. The script that you will change is in this directory and has the same name as the printer you created. Search the file for the line:

```
## Print the banner page
```
The code for generating the regular banner is shown here:

```bash
regular_banner () {
    echo -e \"\$(CR)\c\" 
    echo "\$(PAD)\$(PAD)\$(PAD)\$(PAD)\$(PAD)\c" 
    echo "\#####\$(WIDE_CS) User: \$(user_name)\$(NORM_CS)\$(NL)\c" 
    if [ -n "\$ALIAS_USERNAME" ] then 
        echo "\$(PAD)\c" 
        echo "\#####\$(WIDE_CS) Alias: \$(ALIAS_USERNAME)\$(NORM_CS)\$(NL)\c"
    fi
    if [ -n "$title" ] then
        echo "\$(PAD)\c"
        echo "\#####\$(WIDE_CS) Title: \$(title)\$(NORM_CS)\$(NL)\c"
    fi
    echo "\$(PAD)\c"
    echo "\#####\$(WIDE_CS) Printed: \$(LC_TIME=C date '+%a %H:%M %h %d, %Y')\$(NORM_CS)\$(NL)\c"
    echo "\$(PAD)\c"
    echo "\#####\$(WIDE_CS) Job number: \$(request_id)\$(NORM_CS)\$(NL)\c"
    echo "\$(PAD)\$(PAD)\$(PAD)\$(PAD)\$(PAD)\c"
    if [ -n "$FF" ] then
        echo -e \"\$(CR)\$(FF)\c"
    fi
}
```

You can change the format of this to output any information that you might want (to inform users of changes) or you make changes to emphasize information. When you add text, the output must be directed to standard out. In this example, you will add the PCL codes to change the font to a larger font for the user name. You can see that for printers that support a WIDE_CS that some of this may already happen. When adding codes to change the font, you also must add the font to return the printer to the font that was there before you sent the job. One thing you might add at the end is a printer reset command, which for PCL is escape E. The escape character can be added to an echo statement with \"033\". So escape E would be:

```bash
echo \"\033E\"
```

Before starting to modify the header page for a PCL printer, there are some simple things that you should know about the PCL data stream. The following list should give you enough information to get started:

- **PCL is simply ASCII Text with special escape sequences to give the printer commands.**
- **Use simple PCL commands from the printers technical reference.**
- **[ESC] can be created with echo \"033\".**
You can concatenate PCL commands that start with the same sequence letters by using small letters until the final letter:

\[\text{[ESC]} (s4148t1p16V = \text{[ESC]}(s4148T + \text{[ESC]}(s1P + \text{[ESC]}(s16V} \]

\text{[ESC]}(s#T - Sets the Typestyle (FONT).
\text{[ESC]}(s3T - Courier - fixed font, uses \text{[ESC]}(s5H for pitch
\text{[ESC]}(s4148T - Univers - proportional font, uses \text{[ESC]}(s35V for point size
\text{[ESC]}(s#P sets fixed (#=0) or proportional (#=1)
\text{[ESC]}(s#H gives pitch for fixed fonts
\quad \text{Larger number gives smaller characters}
\text{[ESC]}(s#V gives Point size for proportional fonts
\quad \text{Larger number gives larger characters}

To change the size of the name on the header page, add the two echo statements around the statement that echoes the name, as shown here:

\begin{verbatim}
echo "\033(s4148t1p16V"
echo "#####${WIDE_CS} User: ${user_name}${NORM_CS}${NL}\c"
echo "\033(s3t0p10H"
\end{verbatim}

The resulting header page will look like this:

```
###
###
###
###
###
#### User: rs9330b!sallymae
###
### Printed: Wed 09:53 Nov 01, 2000
###
### Job number: hp1-574
###
###
```

Of course, you can apply any touches you want, included imbedded graphics. Another way to add the custom header is to create a custom header template file to setup any fonts and graphics and cat the file before printing the information.

4.13.2 Example: Custom PostScript header page

The PostScript header page is created by the standard interface program by passing the text to postprint to create the PostScript, and by the PS interface
program by first pre-pending a formatting file and then echoing the
information out from the script. To customize the printer script, you can make
a copy of the PS interface program and create your printer using that, or
simply edit the file with the same name as the printer in /etc/lp/interfaces. The
part of the script that generates the banner is shown here:

```
$PSBIN/banner.ps
echo "(\"LC_ALL=C LC_CTYPE=C LC_TIME=C date\" '+%a %H:%M %d, %Y\")"
echo "($request_id)"
echo "($title)"
echo "($originator)"
echo "($user_name)"
echo "banner"
```

The default banner has fairly large text for the fields, but you may want to
emphasize one field or add graphics or other text to the file. To simply add
other text, add lines that contain an echo statement with the text inside of
parenthesis prior to the echo “banner” statement, which calls a macro inside
the banner.ps file.

You can make changes in two places. The first method is to make a copy of
the /usr/lib/lp/postscript/banner.ps file and make changes to that file to
change fonts or add a logo. When you make changes in this manner, change
the shell script to point at the new banner template file. The second method is
to add PostScript commands directly into the interface shell script. In this
case, you may still need to make changes to banner template file so that the
`showpage` PostScript formfeed command is issued after all of your commands.

To create a sample custom banner for printer ps1, follow these steps:

1. Create a copy of the banner.ps template:
   ```
   # cd /usr/lib/lp/postscript
   # cp banner.ps ps1banner.ps
   ```
2. Edit ps1banner.ps and make changes to add the font statements around
 the Owner line and add a Message line, as shown below:
   ```
   font findfont 30 scalefont setfont
   (Owner:) nextline
   font findfont 20 scalefont setfont
   (Originator:) nextline
   (Title:) nextline
   (Job-Id:) nextline
   (Printed:) nextline
   (Message:) nextline
   showpage
   ```
3. Change to the interfaces directory:

 # cd /etc/lp/interfaces

4. Edit the ps1 file and change the CAT statement and add a message statement. Notice the statements in this file are in reverse order of those in the template.

 $CAT $PSBIN/ps1banner.ps
 echo "('LC_ALL=C LC_CTYPE=C LC_TIME=C date '+%a %H:%M %h %d, %Y')"
 echo "($request_id)"
 echo "($title)"
 echo "($originator)"
 echo "($user_name)"
 echo "(Printer will be offline Friday)"
 echo "banner"

5. Test print the banner page

The banner page printed with these changes will look like this:

```
Owner: rs9220b!heidi
Originator: rs9220b!heidi
Title: Pigs fly
Printed: Wed 10:56 Nov 01, 2000
Message: Printer will be offline Friday
```

4.14 Setting up a printer with multiple names

The print service allows you to set up a single printer with multiple names to perform multiple functions. For example, if your printer supports both portrait and landscape modes, you can set up a different name for each function and then send jobs to each printer name. These multiple printers are called virtual printers, not to be confused with the PowerPC print subsystem virtual printers.
The print spooler system differentiates printers by name only, not by the device to which the printer is connected. To specify different names for the same device and to prevent multiple print jobs from appearing simultaneously, you must set up both the real printer and additional virtual printers. The real printer performs the actual printing and the virtual printers pass print jobs to the real printer.

For example, to set up two virtual printers, port and land, that use the capabilities of an Hewlett-Packard LaserJet, use this procedure:

1. Set up the real printer. Specify the Name as real and set the Model to HPLaserJet.
2. Set up the port and land virtual printers. Set the Model to network. Specify the same Device to which real is connected.
3. Create the file /usr/spool/lp/remote and add the following lines:

 port: lp -dreal -oportrait
 land: lp -dreal -olandscape

 This specifies that when printing to printer land, the print system sends the print job to printer real using the -olandscape option (to print in landscape mode) and when printing to printer port, the print system sends the print job to printer real using the -oportrait option (to print in portrait mode).

 Note: The options listed after -dreal depend on the printer model. Check the interface script in /usr/spool/lp/admins/lp/interface for your printer to determine the printer- or class-dependent -o options.

 To print a file in landscape mode, enter the following command:
This procedure translates the -dland option to `lp` to the necessary options for the printer (in this example, `-dreal -ol`).

Another way to accomplish this is to create a simple shell script to perform the type of printing. For example:

```bash
# Land - shell script to print in landscape mode
# syntax: land <file> <file>
#
lp -d real -ol $@
```

The reasons for choosing one method over the other depend on how your applications access the print system. Many applications allow you to specify only the name of the printer, so virtual printers are the only solution. Other applications might allow complete control over the commands that submit the print job. In this case, you might use the shell script above.
Part 3. PowerPC print subsystem
Chapter 5. PowerPC print subsystem basics

To manage printers in an AIX 5L environment, it is important to understand the way in which AIX 5L implements printing facilities. This section reviews the manner in which printing is implemented in AIX 5L, so that you may better understand the function of the print spooling subsystem. AIX 5L implements printing in a manner similar to many other UNIX variants, but with some key differences. After reviewing this chapter, you should understand the general printing approach employed in AIX 5L and be able to contrast it with other printing systems you are familiar with.

5.1 Overview

Under AIX 5L, there are two basic methods that can be employed to drive or use printers that you might attach to a RISC System/6000. They are:

1. Printing by directly addressing the printer device driver
 This method of printing bypasses the print subsystem and goes directly to the printer device driver via the special character file in the /dev directory. It is common to both print subsystems and is covered in Chapter 1, “Overview of AIX 5L print subsystems” on page 3.

2. Printing by utilizing the print spooling subsystem
 In this environment, information that a user or application wishes to be printed is sent to the spooling subsystem. The spooling subsystem will itself drive the printers and share them among the various applications and users who wish ejected at page ends, that a page eject is the last command sent, and that control characters, such as line feeds and carriage returns, are correctly interpreted. The device driver also controls the printer communications port through attributes such as line speed, parity and stop bits for that printer port. The print subsystem places the device driver in transparent mode so that the only formatting of the data will be done via the virtual printer.

5.1.1 Printing via the PowerPC print subsystem

The most common method of printing in AIX is to use the print spooling subsystem. The PowerPC print subsystem that is available in AIX 5L is the traditional AIX print subsystem. It is a substantially enhanced print spooling subsystem over other UNIX print subsystems, but also is unique, and therefore requires knowledge that is not available to the non-AIX system administrator. This subsystem provides the flexibility required in the modern printing environment where printers often have multiple personalities, that
allow them to emulate a range of other printer devices. There are really two views of the print spooling subsystem that are important to understand:

- The logical view of how printers, virtual printers and queues relate.
- The manner in which files are processed by the print spooling subsystem.

First, we will discuss the logical view of printers and queues.

5.1.1.1 Printers, virtual printers, and print queues

A prerequisite to a discussion on the print spooling subsystem is a discussion to define terms that are used. From a logical viewpoint there are three major components of the print spooling subsystem. These are printers, print queues, and virtual printers.

- Printers are the actual devices on which output is printed. In AIX 5L, printers are a pairing of the real printer and the printer device driver. The printer device driver is represented by a special file in the /dev directory beginning with the letters lp, for example, /dev/lp24.

- Print queues are the destinations that print requests are directed to and the queues on which print jobs wait for an appropriate printer to become available. Queues can be served by one or more printers by using multiple queue devices. A queue is represented by a pair of stanza in the /etc/qconfig file:
 - the queue stanza
 - the queue device stanza.

- A virtual printer is a single logical view of the components that make up a printer from a user's perspective. A virtual printer describes the combination of a printer device, a data stream that a printer supports, and the specific configuration of the queue and queue device that serve the virtual printer. A virtual printer is represented by a file in the /var/spool/lpd/pio/@local/ddi directory.

Virtual printers are important because modern printers can support multiple data streams. For example, the Lexmark IBM 4029 can support ASCII, PostScript, and HP-PCL data streams. Users may wish to utilize all of these options on the same physical device. So, virtual printers provide a method for mapping multiple data streams to the single printer device. For example, the ASCII data stream mode of printing for a specific Lexmark IBM 4029 LaserPrinter is one virtual printer. The PostScript printing mode for the same Lexmark IBM 4029 LaserPrinter may be a second virtual printer definition associated with that same physical Lexmark IBM 4029 LaserPrinter device.
5.1.1.2 How virtual printers are defined by AIX 5L

The information about virtual printers is kept in a database. After having configured a virtual printer, you will find a file named something like ibm4039.ascii:lp0.ascii:lp0 in the /var/spool/lpd/pio/@local/custom directory. Each virtual printer configured generates a unique file in this directory. This file contains all the printer control information that is appropriate for the ascii:lp0 virtual printer. This information can be modified via the chvirprt command or listed via the lsvirprt command. The name of the virtual printer will also match the name of the queue and queue device specified in the qconfig file. For example, if you create the asc:lp0 virtual printer using mkpq, you will create a print queue called asc and a printer queue device called lp0 in the qconfig file. If you list available printers via qchk -A, this printer will be listed as Queue asc and Dev lp0. The information in the custom directory is only used for changing and listing the virtual printer attributes. The backend programs like piobe actually use a digested binary database of information stored in the ../@local/ddi subdirectory.

5.1.1.3 How print files are processed

The second view of the print spooling subsystem that is important to the systems administrator is how print requests are processed by the programs that make up the print spooling subsystem.

1. The user submits the print job with qprt, lp, lpr, enq, or dtprint.
2. These print commands transfer the print job to enq.
3. enq checks the queue using /etc/qconfig.bin.
4. enq creates the job description file in /var/spool/lpd/qdir.
5. enq signals the qdaemon.
6. The qdaemon maintains a serial order of the job and executes the backend program.
7. If the backend program is piobe, the virtual printer is used. If the backend program is rembak, the output is sent to a remote print server.
8. Local print jobs are processed by the backend and sent to the device driver.
9. The device driver sends the file to the physical printer.
10. If the backend program is rembak, the lpd connection is made with the remote server and the file is sent and processed there.
11. If the backend program is piorlfb, then a combination of steps 7 and 10 is performed. The job is sent through the virtual printer and then on to the remote server.
As you can see from this list, you present the print request to the print spooling subsystem via one of the printing commands, such as `qprt`, `lp`, `lpr`, or `enq`. Depending on the command chosen, there are many options available to control printing, for example, options such as the print queue to be used, the print job’s priority, and some output control commands are some of the options that can be selected. The commands to request printing of a file are discussed in Section 5.6, “Printing files in the PowerPC print subsystem” on page 243.

All the commands that request the printing of a file invoke the AIX 5L `enq` command to actually place the print request into the appropriate queue. When the `enq` command receives a print request, it reviews information about queues and printers, which it has read from the `qconfig` configuration file, and then places the job request on the appropriate queue. This is done by updating files in the `/usr/lpd/stat` and the `/usr/lpd/qdir` directories.

Once a job has been placed onto a print queue, the `qdaemon` process is responsible for the jobs and passes them to the appropriate printer via the correct backend program. These backend programs are identified in the `qconfig` file via the `backend=` entry in the queue device stanza for the destination queue. Normally the queue device specifies that the `piobe` command, the `rembak` command, the `piorlf` command, the `pioihmp` or the `piojetd` command be used to process the enqueued print request. The backend command can, though, be a command or shell script that you have written to serve a specific purpose. The `piobe` command controls printing through the virtual printer subsystem and the output usually goes to local printer devices on the system that the print spooling subsystem is running in. The `rembak` command will take a print job and transmit it to a specified remote system for printing. The `piorlf` command actually pass the output through the `piobe` backend so the virtual printer processing can occur prior to the job being sent to the next command. With `piorlf`, the output from `piobe` is then sent to the remote printer with `rembak`. With `piojetd`, the output is piped from `rembak` to the `piobmpf` filter, which sends the data over the network to the JetDirect printer.

5.1.2 The `piobe` backend

The `piobe` process then takes the print file passed to it through a pipeline of appropriate filters based on the individual virtual printer definitions. These filters first add printer initialization commands, as specified in the virtual printer attributes, then format (for ASCII) or pass the data through unaltered (for PostScript or passsthrough) and send it on to the printer, and finally send printer reset sequences. Formatting the data usually involves adding carriage returns to line feeds, adding line feeds and carriage returns to truncate the
the page width, adding formfeeds to truncate the page based on the page length, substituting spaces for tabs, and similar actions.

The piobe process uses the device driver in this transparent mode so that the printer data stream generated by piobe is not modified as it passes through the device driver to the actual printer device.

This means that the only way to specifically configure the behavior of a printer when using the print spooling subsystem is to modify the virtual printer database. By using the qprt flags, you can specify for the virtual printer to not send the initialization control sequences, to passthrough the print job untouched, and to not send the printer reset control sequences.

5.1.3 The rembak backend

In many modern installations, users of one system may wish to share a printing resource installed on another system. AIX 5L supports this via remote or networking printing facilities. These remote printing facilities are built upon the TCP/IP communications protocols. So, to utilize remote printing facilities your systems must be connected via the TCP/IP protocol and support the required TCP/IP applications.

The rembak program is the backend program used by the print spooling subsystem when printing to a remote host or printer that supports the lpd (line printer daemon) protocol which communicates on TCP/IP socket 515. One example is printing between AIX systems where rembak on the client system sends a request to lpd on the server system, which is then passed to enq on the server to enter its local queueing system. Other hosts that support the lpd protocol include most UNIX systems, TCP/IP for OS/2, VM and MVS, Windows NT, the flexip program for Novell Netware, some internal printer cards such as HP JetDirect, LexMark Marknet, and IBM Network Printer cards, network print servers, and some network terminal servers, such as Lantronics. Large files sent to PCs or network print servers may need to use the -T minutes flag on rembak to avoid timeouts.

The rembak command sends a job to be queued on a server attached somewhere else in the network via TCP/IP protocols. The rembak command works as the client that expects to find a process called lpd daemon; this works as the server that receives print requests for being processed by the local qdaemon. The qdaemon passes the request to the piobe backend of the local system, which continues with the normal local processing.
5.1.4 The piojetd backend

The piojetd is a shell script that calls the piobe backend program and then pipes the virtual printer output to a network filter called piohpnpf, which sends the output to the JetDirect printer or print server usually using TCP/IP port 9100. More discussion of this print method is described in Chapter 6, “PowerPC network printing” on page 267.

5.1.5 Print spooling subsystem

As you have seen from our previous discussion, there are a number of components that make up the print spooling subsystem. To configure the print spooling subsystem to meet specific requirements that you may have, there are several key files and utilities. This section discusses how to use those files and utilities to modify the print spooling subsystem as required. The following topics will be discussed:

- Configuring and managing print queues
- Configuring and managing print queue devices
- Configuring and managing printer devices
- Configuring and managing virtual printers

5.1.5.1 Print queues and queue devices

Print queues and print queue devices are defined in the file /etc/qconfig.

The qconfig file

The qconfig file is used by the print spooling subsystem to control configuration of the print queues themselves and the backend print queue devices that will process the enqueued jobs. The qconfig file contains stanzas that describe the characteristics of the printer spool queues and the backend devices that they invoke. Some examples of these stanzas are explained below. There is one important aspect of the qconfig file that should be understood: this is the manner in which the configuration information is accessed by the enq command or the qdaemon.

The /etc/qconfig file is in ASCII format, but the commands that compose the print spooling subsystem actually use the /etc/qconfig.bin binary version. The /etc/qconfig ASCII file is digested by the /usr/lpd/digest program to create a binary version called /etc/qconfig.bin. It is this digested binary version of the qconfig file that contains the configuration parameters that are used by enq or the qdaemon. For simplicity, we will refer to both versions of the qconfig file simply as the qconfig file.
The qconfig file is a flat ASCII attribute file in a stanza format. Stanzas in this file describe either queues or queue devices. Every queue stanza requires that one or more queue device stanzas immediately follow it in the file.

The local queue format is shown below:

```
emmadee:
    device = lp12
lp12:
    file = /dev/lp12
    header = always
    trailer = never
    access = both
    backend = /usr/lib/lpd/piobe
```

The queue named emmadee is a local queue with a single queue device lp12. For the local queue, most of the information is contained in the queue device stanza which starts with the line lp12:. The file = /dev/lp12 is used to set the standard out for the backend program. In this case, this is set to a device file and will print to a local attached printer. The queue device name and the file parameter often are the same, but this does not have to be true. The banner pages are controlled by the header and trailer lines. The backend program is usually the last line in the queue device stanza. In this example, backend = /usr/lib/lpd/piobe indicates that this queue will use the virtual printer subsystem.

A local queue can be defined with multiple print devices. This allows pooling of the jobs sent to the queue. The qdaemon first checks the availability of the first queue device and prints to it if it is available. If it is not available, then the next queue device is tried and so on until an available queue device is found for that queue. The following shows an example of a queue with multiple queue devices:

```
lydia:
    device = lp1,lp2
lp1:
    file = /dev/lp1
    header = never
    trailer = never
    access = both
    backend = /usr/lib/lpd/piobe
lp2:
    file = /dev/lp2
    header = never
    trailer = never
    access = both
    backend = /usr/lib/lpd/piobe
```
The format of the remote queue is different in that much of the information is in the queue stanza, which is different from the local queue. The following shows an example of a remote queue in /etc/qconfig:

```plaintext
nacmi:
  device = @9
  up = TRUE
  host = 9.19.169.54
  s_statfilter = /usr/lib/lpd/attshort
  l_statfilter = /usr/lib/lpd/attlong
  rq = caleb
@9:
  backend = /usr/lib/lpd/rembak
```

The queue stanza defines the lpd server hostname or ip address. The statfilters are used by `qchk` (or `lpstat`) to format the status output from remote printers and to determine the flags that are sent in the control file. When AIX based status filters are used, unique AIX flags can be passed over the network. The `rq` parameter designates the destination queue name on the server. As you can see, the only line in the queue device stanza is the backend.

The queue stanza for the `piorlfb` stanza contains both the local and remote information, as shown here:

```plaintext
bensprt:
  device = @aus3130b
  host = aus3130b.itsc.austin.ibm.com
  rq = afccu2
  s_statfilter = /usr/lib/lpd/aixshort
  l_statfilter = /usr/lib/lpd/aixlong
@aus3130b:
  header = never
  trailer = never
  access = both
  backend = /usr/lib/lpd/pio/etc/piorlfb -f!
```

This sample shows printing to an IBM 3130 printer, which uses an AIX 3.2.5 system as the internal print server. Notice the queue device stanza is similar to a local virtual printer because `piorlfb` passes the file through `piobe`, and the queue stanza is similar to the remote printer queue.

5.2 The default queue

The default queue is the destination that print jobs will go when no queue name is specified in the print command.
5.2.1 System default queue

The first queue stanza to appear in the /etc/qconfig file sets the system default queue. This can be changed system wide using Web-based System Manager, SMIT, or the command line.

For Web-based System Manager, one of the main tasks for directory disabled printers is **Set default printer**. Select the desired printer from the list and click **Finish**.

For SMIT, follow these steps:
1. Run `# smitty spooler`.
2. Choose Manage Print Queues.
3. Choose Set the Systems’s Default Print Queue.
4. Use the F4 key to show a list of queues and select the desired queue.
5. Press Enter.

From the command line, use the following command:

```
# /usr/lib/lpd/pio/etc/piochdfq -q 'benslaser'
```

Any of these actions will actually move the queue to the front of /etc/qconfig.

5.2.2 Individual’s default queues

Individuals can set up environment variables to specify destinations in their environment. If the LPDEST environment variable is set, the `enq` command uses the queue name specified by the LPDEST variable. If set, this value is always used, even if the PRINTER variable is also set. If the PRINTER variable is set and no LPDEST variable is set, the `enq` command uses the queue name specified by the PRINTER environment variable. Any destination command-line options override both the LPDEST and the PRINTER environment variables. If neither the LPDEST nor the PRINTER variable is set, the `enq` command uses the system default queue name. The system default queue name is the name of the first queue defined in the /etc/qconfig file. For example, to set these variables to laser3 for the Bourne and Korn shells, enter the following commands:

```
# export PRINTER=laser3
# export LPDEST=laser3
```

To set these variables for the csh shell, enter the following commands:

```
# setenv PRINTER=laser3
# setenv LPDEST=laser3
```
Note that when one of these variables are set, a command like `cancel -x###` (a common method of canceling jobs) will not find the job unless it is in the queue specified by the environment variable.

5.2.2.1 Administrative privilege and the print spooling subsystem
The print spooling subsystem uses AIX 5L security. AIX 5L uses a system of administrative privilege to control access to many administrative areas, such as the print spooling subsystem. The administrative privilege approach allows a systems administrator to delegate some authority to administer a portion of the AIX 5L environment without having to give a user the sweeping powers of the root user or system group. To configure the print spooling subsystem and perform many administrative tasks, a user must either be the root user, a member of the system group or a member of the printq administrative group. Users who are members of the printq administrative group can manipulate the print spooling subsystem but do not have access to other administrative privileges (such as managing mail), unless those privileges are also given to them.

5.3 Queue management
There are many reasons that you may want to modify the print queues and queue devices in the qconfig file. You may wish to provide specific users or applications with specific queues; you may want special queues that are available only at certain times; you may want to track printer use of some users but not others. Given that you require modification of the print queue or queue device stanzas in the qconfig file, there are two major ways in which these files can be manipulated:

- The first is to edit the qconfig file directly, using the editor of your choice. Although the advanced user can use this method, errors in editing and format can cause the print subsystem to be inoperable and the qdaemon may not start.
- The second is to use the facilities provided via AIX 5L, such as Web-based System Manager, SMIT, and the command line to configure print queues and queue devices. This is the recommended approach. The following sections discuss the facilities provided by AIX 5L to manipulate the qconfig file.

This section will describe how to perform the following print queue configuration and management tasks via the facilities provided by AIX 5L:

- Adding a print queue
- Displaying print queue configuration information
5.3.1 Physically adding the printer

Follow the next steps to install the physical printer:

1. Review all relevant installation planning information, such as the printer’s own manuals and this entire chapter, to ensure that you have the required components and information to install the printer in question.

2. Review your system’s configuration and select the serial or parallel port which you plan to connect the printer.

3. Ensure that the communications port you plan to use is not already in use by other devices, such as printers, terminals or modems. If the port is already in use, either move the device attached to the port or modify the configuration of that device. For example, for a tty device, set the Enable LOGIN field to disable. For a printer, set STATE to be configured at boot time field to defined. This ensures that there is no conflict in demand for use of the port.

4. Connect the printer to the communications port (serial or parallel) you have selected to connect the printer. You must ensure that you have used the appropriate cabling. The RISC System/6000 General Information and Planning Kit provides information on planning the installation of devices such as printers.

5. Using the documentation provided with the printer, configure it appropriately. If using a serial interface, take note of the settings that you have made for items such as baud rate, stop bits, data bits, and flow control settings. You will need these to configure the AIX printer device driver correctly. For example, for an IBM Proprinter, you may set baud rate to 9600 bps, parity to none, bits per character to 8, stop bits to 1, and xon/xoff to be used for flow control.

5.3.2 Adding a locally attached printer queue

One of the advantages of PowerPC printing is that you can add the local print device, queue, and virtual printer in one step. Log on as a user with appropriate privileges, such as root or a member of the printq admin group. You have a choice for the interface. Follow the steps of one of these options (based on your preference) to add a print queue.
Option 1: Using Web-based System Manager
Follow the steps to add a local queue. In this example, we have added the first queue by step 14 and added the second queue by step 15 to step 18.

1. In the command prompt, enter the following command:
   ```
   # wsm
   ```
 The panel shown in Figure 22 will be displayed.

 ![Figure 22. The first panel of Web-based System Manager](image)

2. Double click **Printers** icon on the right frame and then double click **All Printer Queues** in the panel shown in Figure 23. Then select **Printers -> New -> New Queue and Printer Wizard dialog** in the menu.

 ![Figure 23. Printer menus](image)

3. Enter the queue name for the new printer queue and click the **Next** button, as shown in Figure 24 on page 209.
Figure 24. Entering the queue name

4. The panel shown in Figure 25 is used to decide the destination type of the printer. In this example, select **Local** and click the **Next** button.

Figure 25. Selecting the type of the destination

5. The existing local printers information will be displayed, as shown in Figure 26 on page 210. In this example, there is no information, since this is the first time to add new printer. Select **Add New Printer**.
6. You need to select one of the printer brand names in the panel shown in Figure 27. If you cannot find your brand name, select Other. In this example, we need to select IBM, since we will install IBM printer. Click Next.

7. The next step is to select the printer model. In this example, shown in Figure 28 on page 211, we need to select the IBM 4312 model. Click Next. If the device for this printer has been installed already, you will get the panel shown in Figure 30 on page 212; skip to Step 9. Otherwise, continue on to the next step.
8. The next step is to select installation media. You can install printer devices using floppy disks, tapes, CD-ROM, or by specifying any directories which contain this image. Normally, this software will be on the AIX 5L installation media. In this example, select CD-ROM drive and click **Next**, as shown in Figure 29. The printer devices will actually be installed at this time.

9. You can choose type of port to connect to the printer. In this example, select **Parallel** and click **Next**, as shown in Figure 30 on page 212.
10. Select **ppa0** for the available port and location and click **Next**, as shown in Figure 31.

11. You need to choose the type of queue you want; in this example, we want IBM 4312 printer support PCL queue and PostScript queue. Select **PCL 5E Emulation** and click **Next**, as shown in Figure 32.

12. Verify all information in the panel shown in Figure 33 on page 213. If everything is correct, click **Next**.
13. Finally, you will have a confirmation notice, as shown in Figure 34, to let you know this queue has been successfully created. Click Finish to finish this job.

14. Now, you can see a new queue in the right frame of the Web-based System Manager panel, as shown in Figure 35.

15. We have configured a PCL queue for IBM 4312 printer. Let us also configure a PostScript queue for this printer. We will be adding an
additional queue to an existing printer. You can do this by several different ways.

The easiest method is to add a queue to a file in the /dev directory and simply specify the file name of the device created in the previous section. In this example, we have used Printer Advanced Dialog. In panel shown in Figure 35 on page 213, select Printers->New->New Queue and Printer Advanced dialog. The panel shown in Figure 36 will be displayed. Type a name for the new queue and select Local printer. Click Next.

![Figure 36. Selecting a type of destination for the second queue](image)

16. In the panel shown in Figure 37 on page 215, select IBM Network Printer 12 and click Next instead of choosing Add New Printer, because the printer device has been installed already in this case.
17. Click **Finish** to finish to create PostScript queue, as shown in Figure 38.

18. Now, you can see two queues in the Web-based System Manager panel shown in Figure 39 on page 216.
Figure 39. Checking two queues

Option 2: Using SMIT

Follow these steps to add a print queue using SMIT. In this example, we will show the text-based SMIT screens, but the same functionality is available from the GUI-based SMIT on X Windows displays.

1. Enter the following command:

   ```
   # smitty mkpq
   ```

 After entering this command, the following menu will be displayed:

```
# ATTACHMENT TYPE DESCRIPTION
local      Printer Attached to Local Host
remote     Printer Attached to Remote Host
xstation   Printer Attached to Xstation
ascii      Printer Attached to ASCII Terminal
hpJetDirect Network Printer (HP JetDirect)
file       File (in /dev directory)
ibmNetPrinter IBM Network Printer
ibmNetColor IBM Network Color Printer
other      User Defined Backend
```

2. Move the cursor to desired item and press Enter. In this example, select the `local` option and press Enter. Use the arrow keys to scroll. The following menu will be displayed:

```
# ATTACHMENT TYPE DESCRIPTION
local      Printer Attached to Local Host
remote     Printer Attached to Remote Host
xstation   Printer Attached to Xstation
ascii      Printer Attached to ASCII Terminal
hpJetDirect Network Printer (HP JetDirect)
file       File (in /dev directory)
ibmNetPrinter IBM Network Printer
ibmNetColor IBM Network Color Printer
other      User Defined Backend
```

216 Printing for Fun and Profit under AIX 5L
3. From this menu, select the option that matches your printer brand. If your printer brand is not listed, select *Other*. In this example, we have selected *IBM*, because we are installing an IBM 4019 printer. After pressing Enter, the following screen will be displayed:

4. If your printer model is not listed, select *Other*, which is at the bottom of the list. To get there, use the down arrow or page down key. If you select a printer model that has its device driver installed (available) on your system, skip to step 12. Otherwise, the following screen will be displayed:
5. You might be thinking, why do you have to install your printer device driver; should it not already be installed in your system? In order to reduce the operating system size, you have to choose what will be installed. When you first install AIX, it does not come with all the device drivers AIX supports. If you are going to install different printers, check if these printers device drivers are already installed and if they are not installed, install them. Otherwise, you will probably have to install a new device driver every time you install a new printer. To see if the your printer device driver is installed, type the following command at the prompt line:

```
# smitty pdp
```

Select List All Supported Printer/Plotters. If your printer model is not listed, you will have to install its device driver.

6. In the previous screen, press Enter to install your printer device driver. The Install Additional Printer/Plotter Software screen will be displayed. In our example, we use the AIX 5L install software from the CD-ROM drive, so we have selected /dev/cd0 for input device. After pressing Enter, the following screen will be displayed:
7. Press F4 to see a list of available installation devices in your system. The following screen will be displayed. Select all the printer device drivers you intend to install using F7 and the arrow keys and press Enter. In this example, we have chosen IBM Network Printer 12 for IBM 4312 printer.

<table>
<thead>
<tr>
<th>SOFTWARE to install</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0.0.0 IBM 7372 Color Plotter</td>
</tr>
<tr>
<td>5.0.0.0 IBM InfoPrint 20</td>
</tr>
<tr>
<td>5.0.0.0 IBM InfoPrint 32</td>
</tr>
<tr>
<td>5.0.0.0 IBM InfoPrint 40</td>
</tr>
<tr>
<td>5.0.0.0 IBM InfoPrint32 Hindi UTF-8 Datastream</td>
</tr>
<tr>
<td>5.0.0.0 IBM Network Color Printer</td>
</tr>
<tr>
<td>5.0.0.0 IBM Network Color Printer Attachment</td>
</tr>
<tr>
<td>5.0.0.0 IBM Network Printer 12</td>
</tr>
</tbody>
</table>

8. Press Enter to install the printer device drivers you have selected. You will see the following screen. Press Enter again to start installation.
9. If you are successful, the following screen will be displayed:

![Command Status]

```
COMMAND STATUS
Command: OK               stdout: yes               stderr: no
Before command completion, additional instructions may appear below.

+-----------------------------------------------------------------------------+
Summary:
+-----------------------------------------------------------------------------+
Installation Summary
-------------------------------------
Name                        Level           Part        Event       Result
-------------------------------------------------------------------------------
printers.ibm4312.rte        5.0.0.0         USR         APPLY       SUCCESS
+-----------------------------------------------------------------------------+
```

10. Now that you have your printer device software installed, press F10 and you will get back to the prompt sign. You have to do step 1 (by entering the smitty mkpq command) to step 3 again.

11. Select which type of connection you are using to connect your printer to your system. In our example, we have connected our printer using the parallel port.
12. After selecting the parallel option, the following parent adapter selection list is displayed. In this example, there is only one adapter to choose. If there were more than one adapter, they would also be listed. Select the parent adapter that corresponds to the communications port you have connected your printer.

13. In the following screen, you are prompted to choose a name for each queue created for each type of mode your printer can emulate. Each name that you enter will create a separate queue and virtual printer. Choose names so that it is easy to remember the name of each queue. In our example, we have chosen the name 4312pclq for the PCL Emulation queue and 4312psq for the PostScript queue. After choosing the queue names, press Enter.
If you see a screen like the following, you have successfully configured a printer into the print spooling subsystem.

Option 3: Using the command line
You can also add a print queue through the command line, but using Web-based System Manager or SMIT to add a print queue avoids dealing with a queue, a queue device, and a virtual printer. If you are going to add a virtual printer queue, then the steps to add the printer become quite complicated, and, unless you are going to create shell scripts to add your queues, should be avoided. The steps shown below show how you might add...
a remote queue which does not use a virtual printer. This procedure could also be used to add a queue with a custom backend.

1. Add a queue using the `mkque` command. For example, the following command will configure a remote queue. It configures just the queue and not the queue device.

   ```bash
   # mkque -qlp -a "host=creecher" -a "rq=lp13"
   ```

 - The `-q` flag specifies the name of the queue to be added (lp).
 - The `-a` flag specifies a line to be added to the queue stanza in the `qconfig` file (host=creecher and rq=lp13). These flags must be entered last when entering the `mkque` command on the command line.

2. Add a queue device associated with the queue you have added, using the `mkquedev` command. For the queue we have added in the previous example, the following command will add a device named `lpdev` that has `/usr/lib/lpd/rembak` as its backend:

   ```bash
   # mkquedev -qlp -dlpdev -a "backend=usr/lib/lpd/rembak"
   ```

 - The `-q` flag specifies the name of the queue (this name must already exist) to which the queue device is added. The `mkquedev` command automatically adds the `device=attribute` to the specified queue stanza.
 - The `-a` flag specifies the attribute to be added to the device stanza in the `/etc/qconfig` file (backend=usr/lib/lpd/rembak).

5.3.3 Displaying a queue configuration information

Once printers have been established, you may wish to review their configuration. This section will describe how this can be accomplished using different interfaces.

Option 1: Using Web-based System Manager

By selecting All Print Queues, you can see all information about queues in the Web-based System Manager panel. In the example shown in Figure 40 on page 224, you notice there are two queues in this system and the name of the default queue is `testq`.
When you click a right mouse button in the right frame of previous panel, you will see the menus shown in Figure 41.

You can see the details about each queues by selecting Properties in this menu. You will see the panel shown in Figure 42 on page 225.
Actually, you can see this kind of properties information not only for queues, but also for print processors and local parallel printer. For instance, the panel in Figure 43 appears when you select Properties menu on the printer processor object.

Also, by clicking Overview and Tasks, you can look at the overall status of the queues. In the example shown in Figure 44 on page 226, you notice that two queues are configured.
Option 2: Using SMIT

To displaying names of all configured queues, enter the following command:

```
# smitty lsallq
```

This SMIT command lists the names of all configured queues, as shown in the following screen:

```
COMMAND STATUS

Command: OK        stdout: yes        stderr: no

Before command completion, additional instructions may appear below.

# PRINT QUEUE  PRINTER  DESCRIPTION
4312pclq     lp0      ibm4312 (PCL 5E Emulation)
4312psq      lp0      ibm4312 (PostScript)

F1=Help       F2=Refresh   F3=Cancel       F6=Command
F8=Image      F9=Shell      F10=Exit        /=Find
n=Find Next
```

Option 3: Using the command line

The `lsallq` command

The `lsallq` command lists the names of all configured queues contained in the `/etc/qconfig` file. By specifying the `-c` flag, this listing is displayed in colon format.

Examples:
To list all of the queue names in the /etc/qconfig file, enter the following command:

```
# lsallq
4312pclq
4312psq
```

To list all configured queues in colon format, enter the following command:

```
# lsallq -c
4312pclq
4312pclq: lp0
4312psq
4312psq: lp0
```

The first line shows just the queue. In the second line of each queue, the name before the colon is the queue name and the one after the colon is the queue device name.

The lsque Command

The `lsque` command lists details of the queue and queue device configurations that are stored in the /etc/qconfig file.

Examples:

- The `-q` flag specifies the name of the queue stanza. To display a queue stanza (lp), enter the following command:

  ```
  # lsque -q 4312pclq
  4312pclq:
  device =lp0
  ```

- When the `-c` flag is used, the data is displayed in colon format. To display queue stanza lp in colon format, enter the following command:

  ```
  # lsque -c -q 4312pclq
  #name:device:discipline:up:acctfile:host:s_statfilter:l_statfilter:rq
  4312pclq:lp0:fcfs:TRUE:FALSE:::
  ```

This method of displaying queue data is useful because the colons may be used as field separators when using the output from this command in a shell script.

The lsquedev command

The `lsquedev` command displays the name of the queue stanza and associated attributes.

Examples:
To display the lp0 device stanza on the 4019ascii queue, enter the following command:

```
# lsqcedev -q4019ascii -dlp0
lp0:
  file =/dev/lp0
  header =never
  trailer =never
  access =both
  backend =/usr/lib/lpd/piobe
```

- The `-d` flag specifies the name of the device stanza that is displayed (lp0).
- The `-q` flag specifies the name of the queue containing the device stanza that is displayed (4019ascii).

To display the lp0 device stanza on the 4019ascii queue in colon format, enter the following command:

```
# lsqcedev -c -q 4019ascii -d lp0
#name:file:access:feed:header:trailer:backend:align
lp0:/dev/lp0:both:never:never:never:/usr/lib/lpd/piobe:FALSE
```

When the `-c` flag is used, the data is displayed in colon format. This format is useful if you wish to use the output of this command in shell scripts of SMIT discover strings.

To list the names of all the configured queue devices within the 4019ascii queue in the /etc/qconfig file, enter the following command:

```
# lsallqdev -q 4019ascii
lp0
```

The `-q` flag specifies the queue name (4019ascii).

To list the names of all of the configured queue device within the 4019ascii queue in the /etc/qconfig file in colon format, enter the following command:

```
# lsallqdev -q 4019ascii -c
4019ascii:lp0
```

The `-c` flag causes colon format output for use by SMIT.

5.3.4 Deleting a queue

You may need to remove a print queue from time to time. To delete a queue or queue device, you must have root authority. You can do this by using one of the interfaces (Web-based System Manager, SMIT, or the command line).

Using Web-based System Manager or SMIT is a lot easier than using the command line, because you only deal with the print queue itself. If the print
queue has any device associated with it, Web-based System Manager or SMIT automatically removes them for you. If you have many print queues associated with the same device, and you want to remove all the queues, Web-based System Manager or SMIT removes for you all the queues without removing the queue device, except for the last print queue, when Web-based System Manager or SMIT removes the queue and its associated device.

Option 1: Using Web-based System Manager

To delete a queue, select a queue which you want to remove. By pressing the right mouse button, you can see the menus for the queue, as shown in Figure 41 on page 224. Select **Remove...** to see the cancel confirmation panel shown in Figure 45.

![Figure 45. Printer queue cancel confirmation](image)

If this is the last queue of the local printer, the default option is to leave this configuration information in the device database. If you want to delete it completely, change this option to the second one. You can delete a queue simply by selecting the **Yes** button. After that, you will not see this queue in the main Web-based System Manager panel.

If you select a queue, all copies of devices for that printer are removed. If you select a print processor or destination, only that print processor or destination is removed. If the selected queue has only one printer, the queue and its printer are removed. If the queue has more than one printer, only the selected printer is removed.

Option 2: Using SMIT

To delete a queue, enter the following command in the command prompt:

smitty rmpq
The Remove a Print Queue screen will be displayed. Press the F4 key to select a queue you want to remove. The following screen will be displayed:

When you select a queue you want to remove, the confirmation screen will be displayed. You can simply press Enter to finish the deletion process.

Press Enter to confirm the deletion of this queue. If you succeed, the command on the next screen will show OK status.

Option 3: Using the command line

When removing the queue using the command line, you should first make sure that there are no jobs queued. If there are jobs, cancel them before removing the queues. If there is a virtual printer, it should be removed first using the `rmvirprt` command. Check to see that the queues still exist, and then remove the queue device with the `rmquedev` command, and then the queue with the `rmque` command. If there are multiple queue devices on the queue, all queue devices must be deleted using the `rmquedev` command before using the `rmque` command.

To remove print queue lp0, enter the following command:

```bash
# cancel 4312psq
# rmvirprt -d lp0 -q 4312psq
# rmquedev -q 4312psq -d lp0
# rmque -q 4312psq
```
If you remove the queue device and do not remove the queue, a dummy queue device will be created and the qdaemon will have problems processing the queue.

5.3.5 Enabling and disabling a queue

When a printer is not functioning properly, you may wish to take that printer offline. The terminology for this varies. Some documents talk about starting and stopping a queue, while others use the terms enabling and disabling the queue. You have also a choice for the interface to start or stop a queue.

Option 1: Using Web-based System Manager

To start or stop a queue, select a queue whose status you want to change. First, check to see if the queue is active. By pressing the right mouse button, you can see the menus for the queue, as shown in Figure 41 on page 224. Select **Stop** or press the small red rectangle icon (the eleventh icon) on the toolbar. This queue will be stopped and you notice the small red circle stop sign in the front of queue name, as shown in Figure 46.

![Figure 46. Stopping queues](image)

The stop icon on the toolbar is disabled, and the start icon (the tenth icon) on the toolbar is enabled. You will also see the Start menu instead of the Stop menu. To restart this queue, select the queue and select the Start menu by clicking a right mouse button or clicking the start icon.

To start or stop all queues at the same time, select the **Start All Queues** or **Stop All Queues** menu.
Option 2: Using SMIT

To disable a queue, enter the following command:

```
# smitty qstop
```

Press the F4 key to select a queue to stop. The following screen will be displayed:

![Stop a Print Queue](image)

By selecting a queue, this queue will be stopped. To start a queue, enter the following command:

```
# smitty qstart
```

You will see the similar screen and can start again by selecting a queue.

Option 3: Using the command line

The `qadm` command brings printers, queues, and the spooling system up or down (makes printers available or unavailable) and cancels jobs. The `qadm` command can only affect local print jobs. You must also have root user authority, or belong to either the system group or printq group, to run this command.

Examples:

- To bring down 4312pclq queue, enter one of the following commands:

  ```
  # qadm -D 4312pclq
  # disable 4312pclq
  ```
When you check queue status by using the `qchk` or `lpstat` command, the status of this queue will be **DOWN**.

- To bring up 4312pclq queue, enter one of the following commands:
  ```
  # qadm -U 4312pclq
  # enable 4312pclq
  ```

When you check queue status by using `qchk` or `lpstat` command, the status of this queue will be **READY**.

The other options of the `qadm` command are `-G` and `-K`. The G option gracefully brings down the queuing system. This flag temporarily interrupts the daemon process after all currently running jobs on all queues are finished. Use of this flag is the only way to bring the system down without causing such problems as jobs hanging up in the queue. The K option brings down the printer you name, ending all current jobs immediately. Jobs remain in the queue and run again when the printer is brought back up.

5.3.6 Cancelling print jobs

To cancel all of your jobs on printer lp0 (or all jobs on printer lp0, if you have root user authority), enter one of the following commands:

```
# qadm -X 4312pclq
# cancel 4312pclq
# qcan -X 4312pclq
```

The -X flag cancels the printing of the user’s jobs on the specified queue (4312pclq). If you have root user privileges, all jobs on that queue are deleted.

You can also cancel individual jobs by using job id. Use the following commands:

```
# qcan -x 435
# cancel 435
```

5.4 Setting up printer device defaults

The printer device attributes can be changed using one of the standard administrative interfaces. This information is common for both the PowerPC print subsystem and the System V print subsystem. This section describes changing things like the serial baud rate or the parallel busy timeout settings.
5.4.1 Displaying the printer device setting

You have a choice for the interface to display settings.

Option 1: Using Web-based System Manager.

To display the settings, select the **lp0** (local parallel printer) object and click the right mouse button, as shown in Figure 40 on page 224. You will see similar menus in Figure 42 on page 225. Select **Properties** menu. The panel in Figure 47 will be displayed.

![Figure 47. Properties panel for local parallel printer lp0](image)

You may review or modify these properties.

Option 2: Using SMIT

To display or change printer device settings via a SMIT dialogue, enter the following command:

```
# smitty chgprt
```

This SMIT command allows you to display or modify properties of a printer device. In the first screen, you will be presented with a list of printers to be displayed or modified.
Select a printer and press Enter. In this example, we have selected `lp0`. The following screen will be displayed. Now, you may review or modify the settings using the standard facilities of SMIT.

Option 3: Using the command line

Displaying printer device settings with the `splp` command

To display the current printer settings for the `/dev/lp0` printer (the default), enter the `splp` command:
Displaying printer device settings with the lsattr command

The `lsattr` command displays information about the attributes of a given device or kind of device. The `lsattr` command is a general AIX command for displaying information about devices. We will only review this command relative to printers.

Examples:

- To list the current attribute values for the lp0 device, enter the following command:

  ```
  # lsattr -l lp0 -E
  ptop       600       Printer TIME OUT period                    True
  line       60        Number of LINES per page                   True
  col        80        Number of COLUMNS per page                 True
  ind        0         Number of columns to INDENT               True
  plot       no        Send all characters to printer UNMODIFIED True
  backspace  yes       Send CARRIAGE RETURNS                    True
  cr         yes       Send CARRIAGE RETURNS                    True
  form       yes       Send FORM FEEDS                           True
  lf         yes       Send LINE FEEDS                           True
  addcr      yes       Add CARRIAGE RETURNS to LINE FEEDS        True
  case       no        Convert lowercase to UPPERCASE           True
  tabs       yes       EXPAND TABS on eight position boundaries True
  wrap       no        WRAP CHARACTERS beyond the specified width True
  mode       no        Return on ERROR                           True
  interface  standard  Type of PARALLEL INTERFACE               True
  autoconfig available STATE to be configured at boot time     True
  busy_delay 0        Microseconds to delay between characters  True
  ```

- To list the default attribute values for the lp0 device, enter the following command:

  ```
  # splp
  device = /dev/lp0 (+ yes 1 no)
  CURRENT FORMATTING PARAMETERS (ignored by qprt, lpr, and lp commands)
  -p + pass-through?       -c + send carriage returns?
  -l 60 page length (lines) -n + send line feeds?
  -w 80 page width (columns) -r + carriage rtn after line feed?
  -i 0 indentation (columns) -t ! suppress tab expansion?
  -W ! wrap long lines?     -b + send backspaces?
  -C ! convert to upper case? -f + send form feeds?
  CURRENT ERROR PROCESSING PARAMETERS
  -T 600 timeout value (seconds) -e ! return on error?
  ```

236 Printing for Fun and Profit under AIX 5L
To list the default attribute values for a IBM 4312 parallel printer, enter the following command:

```
# lsattr -c printer -s parallel -t ibm4312 -D
```

```
ptop    600   Printer TIME OUT period   True
line    60    Number of LINES per page  True
col     80    Number of COLUMNS per page True
ind     0     Number of columns to INDENT True
plot    no    Send all characters to printer UNMODIFIED True
backspace yes   Send BACKSPACES          True
cr      yes   Send CARRIAGE RETURNS      True
form    yes   Send FORM FEEDS            True
lf      yes   Send LINE FEEDS            True
addcr   yes   Add CARRIAGE RETURNS to LINE FEEDS True
case    no    Convert lowercase to UPPERCASE True
tabs    yes   EXPAND TABS on eight position boundaries True
wrap    no    WRAP CHARACTERS beyond the specified width True
mode    no    Return on ERROR            True
interface standard   Type of PARALLEL INTERFACE True
autocfg available STATE to be configured at boot time True
busy_delay 0   Microseconds to delay between characters True
```

To list the possible values of the ptop attribute for a IBM 4312 parallel printer, enter the following command:

```
# lsattr -c printer -s parallel -t ibm4312 -a ptop -R
1...1000 (+1)
```

```
ptop    600   Printer TIME OUT period   True
line    60    Number of LINES per page  True
col     80    Number of COLUMNS per page True
ind     0     Number of columns to INDENT True
plot    no    Send all characters to printer UNMODIFIED True
backspace yes   Send BACKSPACES          True
cr      yes   Send CARRIAGE RETURNS      True
form    yes   Send FORM FEEDS            True
lf      yes   Send LINE FEEDS            True
addcr   yes   Add CARRIAGE RETURNS to LINE FEEDS True
case    no    Convert lowercase to UPPERCASE True
tabs    yes   EXPAND TABS on eight position boundaries True
wrap    no    WRAP CHARACTERS beyond the specified width True
mode    no    Return on ERROR            True
interface standard   Type of PARALLEL INTERFACE True
autocfg available STATE to be configured at boot time True
busy_delay 0   Microseconds to delay between characters True
```

5.4.2 Changing the printer device setting

To change printer device settings, you can use the Web-based System Manager, SMIT, or the command line. Printer device settings may be permanently modified by using the Web-based System Manager or SMIT. But
the steps are the same when displaying printer settings when you use the
Web-based System Manager or SMIT. To modify printer settings using the
Web-based System Manager, use the process described in “Option 1: Using
Web-based System Manager.” on page 234. To modify printer settings using
SMIT, use the process described in “Option 2: Using SMIT” on page 234. We
can consider these two ways as permanent changes. In this section, we will
describe the third option, which is using the command line.

Option 3: Changing settings from the command line
Printer device settings can be temporarily changed by using the splp
command. This command modifies the settings for the printer device but
these changes are not permanent. To change the printer settings, enter the
following command:

```
# splp -l 66 -W+ -C+ lp0
# splp
```

device = /dev/lp0 (+ yes ! no)
CURRENT FORMATTING PARAMETERS (ignored by qprt, lpr, and lp commands)
Note: -p + causes the other formatting parameters to be ignored.
-p ! pass-through? -c + send carriage returns?
-l 66 page length (lines) -n + send line feeds?
-w 80 page width (columns) -r + carriage rtn after line feed?
-i 0 indentation (columns) -t ! suppress tab expansion?
-W + wrap long lines? -b + send backspaces?
-C + convert to upper case? -f + send form feeds?
CURRENT ERROR PROCESSING PARAMETERS
-T 600 timeout value (seconds) -e ! return on error?

In this example, the printer settings were modified and then displayed.
(Compare the output of the splp command in “Option 3: Using the command
line” on page 235). The changes that the splp command makes remain in
effect until the next time you restart the system or rerun the splp command.
The splp command can be run from the /etc/inittab command file to configure
your printer each time you start up the system. To make permanent changes
use the Web-based System Manager, SMIT, or the chdev command.

5.5 Start and stopping the printer services

For local printing to work, the qdaemon must be active. To receive jobs from
remote clients, the lpd server must be active. This section describes starting
and stopping these main print services.
5.5.1 The qdaemon

The qdaemon is the main printer daemon and must be running for both local and remote printing when using the PowerPC print subsystem.

Option 1: Using Web-based System Manager
To select the qdaemon, click Subsystems->All subsystems in the left frame of the Web-based System Manager panel, as shown in Figure 48. Click the tree icon in the first column of spooler in the right frame of the panel to expand detail objects. You will see Stop... menus by clicking a right mouse button if the qdaemon is active. Or you can use the small red rectangle stop icon (the eight icon) in the tool bar (after highlighting the qdaemon object) to stop the qdaemon. If the qdaemon is inactive, you will see the Start... menu. Or you can use the start icon (the seventh icon) in the tool bar (after highlighting the qdaemon object) to start the qdaemon.

Figure 48. The qdaemon subsystem

5.5.1.1 Option 2: Using SMIT
To start, stop, or display any subsystems, enter the following command:

```
# smitty subsys
```

The following screen will be displayed:
In this screen, you can see several menus to start, stop, or query a subsystem. To start qdaemon, select the **Start a Subsystem** menu.

In the following screen, press the F4 key to find the qdaemon subsystem:
You can see the qdaemon on the top of the list. Select qdaemon and then press Enter to start the qdaemon in the next screen. You can use similar steps to stop or query any subsystems.

Option 3: Using the command line

You can use startsrc, stopsrc, and lssrc commands to start, stop, and query any subsystems (respectively). You can consider this as a temporary change. As a prerequisite, the system resource controller process (srcmstr) should be running in your system. Usually, you can find this entry in the /etc/inittab file. In this example, we used the lssrc command to verify that the status of qdaemon is active. Next, we used the stopsrc command to inactive the qdaemon. And then we started the qdaemon by using startsrc command again.
5.5.2 The lpd daemon

The lpd daemon acts as the print server to receive network print jobs from clients. It can be thought of as the remote printing service.

Option 1: Using Web-based System Manager

You can start the lpd daemon by selecting the Start Remote Print Server (lpd) menu and you can stop the lpd daemon by selecting the Stop Remote Print Server (lpd) menu in, as shown in Figure 23 on page 208 or in Figure 41 on page 224.

Option 2: Using SMIT

To show the status or start or stop the lpd daemon, enter the following command:

```
# smitty server
```

The following screen will be displayed. By selecting the appropriate one of the last three menus, you can start or stop the lpd daemon or display the status of the lpd daemon.
Option 3: Using the command line

By using the `startsrc` or `stopsrc` commands, you can temporary change the status of the lpd daemon, as you can see in the following screen:

```
# lssrc -s lpd
Subsystem         Group            PID     Status
 lpd              spooler                  inoperative
# startsrc -s lpd
0513-059 The lpd Subsystem has been started. Subsystem PID is 9298.
# lssrc -s lpd
Subsystem         Group            PID     Status
 lpd              spooler          9298    active
# stopsrc -s lpd
0513-044 The lpd Subsystem was requested to stop.
# lssrc -s lpd
Subsystem         Group            PID     Status
 lpd              spooler                  inoperative
```

5.6 Printing files in the PowerPC print subsystem

Now that we have a printer configured, we will probably want to use it. This section reviews the several ways available to request a job be printed and then manage the progress of that job through the print spooling subsystem. It is important that a systems administrator develops a good understanding of these commands, as users will often seek assistance on how to meet their more complex printing requirements or to get that special rush job printed.

This section includes the following topics:

- Sending print requests to a print queue
- Listing print requests within a print queue
- Canceling jobs in a print queue
• Prioritizing jobs in a print queue
• Holding and releasing jobs
• Moving jobs between queues

If you are already familiar with System V commands such as `lp`, `cancel`, `lpstat`, and so on, or BSD commands such as `lpr`, `lpq`, or `lprm`, you can continue to use these commands for printing and managing print queues, although the flag syntax may be slightly different.

Appendix A, “Print tasks and commands” on page 467 summarizes and reviews which BSD and System V printing commands are supported by AIX. This section focuses on the AIX facilities that are provided to address these requirements. These commands offer the greatest available function for making print requests and managing the print queues.

5.6.1 Submitting a printing job

The first step in the process of printing is to place a print job or request into the print spooling subsystem. AIX features a number of commands and facilities to perform this task. There is one prerequisite to initiating a print request, though: before you can print a file, you must have read access to it.

Option 1: Using Web-based System Manager

Web-based System Manager will not normally be used for printing files.

Option 2: Using SMIT

SMIT also would only be used when the user wants to set specific settings and does not know the `qprt` command.

To start a printing job, enter the following command:

```
# smitty qprt
```

To print the desired file, fill in, with the print queue name, where you want to print your file or press the F4 key to see a list of available queues. Press Enter after selecting the queue. If no printer is specified, the default is used. In our example, the following screen is displayed after pressing the F4 key:
Select to which queue you will send your print request. In our example, we have chosen the 4312pclq queue. The following screen is displayed:

Select a print file type that you want to start. In the following screen, you can specify the details for your job to start, including:

Chapter 5. PowerPC print subsystem basics 245
• Text print options
• Job processing options
• Text formatting options
• Paper/page options
• Header/trailer page options
• Messages/diagnostics

Start a Print Job

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Print queue name 4312pclq
* Name of FILE to print [/samples]

------------------- Text Print Options -------------------
PITCH (characters per inch) [10] +#
TYPE STYLE (name) courier +
Print QUALITY 600

---------- Job Processing Options ----------
Number of COPIES [1] +#
Place job in 'HELD' state when queued? no +
PAGE NUMBER where printing should begin [1] +#
COPY FILE and print from copy? no +

Fill in the Name of FILE to print field with the name of the file you want to print, make all necessary modifications, and press Enter to print your file.

Option 3: Using the command line to print

The `qprt` command creates and queues a print job. The `qprt` command was designed to work with the virtual printer subsystem, and there are `qprt` print flags for most print customization. The `qprt` command is described in more detail in *AIX 5L Commands References*.

The `qprt` command has a large variety of parameters that can be used. Some of the most useful are shown here as examples:

• Use `qprt -p` to select the printer pitch. Normally values of 10 and 12 will be accepted, but sometimes also a value of 17:

  ```
  $ qprt -p12 -P queue-name /tmp/testfile
  ```
• Use the `qprt -z+` flag to print landscape, as shown here.

```
$qprt -z+ -P lazyboy /tmp/testfile
```

• Use the `qprt -Y+` flag to print duplex, as shown here:

```
$qprt -Y+ -P duplo /tmp/testfile
```

• To indent the page on the left margin, use the `qprt -i` command.

```
$qprt -i 5 -P harry /tmp/testfile
```

• To print formatted files in passthrough mode, use the `qprt -dp` flag. Note in this example that we can still specify landscape orientation:

```
$qprt -dp -z+ -P zaphod /tmp/testfile
```

• To print text files to a PostScript queue, use the `qprt -da` flag. This can be combined with the `-p` flag to designate the character size the virtual printer uses `enscript` to convert the text to postscript:

```
$qprt -da -p 14 -P ps /tmp/testfile
```

Note that the flags can be combined. To print landscape, 17 characters per inch with a lineprinter font, try:

```
$qprt -z+ -p17 -slineprinter -P funjet /tmp/testfile
```

In addition to `qprt`, the `enq`, `lp` and `lpr` commands can be used from the command line. Printing from CDE is done through a command called `dtprint`. When using `lp` or `enq`, the `qprt` flags can be set with `-o` options. For example, to set the pitch to 12 with `lp` and `enq`, use:

```
$ lp -o -p12 -d pcl /tmp/testfile
$ enq -o -p17 -P pcl /tmp/testfile
```

The `lpr` command does not use the `-o` flag, and so cannot be used for most virtual printer settings. By default, `lpr` spools all files and overrides the queue header page setting to always generate a header, unless you use the `-h` flag to turn off headers, as shown here:

```
$lpr -h -P pcl /tmp/bens.doc
```

5.6.2 Checking status

Once a print job has been submitted to the queueing system you may wish to see the status of the job on the print spooling subsystem. You can do this through Web-based System Manager, SMIT, or the command line. This section describes how to use these interfaces to list queue information. In all ways, you can review the contents of one or more print queues to check the current status of the queues and the jobs you have submitted. They also show the status of printers and queues.
Option 1: Using Web-based System Manager

You can check the status of the queues in the status column of the right frame in Web-based System Manager panel, as you can see in Figure 40 on page 224.

To check the printing jobs related to the queues, double click a queue you want or select the **Open** menu, as shown in Figure 41 on page 224. The panel in Figure 49 will be displayed:

![Figure 49. Checking the print jobs in the queue](image)

Option 2: Using SMIT

To only check the status of the queues, enter the following command:

```
# smitty qstatus
```

The following screen will be displayed:

![Show Status of Print Queues](image)
If you want to see the status of remote server queues, select \texttt{yes} and press Enter. The following screen is the output for the status of the queues:

\begin{verbatim}
COMMAND STATUS
Command: OK std:out: yes stderr: no

Before command completion, additional instructions may appear below.

Queue Dev Status
-------- ----- -----------
4312pcl lp0 DEV_BUSY
4312psq lp0 READY

F1=Help F2=Refresh F3=Cancel F6=Command
F8=Image F9=Shell F10=Exit /=Find
n=Find Next

Queue Dev Status
------- ----- ---------
4312pcl lp0 DEV_BUSY
4312psq lp0 READY
\end{verbatim}

If you want to see the status of the print jobs in a specific queue, enter the following command:

\texttt{# smitty qchk}

The following screen will be displayed. In this screen, you can choose to list information about all print jobs sent to a specific queue by filling the \texttt{PRINT QUEUE name} (* for all queues) field with the queue name.

\begin{verbatim}
Show the Status of Print Jobs
Type or select values in entry fields.
Press Enter \texttt{AFTER} making all desired changes.

[Entry Fields]
* PRINT QUEUE name (* for all queues) [4312pclq] +
Print JOB NUMBER [] *#
Print JOB OWNER []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
\end{verbatim}

Select a queue by pressing the F4 key to see the list of the queues. You can specify a print job number or a print job owner name. If you want to list information about a specific job number in the specified queue, fill the job number in the Print JOB NUMBER field with the correct job number. If you want to list information about a specific print job owner in the specified queue, fill
the Print JOB OWNER field with the print job owner's userid. To list information about all print requests on all queues, fill the PRINT QUEUE name (* for all queues) field with * and leave other fields blank.

Press Enter to see the results. In this example, the following screen shows the status of the queue and jobs in the 4312pclq queue:

<table>
<thead>
<tr>
<th>Queue</th>
<th>Dev</th>
<th>Status</th>
<th>Job Files</th>
<th>User</th>
<th>PP %</th>
<th>Blks</th>
<th>Cp Rnk</th>
</tr>
</thead>
<tbody>
<tr>
<td>4312pcl lp0</td>
<td>DEV_WAIT</td>
<td>QUEUED</td>
<td>7 /etc/motd</td>
<td>root</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUEUED</td>
<td>8 /etc/qconfig</td>
<td>root</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUEUED</td>
<td>9 /.profile</td>
<td>root</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QUEUED</td>
<td>10 /.kshrc</td>
<td>root</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Option 3: Using the command line

The qchk command displays the current status information regarding specified print jobs, print queues, or users. Use the appropriate flag followed by the requested name or number to indicate specific status information. This command report on the status of the queues is shown in the following screen:

```
# qchk help
usage: qchk [-ALqW] [-PQueueName] [-#JobNumber]
             [-uUserName] [-wDelaySeconds]
Shows the status of a queue and lists all queue devices.
```

```
# qchk -A
Queue Dev Status Job Files User PP % Blks Cp Rnk
------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---
4312pcl lp0 RUNNING 7 /bigfile1 root 9 1 1
    QUEUED 8 /etc/qconfig root 2 1 1
    QUEUED 9 /.profile root 1 1 3
    QUEUED 10 /.kshrc root 1 1 4
4312psq lp0 RUNNING 11 /bigfile2 root 9 1 1
    QUEUED 12 /etc/environment root 2 1 2
```

```
# qchk -P 4312psq
Queue Dev Status Job Files User PP % Blks Cp Rnk
------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---
4312psq lp0 RUNNING 11 /bigfile2 root 9 1 1
    QUEUED 12 /etc/environment root 2 1 2
```
The `qchk` command with no flags specifies the default print queue. Flags used in this example are explained as follows:

- The `-A` flag specifies all queues.
- The `-L` flag specifies long form mode.
- The `-w` delay flag specifies that print status will be displayed, until all print jobs are done. The status will be displayed by updating the screen every five seconds (delay seconds).

To display the status for queue 4312psq, we have used the `-P` flag, which specifies the queue (4312psq). To display the status for job number 12, enter the following command:

```
# qchk -#12
```

Table 14 illustrates the key attributes reported via the queue status commands and what they refer to.

Table 14. Attributes of queue status

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue</td>
<td>The queue name used in the <code>qconfig</code> file.</td>
</tr>
<tr>
<td>Dev</td>
<td>The queue device name used in the <code>qconfig</code> file.</td>
</tr>
<tr>
<td>Status</td>
<td>The current status of the job.</td>
</tr>
<tr>
<td>Job</td>
<td>The job number of this print job, which is used by many of the print spooling subsystem control commands, such as <code>qcan</code>.</td>
</tr>
<tr>
<td>Files</td>
<td>The name of the files being printed.</td>
</tr>
<tr>
<td>User</td>
<td>The user ID of the user that owns the job.</td>
</tr>
<tr>
<td>PP</td>
<td>Pages in the requested print job.</td>
</tr>
<tr>
<td>%</td>
<td>Percentage of the job completed so far.</td>
</tr>
<tr>
<td>Blks</td>
<td>The number of blocks the print job has been broken into.</td>
</tr>
<tr>
<td>Cp</td>
<td>The number of copies of the requested print job that will be printed.</td>
</tr>
<tr>
<td>Rnk</td>
<td>The job’s rank in the print queue; the job ranked 1 should be printing.</td>
</tr>
</tbody>
</table>

As you can see in the previous screen, the `qchk` command that queries the print queue status shows the current state of printers and queues that are
defined in the /etc/qconfig file. Table 15 describes entries which may be displayed in the Status column.

Table 15. Print queue status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY</td>
<td>Indicates that the printer is up and ready to accept jobs.</td>
</tr>
<tr>
<td>DEV_WAIT</td>
<td>Indicates that either the printer is not online, out of paper, has a paper jam, or any similar problem which will prevent the job from printing. Normally, the problem that causes this state has also caused a message to be sent to the job owner or the operator.</td>
</tr>
<tr>
<td>RUNNING</td>
<td>Indicates that a job is either enrolled to be printed, or is printing.</td>
</tr>
<tr>
<td>HELD</td>
<td>Indicates that the job is held and will not be put on the queue until it is released using the qhld or enq commands.</td>
</tr>
<tr>
<td>DOWN</td>
<td>Indicates that the printer is not online; it probably has been taken offline by the operator for maintenance.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>Indicates that the status command cannot determine the status of the printer. This state is often an indicator of problems with printers or the print spooling subsystem.</td>
</tr>
<tr>
<td>OPR_WAIT</td>
<td>Indicates that the job is suspended, waiting on an operator response to a message.</td>
</tr>
</tbody>
</table>

The `enq -A` and `lpstat` commands can also be used. To display the queue status for a queue every five seconds, use the following command:

```
$ enq -P wsmq -A -w 2
```

To get the status of only local queues, so you do not have to wait for the remote queues to timeout on unavailable or slow servers, use the following command:

```
$ enq -P remque -isA
```

To display the queue with long queue names, use the following command:

```
$ lpstat -vnet17a -W
```

5.6.3 Cancelling a printing job

It is sometimes necessary to remove jobs from the print queue. You may find this to be the case when an extremely large file has been sent to the queue in error, and the printer resource would be tied up unnecessarily. It is possible to continuously change the priority on the specific job, but a more effective way
to address this problem is to remove the job from the queue. This may be accomplished using the `cancel`, `lprm`, or `qcan` commands.

Option 1: Using Web-based System Manager
Select a print job which you want to cancel and then press **Cancel Job** button, as shown in Figure 49 on page 248. The panel in Figure 50 is the final confirmation panel. If you want to continue, press **OK** to delete.

![Figure 50. Cancel one print job](image)

You can delete all print jobs in one queue if you have permission. Select the **Cancel All Jobs...** menu by clicking the right mouse button, as you can see in Figure 41 on page 224. The panel in Figure 51 is the final confirmation panel. If you want to continue, press **OK** to delete.

![Figure 51. Cancel all print jobs in one queue](image)

You can delete all print jobs in all queues if you have permission. Select the **Cancel All Jobs...** menu, as shown in Figure 23 on page 208. The panel in Figure 52 on page 254 is the final confirmation panel. If you want to continue, press **OK** to delete.
Option 2: Using SMIT

To use SMIT to cancel print jobs, enter the following command:

```
# smitty qcan
```

The following screen will be displayed:

Press the F4 key to see all the print jobs, as shown in the following screen. Select a print job that you want to delete. Press Enter to delete this print job, as shown in the next screen.
Option 3: Using the command line

The `qcan` or `cancel` commands can cancel either a particular job number or all jobs in a print queue. In this example:

- The status of the queues was displayed.
- Job number 12 was canceled and then the cancellation was verified.
- All jobs for the print queue 4312psq were cancelled and then the cancellation was verified.

Notice that only the jobs for the print queue 4312pclq remain.

In the previous `qcan` command,

- The `-P` printer flag specifies which printer jobs should be cancelled.
- The `-X` flag cancels all jobs for the specified queue. If you have root user authority, all jobs on that queue are deleted. If you do not have root user authority, only those jobs submitted by you will be canceled. This flag is only valid for local print jobs.
To use the `cancel` command, you do not need a `-x` flag; simply enter the queue or job number as follows:

```
$ cancel 4312pcl
$ cancel 8
```

5.6.4 Prioritizing a printing job

Sometimes users may not wish to wait their turn to get their printouts. When this is the case, and there are several large jobs queued, you may wish to change the priority of a job.

Option 1: Using Web-based System Manager

To change print job priority using Web-based System Manager, select the print job whose priority you want to change. Notice that, in Figure 53 on page 257, each job has the same priority (15); however, the rank that they are to be printed in is displayed as 1 through 4.
Figure 53. Before changing print job priority

Press the **Prioritize** button. The panel in Figure 54 will be displayed.

![Prioritize Button](image)

Figure 54. Changing print job priority

In this example, we have changed the priority of job number 14 to 20. The default is 15. When you press **OK**, you can see the rank has been changed, as shown in Figure 55 on page 258. Notice that the new priority number is also displayed. The higher the priority, the higher the rank (1 being the highest, and is generally the job that is running or waiting for the device to become ready or a response from the operator).
Option 2: Using SMIT
To use SMIT to change job priority, enter the following command:

```bash
# smitty qpri
```

Press the F4 key to see all print jobs. The following screen will be displayed:
Select one print job whose priority you want to change. In the following screen, type the priority level that you want to change. Press Enter to run it.

Prioritize a Print Job

Type or select values in entry fields. Press Enter AFTER making all desired changes.

<table>
<thead>
<tr>
<th>[Entry Fields]</th>
<th>[Entry Fields]</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Print JOB NUMBER</td>
<td>14</td>
</tr>
<tr>
<td>* Priority LEVEL.</td>
<td>18</td>
</tr>
<tr>
<td>Enter a number between 0 and 20. A root user, or a user in the printq group, may enter a number between 0 and 30. (Larger numbers indicate higher priorities.)</td>
<td></td>
</tr>
</tbody>
</table>

Option 3: Using the command line

The `qpri` command prioritizes a job in a print queue by specifying the job number and giving it a priority number. The `qpri` command works only on local print jobs. Remote print jobs are not supported. After a job has been sent to a remote host, that host can change the job's priority, but the sender can not. You must have root user authority, or belong to either the system group or printq group to run this command.

```
# qchk -A
Queue   Dev   Status    Job Files              User         PP %   Blks  Cp Rnk
------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---
4312pcl lp0   DEV_WAIT
  QUEUED 7 /etc/motd  root                   1   1   1
  QUEUED 8 /etc/qconfig  root                  2   1   2
  QUEUED 13 /etc/environment  root                  2   1   3
  QUEUED 14 /etc/hosts   root                   2   1   4
# qpri -#14 -a 20
# qchk -A
```

```
Queue   Dev   Status    Job Files              User         PP %   Blks  Cp Rnk
------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---
4312psq lp0   DEV_WAIT
  QUEUED 14 /etc/hosts  root                   2   1   1
  QUEUED 7 /etc/motd   root                   1   1   2
  QUEUED 8 /etc/qconfig  root                  2   1   3
  QUEUED 13 /etc/environment  root                  2   1   4
```

Chapter 5. PowerPC print subsystem basics 259
In this previous example, we changed the priority of job number 14 and then verified that the priority and the rank had been changed.

In the previous `qpri` command:
- The `-#` flag specifies the Job Number (14) whose priority should be changed.
- The `-a` flag specifies the Priority Number to be assigned (20).

5.6.5 Holding and releasing a print job

Sometimes it is necessary to hold a print job rather than canceling it or keep changing its priority.

Option 1: Using Web-based System Manager

Select a print job that you want to hold and select the **Hold** menu, shown in Figure 53 on page 257. In this example, we have held job number 14, as shown in Figure 56.

![Figure 56. Holding a print job](image)

When you want to release this job, select the **Release** menu.

Option 2: Using SMIT

To use SMIT to hold or release a print job, enter the following command:

```
# smitty qhld
```

The following screen will be displayed:
Select hold or release by pressing the F4 key. Type or select a print job number or print queue number or print job owner’s name. If you select a print queue name, all print jobs in this queue will be held or released. Press Enter to run it.

Option 3: Using the command line
The \texttt{qhld} command holds and releases a spooled print job that is not being printed. The \texttt{qhld} command works on local queues only (remote queues are not supported). You must have root authority, be a member of the printq group or be the print job owner to use this command. You can hold/release a spooled job through SMIT or the command line.
In the previous command, the `-#` flag specifies the job number (14) to be put in HELD state. To release job number 14, we have used the `-r` flag. Notice that releasing job number 14 has changed its state from HELD to QUEUED.

In the previous command:
- The `-r` flag specifies the job to be released.
- The `-#` flag specifies the job number to be released.

5.6.6 Moving a printing job to another queue

Imagine a situation when you have two queues that have the same printing capabilities. The first queue has many print jobs enqueued; the second one is idle, without any print requests. In a situation like this, it would be nice to move some print jobs from the first queue to the second one.

Option 1: Using Web-based System Manager

To move a print job with Web-based System Manager, highlight a print job and select the **Move** menu, as shown in Figure 53 on page 257. The panel shown in Figure 57 on page 263 will be displayed:
Select the print queue that is your destination. Press OK. When you check both print queues, you will see the panels shown in Figure 58:

Option 2: Using SMIT
To use SMIT to move a print job, enter the following command:

```
# smitty qmov
```

In the next screen, press the F4 key to see the list for the destination queue. The following screen will be displayed:
Select your destination queue. In the following screen, type or select a print job number or print queue number or print job owner's name. If you select a print queue name, all print jobs in this queue will move your destination queue. Press Enter to run it:
Option 3: Using the command line

The `qmov` command moves jobs between queues by specifying the destination queue and:

- The job number
- The queue name containing all the jobs you want to move
- The user whose jobs you want to move

As you can see in the following example, we have four jobs in the 4312pclq queue. Since the last one is a PostScript file, let’s move this print job (job ID: 14) to the 4312psq queue:

```
# qchk -A
Queue   Dev   Status    Job Files              User         PP %   Blks  Cp Rnk
------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---
4312pcl lp0   DEV_WAIT
  QUEUED      7 /etc/motd          root                   1   1   1
  QUEUED      8 /etc/qconfig       root                   2   1   2
  QUEUED     13 /etc/environment   root                   2   1   3
  QUEUED     14 /chapter1.ps       root                   2   1   4
4312psq lp0   DEV_WAIT
# qmov -m 4312psq -#14
# qchk -A
Queue   Dev   Status    Job Files              User         PP %   Blks  Cp Rnk
------- ----- --------- --- ------------------ ---------- ---- -- ----- --- ---
4312pcl lp0   DEV_WAIT
  QUEUED      7 /etc/motd          root                   1   1   1
  QUEUED      8 /etc/qconfig       root                   2   1   2
  QUEUED     13 /etc/environment   root                   2   1   3
4312psq lp0   DEV_WAIT
  QUEUED     14 /chapter1.ps       root                   2   1   1
```

In the previous `qmov` command,
- The `-m` flag specifies the destination queue.
- The `-#` flag specifies the job number to be moved.

What about moving all print jobs from the 4312pclq queue to the 4312psq queue? You can use the following command to move all jobs (except a job in rank position 1 if the status is running) from the 4312pclq queue to the 4312psq queue:

```
# qmov -m 4312psq -P 4312pclq
```

In this command,
- The `-m` flag specifies the destination queue.
- The `-P` flag specifies the origin queue of the jobs to be moved.
5.7 Printer pooling

Print queues can be serviced by more than one printer through printer pooling. This means that a user can submit the job to a queue, and the print service will select the first available printer assigned to that queue. Multiple printers are assigned to a single queue through the use of multiple queue devices for the same queue.

The first virtual printer is created in the normal way, as described in Section 5.3.2, “Adding a locally attached printer queue” on page 207. To add additional queue devices, use the SMIT option Add an Additional Printer to an Existing Print Queue from the smitty spooler fastpath and follow the normal steps for adding a local printer. The last screen will allow you to enter the Name an of existing PRINT QUEUE. Add the queue name that you added in the first step.

When printer pooling is in affect, all jobs will print to the printer defined in the first queue device listed in /etc/qconfig, unless that printer is busy. If that printer is busy, then the job will be printed to the printer defined in the next queue device, assuming it is not busy. This is similar to printer classes in System V printing.
Chapter 6. PowerPC network printing

The topic of network printing encompasses both the configuration and administration of remote printers (or *outbound* printing) as well as the AIX system as print server (or *inbound* printing). In this chapter, we will discuss various print configurations that involve both these aspects of network printing as follows:

- Overview of network printing
- The LPD protocol
 - Adding a remote host-attached printer
 - AIX 5L as LPD server (inbound)
- JetDirect-attached printers
- IBM Network Printers
- Other types of network printing
 - Network Station-attached printers
 - Xstation-attached printers
 - PC printing
 - Print and terminal servers

6.1 Overview

Network or remote printing can use a number of different protocols, including Netware, AppleTalk, Banyan Vines, DECnet, TCP/IP socket applications, the Common Internet File System/Server Message Block (CIFS/SMB) protocol (used by Microsoft Windows, Samba, and IBM Fast Connect), the Internet Printing Protocol (IPP), and the most common in the TCP/IP environment: the Line Printer Daemon Protocol (LPD).

6.1.1 Outbound network printing overview

AIX PowerPC printing provides full support for the following types of network printing:

- LPR/LPD printing, defined by RFC 1179, that is used to print to and from remote UNIX servers, network printers, Network Stations, and many terminal and print servers (See Section 6.2, “The LPD protocol” on page 269, Section 6.5.1, “IBM Network Station attached printers” on page 312, and Section 6.5.4, “Print and terminal servers” on page 318 for more information.)
• Hewlett-Packard JetDirect printing, used to print to HP network printers that support JetDirect protocol, to HP JetDirect EX external printer server boxes, and by a few other print server manufacturers who support the JetDirect protocol (see Section 6.3, “Printing to HP JetDirect-attached printers” on page 294 for more information.)

• IBM Network Printer printing using the pioibmnpm printer backend with the pioibmnpf filter to send the data to the printer (see Section 6.4, “Adding an IBM Network Printer” on page 303 for more information.)

• Xstation printing used to print to IBM Xstations using the piolpx printer backend and sent by the /usr/lpp/x_st_mgr/bin/catlpx filter (see Section 6.5.2, “Printing via an IBM Xstation” on page 312 for more information.)

• Lexmark network printer support, available for downloading from Lexmark using a proprietary MarkNet protocol

To support the different outbound network protocols, AIX supplies a separate print backend for each protocol. Table 16 lists the protocols that are supported, and the backend program and network filter used for each. The term network filter describes a program that can accept a data file as standard input and transfer that file to a remote print host.

Table 16. PowerPC outbound network printer programs

<table>
<thead>
<tr>
<th>Network printing protocol</th>
<th>Backend program</th>
<th>Network filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote server - standard processing</td>
<td>rembak</td>
<td>rembak</td>
</tr>
<tr>
<td>Remote server - local filtering</td>
<td>piorlfb</td>
<td>rembak</td>
</tr>
<tr>
<td>JetDirect-attached</td>
<td>piojetd</td>
<td>piohpnpf</td>
</tr>
<tr>
<td>IBM Network Printer</td>
<td>pioibmnpm</td>
<td>pioibmnpf</td>
</tr>
<tr>
<td>IBM Network Color Printer</td>
<td>piocolor</td>
<td>pioibmnpf</td>
</tr>
<tr>
<td>Xstation</td>
<td>piolpx</td>
<td>catlpx</td>
</tr>
<tr>
<td>Lexmark - MarkNet-attached</td>
<td>lpabe</td>
<td>catlexbe</td>
</tr>
<tr>
<td>Lexmark - Markvision</td>
<td>lexbe</td>
<td>catlexbe</td>
</tr>
</tbody>
</table>

For example, if communicating with a remote server using standard processing, AIX uses the rembak program to send the print output to that system for printing.

In this chapter, we will focus on the protocols supported by the PowerPC print subsystem.
6.1.2 Inbound network printing overview

The AIX PowerPC print subsystem can act as an inbound server for jobs sent with the LPD protocol using the lpd daemon. Print jobs can be received from other UNIX hosts, and from PCs and mainframes that support an lpr transfer program.

When AIX is acting as the print server, it uses the LPD protocol. The lpd daemon monitors port 515 for incoming print requests. Each request is assigned to the appropriate local queue. The file to be printed is placed in the /var/spool/lpd directory, and the Job Description File (JDF) is placed in the /var/spool/lpd/qdir directory. The print request is then managed by the qdaemon and the appropriate backend (usually piobe) on the remote server.

By default, any TCP system can place a request on any host for printing services. Therefore, as a security feature, the lpd daemon accepts print requests only from remote hosts that are listed in its local /etc/hosts.lpd or /etc/hosts.equiv files.

For information on configuring AIX 5L for inbound printing using LPD, see Section 6.2.2, “AIX 5L as a LPD print server (inbound)” on page 283.

It is also possible to receive print jobs from PCs using SMB protocol and PC/NFS protocol. Each of these require separate programs (such as Samba, IBM Fast Connect, or PC/NFS) and will not be discussed in this chapter. For some utilities, see Chapter 9, “Printing tips and utilities” on page 435.

With SNA support installed, AIX can also accept jobs from IBM S/390 mainframes. This topic also will not be expanded upon in this document.

6.2 The LPD protocol

Printing using the LPD protocol is defined in Request for Comments (RFC) 1179 and can be viewed at http://www.ietf.org/rfc/rfc1179.txt. Although never officially adopted as a standard, RFC 1179 is used by most computer, terminal server, print server, and printer manufacturers for network printing.
However, individual manufacturers may adapt or extend the existing standard to provide additional functions.

The basic flow of remote printing using LPR/LPD is as follows:
1. Client sends a print request to server specifying a queue name.
2. Server acknowledges that the queue exists.
3. Client sends a packet that contains the temporary file name, and the number of bytes in the file.
4. Server acknowledges that it has room to accept the job.
5. Client sends the data file to be printed. \(^1\)
6. Client sends a packet that contains the control file name and the number of bytes in the control file.
7. Server acknowledges that it is ready to accept the control file.
8. Client sends the control file.
9. Server acknowledges that it has received the file.
10. Client or Server sends a FIN packet to end transmission.

AIX 5L and lpr/lpd printing
In AIX, lpr/lpd printing is supported by an lpr program named `rembak` and an lpd daemon, both of which fully support the protocol defined in RFC 1179. Figure 59 on page 271 gives a pictorial overview of lpr/lpd printing in AIX 5L.

\(^1\) Starting in AIX V4.3, AIX and other IBM client lpr products introduced the ability to send the control file first. This allows some servers to start printing the file before the entire file is received. This is based on an extension to the RFC 1179 protocol.
Figure 59. The basic flow of remote printing using LPR/LPD

When a print request for a remote printer is submitted, the request is queued on the local system in the same manner as a local print job. In this example, the job is first queued on myq. The qdaemon then invokes a backend program; the specific backend program that is used is determined by how the queue myq was configured.

- When you configure a remote queue with standard processing, AIX uses the rembak program to send the print output to the lpd daemon on the remote system. The lpd daemon receives the print job and gives it to enq, which then places it on the appropriate local queue (in this example, yourq). The print job is now processed just like a locally submitted job.

- When you configure a remote queue with local filtering, the piorlfb program is first called. It, in turn, invokes piobe to create a temporary file. That temporary file is then passed to rembak, then to the lpd daemon on the remote system, and processed just as described in the previous item.

In this section on LPD printing, we have included information on configuring both outbound printing (see Section 6.2.1.2, “Adding a remote host-attached printer” on page 275 for more information) and inbound printing (see Section 6.2.2, “AIX 5L as a LPD print server (inbound)” on page 283 for more information). Other sections in this chapter will discuss printing to JetDirect-attached devices, IBM Network Printers, and other network-attached printers.
6.2.1 Printing from AIX 5L to a remote host-attached printer

In this section, we describe how to configure a printer that is attached to a remote server. That is, we will configure AIX for outbound printing using the LPD protocol.

6.2.1.1 Planning

Before you add a remote printer, you should determine the values you plan to use for the following:

• Standard processing or local filtering

Starting in Version 4, AIX allows both local and remote formatting. Remote formatting (standard processing) is similar to AIX 3.2.5; local formatting (or filtering) allows a virtual printer to be set up on the local system to send the print data to the remote system with local headers and printer setup information attached. For additional information, see “Standard processing or local filtering” on page 273.

Note that Web-based System Manager does not prompt you to choose a value for this parameter; the remote printers it creates will use standard processing. If you want to use other than standard processing, you must use SMIT or the command line to define your remote printer.

• Name of printer on your system

Beginning in AIX Version 4.3.2, printer names can have a maximum of 20 characters including a-z, A-Z, 0-9, underscore (_), minus (-), plus (+) or the “at” sign (@). Note that you must specify the -W flag on either the lpstat, lpq, qchk, or enq commands in order to see the wide display with the long printer name; the default display will only show the first seven characters in a printer name.

• Hostname or dotted decimal IP address of the remote server

This must be a valid hostname defined by either a domain nameserver or in the /etc/hosts file.

• Name of the existing print queue on the remote server

• Type of print spooler on the remote server

This parameter often receives little attention, but it can cause problems if not set appropriately. See “Type of print spooler on the remote server” on page 274 for additional information.

• Backend timeout value (optional):

If the connection to the remote server is slow, the connection that rembak makes with the remote server may time out, causing the queue to go to a DOWN state. This occurs most often as a result of one of two scenarios:
- When printing to a network print device with a small buffer that is receiving jobs from multiple hosts
- When connecting to a server over a slow network, such as a Wide Area Network (WAN)

In these cases, set a timeout value of five minutes or more.

- Control file or data file first?

The value you need to set here will depend on what the remote spooling subsystem expects. The default, as originally defined in RFC 1179, is to send the data file first, then the control file, but you can configure an AIX remote queue to send the control file before the data file. This capability was added to allow print servers that support this function to start printing the file before the entire file is received. If you send the control file first and a failure occurs, \texttt{rembak} tries to send the data file(s) first as an alternative. If this attempt fails, the queue is taken down.

We will now discuss two of these items in greater detail.

\textbf{Standard processing or local filtering}

When adding remote queues at AIX 4 and above, you are given the option of three types of remote printing:

- Standard Processing
- Standard with NFS access to server print queue attributes
- Local filtering before sending to print server

The first option, Standard Processing, uses the \texttt{rembak} backend, and is the default for remote printing prior to AIX V4. No formatting takes place on the local client; all formatting occurs at the remote host.

The second option is rarely used. It consists of mounting the virtual printer colon files from the server on the AIX print client, and setting up a virtual printer using these files. There are two prerequisites for using this option:

- The Network File System (NFS) program must be installed and running.
- The remote server must be running AIX Version 4 and have exported the directory \texttt{/var/spool/lpd/pio/@local}. (See “Starting the \texttt{lpd} subsystem” on page 291 for information on how to configure this using SMIT.)

The third option uses a local virtual printer on the AIX client before sending data to the remote queue using the \texttt{rembak} program. The print backend for this configuration is a shell script called \texttt{/usr/lib/lpd/pio/etc/piorlfb}. This option...
should be used when you need to format the data locally before sending it to the remote server. You should consider the following implications:

- When creating a remote queue with local formatting, you must create a virtual printer. When using `smitty mkpq fastpath`, this will happen automatically.
- The `/tmp` directory must be large enough to contain all the files being spooled at a time.
- The `rembak` command cannot send data from stdin, so you must have an intermediate temporary file. This means that `rembak` cannot act as a filter in a virtual printer, so that backends like `piorlf` must create a formatted temporary file and pass this file to `rembak` to send to the remote lpd server.

Type of print spooler on the remote server

As mentioned in the introduction to this section, this parameter is generally not well understood and often incorrectly specified, leading to incorrect or even lost output between systems. This parameter is often referred to as the status filter, but that only partially describes its function. In fact, the value you set here will affect not only the status filtering, but also the print command flags that will be sent to the remote system.

A *status filter* does not actually filter the data itself, but rather filters the status received back from the remote lpd server by AIX and formats that data for local display, such as when the `lpstat` command is issued. There are both short and long format status filters; the status command you issue determines which version of the status filter will be used. For example, `lpstat -t` requests a long status; `lpstat` with no flags requests a short status.

Print command flags are parameters that you include on your print command (such as `qprt`) to specify formatting preferences. For example, you may want to specify a particular page length or paper drawer for use on the remote printer. Depending on the type of print spooler you specify, these commands may or may not be sent to the remote server.

Note

Web-based System Manager does not prompt you to choose one of these values when you use it to add a remote printer. It will create a remote printer that uses *Standard Processing* (`rembak`). If you want to use either of the other types, you must use SMIT or the command line to create your remote printer.
When you set the value for the type of print spooler on the remote server, you can select one value from the following four options:

- AIX V3 or V4 should obviously be used when the remote server is using the legacy AIX print subsystem, now known in AIX 5L as the PowerPC print subsystem.
- BSD would most commonly be used with printers attached to certain remote Sun systems or to terminal and print servers.
- System V would be used if the remote server is running AIX 5L with the System V print subsystem or is running HP-UX, for example. This is sometimes referred to as the ATT filter.
- AIX V2 (RT PC) is rarely seen anymore, but is included for backward compatibility with earlier releases of AIX.

If you are unsure of the type of LPD protocol the remote server follows, the BSD filters will give better status output than the System V filters in most circumstances.

Unfortunately, most people simply leave the filter at AIX for all queues. While this will usually have no effect on printer servers, except to have the status page formatting look a little odd, the results when using another UNIX print server or even an NT server may not be quite as harmless. This is especially true when you are trying to send formatting flags to the other side. Some flags that are not sent with BSD or System V (ATT) filters include:

- `qprt -l` for page length
- `qprt -p` for setting pitch
- `qprt -z` for setting landscape
- `qprt -u` for selecting paper drawer
- `qprt -Y` for duplex operation

6.2.1.2 Adding a remote host-attached printer

You can use the following interfaces to add a remote printer:

- Web-based System Manager (see “Option 1: Using Web-based System Manager” on page 276)
- SMIT (see “Option 2: Using SMIT” on page 280)
- Command line (see “Option 3: Using the command line” on page 281)
Option 1: Using Web-based System Manager

1. Start the Web-based System Manager either from the CDE Application Manager -> System_Admin -> Management Console, or from the command line using `wsm`. From the main Management Environment panel, open the Printers container, then the Overview and Tasks object. A panel similar to Figure 60 should appear.

![Figure 60. Overview and tasks panel for printers](image)

2. From this panel, there are two different ways you can add a printer:

 - From the task bar, you can select Printers -> New -> New Queue and Printer Wizard dialog.

 - From the Overview and Tasks, select the New queue and printer task.

Note

When printing to a remote server, the administrator of that remote server must have performed several tasks to enable remote printing. For information on configuring an AIX system as a print server, see Section 6.2.2.2, “Managing the LPD print server” on page 284.
When you select either of the two options above, you will see the panel shown in Figure 61.

Figure 61. Name of printer to add

3. In this example, we defined an IBM 3130 printer attached to a remote host named rs9220b; we named our printer aix3130 and clicked Next. The panel in Figure 62 was displayed:

Figure 62. Type of attachment

4. We selected remote, since the printer is attached to a remote RS/6000, and clicked Next. The panel in Figure 63 on page 278 is shown. Click Finish.
5. In the panel shown in Figure 63, we entered the hostname of the remote server, the name of the print queue that was already defined on that remote server, and the type of spooler used by the remote server; since the remote server was running AIX, we selected **AIX Version 3 or 4**. (See “Type of print spooler on the remote server” on page 274 for additional information.) We did not set a timeout value for `rembak` but let it default to 90 seconds. We chose not to send the control file before the data file. After entering all these values, we clicked on **Next**.

Note that Web-based System Manager did not ask us if we wanted to use standard processing, standard processing with NFS mounting, or local filtering; all remote printers defined using Web-based System Manager will use standard processing. (See “Standard processing or local filtering” on page 273.)

6. On the resulting panel, we verified the information was correct and clicked on **Next**. The printer was added successfully, and the following panel was displayed:
When we selected **Finish**, we were returned to the Overview and Tasks menu (shown in Figure 65), where the Status area showed that we had one printer defined, and that printer was designated as the default. In the PowerPC print subsystem, the first printer defined (which is listed first in the `/etc/qconfig` file) is the default printer if no environment variables are set otherwise.

![Figure 64. Printer added successfully](image1)

![Figure 65. Overview panel reflecting new printer](image2)
Option 2: Using SMIT
You can also define remote printers using SMIT.

1. You can use the smitty mkpq fastpath, or work through the SMIT menus:

 # smitty -> Print Spooling -> Add a Print Queue

 Add a Print Queue

 Move cursor to desired item and press Enter. Use arrow keys to scroll.

<table>
<thead>
<tr>
<th># ATTACHMENT TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Printer Attached to Local Host</td>
</tr>
<tr>
<td>remote</td>
<td>Printer Attached to Remote Host</td>
</tr>
<tr>
<td>xstation</td>
<td>Printer Attached to Xstation</td>
</tr>
<tr>
<td>ascii</td>
<td>Printer Attached to ASCII Terminal</td>
</tr>
<tr>
<td>hpJetDirect</td>
<td>Network Printer (HP JetDirect)</td>
</tr>
<tr>
<td>file</td>
<td>File (in /dev directory)</td>
</tr>
<tr>
<td>ibmNetPrinter</td>
<td>IBM Network Printer</td>
</tr>
<tr>
<td>ibmNetColor</td>
<td>IBM Network Color Printer</td>
</tr>
<tr>
<td>other</td>
<td>User Defined Backend</td>
</tr>
</tbody>
</table>

 F1=Help F2=Refresh F3=Cancel
 F8=Image F10=Exit Enter=Do
 /=Find n=Find Next

2. For our example, we were defining an IBM 3130 attached to a remote RS/6000, so we selected remote and pressed Enter.

 Type of Remote Printing

 Move cursor to desired item and press Enter.

 Standard processing
 Standard with NFS access to server print queue attributes
 Local filtering before sending to print server

 F1=Help F2=Refresh F3=Cancel
 F8=Image F10=Exit Enter=Do
 /=Find n=Find Next

3. We selected Standard processing. See “Standard processing or local filtering” on page 273 for additional information. The following panel was displayed:
4. We entered the hostname of the remote server (although we could have also entered the dotted decimal address), the name of the print queue that was already defined on that remote server, and the type of spooler used by the remote server; since the remote server was running AIX, we selected AIX Version 3 or 4. (See “Type of print spooler on the remote server” on page 274 for additional information.) We did not set a timeout value for rembak but let it default to 90 seconds. We chose not to send the control file before the data file. After entering all these values, we pressed Enter.

The printer was created successfully, and we were able to print a test job.

Option 3: Using the command line

You could also use the command line to create a remote printer. For purposes of illustration, we captured the command that SMIT issued in the previous section:

```
# /usr/lib/lpd/pio/etc/piomisc_ext mkpq_remote_ext  -q 'smit3130' -h 'rs9220b.itsc.austin.ibm.com' -r '3130pcl' -t 'aix' -C 'FALSE'
```

Refer to the previous sections on Web-based System Manager or SMIT for additional information on the various flag values.

- `-q` = new printer name on local host
- `-h` = hostname of remote print server
- `-r` = name of existing printer on remote print server
- `-t` = type of spooler on remote print server
- `-C` = send control file first?
6.2.1.3 Sample /etc/qconfig entry for remote printing
The following screen shows a sample /etc/qconfig stanza that was created when we define a remote printer (standard processing) attached to another RS/6000 using the PowerPC print subsystem:

```
smit3130:
    device = @rs9220b
    up = TRUE
    host = rs9220b.itsc.austin.ibm.com
    s_statfilter = /usr/lib/lpd/aixshort
    l_statfilter = /usr/lib/lpd/aixlong
    rq = 3130pcl
@rs9220b:
    backend = /usr/lib/lpd/rembak
```

6.2.1.4 Remote lpd printer status
The use of remote printers presents a change in the way print jobs are processed. As a result, this changes the way some print-related commands and facilities work. The primary change is that once a job has been transmitted to the remote host, it is no longer managed by the print spooling subsystem on your local system. As you can imagine, commands like qchk that query the status of print queues and printers must behave in a different way.

To facilitate these changes, the `rembak` program can do more than just send the print request to the remote printer. It can also send a request to a remote server. That request can be a print job, a status request, a job cancel request, or even a request to stop the remote queuing system.

When you have configured your remote printing environment and issue the `enq -A` command (or `qchk -A` or `lpstat`, things now work differently. First, `enq` will query the status of local print queues and printers by analyzing the qconfig file and print spooling subsystem status files. The command will also use `rembak` to request queue status information from the remote print server(s).

In the following example, we have defined a print queue on our system called smit3130. This queue points to a queue called 3130pcl on a remote server, rs9220b. When we request status on our smit3130 printer, the response from `enq -A` will now look like:
You will note that there are two entries for the smit3130 queue. The first is the status of the local queue, and the second is the status of the queue (3130pcl) over on the remote system.

Note: Under normal circumstances, the rembak command is called by the qdaemon command. It is not intended to be entered on the command line by a user. If executed from the command line, it may bring the remote queue down, so its use in this manner should be avoided.

6.2.2 AIX 5L as a LPD print server (inbound)

In the previous section, we discussed the AIX 5L system from the perspective of a client or requester of remote print services. In this section, we consider the reverse: AIX as print server.

6.2.2.1 LPD print server management overview

The AIX 5L PowerPC print subsystem implements the LPD server as an independent lpd daemon that is controlled by the system resource controller (SRC). This means that you may manage the lpd daemon using Web-based System Manager, SMIT, or the command line SRC commands lssrc, startsrc, and stopsrc.

The lpd daemon is installed as a default part of AIX server installation, but is not enabled by default. The lpd daemon performs the following tasks when enabled:

- Listens on port 515 for print requests from remote clients.
- Checks that the remote host has access to print on the server.
- Checks for the existence of the requested print queue.
- Checks for space for the print job.
- Copies the print job to /var/spool/lpd.
- Builds command line flags based on the flags in the control file.

<table>
<thead>
<tr>
<th>Queue</th>
<th>Dev</th>
<th>Status</th>
<th>Job</th>
<th>Files</th>
<th>User</th>
<th>PP</th>
<th>%</th>
<th>Blks</th>
<th>Cp</th>
<th>Rnk</th>
</tr>
</thead>
<tbody>
<tr>
<td>smit3130</td>
<td>@rs9220b</td>
<td>READY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>smit3130</td>
<td>3130pcl</td>
<td>READY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aix4312</td>
<td>ibm@rs1290a</td>
<td>READY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aixjpc1</td>
<td>hpers1290b</td>
<td>READY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aix3130</td>
<td>@rs9220b</td>
<td>READY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parpcl</td>
<td>lp0</td>
<td>DOWN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You will note that there are two entries for the smit3130 queue. The first is the status of the local queue, and the second is the status of the queue (3130pcl) over on the remote system.

Note: Under normal circumstances, the rembak command is called by the qdaemon command. It is not intended to be entered on the command line by a user. If executed from the command line, it may bring the remote queue down, so its use in this manner should be avoided.
• Queues the job on the local system by calling `enq` with a flag requesting that the print file be removed after printing.

• Logs the request if debugging is turned on.

The basic assumption when running the LPD server is that there are queues defined on the AIX host that is running the `lpd` daemon. These may be local print queues with the printer attached to the server, or they can be remote or network attached printers, where the print server is acting to serialize the print jobs sent to that printer. In any case, the LPD server must have enough disk space to hold all the jobs that may be spooled at one time.

The `/etc/locks/lpd` file contains the process ID of the currently running instance of the `lpd` daemon. If the current machine becomes inoperable (the error message displayed is `lpd: lock file or duplicate daemon`), you may need to remove the ID for the `lpd` daemon when the system starts again.

6.2.2.2 Managing the LPD print server

As print administrator for an AIX 5L print server, the common tasks you will perform include:

• Managing (adding or removing) print access for a remote client

 The most common method of granting access for clients on remote print systems is to add an entry in the `/etc/hosts.lpd` file, and the methods that we describe here will update that file.

 As mentioned in Section 6.1.2, “Inbound network printing overview” on page 269, it is also possible to grant broader access (more than just printing) to users on remote system by adding an entry to the `/etc/hosts.equiv` file, but you should be aware of the security implications.

 You will notice that you can only grant or deny access based on remote computer name, not by individual user. This is different than the granularity provided by System V remote printing, as described in Section 3.3, “Configuring the System V print subsystem as a print server” on page 128.

• Managing the `lpd` subsystem, including:

 - Displaying status of the `lpd` subsystem
 - Starting the `lpd` subsystem
 - Stopping the `lpd` subsystem

You can use any of the following interfaces to accomplish these administrative tasks:
• Web-based System Manager (see Section, “Option 1: Using Web-based System Manager” on page 285)
• SMIT (see Section, “Option 2: Using SMIT” on page 289)
• Command line (see Section, “Option 3: Using the command line” on page 293)

Option 1: Using Web-based System Manager
The system administrator can use Web-based System Manager to perform all of LPD print server management tasks, as described in the following topics.

Adding or removing print access for a remote computer
You can use Web-based System Manager to add or remove remote systems from the LPD access list stored in `/etc/hosts.lpd`. From the task bar, select **Printers -> Remote Client List**, as shown in Figure 66.

![Figure 66. Remote client list](Image)

The panel shown in Figure 67 on page 286 will be displayed.
Figure 67. Remote computer access list

From this panel, you can add or remove access to your printers to users on any remote system, or you can limit access to users on specific remote systems.

- To add a new remote computer name, place the cursor in the second field (labeled Computer name:) and type that system’s fully qualified host name or dotted decimal IP address. Then click Add, then click Apply or OK in order for your change to be processed.

- To remove access for a remote system, highlight that system’s name in the first field (labeled Computer access list:) and click on the Remove button to the right of that box, as shown in Figure 68 on page 287.
Click **Add**, then click **Apply** or **OK** in order for your change to be processed.

Display status of the lpd subsystem
The status of the lpd subsystem is displayed on Web-based System Manager’s Printers: Overview and Tasks panel as the last item in the Status list Remote print server enabled:, as shown in Figure 69 on page 288.
Starting or stopping the lpd subsystem

From the task bar, select Printers, then depending on your requirement, click either on Start Remote Print Server (lpd) or Stop Remote Print Server (lpd), as seen in Figure 70.
A panel will pop up to show you that AIX is working, then you will be returned to the Overview and Tasks panel, where you will see that the status of the remote print server has changed. In our example we started the lpd subsystem, and the status changed to reflect that.

Figure 71. Remote print subsystem enabled

Option 2: Using SMIT

In SMIT, you can perform all your administrative tasks for LPD from the Manage Print Server screen:

```
# smitty -> Print Spooling -> Manage Print Server
```

Alternatively, the SMIT fastpath is `smitty server`.
These SMIT panels are fairly self-explanatory, and you can access online help with the F1 key. We will merely note the SMIT fastpaths and show an example of each screen.

Adding print access for a remote client
The SMIT fastpath is `smitty mkhostslpd`.

Note that you can enter either the remote system's hostname or its dotted decimal IP address.

```
Add Print Access for a Remote Client
Type or select values in entry fields.
Press Enter AFTER making all desired changes.

* Name of REMOTE CLIENT                              [Entry Fields]
   (Hostname or dotted decimal address)

F1=Help             F2=Refresh          F3=Cancel           F4=List
F5=Reset            F6=Command          F7=Edit             F8=Image
F9=Shell            F10=Exit            Enter=Do
```

Removing print access for a remote client
The SMIT fastpath is `smitty rmhostslpd`.

```
Remove Print Access for a Remote Client
Type or select values in entry fields.
Press Enter AFTER making all desired changes.

* Name of REMOTE CLIENT                              [Entry Fields]
   [rs9220b.itsc.austin.ib> +

F1=Help             F2=Refresh          F3=Cancel           F4=List
F5=Reset            F6=Command          F7=Edit             F8=Image
F9=Shell            F10=Exit            Enter=Do
```

Displaying status of the lpd subsystem
There is no SMIT fastpath to execute this command directly. From the panel that is displayed in response to the `smitty server` fastpath, select the entry to Show Status of the Print Server Subsystem and press Enter. The following panel that shows the status will be displayed:
Chapter 6. PowerPC network printing

Starting the lpd subsystem
The SMIT fastpath to get to this screen is `smitty mkitab_lpd`. There are three fields you can modify.

You have the option to start LPD immediately, the next time the system is rebooted, or both.

Choosing `system restart` adds an entry to the `/etc/inittab` file so that the lpd daemon will automatically start after a system restart. Choosing `now`
causes the daemon to be started immediately, but no entry is made in the /etc/inittab file.

- You also have an option to turn tracing on, but you should only do this when you need to perform problem determination. You should turn tracing off when the problem has been resolved so that you eliminate the overhead that tracing can introduce.

- You have the option to export the print attribute directory. As described in “Standard processing or local filtering” on page 273, one of the options when creating a remote printer is to choose standard processing with NFS access to server print queue attributes. In most cases, you will let this default to no.

The command that SMIT executes when using the default values is:

```
/usr/sbin/piomisc_base server_start_when 'both' 'no' 'no'.
```

If you succeed, you will see the following screen:

```
COMMAND STATUS
Command: OK         stdout: yes         stderr: no
Before command completion, additional instructions may appear below.
0513-059 The lpd Subsystem has been started. Subsystem PID is 20174.
```

Stopping the lpd subsystem

The SMIT fastpath is smit rmitab_lpd. You can choose to stop it immediately, the next time the system is restarted, or both. Choosing `system restart` removes the lpd daemon entry in the /etc/inittab file. After a system restart, the lpd daemon will no longer be available. Choosing `now` halts the daemon immediately (if there is an entry in /etc/inittab for the lpd daemon, it will be restarted automatically after a system restart).
If you select now and press Enter, the message you receive when SMIT returns is:

0513-044 The lpd Subsystem was requested to stop.

If you then display the status, the lpd subsystem will have a status of inoperative.

Option 3: Using the command line

You can also perform all the administrative tasks for the lpd subsystem from the command line.

Adding or removing print access for a remote client

You can use the `ruser` command with the -a flag to add print access for a remote system. This will add an entry to the /etc/hosts.lpd file:

```bash
# ruser -a -p 'rs1230svr.itsc.austin.ibm.com'
```

You can also use the `ruser` command with the -d flag to remove access for a remote system and delete the corresponding entry from the /etc/hosts.lpd file.

Or you can vi /etc/hosts.lpd to add or remove a line with the entry:

```bash
# Examples:
#
# host                  allows access to all users on host
# -host                 denies access to all users on host
# +@group               allows access to all users on hosts in group
# -@group               denies access to all users on hosts in group

rs9220b.itsc.austin.ibm.com
rs1230svr.itsc.austin.ibm.com
```

Stop the Print Server Subsystem

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

Stop subsystem now, on system restart, or both [now] +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Chapter 6. PowerPC network printing 293
The change will take effect immediately; you do not have to refresh the subsystem.

Managing the lpd subsystem

Because the AIX 5L PowerPC print subsystem implements the LPD server as an independent lpd daemon that is controlled by the system resource controller (SRC), you can manage the LPD daemon using the command line SRC commands `lssrc`, `startsrc`, and `stopsrc`.

- Displaying status of the lpd subsystem:

  ```
  # lssrc -s lpd
  ```

- Starting the lpd subsystem:

  ```
  # startsrc -s lpd
  ```

- Stopping the lpd subsystem:

  ```
  # stopsrc -s lpd
  ```

You can also use the SRC commands with the `-g` flag to manage the spooler group, which includes qdaemon and the writesrv daemon, in addition to lpd.

- Displaying status of the spooler group:

  ```
  # lssrc -g spooler
  ```

- Starting the spooler group:

  ```
  # startsrc -g spooler
  ```

- Stopping the spooler group:

  ```
  # stopsrc -g spooler
  ```

6.3 Printing to HP JetDirect-attached printers

JetDirect cards or external boxes from Hewlett-Packard allow you to attach printers to a network instead of to a server. The printers do not necessarily have to be manufactured by Hewlett-Packard to attach to a JetDirect device.

Depending on the type of device, JetDirect devices will get their IP address either from non-volatile storage on the device or over the network using the BOOTP protocol. AIX supports both configurations.

Beginning in V4.2.1, AIX supports the JetDirect EX Plus3 Multi-Port Print Server, as well as the single port devices, by specifying the port number when setting up the queue. The default TCP/IP port number for JetDirect printing is port 9100. JetDirect EX boxes use port 9101 and 9102 for the extra ports.
The JetDirect filter program has also been used by some customers on non-JetDirect print servers that require a socket connection. The only change to the configuration in these cases is the selection of an appropriate port number to match the server. The JetDirect socket program does not have a timeout, so that once a print job has started, it will stay connected until the print job is done, without any dependence on the time it takes the server to accept the job, as long as there are no network timeouts.

6.3.1 Planning

For our testing, we used an HP LaserJet 4M with an internal JetDirect device to attach the printer to our Token-Ring network.

You will need the following information when adding a JetDirect-attached printer:

• Name of the new print queue(s)

 Beginning in AIX Version 4.3.2, printer names can have a maximum of 20 characters including a-z, A-Z, 0-9, underscore (_), minus (-), plus (+) or the “at” sign (@). Note that you must specify the -W flag on either the lpstat, lpq, qchk, or enq commands in order to see the wide display with the long printer name; the default display will only show the first seven characters in a printer name.

 If your printer supports multiple data streams (see Appendix E, “Data streams” on page 511 for more information), you will need a name for each data stream type you want to define. For example, our HP LaserJet 4M supports PCL, PostScript, HP-GL/2, PCL (Hangeul as code) and PCL (Hangeul as image) (the latter two are Korean-specific). So to support all these data streams, you would need five different print queue names. We configured only the PCL and PostScript queues during our testing; we left the other names blank.

• Hostname of the JetDirect device

 This must be a valid hostname defined by either a domain nameserver or in the /etc/hosts file.

• Port number on the JetDirect device.

 The default port number is 9100. If you are using the JetDirect EX Plus3 Multi-Port Print Server, use 9100 for parallel port 1, 9101 for parallel port 2, and 9102 for parallel port 3.

 If you want to use another port number, specify the default port 9100 to make the queue, then edit the backend= statement for that queue in the /etc/qconfig file.
6.3.2 Adding a JetDirect-attached printer

You can use the following interfaces to add a JetDirect-attached printer:

- Web-based System Manager (see “Option 1: Using Web-based System Manager” on page 296)
- SMIT (see “Option 2: Using SMIT” on page 300).
- Command line (see “Option 3: Using the command line” on page 302).

Many printers support multiple data streams, and in AIX you usually define one queue per data stream. Note that SMIT will allow you to define all queues for a single printer in a single pass; Web-based System Manager only supports adding a single queue at a time.

Option 1: Using Web-based System Manager

1. Start the Web-based System Manager either from the CDE Application Manager -> System Admin -> Management Console or from the command line using `wsm`. From the main Management Environment panel, open the Printers container, then the Overview and Tasks object.

 Figure 72. Overview and tasks for printers

2. From the panel shown in Figure 72, there are two ways you can add a printer:
 - From the task bar, you can select Printers -> New -> New Queue and Printer Wizard dialog....

296 Printing for Fun and Profit under AIX 5L
- From the **Overview and Tasks**, select the **New queue and printer task**.

When you select either of the two options above, you will see the panel shown in Figure 73.

![Add New Queue and Printer](image1.png)

Figure 73. Name of new JetDirect-attached printer

3. In Figure 73, we defined an HP LaserJet 4M printer with the internal JetDirect card with a name of aixjetd and clicked **Next**. The following panel was displayed:

![Add New Queue and Printer](image2.png)

Figure 74. JetDirect attachment type

From the list of possible printer attachments in Figure 74, we selected **hpJetDirect - Network Printer (HP JetDirect)**.
If the entry for **hpJetDirect** does not appear in your list, you need to install the printers.hpJetDirect.attach fileset from the AIX install media. We clicked **Next** and the panel in Figure 75 appeared.

![Add New Queue and Printer panel](image)

Figure 75. JetDirect-attached printer manufacturer

4. We selected the manufacturer of our test printer, Hewlett-Packard, and clicked **Next**.

![Add New Queue and Printer panel](image)

Figure 76. JetDirect-attached printer model

5. From the list shown in Figure 76, we selected **hplj-4**, which corresponded with our HP LaserJet 4M, and clicked **Next**.

If your printer does not appear in this list, you will need to install additional filesets from the AIX install media.
6. We selected the data stream for which we were creating this queue from the list shown in Figure 77 and clicked **Next**.

Note that you can only create a single queue at a time using Web-based System Manager, versus SMIT which allows you to create queues for all supported data stream types in a single step.

7. Because we could enter and store the IP address information at the printer console, we did not need to make our system the BOOTP server. If you are using a JetDirect multi-port device, you may need to select **Yes** in the panel shown in Figure 78. Refer to the JetDirect documentation for
model-specific information. See also the man pages for the `bootpd` command.

![Add New Queue and Printer](image1)

Figure 79. JetDirect-attached hostname

8. We provided the hostname of the JetDirect card in the panel shown in Figure 79 and clicked **Next**.

![Add New Queue and Printer](image2)

Figure 80. JetDirect-attached verification panel

9. We verified the information on the panel in Figure 80 and clicked **Next**. The printer was created successfully, and we were able to print a test job.

Option 2: Using SMIT

You can also define remote printers using SMIT.
1. You can use the `smitty mkpq` fastpath, or work through the SMIT menus:

 # smitty -> Print Spooling -> Add a Print Queue

 Print Spooling

 Move cursor to desired item and press Enter.

 AIX Print Mode Only:

 | Add a Print Queue |
 | Move cursor to desired item |
 | and press Enter. |
 | Use arrow keys to scroll. |
 | |
 # ATTACHMENT TYPE |
 | DESCRIPTION |
 | local |
 | Printer Attached to Local Host|
 | remote |
 | Printer Attached to Remote Host|
 | xstation |
 | Printer Attached to Xstation |
 | ascii |
 | Printer Attached to ASCII Terminal|
 | hpJetDirect |
 | Network Printer (HP JetDirect)|
 | file |
 | File (in /dev directory) |
 | ibmNetPrinter |
 | IBM Network Printer |
 | ibmNetColor |
 | IBM Network Color Printer |
 | other |
 | User Defined Backend |
 | |
 | F1=Help |
 | F2=Refresh |
 | F3=Cancel |
 | F8=Image |
 | F10=Exit |
 | Enter=Do |
 | /=Find |
n=Find Next

 2. From the list of possible printer attachments, we selected `hpJetDirect` - Network Printer (HP JetDirect). If the entry for `hpJetDirect` does not appear in your list, you need to install the `printers.hpJetDirect.attach` fileset from the AIX install media.

 We pressed Enter. On the next two panels, we specified the printer manufacturer (Hewlett-Packard) and the model (hplj-4). Then the following panel was displayed:

 BOOTP/TFTP Server

 Move cursor to desired item and press Enter.

 1 Make this system a BOOTP/TFTP server
 2 Do NOT make this system a BOOTP/TFTP server

 F1=Help F2=Refresh F3=Cancel
 F8=Image F10=Exit Enter=Do
 /=Find n=Find Next

 3. Because we could enter and store the IP address information at the printer console, we did not need to make our system the BOOTP server. If you are using a JetDirect multi-port device, you may need to select `Yes`
here. Refer to the JetDirect documentation for model-specific information. See also the man pages for the bootpd command. We selected option 2 and pressed Enter.

The following panel was displayed:

![Add a Print Queue panel]

4. Unlike Web-based System Manager, the SMIT method allows you to define multiple print queues for the different print data streams from a single screen. We entered the information as described in Section 6.3.1, “Planning” on page 295 and pressed Enter.

Option 3: Using the command line

You could also use the command line to create a remote printer. For purposes of illustration, we captured the command that SMIT issued in the previous section:

```
# /usr/lib/lpd/pio/etc/piomkjetd mkpq_jetdirect -p 'hplj-4' -D pcl -q 's30pcl' -D ps -q 's30ps' -h 'rs1290b.itsc.austin.ibm.com' -x '9100'
```

Refer to the previous sections on Web-based System Manager or SMIT for additional information on the various flag values.

- `-p` = printer type (This must exist in the ODM database.)
- `-D` = data type
- `-q` = name of new print queue
- `-h` = hostname of JetDirect device
- `-x` = port number on JetDirect device
6.3.3 Sample /etc/qconfig stanza

Here is the stanza for the JetDirect queue we just added:

```
s0pcl:
    device = hp@rs1290b
hp@rs1290b:
    file = /var/spool/lpd/pio/@local/dev/hp@rs1290b#hpJetDirect#9100
    header = never
    trailer = never
    access = both
    backend = /usr/lib/lpd/pio/etc/piojetd rs1290b 9100
```

6.4 Adding an IBM Network Printer

Just as JetDirect-attached devices have their own installation process, protocol and backend program, so do the IBM Network and Infoprint printers. (Note that the IBM Network Color Printer (4303) has its own process and backend.)

6.4.1 Planning

For our testing, we used an IBM Network Printer 12 (4312) with a Token-Ring Network Interface Card (NIC).

You will need the following information when adding an IBM Network printer:

- Name(s) of the new print queue(s) to add

 Beginning in AIX Version 4.3.2, printer names can have a maximum of 20 characters, including a-z, A-Z, 0-9, underscore (_), minus (-), plus (+) or the “at” sign (@). Note that you must specify the -W flag on either the `lpstat`, `lpq`, `qchk` or the `enq` commands in order to see the wide display with the long printer name; the default display will only show the first seven characters in a printer name.

 If your printer supports multiple data streams (see Appendix E, “Data streams” on page 511 for more information), you will need a name for each data stream type you want to define. For example, our IBM Network Printer 12 supports PCL 5E and PostScript, so to support both data streams, you would need two different print queue names.
• Hostname of the network printer card
 This must be a valid hostname defined by either a domain nameserver or
 in the /etc/hosts file.

6.4.2 Adding an IBM Network Printer
You can use the following interfaces to add an IBM Network Printer:
• Web-based System Manager (see “Option 1: Using Web-based System
 Manager” on page 304)
• SMIT (see “Option 2: Using SMIT” on page 309)
• Command line (see “Option 3: Using the command line” on page 311)

Many printers support multiple data streams, and in AIX you usually define
one queue per data stream. Note that SMIT will allow you to define all queues
for a single printer in a single pass; Web-based System Manager only
supports adding a single queue at a time.

Option 1: Using Web-based System Manager
1. Start the Web-based System Manager either from the CDE Application
 Manager -> System_Admin -> Management Console or from the
 command line using wsm. From the main Management Environment panel,
 open the Printers container, then the Overview and Tasks object.

Figure 81. Overview and tasks for printers
2. From the panel shown in Figure 81 on page 304, there are two ways you can add a printer:

 - From the task bar, you can select **Printers -> New -> New Queue and Printer Wizard dialog**.
 - From the **Overview and Tasks**, select the **New queue and printer** task.

 When you select either of the two options, you will see the panel shown in Figure 82:

 ![Add New Queue and Printer](image)

 Figure 82. Queue name for IBM Network Printer

3. In this example, we defined an IBM Network Printer 12 with a queue name of **aix4312** and clicked **Next**. The panel in Figure 83 on page 306 was displayed.
4. From the list of possible printer attachments, we selected **ibmNetPrinter - IBM Network Printer**. If the entry for ibmNetPrinter does not appear in your list, you need to install the printers.ibmNetPrinter.attach fileset from the AIX install media.

 If you are installing an IBM Network Color Printer (4303), you should select the entry for **ibmNetColor - IBM Network Color Printer**. If that entry does not appear in your list, install the printers.ibmNetColor.attach fileset.

5. We selected the manufacturer, **IBM**, and clicked **Next**, as shown in Figure 84.
6. From the list shown in Figure 85, we selected \texttt{ibm4312} for our IBM Network Printer 12 and clicked Next.

7. We selected the data stream for which we were creating this queue from the list and clicked Next, as shown in Figure 86.

Note that you can only create a single queue at a time using Web-based System Manager versus SMIT, which allows you to create queues for all supported data stream types in a single step.
8. For IBM Network Printers, you should always select No when asked if you want to make this computer a BOOTP server, as shown in Figure 87.

9. We provided the hostname of the IBM Network Printer and clicked Next, as shown in Figure 88.
10. We verified the information on this panel and clicked Enter, as shown in Figure 89.

The printer was created successfully and we printed a simple test job.

Option 2: Using SMIT

You can also define IBM Network Printers using SMIT.

1. You can use the `smitty mkpq` fastpath, or work through the SMIT menus:

   ```
   # smitty -> Print Spooling -> Add a Print Queue
   ```

 The following panel was displayed:

 ![Add a Print Queue Panel](image)

   ```
<table>
<thead>
<tr>
<th>ATTACHMENT TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Printer Attached to Local Host</td>
</tr>
<tr>
<td>remote</td>
<td>Printer Attached to Remote Host</td>
</tr>
<tr>
<td>xstation</td>
<td>Printer Attached to Xstation</td>
</tr>
<tr>
<td>ascii</td>
<td>Printer Attached to ASCII Terminal</td>
</tr>
<tr>
<td>hpJetDirect</td>
<td>Network Printer (HP JetDirect)</td>
</tr>
<tr>
<td>file</td>
<td>File (in /dev directory)</td>
</tr>
<tr>
<td>ibmNetPrinter</td>
<td>IBM Network Printer</td>
</tr>
<tr>
<td>ibmNetColor</td>
<td>IBM Network Color Printer</td>
</tr>
<tr>
<td>other</td>
<td>User Defined Backend</td>
</tr>
<tr>
<td></td>
<td>F1=Help</td>
</tr>
<tr>
<td></td>
<td>F2=Refresh</td>
</tr>
<tr>
<td></td>
<td>F3=Cancel</td>
</tr>
<tr>
<td></td>
<td>F8=Image</td>
</tr>
<tr>
<td></td>
<td>F10=Exit</td>
</tr>
<tr>
<td></td>
<td>/=Find</td>
</tr>
<tr>
<td></td>
<td>n=Find Next</td>
</tr>
</tbody>
</table>
   ```

   ```
   Enter=Do
   ```
2. From the list of possible printer attachments, we selected ibmNetPrinter - IBM Network Printer. If the entry for ibmNetPrinter does not appear in your list, you need to install the printers.ibmNetPrinter.attach fileset from the AIX install media.

If you are installing an IBM Network Color Printer (4303), you should select the entry for ibmNetColor - IBM Network Color Printer. If that entry does not appear in your list, install the printers.ibmNetColor.attach fileset.

In the next two panels, we first specified the manufacturer (IBM) and then the specific printer model (ibm4312). The following panel was displayed:

![BOOTP/TFTP Server](image)

3. When adding IBM Network Printers, you do not need to make your system a BOOTP server because the printer stores its own address in its non-volatile memory. We selected the second option and pressed Enter.

![Add a Print Queue](image)

4. Unlike Web-based System Manager, SMIT allows you to define multiple print queues for the different data streams from a single screen. We
The printer was created successfully, and we were able to print a test file.

Option 3: Using the command line
You could also use the command line to create a remote printer. For purposes of illustration, we captured the command that SMIT issued in the previous section for the IBM Network Printer:

```
# /usr/lib/lpd/pio/etc/piomknp mkpq_np -p 'ibm4312' -D pcl -q 's12pcl' -D ps -q 's12ps' -h 'rs1290a.ibm.com'
```

Here is a sample command for creating an IBM Network Color Printer, using a slightly different command:

```
# /usr/lib/lpd/pio/etc/piomkncp mkpq_ncp -p 'ibm4303' -D ps -q 's4303' -h 'ibm4303.ibm.com'
```

Refer to the previous sections on Web-based System Manager or SMIT for additional information on the various flag values.

- `-p` = printer type (This must exist in the ODM database.)
- `-D` = data type
- `-q` = name of new print queue
- `-h` = hostname of IBM Network Printer

6.4.3 Sample /etc/qconfig stanza
Here is the stanza for the IBM Network Printer queue we just added:

```plaintext
s12pcl:
    device = ibm@rs1290a
ibm@rs1290a:
    file = /var/spool/lpd/pio/@local/dev/ibm@rs1290a.ibm.com#ibmNetPrinter
header = never
trailer = never
access = both
backend = /usr/lib/lpd/pio/etc/piobmpncp rs1290a.ibm.com
```

And here is a sample stanza for an IBM Network Color Printer:
There are some notable differences for the IBM Network Color Printer, the most significant of which is a different backend program.

6.5 Miscellaneous network printers and print servers

In addition to the standard print support described earlier in this chapter, AIX 5L can print to a number of other network-attached devices and print servers, as described in the following topics.

6.5.1 IBM Network Station attached printers

Printers attached to IBM Network Stations receive their jobs through the LPD protocol and can be connected from the PowerPC print subsystem as remote printers. In most cases, it is recommended that local filtering be used when creating queues to the IBM Network Station. It is also recommended that all jobs be queued through a single AIX queue, since the Network Station does not have any disk space to spool print jobs. To set up a Network Station queue, use the remote queue names PARALLEL and SERIAL to distinguish the port where the printer is attached to the Network Station.

6.5.2 Printing via an IBM Xstation

Printers can be attached to either the serial or parallel ports of an IBM Xstation. In order to print to an IBM Xstation, the Xstation Manager software must first be installed. The IBM Xstation Manager V1.2 software contains the catlpx program, which acts as the backend program in the print spooling subsystem that drives the IBM Xstation connected printer. The catlpx program connects the printer to the network port, sends the processed print file to the IBM Xstation, and closes the connection when the print job has finished.
6.5.2.1 Adding an IBM Xstation-attached printer

The example below outlines how a printer connected to an IBM Xstation can be configured. This assumes that IBM Xstation Manager V1.2 has been installed and the IBM Xstation that will have a connected printer is known appropriately to the system.

Here we document our experiences configuring an IBM Xstation-attached printer:

1. We entered `smitty mkpq` fast path. The following screen was displayed:

 Add a Print Queue

 Move cursor to desired item and press Enter. Use arrow keys to scroll.

<table>
<thead>
<tr>
<th># ATTACHMENT TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Printer Attached to Local Host</td>
</tr>
<tr>
<td>remote</td>
<td>Printer Attached to Remote Host</td>
</tr>
<tr>
<td>xstation</td>
<td>Printer Attached to Xstation</td>
</tr>
<tr>
<td>ascii</td>
<td>Printer Attached to ASCII Terminal</td>
</tr>
<tr>
<td>hpJetDirect</td>
<td>Network Printer (HP JetDirect)</td>
</tr>
<tr>
<td>file</td>
<td>File (in /dev directory)</td>
</tr>
<tr>
<td>ibmNetPrinter</td>
<td>IBM Network Printer</td>
</tr>
<tr>
<td>ibmNetColor</td>
<td>IBM Network Color Printer</td>
</tr>
<tr>
<td>other</td>
<td>User Defined Backend</td>
</tr>
</tbody>
</table>

 F1=Help F2=Refresh F3=Cancel
 F5=Reset F6=Command F7=Edit
 F8=Image F10=Exit Enter=Do

2. We selected the `xstation` option and pressed Enter.

3. On the following two panels we entered the name of the printer manufacturer (`IBM`) and the printer model (`ibm4039`). The following screen was then displayed:

 Xstation NAME

 Type or select a value for the entry field.
 Press Enter AFTER making all desired changes.

 * Xstation NAME

 F1=Help F2=Refresh F3=Cancel F4=List
 F5=Reset F6=Command F7=Edit F8=Image
 F9=Shell F10=Exit Enter=Do
4. We pressed F4 to see a list of available Xstations attached to our system and selected the name of the IBM Xstation to which we would be attaching the 4039. The Xstation name is the IP name for the Xstation.

 In our example we have connected our printer to a Xstation named tx24.itsc.austin.ibm.com. We were using a nameserver for name resolution. (If you are not using a nameserver, you should have the Xstation name and its IP address in the /etc/hosts file, and you should use this name for the Xstation NAME field.)

5. The following screen was displayed after selecting tx24.itsc.austin.ibm.com and pressing Enter:

 ![Xstation Type]

 Xstation Type

 Xstation 120
 Xstation 130
 Xstation 140
 Xstation 150
 Xstation 160

 F1=Help F2=Refresh F3=Cancel
 F8=Image F10=Exit Enter=Do
 /=Find n=Find Next

6. In our example, tx24.itsc.austin.ibm.com is an Xstation model 120. After making this selection, the following screen was displayed:

 ![Printer Type]

 Printer Type

 p Parallel
 s Serial Port

 F1=Help F2=Refresh F3=Cancel
 F8=Image F10=Exit Enter=Do
 /=Find n=Find Next

7. Since we were attaching the 4039 to the parallel interface, we selected parallel on this panel and pressed Enter. The following screen was displayed:
8. On the Add a Print Queue panel, you can type a name for each emulation queue that your printer can emulate. In our example, we added two queues because the IBM 4039 LaserPrinter can emulate both PCL and PostScript and pressed Enter. The printer and print queues were created successfully:

```
COMMAND STATUS
Command: OK           stdout: yes           stderr: no
Before command completion, additional instructions may appear below.
Added printer 'p@tx24.itsc.austin.ibm.com'.
Added print queue 'tx24pcl'.
Added print queue 'tx24ps'.
```

6.5.2.2 Sample /etc/qconfig file stanza and added files

We have now configured an IBM Xstation connected printer. The qconfig stanza generated by the previous example is as follows:

```
Description                                         IBM 4039 LaserPrinter
Names of NEW print queues to add
  PCL Emulation                                   [tx24pcl]
  PostScript                                     [tx24ps]
F1=Help             F2=Refresh          F3=Cancel           F4=List
F5=Reset            F6=Command          F7=Edit             F8=Image
F9=Shell            F10=Exit            Enter=Do
This process created the following virtual printer colon files in the /var/spool/lpd/pio/@local/custom directory:

- tx24pcl:p@tx24
- tx24ps:p@tx24

The digested files are in the /var/spool/lpd/pio/@local/ddi directory:

- ibm4039.pcl.p@tx24.itsc.austin.ibm.com.tx24pcl:p@tx24
- ibm4039.ps.p@tx24.itsc.austin.ibm.com.tx24ps:p@tx24

### 6.5.3 Windows printing

In most configurations, the AIX system will act as the print server to receive print jobs from Windows-based systems. When receiving jobs from a Windows PC, the easiest protocol to use is the LPD protocol, but the SMB print protocol can also be used when Samba or IBM Fast Connect are installed on the AIX server. Printing in this environment is described in two redbooks:

- *Samba Installation, Configuration, and Sizing Guide* (SG24-6004)
- *AIX and Windows NT: Solutions for Interoperability* (SG24-5102)

The PC/NFS product also supports printing from the PC environment, but discussion of this product is beyond the scope of this publication.

Based on our personal experience, our choice for printing from Windows (3.1, 95, or 98) is to use the lpr client for Windows from IBM. This tool is free and it works well in the AIX environment.
**Software**

To install the software, click on the instlpr icon from Windows Explorer. This will completely install the software. At the end of the installation, be sure to read the instructions for installing a print queue. The only changes to these for AIX are:

- Enter the AIX print queue in the box labeled **Printer/Queue name**.
- For all pre-AIX Version 4.3 systems, select **Send data file before control file**.

You can add up to 20 different remote printers with this technique.

**Setting up the AIX server to accept Windows jobs**
The requirements on the AIX side for printing from the Windows lpr are:

- A working print queue should exist on the AIX server.
- The lpd daemon must be running.
- The Windows hostname should be in /etc/hosts or resolvable through DNS or NIS.
- The Windows hostname or IP address should be in /etc/hosts.lpd.

**Adding a Windows 95 queue to print to AIX**
To add a queue to print to the Windows 95/98 system using the IBM LPR Remote Printing Client, follow these steps:

1. From the **Start** button, select **Settings** then **Printers**.
2. Click the **Add Printer** icon.
3. From the first page of the Wizard, click **Next** to continue.
4. Select **Local** printer and click **Next**.
5. Select the printer manufacturer and printer model and click **Next**.
6. Select the appropriate driver to use.
7. Select **LPT1**: for the printer port or **IBM LPR Remote Printer** if you have already created a remote printer you want to use.
8. Enter a printer name of your choice and click **Next** to continue.
9. Click the **No** button for test print and click **Finish**.
10. Right-click the icon on the Printer folder and select **Properties**.
11. Click the **Details** menu tab and then the **Add Port** push button.

12. Click the **Other** button and select **IBM LPR Remote Printing Client** and click **OK**.

13. Enter the hostname or IP address of the AIX system.

14. Enter the print queue name on the AIX server.

15. Set the **Send banner page control flag** to determine if you want the AIX banner page.

16. Do not click the **Send data file before control file**.

17. Do not click the **Send plain text control flag**.

18. Click **OK**.

19. Click **OK** to add the printer queue.

Note: For a graphical description of these directions on the Windows 95 system, click **Start -> Programs -> IBM LPR Remote Printing Client -> Adding an IBM LPR Remote Printer**.

### 6.5.4 Print and terminal servers

A variety of print and terminal servers support printing from AIX. Many of the newer print servers support the LPD protocol. Servers that do not support LPD usually have a socket protocol and a documented procedure for printing from AIX. Table 17 references some of the terminal and print server manufacturers and the associated protocol or backend:

**Table 17. Print and terminal server protocols**

<table>
<thead>
<tr>
<th>Print Server</th>
<th>Protocol and/or program</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXIS</td>
<td>LPD, FTP, &amp; PROS proprietary protocol</td>
</tr>
<tr>
<td>Chase Research: IOLAN server</td>
<td>LPD protocol</td>
</tr>
<tr>
<td>IBM 7318 Terminal Servers</td>
<td>cnsconnect as local printers</td>
</tr>
<tr>
<td>Digital Products NETPrint and JETXPrint</td>
<td>LPD protocol</td>
</tr>
<tr>
<td>Intel NetportExpress 10/100 and PRO</td>
<td>LPD or JetDirect protocol</td>
</tr>
<tr>
<td>Pacific Data Products DirectNet</td>
<td>LPD protocol</td>
</tr>
<tr>
<td>XCD Print Server</td>
<td>JetDirect protocol</td>
</tr>
<tr>
<td>Microplex Print Servers</td>
<td>LPD, rshd, and direct socket protocols</td>
</tr>
<tr>
<td>Emulex NETque and NETjet</td>
<td>LPD or rprint socket program</td>
</tr>
<tr>
<td>Print Server</td>
<td>Protocol and/or program</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Synoptics terminal server</td>
<td>csportd socket program</td>
</tr>
<tr>
<td>Xylogics Annex Terminal Server</td>
<td>aprint socket program</td>
</tr>
<tr>
<td>Lantronix Print/Terminal Servers</td>
<td>LPD protocol</td>
</tr>
<tr>
<td>Central Data Terminal Server</td>
<td>Look like local device with their drivers</td>
</tr>
</tbody>
</table>
Chapter 7. PowerPC advanced printing

In previous chapters, you have learned how to add and remove printers, print to printers, and make minor changes. This chapter discusses more advanced customization using the PowerPC print subsystem.

The topics discussed in this chapter include:

- Using a custom backend
- Adding a new printer to the predef database
- Adding form support to a printer definition - unsupported
- Setting the printer attributes
- Specifying specific character sets
- Specifying a printer font cartridge
- Setting up PostScript print filters
- Printing text files to PostScript printers
- Restricting user access to printers - unsupported

7.1 Printer backend programs

When a print job is processed, a printer backend program is executed by a qdaemon to process the print job and send it to the printer. The backend that used most often is the piobe backend, which enables AIX virtual printers to do their formatting, but AIX 5L comes with several other standard printer backends for PowerPC programming. Two of these, piojetd and pioibmnp, are shell script wrappers that call pass the print job through piobe as a filter before sending the job to network attached printers.

Although the virtual printer backends are very powerful, it may be necessary to create a custom backend program for a number of reasons, such as:

- Supporting flags that are not supported by piobe
- Serializing non-printing jobs
- Adding functions such as archiving and limiting users
- Supporting System V print filters

A printer backend program used for printing should:

- Initialize the printer port if necessary. For local printers, this is done by the piocut filter.
• Generate printer setup sequences for printer fonts, paper tray, simplex or duplex, page orientation, and similar parameters based both on defaults and print command line flags.
• Print a banner page if requested.
• Print the requested number of copies.
• Handle and report errors sending jobs to the printer.

7.1.1 The default piobe backend

The default and virtual printer backend, piobe, handles all types of printer jobs based on the settings in virtual printer files called colon files. The functions that piobe is responsible for includes calling filters to do the following:
• Validate command line flags.
• Initialize the printer based on defaults and flags.
• Provide support for user defined filters.
• Format ASCII data.
• National language support by translating from the input codepage to the output printer symbol set (ASCII only).
• Reset the printer to a predefined condition.
• Call the program to send the header and trailer pages.
• Send a form feed at the end of job.
• Transfer the data to the printer device.
• Handle errors and reports them through the qdaemon.

Although virtual printers are often called device drivers, piobe does not:
• Generate any printer language commands, such as PostScript or PCL, other than the initialization and reset sequences.
• Test for correctness of the format of data.
• Automatically recognize the type of data, except for very simple sniffing of the first couple of characters to look for PostScript (if set up properly).
• Act as a print API for applications.

Customization of the piobe backend is done through customizing the virtual printer, which is discussed in Section 7.3, “Customizing virtual printers” on page 330.
7.1.2 Creating a printer backend program

Printer backend programs can be written as C applications or as simple shell scripts. When written in C, there are library routines that can be called to communicate with the qdaemon. These routines are discussed in detail in the "Printer Backend Overview for Programming" chapter in AIX V4 Printer Guide, SC23-2783. This is available on the Web at:


As an introduction, the following text is included from that reference:

“The printer backend is invoked once for every file or group of files to be printed, with the name of each file passed to the backend as a parameter. The backend opens the file, reads it, and sends it to the device. The recommended method for a backend to operate is to write to its standard output, with the qdaemon process opening the device onto the correct file descriptor. This requires setting the file field in the qconfig file.

The name of the file to be printed can be a direct or relative path name. The user ID and group ID of the backend are those of the user submitting the job.

When a backend is invoked, it has access to the user's environment. To access the user's environment, the backend may invoke the getenv subroutine. For example, to access the user's directory, getenv (PWD) returns a pointer to the directory name. The backend can use this to read from or write to this directory.

If the backend writes to its standard output, the qdaemon opens the device in root-user mode. If the backend needs to open the device itself, it must have the correct permissions to open the device. Since the backend runs under the permissions of the user sending the print job, you may need to change the protections on the device or install the backend set-user-ID or set-group-ID.”

In addition to this reference, there are several tips on writing both shell scripts and backends available on the Web at:

http://service.boulder.ibm.com/rs6k/techdocs/index.v4.html#print

7.1.3 Example: Shell script backend to check flags

A simple example shell script that can be useful for both learning how to use a custom backend and for finding out what flags have been passed to the backend can be written and implemented with very little work.
The shell script is listed here:

```bash
#!/bin/sh
flagback backend for logging print flags on AIX
date >> /tmp/flags
echo $@ >> /tmp/flags
enq -Pnew_queue_name $@
```

This simple backend simply logs the time that a file was printed, and the flags that would normally be passed to a backend like `piobe`. Once the logging is done, the job is then queued to another queue with the same flags and filename.

To use the script, which we will call flagback, follow these steps:

1. Make sure the script is in a directory accessible by all users, such as `/usr/local/bin`.
2. Make sure the script has permissions so that all users can execute it:
   ```bash
 # chmod 755 /usr/local/bin/flagback
 # chown root:printq /usr/local/bin/flagback
   ```
3. Create the queue:
   ```bash
 # smitty mkpq
 Choose: other: user defined backend
 Name of queue to add: flags
 Name of queue device to add: flagdev
 Backend program pathname: /usr/local/bin/flagback
 Backend output file pathname: /dev/null
   ```

To test the backend, we printed with three print commands. The `lp -o nobanner` command took the queue down because it was an illegal flag when passed to the next queue. The commands and output from the test are shown here:

```bash
lptest 10 10 | qprt -Pflags
lp -o nobanner -d flags /etc/motd
lpr -P flags /etc/motd
cat /tmp/flags.log
Tue Oct 24 17:59:02 CST 2000
/var/spool/qdaemon/t0ET1Ma
Tue Oct 24 18:00:43 CST 2000
nobanner /etc/motd
Tue Oct 24 18:01:47 CST 2000
nobanner /etc/motd
```

324 Printing for Fun and Profit under AIX 5L
The \texttt{lpr} command does not show the original file name because it \textit{spools} the output to the queue by default.

### 7.1.4 Example: Backend script to strip print flags

Sometimes you want to ignore all flags coming in and build your own print command with the flags that you want to use. In this case, you can simply extract the file names from the options passed and build the new command. This example will only work with one file at a time, because we are basing it on the attribute that gives only the last parameter passed to the backend, namely the \texttt{$\$\$\#} \texttt{ksh} construct. Note this seems to work best in an \texttt{eval} statement, as shown below (The sleep gives a little time for the copy to complete):

```bash
#!/bin/ksh
I always like to add some logging in when I write these things
date >> /tmp/flags
eval "qprt -dp -c -z+ -p14 -v8 -Ppcl04 $\$\#"
sleep 5
```

### 7.1.5 Example: Backend script to intercept print flags

When trying to use some of the flags passed, the \texttt{getopts} command can be very useful. See a Korn shell programming book for more details, but this command basically uses a number of flag possibilities to determine which flags to look for. If the character is followed by a colon, then it is expected to have a parameter following the flag. Other advantages of this command are that the parameters can follow the flag directly, with a space, or with a tab. Once inside the \texttt{getopts} loop, you can handle each flag as you wish, by simply ignoring some, while changing others to valid commands. The first script below is a good test script to run from the command line. It expects a parameter for all the flags, except the -c flag.
To turn this into a backend, remove the print statements and replace them with actions that are appropriate, like building a flag string. Then extract the file names and add a print statement. This illustrates how to capture the flags, but uses only the -X flags.

#!/bin/ksh
#
while getopts :J:X:b:cf: arguments
do
  case $arguments in
    X) print "You entered a -X option of $OPTARG";;
    :) print "You forgot the -X argument";;
    J) print "You entered a -J option of $OPTARG";;
    b) print "You entered a -b option of $OPTARG";;
    c) print "You entered a -c option";;
    f) print "You entered a -f option of $OPTARG";;
    \?) print "You entered $OPTARG";;
esac
done
((current_position = OPTIND -1))
shift $current_position
echo "Left at $1"
echo "Number of arguments left is $#"

#!/bin/ksh
# This testpr.sh script is designed to print overlays
# when initiated by HCON, but should also work for other
# types of printing.
#
do
  case $arguments in
    ## $OPTARG
    X) Xflags="-X $OPTARG" ;;
    J) Jflags="-J $OPTARG" ;;
    L) Lflags="-L $OPTARG" ;;
    Z) Zflags="-Z $OPTARG" ;;
    b) bflags="-b $OPTARG" ;;
    ## add other flags here
    y) yflags="-y $OPTARG" ;;
    z) zflags="-z $OPTARG" ;;
    \?) ;;
esac
done
((current_position = OPTIND -1))
shift $current_position
date >> /tmp/flags.out
echo "Number of files to print $#" >> /tmp/flags.out
echo "Pilenames were: $*" >> /tmp/flags.out
qprt -Ppcl -Z! -p14 -f2 -dp -z+ -v8 $Xflags $*
7.1.6 Example: Simple C backends

Although shell scripts are simple to use, and provide some quick debugging capability, they lack the ability to get information from the qdaemon, such as the username, title, queue name, job number and header page information. All this type of information is easily obtained using the libq routines. This is described in the “Printer Backend Overview for Programming” chapter in AIX V4 Printer Guide, SC23-2783, and will not be repeated here. A simple C backend example is available at:

http://service.boulder.ibm.com/rs6k/techdocs/91763041913324.html

7.2 Customizing printer attributes

Common printer setup functions, like input tray selection, beginning font, and page orientation, can be customized to set the default setting for a particular virtual printer by using SMIT or the lsvirprt command.

7.2.1 Setting attribute defaults with SMIT

Most common printer attributes can easily be changed using SMIT starting with the smitty chpq fastpath.

The SMIT characteristics to change/show screen gives four options:

1. Printer setup
2. Default print job attributes
3. Accounting file
4. Queuing disciple

The first two of these options can be used for changing virtual printer attributes and thus setting the defaults for the virtual printer.

Options in printer Setup usually allow you to set:

- AUTOMATIC detection of print file TYPE
- Default paper sizes for all the trays
- Paper trays for header and trailer pages (useful for colored paper)
- Extra flags for header and trailer pages

Options for default print job attributes let you set most attributes that can also be used as command line flags. When possible, the SMIT screen lets you use a pop-up menu to select from allowable choices. Other times the help text assists you on determining the valid information to enter.
The following screen is a sample of the types of things you can change from this SMIT option:

```
Typestyle and Pitch: courier 10
Print Quality: 600
Print Color: black

Page Number where printing should begin: [1]
Print file type: a
Pre-processing filter name: []
Initialize printer?: full initialization
Restore printer?: yes

--- Text Print Options ---

--- Job Processing Options ---

--- Text Formatting Options ---

--- Paper/Page Options ---

--- Header/Trailer Page Options ---

--- Header/Trailer Page Options ---
```

### 7.2.2 Setting attribute defaults with lsvirprt

Using SMIT is the easiest method to change most common attributes, but to make changes to some attributes to do things like increase the number of available font sizes, you must use `lsvirprt`.

The `lsvirprt` command can be used to both list and change attributes. When you start the command, it prompts you for a virtual printer that you select by number. To list an attribute, simply type the attribute name. To make changes to simple attributes, type the attribute name, followed by the equal sign, followed by the value you want to assign. A sample of viewing and changing the pitch is shown here:
To edit more complex attributes, such as ci, use the tilde operator to get a vi session for editing. The following screen was obtained with ci~v and shows the different attributes included by ci in building the initialization screen:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>_p</td>
<td>PITCH (characters per inch)</td>
<td>10</td>
</tr>
</tbody>
</table>

To edit more complex attributes, such as ci, use the tilde operator to get a vi session for editing. The following screen was obtained with ci~v and shows the different attributes included by ci in building the initialization screen:

```
Command To Initialize the Printer
```

The %I indicates that the attribute contents are to be included in this attribute. The description tells you which attributes contribute to which part of the setup. Each attribute must be changed separately.
7.2.3 Using command line options to customize a single print job

Individual users can also customize their print jobs if they use the `qprt` command, which was designed to use with the virtual printer, or the `lp` command with `-o` options. The following example shows the `lp` equivalent for a simple `qprt` command for printing in landscape orientation:

```
$ qprt -z+ -P laser3
$ lp -o -z -o + -d laser3
```

The most common command line customizations are shown in Table 18.

Table 18. Commonly used `qprt` flags

<table>
<thead>
<tr>
<th><code>qprt</code> flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-dp</code></td>
<td>Sets the data type. Use <code>-dp</code> for passthrough, <code>-da</code> for text and <code>-ds</code> for PostScript.</td>
</tr>
<tr>
<td><code>-p17</code></td>
<td>Sets the pitch (characters per inch). Usually, the allowed values are <code>-p10</code>, <code>-p12</code>, and <code>-p17</code>. Sometimes the <code>-p17</code> needs to be combined with <code>-s lineprinter</code>.</td>
</tr>
<tr>
<td><code>-z+</code></td>
<td>Sets the page orientation. <code>-z+</code> is landscape and <code>-z!</code> is portrait. Sometimes <code>-z0</code>, <code>-z1</code>, <code>-z2</code> and <code>-z3</code> are used.</td>
</tr>
<tr>
<td><code>-Y1</code></td>
<td>Sets duplex or simplex. <code>-Y0</code> simplex, <code>-Y1</code> duplex, <code>-Y2</code> simplex tumble and <code>-Y3</code> duplex tumble.</td>
</tr>
<tr>
<td><code>-u2</code></td>
<td>Selects the input paper tray. The number is printer dependent and you may need to do some testing.</td>
</tr>
<tr>
<td><code>-j!</code></td>
<td>Do not initialize the printer; <code>-j+</code> initializes, which is the default.</td>
</tr>
<tr>
<td><code>-v8</code></td>
<td>Sets the lines per inch. The usual allowed values are <code>-v6</code> and <code>-v8</code>.</td>
</tr>
<tr>
<td><code>-w80</code></td>
<td>Sets the page width in columns</td>
</tr>
<tr>
<td><code>-l66</code></td>
<td>Sets the page length in lines</td>
</tr>
</tbody>
</table>

These flags will handle 90 percent of your printing needs.

7.3 Customizing virtual printers

The virtual printer files on AIX provide similar capabilities to the combination of interface scripts and the terminfo database in System V printing.

7.3.1 How to find if a printer is supported

To find out if a printer is supported, simply issue the command:

```
lsdev -Pc printer > /tmp/supported.printers
```
Most printers will not be installed by default, but can be installed from the AIX 5L install media from the printers.

### 7.3.2 Understanding the colon file syntax

The colon file syntax is completely defined in the “Printer Colon File Conventions” chapter of *AIX 4.3 Guide to Printers and Printing*, SC23-4130, which is available on the Web at:


Each line in the colon file consists of five fields, each separated by colons (hence the name colon file). The five fields are:

1. **Message catalog ID**

   Identifies the message catalog where the attribute description is stored. The message catalog ID can take any of three forms:
   - Null string: The string value for the mD attribute is assumed to be the file name of the message catalog (for example, mydescriptors.cat).
   - One character: An abbreviation for pioattrx.cat, where x is the one-character catalog ID. This form of the catalog ID is normally used only by the operating system.
   - Catalog file name: The file name of the message catalog (for example, mydescriptors.cat).

2. **Message number**

   Identifies the message index in the catalog that contains the description of this attribute. Leading zeros are ignored.

3. **Attribute name**

   Specifies two characters, except for group header attributes, which are five characters.

4. **Limits field**

   Specifies limits for the attributes that are used in validating administrator entries when setting the virtual printer defaults as well as user entries when printing with the `qprt` flags.

5. **Attribute value string**

   The value assigned to the virtual printer attribute, which can be from 0 to 1000 characters.

The following is a sample entry for the width attribute:
The attribute name is _w, the attribute value string is 80, and the attribute description is stored in message number 23 in the message catalog specified by the mD attribute.

Note
Message catalogs are primarily used for national language support (NLS), so the actual message printed is determined by the users locale. If the message is the same for multiple virtual printers, they can all use the same message catalog and number.

More information on names, limits, fields, and detailed formatting is available in Chapter 4 “Printer, Plotter, and Spooler Subsystem Programming” of AIX V4 Printer Guide, SC23-2783.

7.3.3 Listing virtual printer attributes
Virtual printer attributes can be viewed using the lsvirprt command. Attributes can also be listed and changed using SMIT with the fastpath smitty chpq.

7.3.3.1 Listing attributes with lsvirprt
Attributes listed with lsvirprt, which uses the national language support based message catalog to display the printer attribute description, are displayed in the language based on the users locale.

To list all of the attributes for a particular virtual printer from the queue asc and queue device lp0, use:

```
lsvirprt -q asc -l lp0 > /tmp/ascvp.txt
```

Individual attributes can also be listed by adding the -a flag followed by the attribute name, as shown here:

```
lsvirprt -q 3130pcl -d @aus3130b -a _s
Name Description Value
_s TYPE STYLE (name) courier
```

```
lsvirprt -q 3130pcl -d @aus3130b -a _p
Name Description Value
_p PITCH (characters per inch) 10
```
7.3.3.2 Listing and changing attributes with SMIT

To list or change virtual printer default attributes for a printer, use the SMIT fastpath `smitty chpq`, choose the virtual printer name, and select the category of attributes. To list or change attributes, follow these steps:

1. **Start SMIT with fastpath:**
   
   ```bash
 # smitty chpq
   ```

2. **Enter the PRINT QUEUE name.**

3. **Select the type of attributes to change from four choices (option 2 is most often chosen):**
   
   a. Printer Setup
   
   b. Default Print Job Attributes
   
   c. Accounting File
   
   d. Queuing Discipline

4. **Scroll down to see all the attributes.**

5. **Press the F4 key to see the valid entries that have been defined by the limits field. Select the desired value and press Enter to make changes:**

   ```text
 . Change / Show Default Print Job Attributes
 Type or select values in entry fields. Press Enter AFTER making all desired changes.

 [TOP] [Entry Fields]
 Print queue name 3130pcl
 Printer name @aus3130b

 --------------- Text Print Options ----------------
 TYPESTYLE and PITCH courier 10 +

 ----------- Job Processing Options -----------
 PAGE NUMBER where printing should begin [1] +#
 Print file TYPE a +
 Pre-processing FILTER NAME [] +
 INITIALIZE printer? full initialization +
 RESTORE printer? yes +

 --------------- Text Formatting Options --------
 [MORE...24]

 F1=Help F2=Refresh F3=Cancel F4=List
 F5=Reset F6=Command F7=Edit F8=Image
 F9=Shell F10=Exit Enter=Do
   ```
7.3.4 Key virtual printer attributes

A virtual printer is actually a fairly simple interface to a printer. The actions of the virtual printer are keyed by just a handful of flag attributes. Flag attributes are attributes that begin with an underscore. They are called flag attributes because they can be used from the command line as flags to the `qprt` AIX print command, or by using the `lp -o` flag. These attributes can also be set with the `lsvirprt` command or in AIX 4 with `smitty chpq`.

The key FLAG attributes that control all the function of the virtual printer are shown in Table 19. There are many other flag attributes that control thinks like pitch and orientation, but if the `_j` attribute is turned off, these will have no affect.

Table 19 shows the key virtual printer attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Attribute Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>_j</code></td>
<td>Determines if setup commands are sent to the printer at the front of the print job. Controls the output of the commands in the <code>ci</code> attribute. Command line options are <code>qprt -j+</code> for initialization and <code>qprt -j!</code> for no initialization.</td>
</tr>
</tbody>
</table>
### Chapter 7. PowerPC advanced printing

#### 7.3.5 Adding a new printer type to the predefined database

The easiest way to add a new printer type is to find an existing virtual printer that is close to the one you are going to create, creating a queue with that virtual printer, making the modifications to that virtual printer, and then using the `piopredef` command to create the new predef file. Once that is done, only minor changes are needed with `vi` to set the new printer name.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Attribute Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.f</td>
<td>Determines the filter, if any should be run, to preprocess the print file before sending to the formatter. Takes a one character argument like <code>.f=1</code>. This filter program would be specified in <code>qprt -f1</code> flag. The actual program is designated by the <code>fc</code> attribute for filter <code>c</code>, by <code>f1</code> for user filter <code>1</code>.</td>
</tr>
<tr>
<td>.d</td>
<td>Determines type of data formatting, if any should take place. Takes a one character argument, such as <code>.d=a</code>. The formatter to use would then be in attribute <code>ia</code>. The <code>qprt</code> options are usually <code>qprt -da</code> for ASCII, <code>-dp</code> for passthrough, and <code>-ds</code> for PostScript.</td>
</tr>
<tr>
<td>.X</td>
<td>Determines codepage of Input data. Determines if box characters, symbols, Euro character, and so on, will be printed. The default is ISO8859-1. For box character support, use <code>qprt -X IBM850</code>.</td>
</tr>
<tr>
<td>.J</td>
<td>Determines if printer is reset to specified settings at the end of the job. Controls the output of the commands in the <code>cr</code> attribute. Command line options are <code>qprt -J+</code> for reset and <code>-J!</code> for no reset.</td>
</tr>
<tr>
<td>sh</td>
<td>Non-flag determines header page programs and templates. Controlled by header = value in <code>/etc/qconfig</code> or the <code>-Ban enq or qprt</code> flag. <code>-h</code> turns off for <code>lpr</code>. This attribute contains the full path name of the program that generates header pages. Setting the attribute to NULL removes any chance of headers.</td>
</tr>
<tr>
<td>.Z</td>
<td>Determines if form feed sent at end of job. The command line options are <code>qprt -Z+</code> to send the form feed, and <code>-Z!</code> to not add another form feed, if one already exists at the end of the file.</td>
</tr>
<tr>
<td>ci</td>
<td>The <code>ci</code> attribute contains the commands used to initialize the printer when <code>.j=+</code>. This attribute generally includes other attributes which are used for individual setup functions, such as <code>eR</code> for PCL reset, <code>eP</code> for pitch, <code>eu</code> for input tray, and <code>es</code> for page size. Each of these attributes contains stack code to generate the command sequence to be sent to the printer. This is similar to the use of terminfo file attributes with System V interface programs.</td>
</tr>
</tbody>
</table>
Creating a new predefined printer with minor changes

In this example, the new printer that we are going to add is simply going to be a printer that has different default settings for the page orientation and fonts. The steps for this example are:

1. Create a dummy print file in /dev:
   
   ```
 # touch /dev/lpx
 # chown root:printq /dev/lpx
 # chmod 755 > /dev/lpx
   ```

2. Create a virtual printer using the `smitty mkpq` fastpath.

3. Choose the File in the /dev/directory.

4. For the example, choose the Lexmark and lexOptraE.

5. Select the lpx file for the device name:
   
   ```
 Name of existing file in the /dev directory? lpx
   ```

6. Enter a queue name, such as newlex:
   
   ```
 Name of NEW print queues to add
 enhanced PCL (R) 5 emulation newlex
   ```

7. Press Enter to add the printer, and F10 to exit SMIT

8. Modify the virtual printer starting with `smitty chpq`.

9. Enter newlex for the printer name and press Enter.

10. Select two Default Print Job Attributes.

11. Change Pitch characters per inch to 17.

12. Change Page ORIENTATION to landscape.

13. Press Enter to save the changes and F10 to exit SMIT.

14. Create a new predef file with `piopredef`.
   
   ```
 # piopredef -q newlex -d lpx -s pcl -t lexOptraE
   ```

15. Change to the predef directory:
   
   ```
 # cd /usr/lib/lpd/pio/predef
   ```

16. Edit the file lexOptraE.pcl that was created with `piopredef`.

17. Change the mL attribute to read:
   
   ```
 :331:mL:Lexmark Optra E landscape laser printer
   ```

18. Add a new printer and you will find the new printer in the list.
When you print, you will find that it prints in landscape with a pitch of 17.

### 7.3.7 Adding more font sizes to an HP LaserJet virtual printer

By default, all HP laserjet virtual printers have only the font sizes courier 10, 12, and 17, courier bold 10 and 12, courier italic 10 and 12, and lineprinter 17 available. The printers will actually support a larger range of values, but these give convenient page widths and lengths. In this example, the courier 15 font will be added to the virtual printer. For this virtual printer, the font sizes and styles are controlled by the mU attribute.

The following procedure can be used to add a courier 15 font to the available options for the HP Laserjet 4500 printer:

1. Add a virtual printer named hp4500 using the HP Laserjet 4500 printer. (Procedures for adding a virtual printer are described in Chapter 5, “PowerPC print subsystem basics” on page 197.)

2. Use `lsvirprt` to make modifications:

   ```
 # lsvirprt
   ```

3. Enter the number in front of the hp4500 virtual printer.

4. Enter `mU-v` to use a vi type editor to edit the mU attribute. This will display a screen that shows the stack language for this attribute:
5. Using the vi **yank** and **put** commands, copy the three lines for courier[12.,
and add them after this entry and before the courier-bold entry, and
change the 12 to 15 on the second entry so it looks like:

```plaintext
'courier[12,4099;3;0(' %ImB INCLUDE: (List of Stage 2 Translate Tables (code pages)
Supported by the Font)
')]courier-bold[12,4099;3;0(' %ImB INCLUDE: (List of Stage 2 Translate Tables (code pages)
Supported by the Font)
')]courier-italic[12,4099;0;1(' %ImB INCLUDE: (List of Stage 2 Translate Tables (code pages)
Supported by the Font)
')]
```

6. Save the changes with the vi command :wq.

7. Test the SMIT settings by setting the pitch from **smitty chpq** option 2. The
new font should show up in the popup menu selection along with the
previously defined fonts:
8. Test by printing with the `qprt -p 15` flag.

```bash
lptest 60 10 | qprt -p 15 -P hp4500
```

You could make this the default setting for the printer by using the `piopredef` command, as shown in the previous example.

The other option for using multiple font sizes is to use the LexMark Optra virtual printers as an example for making modification. These virtual printers allow a much wider range of font sizes and styles.

### 7.3.8 Adding a printer with ledger size paper

Many times the only change to one virtual printer to support a new printer type is the ability to specify a new paper type, such as ledger. Making changes to support a new paper type require an in depth knowledge of the virtual printer syntax, which attributes are used, and the exact size in pels of each page size. For this reason, we would recommend that you start with a printer such as the HP Laserjet 8100, and make changes to other attributes, such as the input and output trays. To find which printers support ledger paper, change to directory `/usr/lib/lpd/pio/predef`, and use the `grep` command for ledger.

### 7.3.8.1 Complex solution to ledger paper size

To make a general purpose virtual printer which can print to ledger pager and other sizes, you will have to change many attributes. Table 20 on page 340

---

**Chapter 7. PowerPC advanced printing** 339
shows the attributes that are used in properly formatting the correct paper size.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>es</td>
<td>Generates the paper size command sent to the printer by \texttt{ci} (command to initialize printer).</td>
</tr>
<tr>
<td>WE</td>
<td>Ring list used by SMIT limits field for table of envelope sizes allowed.</td>
</tr>
<tr>
<td>WP</td>
<td>Ring List used by SMIT limits field for table of paper sizes allowed.</td>
</tr>
<tr>
<td>wJ</td>
<td>Paper size dimensions (pels) used by text formatter to determine number of characters for page width in portrait orientation.</td>
</tr>
<tr>
<td>wK</td>
<td>Paper size dimensions (pels) used by text formatter to determine number of characters for page length in portrait orientation.</td>
</tr>
<tr>
<td>wM</td>
<td>Paper size dimensions (pels) used by text formatter to determine number of characters for page width in landscape orientation.</td>
</tr>
<tr>
<td>wR</td>
<td>Paper size dimensions (pels) used by text formatter to determine number of characters for page length in landscape orientation.</td>
</tr>
<tr>
<td>s3, s4, s5</td>
<td>Default paper size values for the envelope trays.</td>
</tr>
<tr>
<td>s1, s2, s7</td>
<td>Default paper size for the standard trays.</td>
</tr>
</tbody>
</table>

To make these changes to the hplj-4v.pcl file, follow these steps:

1. Change to the predef directory:
   ```
 # cd /usr/lib/lpd/pio/predef
   ```

2. Back up the original file:
   ```
 # mkdir /usr/local/predef
 # cp hplj-4v.pcl /usr/local/predef
   ```

3. Edit the hplj-4v.pcl file and replace the attribute lines with those shown here:
   ```
 :837:s3:S[120]I[1810522]En%IWE:8
 :836:s5:S[117]I[1810522]En%IWE:8
 :763:WE::R[10,DL=8,9]
 :762:WP::R[letter,legal,ledger,A3,A4,B4,B5=1,2,3,4,5,6,7]:1
 :461:wJ::G_Q%Pg%G%Mu%{5}%=tt%%Gs5%{8}=tt%{1157}%e%{1087}%e%e%gq%{1}%=tt%{2400}%e%gq%{2}%=tt%{2400}%e%gq%{3}%=tt%{3150}%e%gq%{4}%=tt%{2338}%e%gq%{5}%=tt%{3365}%e%gq%{6}%=tt%{2893}%e%{2008}%;
   ```
Once this is done, the ledger option will show in the SMIT attributes, and can be used from the `qprt -Q 3` option.

### 7.3.8.2 Simple solution to ledger paper size

The above solution gives total flexibility to the virtual printer. However, the PowerPC print subsystem will let you create multiple queues for the same printer. So if you are willing to live with a simple ledger-only virtual print queue and select ledger paper by printing to that queue, then you could modify the `hplj-v.pcl` queue in a simpler manner.

In this solution, you must first agree on some standard options and hardcode the virtual printer to use them. You will place the virtual printer in passthrough mode, so the formatter does not have to determine the line length, and therefore we will use a command to tell the printer to add carriage returns to line feeds.

First, agree on the following settings:

- 17 cpi
- Courier
- 8 lpi
- Optional Paper Tray
- Page size of 11 x 17
- Simplex
- Portrait

An entry in the colon file must be on a single line, even though they are shown wrapped in the above example text.
To customize this virtual printer, follow these steps:

1. Use `smitty mkpq` to make a new queue for this printer based on the Hewlett-Packard LaserJet 4.
2. Create a PCL queue and name it `ledger` (Note that the name you use is optional).
3. Type `lsvinprt` to modify the virtual printer.
4. Choose `ledger` (or the name you named this queue).
5. The screen will show:
   
   ledger            jwt      hplj-4  (PCL)

   To LIST attributes, enter AttributeName1 ... (* for all attributes)
   To CHANGE an attribute value, enter AttributeName=NewValue
   To FORMAT and EDIT an attribute value, enter AttributeName-v
   To EDIT the attribute file, enter -v
   To terminate, press Enter:

6. Set the line termination mode to have the LaserJet add carriage returns:
   - Type `ct=\33&k2G`.
   - This is the PCL printer command to tell the printer to add CR to LF.
7. Set the page size to ledger:
   - Type `es=\33&l6A`
   - This is the PCL command for ledger paper size.
8. Set the paper tray to the new tray. Here you may have to play around because HP has changed these a number of times for different printer models. Here are some options for the HP Laserjet 4V:
   - Type `et=\33&l5H` Optional 500/2000 Sheet, Lower Cassette
   - Type `et=\33&l1H` Tray 2
   - Type `et=\33&l4H` Multipurpose Tray - Tray 3
   - Type `et=\33&l8H` Tray 1
9. Turn off formatting in AIX so it does not add line feeds and carriage returns, or form feeds to shorten the job.
   - Type `d=p` Puts virtual printer in passthrough mode.
10. Set the pitch to 17.
    - Type `p=17`.
11. Set the spacing to 8 lines per inch.
   - Type: \texttt{v=8}.

12. Press Enter to exit \texttt{lsvirprt} and save settings.

Once this is done, you can test the virtual printer, and if it works, use the \texttt{piopredef} command to create a custom ledger predef file.

### 7.3.9 Adding special tab support

By default, the ASCII based virtual printer formatting program replaces each tab with eight spaces. The actual tab replacement algorithm is controlled by the \texttt{wh} attribute. To make changes to the \texttt{wh} attribute, use the \texttt{lsvirprt} command and type \texttt{wh-v}.

\texttt{lsvirprt}

choose the appropriate queue.

When prompted by:
- To LIST attributes, enter AttributeName ...
- To CHANGE an attribute value, enter AttributeName=NewValue
- To FORMAT and EDIT an attribute value, enter AttributeName-v
- To EDIT the attribute file, enter -v
- To terminate, press Enter: \texttt{wh-v}

This gives a vi editor session to modify the \texttt{wh} attribute, as shown here:

```
Current Horizontal Tab Settings (terminated by null)
wh = \%{9}\%Px\%{28}\%Py\%gy\%t\%wy\%gx\{8\} +%\%Px\%;%;\0
\%{9} PUSH: (Integer Constant 9)
\%Px POP -> Internal Variable x
\%{28} PUSH: (Integer Constant 28)
\%Py POP -> Internal Variable y
\%? <IF>
\%gy PUSH: (Internal Variable y)
\%t <THEN>
\%wy <WHILE> Loop (Counter is in Internal Variable %c)
%g\%x PUSH: (Internal Variable x)
%c POP -> Low-Order Byte -> OUTPUT
%g\%x PUSH: (Internal Variable x)
%{8} PUSH: (Integer Constant 8)
%+ PUSH: (pop2 + pop1)
%\%Px POP -> Internal Variable x
\%; <END>
\%; <END>
'\0'
```

The constant 9 is the variable for the first tab column, the constant 8 is the distance between tabs. The constant 28 is the number of tabs that get sent.
To have the first tab at column 50 with tabs 10 apart, change this to:

```
%{50} PUSH: (Integer Constant 9) <--- 1st column

%{28} PUSH: (Integer Constant 28)

%? <IF>

%gy PUSH: (Internal Variable y)
%t <THEN>

%wy <WHILE> Loop (Counter is in Internal Variable %c)
%gx PUSH: (Internal Variable x)
%c POP -> Low-Order Byte -> OUTPUT <--- Gets send to the formatter.
%gx PUSH: (Internal Variable x)

%{10} PUSH: (Integer Constant 8) <----- between columns
%+ PUSH: (pop2 + pop1)
%Px POP -> Internal Variable x <----- Build the next column
%
\0
```

Another method for changing tabs is to use the `expand` filter as one of the user filters. This solution solves the problem when using a postscript queue for ASCII text. To add a user filter that calls the expand utility before passing the file to `enscript` use these steps:

```
chvirprt -q ps -d lp0 -a "f2=/usr/bin/expand -3"
chvirprt -q ps -d lp0 -a "f=2"
chvirprt -q ps -d lp0 -a "d=a"
```

ASCII files printed to this queue will have each tab replaced by three spaces.

### 7.4 Adding form support to PowerPC printing

The support for forms that are loaded in a printer are not supported by standard PowerPC queues and virtual printers. This section describes how they can be implemented with custom scripts using the native capabilities of the print subsystem. It also will help you understand that if you need this capability that you probably want to move to the System V print subsystem.

#### 7.4.1 What needs to be added for supporting forms?

The commands that need to be added to provide this support are ones that emulate the `lpforms` and `lpadmin` commands that the register forms, and mount and unmount them. One method of doing this is to use multiple PowerPC queues for each printer, with special names associated for each form. Scripts for mounting a form would disable all names associated with other forms, and mount the queue associated with a particular form. Users would print with an alias script that would actually build the queue name.

---

344   Printing for Fun and Profit under AIX 5L
based on the user specified printer and form names. The alias script would also check against a user database to see if the user is authorized to print to the form. There would also need to be an alias of the `lpstat` command for returning the printer information in a user friendly manner based on the form. Scripts are needed to create the queues when a form is added so that printer administration will be similar to System V.

### 7.4.2 Adding a form

Forms could be added as separate queue devices, or they could be added as separate queues in the PowerPC print subsystem with names that reflect the queue name.

For example, the queue name for the printer without a form will be `tst`, with the form check the queue name will be `tst-check`, with the form order, the queue name will be `tst-order`. The `tst` queue will be made as a normal virtual printer with `smitty mkpq`. If this is a local queue to `/dev/lp03`, then the other virtual printers will be made as type file instead of local to point to the same printer. Once the queues are added, disable the `tst-check` and `tst-order` queues. A normal `enq` will show the three queues like this:

```
$ enq -isWA | grep tst
 tst lpx READY
 tst-check lpx DOWN
 tst-order lpx DOWN
```

The `-i` and `-s` flags for enq give me only the local jobs on the queue, and the `-W` flag give me the entire long name of the queue. This will be useful in creating the commands to list the forms and the custom `lp` command to check that the form exists when printing.

The `lpforms` command can be used to build the form just like in System V printing. The custom command will need to be able to read the file interpret it. For example, the form paycheck description would be stored in `/etc/lp/forms/paycheck/describe`.

### 7.4.3 Modifying a form

The general modification of the form would be to set the pitch, page orientation and the like. The administrator can do this with the normal `smitty chpq` or `lsvirprt` commands, or use `lpforms` to change the form definitions.
7.4.4 Removing a form
Removing the form would require that the queue be removed, and that the form definition file also be removed. This could be done using `lpforms -f form-name -x`.

7.4.5 Displaying a form description
The administrator can list the forms with `lpforms` the same as System V, but the user would need a custom version of `lpstat` to give the same output.

7.4.6 Access lists for forms
You can specify allow or deny users access to forms using the `lpforms` command. This example allows only users matt, heidi, and michele to print to the form.

```sh
lpforms -f paycheck -u allow:matt,heidi,michele
```

This information is stored in `/etc/lp/forms/paycheck/allow`.

7.4.7 Alerting the operator to mount a form
The alert could be done through the custom `lp` command, which could either send a screen message to the administrators console, or e-mail to the administrator. The message to the screen could be repeated by a loop in a shell script. The administrators console tty or pty number could be stored in a file.

7.4.8 Mounting and unmounting a form
The procedure to unmount the current form and mount the next one would be as follows:

1. Disable the queue associated with the current form, using the `disable form`. This could be done with a custom command.
2. Wait until the queue is down, and physically mount the form in the printer.
3. Use a custom `align form` script to print an alignment job.
4. Re-enable the form using the `enable` command for the queue that is associated with the form.

For example, you have the printer `tst` with forms `check` and `order` as described earlier. If no forms are currently mounted, then the `tst` queue will be active. If you want to mount the check form, this would be the procedure:

```sh
disable tst
lpstat -vtst
```
Physically mount the form and then use:

```
align check
enable tst-check
```

The align check would have to put the jobs that are queued on hold, and enable the queue and print a single job at a time, and when done, take the jobs off hold.

### 7.4.9 Printing using a form

The main `lp` command link will have to be changed to point to a custom version of `lp` that does most of the work. This `lp` shell script is executed before the job is queued, and thus can intercept the `-f` form-name, and `-d queue or -d any flag, and turn them into commands that will print to the correct queue for that printer name.

### 7.5 PowerPC print filters

Print filters can be used by the virtual printer to make changes to a file before it is sent to the printer. Most filters are designed for transforming the input file by adding and stripping characters, or by doing some kind of transformation on the file. Filters can also be used for downloading fonts and page overlays used as electronic forms. One of the advantages of the virtual printer is that several filters can be installed, and they can be selected individually by users with the `qprt -f` flag. This section describes the default filters as well as procedures for adding your own custom filter.

#### 7.5.1 Default filters

Most virtual printers have some filters defined by default. For PCL printers, the default filters are:

- `/usr/bin/pr` The pr filter is referenced by `qprt -fp`, and can be used to do much of the same type of text file formatting that the virtual printer does, such as wrapping lines and limiting page size. The pr filter can also be used to add page titles, page numbers, and can even be used to generate 2-up output.

- `/usr/ucb/fpr` The fpr filter, also known as the asa filter, is referenced by the `qprt -ff` flag. It is used to handle files formatted with FORTRAN column one formatting commands.

- `/usr/bin/hplj` The hplj filter is referenced as `qprt -fn`. This filter is used to convert ditroff files to PCL format.
passthrough  The qprt -fl flag causes the text formatter to be bypassed. It is not really a filter at all, but acts much like the qprt -dp flag for passing files like those created by PC Windows based applications to a printer without creating problems that might otherwise occur.

PostScript virtual printers also use the pr and fpr filters. Additional default filters for PostScript virtual printers include:

/usr/bin/psc  The psc filter is referenced by the qprt -fn flag. This filter is used to convert ditroff files to PostScript format.

/usr/bin/psplot  The psplot filter is referenced by the qprt -fg flag. This filter is used to convert special Sun graphics files to PostScript.

/usr/bin/enscript  Although not exactly called as a filter, text files printed to a PostScript queue can be converted to PostScript using enscript if printed with the qprt -da flag, or if automatic detection is turned on via SMIT.

It is also possible to use the System V print filters with the PowerPC print subsystem.

7.5.2 What makes a good filter program

Here are some guidelines for choosing an appropriate filter:

- Is the program capable of reading data from standard input and writing data to standard output?
- Does the program stand alone without the need for configuration files?
- Can the filter input file formats that are likely to be printed?
- Can the filter output file formats that are supported on your printers?
- Is the program accessible to all users who will print with it?

7.5.3 Defining user print filters

A user print filter can be added through SMIT starting from the smitty spooler fastpath and using the Programming Tools menu option.

To add a user defined filter, follow these steps:

1. Start SMIT with spooler fastpath:

   # smitty spooler

2. Choose Programming Tools.
3. Choose Change / Show Preprocessing Filters.
4. Choose the virtual printer name.
5. Enter the complete pathname of the filter in User defined filter 1-5.
6. Press Enter to save the changes and F10 to exit SMIT.

The filters can be set as default by setting the _f virtual printer attribute using lsvirprt, or through SMIT Change / Show Default Print Attributes under the field Pre-processing filter name by selecting one of the standard filters or the user defined filter.

7.5.4 Using a print filter to remove or add carriage returns

Files that need to be printed passthrough because they contain graphics or other special formatting often end up printing with a stair-step pattern because there are no carriage returns added. This can be solved by adding code to tell the printer to add carriage returns or by a simple sed filter. Simply add the following filter to User defined filter 1.

```
/usr/bin/sed -e "s/$/\015/g"
```

This filter adds a carriage return (\015 is an octal representation of a carriage return) at the beginning of each new line ($ means new line). Now print the file with the qprt -f1 flag, as shown here:

```
$ lptest 5 5 | qprt -f1 -dp -Ptext
```

To test the filter from the command line, use:

```
$ lptest 5 5 | /usr/bin/sed -e "s/$/\ctrl-V\ctrl-M/g" | od -a
```

You need to use Ctrl-V and Ctrl-M, because of the differences in the way ksh and the virtual parse the commands.

The sed filter can be also used to do simply substitution filtering, such as removing carriage returns that are causing double spacing. In this case, change User defined filter 2 to:

```
/usr/bin/sed -e "s/\015//g"
```

Printing a file with extra carriage returns will now strip the carriage returns so when the virtual printer adds new ones, there will not be two in a row. To print using this filter, use the following command:

```
$ qprt -f2 -Ptext /tmp/withcr.file
```

The tr filter is also good for this type of character translation:
7.5.5 Using print filters for banner headers

The header page in AIX printing is generated by the virtual printer, which calls a program called `pioburst`. The program name of the header program, and the attributes passed to the program are defined in the virtual printer attribute `sh`. By modifying this attribute we can call our own header program, or we can change the template used by the `pioburst` program.

With PostScript and PCL printers, it is probably easiest to change the header templates. These templates are in `/usr/lib/lpd/pio/burst`, and have the name `H.ascii` for the ASCII text and PCL queues and `H.ps` for Postscript queues. By adding format commands for the printer to these templates you can change the size and information provided on these pages, and even include graphics such as a company logo. A method based on this is described in Section 7.9.5, “Example: PCL header page with large user name” on page 360 and Section 7.9.6, “Example: PostScript header page with large user name” on page 361.

Dot matrix printers usually do not have the capability to print with jumbo fonts, but there is a UNIX program that comes with AIX that can generate large characters from normal print characters. This program is called `banner`. The output from `banner` looks like:

```
######
#
#####
#
#
######
```

To see the output for your ID type:

```
$ banner $USER
```

This filter can be written either with a C program, a ksh script, or even a perl or other script. The key is that the program outputs to standard out (stdio), and after printing the banner page, must read the data file from standard in, and pass it on through to the printer.

The example used here will use the simple shell script shown here:
To set up the filter, follow these steps:

1. Place the program or script in /usr/bin/bigbanner.

2. Make sure the program is executable by all. Make the owner root and the group printq.

   ```bash
 # chmod 755 /usr/bin/bigbanner
 # chown root:printq /usr/bin/bigbanner
   ```

3. Modify the virtual printer with `lsvirprt` or `smitty spooler`:

   - Using `lsvirprt`:

     ```bash
 lsvirprt
 Select the queue
 f=1
 f1=/usr/bin/bigbanner
     ```

   - Using SMIT fastpath `smitty spooler`:

     ```bash
 smitty spooler
 Choose: Programming Tools
 Choose: Change / Show Pre-processing Filters
 Select the queue
 User defined filter 1 [/usr/bin/bigbanner]
 smitty spooler
 Choose: Change / Show Print Queue Characteristics
 Select the queue
 Choose: 2 Default Print Job Attributes
 for Pre-processing FILTER NAME:
 Select: 1 User defined filter 1
     ```

Now turn off the normal header pages and you are set to print with banner header pages.

### 7.5.6 Using print filters for file conversion

The standard fpr and hplj filters convert from one file input format to another. It is also possible to add your own filters for doing this.
7.5.7 Using filters for electronic form download

A filter can be used for downloading an electronic form for PCL-based printers. The form consists of PCL macro commands that can be used to print the form on every page, or print the form when selected.

7.6 PostScript printers

PostScript printers are supported as a standard type of virtual printer in AIX. The following sections describe some of the unique capabilities of the AIX PostScript virtual printers.

7.6.1 PostScript printer initialization

The PostScript virtual printer adds only a small amount of initialization for the printer, such as input and output tray selection, simple or duplex, and resolution. The PostScript formatter does not modify the PostScript file in any way.

A typical PostScript file’s trip through the virtual printer includes:

- Addition of a PostScript header page
- Processing by any user specified print filters
- Initializing the printer by:
  - Putting the printer in PostScript mode using a PJL (Printer Job Language) command.
  - Setting the printer resolution using a PJL command.
  - Setting the plex mode to either simplex or duplex with a statusdict command.
  - Setting the paper input tray with the statusdict command.

It is usually assumed that a PostScript file will provide the rest of the formatting, including setting fonts, page orientation, and paper size. These features are usually a function of the application generating the file.

7.6.2 Printing simple ASCII text to PostScript printers

PostScript printer support also includes the ability to convert simple ASCII text files to PostScript using enscript. In this mode, a number of the command line flags and SMIT selections are available for choosing options such as font, page title, lines per page, and gaudy mode.
Three ways that can be used to print simple text files to PostScript printers are:

- Set up the PostScript printer to *sniff* for text files and call *enscript*.
- Use the *qprt -da* flag to print tell a PostScript virtual printer to use *enscript*.
- Use *enscript* before sending the file to the queue.

For any of this to work, you will have to install *enscript*, which is a part of the text formatting services in fileset bos.txt.ts.

### 7.6.2.1 Automatic detection of text by PostScript virtual printer

By default, the ability to automatically detect text files is turned off. This is because the test to determine if a file is PostScript or not is based only on the first few characters in the file. If detection is turned on, then the formatter will look for %! or ctrl-D%!. All files that do not start with these characters will be treated as text files.

To turn on automatic detection of file type, follow these steps:

1. Start SMIT with the *chpq* fastpath
   
   ```
 # smitty chpq
   ```

2. Choose option 1) Change / Show Printer Setup.

3. Change Automatic detection of print file TYPE to be done? to yes.

Test this by printing both text and PostScript files.

### 7.6.2.2 Using the *qprt -da* flag

If you know that you will be printing a text file to a PostScript queue, you can force it to use *enscript* by using the *qprt -da* flag. To see the command that will be executed when this is done, use *lsvirprt* and look at the ia attribute:

```
ASCII
ia = { test "$PIOTITLE" != "%I@1" && BFLAG=" -b $PIOTITLE "; if [[! -x /usr/bin/enscript]]; then %ide/piomsg -c picattr1.cat -s l -n 801 "Error\072 The /usr/bin/enscript command was not found."; exit 1; fi; /usr/bin/enscript -M%IWQ %>%CX%e%[X]%e -X%I_X%; -p -g%G_2%t-%e%G_z%t-r% %G_3%G-%e%G_1%t%; %G_L%e-c%; %Ch%fbb%e%L_h%t-b%I_h%e$BFLAG%-%L_h%t-%e%G_1%t-%G_p%d%-%G_p%d%-%G_L%t-2%-%G_p%d%-%G_4%t -g%G_5%t-%e%L_f%e-%I@1%2>/dev/null;} | %Is
```

Notice how this pipes the output to the ‘is’ formatter, which is the PostScript formatter.
When using the -da flag, you can also use other flags, such as the -p for font size, -l for page length, and -s for font style.

7.6.2.3 Using enscript from the command line

The enscript filter can also be used from the command line for more control, using all the options specified in the man page. Because this command can be used by both the PowerPC print subsystem and the System V print subsystem, it is discussed in more detail in the Chapter 9, “Printing tips and utilities” on page 435.

7.7 Downloadable font support

Some virtual printers support the download of fonts, while others do not. For PostScript printers, a filter can be used to prepend a download font to the PostScript print job. It is also possible to download PCL fonts to the flash memory of some printers.

7.7.1 Using the mF attribute to download fonts

The mF attribute can be used for the full path name of a font to be downloaded. The font must contain the commands to properly install itself once it is sent to the printer. This can be used with type 1 PostScript fonts.

Adobe Type 1 Fonts come in three versions:

- Macintosh ATM/Laserwriter Fonts
- DOS Binary PFB fonts
- UNIX ASCII PFA downloadable fonts

Of these, only the ASCII or PFA files will easily download from AIX to a PostScript Laser Printer. Most files are distributed in the Mac or PFB formats, so it is often necessary to convert these to the PFA format using a utility like pfb2pfa.

If the mF attribute is set to the full path name of the font, it will be downloaded with each job that is sent to the queue. With this method, simply create a separate PostScript virtual printer for each font you want to use. There is only one font file per virtual printer, but multiple fonts can be contained in a single file. The pfa file is a standard ASCII PostScript file and you can edit it with vi or your favorite editor. You can also concatenate files with `cat file1 >> file2`.

The procedure to add the files to the virtual printer is:
1. Place the font in the /usr/lib/lpd/pio/fonts directory.
2. Use lsvirprt to modify the virtual printer.
3. Select the printer to be used.
4. Set mF=/usr/lib/lpd/pio/fonts/fontname.pfa where fontname is the name of font file to use.
5. Press Enter to exit lsvirprt and save changes.

The font must be identified in the file you are printing. Examples:
- /English-Russian-Architect findfont 14 scalefont setfont
- /Times-Roman findfont 15 scalefont setfont

Print to the virtual printer and font will be added.

7.7.2 Using a filter to add the font on demand

The earlier method adds the font to all files sent through the virtual printer. By using a simple filter, the font can be added at will using the qprt -f1 flag.

The filter is a simple program that when called, reads the font file and sends it to stdout; it then adds the program being printed to stdout. The administrator can add a separate font to attribute f1, f2, f3, and so on, in the virtual printer by specifying the font name as a part of the attribute. For example:

f1=/usr/local/bin/addfont font1.pfb

The user then selects this font to print with:

$ qprt -f1 -Pps filename.ps

The addfont filter source is in this screen:
7.8 Restricting users on a printer

Restricting users on a system is supported by System V printing, Infoprint Manager, and by other third party print management systems. A simple solution is available from LAIX software. The ability to restrict users with the PowerPC print subsystem relies on a backend that checks a file for valid users. Because the backend is executed with user permission, it is possible to set ACLs on a file and check to see if the file is readable. If the file is not readable, the custom backend can send a message back to the user. If the file is readable by that user, then the user is allowed to print. Use acledit to change the permissions on the test file.
7.9 Custom header pages

This section describes how you can use the standard AIX banner program to create header pages with larger names for some fields by making minor modifications to the header page template. Using the same technique, you can also add graphics and other information to header pages.

7.9.1 Introduction to header pages

Header jobs (also known as *burst*) are created as a separate print job by the virtual printer backend `piobe`. This can mean a separation of header page and job output in some remote printing. Both the header program and a header template are defined in the `sh` virtual printer attribute. By changing the header template, you can create any kind of header page that you want. Some key facts about header pages include:

- The default program for generating headers is `/usr/lib/lpd/pio/etc/pioburst`.
- The default template for the ASCII data stream is `/usr/lib/lpd/pio/burst/H.ascii`.
- After generating the header page, the output is sent through the device independent filter `/usr/lib/lpd/pio/etc/pioformat`.
- The output from `pioformat` is piped to a data stream dependent filter in the `/usr/lib/lpd/pio/fmtr` directory.

Information supplied here is analogous for trailer pages, with the exception that the `st` virtual printer is used for trailer pages.

7.9.2 What determines if the header page is printed?

Header pages are determined by the virtual printer, so if you are printing remote without local formatting, you will not get a local header page. The virtual printer determines whether to print a header page based on three things:

1. An entry inside the queue device in `/etc/qconfig`:
   ```
 header = never, always, group
 never: No headers unless called from command line
 always: Header ever file unless off from command line.
 group: One header per print command.
   ```

2. Command line arguments:
   ```
 enq -Bnn
 qprt -Bnn
   ```
lpr always uses a header unless no headers is specified with the -h flag.

3. The sh attribute in the virtual printer.
   - This attribute contains the program that writes the header pages: pioburst.
   - Set sh= to nothing and you will never get header pages.

7.9.3 Header page templates

Header pages are printed by printing a template that contains percent signs (%), which are substituted with key variables by the pioburst program when the header page prints. The template files are stored in /usr/lib/lpd/pio/burst. Header templates start with H, while trailer templates start with T. The extension of the template name is an indication of the type of data stream that it supports.

Template percent codes, shown in the left column of Table 21, are substituted by the value derived from the description in the right column.

Table 21. Percent codes used in virtual printer header pages

<table>
<thead>
<tr>
<th>Percent code</th>
<th>Description of substitution field</th>
</tr>
</thead>
<tbody>
<tr>
<td>%A</td>
<td>Replaced by the formatting flags used by piobe, including command line flags. This is useful for debugging formatting problems.</td>
</tr>
<tr>
<td>%D</td>
<td>Delivery user specified as the to user by enq or qprt.</td>
</tr>
<tr>
<td>%H</td>
<td>Host name and queue device where the job is printed.</td>
</tr>
<tr>
<td>%P</td>
<td>Time the job was printed.</td>
</tr>
<tr>
<td>%Q</td>
<td>Time the job was queued.</td>
</tr>
<tr>
<td>%S</td>
<td>User who submitted the job.</td>
</tr>
<tr>
<td>%T</td>
<td>Title of the job, or the file name that was printed.</td>
</tr>
</tbody>
</table>

For national language support, the titles for each of the standard fields is also represented by a percent code that is replaced by the appropriate title for the locale of the user submitting the print job. The label codes are shown in Table 22 on page 359:
7.9.4 Steps to create a custom header page

Follow these steps to create a custom header page that you can modify to your own liking:

1. Go to directory where the templates are kept:
   ```
 # cd /usr/lib/lpd/pio/predef
   ```
2. Copy current template to new name:
   ```
 # cp H.ascii H.custom1
   ```
3. Make modification to the new header:
   ```
 # vi H.custom1
 Add text or move lines around, and save.
   ```
4. Modify the virtual printer to point to the new file:
   ```
 # lsvirprt
 Select the virtual printer.
 Type: sh~v, sh tilda v gives vi session
 Move as in vi to H.ascii, change to H.custom1
 :wq to save and exit.
 Press the [enter] key to exit lsvirprt
   ```
5. Print, making sure you have headers set:
   ```
 # qprt -Ban /etc/motd
   ```

---

Table 22. Percent codes used for labels in header pages

<table>
<thead>
<tr>
<th>Percent code</th>
<th>Description of title field</th>
</tr>
</thead>
<tbody>
<tr>
<td>%a</td>
<td>FLAG VALUES:</td>
</tr>
<tr>
<td>%d</td>
<td>DELIVER TO:</td>
</tr>
<tr>
<td>%e</td>
<td>END OF OUTPUT FOR:</td>
</tr>
<tr>
<td>%h</td>
<td>PRINTED AT:</td>
</tr>
<tr>
<td>%p</td>
<td>TIME PRINTED:</td>
</tr>
<tr>
<td>%q</td>
<td>TIME QUEUED:</td>
</tr>
<tr>
<td>%s</td>
<td>SUBMITTED BY:</td>
</tr>
<tr>
<td>%t</td>
<td>TITLE:</td>
</tr>
</tbody>
</table>
7.9.5 Example: PCL header page with large user name

Before starting to modify the header page for a PCL printer, there are some simple things that you should know about the PCL data stream. The following list should give you enough information to get started:

- PCL is simply ASCII Text with special escape sequences to give the printer commands.
- Use simple PCL commands from the printer's technical reference.
- `\[ESC\]` can be created in vi with the sequence Ctrl-v Esc, and looks like `^[`.  
- You can concatenate PCL commands that start with the same sequence letters by using small letters until the final letter. For example:

  ```pascalc
 \[ESC\]s4148t1p16V = \[ESC\]s4148T + \[ESC\]s1P + \[ESC\]s16V
 \[ESC\]s#T - Sets the Typestyle (FONT).
 \[ESC\]s3T - Courier - fixed font,
 uses \[ESC\]s5H for pitch
 \[ESC\]s4148T - Universe - proportional font,
 uses \[ESC\]s35V for point size
 \[ESC\]s#P sets fixed (#=0) or proportional(#=1)
 \[ESC\]s#H gives pitch for fixed fonts
 Larger number gives smaller characters
 \[ESC\]s#V gives Point size for proportional fonts
 Larger number gives larger characters
  ```

You could also create the header with a Windows print driver, such as HP LaserJet III, and print to a file. This would allow you to have graphics on the custom header page and would create the PCL automatically.

The source code for a simple custom header page is shown here:
7.9.6 Example: PostScript header page with large user name

To modify the PostScript header page H.ps, follow the same steps as above, but copy H.ps to the custom header page of your choice.
The following is a list of PostScript commands that should allow you to change the font:

- Fonts are defined by command like. For example:
  
  ```postscript
 /Courier findfont 12 scalefont setfont
 Courier is the font, Could Replace with Helvetica for Block letters.
 12 is the size, Replace with larger
  ```

- Comment lines start with percent sign in PostScript, and you must add a second percent sign so the formatter does not try to interpret them.

- `showpage` is PostScript formfeed.

- `show` is PostScript show text.

- Text to print is placed inside of parenthesis proceeding `show`.

The first part of the H.ps file contains PostScript commands to set up the page and to define macros, such as the crlf macro shown in the source below. The portion of the modified H.pscust file shown below only shows the parts of the file that actually print the header page:
The header page generated by this uses the Palatino-BoldItalic font at size 30 for the name of the queue and the user who printed. The header page will look similar to this:
Just as with PCL pages, custom pages could be created with a PC presentation graphics program, and saved as PostScript. You would then have to edit that program to add double percent signs so that the formatter and PostScript did not misinterpret them.

### 7.10 Printing via an ASCII Terminal Attached Printer

It is possible to connect a printer to the auxiliary port of an ASCII terminal, such as an IBM 3151. You may then want to print to that printer in the same manner as you print to any other shared printer and still work on the terminal at the same time as something is being printed.
In AIX V3.1, there was no formal support for printing to an ASCII terminal attached printer. Beginning in AIX V4, this has been made as easy as adding a printer attached to the host.

7.10.1 Configuring an ASCII terminal attached printer
Most of the asynchronous ASCII terminals used in UNIX systems have an auxiliary port which can be used to connect a printer. In this section, we will show how to set up an IBM 2380-2 printer attached to an IBM 3151 model 310 ASCII terminal. If you are using a terminal other than the IBM 3151, which will support a printer attached to it, you will have to find out how to set up your terminal and its auxiliary port. We are also assuming that this terminal is attached to your system and is working.

7.10.2 Hardware setup
Before adding the printer to your AIX system, perform the following steps:
1. Connect your serial printer to the auxiliary port of your terminal using a RS232 cable. For the IBM 3151 terminal, just a pin-thru cable is required.
2. Make note of the following settings for your printer:
   - Line speed (baud rate in bps)
   - Word Length (bits per char)
   - Parity (odd, even, no, space, mark)
   - Stop bits (1,2)

7.10.3 Configuring the auxiliary port in your terminal
On the IBM 3151 terminal, perform the following steps:
1. Turn on your IBM 3151 terminal.
2. Simultaneously press the Ctrl and the Setup keys. The SETUP menu is displayed.
3. Using the Send key, select the KEYBOARD/PRINTER option. Fill in the PRINTER options with the printer settings you have noted.
4. Using the Send key, select the FUNCTION option. Select the Save option and press the Space key to save your configuration.

7.10.4 Adding the printer to your system
Now that you have physically attached the printer to your working terminal and configured its auxiliary port with the printer settings, perform the next steps to add your printer to the print spooling subsystem:
1. Log on as root or a member of the printq admin group.

2. Enter `smitty mkpq` fast path. From this screen choose the option:

   ascii Printer Attached to ASCII Terminal

3. From the next screen, select the printer manufacturer.

4. From the next screen, select the Printer Type.

5. Select the tty for the terminal that has your printer attached. In our example, we have our printer attached to tty0.

6. Fill the Name of new PRINT QUEUE to add field with the name of the print queue for the terminal attached printer. In our example, we have used the name 2380ascii for this print queue.

7. **Testing your printer**

To see if your printer is working, first issue the `lpstat` command to list all the available print queues in your system. In our example, the printer is available through the 2380ascii print queue, as you can see here:

```
lpstat -v2380ascii
Queue Dev Status Job Files User PP % Blks Cp
------- ----- --------- --- ------------------ ---------- ---- -- ----- ---
2380asc lp0 READY
```

To test if the printer is working properly, use a command of your preference to send a file to the newly created print queue. In our example, we have issued the following command:

```
lp -d2380ascii /etc/qconfig
```

This command sends the `/etc/qconfig` file to be printed in our IBM 2380-2 printer through the 2380ascii print queue.

If you take a look at the `qconfig` file, you will see the following stanzas for the terminal-attached printer:

```
2380ascii:
device = tty0
tty0:
file = /dev/tty0
header = never
trailer = never
access = both
backend = /usr/lib/lpd/piobe
```
As you can see in the file = /dev/tty0 stanza, the output device for the terminal attached printer is the device driver for the terminal. What happens if you want to print directly to the device driver instead of printing through the spooling subsystem? We will show an example.

Log on to the terminal that has the printer attached (in our example, tty0) so that you can send data to be displayed in this terminal. Type the following command on any other terminal (not on tty0):

```
banner Printing to terminal > /dev/tty0
```

You will see a screen like the following on tty0 terminal:

```
####
#
#
###
#
####
####
#
#
#
#
####
```

Even though the device driver defined in the qconfig file for the printer attached to the terminal is /dev/tty0, if you print directly to /dev/tty0, the output is sent to the terminal, not to the printer.

If you want to print directly to the printer, you need to send some control characters to the terminal prior to sending data to the printer. These control characters tell the terminal to work in passthrough mode, that is, data sent to the terminal in this mode should be sent to the auxiliary port and not to the screen. To exit from the passthrough mode, control characters need to be sent to the terminal.

The control characters we are using in the next example are valid only for the IBM 3151 terminal models 110/310/410. If you are using another terminal...
type, you should find which characters makes your terminal work in a passthrough mode.

For example:

Type the following command on the other terminal (not on tty0):

```
echo ^P^R > /dev/tty0
```

This tells the tty0 terminal to work in passthrough mode. These control characters can be obtained by holding the Ctrl key and typing v_p_v_r. This should be read as Ctrl-P + Ctrl-R. You do not need to hold the Shift key to get a capital p or capital r.

Now type the following command on the other terminal (not on tty0):

```
banner printing to printer > /dev/tty0
```

You should get the following output on your printer:

```
####
#
#
####
#
####
####
#
#
#
#
####
#####
#
#
#####
#
#
```

Now, anything that you send to tty0 is going to be sent to your printer. To tell the terminal to stop working in passthrough mode, type the following command:

```
echo ^P^T > /dev/tty0
```
The control characters used in the previous command should be read as Ctrl-P + Ctrl-T. These characters can be obtained by holding the Ctrl key and typing `vpvt`.

Based on the previous example, you can understand how the `picbe` backend sends data to be printed on a terminal attached printer.

You should be aware that printing on a printer attached to an ASCII terminal is not as fast as printing to a printer attached directly to the host. All data that is sent to the terminal and to the printer attached to this terminal uses the same connection to the host. Loss of performance is expected.
Part 4. Problem solving and tools
Chapter 8. Troubleshooting

The goal of this chapter is to provide you the administrator with some tools and tips that will help turn the art of troubleshooting into a science. Problems with printing may be as minor as minor cosmetic blemishes on the output to as major as checks that have failed to print. Where you look for problems depends on such factors as the type of printer, the type of file to be printed, and the way in which the printer is connected to the server.

This chapter is divided into three sections:
- Common troubleshooting techniques
- Troubleshooting specific to System V printing
- Troubleshooting specific to PowerPC printing

The procedure of problem determination can be reduced to a few steps:
1. Isolate the problem
   - Determine the system and subsystem where the problem exists.
   - Determine if the problem is hardware or software.
   - Determine if the problem is local or remote.
   - Is data getting to the printer?
2. Identify the cause of the problem
   - Is the printer plugged in with the proper pinouts?
   - Is the data formatted properly by the right formatter and filter?
   - Are the right flags being used?
   - Is the printer properly configured?
3. Improve the situation
   - Try a different printer, adapter, or cable.
   - Use a more appropriate virtual printer or printer type.
   - Use different print flags.
4. Test the solution
   - Test with other print files.
   - Have other users test for problems.
   - Make sure you did not create a new problem.
The rest of the chapter lists some of the most common printing problems, and provides information to help you isolate the problem, identify the problem, improve the situation, and test the solution.

8.1 Common troubleshooting checklist

This section is organized in terms of the problems that typically occur when trying to print documents. In each case, the areas common to both print subsystem will be explored.

8.1.1 Checklist for local printing problems

The following list is a high level overview of things that you might check if jobs are not printing on local printers. More details are given in the rest of the chapter:

- Is the printer ok?
  - Is the printer turned on?
  - Does the printer have a message on the display or blinking lights?
  - Can it print a test page?
  - Can you print from other systems?
  - Are cables tight, the correct type, and the correct length?
  - Is the cable good? Test it on another system.

- Is the device setup properly?
  - Redirect output directly to the device file.
  - Is the baud rate, handshaking and port number right for serial?
  - Try a different port on the computer.

- Is the printer or virtual printer setup properly?
  - Does the printer match the defined types and data streams in the printer/queue setup?
  - Does the printer point to the right device?
  - Is the user allowed to print to the printer or form? (System V)
  - Are the print flags valid for the virtual printer or interface script?
  - Is the printer accepting jobs and enabled? Use `lpstat` with the right flags.
  - Is the printer name spelled right on the print command line?
- Do you get command line, mail, or logged messages?

- Is the qdaemon (PowerPC) or lpsched (System V) running? To check, use:
  - System V: `lpstat -r`
  - PowerPC: `lssrc -s qdaemon`

### 8.1.2 Checklist for remote printing problems

The following list is a high level overview of things that you might check if jobs are not printing on remote printers. More details are given in the rest of the chapter:

- Is lpd or lpNet running on the server? To check, use:
  - System V: `lpstat -r`
  - PowerPC: `lssrc -s lpd`

- Does the client have the right hostname and remote queue specified?

- Do both the client and host names exist in a DNS or common `/etc/hosts` files?

- Does the client have permission to print to the server?
  - System V: Check the servers and clients Systems file.
  - PowerPC: Check the servers `/etc/hosts.lpd` file for the system name.
  - Does the name in this file match the DNS entry? Test IP address, fully qualified and short names.

- Does the user on the client have permission to print to the printer?

  System V: Check the printers users.allow file or use `lpstat -p printer -l` for the correct permissions. Use `all!all` for all remote users.

  PowerPC: Use `rembak` and `lpd` debug log features.

- System V: Check the `/etc/lp/logs/lpNet` log.

- Use `iptrace` to check a job as it goes over the network.

- Disable server queue
  - Make sure job is queued on server while the queue is disabled.
  - Check JDF or request log for command line flags.

- If a job queues when the queue is disabled, but does not print when the queue is enabled:
  - Make copy of file and use local procedures.
  - Use flags in the JDF or request log to print.
8.1.3 Check the obvious

Check the obvious:

- Make sure the printer is turned on and is online.
- Make sure the cable is attached to the printer and the computer.
- Make sure the LAN cables are plugged into both the printer server (computer) and the printer. Check that you can ping the printer from the AIX server.

8.1.4 Nothing prints on local printers

One of the most frustrating things is to print a job, go to the printer, and find that the output is missing. Where can you go from there?

8.1.4.1 My job is missing, but others are printing

The problem may have nothing to do with the printer. Someone else may have accidently picked up the printout. This tends to happen more often when banners are not being used, or when the banner is the same color as the output.

Multiple queues with one disabled or down

It is possible that the queue is backed up with a large number of jobs, or a single very large job? Sometimes a large job will cause a queue to go down, or disable. When you set up multiple queues or virtual printers to print to the same printer, it may be possible that one of these queues is disabled while other queues are still printing.

Are you printing text to a PostScript printer?

While some printers are able to sniff the type of print data stream and automatically select the right internal mechanism for printing, very often when a printer is told that a job is PostScript, it will print nothing if it is sent a plain ASCII text file or a PostScript job that is improperly formatted. Check the printer to see if the files that are printing are valid PostScript jobs.

How large is the failing job?

If the job that is not printing is much larger than the jobs that are printing, there could be several reasons for the job failing to print. Some of these reasons are:

- The job is being spooled, and there is not enough spool space. See Section 8.1.4.4, “Is there enough space in the spool file system?” on page 382.
- The job is being sent to a network print server that does not have a large enough buffer. If you are using a network print server device, such as the
Axis, HP JetDirectEX, or Intel NetPort box, the internal buffer space of the box may limit the size of the file you can print. Check to see if the job can print if the printer is attached to a local parallel or serial port. If you determine the job is too large, try to print the job in sections.

- The printer memory is not large enough to handle the print job. If the AIX file system is large enough and you can print small jobs, the problem may be in the printer. See if you can break the job into smaller pieces. Try to establish the limits of the printer by testing with files of different sizes. It may be possible to add more memory to the printer.

**Is the job accessible to the print service?**

AFS/DFS print files that are accessible to the user sometimes may not be accessible to the print service. If you are trying to print files that are mounted from a remote system and they will not print even though similar files print on your local system, try moving the file to /tmp and printing it from there. If this works, you will either have to use this as a workaround or change the permissions on how the files are exported from the server.

**Did you send the job to the right printer or queue?**

Often times, printer names can be confusing and close to one another. Make sure you are printing to the right queue and that the printer destination is at the location where you are trying to pick up the output.

8.1.4.2 Nothing prints, but the lights on the printer flash or change

With this symptom, you know that at least something is getting to the printer, but for some reason the printer is rejecting the jobs.

**Does the printer support the data stream of the print file?**

As described in the previous section, one of the most common causes for this problem is printing plain ASCII text files to a PostScript queue. Many users have the misconception that laser printers can automatically print any kind of file that is sent to it. If you have a PostScript only queue, but need to print ASCII text files, see Section 4.11, “Printing ASCII text to a PostScript printer” on page 186 or Section 9.2.1, “Using enscript to convert text to PostScript” on page 438.

**Is the print job too large for the printer?**

This case was reviewed in Section 8.1.4.1, “My job is missing, but others are printing” on page 376; however, it is possible that the job is in front of the queue and blocking all jobs. If you have the queue set to automatically retry, you could see the spooler try over and over to try to send the job to the printer without success.
Is there bad wiring to the printer?
Some cases of bad wiring will still allow a signal to go to the printer. Some of these cases are cables that are too long, or that are missing some of the signal pins necessary for full communications. See “Is the printer properly connected to the computer?” on page 379.

Are the port settings right?
Printers that are connected through serial cables can cause problems that are hard to detect when the serial port settings of the computer adapter and the printer serial port are not fully matched. Typical settings include the baud rate, the number of data bits, the parity, and the number of stop bits. Often when the baud rate is wrong, you will get garbage like upside down question marks printed, but sometimes nothing will print.

Some printers, such as Printronix and IBM 6400 series printers, have a setting on the printer to determine the meaning of some of the serial lines. On these printers:
- Make sure that RTS is always TRUE.
- Make sure that DTR is controlled by BUFFER FULL.

8.1.4.3 Nothing is reaching the printer
There are situations where there is no evidence that the print job has reached the printer. For locally attached printers, this may be hard to determine, because some printers give no indication when a print job arrives that they can not handle. In these situations, you will have to review Section 8.1.4.2, “Nothing prints, but the lights on the printer flash or change” on page 377.

For network printers, you should always use a network tracing technique, as described in Section 8.2.7, “Using iptrace to trace network printing” on page 397.

Some of the common problems associated with jobs never reaching the printer are discussed in the rest of this section.

Is the job still in the queue?
If `lpstat` shows that the job is still in the print queue, there are usually two situations.

1. The job is next in line, but the queue is down, disabled, running, or in a wait state.
   - If the queue or printer is down or disabled, this indicates that the print system had problems sending the job to the printer.
Common causes of this problem are:
- Bad cable connection.
- Bad permissions on files or directories.
- Mismatch on network protocols.
- Files that are too large to print.
- Printer is turned off, or off line.
- The right size of paper was not requested.

The steps that you should take to diagnose this symptom are:
- See if you can cat or copy the file directly to the device or network printer. This will isolate the problem to either the print device or to the print spooler. If you find the problem is with the device or the network connection, then you will not have to perform the rest of the diagnostic steps listed here, but can go directly to improving the situation by fixing the cabling, device or actual problems with the printer.
- See if root can print the file. This will test for some file permission problems but not all. If only root can print, then you will need to check for file permission problems. Use `tcbck`, but be careful to not use the automatic fix flag, as this can introduce more problems than it fixes.
- Check to make sure that the remote printer server is using the same port numbers. A common mistake is to setup a network printer using the JetDirect protocol when it expects the LPR/LPD remote protocol. Another problem may be using the wrong port number for a terminal server that accepts print jobs. One trick for printers that support the JetDirect protocol is to telnet to port 9100 and type data to see if it will print when you exit by pressing the designated escape character (usually Ctrl-`).
- Check the file size and file system sizes using `df` and `ls -l`.

2. The job is not first in the queue.

   It is possible that someone else's job is causing the problem. In this case, make sure you are using the same procedure, but testing with the job that is causing the problem.

   **Is the printer properly connected to the computer?**

   First, make sure the printer and the computer are connected by a cable. This can be a real problem when going through a patch panel or switching box.

   Make sure that same type of interface is used on the computer and the printer. A mistake that some people make is to assume that since both the
printer and the computer adapter breakout box (such as a 128-port RAN) both have RJ-45 connectors that they can simply attach a cable between the two and make a connection. Unfortunately, the RJ-45 on the printer is usually an ethernet connection, while that on the RAN is a serial connection, and the two can not communicate. Some people make a similar mistake in connecting serial and parallel cables.

What type of cable is being used? Because many buildings are wired with CAT 5 networking cable, people make the assumption that this can be used with no special consideration for attaching serial printers. The RS/232 standard says that you should use standard shielded twisted pair cable for serial communications; CAT 5 cable does not meet this requirement. If you insist on using CAT 5 cable, make sure the proper pairs of wires are paired together to avoid crosstalk. This especially means pairing a ground signal with the data signal.

Getting the pinouts right can be a very frustrating exercise. For example, the IBM 64-port adapter, 128-port adapter, and 7318 terminal server all use RJ-45 connectors, but each of them uses different RS/232 pinouts. Make sure that you are using the right pinouts from the device reference guides.

Some printers use the SSD line (pin 11 on a db25 connector in DTE mode) to do hardware flow control. This line must be pinned to DCD on the RS/6000 adapter port.

Some printers (for instance, Epson FX1050, HP Laserjet 4M, HP LaserJet 4plus, and HP DeskJet) treat the RTS signal as a flow control signal. This signal is normally connected to the RS/6000 or pSeries CTS line. AIX requires that the CTS signal be a sign that the printer is turned on and functional. If this signal goes false while printing, the PowerPC queue will go DOWN. For these printers, special cables are needed to wrap the RTS signal to CTS on the computer end of the cable.

The length and quality of the cable can have a large effect on the ability to print. If the printer and adapter both support RS/232D, then quality print cables can allow the printer to be up to 200 feet from the computer. If either only supports RS/232C, then the distance should be limited to 50 feet. For parallel printing, the standard recommends 6-feet cables. Be aware that cables are sold in lengths that can exceed the standard.

*Are the port settings right?*

Serial port settings, such as baud rate, data bits, stop bits, and flow control method, can be set at both the printer and the computer device setup. Make sure that you check that these setting match on both ends.
Does the printer device exist?
If for some reason the printer device is removed, sometimes a regular file can get created in the /dev directory. When this happens, the print jobs can fill up the file rather than being directed to a printer. To see if this might be the case, use the `ls -l /dev/lp*` command to make sure that each file permission starts with the c for character special device. To identify the special device file that is associated with a traditional print queue in AIX, use the `lsque` to find the queue device name and the `lsquedev` to find the associated special file. Then use the `ls -l` command on that file, as shown here:

```
$ lsque -q asc
asc:
 device = lp0
$ lsquedev -q asc -d lp0
lp0:
 file = /dev/lp0
 header = never
 trailer = never
 access = both
 backend = /usr/lib/lpd/piobe
$ ls -l /dev/lp0
 crw-rw-rw- 1 root system 24, 0 Oct 19 09:56 /dev/lp0
```

If the file listing does not start with crw, then you make sure that the device is properly created. This may require removing the file and reading the device.

For the printer in System V printing, use the `lpstat` command with the `-t` flag:

```
$ lpstat -t | grep ps1
device for ps1: /dev/lp0
$ ls -l /dev/lp0
 crw-rw-rw- 1 root system 24, 0 Oct 19 09:56 /dev/lp0
```

The following shows the output from an incorrect entry of a normal (non-device driver) file:

```
-rw-rw-rw 1 lp lp 53455 Oct 19 09:57 /dev/lp1
```

Is the printer attached to the correct device?
From the last section, you should be able to find the device attached to a queue or printer. It is important to make sure that the device is on the adapter that you expect and at the right port. To find the device location, use the `lsdev` command, as shown here:

```
lsdev -Cr printer
lp0 Available 01-D0-00-00 Lexmark Optra laser printer
lp1 Available 00-00-0P-00 HP LaserJet 4m
```
In this case, the lp0 location number starts with 01. This indicates that the device is one of the bus 01 of the computer. The lp1 printer device indicates that it is attached to the main parallel port. The location code varies between models, but can always be used to find the location of the adapter and port on that adapter. Make sure the printer is on the right port.

In some cases, you may find that the output that you printed went to someone’s terminal screen or to a different printer. This can be a problem after restoring a mksysb tape for a system with 128-port adapters when the RANs have been added in different order. The problem is caused by the order in which the new devices are added in walk the bus order on restoring the mksysb tape. In this case, the safest thing may be to remove and to read devices.

Can you print directly to the print device?
One way to isolate the problem between the print service and the device cable hardware side is to copy or cat the file directly to the device file. If the printer is an ASCII text or PCL printer, then redirect the lptest command to the printer as follows:

```
splp -p+ lp0
lptest 10 10 > /dev/lp0
```

If the printer is a PostScript, then use the cat command with a small PostScript file that you know works. Our suggestion is that you use one of the header files, such as H.ps:

```
cat /usr/lib/lpd/pio/burst/H.ps > /dev/lp0
```

If this prints, this indicates the problem is with the print service. If the command hangs and then returns the error message when you press Ctrl-C:

```
ksh: /dev/lp0: 0403-005 can't create the specified file
```

then this usually indicates that either the printer is not turned on or that there is a cable problem. With serial printers, this usually indicates that there is no signal coming from the printer to the computer CTS signal pin.

8.1.4.4 Is there enough space in the spool file system?
To find the space in the file system in KB and the size of the file, see how much space is left in the /var, /tmp, and /etc file systems. If the space in /var is smaller than the file you are trying to print, increase the file system size using smitty chjfs fast path. Commands to check the size of the file systems and file are:

```
df -k
ls -1 full-path-name-to-file
```
Make sure to look at the space that is left in the file system and not the percentage left.

The file space issue is most important in two cases:

1. When you are spooling files.

   Spooling files makes a copy of the file before it is sent to the printer. For PowerPC-based printing, files are spooled to /var/spool/lpq/qdaemon, while in System V, they are spooled to /var/spool/lp/tmp. If you expect a lot of large files, then we recommend that you create a separate file system and link the spool directory. This gives you the advantage of being able to reduce the size of the file system much easier than reducing the size of /var. For more information when files are spooled, see Section 1.9, “To spool or not to spool” on page 30.

2. When the server is receiving files from a remote client.

   Files received by the lpd daemon in PowerPC printing are received in /var/spool/lpd and stored there until they print. If you receive too many files, or if the files are too large, you can run out of space in this directory as well. This is harder to link, since the PowerPC print subsystem permanent files are stored in subdirectories with this as the parent directory.

8.1.4.5 Nothing prints, but you get an error message

   The error messages that you get back from the print command that you use will usually be different for the two print subsystems and will be covered in the separate sections later in this chapter.

8.1.5 The output is garbled or incomplete

   This section is designed to help you fix problems once there is ink on the paper. This may range from legible text with minor flows in formatting to just a few garbled characters on the page.

8.1.5.1 Are the port settings correct?

   If all you see are few upside down question marks and other characters that do not look much like real text, this may indicate a bad baud rate setting if you are on a serial connection. Make sure that the baud rate set on the printer and the one set on the computer match. If you are going through a modem or a multiplexer, then you may also have to match the baud with these devices.

8.1.5.2 Are the tabs set correctly?

   You will see this problem most often in printing text documents with tables. Confirm this is the problem by creating a couple lines of text in a file with
columns of different length separated by tabs. If this prints wrong, then you can change the tab setting for the virtual printer, or for the physical printer. In some serial printers, you may need to use the `stty -tabs` command.

### 8.1.5.3 Does only the first line print or do you see stair-steps?
This problem occurs most often when you have set to print PCL or text in passthrough mode and neither the printer nor the print subsystem are set to add carriage returns to line feeds. To test to see if this is the problem, use the `lptest` command to generate a small file and pipe to the print command.

```
lptest 5 5 | lp -d text01
!"#$%"#$%&
 #%%'
 $%&'(

```

If the output is in stair-steps as shown here, then you need to set the print spooler, filter, or printer to add carriage returns. With the virtual printer you can make sure that the command that sets the carriage control tells the printer to add the carriage returns.

```
Lines only at the top of the page or zig-zagging down the page indicate that there are no carriage returns at the end of the line. Usually this means that the file was printed without formatting or using the passthrough mode.

For PCL printers, the quickest fix is to add the command to the setup to tell the printer to add its own carriage returns.

Set this in PowerPC printing with the virtual printer attribute:

```
ct=/033&k2g
```

Set this in System V printing with an echo statement in the interface script:

```
echo "\033*k2g"
```

The better answer for PCL printers is to set the printer as content type pcl, and use the `/usr/lib/lp/bin/pcl`. Register the printer with:

```
# lpfilter -f pcl -F /etc/lp/fd/pcl.fd
```

Once you have done this, the pcl filter will add carriage returns to line feeds.

8.1.5.4 Does the printer print OK for a while then go bad?
There are two cases when you will see the printer print OK for a while, then skip some output and then usually print OK again for a while.
The first case is when the flow control (serial handshake) is not set up properly between the computer and the printer. This is only a problem with RS/232 attached printers, since RS/422, parallel, and network printing all have flow control built-in to the protocol or hardware.

For RS/232 attached printers, we recommend that you use hardware flow control whenever possible. With hardware flow control, when the print buffer on the printer reaches a high water mark, the printer signal on a line such as DTR drops. When this happens, if this signal line is attached to the AIX DCD signal, the AIX computer will stop sending data until the line is asserted once again. Because this is handled in hardware, the printing stops immediately. As soon as the printer empties the buffer to a low water mark by printing the information from the buffer, the DTR signal is asserted and AIX starts sending data once again. The important consideration in hardware flow control is to recognize which signal line is used by the printer to indicate buffer flow and make sure that line is attached to the DCD signal line on the AIX side. In the rare instance when you set up a printer as a TTY device, then RTS-CTS flow control should be used.

When the computer to printer is setup with software flow control (also called XON/XOFF flow control), the printer signals that the buffer has reached its low water mark by sending an XOFF character on the printer TxD line, which is received on the computer RxD line. The computer may wait continue to send data a character at a time until it receives a number of XOFF characters before stopping the data flow. Once the printer buffer is emptied to the low water mark, the printer sent an XON signal to tell the computer to resume sending data. This procedure has an built-in delay, and with slow printers can cause buffer overflow and lost data. You may be able to change the print output buffer size on the device driver or set parameters to reduce the delay in responding to the XOFF, but we recommend that you change to hardware flow control if you possibly can. To change the number of XOFF characters that the driver looks for, change the RECEIVE trigger level in smitty devices for the printer from 3 to 1.

The second case is when the timing delay is bad for parallel printers, or the device driver buffer size is too large for the printer. For slow parallel printers and plotters, there is a smit parameter called Microseconds to delay between characters that can help avoid this type of problem. To change the transmit buffer size for a serial printer, use smitty devices and change the printer TRANSMIT buffer count.
8.1.5.5 Are there problems printing graphics?
If you are trying to print graphics files directly, then you need to find a filter that will convert the graphics to either PCL or PostScript, or use a program like a browser or xv to view the graphics file and print from there. This is usually a good solution for printing to PostScript printers.

If the graphics are in a PostScript document, then the problem probably lies in an incompatibility between the application that created the data and the printer, or you have passed the PostScript file through an ASCII text filter that has split the file based on width or added extra characters.

If the file is a formatted PCL file, the most common problem is that when the file is printed through an ASCII text queue, the line width is truncated by the text filter. It is important to print these files in a passthrough mode and tell the printer to add carriage returns to line feeds.

8.1.5.6 Is the printer type correct?
Printing with the wrong printer type for the data stream can cause several different but equally undesirable results. Many people believe that all laser printers are PostScript printers. This is not the case. PostScript is often an add-on option for a laser or other printer.

Does PostScript print out like a program listing?
If the output on the printer looks the same as the file if you view it with the `pg` or `more` commands, then most likely problems are that either the printer does not support PostScript, or you have sent the PostScript file to an ASCII printer or queue, which has sent commands to the printer to tell the printer to print text. You can fix the first case by using a PostScript printer, or in some cases, using a filter like GhostScript to convert the PostScript to PCL or other format. In the second case, you can fix it by creating a PostScript queue for PostScript print jobs.

Do you have unexpected symbols in the output?
In this case, much of the output prints fine, but there are control characters either at the beginning or throughout the text. Control characters for one printer may print as symbols on another. A good example would be printing a file created for an Epson inkjet printer on an HP inkjet printer. This is especially true if the file were created in a Windows application where sometimes the characters are printed as graphics. In files created on AIX, if you use the wrong virtual printer for PowerPC printing, or the wrong printer type in System V printing, then the control characters set to initialize the printer could also exhibit this behavior.
8.1.6 The output spacing is bad

The output contains the expected text and may be readable, but the text appears in an unexpected format, such as:

- Double spaced
- No left margin
- Lines only at the top of page, or zig-zagging down page
- Incorrect printer type

8.1.6.1 Double spaced

If your output is double spaced, this usually indicates that you have printed a file that already contains carriage returns at the end to a virtual printer or System V printer that adds carriage returns to line feeds. The solutions to this problem are to print in passthrough mode, or to use a filter to strip the existing carriage returns before submitting the job to the print processing.

8.1.6.2 No left margin

If you print a file that starts with tabs at the beginning of some lines, but these lines are printing at the left margin, then the tabs are not being correctly converted to spaces or not handled properly by the printer. This problem is unlikely to occur on PowerPC-based printing, because the default is to map tabs to eight spaces. In System V, if the printer’s tab settings are not correct, they should set every eight spaces. You can have the System V print service not send tabs by using the `-tabs stty` option as follows:

```bash
# lpadmin -p printer-name -o stty=-tabs
```

8.1.7 The output prints with the wrong font

The size and type of font is dependent on several issues:

- Is the file PostScript or formatted PCL?
- What is the default font for the printer?
- What fonts are installed on the printer?
- Does the interface program or printer backend set the font?
- What is the LANG variable set to?

8.1.7.1 Is the file PostScript or formatted PCL?

With PostScript or formatted PCL files, the fonts are often specified inside the document. It may be that the font requested is not available on the printer. Potential solutions are to change the font in the document, downloading the
font to flash memory on a semi-permanent basis, or downloading the font with the print job.

For PostScript fonts, the font is specified in a statement like this:

`/Times-BoldItalic findfont`

Since PostScript files contain only ASCII text, you can edit and change this with an editor to a font that is available on your printer.

8.1.7.2 What is the default font for the printer?
If the interface program or printer backend do not set the font, then the default font for the printer will be used. The method to check the default font will be different for different printers. See the printer technical reference manual for more details. Another option is to add a command to set the font to the interface script or backend program. When using System V printers, this can be done with `echo` statements in the interface script similar to:

```
echo "\033(s3T"
echo "\033(s15H
```

For the PowerPC print subsystem, when using virtual printers, the font setting is a part of the virtual printer setup. Normally, there will be a limited selection of the available fonts. For PCL printers, the available fonts are usually defined by the mU, eP, or eT attribute of the virtual printer. It is always possible to add a font command at the end of the printer initialization attribute ci.

8.1.7.3 What fonts are installed on the printer?
In most printer setup or test sequences, there is a method to print the available fonts. In today’s printers, there is usually a large selection of over 60 fonts available, and these should meet most needs. When a required font is not available in the printer, use one of the font download methods described in the advanced chapter for the appropriate print subsystem.

8.1.7.4 Does the interface program or printer backend set the font?
In UNIX print subsystems, the character sets, styles, and fonts can be set once at the beginning by the interface program or printer backend.

In System V, the fonts are set by the interface script. For the standard interface script, the CHARSET environment variable is used to determine the required character set. If CHARSET is enabled, then it is passed to the lp.set filter as the fifth parameter. The lp.set then checks to see if the character set exists in the printer terminfo database and if it does, it will output the command string from the database to initialize the printer. This will only work with TERM types where the character set is defined. When using
manufacturer scripts or interfaces build on the /usr/lib/hpnp/hpnpIS.model, the character set is chosen by echoing a command sequence. For example, in the hpnpIS.model script, the following line selects the character set:

```bash
echo "\033)0B\c"
```

The command used to set the pitch to 12 cpi is:

```bash
echo "\033(s12H\033)s12H\c"
```

To make changes to character sets not supported by the script, you will have to add changes to the interface script. In this case, the user chooses the pitch with the `lp -o pitch=condensed` or similar command.

In PowerPC virtual printers, the printer is initialized by the ci attribute sequences. These are set from SMIT, Web-based System Manager, or with `lsvirprt`. Users can select the print style and pitch with `qprt -s style -p pitch`. To support font sizes or styles not supported by the virtual printer requires special customization. For PCL printers, this is usually done with the mU attribute.

8.1.7.5 What is the LANG variable set to?

For the PowerPC print subsystem using virtual printers, the installation LANG variable will set the input translation table for the particular virtual printer. This will show up in the `_X` attribute:

```bash
# lsvirprt -q asc -d lp0 -a X
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>_X</td>
<td>CODE PAGE of print file</td>
<td>ISO8859-1</td>
</tr>
</tbody>
</table>

The default codepage for the US is ISO8859-1. One of the problems that people experience is that files with box characters do not print the boxes correctly when this codepage is used. To print a simple ASCII text file that contains line drawing characters, specify the IBM850 codepage by changing the X attribute, or by using the following command:

```bash
$ qprt -XIBM850 -Ptext /tmp/testfile
```

8.1.8 The print job requests the wrong paper size

For PCL or other ASCII printers, make sure the default paper size is set right in the virtual printer or interface script. Next, make sure the command for the paper size is not embedded in the file. For PostScript files, the paper size is often defined inside the print file itself, and there is little you can do in the virtual printer or interface script to change it. You should go back to the application that creates the file.
8.1.9 Network print jobs fail to print

When printing to network print servers and network printers, the goal of troubleshooting is to isolate the problem to the print client or server and then to do local problem determination.

8.1.9.1 Print Jobs still queued on local queue

Since the job is still queued on the local (client) queue, you can assume that the job was rejected by the remote (server) system, or that the system could not be reached.

Can the client reach the server?

Before looking for printing specific problems, you should make sure that you have a good network connection between the client and the server. You should be able to ping the server from the client both by address and by name.

If you can not ping by both address and name, then printing is not going to work. If you can not ping even by address, then fix the networking problem or make sure both the client and server are turned on and that you can ping the client from the server.

Are there any name resolution problems?

Because the rembak client and the lpd server may do a gethostbyname call, it is important that both the client and the server can recognize each other not only by address but also by name. If you are using DNS, then use the nslookup command to check the name lookup both by address and by name.

If you are not using a Domain Name Server (DNS), then use the host command instead of nslookup.

If you fail to get the same results from the address and the name, or if you do not get a name at all, then either add the names to the DNS or to the /etc/hosts file.

Is the lpd daemon turned on the server?

If the server is an AIX system running the PowerPC print subsystem, then you can check to see if lpd is running by using the following command:

```
# lssrc -s lpd
```

If it is not enabled, then turn it on with:

```
# startsrc -s lpd
```

or from the SMIT menu for managing a remote printer subsystem.
If the server is an AIX system running the System V print subsystem, then first check to see that the scheduler is running with the `lpstat` command:

```
# lpstat -r
```

If this is running, then use `ps` as follows:

```
# ps -ef | grep lpNet
```

On other servers, make sure that the lpd server is accepting jobs.

Does the client have permission to print to the server?
For PowerPC servers, this means that the `/etc/hosts.lpd` file on the server contains an entry for the client, or has the `+` symbol to allow all clients. Check the server manuals for setting client permissions for other print servers. For System V printers, the `allow=all` only allows local users. To allow all remote users, set the `allow` value to `all!all`.

Does the network protocol match?
If the server is a network printer, then make sure that it supports LPD printing, or that you are using the appropriate type of printing on AIX to support the protocol to talk to that printer.

Collect error messages and logs
Look for error messages that may indicate a problem. In the PowerPC print subsystem, you can turn on logging with remote computing to help solve these problems.

Do a network trace to see if there are any identifying error messages in the output. For more about the network trace, see Section 8.2.7, “Using iptrace to trace network printing” on page 397.

Check to see if the user received e-mail or a message
The text of the mail will often give the information required to diagnose the problem.

Is the control file sent in the right order?
In AIX 4.3, the PowerPC print subsystem introduced the capability to send the LPD control file before the print job. This capability is not supported by all servers, but can help with the print speed with some of them. When setting up a remote printer, make sure that this value is set properly.

Is there enough space on the server?
Some jobs are rejected by the server because there is not enough room to store the file. In this case, the file may be so large that a trace is nearly
impossible. This problem is probably most easily identified if only large print jobs do not get moved to the remote server system.

Are the permissions for LPD correct on the server?
We have seen cases where the permissions for the lpd daemon or spool directory have been changed by mistake and the daemon was unable to save files. Check both the userid that is running lpd, and the file permissions on the daemon and the /var/spool/lpd directory.

Does iptrace show error messages?
Sometimes the server will send back a text error message that can be seen in the iptrace file that will help to identify the cause of the problem. See Appendix D, “Tracing remote printing” on page 499 for more information.

Does iptrace show negative acknowledgements
After each request by the client, the server should return a single byte with a zero value. This can be seen in the iptrace output. If this value is non-zero, then the client is sending an error message back (sometimes called a negative acknowledgement or NACK) to the server. The PowerPC print subsystem will assume this means the client is not ready, and will change the queue status to DOWN. The System V print subsystem will retry after a specified timeout period for a specified number of tries based on the values in the Systems file.

8.1.9.2 Is the timeout value set for System V remote printing?
When using remote printing with the System V print subsystem, make sure that you have set a timeout value for the system you are printing to with the lpsystem command to set the timeout to two minutes:

```
# lpsystem -T 2 -p printer-name
```

8.1.9.3 Print jobs backing up on remote queue
If the print job backs up on the remote queue, then the connection between the client and the server was successful. In this case, you have a local printing problem on the server system.

8.1.9.4 Print jobs disappear
Maybe the most frustrating problem is when the job seems to just disappear. This can be caused by flags that are accepted by the remote system lpd but are incompatible with the printer or virtual printer on the server, or it can be a file that is incompatible with the printer on the server.
Disable the queue on the remote system
By disabling the queue on the remote system, you can find out several things. First you can make sure that the print job has actually been queued on the server. If it has not, then you can use \texttt{iptrace} to make sure that if it ever left the client. If it was transferred, but is no longer queued, then the \texttt{lpd} daemon may have some problems passing the job to the print subsystem. If the trace shows the job never left the client, then you have isolated the problem to the client.

If the file is queued on the server, then you can check to see if the flags passed to the server are valid, and if the file will print to the queue when submitted locally.

Are the flags right?
This is a good time to play capture the flag, as described in the individual print subsystem sections. There are two places to get the flags. The first is from the control file in the \texttt{iptrace}. The second is from request description file. In PowerPC printing, this file is the job description file in /var/spool/lpd/qdir. In System V printing, the flag can be found in the request file in /var/spool/lp/tmp/printer-name/printid-0. More detail is provided in the messages and logs section of each print subsystem.

Some print servers can support extra flags, such as the \texttt{-o} flag, and others cannot. PowerPC remote printing uses a number of non-standard flags that may be either ignored, refused, or used improperly by other print servers. It is important to set the server type to BSD or ATT if you are not going to use an AIX PowerPC based remote server. For printing from PowerPC to System V, use the ATT value.

Does the file print right locally on the server?
The name of the copy of the file on the AIX server can also be found in the same request description files as talked about in the previous section. Copy this file to /tmp/testfile. Now enable the queue on the server. The print job should disappear again, or you have discovered a timing problem. Now print a copy of the file you saved to /tmp/testfile without any flags. If this prints OK, then you know the file prints OK and you can try the file with the flags you found in the previous step. Often, you will need to use the \texttt{-o} flag with \texttt{enq} or \texttt{lp} to use the captured flags. If the file does not print, then you have a local printing problem with that file, and you can use the local print troubleshooting steps elsewhere in this chapter.
8.2 Common troubleshooting techniques

This section describes some of the common print troubleshooting techniques that you can use on AIX. While the previous sections of this chapter are problem oriented, this section is tool oriented.

8.2.1 Using lptest to generate print files

The `lptest` command is an excellent tool for generating a known output that can be printed. It generates a test pattern to standard output and can be used by piping the output to a print command, or redirecting it to a device. The syntax of the command is:

```
$ lptest columns lines
```

For example to generate a file 20 lines wide by 5 lines long, use the following command:

```
$ lptest 20 5
!"#$%&'()*+,-./01234
"#$%&'()*+,-./012345
#$%&'()*+,-./0123456
%&'()*+,-./01234567
%&'()*+,-./012345678
```

This command is useful for making sure a printer has the right print width and page length, because you can generate exactly the number of rows and columns that should fit on a page. In other cases, you can generate a small number of short rows to see if there is any stair-step effect on the printer.

To test printing, use pipe for the output to the print command:

```
$ lptest 10 5 | lp -d laser1
```

To output directly to the print device, use the following command:

```
$ lptest 15 5 > /dev/lp17
```

8.2.2 Use enscript to generate PostScript

The `enscript` command must be installed from the bos.txt.ts fileset. This command generates PostScript files from ASCII text files. You can combine it with the output from `lptest` with `enscript` for testing PostScript printers. Use the `-d` flag to specify the print queue.

```
$ lptest 10 10 | enscript -d ps1
```

The `enscript` command can be used to provide additional capabilities, such as page titles, special fonts, and 2-up printing.
8.2.3 Use splp to look at printer devices

The splp command gives you the characteristics of the printer device. For a serial printer, it also gives the port characteristics, such as baud rate. If you are having problems with files catted directly to the port, try setting the device driver to passthrough with:

```
# splp -p+ lp0
```

Example of splp output from a parallel printer:

```
# splp lp0

device = /dev/lp0      (+ yes     ! no)
CURRENT FORMATTING PARAMETERS (ignored by qprt, lpr, and lp commands)
Note: -p + causes the other formatting parameters to be ignored.
-p !    pass-through?                   -c +    send carriage returns?
-l 64    page length (lines)            -n +    send line feeds?
-w 80    page width (columns)           -r +    carriage rtn after line feed?
-i 0     indentation (columns)          -t !    suppress tab expansion?
-W !     wrap long lines?               -b +    send backspaces?
-C !     convert to upper case?         -f +    send form feeds?
CURRENT ERROR PROCESSING PARAMETERS
-T 300    timeout value (seconds)       -e !    return on error?
```

8.2.4 Printing to a file

Printing to a file is one of the most useful techniques for testing how the print interface programs, backends, and filters change a print file. Because this is done differently, it will be discussed separately with each print subsystem. Refer to Section 8.3.7, “Printing to a file” on page 409 for printing to a file with the System V print subsystem and Section 8.4.5, “Printing to a file with PowerPC printing” on page 425 for printing to a file with the PowerPC print subsystem.

8.2.5 Printing directly to the device special file

If the queue is continuously going to a down or disabled state, the problem may be in the cabling or the device driver. To print a file directly to the device, you can use the cat command and simply redirect the output to the device as shown here:

```
# cat /etc/hosts > /dev/lp32
```

If this hangs, then the printer connection may be bad, including missing signals. If you press Ctrl-C, and the screen message that returns refers to Can’t create device, this is an indication that the serial connection is not
receiving a signal on the computer CTS line. Try wrapping back RTS to CTS with a jumper to see if this solves the problem. If it does, then fix the wiring.

If you get a message back that the device is busy, use the `fuser` command to find the process that has the printer open, as follows:

```
# fuser /dev/lp12
```

When printing formatted files to the device, you may need to use `splp` to place the driver in passthrough mode, as described above.

Some applications open the file `/dev/lp##` directly and print to the file. This should work OK, but will probably put a lock on the file, so the print scheduler will not be able to use the print device.

8.2.6 Printing directly to network printers

8.2.6.1 Printing directly to an LPD attached printer

You can use `rembak` to print directly to the LPD on another system, but only if you are root user or a member of the printq group. Save the file that you want to print, and use the `-S` flag to designate the server IP address and the `-P` flag to specify the printer name on the server. The `rembak` command can not act like a filter as it will not accept standard input. For example, to print to host net27 with a queue name of ASCII, only root can use the following command:

```
# /usr/lib/lpd/rembak -S net27 -P ASCII /tmp/testfile
```

8.2.6.2 Printing directly to an HP JetDirect attached printer

AIX contains two commands to print to HP JetDirect printers. For the PowerPC print subsystem, `/usr/lib/lpd/pio/etc/piohpnpf` will be used to send jobs to the printer. For the System V print subsystem, `/usr/lib/hpnp/hpnpf` will be used to send the jobs. The only flag needed for testing is the `-x` flag, which designates the hostname or IP address of the printer or JetDirect box port 0. This will send data to port 9100. The following shows sample commands for each print subsystem:

```
# lptest 10 10 | /usr/lib/lpd/pio/etc/piohpnpf -x laser42.biguys.myco.com
# lptest 20 10 | /usr/lib/hpnp/hpnpf -x laser42.biguys.myco.com
```

8.2.6.3 Telnet to JetDirect printers

For true HP JetDirect printers or print servers, you can telnet to port 9100 (or the appropriate port). You do not have to login, but can type text directly. Once you are done, type the escape control sequence given (usually Ctrl-[]) and the printer will print. For example:

```
# telnet 150.1.1.4 9100
# Trying...
```
8.2.7 Using iptrace to trace network printing

The two most used network tracing tools on AIX are *iptrace* and *tcpdump*. While *tcpdump* is useful for determining the protocols and amount of data going over the network, *iptrace* is the most useful for printing because you can see both the handshaking as well as the actual data as it passes between the client and the server. It is also the only tool that can be used to capture the LPR control file being sent to the server.

To run *iptrace* for printing, you should first know which TCP/IP port that the transfer will use. When using standard remote printing, the well known printer port 515 will always be used. For using the HP JetDirect protocol, the port number will be 9100, except for JetDirect EX boxes with multiple ports, which will use ports 9101 and 9102. For terminal servers, you will usually find the port number during the setup. The format of the *iptrace* command that you should use for tracing printing is:

```
# iptrace -p port-number -a -b -s client-name -d server-name file-name.trc
```

Try to print with as small a job as you can and still observe the problem (to reduce the size of the file). Once the test job has been transferred, check to see that the file has increased in size over the 11 byte beginning size. If it has not grown in size, then you probably have multiple interface adapters and may need to use the `-i` flag to specify a particular adapter. Assuming that the file has grown in size, find the process id of the *iptrace*, and then use *ipformat* to format the output. The following shows a sample capture of standard remote printing between host prtsrv and netprt01:

```
# iptrace -p 515 -a -b -s prtsrv -d netprt01 /tmp/test.trc
print from the users application
# ps -ef | grep iptrace
   root 12908  6970   0   14:41:51   -    0:11   lptrace
# kill 12908
# ipreport -n /tmp/test.trc > /tmp/test.rpt
```
Appendix D, “Tracing remote printing” on page 499 contains instructions for analyzing the output.

8.2.8 Capturing files

Files can be captured in many places along the path between the job submitter and the printer. This is necessary to find where errors may be occurring.

8.2.8.1 Capturing the file before it goes through the queue

It is often important to know if the problem is with the file, the print settings, or with the virtual printer. The user may not actually know what the file looks like. This is especially true if the job is created by an application that sends the job to the printer. These steps show how to capture the input file when using the PowerPC print subsystem:

1. Disable the queue:

   ```
   # disable testq
   ```

2. Submit the job to the queue. Usually this would be from an application. For example, you would use the following print command in Netscape:

   ```
   # lpr -P testq
   ```

 Check to make sure the job is queued:

   ```
   # lpstat -vtestq
   ```

<table>
<thead>
<tr>
<th>Queue</th>
<th>Dev</th>
<th>Status</th>
<th>Job Files</th>
<th>User</th>
<th>PP</th>
<th>%</th>
<th>Blks</th>
</tr>
</thead>
<tbody>
<tr>
<td>testq</td>
<td>lpx</td>
<td>DOWN</td>
<td></td>
<td>root</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Find the filename of the spooled file from the job description file:

   ```
   # ls /var/spool/lpd/qdir
   n0root:local$@!iXyb
   n0root:testq$@!kRMc
   n0root@rs9220a.itsc.austin.ibm.com:kristin$@!iGUb
   ```

4. Tail the qdir file to get the spool file name:

   ```
   # tail /var/spool/lpd/qdir/n0r00t:test* -Ptestq
   ```

<table>
<thead>
<tr>
<th>STDIN.76636</th>
<th>root</th>
<th>rs9220b</th>
</tr>
</thead>
</table>
5. Copy the file to /tmp/testfile. The last line of the file contains the filename:

```
# cp /var/spool/qdaemon/t0lkRMa /tmp/testfile
```

Examine the file and print it with different flags. If printing remotely, you may want to compare it to the file once it reaches the server.

8.2.8.2 Capturing a file after it goes through the queue

To capture the file after it goes through the queue, print to a file, as described in Section 8.3.7, “Printing to a file” on page 409 and Section 8.4.5, “Printing to a file with PowerPC printing” on page 425.

8.2.8.3 Capturing a file as it goes over the network

The `iptrace` command can be used to capture the file and the flags as the file moves across the network from the client to the server. This can help determine if the entire file is being sent to the server, and what flags were sent. See Section 8.2.7, “Using iptrace to trace network printing” on page 397 for more information.

8.2.8.4 Capturing a file on the remote system

If the remote system or server is running AIX, then you simple disable the queue on the remote system, and capture it as described in Section 8.2.8.1, “Capturing the file before it goes through the queue” on page 398. If it is a different type of server, you will have to use tools from that server, or simply use the `iptrace` as it goes to the server.

8.2.9 Capture the flag

Often a flag that is not compatible with the system can cause a file to simply disappear. This happens when printing from applications, mainframe print methods in VMS and OS/400, or from PC based lpr clients. To capture the flags, disable the queue and print the file or from the application. Then look at the job control file.

8.2.9.1 System V flags

In System V printing, the flags can be found in the request file in /var/spool/lp/tmp/hostname/printid-0.
The flags can be interpreted as shown here:

- **C**: The number of copies to print
- **D**: The requested print queue
- **F**: The file to be printed.
- **N**: Mail back when printed
- **O**: The -o and other options
- **P**: Print priority
- **t**: Content type
- **U**: User sending the job

8.2.9.2 PowerPC flags

PowerPC flags can be found in the job description file located in:

```
/var/spool/lpd/qdir:
```

```
# qprt -z+ -T"This title" -p12 -Pjunk /etc/motd
# ls /var/spool/lpd/qdir
```

```
total 3
-rw-rw----   1 root     printq         1304 Nov 13 09:56 n0root:junk$#@!nP7b
```

```
# cat /var/spool/lpd/qdir/n0r*
```

```
-TThis title-Pjunk
```

```
This title
root
aix4prt
0
$#@!-z
$#@!+ $#@!-p
```

```
The flags that are listed under the environment variables are flags that are defined for the `enq` command. See the `enq` man pages for details. In this example, they are the title and the print queue:

```
-T"This title" -Pjunk
```

The other flags are those sent through `enq` as -o options. These show up in lines starting with `$#@!`. In this example, these are:

```
$#@!-z
$#@!+
$#@!-p
$#@!12
```

This command is equivalent to:

```
enq -o -z -o + -o p -o 12 -T"This title" -Pjunk
```

The other method to capture flags is to use `iptrace` or the lpd logging function in PowerPC lpd. In this case, you need to understand the flags that are supported by the LPD RFC-1179. The flags always appear in the control file of the trace. The flags not defined by the standard are shipped as either -o options for BSD and ATT type traces, or special AIX flags for AIX only printing. The following shows an example of the control file:

```
00000000	48616978 34707274 0a50726f 6f740a66	Haix普rt.Proot.f	
00000010	64664134 36366169 78347072 74a5564	dfA466aix4prt.Ud	
00000020	66413436 36616978 34707274 0a4e2f76	fAn466aix4prt.N/v	
00000030	6722ff74 6d702f70 6f72726c 66625f31	ar/tmp/piorlfbl	
00000040	33639353 4a2d6f2d 460a2d6f 700a2d6a	6954.-o-d.-op.-o	
00000050	2d6a0a2d 6f300a2d 6f2d4a0a 2d6f300a	-j.-o.-J.-o0.-o0-	
00000060	2d6f2d5a 0a2d6230 0a2d4e31 0a2d5a72	-o2.-o.-N1.-Zr	
00000070	66ff744d 61697834 70727240 2d747266	ott@aix4prt.tro	
00000080	67ff4061 6f783470 72740a2d 542f7661	ot@aix4prt.-T/va	
00000090	72ff746d 702f7069 6f726c66 625f3136	r/tmp/piorlfbl_16	
000000a0	3935349a	954.	
```

The first few flags in the file above are flags from the standard:

- **Haix4prt:** Client Host Name
- **Proot:** User submitting job
- **fdfA466aix4prt:** Temporary File name to store data
  - `-f`: Identifies file as a Plain Text or Formatted File
  - `-dfA`: Identifies that this is the data file
- 466: Job number on the client
- aix4prt: Client host name

- UdfA466aix4pr: Unlink this File when done (says this is temporary file)

The other flags in the control file are divided between other flags, for example, flags that start with a -o, and enq flags. The enq flags are the flags found within man enq. Many of the -o or other flags are actually virtual printer or qprt flags when used between two AIX systems, but are transferred as other flags, because LPD on the server passes the flags to enq to start the print process on the AIX server.

The following shows how the flags are logged when lpd logging is turned on, as described in Section 8.4.4.5, “Remote printing logs” on page 423:

```
lpd[56734] doit: cfn=[cfA929tesch.972600121].
lpd[56734] doit: get a line [Htesch].
lpd[56734] doit: get a line [Proot].
lpd[56734] doit: get a line [fdfA929tesch].
lpd[56734] doit: get a line [UdfA929tesch].
lpd[56734] doit: get a line [NSTDIN.6404].
```

### 8.2.10 Using the script shell to capture user input

When using any command from the command line that gives more output than a single screen will hold, use the `script` command to capture your keystrokes and the program output. This can be quite useful if you are running a printer install script such as `/usr/lib/hpnp/hpnpcfg`. To use script, follow these instructions:

1. Start the script shell and designate a log file:
   ```
 # script /tmp/hpnpcfg.log
   ```
2. Run the command that you want to diagnose:
   ```
 # /usr/lib/hpnp/hpnpcfg
   ```
3. After the program exits, exit the script by typing exit:
   ```
 # exit
 Script command is complete on Mon Oct 23 19:17:23 CST 2000
   ```
4. Print out the log or page it to the screen:
   ```
 # lp -d net12 /tmp/hpnpcfg.log
   ```
8.2.11 Using fuser to find processes

The `fuser` command gives a list of the process IDs associated with a file. Since device drivers in UNIX are represented by files, it is possible to find the process that is currently printing to a device by using `fuser`, as shown here:

```
fuser /dev/lp0
/dev/lp0: 12808 45590
ps -ef | grep 12808
root 12808 7756 0 13:46:36 - 0:00 /usr/lib/lpd/piobe /etc/motd
root 45590 12808 0 13:46:36 - 0:00 /usr/lib/lpd/pio/etc/pioout
```

This can be useful when trying to free a hung printer queue.

8.2.12 Using the echo statement in shell scripts

Much of System V printing is done through shell scripts, and simple shell scripts can be written for PowerPC printing to diagnose things such as bad flags being passed. Because the standard out of the shell script is often directed to the printer or to an unknown locations, when using the echo statement, direct it to a known file. For System V, an example is given in Section 8.3.10, “Troubleshooting System V interface scripts” on page 412.

8.2.13 Special considerations for some RS/232 adapters

8.2.13.1 16-port adapter considerations

The 16-port adapter uses a breakout box that has 25-pin connectors. The pinouts for these connectors satisfy the requirements for printing because Txd, Rxd, DCD and DTR are all present. In cases where users try to use CTS flow control, there will be problems, because the CTS signal is not brought out to the breakout box. The CTS signal tells AIX that the printer is turned on. The CTS signal is wrapped back, and AIX may not be able to tell if the printer has been turned off. This is especially true when using software flow control.

8.2.13.2 128-port adapter considerations

The 128-port adapter breakout boxes are called Remote Asynchronous Nodes (RANs). The connectors are RS/45 connectors similar to those used in networking.

One of the problems with using the 128-port adapter is that the RJ/45 connectors use a unique pinout for the RS/232 signal lines that is different from the 64-port adapter and the 7318 network terminal server that IBM used to sell. It is important that you check the pinouts carefully when adding devices on 128-port adapters.
The second problem with 128-port adapters is that the DCD signal is on the outside pin of the 10-bin RJ/45 connector. This is the signal that the AIX device driver uses for hardware flow control. Since 10-bin RJ/45 connectors are hard to find at times people use 8-bin connectors, which does not contain the DCD pin. Through software control, the DSR signal (pin 2) can be made to act like DCD and the hardware flow control will still work. For this to work, you must set Use Alternate RJ 45 pinouts to Yes in SMIT.

8.2.13.3 Attaching printers with 4 wires
When buildings are pre-wired with cables containing only 4 wires, there are often problems attaching serial printers. First of all, unless you do special wiring to insure that the DTR signal from the printer attaches to the DCD signal on the AIX system, there will be no hardware flow control. Second, the CTS signal on the AIX side will need to have a wrap cable from the AIX RTS signal or the port will not be able to open and you will get the Can’t create error message when catting to the file. In the case, the queue would always go down.

The second option that some people use is to add the printer as a TTY device with clocal turned on. In this case, you will use software flow control. The only problem that we have seen with this is that the queue does not know when the printer has been taken off line, and jobs can be lost because XOFF may not be sent or seen.

8.3 Troubleshooting for System V printing
This section lists the troubleshooting techniques that only apply to System V printing on AIX.

8.3.1 File permission problems
Some of the key permissions you will want to check are:
- Are the permissions for lpsched and lpNet set to ---s--x--- owned by root:lp?
- Are the default filters in /usr/lib/lp/bin set to executable?
- Is the interface program executable?
- Are the device file attributes allowing users to print?

8.3.2 Is the print service active?
To see if the scheduler is running, use the lpstat command with -r:

```
lpstat -r
```
scheduler is running

For printing to remote servers, check that lpNet is also started:

# ps -ef | grep lpNet

If the scheduler is not running, try to restart it with:

# /usr/lib/lp/lpsched

You do not have to separately start lpNet, as lpsched starts it automatically.

Before making major changes, disable the scheduler with lpshut.

If the daemons are not active, double check the permissions on files, and make sure that you check any changes you made since it was last active.

8.3.3 Does the printer have the right attributes?

It is important the printer setup have the right attributes both for the local printer device as well as for the printer spooler attributes.

8.3.3.1 Printer device

Check the communications attributes of the serial or parallel device driver to make sure they match those of the printer.

8.3.3.2 System V defined printer attributes

System V attributes that must match the printer include:

- Printer type
- Printer interface
- Content type

Other printer attributes that you need to pay attention to are the permissions for the printer and for forms set with the allow and deny flags in lpadmin. The default allow for a printer is all, but that is only good for local users. See the lpadmin man pages for the syntax for allowing remote user permissions. The setting for all users on all systems is all!all.

8.3.4 Logs and status files

There are a number of places to check for logs.
8.3.4.1 Check the mail

Check your mail to see if you have received any mail messages from the lp user. These will give you a place to start looking for the problem. An example error message is shown here:

```
From lp Tue Oct 24 09:33:01 2000
Received: (from lp@localhost)
by rs9220b.itsc.austin.ibm.com (AIX5.0/8.9.3/8.9.3) id JAA61332
for root@rs9220b; Tue, 24 Oct 2000 09:33:01 -0600
Date: Tue, 24 Oct 2000 09:33:01 -0600
From: lp
Message-Id: <200010241533.JAA61332@rs9220b.itsc.austin.ibm.com>
To: root@rs9220b.itsc.austin.ibm.com
Content-Length: 173
Status: RO
Subject: Status of lp request hp1-357

Your request hp1-357 destined for hp1 encountered an error while printing on printer hp1.
Printing stopped with an exit code of 1.
```

In this case, the problem was with an unsupported LANG variable and the message was not much help, but in other instances, this message can be very helpful.

8.3.4.2 Check the logs in /var/lp/logs

There are three files in this directory:

- requests
- lpsched
- lpNet
The requests file gets updated every time someone attempts to print. It contains the default flags, and other information, as shown in this sample log entry:

```
= hpl-357, uid 0, gid 0, lid 0, size 110, Tue Oct 24 09:32:59 2000
z hpl
C 1
D hpl
F /var/spool/lp/tmp/rs9220b/357-1
O locale=en_US flist=":110"
P 20
t simple
U root
r
s 0x0100
```

This shows the ownership of the user who printed, the date the job was printed, the job id, the priority, and the content type. This also shows the location of the file being printed. This does not tell you as much about what is wrong as it does tell you how the print job was submitted. For example, this `lp` command used the `-r` flag when it was submitted.

The `lpsched` log tells you when `lpsched` was started and stopped, and any errors that have occurred in forking child processes or in executing interface scripts:

```
Thu Oct 12 23:12:30 2000: UX:lpsched:
 ERROR: 0920-281 Received unexpected signal 33; terminating.
Fri Oct 13 11:08:28 2000: UX:lpsched:
 ERROR: 0920-271 Failed to fork child process
 (Resource temporarily unavailable).
```
The lpNet log shows you when network programs such as lpNet are forked, and when connections are made with remote systems. This log shows the events when we tried to cancel a job that was not printing on a remote system:

```
10/24/00 10:37 c 12972 rs1230a.myco.com lpd retrying connection to rs1230a.myco.com
10/24/00 10:45 c 58614 rs1230a.myco.com ERROR:
 class=Fatal, type=Unix, trace=(contimeout/setjmp), Interrupted system call
10/24/00 10:45 c 58614 rs1230a.myco.com Abnormal process termination.
10/24/00 10:47 p 61398 <none> Got a hit.
10/24/00 10:47 p 61398 <none> Started child for rs1230a.myco.com, pid = 50990
10/24/00 10:47 p 61398 <none> Into Polling loop.
10/24/00 10:47 c 50990 rs1230a.myco.com lpd starting (active)
```

8.3.4.3 Checking the pstatus file
The `/var/spool/lp/system/pstatus` file contains a status stanza for each of the printers. This file often has a line with the last failure, as shown here:

```
==========
net12
enabled accepting
972671048 971311069
NAK'd by remote lpd: waiting auto retry
new destination
```

8.3.5 Is the LANG variable set right?
If you try to print from a locale that has not been fully installed on your system, you may get errors such as the one shown below:

```
lptest 10 10 | lp -d hp1
UX:lp: ERROR: 0920-054 There is no filter to convert the file content.
 TO FIX: Use the lpstat -p -l command to find a
 printer that can handle the file type
directly, or consult with your system
administrator.
```

However, if you simply add the `-L C` flag, the file prints with no errors:

```
lptest 10 10 | lp -L C -d hp1
request id is hp1-362 (standard input)
```
8.3.6 Cancelled remote jobs still queued

When a remote printer is set up, and for some reason it stops printing when you cancel a job, the job is still visible to `lpstat` but shows a canceled status, as shown here:

```
lpstat -o all
net12-359 root 110 Tue Oct 24 10:16:50 2000 canceled
```

In this case, you will probably have to shut down the scheduler and restart, although it may be possible to kill the `lpNet` command that is hanging that port.

8.3.7 Printing to a file

By printing to a file, you can see exactly what the virtual printer has added to the file that is being printed. With the `lpadmin` command, you can specify an output file with the `-v` option. The following procedure explains how you could use this to diagnose a problem:

1. Create a file in the `/dev` directory. The file must have permissions for the user doing the testing to use; therefore, you can set the permissions accordingly.
   ```
 # touch /dev/lpx
 # chmod 600 /dev/lpx
 # chown lp:lp /dev/lpx
   ```

2. Create a printer to a file using the printer type, interface type, and content type that you want to diagnose:
   ```
 # lpadmin -m standard -T hplaserjet -I simple -p fileq -v /dev/lpx
   ```
   This may give an error if the lpx permission are set to 777 or something else, but that is not a problem. For PostScript queues, you will need to specify type PS-b, because this uses `lp.cat`, while PS uses `postio`, which will not print to a file, but only to a printer:
   ```
 # lpadmin -m PS -T PS-b -I PS -p fileps -v /dev/lpx
   ```

3. Give the commands to have the printer accept jobs and enable the printer.
   ```
 # accept fileq
 UX:accept: INFO: destination "fileq" now accepting requests
 # enable fileq
 UX:enable: INFO: printer "fileq" now enabled
   ```

4. Print to the fileq printer with a test job and make sure there is data in the file:
   ```
 # lptest 5 5 | lp -d fileq -L C
 request id is fileq-594 (standard input)
   ```
# ls -l /dev/lpx
-rw-rw-rw-   1 lp       lp              222 Nov 01 12:34 /dev/lpx
# cat /dev/lpx

When looking at the file, it may be useful to use vi and the \texttt{od} command to look at escape sequences.

\textbf{8.3.8 Cleaning up and starting over}

There should not be a necessity to clear out all the queues and start over, but you might have a need for this if you clone a system.

\textbf{8.3.8.1 Resetting the print subsystem job number}

The job number for the local jobs is stored in /spool/tmp/host-name/.SEQF and contains four fields separated by colons, as shown here:

\texttt{1:999:1:598}

The first two numbers are the limits of the job numbers. The next number shows where this job sequence started, and the last number (598) is the number of the next print request. To change the sequence number, just change this last value, and recycle the print subsystem with \texttt{lpshut} and \texttt{lpsched}.

\textbf{8.3.8.2 Cleaning out old print files}

If you are just having problems, you may want to start out by cleaning out the job request files. First, check to see the job names and cancel them, as shown here:

\texttt{
# lpstat -o
# cancel fileps-124
}

If you are not able to cancel the files, then remove the individual files from the /spool/tmp/host-name directory and the /var/spool/lp/requests/host-name directory.

\textbf{8.3.8.3 Cleaning out old printers}

Try first to use \texttt{lpadmin} to remove the queues using the -x flag

\texttt{
# lpadmin -x fileps
}

Check to see if the file was not removed, and if it was not, then remove the directory files and the interface program:

\texttt{
# lpstat -p fileps -l
# rm -R /etc/lp/printers/fileps
# rm /etc/lp/interfacers/fileps
}
8.3.8.4 Remove the temporary files
The temporary message files sometimes build up in the /var/spool/lp/tmp and
/var/spool/lp/temp directories and subsequent subdirectories. Use ls -IR
/var/spool/lp/tmp to look for files that might be left over.

8.3.8.5 Remove the old log files
The log files are stored in /var/lp/logs. We would make a backup copy of the
logs and then copy /dev/null on top of each of the files to zero them or simply
redirect nothing, as shown here:

# > /var/lp/logs/lpNet
# > /var/lp/logs/lpsched
# > /var/lp/logs/requests

8.3.9 Stopping unwanted header pages
In System V printing, the banners are controlled by the interface script, the
printer setup, and the command line flags.

8.3.9.1 Configuration banner selection
When creating the printer, specify no banners. If you are creating or
modifying a printer with lpadmin, use the -o nobanner flag to specify that you
do not want banners.

The configuration file in /etc/lp/printers/printer-name/configuration may show:

Banner: on:Always

The Always forces a banner page no matter what the user sends on the lp
command line. After you run lpadmin -o nobanner, this line will change to:

Banner: on

This does not turn off banners, but allows the user to select to not have
banners by using the -o nobanner flag with the lp command.

8.3.9.2 Command line banner selection
If the administrator has enabled banner select for users with -o nobanner as
described in the previous section, then the user can avoid banners with the lp
-o nobanner flag, as shown here:

$ lp -o nobanner -d finetext

By default, the lpr command will always send a command line flag to have a
header page. To avoid this, you can use lpr -h for no header.
8.3.9.3 Interface file banner selection
For local printers, find the interface in /var/spool/lp/admins/lp/interfaces that has the same name of the printers. The script should have a line that starts with nobanner="no". To easily find this in vi, use the find command with a carat (beginning of line) as follows:

```bash
/^nobanner
nobanner="no"
```

Change this to

```bash
nobanner="yes"
```

8.3.10 Troubleshooting System V interface scripts
Many of the System V interface programs are scripts. This makes it easy for you to use the echo command to investigate problems, and even to determine the order of events for local programs, or to determine where formatting errors might be occurring.

Each local printer has an interface program in /etc/lp/interfaces based on one of the model scripts. For example, if your printer is named hp1, the interface will be /etc/lp/interfaces/hp1. To see if the hp1 script is called, edit the script, and after the line that starts with the word trap, enter these two lines:

```bash
date >> /tmp/hp1.log
echo "entered hp1" >> /tmp/hp1.log
```

Set the permission on /tmp/hp1.log, so all users can write:

```bash
chmod 755 /tmp/hp1.log
```

Now print to the hp1 queue, and check the log:

```bash
Fri Oct 27 13:33:40 CST 2000
entered hp1
```

This shows that the script is invoked. Now you can try to use this to find problems that you have. For example, if you issue the following lp command, you may want to know if the problem is from the lp command or from the interface script:

```bash
lp -o cpi=17 -d hp1 /etc/motd
UX:lp: ERROR: 0920-056 The following options can't be handled:
-o cpi=
TO FIX: The printer(s) that otherwise qualify for printing your request can't handle one or more of these options. Try another printer, or change the options.
```
Checking the log, you will find that the entry was not logged, so the problem occurs prior to reaching the interface script, and therefore it is likely that terminfo was not checked.

You can also use this method to verify the command line arguments that have been passed to the script or to check the environment variables that have been set and passed by \texttt{lpsched}. Adding the lines in bold to the script can help show information that was passed:

\begin{verbatim}
## Check arguments

###

echo "Arguments are $*" >> /tmp/hp1.log
parse () {
    echo "\texttt{\textbackslash expr \"$1\" : \"^[\[^=]*=(.*)\}\"." >> /tmp/hp1.log
    echo "\texttt{\textbackslash expr \"$1\" : \"^[\[^=]*=(.*)\}\"." >> /tmp/hp1.log

and

printer=`basename $0`
request_id=$1
user_name=$2
title=$3
copies=$4
option_list=$5
echo "printer: $printer" >> /tmp/hp1.log
echo "request_id: $request_id" >> /tmp/hp1.log
echo "user_name: $user_name" >> /tmp/hp1.log
echo "title: $title" >> /tmp/hp1.log
echo "Number of copies: $copies" >> /tmp/hp1.log
echo "#options: $option_list" >> /tmp/hp1.log

shift 5
files="$*"
echo "Filenames: $files" >> /tmp/hp1.log

The following \texttt{echo} statements help to diagnose problems with the parameters sent to \texttt{lp.set} and can be placed in the \texttt{internal_lpset} subroutine:

\begin{verbatim}
internal_lpset () {
    echo "Inside \texttt{internal_lpset}" >> /tmp/hp1.log
    echo "\texttt{LPSET parms are $1:$2:$3:$4:$5}" >> /tmp/hp1.log
    echo "\texttt{LPSET parms are cpi:lpi:width:length:character set}" >> /tmp/hp1.log

Test the environment variables somewhere in the script with:

\texttt{env} >> /tmp/hp1.env
\end{verbatim}
or

set >> /tmp/hp1.env

These tools can be expanded until you find the problems.

Most of the interface scripts also write to a log file, but the log file is usually removed when the script exits. If you continue to have problems, comment out the statement that removes the temporary log, print, and then check the log file. For example, in the JetDirect backend, uncomment the lines that say:

```
rm -f $LOGFILE
```

### 8.3.11 Check timeouts in the Systems file for remote queues

Under certain conditions, remote queues may have problems if the timeouts are not properly set. Check the timeouts for the remote queue by checking the `/etc/lp/Systems` file. If the output does not have timeout numbers, there will be a lack of numbers between colons, as shown in the following example entry:

```
rs1230a.itsc.austin.ibm.com:x:-:bsd:-:-:-:-:-:;
```

The following file shows a timeout value of 1 minute with 2 retries:

```
rs1230a.itsc.austin.ibm.com:x:-:bsd:-:1:2:-:-:;
```

If timeout is not set, set the timeout with `lpsystem`, as shown here:

```
lpsystem -T 2 rs1230a.itsc.austin.ibm.com
```

### 8.3.12 Is `/etc/lp/Systems` file entry correct?

The `/etc/lp/Systems` file must contain the full name that the `lpNet` command gets when doing a get host by name. In testing, we found that if you simply put the IP address in this file that we could send jobs to the system, but not receive them. Only after entering the fully qualified domain name were we able to receive print jobs. The entry looked like this:

The first line was replace by the second (shown below):

```
rs1290a:x:-:bsd:-:1:2:-:-:ibm4312
rs1290a.itsc.austin.ibm.com:x:-:bsd:-:1:2:-:-:ibm4312
```

You can also look at the Systems settings for a specific setting with `lpsystem`:

```
lpsystem -l rs1290b
System: rs1290b
Type: bsd
Connection timeout: 1 minutes
Retry failed connections: after 1 minutes
```
8.3.13 Example: solving a remote printing problem

This section shows a troubleshooting example for both an outgoing and an incoming LPD print job.

8.3.13.1 Example: Missing outgoing network print jobs

Symptoms: Jobs to the remote printer are queued, but continue in a running state. When you try to cancel them, they stay in the \texttt{lpsstat} output, but show as canceled. Running the \texttt{lpsstat -o net12} command for printer net12, there was a several second delay, and then no output printed.

After stopping the scheduler and restarting, we cleared the /etc/lp/logs/lpNet flag, and re-ran the \texttt{lpsstat -o net12} command. We got the following output to the lpNet log:

10/27/00 11:12 p  7888 <none> Got a hit.
10/27/00 11:12 p  7888 <none> Got a hit. \texttt{lpExec}
10/27/00 11:12 p  7888 <none> Started child for \texttt{rs1230a.itsc.austin.ibm.com}, \texttt{pid = 19322}
10/27/00 11:12 p  7888 <none> Into Polling loop.
10/27/00 11:12 c 19322 rs1230a.itsc.austin.ibm.com \texttt{lpd starting (active)}

When we check the process table for process 19322, this shows:

```
ps -ef | grep 19322
root 19322 7888 0 11:12:19 - 0:00 lpNet
```

This is a child process forked by the parent \texttt{lpNet}, as shown by this \texttt{ps}:

```
ps -ef | grep lpNet
root 7888 45298 0 10:59:18 - 0:00 lpNet
root 19322 7888 0 11:12:19 - 0:00 lpNet
```

The \texttt{lpNet} parent is owned by process 45298, which is the scheduler:

```
ps -ef | grep 45298
root 7888 45298 0 10:59:18 - 0:00 lpNet
root 45298 1 0 10:59:18 - 0:00 /usr/lib/lp/lpsched
```

We checked the /etc/lp/Systems file to see if the server was entered:

```
$ cat /etc/lp/Systems
9.19.129.12:x:-:bsd:-3:10:-:-:
rs1230a.itsc.austin.ibm.com:x:-:bsd:-1:2:-:-:
```

We checked the configuration file to see if the server name matched:

```
$ cat /etc/lp/printers/net12/conf*
```
The match showed the server name was the same in both files.

We checked the connection to the host:

```bash
$ ping rs1230a
0821-062 ping: host name rs1230a NOT FOUND
```

We checked the host list and found the host name for the printer had been changed without our knowledge to rs1290a, so we used the `lpadmin` command to change the server name, but received the message:

```bash
UX:lpadmin: ERROR: 0920-195 System "rs1290b" does not exist.
 TO FIX: Use the "lpsystem -l" command to list all known systems.
```

We ran the `lpsystem` command to add the new host, and re-ran the `lpadmin` command to change the server.

```bash
lpadmin -s rs1290a -p net12
```

After making this change, the `lpstat -o net12` command returned immediately, but the file in the queue still did not print. We recycled the print service with `lpshut` and `lpsched`, but the file did not print. Next, we tried to disable the printer, but the message said the printer was already disabled. We enabled the printer, and the job printed.

### 8.3.13.2 Example: Missing inbound network print job

Symptom: A job was printed from an AIX 4.3.3 server to the AIX 5L System V print queue, but disappeared without printing. The AIX 4.3.3 lpd log shows that the job was successfully sent, and the `/etc/lp/logs/netLP` file shows:

```
11/01/00 14:42 p 19414 <none> Got a hit.
11/01/00 14:42 p 19414 <none> Got a hit. listenBSD
11/01/00 14:42 p 19414 <none> Into Polling loop.
11/01/00 14:42 c 9190 matt.dfw.com lpd starting (passive)
11/01/00 14:42 c 9190 matt.dfw.com matt.dfw.com requests recv job hp1
11/01/00 14:42 c 9190 matt.dfw.com lpd exiting, status=0
```

This appears to have been a successful receipt of the job to queue hp1, but nothing shows on the printer, in the interface echo logs, or in the
/var/lp/logs/lpsched or /var/lp/logs/requests files. The `lpstat -o` command shows that no jobs are queued.

We disabled the queue, and repeated the test print from the remote client, but again nothing was queued. Suspecting a problem with locale, since we often have to use the `lp -L C` flag to print, we tried starting `lpsched` with the locale set to C instead of en_US, as follows:

```
lpshut
export LANG=C
/usr/lib/lp/lpsched
```

This did not resolve or change the problem in any way.

We checked the `/var/spool/lp/system/pstatus` file and it read:

```
==========
hp1
disabled accepting
973111581 972921654
unknown reason
Testing the printer
```

The test user on the client received this mail message:

Subject: printer job

Your printer job

could not be printed.

Reason for failure:

UX:lpd: ERROR: 0920-053 You are not allowed to use the destination "hp1".

TO FIX: Use the `lpstat -p` command to list all known printers; you can use those marked "available".

The `lpstat -p` command showed the queue hp1 was available:

```
lpstat -p | grep hp1
```

We checked the allow file for the printer:

```
cat /etc/lp/printers/hp1/users.allow
all
```
The `lpadmin` command says that to receive jobs from remote systems that this file needs to be all!all. Changed the file with:

```
lpadmin -u allow:all!all -p hp
```

We recycled the scheduler and now we can print from the remote client.

### 8.3.14 Troubleshooting HP JetDirect printing

When printing to a network printer with the HP JetDirect print protocol, there are some default tools for debugging.

#### 8.3.14.1 Bad file permissions on interface script

The first problem that you are likely to encounter with JetDirect printing in System V is caused by an error in the Web-based system manager in the early adopters release of AIX 5L. The interface script that is created does not have the right permissions and when you try to print, you will get an error mailed saying that the interface program could not be executed:

```
From lp Mon Oct 23 18:43:21 2000
Date: Mon, 23 Oct 2000 18:43:20 -0600
From: lp
To: susieq
Content-Length: 572
Subject: Problem with printer hplj4m-net

The printer hplj4m-net has stopped printing for the reason given below.
Fix the problem and bring the printer back on line.
Printer has stopped, but will be restarted in a few minutes;
issue an enable command if you want to restart sooner.
Unless someone issues a change request

 lp -i hplj4m-net-788

The reason it stopped
The interface program could not be executed.
```

To fix the problem, change the permissions on the interface program in `/etc/lp/interfaces`, as shown here:

```
cd /etc/lp/interfaces
chmod 775 hplj4m-net
chown lp:lp hplj4m-net

Be sure to replace hplj4m-net with your printer name.

Now enable the queue, and release the print job:

```
# enable hplj4m-net
```
lp -i hplj4m-net-788

8.3.14.2 Check for /tmp/hpnpf.* log files

Check for /tmp/hpnpf.* log files by issuing the following command:

```sh
# ls -l /tmp/hpnpf.*
-rw-r--r--   1 lp   lp     280 Nov 15 16:40 /tmp/hpnpf.41480
# cat /tmp/hpnpf.41480
wsm1-331   /etc/lp/interfaces/model.orig/wsm1 | /usr/lib/hpnp/hpnpf -x rs1290b
wsm1-331   Do not have access
wsm1-331   5 errors logged for wsm1-331; errors no longer logged
```

The `Do not have access` is an indication that the printer may be offline. The JetDirect protocol does not use the `lpsystem` information in any way. At this point, check to see if the printer is available using `ping`. Then `telnet` to port 9100. If you get the following error, then check the printer:

```sh
# telnet 9.3.240.52 9100
Trying...
telnet: connect: A remote host refused an attempted connect operation.
```

8.3.14.3 Stair-step output on PCL printers

The default printer that you create with type `simple` will give stair-step output. The key to getting this to work right on PCL printers is to set the content type for the printer to `pcl` and registering the `pcl` filter. To register the `pcl` filter, use the following command:

```sh
# lpfilter -f pcl -F /etc/lp/fd/pcl.fd
```

8.4 Troubleshooting for PowerPC printing

The following section includes troubleshooting tips that only apply to the PowerPC print subsystem.

8.4.1 File permission problems

The only time you are likely to have problems with file permissions is when an overaggressive system administrator has made changes manually, or
someone has run `tcbck` with flags set to automatically fix problems. Symptoms of the problem are:

- Only root can print
- Can not print from some directories

Use `tcbck` to find out what files appear to have the wrong permissions, and change them manually. A checklist of common print permission errors is given in *AIX V4 Printer Guide*, SC23-2783.

8.4.2 Is the print service active?

To determine if the qdaemon and lpd are active, you can use the `lssrc` command, as shown here:

```
# lssrc -s qdaemon
# lssrc -s lpd
```

8.4.2.1 Starting the print services

To restart either daemon, use the `startsrc` command:

```
# startsrc -s qdaemon
# startsrc -s lpd
```

Be sure to check again to make sure that the daemons have stayed active.

8.4.2.2 The qdaemon will not stay active

A frequent problem that occurs when administrators hand edit the `/etc/qconfig` file is that the qdaemon finds syntax errors in the file and will not remain active. If this is the case, make a backup copy of `/etc/qconfig`, and then start removing queues from the end one at a time. Try to restart the qdaemon after removing each queue. A queue consists of two paragraphs or stanzas of information. The queue stanza points to the queue device stanza. Make sure that there is a queue device for each queue stanza. Make sure that all lines begin with a tab, except for the lines defining the queue or queue device names; these must start in column zero.

Extraneous files in qdir

Another problem that can cause errors and problems with the qdaemon are extraneous files in the `/var/spool/lpd/qdir` directory. If there are any files in this directory other than job description files for active queues, these files should be removed.

The dummy queue device

When queue devices are removed while jobs are queued, sometimes you will end up with a queue with a dummy queue device. To fix this, remove the
queue stanza from /etc/qconfig, and remove any virtual printer files, status files, and job description files associated with that queue.

8.4.3 Does the printer have the right attributes?
Setting up a printer with the wrong attributes can cause problems with flow control and formatting. It is important that you match the printer to one similar in capabilities in AIX. Both the attributes of the printer device and the virtual printer are important.

8.4.3.1 Printer device
When adding a printer that is locally attached using either RS/232 or parallel interfaces, there are a number of attributes that need to be set.

RS/232 attached printers
For RS/232 attached printers, the baud rate, number of data bits, parity setting, and number of stop bits must all match those set on the printers. In addition, the size of the buffer can be important, because with some slow printers the data may be sent faster than the printer can accept the data and so fast that it can not set the flow control. The other RS/232 setting that must match is the flow control. Although hardware flow control is recommended, either hardware or software flow control can be used. The important thing is that it must be set the same on both the printer and the computer device settings.

Parallel attached printers
About the only setting that can really affect the outcome of parallel attached printers is the delay in which the printers respond to the hardware handshake lines. For slow printers and plotters, the value for Delay between characters can be increased in the printer devices section.

8.4.3.2 Virtual printers
While device attributes can determine whether something can print, the virtual printer attributes will have a large effect on the output that actually appears on the printed page. Because a virtual printer does printer initialization with print commands that are unique to the data stream supported by the printer, it is important that you select a virtual printer that uses the same data streams that your printer expects. For example, if you set up a Epson Injet printer, which uses an Epson control sequence, using an HP Injet printer virtual printer, which uses a PCL control sequence, the output will be unintelligible.

Other things that must match are the page width and length, especially when printing text files.
8.4.4 Logs and status files

When you are having printing-related problems, there are messages and log files that can help resolve the problem. This section describes a number of the places you might look for diagnostic information.

8.4.4.1 Command line error messages

When you print, the first opportunity for error comes from using illegal command flags or values for those flags. An example of using the wrong flag is shown here:

```bash
# cd /tmp
# cat cmderr.txt
# lp -p69 -P3130pcl /etc/motd
lp: illegal option -- p
usage: lp [-cmaw] [-dDestination] [-nNumber] [-oOption] [-tTitle] [-] File ...
Prints a file in a format suitable for sending to a line printer.
```

8.4.4.2 Mail messages

Often times, either the qdaemon or the piobe backend will mail messages to the user submitting the job and the root user describing problems that occur.

8.4.4.3 Messages to the console

Often, the message that a queue has gone down or other errors will be printed to the users login terminal.

8.4.4.4 Virtual printer error message files

When errors occur with parameters for flags within the virtual printer, an error file is created in /var/spool/lpd/pio/@local. The files begin with msg and then contain a number, a period, and the queue name and device name.

For example, this command with an illegal pitch:

```bash
# qprt -p15 -P3130pcl /etc/motd
```

produced this error message in msg1.3130pcl:@aus3130b:

```
-----------------------------------------------------------
-----------------------------------------------------------

=====> MESSAGE FROM PRINT JOB 1062 (/etc/motd) <===== 0782-598 The value 1 specified in the validate op V in the limits field for _p attribute indicates failure
```

422 Printing for Fun and Profit under AIX 5L
8.4.4.5 Remote printing logs

Both `rembak` and `lpd` have the capability to use log files. This can provide information on what type of errors might have occurred.

Using rembak log files

When creating a queue, this can be added in the field labeled:

To turn on debugging, specify output file pathname `/tmp/rem1.log`

For later, a `-D logfile` flag is added to `/etc/qconfig`, as shown here:

```
backend = /usr/lib/lpd/rembak -D /tmp/remback.log
```

Normally, you will do this by changing a queue device from smit.

The output contains a lot of information, and may save you from doing a trace. The part of the output that shows the file being sent is shown here:

```
# grep sendjob rem1.log
rembak[56708] sendjob: sendjob starts, jobname=STDIN.46218, current time=972598526.
rembak[56708] sendjob: datafn[]=dfA069rs9220b, fakedfn=dfA069rs9220b.
rembak[56708] sendjob: ctrlfname=/tmp//rembak0FTyqa, fakecfn=cfA069rs9220b.
rembak[56708] sendjob: State machine starts....
rembak[56708] sendjob: State 1 - send the "Receive a Print Job" request.
rembak[56708] sendjob: state 3 - Send data file(s), dfcount=1.
rembak[56708] sendjob: realfn=/var/spool/qdaemon/t0nJiEa, fakefn=dfA069rs9220b, filter=/usr/lib/lpd/aixshort.
rembak[56708] sendjob: State 2 - send control file, ctrlfname=/tmp//rembak0FTyqa, fakecfn=cfA069rs9220b.
rembak[56708] sendjob: State 5 - end of job #69 (STDIN.46218).
rembak[56708] sendjob: Delete control file /tmp//rembak0FTyqa.
```

More details are supplied in Appendix D, "Tracing remote printing" on page 499.

Using lpd log files

When receiving files, the lpd daemon can also make logs of the activity. To turn on lpd debugging, stop the qdaemon and restart with:

```
# stopsrc -s lpd
# startsrc -s lpd -a "-D /tmp/lpddebug"
```

The output from this command is helpful in that it provides information on the control file that was passed to AIX, as well as the `enq` command that lpd generated.
The following shows some of the output from a sample run:

```
lpd[56734] doit: cfn=[cfA929tesch.972600121].
lpd[56734] doit: get a line [Ntesch].
lpd[56734] doit: get a line [Proot].
lpd[56734] doit: get a line [dfA929tesch].
lpd[56734] doit: get a line [UdfA929tesch].
lpd[56734] doit: get a line [TSTDIN.6404].
lpd[56734] doit: exec enq cmd=/usr/bin/enq -P3130pcl -r -troot@tesch -Zroot@tesch.aix.dfw.ibm.com -N1 -TSTDIN.6404 /var/spool/lpd/dfA929tesch.972600121 ].
```

A more complete description is provided in Appendix D, “Tracing remote printing” on page 499.

8.4.4.6 Job description files

The job description file (JDF) can help find information about the file that is being printed, the users’ environment, and the flags that are being passed. In most cases, the information at the end of the file is most useful. For example, the following JDF file shows the `enq` flags, the other flags, and the file being printed:

```
-Ttesting-Ptestq

 testing
 root
 rs9220b
 0
 $#@!-d
 $#@!p
 $#@!-p
 $#@!17
 $#@!-z
 $#@!+f
 $#@!f
 /var/spool/qdaemon/t6FLT7a 2
```

Line descriptions for the file above are:

- The line with `-Ttesting-Ptestq` shows which of the standard `enq` flags were passed from `qprt` to `enq`.
- The middle lines show the title was testing, printed by root on system rs9220b.
- The lines beginning with `$#@!` are formatting flags from `qprt`, or `lp -o` that are treated as other flags by `enq`. They are usually virtual printer formatting flags and useful for diagnosing problems where illegal flags are being sent
a job simply disappears. Test these flags individually with the \texttt{enq -o} flag. A common problem is the \texttt{-fl} flag; if this is set, make sure the virtual printer has an \texttt{fl} attribute set to \%ip.

- The final line in the file is the name of the file being printed. Because this is in /var/spool/qdaemon, the file has been spooled locally. For local jobs that are not spooled, the original file name will show on this line. For jobs received from remote clients, the files will be in /var/spool/lpd.

\subsection{8.4.4.7 Status files}
Status files are used by \texttt{lpstat} and \texttt{qchk} to list the status of the file. The files are in /var/spool/lpd/stat, and begin with \texttt{s}; however, the files are in binary format and cannot be directly accessed. The PID file in this directory does give the process ID of the qdaemon, and the files that begin with \texttt{p} contain process IDs for processes forked by the qdaemon, for example, before a device timed out on lp0 because the printer was turned off. The file \texttt{p.textq.lp0} contained the value 12808. To see what processes are associated with this queue, use the \texttt{ps} command, as shown here:

\begin{verbatim}
cat plocal.txt
ps -ef | grep 12808
 root 12808 7756 0 13:46:36 - 0:00 /usr/lib/lpd/piobe /etc/motd
 root 45590 12808 0 13:46:36 - 0:00 /usr/lib/lpd/pio/etc/pioout
 root 46824 14270 1 13:50:52 pts/1 0:00 grep 12808
\end{verbatim}

This shows that the \texttt{pioout} command was called by \texttt{piobe}. The \texttt{pioout} command is the filter that writes to the local device port.

\subsection{8.4.5 Printing to a file with PowerPC printing}
By printing to a file, you can see exactly what the virtual printer has added to the file that is being printed. In AIX 5L, you have the capability to add printers to a file in the /dev directory. The following procedure explains how you could use this to diagnose a problem:

1. Create a file in the /dev directory. The file must have permissions for the user doing the testing to use; therefore, you can set the permissions accordingly.

\begin{verbatim}
touch /dev/lpx
chmod 666 /dev/lpx
\end{verbatim}

2. Create a queue printing to a file using the printer type you want to diagnose:

\begin{verbatim}
smitty mkpq
Choose: file File in the /dev directory
\end{verbatim}
Choose the printer manufacturer
Choose the model of printer
Name of existing file in the /dev directory [lpx]
Enter the queue name testq and press [Enter]

3. Test print to the queue:
 # lptest 5 5 | qprt -P testq

4. Examine the file with vi or od.

5. Compare the output with the printer reference manual:
 ^[is an escape character
 ^[%-12345X is a printer reset to start PJL commands
 @PJL commands are usually obvious
 ^([s17H sets the pitch in characters per inch
 ^([s0S sets to simple non-italics style
 ^([s0B sets to normal, not-bold
 ^([s3T sets the type style to courier
 ^([k0G tells the printer not to add carriage returns.
 ^M is a carriage return

 This is also a useful technique to see where the virtual printer is placing line feeds by using lptest 200 1 to output a single line 200 characters long.

 This is also useful to see how different command line flags actually affect the command issued to a printer.

8.4.6 Cleaning up and starting over

 Sometimes you reach a level of frustration where jobs seem to be hung and the qdaemon will not start. In these cases, our recommendation is to see if you can first deal with the problem by finding the offending process.
8.4.6.1 First try to find the cause of the hang

The process IDs of the processes that have been forked by the qdaemon are stored in files that begin with the letter p in the /var/spool/lpd/stat directory. Start by stopping the qdaemon and checking for existing status process files in this directory. If they still exist, then cat the files and use kill -9 to stop the processes. In many cases, this will fix the problem. After this, use the fuser command to see if there are any processes still active on the device that appears hung. For example, if you have jobs that seem to be hung on lp17, then check for processes with:

```bash
# fuser /dev/lp17
```

If any process is active on this port, this command will give the process ID.

Check to see if any other processes that start with qd or pio are still active:

```bash
# ps -ef | grep qd
# ps -ef | grep pio
# kill -9 PIDnumbers
```

Another thing that can cause the qdaemon to fail is the presence of extraneous files in /var/spool/lpd/qdir. Make sure that the files in this directory have the format of job description files (JDF). A non JDF file will cause lpstat to give an error about a bad queue.

At this point, you may want to cancel jobs that created the problem and restart the qdaemon.

8.4.6.2 Last resort: Clean out the queueing system

When all else fails and you can not resolve problems with print jobs that are hung, you can totally clean out the queueing system. This procedure deletes all print jobs and they must be resubmitted. You must be root to perform this task. The steps to follow are:

1. Stop the qdaemon and associated processes:

   ```bash
   # stopsrc -s qdaemon
   ```

2. Kill all processes associated with the qdaemon. These are normally processes that start with qd, such as qdfork, or pio, such as pioformat or piout.

   ```bash
   # ps -ef | grep qd
   # ps -ef | grep pio
   # kill -9 PIDnumbers
   ```

 If processes cannot be killed with kill -9, you may need to reboot.
3. Clean out the queue status files. This will reset the job numbers unless you preserve /var/spool/lpd/stat/numfile.

```bash
# rm /var/spool/lp/stat/*
```

4. Remove any spooled jobs:

```bash
# rm /var/spool/lpd/qdir/*
# rm /var/spool/lpd/qdaemon/*
# rm /var/spool/lpd/df*
```

5. Restart the qdaemon:

```bash
# startsrc -s qdaemon
```

8.4.7 Checking the flags to enq

In PowerPC printing, all the commands, `qprt`, `lp`, `lpr`, `lpd`, `dtprint`, and so on, all send their output through `enq`. One way to test this is to mount the `echo` command over the `enq` command, as shown here:

```bash
# mount /bin/echo /bin/enq
```

Now print from the commands and see how this is seen by `enq`:

```bash
$ qprt -pl7 -Ttitle -v8 -Pasc /etc/motd
-o -p -o 17 -T title -n -o -v -o 8 -P asc /etc/motd
```

```bash
# lp -m -djunk -o land /etc/motd
-C -n -P junk -o land -j -- /etc/motd
```

```bash
# lpr -P junk /etc/motd
```

```bash
# lpr -P junk -c -Bgn /etc/motd
```

Now print from the commands and see how this is seen by `enq`:

```bash
-0 -p -o 17 -T title -v8 /etc/motd
```

```bash
# unmount /bin/enq
```

8.4.8 Stopping unwanted header pages

Banner pages for PowerPC printing can be controlled by command line flags to the print commands, configuration of the queue, or customization of the virtual printer file

8.4.8.1 Configuration banner selection

Banners are supported by the virtual printer for PowerPC printing. When you create or modify a virtual printer, you can specify if you want header pages, trailer pages, separator pages, any combination or no banner pages.
To change banner page, use the `smitty chpq` fastpath, select the printer, and then select `Change / Show Default Print Job Attributes`. Scroll down to the field `Separator Pages` and press the F4 key. Select None for no banner pages.

This will show up in the queue device stanza for the printer in `/etc/qconfig` as header and trailer, as shown in this example for the queue asc with queue device lp0:

```
# lsqdev -q asc -d lp0
lp0:
  file = /dev/lp0
  header = never
  trailer = never
  access = both
  backend = /usr/lib/lpd/piobe
```

8.4.8.2 Command line banner selection

Users can override the banner selection from the configuration file. To turn off banners from the command line with `enq` or `qprt`, use the `-Bnn` flag, as shown here:

```
$ enq -Bnn -P lj24 /tmp/testfile
$ qprt -Bnn -P lj24 /tmp/testfile
```

The `lpr` command issues a header page by default. To turn off the header page, use the `-h` flag:

```
$ lpr -h -P lj24 /tmp/testfile
```

8.4.8.3 Virtual printer banner selection

At times applications issue the `lpr` command, or you as the administrator have no control of users who want to use the `lpr` command without flags. You can disable all banner pagers from the virtual printer by removing the banner page generation program from the sh virtual printer attribute. Use the `lsvirprt` command to modify the virtual printer for this type of operation.

1. Start `lsvirprt`:
   ```
   # lsvirprt
   ```

2. Select the desired printer.
3. Set sh to nothing, as shown here:

```text
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sh</td>
<td>Pipeline for Header Page</td>
<td></td>
</tr>
</tbody>
</table>
```

8.5 Common errors and solutions

This section includes examples of errors seen in both the System V print subsystem and the PowerPC print subsystem.

8.5.1 Problem adding a second local printer on the same device

Once you have added a printer to a device line lp0, if you try to add another virtual printer using the `smitty mkpq` fastpath, you will get an error message in SMIT that looks like this:

Command: failed stdout: yes stderr: no
Before command completion, additional instructions may appear below.
Method error (/usr/lib/methods/cfgpp):
 0514-031 A device is already configured at the specified location.

This problem can be solved by adding a printer to a file in the dev directory, and specifying the file name as lp0 (or whatever device file name you were trying to use).
8.5.2 Cannot change attributes because device is busy

When trying to change the printer device settings, you may get this error:

Command: failed stdout: yes stderr: no
Method error (/usr/lib/methods/chggen):
0514-062 Cannot perform the requested function because the specified device is busy.

First, disable the queue, and if the command still fails, use the `fuser` command to see what process is holding the device open:

```bash
# fuser /dev/lp0
/dev/lp0: 12808 45590
```

Then kill the processes.

8.5.3 Remote job disappears after queue enabled

A common problem with remote jobs disappearing is that they pass flags that are not valid for the virtual printer. The most common problem is the `-fl` flag. The symptom is that if you disable the queue, the job will be queued, but when you enable it, the job disappears. If you capture the file on the server and print it locally, it prints fine.

While the job is queued, look in the job description file in `/var/spool/lpq/dir`. If you see a line that contains the following text near the bottom of the file:

```
$#@!-fl
```

The problem is likely that the client is passing the `-fl` flag, and the server does not have the `fl` attribute defined in the virtual printer. To fix the problem, use `lsvirprt`, select the virtual printer, and enter:

```
fp=%ip
```

Press Enter to save the lsvirprt settings and retry the job.

8.5.4 Bad mandatory environment variable

When printing to a PostScript printer setup with a content type of PS and an interface type of PS, but with a printer type of hplaserjet, the following error is mailed back to the user:

```
Subject: Status of lp request wsm3-336
...
Reason for failure:
UX:lp: ERROR: Bad mandatory environment variable.
```

Chapter 8. Troubleshooting 431
TO FIX: Consult your system administrator.

Checking the interface program for the printer shows that this error is generated when the TERM type is not one of the PostScript TERM types of PS, PS-b, PS-r, PS-br, or PSR. To fix the problem, use `lpadmin` to change the printer type to PS-b:

```bash
# lpadmin -p wsm3 -T PS-b
```

After making this change, you should be able to print.

8.5.5 LOG: is read only

When adding JetDirect printers with the `/usr/lib/hpnp/hpnpcfg` script using the standard `hpnp.model`, the following error is mailed back to users who try to print to the queue:

```
Printing stopped with an exit code of 1.
Reason for failure:
/etc/lp/interfaces/wsm2[44]: LOG: is read only
```

On examining the scrip `/etc/lp/interfaces/wsm2`, line 44 contained the following script statement:

```bash
LOG=/tmp/$PERIPH.$$
```

Further examination indicates that the problem is not with file permissions, but with environment variable permissions. If the line is changed to:

```bash
LOG1=/tmp/$PERIPH.$$ 
```

the problem will even cause JetDirect printers that were working before to no longer work. The reason is that the `hpnpcfg` script sets the `LOG` environment variable prior to restarting `lpsched`. When `lpsched` executes the interface program, the variable is set in read only mode. The solution to the problem is to stop the scheduler, make sure the LOG is unset in the root environment and then restart the scheduler:

```bash
# lpshut
# unset LOG
# /usr/lib/lp/lpsched
```

Although the `hpnpcfg` script is undocumented and unsupported, a more permanent solution to the problem is to modify the `hpnpcfg` script; but `hpnpcfg` calls `/usr/lib/hpnp/cfg/option6` to create the printer, and this is where the scheduler is stopped. `lpadmin` is called to add the printer, and `lpsched` is called to stop the printer. If you comment out the lines so the scheduler is not
stopped and restarted, then the printers will work without manual intervention. The following shows the lines commented out in the option6 shell script:

```
STARTLP=0
#echo /usr/sbin/lpshut | tee -a -- $LOG
#/usr/sbin/lpshut
#if [ $? -eq 0 ]
#then
  STARTLP=1
#fi
```

8.5.6 No formfeed after banner page

When you add a printer with the hpnpcfg script, if you do not specify the type as pcl, you may not see any pages beyond the header. This is because the simple type is a passthrough type of printing with no modification to the file. This can be fixed by changing the content type to pcl and making sure the pcl filter has been installed as follows:

```
# lpadmin -p printer-name -I pcl
# lpfilter -f pcl -F /etc/lp/fd/pcl.fd
```

Once you make this change, the text files will print fine, but there will be no formfeed after the header page. To add a formfeed, simply change the printer type to hplaserjet, as shown here:

```
# lpadmin -p printer-name -T hplaserjet
```

If this is not a PCL printer, choose an appropriate terminfo type for the option.
Chapter 9. Printing tips and utilities

This chapter contains a number of topics that cover printing and shown how to extend the capabilities of both the System V or PowerPC environment. They are included in this separate chapter because they are not really a part of either of the print subsystems. Utilities included in this chapter include both filters and formatting programs that ship as a part of AIX, and utilities that are available in the public domain.

9.1 Obtaining AIX-ready utilities

Not all public domain utilities are available pre-compiled, but many are. There are two Internet sites that are dedicated to utilities that are precompiled and tested on AIX. These are the Group Bull public domain site (http://www.rge.com/pub/systems/aix/bull/) and the UCLA SEAS public domain software site (http://aixpdslib.seas.ucla.edu/aixpdslib.html). In addition to these sites, the AIX Toolbox for Linux Applications packages contain software that is not generally available in the standard AIX 5L offering.

9.1.1 The AIX toolbox for Linux Applications packages

The AIX toolbox for Linux Applications packages, which can be found at http://www-1.ibm.com/servers/aix/products/aixos/linux/download.html, contain a number of useful utilities that may be helpful with printing that are compiled to work well with AIX 5L.

9.1.2 The CD-ROM from UNIX Power Tools

The CD-ROM that is included with UNIX Power Tools, by Jerry Peek et al, contains a large number of utilities. Some of the utilities that are applicable to printing are included in Table 23.

Table 23. Printing utilities in UNIX Power Tools

<table>
<thead>
<tr>
<th>Utilities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pstext</td>
<td>Utility for converting txt files to PostScript.</td>
</tr>
<tr>
<td>psutils</td>
<td>Collection of five programs: psbook, psselect, pstop, psnup, and epsfit. Also included are scripts that fix several different types of PostScript files.</td>
</tr>
<tr>
<td>watchq</td>
<td>A daemon that monitors the queues for several printers and sends messages to users when errors occur.</td>
</tr>
</tbody>
</table>
9.1.3 Bull download sites

Group Bull operates an internet site where AIX printing utilities can be downloaded for free. The software is packaged in standard installp format, and can be installed with the standard Web-based System Manager and SMIT management tools. The URL for Group Bull public domain software is:

http://www.rge.com/pub/systems/aix/bull/

Although the code is divided into AIX 4.1.5 and earlier and AIX 4.3.2 and later, in general, the code created for any of these versions should work on AIX 5L.

Table 24 contains a list of the printing utilities available from the Group Bull site.

Table 24. Printing utilities available from Group Bull download site

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gnu.ghostview-3.5.8</td>
<td>Utility for previewing and printing PostScript files.</td>
</tr>
<tr>
<td>gnu.ghostscript-5.10</td>
<td>Utility with filters for converting PostScript to other formats.</td>
</tr>
<tr>
<td>gnuplot-3.5.0.0</td>
<td>Plotting utility to create plots that can be printed.</td>
</tr>
<tr>
<td>ImageMagick-5.2.4.0</td>
<td>Image manipulation tool. Use to image files to formats that can be printed or imbedded in documents.</td>
</tr>
<tr>
<td>pstoedit-2.41.0.0</td>
<td>PostScript transformation tools. Require gnu.ghostscript to install.</td>
</tr>
<tr>
<td>psutils-1.17.0.0</td>
<td>Utilities to manipulate postscript for printing selected parts, in different order, or multiple PostScript pages on a single printer page.</td>
</tr>
<tr>
<td>SAMBA-2.0.7.0</td>
<td>File and printer server utility to print from Windows based clients using SMB protocol.</td>
</tr>
<tr>
<td>xpdf-0.9.0.0</td>
<td>Utility for displaying and printing Adobe .pdf files.</td>
</tr>
<tr>
<td>xps-3.14.0.0</td>
<td>Utility to display PostScript files on Xservers.</td>
</tr>
<tr>
<td>freetype</td>
<td>The free TrueType font engine.</td>
</tr>
</tbody>
</table>

9.1.4 UCLA SEAS public domain software for AIX

The University of California at Los Angeles has maintained a software download repository for AIX software for many years. The software is usually available in either a source based package or as an executable. Most of this software is packaged in the tar format and is easily installed on AIX by simply unpacking. The URL for the UCLA SEAS public domain library is:
A list of software utilities available for AIX printing available from UCLA are shown in Table 25.

Table 25. Printer utilities available from UCLA SEAS

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2ps</td>
<td>ASCII to PostScript converter.</td>
</tr>
<tr>
<td>gif2png</td>
<td>Convert gif files to png format.</td>
</tr>
<tr>
<td>gimp</td>
<td>GNU image manipulation program.</td>
</tr>
<tr>
<td>ghostscript</td>
<td>GNU Ghostscript interpreter/previewer (needs gs-fonts).</td>
</tr>
<tr>
<td>ghostview</td>
<td>GNU PostScript documents viewer.</td>
</tr>
<tr>
<td>gs</td>
<td>GNU Ghostscript filter for converting PostScript.</td>
</tr>
<tr>
<td>gs-fonts</td>
<td>Ghostscript fonts.</td>
</tr>
<tr>
<td>groff</td>
<td>GNU groff document formatting system.</td>
</tr>
<tr>
<td>Mesa</td>
<td>Mesa 3-D graphics library.</td>
</tr>
<tr>
<td>plotutils</td>
<td>Plotting utilities.</td>
</tr>
<tr>
<td>samba</td>
<td>File and print serving which implements the SMB protocol for printing from Windows.</td>
</tr>
<tr>
<td>textutils</td>
<td>GNU text file processing utilities.</td>
</tr>
<tr>
<td>tgif</td>
<td>Drawing tool and conversion.</td>
</tr>
<tr>
<td>transfig</td>
<td>Plotting tool.</td>
</tr>
<tr>
<td>xdvi</td>
<td>Program for previewing .dvi files.</td>
</tr>
<tr>
<td>xgrabsc</td>
<td>An X-Windows image grabber.</td>
</tr>
<tr>
<td>xv</td>
<td>Image (GIF, JPEG, TIFF, PBM, PGM, PPM, PS, and so on) displayer and printer. Use to grab X-Windows.</td>
</tr>
<tr>
<td>xwpick</td>
<td>Pick images from an X11-screen and store in files.</td>
</tr>
</tbody>
</table>

9.2 PostScript utilities

PostScript is a page definition language and there are a large number of utilities available to display and modify the PostScript file before it is sent to the printer. This section contains information on some of the more widely used utilities.
9.2.1 Using enscript to convert text to PostScript

The text to PostScript conversion program that has been available as a part of AIX for the longest time is called enscript. The enscript filter is used in virtual printers to convert text files to print on PostScript printers. Some of the capabilities of enscript include:

- Ability to select the font used for the generated PostScript
- Ability to display the file in n-up format
- Ability to display the text with a title and fancy formatting

9.2.1.1 Printing binder titles and selecting fonts

To print titles for the side of a binder, we often use the large fonts that can be generated very easily with enscript as shown here:

```bash
$ echo "Notebook binder label" | enscript -fCourier32 -d ps
```

A list of the available fonts for enscript is contained in /usr/lib/ps/fontmap in the lefthand column. This command may give you a better font for a label, but would look bad printing an ASCII text file.

```bash
$ echo "AIX printing tips" | enscript -fHelvetica-Bold34 -Pps
```

9.2.1.2 Printing 2-up and landscape

The following command will print the /etc/qconfig file rotated to landscape with two pages on the physical page:

```bash
$ enscript -2r -dps /etc/qconfig
```

9.2.1.3 Printing with page title and timestamp

Although enscript includes the filename and date by default, the -G flag adds a gaudy mode that prints the title and timestamp in a fancier format.

```bash
$ enscript -2Gr -ttitle -dps /etc/qconfig
```

9.2.2 Using psutils for custom PostScript printing

The public domain package psutils includes the utilities in Table 26.

<table>
<thead>
<tr>
<th>Utilities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ps2pdf</td>
<td>Convert text files to PDF format.</td>
</tr>
</tbody>
</table>
Many applications give the ability to create 2-up output. Sometimes you have a PostScript file that is already created and you want to print that 2-up. The psnup utility was designed just for this purpose. This utility is not shipped with AIX, but is available from a number of UNIX shareware sites, such as http://bibliofile.mc.duke.edu/gww/fonts/postscript-utilities/index.html, as well in the CD-ROM that is included with UNIX Power Tools, by Jerry Peek et al. The command syntax may vary based on the application generating the output. The following is an example command:

```
$ psnup -w280 -2 filename | pgrt -Pps (Shareware)
```

9.2.3 Using System V filters for PostScript printing

The System V print filters described in Chapter 4, “System V advanced printing” on page 135 can also be used from the command line. The postprint routine is useful for conversion from text to PostScript. These print routines also have capabilities similar to the postut il package in that they can print files n-up and select pages from PostScript files.
9.2.4 Ghostscript for PostScript viewing and file conversion

Ghostscript is the name of a set of software that provides:

- An interpreter for PostScript language and the Adobe Portable Document Format (PDF)
- A set of C procedures (the Ghostscript library) that implement the graphics and filtering (data compression/decompression/conversion) capabilities that appear as primitive operations in the PostScript language in a PDF.

Ghostscript is a copyrighted work (Aladdin Enterprises owns the copyright); and is not shareware or in the public domain; however, it is distributed with a license called the Aladdin Free Public License that allows free use, copying, and distribution by end users, but does not allow commercial distribution. The current version is available from:

where NNN is the version number without embedded dots. For a copy on CD, see:

http://www.cs.wisc.edu/~ghost/index.html

Some of the utilities with Ghostscript include:

- pdf2ps: Converts PDF files to Level 2 PostScript.
- ps2ascii: Converts PostScript to simple ASCII text.
- ps2epsi: Converts PostScript to 9-pin Epson format.

Ghostscript can be used to convert PostScript to formats supported by different types of printers. Output types are determined by drivers. There were six generic drivers contained in the source module when we downloaded it:

- cdj500: HP DeskJet 500C and 540C
- cdj550: HP DeskJet 550C, 560C, 660C, and 660Cse
- pjxl300: HP PaintJet XL300 and DeskJet 1200C
- pjttest: HP PaintJet
- pjttest: HP PaintJet XL
- declj250: DECLJ2500

There are a number of shell scripts, including ones for setting up BSD UNIX printing with /etc/printcap.

To display a PostScript file with Ghostscript, use the following command:
$ /usr/local/bin/gs /pathname/file.ps

To create a PCL version of the PostScript file, use the following command:

$ gs -dNOPAUSE -dBATCH -dSAFER -sDEVICE=ljet3
 -sOutputFile=/tmp/acrob.pcl infile.ps

Since Ghostscript is a filter and can accept input from standard input and write to standard output, it can be implemented as a filter.

For PowerPC, set the f1 attribute to:

/usr/local/bin/gs -q -dNOPAUSE -dBATCH -dSAFER -dDEVICE=ljet3 -sOutputFile=

To use the filter, either set f=1, or use the qprt -f1 flag.

For System V printing, add the same line in the pipeline of the FILTER parameter in the interface file for the queue.

9.2.5 PostScript font utilities

We found three major sources of both free and commercial fonts and information about fonts on the Internet:

http://www.adobe.com/
http://www.bitstream.com/
http://www.monotype.com/

PostScript fonts can be downloaded from the Internet in different formats. Often times, these need converted to PFA type fonts. Two tools that we have seen that convert files to PFA are:

- t1utils: A collection of simple type-1 font manipulation programs.
- pfb2pfa: A conversion program from binary pfb fonts to ascii mode pfa fonts.

T1utils is a collection of simple type-1 font manipulation programs. Together, they allow you to convert between PFA (ASCII) and PFB (binary) formats, disassemble PFA or PFB files into human-readable form and reassemble them into PFA or PFB format. Additionally, you can extract font resources from a Macintosh font file (ATM/Laserwriter).

There are currently five programs:

* **t1ascii** Converts PFB files to PFA format.
* **t1binary** Converts PFA files to PFB format.
t1disasm Disassembles a type-1 font (PFA or PFB format) into a raw, human-readable text form for subsequent hand editing, tweaking, hint fixing, and so on.

t1asm Assembles type-1 font into PFA or PFB format from raw, human-readable text form.

unpost Extracts POST resources from a Macintosh type-1 file (ATM/Laserwriter) into PFA or PFB format for use outside the Macintosh environment. The Macintosh file should be stored in MacBinary format or as a raw resource fork. Note that unpost does not have to run on a Macintosh, but makes Macintosh type-1 fonts available to UNIX machines and PCs.

The programs are written in ANSI C. The version we downloaded compiled and ran without errors on AIX. The program that is usually needed is t1ascii. This utility will convert the fonts to PFA, which can be downloaded as described in each of the advanced printing chapters of this book.

9.2.6 Using xpreview to view PostScript

The xpreview command comes as a standard part of the X11 installation on AIX and can be used to preview PostScript files. It is less sophisticated than Ghostview, but can still be useful for simple PostScript files.

9.2.7 Using psroff for man pages

The psroff utility is a tool that can be used to print the man pages from many of the public domain software packages to a PostScript printer with proper formatting. For example, to print the man page for psmerge, use the following command:

```
# psroff -man -d ps /usr/local/man/man1/psmerge.1
```

9.2.8 PostScript to ASCII

Although it is fairly simply to convert from text to PostScript, going the other direction is less straightforward. For simple text, the process can be accomplished with the public domain utility ps2ascii, but this will not handle graphics. The GhostScript utility is probably the most promising tool in this area.

9.3 Utilities for capturing and printing X Windows

The following is are commonly used utilities for capturing and printing X windows on AIX and other UNIX systems.
9.3.1 Using xpr and xwd to print X windows

The combination of xwd to capture an X window and xpr to convert the output to a format that can be printed, such as PCL or PostScript, is a useful combination for doing screen captures from the X windows systems. We find that this works best for PostScript printers, but we have also used it with PCL laser printers. To use this utility for PostScript printers, follow these simple steps:

1. Create the script /usr/local/bin/winprt with the following contents:

```
#!/bin/ksh
xwd -xy | xpr -device ps | lp -d ps
```

2. Make sure the file is executable by all:

```
# chmod +x /usr/local/bin/winprt
```

3. Run the command from a text panel:

```
$ winprt
```

4. Use Alt-Tab to bring the desired panel to the top, align the + cursor on top of the panel using the mouse, and click the left mouse button.

5. After a short delay, the file will print to the ps printer.

To print the entire screen, you can use the -root flag for xwd:

```
xwd -xy | xpr -device ps | lp -d ps
```

To print to a PCL based laser printer, use the following command:

```
$ xwd -frame | xpr -device ljet | lp -d pcl
```

or

```
$ xwd -frame | xpr -device ljet | lp -d pc
```

9.3.2 Using xv to capture and print X windows

The xv utility, available as public domain software, is one of the most useful tools for capturing X windows and converting between different file formats. Most of the pictures in this book were captured with xv. xv can save the output as most standard graphics formats, as well as in PostScript. One of the advantages of xv is that you can mark any triangle on the screen and capture it. To use xv, simply install and type xv from any command line. This will bring up a standard panel with the author's (John Bradley) name. Right click on the panel and the xv controls panel will appear. To capture a portion of the screen, click the grab button. This will bring up another panel which lets you click a box to Hide XV windows, and to put a Delay so that you can autograb...
a panel. For most cases, simply click the **Grab** button and proceed. To capture a complete panel, move the cursor over the panel and click the left mouse button. To capture a rectangle on the screen, push the left mouse button down, form the triangle and release. The original panel will now become a panel containing the captured image. From this point, either click the **Save** button to save the image in the desired format, or the **Print** button to print the image.

9.3.3 Using xgrabsc

The xgrabsc utility available as public domain software, captures X windows. It has less formatting capabilities than xv, but is easier to automate (similar to the `xwd/xpr` combination) while adding the ability to capture a selected rectangle in a manner similar to xv. The xgrabsc writes PostScript output to standard output and can be used to pipe the output directly to a printer, as follows:

```bash
$ xgrabsc | lp -d ps
```

9.4 Using the pr filter to format text

The pr filter is a powerful text formatting utility shipped with AIX. It does text formatting similar to that performed by the ASCII formatter of the PowerPC virtual printer subsystem. Some of the formatting functions that can be done by pr include:

- Truncate text lines based on the page width.
- Inserting carriage returns based on the page length.
- Adding page titles and page numbers to the file.
- Rotating and printing in n-up format.
- Provide double spaced output for reviewing documents.
- Expand tabs into spaces.
- Add formfeeds or spaces to fill a page.
- Merge files in a side by side format.
- Add line numbers.
- Indent lines.
9.4.1 Using pr as a printer filter

The `pr` command can be used from the command line or as a filter for either print subsystem. When used from the command line, `pr` can accept data as standard in, or by specifying a file name, as shown here:

```
$ cat /etc/motd | pr -h "Add your title" | lp -d textq
$ pr -d -h "double spaced motd" /etc/motd | lp -d textq
```

9.4.1.1 Using the pr filter with System V printers

To specify the pr filter for a System V printer when using the standard interface program, edit the printer interface program in `/etc/lp/interfaces` and change the line that is commented out below to the second line, adding any flags to `pr` that are desired:

```
#       FILTER="${LPCAT} ${LPCAT_ARG}"     # allow infinite delays
FILTER=" pr | ${LPCAT} ${LPCAT_ARG}"
```

A more elegant solution would be to add a `-o` option to set the FILTER variable if the file was printed with `lp -o pr`. To do this, add the lines directory under the `simple="yes"` example, as shown here:

```
#       simple
#               simple="yes"
#               
#               pr )
FILTER=" pr | ${LPCAT} ${LPCAT_ARG}"
```

You can add the flags to the `pr` command to get different effects.

9.4.1.2 Using the pr filter with PowerPC queues

The `pr` command is built-in to the virtual printer `fp` attribute. To use the `pr` filter, simply use:

```
$ qprt -fp -P queue-name file-name
```

or

```
$ lp -o -fp -d printer-name file-name
```

9.4.2 Printing 2-up with pr

The following is a sample command that will generate 2-up text output for a PCL laser printer queue. The `-l 60` specifies the length per page, the `-w 172` specifies the width, the `-2` tells `pr` to format the file 2-up. The `qprt -z+` flag is used to make the printer print landscape. We use the passthrough flag because `pr` will add carriage returns to the line feeds already.
$ pr -l 60 -w 172 -2 filename | qprt -z+ -dp -p17splp

With System V, you would need to add commands to the interface program to place the printer in landscape mode.

9.4.3 Adding line numbers with pr
To add line numbers to a file, add the -n flag to pr:

```
$ pr -n file-name | lp -d queue-name
```

9.4.4 Adding a title to the pages
By default, `pr` puts the file name at the top of each page along with a date/time stamp. To replace the file name with a title, use the header flag and place the title in quotes, as shown here:

```
$ pr -h "This is my title" | lp -d asc
```

9.4.5 Indenting lines with pr
When printing files to put in a binder, it is useful to indent the lines so that they are not in the area where the holes are located. This can be done with the `pr -o Offset` flag, as shown here:

```
$ pr -o 5 | lp -d asc
```

9.5 Standard filters in AIX
This section includes the following standard filters in AIX system:
- sed
- awk
- perl
- tr
- expand

9.5.1 The sed filter
The sed program is a useful filter because you can use it for simple substitution of characters or strings. When using sed, you can build substitutions strings on files or on the command line. Functions that sed might play as a print filter is to strip out unwanted characters or to substitute one character for another. Some of the things that you might want to do with sed include:
• Remove unwanted carriage returns: (^M is formed by ctrl-V ctrl-M):

 # cat file | sed -e "s/^M//g"

• Substitute 8 spaces for each tab: (Use the tab character for \tab)

 # cat file | sed -e "s/\t/ /g"

• Remove backspace characters:

 # cat file | sed -e "s/^H//g"

To use a file of commands, use the -f flag:

 # sed -f /usr/local/filt.cr file | lp -d txt

9.5.2 The awk filter

The awk filter can be used for more complicated processing of text where you might want to search for a value in a line, and then replace a different parameter in the line. The awk filter has a complete formatting language with search, if-then-else, and print statements, to handle text. An awk filter could be used to change font sizes inside an already formatted document. Often, awk will be used inside of a shell script, and possibly even in interface scripts.

9.5.3 The perl filter

Perl adds an even more sophisticated level of text search and manipulation of files before or as they are being printed. Perl scripts can be used to format data from an iptrace report into a more meaningful set of data.

9.5.4 The tr filter

The tr filter is a simple single character translation program. It is useful when substituting a single character, such as a carriage return with a null. To translate braces into brackets, enter the following command:

 $ tr '{' ']' < textfile | lp -d text

To delete all null characters from a file, use the following command:

 $ tr -d '\0' < textfile | lp -d text

To replace every nonprinting character, other than valid control characters, with a ? (question mark), enter the following command:

 $ tr -c \[[:print:][:cntrl*]\] \[?*\] < textfile | lp -d text

There is also a BSD version of the command named trbsd.
9.5.5 The expand filter

The expand filter can be used to expand or replace tab characters with a specified number of spaces. To replace tabs with 8 spaces, use the following command:

```
$ cat /tmp/testfile | expand -8 | lp -d text
```

9.6 Socket programs for network printing

Printing to printers attached to both print and terminal servers is often done by using TCP/IP socket filter programs to send the data from AIX to the server. This section describes some of these filters and how they might be used to send print jobs from AIX to the remote printers.

9.6.1 Using socket program filters with System V

The JetDirect interface example program `/usr/lib/hpnp/hpnplS.model` is a good example of a System V program that calls a socket filter. The filter is defined in the line:

```
HPNPF="/usr/lib/hpnp/hpnpf"
NETWORK="$HPNPF -x $PERIPH"
```

and used later in the script with the line:

```
) | $NETWORK >> $LOGFILE 2>&1
```

To use a different filter, simply change these lines to identify the filter and the required parameters to designate the printer or terminal server hostname and port number.

9.6.2 Using socket filter programs in PowerPC printing

From the PowerPC print subsystem perspective the backends are located in `/usr/lib/lpd/pio/etc`. Two of these backends that provide examples of using socket filters are:

- `piojetd`
- `pioibmnp`

The pertinent lines in these files are shown here:

```
/usr/lib/lpd/piobe "$@" | /usr/lib/lpd/etc/piohpnpf -x $hostname -p $port
/usr/lib/lpd/piobe $* | /usr/lib/lpd/etc/pioibmnpf $ipaddr 2501
```
Make a JetDirect queue, then copy the backend `piojetdir` to `piosocket1`, and replace the `piohpnpf` or `pioibmnpf` socket filters with the filters for your print server, and change the backend program name in the queue device for the new queue. This can be done through SMIT or by editing `/etc/qconfig`. Be careful when editing `/etc/qconfig`, because formatting errors can cause the qdaemon to not work at all.

9.6.3 Known print socket filter programs

Table 27 lists some of the more well known socket print filter programs. This list is incomplete, as many people have written programs for this function.

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>piohpnpf</td>
<td>HP socket program that can be used with HP JetDirect enabled printers and print servers. The default port is 9100, but other ports can be specified.</td>
</tr>
<tr>
<td>pioibmnpf</td>
<td>IBM socket program that can be used with IBM Network Printers.</td>
</tr>
<tr>
<td>aprint</td>
<td>This socket program was distributed by Xylogics for the Annex terminal server. The company was acquired by Bay Networks which has been acquired by Nortel Networks, and the current availability of the program is unknown, although it should be available under an Annex terminal server support contract.</td>
</tr>
<tr>
<td>netcat</td>
<td>A general purpose printer socket filter by Jeff Liebermann is available at http://gate.cruzio.com/~jeffl/sco/lp/. A number of interface programs and scripts are also provided.</td>
</tr>
<tr>
<td>TCPrint</td>
<td>A general purpose printer socket filter from LAIX available with support from http://home.flash.net/~laixsoft/</td>
</tr>
<tr>
<td>lexlink</td>
<td>Software for LexMark printers that use special protocols are available.</td>
</tr>
<tr>
<td>csportd</td>
<td>This socket filter was written to support Xyplex Access terminal servers and can be set up either as a filter or as a named pipe special device and used with local printers. Xyplex servers can also be updated to support LPD protocol.</td>
</tr>
<tr>
<td>rlp</td>
<td>This socket filter is available from 3Comm for their terminal servers.</td>
</tr>
<tr>
<td>rprint</td>
<td>This socket filter is from Emulex for NETque and NETjet print servers.</td>
</tr>
<tr>
<td>ncdprint</td>
<td>This socket filter is used to print to printers attached to NCD thin clients.</td>
</tr>
</tbody>
</table>

All of these programs take standard input and pipe it to a network socket connection and therefore can be used as output filters for both print subsystems.
9.6.4 Example: printing with netcat from System V

This example is based on information by Jeff Liebermann available at http://gate.cruzio.com/~jeffl/sco/lp/. This location includes a socket program called netcat and a number of interface scripts for printing to network printers.

There are a number of network print filters available both from the public domain, and from terminal and print server manufacturers. A number of these are listed in Table 27 on page 449. These filters have the ability to accept the file as standard input, and transfer the file to a specified port on a remote terminal or print server using a TCP/IP socket protocol.

It is possible to use the standard interface script in conjunction with any of these filters, using the following example with minor modifications:

1. Change to the model directory:

 # cd /usr/lib/lp/model

2. Make a copy of the standard interface program:

 # cp standard netiface

3. Edit the netiface interface:

 # vi netiface

4. Add the following lines:

 NETHOST=
 NETPORT=
 FILTER="sed \s/"\n"/ | /usr/local/bin/netprint -H $NETHOST -P $NETPORT

 at the top of the file after the trap and at any point before the line

 if [-z FILTER]

5. If a banner page is required another modification to this file is necessary because the standard interface outputs the banner page separately from the actual print file. Simply add the command to pipe to eval FILTER at the lines where the banner is printed, as shown here:

 if ["no" = "${nobanner}" -a "$\{TERM\}" != "PSR"]
 then
 eval "$\{banner\} $\{banner_filter\}" | eval $FILTER
 fi

This sets up the print model to pipe its output to the program netprint and to add carriage returns at the beginning of each line. The next procedure is to add a printer using the netiface script:
1. Add a printer with `lpadmin` by assigning the `netiface` interface script with the `-m` flag, using device file `/dev/null`:

   ```
   # lpadmin -p netpr1 -v /dev/null -m netiface -T plaserjet
   ```

2. Change to the directory containing the interface program for this printer:

   ```
   # cd /etc/lp/interfaces
   ```

3. Edit the script to customize for the particular printer address and port:

   ```
   # vi netiface
   ```

4. Make the changes to the IP address and port number:

   ```
   NETHOST="129.24.256.12"
   NETPORT="9001"
   ```

5. Give the commands for the printer to accept jobs and then enable the printer:

   ```
   # accept netpr1
   # enable netpr1
   ```

6. To print a simple ASCII file, use the following command:

   ```
   $ lp -d netpr1 /usr/local/file/readme.txt
   ```

 This should print the file and mail errors to the user.

9.7 Utilities to print from Microsoft Windows to AIX

There are at least three ways to print from Windows clients to AIX servers. Different administrators will choose different solutions based on their requirements, network setup, and expertise. The following sections describe some experiences with each of these solutions.

9.7.1 IBM LPR Remote Printing Client to print to AIX from Windows

The IBM LPR Remote Printing Client allows users on Windows 95/98 systems to add local printers that actually print to an AIX server using the LPR/LPD protocol. The software is free and can be downloaded from:

The install instructions are simple and easy to follow, and once installed, the program can be used to set up printers to multiple remote hosts and queues. In our experience, this is a much more efficient solution to printing from Windows to AIX than using Samba, Fast Connect or PCNFS. The AIX server uses the `lpNet` program in System V printing or the `lpd` daemon in PowerPC to
print the files. It is important to set up the fl filter on the AIX virtual printer to \%ip so that passthrough printing will be set up by filter.

9.7.2 Using Samba and FastConnect to print from Windows

The public domain software Samba and the IBM licensed program product FastConnect both support file and print sharing for Windows clients on an AIX server. They offer the advantage of using the SMB protocol that Windows administrators are familiar with, and the built-in security of authentication through encrypted passwords. It is easy to set up users who are authorized to print to a server and restrict others on a password or share basis. When the SMB server is setup, users on the Windows clients can see the enabled printers as network printers in the standard Windows printer setup.

This solution is designed to work in a single domain or when routers are set up to route the SMB protocol. The AIX overhead for running a SMB server is greater than for running an LPD daemon and thus scales less easily than LPD. Also, lpd is easier to set up and manage than the SMB servers.

9.7.3 Using PC/NFS to print from Windows

An older technique for printing to windows is the PC/NFS method. With this, Windows clients mount an exported NFS directory and place files in this directory when they are ready to print. A daemon on AIX is signaled and locally queues the print files to the AIX print subsystem. Today, this is a much less widely used protocol than either LPD or SMB.

9.8 LAIX software tools for AIX printing

One small company that has a number of useful printing utilities that were created just for AIX is LAIX Software Consulting. The utilities are all low cost and offer some of the features missing from PowerPC printing such as archiving and allowing only selected users or groups to print to a print queue.

A number of software tools can be downloaded for evaluation from:

http://home.flash.net/~laixsoft/p0000010.htm

Table 28 lists the printing utilities available from LAIX software.

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCPrint</td>
<td>Allows AIX to print to any TCP/IP print server using standard socket protocols.</td>
</tr>
</tbody>
</table>
Utility Description

<table>
<thead>
<tr>
<th>Utility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qman</td>
<td>Complete AIX print queue management. Shows status all print queues, warns of conditions which could lead to printing problems.</td>
</tr>
<tr>
<td>Netty</td>
<td>Lets devices on TCP/IP terminal servers be treated as local tty devices.</td>
</tr>
<tr>
<td>DIALprinter</td>
<td>Allows AIX to print to remote sites that only have a printer attached to a modem.</td>
</tr>
<tr>
<td>Archive for AIX</td>
<td>Allows storing copies of print jobs to files.</td>
</tr>
<tr>
<td>Dispatch</td>
<td>Allows an AIX print queue to round-robin distribute print jobs to a configurable pool of printers.</td>
</tr>
<tr>
<td>Restrictq</td>
<td>Allows administrator to restrict who can print to certain queues on a per user or per group basis. Print job archiving functions of Archive have been incorporated into Restrictq.</td>
</tr>
</tbody>
</table>
Chapter 10. Overview of Infoprint Manager for AIX

Infoprint Manager for AIX is an IBM licensed program product (5765-E42) that provides enhanced printing and print management capabilities. It is based on the Palladium technology and open industry standards, such as ISO DPA 10175-1 and IEEE POSIX P1387, that were developed in the MIT Athena project.

Infoprint Manager is the result of the combined evolution of the Print Services Facility (PSF) for AIX (formerly PSF/6000) and Printing Systems Manager (PSM) products, and is part of a family of software and hardware products (both IBM and non-IBM) that use the published, non-proprietary Advanced Function Presentation (AFP) architecture.

Although Infoprint Manager for AIX runs on the AIX platform, it fits into the heterogeneous environments that are common today because of its use of the standard TCP/IP print and communications protocols. It is also highly interoperable with IBM legacy print environments, allowing you to locate your jobs and your printers where it makes the most sense for your environment.

10.1 Features and benefits

AIX users who are looking for print and printer management capabilities beyond those included in the AIX 5L operating system may wish to consider the following partial list of advantages that Infoprint Manager can provide.

10.1.1 Centralized management of distributed environment

Infoprint Manager’s graphical user interfaces (GUI) enables centralized management of printers and jobs. You can:

- View, set, or change the characteristics of printers and jobs in your enterprise
- Monitor the status of printers and jobs, with automatic problem notification
- View, set, or change defaults for both printers and jobs
- Start, stop, interrupt, resume, delete, and move jobs
- Start, stop, space, or shutdown printers

Infoprint Manager for AIX can be integrated with Tivoli Output Manager.
10.1.2 Intelligent printing

Have you ever tried to print a PostScript job, only to find pages and pages of PostScript source in the printer instead of the formatted output you really wanted?

Have you ever accidentally submitted a large job to a really slow printer?

Or have you had to submit the same job to multiple printers, just so you could get your output, and ended up with duplicate copies and wasted paper?

Infoprint Manager can help prevent these occurrences and more with advanced job validation and scheduling capabilities. These include:

- Intelligent routing of jobs based on their characteristics, including:
 - Required print characteristics (duplex, print resolution, and more)
 - Required paper type or size
 - Required printer location, name or model
 - Data stream
 - Job size
 - Grouped jobs

- Flexible job scheduling options, including:
 - Print deadlines
 - Order of submission
 - Priority
 - Size
 - A “print-after” time
 - A time by which the job must print or be automatically discarded

- Workload management that allows you to:
 - Pool printers to maximize utilization and throughput
 - Reroute jobs in the event a printer is unavailable
 - Minimize loss of jobs by:
 - Holding jobs that fail instead of discarding them
 - Optionally retaining printed jobs for some period of time
 - Automatically disabling printers with problems
 - Retrying jobs automatically in the event of network failures
 - Transform data and print concurrently
- Interrupt jobs to let a more critical job print, then resume the first job at the interruption point
- Forms management

10.2 Target markets

Customers in the following environments may wish to consider Infoprint Manager for AIX.

10.2.1 Distributed environment

Infoprint Manager can provide centralized output management for a wide range of printers and users, and it is frequently used by help desks to resolve print questions. Some of the advantages include:

- Centralized configuration, monitoring and management of a network of printers, both local and remote
- Automatic printer problem detection and notification to operators, administrators and help desk personnel
- Automatic printer workload balancing
- Job tracking from end-to-end (integrating SNMP and IBM's Network Printer Manager utility)
- Job distribution to printers, fax machines, e-mail, and other destinations
- Accounting information

A Java-based GUI that runs on AIX, Windows NT, and Windows 2000 is available in versions for operators and administrators.

10.2.2 ERP printing

As mainframe customers migrate legacy applications to ERP products in the distributed environment, they recognize the need for print capabilities similar to those provided by OS/390 and JES. Infoprint Manager has been installed at a number of these customers to extend the print capabilities of common ERP applications, including SAP R/3, PeopleSoft, Oracle, Baan, and JD Edwards.

One of the popular benefits that Infoprint Manager can provide is access to high-speed duplex printers - as fast as 1002 impressions per minute at 600 dpi resolution. This is of particular interest to customers with high volume output requirements.
Another appealing feature is the ability to use electronic forms to replace expensive pre-printed forms, especially now that color can be applied.

We will mention two ERP products in particular:

- **SAP R/3:**
 - Infoprint Manager for AIX enables the printing of barcode output on PCL printers without the need for a barcode SIMM in each printer.
 - Both ABAP and SAPscript (OTF) output is supported using SAPGOF, PCL or PostScript device types.
 - Infoprint Manager for AIX V3.1 or later is SAP-certified to the BC-XOM Output Management System interface in SAP R/3 release 4.0a or later with callback notification.
 - The SAP R/3 application server(s) need not be running on AIX in order to utilize Infoprint Manager for AIX printers and capabilities.

- **PeopleSoft:**
 - The primary output data streams of PeopleSoft include PCL, PostScript and ASCII, all of which Infoprint Manager can process.
 - PeopleSoft customers have replaced the banks of slower PCL printers that they have traditionally used with higher speed printers driven by Infoprint Manager for AIX, lowering the total cost of printing and improving reliability and throughput.

10.2.3 Cross-system printing

One of the strengths of Infoprint Manager is its ability to function in a heterogeneous environment.

- Users on a wide range of platforms can submit jobs to Infoprint Manager for printing on a variety of printer types and speeds, using either Infoprint Manager clients or standard LPR/LPD print commands.
- Infoprint Manager for AIX provides support for a wide range of input data streams (see Appendix E.4, “Data streams supported by Infoprint Manager for AIX” on page 515), including Adobe-certified PostScript 3 and PDF 1.3, as well as PCL5, ASCII, SAP ABAP, and SAPscript (OTF), and several image formats.
- It supports a variety of output devices, including those that support PCL (PCL4, 5, 5C), PostScript, and IBM Intelligent Printer Data Stream (IPDS), as well as all devices supported by the underlying AIX PowerPC print subsystem. Fax and e-mail are also supported as output destinations.
The Infoprint Manager products on the AIX and on the Windows NT and Windows 2000 platforms can be installed in a multi-server environment where all printers on all interoperating servers can be viewed and managed from a single Java GUI interface.

Infoprint Manager supports printing data from OS/390 (MVS) with IP PrintWay, Download for OS/390, PSF Direct, or LPR, and from VM, VSE, and OS/400 using PSF Direct or LPR. Infoprint Manager can also automatically route jobs up to OS/390 for printing on devices managed by PSF for OS/390.

10.2.4 Other environments

Other industries where Infoprint Manager is being used include:

- Financial institutions for high-volume printing of statements with pre-printed forms management capability and magnetic ink character recognition (MICR) support.
- Banks with regional branches who benefit from multiple print server interoperability to minimize network traffic, yet still have centralized management.
- Commercial print-on-demand environments for cost-effective color or monochrome printing of short-run documents.
- Universities who use the optional digital library (including scan support) to store materials for reprint, as needed.
- One-on-one marketing companies who want to produce targeted mailings with variable data content.
- Legal and judicial customers who use Web-based digital reprographics to capture (scan), submit and transfer documents electronically.

10.2.5 Infoprint Manager and AIX 5L

In order for Infoprint Manager to work on AIX 5L, you will need to activate the legacy AIX PowerPC print subsystem. Infoprint Manager will not initially be supported with the System V print subsystem in AIX 5L.

Infoprint Manager for AIX Version 3.2 will require a Program Temporary Fix (PTF) to install under AIX 5L. As of publication, this PTF is not yet available. Check with the IBM Support Center for the current status.
10.3 Selected views of the graphical administrative interface

The administrator can choose one of several methods to administer Infoprint Manager:

- The AIX Visual Systems Management (VSM) interface.
- The Infoprint Manager Administration GUI, a Java application that is available on the AIX, Windows NT, and Windows 2000 platforms and which comes in three different views, depending on the customer’s requirements.
- Command line.

Selected actions are available through the Infoprint Manager SMIT administrator’s interface.

Although we were not able to include an entire chapter on Infoprint Manager (since the PTF to enable it to install on AIX 5L Version 5.0 was not yet available when this document was written), we wanted to include several screen shots of the Administration GUI so that you could get a preview of the primary administrative interface. The views that were captured came from the advanced version of the Administration GUI running on an AIX V4.3.2 system.
Chapter 10. Overview of Infoprint Manager for AIX

461

Figure 90. Infoprint Manager Advanced Administration GUI’s main panel

The main panel of the advanced Administration GUI shows all queues defined on the Infoprint Manager server named redbird. Although all queues are displayed by default, you can filter the view to display selected queues; this can be useful if you have assigned an operator or help desk specialist to monitor a specific queue or queues.

In the left well, the object that you highlight will determine what wells open on the right side of the panel. In Figure 90, we have highlighted the queue, and on the right side, wells are displayed for the printers (called actual destinations in Infoprint Manager), for the logical destinations (objects that can be associated with actual destinations and for which defaults can be set), and for the jobs assigned to that queue. On the left side of the panel, the bottom well would show any jobs that had been retained, their status, and how soon they would be deleted.

In each well, you can customize the columns or attributes of the objects to be displayed. For example, by default, only the printer name, status and the mounted media or form are displayed for a printer. You can see in Figure 90 that we have customized the view to add the column for which media the printer actually supports. Many other attributes are available for display. Likewise, you can customize the display for the objects in the other wells.
Alternatively, you can open up separate panels to display all printers, all logical destinations, jobs by queue, and retained jobs, as well as a panel for error messages. You can then arrange your selected panels to suit your needs.

When looking at the main panel in Figure 90 on page 461, you can see that each of the three printers has a different status. The printer that has a status of disabled is graphically represented by a black printer, and the printer that has a status of “ready with warning” is graphically represented by a yellow printer. To find out more about why printer 21ipds has a warning, we checked its status. We double-clicked on the printer, but we could have also checked status by selecting an icon from the toolbar, selecting the Printers pull-down from the task-bar, or right-clicking on the printer object, then selecting Check Status... (You can also customize which actions are available from the toolbar and the pull-down menu.)

When we checked the status, the panel in Figure 91 was displayed:

![Printer Status 21ipds Panel](image)

Figure 91. Infoprint Manager printer status display

The status panel in Figure 91 tells us that the printer is idle and enabled, but it is running low on paper. It is important to note that the information provided in the status panel is only as good as the printer can provide to Infoprint Manager. This particular printer, an Infoprint 21, is IPDS-capable and supports SNMP, so we get quite a detailed status.

Since the Infoprint 21 does support SNMP, Infoprint Manager can provide more information through the integrated Network Printer Manager (NPM) utility by clicking on the More information... button. The panel in Figure 92 on page 463 is then displayed.
Chapter 10. Overview of Infoprint Manager for AIX

Figure 92. Infoprint Manager SNMP printer status

This panel will display a graphic representation of the printer and of the console. The information will be updated as the printer is polled using SNMP. Active alarms list the current critical alarms from the most recent polling of the printer. If applicable, an icon in front of the alarm shows the training level required to fix the alarm condition (none, key operator, call for service, or user).

The task bar pull-down in Figure 93 on page 464 shows the actions that an administrator can perform on a printer object. These include creating, copying, moving, deleting, setting defaults, checking status, enabling, disabling, forwards spacing and backspacing (on selected printers), pausing or shutting down a printer, resuming a paused printer, changing the mounted form, rerouting jobs, and accessing the properties notebook with all the attributes for that printer.

You will also notice in Figure 93 on page 464 that the toolbar shows more icons than in Figure 90 on page 461; this is because we used Options -> Customize... from the task bar to change the information and actions displayed.
Figure 93. Infoprint Manager administrative actions for printers

Figure 94 shows a problem job that cannot currently be printed, as well the various actions an administrator can perform on jobs.

Figure 94. Infoprint Manager administrative actions for jobs
The icon for the problem job is colored red. If we check the job status, the following panel is displayed:

![Job Status Details Panel]

Figure 95. Job status details

Figure 95 shows that the job has been placed in held status because a required resource is not ready. In this case, the user requested A4 paper when submitting the job. Since the printer supports A4 paper, as you can see in Figure 90 on page 461, the job was accepted, but it cannot be printed because A4 paper is not currently loaded in the printer. You can either change the paper at the printer, or you can change the paper (media) that the job requires; then the job will be printed.

Other job actions include holding and releasing jobs, changing the number of copies or the retention period for a job, promoting, moving, deleting with optional retention or searching for jobs, and accessing the properties notebook for a job.

Finally, we have included a screen capture in Figure 96 on page 466 showing a retained job and its status:
You will note that the job is currently in held status and will be deleted when its retention period expires in 2 days, 23 hours.

10.4 Additional information

For additional information, refer to the Infoprint Manager Web site at:

Appendix A. Print tasks and commands

This appendix summarizes many of the tasks and associated commands used with the two print subsystems that are available in AIX 5L Version 5.0.

First, we have listed the most common commands in both print subsystems in Table 29 on page 468, with a notation of which commands can be used with which print subsystem.

In Appendix A.2, “System V print subsystem tasks and commands” on page 471, we address general tasks in the System V print subsystem, separated into sections for:

- Administrators (Table 30 on page 471)
- Commands of use to both administrators and users (Table 31 on page 474)
- End user commands (Table 32 on page 475)

Finally, in Table 33 on page 475 in Appendix A.3, “PowerPC print subsystem tasks and commands” on page 475, we have listed the tasks for the PowerPC print subsystem and grouped them according to the familiar SMIT hierarchy.

A.1 Commands listed alphabetically

This section lists the most common print commands in alphabetic order. For complete syntax information, you should refer to the AIX documentation.

However, note that there are several commands that are valid in both the System V and PowerPC print subsystems. Depending on which print subsystem is active, a particular command may require different flags and provide different results. When you check the man pages for commands, make sure that you read the correct section for the print subsystem in which you are working.

For example, assume the System V print subsystem is active. When you read the man page for `lpstat`, make sure you use the section entitled “System V Print Subsystem lp on an PowerPC and IA-64 platforms.” You would find that for System V, the `lpstat` command with the `-c` flag will report the names of all print classes and their members. In contrast, `lpstat -c` in the PowerPC print subsystem will provide status and job information for all the print queues.

Although we do not discuss them explicitly, AIX 5L includes several familiar commands from the BSD printing environment, including `lpc`, `lpq`, `lprm` and
All but one of them (`lpc`) can be used with either the System V or PowerPC print subsystem, but the flags and results may differ.

Table 29. AIX 5L print commands and print subsystem where valid

<table>
<thead>
<tr>
<th>Command</th>
<th>Valid in PowerPC print subsystem?</th>
<th>Valid in System V print subsystem?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accept</td>
<td>X</td>
<td>X</td>
<td>Allow queuing of print requests for the named destination(s).</td>
</tr>
<tr>
<td>cancel</td>
<td>X</td>
<td>X</td>
<td>Cancel a print job.</td>
</tr>
<tr>
<td>chque</td>
<td>X</td>
<td></td>
<td>Change queue attributes in <code>/etc/qconfig</code>.</td>
</tr>
<tr>
<td>chquedev</td>
<td>X</td>
<td></td>
<td>Change queue device attributes in <code>/etc/qconfig</code>.</td>
</tr>
<tr>
<td>chvirprt</td>
<td>X</td>
<td></td>
<td>Change the virtual printer definition in custom colon files.</td>
</tr>
<tr>
<td>disable</td>
<td>X</td>
<td>X</td>
<td>Disable a printer.</td>
</tr>
<tr>
<td>enable</td>
<td>X</td>
<td>X</td>
<td>Enable a printer.</td>
</tr>
<tr>
<td>enq</td>
<td>X</td>
<td></td>
<td>Many functions, including: - Submit, hold, release prioritize and cancel a print job. - Bring printers up or down. - Display status. - Change queue and qdaemon status.</td>
</tr>
<tr>
<td>lp</td>
<td>X</td>
<td>X</td>
<td>Submit a print job.</td>
</tr>
<tr>
<td>lpadmin</td>
<td>X</td>
<td></td>
<td>Administer System V printing.</td>
</tr>
<tr>
<td>lpc</td>
<td>X</td>
<td></td>
<td>Administer System V print service (BSD).</td>
</tr>
<tr>
<td>lpfilter</td>
<td>X</td>
<td></td>
<td>Administer filters used with the print service.</td>
</tr>
<tr>
<td>lpforms</td>
<td>X</td>
<td></td>
<td>Administer forms used with the print service.</td>
</tr>
<tr>
<td>lpmove</td>
<td>X</td>
<td></td>
<td>Move a job to another printer.</td>
</tr>
<tr>
<td>Command</td>
<td>Valid in PowerPC print subsystem?</td>
<td>Valid in System V print subsystem?</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>lpq</td>
<td>X</td>
<td>X</td>
<td>Display the queue of printer jobs.</td>
</tr>
<tr>
<td>lpr</td>
<td>X</td>
<td>X</td>
<td>Submit a print job.</td>
</tr>
<tr>
<td>lprm</td>
<td>X</td>
<td>X</td>
<td>Remove jobs from printer queue.</td>
</tr>
<tr>
<td>lpsched</td>
<td></td>
<td>X</td>
<td>Start the print service.</td>
</tr>
<tr>
<td>lpshut</td>
<td></td>
<td>X</td>
<td>Stop the print service.</td>
</tr>
<tr>
<td>lpstat</td>
<td>X</td>
<td>X</td>
<td>Display status information.</td>
</tr>
<tr>
<td>lpsystem</td>
<td></td>
<td>X</td>
<td>Register remote systems with the print service.</td>
</tr>
<tr>
<td>lpptest</td>
<td>X</td>
<td>X</td>
<td>Generate the line printer ripple pattern.</td>
</tr>
<tr>
<td>lpusers</td>
<td></td>
<td>X</td>
<td>Set printing queue priorities.</td>
</tr>
<tr>
<td>lsallq</td>
<td>X</td>
<td></td>
<td>List the name of all configured queues.</td>
</tr>
<tr>
<td>lsallqdev</td>
<td>X</td>
<td></td>
<td>List the name of all queue device names for a given queue.</td>
</tr>
<tr>
<td>lsque</td>
<td>X</td>
<td></td>
<td>Display the queue stanza information for a given queue.</td>
</tr>
<tr>
<td>lsquedev</td>
<td>X</td>
<td></td>
<td>Display the queue device stanza information for the given queue and device.</td>
</tr>
<tr>
<td>lssrc</td>
<td>X</td>
<td></td>
<td>List the status of subsystems and processes managed by the Systems Resource Controller.</td>
</tr>
<tr>
<td>lsvirprt</td>
<td>X</td>
<td></td>
<td>List the attributes of a virtual printer.</td>
</tr>
<tr>
<td>mkque</td>
<td>X</td>
<td></td>
<td>Add a printer queue.</td>
</tr>
<tr>
<td>mkquedev</td>
<td>X</td>
<td></td>
<td>Add a printer queue device.</td>
</tr>
<tr>
<td>mkvirprt</td>
<td>X</td>
<td></td>
<td>Add a virtual printer.</td>
</tr>
</tbody>
</table>

Appendix A. Print tasks and commands 469
<table>
<thead>
<tr>
<th>Command</th>
<th>Valid in PowerPC print subsystem?</th>
<th>Valid in System V print subsystem?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pac</td>
<td>X</td>
<td></td>
<td>Prepare printer accounting information.</td>
</tr>
<tr>
<td>pr</td>
<td>X</td>
<td>X</td>
<td>Write a file to standard output.</td>
</tr>
<tr>
<td>qadm</td>
<td>X</td>
<td></td>
<td>Perform administrative functions for the PowerPC print subsystem.</td>
</tr>
<tr>
<td>qcan</td>
<td>X</td>
<td></td>
<td>Cancel a print job.</td>
</tr>
<tr>
<td>qchk</td>
<td>X</td>
<td></td>
<td>Check print job status.</td>
</tr>
<tr>
<td>qhold</td>
<td>X</td>
<td></td>
<td>Hold/release print job.</td>
</tr>
<tr>
<td>qmov</td>
<td>X</td>
<td></td>
<td>Move a job to another queue.</td>
</tr>
<tr>
<td>qpri</td>
<td>X</td>
<td></td>
<td>Prioritize a print job.</td>
</tr>
<tr>
<td>qprt</td>
<td>X</td>
<td></td>
<td>Submit a print job.</td>
</tr>
<tr>
<td>reject</td>
<td></td>
<td>X</td>
<td>Disallow queuing of jobs for the named destination(s).</td>
</tr>
<tr>
<td>rmque</td>
<td>X</td>
<td></td>
<td>Remove a printer queue.</td>
</tr>
<tr>
<td>rmquedev</td>
<td>X</td>
<td></td>
<td>Remove a printer queue device.</td>
</tr>
<tr>
<td>rmvprt</td>
<td>X</td>
<td></td>
<td>Remove a virtual printer.</td>
</tr>
<tr>
<td>ruser</td>
<td>X</td>
<td></td>
<td>Directly manipulate entries in system databases that control foreign host access to programs.</td>
</tr>
<tr>
<td>splp</td>
<td>X</td>
<td>X</td>
<td>Display or change printer driver (/dev/lp##) settings.</td>
</tr>
<tr>
<td>startsrc</td>
<td>X</td>
<td></td>
<td>Start processes and groups managed by the SRC such as the spooler group or the qdaemon or lpd processes.</td>
</tr>
<tr>
<td>stopsrc</td>
<td>X</td>
<td></td>
<td>Stop processes and groups managed by the SRC.</td>
</tr>
<tr>
<td>switch.prt</td>
<td>X</td>
<td>X</td>
<td>Switch print subsystem.</td>
</tr>
</tbody>
</table>
A.2 System V print subsystem tasks and commands

This section will include common tasks for a System V print subsystem and their associated commands. We have separated the information into tables containing tasks and their associated commands:

- Administrative tasks which require special authorities
- Status or informational requests of use to both administrators and users
- Print request commands accessible to users

A.2.1 Administrative tasks and commands

By default, only the root user or a member of the lp group can issue the commands listed in Table 30. You should refer to the man pages or official AIX 5L documentation for additional information.

Table 30. Administrative tasks and associated commands (System V)

<table>
<thead>
<tr>
<th>Administrator Tasks</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print service management</td>
<td></td>
</tr>
<tr>
<td>Show current print subsystem.</td>
<td><code>switch.prt -d</code></td>
</tr>
<tr>
<td>Switch print subsystem.</td>
<td>`switch.prt -s [aix</td>
</tr>
<tr>
<td>Start the print service.</td>
<td><code>/usr/lib/lp/lpsched</code></td>
</tr>
<tr>
<td>Stop the print service.</td>
<td><code>lpshut</code></td>
</tr>
<tr>
<td>Set/change system default destination.</td>
<td><code>lpadmin -d [dest-name]</code></td>
</tr>
<tr>
<td>Register remote system(s) with print service.</td>
<td><code>lpsystem [options] system-name</code></td>
</tr>
<tr>
<td>Unregister remote system(s) with print service.</td>
<td><code>lpsystem -r system-name</code></td>
</tr>
<tr>
<td>Printer and print device management</td>
<td></td>
</tr>
<tr>
<td>Add a printer device (/dev/lp##).</td>
<td><code>mkdev -c printer -t type -s subclass -p parentname -w connection-location</code></td>
</tr>
<tr>
<td>Move a printer/plotter device to another port.</td>
<td><code>chdev -l name -p parentname -w connection-location</code></td>
</tr>
<tr>
<td>Change/show characteristics of a printer/plotter device.</td>
<td><code>chdev -l Name -w Connection-location -a Attribute='value'</code></td>
</tr>
<tr>
<td>Remove a printer/plotter device.</td>
<td><code>rmdev -l Name [-d]</code></td>
</tr>
<tr>
<td>Administrator Tasks</td>
<td>Commands</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Configure a defined printer/plotter device (makes a defined device available for use).</td>
<td><code>mkdev -l Name</code></td>
</tr>
</tbody>
</table>
| Install additional printer/plotter software. | `/usr/lib/instl/sm_inst installp_cmd -a -c -g -Q -X -d '/dev/cd0' -f 'printers'
 '-G'` |
<p>| Change/show printer driver settings. | <code>sopl [lpn]</code> |
| Add or change a local printer. | <code>lpadmin -p printer-name -v device [options]</code> |
| Add or change a remote printer. | <code>lpadmin -p printer-name -s server-name[!server-printer-name] [options]</code> |
| Delete a destination (printer or class). | <code>lpadmin -x dest-name</code> |
| Allow queuing of print requests for named destination (printer or class). | <code>accept dest-name</code> |
| Disallow queuing of print requests for named destination (printer or class). | <code>reject [-r reason] dest-name</code> |
| Activate printer(s) for printing. | <code>enable printer-name(s)</code> |
| Deactivate printer(s) for printing. | <code>disable [options] printer-name(s)</code> |
| User priorities | |
| Set system-wide default printing priority. | <code>lpusers -d priority-level</code> |
| List default printing priority level and user priority assignments. | <code>lpusers -l</code> |
| Set default priority limit that users in the login-ID-list can request when submitting a print request. | <code>lpusers -q priority-limit -u login-ID-list</code> |
| Set default priority limit for all users not explicitly given a limit. | <code>lpusers -q priority-limit</code> |
| Remove any explicit priority limit for the specified user(s). | <code>lpusers -u login-ID-list</code> |
| Forms | |
| Add/change a form. | <code>lpforms -f form-name options</code> |</p>
<table>
<thead>
<tr>
<th>Administrator Tasks</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>List attributes of a form.</td>
<td><code>lpforms -f form-name -l</code></td>
</tr>
<tr>
<td>Allow/deny access to a form.</td>
<td><code>lpforms -f form-name -u options</code></td>
</tr>
<tr>
<td>Set form to alert when queued jobs request it.</td>
<td><code>lpforms -f form-name -A alert-type [-Q minutes] [-W requests]</code></td>
</tr>
<tr>
<td>Delete a form.</td>
<td><code>lpforms -f form-name -x</code></td>
</tr>
<tr>
<td>Mount a form.</td>
<td><code>lpadmin -p printer-name -M -f form-name -a [-o filebreak]</code></td>
</tr>
</tbody>
</table>

Filters

Add/change a filter.	`lpfilter -f filter-name options`
List attributes of a filter.	`lpfilter -f filter-name -l`
Reset an original filter to its original settings.	`lpfilter -f filter-name -i`
Delete a filter.	`lpfilter -f filter-name -x`

Job management

Report a number showing the rank order of jobs in the print queue for each printer.	`lpstat -R`
Cancel print requests submitted by any user.	`cancel [request-ID-list]`
	`cancel -u "login-ID-list"`
	`cancel -u "login-ID-list" [printer-name-list]`
Move a print request to another destination.	`lpmove request-ID dest-name`
Move all print requests from one destination to another and cause the first destination to reject additional print requests.	`lpmove dest-name-1 dest-name-2`
Print the request next.	`lp -i request-ID -H immediate`
A.2.2 Informational tasks and commands

The commands in Table 31 are useful to both administrators and users of the System V print subsystem.

Table 31. Informational commands in the System V print subsystem

<table>
<thead>
<tr>
<th>General Tasks</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display status of the print service.</td>
<td><code>lpstat -r</code></td>
</tr>
<tr>
<td>List system default destination (if any).</td>
<td><code>lpstat -d</code></td>
</tr>
<tr>
<td>Display names of all classes and their members.</td>
<td><code>lpstat -c [class-name-list]</code></td>
</tr>
<tr>
<td>Display status of printer(s).</td>
<td><code>lpstat -p [printer-name-list] [-D] [-l]</code></td>
</tr>
<tr>
<td>Report if print destinations (printer or class) are accepting requests.</td>
<td><code>lpstat -a [dest-name-list]</code></td>
</tr>
<tr>
<td>Display print request (job) status.</td>
<td><code>lpstat -o [request-ID-list] [-l]</code></td>
</tr>
<tr>
<td>Display status of print requests for user(s).</td>
<td><code>lpstat -u [login-ID-list]</code></td>
</tr>
<tr>
<td>Display list of forms.</td>
<td><code>lpstat -f [form-name-list] [-l]</code></td>
</tr>
<tr>
<td>Display list of print wheels or character sets.</td>
<td><code>lpstat -S [print-wheel-list] [-l]</code></td>
</tr>
<tr>
<td>Display status summary, including status of the scheduler, system default destination, list of class names and their members, list of printers and associated devices, list of the systems sharing print services, list of all forms and availability, and list of all recognized character sets and print wheels.</td>
<td><code>lpstat -s [-l]</code></td>
</tr>
<tr>
<td>Display all status information obtained with the -s flag, plus the acceptance and idle/busy status of all printers and status of all requests.</td>
<td><code>lpstat -t [-l]</code></td>
</tr>
</tbody>
</table>

A.2.3 Printing tasks and commands

This section contains information on submitting and managing a print request by an end user (the necessary commands are listed in Table 32 on page 475). Not all print options are described here; you should refer to the AIX 5L
documentation for a complete list. Ensure that you read the correct section for the print subsystem in which you are working.

Table 32. User commands in the System V print subsystem

<table>
<thead>
<tr>
<th>User tasks</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print file(s) to a printer or class.</td>
<td><code>lp -d dest-name (print-options) [files]</code></td>
</tr>
<tr>
<td>Print the request on a printer that can support the specified content-type. If the content-type is not acceptable to any printer, either directly or with a filter, the request is rejected.</td>
<td><code>lp -d dest-name -T content-type [-r]</code></td>
</tr>
<tr>
<td>Change options of previously submitted print file.</td>
<td><code>lp -i request-ID print-options</code></td>
</tr>
<tr>
<td>Put a print request on hold (queued or printing jobs).</td>
<td><code>lp -i request-ID -H hold</code></td>
</tr>
<tr>
<td>Resume a held print request.</td>
<td><code>lp -i request-ID -H resume</code></td>
</tr>
<tr>
<td>Change priority of a request.</td>
<td><code>lp -i request-ID -q new-priority</code></td>
</tr>
<tr>
<td>Cancel own print request(s).</td>
<td><code>cancel [request-ID]</code></td>
</tr>
<tr>
<td></td>
<td><code>cancel -u login-ID</code></td>
</tr>
<tr>
<td></td>
<td><code>[printer-name-list]</code></td>
</tr>
</tbody>
</table>

A.3 PowerPC print subsystem tasks and commands

This section will include common tasks for the PowerPC print subsystem in AIX 5L and their associated commands (listed in Table 33).

You should refer to the man pages or official AIX 5L documentation for additional information. When referring to the man pages for those commands that can be used in either print subsystem, take care that you read the correct section of the man page for your print subsystem; the flags and the results are often different.

Table 33. Tasks and associated commands in PowerPC print subsystem

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage the print subsystem</td>
<td></td>
</tr>
<tr>
<td>Show current print subsystem.</td>
<td><code>switch.prt -d</code></td>
</tr>
<tr>
<td>Switch print subsystem.</td>
<td>`switch.prt -s [aix</td>
</tr>
<tr>
<td>Tasks</td>
<td>Commands</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Manage spooler group.</td>
<td>[lssrc</td>
</tr>
<tr>
<td>Manage qdaemon.</td>
<td>[lssrc</td>
</tr>
<tr>
<td>Manage local print devices</td>
<td></td>
</tr>
<tr>
<td>List all defined printers and plotters.</td>
<td>lsdev -C -c printer</td>
</tr>
<tr>
<td>List all supported printers and plotters.</td>
<td>lsdev -P -c printer -F "type subclass description"</td>
</tr>
<tr>
<td>Add a printer/plotter device.</td>
<td>mkdev -c printer -t type -s subclass -p parentname -w connection-location</td>
</tr>
<tr>
<td>Move a printer/plotter device to another port.</td>
<td>chdev -l name -p parentname -w connection-location</td>
</tr>
<tr>
<td>Change/show characteristics of a printer/plotter device.</td>
<td>chdev -l Name -w Connection-location -a Attribute='value'</td>
</tr>
<tr>
<td>Remove a printer/plotter device.</td>
<td>rmdev -l Name [-d]</td>
</tr>
<tr>
<td>Configure a defined printer/plotter device (makes a defined device available for use).</td>
<td>mkdev -l Name</td>
</tr>
<tr>
<td>Install additional printer/plotter software.</td>
<td>/usr/lib/instl/sm_inst installp_cmd -a -c -g -Q -X -d '/dev/cd0' -f 'printers' '..G'</td>
</tr>
<tr>
<td>Change/show printer driver settings.</td>
<td>splp [lpn]</td>
</tr>
<tr>
<td>Manage print queues</td>
<td></td>
</tr>
<tr>
<td>Add a print queue.</td>
<td>mkque [-D] -q Name [-a 'Attribute = Value'...]</td>
</tr>
<tr>
<td>Change/show print queue characteristics.</td>
<td>chque -q Name [-a 'Attribute=Value'...]</td>
</tr>
<tr>
<td>Remove a print queue (after removing all queue devices).</td>
<td>rmque -q Name</td>
</tr>
<tr>
<td>List all print queues.</td>
<td>lsallq</td>
</tr>
<tr>
<td>Show status of print queues (by queue, by job, by user).</td>
<td>enq, qchk, lpg, lpsstat</td>
</tr>
<tr>
<td>Tasks</td>
<td>Commands</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Start a print queue.</td>
<td>enq -U, qadm -U, enable</td>
</tr>
<tr>
<td>Stop a print queue.</td>
<td>enq -D, qadm -D, disable</td>
</tr>
<tr>
<td>Set the default print queue.</td>
<td>/usr/lib/lpd/pio/etc/piochdfq -q default_queue</td>
</tr>
</tbody>
</table>

Manage queue devices

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>List all queue devices.</td>
<td>lsallqdev -q queuename</td>
</tr>
<tr>
<td>Add a queue device to an existing queue.</td>
<td>mkquedev</td>
</tr>
<tr>
<td>Change/show characteristics of a queue device.</td>
<td>chquedev</td>
</tr>
<tr>
<td>Remove a queue device.</td>
<td>rmquedev</td>
</tr>
</tbody>
</table>

Manage print jobs

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit a print job.</td>
<td>enq, qprt, lpr, lp</td>
</tr>
<tr>
<td>Cancel a print job.</td>
<td>enq, qcan, lprm, cancel</td>
</tr>
<tr>
<td>Show status of print jobs.</td>
<td>enq, qchk, lpq, lpstat</td>
</tr>
<tr>
<td>Prioritize a print job.</td>
<td>enq, qpri</td>
</tr>
<tr>
<td>Hold/release a print job.</td>
<td>enq, qhld</td>
</tr>
<tr>
<td>Move a job between print queues.</td>
<td>enq, qmov</td>
</tr>
</tbody>
</table>

Manage the lpd print server

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>List remote clients with print access.</td>
<td>ruser -sP</td>
</tr>
<tr>
<td>Add print access for a remote client (/etc/hosts.lpd).</td>
<td>ruser -a -p remotehost</td>
</tr>
<tr>
<td>Remove print access for a remote client (/etc/hosts.lpd).</td>
<td>ruser -d -p remotehost</td>
</tr>
<tr>
<td>Manage the print server (lpd).</td>
<td>[lssrc</td>
</tr>
</tbody>
</table>

Programming tools

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change/show virtual printer attributes.</td>
<td>lsvirprt</td>
</tr>
</tbody>
</table>
Appendix B. RS/6000 serial printer cabling

To print to serial printers from an RS/6000 or eServer pSeries system, it is important that you understand the cable considerations of the AIX device driver. The AIX serial device drivers for printer and tty devices work slightly different, and it is recommended that you use the printer device driver when possible. However at times, it may be easier (but possibly less reliable) to use a tty device for 4-wire printing. The goal of this appendix is to help you better understand the serial cable requirements for printing.

Sample pinouts for a number of RS/6000 serial adapters are given in Appendix D of Printing for Fun and Profit Under AIX V4, GG24-3570 and have not been duplicated here. This document is available on the Web at http://www.redbooks.ibm.com. Complete pinout information is available on the Web at http://www.rs6000.ibm.com/resource/hardware_docs/.

B.1 Interposers and null modems

Serial communications are based on two types of devices:

- Data terminal equipment (DTE), which usually includes computers and printers
- Data communications equipment (DCE), which usually includes modems and multiplexers

Therefore, signals for computers and printers are usually defined using the DTE standard, and both want to talk on the same wire. For this reason, some method of crossing the lines is required. You might think of this as the crossroads that are necessary in a highway in going from a country where people drive on the right side of the road going into a country where people drive on the left side of the road. In other words, the transmit wire from one device must be crossed over to connect to the receive line of the other device. This is normally done through a null modem or interposer.

Because there are many different types of null modems that cross different signal lines, it is important that you use an appropriate type of null modem. The null modem available from IBM for this purpose is called an interposer.
and is called cable E with a feature code of 2937. It has two DB-25 connectors, and has the mapping of signals shown in Table 34.

Table 34. Interposer crossover connections

<table>
<thead>
<tr>
<th>System Signal</th>
<th>System 25 pin Female pinouts</th>
<th>Device 25 pin Male pinouts</th>
<th>Device Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>Shield</td>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>TD - transmit data</td>
<td>2</td>
<td>3</td>
<td>RD</td>
</tr>
<tr>
<td>RD - receive data</td>
<td>3</td>
<td>2</td>
<td>TD</td>
</tr>
<tr>
<td>RTS - ready to send</td>
<td>4</td>
<td>5</td>
<td>CTS</td>
</tr>
<tr>
<td>CTS - clear to send</td>
<td>5</td>
<td>4</td>
<td>RTS</td>
</tr>
<tr>
<td>DSR - data set ready</td>
<td>6</td>
<td>20</td>
<td>DTR</td>
</tr>
<tr>
<td>Signal Ground</td>
<td>7</td>
<td>7</td>
<td>Sig. Gnd</td>
</tr>
<tr>
<td>CD - carrier detect</td>
<td>8</td>
<td>20</td>
<td>DTR</td>
</tr>
<tr>
<td>DTR - data terminal ready</td>
<td>20</td>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>DTR</td>
<td>20</td>
<td>8</td>
<td>CD</td>
</tr>
</tbody>
</table>

B.2 Supported RS/232 signals

The way that AIX interprets signals for printers may be a little different than other computer systems or printers use. Therefore, it is important that you fully understand the signals and how they are used. The AIX signal definitions are shown in Table 35.

Table 35. Serial printer signal definitions in AIX

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>The ground should be connected to the shield on one end of the cable, and to pin 1 on the other end. If you connect both ends to pin 1, you can sometimes experience ground loop problems and noise in the data.</td>
</tr>
<tr>
<td>TD</td>
<td>The transmit data signal, also abbreviated as TxD, is the data sent by the computer. This is the line where the print job will actually go to the printer and must be attached to the printers receive data signal line.</td>
</tr>
<tr>
<td>RD</td>
<td>The receive data signal, also abbreviated as RxD, is the responses from the printer, such as the XON/XOFF signal. This signal must be attached to the printers transmit data signal.</td>
</tr>
<tr>
<td>Signal</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>RTS</td>
<td>The ready to send data line will be asserted when the port is opened from AIX. This is designed to let the printer know that the computer is ready to send data. In the case that the printer does not have an RTS signal that is asserted when the printer is turned on, this signal can be wrapped back on the computer end to CTS.</td>
</tr>
<tr>
<td>CTS</td>
<td>The clear to send signal is used by AIX to determine if the printer is turned on or off. If this signal is not asserted by the printer, AIX will not print, and the queues will go to a disabled state. This signal is normally connected to the printer RTS signal; in cases where the printer uses a different signal line to tell the computer it is powered on, that other signal should be connected to CTS on the AIX side. If no signal is asserted, or if the RTS signal from the printer is used for handshaking, then the RTS signal from the computer should be wrapped back to the CTS signal line at the computer end of the cable.</td>
</tr>
<tr>
<td>DSR</td>
<td>The data set ready signal is an input signal and is not used by AIX printing except in one case; in the 128-port cables that have fewer than 10-pins, the DSR signal can be treated as the DCD signal by using the alternate RJ-45 pinouts (altpin) setting for the device.</td>
</tr>
<tr>
<td>CD</td>
<td>The carrier detect signal, also called DCD, is the key signal for AIX hardware handshaking that is usually called DTR handshake. For hardware handshaking or flow control, this signal must be connected to the signal from the printer that drops when the printer buffer reaches a high water mark. In most cases, this is the printer DTR signal, but occasionally this can be a signal on pin 21 or the RTS signal.</td>
</tr>
<tr>
<td>Sig. Gnd.</td>
<td>The signal ground from the computer should always be connected to the signal ground on the printer to maintain the signal balance.</td>
</tr>
<tr>
<td>DTR</td>
<td>The data terminal ready is an output signal that just like the RTS signal will be asserted when the port is opened. This is used to signal that AIX is ready to print.</td>
</tr>
</tbody>
</table>

Note

The two signals that cause the most problems in AIX printing are the CTS signal and the CD signal. If the printer signal does not assert the AIX CTS signal, the queue will go DOWN, and any attempt to print directly to the device will fail with a *Can't create* error. The AIX CD signal is used for DTR flow control. If this signal is missing, hardware flow control will not work.

The mandatory lines are the data lines and a signal ground, but only if you wrap back a signal to CTS on the computer line. The next most important
move is getting the computer flow control line (usually DTR) to the computer DCD line. The next important thing to remember is to make sure you have good shielding on the cable; cable crosstalk can be one of the most frustrating symptoms to diagnose. Using CAT 5 cable can cause this type of crosstalk and poor flow control.

B.3 Adapters and cables

This section describes the various serial ports and adapters on the RS/6000 computers and the cables available from IBM to attach printers for that adapter or port. The assumptions in this section are that the printer will have a 25-pin connector with the standard signals required by AIX. If the printer has a 9-pin connector, or if it does not support the RTS signal as a sign that it is turned on, or does not support DTR as a flow control signal, then custom cables will need to be made.

B.3.1 Native serial ports

All native serial ports on AIX computers have full support for all the required signals.

Older RS/232 models used a 10-pin connector that were connected to a printer through cable B and cable D.

Newer models will have either a 25-pin connector or a 9-pin AT style connector. For 25-pin connectors, use a combination of a straight through cable D combined with an interposer cable E. For 9-pin style, use a 9-pin to 25-pin conversion cable, such as the AS cable, with the interposer.

Some models have 25-pin connectors that use an AS cable to fan out to two 25-pin connectors for two ports from 1 connector at the back of the computer. This can then be connected with a straight through cable D combined with an interposer cable E.

B.3.2 IBM 8-port adapters

The IBM 8-port adapters support the full complement of signals with a 25-pin connector and can be connected using a straight through cable D combined with an interposer cable E. The 8-port adapters also support EIA-422 connected printers.
B.3.3 IBM 16-port adapters

The IBM 16-port adapters support a subset of the RS/232 signals with a 25-pin connected and can be connected using a straight through cable D combined with an interposer cable E. The CTS and RTS signals are wrapped back on the adapter, and this adapter can not be used for CTS/RTS handshaking when set up as a TTY device.

B.3.4 IBM 128-port adapters

The IBM 128-port adapter uses eight 16-port remote asynchronous nodes (RAN) to attach serial devices. The connector to the printer is an RS-45 connector. The most reliable connections are made using the 9-inch NK cable, which converts the RS-45 connection to a DB-25 connection, which can be attached using a straight through cable D combined with an interposer cable E. IBM does not supply cables for 4-wire, 6-wire, and 8-wire solutions, but these are described in the appropriate Adapters, Devices, and Cable Information book available at:

http://www.rs6000.ibm.com/resource/hardware_docs/

B.3.5 Cable descriptions

Table 36 lists cables for connecting printers to AIX computers.

Table 36. AIX printer cables

<table>
<thead>
<tr>
<th>Cable letter</th>
<th>Cable name</th>
<th>Cable description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PC parallel printer cable</td>
<td>25-pin D male/36-pin D male barrier</td>
</tr>
<tr>
<td>D</td>
<td>Async cable-EIA-232/V.24</td>
<td>25-pin D female/25-pin D male</td>
</tr>
<tr>
<td>E</td>
<td>Printer/terminal Interposer EIA-232</td>
<td>25-pin D female/25-pin D male</td>
</tr>
<tr>
<td>I</td>
<td>Printer/terminal cable-EIA-232, does not require interposer</td>
<td>25-pin D female/25-pin D male</td>
</tr>
<tr>
<td>K</td>
<td>Terminal cable-EIA-422A</td>
<td>25-pin D male/25-pin D male</td>
</tr>
<tr>
<td>AR</td>
<td>Serial port cable EIA-232 with 9-pin to 25-pin</td>
<td>9-pin D female/25-pin D male</td>
</tr>
<tr>
<td>AS</td>
<td>Serial port fanout cable makes second serial port</td>
<td>25-pin D female/two 25-pin D male</td>
</tr>
<tr>
<td>NK</td>
<td>RJ-45 to DB-25 converter cable for 128-port adapter</td>
<td>10-pin RJ-45 male/25-pin D male</td>
</tr>
<tr>
<td>Cable letter</td>
<td>Cable name</td>
<td>Cable description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>NL</td>
<td>Customer-supplied cable for connecting a 128-port Remote Async Node 16-Port EIA-232 to a printer or terminal device</td>
<td>4-, 6-, 8-, 10-pin RJ-45 male/25-pin D male</td>
</tr>
<tr>
<td>NP</td>
<td>RJ-45 to DB-25 Converter Cable for 128-port adapter</td>
<td>8-pin RJ-45 male/25-pin D male</td>
</tr>
</tbody>
</table>
Appendix C. Virtual printer colon files and System V terminfo

The virtual printer colon file sequence is discussed in depth in Chapter 4, “Printer, Plotter, and Spooler Subsystem Programming” of AIX Version 4.3 Guide to Printers and Printing, SC23-4130. The terminfo definitions and language are described in termcap and terminfo, by John Strange et al. This appendix is only a short overview contrasting and comparing the two methods of storing printer configuration information. It is our desire to provide information so that if the administrator knows one or the other of the print subsystems, they will be able to gain an appreciation for the way the other subsystem works. The details of each subsystem are described more fully in the references listed.

C.1 Attribute file syntax comparison

This section compares and contrasts the files and attribute naming conventions for the two print subsystems.

C.1.1 Attribute file names and locations

This section describes the differences in where the attribute definitions files originate and where they are stored for use by the print subsystem.

C.1.1.1 PowerPC attribute definition files

System V print subsystem definitions are used for a printer based on the printer type set by Web-based System Manager or lpadmin -T. The source code for all supported printers is stored in a common file (/var/share/lib/terminfo/svprint.ti), but other printers can be added with their own source code. The source code is compiled using tic (terminfo compile) into individual binary files for each printer type or alias for that type. The binary files are stored in single letter named subdirectories, under the terminfo subdirectory. The binary file name is the same name as the printer type name and is stored in the subdirectory name based on the first character of the printer type name. For example, the printer type hplaser will be stored in ../terminfo/h/hplaser. The same binary terminfo file can be used for all printers with the same printer type.

C.1.1.2 PowerPC attribute definition files

PowerPC print subsystem definitions are used for virtual printers based on the printer type assigned by Web-based System Manager or SMIT. A custom file is built for each virtual printer from the appropriate default file for that printer type in /var/spool/lpd/pio/predef. When a new virtual printer is added,
a virtual printer definition file is built based on the predef file for the printer type, and some master definition files that are common to similar type printers. The new virtual printer definition is stored in /var/spool/lpd/pio/@local/custom. This file contains source code that can be read and changed with lsvirprt or SMIT. The piodigest command then converts this text colon file to a binary definition file used by the print formatter. The binary file is stored in /var/spool/lpd/pio/@local/ddi. The device name is based on the queue name and the device name. In contrast to the System V definition files, the PowerPC definition files are unique to the individual virtual printer queue definition. Each queue has its own source file in the custom subdirectory and its own binary file in the ddi subdirectory.

C.1.2 Attribute file formats

The format of the attribute files is totally different between the two print subsystems, but the information contained is similar in a number of ways.

C.1.2.1 System V terminfo file format
Terminfo file entries for each printer type start with a printer name in column 1, followed by a list of aliases, and a description, all on the first line of the printer definition. All other lines of a terminfo entry start with a tab. All entries in a terminfo file are separated by commas. One terminfo entry can reference another entry using the use= attribute definition. To view the terminfo entry for any defined printer type, use the infocomp -T printer-type command, as shown here:
C.1.2.2 PowerPC virtual printer colon file format

There is a separate virtual printer definition file for each defined virtual printer queue, and each attribute is stored in a separate line with five fields:

1. **Message catalog ID**

 Identifies the message catalog where the attribute description is stored.

 The message catalog ID can take any of three forms:

 - Null string: The string value for the mD attribute is assumed to be the file name of the message catalog (for example, mydescriptors.cat).

 - One character: An abbreviation for pioattrx.cat, where x is the one-character catalog ID. This form of the catalog ID is normally used only by the operating system.

 - Catalog file name: The file name of the message catalog (for example, mydescriptors.cat).

2. **Message number**

 Identifies the message index in the catalog that contains the description of this attribute. Leading zeros are ignored.

3. **Attribute name**

 Specifies two characters, except for group header attributes, which are five characters.
4. Limits field
Specifications limits for the attributes that are used in validating administrator entries when setting the virtual printer defaults as well as user entries when printing with the qprt flags.

5. Attribute value string
The value assigned to the virtual printer attribute, which can be from 0 to 1000 characters.

To view the attributes in the colon file format, change to the directory /var/spool/lpd/pio/@local/custom and use vi, more, or pg to view the file. The following shows an extract of a typical file:

```
9063: _a:DMEnR[0,1]:0
9065: _b:SD[010]I[1810508]EWG[0..%G_l%0]t-%tweG_l%G_t-%b[1]G-t%d;]:0
9072: _g:SC[250]I[1810511]EnG[I..1]:1
9077: _h:SC[040]I[1810512]En:
9078: _i:SC[015]I[1810513]EnG[0..%?%G_l%0%-%d]:0
9081: _j:SC[040]I[1810536]E#G[pioattr1.cat,1,785;no initialization,full initialization,send PCL language switch command only=0,1,2]:1
9087: _k:SC[045]I[1810514]E#F1L[%IV][%Pv%IW4\t@ 6 %`W8\n%{8}%Pv%IW4\t@ 8 %`W8":%IwY
9091: _l:SC[045]I[1810512]EnR[=300,600]:300
9094: _m:SC[010]I[1810536]EnR[pioattr1.cat,1,785;no initialization,full initialization,send PCL language switch command only=0,1,2]:1
```

To list the attribute file in a more readable format using the national language supported message catalogs, use the lsvirprt command with the -q flag to specify the queue name and the -d flag to specify the queue device name.

The format of this output is:

```
Q: PAPER SIZE override for input paper source
W: Number of copies executed by the printer
X: CODE PAGE of print file
Y: DUPLEX output
Z: Send FORM FEED after each file?
0: Normal Print; 1: Return Flag Values & Pipeline, But Don't Print
b: BOTTOM MARGIN (lines)
0: Print file TYPE
f: Pre-processing FILTER NAME
g: PAGE NUMBER where printing should begin
0: Number of columns to INDENT
h: TITLE STRING for 'pr' filter
1: INITIALIZE printer?
```
The colon file syntax is completely defined in Chapter 4, “Printer Colon File Conventions” of AIX 4.3 Guide to Printers and Printing, SC23-4130, which is available on the Web at:

C.1.3 Attribute naming conventions

The names of terminfo and virtual attributes each have a standard for defining them, but are totally different names.

C.1.3.1 Terinfo printer attribute naming convention

Terinfo attribute names are usually in the range from three to eight characters long, and are usually either a short name like bold or an acronym such as cpi (for characters per inch). Attributes that turn on functionality like underline usually start with sm for set mode, while those that turn off the function usually start with rm for reset mode. The attribute names are standards and are used for all System V printer attributes.

C.1.3.2 Virtual printer attribute naming convention

Virtual printer attribute names do not have as much consistency as the terminfo attributes. There are cases where the same attribute can have different meanings with different printer types. However, there are suggested standards, as described here:

Attribute names should follow the following conventions:

• Each attribute name must be unique for the particular printer.
• Attribute names can contain the characters a through z, A through Z, 0 through 9, and _ (underscore). The name cannot begin with a numeral.
• All attribute names must be two characters long (except group header attribute names, which can be five characters long).
• Attribute names for group headers begin with _ _ (two underscores) and must not be longer than five characters. A group header attribute (formerly called a comment attribute) marks the beginning of a group of related attributes. For example, the group header attribute _ _FLG marks the beginning of a group of attributes that define the default values for command line flags. The grouping of attributes is for readability purposes and does not affect how the attributes are processed.
• An attribute name beginning with _ (an underscore), except for group headers, can be overridden by a command line flag of the same name as the second character of the attribute name. For example, -w 132, specified
with the `qprt` command, overrides with a value of 132 the value specified for the `_w` attribute in the colon file.

Suggested Attribute Names

Suggested attribute names are names that are assumed by many formatter filters:

- First character is `_`: Attributes that can be overridden by command flags.
- First character is `s`: System administrator value.
- First character is `d`: Directory path.
- First character is `m`: Miscellaneous value (constant).
- First character is `w`: Work value (changes while formatting).
- First character is `c`: Command aggregate.
- First character is `a`: ASCII control code.
- First character is `e`: Printer escape sequence.
- First character is `t` and second character is 0-9: Path name to translation tables.
- First character is `i`: Programs to format the data based on `_d`.
- First character is `f`: Filter programs.

Full path names of zero or more. Stage 2 translation tables used by formatter. Multiple values must be separated by commas.

More information on the names, limits fields, and detailed formatting are available in Chapter 4 “Printer, Plotter, and Spooler Subsystem Programming” of *AIX V4 Printer Guide*, SC23-2783.

C.1.4 Attribute value formats

There are three types of attributes that can be assigned for either System V or PowerPC printing. These are:

- boolean
- numeric
- string
C.1.4.1 System V boolean attributes

Terminfo boolean attributes are considered false unless they are defined within the printer definition and then they are considered true. Boolean attributes used by System V printing are shown in Table 37.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpix</td>
<td>When true, changing the pitch of the printer automatically changes the printer resolution.</td>
</tr>
<tr>
<td>daisy</td>
<td>When true, changing a character set requires printer intervention.</td>
</tr>
<tr>
<td>lpix</td>
<td>When true, changing the line spacing of the printer automatically changes the printer resolution.</td>
</tr>
</tbody>
</table>

Table 37. Terminfo boolean attributes

C.1.4.2 System V numeric attributes

Terminfo numeric attributes are defined by separating the attribute name and value by the ‘#’ symbol. See Table 38 for details.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>bufsz</td>
<td>Number of bytes buffered before printing</td>
<td>bufsz#5000</td>
</tr>
<tr>
<td>cols</td>
<td>Columns per line (line width)</td>
<td>cols#80</td>
</tr>
<tr>
<td>cps</td>
<td>Characters per second (average rate)</td>
<td>cps#300</td>
</tr>
<tr>
<td>it</td>
<td>Number of spaces between tabs</td>
<td>it#8</td>
</tr>
<tr>
<td>lines</td>
<td>Number of lines per page</td>
<td>lines#60</td>
</tr>
<tr>
<td>npins</td>
<td>Number of pins in the print head</td>
<td>npins#8</td>
</tr>
<tr>
<td>orc</td>
<td>Horizontal resolution in units per line</td>
<td>orc#1</td>
</tr>
<tr>
<td>orhi</td>
<td>Horizontal resolution in units per inch</td>
<td>orhi#8</td>
</tr>
<tr>
<td>orl</td>
<td>Vertical resolution in units per line</td>
<td>orl#30</td>
</tr>
<tr>
<td>orvi</td>
<td>Vertical resolution in units per inch</td>
<td>orvi#144</td>
</tr>
<tr>
<td>spinh</td>
<td>Spacing of dots horizontally in dots per inch</td>
<td>spinh#300</td>
</tr>
<tr>
<td>spinv</td>
<td>Spacing of dots vertically in dots per inch</td>
<td>spinv#300</td>
</tr>
</tbody>
</table>

Table 38. Terminfo numeric attributes

C.1.4.3 System V string attributes

Terminfo string attributes come in two types: those that contain a constant string, and those that calculate an output string based on input parameters.
The first table shows string attributes that output a constant string value. In specifying strings, the ^ symbol designates that the next character is modified by ctrl, \s is a space, \t is a tab, and \E is an escape character.

To see the value of any of these strings for a particular printer type, use the following command:

Syntax: `tput -T printer-type attribute-name | od -ax`

tput -T hplaserjet lpi 6 | od -a
00000000 esc & 1 6 D

Table 39 shows constant string attributes.

Table 39. Terminfo constant string attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>cr</td>
<td>Carriage Return</td>
<td>cr=^M</td>
</tr>
<tr>
<td>cud1</td>
<td>Move down 1 line (line feed)</td>
<td>cud1=^J</td>
</tr>
<tr>
<td>cudf</td>
<td>Move forward 1 column (space)</td>
<td>cud1=\s</td>
</tr>
<tr>
<td>endbi</td>
<td>End bidirectional print</td>
<td>endbi=\E*rB</td>
</tr>
<tr>
<td>ff</td>
<td>Form feed character</td>
<td>ff=^L</td>
</tr>
<tr>
<td>ht</td>
<td>Horizontal tab character</td>
<td>ht=^t</td>
</tr>
<tr>
<td>init</td>
<td>Printer initialization string</td>
<td>init=\EE</td>
</tr>
<tr>
<td>is1</td>
<td>Printer initialization strings one</td>
<td>is1=^X</td>
</tr>
<tr>
<td>is2</td>
<td>Printer initialization string two</td>
<td>is2=^R\EA\014\E2\Ef</td>
</tr>
<tr>
<td>is3</td>
<td>Printer initialization string three</td>
<td>is3=EX\001\120D</td>
</tr>
<tr>
<td>mgc</td>
<td>Clear all margins (top, bottom, and sides)</td>
<td>mgc=\E9</td>
</tr>
<tr>
<td>smul</td>
<td>Set underline mode</td>
<td>smul=\E-1</td>
</tr>
<tr>
<td>rmul</td>
<td>End underline</td>
<td>rmul=\E&d@</td>
</tr>
<tr>
<td>swidm=\</td>
<td>Enable double wide characters</td>
<td>swidm=\EW1</td>
</tr>
<tr>
<td>rwidm</td>
<td>Stop double wide characters</td>
<td>rwidm=\EW0</td>
</tr>
<tr>
<td>smgl</td>
<td>Set left margin at current location</td>
<td>smgl=\E9</td>
</tr>
<tr>
<td>smgt</td>
<td>Set top margin at current location</td>
<td>smgt=\E+</td>
</tr>
<tr>
<td>smgb</td>
<td>Set bottom margin at current location</td>
<td>smgb=\E-</td>
</tr>
</tbody>
</table>
You can view attributes that take parameters by using the `tput` command, as shown here:

```bash
$ tput -T printer-type attribute parameter
```

Table 40 shows some attributes that take parameters.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>sitm</td>
<td>Enable italics printing</td>
<td>sitm=\E(s1S</td>
</tr>
<tr>
<td>smso</td>
<td>Set strike over mode</td>
<td>sms0=\EE</td>
</tr>
<tr>
<td>rmso</td>
<td>End strike over mode</td>
<td>rmso=\EF</td>
</tr>
<tr>
<td>bold</td>
<td>Set bold characters</td>
<td>bold=\EG</td>
</tr>
<tr>
<td>smacs</td>
<td>Set alternate character set mode</td>
<td>smacs=\E6</td>
</tr>
<tr>
<td>rmacs</td>
<td>End alternate character set mode</td>
<td>rmacs=\E7</td>
</tr>
</tbody>
</table>

You can view attributes that take parameters by using the `tput` command, as shown here:

```bash
$ tput -T printer-type attribute parameter
```

Table 40. Terminfo attributes that require a parameter

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpi</td>
<td>Characters per inch</td>
<td>cpi=%??%p1%{10}%=%t^R%e%%p1%{16}%=%p1%{17}%=%t^O%f^O%;</td>
</tr>
<tr>
<td>cvr</td>
<td>Change vertical resolution</td>
<td>cvr=%??%p1%{0}%>%\p1%{256}%>%&%t^E A%\p1%{E2%;</td>
</tr>
<tr>
<td>lpi</td>
<td>Lines per inch</td>
<td>lpi=%??%p1%{6}%=%t^E &\D%{120}%%P%e%\p1%{8}%=%t^E &\D%{90}%%P%e%\p1%{9}%=%t^E &\D%{80}%%P%</td>
</tr>
<tr>
<td>scs</td>
<td>Select character set</td>
<td>scs=%??%p1%{0}%=%p1%{1}%=%t%E7 %e%\p1%{2}%=%t^E6%</td>
</tr>
<tr>
<td>slines</td>
<td>Set page length</td>
<td>slines=\Ev\p1%02d.</td>
</tr>
<tr>
<td>smglp</td>
<td>Set left margin</td>
<td>smglp=\El\p1%03d</td>
</tr>
<tr>
<td>smgrp</td>
<td>Set right margin</td>
<td>smgrp=\E%{1}%\p1%+%03d</td>
</tr>
<tr>
<td>smgtp</td>
<td>Set top margin</td>
<td>smgtp=\E%\p1%dr</td>
</tr>
<tr>
<td>smgbp</td>
<td>Set bottom margin</td>
<td>smgbp=\E%\p1%dr</td>
</tr>
</tbody>
</table>
C.1.4.4 PowerPC boolean attributes

Boolean virtual printer attributes are designated true by a + sign or a value of 1, and false by a ! or value of 0. Some of the more significant binary attributes are listed in Table 41.

Table 41. Virtual printer boolean attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_E</td>
<td>Double spacing.</td>
</tr>
<tr>
<td>_J</td>
<td>Restore printer settings at end of job.</td>
</tr>
<tr>
<td>_L</td>
<td>Wrap long lines based on the _l value.</td>
</tr>
<tr>
<td>_Z</td>
<td>Send FORM FEED after each file.</td>
</tr>
<tr>
<td>_j</td>
<td>Initialize printer at start of job.</td>
</tr>
<tr>
<td>_z</td>
<td>Set landscape mode. This may also be set to 0, 1, 2, and 3.</td>
</tr>
<tr>
<td>sD</td>
<td>Automatic detection of print file type to be done.</td>
</tr>
</tbody>
</table>

C.1.4.5 PowerPC numeric attributes

Numeric attributes are specified by setting the virtual printer attribute value to a number. Some of the most significant examples of numeric attributes are shown in Table 42.

Table 42. Virtual printer numeric attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_Y</td>
<td>Type of duplex. 0=simplex, 1=duplex, 2=simplex tumble, 3=duplex tumble.</td>
</tr>
<tr>
<td>_b</td>
<td>Bottom margin in lines.</td>
</tr>
<tr>
<td>_i</td>
<td>Number of columns to INDENT.</td>
</tr>
<tr>
<td>_l</td>
<td>Lines per page.</td>
</tr>
<tr>
<td>_p</td>
<td>PITCH (characters per inch).</td>
</tr>
<tr>
<td>_q</td>
<td>Print QUALITY.</td>
</tr>
<tr>
<td>_t</td>
<td>Top margin in lines.</td>
</tr>
<tr>
<td>_u</td>
<td>Input PAPER SOURCE.</td>
</tr>
<tr>
<td>_v</td>
<td>Lines per inch. The allowed values are usually only 6 and 8.</td>
</tr>
<tr>
<td>_w</td>
<td>Page width in columns.</td>
</tr>
<tr>
<td>_x</td>
<td>Add LINE FEED or CARRIAGE RETURN.</td>
</tr>
</tbody>
</table>
C.1.4.6 PowerPC string attributes
String attributes can come in individual characters, string constants, and strings that require parameters to calculate.

Strings with constant value
Some virtual printer values require a single character and usually map that character to some longer string or action. For example, the _d attribute takes the character a to represent ASCII text, which then uses the ia attribute to determine which formatter to use. Other attributes take a simple string value. Table 43 lists some of the more commonly used attributes that require a string constant:

Table 43. Virtual printer attributes with a string constant

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_d</td>
<td>Print file TYPE: a=ASCII, p=passthrough, s=PostScript, c=PCl.</td>
</tr>
<tr>
<td>_s</td>
<td>Type style, such as courier, checked by the mU attribute.</td>
</tr>
<tr>
<td>mA</td>
<td>Printer Data Stream Description, like PCL or PostScript.</td>
</tr>
<tr>
<td>mD</td>
<td>Name of message catalog.</td>
</tr>
<tr>
<td>mN</td>
<td>Printer model number.</td>
</tr>
<tr>
<td>mL</td>
<td>Printer description.</td>
</tr>
<tr>
<td>pL</td>
<td>Command to select the printer language.</td>
</tr>
<tr>
<td>pU</td>
<td>Printer reset command: Example \33%%-12345X.</td>
</tr>
<tr>
<td>C1-Cn</td>
<td>Command string to set different character sets.</td>
</tr>
<tr>
<td>af</td>
<td>Form feed character.</td>
</tr>
<tr>
<td>ac</td>
<td>Line feed character.</td>
</tr>
<tr>
<td>zM</td>
<td>Printer manufacturer used by SMIT.</td>
</tr>
<tr>
<td>zP</td>
<td>Parent file from which attributes are inherited.</td>
</tr>
</tbody>
</table>
String variables that are calculated by a stack language

Most of the strings in the virtual printer are dependent on values passed to them. Some of the critical virtual printer attributes that determine what sequences are sent to the printer are included in Table 44:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>pR</td>
<td>Set the printer resolution.</td>
<td>@PJL SET RESOLUTION=%G_q%d:12</td>
</tr>
<tr>
<td>eP or cp</td>
<td>Select Pitch.</td>
<td>%?%s_s"lineprinter"=%t33(s16.67H33(s8.5V%e%33(s%G_p%dH%);</td>
</tr>
<tr>
<td>cr</td>
<td>Command to reset the printer.</td>
<td>%eR%o%[eF,eP,eO, eS,ct,eD]%IpU</td>
</tr>
<tr>
<td>ct</td>
<td>Set line termination mode.</td>
<td>\33&k%?%Gwp%t%G_x% d%e0%;G</td>
</tr>
<tr>
<td>eu</td>
<td>Generate command to select the paper tray.</td>
<td>\33&l%?%GWu%{6}%=% t4%e%GWu%{1}%=%t1% e%GWu%{2}%=%t5%e%G Wu%{5}%=%t3%e%GWu%{8}%=%t7%e1%;H</td>
</tr>
</tbody>
</table>

String variables that contain the pathnames of a pipeline of filters

Attributes starting with i are generally in the pipeline of filters to apply to a particular data stream type as specified by the _d attribute. Attributes starting with f are generally filters to apply to the print file before passing through the rest of the virtual printer, based on the _f attribute or -f flag.

C.2 Terminfo stack language introduction

The terminfo stack language is used by both the System V terminfo and the AIX virtual printer files. It is called a stack language, because values are placed on a stack, operated on, and then output to the data stream which goes to initialize the printer. It is a powerful language with operations, such as if-then-else, that are used to implement command flag options. The attributes act as subroutines, and the calling program can pass parameters, such as a number for a font size, which can be used to produce an output sequence that sets the defaults on a print stream.
C.2.1 Example: If-then-else

An example of the if-then-else construct is shown here:

```
lp1=4?4p1%{6}%={6}%=%t\&l6D%{120}%PL%e%p1%{8}%=%t\&l8D%{90}%PL%;
```

The sequence %? .. %t .. %e %; is a if-then-else-end construction, %p1 is a parameter, %{6} is a constant, \E is an escape character, and %Pc says to pop the value off the stack and set it to c where c must be in the range a to z or A to Z. The following pseudo-code illustrates how this lines per inch attribute is parsed:

```
%? if
  %p1 parameter 1
  %{6} constant 6
  %= equal (if parameter 1 = a value of 6)
  %t then
  \E&l6D output the escape sequence
  %{120} push the constant 120 on the stack
  %PL set the variable L to 120
  %e else
  %p1 parameter 1
  %{8} constant 8
  %= equal (if parameter 1 = a value of 8)
  %t then
  \E&l8D output the escape sequence
  %{90} push the constant 90 on the stack
  %PL set the variable L to 120
  %e
  ...
  ...
endif
```

This sequence says that if the program passes a parameter value of 6 lines per inch that the value sent to the printer will be `escape ampersand 16D`, and if the parameter is 8 that the sequence will be `escape ampersand 18D`.

C.2.2 Other stack language constructs

A detailed list of the stack language for the virtual printer is given in Chapter 4. "Printer, Plotter, and Spooler Subsystem Programming", in AIX Version 4.3 Guide to Printers and Printing, SC23-4130. Table 45 lists some of the more commonly used colon file escape sequences:
<table>
<thead>
<tr>
<th>Esc. Seq.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%%</td>
<td>Generates the % (percent sign) character.</td>
</tr>
<tr>
<td>%d</td>
<td>Used as a formatting character to output integers as strings similar to the %d used in C programming.</td>
</tr>
<tr>
<td>%c</td>
<td>Used as a formatting indicator to output integers as a single character while discarding the lower order byte.</td>
</tr>
<tr>
<td>%Ixx</td>
<td>Include the string from attribute xx. This can be used recursively, as attribute xx can include another attribute.</td>
</tr>
<tr>
<td>%I[...]</td>
<td>Includes multiple attributes included in a comma separated list.</td>
</tr>
<tr>
<td>%"xyz"</td>
<td>Pushes a pointer to the string xyz on the stack.</td>
</tr>
<tr>
<td>%"String"</td>
<td>Passes the string as a command.</td>
</tr>
<tr>
<td>%Gxx</td>
<td>Gets the integer attribute value of attribute xx.</td>
</tr>
<tr>
<td>%Pf</td>
<td>Pops an integer from the stack to variable f.</td>
</tr>
<tr>
<td>%Zg</td>
<td>Zeroes the variable g.</td>
</tr>
<tr>
<td>%gf</td>
<td>Gets (pushes) the value of the variable f.</td>
</tr>
<tr>
<td>%+ %-% %^ %/ %m</td>
<td>Pushes the result of an operation onto the stack.</td>
</tr>
<tr>
<td>%= %>= !</td>
<td>Pushes a value of 1 if true, or 0 if false, onto the stack.</td>
</tr>
</tbody>
</table>
Appendix D. Tracing remote printing

AIX gives you several tools for troubleshooting network printing. In this appendix, one System V print subsystem specific log, two PowerPC print subsystem specific tools, and the general purpose iptrace facility will be described.

D.1 Reading the System V lpNet log

The lpd program for both sending and receiving data on the System V print subsystem is lpNet. This program uses the file /etc/lp/logs/lpNet as a log file for both incoming and outgoing traffic.

D.1.1 Log from successful outbound print job

The following lpNet log extract was captured after printing from an AIX System V remote printer with a destination of a IBM Network Printer 12:

```
10/27/00 12:26 p 45100 <none> Got a hit.
10/27/00 12:26 p 45100 <none> Got a hit. lpExec
10/27/00 12:26 c 58752 rs12.abc.com lpd starting (active)
10/27/00 12:26 p 45100 <none> Started child for rs12.abc.com, pid=58752
10/27/00 12:26 p 45100 <none> Into Polling loop.
10/27/00 12:26 c 58752 rs12.abc.com lpd connected to rs12.abc.com
10/27/00 12:26 c 58752 rs12.abc.com lpd disconnecting from rs12a.abc.com
10/27/00 12:26 c 58752 rs12.abc.com lpd connected to rs12abc.com
10/27/00 12:26 c 58752 rs12.abc.com lpd disconnecting from rs12a.abc.com
10/27/00 12:26 c 58752 rs12.abc.com lpd connected to rs12.abc.com
10/27/00 12:26 c 58752 rs12.abc.com lpd disconnecting from rs12.abc.com
10/27/00 12:27 c 58752 rs12.abc.com lpd timing-out
10/27/00 12:27 c 58752 rs12.abc.com lpd exiting, status=0
```

D.1.2 Log from outbound lpstat

The following example was extracted from the lpNet log after a status request to an IBM Network Printer model 4312, and illustrates a successful status log:

```
10/27/00 12:45 p 45100 <none> Got a hit.
10/27/00 12:45 p 45100 <none> Got a hit. lpExec
10/27/00 12:45 p 45100 <none> Started child for rs12.abc.com, pid=61354
10/27/00 12:45 p 45100 <none> Into Polling loop.
10/27/00 12:45 c 61354 rs12.abc.com lpd starting (active)
10/27/00 12:45 c 61354 rs12.abc.com lpd connected to rs12.abc.com
10/27/00 12:45 c 61354 rs12.abc.com lpd disconnecting from rs12.abc.com
```

ps -ef | grep 45100
Process ID 61354 belonged to the lpNet child process, while 45100 belonged to the parent lpNet, whose parent is lpsched.

D.1.3 Example: lpNet from inbound status request
The following entry was extracted from the lpNet log after receiving a status request from an AIX 4.3.3 client to the AIX 5L server:

10/27/00 13:06 p 45108 <none> Got a hit.
10/27/00 13:06 p 45108 <none> Got a hit. listenBSD
10/27/00 13:06 p 45108 <none> Into Polling loop.
10/27/00 13:06 p 45108 <none> Got a hit. listenBSD
10/27/00 13:06 p 45108 <none> Into Polling loop.
10/27/00 13:06 c 7686 client1.xyz.com lpd starting (passive)
10/27/00 13:06 c 7686 client1.xyz.com client1.xyz.com requests disp
10/27/00 13:06 p 45108 <none> Got a hit. listenBSD
10/27/00 13:06 p 45108 <none> Into Polling loop.
10/27/00 13:06 c 7686 client1.xyz.com lpd starting (passive)
10/27/00 13:06 c 7686 client1.xyz.com client1.xyz.com requests displayq
short net12 layq short net12

D.1.4 Example: lpNet log from host with name not in /etc/lp/Systems
The following entry was extracted from the lpNet log after a failed attempt to print the remote printer. After some diagnosis, we found that the queue was setup with a hostname that did not exist.

10/27/00 12:54 p 45100 <none> Got a hit.
10/27/00 12:54 p 45100 <none> Got a hit. listenBSD
10/27/00 12:54 p 45100 <none> Into Polling loop.

D.1.5 Example: Inbound print request
The following entry was extracted from the lpNet log after a job was received from an AIX 4.3.3 client by the AIX 5L System V print server. Both this log and the AIX rembak log indicated a successful transfer of the print job.

10/30/00 08:30 p 45108 <none> Got a hit.
10/30/00 08:30 p 45108 <none> Got a hit. listenBSD
10/30/00 08:30 c 56488 client1.xyz.com lpd starting (passive)
10/30/00 08:30 c 56488 client1.xyz.com client1.xyz.com requests recv
job lpl
10/30/00 08:30 p 45108 <none> Into Polling loop.
10/30/00 08:30 c 56488 client1.com lpd exiting, status=0
D.1.6 Example: Wrong host name

When running the `lpstat` command to a host that does not exist, we get the following output to the log indicating the error:

```
10/27/00 11:12 p  7888 <none> Got a hit.
10/27/00 11:12 p  7888 <none> Got a hit. lpExec
10/27/00 11:12 p  7888 <none> Started child for rsa.abc.com, pid = 19322
10/27/00 11:12 p  7888 <none> Into Polling loop.
10/27/00 11:12 c 19322 rsa.abc.com lpd starting (active)
```

When we check the process table for process 19322, this shows:

```
# ps -ef | grep 19322
root 19322  7888   0 11:12:19      -  0:00 lpNet
```

This is a child process forked by the parent lpNet, as shown by this `ps`:

```
# ps -ef | grep lpNet
root  7888 45298   0 10:59:18      -  0:00 lpNet
root 19322  7888   0 11:12:19      -  0:00 lpNet
```

The lpNet parent is owned by process 45298, which is the scheduler:

```
# ps -ef | grep 45298
root  7888 45298   0 10:59:18      -  0:00 lpNet
root 45298     1   0 10:59:18      -  0:00 /usr/lib/lp/lpsched
```

D.1.7 Example: Wrong inbound queue name

The following shows some of the error lines when data was received for a queue that did not exist:

```
10/30/00 08:54 p 45108 <none> Got a hit.
10/30/00 08:54 p 45108 <none> Got a hit. listenBSD
10/30/00 08:54 c 56510 tes.dfw.com lpd starting (passive)
10/30/00 08:54 c 56510 tes.dfw.com tes.dfw.com requests recvjob hp100
10/30/00 08:54 c 56510 tes.dfw.ibm.com unknown printer: hp100
10/30/00 08:54 p 45108 <none> Into Polling loop.
10/30/00 08:54 c 56510 tes.dfw.com lpd exiting, status=0
```

D.1.8 Example: Connection time-out to server

The following shows an error when there was a connection time-out when sending data to a server:

```
10/27/00 14:45 c 58764 9.19.129.12 lpd disconnecting from 9.19.129.12
10/27/00 14:47 c 58764 9.19.129.12 ERROR: class=Fatal, type=Unix, trace=(contimeout/setjmp), Interrupted system call
```
D.2 Using rembak logging

Rembak logging provides most of the information that tracing the job does. To turn on logging in rembak, you can either specify a log file when creating the queue, or you can change the backend in the queue device to specify the log file with the `rembak -D logfilename` flag. The following shows a valid log entry in `/etc/qconfig`:

```
backend = /usr/lib/lpd/rembak -D /tmp/rem1.log
```

D.2.1 Example: Successful remote print log

The following sections show a complete log for a successful remote print job from a PowerPC AIX 5L client to an AIX 4.3.3 server. The log starts by showing the complete `rembak` command as assembled with the server hostname or IP address, the remote queue, the status filter, the file to be printed, and the time it started trying to connect:

```
rembak[56708] hookup: Try to connect, current time=972598526.
```

The information logged next is related to building the temporary file names and constructing the control file:

```
rembak[56708] sendjob: sendjob starts, jobname=STDIN.46218, current time=972598526.
rembak[56708] sendjob: datafn[0]=dfA069rs9220b, fakedfn=dfA069rs9220b.
rembak[56708] makecontrolfile: dfnames[0]=dfA069rs9220b
rembak[56708] getbsdinfo: bsd3=Hrs9220b\10 Proot\10
rembak[56708] get_bsd_4file: bsd nc=1
rembak[56708] get_bsd_4file: bsd strings:
[STDIN.46218\10 ] [STDIN.46218\10 ] [STDIN.46218\10 ] [STDIN.46218\10 ]
rembak[56708] getbsdinfo: bsd3=Hrs9220b\10 Proot\10 fdfA069rs9220b\10
UdfA069rs9220b\10 NSTDIN.46218\10
```

The next portion shows the status of opening the print file. This is where you would get an error if the file was no longer available or if the permissions did not allow the user to read the file.

```
rembak[56708] gettmpr: Opening file /tmp//rembak0FTyqa.
rembak[56708] gettmpr: File /tmp//rembak0FTyqa opened successfully, fd=8.
```
When we created the queue, we specified that the control file be sent first. In this section, rembak actually starts the TCP/IP connection with the server, then requests to send a data file to queue asc. The server sends back an ACKnowledgment of hex 0x0, which is a 'yes, you can print to this queue' answer.

rembak[56708] sendjob: ctrlfname=/tmp//rembak0FTyqa,fakecfn=cfA069rs9220b.
rembak[56708] sendjob: State machine starts.....
rembak[56708] sendjob: State 1 - send the "Receive a Print Job" request.
rembak[56708] sendreq: sendreq - sending lpd request [\2 asc\10].
rembak[56708] gotack: Reading ACK status.....current time=972598526, timeout_ack=90.
rembak[56708] gotack: ACK status=0x0.

The next object that rembak sends is information about the job it is going to send, including the fake file name, and the size (110 bytes in this example). Again, the status returned is hex zero, indicating the server can accept a job of the specified size.

rembak[56708] sendjob: state 3 - Send data file(s), dfcount=1.
rembak[56708] sendjob: realfn=/var/spool/qdaemon/t0nJiEa, fakefn=dfA069rs9220b, filter=/usr/lib/lpd/aixshort.
rembak[56708] sendreq: sendreq - sending lpd request [\3 110 dfA069rs9220b\10].
rembak[56708] gotack: Reading ACK status.....current time=972598526, timeout_ack=90.
rembak[56708] gotack: ACK status=0x0.

The next section shows rembak actually sends the data file and getting the acknowledgement of hex zero again, saying the server accepted the job:

rembak[56708] senddatafile: Opening file /var/spool/qdaemon/t0nJiEa.
rembak[56708] senddatafile: File /var/spool/qdaemon/t0nJiEa opened successfully, fd=9.
rembak[56708] send_file_rembak: Writing 110 bytes to socket 7.
rembak[56708] ack: Send ACK.
rembak[56708] send_file_rembak: waiting for ACK.
rembak[56708] gotack: Reading ACK status.....current time=972598526, timeout_ack=90.
rembak[56708] gotack: ACK status=0x0.

The next section requests that the control file be sent:

rembak[56708] sendjob: State 2 - send control file, ctrlfname=/tmp//rembak0FTyqa:, fakecfn=cfA069rs9220b.
rembak[56708] sendreq: sendreq - sending lpd request \2 106 cfA069rs9220b\10].
rembak[56708] gotack: Reading ACK status.....current time=972598527, timeout_ack=90.
rembak[56708] gotack: ACK status=0x0.

The next section shows the control file being sent:

rembak[56708] sendcontrolfile: Opening file /tmp//rembak0FTyqa.
rembak[56708] send_file_rembak: Writing 106 bytes to socket 7.
rembak[56708] ack: Send ACK.
rembak[56708] send_file_rembak: waiting for ACK.
rembak[56708] gotack: Reading ACK status.....current time=972598527, timeout_ack=90.
rembak[56708] gotack: ACK status=0x0.

The final section shows the end of job cleanup.

rembak[56708] sendjob: State 5 - end of job #69 (STDIN.46218).
rembak[56708] sendjob: Delete control file /tmp//rembak0FTyqa.

D.2.2 Example: Error when remote queue does not exist

In this example, the job was sent to badq, which did not exist on the server. The portion of the log with the error is shown below:

rembak[48762] sendjob: State 1 - send the "Receive a Print Job" request.
rembak[48762] sendreq: sendreq - sending lpd request \2 badq\10].
rembak[48762] gotack: Reading ACK status.....current time=972657276, timeout_ack=90.
rembak[48762] gotack: ACK status=0x30.
rembak[48762] gotack: Unknown NACK status code.
rembak[48762] short_sendreq: (WARNING) Failed receiving acknowledgement.
rembak[48762] cleanupcf: need to cleanup ctlfname /tmp//rembakVoLDEa
rembak[48762] sendjob: (FATAL ERROR) Failed receiving acknowledgement.

This does not really tell us what the problem is, simply that we got a NACK (negative acknowledgement) when we tried to print to badq. In this case, the iptrace gives us a more definitive answer, as shown:

00000000 30373831 2d323038 20756e6b 6e6f776e |0781-208 unknown|
00000010 20707269 6e746572 20626164 712e | printer badq. |
D.3 Using lpd logging with the PowerPC print subsystem

The lpd log file provides information that is almost impossible to get without doing a network trace, as described in the iptrace section below. To turn on lpd logging, stop the lpd daemon, and then restart with the -D attribute, as shown here:

```
# stopsrc -s lpd
# startsrc -s lpd -a "-D /tmp/lpddebug"
```

The example trace file shown here shows the steps that the lpd daemon takes in receiving a print job and passing it to enq on the server:

When lpd receives a request, it checks to make sure the queue (3130pcl in this case) exists, and if it does, responds with an ACK to the client:

```
lpd[46248] doreq: lpd command=[\2 3130pcl].
lpd[46248] readjob: send ACK.
```

The data file information is received:

```
lpd[46248] readjob: send ACK.
lpd[46248] readjob: lpd command=[\3 110 dfA929tesch].
lpd[46248] readjob: CmdType 3 - receive data file.
```

The server is check to make sure there is space to receive the file, and an ACK sent if everything is OK:

```
lpd[46248] chk_request: Entering chk_request, rq_str=[110 dfA929tesch].
lpd[46248] chk_request: send ACK.
```

The server receives the data file:

```
lpd[46248] readline: Entering readline, file=dfA929tesch.972600121, size=110.
lpd[46248] readline: Reading 110 bytes from socket, fd=1.
lpd[46248] readline: Writing 110 bytes to file, fd=4.
lpd[46248] noresponse: Read ACK status byte, current time=972600122.
lpd[46248] noresponse: ACK status byte=0x0.
lpd[46248] readline: send ACK.
```

The control file information is received:

```
lpd[46248] readjob: lpd command=[\2 51 cfA929tesch].
```
The control file information is validated:

```
lpd[46248] chk_request: Entering chk_request, rq_str=[51 cfA929tesch].
lpd[46248] chk_request: send ACK.
```

The control file is received:

```
lpd[46248] chk_request: Entering chk_request, rq_str=[51 cfA929tesch].
lpd[46248] chk_request: send ACK.
```

The control file is parsed to build command line flags:

```
lpd[56734] doit: cfn=[cfA929tesch.972600121].
lpd[56734] doit: get a line [Htesch].
lpd[56734] doit: get a line [Proot].
lpd[56734] doit: get a line [fdfA929tesch].
lpd[56734] doit: get a line [UdfA929tesch].
lpd[56734] doit: get a line [NSTDIN.6404].
```

The `enq` command is built and issued:

```
lpd[56734] doit: exec enq cmd=/usr/bin/enq -P3130pcl -r -troot@tesch -Zroot@tesch.aix.dfw.ibm.com -N1 -TSTDIN.6404 /var/spool/lpd/dfA929tesch.972600121 ].
```

This shows you what commands are issued to the AIX print queue, which may tell you why the job did not print.

D.4 Using iptrace to log remote printing

Using `iptrace` can show us the complete story on remote printing. It shows the IP and TCP protocol handshaking and acknowledgement, window size and other details purely related to networking. It also shows us the complete LPD protocol, requests, lpd acknowledgements, the control file contents, and the entire data file. A Web resource for understanding trace formats in more detail is given at:

http://service.boulder.ibm.com/rs6k/techdocs/917559789870.html

506 Printing for Fun and Profit under AIX 5L
See Chapter 8, “Troubleshooting” on page 373 for more information about iptrace. The following lines show an example of the steps to take a trace:

```
# iptrace -p 515 -a -b -s 9.3.240.67 -d 9.3.240.66 badq.trc
# lp -d badq /etc/motd
# ls -l badq.*
-rw-r--r--   1 root     system          455 Oct 27 08:40 badq.trc
# ps -ef | grep iptr
   root 19222  1  0 08:40:27      -  0:00 iptrace -p 515 -a -b -s 9.3.240.67 -d
9.3.240.66 badq.trc
   root 46704 61506  1 08:40:46 pts/1 0:00 grep iptr
# kill 19222
# ipreport badq.trc > badq.rpt
# pg badq.rpt
```

Printing for Fun and Profit under AIX V4, GG24-3570, stepped through an entire trace and showed all the packets. In this section, we want to highlight the main steps of the trace, and show some example packets for some common errors.

D.4.1 The syntax of a packet

The TCP/IP packet shown below is typical of all the packets that you will see in the trace. The top part of the packet gives you the date time stamp for each packet. This is useful for looking for the network or server delays that may indicate problems. The other information at the top of the packet is related to the network interface and is not too useful in solving print problems until we reach the IP and TCP headers.

```
Packet Number 4
====( 68 bytes transmitted on interface tr0 )==== 18:33:03.775523399
802.5 packet

802.5 MAC header:
  access control field = 0, frame control field = 40
  [ src = 00:04:ac:61:74:0d, dst = 00:06:29:07:75:9f]
802.2 LLC header:
  dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP header breakdown:
  < SRC = 9.3.240.67 > (rs9220b.itsc.austin.ibm.com)
  < DST = 9.3.240.51 > (rs1230a.itsc.austin.ibm.com)
  ip_v=4, ip_hl=20, ip_tos=0, ip_len=46, ip_id=17681, ip_off=0
  ip_ttl=60, ip_sum=473c, ip_p = 6 (TCP)
TCP header breakdown:
  <source port=840, destination port=515(printer) >
  th_seq=5582bd31, th_ack=8af660
  th_off=5, flags<PUSH | ACK>
  th_win=16384, th_sum=d2a8, th_urgp=0
```

Appendix D. Tracing remote printing 507
The IP header shows you who sent the packet and who it was sent to. This is important in making sure you are tracing the packet to the right server. The ip_len field also gives us the packet length.

The TCP header shows us the port number. Because AIX can multitasking, you may have multiple jobs going to the same remote server at the same time. By checking the port number, you can be sure you are tracing a unique job. The port 515 is always the port for the printer server running the lpd daemon. The th_seq and th_ack fields help you look for duplicate packets, and helps you put the packets back in order. The th_win field is used to tell the remote host how large of packets that the local host can receive. If this value is set to zero, this is a way of telling the other host that this host is not ready to receive data at this time. This is the way that network handshaking should be done, but the rules are not always followed by simple print servers. The flags field tells us the function of the TCP packet. Packets with SYN, ACK, RST, and FIN are only network protocol. Packets with PUSH are the only ones that actually involve the LPR/LPD communications. The RST packet normally indicates an error, but some servers simply use it at the end of a transfer instead of FIN. If the System V print subsystem server does not have the proper entry in the System file, the connection will be ended with RST.

The data portion of the transfer contains three columns of data. The first column shows the number of data bytes in the packet prior to this line. The second column contains the data in hexadecimal format, and the third column contains the data in ASCII text format. In the example above, the first column is all zeroes because it is the first data line in the packet. The second column starts with a 02 hex, which in this case is a command to request permission to print, and the third field is the text which in this packet contains the name of the remote queue.

D.4.2 The main steps of a successful print trace

Each successful LPD print job follows these steps as it passes over the network (TCP/IP ACKs are shown in the trace, but not recorded here.):

1. TCP/IP handshake with three packets with these flag values:
 - SYN from client
 - SYN | ACK from the server
 - ACK from the client

2. Request to print from client (flags=PUSH) that starts with a HEX value of 02, and contains the name of the remote queue (in this case TEXT).
3. The acknowledgment from the LPD (515) server. If successful, this will be a hex zero, as shown in this packet.

4. The data file information packet, which gives the size (880) of the file, and the temporary file name (dfA016rs922). This packet is from the client to the 515 port.

5. The acknowledgement from the LPD (515) server. If successful, this will be a hex zero.

6. The data file will go next. This may be in a single packet, or in multiple packets with occasional ACKs from the server. Because you get both the hex and the text view of the data, you can see control characters and any commands added if local formatting is done. Here is a couple lines from a data file not starting at the beginning:

7. The acknowledgment from the LPD (515) server. If successful, this will be a hex zero.

8. The control file information packet giving the size and temporary name of the control file:

9. The acknowledgment from the LPD (515) server

10. The control file, which contains all the flags. This includes AIX specific flags, flags specified with the -o flag, and the standard LPD flags that will simply be sent as the first letter of the attribute, such as Hrs9220b to designate the host, Jmotd to designate the job name, Proot and Lroot are the from and to users, fdfA... says this is formatted, Udfrac挞... says to remove the temporary file when done, and N/etc/motd is the name of the file being printed:

11. A PUSH packet with hex zero from the client to indicate the file is done.
12. The acknowledgment from the LPD (515) server.
13. The end handshaking with FINs by both hosts, or sometimes a RST by one of the hosts.

The rest of the section shows some common errors that can be detected using iptrace.

D.4.3 Client does not have permission to print on server

When the client has not been authorized by placing the name in the /etc/hosts.lpd file or other methods depending on the server, the following message may be seen:

```
00000000 30373831 2d323032 20796f75 7220686f      |0781-202 your ho|
00000010 73742064 6f657320 6e6f7420 68617665     |st does not have|
00000020 206c696e 65207072 696e7465 72206163     | line printer ac|
00000030 63657373 2e                             |cess.           |
```

D.4.4 LPD server not running on the remote host

When the LPD is not running, you may see several requests to print that are simply responded to by the server with an RST.

D.4.5 Missing queue on the server

When the remote host lpd server is active, but the server does not have the requested queue, the message will be similar to this:

```
00000000 30373831 2d323038 20756e6b 6f776e        |0781-208 unknown|
00000010 20707269 6e746572 20626164 2e           | printer badq.  |
```

510 Printing for Fun and Profit under AIX 5L
Appendix E. Data streams

This appendix explains the following:

- What is a data stream?
- Most common data stream descriptions.
- Data streams supported by the AIX print subsystems.
- Data streams supported by Infoprint Manager for AIX.

E.1 What is a data stream?

A data stream is a well-defined set of commands which allow the computer to tell the printer what and where to print. There are different implementations of data streams for different hardware platforms.

Print data streams have evolved over time from very basic and inflexible to the powerful and sometimes complex systems available today.

Formerly, applications on PCs or UNIX workstations could output simple text to be formatted with device drivers, but graphics and typographic capability were extremely limited with the original dot matrix printers. Each printer required specific, device-dependent control characters. Even a simple ASCII file sent to two different kinds of printers would often appear different because of different fonts and print qualities.

Mainframe impact printers required the application developer to format the data within the application; paper tapes were used to transmit carriage controls. Graphic capability was essentially non-existent, because the printers generally used fully-formed character bands, and printing was done line by line; there was no capability to place individual dots on a page.

Hewlett-Packard’s introduction of PCL and the original LaserJet in 1984 and Adobe’s introduction of the PostScript language in 1985, along with printers incorporating a PostScript interpreter, radically changed the workstation printing environment. PostScript was particularly popular because of its sophisticated graphics and desktop publishing capability through the use of outline fonts and vector graphics.

Today, many manufacturers build printers that incorporate interpreters according to the PCL and PostScript standards.

Likewise, IBM’s introduction of the Advanced Function Presentation (AFP) architecture along with the Print Services Facility (PSF) software and the
3800 laser printer in the mid-1980s brought all-points-addressability along with reliable, high-speed printing to the mainframe printing environment.

From its original introduction on the MVS platform, AFP software is now available on all IBM operating systems (OS/390, VM, VSE, OS/400, AIX, and OS/2) as well as on Windows NT and Windows 2000, with strong cross-platform compatibility. Many of the AFP software and hardware products available from IBM and other vendors support not only IBM’s Intelligent Printer Data Stream (IPDS), but PCL and PostScript as well.

E.2 Most popular data streams description

This section describes the most common data streams supported by AIX and by Infoprint Manager for AIX.

E.2.1 Hewlett-Packard Printer Control Language (HP PCL)

PCL, first introduced in 1984, was designed to be expandable, enabling future versions to add additional commands and capabilities. Each successive version becomes a functional superset of the previous version. PCL has become one of the most common data streams in the industry.

According to the Hewlett-Packard Web site (http://www.hp.com), PCL commands are compact escape sequence codes that are embedded in the print job data stream. HP PCL formatters and fonts are designed to translate application output into high-quality, device-specific, raster print images.

The first version of PCL provided daisywheel printers with the ability to interpret commands, select specific characters to print, and later added spacing and sizing to characters. But it was with the introduction of the LaserJet printer and PCL 3 in 1984 that PCL really became one of the leading industry standard printer description languages.

- **PCL 3**
 Offered full-page formatting and vector graphics.

- **PCL 4**
 Added a greater selection of typefaces and downloadable macros.

- **PCL 4e**
 Provided support for compressed, bitmapped fonts and raster images.

- **PCL 5**
 Introduced many advanced capabilities, including scalable fonts, support for HP-GL/2 plotter commands, and the PJL language for data stream switching.

- **PCL 5e**
 Provided support for 600 dpi resolution.
PCL 5c Provided color printing support.
PCL 6 Rewritten as an object-oriented control language; provides faster printing for complex graphics, improved network performance, and better document fidelity through font synthesis technology.

E.2.2 Proprinter data stream

The Proprinter data stream was used on the Epson ESC/P** printer, which was a Personal Printer with the IBM logo. The evolution of this data stream made it an incorporated feature of Personal Printer Data Stream (PPDS) Level 1 and 2.

This data stream contains all Proprinter, QuietWriter, QuickWriter, and LaserPrinter 4019 and 4029 commands.

Level 1 The basic level of PPDS, providing the basic services needed by any printer.

Level 2 Incorporated enhancements in the font selection, print quality selection and paper handling. This level is represented by the Quietwriter and Quickwriter family of products.

Level 3 Provided enhancements to the previous PPDS levels for page type printers, such as the IBM Laser Printer 4019, including the ability to place text and images at any position on the page (Cursor Positioning), to work with forms, overlays and repetitive command sequences (Save and Manage Macros), to fill drawings with different patterns (Rule and Fill), and to change the orientation of the paper.

Level 4 Added new features to the IBM LaserPrinter 4029 and to the previous PPDS levels, including compression and decompression of raster image, scalable fonts, and enhanced orientations (set print angle).

The PPDS data stream is no longer being enhanced.

E.2.3 PostScript data stream

The PostScript language, introduced by Adobe in 1985, is an interpretive programming language with powerful graphics capabilities. A PostScript job is printed by sending the job to a PostScript interpreter, which converts the high-level PostScript language description into low-level raster data format. Usually, the interpreter is resident in printer microcode, but some software
programs (such as Infoprint Manager for AIX) contain an external interpreter for rasterizing PostScript.

Level 1 Described the basic Adobe PostScript set of functions:
- Stack oriented data stream
- Scalable Adobe Type 1 and Type 3 outline fonts
- Smooth, hardware independent gray scaling
- Multiple orientations on the physical page

Level 2 Enhanced the base Level 1 by adding the following features:
- Forms: a set of operations that constitute a form, which may be cached
- Color: more methods of specifying color, for example, index color and color separations
- Composite fonts: unlimited character sets

PostScript 3 Adds the following enhancements:
- Enhanced graphics capabilities, including smooth blends, 4096 gray levels, masked images, and high-fidelity color
- Digital prepress support, including direct PDF printing on high-end systems, in-RIP trapping, and color handling enhancements
- Miscellaneous improvements, including enhanced page rendering, driver enhancements, extended font set, and advanced print driver software

Adobe’s Portable Data Format (PDF) is closely related to PostScript. Refer to the Adobe Web site for additional information (http://www.adobe.com).

E.3 Data streams supported by the AIX print subsystems

The most common input data streams printed in an AIX environment are ASCII and PostScript, and the most common output types are PostScript and PCL printers. The level of support for a data stream will depend on which print subsystem you choose to run (PowerPC or System V) in AIX 5L, and the level of support that print subsystem provides.

Both print subsystems can process simple ASCII text, PostScript and PCL input data and send it to PostScript and PCL printers. Both subsystems have the capability to invoke filters or other programs to do some data formatting.
Appendix E. Data streams

The legacy AIX PowerPC print subsystem with virtual printers and their attributes currently provides greater flexibility, as described in Section 1.7.2.1, “Advantages of the PowerPC print subsystem” on page 18.

E.4 Data streams supported by Infoprint Manager for AIX

Infoprint Manager for AIX supports a variety of input data streams that can either be passed through to printers as-is or can be transformed for sending to destinations that do not necessarily natively support the original input data type.

When passing data streams through Infoprint Manager without any transforms, Infoprint Manager supports all of the input data streams and output devices that the AIX PowerPC print subsystem supports.

In addition, a widely used function of Infoprint Manager for AIX is to transform print job (input) data streams into printer or other destination (output) data streams for supported Infoprint Manager for AIX printers. This section describes these data streams:

- Input data streams
- Output data streams

E.4.1 Input data streams

Infoprint Manager for AIX supports transformation of these input data streams:

<table>
<thead>
<tr>
<th>Data Stream</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PostScript 3</td>
<td>Adobe’s PostScript data stream (using an Adobe certified transform).</td>
</tr>
<tr>
<td>PDF 1.3</td>
<td>Adobe’s Portable Document Format.</td>
</tr>
<tr>
<td>PCL 5 and 5e</td>
<td>Hewlett-Packard’s Printer Control Language.</td>
</tr>
<tr>
<td>ASCII</td>
<td>Common data format for UNIX and PC system, with or without Proprinter escape sequences.</td>
</tr>
<tr>
<td>SAP R/3</td>
<td>ABAP list format and SAPscript formatter output (OTF) used in the SAP R/3 program.</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format, a raster graphics data format, generally produced by scanners or fax machines.</td>
</tr>
</tbody>
</table>
GIF(sm) Graphics Interchange Format(sm), a raster graphics format owned by CompuServe Incorporated; generally used for line-art images, such as icons and logos.

JPEG JPEG, which stands for Joint Photographic Experts Group; an image format frequently used for photographic images.

DBCS ASCII Double Byte Character Set ASCII text for Japanese and Traditional Chinese. (Simplified Chinese can be processed as well using a different method.)

ditroff A device independent data stream created by the UNIX troff formatter

S/370 line data Also known as 1403 line data (EBCDIC), this data stream originated in the MVS mainframe environment and is characterized by lines of data separated by a carriage return at the end of each line. It may be prefixed with ANSI or machine carriage controls and may also contain Table Reference Characters (TRCs).

AFPDS The Advanced Function Presentation Data Stream includes text and inline resources, such as form definitions and page definitions used by Infoprint Manager for AIX to construct the data stream that then points to the overlays, page segments, and fonts. This published, non-proprietary architecture includes a data format that can be created on a variety of operating systems, such as OS/390 (MVS), VM, VSE, OS/400, OS/2, or Windows, and can be interchanged among the platforms.

Mixed mode A combination of AFP records and line data (either ASCII or 1403 line data).

MO:DCA-P Mixed Object:Document Content Architecture for Presentation Data stream, which is subset of the AFP Data Stream. The AFP Data Stream also includes the following objects:

IOCA Image Object Content Architecture is a collection of constructs used to interchange and present images.

GOCA Graphic Object Content Architecture provides a collection of graphics values and control
Appendix E. Data streams

BCOCA Bar Code Object Content Architecture is a collection of constructs used to interchange and present bar codes.

E.4.2 Output data streams

In addition to supporting AIX printers with their native data streams (that is, no transforms), Infoprint Manager for AIX can send transformed data (see Section E.4.1, “Input data streams” on page 515) to non-impact printers that support the following types of output data streams:

IPDS IBM’s non-proprietary Intelligent Printer Data Stream is an all-points-addressable data stream that allows users to position text, images, and graphics at any defined point on a printed page.

PPDS Personal Printer Data Stream.

PCL Printer Control Language Levels 4, 5 and 5C (color).

Infoprint Manager for AIX can also send transformed data to fax machines or to e-mail destinations.
Appendix F. System V supported printer types

The information in Table 46 comes from the model.stz file in the
/usr/lpp/sysmgt.websm/inst_root/var/websm/data/ directory, and provides
additional guidance on selecting a printer type. If your printer is not listed,
choose the printer type that most closely resembles the capabilities of your
printer. It is not important that it match, only that it is a similar type of printer.

For example, you can probably use a printer type of hplaserjet when defining
a Lexmark Optra.

Table 46. Supported printer types - System V print subsystem in AIX 5L V5.0

<table>
<thead>
<tr>
<th>Name</th>
<th>Terminfo type</th>
<th>Interface script</th>
<th>Content type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canon Bubble Jet 10ex</td>
<td>bj-10ex</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Canon Bubble Jet 130e</td>
<td>bj-130e</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Canon Bubble Jet 200</td>
<td>bj-200</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Canon Bubble Jet 300</td>
<td>bj-300</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Canon Bubble Jet 330</td>
<td>bj-330</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Epson FX 850</td>
<td>fx-850</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Epson FX 1050</td>
<td>fx-1050</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Epson DFX 5000</td>
<td>dfx-5000</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Epson DFX 8000</td>
<td>dfx-8000</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Epson LQ 570</td>
<td>lq-570</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Epson LQ 870</td>
<td>lq-870</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Epson LQ 1170</td>
<td>lq-1170</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Epson EPL 7500</td>
<td>epl-7500</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>HP LaserJet (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet II (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet II (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet III (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>Name</td>
<td>Termino type</td>
<td>Interface script</td>
<td>Content type</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>HP LaserJet III (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet IIIsi (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet IIIsi (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 4 (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 4 (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 4L/4ML (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 4L/4ML (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 4P/4MP (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 4P/4MP (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 4M (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 4M (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 4Si/4Si MX (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 4Si/4Si MX (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 4 Plus/4M Plus (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 4 Plus/4M Plus (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 4V/4MV (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 4V/4MV (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 5 (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>Name</td>
<td>Termino type</td>
<td>Interface script</td>
<td>Content type</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>HP LaserJet 5 (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 5L/5ML (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 5L/5ML (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 5P/5MP (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 5P/5MP (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 5Si/5Si MX (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 5Si/5Si MX (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 5Si Mopier (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 5Si Mopier (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 6P (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 6P (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP LaserJet 6L (PCL)</td>
<td>hplaserjet</td>
<td>standard</td>
<td>pcl</td>
</tr>
<tr>
<td>HP LaserJet 6L (PostScript)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>HP DeskJet 500</td>
<td>deskjet</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>HP DeskJet 1200C/1200CPS</td>
<td>deskjet</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>HP DeskJet 1600C/1600CM</td>
<td>deskjet</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>HP PaintJet</td>
<td>paintjet</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>IBM ProPrinter</td>
<td>proprinter</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Oki 320</td>
<td>oki-320</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Termino type</td>
<td>Interface script</td>
<td>Content type</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Oki 390</td>
<td>oki-390</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Oki OL 400</td>
<td>oki-ol400</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Oki OL 800</td>
<td>oki-ol800</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Panasonic KX-P1180</td>
<td>kx-p1180</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Panasonic KX-P1695</td>
<td>kx-p1695</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Panasonic KX-P1124</td>
<td>kx-p1124</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>Panasonic KX-P1624</td>
<td>kx-p1624</td>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>PostScript (Serial)</td>
<td>PS</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>PostScript (Parallel)</td>
<td>PS-b</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>PostScript (Serial with page reversal)</td>
<td>PS-r</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>PostScript (Parallel with page reversal)</td>
<td>PS-br</td>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>Unisys AP1337 - Epson emulation</td>
<td>AP1337-e</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP1337 - IBM emulation</td>
<td>AP1337-i</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP1339 - Epson emulation</td>
<td>AP1339-e</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP1339 - IBM emulation</td>
<td>AP1339-i</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP1357 - Epson emulation</td>
<td>AP1357-e</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP1357 - IBM emulation</td>
<td>AP1357-i</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP1359 - Epson emulation</td>
<td>AP1359-e</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP1359 - IBM emulation</td>
<td>AP1359-i</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP1371 - Epson emulation</td>
<td>AP1371-e</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Name</td>
<td>Terinfo type</td>
<td>Interface script</td>
<td>Content type</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Unisys AP1371 - IBM emulation</td>
<td>AP1371-i</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9205 - IBM emulation</td>
<td>AP9205-i</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9205 - HP LaserJet emulation</td>
<td>AP9205-ij</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9205 - HP LaserJet Plotter emulation</td>
<td>AP9205-ljplt</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9210 - IBM emulation</td>
<td>AP9210-i</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9210 - HP LaserJet emulation</td>
<td>AP9210-lj</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9210 - HP LaserJet Plotter emulation</td>
<td>AP9210-ljplt</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9215 - Epson emulation</td>
<td>AP9215-e</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9215 - Diablo emulation</td>
<td>AP9215-d</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9215 - IBM emulation</td>
<td>AP9215-i</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9215 - HP LaserJet emulation</td>
<td>AP9215-lj</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9310 - HP LaserJet emulation</td>
<td>AP9310-lj</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9312 - HP LaserJet emulation</td>
<td>AP9312-lj</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9316 - HP LaserJet emulation</td>
<td>AP9316-lj</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Unisys AP9415 - HP LaserJet emulation</td>
<td>AP9415-lj</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>Other</td>
<td>unknown</td>
<td>standard</td>
<td>simple</td>
</tr>
<tr>
<td>DOS printer</td>
<td>unknown</td>
<td>standard</td>
<td>simple, PS</td>
</tr>
</tbody>
</table>
Appendix G. Special notices

This publication is intended to help the AIX system administrators to manage print subsystem effectively. The information in this publication is not intended as the specification of any programming interfaces that are provided by AIX 5L print subsystem or the AIX 5L operating system. See the PUBLICATIONS section of the IBM Programming Announcement for AIX operating system for more information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM's product, program, or service may be used. Any functionally equivalent program that does not infringe any of IBM's intellectual property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test and is distributed AS IS. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for convenience only and do not in any manner serve as an endorsement of these Web sites.

The following terms are trademarks of the International Business Machines Corporation in the United States and/or other countries:

IBM ® Advanced File Printing AIXwindows® DFS IPDS OS/2® POWERparallel® RISC System/6000® S/390® VM/ESA®
Redbooks AFS® Infoprint® MVS OS/390® PowerPC® RS/6000® SP
Redbooks Logo AIX® Intelligent Printer Data Stream Netfinity® OS/400® Print Services Facility S/370
The following terms are trademarks of other companies:

Adobe and Adobe Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Ghostscript is a registered trademark of Aladdin Enterprises in the U.S. and other countries.

Netscape is a registered trademark of Netscape Communications Corporation in the U.S. and other countries.

Tivoli, Manage. Anything. Anywhere., The Power To Manage., Anything. Anywhere., TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems Inc., an IBM company, in the United States, other countries, or both. In Denmark, Tivoli is a trademark licensed from Kjobenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and/or other countries.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
Appendix H. Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

H.1 IBM Redbooks

For information on ordering these publications see Appendix , "How to get IBM Redbooks" on page 533.

- AIX and Windows NT: Solutions for Interoperability, SG24-5102
- Printing for Fun and Profit Under AIX V4, GG24-3570
- Samba Installation, Configuration, and Sizing Guide, SG24-6004

H.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs button at ibm.com/redbooks for information about all the CD-ROMs offered, updates and formats.

<table>
<thead>
<tr>
<th>CD-ROM Title</th>
<th>CollectionKit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM System/390 Redbooks Collection</td>
<td>SK2T-2177</td>
</tr>
<tr>
<td>IBM Networking Redbooks Collection</td>
<td>SK2T-6022</td>
</tr>
<tr>
<td>IBM Transaction Processing and Data Management Redbooks Collection</td>
<td>SK2T-8038</td>
</tr>
<tr>
<td>IBM Lotus Redbooks Collection</td>
<td>SK2T-8039</td>
</tr>
<tr>
<td>Tivoli Redbooks Collection</td>
<td>SK2T-8044</td>
</tr>
<tr>
<td>IBM AS/400 Redbooks Collection</td>
<td>SK2T-2849</td>
</tr>
<tr>
<td>IBM Netfinity Hardware and Software Redbooks Collection</td>
<td>SK2T-8046</td>
</tr>
<tr>
<td>IBM RS/6000 Redbooks Collection</td>
<td>SK2T-8043</td>
</tr>
<tr>
<td>IBM Application Development Redbooks Collection</td>
<td>SK2T-8037</td>
</tr>
<tr>
<td>IBM Enterprise Storage and Systems Management Solutions</td>
<td>SK3T-3694</td>
</tr>
</tbody>
</table>

H.3 Other resources

These publications are also relevant as further information sources:

- AIX V4.3 Guide to Printers and Printing, SC23-4130
- AIX V4 Printer Guide, SC23-2783
Some of the publications referenced in this book are no longer available in hardcopy but can be found at the following Web site until May 2001:

http://www.rs6000.ibm.com/idd500/nav/Books/nav.htm

After May 2001, they can be found at:

http://www.rs6000.ibm.com/resource/aix_resource/Pubs

The publications are:

- *AIX 5L Commands Reference*
- *AIX 5L Guide to Printers and Printing*

H.4 Referenced Web sites

These Web sites are also relevant as further information sources:

 AIX Version 4 Printing Tips
 Group Bull site with AIX public domain software
- http://aixpdslib.seas.ucla.edu/aixpdslib.html
 UCLA site with AIX public domain software
 Ghostscript home page
 Ghostscript FTP site
 Home site for netcat filter
- http://home.flash.net/~laixsoft/
 AIX printing tools from LAIX
 Adobe type 1 PostScript fonts
- http://www.bitstream.com/
 Bitstream PostScript fonts
- http://www.monotype.com
 Monotype PostScript fonts
 IBM Printing Systems Division home page
Appendix H. Related publications

 Support (includes drivers, utilities, and other information)

 Infoprint Manager family software home page

 Download site for the AIX Toolbox for Linux Applications packages

 Download site for postscript utilities.

- http://www.lexmark.com
 Lexmark home site

 Site for Line Printer Daemon Protocol.

 Download site for instpr.exe.

 IBM site page for Printer Backend Overview for Programming.

 IBM site page for Basic AIX Printer Backend Program Example.

 IBM site page for Printer Colon File Conventions.

- www.redbooks.ibm.com
 IBM Redbooks home page.

- http://www.rs6000.ibm.com/resource/hardware_docs/
 RS/6000 System and Options Libraries home page.

 IBM site page for Tracing Remote Printing.

- www.hp.com
 Hewlett-Packard home page.
How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks, redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

- **Redbooks Web Site** ibm.com/redbooks
 Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks site.
 Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will be published this way. The intent is to get the information out much quicker than the formal publishing process allows.

- **E-mail Orders**
 Send orders by e-mail including information from the IBM Redbooks fax order form to:

<table>
<thead>
<tr>
<th>In United States or Canada</th>
<th>pubscan@us.ibm.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside North America</td>
<td>Contact information is in the “How to Order” section at this site:</td>
</tr>
</tbody>
</table>

- **Telephone Orders**

 | United States (toll free) | 1-800-879-2755 |
 | Canada (toll free) | 1-800-IBM-4YOU |
 | Outside North America | Country coordinator phone number is in the “How to Order” section at this site: |

- **Fax Orders**

 | United States (toll free) | 1-800-445-9269 |
 | Canada | 1-403-267-4455 |
 | Outside North America | Fax phone number is in the “How to Order” section at this site: |

This information was current at the time of publication, but is continually subject to change. The latest information may be found at the Redbooks Web site.

IBM Intranet for Employees

IBM Redbooks fax order form

Please send me the following:

<table>
<thead>
<tr>
<th>Title</th>
<th>Order Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First name

Last name

Company

Address

City

Postal code

Country

Telephone number

Telefax number

VAT number

Invoice to customer number

Credit card number

Credit card expiration date

Card issued to

Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not available in all countries. Signature mandatory for credit card payment.
<table>
<thead>
<tr>
<th>Abbreviations and acronyms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>Access Control List</td>
</tr>
<tr>
<td>AFP</td>
<td>Advanced Function Presentation</td>
</tr>
<tr>
<td>AFPDS</td>
<td>Advanced Function Presentation Data Stream</td>
</tr>
<tr>
<td>AIX</td>
<td>Advanced Interactive eXecutive</td>
</tr>
<tr>
<td>BOCA</td>
<td>Bar Code Object Content Architecture</td>
</tr>
<tr>
<td>CDE</td>
<td>Common Desktop Environment</td>
</tr>
<tr>
<td>CPI</td>
<td>Characters Per Inch</td>
</tr>
<tr>
<td>CTS</td>
<td>Clear To Send</td>
</tr>
<tr>
<td>CVR</td>
<td>Change Vertical Resolution</td>
</tr>
<tr>
<td>DBCS</td>
<td>Double Byte Character Set</td>
</tr>
<tr>
<td>DCE</td>
<td>Distributed Computing Environments</td>
</tr>
<tr>
<td>DFS</td>
<td>Distributed File System</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System</td>
</tr>
<tr>
<td>DPI</td>
<td>Dots Per Inch</td>
</tr>
<tr>
<td>DSR</td>
<td>Data Set Ready</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminal Equipment</td>
</tr>
<tr>
<td>DTR</td>
<td>Data Terminal Ready</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>EUC</td>
<td>Extended UNIX Code</td>
</tr>
<tr>
<td>GIF</td>
<td>Graphics Interchange Format</td>
</tr>
<tr>
<td>GOCA</td>
<td>Graphic Object Content Architecture</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphic User Interface</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines Corporation</td>
</tr>
<tr>
<td>IOCA</td>
<td>Image Object Content Architecture</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPDS</td>
<td>Intelligent Printer Data Stream</td>
</tr>
<tr>
<td>ITSO</td>
<td>International Technical Support Organization</td>
</tr>
<tr>
<td>JDF</td>
<td>Job Description File</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photographic Experts Group</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>LPD</td>
<td>Line Printer Daemon Protocol</td>
</tr>
<tr>
<td>LPI</td>
<td>Lines Per Inch</td>
</tr>
<tr>
<td>NFS</td>
<td>Network File System</td>
</tr>
<tr>
<td>NIC</td>
<td>Network Interface Card</td>
</tr>
<tr>
<td>NLS</td>
<td>National Language Support</td>
</tr>
<tr>
<td>NPM</td>
<td>Network Printer Manager</td>
</tr>
<tr>
<td>ODM</td>
<td>Object Database Manager</td>
</tr>
<tr>
<td>PCL</td>
<td>Printer Control Language</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format</td>
</tr>
<tr>
<td>PJL</td>
<td>Printer Job Language</td>
</tr>
<tr>
<td>PPDS</td>
<td>Personal Printer Data Stream</td>
</tr>
<tr>
<td>PSF</td>
<td>Print Services Facility</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>PSM</td>
<td>Printing Systems Manager</td>
</tr>
<tr>
<td>PTF</td>
<td>Program Temporary Fix</td>
</tr>
<tr>
<td>RAN</td>
<td>Remote Asynchronous Node</td>
</tr>
<tr>
<td>RFC</td>
<td>Request For Comments</td>
</tr>
<tr>
<td>RTS</td>
<td>Ready To Send</td>
</tr>
<tr>
<td>SCS</td>
<td>Select Character Set</td>
</tr>
<tr>
<td>SMIT</td>
<td>System Management International Tool</td>
</tr>
<tr>
<td>SNA</td>
<td>Systems Network Architecture</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SRC</td>
<td>System Resource Controller</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format</td>
</tr>
<tr>
<td>TRC</td>
<td>Table Reference Character</td>
</tr>
<tr>
<td>VSM</td>
<td>Visual System Management</td>
</tr>
<tr>
<td>URL</td>
<td>Universal Resource Locator</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
<tr>
<td>WSM</td>
<td>Web-based System Manager</td>
</tr>
</tbody>
</table>
Index

Symbols
$#@! 424
%l 329
%lpL 329
/dev/lp## 8, 34, 60, 63, 68, 74, 470, 471
/dev/null 121, 128
/etc/config 311
/etc/hosts 272, 295, 304, 317
/etc/hosts.equ 269, 284
/etc/hosts.lpd 269, 284, 285, 293, 317, 477
/etc/inittab 55, 291, 292
/etc/locks/lpd 284
/etc/lp/printers 10
/etc/lp/System 104, 109, 111, 116, 121, 129, 131
/etc/qconfig 10, 279, 282, 295, 303, 315
/tmp 274
/tmp/hpnpcfg.log 126
/usr/bin/wsm 57
/usr/lib/hpnp/config6 121, 125
/usr/lib/lp/lpsched (System V) 56
/var/lp/logs 56
/var/spool/lpd 269, 283
/var/spool/lpd/pio/@local 273, 316
/var/spool/lpd/qdir 269

Numerics
10-pin connector 482
128-port adapter 380, 403, 483
1403 line data 516
16-port adapter 403, 483
25-pin connector 482
2-up 180, 347, 438, 439, 445
3Com 449
4-wire 404, 483
6-port adapter 380
6-wire 483
7318 network terminal server 380, 403
8-port adapter 482
8-wire 483
9-pin connector 482

A
a2ps 437
A3 340
A4 146, 340

abnormal process termination 501
accept 409, 451, 468
accept command (System V) 73, 76, 113, 114, 146
accepting 417
access list (PowerPC)
remote client 128, 284, 285, 290, 293
access list (System V)
forms 53, 54, 55, 110, 119
lpadmin command 130
printer 53
remote access 128, 129, 130, 132
user 53, 54, 55, 186
users 110
Access terminal servers 449
accounting
Infoprint Manager 457
System V print subsystem 17
ACK 503, 505, 507
Send ACK 503
acknowledgment 506, 509
ACL 25
acedit 356
action
printer alert (System V) 69, 110, 115
adding
filter 173
new printer to terminfo 154
new virtual printer predef 335
adding a form 156
adding a JetDirect-attached printer
command line (PowerPC) 302
command line (System V) 127
files created (System V) 120
hpnpcfg program (System V) 121
overview (System V) 115
planning (PowerPC) 295
planning (System V) 115
SMIT (PowerPC) 300
Web-based System Manager (PowerPC) 296
Web-based System Manager (System V) 116
adding a local printer
command line (System V) 73
files created (System V) 77
PowerPC print subsystem 207
System V print subsystem 57
Web-based System Manager (System V) 65
adding a Network Station attached printer (PowerPC)
PC) 312
adding a printer device command line 64
SMIT 61
Web-based System Manager 57
adding a remote printer command line (PowerPC) 281
files created (System V) 109
lpadmin command (System V) 110
planning (PowerPC) 272
SMIT (PowerPC) 280
status filter (PowerPC) 132
Web-based System Manager (PowerPC) 276
Web-based System Manager (System V) 105
adding an IBM Network Printer command line (PowerPC) 311
planning 303
SMIT (PowerPC) 309
Web-based System Manager (PowerPC) 304
adding an Xstation attached printer (PowerPC) 312
Adobe Acrobat PDF files 177, 178
Adobe Document Structuring Conventions 439
Adobe Portable Document Format 440
Adobe Type 1 fonts 354
Advanced Function Presentation (AFP) 455, 511, 516
AFP (see Advanced Function Presentation) 516
AIX 5L printing new features 3
Aladdin Free Public License 440
alert font cartridge 163
forms 157
alert (System V) action 69, 110, 115, 118
interval 70
printer 53, 54, 68, 69, 110, 115
recovery 53, 54, 68, 69, 110, 115, 118
alert type (System V) custom command 79
e-mail 119
mail 78
none 79
quiet 79
terminal message 79
alignment forms 157
all/all 78, 130
allow 418
form users 157
forms 159
allow-list 187
Alternate RJ 45 pinouts 404
altpin 481
Annex terminal server 449
aprint 449
Archive for AIX 453
archiving 321
asa 19, 168
asa filter 347
ASCII 25
Infoprint Manager 515
ASCII terminal 365, 369
ASCII text 508
converting to PostScript 81
ASCII text files convert to PostScript 394
ATT filter PowerPC print subsystem 275
attachment method 66, 67, 107, 117
attribute defaults lsvirprt 328
attribute definitions files 485
attribute names 489
attributes customizing 327
System V print subsystem 405, 421
automatic detection 348
text versus PostScript 353
automatic detection of print file type 21, 327, 494
auxiliary port 365
awk filter 151, 168, 447
B
Baan
Infoprint Manager 457
backend piobe 321, 369
pioibmnpn 321
piojted 321
rembak 502
restricting users 356
backend programs 321
creating 323
definition in qconfig 200
example 323, 325
example C program 327
overview 321
pioe 200
pioetd 200
piorlfb 200
PowerPC print subsystem 10, 268
rembak 200, 201
shell script 323
backends
socket filters 448
virtual printer 321
banner 367
banner pages 136, 141, 143, 322, 450
command line selection 429
custom PCL 187
mandatory (System V) 53, 54
missing formfeed 433
remote (LPD) printing (System V) 114
stopping unwanted 411
suppress (System V) 53, 54, 55, 91, 133
unwanted in PowerPC printing 428
banner program 350, 357
banner usage 161
banner.ps 190
baud rate 61, 63, 164, 207, 365, 380, 421
Bay Networks 449
bits per char 365
BM Network Printers 449
bmp 178
bold type 148
booklets 439
BOOTP 122, 294, 299, 301, 308, 310
bootpd command 300, 302
box characters 335
BSD
commands 100
protocol 112
status filter 132
burst 357

cancel command 6, 18, 89, 97, 233, 468
cancelling a print request
PowerPC print subsystem 252
System V print subsystem 97
capturing
file after the queue 399
file on remote system 399
file over the network 399
files before printing 398
printing flags 399
capturing X windows 442
xgrabsc 444
xv 443
carriage returns 36, 48, 68, 71, 74, 75, 119, 165, 328, 342, 349, 444
adding 384
adding by filter 142
missing 384
removing unwanted 447
carrier detect 480, 481
cat 9
CAT 5 cable 380, 482
catlexbe 268
catlp 268
CD 480, 481
CDE Application Manager 58
CDROM 435
change attributes
lsvirprt 328
changing
filters 173
changing a print request
System V print subsystem 95
character pitch
terminfo 152
character set selection 493
character sets 136, 161
selecting 161
characters per inch 247, 330, 493
CHARSET 171
environment variable 388
used by interface script 140
chdev 238
chk_request 505, 506
chmod command 120
chown command 120
chpq 327
chque command 468
chqueuedev command 468
chvirprt command 344, 468

content type 135, 136, 142, 161, 519

chvirprt command 344, 468

ci attribute 329

content type 135, 136, 142, 161, 519

chvirprt command 344, 468

class

content type 135, 136, 142, 161, 519

naming convention (System V) 52, 67, 79, 106, 117

content type 135, 136, 142, 161, 519

printer (System V) 67, 79, 106, 125

content type 135, 136, 142, 161, 519

System V print subsystem 16, 48

content type 135, 136, 142, 161, 519

clean up

content type 135, 136, 142, 161, 519

System V print subsystem 410

content type 135, 136, 142, 161, 519

cleanupcf 504

content type 135, 136, 142, 161, 519

clear to send 480

content type 135, 136, 142, 161, 519

client

content type 135, 136, 142, 161, 519

lpNet 500

content type 135, 136, 142, 161, 519

no permission 510

content type 135, 136, 142, 161, 519

rembak 502

content type 135, 136, 142, 161, 519

codepage 322, 335

content type 135, 136, 142, 161, 519

col 168

content type 135, 136, 142, 161, 519

colon file syntax 489

content type 135, 136, 142, 161, 519

colon files 322, 485

content type 135, 136, 142, 161, 519

color printing

content type 135, 136, 142, 161, 519

Inforprint Manager 459

content type 135, 136, 142, 161, 519

cols 154, 491

content type 135, 136, 142, 161, 519
columns per page 328

content type 135, 136, 142, 161, 519

command line

content type 135, 136, 142, 161, 519

adding a local printer (System V) 73

content type 135, 136, 142, 161, 519

adding a printer device 64

content type 135, 136, 142, 161, 519

canceling print jobs 255

content type 135, 136, 142, 161, 519

deleting a printer (System V) 84

content type 135, 136, 142, 161, 519

deleting a queue 230

content type 135, 136, 142, 161, 519

disabling a queue 232

content type 135, 136, 142, 161, 519

displaying printer device settings 235

content type 135, 136, 142, 161, 519

enscript 354

content type 135, 136, 142, 161, 519

holding and releasing print jobs 261

content type 135, 136, 142, 161, 519

moving print jobs 265

content type 135, 136, 142, 161, 519

parameters used by interface scripts 140

content type 135, 136, 142, 161, 519

print job customization 330

content type 135, 136, 142, 161, 519

printing a file 246

content type 135, 136, 142, 161, 519

queue status 250

content type 135, 136, 142, 161, 519

setting the default destination (System V) 86

content type 135, 136, 142, 161, 519

setting the default printer 205

content type 135, 136, 142, 161, 519

starting and stopping the lpd daemon 243

content type 135, 136, 142, 161, 519

starting and stopping the qdaemon 241

content type 135, 136, 142, 161, 519

command line flags 322

content type 135, 136, 142, 161, 519

commands common to both print subsystems 51

content type 135, 136, 142, 161, 519

configuration file 415

content type 135, 136, 142, 161, 519

System V print subsystem 47

content type 135, 136, 142, 161, 519

connection timeout 501

content type 135, 136, 142, 161, 519

console messages

content type 135, 136, 142, 161, 519

PowerPC print subsystem 422
cr 492

crosstalk 482
csportd 9, 449
cr 384
crlf 503
CTS 480, 481

custom
 backend 323
 banner 190
 interface script with socket filter 451
 PostScript header page 189
 PostScript printing 438
 virtual printer 486

custom backend 356

custom filter 347

custom header page 359
 source code 360

custom header pages 357

custom interface
 using pipe 150

custom interface script 143
 IBM Network Printers 148
 installing 145

custom subdirectory 488

 customization
 command line 330
 printer attributes 327
 System V print subsystem 137

D

daemon
 lpd 201
 PowerPC print subsystem 420
 System V print subsystem 46, 405
daisy-wheel 178
data bits 61, 63, 164, 207, 380, 421
Data communications equipment 479
data compression 440
data conversion 165
data file
 PowerPC print subsystem 273, 278
data set ready 480
data stream 53, 154
 HP-GL/2 512
 overview 511
 PCL 511, 512
 PCL 3 512
 PCL 4 512, 517
 PCL 4e 512
 PCL 5 512, 517
 PCL 5C 517
 PCL 5e 513
 PCL 5e 512
 PCL 6 513
 PDF 514
 PostScript 511, 513
 PPDS 513
 Proprinter 513
 supported by AIX 514
 supported by Infoprint Manager for AIX 515
data terminal equipment 479
data terminal ready 480
data type 24, 53, 330
DB-25 connector 480
DBCS 25
 (see double byte character set ASCII) 516
DCD signal 380, 385, 404, 481
DCE 14, 22, 25, 479
ddi 486
ddi subdirectory 486
default
 destination (System V) 80, 85, 125
 filters 347
 font 388
 pitch (System V) 81
 print job attributes 327
 printer attributes 327
 printer type (System V) 82
 printer type of unknown (System V) 74
 queue 204
 Setting System V print subsystem defaults 84
 virtual printer attributes 333
default destination
 command line (System V) 86
 displaying (System V) 86
 Web-based System Manager (System V) 85
default limits
 setting (System V) 87
default priorities
 setting (System V) 87
default queue
 system 205
definition file
 filter 176
 Delay between characters 421
deleting a class
 command line (System V) 84
System V print subsystem 83
deleting a printer
 command line (System V) 84
 System V print subsystem 83
 Web-based System Manager (System V) 83
deleting a queue 228
 SMIT 229
 Web-based System Manager 229
deny
 form users 157
deny-list 187
 DeskJet 1200C 440
destination
 default (System V) 85
destination port 507
device
 special device files 395
device driver 8, 34, 36, 479
 advantages 8
 disadvantages 8
 parallel 135
 transparent mode 201
type 135
device type 135
 Diablo 630 178
diagnosis 500
 DIALprinter 453
dial-up printing (System V) 103
disable 18, 232, 346, 468
disable command
 System V print subsystem 77
disabling a queue
 PowerPC print subsystem 231
disk space 391
 Dispatch 453
 display printer description (System V)
 lpstat command 117
displaying
 form contents 158
displaying long printer names
 PowerPC print subsystem 272
displaying LPD subsystem status
 command line (PowerPC) 294
 PowerPC print subsystem 284, 290
 SMIT (PowerPC) 293
 Web-based System Manager (PowerPC) 287
displaying print status
 PowerPC print subsystem 274
displaying status of the spooler group

command line (PowerPC) 294
ditroff 25, 348
ditroff data stream 516
DNS 390
doit
 cf 506
 exec enq cmd 506
 get a line 506
doreq 505
 Double Byte Character Set (DBCS) ASCII
 Infoprint Manager 516
double spaced 444
 DOWN 481
download 143
 Bull public domain software site 436
 electronic form 352
 fonts 354
 IBM lpr client for Windows 451
downloading fonts 183
dpi 148
dpost 166, 178
dpost filter 165, 172, 179
 DSR 480, 481
 DTE 380, 479
dtprint 9
 DTR 480, 481
dtsout 9
dtterm 155
dummy queue device 420
duplex 141, 144, 164, 322, 328, 329, 330, 352
 selecting when printing 247
dvi files 437

E
EBCDIC 25, 516
echo 403
EIA-422 482
electronic form 352
e-mail
 error message 391
 Infoprint Manager 20, 457, 458, 517
 Emulex 449
 enable 18, 73, 113, 146, 233, 347, 409, 451, 468
 enable command (System V) 114
 enable status (System V) 77
 enabling a queue
 PowerPC print subsystem 231
endjob 503
enq 6, 9, 10, 13, 247, 282, 284, 428, 468
 Ban flag 335
 -Bnn flag 357
 flags 401, 428
 issued from lpd 506
System V print subsystem 88
enscript 11, 179, 352, 394, 438
 landscape 438
 large fontsw 438
enscript filter 348
enscript program 515
envelope size 340
environment variables
 bad mandatory error 431
 FILTER 142
 LANG 77
 LPDEST 85
 PRINTER 85
 used by interface scripts 139
epsf_l 7 435
Epson FX1050 380
ERP
 Inforprint Manager 457
error
 0514-031 430
 0514-062 431
 0781-208 510
 0782-598 422
 0920-053 417
 0920-054 175, 181
 0920-056 132
 0920-195 416
 Bad mandatory environment variable. 431
 can't create file 481
 can't create file or device 382
 class=Fatal, trace=(contimeout) 501
 common to both print subsystems 430
 connection timeout 501
 Do not have access 419
 LOG is read only 432
 logs 391
 messages 391
 remote print shown by iptrace 507
 wrong remote queue name 501
error handling 12
error messages
 PowerPC print subsystem 422
escape codes 48, 145
et_bsd_4file 502
EUC 25
 (see Extended UNIX Code) 516
example
 2-up landscape with pr 445
 backend program 323
 backend programs 325
 bad queue name for remote printing 510
 bad remote queue 504
 C backend program 327
 log bad queue name 501
 log from wrong host name 501
 lpNet log error 500
 netcat socket filter 450
 PCL header page with large user name 360
 socket programs 448
 successful inbound remote print log 500
 successful remote print log 502
exit code
 1 432
 expand filter 151, 344, 448
 expand tabs 151
Extended UNIX Code (EUC)
 Inforprint Manager 516
F
 failed
 receiving acknowledgement 504
 failed remote print log 500
 failure
 LOG is read only 432
 failure log
 System V print subsystem 408
 Fast Connect 269, 316, 451
 fast filter 169
 fax
 Inforprint Manager 20, 457, 458, 515, 517
 file conversion 165
 file conversion filters 351
 file format 165
 file permission problems
 PowerPC print subsystem 419
 System V print subsystem 404
 file system size 382
 file type 328
 file_names
 interface script parameter 141
 filter
adding fonts 355
asa 347
awk 168, 447
col 168
comparing 23
custom (System V) 49
defining 169
definition table 173
deleting 173
dpost 165
enscript 348
expand 344, 448
fast 49, 69
fault handling 167
file conversion 165, 351
FORTRAN 168, 347
fpr 347, 351
guidelines 167
hplj 347
input types 169
internationalization 174
listing 174
output 12
output types 169
overview 11, 48
pcl 142
postdaisy 179
postdmd 179
postplot 179
postprint 179
posttek 179
pr 175
program guidelines 348
psc 348
psplot 348
psroff 166
registering 71, 169
registering (System V) 120
sed 168, 446
setting tabs 344
slow 48, 49
System V print subsystem 164
table 178
tasks 164
templates 170
tr 168, 447
virtual printer attribute 335
filter definition file 176
FILTER environment variable 140, 142, 166, 450
filter options 170
filter templates 170
predefined 172
filter type 169
filter.table 173
FIN 508, 510
findfont 355
fl attribute 431
flags
capturing 399, 400
enq 428
-fl flag 431
lpadmin options 78
PowerPC print subsystem 400
flexip 201
flow control 61, 63, 164, 207, 380, 421
DTR or hardware 385
RTS-CTS 385
XON-XOFF 385
font cartridges 163
font foundry 183
font list 184
font size 337, 339
fontmap 438
fonts 322, 327, 387
adding type 1 fonts 184
default 388
download comparison 24
download on demand 355
downloading PostScript 441
installed on printer 388
large 438
PostScript 182
PostScript type 1 177
printer resident 183
type 1 183
virtual printer download support 354
FORM 171
form download 352
form feed (System V) 91
form support 156
format 200
FORTRAN 347
formatting 335, 342
adding carriage returns 142
standard interface 142
using pr filter 168
formfeed 201, 322, 433, 444
terminfo 160
forms
 access list 159
 alert 157
 alignment 157, 160
 electronic 14, 19, 21, 25
 Infoprint Manager 14, 21, 23, 25, 457, 458, 459
 listing contents 158
 modifying 158
 mounting 159
 mounting a form 160
 PowerPC print subsystem 14, 19, 20, 23, 25, 344
 preprinted 14, 20, 156
 printing to 160
 removing 158
 System V print subsystem 4, 14, 17, 23, 25, 53, 127
 unmounting 160
forms.allow 127
forms.deny 78
FORTRAN filter 347
FORTRAN format filter 168
fpr 168
fpr filter 347
freetype 436
ftp
 440
fuser 396, 403, 427

G
Garbled output 383
gaudy mode 352, 438
getbsdinfo 502
getenv 323
gethostbyname 390
getopt 325
gettmp 502
Ghostscript 437, 440
Ghostscript filter 166
ghostview 437
GIF 25, 178, 437
 (see Graphics Interchange Format) 516
gif2png 437
gimp 437
GNU Ghostscript 437
gnu.ghostscript 436
gnu.ghostview 436
gnuplot 436
gotack 503
 ACK status=0x30 504
graphics 349
 printing problems 386
 Graphics Interchange Format (GIF) 516
 Infoprint Manager 516
groff 437
Group Bull 435
group pages 179
gs 437
gs-fonts 437

H
handshake 481
TCP/IP 508
handshaking 506
hang
 PowerPC print subsystem 427
header page 53, 322
 %A code 358
 %D code 358
 %H code 358
 %P code 358
 %Q code 358
 %S code 358
 %T code 358
 creating custom 359
 custom 187, 357
 custom PCL 187
 custom PostScript 189
 formatting flags 358
 host name 358
 job title 358
 large user names 187
 missing formfeed after header 433
 paper tray selection 327
 PostScript custom 361
 powerPC print subsystem introduction 357
 stopping unwanted 411
 template 335
 unwanted in PowerPC printing 428
 user name 358
 virtual printer program 335
header program
 custom 357
Helvetic-Bold 438
Hewlett-Packard 512
hexadecimal format 508
holding a print job 260
 System V print subsystem 99
Web-based System Manager 260
host name error 501
hostname 502
host-resident fonts 184
HP DeskJet 380
HP DeskJet 500C 440
HP LaserJet 337
HP LaserJet 4500 337
HP LaserJet 4M 74, 380
HP LaserJet 4plus 380
HP LaserJet 8100 339
HP PaintJet XL300 440
HP-GL/2 512
hpJetDirect 297, 301
hplaser TERM type 153
hplaserjet 75, 120, 128, 153, 155, 433
 TERM type 153
hplj filter 347, 351
hpnp 48
hpnp.model 115, 121, 128, 432
hpnpcfg 121, 145, 432, 433
 known problem 121
 online help 121
hpnpf 115, 121
hpnpinstall 145
hpnpIS.model 52, 143, 144
HP-UX
 type of status filter 275
ht 142

I
I18N 174
I18n_pp 174
I18n_print 174
IBM 3130 204
IBM 3151 365
IBM 4019 printer 217
IBM Fast Connect 269, 316
IBM LPR Remote Printing Client 451
IBM LPR Remote Printing Client for Windows 316, 317
IBM Network Printer 17, 201, 268
 adding a printer (PowerPC) 304
 piocolor backend 312
 pioibmpnf filter 268
 pioibmpnm backend 268, 311

PowerPC print subsystem 268
sample /etc/qconfig stanza 311
IBM Network Printer 12 183, 214, 499
custom interface program 147
IBM Printing System Company
download site 147
IBM Proprinter 207
IBM850 335
ibmgraphics 161
ibmNetColor 306, 310
ibmNetPrinter 306, 310
imesNewRomanSymbols 185
inbound 500
inbound print request 500
indenting lines 446
infocmp 155, 161, 486
Infoprint Manager
 1403 line data 516
 accounting 457
 administration 460
 advantages 20, 455
 AIX 5L support 459, 460
 ASCII 515
 automatic detection of print file type 21
 Baan 457
 client code 458
 color printing 20, 459
 command line 10
 command line interface 460
 commercial printing 459
 comparison 20
 comparison to System V and PowerPC print subsystems 10
 cross-system printing 458
 DBCS ASCII 516
 digital reprographics 459
 disadvantages 22
ditroff 516
e-mail 20, 457, 458, 517
ERP printing 457
error handing 12
EUC 516
fax 20, 457, 458, 515, 517
forms management 14, 21, 23, 25, 457, 459
GIF 516
GUI 10, 455, 457, 459, 460, 461
high-speed printers 20
in distributed environment 457
interoperability 20, 21
interface shell script
 System V print subsystem 10
interface type 135
internationalization 174
interposer 479, 482
iostat 40
IP address 451, 502
IP header 507
IPDS
 (see Intelligent Printer Data Stream) 517
iprog 142
iprog terminfo attribute 153
iptrace 397, 510
 bad remote queue name 504
 error messages 392
 logging remote printing 506
 tracing network printing 397
Is the print service active? 420
is1 142, 153, 492
is2 142, 153, 492
is3 142, 492
ISO8859-1 335, 389
it 142
italic type 148

JD Edwards
 Infoprint Manager 457
JDF 269, 424
JetDirect 23, 52, 200, 201, 268, 294, 432, 448, 449
 adding a printer (PowerPC) 294
 adding a printer (System V) 115
 EX boxes 397
 filter program (PowerPC) 295
 hpnfp.* log files 419
 interface program 144
 log files 414
 PowerPC print subsystem 268
 sample /etc/qconfig stanza (PowerPC) 303
 socket program (PowerPC) 295
 System V print subsystem 103
telnet for testing 396
JetDirect EX Plus3 Multi-Port Print Server 294, 295, 299, 301
JetDirect printing
 bad file permissions 418
Job Description File (JDF) 269, 424
job disappears
 remote troubleshooting 431
job number 77
 System V print subsystem 410
job priority
 SMIT 258
 Web-based System Manager 256
job retention
 Infoprint Manager 21
 Joint Photographic Experts Group (JPEG) 516
JPEG 25, 437
 (see Joint Photographic Experts Group) 516
jpg 178

L
LAIX 449
LAIX software tools 452
landscape 148, 150, 164, 172, 179, 192, 330, 336, 337, 340, 438
 qconfig 438
 selecting when printing 247
LANG 77, 389, 408
large user name 361
LDAP 25
LDAP security 23
ledger 340
ledger size paper 339
legal 340
LENGTH 170
letter 340
lexbe 268
lexlink 449
Lexmark 198, 268, 449
 interface program download site 150
 interface script 150
LexMark Marknet 201
Lexmark Network Printer 17
LexMark Optra 339
Lexmark Optra E 336
limit 98
limits field 340, 488
line data 25
line feeds 36, 48, 68, 71, 74, 75, 119
line pitch
 forms 157
 line spacing 81
 line width 491

548 Printing for Fun and Profit under AIX 5L
lineprinter 337
lines 491
lines per inch 330, 343, 493
lines per page 179, 328, 352, 491
local filtering
 Network Station attached printers 312
 PowerPC print subsystem 273
locale 174, 332
log files
 JetDirect System V 419
 removing 411
log remote printing 506
LOGFILE environment variable 146
logs
 hpnpcf (System V) 126
 lpNet 408
 lpsched 407
 lpsched (System V) 56
 PowerPC print subsystem 422
 pstatus file 408
 remote lpd 505
 remote PowerPC printing 423
 requests 49
 System V print subsystem 405, 406
long queue names 252
lp 10
lp command 9, 10, 18, 88, 104, 115, 247, 468
 -A flag 54
 -c flag 54
 -d flag 86
 -e flag 55
 -f flag 55
 -I flag 55
 -I flag 55
 -k flag 91
 -o flag 91
 -p flag 92, 95
 -q flag 93, 98
 -R flag 93
 -T flag 80, 93, 165, 172, 175, 178
 -t flag 93
 -w flag 93
 -y flag 93, 164, 180
lp.cat 12, 48, 143, 182
lp.cat filter 182
lp.set 143
lp.set filter 136
lp.tell 143
lpabe 268
lpadmin 10, 137, 409, 432, 433, 451, 468
 adding a character set 162
 adding a font cartridge 163
 adding a printer with a custom script 149
 custom interface script 144
 -f flag 186
 -I flag 136, 176
 -i flag 144
 -m flag 180
 setting new printer type 156
 setting port characteristics 164
 setting TERM type 153
 -T flag 136, 485
 -u flag 187
 unmounting a form 160
lpadmin command (System V)
 adding a local printer 54, 73, 74
 adding a remote printer (LPD) 112
 copy-option 87
 option flags 73, 78, 105, 116
lpadmin flags
 -A 54, 69, 70, 77, 78
 -c 54, 67, 79, 106
 -D 54, 67, 80, 106
 -d 86
 -e 55, 81
 -F 54, 70, 79, 80
 -f 55
 -I 55, 72, 74, 75, 80, 108, 125, 127
 -i 55, 77, 81
 -m 55, 71, 75, 81
 -O 87
 -o 55, 81, 82
 -p 54, 66, 74, 106
 -s 54, 108, 112
 -T 55, 71, 74, 75, 80, 81, 82, 108
 -u 55, 129, 130, 131
 -U (not supported) 103
 -v 54, 68, 74, 128
 -W 54, 78
 -x 84
lp command 467, 468
 System V print subsystem 100
LPCAT
 environment variable 146
LPD 509
 /etc/inittab 292
 /etc/inittab (PowerPC) 291
 access list (PowerPC) 285, 290, 293
daemon 317
daemon (PowerPC) 269, 270, 283
displaying subsystem status (PowerPC) 284, 287, 290, 293, 294
managing the print server (PowerPC) 284, 289
managing the subsystem (command line) 293, 294
managing the subsystem (SMIT) 291
managing the subsystem (Web-based System Manager) 288
PowerPC print subsystem 267
protocol 267, 269, 270, 312, 316
starting the subsystem (PowerPC) 284, 294
stopping the subsystem (PowerPC) 284, 294
System V print subsystem 103
troubleshooting (PowerPC) 284, 294

lpd 5, 13, 201, 420
 acknowledgements 506
 -D debug flag 505
daemon 390, 451
callbacks 423
logging 402, 505
starting and stopping 242

LPD protocol 449, 506
LPDEST 85, 205
lpfilter 11, 23, 137, 419, 433
 adding a filter 173
 bug 176
disabling filter 173
 listing 174
 listing filter definitions 174
 registering filters 169
 registering PostScript filters 137
 registering the filter 173
 setting defaults 173
lpfilter command 119, 132, 468
lpfilter command (System V)
 adding a pcl filter 71, 74, 81
 adding a PostScript filter 74, 81
lpforms 23, 156, 158, 468
 creating a form 158
 displaying form 158
 maintaining form access list 159
 modifying a form 158
 mounting a form 159
 registering filters 169
 removing a form 158
 setting form alert 160

LPI 170
lp 136, 493
lpix 491
lpmove command 100, 468
lpNet 13, 104, 391, 501
daemon 104
lps 408
lpNet log 499
lpq command 467, 469
 System V print subsystem 101
lpr 9, 10, 18, 247, 325
 -h flag 358
 System V print subsystem 88
lpr command 468, 469
 -C flag 95
 -h flag 133
 syntax 94
 System V print subsystem 101
lprm command 6, 467, 469
 System V print subsystem 101
lpsched 10, 11, 13, 104, 115, 121, 142, 405, 432, 469
 log 407
 parent of lpNet 104, 500
 pcl filter 175
 using filters 169
lpsched (System V)
 /etc/inittab entry 55
 log 56
 print service 46
 purpose 56
lpset 413
lpshut 121, 432, 433, 469
lpshut command (System V) 56
lpstat 6, 17, 18, 233, 346, 366, 404
 listing forms 159
 listing printer attributes 161
 log from remote status 501
 remote print log 499
lpstat command 89, 469
 -a flag 100
 -a flag (System V) 77, 89
 -c flag (System V) 95
 display printer configuration (System V) 76
display printer description (System V) 106, 117
displaying accept/reject status (System V) 77
displaying enable/disable status (System V) 77
displaying job order 98
displaying printer description (System V) 67
displaying status of print service (System V) 56
-l flag (System V) 96
-o flag (System V) 96
-p flag (System V) 77
PowerPC print subsystem 274
-R flag 111, 130
-t flag (System V) 95
-t flag (PowerPC) 274
-t flag (System V) 77, 113
lpsystem command 392, 414, 469
-I flag 111, 112
-R flag 111, 130
-R flag 129
syntax 110
-T flag 110, 111, 130
wildcard 129, 131, 132
-y flag 111
lptest 64, 339, 382, 394, 426, 469
lpusers command 98, 187, 469
lpusers command (System V) 87, 93
lsallq 227
lsallq command 226, 469
lsallqdev command 469
lsattr 35, 236, 237
lsdev command 52, 64
lsip 7
lsq 227, 381, 469
lsqdev 227, 381, 469
lsrsrc command 241, 283, 294, 390, 420, 469
-g flag 294
-s flag 294
lsvirprt 10, 18, 327, 337, 469, 486, 488
customizing virtual printer attributes 328
defining filters 351
listing attributes 332
virtual printer customization 343

M
MAC header 507
mail messages
PowerPC print subsystem 422

System V print subsystem 406
makecontrolfile 502
man pages 165
printing 442
managing the LPD subsystem
command line (PowerPC) 293
PowerPC print subsystem 288, 294
SMIT (PowerPC) 291
Web-based System Manager (PowerPC) 285
margin 328
selecting when printing 247
MarkNet 268
Markvision 150, 268
message catalog 487
message number 487
MICR printing
Infoprint Manager 459
Microseconds to delay between characters 63
Microsoft Windows 451
missing inbound network print job 416
missing print job 175
mkdev 64
mkque command 223, 469
mkquedev command 223, 469
mkvirprt command 469
model
directory (System V) 48
System V print subsystem 55, 81, 118
model directory 143
model interface
hpnp.model 139
hpnpIS.model 139
PostScript 71
standard 70, 139
model script
hpnpIS 143
model type 137
model.org 115, 121, 128
model.stz 51, 135, 519
modern 479
MODES 171
template 171
modify a printer
System V print subsystem 78
modifying a form 158
modifying a print request
System V print subsystem 95
Monterey 45
mount a form 159, 346
move a print job
 command line 265
 SMIT 263
 Web-based System Manager 262
moving a print job 262
 System V print subsystem 100
multiplexer 479
MVS 201, 516

N
NACK 392, 504
name resolution 390
national language support 18, 19, 332, 358
native serial ports 482
NCD thin clients 449
ncdprint 449
negative acknowledgement 504
netcat 449
NETWORK 450
NETjet 449
NETPORT 450
netprt 150
NETque 449
Netscape 166
Netty 453
network attached printers 321
 PowerPC print subsystem 267
 System V print subsystem 103
NETWORK environment variable 146
network filter
 PowerPC print subsystem 268
network print server 201
Network Printer Manager (NPM) 21, 457
network printers
 printing directly to 396
network printing
 control file 401
 missing jobs 390, 415
 negative acknowledgements 392
 socket programs 448
 timeout 392
 troubleshooting 416
network printing protocols 268
network protocol 391, 508
network socket filter 150
Network Station attached printers (PowerPC) 267,
 312
 network terminal server 201
 network-attached printer 15
NFS 273, 292
NK cable 483
NL cable 484
noresponse 505
Nortel Networks, 449
Novell Netware 201
nput tray 335
nroff 168
NSTDIN 502
null modem 479
numfile 428
n-up 444

O
Object Database Manager (ODM) 61
od 154, 426
ODM 36
ODM database 302, 311
option flags 78, 91
option6 432
Options
 filter definition 176
 MODES locale 176
 MODES prtitle 176
options_list
 interface script parameters 140
Oracle
 Infoprint Manager 457
orientation 141, 179
OS/2 201, 516
OS/390 516
OS/400 516
outbound print job 499
OUTPUT 170
output bin 329
output filters 12
overview
 System V print subsystem 46, 135

P
pac command 470
packet
 iptrace 507
 length 508
padmin
mounting a form 160
page length 136, 330, 444
forms 156
page numbering 168
page numbers 179, 347, 444
page order 179
page orientation 141, 144, 322, 327
landscape or portrait 352
portrait, landscape or rotate 148
page size 81, 91, 146, 161, 335
ledger 342
letter 147
page title 168, 347, 352, 438, 444, 446
page width 136, 330, 444
forms 156
terminfo 152
page-range (System V) 92
PAGES 171
Palatino-BoldItalic font 363
paper size 146, 328, 352, 389
default for standard trays 340
escape sequence 146
ledger 339
paper size selection
letter, ledger, A4, A5 148
paper tray 322, 327, 328, 330, 352
parallel attached printers 421
parallel port 8
parallel printer 15, 59, 75
parallel printer cable 483
parity 61, 63, 365, 421
parse
control file 506
passthrough 68, 71, 136, 200, 330, 348, 349, 368, 452
passthrough mode 342
selecting when printing 247
PBM 437
PC/NFS 269, 316, 452
PCL 25, 144, 322, 336, 347
content type 71
Infoprint Manager 515, 517
printing formatted files 387
stair-step output 419
PCL 3 512
PCL 4 512
PCL 4e 512
PCL 5 512
PCL 5c 513
PCL 5e 512
PCL 6 513
PCL commands 188, 360
PCL data stream 360
pcl filter 142, 165, 175, 384, 419, 433
registering 175
PCL filter (System V) 71, 81
PCL header page 187, 360
PCL printer 71, 74, 75, 81, 136, 166, 342, 350, 384
PCL reset 329, 335
PCNFS 451
PDF 24, 166, 177, 178, 440, 514
PDF files to Level 2 PostScript 440
pdf2ps 166, 440
PDFPrint 166
pdpr 10, 24
pdserver 10, 12, 13
pels 340
PeopleSoft
Infoprint Manager 457, 458
performance
administrative interface 37, 41
amount of processing required 37, 38
available memory 37, 38, 40
disk configuration 37, 40
effect of filters 39
effect of user behavior 41
frequency of status requests 37, 41
graphical SMIT 41
number of active print jobs 37, 38
number of printers or queues 37
number of processes 38
number of queued print jobs 37, 38
number of users 37, 38
remote printing 41
size and type of files 37, 38
spooling or queuing 37, 40
text-based SMIT 41
variables 37
Web-based System Manager 41
perl 168
perl filter 447
permissions 392
Personal Printer Data Stream (PPDS) 513, 517
PFA 354, 441
pfa type fonts 185
PFB 354, 441
pf2pfa 185, 354, 441
pinout 479
piobe 10, 11, 12, 321, 357, 425
piobe backend 269, 322, 369
pioburst 350
piocolor 268, 312
piodigest 486
pioformat 11, 427
piohnpf 9, 200, 268, 448, 449
pioibmp 448
pioibmpm 9, 268, 448, 449
pioibmpnm 268, 311, 321
piojedt 200, 268, 321, 448
pioix 268
pioout 12, 425
piooutput 321
piooutput filter 321
piooutputfilter 321
pipe data to output program 150
pitch 81, 161, 330, 335, 337, 342
forms 157
setting when printing 246
setting with lsvirprt 328
terminfo 152
PJL 352, 426
pkgadd 150
polling loop 500
pool of printers 79
pooling 266
pooling printers
Infoprint Manager 16, 456
System V print subsystem 16
port 515 269, 283
port 9100 294, 295, 396
port 9101 294, 295
port 9102 294, 295
port number 63, 451
port setting 161
port settings 81, 383
port=515 507
Portable Data Format (PDF) 514
Infoprint Manager 515
portrait 148, 172, 192, 328, 330, 340
postdaisy 178
postmd 178
postio 12, 182
postio filter 137, 182
postio filter (System V) 81
postio_b 143
postmd filter 182
postplot 178
postprint 143, 174, 178, 439
postprint filter 137, 165, 178, 179, 181
postprint filter (System V) 81
postreverse filter 182
PostScript 144, 186, 200, 322, 330, 348
adding a printer (System V) 75
automatic detection 353
converting PCL to 166
converting PDF to 166
creating from PDF 166
creating from text 165
creating from troff 166
custom header page 189
data stream 513
file conversion 440
filters 17, 168
font utilities 441
fonts 182
header 350
header page 352
Infoprint Manager 515
interface program 143
page selection 439
print filters (System V) 93
printer type (System V) 52
printing ASCII text 394
source prints 386
terminfo entries 152
type 1 fonts 177
view with xpreview 442
viewing 440
virtual printer 352
virtual printer overview 352
X windows 443
PostScript fonts 354
PostScript printers 137, 176, 352
PostScript to 9-pin Epson format 440
PostScript to ASCII 442
PostScript to PCL 441
PostScript to simple ASCII text 440
PostScript utilities 437
posttek 178
postutil 439
PowerPC print subsystem
add a print queue 476
add a printer device 476
add a queue device 477
add print access for remote client 477
adding a JetDirect attached printer 296
adding a local queue 207
adding a Network Station attached printer 312
adding an IBM Network Printer 304
adding an Xstation attached printer 312
advanced topics 321
advantages 18
as print server 269, 283, 316
attribute syntax 485
attribute testing 421
automatic filter type detection 354
backend program 9, 10, 268, 321
cancel a print job 477
capturing print flags 400
change a queue device 477
change a virtual printer 477
change characteristics of a printer device 476
change print queue characteristics 476
change printer driver settings 476
changes from V4.1 to V4.2 6
changes from V4.2.0 to V4.3.3 5
changes from V4.3.3 to V5.0 4
cleaning up 426
colon file format 487
command line 10
command line errors 422
comparison 18
collection to System V print subsystem and Infoprint Manager 10
compatibility 18
configure a defined printer device 476
control file 270, 273, 278
data file 270, 273, 278
deleting a queue 228
disadvantages 19
display job status 477
display status of print queues 476
displaying long printer names 272
displaying LPD subsystem status 284, 287, 290
enabling and disabling a queue 231
enhancements 4, 5, 6
error messages 422
file permission problems 419
filessets 7
filters 347
forms 14, 19, 20, 23, 25, 344
hold a print job 477
inbound printing 269, 283
install additional printer software 476
ledger paper size 341
list all print queues 476
list all queue devices 477
list defined printers 476
list remote clients with print access 477
list supported printers 476
local filtering 268, 272, 273
local formatting 272
log files 422
mail messages 422
manage qdaemon 476
manage spooler group 476
manage the LPD print server 284, 477
managing LPD access (command line) 293
managing LPD access (Smit) 290
managing LPD access (Web-based System Manager) 285
managing print server (Smit) 289
managing the LPD subsystem (command line) 293
managing the LPD subsystem (Smit) 291
managing the LPD subsystem (Web-based System Manager) 288
move a print job 477
move a printer device 476
multiple printers 191
network filter 268
Network Station attached printers 312
number of jobs 5
outbound printing 267, 272
print administrators 3
print command flags 274, 330
print server attached printers 318
printers supported 5, 6
printing 9
printing files 243
prioritize a print job 477
qdaemon 9
release a print job 477
remote client 502
remote logging 5
remote print log 505
remote printing logs 423
remove a print queue 476
remove a printer device 476
remove a queue device 476, 477
remove print access for remote client 477
restricting users 356
security 14, 25
set the default print queue 477
show a queue device 477
show a virtual printer 477
show characteristics of a printer device 476
show current print subsystem 475
show printer characteristics 476
show printer driver settings 476
SMIT 7, 8, 10
socket filters 448
spooling 30
standard processing 268, 272, 273
standard with NFS access 273
start a print queue 477
starting LPD subsystem 284
starting printer services 238
status files 422, 425
status filter 274
stop a print queue 477
stopping print services 238
stopping the LPD subsystem 284
submit a print job 477
switch print subsystem 475
switching to System V print subsystem 7
terminal server attached printers 318
troubleshooting 419
type of print spooler 272, 274, 278
unwanted header pages 428
Web-based System Manager 7, 10
workload balancing 16

PPDS
(see Personal Printer Data Stream) 513, 517
pr 19, 168, 470
 2-up 445
 adding line numbers 446
pr filter 142, 175, 347, 444
pr formatter 166
predef 486
predef directory 340
predefined database 335
preprinted forms 156
print class (System V) 67
print command flags
 PowerPC print subsystem 274
print file
 finding in job description file 425
 finding in request log 407
print filter
add carriage returns 349
SMIT 348
print filters (System V) 48
print log
 remote rembak 502
print modes 164
print server 449
 design considerations 13
 PowerPC print subsystem 267, 269, 318
 print subsystem selection 16
 System V print subsystem 103, 128
 tasks (System V) 128
print service 187
 is scheduler active 404
 starting and stopping 238
print service (System V)
 displaying status 56
 managing 55
 overview 46
 starting 56
 stopping 56
Print Services Facility (PSF) 511
print spooling
 setting the default (System V) 87
print subsystem
 comparison 16
printcap 440
PRINTER 85, 205
printer
 attributes 405
 backend program 321
 class (System V) 52, 79
 content type 165
 device testing 395
 fault handling 167
 fault recovery method (System V) 80
 faults 164
 form support 156
 form support (System V) 81
 initialization 142, 328
 installed fonts 388
 interface program 16, 138
 location 15
 multiple names 191
 pooling 266
 pooling (System V) 67
 reset 335
 resolution 329
 testing 366
virtual printer initialization 335
printer alert (System V) 69
printer attributes
customizing 161, 327
customizing with SMIT 327
printer description
 System V print subsystem 80
printer device 34, 36
 changing settings 237
defaults 233
displaying settings 234
list attributes 35
PowerPC print subsystem 421
System V print subsystem 52, 53, 54, 59, 68, 405
printer fault
 alert (System V) 69
detection 79
printer initialization 329
terminfo attributes 153
printer interface 138
 System V print subsystem 108
Printer Job Language (PJL) 352, 512
printer manufacturer interface programs 152
printer name
 command line variable 140
printer pitch 246
printer port
 setting characteristics 164
printer resolution 352
printer setup 144
printer status (System V) 76
printer type 135, 136, 161, 386, 485
 choosing (System V) 51, 105, 108, 519
 creating new 155
default (System V) 74
definition (System V) 71
hplaserjet 75, 120
PostScript (System V) 52
PS 181
 specifying (System V) 68, 74, 75, 108, 128
System V print subsystem 51, 53, 55, 135
terminfo 47, 51, 105, 108, 115, 118, 124, 152, 519
unknown 152
 virtual printer 335
printer type versus content type 152
printer-resident fonts 183
printers
 ASCII text 175
 IBM Network Printer (PowerPC) 268, 303
 JetDirect attached (PowerPC) 268, 296
 Lexmark (PowerPC) 268
 naming convention (PowerPC) 272, 295, 303
 naming convention (System V) 66, 106, 117, 124
 network attached (PowerPC) 267
 Network Station attached (PowerPC) 267, 312
 parallel 52, 59
 print server attached (PowerPC) 267, 318
 remote 448
 serial 52, 479
 supported by Infoprint Manager 457
terminal attached (PowerPC) 267, 318
 Xstation attached (PowerPC) 268, 312
printers.hpJetDirect.attach 298, 301
printers.ibmNetColor.attach 306, 310
printers.ibmNetPrinter.attach 306, 310
printers
 ASCII to PostScript 186
 BSD commands 467
 commands 467
directly to device 395
directly to device problems 382
directly to file 409
directly to network printers 396
graphics 386
 jobs disappear 392
 man pages 165, 442
 output spacing is bad 387
 PostScript 24
 PostScript prints out like a program listing 386
tasks 467
testing flags 393
text 24
tips 435
to a file 395
unspecified double spaced 387
unexpected symbols 386
using a form 160
wrong font 387
wrong paper size 389
 X windows 443
printing files 244
 PowerPC print subsystem 243
 System V print subsystem 88
printing modes 93
Printing Systems Manager (PSM) 20, 22, 455
printing to a file
 PowerPC print subsystem 425
 System V print subsystem 409
printq admin group 366
priorities
 user 186
prioritizing a print request
 System V print subsystem 98
prioritizing a printing job 256
priority level 187
priority-level
 System V print subsystem 87, 93, 98
priority-limit
 System V print subsystem 87, 93, 98
process ID 425
process termination 501
programming 321
promoting a print job
 System V print subsystem 99
Proprinter data stream 513
protocol 506
 network 508
prtitle.fd 175, 176
PS 52, 75, 172, 181, 409, 432
 model interface 139
 TERM type 152
ps2ascii 440
ps2epsi 440
ps2pdf 438
PS-b 52, 75, 181, 409, 432
psbook 435, 439
PS-br 52, 143, 181, 432
psc filter 348
PS for AIX 20, 22, 455
PSF/6000 20, 455
PSInterface program overview 143
psmerge 439
psnup 435, 439
psplot filter 348
PSR 52, 143, 181, 432
 TERM type 152
PS-r 52, 181, 432
psresize 439
psroff 165, 442
psselect 435, 439
pstatus 417
 System V print subsystem 408
pstatus 417
 System V print subsystem 408
pstext 435
pstoedit 436
 System V print subsystem 88
pstops 435, 439
psutilis 435, 436
plitch
 setting 328
ptop attribute 237
public domain 435
public domain software
 UCLA 436
public domain software site 435
PUSH 507, 508
PUSH packet 509

Q
qadm 232, 233, 470
qcan 6, 233, 255, 470
qchk 6, 470
qconfig 200, 202
 default queue 205
qdaemon 10, 13, 200, 201, 269, 321, 323, 420, 427, 449
 starting and stopping 239
 won't stay active 420
qdfork 427
qdir 200, 393
 errors from extra files 420
qhld 261, 470
Qman 453
qmv 265, 470
qpr
 -J flag 335
qpri command 470
qprt 6, 9, 10, 18, 24, 246, 428, 470
 -Ban flag 335, 359
 -Bnn flag 357
 -d flag 330, 335
 -da flag 353
 -dp flag 348
 -f flag 347
 -f1 flag 335
 flags 201
 -fp flag 445
 -j flag 330
 -l flag 330
 -p flag 339
 -p17 flag 330
 -Q flag 341
 System V print subsystem 88
 -u2 flag 330
-v flag 330
-w flag 330
-X flag 335
-Y flag 330
- Z flag 335
-z flag for landscape 330
queue
 device stanza 204
 local stanza format 203
 queue stanza 204
queue name 488
queue status 233
 command line 250
 DOWN 380
 SMIT 248
Web-based System Manager 248

R
RAN 15, 483
RD 480
readfile 505
readjob
 lpd command 505
 send ACK 505
ready to send 480
realm 503
receive trigger level 385
recovery
 printer alert (System V) 115
 refused an attempted connect 419
 register the pcl filter 142
 registering the remote system
 known problem (System V) 111
 lpsystem command 112, 114, 129, 132
 removing an entry (System V) 129
 System V print subsystem 104, 110, 129
 timeout (System V) 111
reject command 470
reject command (System V) 56, 77
releasing a print job 260
System V print subsystem 99
rembak 5, 13, 200, 268, 270, 273, 274, 282, 283
-D flag for logging 502
log 500, 502
log files 423
overview 201
remote asynchronous node 483
remote connection to a network printer (System V)
Printing for Fun and Profit under AIX 5L

S
S/370 line data
Infoprint Manager 516
Samba 269, 316, 436, 437, 451
SAP R/3 25
 ABAP 458
 Infoprint Manager 457, 458, 515
 SAPscript 458
sar 17
scalefont 355
scheduler 404
scheduling a print request 100
SCO drivers
 interface script for IBM printers 148
SCO Unixware 7 45, 52
scoa_ml.tar 148
script language
 perl 168
scs 493
security
 considerations 14
 Infoprint Manager 14, 22, 25
 LDAP 25
 PowerPC print subsystem 14, 25
 System V print subsystem 14, 25
sed command 128, 168
sed filter 151, 349, 446
select character set 493
send_file_rembak 503, 504
sendcontrolfile 504
senddatafile 503
sendjob 502, 504
sendreq 503
serial port 8
serial printer 15
 128-port adapter 15
 pinouts 15
 RS/232 15
 RS/422 15
serial printers 404, 479
serial-attached 75
server
 LPD 510
 lpNet 500
server name 416
setfont 355
setting fonts 352
shell script
 filter 350
shielding 482
short_sendreq 504
showpage 362
SIGHUP 139
signal ground 481
simple content type 71, 81, 108, 169
simplex 141, 144, 322, 328, 329, 330
slow filter 169
SMB protocol 269, 316, 452
SMIT 7, 327
 Add a Print Queue screen 216
 adding a printer device 61
 canceling print jobs 254
 defining filters 351
 displaying printer device settings 234
 Infoprint Manager 10
 listing virtual printer attributes 333
 mkpq 366
 move a print job 263
 pitch 338
 print filters 348
 printer support installation 218
 Printer Type screen 217
 printing files 244
 queue status 248
 removing a queue 229
 setting the default printer 205
 starting and stopping the lpd daemon 242
 starting and stopping the qdaemon 239
 virtual printer customization 327
SNA 269
sniffing data type 353
SNMP 21, 457, 462, 463
socket 503
socket 515 201
socket filter 150, 448
 csportd 449
 ncdprint 449
 netcat 449
 rlp 449
 rprint 449
 TCprint 452
socket filter programs 449
socket program 9, 144, 166, 448
source port 507
special device file 381
splp 36, 235, 238, 382, 395, 470
spooler group
 displaying status (PowerPC) 294
members (PowerPC) 294
starting (PowerPC) 294
stopping (PowerPC) 294
spooling 18, 30, 325, 383
setting the default (System V) 87
SRC 294
srcmstr 241
SSD line 380
stack language
 terminfo 154
stair-step 71, 119, 165, 175
stair-step output 384, 419
standard
 model interface 139
standard interface
 terminfo use 152
standard interface script 141
 JetDirect-attached printer 115
standard model 77
standard processing
 PowerPC print subsystem 273
standard script
 steps performed by 141
starting a queue 231
starting the LPD subsystem
 command line (PowerPC) 294
 PowerPC subsystem 284
starting the printer services 238
starting the qdaemon 420
starting the spooler group
 command line (PowerPC) 294
 -g flag 294
 -s flag 294
status 247
 accept/reject (System V) 77
 displaying printer 76
 enable/disable (System V) 77
status files
 PowerPC print subsystem 422, 425
 System V print subsystem 405
status filter 502
 PowerPC print subsystem 274
steps
 successful iptrace 508
 stop bits 61, 63, 164, 207, 365, 421
 stopping a queue 231
 stopping the LPD subsystem
command line (PowerPC) 294
PowerPC subsystem 284
stopping the printer services 238
stopping the spooler group
command line (PowerPC) 294
stopsrc 5, 241, 427, 505
stopsrc command 283, 294, 470
-g flag 294
-s flag 294
stty 75, 164
submitting a printing job 244
successful remote print log 502
Sun
- type of status filter 275
Sun graphics files 348
supported printers 485
supported terminfo printers 153
svprnt 429
svmon 40
svprint.ti 51, 485
switch.prt 27, 65, 470
switching between print subsystems 25
symbol set 322
SYN 508
syntax
- comparison 485
iptrace packet 507
TCP/IP packet 507
virtual printer colon file 489
System file 508
system resource controller (SRC) 283, 294
System V Print Subsystem
- form support 156
- mounting forms 160
- TERM type 152
System V print subsystem 4
- accounting 17
- activate printer 472
- add a filter 473
- add a form 472
- add a local printer 472
- add a printer device 471
- add a remote printer 472
- adding a JetDirect-attached printer 115
- adding a local printer 57, 65
- adding a printer device 57
- administrative tasks 471
- advanced topics 135
- advantages 16
alert 53, 118
allow access to a form 473
allow queuing of print requests 472
as print server 103, 128
attachment method 67
BSD commands 100
cancel a print request 473, 475
change a filter 473
change a form 472
change a local printer 472
change a remote printer 472
change characteristics of a printer device 471
change default destination 471
change options of submitted request 475
change printer driver settings 472
change priority of a print request 475
changing a print request 95
class 16, 48, 125
class naming convention 52, 67
clean up 410
command line 10
comparison of administrative interfaces 49
comparison to PowerPC print subsystem and In-
foprint Manager 10
comparison, general 16
compatibility 16
configure a defined printer device 472
content type 118, 124, 125, 519
context type 125, 128
customizing a printer 73
deactivate printer 472
default printer 125
delete a class 472
delete a filter 473
delete a form 473
deleting a class 83
deleting a printer 83
deny access to a form 473
disable printer 472
disadvantages 17
disallow queuing of print requests 472
display accept status 474
display all status information 474
display class information 474
display job rank order 473
display list of forms 474
display print request status 474
display printer status 474
display status of print service 56, 474
display status summary 474
display user’s print request status 474
enable printer 472
error recovery 69
fault detection 69
file permission problems 404
filesets 7
filters 164, 165
flags 399
forms 4, 14, 17, 23, 25, 53, 127
hold a print request 475
holding a job 99
holding a print job 90
inbound print log 500
Infoprint Manager 459
install additional printer software 472
interface script 118, 519
interface shell script 10
JetDirect 103
troubleshooting 418
job priority 99
list character sets 474
list default destination 474
list default printing priority 472
list filter attributes 473
list form attributes 473
list print wheels 474
list user priorities 472
local device name 68
logs 405, 406
LPD 103
mail messages 406
missing inbound network jobs 416
model 55, 118
modifying a print request 95
modifying a printer 73
mount a form 473
move a print request 473
move a printer device 471
move all print requests 473
moving a job 100
overview 46
PostScript filters 81
pr filter 166, 445
predefined filters 172
print administrator 3
print commands 471
print job next 473
print service 46
printer description 67, 80
printer device 59, 68
printer fault recovery 80
printer interface 108
printer name 51
printer naming convention 66
printer options 68
printer type 118, 124, 519
printing 9
printing directly to a file 409
printing files 88
prioritizing a print request 98
priority-level 87, 93
priority-limit 87, 93, 98
promoting a job 99
pstatus 408
register a remote system 471
registering a remote system 104, 128, 129
registering filters 71, 74, 119, 169
release a job 99
remote access 128, 129
remote connection to a network printer 106
remote connection to local printer on another system 106
remote print troubleshooting 415
remote printing 103
remote printing log 499
remote timeout 392
remove a printer device 471
remove user priority limit 472
reset filter to defaults 473
resume a held print request 475
resume a job 90, 99
security 14, 25
set default destination 471
set default print priority 472
set default priority limit for all users 472
set default user priority limit 472
set form alert 473
show characteristics of a printer device 471
show current print subsystem 471
show printer driver settings 472
SMIT 8, 49
socket filters 166, 448
specify a content type when printing 475
spooler 9
spooling 30
stair-step output 419
start the print service 56, 471
status requests 471
stop the print service 56, 471
submit print request 475
supported printers 519
switch print subsystem 471
switching to PowerPC print subsystem 7
temporary files 411
terminal 118, 151, 519
terminfo attributes 485
terminfo file format 486
troubleshooting 404
troubleshooting interface scripts 412
type definitions 135
unregister a remote system 471
Web-based System Manager 7, 10, 49
workload balancing 16
System V print subsystem server RST 508
Systems file 414, 415

T
t1ascii 441
t1asm 442
t1binary 441
t1disasm 442
t1utils 441
tab support 151
 virtual printer 343
tabs 344, 444
Tagged Image File Format (TIFF)
 Infoprint Manager 515
TCP header 507
TCP/IP connection 503
TCP/IP handshake 508
TCP/IP socket filter programs 448
tcpdump 397
TCPJet 449, 452
TD 480
tek4014 178
Tektronix 4014 178
telenet
 JetDirect 396
template
 filter 170
 header page 358
template keywords 170
temporary files

System V print subsystem 411
TERM 170, 174, 432
IBMgraphics 161
PS-r, PS-br, PSR 143
supported types 153
used by interface script 140
termcap 485
terminal
 auxiliary port 365
terminal attached printer 365
terminal server 15, 449
 PowerPC print subsystem 267, 318
 terminal-attached printer 18, 19, 24, 366
terminfo 11, 136, 141, 143, 413, 433, 485
 compile with tic 155
 database 47, 51, 71, 74
 file format 486
 length attribute 151
 listing printer with infocomp 155
 lpi attribute 151
 printer attribute naming convention 489
 printer entries 153
 printer type 51, 68, 74, 82, 105, 108, 115, 118, 519
 sample entry 153
 stack language introduction 154
 use= attributes 153
 viewing attributes 154
terminfo attribute 142
 boolean 153
 modifying 17
 numeric 153
 printer initialization 153
 standard interface 153
 string 153
terminfo compile 152, 485
terminfo database
 escape sequences 151
 overview 151
 page width 152
 PS and PSR TERM types 152
 standard interface program 152
testing
 local device 64
 locally-attached printers 76
text
 automatic detection 353
 external formatting 24
text files to a PostScript queue 247
text formatting utility 444
text to PostScript 438, 439
tgif 437
th_win 507
tic 155, 485
termtinof compile 152
TIFF 25, 437
(see Tagged Image File Format) 515
timeout
ack 504
parallel attached printer 63
remote printing 392
System V print subsystem remote printing 414
timeout to server 501
timestamp 438
tips 435
title 446
command line parameter 140
Tivoli Output Management 20
Top of page 70
tput 142, 154, 161, 492
tr 168
tr filter 151, 349, 447
tracing network printing 397
tracing remote printing 499
transfg 437
transmit buffer count 385
tray selection 141, 144, 148, 327, 352
trbsd 447
troff 165, 172, 178
troff formatter 516
troubleshooting 373
capturing files 398
Checklist for local printing 374
Checklist for remote printing 375
common techniques 394
flags 393
hpnpcfg log 126
Is lpd running? 390
JetDirect attached printers 396
job still in the queue 378
large file is the failing 376
LPD subsystem (PowerPC) 292
lpsched log (System V) 56
mail message 391
missing jobs 376
missing remote System V jobs 415
name resolution 390
network printing 390
PowerPC print subsystem 419
remote jobs disappear 431
remote printing 132, 415
remote printing (PowerPC) 284
request log 49
stair-step output in System V 419
System V print subsystem 404
System V print subsystem JetDirect 418
test output generation with lptest 394
tips common to both print subsystems 374
virtual printers 421
TrueType font 436
tumble 330	
two-sided printing 164
TxD 480
type 1 fonts 177, 183, 354, 441
type size 148
type style 148
typeface 329
Typestyle 189

U
UCLA 435
UCLA SEAS public domain software 436
Univers font 189
unknown
default printer type (System V) 74, 108
unknown printer 501
unknown printer type 152
unmounting a form 160, 346
unpost 442
URL
Group Bull 436
UCLA SEAS 436
user access 186
user list
forms 159
user_name
command line parameter 140
users
form allow and deny 157
users.allow 78, 130
users.deny 130, 131
utilities 435
UX
lp 412

565
validity testing 488
verifying the active print subsystem 64
Virtual printer
 banner selection 429
virtual printer
 _d attribute 335
 _f attribute 335
 _J attribute 335
 _L attribute 494
 _p attribute 342
 _v attribute 343
 _X attribute 335
 _Z attribute 335
 automatic file type detection 353
backend 322
 banner header 350
 ci attribute 335
 colon file format 487
 colon file sequence 485
 ct attribute 342
 customization 11, 18, 327, 337
 default attribute files 485
 es attribute 340, 342
 filters 347
 header page attribute 357
 key attributes 334
 limits 488
 listing attributes 332
 mD attribute 487
 message catalog 487
 mF attribute 354
 mL attribute 336
 mU attribute 337
 predefined printers 335
 ring list 340
 sD attribute 494
 sh attribute 335, 350, 358, 359
 wh attribute 343
virtual printer attribute
 fl 431
 fp 431
 sh 429
virtual printer backends 321
virtual printers
 troubleshooting 421
VM 201, 516
vmstat 40
word processor 165
workload balancing
 Infoprint Manager 16, 456, 457
 PowerPC print subsystem 16
 System V print subsystem 16
wrapped content type 175
writesrv daemon 294
wsm command 57, 276, 296, 304

X
X Windows 437
 capturing 442
 image grabber 437
xgrabsc 437, 444
XON/XOFF 480
xpdf 436
xpr 443
xpreview 442
xps 436
Xstation 268
Xstation attached printers (PowerPC)
 added files 315
 adding a printer 312
 catlpx filter 268, 312
 piolpx backend 268
 sample /etc/qconfig stanza 315
Xstation-attached printer 18, 19, 24
xv 437, 443
xwd 443
xwpick 437
Xylogics 449
Xyplex Access terminal server 449

Z
zig-zag output 384
IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a Redbook "made the difference" in a task or problem you encountered. Using one of the following methods, please review the Redbook, addressing value, subject matter, structure, depth and quality as appropriate.

- Use the online Contact us review redbook form found at ibm.com/redbooks
- Fax this form to: USA International Access Code + 1 914 432 8264
- Send your comments in an Internet note to redbook@us.ibm.com

<table>
<thead>
<tr>
<th>Document Number</th>
<th>SG24-6018-00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redbook Title</td>
<td>Printing for Fun and Profit under AIX 5L</td>
</tr>
</tbody>
</table>

Review

What other subjects would you like to see IBM Redbooks address?

Please rate your overall satisfaction:

- Very Good
- Good
- Average
- Poor

Please identify yourself as belonging to one of the following groups:

- Customer
- Business Partner
- Solution Developer
- IBM, Lotus or Tivoli Employee
- None of the above

Your email address:
The data you provide here may be used to provide you with information from IBM or our business partners about our products, services or activities.

O Please do not use the information collected here for future marketing or promotional contacts or other communications beyond the scope of this transaction.

Questions about IBM’s privacy policy?
The following link explains how we protect your personal information.

ibm.com/privacy/yourprivacy/
Printing for Fun and Profit under AIX 5L
The introduction of AIX 5L demonstrates IBM’s commitment to the open model of computing. The addition of the System V Release 4 print subsystem in this release of AIX is just one of the many ways that IBM demonstrates this commitment. Many new functions have been introduced in this latest release of AIX.

In AIX 5L, IBM includes both the traditional AIX print subsystem, which we will call the PowerPC print subsystem, as well as the System V print subsystem, which has been a printing standard for many years in the UNIX environment. For more complex printing environments, IBM also offers a print management product called Infoprint Manager. The system administrator must decide which print subsystem fits his or her environment the best. One of the aims of this book is to help you make that decision.

This redbook provides information on the two print subsystems available with AIX 5L Version 5.0. New in Version 5.0 is the initial implementation of the System V print subsystem, and this redbook will compare and contrast it with the legacy PowerPC print subsystem, as well as with the Infoprint Manager for AIX licensed program product.